
И.В.Красиков,И.Е.Красикова

Алгоритмы
·•· ·.1··· ·.· }

=!(,.

УДК 004.021
ББК 22. 1 8

к 78

Красиков И.В.
Алгоритмы. Просто как дважды два / И. В. Красиков,

И. Е. Красикова. - М. : Эксмо, 2007. - 256 с. - (Просю как
два.ЖЦЬI два).

ISBN 978-5-699-21047-3
© Красиков И. В., Красикова И. Е., 2007
© ООО «Ицательстоо· •Эксмо•, 2007

ББК 22.18

Программирование невозможно без знания языков программирования, но не ме-
нее невозможно оно без знания алгоритмов. Эта книга познакомит вас со многими
алгоритмами для решения часто встречающихся в программистской практике задач.
В книге собраны самые разные алгоритмы - от сортировки и работы с графами до
численных методов и работы с календарем; имеется много примеров использования
алгоритмов для решения конкретных задач, а также реализация описанных алгорит-
мов на языке программирования С++.

УДК 004.021

К 78

ISBN 978-5-699-21047-3

В.В. АлександровВыпускающий редактор

Содержание

Введение 7
Глава 1. Структуры данных " .. """." ""."." .. " """""""11

Описание эффективности и асимптотические

обозначения 11
Стеки и очереди . . . "" "." """ " """ """."."". 14

Стек 15

Очереди 17

Связанные списки . . . " " " "" """ "" 19

Бинарные деревья поиска . . " .. " ... """" """ """ " "" " .. 24

Красно-черные деревья " .. "."." .. " .. "."." .. "."." .. "."." 39

Пирамиды " 56

Глава 2. Сортировка и поиск """" "" "" ""." 63
Сортировка 63

Сортировка вставкой."." " .. " "" .. " " .. "." .. "."." .. ". 64

Сортировка выбором " .. " .. " " .. " " "."." .. "." 66

Пузырьковая и шейкерная сортировки """" "" """"" "" "".""". 67

Быстрая сортировка . . "." " .. " .. "." .. " "."." "."." " " 70

Сортировка слия нием " .. "."." .. " " "." " .. " " 72

Пирамидальная сортировка " .. "." .. " "." "." .. " ".". 75

Сортировка вставкой в бинарное дерево поиска"""""""""" . . . 78

Сортировки за линейное время """"""""""""""""""."""""". 78

Поиск 83

Последовательный поиск . . " ... "."." " " "." .. "." .. "."83

Бинарный поиск . . . " " .. " .. "."." .. " .. " "" " .. " " .. " " .. "85

Интерполя ционный поиск" " "." .. "."."." "."." "."" 87

Поиск в бинарном дереве поиска"".""""""."""" .. """""" .. "". 87

Хеширование . . . " .. "".""."." "".".".""""""." .. "."""""."""." 88

Поиск подстрок " .. " 95

Алгоритм Хорспула "" "" " .. ".". " .. "." ". ". "" ""." .. "" .. 97

4 Содержание

Глава 3. Графы ... 103
Основные свойства графов 103

Поиск в ширину 106

Поиск в глубину 112

Топологическая сортировка 121

Кратчайшие пути 124

Кратчайшие пути из одной вершины 124

Кратчайшие пути межд у всеми парами вершин 131

Глава 4. Численные методы .. 137
Вычисление значений полиномов и интерполяция

функций · · · · · · 137

Интерполя ция функций 138

Численное дифференцирование и интегрирование 140

Решение нелинейных уравнений 143

Решение обыкновенных дифференциальных уравнений

с начальными условиями ". " ". """""" "" ... """ ... ". 148

Глава 5. Матрицы ... 155
Свойства матриц 155

Операции над матрицами 157

Обратные матрицы, ранги и определители 159

Умножение матриц " " 160

Метод исключения Гаусса 163

Обращение матрицы 169

Вычисление определителя 171

Трех диагональная система линейных уравнений 172

LUР-разложение 177

Метод наименьших квадратов 182

Глава б. Комбинаторные алгоритмы 185
Генерация всех подмножеств данного множества 186

Генерация всех перестановок 190

Генерация всех сочетаний 194

Генерация всех разбиений числа 197

Генерация всех деревьев 203

Содержание 5

Глава 7. Дополнительные вопросы .. 207
Рандомизированные алгоритмы " .. " " "" "" .. 207

Генераторы псевдослучайных чисел " .. " " 208

Получение случайной перестановки .. " " " 209

Метод Монте-Карло" .. " " "." " " ... "" .. " 210

Динамическое программирование." """ .. """ " ... "." 213

Жадные алгоритмы ... " .. " ... "" ""." .. "." "" 220

Поиск с возвратом """ .. " ... """ .. " ... "." ""." .. """ .. "". 221

Метод ветвей и границ""""""""""""""""""""""""""""""".231

Алгоритмы для работы с календарем " ". "" """" " """" """ 235

Список литературы ... 242
Предметный указатель .. 244

Благодарности

Посвящается первому человеку,
который не только сумел сделать что-то,

но и пояснил другим, как это выполнить,
став первым автором алгоритма

Самая большая благодарность - авторам всех описанных в книге ал­
горитмов, без которых, само собой, этой книги просто не могло бы быть.

И. и И. Красиковы

Введение
Данную книгу можно рассматривать как краткий справочник по

основным, наиболее распространенным компьютерным алгоритмам.
Она рассчитана в первую очередь на начинающих программистов, но
может также служить справочником для более опьпных специалистов.

Алгоритм описывается с помощью слов, псевдокода и, как прави­
ло, реализации алгоритма (или примера его использования) на языке
программирования С++.

В псевдокоде для выделения блоков используются как отступы, так
и явное указание блоков begin-end. Инструкции циклов и условных
операторов трактуются так же, как и в языке Pascal, однако перемен­
ная цикла при вых оде из него остается действительной, а ее значение
на единицу превышает верх нюю границу цикла. Функциональность
оператора 4=• зависит от контекста - в условиях циклов и конструк­
ции if он означает равенство, в остальных частях псевдокода - при­
сваивание. Все переменные, если не оговорено иное, являются ло­
кальными по отношению к данной процедуре.

Доступ к элементам массива осуществляется путем указания
имени массива, за которым в квадратных скобках следует индекс.
Например, А [i] - это обозначение i-го элемента массива А. С помощью
обозначения 4 •. • указывается интервал значений, которые принимает
индекс массива. Таким образом, обозначение A[1.J] свидетельству­
ет о том, что данное подмножество массива А состоит из j элементов
А[1],A[2], . .. ,A[j]. Однако в ряде случаев (особенно при использовании
двойных индексов) для экономии места может применяться эквива­
лентное обозначение с нижним индексом: АР Ajk.

Сложные данные представляются в виде объектов, содержащих
поля. Доступ к определенному полю осуществляется с помощью име­
ни поля, после которого в квадратных скобках указывается имя объек­
та. Например, узел в списке имеет поле next, так что значение поля next
узлах записывается как next[x]. Несмотря на то что квадратные скоб­
ки, как сказано выше, используются и для индексирования элементов
массива, их интерпретация всегда будет понятна из контекста.

Переменная, которая используется в качестве имени массива или
объекта, трактуется как укаэатель на данные, представляющие этот
массив или объект. Для всех полей f объекта х присваивание у = х

8 Введение

приводит к тому, чтоЛх J = fly], а переменныех иу указывают на один
и тот же объект.

Иногда переменная вообще не ссылается ни на какой объект. В та­
ком случае она имеет значение О.

Параметры передаются в процедуру по значению: в вызывающей
процедуре создается своя собственная копия параметров, и если в вы­
званной процедуре какому-то параметру присваивается значение, то
в вызывающей процедуре не происх одит никаких изменений. Если
передаются объекты, то происх одит копирование указателя на дан­
ные, представляющие этот объект, но поля объекта не копируются.

Логические операторы and и or вычисляются сокращенно, как в
языке программирования С/С++. Это означает, что при вычислении
выражения «Х and у» сначала определяется значение выражения х .
Если оно ложно, то все выражение не может быть истинным, и значе­
ние выражения у не вычисляется. Если же выражение х истинно, то
для определения значения всего выражения необх одимо вычислить
выражение у. Аналогично в выражении «Х or у » величина у вычис­
ляется только в том случае, если выражение х ложно. Укороченные
операторы позволяют составлять такие логические выражения, как
«Х "*О andflx] =у», не беспокоясь о том, что произойдет при попытке
вычислить выражение Лх], если х = О.

«Изюминкой» книги является реализация практически всех при­
веденных· в ней алгоритмов на С++. Относиться к реализации алго­
ритмов на С++ в этой книге можно двояко - с одной стороны, вы мо­
жете применять готовые реализации алгоритмов в своих программах
(х отя масса их более эффективно реализована в библиотеках С++), с
другой - вы можете использовать эти реализации как учебный мате­
риал при изучении языка С++.

Следует сделать несколько замечаний по поводу реализации алго­
ритмов на С++.

При реализации алгоритмов не преследовалась цель получить
максимально эффективный или элегантный код. Основной упор де­
лался на корректность и понятность реализации.

Там, где это представлялось разумным, использовалось обобщен­
ное программирование (в первую очередь , это алгоритмы сортиров­
ки, поиска и т. п.), однако в книге имеются и реализации с использо­
ванием С++ в качестве «улучшенного С», там, где обобщенность не
принципиальна или решается конкретный экземпляр задачи.

Использование реализаций алгоритмов предполагает знание по
крайней мере основ языка программирования С++. Многие триви-

Введение 9

альные с точки зрения языка вещи опущены (в качестве примера
можно привести реализации алгоритмов сортировки, где без поясне­
ний используются такие вещи, как итераторы или компараторы. Там
же приведены только версии реализаций алгоритмов с компаратора­
ми, поскольку написать перегрузку шаблонной функции сортировки
с использованием компаратора less<type> для знающего С++ про­
граммиста - задача тривиальная1). В качестве справочного пособия,
облегчающего понимание реализаций алгоритмов на С++, можно по­
советовать книгу [14].

Поскольку главной задачей является реализация алгоритма, обра­
ботка ошибок (там, где она имеется) выполняется простейшим обра­
зом, с помощью языкового средства assert - заинтересованный чи­
татель должен применять вместо этого весьма грубого средства свою
обработку ошибок, например, с использованием исключений. В ряде
реализаций самоочевидные проверки опущены. Говоря об исключе­
ниях , следует также отметить , что вопросы безопасности исключений
при реализации отод�игались на второй план.

Для компиляции программ использовались компиляторы Open
Watcom 1.4 и Visual С++, однако в исх одных текстах реализаций алго­
ритмов нет никаких особенностей, которые бы препятствовали их ком­
пиляции другими компиляторами, поддерживающими стандарт С++.

В тексте, отмеченном данной пиктограммой, рассматри­
вается применение описанного алгоритма для решения
конкретного экземпляра задачи.

Данная пиктограмма указывает на исх одные тексты на
С++, реализующие алгоритм так, чтобы его можно было
применить для решения различных экземпляров задачи.

ааметкУ е
Этой пиктограммой отм:чаются дополнительные сведе­
ния по рассматриваемои теме.

1 На всякий случай приведем двухстрочное решение для функции пузырько­

вой сортировки:

template<typename Iter> void BuЬleSort(Iter Ь, Iter е) {
BuЬleSurt(b,e,less<iterator_traits<Iter>::value_type>());}

rпава 1

Структуры данных
В этой главе вы познакомитесь с основными структурами данных,

которые играют в алгоритмах крайне важную роль, так как использо­
вание той или иной структуры данных зачастую определяет времен­
ные характеристики алгоритма и его требования к памяти.

Предполагается, что читатель знаком со статическими структу­
рами данных, такими как массивы или записи (структуры), которые
имеются практически в любом языке программирования. Здесь будут
рассматриваться только динамические структуры данных, т.е. такие
структуры, у которых в процессе вычисления изменяются не только
значения переменных, но даже и сама их структура. Естественно, что
на определенном уровне детализации компоненты таких объектов
представляют собой статические объекты, принадлежащие к базовым
типам данных.

Поскольку с самого начала книги для описания эффективности
алгоритмов используются асимптотические обозначения О, 0, Q,
первый раздел этой главы дает краткое описание этих обозначений (в
связи с краткостью этого материала выносить его в отдельную главу
не имеет смысла).

Описание эффективности
и асимптотические обозначения

Перед тем как перейти к собственно структурам данных, вкратце
напомним об обозначениях, используемых при описании эффектив­
ности алгоритмов. Временная эффективность алгоритма обычно вы­
ражается как функция размера входных данных п (в ряде алгоритмов
для оценки размера входных данных может использоваться несколь­
ко параметров одновременно - например, в алгоритмах для работы с
графами такими параметрами являются количество вершин и коли­
чество ребер графа). В большинстве случаев выбор такого параметра
не составляет труда. Например, для задач сортировки, поиска, нахож­
дения наименьшего элемента и многих других алгоритмов обработки

12 Глава 1

списков таким параметром является размер списка. При вычислении
значения многочлена степени п р (х) = а"х" + · · · + а0 таким параме­
тром может быть степень многочлена или количество его коэффи­
циентов, которое на единицу больше степени многочлена. Подобные
небольшие отличия не влияют на результаты анализа эффективности
алгоритма.

Поскольку конкретные временные характеристики алгоритма
зависят от его реализации, использованного компилятора и ком­
пьютера, для оценки эффективности алгоритмов применяется такая
характеристика, как асимптотическая зависимость количества базо­
вых операций от размера входных данных при очень больших вели­
чинах последнего. Следует учесть, что для разных входных данных
количество базовых операций может весьма существенно различать­
ся. Например, рассмотрим поиск в массиве из п элементов, последо­
вательно перебирающий элементы от первого до п -го. В наилучшем
случае, когда искомый элемент - первый в массиве, нам потребуется
только одно сравнение. В наихудшем, когда искомый элемент - по­
следний, потребуется п сравнений. В среднем же случае потребуется
п /2 сравнений. Заметим, что и в наихудшем, и в среднем случае коли­
чество требующихся сравнений линейно зависит от размера входных
данных, так что они оба имеют одинаковый порядок роста.

Имеется еще один вид эффективности - так называемая аморти­
зированная эффективность, когда рассматриваются не конкретные
операции, а их последовательности. Возможны ситуации, когда кон­
кретная операция над структурой данных занимает длительное вре­
мя, но совокупность операций занимает меньше времени, чем сумма
времен выполнения в наихудшем случае. Амортизационный анализ
алгоритмов (как и обычный) детальнейшим образом рассмотрен в
книге [12], к которой и рекомендуется обратиться заинтересованно­
му читателю.

Для того чтобы можно было классифицировать и сравнивать меж­
ду собой порядки роста, введены три условных обозначения: О, 0 и Q.
Ниже через t (п) обозначено время выполнения некоторого алгорит­
ма (выражающееся как количество базовых операций); g(n) - не­
которая простая функция, с которой будет проводиться сравнение
количества операций t (п) .

Говоря нестрого, обозначение O(g(п)) - это множество всех фун­
кций, порядок роста которых при достаточно больших п не превы­
шает некоторую константу, умноженную на значение функции g(п) .

Структуры данных 13

О(g(п)) - это множество всех функций, порядок роста которых при
достаточно больших п не меньше некоторой константы, умноженной
на значение функции g(п) . И, наконец, е(g(п))- это множество
всех функций, порядок роста которых при достаточно больших п ра­
вен некоторой константе, умноженной на значение функции g(п) .
Более строгие определения выглядят следующим образом:
t (п) е О (g (п)), если существует положительная константа с и неот­
рицательное целое число п0 такое, что t (п) :::; cg (п) для всех п � п0 ;
t(п) е n(g(п)), если существует положительная константа с и неот­
рицательное целое число п0, такое, что t(п) � сg(п) для всех п � п0;
t(п) е е(g(п)),еслисуществуютположительныеконстантыс!ис} ,атак­
женеотрицательное целоечислопо такое, что с2g(п) :о:; t(п):о; с 1g�п) для
всех п�nu.

Нетрудно доказать ряд свойств указанных обозначений. Это, в
частности, транзитивность:
ИЗ /(п) =0(g(п)) и g(п) = е(h(п)) следует f(п) =0(h(п)),

из f(п) =О(g(п)) и g(п) = o(h(n)) следует /(п) =О(h(п)),

ИЗ f(п) =О(g(п)) и g(п) = n(h(п)) следует / (п) = n(h(п)),

из / (п) = о(g(п)) и g(п) = о(h(п)) следует / (п) = о(h(п)),

ИЗ f(п) =ro(g(п)) и g(п) =ro(h(п)) следует f(п) =ro(h(n)),

рефлексивность:
/(п) =0(/(п)), /(п) =О(/(п)), /(п) =О(/(п)),

симметричность:

/ (п) = е(g(п)) справедливо тогда и только тогда, когда g(п) = е(/(п)),

/ (п) =О(g(п)) справедливо тогда и только тогда, когда g(п) =П(/(п)).

Кроме того, если t1 (п) еО(g1 (п)) и t2(п) е O(g2 (п)), то

tl (п)+ t2 (п) е o(max {g1 (п) ,g2 (п)}).
Аналогичные утверждения справедливы также для обозначений
О и0.

14 Глава 1

Несмотря на то что без строгих определений множеств О, Q, 0
нельзя обойтись при доказательстве их абстрактных свойств, они
редко используются для сравнения порядков роста конкретных
функций. Существует более удобный метод выполнения этой оцен­
ки, основанный на вычислении предела отношения двух рассматри­
ваемых функций. Могут существовать три основные ситуации (не
считая достаточно редко встречающегося на практике случая, когда
предел не существует):

t (п)
{О, если t (п) имеет меньший порядок роста, чем g(п),

lim-() = с, если t(n) имеет тот же порядок роста, чемg(п), n--+oog n
оо, если t (п) имеет больший порядок роста, чем g(п).

Обратите внимание на то, что для двух первых случаев
t(n)е О(g(п)) , для двух послед них - t(n)е n(g(n)), и для второ­
го - t(n)е 0(g(п)) .

В этой книге мы ограничимся только приведенным кратким опи­
санием асимптотических обозначений; более полное описание их
свойств можно найти, например, в [12, 2 1] .

Стеки и очереди
Стеки и очереди - это динамические множества, в которые можно

вставлять и из которых можно удалять элементы при помощи соот­
ветствующих операций вставки и удаления, однако вставка и удале­
ние не могут производиться в произвольном порядке. При добавле­
нии элемента нельзя указать конкретное место в множестве, в кото­
рое он вносится, как нельзя указать, какой именно элемент уд аляется
из множества. Из стека первым всегда удаляется элемент, который
был помещен туда последним, т.е. в стеке реализуется стратегия «По­
следним вошел - первым вышел». Аналогично в очереди всегда пер­
вым удаляется элемент, который содержится в ней дольше других :
в очереди реализуется стратегия «первым вошел - первым вышел».
Существует несколько эффективных способов реализации стеков и
очередей в компьютере, но здесь рассматривается только один из них ,
а именно - способ реализации при помощи обычного массива.

Структуры данных 15

Стек
Операция вставки в стек часто называется Push (запись в стек),

а операция удаления - Рор (снятие со стека). На рис. 1.1 сх ематич­
но показана работа стека. При выполнении операции Push на верши­
ну стека добавляется новый элемент (на рисунке это число 3), а при
снятии со стека удаляется элемент из его вершины.

Стек с максимальным объемом п элементов можно реализовать в
виде массива, например 5[1 . . п], и индекса последнего заполненного
элемента массива top. Таким образом, значение top, равное О, соответ­
ствует пустому стеку.

push(З)

вершина
стека

4 5
5 4 5 4
2 з 2 з
7 2 7 2
о о

top=5 tор=б

рор() рор()

5 4
2 з
7 2
о

top=5

вершина вершина
стека стека

2 з
7
о

top=4

Рис. 1.1. Реализация стека S в виде массива

Протестировать стек на наличие в нем элементов можно с помо­
щью операции StackEтpty, псевдокод которой приведен далее, и ко­
торая сводится к проверке значения индекса top. Если элемент сни­
мается с пустого стека, говорят, что стек опустошается, что обычно
приводит к ошибке. Если значение top превосх одит п, то стек перепол­
няется. В представленном ниже псевдокоде возможное переполнение
стека во внимание не принимается.

Псевдокоды описанных операций над стеком состоят всего лишь
из нескольких строк каждый.
StackEmpty (S)

if top = О then return true

else return false

16

Push (S , x)

top = top + 1

S [top] = х

Pop (S)

i f StackEmpty (S) then error "Опустошение стека"

else top = top - 1

return S [top + 1]

Глава 1

На рис. 1.1 показано состояние стека для последовательности опе­
раций Push(З), Рор(), Рор(). Индексы массива, с помощью которого
реализуется стек, приведены справа от изображения стека. Любая из
рассмотренных операций со стеком выполняется за время 0(1) . • Реализация стека на С++ тривиальна. Поскольку реа­

лизация стека имеется� ст: ндартной библиоте
v
ке С++,

здесь приведен простеишии код, реализующии стек с
фиксированным количеством элементов.

template<typename Т, int N>

class Stack

puЫic:

Stack () : top (О) {}
bool empty() { return top

void Push(const Т& t);

Т Рор();

private:

} ;

int top;

Т S[N];

template<typename Т, int N >

void Stack<T,N>::Push(const Т& t)

{

о; }

assert((top < N) && "Переполнение стека");

S[top++] = t;

template<typename Т, int N >

Т Stack<T,N>::Pop()

Структуры данных

assert (! ernpty () && "Опустошение стека") ;

return S [--top];

17

По поводу данной реализации следует сделать несколько замеча­
ний : поскольку она служит лишь иллюстрацией , в ней отсутствует
масса необх одимых вещей - в частности, у класса нет копирующего
конструктора, оператора присваивания. Говорить об обобщенности
такого решения можно лишь в том смысле, что в нем используется
параметр типа т, но на самом деле, по сути, этот код не обеспечивает
и сколь-нибудь значительной доли той гибкости, которая присуща
настоящему обобщенному программированию. Обратите также вни­
мание на небезопасность приведенного кода по отношению к исклю­
чениям (подробнее об этом можно прочесть в [18]).

Очереди
Применительно к очередям операция вставки называется Eпqueue

(поместить в очередь), а операция удаления - Dequeue (вывести из
очереди). Так же, как и для стека, вы не можете указать, куда следует
вставить новый элемент или какой элемент следует удалить из оче­
реди. Благодаря стратегии �первым вошел - первым вышел» очередь
действует как, например, живая очередь в магазине. У нее имеется на­
чало и конец. Когда элемент ставится в очередь, он занимает место в
ее конце. Из очереди всегда выводится элемент, который нах одится в
ее начале.

На рис. 1.2 показан способ реализации очереди не более чем из п-1
элементов при помощи массива Q[1 .. п]. Для реализации очереди ис­
пользуются две индексные переменные - head, указывающая первый
элемент очереди (который будет удален из нее очередной операцией
Dequeue), и tail, указывающая позицию, в которую будет добавляться
новый элемент. Элементы очереди расположены в ячейках Q[head],
Q[head + 1], ... , Q[tail -1], которые циклически замкнуты в том смыс­
ле, что ячейка 1 следует сразу же после ячей ки п в циклическом по­
рядке. При условии head = tail очередь пуста. Изначально выполня­
ется соотношение head = tail = 1. Если очередь пуста, то при попытке
удалить из нее элемент происх одит ошибка опустошения. Если же
head = tail+ 1 (mod п), то очередь заполнена, и попытка добавить в нее
элемент приводит к ее переполнению.

18

1 2 з 4 5 6 7 в 9 10

�вlзl12lsllJ
t t

head tail

1 2 з 4 5 6 7 в 9 10

11 lв �в lз l12ls l 2I
t t

tail head

1 2 з 4 5 6 7 в 9 10

l1lв-зl12ls/2I
t. t

ta11 head

Рис. 1.2. Реализация очереди с помощью массива

Глава 1

В псевдокоде процедур Enqueue и Dequeue проверка на ошибки
опустошения и переполнения не производится - вы легко можете до­
бавить необх одимый код самостоятельно.
Enqueue (Q, х)

Q[tail] = х
if tail = п then tail 1

else tail = tail + 1

Dequeue(Q)
х = Q[head]
i f head = п then head 1
else head
return х

head + 1

На рис. 1.2 приведено состояние очереди после добавления трех и
удаления одного элемента. Заштрих ованы свободные ячейки масси­
ва, в которые можно выполнять вставку элементов. Любая из рассмо­
тренных операций со стеком выполняется за время 0(1).

ij
Реализация очереди на С++ приведена ниже. К ней при­
менимы все те же замечания, которые были сделаны по
поводу реализации на С++ стека.

Структуры данных

temp l ate<typename т, int N>

c l a s s Queue

puЬl ic:

Queue() :head(O) ,tail(O) {}

bool empty() { return head

void Enqueue(const Т& t) ;

Т Dequeue() ;

private:

} ;

int head, tai l ;

Т Q[N] ;

template<typename Т, i nt N>

tail ; }

void Queue<T,N>::Enqueue(c onst Т& t)

{
assert((head%N!=(tail+ 1) %N) &&

"Переполнение очереди") ;

Q[tail] = t ;

tail = (tail+ l) %N ;

template<typename Т, i nt N >

Т Queue<T,N>: : Dequeue()

{
assert (! empty () && "Опустошение очереди") ;

int oldhead = head ;

head = (head+ l) %N ;

return Q [o ldhead] ;

Связан ные списки

19

Связанный список - это структура данных , в которой объекты
расположены в линейном порядке. Однако, в отличие от массива, в
котором этот поряд ок определяется индексами, порядок в связанном
списке определяется указателями на объекты.

20 Глава 1

Элемент (узел) свяэанного списка помимо поля данных имеет
поле next, в котором содержится указатель на следующий элемент
списка (если это последний элемент списка, поле next принимает ну­
левое значение). Каждый список содержит помимо своих элементов
указатель head на первый элемент списка. Если этот указатель ра­
вен О, значит, список пуст.

Такой односвязный список схематически показан на рис. 1.3.
Односвязный список отличается тем, что пройти по нему можно
только в одном направлении - от начала в конец списка. Это оказы­
вается достаточно неудобно, поэтому гораздо большее распростране­
ние получили дважды связанные списки (рис. 1.4), отличающиеся тем,
что узлы такого списка содержат по два указателя - на следующий и
предыдущий элементы списка. Кроме указателя head на первый эле­
мент списка может существовать также указатель tail на последний
элемент списка.

1 данные 1next 1
head-\ 1:+-1 1:Н __._1± _ 1

Рис. 1.З. Односвязный список

1ргеv1 данные 1next 1
tail 1 .J

Рис. 1.4.Дважды связанный rписок

Частный случай дважды связанного списка - замкнутый (кольце­
вой) список, указатель next последнего элемента которого указывает
на первый элемент, а указатель prev первого элемента - на последний
элемент списка.

Главная особенность списка - быстрое выполнение операций
вставки и удаления в произвольном месте списка. Эти операции тре­
буют модификации указателей максимум у трех узлов - узла, с ко­
торым выполняется операция, и окружающих. Изменения значений
указателей оченидны; схLматично они показаны на рис. 1.5.

Структуры данных

Рис. 1.5. Вставка и удалеиие в дважды связаииом списке

Псевдокод этих операций не сложнее их описания.
L i s t insert (L , x)

//входные даииые: Список L , вставляемый узел х

//выходные даииые: Список L , в который вставлен

// узел х

next [x] = head [L]

i f head [LJ * О then prev [head [L]] х

head [L] х

prev[x] О

Lis tDel ete (L , х)

//входные даииые: Список L , удаляемый узел х

// Вшс:о,ц.ные даииые: Список L , из которого удален

1 1 узел х
if prev [x] "* О then next [prev[x]] = next [х]

else head [L] = next [х]

if next [х] "* О then pre v [n ext [х]] = pre v [x]

21

• Что касается реализации списков на С++, то в стан­
дартной библиотеке С++ содержится шаблонный класс
list<T>, который реализует список. Это полная и про­
фессионально выполненная реализация, с которой не­
возможно тягаться, особенно при ограниченном объеме

книги. Поэтому порекомендуем заинтересованному читателю обра­
титься к классу list<T> из стандартной библиотеки, а здесь будет
приведена демонстрационная программа, в которой строится список
целых чисел с использованием процедур вставки и удаления, а также
показаны поиск узла (в процедуре удаления) и обход списка.

22

#include < iostream>

using namespace s t d ;

class Li s t

Глава 1

s truc t Node // Внутренняя структура узла

int dat a ;

Node * prev ;

Node * next ;

Node (int i) :data (i) , next{O) , prev (O) { }

} ;

puЬl i c:

L i st () :head () { }
void insert (int х) ; 1 1 Вставка узла

voi d remove (int х) ; 1 1 Удаление узла

voi d out () ; 1 1 Вывод списка

private:

Node * head ;

} ;

voi d L i st::insert (int х)

Node * n = new Node (x) ;

n - >next = head ;

i f (head) head- >prev = n ;

head = n ;

void Li st::remove (int х)

Node * n ;

1 1 Поиск удаляемого узла

for (n = head ; n; n = n - >next)

i f (n- >data = = х) break ;

i f (n = = 0) return ;

i f (n - >prev) n - >prev- >next

e l s e head = n- >next ;

i f (n - >next) n- >next ->prev

de lete n ;

n- >next ;

n - >prev ;

Структуры данных

void L i st:: out ()

{
i f (head = = 0) cout << исписок пуст\n" ;

e l s e

Node * n ;

for(n = head ; n; n = n- >next)

cout << n->data << endl ;

int mai n()

Li st 1;
l .out () ;

l.insert(l) ;

l.insert(2) ;

l.insert(З) ;

l.remove(2) ;

l .out () ;

23

Вывод данной демонстрационной программы на экран имеет
вполне ожидаемый вид:
Список пуст

3

2

Заметим, что использование указателей - не единственный способ
представления списков (как и других структур данных). Например,
если язык программирования не позволяет пользоваться указателями
и допускает только работу с массивами, то тот же дважды связанный
список можно получить при помощи трех массивов. В первом масси­
ве хранятся значения узлов списка, во втором и третьем - индексы
предыдущего и последующего элементов в списке. Заметим, что та­
ким образом одни и те же массивы могут использоваться для пред­
ставления нескольких списков одновременно. Свободные элементы в
этих массивах также объединяются в один (возможно, односвязный)
список. Пример такого представления дважды связанных списков
показан на рис. 1 .6. Здесь представлены три списка - два списка с

24 Глава 1

данными и список свободных ячеек. Значения в массивах prev и next
указывают индексы ячеек массивов, соответствующие предыдущему
и следующему узлам списка. Значение О означает конец списка (нет
предыдущего или последующего узла).

Списки: 4 б 7 9 10 1 1 12

L1 о prev

L2 • value
Свободных ячеек о next

Рис. 1.6. Представление списков в виде трех массивов

Бинарные деревья поиска
Хотя деревья принято определять как частный случай графа (де­

рево является связным ациклическим неориентированным графом),
здесь мы дадим рекурсивное определение дерева таким образом: дере­
во - это либо пустое дерево, либо узел с конечным числом связанных с
ним отдельных деревьев, именуемых поддеревьями. Однако несмотря
на все изобилие деревьев здесь мы рассмотрим только небольшое, но
крайне важное их подмножество, а именно - бинарные деревья поис­
ка. У такого дерева каждый узел имеет не более двух дочерних узлов,
причем левый и правый узлы различаются. У каждого узла дерева
имеется поле значения, хранящегося в узле, и поля, указывающие на
левый и правый потомки данного узла, а также на родительский узел.
Это - бинарное дерево. Бинарным деревом поиска его делает следую­
щее свойство: значения в узлах дерева располагаются таким образом,
что в любой момент для любого узла х значения всех узлов в его ле­
вом поддереве не превышают значения узлах, а значения всех узлов в
его правом поддереве не меньше значения узлах. На рис. 1.7 показано
несколько деревьев. Дерево а не является бинарным, так как у узла
5 - три дочерних узла; дерево б является бинарным, но не является
бинарным деревом поиска - так как узел 2 является правым дочер­
ним узлом по отношению к узлу 3, и тем самым нарушается свойство
бинарного дерева поиска. Дерево в представляет собой корректное би­
нарное дерево поиска, а на рис. 1 .7, г изображено возможное представ­
ление бинарного дерева поиска с использованием полей указателей.

Структуры данных

а) б) в)

г)

Рис. 1.7. а) дерево; б) бинарное дерево; в) бинарное дерево
поиска; г) одно из представлений бинарного дерева поиска

25

Посетить все узлы дерева очень легко с помощью рекурсивной
процедуры обхода. Основные варианты обхода бинарного дере­
ва - симметричный обход дерева, когда для каждого узла сначала
рекурсивно выполняется посещение его левого поддерева, затем са­
мого узла, а после этого - узлов его правого поддерева. Для дерева на
рис. 1.7, в симметричный обход дает следующую последовательность
узлов: 1 ,2,3,4,5, 7. Как видите, таким образом можно получить отсор­
тированную последовательность значений узлов.

Два других распространенных метода обхода дерева - обход в
прямом порядке, при котором сначала выводится корень, а потом -
значения левого и правого поддеревьев (для уже рассматривавшегося
дерева это дает последовательность 4,2, 1,3, 7, 5), и обход в обратном
порядке, при котором сначала выводятся значения узлов левого и
правого поддеревьев, а затем - корня (для нашего дерева это дает по­
следовательность 1,3, 2,5, 7,4).

Псевдокоды описанных обходов дерева очень просты. Вот псевдо­
код симметричного обхода:

26 Глава 1

InorderTreeWa l k (x , f)

1 1 Вхо,ц.ные даииые: х - корневая вершина дерева ,

1 1 f - функция , вызываемая для

1 1

1 1

значений

каждого узла при обходе дерева

1 1 выходные данные: выполнение функции f для

1 1 значения

1 1 каждого узла

i f х = О then return
InorderTreeWalk (l e ft (х] , f)

f (val ue [х])

InorderтreeWa l k (righ t [х] , f)

Написать самостоятельно соответствующие псевдокоды для обхо­
дов в прямом и обратном порядке не должно составить для вас ника­
кого труда. Очевидно, что требуется О(п) времени для обхода всего
дерева (в предположении, что эффективность выполнения функции/
составляет 0(1)).

Основные операции при работе с бинарным деревом поиска - это
поиск в нем определенного значения, а также поиск наименьшего и
наибольшего элемента дерева, предшествующего и последующего
элементов для данного.

Выполнение операции поиска основано на том, что, находясь на
определенной вершине, можно всегда однозначно указать, в каком
из поддеревьев находится искомое значение (если таковое имеется в
данном дереве) - так как согласно свойству бинарного дерева поис­
ка все значения узлов в левом поддереве не больше, а в правом - не
меньше значения в корне. Таким образом, псевдокод рекурсивного
варианта процедуры поиска заданного значения в бинарном дереве
поиска имеет следующий вид:
TreeSearch (х , v)

1 1 Входные даииые: х - корневой узел дерева , в

1 1 котором выполняется поиск

1 1 значения v

1 1 Выходные данные: узел , з начение которого равно v,

1 1 либо О, если такого у зла нет

i f х О or val ue [x] = v then return х

i f v < val u e [х] then return TreeSearch (l e ft [х] , v)

else return TreeSearch (ri gh t [х] , v)

Структуры данных 27

Заметим, что этот псевдокод легко преобразовать из рекурсивного
в итеративный:
TreeSearch (х , v)

1 1 ВХОДИЪiе даявъ�е : х

/ /

корневой узел дерева , в котором

выполняется поиск значения v

1 1 ВыхоДИЪiе даИНЪiе: узел , значение которого равно v,

1 1 либо О, если такого узла нет

while х * О and va l ue [x] * v do

Ьegin

i f v < va lue [х] then х

else х

end

return х

l eft [Х]

ri gh t [х]

В случае, если искомое значение в дереве отсутствует, возвраща­
ется нулевое значение.

Что касается поиска наименьшего и наибольшего элементов в би­
нарном дереве поиска, то из свойства бинарного дерева поиска оче­
видно, что, чтобы достичь наименьшего (наибольшего) элемента,
надо двигаться по левым (или соответственно правым) ветвям дерева
до тех пор, пока это возможно. Таким образом легко записать псевдо­
коды этих операций.
TreeMin (х)

1 1 входные даИНЪiе: х - корневой узел дерева

1 1 выхоДИЪiе даИНЪiе: узел с минимальным значением

while l eft [х] * О do х = l eft [х]

return х

TreeMax (x)

1 1 Входные даИНЪiе: х - корневой узел дерева

// ВыхоДИЪiе даИНЪiе: узел с максимальным значением

while righ t [х] * О do х = ri gh t [х]

return х

Поиск очередного и предшествующего узла - задача несколько
более сложная, но весьма важная, например, для реализации ите­
раторов в контейнере - бинарном дереве поиска. Интересно, что
эта задача решается без выполнения непосредственного сравнения
узлов, с использованием исключительно знаний о структуре дерева.
Рассмотрим поиск следующего за х элемента. Если правое поддерево

28 Глава 1

х непустос, то очевидно, что следующий за х элемент - это минималь­
ный элемент правого поддерева. Если же правое поддерево х пустое. и
ух имеется следующий. за ним элемент у, то у - наименьший предок
х, левый наследник которого также является предком х. На рис. 1.7, в

следующим за элементом 3 идет элемент 4, левый потомок которого
2 является предком 3. Для поиска такого предка мы просто идем по
дереву в направлении корня, пока не найдем узел, который является
левым дочерним узлом своего родителя (им может оказаться и сам
текущий узел), так что псевдокод этой операции выглядит следую­
щим образом.
TreeSuccessor (x)

1 1 Входные даниые : х - узел дерева

/ / Выходные даниые : узел дерева , следующий за х при

/ / симметричном обходе
if right [х] * О then return TreeMin (righ t [х])

у = parent [х]

while у * О and х = right [y] do

Ьegin

х у

у parent[y]

end;

return у

Процедура поиска узла, предшествующего данному, симметрична
процедуре поиска последующего узла.
'ГreePredecessor (x)

// входные даниые :

/ / Выходные даниые :

/ /

if l eft [x] * О then

у = paren t [х]

х - узел дерева

узел дерева , предшествующий

х при симметричном обходе

return TreeMax (l e ft [х])

while у * О and х = l eft [у] do

Ьegin

х у

у paren t [yJ

end;

return у

Последние две рассматриваемые операции над бинарным дере­
вом поиска - это вставка узла в дерево и его удаление из дерева. При

Структуры данных 29

вставке узла в дерево мы сначала выполняем поиск места, куда следу­
ет вставить новый узел, а затем вставляем его, изменяя поля у встав-
ляемого узла и его родительского узла.
Treeinsert(root , z)

/ / входиые даниые :

/ /
узеп z, добавляемый в дерево

с корневым узпом roo t

// Вшс:одиые даниые: дерево с добавленным в него узлом z

у = о
х = root

while (х * О) do

Ьegin

У = х;

if (val ue[z] < valu e [x]) then х

else х

end ;

paren t [z] = у

l eft [х]

right [х]

if у = О then root = z /! Вставка в пустое дерево

else if val ue [z] < val ue [y]

then l eft [у] = z

else righ t [у] = z

Процедура начинает работу с корневого узла и идет вниз, переме­
щая указатель х. При проходе вниз указатель у постоянно указывает
на родительский по отношению к х узел, а сам указатель перемещается
в соответствии с результатами сравнения значений в текущем и встав­
ляемом узлах. После того как указатель х становится равным О, он на­
ходится именно в той позиции, куда следует поместить новый узел z.

Процедура удаления узла из дерева несколько сложнее, поскольку
должна рассматривать различные варианты. Так, если у удаляемого
узла нет дочерних узлов, то удаление сводится к тому, чтобы в роди­
тельском узле обнулить тот указатель на дочерний узел, который в
настоящий момент указывает на удаляемый узел. Если у удаляемо­
го узла только один дочерний узел, то удаление также легко осуще­
ствить - в этом случае соответствующий указатель в родительском
у:ше должен указывать на дочерний по отношению к удаляемому узел.
Соответственно должен быть исправлен и указатель на родительский
узел в дочернем по отношению к удаляемому.

Если же у удаляемого узла два дочерних, то надо найти следую­
щий за ним узел (у которого не может быть левого дочернего уэла в

30 Глава 1

силу свойства бинарного дерева поиска), извлечь его из дерева и за­
менить им удаляемый узел. Все три рассмотренных варианта схема­
тично представлены на рис. 1.8.

-

-

-

Рис. 1.8. 'УiJаление узла из бинарного дерева поиска

Структуры данных 31

Вот как выглядит псевдокод алгоритма удаления узла ш� бинарно­
го дерева поиска.
TreeRemove (root , z)
/ / Входные данные: узел z , удаляемый из дерева с
/ / корневым узлом roo t
/ / Выходные данные : дерево с удаленным из него узлом

/ / z , ука затель на удаленный узел
if l eft [z] = О or righ t [z] = О

then у = z
else у = TreeSussessor (z)

if l eft [у] * О then х = l eft [у]
else х = ri gh t [у]

if х * О then paren t [х] = paren t [у]
if paren t [у] = О then roo t = х

else if у = l eft [paren t [у] J
then l eft [paren t [у] J = х
else ri gh t [paren t [у]] = х

if у * z then val ue [z] = val ue [y]

return у

В приведенном псевдокоде два первых рассмотренных выше слу­
чая удаления узла объединены в один. Псевдокод возвращает удален­
ный узел для того, чтобы вызывающая программа могла, например,
при необходимости освободить занимаемую им память.

В псевдокоде не происходит реальная замена одного узла другим -
заменяется только значение узла. Однако если такая замена·- доро­
гостоящая операция, можно реально заменить узел; при этом пред­
последняя строка псевдокода должна быть заменена на обновление
указателей в родительском и дочерних узлах (само собой, процедура
при этом возвращает в качестве удаленного не узел у, а узел z):
if у * z then begin

end

l eft [y] = l eft [z]
righ t [у] = ri gh t [z]
paren t (у] = paren t [z]
i f l e ft [z] * О then paren t [l eft [z]] у
i f ri gh t [z] * О then paren t [ri ght [z]] у
i f root = z then root = у

else if z = l eft [paren t [z]]
then l e ft [paren t [z]] = у
else ri gh t [paren t [z]] = у

32 Глава 1

Все приведенные в этом разделе операции с бинарным деревом
поиска выполняются за время O(h) , где h - высота дерева. В наи­
лучшем случае, когда дерево приближается к полному, т.е. когда у
каждого внутреннего узла дерева по два потомка, высота дерева со­
ставляет примерно log2 п , где п - общее количество узлов в дереве.
Таким образом, в наилучшем случае эффективность всех описанных
операций над бинарным деревом поиска составляет O(log п) . Однако
в вырожденном, наихудшем случае, когда дерево вырождается в одну
цепочку, эффективность падает до О(п). К счастью, математическое
ожидание высоты случайного бинарного дерева поиска с п узлами
равно O(logn) .

Количество различных бинарных деревьев с п узла-1 п
ми определя ется п-м числом Катала на hп = --1С2п. п+
О том, как сгенерировать все возможные деревья , рас­
сказывается в разделе «Генерация всех деревьев» на
стр. 203.

!ii
Далее приведена реализация бинарного дерева поиска - на С++. В данной реализации используется только один
вид обхода бинарного дерева - симметричный, реали­
зованный двумя способами - посредством итератора
(причем данный итератор - крайне упрощенная вер­

сия, никак не согласующаяся с итераторами стандартной библиотеки
и приведенная исключительно в методических целях) и процедуры
обхода InorderТree Walk, которой в качестве параметра передается фун­
ктор. Заметим, что в данной реализации обход при помощи итератора
оказывается не самым эффективным, поскольку общее время обхода
в этом случае составляет O(nh) (п вызовов процедуры ТreeSuccessor),
в то время как обход при помощи процедуры InorderTree Walk требует
времени 0(п) .
t emplate< typename Т , typename Les s = s td : : les s<T> >

c l ass вsт

s t ruct Node

/ / Внутренняя структура , представляющая

/ / узел дерева

Т value ;

Node * l e f t ;

Структуры данных 33

} ;

puЫ i c :

Node * right ;

Node * parent ;

Node (c on s t Т& t) : va l ue (t) , l e f t (O) ,

right (O) , parent (O) { }

-Node () { del e t e l e f t ; de l e t e right ; }

c l as s I t erator

/ / Итератор (крайне о граниченный ,

puЫ ic : / / приведен с методическими целями

I terator (BST<T , Le s s > * T = О , Node * N 0)

: t ree (T) , curr (N) { } ;

Т& operator* () { return curr- >value ;

vo id operator+ + () ;

void operator- - () ;

bool operator = = (const I terator& i)

{ return curr == i . curr ; }

bool operator ! = (const I terator& i)

{ return curr ! = i . curr ; }

privat e :

} ;

puЫ i c :

BST<T , Le s s > * t ree ;

Node * curr ;

BST (const Less& L = Les s ()) : root (O) , comp (L) { }

-BST () { del e t e root ; }

voi d Insert (con s t Т& t) ; 11 Вставка объекта

voi d Remove (cons t Т& t) ; 1 1 Удаление объекта

BST& operator<< (cons t Т & t) / / О ператор для

{ Insert (t) ; 1 1 цепочной вставки

return * thi s ; }

Т& min () const / / Минимальный элемент

{ a s sert (! empty ()) ; return min (root) - >value ; }

Т& max () cons t / / Максимальный элемент

{ assert (! empty ()) ; return max (root) - >value ; }

boo l empty () const { ret urn root = = О ; }

t emplate< typename Func > vo id InorderWa l k (Func f)

{ InorderWa l k (root , f) ; }

34

Itera t or beg i n ()

{ ret urn It erator (th i s , min (root)) ;

Iterator end () { ret urn I t erator (thi s) ;

Iterator f i nd (const Т&) ;

privat e :

} ;

s t a t i c Node* min (Node *) ;

s t a t i c Node* max (Node *) ;

s t at i c Node * succ (Node *) ;

void Remove (Node *) ;

Node * search (const Т&) ;

Node * root ;

Less comp ;

template< typename Fun c >

vo i d I norderWa l k (Node * Func f) ;

f r i end c l a s s I terator ;

t emp l at e<typename Т , typename Less>

vo id BST<T , Le s s > : :Insert (const Т& t)

{

Node * z

Node * у

whi le (х)

{

У х ;

new Node (t) ;

О , * х = root ;

х (comp (z->value , x->value)) ?
x - > l e f t : х - > right ;

z->parent у ;

i f (у)

(comp (z->value , y- >value) ?

y - > l eft : y - >r i ght) z ;

e l se root z ;

t emp l at e< typename Т , typename Les s >

typename BST<T , Le s s > : : Node *

BST<T , Le s s > : : s e arch (const Т& t)

Глава 1

Структуры данных

i f (root == 0) ret urn О;
Node * х = root ;

whi l e (x && (comp (x - >va lue , t) 1 1
(comp (t , x- >va lue))))

х = comp (t , x->value) ? x - > l e f t

return х ; }

template<typename Т , typename L e s s >

typename BST<T , Le s s > : : I terator

BST<T , Le s s > : : find (const Т& t)

return I terator (th i s , s e arch (t)) ;

template<typename Т , typename Les s >

x- >right ;

typename BST<T , Le s s > : : Node *

BST<T , Le s s > : : min (typename BST<T , Les s > : : Node * x)

i f (х) for (; x - > l e f t ; х = x - > l e ft) ;

return х ;

temp l ate< typename Т , typename Le s s >

typename BST<T , Les s > : : Node *

BST<T , Les s > : : max (typename BST<T , Le s s > : : Node * x)

i f (х) f or (; x - >right ; х = x->ri ght) ;

return х ;

template< typename Т , typename L e s s >

typename BST<T , Le s s > : : Node *

BST<T , Le s s > : : succ (typename BST<T , Le s s > : : Node * х)

i f (x - >right) return min (x- >right) ;

Node * у = x- >parent ;

whi l e (y && x==y- >right)

35

36

х
у

у ;
y - >parent ;

return у ;

t eшplate<typename Т , typename Les s >

vo id BST<T , Le s s > : : I t erator : : operator++ ()

{
i f (curr = = 0) return ;

curr = suc c (curr) ;

t emp l ate< typename Т , typename L e s s >

void BST<T , Le s s > : : I terator : : operator- - ()

{
i f (curr = = 0)

curr = max (t re e - >root) ;

return ;

i f (curr - > l e f t)

curr=max (curr- > l e f t) ;

return ;

Node * у = curr - >paren t ;

whi l e (y & & curr = = y - > l e f t)

{
curr = у ;

у = y->parent ;

curr = у ;

t emp l a t e< typename Т , typename Les s >

void BST<T , Le s s > : : Remove (Node * z)

{
Node * у =

Глава 1

Структуры данных 37

((z - > l e f t = = 0) 1 1 (z - >r ight =� 0)) ? z : succ (z) ;

Node * х = (y - > l e f t) ? y - > = e f t : y - >right ;

i f (х) x->parent = y - >parent ;

i f (y - >parent = = 0) root = х ;

e l s e ((у = = y - >parent - > l e f t) ?
y - >parent - > l e f t : y - >parent - >right) = х ;

i f Va lueCopy / / Вариант с копированием значения

i f (у ! = z) z - >value = y - >value ;

y - > l e f t = y - >right = О ;

de lete у ;

#else / / Вариант с переносом узла

i f (у ! = z)

y - > l e f t z- >l e f t ;

y - >right Z - >right ;

y - >parent z->parent ;

i f (z->l e f t) z - >le ft->parent у ;

i f (z - >right) z- >right - >parent = у ;

i f (root = = z) root = у ; e l s e

((z = = z->parent - > le f t) ?

z - >parent - > l e f t : z->parent->right) у ;

z->l e f t z - >right О;
de lete z ;

#endi f

}

template<typename Т , typename Les s >

void BST<T , Le s s > : : Remove (c onst Т& t)

{
Node * z = search (t) ;

i f (z) Remove (z) ;

temp l at e< typename Т , typename L e s s >

template< typename Func > vo i d

BST<T , Le s s >: : InorderWa l k (

typename BST<T , Les s > : : Node * x , Func f)

38

i f (х = = О) return ;

InorderWal k (x- > l e f t , f) ;

f (x- >va l ue) ;

InorderWa l k (x- >right , f) ;

Глава 1

Вот краткий пример использования приведенной реа­
лизации бинарного дерева поиска.

voi d out (int х)

{

s td : : cout << "Value

BST< int > В ;
в << 9 << 1 0 << 3 << 2

<< 1 1 << 1 << 4 < < 1 2

" << х << /1 \ n " ;

< < 6 << 7 << 5 << 8
< < 1 3 < < 1 5 << 1 4 << 1 6 ;

std : : cout << B . mi n () < < " " << В . шах () << " \n " ;

/ / Вывод в прямом и обратном порядке

/ / с использованием итераторов

BST< i nt > : : I t erator i , j = B . end () ; - - j ;

for (i = B . begin () ; i ! = B . end () ; + + i , - - j)

{
s td : : cout < < * i << • 11 << * j << IJ \ n " ;

/ / Вывод упорядоченного списка с использованием

/ / процедуры симметричного обхода бинарного дерева

B . InorderWa lk (out) ;

/ / Поиск элемента

i = B . f ind (5) ;

i f (i ! = B . end ())

st d : : cout < < " Found : " < < * i << " \ n " ;

e l s e s td : : cout < < "Not found 5 \ n" ;

Структуры данных

i = B . f ind (1 3) ;

i f (i ! = B . end ())

s td : : cout < < • Found : • << * i << • \ n • ;

e l se s td : : cout << •Not found 1 3 \ n " ;

/ / Удаление элементов

B . Remove (9) ;

B . Remove (l) ;

B . Remove (б) ;

B . InorderWa l k (out) ;

Красно-черные деревья

39

Как упоминалось в предыдущем разделе, обычное бинарное дерево
поиска в наихудшем случае представляет собой одномерную цепочку
узлов, а высота такого дерева становится равной п. Такое дерево обра­
зуется, например, при внесении в него возрастающей последователь­
ности значений.

Однако путем достаточно небольших модификаций можно гаран­
тировать, что даже в наихудшем случае высота бинарного дерева по­
иска будет равна E>(logn) . Заметим, что операции поиска минималь­
ного, максимального, последующего и предшествующего элементов,
а также поиска элемента с заданным значением (соответственно, и
реализация итераторов) зависят только от свойства бинарного дере­
ва поиска и, таким образом, остаются неизменными для любых би­
нарных деревьев поиска - будь то рассмотренные выше простейшие
бинарные деревья поиска или рассматриваемые далее красно-черные
деревья. Однако того же нельзя сказать об операциях вставки и уда­
ления, поскольку именно при их выполнении нарушается свойство
сбалансированности дерева, которое и подлежит восстановлению.

Красно-черные деревья гарантируют, что ни один путь в дереве от
корня к вершине не отличается от другого по длине более чем в два
раза, так что красно-черное дерево является приближенно сбаланси­
рованным и имеет высоту не более, чем 2 log2 (п + 1) . Каждый узел
красно-черного дерева содержит, помимо указателей, дополнительное
поле цвета, который может быть либо красным, либо черным (отку­
да и происходит название данного дерева). Если дочерний или роди­
тельский по отношению к данному узел не существует, соответству­
ющий указатель принимает специальное значение nil. Эти значения

40 Глава 1

nil можно рассматривать как указатели на внешние узлы (листья) би­
нарного дерева поиска. При этом все <1нормальные»- узлы, содержа­
щие поле значения, становятся внутренними узлами дерева.

Бинарное дерево поиска является красно-черным деревом, если
оно удовлетворяет следующим красно-черным свойствам.

1. Каждый узел является красным или черным.

2. Корень дерева является черным.

3. Каждый лист дерева (nil) является черным.

4. Если узел - красный, то оба его дочерних узла - черные.

5. Для каждого узла все пути от него до листьев, являющихся по­
томками данного узла, содержат одно и то же количество чер­
ных узлов.

На рис. 1 .9, а представлен пример красно-черного дерева. Рядом с
узлами стоят цифры, указывающие количество черных узлов на пути
от листьев к данному узлу.

а)

Структуры данных

б)
Рис. 1.9. а) красно-черное дерево и б) бинарное дерево поиска для
входных данных 9, 10, 3, 2, 6, 7, 5, 8, 11, 1, 4, 12, 13, 15, 14, 16

41

Можно доказать, что высота красно-черного дерева с п узлами не
превышает 2log2 (n + 1) , так что все операции поиска минимального,
максимального, последующего и предшествующего элементов, а так­
же поиска элемента с заданным значением обладают эффективнос­
тью O(logn) в наихудшем случае.

Для удобства работы с красно-черным деревом все листья заме­
няются единым ограничивающим узлом, представляющим значение
nil. Этот узел - черный (значения прочих полей не имеют значения).
Кроме того, поскольку, как уже говорилось, в случае отсутствия ро­
дительского узла соответствующий указатель также принимает зна­
чение nil, этот узел-ограничитель выполняет функции родительского
узла по отношению к корню красно-черного дерева.

Процедуры вставки узла в красно-черное дерево и удаления из
него требуют определенных модификаций. Дело в том, что, если
применять рассмотренные ранее процедуры Treelnsert и ТreeRemove,
корректно вставляя и удаляя узлы, будут нарушены свойства красно­
черного дерева. Для исправления ситуации используется процедура,

42 Глава 1

именуемая поворотом, которая представляет собой локальную опе­
рацию в бинарном дереве поиска, сохраняющую его свойство. На
рис. 1 . 1 О показаны два типа поворотов - левый и правый (здесь а, Ь
и с - произвольн

'
ые поддеревья). При выполнении левого поворота

в узле х предполагается, что его правый дочерний узел у не являет­
ся листом nil. Левый поворот выполняется вокруг связи между х и
у, делая у новым корнем поддерева, левым дочерним узлом которого
становится х, а бывший левый потомок узла у - правым потомком х.

Левый поворот

Правый поворот
а с

ь с а ь

Рис. 1.10. Операции поворота в бинарном дереве поиска

Ниже приведен псевдокод левого поворота (правый поворот пол­
ностью симметричен левому). В псевдокоде процедуры LeftRotate
предполагается, что right[x] "# nil, и что nil также является родителем
корневого узла.

LeftRo t a t e (root , x)

1 1 вхо;циые ;цаииые :

1 1

1 1
/ / В:ыхо;циые ;цанные :
у = ri gh t [x]

righ t [х] = l eft [у]

узел х , вокруг которого

выполняется левый поворот в

дереве с корневым узлом root

дерево с выполненным поворотом

/ / Присваивание у

/ / Левое поддерево у становится

1 1 правым поддеревом х

paren t [l eft [y]] = х

paren t [y] = parent [x] 1 1 Перенос родителя х в у

if paren t [x] = ni l then root = у

else Ьegin

end

if х = left [paren t [х]]

then l eft [paren t [х]] у

else ri gh t [paren t [х]] у

Структуры данных

l eft [у] = х

paren t [х] = у

43

/ / х - левый дочерний у

Очевидно, что данная процедура (как и процедура правого пово­
рота) выполняется за время 0(1) .

Вставка узла в красно-черное дерево с п узлами выполняется, как
и в обычное бинарное дерево поиска, за время O(logn) . Для вставки
узла в красно-черное дерево используется модифицированная версия
процедуры Treelnsert, которая вставляет узел в дерево, как если бы
это было обычное бинарное дерево поиска (только вместо ну левых
указателей теперь используется значение nil), а затем окрашивает
его в красный цвет. Для того чтобы вставка сохраняла красно-черные
свойства дерева, после нее вызывается вспомогательная процедура
RBinsertFixup, которая перекрашивает узлы и выполняет повороты.

RBinser t (root , z)

/ / Вхо;циые даииые : узел z , добавляемый в дерево с

/ / корневым узлом root

11 В:ыхо;циые данные : красно-черное дерево с

11 добавленным в него узлом z

у = n i l

х = roo t

while х '# ni 1 do

begin

у = х

i f val ue [z] < val ue [x] then

end

paren t [z] = у

if у = n i l then root =
else begin

if val ue [z] <

end

l eft [z] n i l

ri gh t [z] ni l
col or [z] RED

RBinsertFixup (root , z)

else

z

val u e [y]

х l eft [х]

х righ t [х]

then l eft [у] = z

else righ t [у] = z

44 Глава 1

Описание нарушений свойств красно-черного дерева после встав­
ки узла и методов их исправления при помощи поворотов и перекра­
шивания достаточно громоздко, так что здесь будет приведен только
псевдокод указанной процедуры. Разобраться в том, какие свойства
красно-черного дерева могут оказаться нарушены и как процедура
RВinsertFixup справляется с этим, можно самостоятельно (это будет от­
л1 1чной практикой), либо обратившись к литературе, например [12] .

RBinsertFixup (root , z)

1 1 ВходНЪiе данные: узел z , добавленный в дерево с

1 1 корневым узлом root

1 1 В:ыхоДИЪiе даниые : красно-черное дерево с

1 1

1 1

1 1

восстановленными после

добавления узла z красно -черными

свойствами

while col or [paren t [z]] = RED do

Ьegin

if paren t [z] = l eft [paren t [paren t [z]]]

then Ьegin

у = ri gh t [paren t [paren t [z]]]

if col or [y] = RED

then Ьegin

end

col or [paren t [z]] = BLACK

color [y] = BLACK

col or [parent [paren t [z]]] RED

z = paren t [paren t [z]]

else Ьegin

end

else Ьegin

if z = righ t [paren t [z]]

then Ьegin

end

z = paren t [z]

LeftRota t e (root , z)

col or [paren t [z]] = BLACK

color [paren t [paren t [z]]] = RED

Righ tRo t a t e (root ,

paren t [paren t [z]])

Здесь код такой же , как и в части

Структуры данных

end

end

" then" , но все " l eft " в нем заменяются

на " righ t " (включая направления

поворотов) и наоборот

color [root] = BLACK

45

Еще более сложной оказывается процедура удаления узла из крас­
но-черного дерева. Несмотря на свою сложность, она также выпол­
няется за время O(logn). Процедура RВRemove представляет собой
немного измененную процедуру TreeRemove. После удаления узла в
ней вызывается вспомогательная процедура RВRemoveFixup, которая
изменяет цвета и выполняет повороты для восстановления красно­
черных свойств дерева.
RBRemove (root , z)

/ / вхо;цНЪiе ;цанные : узел z , удаляемый из дерева с

корневым узлом root //
/ / Выхо;цНЪiе ;цанные : дерево с удаленным из него узлом z ,

/ / указатель н а удаленный узел

if l eft [z] = n i l or righ t [z] = n i l

then у = z

else у = TreeSuccessor (z)

if l e ft [у] "# n i l then х = l eft [у]

else х = ri gh t [у]

paren t [х] = paren t [у]

if paren t [у] = n i l then root = х

else Ьegin

end

if у = l eft [paren t [у]]

then l e ft [paren t [у]] = х

else righ t [paren t [у]] = х

if у "# z then val ue [z] = va l ue [y]

if col or [y] BLACK then RBRemoveFixup (root , x)

return у

Что касается процедуры RBRemoveFixup, восстанавливающей
красно-черные свойства дерева после удаления узла, то к ней приме­
нимы все те же замечания, которые были сделаны по поводу процеду­
ры RBinsertFixup.

46 Глава 1

RBRemoveFixup (root , x)
/ / ВхоДИЪiе даииые : узел х, для которого в дереве с
/ / корневым узлом roo t следует
/ / восстановить свойства

/ / красно-черного дерева
/ / ВыхоДИЪiе данные : красно-черное дерево с
/ / восстановленными красно -черными
/ / свойствами , нарушенными после

1 1 удаления узла
while х # root and col or [x] = BLACK do

Ьegin
if х = l eft [paren t [х]]

then Ьegin

end

w = righ t [paren t [х]]
if col or [w] = RED then Ьegin

col or [w] = BLACK

col or [paren t [x]] = RED

LeftRo t a t e (T , paren t [х])
w = ri gh t [paren t [х]]

end

i f col or [l e ft [w]] = BLACK and

col or [ri gh t [w]] = BLACK
then Ьegin

end

col or [w] = RED

х = parent [х]

else Ьegin
if col or [righ t [w]] = BLACK

end

then Ьegin

end

col or [l eft [w]] = BLACK

col or [w] = RED

Righ tRota t e (root , w)
w = righ t [paren t [х]]

col or [w] = col or [paren t [х]]
col or (paren t (x]] = BLACK

col or (ri gh t [w]] = BLACK

LeftRo t a t e (root , paren t [х])
х = root

Структуры данных

end

else Ьegin

end

Здесь код такой же , как и в части
" then " , но все " l eft " в нем заменяются
на " ri gh t " (включая направление
поворотов) и наоборот

col or [x] = BLACK

47

На этом рассмотрение алгоритмов красно-черного дерева заверша­
ется. Итак, мы получили бинарное дерево поиска, все основные опера­
ции над которым выполняются за время O(logn) в наихудшем случае.

ijj
Реализация красно-черного дерева на С++ очень по­
хожа на реализацию обычного бинарного дерева, с оче­
видными изменениями (в частности, заменой нулевых
указателей на nil) и добавлениями (например, поля цве­
та в структуру Node или функций для восстановления

красно-черных свойств дерева при вставке и удалении).

temp l at e< typename Т , typename L e s s = s t d : : l e s s<T> >

c l a s s RBT

s t ruct Node

} ;
puЫ i c :

enum RED = t rue ,

т value ;

Node * l e f t ;

Node * right ;
Node * parent ;
bool color ;

BLACK f a l se } ;

Node (cons t Т& t) : va lue (t) , le f t (O) , right (O) ,

parent (O) , color (BLACK) { }
-Node () { }

c la s s I terator

puЫ i c :

I t erator (RBT<T , Le s s > * T = О , Node * N 0)

: t ree (T) , curr (N) { } ;

Т& operator* () { return curr- >value ;
void operator+ + () ;

48

voi d operator- - () ;
bool operator = = (const I terator& i)

{ return curr = = i . cur r ; }

bool operator ! = (const I terator& i)
{ return curr ! = i . curr ; }

private :

RBT< T , Les s > * t ree ;

Node * curr ;

} ;
puЬl i c :

RBT (cons t Less& L = Les s ()) : comp (L)

{ ni l = new Node (T ()) ; root ni l ; }

-RBT () { Dest roy (root) ; del et e ni l ; }
void Insert (const Т& t) ;
void Remove (const Т& t) ;

RBT& operator << (cons t Т& t)

{ Insert (t) ; return * thi s ;
Т & min () { assert (! empty ()) ;

return min (root) - >value ;

Т& max () a s s ert (! empty ()) ;

return max (root) - >value ;

I t erator begin ()

{ return I t erator (th i s , min (root)) ;

I t erator end ()

{ return I t erator (thi s , ni l) ; }

I terator f ind (const Т&) ;

Глава 1

bool empty () const { return root == n i l ;

t emp l at e< typename Func > vo id InorderWa l k (Func f)

priva t e :
voi d

void

voi d

void

{ InorderWal k (root , f) ; }

LRotat e (Node *) ;

RRot a t e (Node *) ;

InsertFixup (Node *) ;

RemoveF i xup (Node*) ;

Node* min (Node *) ; Node* max (Node *) ;

Node* succ (Node *) ; void Remove (Node *) ;

vo i d Dest roy (Node *) ; Node* s earch (const Т&) ;

t emp l at e<typename Func >

void InorderWa l k (Node * , Func f) ;

Node * root , * n i l ;
Les s comp ;

Структуры данных

f r i end c l a s s I t erat o r ;

} ;

t emp l at e< typename Т , typename Less>

void RBT<T , Le s s> : : Insert (cons t Т& t)

{
Node * z = new Node (t) ;

Node * у = n i l , * х = root ;

whi le (x ! = ni l)

{

У х ;
х (comp (z - >value , x- >value)) ?

x - > l e f t : х-> right ;

z - >parent = у ;

i f (у = = ni l)

{
root = z ;

e l s e {
(comp (z - >value , y- >value) ?

y - > l e f t : y - >right) z ;

z - > l e f t z - >right = n i l ;

z - >color = Node : : RED ;

InsertFixup (z) ;

t emp l a t e< typename т , typename Less>

typename RBT<T , Le s s > : : Node *

RBT<T , Le s s > : : s earch (const Т& t)

i f (root = = ni l) return n i l ;
Node * х = root ;

whi l e ((х ! = ni l) &&
(comp (x - >value , t) 1 (comp (t , x - >value))))

х = comp (t , x - >va l u e) ? x- > l e f t : x- >right ;

return х ;

t emp l a t e< typename т , typename Less>
typename RBT<T , Less > : : I t erator

49

50

RBT<T , Le S S > : : f ind (const Т& t)

return I t e rator (th i s , s earch (t)) ;

t ernp l ate<typenarne т , typenarne Le s s >

typenarne RBT<T , Le s s > : : Node *

RBT<T , Le s s > : : rnin (typenarne RBT<T , Le s s > : : Node * x)

i f (х ! = n i l) for (; x - > l e f t ! = ni l ;
Х = X - > l e f t) ;

return х ;

t ernp l a t e< typenarne Т , typenarne Les s>

typenarne RBT<T , Le s s > : : Node *

RBT<T , Le s s > : : rnax (typenarne RBT<T , Le s s > : : Node * x)

i f (х ! = ni l) for (; x - >r ight ! = n i l ;

Х = X - > r i ght) ;

return х ;

t ernp l a t e<typenarne Т , typenarne Less>

typenarne RBT<T , Le s s> : : Node *

RBT<T , Le s s > : : succ (typenarne RBT<T , Le s s > : : Node * х)

i f (x- >r ight ! = ni l) return rnin (x- >right) ;

Node * у = x - >parent ;

whi l e (y ! = n i l & & x==y - > ri ght)

{
х у ;
у y - >parent ;

return у ;

t ernp l at e< typenarne Т , typenarne Les s >

voi d RBT<T , Le s s> : : It erator : : operator+ + ()

{
i f (curr = = t ree- >ni l) return ;

Структуры данных

curr = t ree->suc c (curr) ;

template< typename Т , typename Les s >

void RBT<T , Le s s> : : I t erator : : operator- - ()

{
i f (curr = = t ree->ni l)

curr = t ree- >max (t ree- >root) ;

return ;

i f (curr- > l e f t ! = t ree - >ni l)

curr = t ree - >max (curr- > l e ft) ;

return ;

Node * у = curr- >parent ;

whi l e (y ! = tree->n i l & & curr

{

y - > l e f t)

curr = у ;

у = y - >parent ;

curr = у ;

template< typename Т , typename Less>

void RBT<T , Le s s > : : Remove (Node * z)

{
Node * у =

((z - > l e f t == ni l) 1 1 (z - >r i ght

z : succ (z) ;

Node * х = (y - > l e f t ! = ni l) ?

y - > l e f t : y - >right ;

x - >parent = y - >parent ;

i f (y - >parent = = ni l) root = х ;
e l s e ((у = = y - >parent - > l e f t) ?

ni l)) ?

y - >parent - > l e ft

y - >parent - >r i ght) = х ;
i f (у ! = z) z - >va l ue = y - >value ;

i f (y - >col or = = Node : : BLACK) RemoveF i xup (x) ;

de l e t e у ;

51

52

t emp l ate< typename Т , typename Les s >

voi d RБT<T , Le s s > : : Remove (cons t Т & t)

{
Node * z = search (t) ;

i f (z) Remove (z) ;

t emp l ate< typename Т , typename Les s >

temp l ate< typename Func>

void RБT<T , Le s s> : : InorderWa l k (
typename RБT<T , Le s s > : : Node * x , Func f)

i f (х = = n i l) return ;

I norderWa l k (x- > l e f t , f) ;
f (x - >value) ;

InorderWa l k (x- >r i ght , f) ;

t emp l ate< typename Т , typename Les s >

vo i d RBT<T , Le s s> : : LRot a t e (

typename RBT<T , Le s s > : : Node * х)

Node * у = x - > r i ght ;

x - >r i ght = y - > l e f t ;
i f (y - > l e f t ! = ni l) y - > l e f t - >parent х ;

y - >parent = x - >parent ;
i f (x - >parent = = ni l) root � у ;
e l s e ((х = = x- >parent - > le f t) ?

y - > l e f t = х ;

x - >parent = у ;

x - >paren t - > l e f t

x - >paren t - >right) у ;

t empla t e<typename Т , typename Les s >
void RBT<T , Les s> : : RRot at e (

typename RBT<T , Le s s > : : Node * х)

Node * у = x->l e f t ;

x - > l e f t = y - >r i ght ;

Глава 1

Структуры данных

i f (y - > r i ght ! = ni l) y - >right - >parent

y - >parent = x - >parent ;
i f (x- >parent = = ni l) root = у ;
e l s e ((х = = x - >paren t - > right) ?

x - >pareп t - > right

x->parent - > l e f t) = у ;
y - > ri ght = х ;
x- >parent = у ;

template< typename Т , typename Les s >

voi d RBT<T , Le s s > : : Insert F i xup (

typename RBT<T , Le s s > : : Node * z)

Node * у ;
whi le (z - >parent - >color = = Node : : RED)

{

х ;

i f (z - >parent = = z - >parent - >parent - > l ef t)

{
у = z - >parent - >parent - > right ;

i f (y - >color = = Node : : RED)

{

e l se

Z - >paren t - >color = Node : : BLACK ;

y - >color = Node : : BLACK ;

z - >paren t - >parent - >color =
Node : : RED ;

z = Z - >parent - >parent ;
e l s e {

i f (z = = z - >parent - > right)

{
z = z - >parent ;

LRotate (z) ;

z - >paren t - >color = Node : : BLAC K ;

z - >parent - >parent - >color =
Node : : RED;

RRotate (z - >parent ->parent) ;

у = z - >parent - >parent - > l e f t ;

53

54

i f (y - >color = = Node : : RED)

{
z - >parent - >color = Node : : BLAC K ;

y - >color = Node : : BLACK ;

z - >parent - >parent - >color =
Node : : RED ;

z = z - >paren t - >parent ;

e l s e

root - >color

if (z = = z - >parent - >l e f t)

{
z = z - >parent ;

RRotate (z) ;

z - >parent - >color = Node : : BLAC K ;

z - >parent - >parent ->color =
Node : : RED ;

LRotate (z - >parent - >parent) ;

Node : : BLACK ;

t emp l ate< typename т , typename Les s >

void RBT<T , Le s s > : : RemoveF i xup (

typename RBT<T , Les s> : : Node * x)

Node * w ;

whi l e (x ! = root & & x->color==Node : : BLAC K)

{
i f (х = = x - >parent - > l e f t)

{
w = x - >parent - > r ight ;

i f (w- >color = = Node : : RED)

{
w->color = Node : : BLACK ;

x- >parent ->color = Node : : RED ;

LRotat e (x- >parent) ;

w = x->paren t - >r ight ;

Глава 1

Структуры данных 55

e l s e

i f (w- > l e f t - >color = = Node : : BLACK & &

w->r ight ->color = = Node : : BLACK)

w->color = Node : : RED ;

х = x->parent ;

e l s e

i f (w- >r ight - >color = = Node : : BLACK)

{
w- > l e f t - >color = Node : : BLACK ;

w->color = Node : : RED ;

RRotate (w) ;

w = x- >parent - >r ight ;

w->color = x- >parent - >color ;

x - >parent- >color = Node : : BLAC K ;

W- >right - >c o l o r = Node : : BLACK ;

LRotat e (x - >parent) ;

х = root ;

w = x->parent - >l e f t ;

i f (w->color = = Node : : RED)

{
W->color = Node : : BLACK ;

x - >parent - > color = Node : : RE D ;

RRotat e (x- >parent) ;
w = x - >parent - > l e f t ;

i f (w- >right - >c o l o r = = Node : : BLACK &&

w- > l e f t - >c o l or = = Node : : BLAC K)

e l s e

w->color = Node : : RED ;
х = x - >parent ;

56

x->color

Глава 1

i f (w- > l e f t - >color = = Node : : БLAC K)

{
w->righ t - >color = Node : : БLАСК;

W->Color = Node : : RE D ;

LRo t a t e (w) ;
w = x- >parent - > l e f t ;

w->color = x- >parent - >color ;

x - >parent - >color = Node : : БLACK ;

W- > l e f t - >Color = Node : : БLACK ;
RRotat e (x - >parent) ;

х = root ;

Node : : BLACK ;

template< typename Т , typename Less>

void RBT<T , Le s s > : : De s troy (

typename RBT<T , Le s s > : : Node * х)

i f (х = = ni l) return ;

Des troy (x - > l e f t) ;

Dest roy (x - >right) ;

delete х ;

При последовательной вставке в дерево RВT<int > значений 9, 10,
3, 2, 6, 7, 5, 8, 1 1 , 1 , 4, 12 , 13, 15, 14, 1 6 мы получим красно-черное дере­
во, изображенное на рис. 1 .9, а. Обычное бинарное дерево для данной
входной последовательности приведено на рис. 1 .9, 6.

Пирамиды
Пирамида - это структура данных, представляющая собой мас­

сив, который можно рассматривать как почти полное бинарное дере­
во. Каждый узел этого дерева соответствует определенному элемен­
ту массива, причем на всех уровнях, кроме (возможно) последнего,
дерево полностью заполнено. Последний уровень дерева заполняет-

Структуры данных 57

ся слева направо до тех пор, пока в массиве не закончатся элементы.
В корне дерева находится первый элемент массива, а остальные эле­
менты подчиняются следующему принципу: если какому-то узлу со­
ответствует индекс i, то индекс его родительского узла - Li/2J, индекс
левого дочернего узла - 2i, а правого дочернего узла - 2i+ 1 .

Имеется два вида пирамид - неубывающие и невозрастающие.
В пирамидах обоих типов значения, расположенные в узлах, удо­
влетворяют свойству пирамиды. Свойство невозрастающих пирамид
заключается в том, что для каждого отличного от корневого узла с
индексом i его значение не превышает значение родительского по
отношению к нему узла. Принцип неубывающей пирамиды прямо
противоположный. Здесь мы рассмотрим только невозрастающие пи­
рамиды (далее, говоря о пирамидах, мы имеем. в виду именно их); пре­
образование алгоритмов для невозрастающих пирамид в алгоритмы
для неубывающих пирамид - задача тривиальная.

Основные процедуры, связанные с пирамидами, - это создание
пирамиды, поддержка ее свойства, вставка нового значения в пирами­
ду, извлечение максимального значения и увеличение значения эле­
мента. Все они, за исключением создания пирамиды, выполняются за
время O(logn) . Создание пирамиды требует времени О(п) .

Поддержка свойства пирамиды осуществляется процедурой
Heapify, на вход которой подается массив и индекс i в этом массиве.
При вызове процедуры предполагается, что бинарные деревья, корня­
ми которых являются узлы, дочерние по отношению к узлу i, являют­
ся пирамидами. Процедура опускает значение i-го элемента вниз по
пирамиде до тех пор, пока поддерево с корнем, отвечающим индексу i,
не становится пирамидой.

Heapi fy (A , i)

/ / Входиые даиные : Массив А [1 . . п] , индекс i
/ / Выходные даиные : Пирамида , в которой i - й элемент

/ /

11

11
1 = 2 * i

r = 2 * i + l

перемещается в положение , при

котором для него выполняется

свойство пирамиды

if 1 <= п and A [l] >A [i] then тах = 1 ; else тах i

if r < = п and A [r] >A [max] then тах = r

if тах 7с- i then begin

swap (A [i] , А [тах])

58 Глава 1

Heapi fy (А , max)

end

Процедура Heapify позволяет преобразовать м:�ссив А[1 . .п] в не­
возрастающую пирамиду снизу вверх. Поскольку элементы под­
массива A[ln/2J+ 1 "n] являются листьями, их можно рассматривать
как одноэлементные пирамиды. Процедура MakeHeap проходит по
остальным узлам и для каждого из них вызывает процедуру Heapify.

MakeHeap (A)

/ / Входные данные : массив А [1 . . n]

/ / Выходные данные : пирамида А
for i = Ln / 2J downto 1 do Heapi fy (A , i)

В соответствии со свойством пирамиды ее максимальный элемент
находится в первом элементе. Извлечение его из пирамиды выполня­
ется путем обмена первого элемента с последним, уменьшения раз­
мера пирамиды на 1 и выполнения процедуры Heapify для нового
первого элемента. Данная процедура возвращает значение извлечен­
ного элемента.

ExtractMax (A)

/ / Входные данные : массив А [1 . . n]

/ / Выходные данные : пирамида A [l . . n- 1] с из влеченным

/ / максимальным элементом

тах = A [l]

A [l] = А [п]

п = п - 1

Heapi fy (A , 1)

return тах

При увеличении значения элемента i процедура проходит путь
от этого элемента до корня в поисках места для нового ключа. Если
оказывается, что значение текущего элемента превышает значение
родительского элемента, то происходит обмен значений, и процеду­
ра продолжает работу на более высоком уровне. В противном случае
свойство пирамиды полностью восстановлено, и процедура завер­
шает работу.

Increase (A , i , va l u e)

/ / Входные данные : пирамида А [1 . . п] , индекс i

1 1

1 1

элемента , новое значение

которого становится равным

Структуры данных

11

11

11

11

11

va l ue (Внимание ! Проверка

того , что зна чение не

уменьша е тся, процедурой не

произв одится - отве тств енно сть

за это лежит на вызывающей

/ / процедур е)

/ / Выходные данные : пирамида A [l . . n] с увеличенным

11 элементом

A [i] = va l u e

whi le i > 1 and A [Li ; 2J J < A [i] do begin

swap (A [i] , A [Li / 2JJ)
i = L i ; 2J

end

59

Вставка нового элемента в пирамиду выполняется предельно про­
сто - для этого достаточно вставить в пирамиду новый лист и «уве­
личить>.» его значение до требуемого.

Insert (А , va l ue)

/ / Входные данные :

11

пирамида A [l . . n] и новый элемент

va l u e , вставляемый в пирамиду с

/ / сохранением е е свойства

/ / Выходные данные : пирамида А [1 . . п + 1] со

11
п = п+l
А [п] = val ue

Increase (A , n , va l u e)

вставленным в нее элементом tiiJ Далее приведен пример реализации пирамиды (само со­
бой, она может быть реализована и совершенно иначе;
это лишь один из возможных вариантов ее представле­
ния). Следует отметить, что это единственный случай в
книге, когда исходный текст компилируется Visual С++,

но не Open Watcom, который не поддерживает шаблонные функции
в шаблонах классов.

ternplate< typenarne Т ,

typenarne Cornparator

c l a s s Неар

{
puЫ i c :

l e s s <T> >

typede f typenarne vector<T> : : s i ze_type Int ;

60 Глава 1

t ernplate < typenarne I te.r> Heap (I ter Ь , I t.er е ,

Comparator cornp = Cornparator ()) ;

--Неар () { } ;

void Heap i fy (Int i) ;

cons t return (i - 1) / 2 ;

const return 2 * i + l ; }

con s t return 2 * i + 2 ; }

Int Parent (Int i)

Int Left (Int i)
Int Right (Int i)

Т Мах () const { assert (heap s i z e > 0) ;

return V [О] ; }

Т Ext rac tMax () ;

void Increase (Int i , Т value) ;

voi d Insert (T value) ;

Int s i z e () const { return heaps i z e ;

private :

} ;

Cornparator с ;
Int heaps i z e ;

vec t or<T> V;

t ernpl ate<typenarne Т, typenarne Cornparator>

t ernplate< typenarne Iter>

Heap<T , Comparator> : : Heap (I ter Ь, I t er е ,

Comparator comp)

: c (comp)

{
heap s i z e = е - Ь ;

V . res i z e (heap s i z e) ;

copy (b , e , V . begin ()) ;

for (Int i = heapsi ze / 2 ; i >= 1 ; - - i)

{

Heap i fy (i - 1) ;

t emplate< typename Т , typenarne Cornparator>

Т Heap<T , Comparator > : : ExtractMax ()

{
a s sert (heap s i z e > О) ;

Т rnax = V (O J ;

Структуры данных

V [O] = V [- -heaps i ze] ;

Heapi fy (О) ;

return max ;

template<typename Т , typename Comparator>

void Heap<T , Comparat or> : : Heapi fy (Int i)
{

Int 1 = L e f t (i) ;

I nt r = Right (i) ;

Int l arge s t ;

l arges t =

(1 < heap s i z e && c (V [i] , V [l])) ? 1 : i ;

i f (r < heap s i z e & & c (V [l a rge s t] , V [r]))

l arge s t = r ;

i f (l arge s t ! = i)

swap (V (i] , V [l arges t]) ;

Heap i fy (l a rges t) ;

template<typenaшe Т , typename Comparator>

void Heap<T , Comparator > : : Increase (Int i , Т value)

61

assert (i >= О && i < heap s i z e & & V (i] < = value) ;

V [i] = valнe ;

whi l e (i > О && V [Parent (i) J < V [i])

{
swap (V [i] , V [Parent (i)]) ;

i = Pareпt (i) ;

template<typename Т , typename Comparator>

void Heap<T , Comparat or> : : In s ert (T va1 u e)

{

i f (heap s i z e < V . s i z e ()) V [heap s i z e+ +]

e l s e {

valнe ;

62

V . push_back (value) ;

+ +heap s i z e ;

Increas e (heaps i z e - 1 , value) ;

Глава 1

Для простоты пирамида строится не в том же контейнере, где
содержатся исходные данные, а копируется во внутренний массив.
В принципе, этого можно избежать, однако это приведет к определен­
ному усложнению исходного текста. Поскольку данная реализация,
несмотря на ее полную функциональность, все же носит исключи­
тельно демонстрационный характер, было решено оставить такую
реализацию с передачей контейнера читателям в качестве самостоя­
тельной работы. Подобная задача решается позже, в разделе, посвя­
щенном пирамидальной сортировке, которая, наряду с реализацией
очередей с приоритетами, составляет основное применение пирамид.

rлава 2

Сортировка и поиск
В этой главе мы рассмотрим решение задач, встающих перед про­

граммистами, пожалуй, наиболее часто - это задачи сортировки и по­
иска. Данные задачи применяются как сами по себе, так и входят в со­
став более сложных задач. Представим, например, что нам дан массив
некоторых упорядочиваемых элементов, из которого надо удалить
все дублирующиеся элементы. Решение сравнения каждого элемен­
та с остальными потребует О(п2) времени. Однако если предвари­
тельно отсортировать массив (на что, как вы увидите далее, требует­
ся O(nlogn) времени), то найти все дубли можно за О(п) времени,
сравнивая только соседние элементы, так что общее время решения
задачи - О(nlog п) . Здесь задача сортировки вошла в другую задачу
в качестве подзадачи.

Как более сложный пример можно рассмотреть задачу поис­
ка в большом тексте самой длинной повторяющейся подстроки.
Очевидное решение сравнения всех подстрок требует О (п2) време­
ни. Однако если использовать массив указателей на подстроки (т.е.
на каждый символ текста) и отсортировать его по значению указыва­
емых подстрок (не трогая сам текст), то понятно, что после этого нам
достаточно просканировать полученный массив, сравнивая соседние
элементы для выявления повторяющейся подстроки максимальной
длины. Здесь сортировка вновь выполняет роль подзадачи, способ­
ной снизить время решения задачи до O(nlogn) (с использованием
е(п) дополнительной памяти).

Сортировка
Задача сортировки формулируется следующим образом. На вход

алгоритма подается последовательность из п элементов al' а2, ••• , ап; на
выходе требуется получить некоторую перестановку входной после­
довательности а'1 ' а'2, • • • , а'п такую, что a'1S.a'2S. ... S.a'n·

Алгоритмы сортировки можно разделить на алгоритмы внутрен­
ней сортировки - для сортировки данных, хранящихся во внутренней,

64 Глава 2

оперативной памяти компьютера, и внешней сортировки - для со­
ртировки больших объемов данных, хранящихся в файлах внешней
(например, дисковой) памяти. Здесь будут рассматриваться только
алгоритмы внутренней сортировки; о внешней сортировке можно
прочесть, например, в [1 О].

Сортировка вставкой
Сортировка вставкой представляет собой один из тривиальней­

ших алгоритмов сортировки, напоминающий действия игрока, рас­
кладывающего карты по возрастанию. Вся последовательность де­
лится на две части - содержащую уже отсортированные элементы
(изначально содержит только первый элемент последовательности)
и еще неотсортированную последовательность. Элементы из второй
части поочередно вставляются в первую часть так, чтобы поддержи­
валось свойство отсортированности первой части.

Псевдокод алгоритма сортировки вставкой выглядит следующим
образом.

Алгоритм Inserti onSort (А [1 . . п])

1 1 Входвые даивые : массив A [l . . п]

1 1 выходвые даиные : массив , элементы которого

1 1 отсортированы

for i = 2 to п do Ьegin

end

Вставка элемента A [i] в последовательность

A [l . . i - l] ; при наличии элементов с данным

значением в отсортированной последовательности
элемент A [i] вставляется после них

Временная эффективность данного алгоритма - О(п2) . Сорти­
ровка выполняется на месте, без привлечения дополнительной памя­
ти. Алгоритм сортировки вставкой в данной реализации устойчив, т.е.
относительный порядок одинаковых элементов в отсортированном
массиве сохраняется . • Вот как выглядит пример работы алгоритма (полужир­

ным курсивом указана уже отсортированная часть мас­
сива, а символ 1 разделяет части).

Сортировка и поиск 65

3 4
3 4
1 з
1 з
1 2

1 5 2
1 5 2
4 5 2
4 5 2
з 4 5
Вставка элемента при реализации алгоритма может осу­
ществляться различными способами - например, про­
веркой всех значений отсортированной части массива,
начиная с первого элемента, но проверка с конца отсо­
ртированной части массива является более предпочти­

тельной в случае, если массив почти отсортирован. Сама вставка так­
же может осуществляться разными способами. Наиболее обобщен­
ный способ состоит в выполнении ряда обменов элементов местами с
использованием стандартного алгоритма swap. Используемые итера-
торы - двунаправленные, так что эта сортировка вполне применима,
например, для связанного списка.

template<typename Iter , typename Les s >

void Insert i onSort (I ter Ь , I t er е , Les s с)

I t e r i = Ь ;

for (+ + i ; i ! = е ; + + i)

I t er j

for (- - j ;

i , k = i ;

(k ! = Ь) & & c (* k , * j) ;

swap (* k , * j) ;

- - j , - -k)

Естественным улучшением указанной реализации алгоритма явля­
ется отказ от функции swap. При этом значение вставляемого элемента
сохраняется в дополнительной переменной, и все элементы из отсорти­
рованной части, которые не меньше вставляемого, сдвигаются, после
чего сохраненный элемент вставляется на место последнего сдвинутого.

temp l ate<typename I t er , typename Le s s >

voi d Insert i onSort (I ter Ь , I t e r е , L e s s с)

typede f typename

i terator_t ra i t s < Iter> : : value_type Value ;

I t er i = Ь ;

бб Глава 2

for (+ + i ; i ! = е ; + + i }

Value х =

I t er j =

for (- - j ;

* i ;

i ' k i ;
(k ! = ь } && с (х ' * j) ;

* k = * j ;

* k = х ;

Сортировка выбором

- - j , - - k)

Сортировка выбором также состоит в разделении исходного мас­
сива на две части, однако в этом случае отсортированная часть изна­
чально пустая. На каждой итерации алгоритма в неотсортированной
части находится наименьший элемент, после чего он обменивается
местами с первым элементом неотсортированной части, и этот первый
элемент присоединяется к отсортированной части массива. Очевидно,
что данный алгоритм сортировки устойчивым не является.

Псевдокод алгоритма сортировки выбором выглядит следующим
образом.

Алгоритм Sel ect i onSort (A [l . . n])

/ / входвые ;цаииые : мае сив А [1 . . п J
/ / выхо;циъrе даиные : массив , элементы которого

/ / отсортированы

for i = 1 to n - 1 do Ьegin

end

k = индекс наименьшего элемента из A [i . . n]

Обменять местами A [i] и A [k]

Временная эффективность данного алгоритма - 0 (п2). Сортировка
выполняется на месте, без привлечения дополнительной памяти.

Вот как выглядит пример работы алгоритма (полужирным курси­
вом указана уже отсортированная часть массива, а символ 1 разделяет
части).

3 4 1 5 2

1 4 3 5 2

1 2 3 5 4

1 2 з 5 4

1 2 з 4 5

Сортировка и поиск 67 tii Реализация данного алгоритма достаточно проста. В нем,
как и при сортировке вставкой, используются двунаправ­
ленные итераторы. Единственным более-менее тонким
местом является применение в качестве границы между
частями передаваемого функции итератора, указываю­

щего начало сортируемого диапазона. Такое использование вполне
оправданно, поскольку на каждой итерации элементы отсортированной
части массива занимают свои окончательные места и больше не пере­
мещаются.

ternplate<typenarne Iter , typenarne Le s s >

void Select i onSort (Iter Ь , I ter е , L e s s с)

for (; Ы = е ; + + Ь)

{
I t e r rnini = Ь , i = Ь ;

for (+ + i ; i ! = е ; + + i)

i f (c (* i , *rnini)) rnini i ;

i f (Ь ! = rnini) swap (*b , *rnini) ;

Пузырьковая и шейкерная сортировки
Еще один алгоритм сортировки основан на выполнении проходов

от последнего элемента массива к первому, причем при каждом прохо­
де каждые два соседних элемента, оказывающиеся неупорядоченными,
меняются местами. Таким образом при каждом проходе малые элемен­
ты продвигаются к левому концу массива, как легкие пузырьки, под­
нимающиеся вверх, - откуда и произошло название метода пузырь­
ковой сортировки. Очевидно, что при первой итерации наименьший
элемент окажется в первой позиции, после второй - второй наимень­
ший элемент окажется во второй позиции и т.д. Псевдокод описанного
алгоритма пузырьковой сортировки имеет следующий вид.

Алгоритм BubЬl eSort (A [l . . n])
/ / Входные даиные : массив А [1 . . n]
/ ! Выходные даиные : массив , элементы которого

/ / отсортированы

for i = 2 to п do begin

68 Глава 2

end

for j � п to i Ьу - 1 do begin

if A [j] < A [j- 1] then Ьegin

swap (A [j] , A [j - 1])

end

end

Временная эффективность данного алгоритма - О(п2) . Сорти­
ровка выполняется на месте, без привлечения дополнительной памя­
ти. Алгоритм сортировки вставкой в данной реализации устойчив, т.е.
относительный порядок одинаковых элементов в отсортированном
массиве сохраняется.

Вот как выглядит пример работы алгоритма (полужирным курси-
вом указаны всплывшие «пузырьки»):

4 3

1 4

1 2

1 2

1 5 2

3 2 5

4 3 5

з 4 5

Реализация описанного алгоритма тривиальна. Как и в
ранее рассмотренных алгоритмах сортировки, здесь ис­
пользуются двунаправленные итераторы.

t empl at e< typename I t er , typename Less>

voi d BuЬl eSort (I t e r Ь, Iter е , Less с)

{
- - е ;

for (; Ь ! = е ; + + Ь)

f o r (I ter k = е , j = k- - ; j ! = Ь ; j

i f (c (* j , * k)) swap (* j , *k) ;

k- -)

Однако при более внимательном рассмотрении алгоритма стано­
вится очевидным, что если при какой-то итерации перестановки не
выполнялись, значит, массив находится в отсортированном состоя­
нии, и выполнение алгоритма следует прекратить. Кроме того, если
последний обмен произошел в некоторой позиции k, то массив слева
от этой позиции уже отсортирован и подвергаться изменениям не бу­
дет, так что при очередной итерации можно ограничиться проходом
только до позиции последнего обмена на предыдущей: итерации. Эти

Сортировка и поиск 69

замечания приводят к реализации улучшенной пузырьковой сорти­
ровки, но никак не влияют на ее временную эффективность.

temp l ate<typename I t e r , typename Les s >

void EnhBuЬl eSort (Iter Ь , I t er е , L e s s с)

{

- - е ;

for (; Ь ! = е ; + + Ь)

{
I t er l a s t = е ;

for (I t er k = е , j

i f (c (* j , *k))

swap (* j , *k) ;

last = k ;

k- - ; j ! = Ь ; j

i f (last = = е) break ; e l s e Ь last ;

k- -)

Следующее замечание по поводу пузырьковой сортировки связа­
но с тем наблюдением, что малый элемент в конце массива проходит

к началу массива очень быстро, в то время как большой элемент в на­
чале массива может перемещаться в его конец со скоростью не более
чем на одну позицию за итерацию. Это наблюдение приводит к раз­
работке так называемой шейкерной сортировки, которая представляет
собой поочередные итерации пузырьковой сортировки в одну и дру­

гую сторону. Реализация шейкерной сортировки представляет собой,
по сути, две последовательные итерации, реализованные в пузырько­
вой сортировке, причем у второй из них попросту изменено направ­
ление прохода.

template< typename I t er , typename Less>

void ShakerSort (I ter Ь, Iter е , Less с)

I ter last = - - е ;

for (; b ! = e ;)

{

f o r (I t er k = е , j

{

i f (c (* j , * k))

k- - ; j ! = Ь ; j k- -)

70

swap (* j , * k) ;

last = k ;

Глава 2

i f (last = = е) break ; e l s e Ь = las t ;

for (Iter k = Ь , j = k++ ; j ! = е ; j = k++)

{

i f (c (* k , * j))

{

i f (l a s t

swap (*k , * j) ;

last = k ;

Ь) break ; e l s e е

Быстрая сортировка

last ;

Быстрая сортировка, разработанная Чарльзом Хоаром в 1962 году,
представляет собой рекурсивный алгоритм, основанный на принципе
декомпозиции. Исходный массив разбивается на две части таким об­
разом, чтобы все элементы одной части были меньше некоторого зна­
чения, а второй - больше. Затем выполняется рекурсивная сортиров­
ка полученных частей. Если такая разбивка может быть произведена
быстро, то алгоритм будет иметь высокую временную эффективность.
Вот псевдокод алгоритма быстрой сортировки.

Алгоритм Qui ckSort (A [l . . п] , p , r)

/ / Входные даниые : массив А [1 . . п] , индексы р и r ,

/ /
/ /

определяющие диапазон

сортируемых элементов

/ / Выходные даниые : мае сив , элементы которого в

/ / диапазоне от р до r

11 отсортированы

if р < r then Ьegin

end

q = Part i t i on (A , p , r)

Qui ckSort (A , p , q- l)

Qui ckSort (A , q+ l , r)

Сортировка и поиск 71

Алгоритмом используется вспомогательная процедура Partition,
которая разделяет массив на два подмассива с описанными выше
свойствами:

Parti t i on (А , р , r)

х = A [r] / / Возможен другой алгоритм выбора опорного

/ / элемента , относительно которого

/ / выполняется разделение мас сива

repeat

while А [р] < х do р = p+ l ;

while х < A [r] do r = r- 1 ;

if р < = r then Ьegin

swap (A [p] , A [r])

р р + 1

r = r - 1
end ;

until р > r;

return r;

Временная эффективность данного алгоритма в среднем случае -
O(nlogn) , в наихудшем - О(п2) . Сортировка выполняется на месте,
без привлечения дополнительной памяти. Алгоритм быстрой сорти­
ровки неустойчив.

Ключевым моментом алгоритма является выбор опорного элемен­

та, относительно которого происходит разбиение диапазона массива

на две части. Идеален такой выбор элемента, когда диапазон разбива­

ется на два равных поддиапазона, однако, естественно, в общем слу­

чае такой выбор нереален. Сам Хоар предполагал, что опорный эле­

мент следует выбирать случайным образом. Интересно отметить, что

при использовании в качестве опорного крайнего (слева или справа)

элемента наихудшим является случай отсортированного массива, по­

скольку диапазон из п элементов при этом разделяется на диапазон из

п - 1 элементов и опорный элемент в качестве второго поддиапазона.

Нетрудно подсчитать, что количество выполненных сравнений в этом

случае пропорционально п2 • � Реализация указанного алгоритма требует использова-1!!!!!!!/ ния нтероторов с прои"8ольным доступом.

72 Глава 2

t emplate< typename Randi ter , typename Les s >

void Qui ckSort (Rand i t e r Ь , Randi t e r е , L e s s с)

{

typede f typename

i t e rator_tra i t s < Randi t e r> : : value_type Value ;

Randi t e r i Ь ;

Rand i t e r j = е ;

- - j ;
Value х = * i ; / / Рандомизированный вариант :

do

1 1 value х = * (i + rand () % (j - i + l)) ;

whi l e (c (* i , x)) + + i ;

whi l e (с (х , * j)) - - j ;

i f (j >= i)

{

swap (* i , * j) ;

+ + i ;

- - j ;

whi l e (j >= i) ;

i f (j > Ь) QuickSort (b , j + l , c) ;

i f (е > i + l) Qui ckSort (i , e , c) ;

Сортировка слиянием
Все рассмотренные до сих пор алгоритмы сортировки имели эф­

фективность о(п2). по крайней мере в наихудшем случае. Алгоритм
сортировки слиянием обеспечивает эффективность 0 (п log п) в любом
случае, достигая, таким образом, теоретического предела эффектив­
ности сортировки, основанной на операции сравнения. Сортировка
слиянием также основана на декомпозиции - массив разбивается на
две примерно равные части, и после их рекурсивной сортировки вы­
полняется операция слияния, которая имеет эффективность О(п) .
Операция слияния двух отсортированных частей в одну состоит в
том, что из каждой части выбирается по одному элементу, и меньший
из них помещается в результирующий массив. Так продолжается до
тех пор, пока не будет исчерпана одна из частей - в этом случае остав­
шаяся часть просто переносится в конец результирующего массива.

Сортировка и поиск 73

•
Ниже проиллюстрирован процесс слияния отсорти­
рованных последовательностей 1 , 3, 7, 8 и 2, 4, 5, 6.
Результирующая последовательность выделена полу­
жирным шрифтом, а очередной выбираемый элемент -
полужирным подчеркнутым курсивом.

1. 2

3 4
3

7
3-

4
1 .,1 4 1 7 � 1 7 � 1 7 .0 1 z 1 1

7 5 2 8 5 2 8 6 2 8 2 � 2 2
7 5 8 5 8 6 6 3 з з з з
8 6 6 4 4 4 4

5 5 5
б б

7
8

Сначала рассмотрим псевдокод процесса слияния.

Алгоритм Merge (A [l . . n] , p , q , r)

/ / Входные даввые : массив А [1 . . п] , для двух частей

/ / которого между индексами р и q

/ / и q и r выполняется слияние

/ / Выходные данные : массив , элементы которого в

/ / диапазоне от р до r отсортирова-

ны

n = q - p + l

т = r - q

Создаем массивы L [l . . n] и R [l . , m]

for i 1 to п do L [i] A [p+ i - 1]

for i 1 to т do R [i J = А [q+ i J

i = 1

j = 1

for k = р to r do Ьegin

if i = n+l then begin

A [k] = R [j] ;

j = j + l

end

else if j = т+ l then begin

A [k] = L [i]

i = i + l

end

else if L [i] < R [j] then Ьegin

74

end

end

A [k] = L [i]

i = _i + l

else begin

end

A [k] = R [j] ;

j = j + l

Глава 2

С учетом наличия процедуры слияния псевдокод сортировки сли­
янием выглядит очень просто:

Алгоритм MergeSort (А [1 . . п] , р , r)

/ / Вхо.циые .цаниые : массив А [1 . . п] , индексы р и r

/ / Выходиые даниые : массив , элементы которого в

/ / диапазоне от р до r отсортированы

i f р < r then begin

end

q = (p+r} / 2

MergeSort (А , р , q}

MergeSort (А , q+ l , r)

Merge (A , p , q , r)

Временная эффективность сортировки слиянием - 0 (п log п) ,
однако для работы алгоритму требуется 0(п) дополнительной памя­
ти для размещения временных массивов. � Реализация указанного алгоритма требует использова­� ния итераюров с прошвольным доступом.

t emplate< typename Rand l t er , typename L e s s >

void MergeSort (Randi ter Ь , Randl t e r е , Le s s с)

{

i f (Ь > = е - 1) return ;

typede f typename

i terat or_t rai t s<Randl t e r> : : value_type Value ;

Randl t e r i = Ь + (е - Ь) / 2 ;

MergeSort (b , i , c } ;

MergeSort (i , e , c } ;

vec t or<Value> L , R ;

Сортировка и поиск 75

for (Rand i t er j = Ь ; j ! = i ; + + j)

L . push_back (* j) ;

for (Rand i t er j = i ; j ! = е ; + + j)

R . push_back (* j) ;

Randiter l = L . begin () , r = R . begin () ;

for (Randi ter j = Ь ; j ! = е ; + + j)

{
* j

(1 L . end ()) ? * r + + :

(r R . end ()) ? * l + + :

(c (* l , * r)) ? * l + + : * r++ ;

Пирамидальная сортировка
Еще один алгоритм сортировки, обеспечивающий теоретиче­

скую временную эффективность, - пирамидальная сортировка.
Пирамидальная сортировка использует пирамиду, о которой шла речь
в главе 1 , «Структуры данных�. в разделе «Пирамиды� (стр. 56). Из
свойств пирамиды следует, что ее максимальный элемент - первый,
так что мы можем обменять его с последним элементом пирамиды,
уменьшить ее размер и выполнить действия, необходимые для вос­
становления свойства пирамиды. Эти действия легко осуществить,
поскольку после обмена первого и последнего элементов пирамиды,
дочерние по отношению к корневому узлу, сохраняют свои свойства
пирамид. Это свойство может быть нарушено только для корневого
узла, что исправляется процедурой Heapify, рассматривавшейся ра­
нее в разделе, посвященном пирамидам.

Таким образом, при проведении описанных итераций будет вы­
полняться поэлементное построение упорядоченной последователь­
ности в конце массива, начиная с наибольшего элемента в последней
ячейке массива.

Псевдокод пирамидальной сортировки выглядит следующим об­
разом.
Алгоритм HeapSort (A)

/ / Входные даННЪiе : массив А [1 . . п]
/ / выходные данные : массив , элементы которого

1 1 отсортированы

76 Глава 2

MakeHeap (A)

for i = п downto 2 do begin

swap (A [l] , A [i] }

end

Уменьшить размер пирамиды на 1

Heapi fy (A , 1)

Здесь использованы процедуры создания пирамиды на основе
массива MakeHeap и поддержания свойства пирамиды Heapify из раз­
дела, посвященного пирамидам (стр. 56).

Временная эффективность сортировки слиянием - O(nlogn) ,
дополнительная память не используется. К сожалению, определенная
сложность операций с пирамидой увеличивает постоянный множи­
тель в О (nlog п) , так что в среднем случае пирамидальная сортировка
проигрывает быстрой по эффективности. • Несмотря на то что в упомянутом разделе имеется ре­

ализация пирамиды, она, как уже упоминалось, носит
демонстрационный характер и неэффективна. Поэтому
здесь для повышения эффективности реализуется толь­
ко одна операция над пирамидой, а именно - Heapify,

представленная отдельной шаблонной функцией, а пирамида стро­
ится непосредственно на переданном контейнере. Вот как выглядит
описанная реализация пирамидальной сортировки.
temp l ate< typename Rand i t er , typename Di f f type ,

typename Les s >

void heap i fy (Randl t e r f i rs t ,

Randl ter l a s t ,

Di f ftype index ,

Less с }

typede f typename

i t e rator_t ra i t s<Randl t er> : : di f ference_type Int ;

Int s i ze = l a s t - f i rs t ;

Int L = (2 * index + 1) ; 1 1 Левый дочерний узел

Int R = (2 * index + 2 } ; 1 1 Правый дочерний узел

Int larges t = index ; 1 1 Индекс большего

1 1 дочернего узла

1 1 Сравниваем левый дочерний у з ел с элементом

1 1 с индексом index

Сортировка и поиск 77

i f (L < s i z e && c (f i rs t [large s t] , f i rs t [L])

l arge s t = L ;

/ / Сравниваем правый дочерний узел с элементом с

/ / полученным элементом

i f (R < s i z e && c (f i rst [l arge s t] , f i rs t [R]))

large st = R ;

1 1 Если больший элемент - дочерний узел ,

/ / обмениваем узлы и повторяем процедуру

i f (l arges t ! = index) {
swap (f i rs t [index] , f i rs t [l arge s t]) ;

heapi fy (f i r s t , las t , l arge s t , с) ;

templ ate< c l a s s Le s s , c l a s s Randi t e r>

voi d HeapSort (Rand i t er f ir s t , Randi ter last , Less с)

{
/ / Построение пирамиды

typede f typename

i terator_t rai t s<Rand i t er> : : di f ference_type Int ;

Int s i ze = l a s t - f i rs t ;

Int inde x ;

1 1 Последовательность менее чем и з двух

/ / элементов не сортируется

i f (s i ze <= 1) return ;

/ / Требуется подправить только узлы

for (index = s i z e / 2 - 1 ; index >= О ; - - index)

heap i fy (f i r s t , l as t , index , с) ;

/ / Сортировка

f o r (index = s i ze - 1 ; index > О ; - - index

/ / Первый элемент уходит в конец

swap (f i r s t [O] , f i r s t [index]) ;

- - l a s t ;

heapi fy (f i rs t , l as t , О , с) ;

78 Глава 2

Сортировка вставкой в бинарное дерево поиска
Эта сортировка использует свойство бинарного дерева поис­

ка, которое рассматривалось в разделе «Бинарные деревья поиска»
(стр. 24). Как говорилось ранее, бинарное дерево поиска обладает тем
свойством, что его обход в симметричном порядке выдает все его эле­
менты в отсортированном порядке, так что, разместив поступающие
на вход алгоритма данные в бинарном дереве поиска (обычном, крас­
но-черном дереве или некоторой иной его разновидности), мы затем
можем просто выполнить обход всех узлов дерева и получить отсор­
тированные данные.

Оценить временную эффективность такого алгоритма несложно -
поскольку вставка в бинарное дерево поиска выполняется за время
O(logn) (будем для определенности считать, что мы имеем дело с
красно-черным деревом, в котором такая эффективность обеспечива­
ется в наихудшем случае), весь массив данных можно разместить в
дереве за время O(niogn) . Обход построенного дерева выполняется
за время 0 (п) , так что общее время сортировки вставкой в бинарное
дерево равно O(nlogn) .

Вся необходимая информация для составления псевдокода и реа­
лизации данного алгоритма представлена в разделе, посвященном би­
нарным деревьям поиска, так что здесь приведено только его краткое
текстовое описание.

Сортировки за линейное время
Можно достаточно легко доказать, что любая сортировка, осно­

ванная на сравнении элементов входных последовательностей, тре­
бует в наихудшем случае П(niogn) сравнений. Получить меньшее
время работы при использовании сравнения элементов невозможно,
но для ряда задач со специфическими данными это время может быть
улучшено до линейного (подумайте сами, почему невозможно до­
стичь времени работы меньше линейного).

Сортировка подсчетом
В сортировке подсчетом предполагается, что все п входных эле­

ментов - целые числа, принадлежащие интервалу от О до k, где k -
некоторая целая константа. Если k = О(п) , то время работы алгорит­
ма сортировки подсчетом равно е (п).

Сортировка и поиск 79

Основная идея сортировки подсчетом заключается в том, чтобы
для каждого входного элемента х определить количество элементов,
которые меньше х. С помощью этой информации элемент х можно
разместить в той позиции выходного массива, где он должен нахо­
диться. Например, если всего имеется 10 элементов, которые мень­
ше х, то в выходной последовательности элемент х должен занимать
одиннадцатую позицию. Если допускается ситуация, когда несколько
элементов имеют одно и то же значение, то эту схему придется слег­
ка модифицировать, поскольку разместить все подобные элементы в
одной и той же позиции нельзя.

Для сортировки массива А [1 .. п] требуются два дополнительных
массива - B[1 .. nJ, в котором будет записана отсортированная после­
довательность, и временный массив C[O .. k).
Алгоритм Coun tingSort (A , B , k)

/ / ВхоДИЪ1е ,цаввые : Массив A (l . . п] , элементы

/ / которого представляют собой

/ / целые числа в диапазоне от О до k

/ / ВыхоДИЪlе ,цаниые : Массив В [1 . . п] , элементы которого

1 1 отсортированы

/ / Начальное обнуление временного массива

for i = О to k do С [i] = О
for j = 1 to п do С [А [j 1 J = С (А [j J J + 1

/ / В C [i] накапливается количество элементов ,

/ / равных i

for i = 1 to k do C (i] = C [i] + C [i - 1)

/ / В C [i] находится количество элементов ,

1 1 не превышающих i
for j = п downto 1 do begin

B [C [A [j 1]] = A [j]

C [A [j]] = C [A [j]] - 1

end

Время работы алгоритма - 0 (п + k) . Таково же и количество
дополнительной памяти, необходимой для работы алгоритма.
Эффективность алгоритма сортировки подсчетом больше, чем у лю­
бого из ранее рассмотренных алгоритмов, поскольку в нем не сравни­
ваются элементы последовательности - вместо этого непосредствен­
но используются их значения, на основании которых вычисляются
конкретные индексы элементов.

80 Глава 2

Алгоритм сортировки сравнением устойчив - элементы с одним
и тем же значением находятся в выходном массиве в том же порядке,
что и во входном. !ii Что касается реализации сортировки подсчетом на С++,

то в обобще�ном варианте она не имеет особого смысла
в силу своеи специфичности и привязки к конкретно­
му типу. Тем не менее приведенный ниже код позволяет
сортировать последовательность элементов, задаваемую

итераторами произвольного доступа Ь и е. Для каждого элемента по­
следовательности функтор Indexof v возвращает его целое значение
в диапазоне от О до MaxValue - именно в соответствии с этими значе­
ниями выполняется сортировка элементов последовательности.
t emp l a t e< typename I t er , typename IndexOf >

voi d Count ingSort (I ter Ь , I ter е , IndexOf v ,

int MaxVa lue)

typede f typename
i t erator_t ra i t s < I t e r> : : di f f e rence_type Int ;

typede f typename

i t erator_trai t s< I t er> : : value_type Value ;

Int n == е - Ь ;

vec tor<Value> В ;

B . re s i ze (n) ;

vect or< int> С ;

C . re s i ze (Maxvalue+ l) ;

for (I t er j == Ь ; j ! ==е ; + + j) + +C [v (* j)] ;

for (int i == 1 ; i<=MaxVa lue ; + + i) C [i] + ==C [i - 1] ;

for (I ter j == е - 1 ; j > == Ь ; - - j)

{
int i = v (* j) ;

B [C (i]] == * j ;

- -C [i] ;

copy (B . begin () , B . end () , Ь) ;

Сортировка, например, массива случайных целых чисел
выполняется следуЮщим образом.

Сортировка и поиск 81

inl ine int value (int х) { r e turn х ; }

int a [l O O O J ;

Count ingSort (a , a+ l O O O , value , 5 0 0) ;

С сортировкой подсчетом тесно связана поразрядная сортировка
(в которой сортировка подсчетом используется в качестве подпро­
граммы). Поразрядная сортировка основана на том, что все числа сор­
тируются при помощи устойчивой сортировки сначала по младшему
разряду, затем по остальным разрядам в порядке их возрастания. � Вот пример поразрядной сортировки трехзначных � чиrео"

7 6 3 7 6 3 8 1 3 1 1 6

8 3 4 9 3 3 1 1 6 5 3 4

1 1 6 8 1 3 9 3 3 5 5 5

6 5 5 сортировка 8 3 4 сортировка 8 3 4 сортировка 6 5 5

5 3 4 по единицам 5 3 4 по десяткам 5 3 4 ПО СОТНЯМ 7 6 3

9 3 3 6 5 5 6 5 5 8 1 3

8 1 3 5 5 5 5 5 5 8 3 4

5 5 5 1 1 6 7 6 3 9 3 3 • Чтобы было понятно, что роль разрядов могут играть не
только десятичные цифры, отсортируем таким же обра­
зом несколько дат:

0 9 . 0 5 . 1 9 4 5 0 1 . 0 5 . 1 8 8 6

3 0 . 1 2 . 1 9 2 2 0 4 . 1 0 . 1 9 5 7

0 5 . 1 2 . 1 9 3 6 0 5 . 1 2 . 1 9 3 6

0 1 . 0 5 . 1 8 8 6 ПО ДНЮ 0 7 . 1 1 . 1 9 1 7 по

12 . 0 4 . 1 9 6 1 (младший 0 7 . 1 1 . 1 9 1 7 месяцу

0 4 . 1 0 . 1 9 5 7 разряд) 1 2 . 0 4 . 1 9 6 1

0 7 . 1 1 . 1 9 1 7 3 0 . 1 2 . 1 9 2 2

Поразрядная сортировка

82 Глава 2

1 2 . 0 4 . 1 9 6 1 0 1 . 0 5 . 1 8 8 6

0 1 . 0 5 . 1 8 8 6 0 7 . 1 1 . 1 9 1 7

0 9 . 0 5 . 1 9 4 5 3 0 . 1 2 . 1 9 2 2

0 4 . 1 0 . 1 9 5 7 по 0 5 . 1 2 . 1 9 3 6

0 7 . 1 1 . 1 9 1 7 году 0 9 . 0 5 . 1 9 4 5

0 5 . 12 . 1 9 3 6 0 4 . 1 0 . 1 9 5 7

3 0 . 12 . 1 9 2 2 1 2 . 0 4 . 1 9 6 1

Псевдокод поразрядной сортировки без преувеличения состоит из
трех строк:
Алгоритм RadixSort (A , d)
/ / Входиые даннЪ!е : массив А , элементы которого

/ / представляют собой целые числа

/ / с d цифрами
/ / Вюс:одные данные : массив А , элементы которого

/ / отсортированы

for i = 1 to d do Ьegin

Устойчивая сортировка массива А по i - й цифре ,

от младших к старшим

end

Временная эффективность поразрядной сортировки -
@(d(n + k)) , где d - количество разрядов, k - диапазон значений раз­
ряда и п - количество элементов в массиве. • В силу специфичности данного алгоритма обобщенная

реализация на С++ не имеет смысла, поскольку будет
крайне неэффективна. Поэтому в качестве примера
приведем только код демонстрационной программы,
которая поразрядно сортирует массив из 100 случайных

трехзначных целых чисел, и использует в качестве устойчивой сорти­
ровки сортировку подсчетом.
inl ine int digit l (int х)

inl ine int digi t 2 (int х)

inl ine i n t digi t З (int х)

i n t rnain ()

return

return

return

х% 1 0 ; }
(х/ 1 0) % 1 0 ;

х / 1 0 0 ; }

int a [l O O] ;
f o r (int i = О ; i < 1 0 0 ; + + i) a [i]

Count ingSort (a , a+ l O O , di g i t l , 9) ;

Count ingSort (a , a+ l O O , di g i t 2 , 9) ;

Count ingSort (a , a+ 1 0 0 , di gi t 3 , 9) ;

rand () % 1 0 0 0 ;

Сортировка и поиск

for (int i = О ; i < 1 0 0 ; + + i)

cout << setw (4) < < a [i] ;

83

На этом мы закончим рассмотрение алгоритмов сортировок в дан­
ной книге, тем более что тема сортировки упоминается практически
в любой книге, посвященной алгоритмам. Особенно подробно сорти­
ровка рассмотрена в (10] и (12] , а в (22] описание алгоритмов сорти­
ровки сопровождается как реализацией на языке программирования
С++, так и массой конкретных примеров и увлекательных демонстра­
ционных материалов.

Поиск
Поиск - также одно из часто встречающихся в программирова­

нии действий. Существует немало вариаций задачи поиска, но сейчас
мы рассмотрим только поиск в фиксированной последовательности
элементов. На вход алгоритма поиска подается последовательность
из п элементов al ' а2, ••• , а. и некоторый элемент Ь; задача состоит в том,
чтобы получить на выходе индекс i элемента последовательности,
равного заданному элементу Ь, или выяснить, что такого элемента в
данной последовательности не существует.

Последовательный поиск
Тривиальным алгоритмом для решения поставленной задачи яв­

ляется последовательный, или линейный, поиск. Он заключается в том,
что мы поочередно сравниваем Ь с элементами последовательности а1 ,
а2, . • • , а • . Обнаружив совпадение, мы возвращаем индекс найденного
элемента; если же по окончании сравнения Ь с элементами последова­
тельности искомый элемент не найден, возвращается информация об
этом (обычно для этого используется какое-либо значение, которое
невозможно в качестве индекса - например, - 1).

Алгоритм тривиален, и записать его псевдокод не составляет ни­
какого труда:
Алгоритм Sequen t ial Search (A [l . . n] , Ь)
/ / Входные даиные : массив А [1 . . п] , элемент Ь

/ / Вюсодные данные : индекс элемента массива А ,

1 1
1 1
/ /

совпадающего с элементом Ь ,

или - 1 , если такой элемент

не найден

84

i = 1

whi le i < '' п and A [i J * Ь do i
if i < = п then return i
else return п

Глава 2

i + 1

Очевидно, что при поиске элемента в массиве приходится прове­
рить в среднем половину элементов массива в случае успешного по­
иска, и весь массив - в случае неудачного. В обоих случаях времен­
ная эффективность данного алгоритма - О(п) .

!ii
Реализация алгоритма последовательного поиска на
С++ не более сложна, чем его псевдокод. Однако, преж­
де чем приступить к пей, заметим, что, поскольку после­
довательный поиск перебирает все элементы последо­
вательности, его мож1ю применять не только для того,

чтобы найти элемент, равный заданному, но и для поиска элемента,
отвечающего некоторому более общему условию. Соответственно,
здесь приведены две реализации алгоритма последовательного поис­
ка (здесь, как и в ряде прочих реализаций, приходится идти на опре­
деленные ухищрения, которые позволяют использовать представлен­
ный код как с компилятором Visual С++, так и с Open Watcom С++).
t emplate< typename I t er , typename Т>

I ter SeqSearch (I ter Ь , I te r е , con s t Т& value)

{

f o r (; Ь ! = е ; + +Ь) i f (*Ь = = value) break ;

return Ь ;

t emplate< typename I t e r , typename Predicate>

I ter SeqSearchi f (I ter Ь, I ter е , Predi cate р)

{
for (; Ь ! = е ; + + Ь) i f (р (*Ь)) break ;

re turn Ь ;

Первая реализация ищет первый элемент, равный переданному, а
вторая -- первый элемент, для которого предикат р возвращает значе­
ние true. Как видно, единственные операции, которые выполняется с
итератором в функции последовательного поиска, - это его инкремент
и получение значения (разыменование), так что здесь может использо­
ваться входной итератор, т.е. последовательный поиск может произво-

Сортировка и поиск 85

диться, например, среди элементов файла с помощью istream_itera­

tor (о соотношениях разных типов итераторов см., например, [14]).
При неуспешном поиске возвращается итератор е, указывающий

за границу диапазона, что согласуется с общепринятой практикой
стандартной библиотеки С++.

Бинарный поиск
Если мы имеем дело с отсортированной последовательностью, то

можем существенно уменьшить количество выполняемых проверок.
Например, если мы узнаем, что искомый элемент меньше среднего
элемента последовательности, то проверять все элементы от этого
среднего и до конца отсортированной в порядке возрастания после­
довательности бессмысленно - все они не меньше среднего элемента,
а значит, заведомо больше искомого. На этом наблюдении строится
алгоритм бинарного поиска.

Вот его псевдокод.
Алгоритм BinarySearch (A [l . . п] , Ь)

! / Входные даниые : упорядоченный в порядке

/ / возрастания массив А [1 . . п] ,

/ / элемент Ь

/ / Выходные да:ниые : индекс элемента массива А ,

1 1
1 1
1 1
1 = 1 , r = п
while 1 < = r do begin

т = L (1 + r) 12J

совпадающего с элементом Ь ,

или - 1 , если такой

элемент не найден

if Ь = А [т] then return т ;

else if Ь < А [т] then r = т - 1 ;

else 1 = т + 1

end

return - 1

Временная эффективность алгоритма бинарного поиска - О (log п). � Реализация алгоритма бинарного поиска на С++ триви­l!!!!!!!!!/ альна, она просто повторяет псевдокод.

86 Глава 2

t emp l a t e< typename I t e r , typename Т , typename Les s >
I ter BinSearch (I ter Ь , I t e r е ,

con s t Т& va lue , Le s s с)

I t er l = Ь , r

whi l e (l < = r)

{

е - 1 ;

I ter i = l + (r- 1) / 2 ;

i f (c (va l ue , * i)) r = - - i ;

e l s e i f (c (* i , va l ue)) l = + + i ;

e l s e return i ;

return е ;

Здесь есть только одна тонкость - в реализации на С++ изменен
порядок проверок. Поскольку предикат Less дает значение true толь­
ко тогда, когда его первый аргумент строго меньше второго, проверка
условия равенства значений х и у выполняется как ! с (х , у) && ! с (у , х) .
Изменение порядка проверки позволяет уменьшить количество вы­
полняемых сравнений при той же функциональности.

В реализации алгоритма не проверяется, действительно ли массив
отсортирован, причем отсортирован с использованием той же функ­
ции сравнения, что и используемая при бинарном поиске.

Еще одно замечание по поводу последовательного и бинарного по­
иска. Если поиск в неотсортированном массиве выполняется разово,
то, конечно же, легче воспользоваться последовательным поиском.
Однако если в одном и том же массиве предполагается поиск боль­
шого количества элементов, то имеет смысл сначала отсортировать
массив, а затем воспользоваться бинарным поиском. Если количество
поисков - т, то использование последовательного поиска приводит
ко времени работы О (тп) , в то время как использование сортиров­
ки с бинарным поиском - ко времени работы O(nlogn)+ O(mlogn) ,
так что если т = n(logn) (порядок роста т превышает logn) , то ис­
пользование предварительной сортировки определенно имеет смысл.
Тем более оправданно выполнение предварительной сортировки,
если данные таковы, что их можно отсортировать за линейное время.
Однако не следует забывать о том, что константа в асимптотической
записи может оказаться весьма большой, так что сортировка оправда­
ет себя только при больших размерах входных данных.

Сортировка и поиск 87

Интерполяционный поиск
Если в отсортированной последовательности выполняется но­

иск числовых значений, то можно воспользоваться интерполя­
ционным поиском, который делит интервал поиска на неравные
части в соответствии со значением искомого элемента. В качестве
аналога можно привести пример поиска в телефонной книге - при
поиске фамилии на букву -«Б�.> вы не будете открывать справочник
посредине, чтобы определить, в какой половине она находится, а
откроете его существенно ближе к началу. Так и в случае поиска
числового значения в отсортированной последовательности, при­
нимая априори гипотезу линейного увеличения значения элемен­
та с его номером, делить диапазон следует исходя из пропорции

(b -A[l])j(m - l)= (A[r] - A[l])j(r - 1) . т.е. строка т = l (/ + r)/2 J псев­

докода заменяется строкой т = (b -A[lJ)(r - l)j(A[r] -A[!])+ l , а
выражение Iter i = 1 + (r- 1) 1 2 ; в реализации алгоритма за­
меняется выражением Iter i = (value-*l) * (r-1) / (*r-*l) +l ; .

Теоретически иитерполяциттый поиск снижает количество делений
диапазона в среднем до log2 log2 N, но при не слишком больших раэме­
рах данных выгода оказываете я недостаточно велика, чтобы оправдать
усложнение вычислений и увеличивающееся из-за этого время поиска.

Поиск в бинарном дереве поиска
Если нас интересует не просто поиск в заранее заданной после­

довательности элементов, а словарные операции с данными - т.е.
когда мы размещаем данные таким образом, чтобы обеспечить
быстрое выполнение основных операций над ними, а именно - встав­
ки, удаления и поиска, - то неплохим решением является использо­
вание бинарного дерева поиска. Мы уже рассматривали бинарные
деревья поиска ранее, в разделе -«Бинарные деревья поиска�.> (стр. 24),
поэтому здесь просто упоминается о такой возможности организации
данных для последующего поиска. Эффективность поиска в бинар­
ном дереве - O(logn) , т.е. такая же, как и при бинарном поиске.

Отдельная интересная задача возникает, если поиск различных
элементов в бинарном дереве поиска не равновероятен. Естественно,
что, чем ближе к корню дерева будут находиться искомые элементы,
тем меньшее количество сравнений придется выполнить для их поис­
ка. Таким образом, если известны относительные частоты выполнения

88 Глава 2

поиска различных элементов в дереве, то можно построить дерево,
при поиске в котором среднее количество сравнений будет мини­
мально. Эта задача решается, например, методом динамического про­
граммирования (который вкратце рассматривается ниже, в разделе
«Динамическое программирование�.> (стр. 2 13)). Решение задачи по­
строения оптимального дерева поиска выходит за рамки данной кни­
ги, поэтому заинтересованному читателю рекомендуется обратиться к
[12 , раздел 15.5].

Описание отдельных операций над бинарным деревом поиска, их
псевдокоды и реализация на С++ приведены в уже упоминавшемся
разделе «Бинарные деревья поиска», поэтому во избежание дублиро­
вания здесь они не приводятся.

Хеширование
В этом разделе мы рассмотрим очень эффективный способ реа­

лизации словарей. Напомним, что словарем называется абстрактный
тип данных, представляющий собой множество с операциями поис­
ка, вставки и удаления, определенных над его элементами, которые
обычно включают несколько полей. Среди полей записи имеется по
крайней мере одно, именуемое ключом и используемое для идентифи­
кации элемента.

Хеширование основано на идее распределения ключей в одномер­
ном массиве Н [О .. т - 1] , называющемся хеш-таблицей. Распределение
осуществляется путем вычисления для каждого ключа значения
некоторой предопределенной хеш-функции h. Эта функция назна­
чает каждому из ключей хеш-адрес, который представляет собой
целое число от О до т - 1 . Например, если ключи представляют со­
бой неотрицательные целые числа, то хеш-функция может иметь вид
h(К)=K mod т (ясно, что остаток от деления на т всегда находится в
диапазоне от О до т - 1). Если ключи - символы некоторого алфави­
та, то в качестве числовых значений символов можно использовать,
например, их позиции в алфавите, а если это строки символов - то
применять некоторую функцию от числовых значений символов, со­
ставляющих строку. В общем случае хеш-функция должна удовлетво­
рять двум несколько противоречивым требованиям:

• распределять ключи по ячейкам хеш-таблицы как можно более
равномерно (из-за этого требования т обычно выбирается про­
стым. Это же требование делает желательной для большинства

Сортировка и поиск 89

приложений зависимость хеш-функции от всех битов ключа, а
не только от некоторых из них);

• легко вычисляться.
Очевидно, что, если выбрать размер хеш-таблицы т меньше, чем

количество ключей п, мы обречены на коллизии - ситуации, когда два
(или несколько) ключей хешируются в одну и ту же ячейку хеш-табли­
цы, т.е. когда значения хеш-функции для разных элементов одинаковы.
Коллизии могут наблюдаться независимо от соотношения размера та­
блицы и количества ключей; в наихудшем случае все ключи могут быть
хешированы в одну ячейку хеш-таблицы. К счастью, при соответствую­
щем выборе размера хеш-таблицы и хорошей хеш-функции такая ситу­
ация встречается крайне редко. Тем не менее любая схема хеширования
должна иметь механизм разрешения коллизий. Этот механизм разли­
чен в двух основных версиях - открытом хешировании (с раздельными
цепочками) и закрытом хешировании (с открытой адресацией).

Открытое хеширование
При открытом хешировании ключи хранятся в связанных спи­

сках, присоединенных к ячейкам хеш-таблицы. Каждый список со­
держит все ключи, хешированные в данную ячейку (рис. 2.1).

Множество
ключей

k, ______ ..i
k2 -------i
kз
�
ks
ks
k1
ks -----.

Рис. 2.1. Разрешение коллизий с использованием цепочек

Очевидно, что вставка элемента осуществляется за время 0(1)
(если не выполнять проверку наличия данного элемента в таблице и
вставлять новый элемент в начало списка); удаление элемента также
выполняется за время 0(1) при использовании двусвязного списка.
Для поиска элемента в таблице к ключу поиска применяется та же

90 Глава 2

функция, что и при создании таблицы. Значение функции указывает
ячейку таблицы, а далее выполняется поиск искомого элемента в це­
почке, связанной с данной ячейкой (последовательный поиск).

В общем случае эффективность поиска зависит от длины связан­
ных списков, которая, в свою очередь, зависит от размеров словаря,
таблицы и качества хеш-функции. Если хеш-функция распределя­
ет п ключей по т ячейкам равномерно (или практически равномер­
но), то в каждом списке будет содержаться примерно около а=п/т
ключей. Величина а называется �соэффициенто.м заполнения хеш­
таблицы и играет ключевую роль в эффективности хеширования.
В частности, среднее количество проверяемых узлов цепочек при
стандартных предположениях о поиске случайно выбранного элемен­
та и хеш-функции, равномерно распределяющей ключи по ячейкам
таблицы, для успешного поиска равно 1 +а/2, а для неудачного - а.
Полученные результаты, по сути, идентичны поиску в связанном спи­
ске: хеширование просто позволяет нам снизить размер связанного
списка в т раз, заменив один большой список т меньшими.

Идеальное значение коэффициента заполнения - около 1. Слиш­
ком маленький коэффициент заполнения означает множество пу­
стых ячеек и неэффективное использование памяти; слишком боль­
шой - длинные списки и продолжительный поиск. При значении
коэффициента заполнения около 1 мы получаем наиболее эффектив­
ную схему, которая позволяет находить заданный ключ в среднем при
помощи одного-двух сравнений. Само собой, при каждой операции
вычисляется значение хеш-функции, но это операция с постоянным
временем выполнения, не зависящим от п и т. Следует отметить, что
высокая скорость достигается не только благодаря самому методу, но
и ценой излишнего потребления памяти.

Закрытое хеширование
В случае .закрытого хеширования все ключи хранятся в хеш-табли­

це без использования связанных списков (само собой, это приводит
к требованию, чтобы размер хеш-таблицы т был не меньше количе­
ства ключей п). Для разрешения коллизий могут применяться разные
стратегии. Простейшая из них - линейное исследование, когда в слу­
чае коллизии ячейки проверяются одна за другой. Если ячейка пуста,
новый ключ вносится в нее; если заполнена - проверяется ячейка,
следующая за ней. Если при проверке достигается конец таблицы, по­
иск переходит к первой ячейке таблицы, которая рассматривается как

Сортировка и поиск 91

циклический массив. На рис. 2.2 показано, как выглядит хеш-табли­
ца при закрытом хешировании с линейным исследованием в случае
вставки ключей с коллизиями.

ст во М ноже

ключ ,,.-/ k1 1 / k2
1
1
1
1
1
1
1
1
1

ks

\ k1
\ kв

ей
' \

1
1

1
1

\�"/

1
1
1
1
1
1
1
1
1

1 1 k1 1 kз 1 k2 1 ks I k1 l !ч 1 � 1 ks I 1 1
•

Рис. 2.2. Закрытое хеишроваиие с линейным исследованием.
Порядок вставки ключей в таблицу - k 1, k2, • • • , k8

1

Поиск заданного ключа К мы начинаем с вычисления хеш-функ­
ции h(К), использовавшейся при построении таблицы. Если ячейка
h(K) пуста, поиск неудачен. Если ячейка не пуста, мы сравниваем К
с ключом, хранящимся в ячейке. Если они равны, то искомый ключ
найден; если нет - то мы переходим к следующей ячейке и повторя­
ем описанные действия до тех пор, пока не встретим искомый ключ
(успешный поиск) или пустую ячейку (неудачный поиск).

В то время как операции поиска и вставки в такой версии хеширо­
вания очень просты, удаление оказывается очень сложным. Например,
удалив ключ k4 из таблицы на рис. 2.2, мы больше не сможем обнару­
жить в ней ключ k8• Простейшим решением проблемы является .�от­
ложенное удаление», когда ранее занятая ячейка помечается специ­
альным образом, чтобы можно было отличить ее от ячеек, которые
никогда не были заняты.

Математический анализ линейного исследования - существен­
но более сложная задача, чем анализ хеширования с раздельными
цепочками. Можно приближенно считать, что среднее количество
обращений к хеш-таблице с коэффициентом заполнения а в случае

успешного поиска равно 1..(1 +-1-J , а для неудачного поиска -
2 1 - а

92 Глава 2

![1 +
1

2 J (точность этого приближения увеличивается с ростом
2 (1 - а)
размера хеш-таблицы). Как нетрудно убедиться, получающиеся чис­
ла достаточно малы даже для плотно заполненных таблиц.

При разрешении коллизий методом цепочек у вас нет ограничения
на количество элементов - просто большое их число ухудшит харак­
теристики хеширования. Но при закрытом хешировании заполнение
таблицы приводит к необходимости создания новой, большей табли­
цы. К сожалению. автоматический перенос данных из старой таблицы
в новую невозможен, и требуется выполнение нового хеширования
для каждого элемента таблицы.

По мере заполнения хеш-таблицы производительность линейного
исследования снижается еще и из-за эффекта кластеризации. Класте­
ром в линейном исследовании называется последовательность сосед­
них заполненных ячеек (с возможным переходом из последней ячейки
таблицы в первую). Например, в окончательном состоянии таблица на
рис. 2.2 представляет собой один большой кластер. В хешировании кла­
стеры представляют собой отрицательное явление, поскольку снижают
эффективность словарных операций. Заметим также, что с ростом кла­
стеров увеличивается вероятность того, что новый элемент будет до­
бавлен к кластеру. Повышается и вероятность слияния кластеров при
вставке нового ключа, что еще больше увеличивает кластеризацию.

Для снижения эффекта кластеризации существует ряд стратегий
разрешения коллизий. Наиболее простой - метод квадратичного ис­
следования, когда при коллизии в ячейке /= h(К) исследуются ячейки
с номерами (l+a1i+ai) mod т. Этот метод работает лучше линейного
исследования, но требует подбора специальных значений параметров
а1 и а2, а кроме того, подвержен эффекту вторичной кластеризации.

Одна из наиболее важных среди снижающих кластеризацию стра­
тегий разрешения коллизий - двойное хеширование. В этой схеме
для определения фиксированного значения шага последователь­
ности исследований при коллизии в ячейке l=h(К) используется
другая хеш-функция s(К), т.е. последовательно исследуются ячейки
(/+s(К)) mod т, (1+2s(К)) mod т и т.д. Для того чтобы такая после­
довательность исследования могла охватить всю таблицу, значение
хеш-функции s(К) должно быть взаимно простым с размером хеш­
таблицы т. Один из вариантов обеспечения этого требования состоит
в выборе т, равного степени двойки, а хеш-функция делается такой,

Сортировка и поиск 93

чтобы она всегда возвращала нечетные значения. Второй вариант со­
стоит в выборе в качестве т простого числа, а хеш-функция всегда
должна возвращать значения, которые меньше m.

Что касается выбора хеш-функции, то во многом это - искус­
ство, в особенности для нечисловых данных (например, для строк
рекомендуется использовать хеш-функцию, представляющую собой
сумму но модулю т независимых хеш-функций для каждого символа
строки). Для числовых значений, например, Кнут [10] рекомендует

использовать функцию h (K)= lм((�К) mod 1) J , где М представля­

ет собой степень двойки, �ш - двойка в степени, равной количеству
битов в машинном слове (для 32-битовых персональных компьюте­
ров w=7:�, а целое число А Кнут предложил выбирать таким, чтобы
А/-ш "' (JS - 1 }/2 "' 0,6180339887. Операция mod 1 означает выделение
дробнои части числа, а LxJ -- наибольшее целое число, не превосходя­
щее х (функция «ПОЛ») . • Обобщенная реализация хеширования достаточно гро­

моздкая, поэтому вместо нее ниже приведен фрагмент
экспеуимента по сравнению эакр:пого хеширования с
линеиным исследованием и двоиным хешированием.
В коде создается таблица на 2048 элементов и исполь­

зуется заведомо плохая хеш-функция. Таблица наполовину заполня­
ется случайными числами, после чего выполняется визуализация за­
полненности таблицы. Из рис. 2.3 видно, что линейное исследование
характеризуется более выраженной кластеризацией.

а)

94 Глава 2

б)
Рис. 2.З. Заполнение хеш-таблицы при а) линейном исследовании
и б) двойном хешировании

/ / Хеш-таблица на 2 0 4 8 элементов

/ / У нас будут хешироваться только положительные

/ / числа , так что значение - 1 говорит о том , что

/ / ячейка свободна , а -2 - о том , что из нее удален

/ / элемент (удаления в программе не используются)

int Н [2 0 4 8] ;

/ / Заведомо плохая хеш-функция

int h (int К)

return (5 * (К>>3) +7) %2 0 4 8 ;

1 1 Хеш-функция для двойного хеширования

int h2 (i nt К)

return К % 9 7 + 1 ;

int main ()

/ / Количество заполняемых ячеек

const int Count = 1 0 2 4 ;

1 1 Инициализация таблицы

for (int i = О ; i < 2 04 8 ; + + i) H [i] - 1 ;

Сортировка и поиск

1 1 Заполняем случайными числами

f or (i nt i = О ; i < Count ; + + i)

{

int va lue = rand () ;

i nt j = h (va l ue) ;

i f def i ned (LINEAR_PROBE)

whi l e (H [j] >= 0) j = { j + 1) % 2 04 8 ;

e l s e

i n t s t ep = h2 (va l ue) ;

whi l e (H [j] >= 0) j = { j + s t ep) % 2 0 4 8 ;

end i f

H [j] = value ;

1 1 Визуализация - код данной функции

1 1 не Приводится

out P i c t ure (H) ;

Поиск подстрок

95

Еще одна часто встречающаяся в программировании разновид­
ность поиска - это поиск заданных подстрок в тексте.

Формально задачу поиска подстрок можно сформулировать сле­
дующим образом. Имеется некоторый текст длиной п символов, за­
данный в виде массива т р .. п], и образец длиной т�п в виде массива
Р[1 . . т]. Если для некоторого значения О � s � п - т выполняется ра­
венство 11s+ 1 .. s+m] = Р[1 .. т], т.е. если для всех 1 <;;.j � т справедливо
равенство 71s+j] = PUJ, то будем говорить, что образец входит в текст
со сдвигом s. Задача поиска подстроки состоит в определении сдвига
(первого или всех), с которым образец входит в текст (или установле­
нии того факта, что данный образец в текст не входит).

Простейший алгоритм поиска состоит в непосредственной про­
верке всех возможных смещений. Проверка заключается в последова­
тельном сравнении символов образца с символами текста; при первом
же обнаруженном несовпадении символов проверка прекращается и
сдвиг увеличивается на 1 .

96 Глава 2

Псевдокод такого алгоритма можно записать следующим образом.
Simpl eMa t ch (T, P)

/ / Входные данные : искомая подстрока Р длиной т

/ / и текст Т длиной п

/ / Выходные дакные : сдвиги , с которыми образец

1 1 входит в текст

for s = О to п-т do

begin

end

for j = 1 to т do

begin

end

i f j

i f P [j] * T [s + j] then Выход из цикла

т+ l

then print " Образец обнаружен со сдвигом " , s

Очевидно, что в наихудшем случае во внутреннем цикле при­
ходится проверять все т символов, а внешний цикл выполняет­
ся п - т + 1 раз, так что время работы всего алгоритма составляет
O(m(n-m + 1)) . • Реализация такого алгоритма тривиальна. Для просто­

ты будем считать, что мы имеем дело со строками С (со­
стоящими из символов типа char и завершающимися
нулевыми символами). Будем, кроме того, искать толь­
ко первое вхождение образца в текст, а также опустим

проверку корректности входных параметров (вообще говоря, следует
убедиться в корректности передаваемых строк, что они не пусты и что
образец короче текста). Еще одна особенность реализации такова: по­
скольку совпадение первого символа - ситуация достаточно редкая,
сравнение первого символа образца вынесено в отдельный цикл.
char * s t rS t r (char * t ext , char * pat t ern }

/ / Ищем длины строк

int l ent = s t r l en (t ext) ;

int l enp = s t r l en (pa t t e rn } ;

/ / Первый символ образца не может быть ближе

/ / к концу текста , чем длина образца

int l enrange = l ent - lenp + 1 ;

for (int i = О ; ;)

Сортировка и поиск 97

/ / Если не совпадает первый символ , можно не

/ / продолжать

whi l e (i < l enrange &&

t ext [i] ! = pat tern [O J) + + i ;
i f (i = = l enrange) / / Достигнут конец текста

return О ;
in t k = i ; / / Сохраняем сдвиг

int j =
whi l e (j

+ + i ;

+ + j ;

i f (j

1 ; + + i ;

< lenp

l enp)

&&

1 1 Первый символ проверен

t ext [i] = = pat t ern [j])

return (char * } text + k ; / / Найден

i k + 1 ; / / Не найден , продолжаем поиск

Обратите внимание на то, что данный поиск никак не использу­
ет информацию, полученную при сравнении подстроки с текстом, -
сколько бы символов не совпало, в любом случае сдвиг увеличивается
только на единицу. При небольших размерах текста и строки простота
такого поиска окупает себя, но при поиске длинных подстрок в боль­
ших массивах этот метод уступает другим, более эффективным.

Здесь мы рассмотрим только один из таких более эффективных
методов, а именно алгоритм Хорспула, как один из наиболее простых.
Однако это далеко не единственный эффективный алгоритм поиска
подстрок. О других алгоритмах вы можете прочесть, например, в кни­
гах [4] или [12).

Алгоритм Хорспула
Поиск в алгоритме Хорспула основан на необычном соображе­

нии - сравнение символов начинается не с начала образца, а с его
конца. Рассмотрим в качестве примера поиск слова АБРАКАДАБРА в
некотором тексте:
50 . . . А Б Р А К А Д А Б Р А . .. 5"

98 Глава 2

Мы сравниваем пары символов из образца и текста, начиная с по­
следнего символа А в образце и перемещаясь справа налево. Если все
символы образца совпадают с символами текста, то искомая подстро­
ка найдена (после этого поиск может либо завершиться, либо про­
должиться, если требуется найти остальные вхождения подстроки в
текст). Если же мы встретили несоответствие, то должны сдвинуть
образец вправо, причем желательно как можно дальше, но, естествен­
но, не пропустив при этом возможное вхождение подстроки в текст.
Алгоритм Хорспула определяет величину такого сдвига, рассматри­
вая символ с текста, который находится напротив последнего символа
образца. В общем случае могут возникнуть четыре разные ситуации.

Ситуация 1 . Если символа с в образце нет (например, если с в дан­
ном примере представляет собой символ И), то смело можно сдвигать
обраЗец на всю его длину (при сдвиге меньшей величины напротив
символа с окажется некоторый символ образца, который заведомо не
может быть таким же, как с, которого в образце нет):

и
"*

А Б Р А К А Д А Б Р А
А Б Р А К А Д А Б Р А

Ситуация 2 . Если символ с в образце есть, но он не последний (на­
пример, символ Д в нашем примере), то сдвиг должен выровнять об­
разец так, чтобы напротив с в тексте было первое справа вхождение
этого символа в образец:

д "*
А Б Р А К А Д А Б Р А

А Б Р А К А Д А Б Р А
Ситуация З. Если с - последний символ образца и среди осталь­

ных т - 1 символов образца такого символа больше нет, то сдвиг дол­
жен быть подобен сдвигу в ситуации 1 - образец следует сдвинуть на
всю длину m:

Б А Р С
"'

А Б Р А К А Д А Б Р С
А Б Р А К А Д А Б Р С

Ситуация 4. И, наконец, если с - последний символ образца и
среди остальных т - 1 символов образца имеются другие вхождения
этого символа, то сдвиг должен быть подобен ситуации 2 - крайне.е

Сортировка и поиск 99

справа вхождение с среди остальных т - 1 символов образца должно
располагаться напротив символа с в тексте:

Б А Б А
"*

А Б Р А К А Д А Б Р А
А Б Р А К А Д А Б Р А

s п

Приведенные конкретные примеры показывают, что сравнение
символов справа налево может привести к большим сдвигам, чем
сдвиги на одну позицию в рассмотренном ранее простейшем алгорит­
ме. Однако если такой алгоритм будет просматривать все символы
образца при каждой проверке для выяснения, есть ли среди них ис -
комый символ, то все его преимущество будет потеряно. Правда, мож­
но предварительно вычислить величины сдвигов для всех символов
алфавита и хранить их в таблице. Такая таблица индексируется всеми
символами, которые могут встретиться в тексте (заметим, что для по­
строения этой таблицы требуется информация только об образце, но
не о тексте, в котором выполняется поиск). Элементы таблицы запол­
няются величинами сдвигов. В частности, для каждого символа с мы
можем вычислить величину сдвига по формуле

t (c)=

длина образца т, если с нет
среди первых т - 1 символов образца;

в противном случае - расстояние от крайнего
справа символа с среди первых т - 1 символов
образца до последнего символа образца.

Так, для нашего образца АБРАКАдАБРА все элементьl таблицы
равны 11, кроме элементов для символов А, Б, Р, К, Д, для которых
они равны соответственно 3, 2, 1 , 6 и 4.

Далее приведен псевдокод простого алгоритма вычисления эле­
ментов таблицы сдвигов. Все значения в таблице инициализируются
длиной образца т, а затем выполняется сканирование образца слева
направо с повтором т -1 раз следующих действий: дляj-го символа
образца (1 � j � т - 1) соответствующий ему элемент таблицы пере­
записывается значением т - j, которое представляет собой расстоя­
ние от символа до правого конца образца. Заметим, что, поскольку
алгоритм сканирует образец слева направо, последняя перезапись
выполняется, когда встречается крайнее справа вхождение символа в
образец, т.е. именно так, как и требуется.

100 Глава 2

Shi ft TaЬl e (P [l . . т])

/ / Входные данные : образец Р [1 . . т] и алфавит

1 1 возможных символов

/ / Выходные данные : таблица ТаЫ е [1 . . size] ,

/ / индексированная символами

1 1
1 1
1 1

алфавита и з аполненная

величинами сдвигов , вычисленных

по приведенной выше формуле

1 1 Инициализация

for j = 1 to si ze

for j = 1 tc:> m- 1

return ТаЫ е

всех элементов ТаЫ е

do ТаЫ е [j] = т
do TaЬl e [P [j]] = m-j

значениями т

Теперь пришло время для полного описания алгоритма Хорспула.
1 . Для данного образца длиной т и алфавита, используемого в

тексте и образце, описанным выше способом строим таблицу
сдвигов.

2. Выравниваем начало образца с началом текста.
З. До тех пор, пока не будет найдена искомая подстрока или пока

образец не достигнет последнего символа текста, повторяем
следующие действия. Начиная с последнего символа образ­
ца, сравниваем соответствующие символы в шаблоне и тексте,
пока не будет установлено равенство всех т символов (при
этом поиск прекращается) либо пока не будет обнаружена пара
разных символов. В последнем случае находим элемент t(c) из
таблицы сдвигов, где с - символ текста, находящийся напро­
тив последнего символа образца, и сдвигаем образец вдоль тек­
ста на t(c) символов вправо.

Вот как выглядит псевдокод алгоритма Хорспула.
Алгоритм HorspoolMa t ching (P [1 . . m] , т [1 . . п])

/ / Входные данные : образец P [l . . т] и текст T [l . . п]

1 1 Выходные данные : индекс левого конца первой

1 1 найденной подстроки или О , если

/ / искомой подстроки в тексте нет

Shi ft TaЬl e (P [l . . m]) / / Генерация таблицы сдвигов

i = т / ! Позиция правого конца образца

while i � п do

begin

Сортировка и поиск

k = о 1 1 Количество совпадающих

1 1 СИМВ ОJ'ОВ
while k � т and P [m- k] = T [i - k] do k = k + 1

if k > т then return i - т

else i = i + ТаЫ е [Т [i]]

end

return - 1

А вот реальный поиск подстроки в тексте:

101

З А А Б Р А К А Д А Б Р ИЛ А С Ь _ А Б Р А К А Д А Б Р А
А Б Р А К А Д А Б Р А

А Б Р А К А Д А Б Р А
А Б Р А К А Д А Б Р А

А Б Р А К А Д А Б Р А
А Б Р А К А Д А Б Р А

Эффективность алгоритма Хорспула в наихудшем случае состав­
ляет е (тп), но для случайных текстов его эффективность равна 0(п) .
Затраты на построение таблицы сдвигов вполне окупаются, в осо­
бенности если поиск подстроки проводится неоднократно в разных
текстах. tii Реализация данного алгоритма использует не С-стро­

ки, а указатели void*, чтобы расширить область при­
менения поиска. Однако внутри функции используется
представление данных как последовательности байтов.
Заметим, что для других типов данных - например, по­

иска подпоследовательности чисел типа int в последовательности
чисел int - алфавит оказывается чрезмерно большим, и практиче­
ское применение становится невозможным (так, для указанного по­
иска подпоследовательности целых 4-байтовых чисел требуется та­
блица общим размером 1 6 Гбайт).
vec tor< int> makeTaЬle (vo i d * р_ , int len)

assert (p_ && l en > О) ;

uns igned char * р =

102

s t a t i c_ca s t <un s igned char * > (р_) ;

vector<int> t ;

Глава 2

t . re s i z e (numeric_l imi t s <uns igned char> : : max () + l ,

l en) ;

for (int i = О ; i < l en - 1 ; + + i)

t [p [i]] = len - i - 1 ;

return t ;

int HorspoolMa t ch (void * t_, int n , vo id * р_ ,

int m , c on s t vec tor<int>& t аЫ е)

a s s ert (t_ & & р_ & & n > О & & m > 0) ;

uns i gned char * t =

s t a t i c_ca s t <uns i gned char * > (t_) ;

uns i gned char * р =

s t a t i c_ca s t<uns i gned char * > (р_) ;

for (int i = m - 1 ; i < n ; i + = taЬl e [t [i]])

int k ;

for (k = О ; k < m & & p [m-k- 1]

+ + k) ;

i f (k = = m) return i - m ;

return - 1 ;

t [i - k] ;

rлава 3

rрафы
В этой главе будут кратко рассмотрены графы и некоторые основ­

ные алгоритмы для работы с ними.

Основные свойства графов
Орие1lmировттый граф G определяется как пара (V,E) , где V -

конечное множество, а Е - бинарное отношение на V. Множество V
называется множеством вершин графа С, а его элементы - вершина­
ми. Множество Е называется множеством ребер графа С, а его эле­
менты, соответственно, ребрами. На рис. 3. 1 , а изображен ориентиро­
ванный граф с множеством вершин {1,2, 3,4,5} . Вершины на рисунке
показаны кружками, а ребра - стрелками. Обратите внимание на воз­
можность существования петель - ребер, соединяющих вершину с
самой собой.

а) б)

Рис. З. 1. Примеры ориентированноzо и неориентироващюzо zрафов

В 1teopue1tmupoвa1l1t0M графе G = (V,E) множество ребер Е состо­
ит из неупорядоченных пар вершин, т.е. ребро является множеством
{и, v} , где и, lJ Е V и и * v . По соглашению для ребер используется за­
пись (и, v) . И (и, v) , и (v, и) обозначают одно и то же ребро неориен­
тированного графа, в то время как для ориентированного графа эти
ребра различны. В неориентированном графе петли запрещены, так
что каждое ребро содержит две разные вершины. На рис. 3. 1 , б пока­
зан неориентированный граф с множеством вершин {1, 2, 3, 4, 5 } .

104 Глава 3

Многие определения выглядят одинаково и для ориентирован­
ных, и для неориентированных графов, хотя некоторые отличия,
естественно, имеются. Если (и, v) - ребро ориентированного графа
G = (V, Е), то ребро выходит из вершины и и входит в вершину v. Если
(u,v) - ребро неориентированного графа G = (V,E) , то оно соединя­
ет вершины и и v и называется шщидентным этим вершинам.

Если в графе G имеется ребро (и, v) , то говорят, что вершина v
смежна с вершиной и. Для неориентированных графов отношение
смежности является симметричным; для ориентированных графов
это утверждение неверно. Если вершина v смежна с вершиной и, это
записывается как и � v . На рис. 3 . 1 , а и б вершина 2 смежна с вер­
шинами 1 и 3, поскольку ребра (1,2) и (3,2) имеются в обоих графах;
однако вершина 1 смежна с вершиной 2 только на рис. 3 . 1 , 6.

Степенью вершины в неориентированном графе называется ко­
личество ребер, соединяющих ее с другими вершинами. Вершина,
степень которой равна О, называется изолированной. В ориентиро­
ванном графе различают исходящую степень, равную количеству вы­
ходящих из вершины ребер, и входящую степень, равную числу вхо­
дящих в вершину ребер. Степень вершины в ориентированном графе
равна сумме ее входящей и исходящей степеней.

Путь длины k от вершины и к вершине и' в графе G = (V,E) пред­
ставляет собой такую последовательность (v0 , v1 ' v2 ," . , vk) вершин,
что и = v0 , u' = vk и (v,_pv;)e E для i = l, 2, . . . , k . Длиной пути назы­
вается количество составляющих его ребер. Путь содержит вершины
v0 , vpv2 , ." , vk и ребра (v0 , v1) , (vpv2) , ••• , (vk_Pvk) . Всегда существует
путь нулевой длины из вершины в нее саму. Если имеется путь р из
вершины и в вершину и' , то говорят, что вершина и' достижима из и
по пути р, что иногда в ориентированном графе G записывается как

р
и- и' . Путь является простым, если все его вершины различны.

В ориентированном графе путь (v0, vP . . . ,vk) образует цикл, если
v0 = vk и путь содержит по крайней мере одно ребро. Цикл называ­
ется простым, если, кроме того, все вершины vpv2, . . . , vk различны.
Петля является циклом с длиной 1. Ориентированный граф, не со­
держащий петель, называется простым. Граф без циклов называется
ациклическим.

Неориентированный граф является связным, если любая его вер­
шина достижима из другой по некоторому пути. Для неориентирован­
ного графа отношение «быть достижимым из» является отношением

Графы 105

эквивалентности (т.е. оно рефлексивно, симметрично и транзитивно,
как, например, отношение равенства между числами) на множестве
вершин, а множества всех достижимых друг из друга вершин называ­
ются связными компонентами графа. Неориентированный граф свя­
зен тогда и только тогда, когда он состоит из единственного связного
компонента.

Некоторые виды графов имеют свои специальные названия. Пол­
ным называется неориентированный граф, в котором каждая пара
вершин являются смежными, т.е. который содержит все возможные
ребра. Ациклический неориентированный граф называется лесом, а
связный ациклический неориентированный граф - деревом.

Для представления графа в памяти компьютера обычно исполь­
зуется один из двух стандартных способов: как множества списков
смежных вершин или в виде матрицы смежности. Оба способа при­
менимы как для ориентированных, так и для неориентированных
графов. Представление с помощью списков смежности обычно более
предпочтительно, поскольку обеспечивает компактное представление
разреженных графов, у которых количество ребер гораздо меньше
квадрата количества вершин. Представление при помощи матрицы
смежности предпочтительнее для плотных графов, когда количество
ребер приближается к квадрату количества вершин или когда необ­
ходимо быстро определить, существует ли ребро, соединяющее две
данные вершины.

Представление графа в виде списков смежности использует мас­
сив из IVI списков, по одному для каждой вершины из V. Для каж­
дой вершины такой список содержит все вершины, смежные с и в
графе G (список может содержать и не сами вершины, а указатели на
них). Вершины в каждом списке обычно хранятся в произвольном
порядке.

На рис. 3.2, а показано представление ориентированного графа с
рис. 3. 1 , а в виде списков смежности.

Как для ориентированных, так и для неориентированных гра­
фов представление в виде списков требует объема памяти, равного
0(V + Е) . Главный недостаток представления при помощи списков
смежности заключается в том, что при этом нет более быстрого спо­
соба определить, существует ли некоторое ребро (и, v) в графе, чем
поиск v в списке смежности и.

Представление графа с помощью матрицы смежности предпола­
гает, что вершины графа пронумерованы в некотором порядке числа-

106 Глава 3

ми 1,2, . . . , /VI . В этом случае представление графа G с использованием
матрицы смежности представляет собой матрицу А = (а9) размером
/v/ x /VJ такую, что

- {1, если (i,j)E Е, aij - О в противном случае.

На рис. 3.2, б показано представление ориентированного графа с
рис. 3. 1 , а в виде матрицы смежности.

�
0--(!0 2 3 4 5

�
1 о 1 о о
2 о о о о

� 3 о 1 о о о
4 о о о о 1

� 5 о о о о

а) б)

Рис. 3.2. Представления zрафа, паказаннаzа на рис. 3.1, а

Матрица смежности графа требует объема памяти, равного е (v2),
независимо от количества ребер графа. Для неориентированного гра­
фа можно, воспользовавшись симметричностью отношения смежно­
сти, хранить в памяти только половину матрицы - поскольку матри­
ца смежности для неориентированного графа симметрична.

Поиск в ширину
Поиск в шupu1ty является одним из простейших алгоритмов для

обхода графа и основой для многих других алгоритмов для работы с
графами.

Пусть дан граф G = (V,E) и выделена некоторая исходная верши­
на s. Алгоритм поиска в ширину систематически обходит все ребра G
и �открывает:1> все вершины, достижимые из s, вычисляя при этом рас­
стояние (минимальное количество ребер) от s к каждой достижимой

Графы 107

из s вершине. Кроме того, в процессе обхода строится «дерево поис­
ка в ширину�> с корнем s, содержащее все достижимые вершины. Для
каждой достижимой иэ s вершины lJ путь в дереве поиска в ширину
соответствует кратчайшему пути от s к v в G, т.е. пути, содержащему
наименьшее количество ребер. Алгоритм применим как для ориенти­
рованных, так и для неориентированных графов.

Поиск в ширину наэывается так потому, что в процессе обхода,
перед тем как приступить к поиску вершин на расстоянии k + 1 , вы­
полняется обход всех вершин на расстоянии k.

Для отслеживания работы алгоритма поиск в ширину раскраши­
вает вершины графа в белый, серый и черный цвета. Изначально вес
вершины белые, а позже они могут стать серыми и черными. Когда
в процессе поиска происходит открытие вершины, она окрашивает­
ся. Таким образом, серые и черные вершины - это вершины, которые
уже были открыты, но алгоритм поиска в ширину по-разному рабо­
тает с ними, чтобы обеспечить объявленный порядок обхода. Если
(и, v)е Е и вершина и черного цвета, то вершина v либо серая, либо
черная, т.е. все вершины, смежные с черной, уже открыты. Серые
вершины могут соседствовать с белыми, представляя собой границу
между открытыми и неоткрытыми вершинами.

Поиск в ширину строит дерево поиска в ширину, которое изна­
чально состоит из одного корня, которым является исходная вершина
s. Если в процессе сканирования списка смежности уже открытой вер­
шины и открывается белая вершина v, то вершина v и ребро (и, v) до­
бавляются в дерево. В этом случае и является предшественником v в
дереве поиска в ширину (родительским узлом). Поскольку вершина
может быть открыта не более одного раза, она имеет не более одно­
го родителя. Взаимоотношения предков и потомков определяются в
дереве поиска в ширину как обычно - если и находится на пути от
корня s к вершине i1, то и является предком v, а v - потомком и.

Ниже приведен псевдокод поиска в ширину. Отличие в приме­
нении данного алгоритма к графу, представленному в виде списков
смежности и в виде матриц, в том, что в первом случае проход по всем
смежным с данной вершинам выполняется обычным проходом по
списку, а во втором - проходом по соответствующей строке матрицы
с отбором смежных вершин (элементы матрицы для которых ненуле­
вые). В каждой вершине графа хранится также дополнительная ин­
формация - цвет вершины (в поле color) и ее предшественник (в поле
р). Если предшественника у вершины нет, то эначение ее поля р - О.

108 Глава 3

Расстояние от s до вершины и, вычисляемое алгоритмом, хранится в
поле d. Алгоритм использует очередь Q для работы с множеством се­
рых вершин.
Алгоритм BFS (G, s)
/ / Входные даняые : Граф G= (V, Е) , исходная вершина s
/ / Вшсодные даняые : в информационные поля всех

1 1
1 1

достижимых и з s вершин

з аписываются расстояние от

/ / вершины s и предшественник в

/ / дереве поиска в ширину

for каждой вершины и Е V[G] - { s } do

Ьegin

col or [u] WHITE

d [u] оо
p [u] О

end

col or [s]

d [s]

p [s]

Q = 0

GRAY

о
о

Enqueue(Q , s)

while Q "#- 0 do

Ьegin

end

и = Dequeue (Q)

for каждой в ершины v, смежной с и do

Ьegin

if col or [v] = WHITE then

Ьegin

end

end

col or [u]

col or [v] = GRAY

d [v] = d [u] + 1

p [v] = и
Enqueue (Q , v)

BLACK

Время работы данного алгоритма при использовании списков
смежности составляет O(V + Е) , а при использовании матрицы смеж-

Графы 109

ности - o(v'), так как при поиске смежных вершин приходится
обойти все ее элементы.

Можно доказать, что приведенный алгоритм корректно определяет
длины кратчайших пуrей к вершинам графа от вершины s. Вывести соот­
ветствующий путь легко с помощью представленной ниже процедуры.

Алгоритм Prin t Pa th (G , s , v)

/ / Входные данные : граф G с информацией , полученной

/ / в процессе поиска в ширину из

1 1 вершины s , и вершина v

/ / Выходные данные : кратчайший путь из вершины s в

/ / вершину v

if v = s then print s

else if p [v] = О

then print " Путь из " s " в " v" отсутствует "

else

begin

end

Prin t Path (G, s , p [v])

print v

Поскольку алгоритм достаточно прост, не будем со­
ставлять его обобщенную реализацию. В качестве ре­
ализации алгоритма рассмотрим решение задачи о
превращении мухи в слона. Давным-давно в одной из
научно-популярных книг о вычислительных машинах

и программировании [1 1] было сказано, что кратчайшая цепочка из
четырехбуквенных слов, первое из которых - «муха», а последнее -
«слон�.>, и каждое из которых отличается от предшествующего одной
буквой, состоит из 17 слов. Давайте проверим это. Приведенная
ниже программа считывает файл dictionary, в котором собраны
все четырехбуквенные существительные из словаря программы ispell (плюс добавленные для чистоты эксперимента и отсутству­
ющие в словаре слова из [1 1]), и строит граф, в котором вершины
представляют собой считанные слова, а ребра соединяют слова, от­
личающиеся ровно на одну букву.

Программа, как обычно, не оптимизирована, не обрабатывает
ошибки и максимально проста. Для списков использован 'тип vector,

так как тип list не имеет в этом случае никаких преимуществ; для
очереди использован тип deque.

110 Глава 3

s t ruct word_t / ! Структура вершины графа

} ;

char word [S J ; / / Мы имеем дело только с

/ / четырехбуквенными словами

vector< int > adj ; / / Смежные вершины графа

int color ;

int р ;

int d ;

word_t (cons t char * w = " " } : р (- 1) , co l or (O) ,

d (INT_МAX) { s t rcpy (word , w } ;

typede f vector<word_t> graph ;

/ / Отличаются ли слова ровно одной буквой?

bool adj acent (cons t char * а , const cha r * Ь }

{

for (int i = О , di f fs О ; a [i] && b [i] ; + + i)

i f ((a [i] ! = b [i]) & & (+ +di f f s > l) }

return fa l s e ;

return t rue ;

/ / Чтение файла и создание графа

void readGraph (graph&G)

{
char bu f [7] ;

i fs t ream d i c (" di c t i onary ") ;

whi l e (di c . ge t l ine (bu f , 7 } & & dic . good ())

G . push_back (word_t (bu f)) ;

/ / Создание списков смежности

for (int i = О ; i < G . s i z e () - 1 ; + + i)

for (int j = i + l ; j < G . s i ze () ; + + j)

i f (adj acent (G [i] . word , G [j] . word))

G [i] . adj . push_bac k (j) ;

G [j] . adj . push_bac k (i) ;

/ / Вспомогательная функция поиска вершины по слову

int indexO f (graph&G , const char * word)

Графы 111

for (int i = О; i < G . s i z e () ; + + i)

i f (s t rcrnp (G [i] . l"lord , word) = = O) return i ;

return - 1 ;

! / Поиск в ширину

void BFS (graph&G , int s)

{

/ / Цикл инициализации не нужен , так как она

/ / выполнена в конструкторах вершин . Однако ,

/ / если планируется выполнение нескольких

/ / поисков с одним графом , здесь нужна

/ / инициализация полей color , d , р вс ех вершин

G [s] . color = 1 ; / / GRAY

G [s] . d = О ;
deque<int> Q ;

Q . push_back (s) ;

whi l e (! Q . ernpty ())
int u = Q . f ront () ;

Q . pop_f ront () ;

f or (int j = О ; j < G [u] . adj . s i ze () ; + + j)

int v = G [u] . adj [j] ;

i f (G [v] . co l or = = 0)

G [v] . co l or = 1 ; / / GRAY

G [v] . d = G [u] . d + 1 ;

G [v] . р = u ;

Q . push_bac k (v) ;

G [u] . co l or 2 ; / / BLACK

void print Path (graph&G , int s , int v)

i f (v==s) c out < < G (s] . word << endl ;

e l s e i f (G [v] . р = = - 1)

c out << "Пути от " << G (s] . word << " к "
<< G [v] . word < < " нет " << endl ;

112

e l se {

print Path (G , s , G [v] . р) ;

cout << G [v] . word < < endl ;

int main ()

graph G ;

readGraph (G) ;

int f ly indexOf (G , "муха ") ;

int el ephant = indexOf (G , " cлoн ") ;

BFS (G , f l y) ;

printPath (G , f ly , e l ephant) ;

return ;

Глава З

В результате мы действительно получаем последовательность из
17 слов: муха-мура-фура-фара-кара-каре-кафе-кафр-каюр-каюк-каик­
крик-крип-клип-клин-клон-слон, которая, впрочем, отличается от по­
следовательности из упомянутой книги: муха-мура-фура-фара-кара­
каре-кафе-кафр-каюр-каюк-крюк-урюк-урок-срок-сток-стон-слон.
Заметим в этой связи, что поиск в ширину находит кратчайший путь,
но нигде не сказано, что этот путь - единственный, и наша програм­
ма нашла один из возможных путей (стоит, кстати, убрать из словаря
неизвестный в те годы «КЛИП», как программа тут же находит второй
путь). Это далеко не самая длинная цепочка - например, кратчайший
путь от «тиши» к «грому» выглядит следующим образом: тишь-тушь­
туша-душа-дура-фура-фара-кара-каре-кафе-кафр-каюр-каюк-крюк­
урюк-урок-урод-брод-бром-гром (любопытно, что в обоих приведен­
ных случаях имеется общая подцепочка из 1 1 слов: фура- ... -урок).

Поиск в глуби ну
Стратегия поиска в глубину состоит в том, чтобы идти вглубь гра­

фа, пока это возможно. При выполнении поиска в глубину исследу­
ются все ребра, выходящие из последней открытой вершины, и мы
покидаем вершину только тогда, когда не остается неисследованных

Графы 113

выходящих из нее ребер. При этом происходит возврат в вершину, из
которой была открыта текущая вершина. Этот процесс продолжается
до тех пор, пока не будут открыты все вершины, достижимые из ис­
ходной. Если при этом остаются неоткрытые вершины, то одна из них
выбирается в качестве новой исходной вершины, и поиск возобнов­
ляется из нее. Процесс повторяется до тех пор, пока не будут открыты
все вершины графа.

Как и при поиске в ширину, когда в процессе сканирования спи­
ска смежности уже открытой вершины и открывается вершина v,
процедура поиска записывает это событие, устанавливая поле пред­
шественника v равным и. В отличие от поиска в ширину, где подграф
предшествования образует дерево, при поиске в глубину подграф
предшествования может состоять из нескольких деревьев, так как
поиск может выполняться из нескольких исходных вершин. Поиск в
ширину ограничивается только одной исходной вершиной, посколь­
ку основное его предназначение - поиск кратчайшего пути из данной
вершины. Поиск же в глубину самостоятельно используется редко и
обычно является частью другого алгоритма. Подграф предшествова­
ния поиска в глубину, таким образом, образует лес, который состоит
из нескольких деревьев поиска в глубину.

Как и при поиске в ширину, вершины графа раскрашиваются в
разные цвета, указывающие их состояние. Каждая вершина изначаль­
но белая, затем при ее открытии в процессе поиска она окрашивается
в серый цвет, а по завершении сканирования ее списка смежности она
становится черной. Это гарантирует, что каждая вершина в конечном
счете находится только в одном дереве поиска в глубину, так что де­
ревья не пересекаются.

Помимо построения леса поиска в глубину, поиск в глубину также
проставляет в вершинах метки времени. Каждая вершина имеет две
такие метки - d, в которой указывается, когда вершина v открывается
и окрашивается в серый цвет, и /, в которую записывается момент,
когда завершается сканирование списка смежности вершины v, и она
становится черной. Эти метки используются многими другими алго­
ритмами и полезны при рассмотрении поведения поиска в глубину.
Само собой, для каждой вершины d<f.

Вот псевдокод алгоритма поиска в глубину. Граф G может быть
как ориентированным, так и неориентированным. Переменная time -
глобальная и используется для простановки меток времени.

114 Глава З

Алгоритм DFS (G)

/ / Входные данные : граф G

/ / Выходные данные : граф G , в котором вершины

1 1 заполнены инфор!'-�ацией ,

1 1 полученной при поиске в глубину

for каждой в ершины и Е V[G] do

begin

end

col or [u]

p [u]

t ime = О

WHITE

о

for каждой вершины и Е V [G] do

begin

end

if col or [u] = WHITE

then DFS_Vi si t (u)

DFS_Vi si t (u)

col or [u] = GRAY

t ime = t ime + 1

d [u] = t ime

for каждой вершины v, смежной с и do

begin

end

if col or [v] = WHITE then

begin

end

p [v] = и
DFS_ Vi si t (v)

col or [u] = BLACK

t ime time + 1

f [u] = time

При возврате из процедуры DFS каждой вершине и сопоставляют­
ся два момента времени - время открытия d и время завершения f
Время работы данного алгоритма при использовании списков смеж­
ности составляет O(V + Е) , а при использовании матрицы смежно­
сти - o(v2). так как при поиске смежных вершин приходится обой­
ти все ее элементы.

Графы 115

Поиск в глубину дает информацию о структуре графа. Подграф
предшествования образует лес деревьев, поскольку структура дере­
вьев поиска в глубину в точности отражает структуру рекурсивных
вызовов процедуры DFS _Visit. Вершина v является потомком верши­
ны и в лесу поиска в глубину тогда и только тогда, когда вершина и
серая в момент открытия вершины v.

Еще одно важное свойство поиска в глубину заключается в том,
что времена открытия и завершения образуют скобочную структуру,
т.е. если открытие вершины и представить при помощи отрывающей
скобки «(и», а завершение -- при помощи закрывающей скобки «И)»,
то перечень открытий и завершений образует корректное выражение
в смысле вложенности скобок.

При поиске в глубину в (ориентированном или неориентирован­
ном) графе G = (V,E) для любых двух вершин и и v выполняется ров­
но одно из трех следующих утверждений.

+ Отрезки [d[u],f[u]] и (d[v] ,f[v]] не пересекаются, и ни и не
является потомком l! в лесу поиска в глубину, ни v не является
потомком и.

+ Отрезок(d[и] ,f[u]] полностью содержится в отрезке (d[v] ,f[v]] ,
и и является потомком v в дереве поиска в глубину.

+ Отрезок [d[v] ,/[v]] полностью содержится в отрезке [d[и] ,/[и]],
и l! является потомком и в дереве поиска в глубину.

Соответственно, вершина v является потомком и (отличным от са­
мого и) в лесу поиска в глубину в (ориентированном или неориентиро­
ванном) графе G тогда и только тогда, когда d [и]< d [v] <f[v]< /[и] . • Здесь мы ограничимся только перечисленными свой­

ствами поиска в глубину; дополнительную информа­
цию можно найти в соответствующей литературе, на­
при�ер [12] . Пока же воспользуемся перечисленными
своиствами, позволяющими нам решить одну голово­

ломку из книги [6] . Вот вкратце ее суть - в некотором городке мэр
назначил начальником отдела регулирования дорожного движения
большого шутника, который развесил по городу множество знаков
так, что движение по городу стало очень запутанным делом, прино­
сившим в городскую казну большие доходы от штрафов за наруше­
ния. Все ожидали, как проедет через город (и сколько штрафов при
этом заплатит) один самый богатый фермер в округе. Но он сумел
заранее достать план города со всеми дорожными знаками и разоча-

116 Глава З

ровал всех, проехав город без единого нарушения. Как он это сделал?
План города показан на рис. 3.3. Очутившись на любом перекрестке,
вы имеете право двигаться в направлении одной из стрелок, т.е. по­
ворачивать в нужную сторону разрешается лишь при условии, что
имеется закругление, по которому можно свернуть, а следовательно,
прямо - лишь при условии, что в нужную сторону идет прямая ли­
ния. Поворачивать, двигаясь задним ходом, запрещается; развороты
также запрещены. Покидать перекресток разрешается только в на­
правлении одной из стрелок.

Рис. 3.3. Плаи zорода

Давайте переведем нашу задачу на язык ориентированных графов.
Перенумеруем все улицы между перекрестками, сделав их вершина­
ми графов. Поскольку развороты запрещены, мы вынуждены исполь­
зовать по две вершины для каждой улицы (сообразите сами, почему).
Использованная нумерация показана на рис. 3.3. После этого для
каждой вершины мы определяем все исходящие из нее ребра - ве-

Графы 117

дущие в другие вершины с учетом знаков разрешенных поворотов и
правосторонности движения. Так, например, из вершины 32 мы мо­
жем попасть только в вершины 14 и 23.

Вот как выглядит программа для решения данной задачи. Как
обычно, она не оптимизирована, не обрабатывает ошибки и макси­
мально проста. В ней использован простейший класс для матрицы,
обеспечивающий ее динамическое создание и возможность обраще­
ния к элементам с применением двойного индексирования (такой же
класс будет использоваться и в главе, посвященной работе с матри­
цами).
11 Класс для представления матрицы смежности

ternplate< typenarne Т>

class rnat rix

puЫ i c :

rnat rix (int rn = 1 , int n = 1) : Rows_ (rn ,

vect or<T> (n , 0)) { }

con s t vector<T>& operator [] (int i) cons t

{ return Rows_ [i] ; }

vector<T>& operator [] (int i) { return Rows_ [i] ;

int rows () const { return Rows_ . s i z e () ; }

int c o l s () const { return Rows_ [O J . s i z e () ;

priva t e :

vector< vector<T> > Rows_ ;

} ;

11 Ребра графа

struct {
int f , t ;

connec t i ons []

о ' 2 0 } ' { о ' 2 } '

4 , 1 3) , { 5 ' 3 } '
(1 1 , 9 } ' (1 2 , 6 } '

{ 14 , 7) , { 1 5 , 2 4 } ,

(1 9 , 2 7) , { 2 0 , 3 1 } ,

{ 22 , 3 3) , { 2 3 ' 2 1 } '

{ 2 6 , 1 8 } , (2 7 , 2 5 } ,

(3 0 , 2 2) , { 3 0 , 2 1 } ,

{ 2 , 4 } ' { 3 ' 1 } '

{ 7 , 1 3 } , { 8 , 10) ,

{ 12 ' 5 } ' (13 , 2 1) ,

{ 1 5 , 3 3) , (1 6 , 1 0) ,

(2 0 , 2 2) , { 2 1 , 1 } '

{ 2 3 , 3 1) , { 2 4 , 2 6 } ,

{ 2 7 , 3 5 } , (2 8 ' 2 } '

{ 3 1 , 4 0 } , { 3 2 , 1 4) ,

{ 3 , 2 9) , { 3 ' 2 0 } '

{ 9 ' 7 } ' { 1 0 , 1 9) ,

(1 3 , 2 2) , { 1 3 ' 3 1 } '

{ 17 , 3 5 } , { 1 8 , 1 1) ,

{ 2 1 , 2 } ' { 22 , 2 4) ,

(2 5 , 1 4) , (2 5 ' 2 3 } '

{ 2 9 , 4 5 } , (2 9 , 3 8) ,

{ 32 , 2 3 } , { 3 3 , 4 9) ,

118

{ 3 4 , 2 6 } ' { 3 4 , 1 6 } , { 3 'J , 4 2 } ,

{ 3 8 , 4 7 } , { 3 8 , 4 0 } , { 3 9 , 2 8 } ,

{ 4 1 , 3 0 } , { 4 1 , 3 9) , (4 1 , 4 7 } ,

{ 4 4 , 3 8) , { 4 5 , 5 4 } , { 4 5 , 6 5 } ,

{ 4 7 , 5 6 } , { 4 8 , 3 2 } , { 4 9 , 5 8 } ,

{ 52 , 3 6 } , { 53 , 7 3 } , { 5 3 , 6 1 } ,

{ 5 5 , 6 5 } , { 5 6 , 5 8 } , { 5 6 , 4 8 } ,

{ 5 8 , 6 0 } , { 5 8 , 5 0 } , { 5 9 , 4 8 } ,

{ 6 4 , 4 4) , { 6 4 , 5 4 } , { 6 5 , 7 4 } ,

{ 6 8 , 4 8 } , { 6 8 , 5 8 } , { 6 9 ' 7 7 } ,

{ 7 1 , 7 9) , { 7 1 , 8 0 } , { 72 , 5 2 } ,

{ 7 4 , 7 6 } , { 7 5 , 64 } , { 7 6 , 7 8 } ,

{ 7 8 , 8 0 } , { 7 8 , 7 0 } , (7 9 , 6 8 } ,

{ 8 1 , 7 9 } , { 6 3 ' 7 3 } '

{ - 1 , - 1 } / / Ограничитель

} ;

1 1 Вершина графа

s t ruct node

} ;

int color ;

int d , f ;

int р ;

1 1 Счетчик

int t imer ;

{ 3 5 , 5 1 } ,

{ 3 9 , 4 5 } ,

{ 42 , 53 } ,

{ 4 6 , 3 9 } ,

{ 5 0 , 3 4 } ,

{ 54 , 4 6) ,

{ 57 , 4 6 } ,

{ 6 0 , 52 } ,

{ 6 6 , 5 6 } ,

{ 6 9 , 7 8 } ,

{ 72 , 62 } ,

{ 7 6 , 6 8 } ,

{ 7 9 , 77 } ,

/ / Реализация поиска в глубину

Глава З

{ 3 6 , 1 8 } , { 3 7 , 5 3 } ,

{ 4 0 ' 3 2 } ' { 4 0 , 4 9 } ,

{ 4 3 , 3 4 } , (4 4 , 2 8) ,

{ 4 6 , 4 0 } , { 4 7 , 5 5 } ,

{ 5 1 , 5 9 } , { 5 1 , 6 0 } ,

{ 5 4 , 5 6 } , { 5 5 , 44 } ,

{ 5 7 , 67 } , { 5 7 , 5 5 } ,

{ 6 1 , 50 } , { 6 1 , 5 9 } ,

(67 , 7 5 } , { 6 7 , 7 6 } ,

{ 7 0 ' 6 0 } ' { 7 0 , 5 9 } ,

{ 7 3 , 8 1 } , { 7 4 , 6 6 } ,

{ 7 7 , 6 6 } , (7 7 , 7 5 } ,

{ 8 0 , 72 } , { 8 1 , 7 0) ,

void DFSVi s i t (i n t i , vec tor<node>&V , matrix<boo l >&E)

{

V [i] . color = 1 ; / / GRAY

V [i] . d = + + t ime r ;

for (int j = О ; j < V . s i z e () ; + + j)

i f (E [i] [j] && (V [j] . color 0))

V [j] . р = i ;

DFSVi s i t (j , V , E) ;

V [i] . color = 2 ;

V [i] . f = + + t imer ;

Графы

voi d DFS (vector<node>&V , mat rix<boo l > & E)

{
for (int i = О ; i

V [i] . color

V [i] . р

t imer = О ;

< V . s i z e () ; + + i)

О ; / / WH ITE

- 1 ;

for (int i = О ; i < v . s i ze () ; + + i) {
i f (V [i] . color = = О) DFSVi s i t (i , V , E) ;

/ / Реализация поиска в ширину

void BFS (vector<node>&V , mat rix<bool >&E , int s)

{
for (int i = О ; i < V . s i z e () ; + + i)

i f (i = = s) cont inue ;

V [i] . color О ; / / WHITE

V [i] . р - 1 ;

V [i] . d INT_MAX ;

V [s] . color 1 ; / / GRAY

V [s] . d = О ;

V [s] . р = - 1 ;

deque<int> Q ;

Q . push_bac k (s) ;

whi l e (! Q . empty ())

int u = Q . front () ;

Q . pop_f ront () ;

for (int v = О ; v < v . s i ze () ; + + v)

i f (E [u] [v] && (V [v] . color 0))

V [v] . color = 1 ;

V [v] . d = V [u] . d + 1 ;

V [v] . р = u ;

Q . push_back (v) ;

V [u] . color 2 ;

119

120 Глава З

1 1 Вывод найденного пути

voi d print Path (vec tor<node>&V , int N)

{

i f (V [N] . р > = 0) {
print Path (V , v [N] . р) ;

cout << " - " ;

cout << setw (2) << N ;

int main ()

mat rix<bool> Е (8 2 , 82) ;

vec tor<node> V (8 2) ;

1 1 Инициализация матрицы смежности

for (int i = О ; connect i ons [i] . f >= О ; + + i)

E [connect i ons [i] . f] [connec t i ons [i] . t] = t rue ;

DFS (V , Е) ;

i f ((V [O] . d < V [6 2] . d) && (V [6 2] . f < V [O) . f)) {
cout << " Путь существует : \n " ;

printPath (V , 6 2) ;

BFS (V , E , 0) ;

cout << " \n \ nКратчайший путь : \n " ;

pri nt Path (V , 6 2) ;

В программе использован поиск как в глубину, так и в ширину -
просто для сравнения полученных результатов. Поиск в глубину го­
ворит нам о том, что проехать через город можно, и дает нам ответ,
как именно:

о - 2 - 4 - 1 3 - 22 - 3 3 - 49 - 58 - 5 0 - 34 - 1 6 - 1 0 -

1 9 - 27 - 3 5 - 4 2 - 53 - 7 3 - 8 1 - 7 9 - 7 7 - 7 5 - 6 4 - 4 4 -

3 8 - 47 - 5 5 - 6 5 - 7 4 - 7 6 - 7 8 - 8 0 - 7 2 - 6 2

Поиск в ширину дает кратчайший путь проезда через город:
о - 2 0 2 2 3 3 4 9 5 8 5 0 3 4 1 6 1 0 1 9 - 2 7 -

3 5 4 2 5 3 - 7 3 - 81 - 7 9 - 7 7 - 7 5 - 64 - 4 4 - 3 8 - 4 7 -

5 5 - 6 5 - 7 4 - 7 6 - 7 8 - 8 0 - 7 2 - 62

Графы 121

Как видите, этот путь немного короче пути, найденного поиском в
глубину. Убедитесь сами, что пути вполне корректны, т.е. согласуются
с расставленными в городе знаками дорожного движения.

Топологическая сортировка
С поиском в глубину тесно связана так называемая топологиче­

ская сортировка. Топологическая сортировка ориентированного аци­
клического графа представляет собой такое линейное упорядочение
всех его вершин, что если граф G содержит ребро (и, v) , то и распола­
гается до v (очевидно, что, если граф не является ацикличным, такая
сортировка невозможна). Топологическую сортировку графа можно
рассматривать как такое упорядочение его вершин вдоль горизон­
тальной линии, что все ребра направлены слева направо.

Алгоритм поиска в глубину позволяет легко и просто выполнить
топологическую сортировку - достаточно выполнить поиск в глу­
бину. Всякий раз при завершении работы над очередной вершиной
ее надо внести в начало результирующего списка, т.е. в алгоритме
DFSVisit за последней строкой следует добавить строку «внести вер­
шину и в начало связанного списка�- (вместо связанного списка мож­
но воспользоваться стеком) . • Вот топологическая сортировка в действии. Пред ставим

контору с чиновниками, пронумерованными от О до 6,
причем чиновник О не выдаст справку без справки от
чиновника 1, 1 - без справок от 2 и 5, 2 - от 5, 3 - от О,
2 и 6, и 6 - без справки от 4. В каком порядке следует
обходить чиновников?

Приведенный ниже листинг дает ответ на этот вопрос. (Определение
класса matrix, идентичное уже рассматривавшемуся, опущено. Вы­
деленный курсивом код поясняется немного позже.)
struct {

int f , t ;

connect i ons []

{ 0 , 3 } , { 1 , 0 } , { 2 , 1 } ,

{ 2 , 3 } ' { 5 , 1 } ' { 5 , 2 } '

{ 4 , 6 } , { 6 , 3 } ,

{ - 1 , - 1 } / / Ограничитель

122

} ;

s t ruct node

} ;

int color ;

int d , f ;

int р ;

int t irne r ;

bool hasCycl e;

Глава 3

voi d DFSVi s i t (int i , vector<node>&V , rna trix<bool>&E ,
st ack< int>&Q)

V [i] . color = 1 ; 1 1 GRAY

V (i] . d = + + t irner ;

for (int j = О ; j < V . s i ze () ; + + j) {

i f (E [i] [j] && (V [j] . col or = = 1)) 11 GRAY

hasCycl e = tru e ;
i f (E [i] [j] && (V [j] . color 0))

V [j] . р = i ;

DFSVi s i t (j , V , E , Q) ;

V [i] . color = 2 ;

Q . push (i) ;

V [i] . f = + + t irne r ;

void DFS (vec tor<node>&V , rnatrix<bool>&E ,

st ack<int >&Q)

for (int i � О ;

V [i] . color

V [i) . р

i < V . s i ze () ; + + i)

О ; 1 1 WHITE

t irner = О ;

hasCycl e = fa l se ;

- 1 ;

Графы

f or (i nt i = О ; i < V . s i z e () ; + + i)

i f (V [i] . co l or = = О) DFSVi s i t (i , V , E , Q) ;

int main ()

mat r i x<bool > Е (7 , 7) ;

vector<node > V (7) ;

f or (i n t i = О ; connect ions [i] . f >= О ; + + i)

123

E [coпnec t i ons [i] . f] [conne c t i ons [i] . t] = t rue ;

stack<int> Q ;

DFS (V , E , Q) ;

whi l e (! Q . empty ())

cout << setw (4) << Q . t op () ;

Q . pop () ;

cout << end l ;

Программа выдает список чиновников в топологически отсорти­
рованном порядке (одном из возможных - в общем случае тополо­
гически отсортированная последовательность - не единственная):
5 4 6 2 1 о 3.

Проверить, ациклический граф или нет, можно при помощи
того же поиска в глубину. Если при рассмотрении очередного ребра
(u,v) графа вершина v имеет серый цвет, то это ребро, соединяющее
вершину и с ее предком i1 в дереве поиска в глубину, а значит, граф
имеет цикл. Чтобы убедиться, что ребро (u,v) соединяет вершину и
с ее предком v, заметим, что серые вершины всегда образуют линей­
ную цепочку потомков, соответствующую стеку активных вызовов
процедуры DFSVisit: количество серых вершин на единицу больше
глубины последней открытой вершины в дереве поиска в глубину.
Исследование всегда начинается с самой глубокой серой вершины,
так что ребро, которое достигает другой серой вершины, достигает
предка исходной вершины. Таким образом, если внести в код измене­
ния, показанные в листинге курсивом, то мы будем знать, ацикличен
ли граф (переменная hasCycle равна false), и если это не так, то ре­
зультат топологической сортировки некорректен (данная процедура
лишена смысла).

124 Глава 3

Кратчайшие пути
Из всего множества алгоритмов для работы с графами мы рас­

смотрим еще только два - для решения задачи о кратчайшем пути из
одной вершины и для поиска кратчайших путей между всеми парами
вершин. В силу ограниченности объема книги и сложнпсти алгорит­
мов их детальное описание не приводится; заинтересованный чита­
тель может прочесть об этих и многих других алгоритмах для работы
с графами, не рассматривавшихся в этой книге, в [12).

Кратчайшие пути из одной вершины
В задаче о кратчайшем пути из одной вершины дан взвешенный

ориентированный граф G = (V,E) с весовой функцией, которая сопо­
ставляет каждому ребру графа некоторый вес, представляющий собой
действительное число. Вес пути представляет собой сумму весов вхо­
дящих в этот путь ребер. Вес кратчайшего пути из одной вершины в
другую определяется как минимальное значение веса пути среди всех
возможных путей, соединяющих эти две вершины; если такого пути
не существует, считаем, что вес кратчайшего пути равен бесконечно­
сти. Требуется определить кратчайшие пути из исходной вершины s
во все остальные вершины графа.

Эта задача решается алгоритмом Беллмана-Форда. псевдокод
которого приведен ниже. Алгоритм универсален в том смысле, что
в состоянии работать с отрицательными весами ребер (что не могут
делать некоторые другие алгоритмы для решения данной задачи) и
определяет, разрешима ли данная задача (нет ли в графе цикла с от­
рицательным весом, достижимого из исходной вершины). Очевидно,
что при наличии цикла с отрицательным весом, достижимого из ис­
ходной вершины, задача неразрешима, так как «накручивание� пути
по этому циклу позволяет достичь значения, которое меньше любого
наперед заданного.
Алгоритм Bel lmanFord (G , w, s)

1 1 Входиые данные : граф G , весовая функция w

1 1 и исходная вершина s

/ ! Вшсрдные данные : веса кратчайших путей к вершинам

/ / графа и з исходной вершины , и

1 1

1 1

логичес кое значение , указывающее ,

есть ли в графе цикл с

Графы 125

1 1 отрицательным весом , достижимый

1 1 из исходной вершины

for каждой вершины VE V do

begin

end

d [v] оо
p [v] О

d [s] = О

for i = 1 to 1 V I - 1 do

for каждого ребра (и , v) Е Е do

begin

end

i f d [v] > d [и] + w (и , v) then

begin

d [v] d [u] + w (u , v)
p [v] = и

end

for каждого ребра (и , v) Е Е do

if d [v] > d [u] + w (u , v) then return falвe

return true

Время работы алгоритма Беллмана-Форда - O(VE) при исполь­
зовании представления графа в виде списков смежности.

При реализации этого алгоритма, пожалуй, самым неприятным
оказывается вопрос бесконечного значения. Есть два наиболее про­
стых варианта его решения - либо использовать дополнительное
поле, указывающее, что значение переменной равно оо, либо в качестве
такового значения принять некоторое заведомо недостижимое значе­
ние. В приведенной ниже программе использован второй метод. • В качестве конкретного примера мы воспользуемся гра­

фом, показанным на рис. 3.4.
П рогра:.1ма использует представление графа с помощью
матрицы смежности. Матрица весов в программе одно­
временно служит и матрицей смежности - если значе­

ние веса превышает значение «бесконечности>->, значит, данное ребро
отсутствует.

126 Глава 3

Рис. 3.4. При.мер ориентирован�юго графа для поиска кратчайших путей

s t ruct {

} ;

i nt f , t ;

douЬl e w ;

conne c t i ons []

{ 0 , 1 , 3 } , { 1 , 2 , 2 } , { 2 , 1 , - 1 } ,

{ 0 , 5 , 2 } , { 1 , 5 , 3 } , { 5 , 2 , 1 } ,

{ 5 , 4 , 4 } , { 4 , 1 , - 1 } , { 4 , 3 , 2 } ,

{ 2 , 3 , - 1 } ,

{ - 1 , - 1 , - 1 }

s t ruct node

} ;

douЫe d ;

int р ;

const. douЫ e inf = l e3 0 0 ; 1 1 " Бесконечность"

bool Bel lrnanFord (vector<node>&V ,

rnat rix<douЬl e >&w , int s)

for (int i = О ; i < V . s i z e () ; + + i) {
V [i] . d = inf ;

Графы

V [i] . р = - 1 ;

V [s] . d = О ;
for (int i = О ; i < V . s i z e () - 1 ; + + i) {

for (i nt и = О ; и < V . s i ze () ; + + u)

for (int v = О ; v < V . s i ze () ; + + v)

i f (w [u J [v] < inf) { / / Ребро

douЫ е х = V [и] . d + w [и] [v] ;

i f (V [v] . d > х) {
V [v] . d

V [v] . р

х · '
u ;

for (int и = О ; и < V . s i ze () ; + + u)

for (i nt v = О ; v < V . s i ze () ; + + v)

i f (w [u] [v] < i n f) {

return true ;

i f (V [v] . d > V [u] . d + w [u] [v])

return f a l s e ;

void print Path (vect or<node>&V, int s)

i f (V [s) . р >= 0) {

print Path (V , V [s] . р) ;

cout << 11 ,, ;

cout << s ;

int rnain ()

vector<node> V (б) ;

rnat r ix<douЬl e > W (б , 6) ;

for (int i = О ; i < w . rows () ; + + i)

127

128

for (i nt j = О ; j < W . c o 1 s () ; + + j)

W [i] [j] = 2 * i n f ;
for (int i = О ; connect i ons [i] . f > = О ; + + i)

w [connec t i ons [i] . f] [connect ions [i] . t]

connec t i on s [i] . w ;

bool res = Be1 1manFord (V , W , 0) ;

cou t < < (res ?
" Циклов с отрицательным весом нет "

Глава 3

" Есть цикл с отрицательным весом ") < < endl ;

i f (res)

for (int i = 1 ; i < V . s i z e () ; + + i)

cout < < " Вершина " < < i
< < • : расстояние "

< < v [i] . d < < " ' путь " ;

printPath (V , i) ;

cout < < endl ;

Здесь используется представление графа с помощью матрицы
смежности, но нет никаких проблем переписать ее для представления
графа в виде списков смежности:
s t ruc t {

} ;

int f , t ;

douЫ e w ;
connec t ions []

{ 0 , 1 , 3 } , { 1 , 2 , 2 } , { 2 , 1 , - 1 } ,

{ 0 , 5 , 2 } , { 1 , 5 , 3 } , { 5 , 2 , 1 } ,

{ 5 , 4 , 4 } , { 4 , 1 , - 1 } , { 4 , 3 , 2 } ,

{ 2 , 3 , - 1 } ,

{ - 1 , - 1 , - 1 }

s t ru c t edge

{
// Ребро

i n t v; // Вершина , в которую оно входит

Графы

dоиЫ е w; 11 Вес ребра

} ;

struct node

} ;

douЫe d ;

int р ;

vec t or<edge> adj ;

const douЫ e i n f = l еЗ О О ;

bool Bel lmanFord (vec tor<node>&V, i n t s }

{

for (int i = О ; i < V . s i z e () ; + + i)

V [i] . d inf ;

V [i] . р - 1 ;

V [s] . d О ;

for (i nt i = О ; i < V . s i ze () - 1 ; + + i)

{

for (i nt u = О ; u < V . s i ze () ; + + u)

129

for (int i О ; i < V[u] . adj . s i ze () ; ++i)

{

for (int u

for (in t

{

i n t v = V[u] . adj [i] . v;

douЬl e х = V [u] . d + V [u] . adj [i] . w ;

i f (V [v] . d > х)

V [v] . d

V [v] . р

х ;

u · '

О ; u < V . s i z e () ; ++u)

i О ; i < V[u] . adj . s i ze () ; ++i)

i n t v = V[u] . adj [i] . v;

i f (V [v] . d > V [u] . d + V [u] . adj [i] . w)

130 Глава 3

return f a l se ;

return t rue ;

void printPath (vec tor<node >&V , i n t s)

i f (V [s] . р >"' О)

print Path (V , V [s] . р) ;

cou t << /1 - 11 ;

cout << s ;

int ma in ()

vec t or<node> V (б) ;

for (int i = О ; connec t i ons [i] . f > "' О ; + +i)

{

}

edge е ;

e . v = connect i ons [i] . t ;

e . w = connec t i ons [i] . w;

V[connec t i ons [i] . f] . adj . push_back (e) ;

bool res = Be l lmanFord (V , 0) ;

cout << (res ?

" Циклов с отрицательным весом нет "

" Есть цикл с отрицательным весом ") << endl ;

i f (res)

for (int i

{
1 ; i < V . s i z e () ; + + i)

cout << " Вершина • << i

<< " : рас с тояние " << V [i] . d

<< 11 1 путь // ;
printPath (V , i) ;

cout << endl ;

Графы 131

Курсивом показаны внесенные в программу изменения. Как ви­
дите, их не так уж много. Мы отказались от матрицы, так что вме­
сто инициализации матрицы выполняется инициализация списков
смежности (цля создания которых введена новая структура edge), и в
функции BellmanFord () , в которую теперь передается на один пара­
метр меньше, внутренний цикл проходит не по всем вершинам в по­
исках существующих ребер, а только по реально имеющимся ребрам
из списка смежности. Естественно, этот вариант программы работает
быстрее. Первая программа приведена в учебных целях, чтобы еще
раз продемонстрировать, что работать можно с любым представлени­
ем матрицы (хотя и с разной эффективностью).

При запуске любой из приведенных программ получается совер-
шенно корректный ответ.
Циклов с отрицательным весом нет

Вершина 1 : расстояние 2 , путь о - 5 - 2 - 1

Вершина 2 : расстояние 3 , путь о - 5 - 2
Вершина 3 : расстояние 2 , путь о - 5 - 2 - 3

Вершина 4 : расстояние 6 , путь о - 5 - 4

Вершина 5 : расстояние 2 , путь о - 5

Кратчайшие пути между всеми парами вершин
Вторая задача - задача поиска кратчайших путей между всеми

парами вершин графа. Такая задача возникает, например, при состав­
лении таблицы расстояний между городами, нанесенными на атлас
автомобильных дорог.

Как и в предыдущей задаче, дан взвешенный ориентированный
граф G = (V,E) с весовой функцией, которая сопоставляет с каждым
ребром графа некоторый вес, представляющий собой действительное
число. Очевидно, что один из способов решения данной задачи - при­
менение к каждой вершине графа алгоритма для поиска кратчайших
путей из одной вершины, например, алгоритма Беллмана-Форда.

Однако для решения поставленной задачи имеются и специализи­
рованные, более эффективные алгоритмы. Здесь мы рассмотрим один
из таких алгоритмов - алгоритм Флойда-Воршалла.

В этом алгоритме используется представление графа в виде ма­
трицы. Предполагается, что вершины пронумерованы как 1, 2, . . . , jVj ,
и в роли входных данных выступает матрица W размером пхп,

132 Глава 3

представляющая веса ребер ориентированного графа G = (V,E) с п
вершинами. Другими словами, W = (wiJ), где

{О, wij = вес ориентированного peбpa(i ,j),
ею,

если i = j,
если i * j и (i ,j)E Е,
если i * j и (i ,j)� E.

Чтобы решить задачу о поиске кратчайших путей между всеми пара­
ми вершин со входной матрицей смежности, необходимо вычислить
не только веса кратчайших путей, но и матрицу предшествования
Р = (Pij) , где величина Ри имеет ну левое значение, если i = j или путь
из вершины i в вершину j отсутствует; в противном случае pij - пред­
шественник вершиныj на некотором кратчайшем пути из вершины i.
Приведенная далее процедура, представляющая собой модифициро­
ванную версию рассматривавшейся ранее процедуры PrintPath, выво­
дит кратчайший путь из вершины i в вершину j.
Pri n t Pa th (P, i , j)

if i = j then print i

else if Pj ; = О then print " Не существует пути из " i

'' в JI J.
else begin

Pri n t Path (P , i , pj)
print j

end

Алгоритм Флойда-Воршалла основан на применении динамиче­
ского программирования, о котором вкратце рассказывается в главе 7,
«Дополнительные вопросы». Описание вывода и принципов работы
данного алгоритма выходит за рамки этой книги, так что ограничим­
ся только изложением самого алгоритма. Полное описание алгоритма
Флойда-Воршалла можно найти, например, в [12] . Алгоритм ите­
ративно строит матрицу кратчайших расстояний между вершинами
графа. Наличие ребер с отрицательным весом в графе допускается,
однако предполагается, что циклы с отрицательными весами в графе
отсутствуют.
Алгоритм Fl oydWarsha l l. (W)

1 / Входные данные : матрица W размером пхп весов

1 1 ребер ориентированного графа

1 1 без циклов с отрицательным весом

Графы

/ / выходные данные : матрица кратчайших расстояний

/ / между в ершинами и матрица

/ / предшествования

D10 1 = w / / Матрица кратчайших расстояний

/ / Инициализация матрицы предшествования

for i = 1 to п do f or j = 1 to п do

Ьegin

end

if i * j and W [i] [j] < щ

then Р 1 0 1 [i] [j] i ;
else Р 1 0 1 [i] [j] = О ;

/ / Итеративные вычисления матриц

/ / расстояний и предшествования

for k = 1 to п do

for i = 1 to п do

for j = 1 to п do

begin

end

D1 k l [i] [j]

min (D1 k- t i [i] [j] ,
D1k 1 1 [i J [k] + D' k - l l (k] [j])

if Dl k- J I (i] [j] > D (k- .) (i] L k] + D ' K ' 1 [k] [j]
then рш [i] [j] p1 k - 1 1 [k] [j]
else p1k 1 [i J [J'] = pi k- 1 1 (i] [j J

return 0 1п 1 ' р 1п 1

133

Из структуры алгоритма очевидно, что его временная эффектив­
ность равна e(V3) .

ii
При реализации данного алгоритма незачем хранить все
промежуточные матрицы. Можно обойтись лишь двумя
матрицами, поочередно строя одн� на основании д�угой.
Это касается как матриц кратчаиших расстоянии, так
и матрицы предшествования. В качестве конкретного

примера применения алгоритма Флойда-Воршалла воспользуемся
им для вычисления кратчайших путей между вершинами графа, по­
казанного на рис. 3.4. Поскольку начало нрограммы в точности такое
же, как и в реализации алгоритма Беллмана--Форда, приведем здесь
только исходный текст измененных функций.

134 Глава 3

vo id F loydWarshal l (ma t r ix<douЬ l e>&W ,

mat r i x< douЬle>&Dre t ,

mat r i x< in t > & Pret)

vo i d

i n t n = w . rows () ;

mat rix<douЫ e> D [2] ;

D [O] = W ; D [l] = W ;

matrix< int > Р [2] ;

Р [О] = mat rix< int> (W . rows () , W . rows ()) ;

for (int i = О ; i < n ; + + i)

for (int j = О ; j < n ; + + j)

р [0] [i] [j]

P [l] = Р [О] ;

int no = 1 ;

((i ! = j) & &

(W (i] [j] < in f)) ? i - 1 ;

for (int k = О ; k < n ; + +k) {
for (int i = О ; i < n ; + + i)

for (int j = О ; j < n ; + + j)

douЫ e х =
D [l -no] [i] [k] + D [l -no] [k] [j] ;

D [no] [i] [j] = min (D [l -no] (i] [j] , х) ;

P [no] [i] [j] = (D [l -no] [i] [j] >x) ?

Dret

Pret

P [l -no] [k] [j] : P [l -no] [i] [j] ;

no = 1 - no ; / / Переключаемся на другие

/ / матрицы D и Р

D [l -no] ;

P [l -no] ;

print Path (ma t r ix<int > & P , int i ' int j)

i f i - - j) cout << setw (4) << i i
e l s e i f (р [i] [j] - - - 1) cout << " Нет пути из "

<< i << " в " << j ;

Графы

e l s e

p1·int Path (P , i , P [i] [j]) ;

cout << s e tw (4) < < j ;

int ma iп ()

mat r i x<douЬle> W (б , 6) ;

1 1 Инициализация матрицы в е с о в
for (i пt i = О ; i < w . rows () ; + + i)

for (int j = О ; j < W . c o l s () ; + + j)

W [i] [j] = 2 * inf ;

for (int i = О ; conne c t i ons [i] . f >= О ; + + i)

W [connect ions [i] . f] [connect ions [i] . t]

coппect ions [i] . w ;

mat rix<douЬ l e > D ;

mat r i x< int> Р ;

F l oydWarshal l (W , D , P) ;

for (int i = О ; i < D . rows () ; + + i)

for (int j = О ; j < D . co l s () ; + + j)

cout << " D (" < < i << " , " << j < < ") : " ;

i f (D [i] [j] > = i n f) cout < < " - " ;

e l s e cout << s e tw (4) << D [i] [j] ;

cout << " Путь : " ;

priпt Path (P , i , j) ;

cout << endl ;

135

Убедитесь самостоятельно, что алгоритм корректно вычисляет
кратчайшие пути между вершинами графа (здесь приведена только
часть таких путей).
D (0 , 0) : Путь : о

D (0 , 1) : 2 Путь : о 5 2 1

D (0 , 2) : 3 Путь : о 5 2

D (О , 3) : 2 Путь : о 5 2 3

136 Глава 3

D (0 , 4) : 6 Путь : о 5 4

D (0 , 5) : 2 Путь : о 5

D (1 , 0) : Путь : Нет пути И З 1 в о
D (l , 1) : 1 Путь : 1

D (1 , 2) : 2 Путь : 1 2

D (1 , 3) : 1 Путь : 1 2 3

D (1 , 4) : 7 Путь : 1 5 4

D (1 , 5) : 3 Путь : 1 5

D (2 , 0) : Путь : Нет пути из 2 в о
D (2 , 1) : - 1 Путь : 2 1

D (2 , 2) : 1 Путь : 2

D (2 , 3) : - 1 Путь : 2 3

D (2 , 4) : 6 Путь : 2 1 5 4

D (2 , 5) : 2 Путь : 2 1 5

D (З , 0) : Путь : · Нет пути из 3 в о
D (З , 1) : Путь : Нет пути из 3 в 1

rлава 4

Численные методы

С проникновением компьютеров в деловую и повседневную
жизнь, когда им в основном приходится иметь дело с хранением и по­
лучением информации, относительная важность численных методов
становится все меньше. Однако их приложения, усиленные мощью
современных компьютеров, продолжают распространяться во всех
областях фундаментальных исследований и технологий, так что здесь
мы познакомимся хотя бы с несколькими базовыми численными ме­
тодами, которые в полной мере могут рассматриваться как компью­
терные алгоритмы.

К сожалению, объем книги не позволяет подойти всерьез к этой
незаслуженно заброшенной в последнее время теме и дать ее в более­
менее полном объеме, с раскрытием таких подтем, как устойчивость,
погрешность и т.п. Поэтому здесь мы рассмотрим только некото­
рые базовые алгоритмы - решения нелинейных уравнений с одной
переменной, численного интегрирования и дифференцирования,
решения обыкновенных дифференциальных уравнений и некото­
рые другие. Там, где указываются какие-то дополнительные особен­
ности тех или иных формул или алгоритмов, например погрешности
вычислений, - это делается без вывода соответствующих формул.
Заинтересованному читателю можно только посоветовать обратиться
к соответствующей математической литературе.

В силу специфики численных методов здесь будут в основном
приведены их описания, а псевдокоды алгоритмов и реализации на
С++ будут встречаться в этой главе реже, чем в других.

Вычисление значений полиномов
и интерполяция фун кций

Невозможно рассказывать о численных методах и не упомянуть
наиболее известный и наверняка один из самых красивых численных
алгоритмов - схему Горнера для вычисления значений полиномов.
Вычисление значения полинома Р" (х) = а0 + а1х + а2х

2 + · · · + апх" в

138 Глава 4

некоторой точке х0 «в лоб» требует около п (п + 1)/2 умножений. В
то же время стоит переписать выражение для этого полинома в виде
Р. (х)= а0 + х(а1 + х(а2 + · · · + х(ап-� + ха" } · ·)), как становится очевид­
ным, что для вычисления значения данного полинома в некоторой
точке требуется всего п умножений.

Естественным образом возникают два усовершенствования схе­
мы Горнера для частных случаев четных и нечетных функций. Если
функция четная, то п = 2k , и в полиноме присутствуют только четные
степени х; в таком случае алгоритм вычисления естественным обра­
зом вытекает из записи полинома как

P2k (х)= ао + х2 �2 + х2 (а4 + . . . + х2 (a2k-2 + x2a2k) · -)).
В случае, если полином является нечетной функцией (п = 2k + 1),

то для вычислений его следует привести к виду

P2k+1 (х)= Х�1 +х2 �:i + х2 (as + " . + х2 (a2k-1 + x2a2k+1) ")))
В силу тривиальности алгоритма ни его псевдокод, ни реализация

на С++ не приводятся и остаются читателю в качестве небольшого
упражнения.

Интерполяция функций
Задача интерполяции функции заключается в определении зна­

чения функции в некоторой произвольной точке х, если извест­
ны значения этой функции в п + 1 различных точках f, = / (Х;) ,
i = О, 1" . " п (например, найденные экспериментально или получен­
ные в результате сложных вычислений).

Зачастую для решения этой задачи строится полином п-й степени,
который принимает в точках Х; заданные значения, т.е. L" (х,)= f, ,
i = О, 1" . . , п . После этого значение функции в произвольной точке х
вычисляется как L" (х) . Такой полином существует, причем он явля­
ется единственным и определяется как

L" (x)= f Рп; (х)/, ,
r=O

Численные методы 139

Такой интерполяционный полином носит имя интерполяционно­
го полинома Лагранжа. Его максимальную погрешность на отрезке [а,Ь] можно оценить следующим образом:

м max jf(x)- Lп (x� ::; -
(

n•1) maxjroп (x11 ,
�� п + 1 ! �� �

где мп+1 = max l/"+1> (x� - максимальное значение (п + 1) -й произво-
[а,IJ] �

дной функции на этом отрезке, а ro11 (х) = (х - х0)(х - х1 } · · (х - х11) .
Частным случаем полинома Лагранжа является линейная интер­

поляция, которая вычисляет значение функции на основании двух
известных точек, интерполируя ее линейной функцией:

f(x)= J; -fo (х - х0)+ fo .
Х1 - Хо

Геометрически линейная интерполяция означает замену графика
функции на отрезке [х0 ,х1] хордой, соединяющей точки (x0 ,fo) и (xPJ;) (рис. 4. 1).

у

х, х х , х

Рис. 4. 1. Геометрический смысл лшtейной интерполяции

Согласно приведенной ранее формуле максимальная погрешность
линейной интерполяции на отрезке [х1рх1] не превышает значения
(х1 -хо У max jf" (x11 .

8 [х" ,х,] �
О других методах интерполяции функций (в частности, полино­

мах Чебышева, сплайнах и др.) и связанных с ними вопросах можно
узнать из [5, 17] . Здесь же мы ограничились полиномом Лагранжа,
поскольку он является основой для изложения материала раздела о
численном дифференцировании и интегрировании.

140

Числен ное дифференцирование
и интегрирование

Глава 4

С вопросами интерполяции функций тесно связаны вопросы чис­
ленного дифференцирования и интегрирования. Задача численною
дифференцирования заключается в поиске значений производной
функции в некоторой произвольной точке х, если известны значе­
ния этой функции в п + 1 различных точках /; = f(x.) , i = 0, 1," . , n ,
а задача численного интегрирования - в поиске значения интеграла [' f(x)dx . Здесь мы везде полагаем, что все рассматриваемые про­
иЗводные существуют и непрерывны в рассматриваемых диапазонах
области определения.

Обычно применяемые методы численного дифференцирования и
интегрирования строятся на использовании полинома Лагранжа, т.е.
мы используем его в качестве функции, для которой и ищем произ­
водную или интеграл. Как правило, в учебниках вопросы численного
дифференцирования и интегрирования рассматриваются по отдель­
ности. Здесь же мы пойдем иным путем - рассмотрим несколько пер­
вых полиномов Лагранжа и получим на их основе формулы числен­
ного интегрирования и дифференцирования.

Итак, начнем с полинома Лагранжа первой степени. В этом случае
он представляет собой, как уже говорилось, линейную функцию

f(x)= fi -fo (х - х0)+ J;1 • Х1 - Хо
Дифференцируя ее, мы получим, что f' (х) = fi - fo для всех то-

Х1 -Хо
чек отрезка. Это значение и есть приближенное значение первой про­
изводной; естественно, что в таком случае значение второй и высших
производных - нулевые. Для произвольной точки х исходного диа­
пазона [х0 ,х"] производная вычисляется следующим образом: нахо­
дятся две соседние с х точки такие, что Х; � х � х,+ 1 , и значение произ­
водной в точке х считается равным (/;+1 -/;)/(х"1 -х,) . Погрешность
такого приближения составляет (x,+ 1 - x,)f" (E,)/2 , где � - некоторая
точка отрезка У;+1 = У; + hy;+ 1 •

Интегрируя данную функцию, получаем [' f(x)dx = f,, + f, (х1 - х0), \11 2
т.е. широко известную формулу трапеций. Погрешность такого при-

Численные методы 141

ближения составляет k1/" (�)/12 , где � - некоторая точка отрещ<а
[х,. 1 .х,] . Для всего диапазона [х0,х"] значение интеграла вычисля-
ется как �L�:1;(J; + J,+1)(x;. 1 - x;) , или для равноотстоящих точек

(X;+i - х, = h), [/ (х)dx :о: h((fi1 + /.)/2 + L:;0-11 f,). а погрешность бу­
дет пропорциональна квадрату шага.

Заметим, что и дифференцирование, и интегрирование оказыва­
ются тем точнее, чем меньше величина шага вычислений - расстоя­
ния между соседними точками. Но здесь есть одно принципиальное
отличие: в случае численного дифференцирования значение шага ока­
зывается в знаменателе дроби, в числителе которой - разность двух
близких значений. Пусть погрешность каждого из значений (связан­
ная с неточностью измерений, метода вычисления или представления
числа с плавающей точкой в компьютере) не превышает некоторого
значения о. Тогда погрешность вычисления числителя не превыша­
ет 28/ h , т.е. при малых значениях h погрешность метода оказывается
существенно меньше погрешности округлений. Оптимальным оказы­
вается шаг, при котором величина погрешности метода равна погреш­
ности округления.

Замечание о неточности, присущей численному дифференци­
рованию, в еще большей степени относится к вычислению произ­
водных более высоких порядков. Это соображение никогда нельзя
упускать из виду.

Теперь рассмотрим полином Лагранжа второй степени. Чтобы из­
бежать громоздких вычислений, будем считать, что мы имеем дело с
равноотстоящими точками (X;+i - Х; = h). (Вычисления для общего
случая не столько сложнее, сколько более громоздки.)

Полином в этом случае имеет вид

L, (х)= ((х - х1)(x -x2)fu - 2(х -х0)(х -х2)J; + (х-х0)(х-х1)J;)/2h2 •

Дифференцируя в точке х = х1 , мы получим, что /' (х1):о:
,., (J; - fi1)/2h , т.е. производную в средней точке отрезка можно пред­
ставить как отношение разности значений функции на концах отрезка
к его длине. Заметим, что для полинома второго порядка это точная
формула. Погрешность такого приближения составляет h'J"'(�)/6 ,
где � - некоторая точка отрезка [х,рх2] . Нетрудно получить формулы
и для производных на концах отрезка - например, производную в точ­
ке х0 можно приближенно вычислить как /' (х0) :о: (4 J; - 3 fi1 -/2)/2h .

142 Глава 4

Вторая производная в точке х = х1 равна f"(x1) :::о (!2 - 2f.. + fo)/h2 с
погрешностью порядка h2/') (�)/12 . Нетрудно сообразить, что тре­
тья и высшие производные при приближении функции полиномом
Лагранжа второго порядка равны О.

Интегрируя полином Лагранжа второго порядка, мы получаем
формулу J;,' f (х)dx = h(fo +4f.. + J;)/3 - формулу численного инте­
грирования Симпсона (ее можно записать и в ином, более привычном
виде r f (x)dx = (b- a)(r(a)+4/((а + Ь)/2)+ f (Ь)')/6). Для всего ди-
апазона [х0 ,х2"] (обратите внимание на индекс 2п, связанный с тем,
что формула вычисляет интеграл на двух базовых отрезках) формулу
Симпсона можно записать в виде

с· 1 (х)dx "" ((xz" -х\))/6п Х/о + hп + 2(!2 + !1 + · · · + !2п-2)+

+4(f.. + h + · · · + hп-1)) .

Погрешность формулы Симпсона можно оценить как

h1 (х" -x0)max j/1J(x �/2880 . [х0 . т"] �
На этом стоит остановиться, хотя, конечно же, можно использо­

вать для вывода формул численного дифференцирования и интегри­
рования и полиномы Лагранжа более высоких степеней. Понимая,
откуда и как выводятся эти формулы, вы сможете при необходимости
вывести их самостоятельно. tii Ниже приведена простейшая реализация вычисления

определенного интеграла по формуле Симпсона с за­
данной точностью. Для этого интеграл вычисляется с
заданным и удвоенным шагом, и полученные значения
сравниваются. Если их значения отличаются больше,

чем указывает параметр точности, шаг уменьшается в 4 раза, и вычис­
ления повторяются; если меньше - выводится вычисленное значение
интеграла.

Заметим также, что использование функтора решает проблему с
возможной передачей параметров подынтегральной функции.
t emp l a t e< typename DouЫ e , typename Func t or>

DouЫ e S impson (DouЫ e а , DouЫe Ь ,

Functor f , DouЫ e eps)

Численные методы

eps * = eps ;

int N = 4 ;

DouЫe surnl , surn2 , h ;

for { ; ;)
{

h = { b - a) / { 2 *N } ;

surnl = surn2 = (f (a) + f (Ь }) / 2 ;

int idx l = 1 , idx2 = 1 ;

DouЬ l e х = а + h ;

DouЫe f s ave ;

for (int i = 1 ; i < 2 *N ; + + i }

{

surn2 + = (f save

i f (i % 2 == о)

f (х)) * (idx2

143

3 - idx2) ;

surnl + = f save * (idx l 3 - idxl) ;

х + = h ;

} .

х (surn2 - 2 * surnl) / surn2 ;

i f (х*х < eps) return surn2 *h* 2 / 3 ; else N * = 4 ;

С другими методами численного дифференцирования и интегри­
рования можно познакомиться в соответствующей литературе, на­
пример [5, 13,17).

Решение нелинейных уравнений
Задача решения нелинейного уравнения состоит в поиске для за­

данной функции действительного переменного f (х) значений кор­
ней уравнения f (х) = О . Обычно данная задача решается в два этапа.
Сначала изучается расположение корней и выполняется их выделе­
ние - т.е. определяются отрезки области определения функции, со­
держащие ровно один корень, а на втором этапе на основе получен­
ного начального приближения строится итерационный процесс, по­
зволяющий уточнить значение искомого корпя.

144 Глава 4

Каких-либо общих регулярных приемов решения задачи о рас­
положении корней произвольной функции f (х) не существует. Этот
вопрос мы не будем рассматривать, считая, что действительные корни
уже выделены, т.е. мы знаем, что на отрезке [а,Ь] (на котором функ­
ция как минимум непрерывна, а для некоторых методов имеет также
непрерывную производную) имеется один корень (если их несколь­
ко, то, разбивая отрезок на более мелкие, можно выделить все корни и
указать отрезки, в которых содержится по одному корню).

Основной метод решения уравнения при заданных условиях -
метод бисекции (деления пополам). Предположим, что в интервале
(а,Ь) (мы говорим об интервале, чтобы исключить наличие корня на
конце отрезка) имеется один корень уравнения f(x)= O . Очевидно,
что тогда значения f (а) и f (Ь) имеют разные знаки. Пусть для
определенности f(a)< O , f(b)> O . Вычислим середину интервала
х0 = (а +Ь)/2 и f (х0) . Если найденное значение отрицательно, то ис­
комый корень находится в интервале (х0 ,Ь) , а если положительно -
то в интервале (а,х0) . Выберем нужный нам интервал и повторим
описанную процедуру. На каждом шаге длина интервала оказывается
в два раза меньше предыдущего. Когда длина очередного полученно­
го интервала окажется менее наперед заданной точности вычисления
корня, процесс поиска прекращается.

!li
Реализация такого алгоритма совершенно тривиальна
(приведена ниже). Главным преимуществом данного
алгоритма является его предсказуемость. Поскольку на
каждом шаге длина отрезка уменьшается вдвое, для до­
стижения заданной точности требуется r log2 ((а - Ь)/е)l
итераций, где е - требуемая точность вычисления.

t ernplate< typenarne DонЫ е , typenarne Funct or>

DouЫe BiSect ion (DouЫ e а , DонЫ е Ь ,

DouЫe eps , Func t or f)

i f (а > Ь) swap (a , b) ;

DouЫ e f a = f (а) , fb = f (Ь) ;

assert (fa * fb < О) ;

DouЫ e х = (а + Ь) / 2 ;

for (; Ь - а > eps ; х = (а + Ь) / 2)

{

DouЫe fx = f (x) ;

Численные методы

i f (fx * f a < 0)

e l se

Ь = х ;

а х ;
fa f x ;

return х ;

145

Более быстрой сходимостью - квадратичной - обладает метод
Ньютона. Квадратичная сходимость означает, что если на k-й итерации
было получено приближение xk точного корня х' , то погрешность

на следующей итерации можно записать как \xk+t - х' \ = O«xk - х')2).
Суть самого метода Ньютона в том, что в окрестности точки при­
ближенного решения функция заменяется первыми членами ряда
Тейлора, т.е. f (х),.,, f (х0)+ (х -х0)f' (х0) . Отсюда мы находим оче­
редное приближение корня

f(xk) xk+1 = xk - f' (xk) .

Геометрический смысл метода Ньютона показан на рис. 4.2: точка
xk+t - это точка пересечения с осью абсцисс касательной к графику
функции f(x) , проведенной в точке (xk,f(xk)) . Именно поэтому
второе название данного метода - метод касательных.

Недостатком данного метода является то, что такая быстрая ква­
дратичная сходимость метода гарантируется только при очень хоро­
ших, близких к точному решению начальных приближениях. Если
начальное приближение выбрано неудачно, то метод может сходить­
ся медленно либо вообще расходиться. Кроме того, в данном методе
помимо вычисления значения функции требуется также вычисление
значения производной, что не всегда возможно либо может быть вы­
числительно сложной задачей.

В этом случае можно воспользоваться модифицированным мето­
дом Ньютона, в котором производная вычисляется только в одной

146 Глава 4

точке: xk+i = xk - (! (xk)/ f' (х0)). Такой метод предъявляет меньшие
требования к выбору начального приближения х0 , однако обладает
всего лишь линейной сходимостью.

у

;xk+1xk
х

!

Рис. 4.2. Метод Ньютона решепия 11ели11ей11ого уравнения

Если вместо вычисления производной воспользоваться ее при�
ближенным значением (f(xk)- f(xk_1))/(xk - xн) , то мы получим
метод секущих:

_ (xk -хн) () xk+1 - Xk - (f(xk)-f(xk-1))
f xk

.
Геометрическая интерпретация метода секущих состоит в следу­

ющем: через точки (xн.f(xk_1)) и (xk ,f(xk)) проводится прямая, и
точка пересечения этой прямой с осью абсцисс является новым при­
ближением xk+t .

Этими методами мы и ограничимся в нашем рассмотрении реше­
ния нелинейных уравнений с одним неизвестным. К сожалению, опи­
санные методы непосредственно не применимы для решения систем
нелинейных уравнений с несколькими неизвестными. В силу слож­
ности данной задачи здесь можно сделать лишь небольшое приме­
чание об одном частном методе, который позволяет при некоторых
условиях свести решение системы нелинейных уравнений к последо­
вательному решению нелинейных уравнений с одной неизвестной.

Итак, пусть J(x)= (J; (x),J2 (x),f. (x)) , х = (х1 ' х2 , • • • , х.) .
Система п уравнений f (х) = О эквивалентна одному уравнению
'Р (х)= 0 , где 'Р(х)= J;2 (x)+ Д (х)+ · · · + J;; (x) . Очевидно, что ре-

Численные методы 147

шениями уравнения 'Р(х)= О являются точки нулевых минимумов
функции 'Р (х) . Допустим, что эта функция дважды дифференцируе­
ма в области, содержащей изолированное решение х· , в окрестности
которого поверхности уровня функции 'Р имеют вид, показанный на
рис. 4.3.

Рис. 4.З. Метод градиентного спуска решепия систем нелинейных уравиений

Задавшись начальным приближением х0, мы ищем минимум
функции 'Р (х0 - Л. V''P (х0)) одной переменной Л., т.е. фактически при­
меняем один из рассмотренных выше способов решения нелинейных
уравнений с одной переменной для поиска минимального неотри-

цательного корня Л. = Л.0 уравнения :л. 'Р (х0 - Л. V''P (х0))= О . Затем

полагаем х1 = х0 - Л.0V''Р (х0), составляем аналогичное уравнение с
использованием х1 и находим очередное приближение, т.е. в общем
случае на каждой очередной итерации:

xk = xk-1 - Л.нУ''Р (хн), k = 1 , 2, ... ,

где Л.k_1 - минимальный неотрицательный корень уравнения

Главная неприятность заключается в том, что сходимость последова­
тельных приближений xk к решению уравнения не гарантируется,
поскольку можно попасть в точку относительного минимума.

Еще один метод поиска минимума функции 'Р (х) , а значит, и
решения исходной системы уравнений, состоит в поочередном вы­
боре каждого из компонентов вектора х и поиске такого его значе­
ния, которое минимизирует функцию 'Р (х) , т.е. решения уравнения

148 Глава 4

� '1' (х)= О , когда все значения х1 , j = 1 , 2, .. " i + 1 , . .. , п фиксирова­
dх;
ны. Поочередное решение п уравнений для i = 1 , ... , п дает очередное
приближение решения уравнения.

Решение обыкновен ных
дифференциальных уравнений
с начальными условия ми

За/щча численного решения обыкновенного дифференциального
уравнения с начальными условиями заключается в вычислении зна­
чений функции у, удовлетворяющей уравнению у' = / (х,у) с началь­
ным условием у(х0)= у0 , в точках Х; = х0 + ih , где h - некоторый шаг,
с которым вычисляются значения функции. В данной книге будут
рассмотрены только одношаговые методы типа Рунге--Кутта; с дру­
гими численными методами решения дифференциальных уравнений
вы можете ознакомиться в книгах [3, 5, 13, 17] .

Простейший численный метод очевиден - воспользоваться раз­
ложением функции у в ряд Тейлора в окрестности точки х0 :

_ ()
, (х1 - х0)2 " _ hif() h2 " У1 - Уо + Х1 - Хо Уо + 2 ! Уо + · · · - Уо + Хо,Уо +2!Уо +

Считая значение h достаточно малым и пренебрегая членами по­
рядка h2 и выше, получаем, что значение искомой функции в точке
х,+1 можно приближенно получить, зная значение функции в точке х1:

у" 1 = У; + hf (х; ,у,) . Данный метод носит нювание ломаной Эйлера и
имеет погрешность метода (вызванную заменой дифференциального
выражения конечным выражением) порядка h2 •

Очевидны два пути улучшения метода ломаной Эйлера. Первый
состоит в том, чтобы воспользоваться формулой для численно­
го дифференцирования по трем точкам (см. стр. 1 4 1), т.е. рас­
смотреть дополнительную точку посредине между точками х, и
х,+1 : .ч;+1;2 = (Ун� -у,)/h , откуда сразу же получаем У;+1 = У, +
+ hf(x + h/2 ,y/+112) . Для вычисления значения У;+ 1;2 можно восполь­
зоваться методом ломаной Эйлера, так что первое улучшение метода
ломаной Эйлера выглядит следующим образом:

.1/;+1 = У, + hf (х + h/2 ,y; + hf (х, , у,)/2).

Численные методы 149

Второе улучшение состоит в том, чтобы записать разло­
жение в ряд Тейлора не только для точки Х; , но и точки х;.1 : У, = Y;+i + + (Х; - X;+i)У;+1 + · · · , откуда мы сразу же получаем, что

У,+1 = У; + (х;+1 - Х;)У;+1 • Теперь можно для поиска у;+ 1 воспользовать­
ся методом ломаной Эйлера и усреднить полученный результат. Таким
образом, мы получаем второе улучшение метода ломаной Эйлера:

У;+ 1 = У; + (h/2)(/(x; .Y;)+ f (х; + h,y, + hf (х, ,у,))) .
Оба приведенных метода имеют погрешность порядка hз . Эти ме­

тоды являются частными случаями методов Рунге-Кутта, в которых
численное решение обыкновенного дифференциального уравнения
у' = f (х,у) получается по формуле Y;+i = у, + J(x; iY;) , где f(x, ,y;)
строится как весовое среднее значение функции f(x,y) в определен­
ным образом выбираемых точках так, что локальная ошибка метода
имеет более высокий порядок. Вывод других формул для более вы­
соких порядков погрешности здесь опущен, и в таблице ниже приво­
дится только конечный результат.

Знание порядка локальной ошибки не имеет практического зна­
чения для оценки фактической ошибки обрыва или округления,
поэтому для оценки ошибки и управления величиной шага обычно
применяется метод Рунге, который заключается в следующем. Пусть
ошибка метода имеет порядок k. Приближенное значение у(х) , вы­
численное в точке х с величиной шага l, обозначим как Y(x,l) . Тогда
в точке х = х0 + 2nh имеем

откуда

y(x)-Y(x,h),., A2nhk+i = A(x -x0)hk ,

y(x)-Y(x, 2h),., An(2h)k+I = A(x -x0)2khk ,

() (� h) Y(x,h)- Y(x, 2h) у х -У х , "' k , 2 - 1

т.е. ошибка при шаге h выражается через приближенные значения при
шагах h и 2h .

Методы Рунге-Кутта без труда переносятся на системы обыкно­
венных дифференциальных уравнений. Так, для системы уравнений

{y: = f(x,y,z)
z = g(x,y, z)

На
зв

ан
ие

По

ря
до

к
Ф

ор
му

ла

Вс
по

мо
га

те
ль

ны
е

ве
ли

чи
ны

1�

ош

иб
ки

М

ет
од

 л
ом

ан
ой

 Э
йл

ер
а

h2
J =

 f
(x
i'y

;)
Уrr

уч
ш

ен
на

я
ло

ма
на

я
hз

i =
k1+

k2
k, =

f(
x;•

Y;)

2
k 2
= f

 (х;
+h

,y;
 +h

k1)

л
(

h
h

J
f=

f
X;
+ 2_

•Y,
+ 2

k1
k1
=f

(x
;,y

,)

Ф
ор

му
ла

 Х
ой

не

h4
j =

 kl
+ 4

k 2 +
 kj

k 1 =
f(

xp
y;)

 k
2 =

f (
x,

+h
/2
, y;

+(
h /2

)k1
)

6
k3

= f
 (х;

+ h
,y;

+ 2
hk 2

 -
hk1

)

j =
 k1

+З
k3 4

k1 =
 f
�x ;, Y

,)
k2
= f

(x
; +

h/3
, y,

 +
(h /

З)
k1)

k3

= J
Х

; +
2h/

3,y
; +
 (2

h /З
)k2

)
Ф

ор
му

ла
 Р

ун
ге

-К
ут

та

h'
J

kl +
 2k

2 +
 2k

J +
 k4

k1=

f�x
;, Y

;)
k2

=f
(x
;+

h/2
,y;

+(
h /2

)k1
)

6
k3

= J
х

, +
 h/

2,y
; +

(h/
2)k

2)
k 4

= f
 (х ;

+ h
, y;
 +

hk
i)

j =
 kl

+ 4
k!
+ k

,
� �

 fr
".

;)
k,

� f
(x
; +

h/4
.y;

 +
(h/

4)
Ч

6

k1
= f

 X;
+h

/2
,y;

+(
h/2

)k2
)

kj
= !

 х
, +
 h,y

, +
 h(

k1-
2k2

+2
k1)

)
1 ;;

;'
11

1
11

11
11

1
.i:o.

Численные методы 151

формула улучшенной ломаной будет выглядеть следующим обраэuм:
л

Y;+i = у, + hf(x, , y; ,z;) ,

где

k1 = / (xpy; . z;) ,
k2 = f(x; + h,y; + hkpZ; + hf;)

11 = g(x, , y,,z;) , 12 = g(x; + h,y; + hkpz; + hl,)
Идея преобразования совершенно очевидна. Аналогично выпол­

няются преобразования и для других формул Рунге-Кутта, так что
никаких сложностей здесь не возникает.

Для решения обыкновенных дифференциальных уравнений вто­
рого и более высоких порядков можно выполнить их приведение к
системам обыкновенных дифференциальных уравнений первого по­
рядка. Так, например, уравнение

у" = f(x,y,y') , у(х11)= Уо , У� (хо)= у;,

можно легко привести к только что рассмотренной системе уравне­
ний, выполнив подстановку у' = z . При использовании такой подста­
новки мы получаем систему уравнений

{y' = z , , _ () , при у(х0)= у0 , z(х0)= Уо · z - f x,y,z

Здесь мы не будем рассматривать прочие методы решения как
обыкновенных дифференциальных уравнений, так и, например, урав­
нений в частных производных. Как уже упоминалось, в поисках мето­
дов решения таких уравнений или иных, не одношаговых (например,
многошаrовых, разностных) методов вы можете обратиться к книгам
[З, 5, 13, 17J. • Далее будет приведена не реализация алгоритмов ре­

шения дифференциальных уравнений: как таковых, а
демонстрационная программа, которая решает одно
дифференциальное уравнение - у' = cosx -y tgx -

152 Глава 4

с начальным условием у(О)= О (точное решение которого -
у = х cos х) различными методами - Эйлера, улучшенным методом
Эйлера и Рунге-Кутта. Как видите, реализация алгоритмов в данной
демонстрационной программе совершенно тривиальна, а результаты
вычислений (был специально использован весьма грубый шаг про­
счета, равный 0. 1) наглядно показывают точность каждого метода.
i nc l ude < C s tdio>

i nc l ude < Cmath>

u s i ng namespace s t d ;

11 Шаг

con s t douЬl e h = 0 . 1 ;

/ / Считаем на отрезке от О до 1

const int s t eps = 1 . 0 / h ;

/ / Функция y ' = f (x , y)

douЫ e f (douЫe х , douЫe у)

{

return c os (x) - y * t an (x) ;

douЫ e Euler (douЬ l e х , douЫ e у , douЬl e h)

{

return у + h * f (x , y) ;

douЫ e AdvEuler (douЫ e х , douЫe у , douЫ e h)

douЫ e k l = f (x , y) ;

return у + h * f (x+h/ 2 , y+ h * kl / 2) ;

douЫ e RK (douЫ e х , douЫ e у , douЫ e h)

douЫ e k l

douЫ e k2

douЫ e k З

douЫ e k4

f (х , у) ;
f (x+h/ 2 , y+ h * kl / 2) ;

f (x+h/ 2 , y + h * k2 / 2) ;

f (x+ h , y+h * k3) ;

Численные методы

int

return у + h * (k1 + 2 * (k2 +k3) +k4) / 6 ;

ma i n ()

douЫ e у О . О , уе = о . о ' уа = о . о ' yr

douЫ e х о . о ;

print f (" х Точное Эйлер

"Улучшенный Рунге - Кутта \ n ") ;

print f (" % 8 . 6 l f % 8 . 6 l f % 8 . 6 l f

" % 8 . 6 l f % 8 . 6 l f \n " ,

х , у , y e , ya , yr) ;

for (int i = О ; i < s teps ; + + i)

уе Euler (x , ye , h) ;

уа AdvEuler (x , ya , h) ;

yr RK (x , yr , h) ;

х + = h ;

153

= о . о ;

у = x * c o s (х) ;

print f (" % 8 . 6 l f % 8 . 6 l f

/ / Точное решение

% 8 . 6 l f

" % 8 . 6 l f % 8 . 6 l f \n " ,

х , у , ye , ya , yr) ;

Результат вычислений выглядит следующим образом:
х Точное Эйлер Улучшенный Рунге-

Кутта

0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0

0 . 1 0 0 0 0 0 0 . 0 9 9 5 0 0 0 . 1 0 0 0 0 0 0 . 0 9 9 6 2 5 0 . 0 9 9 5 0 0

0 . 2 0 0 0 0 0 0 . 1 9 6 0 1 3 0 . 1 9 8 4 9 7 0 . 1 9 6 2 5 2 0 . 1 9 6 0 1 3

0 . 3 0 0 0 0 0 0 . 2 8 6 6 0 1 0 . 2 9 2 4 8 0 0 . 2 8 6 9 3 2 0 . 2 8 6 6 0 1

0 . 4 0 0 0 0 0 0 . 3 6 8 4 2 4 0 . 3 7 8 9 6 6 0 . 3 6 8 8 1 3 0 . 3 6 8 4 2 4

0 . 5 0 0 0 0 0 0 . 4 3 8 7 9 1 0 . 4 5 5 0 5 0 0 . 4 3 9 1 9 4 0 . 4 3 8 7 9 1

0 . 6 0 0 0 0 0 0 . 4 9 5 2 0 1 0 . 5 1 7 9 4 9 0 . 4 9 5 5 6 5 0 . 4 9 5 2 0 1

0 . 7 0 0 0 0 0 0 . 5 3 5 3 9 0 0 . 5 6 5 0 4 7 0 . 5 3 5 6 5 2 0 . 5 3 5 3 8 8

0 . 8 0 0 0 0 0 0 . 5 5 7 3 6 5 0 . 5 9 3 9 3 8 0 . 5 5 7 4 5 8 0 . 5 5 7 3 6 4

0 . 9 0 0 0 0 0 0 . 5 5 9 4 4 9 0 . 6 0 2 4 5 5 0 . 5 5 9 3 0 1 0 . 5 5 9 4 4 6

1 . 0 0 0 0 0 0 0 . 5 4 0 3 0 2 0 . 5 8 8 6 9 7 0 . 5 3 9 8 3 9 0 . 5 4 0 2 9 8

rлава 5

Матрицы
Здесь мы рассмотрим основные операции, связанные с матрица­

ми, а именно - их умножение, LUР-разложение и решение систем
линейных уравнений, а также вычисление определителей и поиск
обратных матриц. Мы ограничимся здесь рассмотрением только ма­
триц, элементы которых - действительные числа. Начнем с того, что
напомним основные свойства матриц.

Свойства матриц
Матрица представляет собой прямоугольный массив чисел.

Например,

является матрицей размера 2х3 А = (а;,), где i = 1, 2 и j = 1,2,3 .
Элемент на пересечении i-й строки иj-го столбца матрицы - aij . Для
обозначения матриц будут использоваться прописные буквы, а их
элементы будут обозначаться соответствующими строчными буква­
ми с нижними индексами.

Транспонированная матрица Ат получается из матрицы А путем
обмена местами ее строк и столбцов.

Вектор представляет собой одномерный массив чисел. Например,

является вектором размером 3. Для обозначения векторов будут ис­
пользоваться строчные буквы. Стандартной формой вектора будем
считать вектор-столбец, представляющий собой матрицу размером
п х 1 . Соответствующий вектор-строка получается путем транспо­
нирования. Единичным вектором е, называется вектор, i-й элемент
которого равен 1 , а все остальные элементы - нулевые.

156 Глава 5

У иулевой матрицы все элементы равны О. Такая матрица часто
записывается просто как О, поскольку понять, идет речь о числе О или
нулевой матрице, легко из контекста. То же относится и к размеру ма­
трицы.

Матрица называется квадратной, если число ее столбцов совпада­
ет с числом строк, т.е. если ее размер п х п . Некоторые частные случаи
квадратных матриц имеют собственные названия.

Все элементы диагоиалыюй матрицы, кроме лежащих на главной
диагонали, - нулевые, т.е. aii = О при i * j . Поскольку все недиаго­
нальные элементы такой матрицы равны О, диагональную матрицу
можно определить путем перечисления ее элементов вдоль диагонали:

[а" о п diog(a" , a", . . . ,a�)" ! ап

о
Едииичиая матрица представляет собой частный случай диаго­

нальной, у которой все непу левые элементы равны 1 : /11 = diag (1, 1, . . . , 1) .
Если используется обозначение I без индекса, размер единичной ма­
трицы определяется из контекста. Обратите внимание на то, что i-м
столбцом единичной матрицы является единичный вектор е, .

В ряде математических задач получаются трехдиагоиальиые ма­
трицы, в которых tu = О , если l i - jl > 1 . Все элементы такой матрицы
нулевые, кроме элементов на главной диагонали, а также непосред-
ственно над и под ней:

t1 1 t1 2 о о о о о
t2 1 l22 t2:! о о о о
о t:12 (JЗ t34 о о о

Т =

о о о о tn-2,n-2 ln -2,n-1 о
о о о о tn-1 ,n-2 tn· 1.п--1 tn- 1 .n 1

l о о о о о tn,n- 1 t,m

Верхиетреугольиой .натрицей называется матрица, у которой все
элементы ниже главной диагонали равны О (иУ = О при i > j) , а ниж­
нетреугольной, соответственно, называется матрица, у которой нулю
равны все элементы выше главной диагонали ((1 = О при i < j) . Эти

Матрицы 157

матрицы называются едииичиыми верхне- или нижнетреугольными,
если все их элементы на главной диагонали равны 1 .

Особое значение имеет матрица перестажтки, у которой в каж­
дой строке и столбце ровно по одной 1, а на всех прочих местах рас­
полагаются О. Вот пример такой матрицы перестановки:

о о о о
о о о 1 о

Р = 1 о о о о
о о о о 1
о о 1 о о

Такие матрицы называются матрицами перестановки, потому что
умножение вектора х на матрицу перестановки приводит к переста-
новке элементов вектора.

И, наконец, симметричuая матрица А удовлетворяет условию
А == Ат .

Операции над матрицами
Результатом сложеиия матриц А = (aij) и В = (bij) одинаково­

го размера т х п является матрица С = (cij)= А + В того же раз­
мера, определяемая соотношением cij == а,1 + Ь11 для i = 1, 2, . . . ,т и
j = 1, 2, . . . ,п , т.е. сложение матриц выполняется поэлементно.
Очевидно, что нулевая матрица нейтральна по отношению к сложе­
нию матриц: А + О = А = О + А .

Если Л. - некоторое число, а А = (aij) - матрица, то соотношение
Л.А = (л.а;i) определяет скаляр11ое произведеиие матрицы на число, ко­
торое также выполняется поэлементно.

Можно определить вычитаиие матриц как сложение с матрицей,
умноженной на -1 : А - В = А + (-В)= А + (-1)В .

Матричиое умиожеиие определяется следующим образом.
Матрицы А и В могут быть перемножены, если они совместимы в том
смысле, что число столбцов А равно числу строк В (в общем случае
выражение, содержащее матричное произведение АВ, всегда под­
разумевает совместимость матриц А и В). Если А = (а,;) - матрица
размером т х п , а В = (bij) - матрица размером п х р , то их произве­
дение С = АВ представляет собой матрицу С = (с,1) размером т х р ,

158

f·�.
элементы которой определяются соотношением

i = 1, 2, . . . , m и k = 1, 2, . . . , p .

Глава 5

п
G;k = �ацЬ;k

}�1
для

Матрицы обладают многими (хотя и не всеми) алгебраическими
свойствами, присущими обычным числам. Единичная матрица явля­
ется нейтральным элементом по отношению к умножению:

ImA = AI. = А

для любой матрицы А размером т х п . Умножение на нулевую матри­
цу дает нулевую матрицу:

АО = ОА = О .

Умножение матриц ассоциативно:

А(ВС)= (АВ)С

для любых совместимых матриц А, В и С. Умножение матриц дистри­
бутивно относительно сложения:

А(В + С)= АВ + АС,
(B + C)D = BD + CD.

Для п > 1 умножение матриц размером п х п не коммутативно, т.е. в
общем случае АВ * ВА .

Произведения матрицы и вектора или двух векторов легко вы­
числяются, если вспомнить, что вектор - это матрица размером п х 1
(или 1 х п для вектора-строки). Например, если х и у - векторы раз­
мера п, то произведение

i=1
представляет соrоЙ матрицу размером 1 Х 1 (т.е., ПО сути, ОДНО ЧИС­
ЛО), которое называется скалярным произведением векторов х и у.
Матрица же Z = ху т размером п х п с элементами zij = Х;У1 являет­
ся тензорным произведение.JН этих же векторов. Норма llxll вектора х
размером п определяется как длина вектора в п-мерном евклидовом
пространстве

llxll = Jx� + xi + · · · х; = ,J хтх .

Матрицы 159

Обратные матрицы, ранги и определители
Матрицей, обратной к данной матрице А размером п х п , является
матрица того же размера л-1 (если таковая существует), такая что
АА-1 = Iп = л-1 А . Некоторые ненулевые квадратные матрицы не име­
ют обратных матриц. Матрица, для которой не существует обратной
матрицы, называется вырожденной. Если же обратная матрица суще­
ствует, то она единственная. Если А и В - невырожденные матрицы
размером п х п , то (А ВТ

1
= л-1 в-1 • Кроме того, операция обращения

коммутативна с операцией транспонирования:

Векторы Хр х2 , • . . , х. линейно зависимы, если существуют та­
кие коэффициенты срс2, • • • , с. , не равные одновременно нулю,
что с1х1 + с2х2 + . . . + с.х. = О . Например, векторы Х1 = (1 2 3) ,
х2 = (2 6 4) и х3 = (4 1 1 9) линейно зависимы, поскольку
2х1 + Зх 2 - 2х3 = О .

Столбцовым рангом ненулевой матрицы А размером т х п на­
зывается размер наибольшего множества линейно независимых
столбцов А. Аналогично строчным рангом той же матрицы называ­
ется размер наибольшего множества линейно независимых строк А.
Фундаментальным свойством любой матрицы А является равенство
ее строчного и столбцового рангов, так что обычно говорят о просто
ранге матрицы. Эквивалентное определение ранга ненулевой матри­
цы А размером т х п - это наименьшее число r, для которого суще­
ствуют матрицы В и С размером соответственно т х r и r х п такие,
что А = ВС .

Квадратная матрица размером п х п имеет полный ранг, если ее
ранг равен п. Полный ранг квадратная матрица имеет тогда и только
тогда, когда она невырождена.

Минором элемента aif (ij-минор) матрицы А размером п х п (п > 1)
называется матрица ЛrиJ размером (п - 1)х (п - 1) , которая получается
из А удалением i-й строки иj-го столбца. Определитель, или детерми­
нант, матрицы А размером п х п можно определить рекурсивно при
помощи миноров следующим образом:

при n = 1,

при n > 1 .

160 Глава 5

Множитель (-1)+1 det(Aci/J) называется алгебраическим дополие­
иием элемента а9 •

Определитель квадратной матрицы А обладает следующими свой­
ствами.

+ Если любая строка или любой столбец А нулевой, то det(A)= О.
+ Если все элементы одного произвольного столбца (или стро­

ки) матрицы умножаются на Л, то ее определитель также умно­
жается на Л.

+ Определитель матрицы А остается неизменным, если все эле­
менты одной строки (или столбца) прибавить к элементам дру­
гой строки (столбца).

+ Определитель матрицы А равен определителю транспониро­
ванной матрицы Ат .

+ Определитель матрицы А умножается на -1 , если обменять
местами любые два ее столбца (или строки).

Кроме того, для любых квадратных матриц А и В
det(AB)= det(A)det(B) . Квадратная матрица А вырождена тогда и
только тогда, когда det (А)= О .

Умножение матриц
Как было сказано выше, если А = (аи) - матрица размером

т х п , а В = (Ьи) - матрица размером п х р , то их произведение С = АВ
представляет собой матрицу С = (си) размером т х р , элементы ко-"
торой определяются соотношением cik = "l.,aifbjk для i = 1, 2, . . . ,т и

j=I
k = 1, 2, . . . ,р . Отсюда непосредственно следует простейший алгоритм
умножения матриц.
Алгоритм Ma trixMul t iply (A , B)

/ / входные данные : матрица А размером тхп и матрица В
1 1 размером пхр

/ / Выходиые данные : матрица С размером тхр ,

1 1

1 1
for i 1 to т do

представляющая собой матричное

произведение АВ

for j = 1 to р do

Матрицы

begin

end

return С

c1 j = О
for k = 1 to п do ci ;

161

cij + aik*bk;

Для реализации как этого, так и прочих алгоритмов,
связанных с матрицами, используем следующий про­
стейший класс для представления матриц (мы уже стал­
кивались с таким классом при работе с графами).

class matr i x

puЬl i c :
mat r i x (int m , int n)

: Rows_ (m , vector<douЬl e > (n , 0 . 0)) { }

const vector<douЬl e>& operator [] (int i) con s t

{ return Rows_ [i] ;

vector<douЬ l e>& operator [J (int i)

int rows ()

int c o l s ()

cons t

con s t

{ return Rows_ [i] ;

return Rows_ . s i ze () ; }

return Rows_ [O) . s i ze () ;

private :
vector< vector<douЬle> > Rows_ ;

} ;
Данный класс обеспечивает только обращение к элементам ма­

трицы при помощи двойного индексирования, а также информацию
о количестве строк и столбцов матрицы. Никакие другие действия с
матрицами в данной главе выполняться не будут, так что с методи­
ческой точки зрения использование такого непритязательного класса
вполне оправданно. Методические же соображения поясняют и вы­
бор класса vector в качестве хранилища данных (а не использования
для этой цели класса valarray). При разработке собственных клас­
сов и реализаций алгоритмов на С++ для работы с матрицами можно
обратиться к разделу 22.4 книги [19] , где вы найдете немало полезных
советов по этому поводу. tiiJ Умножение матриц с использованием определения опе­

рации матричного умножения реализуется функцией в
несколько строк.

162 Глава 5

matrix Ma t rixMu l t iply (matr· ix& А , mat rix& В)

as sert (A . co l s () B . rows ()) ;

mat r i x C (A . rows () , B . co l s ()) ;

for (in t i = О ; i < A . rows () ; + + i)

for (int j = О ; j < B . c o l s () ; + + j)

{
C [i] [j] = О . О ; / / Данная строка излишня ,

/ / так как при создании матрица

/ / инициализируется нулями

for (int k = О ; k < A . c o l s () ; + + k)

C [i] [j] + = A [i] [k] * B [k] [j] ;

return С ;

Три вложенных цикла ясно говорят о том, что временная эф­
фективность данного алгоритма - 8 (n:J). Кажется, что улучшить
эффективность алгоритма умножения невозможно, но это не так.
Существует замечательный (в первую очередь с теоретической точ­
ки зрения) рекурсивный алгоритм умножения матриц размера пх п ,
разработанный в 1969 году Штрассеном и имеющий время работы
е(п1"g, 7)"" е(п2·807) . Здесь не будет приведен полный вывод алгорит­
ма Штрассена; с ним можно познакомиться в [12] . Алгоритм основан
на методе декомпозиции. Рассмотрим произведение матриц С = АВ ,
где каждая матрица имеет размер п х п . Считая, что п является точной
степенью 2, поделим каждую из матриц на четыре матрицы размером
п/2 х п/2 и перепишем произведение следующим образом:

Алгоритм Ш трассена вычисляет с помощью семи (а не восьми, как
потребовалось бы в традиционном алгоритме) умножений следующие
значения: Pi = a · (f - h) , P2 = (a + b)· h , P1 = (c +d)- e , P4 = d · (g - e) ,
�s = (a +d)· (e + h) , Pв = (b - d)- (g + h) , Р1 = (а - с)- (е +f) . После это-
го результат умножения матриц получается следующим образом:

s = Pi + P2 , t = P3 +P1 ' r = P5 +P4 - P2 +!{; и и = Р; +Р� -Р1 -� .

Матрицы 163

Однако алгоритм Штрассена редко применяется на практике по
следующим причинам.

1. Постоянный множитель, скрытый во времени работы алгорит­
ма Ш трассена, существенно превышает постоянный множитель
во времени работы 8 (п3) простого алгоритма умножения.

2. Для разреженных матриц имеются специализированные более
эффективные методы умножения.

3. Алгоритм Штрассена несколько менее численно устойчив, чем
простой алгоритм умножения матриц.

4. Построение подматриц на каждом шаге рекурсии приводит к
повышенному расходу памяти.

Написать сколь-нибудь эффективную реализацию алгоритма
Штрассена с использованием «игрушечного� демонстрационного
класса matrix нереально - на каждом шаге рекурсии выигрыш от
снижения количества умножений будет полностью нивелироваться
«перетасовкой� большого количества данных в памяти, накладными
расходами на обслуживание классов и т.п. Так что такая реализация
будет проигрывать в эффективности реализации простого алгоритма
перемножения матриц, основанного на определении этой операции.
Таким образом, здесь мы ограничимся только изложением самого
алгоритма. К этому следует добавить, что имеется теорема, согласно
которой умножение матриц и обращение матрицы - задачи одного
уровня сложности, так что обращение матрицы требует того же асимп­
тотического времени, что и перемножение матриц.

В настоящее время наиболее эффективный алгоритм перемноже­
ния матриц Копперсмита-Винограда имеет эффективность е(п2376).
Вопрос о максимально возможной эффективности перемножения
матриц остается открытым (пока что очевидна лишь нижняя грани­
ца - О(п2) , но неизвестно, в какой мере она достижима).

Метод исключения Гаусса
Решение систем линейных уравнений представляет собой фунда­

ментальную задачу, возникающую в различных приложениях. Итак,
нам требуется решить систему из п уравнений с п неизвестными, где п - некоторое, обычно достаточно большое число:

164

а1 1Х1 + а1 ,Х2 + · · · + а1"х11 = h1
а21Х1 + а2:1Х2 + . . . + а2"Хп = Ь2

Глава 5

Имеется элегантный алгоритм решения систем линейных уравне­
ний, который называется методом uс1С.Лючения Гаусса. Идея этого ме­
тода заключается в преобразовании системы п линейных уравнений
с п неизвестными в эквивалентную ей систему с верхнетреугольной
матрицей коэффициентов:

а1 1Х1 + а12Х2 + + at"xn bl
а21Х1 + auX2 + + а2пхп bz

ап1Х1 + а.2Х2 + + а •• хп ьп
jJ

а; 1х1 + а;2х2 + + а;"х" Ь' 1
а;2х2 + + а;пхп ь;

а:пхп Ь' п

Используя матричные обозначения, это действие можно записать
как

где

Ах = Ь => А'х = Ь'

["" а12

А = а� 1 az2

а"1 а"2 [а; , а;2
А' = � а;2

о о

'

"·· 1 п а2п ь =
ь2 ' . '

а1111 Ь"

�. 1 п �· ' Ь' = �
а,т ь.

Матрицы 165

(К элементам матрицы и свободным членам новой системы линейных
уравнений добавлены штрихи для того, чтобы подчеркнуть отличие
этих значений от значений их аналогов в исходной системе линейных
уравнений.)

Система линейных уравнений с верхнетреугольной матрицей ко­
эффициентов существенно лучше системы линейных уравнений с
произвольной матрицей, потому что систему линейных уравнений с
верхнетреугольной матрицей легко решить методом обратной подста­
новки. Сначала мы вычисляем значение хп из последнего уравнения;
затем подставляем полученное значение в предыдущее уравнение и
получаем значение х._1 • Выполняя такие подстановки вычисленных
значений переменных в очередные уравнения, мы получим значения
всех п переменных - от х. до х1 •

Осталась «мелочь� - получить из системы линейных уравнений
с произвольной матрицей коэффициентов А эквивалентную систему
линейных уравнений с верхнетреугольной матрицей А' . Это можно
сделать при помощи последовательности следующих элементарных
операций:

+ обмена двух уравнений системы линейных уравнений;
+ умножения уравнения на ненулевую величину;
+ замены уравнения на сумму или разность этого уравнения и

другого уравнения, умноженного на некоторую величину.
Поскольку ни одна из перечисленных операций не изменяет ре­

шение системы линейных уравнений, любая система линейных урав­
нений, полученная из исходной при помощи серии описанных опера­
ций, будет иметь то же решение, что и исходная.

Начнем наши преобразования. Для начала используем в качестве
опорного элемента а1 1 для того, чтобы сделать все коэффициенты
при х1 в строках ниже первой нулевыми. В частности, заменим вто­
рое уравнение разностью между ним и первым уравнением, умножен­
ным на а21 /а1 1 для того, чтобы получить нулевой коэффициент при
х1 • Выполняя то же для третьей, четвертой и далее строк и умножая
первое уравнение соответственно на а:11 /а1 1 , а1 1/а1 1 , • • • , а"1 /а1 1 , сде­
лаем все коэффициенты при х1 в уравнениях ниже первого равными
О. Затем обнулим все коэффициенты при х2 в уравнениях ниже вто­
рого, вычитая из каждого из этих уравнений второе, умноженное на
соответствующий коэффициент. Повторяя эти действия для каждой

166 Глава 5

из первых п - 1 строк, получим систему линейных уравнений с верхне­
треугольной матрицей коэффициентов.

Заметим, что можно работать не с двумя матрицами - коэффи­
циентов и свободных членов, а только с матрицей коэффициентов,
к которой в качестве (п + 1) -го столбца добавлены свободные члены
системы линейных уравнений. Другими словами, нет необходимости
явно использовать имена переменных системы линейных уравнений
или знаки + и =.

Вот как можно записать псевдокод только что рассмотренного эта­
па преобразования алгоритма решения систем линейных уравнений
методом исключения Гаусса.
Алгоритм Ga ussEl imina t i on (A)

/ / входные ,цаииые : матрица А [1 . . п , 1 . . п+ 1 J , в которой

/ / (п + l) - й столбец представляет

1 1 собой столбец свободных членов

/ / Выходные данные : эквивалентная верхнетреугольная

/ / матрица на месте матрицы А со

/ / значениями в (п+ l) -м столбце ,

/ / соответствующими свободным

/ / членам новой системы линейных

/ / уравнений .

for i 1 to n - 1 do

for j = i + l to п do

for k = i to п+l do

return А
Однако этот метод не всегда корректен: если а;; = О , то нельзя вы­

полнить деление на этот элемент и, следовательно, использовать i-ю
строку в качестве опорной на i-й итерации алгоритма. В этом случае
мы должны воспользоваться первой из описанных ранее операций и
обменять i-ю строку с одной из строк ниже ее, у которой в i-м столб­
це находится ненулевой элемент (если система линейных уравнений
имеет единственное решение, то такая строка должна существовать).

Поскольку мы все равно должны быть готовы к возможному обме­
ну строк, следует учесть еще одну потенциальную сложность - воз­
можность того, что величина а,; будет столь мала (и, соответственно,
столь велик коэффициент aJ;ja;;), что новое значение aJk может ока­
заться искаженным ошибкой округления, связанной с вычитанием

Матрицы 167

двух сильно отличающихся чисел. Чтобы избежать этой проблемы,
можно всегда выбирать строку с наибольшим абсолютным значением
коэффициента в i-м столбце для обмена с i-й строкой, а затем исполь­
зовать ее в качестве опорной на i-й итерации. Такая модификация ал­
горитма, называющаяся выбором ведущею элемента, гарантирует, что
значение масштабирующего множителя никогда не превысит 1 .

Измененный с учетом рассмотренных замечаний псевдокод при­
веден ниже.
Алгоритм AdvGa ussEl imina t i on (A)

/ / входные данные : матрица А [1 . . п , 1 . . п + 1] , в которой

/ / (n+ l) -ый столбец представляет

/ / собой столбец свободных членов

/ / Выходные данные : эквивалентная верхнетреугольная

1 1

/ /

1 1

1 1

1 1

матрица на месте матрицы А со

значениями в (n+ l) -м столбце ,

соответствующими свободным

членам новой системы линейных

уравнений .

for i = 1 to n- 1 do

begin

p i votrow = i

for j = i + l to п do

begin

i f 1 aji 1 > 1 apivotrow, i 1 pi votrow j
end

for k

for j

begin

i to n+l do swap (aik ' apivotrow, k)
i + l to п do

t emp = aji / ai1

end

end

return А

for k = i to n+ l do ajk

Рассмотрение структуры псевдокода подсказывает, что времен­
ная эффективность данного алгоритма - е(п3). Поскольку вре­
менная эффективность второй стадии решения системы линейных
уравнений (обратной подстановки) алгоритма исключения Гаусса
равна е(п2), общее время работы алгоритма определяется кубиче-

168 Глава 5

ским временем стадии исключения, так что алгоритм исключения
Гаусса - кубический.

Теоретически метод исключения Гаусса всегда либо дает точное
решение системы линейных уравнений (если она имеет единствен­
ное решение), либо выясняет, что такого решения не существует.
В последнем случае система линейных уравнений может либо не
иметь решения вовсе, либо иметь бесконечно много решений. На
практике решение систем большого размера данным методом натал­
кивается на трудности, в первую очередь связанные с накоплением
ошибок округления, но этот вопрос выходит за рамки данной книги.

Поиск решения системы линейных уравнений после выполнения
исключения Гаусса тривиален: переменные Х; вычисляются пооче­
редно от хп до Х1 подстановкой в соответствующие уравнения уже
известных значений: п

ai,n+1 - L aijxJ j=i+1

Все изложенное выше с применением представленного
ранее клaccamatrix и класса vector для вектора свобод­
ных членов реализуется в виде следующей функции.
vector<douЬl e > Gaus s (const mat rix& F ,

as s ert (F . rows () = = F . col s ()) ;

as sert (F . rows () = =в . s i z e ()) ;

i nt n = F . rows () ;

mat rix A (n , n+ l) ;

vector<douЬle> x (n) ;

/ / Создание новой матрицы

for (int i = О ; i < n ; + + i)

{

vec tor<douЬle> В)

for (int j = О ; j < = n ; + + j)

A [i] [j] = F [i] [j] ;

A [i] [n] = B [i] ;

/ / Исключение Гаусса с выбором ведущего элемента

for (int i = О ; i < n - 1 ; + + i)

{

Матрицы 169

int pivot = i ;

for (int j = i + l ; j < n ; + + j)

i f (fabs (A [j] [i]) > f abs (A [pi vot] [i]))

pivot = j ;

i f (p i vot ! = i) swap (A [i] , A [p ivot]) ;

for (int j = i + l ; j < n ; + + j)

{

as sert ((A [i] [i) ! = О . О) &&

" Система решений не имеет ") ;

douЫ е t = А [j] [i] /А [i] [i] ;

for (int k = i ; k < = n ; + + k)

A [j] [k] - = A [i] (k] * t ;

a s sert ((A [n- l] [n- 1) ! = О . О) &&

" Система решений не имеет ") ;

/ / Просчет решения системы линейных уравнений

for (int i = n- 1 ; i >= О ; - - i)

{

douЫe sum = О . О ;

for (int j = i + l ; j < n ; + + j)

sum + = А [i] [j] * х [j] ;

x [i) = (A [i] [n] - sum) /A [i] [i] ;

return х ;

Обращение матрицы
Рассмотрим теперь применение метода исключения Гаусса для

вычисления обратной матрицы. В соответствии с определением об­
ратной матрицы для того, чтобы найти ее для невырожденной ма­
трицы А размером п х п , требуется найти п2 чисел х9 , 1 ::::: i,j ::::: п та-
ких, что

[а" а1 2 . . . а,.г at1 а22 . . . а2п Х2 1

anl ап2 " . апп хп1

Х12
Х22

хп2

. . .
" .

х,. J r 1 Хzп - О

хпп о

о . . . :J 1 " .

о " .

170 Глава 5

Найти эти неизвестные числа можно, решая п систем линейных
уравнений с одной и той же матрицей коэффициентов А, у которых
векторы неизвестных представляют собой столбцы обратной матри­
цы, а векторы свободных членов - столбцы единичной матрицы. Эти
системы линейных уравнений можно решить, применяя метод ис­
ключения Гаусса к матрице А, расширенной добавлением к ней еди­
ничной матрицы размером п х п .

Временная эффективность этого алгоритма, как нетрудно заме­
тить, также равна е(п3), просто в этом случае обратная подстановка
требует не квадратичного, а кубического времени работы. • Поскольку мы уже рассматривали псевдокод преоб­

разования методом исключения Гаусса, нет смысла по­
вторяться, так что далее приводится только реализац11я
этого алгоритма обращения матрицы.

matrix Invers e (const matrix& F)

a s s ert (F . rows () = = F . c o l s ()) ;

int n = F . rows () ;

matrix A (n , 2 *n) ;

matr i x I (n , n) ;

vector<douЬ l e > x (n) ;

for (int i = О ; i < n ; + + i)

{
for (int j = О ; j < = n ; + + j)

A [i] [j] = F [i] [j] ;

A [i] [i+n) = 1 . 0 ;

for (int i = О ; i < n - 1 ; + + i)

{

int p ivot = i ;

for (int j = i + l ; j < n ; + + j)

i f (fabs (A [j] [i]) > f abs (A [p ivot] [i]))

pivot = j ;

i f (p ivot ! = i) swap (A [i] , A [p ivot]) ;

for (i nt j = i + l ; j < n ; + + j)

{
as sert ((A [i] [i] ! = О . О) &&

" Матрица вырождена ") ;

Матрицы

douЫ е t = А [j] [i] /А [i] [i] ;

for (int k = i ; k < 2 *n ; ++k)

A [j] [k] - = A [i] [k] * t ;

a s s ert ((A [n- l] [n- 1] ! = О . О) &&

" Матрица вырождена ") ;

for (int column = О ; column < n ; ++column)

for (int i = n- 1 ; i >= О ; - - i)

{
douЬ l e sum = О . О ;

for (int j = i + l ; j < n ; + + j)

sum + = A [i] [j] * I [j] [column] ;

I [i] [column] =

171

(A [i] [co lumn+n] - sum) / A [i] [i] ;

return I ;

Вычисление определителя
Обратившись к свойствам определителей в начале этой главы (см.

стр. 1 60), можно увидеть, что в процессе применения метода исклю­
чения Гаусса определитель матрицы остается неизменным по абсо­
лютному значению и только меняет знак при обмене местами двух
строк матрицы. По окончании работы получается треугольная матри-

•
ца, определитель которой легко вычисляет:_я как произ­
ведение элементов, стоящих на ее главнои диагонали.
Таким образом, очень легко модифицировать код любой
из приведенных функций, чтобы получить функцию для
вычисления определителя квадратной матрицы.

douЫ e Det (c onst matr ix& F)

{
assert (F . rows () = = F . c o l s ()) ;

int n = F . rows () ;

mat r ix А (F) ;

172

douЫe det = 1 . 0 ;

for (int i = О ; i < n - 1 ; + + i }

{
int pivo t = i ;

for (int j = i + l ; j < n ; + + j }

Глава 5

i f (fabs (A [j] [i] } > fabs (A [pi vo t] [i] } }

pivot = j ;

i f (pi vo t ! = i }

det = -det ;

swap (A [i] , A [p i vot]) ;

for (int j = i + l ; j < n ; + + j }

{
a s sert ((A [i] (i] ! = О . О) &&

" Матрица вырождена п) ;

douЫ е t = А [j] [i] /А [i] [i] ;

for (int k = i ; k < 2 *n ; + + k }

A [j] [k] - = A [i) [k] * t ;

for (i nt i = О ; i < n ; + + i }

{

det * = A [i] [i] ;

return det ;

Очевидно, что внесенные изменения никак не влияют на асимпто­
тическое время работы функции, которое по-прежнему равно e(n:J).

Трехдиагональная система линейных уравнений
Метод исключения Гаусса решает системы линейных уравнений

общего вида, однако зачастую приходится сталкиваться с различны­
ми, достаточно широко распространенными частными случаями си­
стем линейных уравнений, которые могут быть решены существенно
более эффективно. В качестве примера рассмотрим системы линей­
ных уравнений с трехдиагональной матрицей коэффициентов.

Матрицы 173

Например, весьма часто при решении краевых задач разностным
методом, при построении сплайнов и тому подобных задачах возни­
кает система линейных уравнений следующего специального вида:

Aixi_1 - C1xi + Bixi+I == � , j == 1, 2, . . . , п - 1 ,

где х0 ,Хр · · · ,х. - неизвестные, Ai ,Bi ,Ci '�'Л.i,vi - заданные числа,
причем jc; j � jл;j + jвJ:�: jл;j > О , jл.0 j < 1 , jл.J � 1 . Последние три нера­
венства гарантируют существование единственного решения приве­
денной системы линейных уравнений (которая называется краевой
задачей для трехточечного разностного уравнения).

Данную систему линейных уравнений можно записать в матрич-
т у ном виде как Ах == Ь , где х == (х0 ,Хр · · · ,х.) , b == (v0,Fi,F2" • • ,Fn,vп) , и

1 -Ло о
Ai -С1 BI

А == � -С2 в2

о -v .
Решить такую систему можно методом прогонки. Подставив урав­

нение х0 == Л.0х1 + v 0 в первое уравнение системы, получим

Ai (ЛоХо + Vo)- С1Х1 + В1Х2 == Fi

или

где

Полученное для х1 выражение можно подставить во вто­
рое уравнение системы и получить уравнение, связываю­
щее х2 и Х:1 , и т.д. Допустим, что уже найдено соотношение

174 Глава 5

Хн = Л.k_1xk + vk_ 1 (k < п - 1). Подставляя это выражение в k-e уравне­
ние системы, получим Ak (Л.k_1xk +vk_1)-Ckxk + Bkxk+1 = Fk , так что

Akvk-1 -� vk =
Ck - AkЛ.k-1

Таким образом, мы осуществляем прямой проход по всем зна­
чениям k = 1, 2, . . . , п , после чего, подставляя в последнее получен­
ное соотношение уравнение х. = л.х._1 + v п-1 , получим уравнение
хп = л. (Л.п_1х. + v"_1)+ v" , из которого сможем найти неизвестное

Vп + Л.пvп-1
х" = .

1 - vnvn-1
Теперь можно выполнить обратный проход, получая поочередно

значения хп_Р хп_2 , " . , х1 ' х0 .
Совершенно очевидно, что каждый шаг как прямого, так и об­

ратного прохода выполняется за время 8(1) , так что общее время
решения трехдиагональной системы линейных уравнений методом
прогонки составляет Е>(п) , что существенно лучше времени метода
исключения Гаусса 8 (п3).

Указанные в начале этого подраздела условия существования
единственного решения достаточные, но не необходимые. Однако
большинство систем линейных уравнений, возникающих в реальных
задачах, удовлетворяют этим условиям.

Что касается реализации метода прогонки, то в общем виде она,
как правило, не имеет смысла, так как коэффициенты матрицы очень
часто могут легко вычисляться в процессе решения системы линей­
ных уравнений, а не храниться в матрице (или с целью сохранения
памяти - в трех векторах). Именно с таким случаем мы сталкиваемся
в демонстрационном примере, рассмотренном далее.

ii
Рассмотрим численное решение уравнения
у" = 2cosx -у на отрезке [О, п/2] с краевыми условиями
у(О)= у (п/2)= О (точное решение поставленной зада­
чи - у = (х - n/2)sinx).

Из краевых условий очевидно, что Л.0 = Л" = О ,
v 0 = v п = О . Запишем уравнение в виде конечной разности с шагом h
с использованием формулы для вычисления второй производной по
трем точкам (см. стр. 14 1):

Матрицы

У1+1 - 2у) + Y1-I - 2 ' -
h2

- cosx1 У1 .
Если переписать эту формулу как

У1+1 - (2 - h2)11 + у1_1 = 2h2 cosx1 ,

175

становится очевидно, что для всех j А1 = В1 = 1 , С1 = 2 - h2 ,
� = 2h2 cos jh , так что не имеет смысла хранить эти коэффициенты ни
в векторах, ни тем более в матрице - их следует вычислять непосред­
ствеюю в процессе решения системы линейных уравнений. Обратите
внимание на то, что полученные коэффициенты удовлетворяют при­
веденным в начале раздела условиям существования единственного
решения системы линейных уравнений.

Представленный ниже код решает рассмотренную выше систему
линейных уравнений методом прогонки, после чего выводит на экран
полученное и точное решения, что позволяет оценить степень по­
грешности нашего решения.
int mai n ()

con s t douЫ e P i 3 . 1 4 1 5 9 2 6 ; / / Число 1t

con s t i n t N 1 0 ; 1 1 Количество

/ / отрезков

douЫe h = P i / (2 . O *N) ; 1 1 Шаг расчета

/ ! Векторы решения , коэффициентов Л и v
vec t or<douЬle> x (N+ l) , l (N+ l) , nu (N + l) ;

/ / Краевые условия

1 [О J О . О ; nu [О J

l [N] = О . О ; nu [N]

/ / Прямой проход

О . О ;

О . О ;

for (int k = 1 ; k < N ; + + k)

{

l [k] = 1 . 0 / ((2 -h * h } - l [k- 1]) ;

nu [k] = (nu [k- 1) - 2 *h * h * c o s (h * k)) /

((2 -h * h } - 1 [k- 1)) ;

176 Глава 5

1 1 Обратный проход

x [N] = (nu [N] + l [N] *nu [N- l]) / (1 . 0 - l [N] * l [N- l]) ;

for (int k = N- 1 ; k >= , О ; - -k)

{

x [k] = l [k] *x [k+ l] +nu [k] ;

/ / Вывод результатов

print f (" х Решение Точное решение \ n") ;

for (int k = О ; k < = N ; + + k)

{
print f (" % 5 . 2 l f

k * h , x [k] ,

% 8 . 5 l f % 8 . 5 l f \n • ,

(k* h - Pi / 2 . 0) * s in (k* h)) ;

Как видите, ничего принципиально сложного. Вот результат раба-
ты данной программы:

х Решение Точное решение

0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

0 . 1 6 - 0 . 2 2 2 1 9 - о . 2 2 1 1 5

0 . 3 1 - 0 . 3 9 0 1 6 - 0 . 3 8 8 3 2

0 . 4 7 - 0 . 5 0 1 5 7 - 0 . 4 9 9 1 9

0 . 6 3 - 0 . 5 5 6 6 4 - 0 . 5 5 3 9 7

0 . 7 9 - 0 . 5 5 8 0 4 - 0 . 5 5 5 3 6

0 . 9 4 - 0 . 5 1 0 7 9 - 0 . 5 0 8 3 2

1 . 1 0 - 0 . 4 2 1 9 2 - 0 . 4 1 9 8 8

1 . 2 6 - 0 . 3 0 0 2 4 - 0 . 2 9 8 7 8

1 . 4 1 - 0 . 1 5 5 9 0 - 0 . 1 5 5 1 5

1 . 5 7 0 . 0 0 0 0 0 0 . 0 0 0 0 0

Как видите, полученное решение достаточно точное, несмотря
даже на столь большой шаг вычислений.

Главный вывод, который следует сделать из данного материала,
заключается в том, что существуют различные частные случаи систем
линейных уравнений, для которых имеются существенно более эф­
фективные алгоритмы решения, чем для решения систем линейных
уравнений в общем случае.

Матрицы 177

LUР-разложение
При использовании метода исключения Гаусса мы привели исход­

ную систему линейных уравнений в эквивалентную систему линей­
ных уравнений с треугольной матрицей, что позволило легко найти
решение при помощи обратной подстановки. Определенный минус
такого решения в том, что оно, если можно так выразиться, разовое, и
для нового столбца свободных членов при той же матрице коэффици­
ентов требуется повторное применение метода исключения со време­
нем работы е(п3). Было бы неплохо, если бы можно было получить
алгоритм, позволяющий один раз провести вычисления по методу
исключения Гаусса, а затем для разных столбцов свободных членов
быстро получать решения при помощи метода подстановки. Такой ал­
горитм существует и носит название LUР-разложения.

Идея, лежащая в основе LUР-разложения, состоит в поиске трех
матриц L, И и Р размером п х п таких, что РА = LИ, где L - единичная
нижнетреугольная матрица, И - верхнетреугольная матрица, а Р -
матрица перестановки. Матрицы L, И и Р, удовлетворяющие уравне­
нию РА = LU, называются LИР-разложением матрицы А. Любая не­
вырожденная матрица А допускает такое разложение.

Преимущество LUР-разложения матрицы основано на простоте
решения системы линейных уравнений с треугольной матрицей (ка­
ковыми и являются матрицы L и И). Найдя LUР-разложение матри­
цы А, мы можем решить исходную систему уравнений Ах = Ь путем
решения двух треугольных систем уравнений.

Умножая обе части уравнения Ах = Ь на Р, мы получим уравне­
ние РАх = РЬ, которое представляет собой исходную систему линей­
ных уравнений с переставленными местами уравнениями. Поскольку
РА = LИ, получаем LИх = РЬ .

Обозначим вектор Их как у. Этот вектор у можно легко найти при
помощи решения треугольной системы уравнений Ly = РЬ методом
прямой подстановки, после чего, зная у, решение исходной системы
линейных уравнений можно найти, решая еще одну треугольную си­
стему линейных уравнений - Их = у методом обратной подстановки.

С обратной подстановкой мы уже имели дело в предыдущем раз­
деле, так что нам надо просто заменить в соответствующей формуле
элементы преобразованной матрицы аи коэффициентами верхнетре­
угольной матрицы uiJ , а свободные члены Ь; - элементами вектора у:

178

у, - :t ul}xj jo-J + 1
uii

Глава 5

Применение прямой подстановки для решения системы линей­
ных уравнений Ly = РЬ несколько осложняется тем, что сперва тре­
буется вычислить произведение матрицы перестановки Р и вектора
свободных членов Ь. Однако, поскольку матрица Р - это матрица
перестановки, такое произведение сводится к перестановке элемен­
тов вектора Ь, которое можно выполнять прямо в процессе прямой
подстановки. Кроме того, матрицу перестановки Р в компактном виде
удобно хранить как вектор п[1"п]. Элемент n[i] (i = 1, 2," . , п) указыва­
ет, что � •l,, = 1 и Ру = О при j * п[i] .

Поскольку L - единичная нижнетреугольная матрица, уравнение
Ly = РЬ можно переписать как

У1 ь.[1J·
l21Y1 + У2 ь.[2J•
lз1У1 + lз2У2 + Уз ь.[:ч·

lп1У1 + [п2У2 + z.зУз + . . . + У" ь.[п]'

Значение у 1 определяется непосредственно, поскольку первое урав­
нение гласит, что у1 = b,[i] . Зная У1 , его можно подставить во второе
уравнение и найти у2 = b,[z] - /21у1 • Оба полученных значения при под­
становке в третье уравнение дают Уз = b•f:JJ - (l:11Y1 + [32у2) , и так далее.
Общая формула для элементов вектора у -

i-1
У; = ь.[iJ - '"f)ijyj .

j�t
Таким образом, если у нас есть матрицы L, И и представление ма­

трицы перестановки Р в виде вектора п, очень просто найти решение
системы линейных уравнений для данного столбца свободных членов
за время е(п2). Вот псевдокод данного метода.
Алгоритм LUPSol u t i on (L , U, n , b)

/ / Входные даюwе : матрицы L и И и вектор п ,
/ /

1 1

1 1

полученные при LUР-разложении

матрицы системы линейных

уравнений А , и столбец с вободных

Матрицы 179

1 1 членов Ь
/ / Выходные даННЪiе : вектор х , представляющий решение

1 1
/ /

for i 1 to п do у"

исходной системы линейных

уравнений Ах=Ь
= ь - " i � l 1 . . у . TT[i l L.. jol ' }]

for i = п downto 1 do х;

(
Ln у . - и х . и . . yl j = i + l l]] ll

Осталось вычислить само LUР-разложение матрицы исходной
системы линейных уравнений. Математические основы приведен­
ного далее алгоритма LUР-разложения здесь опущены, о них можно
прочесть, например, в [1 2]. Сам алгоритм по сути представляет собой
метод исключения Гаусса. Следует сделать только два замечания по
поводу приведенного псевдокода. Первое - это то, что матрицу пере­
становок Р мы получаем в компактном виде вектора перестановок тт.
Второе замечание касается того, что матрицы L и И имеют общие эле­
менты только на главной диагонали, но так как матрица L - единич­
ная нижнетреугольная матрица, ее элементы на главной диагонали
предопределены - это единицы. Поэтому обе матрицы можно хра­
нить в единственной матрице, что и делает приведенный алгоритм.
Более того, матрицы L и И размещаются на месте переданной алго­
ритму матрице А, так что по окончании работы алгоритма

а " = { li/ при i > j,
''

Ии при i :::; j.

Алгоритм LUPDecomposi t i on (A)

/ / Входные даННЪiе : матрица А размером nxn

/! Выходные даННЪiе : вектор тт , представляющий матрицу

1 1

/ /

1 1
for i

for k
begin

перестановок , и матрицы L и И,

размещающиеся на месте матрицы

А , как описано выше

1 to п do 1t . = i i
1 to п do

р = о
for i = k to п do

begin

if 1 aik l > р then

180

end

end

begin

end

р 1 aik l

k' = i

Глава 5

if р = О then error " Матрица вырождена "

swap (nk , nk.)

swap (a, , ak,) / / Обмен строк k и k' матрицы

for i = k + 1 to п do

begin

end

a,k = aik/ akk

for j = k + 1 to п do a i
j aik* akj

Что касается реализации изложенных здесь алгоритмов,
то здесь есть всего лишь одно отличие реализации от
псевдокода - если внимательно рассмотреть псевдокод
LUPSolution, то можно обнаружить, что при вычислении
каждого значения Х; требуется только один элемент

вектора у - а именно У; , и больше нн в каких вычислениях этот эле­
мент не участвует. Таким образом, при реализации можно обойтись
без вспомогательного вектора у.
void LUPDecompos i t ion (matr i x& А , vec tor<int>& Р)

a s s er t (A . rows () = = A . co l s ()) ;

i nt n = A . rows () ;

Р . res i ze (n) ;

for (int i О ; i < n ; + + i) P [i) i ;

for (int k = О ; k < n ; + + k)

{
douЫe р = О . О ;

int kk;

f o r (int i = k; i < n; + + i)

{

i f (fabs (A [i] [k]) > р)

р = fabs (A [i] [k]) ;

kk = i ;

Матрицы 181

as sert ((р ! = О . О) && "Матрица вырождена ") ;

swap (P [k] , P [kk]) ;

swap (A [k] , A [kk]) ;

for (int i = k+ l ; i < n ; + + i)

{

A [i] [k] / = A [k] [k] ;

for (int j = k + 1 ; j < n ; + + j)

A [i] [j] - = A [i] [k] *A [k] [j] ;

vector<douЬle> LUPSolut i on (con s t mat rix& А ,

a s sert (А . rows ()

a s sert (А . rows ()

as s ert (А . rows ()

c onst vec t or<int>& р ,

const vector<douЬ le>& Ь)

A . c o l s ()) ;

p . s i z e ()) ;

b . s i z e (J) ;

vector<douЬle> x (A . rows ()) ;

i nt n = A . rows () ;

for (int i = О ; i < n ; + + i)

{

douЫ e sum О . О ;

for (int j = О ; j < i ; + + j)

sum + = A [i] [j] * x [j] ;

x [i] = Ь [р [i]] - sum ;

for (int i = n- 1 ; i >= О : - - i)

douЫ e sum = О . О ;

for (iпt j = i + 1 ; j < n ; + + j)

{

surn + = A [i] [j] *x [j] ;

x [i] = (x [i J - sum) /A [i] [i] ;

182 Глава 5

return х ;

Как уже говорилось в предыдущем разделе, алгоритм решения
системы линейных уравнений можно применить и для обращения
матрицы. Само собой, сказанное в полной мере относится и к L UР­
разложению.

Пусть имеется LUР-разложение матрицы А на три матрицы L, И
и Р такие, что Р А = L И . Используя процедуру LUPSolution, можно
решить уравнение вида Ах = Ь за время е(п2). Поскольку LUР­
разложение зависит только от А, но не от Ь, можно использовать ту
же процедуру для решения другой системы линейных уравнений
вида Ах = Ь' за то же время е(п2) . Таким образом, имея LUР-раз­
ложение матрицы А, можно решить k систем линейных уравнений с
одной и той же матрицей А за время e(kn2) . Поскольку уравнение
АХ = /11 можно рассматривать как множество из п различных систем
линейных уравнений вида Ах = Ь , для их решения требуется время
е(п3). Поскольку LUР-разложение А также вычисляется за время
е(п3). задача обращения матрицы решается за время е(п3).

Метод наименьших квадратов
Еще одна тема, связанная с решением систем линейных уравне­

ний, - аппроксимация набора экспериментальных данных при по­
мощи метода наименьших квадратов. Предположим, что у нас име­
ется множество из т точек (хру1), (х2 ,у2), • • • , (хт ,Ут) , где значения
У; содержат ошибки измерений. При этом требуется найти функцию
F (х) такую, что У; = F (х;)+ 11; , причем эта функция минимизирует
погрешности 11; (вопрос о том, что именно означает минимизация по­
грешностей, будет рассмотрен чуть позже). Мы ограничимся функ­
циями, представляющими собой линейные комбинации базисных
функций J; (х) :

F(x)= 'I:,cJJ; (x) .
н

где количество слагаемых п и само множество базисных функций вы-
бираются на основе знаний о предметной области рассматриваемой
задачи. Если в качестве базисных функций выбираются J; (х)= х1-1 ,
то искомая функция F представляет собой полином степени п - 1 :

Матрицы 183

При п = т можно найти функцию F, которая удовлетворяет исхо­
дному соотношению с нулевыми погрешностями. Такой выбор функ­
ции F неудачен, поскольку учитывает и все погрешности измерений, что
приводит к плохим результатам при использовании F для предсказания
значений у для некоторого значения х. Обычно гораздо лучшие резу ль­
таты получаются при значительно меньшем п, чем т, поскольку при
этом происходит определенная <;фильтрация�.> ошибок измерений. Для
выбора значения п имеются определенные теоретические предпосыл­
ки, но данная тема лежит за пределами этой книги. Когда п выбрано, в
результате получается переопределенная система линейных уравнений
(т.е. система линейных уравнений, у которой количество уравнений
превосходит количество неизвестных), приближенное решение кото­
рой требуется найти. Рассмотрим, каким образом это можно сделать.

Пусть А - матрица значений базисных функций в заданных точ­
ках: [J; (xi) f2 (x1)

А = fi \x2) !2 \х2)
. . . .

J; (хт) f2 (хт)

fп (xi)]
/,,

�
х2) ,

fп (хт)
т.е. а9 = fj (Х;) , и пусть с = (ck) - искомый вектор коэффициентов
размером п. Тогда

_h (хт)

fп (х1)][с1] [F(x1)] f. (x2) с2 F(x2)

fп (�т) ;п
=

F(�")
представляет собой вектор размера т <;Предсказанных значений» у, а
вектор ri = Ас - у - вектор нев.язок размера т.

Теперь мы вынуждены вновь вернуться к критерию минимизации
ошибок приближения. Могут быть выбраны различные критерии -
например, минимизация максимального отклонения или минимиза­
ция суммы абсолютных значений невязок, однако мы воспользуемся
критерием минимальности нормы вектора ошибок ri (что отражено в
названии метода наименьших квадратов):

184

Поскольку
2 т (п)2 1111\\2 = \!Ас - У\\ = � �а;,с1 - У; ,

можно минимизировать \\11\\ , дифференцируя 1111112
равнивая полученные производные к О:

dlJ11ll2 = �)(f aijcJ - y;)a;k = О · d Ck 1=1 j=I

Глава 5

по всем ck и при-

Эти п �равнений эквивалентны одному матричному уравнению
(Ас - у) А = О, которое в свою очередь эквивалентно уравнению
Ат (А с - у)= О, откуда АтАс = Ату.

В математической статистике такое уравнение называется нор­
мальным уравнением. Если матрица А имеет полный столбцовый
ранг, то существует обратная матрица (АтА J

1
(доказательство этого

факта выходит далеко за рамки данной книги), и решение исходного
уравнения имеет вид

с = ((Ат А(Ат)у = А+у,

где А+ = «Ат А J1
Ат)- псевдообратная к А матрица. Понятие псевдо­

обратной матрицы представляет собой естественное обобщение поня­
тия обратной матрицы на случай не квадратной исходной матрицы.

На практике нормальное уравнение решается путем вычисления
умножения Агу с последующим поиском LUР-разложения Ат А .

Зачастую к методу наименьших квадратов методом линеаризации
приводятся сугубо нелинейные зависимости. Так, например, подбор
коэффициентов для аппроксимации экспериментальных данных
(х; .У;) функцией у = аеьх можно выполнить, прологарифмировав
значения у и подбирая методом наименьших квадратов коэффици­
енты а и Ь в уравнении ln у = а + Ьх для экспериментальных данных
(х)п у;) . После этого значение коэффициента а вычисляется как еа.
Однако необходимо заметить, что при линеаризации происходит из­
менение весов погрешностей измерений, так что решаемая задача не­
сколько отличается от исходной. Кроме того, здесь ничего не было
сказано о погрешности определения коэффициентов, их доверитель­
ных интервалах и т.п. Вы можете найти существенно более полное и
строгое изложение этих вопросов в книге [15).

rлава 6

Комбинаторные
алrоритмы

В некоторых задачах для решения приходится использовать метод
исчерпывающего перебора всех возможных вариантов. Это может быть
перебор всех перестановок из п элементов, всех сочетаний, содержащих
т разных элементов из множества из п элементов, всех подмножеств
данного множества и т.д. Метод исчерпывающего перебора может по­
требоваться для задач, для решения которых нет полиномиальных ал­
горитмов, задач небольшого размера, для которых проще сгенерировать
все возможные варианты, чем реализовывать сложный полиномиаль­
ный алгоритм - словом, причины могут быть самыми разными; вопрос
упирается в генерацию всех возможных комбинаторных элементов.
Такие алгоритмы, как правило, пригодны только для небольших разме­
ров задач в силу их экспоненциальной природы. Здесь мы рассмотрим
генерацию только некоторых подобных комбинаторных объектов.

Вот пример задачи, требующей исчерпывающего перебора. Пусть
у нас имеется ряд цифр 123456789, между которыми мы можем про­
извольным образом расставлять знаки арифметических операций, по­
лучая таким образом различные значения. Например, 123+4+5-6*7-
-89= 1 , 123+4-56-78+9=2 и т.д. Какое минимальное положительное
число невозможно представить в виде такого выражения? Для какого
числа имеется максимальное количество подобных представлений?
Для решения задачи приходится прибегнуть к перебору всех возмож­
ных расстановок арифметических знаков между цифрами - всего
58=390625 вариантов, что не так уж и много для комбинаторных за­
дач. Проще всего сгенерировать все возможные выражения при по­
мощи восьми вложенных циклов, но такая простота не всегда возмож­
на; простейший пример для данной задачи - при переменной длине
строки цифр. (Здесь мы не будем решать эту задачу, приведем только
ответ для заинтересовавшегося читателя: минимальное положитель­
ное число, которое нельзя представить указанным способом, - 910,
наибольшее количество представлений - 147 - имеет число -9, по
145 способов имеют числа 10 и 45.)

186

Генерация всех подмножеств
дан ного множества

Глава 6

Задача генерации всех подмножеств множества из п элементов тес­
но связана с генерацией последовательности всех 2" п-битовых чисел.
При сопоставлении каждому элементу множества своего бита в п-бито­
вом числе любое подмножество однозначно отображается на п-битовое
число, в котором единичные биты означают наличие в подмножестве
соответствующих элементов множества, а нулевые - их отсутствие . • Естественно, проще всего получить все п-битовые числа

простым прибавлением 1 , так что простейшая программа
для вывода всех подмножеств четырехэлементного мно­
жества {АрА2,А3,А1 } выглядит следующим образом.

int rnain ()

const int N = 4 ;

for (uns i gned i n t L

{

О ; L < (1 < < N) ; + + L)

cout < < " { " ;

uns i gned int К L ;

for (int i = 1 ; i <= N ; + + i , К >>= 1)

{

i f (K&Oxl) cout < < А " < < i ;

cout < < " } \n " ;

Как и следовало ожидать, программа выводит все 16 подмножеств
данного множества:

Al

А2

Al А2

АЗ }

Al АЗ

А2 АЗ

Al А2 АЗ

Комбинаторные алгоритмы 187

А4

Al А4

А2 А4

Al А2 А4

АЗ А4 }

Al АЗ А4

А2 АЗ А4

Al А2 АЗ А4

Однако с точки зрения реализации, пожалуй, более корректным
было бы представление возвращаемой последовательности в виде не­
которого итератора. Поскольку вся глава посвящена генерации той
или иной последовательности, в ней будет использоваться представ­
ление последовательности в виде псевдоитератора, которое позволит
использовать в программе при его применении конструкцию вида
for (Enumerator е ; ! е ; + + е)

. . . = * е ; 1 1 Получение очередного члена

1 1 последовательности

Естественно, нельзя считать такое представление универсальным,
но для наших целей его вполне достаточно. Спорными являются во­
просы корректности переопределения операторов ! и *, но в данном
случае их оказывается удобно переопределить именно так - как ви­
дите, при этом цикл выглядит очень просто, хотя, конечно, использо­
вание оператора ! в состоянии привести в некоторое заблуждение.

В этом случае реализация выглядит следующим образом (само со­
бой, максимальное значение N в этой реализации должно быть мень­
ше количества битов в типе unsigned long).
class sub s e t

puЬl i c :

subset (int N_) : L (O) , N (N_) { } ;
bool operator ! () { r e t u rn L < (l <<N) ;

uns igned long operator * () { return L ; }

voi d operator + + () { + + L ;

priva t e :

uns i gned long L ;

int N ;

188

} ;

int rnain ()

const int N = 4 ;

for (subset s (4) ; ! s ; + + s)

{

cout < < " { " ;

uns i gned long К = * s :

for (int i = 1 ; К ! = О ; ++ i , К > > = 1)

{

i f (K& O x l) cout << А " < < i ;

cout < < " } \ n " ;

Глава 6

Упомянутое ограничение на размер множества не слишком стро­
гое. Если воспользоваться 64-битовым целым числом, то это ограни­
чение сведется к N<64. Это не так уж и мало - всего имеется 2N раз­
личных подмножеств множества из N элементов, так что при N=63
мы получим последовательность из порядка 9· 1018 чисел. Даже если
на генерацию каждого тратить один такт процессора с частотой 3 ГГц,
то для полного перебора потребуется порядка 100 лет.

Однако на этом вопрос о генерации всех подмножеств данного
множества рано считать закрытым. Обратите внимание на последо­
вательность полученных подмножеств и их отличие друг от друга.
Например, для перехода от второго к третьему подмножеству надо
удалить из подмножества один элемент и добавить другой. Еще боль­
ше отличаются подмножества в восьмой и девятой строках - для по­
лучения очередного подмножества здесь надо удалить три элемента
и добавить один. Естественным образом встает вопрос о получении
такой последовательности чисел, в которой каждое очередное число
отличается от предыдущего только одним битом. Такие последова­
тельности носят название кодов Грея. tii Хотя имеется очень много вариантов кодов Грея с ука­

занным свойством, мы воспользуемся тем из них, кото­
рый описан в [20] и наиболее быстро и просто реализует­
ся с использованием нашего псевдоитератора. Двоичное

Комбинаторные алгоритмы 189

число В преобразуется в код Грея по формуле С = B ffi (В 1) , где опе­
ратор ffi -- это оператор исключающего или, а битовый сдвиг - без­
знаковый.
c l a s s graycode

{
puЬl i c :

graycode (int N_) : L (O) , N (N_) { } ;
boo l operator ! () { return L < (l <<N) ;

uns igned l ong operator * () { return Lл (L>> l) ;

void operator + + () { + + L ; }

private :

} ;

uns igned l ong L ;

int N ;

Используя данный класс вместо subset в рассматривавшейся
функции main () , мы получим следующий набор подмножеств.

Al

Al А2

А2 }

А2 АЗ

Al А2 АЗ

Al АЗ }
АЗ }
АЗ А4

Al АЗ А4

Al А2 АЗ А4

А2 АЗ А4 }

А2 А4 }

Al А2 А4

Al А4 }

А4 }

Легко убедиться в том, что каждое последующее подмножество
получается из предыдущего путем единственного добавления или
удаления элемента.

190 Глава 6

Генерация всех переста новок
Как и ранее, будем считать, что множество переставляемых эле­

ментов - это просто множество целых чисел от 1 до п, которые в об­
щем случае можно рассматривать как индексы элементов п-элемент­
ного множества.

Будем исходить из того, что задача меньшего размера, состоящая в
генерации всех (п - 1)! перестановок, решена. Получить решение за­
дачи генерации всех п перестановок можно путем вставки п в каждую
из п возможных позиций среди элементов каждой из перестановок
п - 1 элементов. Все эти перестановки будут различны, а их общее ко­
личество будет равно п (п - 1)! = п! . Так мы получаем все возможные
перестановки исходного множества целых чисел от 1 до п.

Число п можно вставлять в ранее сгенерированные перестановки
как слева направо, так и справа налево. Выгодно начинать вставку
п в последовательность 1 2 . . . (п - 1) справа налево и изменять на­
правление всякий раз при переходе к новой перестановке множества {1" . "п - 1} .

Так, для двух чисел это дает перестановки
1 2 2 1

Применение этого же принципа для перестановок трех элементов
даст нам
1 2 3 1 3 2 3 1 2 3 2 1 2 3 1 2 1 3

Преимущество этого способа генерации перестановок такое же, как
и у кодов Грея - каждая перестановка получается из непосредствен­
ной предшественницы при помощи обмена местами только двух
элементов.

Этот же порядок перестановок п элементов можно получить и без
явной генерации перестановок для меньших значений п. Это можно
сделать, связав с каждым компонентом k перестановки направление.
Будем указывать это направление при помощи стрелки над рассма­
триваемым элементом, например:

: и н .
Компонент k в такой перестановке с использованием стрелок называ­
ется мобильным, если стрелка указывает на меньшее соседнее число.
Например, в перестановке 3 2 4 1 числа 3 и 4 мобильны, а 2 и 1 - нет.

Комбинаторные алгоритмы 191

Воспользовавшись понятием мобильного элемента, мы получаем опи­
сание алгоритма Джонсона-Тротгера для генерации перестановок.

Алгоритм JohnsonTro t t er (n)

/ / Входные данные : Натуральное число п
/ / Выходиые данные : Список перестановок

11 множества { 1 , . . . , п }

Инициализируем первую перестановку значением

while (пока) имеется мобильное число k do

begin

end

Находим наибольшее мобильное число k
Меняем местами k и сос еднее целое число ,

на которое указывает стрелка у k
Меняем направление стрелок у всех целых

чисел , превышающих k

Вот пример использования этого алгоритма для п = 3 (наиболь­
шее мобильное число показано полужирным шрифтом):

1 2 3 1 3 2 3 1 2 3 2 1 2 3 1 2 1 3 .

Вот (не самая эффективная, зато простая и понятная)
реализация алгоритма Джонсона-Троттера:

class JTPermu t a t i on

puЬ l i c :

JTPermu t a t ion (int N) ;

bool operator ! ()

vect o r< i n t > opera t or * ()

voi d operator ++ () ;

return ! done ;

return v ; }

priva t e :

} ;

vec t o r< int > v ; / / Текущая перестановка

vec t o r<bool > d ; / / Массив стрелок

bool done ;

JTPermut a t i on : : JTPermut a t i on (in t N)

192

: v (N) , d (N) , done (f a l s e)

{

for (int i = О ; i < N ; + + i) v [i] i ;

voi d JTPermu t a t i on : : operator + + ()

i f (done) return ;

/ / Поиск максимального мобильного числа

int maxmob = - 1 , idx = - 1 ;

for (int i = О ; i < v . s i ze () ; + + i)

i f ((i > О) && (v [i] > v [i - 1]) &&

(d [i] = = f a l s e) && (maxmob < v [i]))

maxmob = v [i] ;

idx = i ;

Глава 6

i f ((i < v . s i z e () - 1) && (v [i] > v [i + l]) &&

(d [i] = = t rue) && (maxmob < v [i]))

maxmob = v [i] ;

i dx = i ;

/ / Перестановки исчерпаны?

i f (maxmob < 0) { done = t rue ; return ;

/ / Обмен элементов

swap (v [idx] , v [idx+ (d [i dx] ? l : - 1)]) ;

swap (d [idx] , d [i dx+ (d [i dx] ? l : - 1)]) ;

/ / Замена стрелок

for (int i = О ; i < v . s i z e () ; + + i)

i f (v [i] > maxmob) d [i] = ! d [i] ;

Порядок перестановок, генерируемых алгоритмом Джонсона­
Троттера, не совсем естественный; было бы более естественно, если
бы последняя перестановка имела вид п (п - 1) . . . 1 . Именно такая
перестановка окажется последней, если перестановки будут упорядо-

Комбинаторные алгоритмы 193

чены в соответствии с лексикографическим порядком, т.е. порядком,
в котором они были бы перечислены в словаре, если рассматривать
цифры как буквы алфавита:

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

Каким образом можно сгенерировать перестановку, следующую за

а1а2 • • • а._1ап в лексикографическом порядке? Если ап_1 < а. , просто
меняем местами два последних элемента (например, за 1 2 3 следует
1 3 2). Если а._1 > а" , следует обратиться к элементу ап-z . Если

ап_2 < ап_1 , мы должны переставить последние три элемента, ми­
нимально увеличивая (п - 2) -й элемент, т.е. помещая на это место
следующий превышающий ап_2 элемент, выбранный из ап_1 и ап , и
заполняя позиции (п - 1) и п оставшимися двумя из трех элементов

а"_2 , а"_1 и а" в возрастающем порядке. Например, за 1 3 2 следует
2 1 3 , а за 2 3 1 - 3 1 2 . В общем случае мы сканируем текущую пере­
становку справа налево в поисках первой пары соседних элементов

а; и а;.1 таких, что а; < а;.1 (и, следовательно, а;.1 > · · · > а"). Затем
мы находим наименьший элемент из «хвоста�>, превышающий а, , т.е.
min {а1 1 а1 > а; , } > i }. и помещаем его в позицию i; позиции с (i + 1) -й
по п-ю заполняются элементами а, , а,.1 1 • • "ап , из которых изъят эле­
мент для вставки в позицию i, в возрастающем порядке. � Этого описания алгоритма вполне достаточно для его � реализации.

class LexPermuta t ion

puЬl i c :

LexPermutat ion (in t N) ;

bool operator ()
vector< i n t > operator * (}
void operator ++ () ;

priva t e :

vec tor< int > v ;

boo l done ;

} ;

ret urn ! done ;

return v ;

LexPermuta t i on : : LexPermut a t ion (int N)

: v (N) , done (fa l s e)

194

for (int i О ; i < N ; + + i) v [i]

void LexPermut a t i on : : opera t o r ++ ()

i f (done) ret urn ;

int i ;

for (i = v . s i z e () -2 ; i > = О ; - - i)

{
i f (v [i] < v [i + l])

int j = v . s i ze () ;

whi l e (v [- - j] < v [i]) ;

swap (v [i J , v [j J) ;

Глава 6

i ;

for (i nt k = i + l , l = v . s i z e () - 1 ; l > k ;

- - 1 , ++k)

swap (v [k] , v [l]) ;

ret urn ;

i f (i < О) done = t rue ;

По поводу генерации всех перестановок в лексикографическом по­
рядке можно заметить, что вся информация, которая нужна для полу­
чения очередной перестановки, содержится в предыдущей. Это озна­
чает, что можно реализовать генерацию в виде функции, получающей
два итератора, которые определяют некоторый диапазон элементов
множества, и выполняющей генерацию очередной перестановки «на
месте», непосредственно в контейнере, указанном переданными ите­
раторами. Именно такими функциями являются функции next_per­

mutation и prev_peпnutation стандартной библиотеки С++.

Генерация всех сочетаний
Вот один из алгоритмов для генерации всех сочетаний из т эле­

ментов п-элементного множества в лексикографическом порядке.

Комбинаторные алгоритмы 195

Алгоритм LexCombina t i ons (n , m)

/ / входиые данные : размер исходного множества п и

/ / размера генерируемых сочетаний

/ / Вшсодиые данные : все сочетания из т элементов

/ / п-элементного множества в

/ / лексикографическом порядке

Создаем массив c [l . . т+2]

for i = 1 to т do c [i] = i - 1

c [m+ l] = п

с [т+2] = О

while true do / / Бесконечный цикл

Ьegin

end

Вывод с очетания c [m] . . . c [2] c [l]

j = 1

while c [j] + l = c [j+ l] do

begin

end

c [j] = j - 1

j = j + 1

if j < = т then c [j] c [j] + 1 ; else return

Элементы с [m+l] и с [m+2] введены искусственно и служат огра­
ничителями. Обратите внимание на следующую особенность алго­
ритма: значение п в явном виде использовано в нем только один раз -
при инициализации.

•
Реализация алгоритма, как и прочих рассматривав­
шихся ранее в этой главе, не содержит ничего особо
сложного.

class Combina t i ons

puЫ ic :

ComЬinat ions (int n , int m) ;

vec tor<int > operator* () ;

bool operator ! ()

{ return done = = f a l se ; }

voi d operator

priva t e :

+ + () ;

196

} ;

vect or< i n t > с ;

i nt n , m ;

bool done ;

Combi nat i ons : : ComЬinat ions (int n_ , int m_)

: c (m_+ 2) , n (n_) , m (m_) , done (fa l s e)

{

for (int j = О ; j < m ; + + j) c [j] j ;

c [m] n ; c [m+ l] О ;

done f a l se ;

\rector< int> ComЬina t i ons : : operator* ()

vector< int > q (c) ;

q . res i z e (m) ;

return q ;

'Jo i d ComЬina t i ons : : operator + + ()

int j ;

for (j = О ; c [j) + l = = c [j + l) ; + + j) c [j] j ;

i f (j >= m) { done = t rue ; return ; }
++c (j] ;

Глава 6

Возможно, проверяя, какая именно последовательность сочета­
ний генерируется данным алгоритмом, вы заметите, что она не вполне
:1ексикографически отсортирована. Так, генерация всех сочетаний по
3 элемента из 5 дает нам следующие сочетания:

о 1 2

о 1 3

о 2 3

1 2 3

о 1 4

о

1

о
1

2

2

2

3

3

3

4

4

4

4

4

Комбинаторные алгоритмы 197

Однако лексикографический порядок, казалось бы, должен быть
следующим:

о 1 2

о 1 3

о 1 4

о 2 3

о 2 4

о 3 4

1 2 3

1

1

2

2

3

3

4

4

4

Все становится на свои места, если мы рассмотрим сочетания как
битовые числа, в которых i-й бит соответствует числу i. Тогда сгене­
рированная последовательность сочетаний приобретает такой вид:

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

И в этом смысле сгенерированная последовательность сочетаний
лексикографически упорядочена. Тот же результат получится при за­
писи исходных сочетаний в зеркальном виде (012-210 и т.д.).

Генерация всех разбиений числа
Здесь мы рассмотрим два алгоритма, связанных с представлением

натурального числа в виде суммы натуральных чисел. Первый из них
генерирует все возможные разбиения числа п а1 2: а2 2: · · · 2: ат 2: 1, та­

кие что а1 + а2 + · · · + ат = п, где 1 � т � п .
Алгоритм Part i t i on (n)

1 1 вхо;циые данные : натуральное число п

1 1 Выхо,циые данные : все возможные представления числа п

198 Глава б

11 в виде суммы натуральных чисел

Создаем массив а [О . . п]

а [О] = О
т = 1
while true do
Ьegin

1 1 Бесконечный цикл

end

а [т] = п

q = т

i f п = 1 then q = q - 1

Вывод разбиения a [l . . m]

if a [q] = = 2 then
begin

а [q] = 1

q = q - 1

т = т + 1

а [т] = 1

end else begin

end

if q = О then return
х = a [q] - 1

a [q] = х
n = m - q + l

т = q + 1

while п :::; х do
begin

end

a [m] = х

т т + 1

п = п - х

Как и в предыдущих разделах, данный алгоритм реали­
зован в виде класса-перечислителя.

c la s s par t i t ion

{
puЬl ic :

part i t ion (int N_) : n (N_) , done (fa l s e)

Комбинаторные алгоритмы

a . res i ze (n) ;

а [О] = n ;

m · = О ; q = m - ((n= = l) ? 1 О) ;

bool operat o r ! ()

{ return done = = f a l s e ;

vec tor<int> operator * () ;

voi d operator + + () ;

private :

} ;

int m , n , q ;

vec tor<int> а ;

bool done ;

vector<int> part i t ion : : operator* ()

vector<int> Ь (а) ;

b . r e s i z e (m + l) ;

return Ь ;

void part i t i on : : operator++ ()

{
i f (q = = - 1) { done = t rue ; return ; }

i f (a [q] = = 2)

a [q- -] 1 ;

a [+ +m] = 1 ;

e l s e {

int х = a [q] - 1 ;

a [q] = х ;

n = m - q + 1 ;

m = q + 1 ;

wh i l e (n > х)

a [m+ + J = х ;

n - = х ;

а [ш] = n ;

q = m - ((n= = l) ? 1 О) ;

199

200 Глава 6

Основное изменение в реализации по сравнению с исходным ал­
горитмом заключается в отказе от ограничителя а [О] путем переноса
проверки завершения алгоритма в начало оператора ++. Снижение
эффективности за счет дополнительной проверки в данном случае
невелико, а с учетом возврата результата в виде vector<int> полнос­
тью себя оправдывает, поскольку больше не требуется удалять при
возврате первый элемент вектора.

Вот пример генерации всех разбиений для числа 6:
6

5 1
4 2
4 1 1
3 3
3 2 1
3 1 1 1
2 2 2
2 2 1 1
2 1 1 1 1
1 1 1 1 1 1

Второй алгоритм предназначается для генерации аналогич­
ных разбиений на фиксированное число частей, т.е. он генериру­
ет все возможные разбиения числа п а1 2: а2 2: • · · 2: ат 2: 1 такие, что
al + а2 + . . . + ат = п , где т - фиксированное число, удовлетворяющее

условию п ;:: т ;:: 2 .
Алгоритм Part i t i on (n , т)

1 1 Входиые данные : натуральное число п и количество

1 1

1 1

частей т , на которое выполняется

разбиение

1 1 Выходиые данные : все возможные представления

1 1 числа п в виде суммы т

1 1 натуральных чисел

Создаем массив a [l . . m+ l]

a [l] = п - т + 1
for j = 2 to т do a [j] = 1
а [т+ l] = - 1

while true do
begin

/ / Бесконечный цикл

Вывод разбиения a [l . . m]
if а [2 J < а [1 J - 1 then

Комбинаторные алгоритмы

end

Ьegin
a [l] = a [l] - 1

а [2] = а [2] + 1

end else Ьegin
j = 3

end

s = a [l] + а [2] - 1

while a [j] � a [l] - 1 do
Ьegin

end

s = s + а [j]

j j + 1

if j > т then return
х = а [j] + 1

а [j] = х

j = j - 1

while j > 1 do
Ьegin

end

а [j] = х

s = s х

j = j - 1

a [l] = s

201

Реализация данного алгоритма точно так же, как и преды­
дущего, избавляется от дополнительного элемента-огра­
ничителя путем дополнительной проверки:

c l a s s part i t ion

{
puЫ i c :

part i t i on (int N_ , i nt М_)

: n (N_) , rn (M_) , done (fa l s e)

a . re s i z e (rn , l) ;

a [O J = n - rn + 1 ;

bool operator ! ()

{ return done f a l s e ;

vec t or< int> operat or * ()

202

{ return а ;

voi d operator + + () ;

privat e :

} ;

int rn , n , q ;

vector< i n t > а ;

bool done ;

void part i t ion : : operator++ ()

i f (a [l] < a [O J - 1) {

- -а [О] ;

++а [1] ;

e l s e {

int k = 2 ;

int s = a [O] +a [l] - 1 ;

whi le ((k < rn) && (a [k] > = а [О] - 1))

{
s + = a [k+ + J ;

i f (k > = rn) { done t ru e ; return ; }
int х = a [k] + l ;

a (k - - J = х ;

whi l e (k > О) {
s - = (a [k- -] х) ;

а [0] = s ;

Глава б

Вот что выводит данная программа при генерации всех троек на­
туральных чисел, в сумме составляющих 10:

8

7

6

5

6

5

4

4

1

2

3

4

2

3

4

3

1

1

1

1

2

2

2

3

Комбинаторные алгоритмы 203

Генерация всех деревьев
В данном разделе мы рассмотрим один из комбинаторных алго­

ритмов, который генерирует все возможные корректные расстановки
п пар скобок (под корректной расстановкой мы подразумеваем рас­
становку, когда пары либо вложены одна в другую, либо не пересе­
каются). Естественно, возникает вопрос - как пары скобок связаны
с деревьями? Оказывается, существует взаимнооднозначная связь
между расстановкой пар скобок и деревьями. Рассмотрим, например,
расстановку скобок, показанную на рис. 6. 1 . Все открывающие скоб­
ки пронумерованы цифрами над ними, закрывающие - под ними.
Линии под строкой скобок соединяют соответствующие друг другу
пары скобок - 12, 2 1 , 38, 47, 53, 64, 76 и 85 (первая цифра указыва­
ет открывающую скобку, вторая - закрывающую). Показанная на
рис. 6. 1 строка соответствует лесу, приведенному на рис. 6.2.

1 2 3 4 5 6 7 8 (()) ((() () (())))
1 2 3 4 5 6 7 8

� 1 1 LJ LJ � 1 1
Рис. 6. 1. Пример расстановки 8 пар скобок

······· , �2 ' / ·-., r : i
/ ' :. '
; 21 \
\ ' ./

Рис. 6.2. Лес, соответствующий расстановке скобок, приведенной на рис. 6. 1

Обратите внимание на то, что при обходе в прямом порядке оказы­
ваются корректно упорядочены открывающие скобки - 12, 2 1 , 38, 47,

204 Глава 6

53, 64, 76, 85, а при обходе в обратном порядке - закрывающие скобки:
21 , 12, 53, 64, 85, 76, 47, 38. Чтобы восстановить последовательность ско­
бок для леса, можно обойти его так, как показано на рис. 6.2 пунктирной
линией. Проходя слева от узла, мы ставим соответствующую открыва­
ющую скобку, а справа - закрывающую. Убедитесь сами в справедливо­
сти сказанного для приведенных на рис. 6. 1 и 6.2 примеров.

В свою очередь, имеется однозначная связь между лесом и бинар­
ным деревом (см., например, [8, раздел 2.3.2]) - для этого выполняется
связывание всех потомков каждой семьи и удаление всех вертикаль­
ных связей, за исключением связи первого дочернего узла с родителем.
В результате мы получим бинарное дерево, показанное на рис. 6.3.

Рис. 6.З. Представление леса Шl рис. 6.2 в виде биш�рного дерева

Теперь становится очевидно, что для генерации всех лесов с п узла­
ми, как и для генерации всех бинарных деревьев с п внутренними узла­
ми, достаточно сгенерировать все расстановки п пар скобок. Решить
эту задачу можно при помощи следующего алгоритма расстановки
вложенных скобок в лексикографическом порядке.
Алгоритм Nes t edParen theses (n)
1 1 Входкые даииые : количество пар скобок п
1 1 Выходкые даиные : все возможные расстановки скобок
Создаем мас сив а [О . . 2 п] (а [О] - вспомогательный

Комбинаторные алгоритмы

элемент ; расстановка располагается в элементах
массива а [1 . . 2 п]
for k = 1 to п do
Ьegin

end

a [2 * k- 1] ' ('
а [2 * k] ') '

а [О] = ') '
т = 2 *п - 1
while true do
Ьegin

end

Вывод строки a [l . . 2 * n]
а [т] = ') '
if а [т- 1] = ') ' then
Ьegin

а [m- 1] = / ('
т = т - 1

end
else
begin

end

j = т - 1
k = 2 * п - 1
while a [j] ' (' do
begin

end

a [j) = ') ,
a [k] = ' ('
j j 1
k = k - 2

if j = О then return
a [j) = ' ('
т = 2 * п - 1

205

� Как обычно, никаких особых трудностей � этого олrоритма не предсrавляет.
реализация

class parentheses

206

puЫ i c :
parenthese s (int N_) : n (N_) , done (fa l s e)

а = new char [2 *n+2] ;

f or (int i = О ; i <= n ; + + i) {
a [2 * i + l] ' (' ;
a [2 * i] ') ' ;

a [2 * n+ l] = О ;

m = 2 *n- 1 ;

-parentheses () { del e t e [] а ; }

bool operator ! ()
{ return done = = f a l s e ;

const char * operator * ()

{ return а + 1 ; }
void operat or + + () ;

private :

} i

char * а ;

int n , m ;

bool don e ;

void parentheses : : opera t or++ ()

{
а [m] = ') ' ;
i f (a (m- 1] ') ')

а [m- 1] = ' (' ;
- -m ;
return ;

int j = m - 1 , k = 2 *n- 1 ;

whi l e (a [j] = = ' (')

{
а [j J ') ' ;

a [k] ' (' ;
- - j ;
k - = 2 ;

i f (j = = О) { done

а [j] = ' (' ;
m = 2 *n - l ;

t rue ; return ; }

Глава 6

Глава 7

Дополнительные
вопросы

В этой главе нас интересуют не конкретные алгоритмы для реше­
ния тех или иных задач, а некоторые методы разработки алгоритмов.
Это - рандомизированные алгоритмы, динамическое программиро­
вание, метод поиска с возвратом. Конкретные алгоритмы и их реали­
зация в данной главе носят сугубо иллюстративный характер, однако
вполне могут помочь вам в разработке собственных решений подоб­
ных задач.

В конце этой главы приведено несколько алгоритмов для работы с
календарем. Эти алгоритмы оказались в данной главе постольку, по­
скольку они представляют собой скорее просто расчетные формулы,
чем алгоритмы в общепринятом понимании (тем не менее, как по­
казывает практика, вопросы работы с календарем зачастую ставят в
тупик начинающих программистов).

Рандомизирован ные алгоритмы
В основном мы имеем дело с детерминистическими алгоритмами,

т.е. такими алгоритмами, которые всегда для одних и тех же входных
данных выполняют одну и ту же последовательность действий и при­
водят к одному и тому же конечному результату. Однако существует и
другой класс алгоритмов - рандомизированные алгоритмы, которые
в процессе работы используют случайные числа. Алгоритм называ­
ется рандомизированным, если его поведение определяется не только
набором входных величин, но и значениями, которые выдает гене­
ратор случайных чисел (на практике в распоряжении программиста
обычно имеется генератор псевдослучайных чисел, т.е. детерминисти­
ческий алгоритм, который возвращает числа, ведущие себя при стати­
стическом анализе как случайные).

Вспомним, например, алгоритм быстрой сортировки, который ·в
среднем случае имеет эффективность O(n logn) , а в худшем - О(п2) ,

208 Глава 7

причем если в качестве опорного брать первый элемент, то наихудший
случай представляет собой уже отсортированный массив. Однако
если перед применением быстрой сортировки случайным образом
переставить элементы сортируемого массива, то вероятность того,
что мы получим упорядоченный массив, исчезающе мала. Заметим,
что в силу случайности перестановки два запуска алгоритма быстрой
сортировки для одного и того же массива данных будут выполнять
различные действия и потребуют различного количества сравнений.

Другой способ рандомизации алгоритма быстрой сортировки за­
ключается в предложении Хоара выбирать опорный элемент случай­
ным образом.

Главное в рандомизированных алгоритмах то, что никакие вход­
ные данные не могут вызвать наихудшее поведение алгоритма. Даже
злейший враг не сможет подобрать для сортировки плохой входной
массив, поскольку дальнейшая случайная перестановка приводит к
тому, что порядок входных элементов становится несущественным.
Рандомизированные алгоритмы плохо ведут себя лишь тогда, когда
генератор случайных чисел выдаст <�неудачную» перестановку.

Генераторы псевдослучай ных чисел
Генерация псевдослучайных чисел - это очень сложный матема­

тический вопрос, который просто невозможно хотя бы сколь-нибудь
полно рассмотреть в этой книге. Поэтому мы просто отсылаем чита­
телей к [9, глава 3], а здесь приведем лишь пару реализаций генерато­
ров случайных чисел, предложенных в книге Кнута, генерирующих
равномерно распределенные случайные числа.

Первый генератор имеет такой вид:
cons t l ong ММ 2 1 4 7 4 8 3 6 4 7 ;

const l ong АА
const l ong QQ

con s t long RR

4 8 2 7 1 ;

4 4 4 8 8 ;

3 3 9 9 ;

1 1 l ong (MM / AA)

/ / ММ % АА ;

х = AA* (X% QQ) - RR* l ong (X / QQ) ;

i f (Х < 0) Х + = ММ ;

R R < QQ !

Как показывает непосредственный вычислительный эксперимент,
период последовательности Х равен 1 556 1 13569, минимальное значе­
ние - 1, максимальное - 2 147 483646.

Дополнительные вопросы 209

Чтобы получить более длинную последовательность псевдослу­
чайных чисел, можно скомбинировать приведенную программу с дру­
гой, дописав дополнительно несколько операций:
const long МММ 2 1 4 7 4 8 3 3 9 9 ;

const long ААА
const long QQQ

cons t long RRR

4 0 6 9 2 ;

5 2 7 7 4 ; / / l ong (ММ/ AA)

3 7 9 1 ; / / ММ % АА ; RR < QQ !

у = AAA* (Y%QQQ) - RRR * l ong (Y / QQQ) ;

i f (У < О) У + = МММ ;
Z = Х - У ; i f (Z <= 0) Z + = ММ

Как Х, так и У должны быть установлены не равными О, z никогда
не равно О, лежит в диапазоне между О и 2:11 • Длина периода последо­
вательности z приблизительно равна 7 4 квадриллионам.

Получение случайной перестановки
В качестве одного из способов рандомизации алгоритма быстрой

сортировки была упомянута случайная перестановка входной после­
довательности чисел. Задача получения некоторой случайной пере­
становки элементов массива А[1 .. п] встречается не только в рандо­
мизированном алгоритме быстрой сортировки - это достаточно рас­
пространенная процедура.

Имеются различные методы «перетасовки» элементов массива, но
нас интересуют только те, которые дают нам случайные перестановки
с равномерным распределением (т.е. все возможные случайные пере­
становки должны быть равновероятны; вероятность получения каж­
дой из возможных п ! перестановок должна быть равна 1/п !) . Один
из простейших и быстрых алгоритмов получения случайной переста­
новки с равномерным распределением за время О (п) без использова­
ния дополнительной памяти таков:
Алгоритм RandomizeArray (A)

/ / Входные даииые : мас сив А размером п элементов

/ / Выходные даНИЪiе : случайная перестановка А

for i = 1 to п do swap (А [i] , А [Random (i , п)]

В этом алгоритме используется функция Random(i,n), представля­
ющая собой генератор равномерно распределенных чисел в интервале
от i до п включительно (о таких генераторах мы только что говорили
в предыдущем разделе).

210 Глава 7

Метод Монте-Карло
К рандомизированным алгоритмам можно отнести численные ме­

тоды Монте-Карло, формально заключающиеся в том, что задается
случайная величина �' математическое ожидание которой равно ис­
комой величине z, т.е. М[�]= z , после чего осуществляется серия п
независимых испытаний случайной величины � и приближенно по-
лагается

в силу того, что м[�J= z ' при любом натуральном п м[�] = z .
Если дисперсия D [�] = cr конечна, то D [�] = cr2 / п , причем распре­
деление случайной величины � асимптотически нормально (так что,
например, при достаточно большом п (на практике - при п > 10) не­
равенство jz -�1 < Зсr/ Гп выполняется с вероятностью около 0.997).
На практике значение cr оценивают по формуле

п (п)2
п��: - ��;

п - 1 п(п - 1)
Рассмотрим конкретный пример применения метода
Монте-Карло - для вычисления определенного инте­
грала

1
/ = f4J1- x2dx .

о
Пусть Т\ - равномерно распределенная на отрезке [О, 1] случайная

величина, т.е. случайная величина с плотностью распределения

) { 1, О � х � 1.
Рч (х = О, �О 1] х е: L ' .

Тогда � = 4�1 -ri2 - тоже некоторая случайная величина, причем
по определению математического ожидания

1 1
МЮ= f4J1- x2 Рч (х)dх = f4J1- x2dx = / .

Таким образом,
о о

- 1 � � 1 "" � = -L.. 4v 1 - Т\; . п 1 = 1

Дополнительные вопросы 211

Значение а оценим по приведенной выше формуле.
Вот как выглядит соответствующая программа для расчета значе­

ния интеграла с разными значениями п.
/ / Генератор случайных чисел от О до RandMax

const i nt RandMax 2 1 4 7 4 8 3 6 4 6 - 1 ;

int Rand (int s eed = 0)

const int ММ

const i nt АА
con s t i nt QQ

2 1 4 7 4 8 3 6 4 7 ;

c ons t int RR

s ta t i c int Х 1 ;

4 8 2 7 1 ;

4 4 4 8 8 ;

3 3 9 9 ;

i f (se ed ! = 0) Х = s eed ;

Х = AA* (X%QQ) -RR* (X/ QQ) ;

i f (Х < О) Х + = ММ ;

return Х- 1 ;

/ / Подсчет среднего и дисперсии

void mc (int Count , douЫ e&M , douЫ e & s i gma)

{
douЬl e I = О . О , I 2 = О . О ;

for (int i = О ; i < Coun t ; + + i)

{

/ / х - случайное число от О до 1

douЬle х = douЬl e (Rand ()) / RandМax ;

х = 4 . 0 * sqrt (l . O - х * х) ;

I + = х ;

I 2 + = х * х ;

М = I / Count ;

s i gma = sqrt ((Count * I2 - I * I) / C ount / (Count - l)) ;

int main ()

212

/ / Количество проб , для которых

/ / проводится эксперимент

int Count s [] =
{ 1 0 ' 1 0 0 ' 1 0 0 0 ' 1 0 0 0 0 ' 1 0 0 0 0 0 ' 1 0 0 0 0 0 0 '

1 0 0 0 0 0 0 0 , 1 0 0 0 0 0 0 0 0 } ;

Глава 7

print f (" N Интеграл 3 * s i gma / sqrt (N) "

Отклонение \n ") ;
print f (" - "

" - - - - - - - - - - - - - - - - \n ") ;

f or (int i = О ;

i < s i zeof (Count s) / s i zeo f (Coun t s [O]) ; + + i)

douЫ e M , D ;

mc (Count s [i] , M , D) ;

print f (" %9 d % 1 0 . 6 l f % 1 5 . l O l f % 1 5 . l O l f \ n " ,

Counts [i] , М ,

D* 3 / sqrt (douЬ l e (Counts [i])) ,

fabs (M - 3 . 1 4 1 5 92 6)) ;

Как видно из представленных ниже результатов расчетов, значе­
ние определенного интеграла, полученное методом Монте-Карло,
мало отличается от точного значения, равного 7t. Отклонения при­
ближенного значения от точного, как видите, существенно меньше
принятого в качестве границы значения За/ Гп .

N Интеграл 3 * s igma/ sqrt (N) Отклонение

1 0 3 . 1 5 57 0 3 0 . 9 7 4 6 1 5 4 2 9 8 о . 0 1 4 1 1 0 8 5 5 8

1 0 0 3 . 1 2 9 5 2 8 0 . 2 7 5 8 9 8 4 9 8 5 0 . 0 1 2 0 6 5 06 2 6

1000 3 . 1 4 6 6 5 1 0 . 0 8 3 7 7 2 0 5 2 2 0 . 0 0 5 0 5 8 8 1 8 3

1 0 0 0 0 3 . 1 3 8 1 6 5 0 . 0 2 6 8 2 8 0 8 1 2 0 . 0 0 3 4 27 9 9 5 8

100000 3 . 14 3 5 5 0 0 . 0 0 8 4 5 6 0 860 0 . 0 0 1 9 5 7 3 0 3 2

1000000 3 . 1 4 2 7 5 0 0 . 0 0 2 67 5 5 9 5 1 0 . 0 0 1 1 57 22 7 8

1 0 000000 3 . 1 4 2 0 4 1 0 . 0 0 0 8 4 6 7 9 9 2 0 . 00044 843 3 6

1 0 0 000000 3 . 14 1 6 1 3 0 . 0 0 0 2 67 84 4 5 0 . 0 0 0 0 2 0 2 8 1 8

Кратные интегралы вычисляются методом Монте-Карло аналогич­
но. Что касается сравнения метода Монте-Карло и применения ква-

Дополнительные вопросы 213

дратурных формул, то преимущества метода Монте-Карло проявля­
ются в многомерных случаях, при сложных областях интегрирования.
Недостатком метода является его вероятностный характер, т.е. отсуг­
ствие строгих, стремящихся к нулю при п � оо оценок погрешности.

Динамическое программирование
Динамическое программирование позволяет решать задачи, ком­

бинируя решения вспомогательных задач. В данном случае истори­
чески сложившееся название «программирование� означает метод,
а не составление компьютерного кода. Динамическое программи­
рование находит применение тогда, когда вспомогательные задачи
используют решения одних и тех же подзадач, причем каждая вспо­
могательная задача решается только один раз, после чего ответ со­
храняется в таблице.

Динамическое программирование, как правило, применяется к за­
дачам оптимизации, в которых возможно наличие многих решений, и
каждому из решений можно сопоставить некоторое значение. Задача
состоит в том, чтобы найти решение с оптимальным (минимальным
или максимальным) значением.

Обычно решение задачи методом динамического программирова­
ния состоит из четырех этапов. Сначала описывается структура опти­
мального решения, затем рекурсивно определяется значение, соответ­
ствующее оптимальному решению, после чего тем или иным способом
вычисляется значение, соответствующее оптимальному решению, и
при необходимости составляется само оптимальное решение.

В этом разделе применение динамического программирования
будет проиллюстрировано на примере решения задачи об оптималь­
ном перемножении матриц, которая формулируется следующим об­
разом. Имеется последовательность из п матриц АР А2, ••• , А •• и нам
требуется вычислить их произведение А1 ·А2• ••• -А •. Произведения ма­
триц вычисляются при помощи стандартного алгоритма, основан­
ного на определении произведения матриц, т.е. для перемножения
матриц размером тхп и пхр требуется выполнить тпр умножений
чисел. Поскольку произведение матриц ассоциативно, оно не зависит
от порядка вычисления произведений отдельных матриц, т.е., напри­
мер, (А1А2)А3 =А,(А�3), но количество умножений чисел при этом
оказывается разным. Нам надо найти такую расстановку скобок для

214 Глава 7

последовательности из п матриц, чтобы количество выполненных
умножений было минимальным. Само собой, цепочка согласованна,
т.е. количество столбцов в каждой матрице последовательности со­
впадает с количеством строк матрицы, следующей за ней (размер i-й
матрицы - р,_1 х Р; .

Динамическое программирование применимо в первую очередь
тогда, когда в оптимальном решении задачи содержатся оптимальные
решения подзадач. Применительно к нашей задаче о перемножении
последовательности матриц это означает, что если мы рассмотрим
оптимальную расстановку скобок для произведения матриц A;· ... AJ'
и если оно нетривиально (i<j), то оно обязательно будет разбито на
две части A;· ... Ak и Ak+1 - . • • A1 (i-:;,k<j), причем расстановки скобок в
обеих частях оптимальны. Это легко доказать от противного - если
расстановка скобок в какой-то из частей не оптимальна, заменив ее
оптимальной, мы уменьшим количество умножений чисел в ней и, со­
ответственно, количество умножений при вычислении всего произве­
дения матриц. А это противоречит предположению об оптимальности
исходной расстановки скобок.

Такое доказательство - необходимый шаг динамического про­
граммирования, входящий в качестве части в первый из перечис­
ленных выше четырех этапов динамического программирования.
Теперь рассмотрим общее количество умножений чисел, необходи­
мых для определения произведения А.· ... А .. Обозначим его как т ... 1) у
Тогда в тривиальном случае (i =j) mij = O, а для нетривиального слу-
чая при показанном выше разбиении цепочки на две выполняется
соотношение mij=m;k+mk+ i/Pk-1PJ1k+i · Следовательно, оптимальное
количество умножений чисел для вычисления произведения можно
определить как

при i = j,

при i < j.

Решение исходной задачи представляет собой величину m1", кото­
рая может быть определена при помощи соответствующей рекурсив­
ной процедуры. Проблема в том, что непосредственное применение
рекурсии приведет к тому, что многие значения mij будут вычисляться
многократно. Избежать этого можно при помощи использования мас­
сива т[п,п), который заполняется вычисленными значениями "снизу
вверх� - от значений для одноэлементных цепочек т;; до последнего,

Дополнительные вопросы 215

интересующего нас элемента массива m[1 ,n], который и представляет
собой окончательное решение поставленной задачи. Параллельно с
массивом т мы используем массив s, в который в элементы s[ij] за­
носим индексы k элементов, при которых достигаются оптимальные
стоимости - эта таблица затем используется при построении опти­
мального решения. Понятно, что так как i<j, заполняется только по­
ловина каждой таблицы. Заполнение в восходящем порядке приводит
к тому, что при вычислении очередного значения mij все необходимые
для этого элементы таблицы т уже определены.
Ma t rixChain (p , n)

/ / Входные даиные : массив размеров матриц р для

1 1 последовательности матриц длиной п
/ / выходные даННЪiе : массивы т и s - количества

/ /

1 1
for i

for 1
begin

умножений чисел и индексов

разбиения в оптимальном случае

1 to do m [i , i] = О

2 to п do

for i 1 to п - 1 + 1 do

end

begin

end

j = i + 1 - 1

m [i , j] = оо
for k i to j

begin
1 do

end

q = m [i , k] + m [k+ l , j] + p [i - l] p [k] p [j]

i f q < т [i , j] then
begin

end

m [i , j] q

s [i , j] k

return т и s

Определив т и s, мы сразу же получаем требовавшееся количе­
ство умножений чисел для вычисления оптимальной цепочки m(1 ,n],
а построение оптимального решения - вывод расстановки скобок -
легко осуществить при помощи очередной рекурсивной процедуры.

216 Глава 7

Зная индекс разбиения для цепочки A;" · · · -Al' легко вывести расстанов­
ку скобок как

(расстановка для А;· ... -Аk)(расстановка для Ak+ 1 • ••• -A),

т.е. использовать следующую рекурсивную процедуру:
Pri ntChain (s , i , j)

i f i = j then prin t "А [" , i , "] "
else begin

end

pri n t " ("

Pri n t Chai n (s , i , s [i , j])

Prin t Chain (s , s [i , j] + l , j)

pri n t ") "

Построение таблиц можно осуществить и иначе, нисходящим
методом. При этом мы непосредственно используем рекурсивное со­
отношение для mij, но когда мы сталкиваемся с необходимостью вы­
числения очередного значения, то начинаем с проверки - не вычис­
лялось ли это значение ранее и нет ли его в таблице. Если есть - оно
просто извлекается из таблицы; если нет - оно вычисляется и вно­
сится в таблицу.

Здесь не приводится псевдокод такого решения, но показанная да­
лее реализация решения данной задачи на С++ использует именно
нисходящий подход. Следует заметить, что в этой реализации инди­
катором того, что значение еще не вычислено, служит нулевое зна­
чение (которое может возникать только в случае i=j, но этот случай
рассматривается в программе отдельно, так что нулевое значение в
качестве индикатора вполне оправданно) . • Для иллюстративности в программе решаются последо­

вательно две задачи - поиска минимального и макси­
мального количества умножений чисел, необходимых
для вычисления матричного произведения А1 -А2• ••• -Ап.
Доказательство оптимальности структуры решения для

поиска максимального количества умножений остается читателям в
качестве небольшого упражнения.
include < i o s t ream>

inc lude < l imi t s >

using namespace s t d ;

int Р [] = { 3 0 , 3 5 , 1 5 , 5 , 1 0 , 2 0 , 2 5 } ;

Дополнительные вопросы

/ / Размеры матриц :
/ / 3 0х3 5 , 3 5х1 5 , 1 5х 5 , Sxl O , 1 0х2 0 , 2 0х2 5

/ / Матрица i имеет размер P [i] х P [i + l]

/ / Массивы , описанные в тексте раздела
stat i c long long

M [s i zeof (P) / s i z eof (P [O J) - 1]

[s i zeof (P) / s i z eof (P [0]) - 1] { О } ;

stat i c long long

S [s i z eof (P) / s i zeof (P [0]) - 1]

[s i z ео f (Р) / s i z ео f (Р [О]) - 1] { О } ;

int Mat r i xCha i nMin (i nt i , int j)

i f (i = = j) return О ;

i f (М [i] [j] > О) return М [i] [j] ;
int Count

for (int k

{
int q

numeri c_l imi t s < int > : : max () ;

i ; k < j ; + + k)

Mat r ixChai nMin (i , k) +

Mat rixChai nMin (k+ l , j) +

P [i] * P [k+ l] * P [j + l] ;
i f (q < Count) {

Count = q ;

S (i] [j] = k ;

M (i] [j] = Count ;

return Count ;

int Mat r ixChainМax (int i , int j)

i f (i = = j) return О ;

i f (M [i] [j] > 0) return M [i] [j] ;
int Count

for (int k

{
int q

О ;

i ; k < j ; + + k)

217

218

MatrixCha i nMax (i , k) +

Mat r i xChainМax (k+ l , j) +

P [i] * P [k' 1) * P [j + l] ;

i f (q > Coнnt) {
Count = q ;

S [i] [j] = k ;

M [i] [j] = Count ;

return Count ;

Глава 7

voi d PrintCha i n (int i , int j)

i f (i = = j) cout << • д [• << i + l << • J • ;

e l s e {

c out << • (• ;

PrintChain (i , S [i] [j]) ;

PrintChain (S [i] [j] + l , j) ;

cout << ") " ;

voi d main ()

/ / Поиск минимального количества умножений

cout << •мin : " <<

Mat r i xChainMin (O , s i zeof (P) / s i zeo f (P [0]) - 2)

<< endl ;

PrintChain (O , s i z eo f (P) / s i zeof (P [0]) -2) ;

cout << endl ;

/ / Подготовка к вычислению максимума

memset (M , 0 , s i zeof (M)) ;

memset (S , 0 , s i ze o f (S)) ;

/ / Поиск максимального количества умножений

cout << " Мах : • <<

MatrixChai nMax (O , s i zeof (P) / s i z eof (P [0]) - 2)

<< endl ;

Дополнительные вопросы

P r i n t Chain (O , s i z e o f (P) / s i z e o f (P [0)) - 2) ;

cout << endl ;

219

• Применение метода нисходящего решения с запомина--.• нием можно коротко и эффектно проиллюстр
6
ировать

на примере вычисления чисел Фибоначчи. За удем на
секунду о том, что числа Фибоначqи можно вычислить
очень быстро, за время 0(1) при помощи явной зависи­

мости от п, и воспользуемся рекуррентной формулой F, = F,_2 + F,_1 •
Это дает нам следующую функцию:
int f ib (int n)

i f (n < 2) return n ;

return f i b (n- 1) + f i b (n - 1) ;

Теперь попробуем сделать то же, но с использованием подхода с
запоминанием. Для простоты ограничимся числами Фибоначчи до
пятидесятого.
int f ibM (l ong l ong n)

s t a t i c int F [S l] = { 0 } ;

i f (n < 2) return n ;

i f (F [n]) return F [n] ;

return (F [n] = f i bM (n- 1) + f i bM (n- 2)) ;

Будет весьма поучительно - как с точки зрения демонстрации эф­
фективности метода запоминания для такого рода задач, так и с точки
зрения наглядной демонстрации экспоненциального алгоритма -
сравнить время вычисления, например, сорокового или пятидесятого
(правда, для этого тип int придется заменить на long long) числа
Фибоначчи. Если вы решитесь на такой эксперимент, то, запустив
программу, не волнуйтесь - она не зациклилась (например, процес­
сору Celeron 2 ГГц потребовалось порядка 30 секунд для выqисления
45-го числа Фибоначчи таким способом) ...

Более подробно динамическое программирование описано
в [12, 2 1] .

220 Глава 7

Жадные алгоритмы
С динамическим программированием тесно связаны так называ­

емые жадные алгоритмы, которые в принципе можно рассматривать
как частный случай динамического программирования. Связь их об­
условлена наличием оптимальной подструктуры задачи, т.е. в опти­
мальном решении задачи находятся оптимальные решения подзадач.

Жадный подход строит решение посредством последовательности
шагов, на каждом из которых получается частичное решение постав­
ленной задачи, пока не будет получено полное решение. При этом на
каждом шаге - и это является главным в рассматриваемом методе -
выбор должен быть

• допустимым, т.е. удовлетворять ограничениям задачи;

• локально оптимальным, т.е. наилучшим локальным выбором
среди всех допустимых вариантов, доступных на каждом шаге;

• окончательным, т.е., будучи сделан, он не может быть изменен
последующими шагами алгоритма.

Эти требования поясняют название метода: на каждом шаге он
предполагает •жадный� выбор наилучшей доступной альтернативы в
надежде, что последовательность локально оптимальных выборов при­
ведет к глобально оптимальному решению всей задачи. Существуют
задачи, для которых последовательность локально оптимальных вы­
боров приводит к оптимальному решению для любого экземпляра рас­
сматриваемой задачи, но есть и другие задачи, для которых это не так;
для задач такого рода жадный алгоритм может представлять интерес
только в том случае, если нас устраивает приближенное решение.

Простейшим примером решаемой жадным алгоритмом задачи мо­
жет служить задача о том, как выплатить сумму в 98 копеек монетами
номиналом 1, 2, 5, 10 и 25 копеек так, чтобы общее количество монет
было минимально. Жадный алгоритм в этом случае состоит в том, чтобы
на каждом шаге построения решения использовать монеты максималь­
ного номинала, с тем чтобы их было как можно меньше (достижение
локального минимума). Сначала мы берем три монеты по 25 копеек (4
монеты дают сумму, большую чем требуется). Остается выплатить 98-
25*3=23 копейки. На втором шаге мы берем очередные наибольшие по
номиналу монеты, которыми можно выдать недостающую сумму, - две
монеты по 10 копеек. Два следующих шага дают нам по одной двух- и
однокопеечной монете, тем самым позволяя выплатить всю сумму 7 мо­
нетами. (Заметим, что такой жадный алгоритм подходит не для любой

Дополнительные вопросы 221

суммы и набора монет - например, сумму в 15 копеек монетами 1, 5 и 1 1
копеек можно выплатить тремя монетами по 5 копеек, но применение
жадного алгоритма даст нам пять монет - 1 1 копеек и четыре монеты
по 1 копейке. Однако, решая эту задачу методом динамического про­
граммирования, мы получим правильный ответ.)

Как правило, жадные алгоритмы интуитивно привлекательны
и просты. Но, несмотря на несомненную простоту применения, для
каждой задачи требуется подчас весьма сложное доказательство при­
менимости жадного алгоритма для ее решения. Жадные алгоритмы
основаны на сложной теории, базирующейся на абстрактной комби­
наторной структуре, которая называется «матроищ�. однако эта тема
выходит за рамки данной книги. Ограничимся лишь упоминанием о
том, что этот вопрос разбирается в книге [12].

Поиск с возвратом
В ряде случаев сложные задачи, быстрый алгоритм решения кото­

рых неизвестен или отсутствует в принципе, и которые приходится
решать методом исчерпывающего перебора, можно решить быстрее
при помощи метода поиска с возвратом. Если решение задачи состо­
ит из нескольких компонентов, то исчерпывающий перебор состоит
в генерации всех возможных комбинаций решений и проверке для
каждого из них, является оно корректным решением поставленной
задачи или нет. Однако в этом случае можно поступить иначе - соби­
рать решение покомпонентно с выяснением, можно ли получить кор­
ректное решение задачи при данном выборе первых компонентов или
нет. Если нет - генерация всех возможных решений с зафиксирован­
ными первыми компонентами смысла не имеет, и можно переходить
к следующему варианту. Алгоритм в этой ситуации возвращается к
последнему построенному компоненту и заменяет его следующим
возможным вариантом компонента этого уровня.

Поскольку здесь нет четко поставленной задачи, невозможно ука­
зать строгий алгоритм решения. Это метод разработки алгоритма, а
не формальный алгоритм. Обобщенный псевдокод алгоритма поиска
с возвратом можно записать следующим образом.
Алгоритм BackTrack (X [l . . i])

Вход : Мас сив Х [1 . . i] , определяющий первые i

допустимых компонентов решения

222 Глава 7

Выход : Все кортежи , представляющие решения задачи

if X [l . . i] является решением then write X [l . . i]

еlве

Ьegin

end

for каждого допустимого элемента xi+ i ,
согласующегося с уже имеющимся множеством

X [l . . i] и удовлетворяющего ограничениям

з адачи

begin

end

X [i + l] = х

Backtrack (X [l . • i + l])

Классическими примерами задач, решаемых при по-
мощи такого алгоритма, является задача о расстановке
ферзей на шахматной доске таким образом, чтобы они не
угрожали друг другу, или задача об обходе конем шах­
матной доски таким образом, чтобы, сойдя с клетки al,

он посетил все клетки доски, причем ни одна клетка не была бы по­
сещена дважды. В последней задаче компонентами решения являются
последовательные ходы коня. При решении задачи поддерживается
логический массив, соответствующий клеткам доски, в котором от­
мечается, в каких клетках конь уже побывал к настоящему моменту.
На каждом шаге выбирается один из 8 возможных ходов коня и про­
веряется, возможен ли этот ход (не выходит ли он за пределы доски),
и не приходится ли он на клетку, которая уже была посещена ранее.
Если ход возможен, отмечаем в массиве новую посещенную клетку и
переходим к проверке нового хода. Если нет - исследуем очередной
возможный ход. Если исчерпаны все ходы, отмечаем текущую клетку
как свободную и возвращаемся к предыдущему ходу.

Вот как выглядит простой листинг программы для решения за­
дачи об обходе доски конем (выбрана доска размером 5х5 как мини­
мальная, имеющая решение поставленной задачи).
inc lude < i os t ream>

us ing namespace s t d ;

/ / Доска может иметь разный размер

Дополнительные вопросы 223

const int S i ze = 5 ;

1 1 Массив посещенных клеток

bool Desk [S i z e] [S i z e] = { О } ;

1 1 Количество ходов

int Moves = О ;

1 1 Основная функция

bool nextMove (int currentX , i nt currentY)

1 1 Все ходы сделаны !

i f (Moves == S i z e * S i z e) return true ; }

1 1 Ход з а пределы доски?

i f ((currentX < 0) 1 1 (currentX > = S i z e))

return f al s e ;

i f ((currentY < 0) 1 1 (current Y > = S i z e))

return f a l s e ;

1 1 Уже посещенная клетка?

i f (Desk [currentX] [curr ent Y]) return f al s e ;

1 1 Ход допустим , подбираем ход следующего уровня

++Moves ;

Desk [currentX] [currentY] = t rue ;

i f (nextMove (currentX+ l , currentY+2) 1 1
nextMove (currentX+ l , currentY - 2) 1 1
nextMove (current X- 1 , currentY+2) 1 1
nextMove (currentX- 1 , currentY- 2) 1 1
nextMove (currentX+ 2 , currentY+ l) J 1
nextMove (currentX+ 2 , currentY- 1) 1 1
nextMove (currentX - 2 , currentY+ l) 1 1
nextMove (current X- 2 , currentY- 1)) {

1 1 Мы нашли путь !

cout << ' a ' + [curren t X] <<currentY+ l<< •

return t rue ;

1 1 Увы , путь не найден . . .

1 1 Очищаем клетку

Desk [current X J [currentY J = f a l s e ;

- -Move s ;

return f al s e ;

int mai n ()

. . '

224 Глава 7

i f (next Move (O , O) = = f a l s e) cout < < •No s o l u t i on • ;

cout < < endl ;

Эта задача рассмотрена такое множество раз в литерату­
ре, что уже не представляет особого интереса. Давайте в
качестве второго примера рассмотрим интересную голо­
воломку, приписываемую самому Эйнштейну. Она при­
мечательна тем, что при ее решении будет в особенности

наглядно видна суть поиска с возвратом. Итак, есть 5 домов разного
цвета, в каждом из которых живет по одному человеку отличной друг
от друга национальности. Каждый жилец пьет только определенный
напиток, курит определенную марку сигарет и держит определенное
животное, причем никто из 5 человек не пьет одинаковые с другим
напитки, не курит одинаковые сигареты и не держит одинаковое жи­
вотное. Вопрос: кому принадлежит рыба?

При этом известно следующее.

1 . Англичанин живет в красном доме.

2. Швед держит собаку.

3. Датчанин пьет чай.

4. Зеленый дом стоит слева от белого.

5. Жилец зеленого дома пьет кофе.

6. Человек, который курит PallMall, держит птицу.

7. Жилец из среднего дома пьет молоко.

8. Норвежец живет в первом доме.

9. Жилец из желтого дома курит Dunhill.
10. Курильщик Marlboro живет около того, кто держит кошку.

11 . Человек, который содержит лошадь, живет около того, кто ку-
рит Dunhill.

12. Курильщик сигарет Winfield пьет пиво.

13. Норвежец живет около Голубого дома.

14. Немец курит Rothmans.
15. Курильщик Marlboro живет по соседству с человеком, который

пьет воду.

Естественно, что путем логических рассуждений эту задачу мож­
но решить минут за 10- 15 и нереально решить методом исчерпываю-

Дополнительные вопросы 225

щего перебора, так как всего имеется (5!)"=24883200000 вариантов
перестановок свойств жильцов.

Попробуем решить задачу методом поиска с возвратом. Ком­
понентами решения являются пять перестановок пяти элементов -
описаний цвета домов, национальностей проживающих, их напитков,
сигарет и животных.

После выбора каждого уровня элементов (для реализации пере­
бора перестановок использован алгоритм next_permutation) мы
проверяем, можно ли получить решение для данного набора первых
компонентов. Для этого мы проверяем выполнение тех условий, ком­
поненты для которых зафиксированы. Так, определив перестановку
национальностей, мы можем проверить выполнение правила 8, так
как в нем задействована только национальность жильца, но никак не
другое правило, например, правило 14 - так как расстановка сигарет
пока что неизвестна.

Естественно, что чем больше условий мы сможем проверять на на­
чальных этапах, тем больше заведомо некорректных комбинаций мы
сможем отсечь. Именно поэтому после простейшего анализа условий
был выбран именно такой порядок компонентов (впрочем, анализ его
оптимальности не проводился).

Чтобы не быть голословными, мы добавили в программу счетчи­
ки количества отбрасываний комбинаций, которые не могут приве­
сти к решению, на каждом из уровней проверки - это позволит нам
сравнить количество проверенных вариантов со всеми возможными.
Заметим также, что после того, как решение найдено, работа програм­
мы продолжается, чтобы гарантировать единственность решения го­
ловоломки.
inc lude <algori t hm>

i nc l ude < i o s t ream>

include < i omanip>

us ing namespace s t d ;

1 1 Типы для описания национальностей , цвета домов ,

1 1 напитков , сигарет и животных введены для удобства

enum Nat i on { Br i t on , German , Swede , Dane , Norwegian } ;
enum Color { Green , Blue , Yel low , Red , Whi t e } ;

enum Drink { Теа , Cof fee , Beer , Wat e r , Mi l k } ;

enum Smoke { Dunh i l l , Marlboro , Wi n f i e l d ,
Pal lMa l l , Rothmans } ;

enum Pet { Horse , Cat , Dog , B i r d , F i sh } ;

226 Глава 7

const char * NName []

const char * CName []

con s t char * DName []

• в r i t on " , " German " , " Swede " ,

" Dane " , " Norwegian • } ;

" Green • , •вlue " , " Ye l l ow" ,

" Red" , " Whi t e " } ;

" Tea " , " C o f f ee " , " Beer " ,

const char * SName []

"Water " , " M i l k " } ;
" Dunh i l l " , " Marlboro • ,

" W i n f i e ld " ,

" Pa l lMa l l " , " Rothmans " } ;

const char * PName [] = { " Hors e " , " Cat " , " Dog • ,
" Bi rd " , " F i sh • } ;

/ / Функция для поиска номера дома , соответствующая

/ / определенному свойству

int House (int * array , int s ign)

}

for (int i = О ; i < 5 ; + + i)

i f (array [i] = = s i gn) return i ;

return О ;

/ / Условия з адачи

bool RuleO l (int *N , int * C)

{ return C [House (N , Br i t on) J = =Red ;
bool Rul e 0 2 (int *N , int * P)

{ return P [House (N , Swede) J = = Dog ;

bool Rul eO З (int *N , int * D)

{ ret urn D [House (N , Dane)] = =Теа ;

bool Rul e0 4 (int * C)

{ return House (C , Green) = =Hous e (C , Wh i t e) - 1 ; }
boo l Rul e O S (int * C , int * D)

{ return D [House (C , Green) J = =Cof f e e ; }
bool Ru l e 0 6 (int * S , int * P)

{ return P [Hous e (S , Pal lMal l)] ==Bird;

bool Rule 0 7 (int * D)

{ return House (D , Mi l k) = = 2 ; }
bool Ru le 0 8 (in t * N)

{ return House (N , Norwegian) = = O ;

boo l Ru l e 0 9 (in t * C , int * S)

{ return C [House (S , Dunh i l l)] = =Ye l l ow ;
boo l Rul e l O (i nt * P , int * S)

{ i n t i = House (S , Marlboro) , j = House (P , Cat) ;

Дополнительные вопросы 227

return ((i = = j + 1) 1 1 (i = = j - 1)) ; }

boo l Rul el l (int * P , i nt * S)

{ i nt i = House (P , Hors e) , j

return ((i == j + 1) 1 1 (i = = j

Hou s e (S , Dunhi l l) ;

- 1)) ; }
bool Rul e 1 2 (int * D , int * S)

{ return D [House (S , Wi n f i e ld) J = = Beer ;
bool Rul el З (i nt * C , int * N)

{ i nt i = House (N , Norwegian) , j = House (C , Blue) ;

ret urn ((i = = j + 1) 1 1 (i = = j - 1)) ; }

bool Rul e1 4 (int *N , int * S)

{ return S [House (N , German) J ==Rothmans ;
bool Rul e1 5 (in t * D , int * S)

{ int i = House (S , Marl boro) , j = Hous e (D , Water) ;

return ((i = = j + 1) 1 1 (i = = j - 1)) ; }

1 1 Поскольку это не просто решение задачи , а

1 1 вычислительный эксперимент , нам нужны счетчики

1 1 количества отказов для каждого компонента

int Count l О , Count 2 О , Count З = О ,

C ount 4 = О , Count 5 = О ;

int mai n ()

1 1 Национальность

i nt N [S] = { Br i t on , German , Swede , Dane , Norwegi an } ;
for (int f l ag = t rue ; f l ag ;

f lag = next_permutat i on (N , N+ 5))

i f (Ru l e 0 8 (N) = = f a l s e)
+ +Count l ;

cont inue ;

1 1 Цвет дома

int С [5] = { Green , B lue , Y e l l ow , Red , Wh i t e } ;

f or (int f lag = t rue ; f lag ;

f l ag = next_permu t at i on (C , C+ S))

i f ((Ru l e 0 4 (С) = = f a l s e) 1 1 (Ru l e O l (N , C) = = f a l s e) 1 1
(Ru l e l З (C , N) = = f a l s e))

+ + Count 2 ;

c onc inue ;

228

/ / Нипиток
i n t D [S J = { Tea , C o f f e e , Beer , Water , Ml l k } ;
fnr (iп� f l ag = t rue ; f l ag ;

f lag = next_perrnutat ion (D , D+ 5 } }

i f ((Ru l e 0 7 (D } = = f a 1 s e) 1
(Ru l e 0 3 (N , D } = c= fa l s e } 1 1
(Ru 1 e 0 5 (C , D) = = f a l se) }

+ + Count 3 ;
cont j пue ;

/ / Сигареты

Глава 7

int S [S J = { Dunhi l l , Marlboro ,

Win f i e l d , Pa l lMa l l , Rothrnans } ;

for (int f l ag = t rue ; f lag ;

f l ag = next_perrnнtat i on (S , S + S))

i f ((Rule0 9 (C , S) = = f a l s e } 1 1
(Ru l e l 4 (N , S) = = fa 1 s e) 1 1
(Ru l e l 2 (D , S) = = fa l s e) 1 1
(Ru l el S (D , S) = = f a l se))

++Count 4 ;

cont inue ;

/ / Животные
int P [S J = { Hors e , Cat , Dog , Bi rd , F i s h } ;
for (int f lag = t rue ; f l ag ;

f 1 ag = пext_perrnutat i on (P , P+ 5) }

i f ((Pu l e 0 2 (N , Р) = = fa l s e) 1 1
(P t 1 l e 0 6 (S , P) = = fa l s e) 1 1
(P c t l el O (P , S) = = fal s e) 1 1
(R � l e l l (P , S) = = fa l s � I)

+ + Count 5 ;
cont i nue ;

/ / 1 ··ыво'' решения и зн ачений счетчиков

Дополнительные вопросы

cout < < " House s : " < < setw (l O)

< < 1 << s e tw (l O) << 2 < < setw (1 0)

< < 3 < < setw (l O) << 4 << setw (l O)

< < 5 << endl ;
cout << " Color :

< < setw (l O) < < CName [C [O]]

<< setw (l O J << CName [C [l] J

<< setw (1 0) < < CName [С (2 J]

<< setw (l O) << CName [С [3 J J

<< setw (l O) << CName [C [4 J J

<< setw (l O) <<end l ;
cout < < " Nat i on s :

< < setw (l O) < < NName [N [О]]

<< s e tw (1 0) << NName [N [l]]
<< setw (l O) << NName [N [2]]
<< setw (l 0) << NName [N [З]]

<< setw (1 0) << NName [N [4]]

<< setw (l O) <<endl ;
cout << " Dr i nk s :

<< setw (1 0) << DName [D [O]]

< < setw (1 0) < < DName [D [1]]

< < setw (l O) << DName [D (2]]
< < setw (l O) << DName [D [З]]
<< setw (1 0) << DName [D [4]]

<< s e tw (l O) <<endl ;

cout << " Smoke :
< < setw (l O) << SName [S [О]]
<< setw (1 0) < < SName [S [l J J
<< setw (l O) << SName [S [2]]
<< setw (l O) << SName [S [З]]

< < setw (l O) << SName [S [4]]
<< setw (l O) <<endl ;

cout << " Pet :
<< setw (l O) << PName [P [O]]
<< setw (l O) < < PName [Р [1]]
<< setw (l O) << PName [P [2]]
< < s et\v (l O) < < PName [P [З]]
<< setw (l 0) < < PName [P [4 J l
< < s e t w (l O) < < end l ;

cout < < . - - - - - - - - - - - " < < end l ;

229

230

cout << " Count [l] = • << s e tw (5)

< < Count l < < end l ;

cout << • count [2] = • << s e tw (S)

< < Coun t 2 < < endl ;

cout << " Count [3] = • << s e tw (S)

< < Count 3 < < endl ;

cout < < • coun t [4] = • < < s e tw (S)

< < Count 4 << endl ;

cout < < " Coun t [S] = " << s e t w (5)

< < Count 5 < < end l ;

cout < < • - - - - - - - - - - - • < < end l ;

c ou t < < " Count [1] " << s e t w (5) < <Count l << endl ;

c out < < " Count [2] " << s etw (5) < <Count 2 < < endl ;

cou t < < " Count [3]

cout<< " Count [4]

cout < < " Count [S]

" << S etw (5) <<Count 3 << end l ;

" < < s e t w (5) < <Count 4 < < endl ;

" << s e t w (5) < <Count 5 < < endl ;

Вот как выглядит вывод этой программы:
Houses : 1

Color : Yel low

Nat ions : Norwegian

Drinks : Water

Smoke : Dunh i l l

Pet : - - - - - - - - - - -
Count [l]

Count [2]

Count [3]

Count [4]

Count [S] - - - - - - - - - - -
Count [l]

Count [2]

Count [3]

Cat

9 6

2 2 0 8

1 0 3 1

6 0 3

2 7

9 6

2 8 6 8

1 4 3 2

2 3 4

Blue Red Green

Dane Briton German

Теа Mi l k C o f f e e

Marlboro Pal lMa l l Rothmans

Horse Bird F i sh

Глава 7

5

Whi t e

Swede

Beer

Winf ield

Dog

Дополнительные вопросы

Count l 4] 9 5 9
Count [5] 1 1 9

231

Как види1т, основш1я масса «отсевов» произошла на втnром :и тре­
тьем этапах. Решение найлено после проверки 3965 вариантов, а всего
программа проверила 5474 варианта, что немногим менее 220 милли­
ардных долей общего числа вариантов.

За счет чего получилась такая экономия? В исходном тексте про­
граммы ясно видно, что это возможно только благодаря выносу про­
верок из внутренних циклов во внешние. Внесите вес проверки во
внутренний цикл - и вы получите тривиальный метод исчерпыва­
ющего перебора. В этой программе с итеративным решением (в от­
личие от рекурсивного решения задачи об обходе доски конем) это
свойство проявилось особенно четко.

Оно же заставляет при разработке подобного рода алгоритмов
особенно тщательно продумывать вложенность циклов, с тем, чтобы
как можно больше отсевов эаведомо некорректных вариантов выпол­
нялось во внешних циклах. Какие-либо более конкретные рекоыt'tща­
ции дать, увы, невоэможно. Можно TOJll>KO посоветовать как следует
иэучИ1ъ задачу и воспользоваться ее особыми свойствами - напри­
мер, симметрией или какими-то другими. Например, если бы шк

интересовало только получение решения (бс:1 проверки его един­
ствешюсти) в головоломке Эйнштейна, то можно было бы первым
элементом массива национальностей поставип, норвежца, так как из
условия 8 известно, что он живет в первом доме (впрочем, в данной
задаче это ненамного бы ускорило ее решение).

И напоследок следует заметить: несмотря на то, что мы легко
решили пару задач, это далеко не означает, что все задачи будут ре­
шаться так же просто. Успешность этой стратегии колеблется в очень
широких пределах. Одна и та же задача, легко разрешимая для одних
начальных условий, может потребовать едва ли не исчерпывающего
перебора при других.

Метод ветвей и границ
Метод ветвей и границ очень напоминает метод поиска с воз­

вратом. Главная идея поиска с возвратом -� прекращение работы в
определенном направлении, как только можно сделать вывод, что это
направление не может привести к решению задачи. Эта идея может
быть усилеиа нри работе с задачамп 01пимиэации, которые должны

232 Глава 7

минимизировать или максимизировать некоторую целевую функ­
цию, обычно при наличии определенных ограничений (длина марш­
рута, стоимость выбранных предметов, стоимость назначений и т.п.).
При решении задач оптимизации допустимое решение означает реше­
ние, которое удовлетворяет всем ограничениям задачи, но не являет­
ся оптимальным. Оптимальное решение - это допустимое решение с
наилучшим значением целевой функции.

По сравнению с методом поиска с возвратом методу ветвей и гра­
ниц требуется способ получить для каждого узла дерева пространства
состояний границу наилучшего значения целевой функции (нижней
границы в задаче минимизации и верхней - в задаче максимизации)
для всех решений, которые могут быть получены путем дальнейшего
добавления компонентов к имеющемуся частичному решению, и зна­
чения наилучшего решения, полученного к этому моменту.

Если такая информация доступна, мы можем сравнивать значе­
ние границы со значением наилучшего решения, полученного к этому
моменту: если значение границы не лучше значения уже имеющегося
наилучшего решения - т.е. не меньше в случае задачи минимизации
или не больше в случае задачи максимизации, - то это направление
бесперспективно, и его обработка может быть завершена (иногда гово­
рят, что обрезается ветвь дерева решения задачи), поскольку ни одно
получаемое таким образом решение не может оказаться лучше того,
что уже имеется. В этом заключается основная идея метода ветвей и
границ - работа прекращается не только тогда, когда для данного ча­
стичного решения получение полного решения невозможно в принци­
пе, но и когда такое частичное решение заведомо оказывается неопти­
мальным (хуже некоторого уже имеющегося допустимого решения) .

•
Давайте в качестве примера рассмотрим вопрос о том,
как минимальным количеством монет достоинством 1 1 ,
5 и 1 копейка собрать сумму 15 копеек (мы уже стал­
кивались с тем, что эта задача не решается при помощи
жадного алгоритма).

Каким образом оценить для данной суммы и набора монет нижнюю
границу количества монет, составляющих искомую сумму? Понятно,
что это количество не может быть меньшим, чем количество монет
наибольшего достоинства (не превышающего сумму), составляющих
данную сумму, т.е. для суммы S и максимального достоинства монеты
N, не превышающего 5, это количество равно l (S - 1)/ N J + 1 .

Дополнительные вопросы 233

Очевидно также, что желательно просматривать варианты в по­
рядке убывания достоинства монет, т.е. чтобы первым решением было
жадное решение - скорее всего, оно будет достаточно близким к опти­
мальному (если не совпадать с ним). Это и предыдущее соображение
о нижней границе приводит к тому, что множество достоинств монет
должно быть упорядочено по убыванию.

Заметим также, что одно допустимое решение напрашивается сра­
зу же - это сумма, составленная из монет достоинством в 1 копейку.
Будем считать это решение в начале работы программы текущим наи­
лучшим решением.

После всего сказанного и с учетом нашего опыта в решении задач
методом поиска с возвратом можно тут же приступить к написанию
программы для поиска оптимального составления суммы - как обыч­
но, не самым эффективным, зато самым понятным способом.

int coins [] = { 1 1 , 5 , 1 } ; / / Достоинства монет

int Sum = 1 5 ; / / Искомая сумма

vec t or<int> sol ;

vec t or< int> best Solut i on ;

/ / Текущее решение

/ / Текущее наилучшее

1 1 решение

/ / Нижняя граница количества монет для

/ / частичного решения s o l

i n t e s t imate (vector<int>& s ol , i nt sum)

1 1 Имеем sol . s i z e () монет и сумму , которую надо

/ / добавить к частичному решению
sum - = accumu l at e (so l . begin () , sol . end () , О) ;

/ / Находим монету максимального достоинства , не

/ / превышающую сумму

f or (int i = О ;

i < s i zeof (coins) / s i z eof (coins [O J) ; + + i)

i f (sum >= coins [i])

return sol . s i z e () + (sum- 1) / coins [i] + l ;

return sol . s i z e () + sum ;

/ / Добавляем к текущему решению монету - т еперь
/ / в решении level монет

234 Глава 7

void makeSo l u t i onAtLeve l (ve c t or< i nt >& so l , i n t l ev e l)

i f (l eve l >� bes t S o l ut i on . s i z e ())

returr1 ; / / Новое решение не лучше

/ / уже имеющегося

s o l . res i z e (l eve l) ; / / Добавим место для

/ / еще одной монеты

for (int i = О ;

i < s i z e o f (co i ns) / s i z e o f (co ins [O J) ; + + i)
1 1 Поочередно пробуем все монеты

s o l [l evel - 1] = О ;

i f (Sum - accumula t e (sol . begin () , sol . end () , О)

> = coins [i]) s o l [level - 1] = coins l i] ;

e l s e cont inue ;

i f (S\lm се =

/ / Монету добавлять некуда

e l s e

ac cum\l l at c (s ol . beg in () , sol . end () , 0))

1 1 Точное решение

co\lt << • so lut i on : • ;

for (i nt j = О ; j < l eve l ; + + j)
cout << setw (4) �< so l [j] ;

co11t << eпdl ;

bes t So l u t i on = sol ;

int count = e s t ima t e (so l , S11m) ; / / При

/ / данном частичном решении

/ / потребуется никак не меньше

/ / монет , чем count . Эту ветвь надо

/ / отсекать , если это количество

/ / превышает количе ство монет в

/ / текущем наилучшем решении

i f (count >= be s t S o l u t i on . s i z e ())

cont. inue ;

/ ! Пробуем дальше

makeSo lut i onAtLeve l (so l , l eve l + l) ;

Дополнительные вопросы

sol . re s i z e (leve l - 1) ; / / Вернемся на

/ / уровень вверх

int main ()

/ / Составляем текущее наилучшее

/ / решение из копеек

f or (int i = О ; i < Sum ; + + i)

best Solut i on . push_back (l) ;

/ / Ищем оптимальное решение

makeSolu t i onAt Leve l (so l , 1) ;

235

Эта программа выводит все получаемые в процессе работы реше­
ния, каждое из которых лучше предыдущего. Для нашего входного
набора данных это всего лишь два решения - жадное и оптимальное:
Solut i on :

Solut i on :

1 1

5

1

5

1

5

1 1

Алгоритмы для работы с календарем
Поскольку эта тема часто вызывает живой интерес у програм­

мистов, а высказываемые мнения часто грешат массой неточностей,
в этом небольшом заключительном разделе будет рассказано о не­
скольких простейших алгоритмах, связанных с календарем.

Небольшое теоретическое введение. Год - это время, за которое
Земля совершает один полный оборот по орбите вокруг Солнца. По
общепринятому соглашению считается, что неделя содержит 7 дней,
месяц - от 28 до 31 дня, а год состоит из 12 месяцев. Число и месяц
однозначно определяют день года.

Трудность такого счета дней в году заключается в том, что кален­
дарный год всегда содержит целое число суток, в то время как Земля
совершает один полный оборот по орбите вокруг Солнца за 365,2422
суток (эта величина называется тропическим годом). Если не учиты­
вать расхождение в 0,2422 суток, то за 100 лет расхождение между
реальным положением Земли и календарем достигло бы 24 суток, а
через полторы тысячи лет времена года поменялись бы местами.

236 Глава 7

Во времена Юлия Цезаря был принят декрет, согласно которому
три последовательных года содержат по 365 дней, а четвертый, номер
года которого делится нацело на 4, - содержит 366 дней (один до­
полнительный день добавляется к февралю). При использовании та­
кого календаря год в среднем содержит 365,25 суток, что достаточно
близко к величине тропического года (больше истинной на 1 1 минут
14 секунд, что за 100 лет не превышает 1 суток). Такой календарь
называется юлианским, и он применялся до 1582 года, когда значи­
тельное расхождение между датами заставило папу Григория XIII ис­
ключить из календаря дни с 5 по 14 октября 1582 года включительно,
и ввести правило пропуска 3 дней каждые 400 лет (средняя продол­
жительность года в григорианском календаре на 26 секунд превыша­
ет истинную). В григорианском календаре года, содержащие целое
число сотен (1 800, 1900, 2000), считаются високосными только в том
случае, если они делятся на 400.

Таким образом, проверка високосности года в григорианском ка­
лендаре может быть выполнена следующим образом:
boo l I s LeapYear (int year }

{

return (year%4 0 0 == 0 } 1 1 ((year % 4 = = 0 } && (year% 1 0 0 ! = 0 } } ;

Введение григорианского календаря в разных странах происходило
в разное время; первыми в соответствии с буллой «lnter Gravissimas�
от 24.02.1582 после 4 октября 1582 года в 15 октября вступили Италия,
Польша, Португалия и Испания. В России за 31 января 1918 после­
довало 14 февраля 1918; на Украине григорианский календарь был
введен 15 февраля 1918 года (правда, в период с сентября по декабрь
1919 года григорианский календарь на Украине был отменен).

Приведенные далее алгоритмы не учитывают эти детали, и григо­
рианский календарь считается действующим с 4 октября 1582 года.
Не учитываются также ошибки в расчетах, из-за которых правило ви­
сокосных лет нарушалось между 45 г. до н.э. и 12 г. н.э.

С исторической точки зрения интерес представляют также кален­
дарь, предложенный Омаром Хайямом, в котором високосными счи­
тались 8 лет из каждых 33 (погрешность такого календаря 19 секунд,
что меньше, чем у григорианского), и календарь русского астронома
И. Медлера. предложившего в 1 864 г. поправку к юлианскому кален-

Дополнительные вопросы 237

дарю, по которой пропускался один високосный год каждые 1 28 лет
(погрешность такого календаря составляет всего лишь 1 секунду).

Несмотря на ШLJПIL\ИC различных календарных алгоривюв у;юб­
нес всего оказывается исполь:ювать так называемую юлианскую дату,
принятую в астрономии. Это - количество суток, истекшее со вре:\1е­
ни гринвичского полудня 1 января 47 1 3 г. до н.э. Поскольку здесь нас
интересуют только календарные дни, а не часы или минуты, мы будем
рассматривать юлианскую дату для данной календарной как целое
число, т.е. считать, что мы вычисляем юлианскую дату для гринвич­
ского полудня рассматриваемой календарной даты.

Рассчитать ее можно при помощи следующего алгоритма.

Алгоритм JD (y, m , ci)
Вход : календарная да та : у - год ,

т - месяц , d - день

выход : юлианская дата

if т <= 2 then begin

end ;

у у 1

т т + 1 2

if Дата дана п о григорианскому календарю then begin

А = у div 1 0 0

В = 2 - А + А div 4

end else В = О

С = int (3 6 5 . 2 5 *у)

D = int (3 0 . 6 0 0 l * (m+ l))

return B+ C+ D+ d+ l 7 2 0 9 9 5 ,!ljj Ремиэация н а С++ очевидна:

long Jd (inl yea r , int month , int day)

{

iпt Grig о . ' 1 1 Григорианская ли

it (уе а г > 1 52 8) Grig О ; e l se

i f (year < 1 ':)2 8) Gi ig 1 ; e l s e

i f (mor , c l1 > 1 0) c;rig о ; e l se
. f' (mon Ll1 < 1 0) Grig 1 · e l s e J. � '

это дата?

238

} ;

i f (day > = 1 5)

i f (month < = 2)

year- - ;

month + = 1 2 ;

} ;

uns igned l ong J ;

int А ;

{

i f (Grig = = 0) {

А = year / 1 0 0 ;

Grig

Grig

А = 2 - А + (А / 4) ;

e l s e А = О ;

J = 1 4 6 1 L * long (year) ;

J / = 4 L ;

О ; e l s e

1 ;

uns i gned l ong К = 3 0 6 0 0 1L * long (month + 1) ;

К ! = l O O O O L ;

J + = К + day + 1 7 2 0 9 9 5L + А ;

return J ;

Глава 7

Обратное преобразование юлианской даты в календарную выпол­
няется следующим образом.
Алгоритм GDa te (j d)

Вход : юлианская дата j d

выход : календарная дата : day, mon th , year

if jd > 2 2 9 9 1 6 0 then Ьegin

А = in t ((jd- 1 8 6 7 2 1 6 . 2 4) / 3 6 5 2 4 . 2 5)

В = jd + 1 + А - i n t (A/ 4)

end else А = jd

с в + 1 5 2 4

D (С- 1 2 2 . 1) / 3 6 5 . 2 5

Е i n t (3 6 5 . 2 5 * D)

G in t ((C- E) / 3 0 . 6 0 0 1)

day = C-E- int (3 0 . 6 0 0 1 * G)

mon th = G - 1

i f mon th >= 1 3 then mon th = mon th - 1

year = D - 4 7 1 5

i f mon th > 2 then year = year - 1

Дополнительные вопросы /li; Вот соответствующая функция на сн,

void GDat e (long JD , int& у , int& m , int & d)

{

} ;

uns igned long A= (JD * 4 L - 7 4 6 8 8 6 5 L) / 14 6 0 9 7 L ;

A= (JD > 2 2 9 9 1 6 0) ?JD+ l +A - (A/ 4 L) : JD ;

long В=А+ 1 5 2 4 ;

l ong C= (B * 2 0 L- 2 4 4 2 L) / 7 3 0 5 L ;

long D= (C * 1 4 6 1 L) / 4 L ;

long E= (1 0 0 0 0L * (B- D }) / 3 0 6 0 0 1 L ;

d= int (B -D- ((E * 3 0 6 0 0 1 L) / 1 0 0 0 0 L)) ;

m= int ((E< = 1 3 } ? Е - 1 : Е - 1 3) ;

у= int (С - ((m>2) ? 4 7 1 6 : 4 7 1 5)) ;

239

Эти два алгоритма позволяют решить массу задач, связанных с
календарем (несмотря на наличие более простых алгоритмов для ре­
шения конкретных задач). Например, порядковый номер дня в году
можно получить, вычисляя разность между юлианской датой для дан­
ной календарной и юлианской датой 31 декабря предыдущего года.
Количество дней между двумя датами также вычисляется как раз­
ность двух юлианских дат. И, наконец, день недели легко вычислить
как остаток от деления увеличенной на 1 юлианской даты на 7:
int weekday (int JD) { return (JD + 1) % 7 ; }

При этом значение О соответствует воскресенью, 1 - понедельни­
ку, ... , 6 - субботе.

И еще два алгоритма, связанных с календарем (они приводятся без
описания, только в виде реализации на С++) - предвычисление ка­
толической и православной Пасхи. Используемое ныне определение
даты Пасхи было дано на Первом Вселенском Соборе, состоявшемся
в Византии в 325 году: Пасха празднуется в первое воскресенье, следу­
ющее за первым полиолунием после весеннего равноденствия. В расче­
тах :за ;щту равноденствия принимают 2 1 марта (дата, соответствую­
щая весеннему равноденствию в 325 году). Именно этой привязкой к
действующему ка:1ендарю обус10вле1ю отличие католической Пасхи

240 Глава 7

от православной: первая использует 2 1 марта по григорианскому ка­
лендарю, последняя - по юлианскому.

Обе функции получают в качестве аргумента год и возвращают
месяц и день Пасхи. В функции предвычисления православной Пасхи
включен блок перевода ее в григорианскую дату.

void East erOrthodox (int year , int&пun , int&dd)

} ;

а = year % 4 . '
ь year % 7 ;

int

int

int

int

int

с = year % 1 9 ;

d (1 9 * с

е = (2 * а +

а = d + е + 1 1 4 ;

пun = а / 3 1 ;

dd = а % 3 1 + 1 ;

i f (year > 1 5 8 2)

+

4

1 5) % 3 0 ;
* ь - d + 3 4) % 7 ;

d = 1 0 + ((year / 1 0 0 - 1 5) * 3) / 4 ;

dd + = d ;

} ;

i f ((пun = = 3) & & (dd > 3 1))

dd - - 3 1 ;

пun+ + ;

e l s e i f ((пun 4) && (dd > 3 о))

dd - - 3 0 ;

пun++ ;

} ;

voi d East erCatho l i c (int year , int&пun , int&dd)

i f (year < = 1 5 8 2)

Ea s t erOrthodox (year , пun , dd) ;

return;

i nt а = year % 1 9 ;

i nt Ь

i nt с

year / 1 0 0 ;

year % 1 0 0 ;

Дополнительные вопросы 241

int g (Ь - (Ь + 8) / 2 5 + 1) / 3 ;

int h (1 9 * а + ь - ь / 4 g + 1 5) % 3 0 ;

int 1 (3 2 + 2 * (Ь % 4) + 2 * (с / 4)

h - (с % 4)) % 7 ;

mm (а + 1 1 * h + 2 2 * 1) / 4 5 1 ;

mm h + 1 - 7 * mm + 1 1 4 ;

dd mm % 3 1 + 1 ;

mm / = 3 1 ;

} ;

Многие другие алгоритмы, связанные с календарем, временем и
астрономическими вычислениями, можно найти в книгах [7, 16] .

Список литературы

1 . Ахо А., Хопкрофт Д., Ульман Дж. Структуры данных и алго­
ритмы. - М.: Изд. дом «Вильяме», 2000.

2. Бентли Дж. Жемчужины программирования, 2-е изд. - СПб.:
Питер, 2002.

3. Березин И.С., Жидков Н.П. Методы вычислений, т. II. - М.:
Физматгиз, 1962.

4. Вирт Н. Алгоритмы и структуры данных. - СПб.: Невский
Диалект, 2001 .

5. Волков Е.А. Численные методы. - М.: Наука, 1982.
6. Гарднер М. Мате.матические досуги. - М.: Мир, 1972.

7. Даффет-Смит П. Практическая астрономия с калькулято­
ром. - М.: Мир, 1982.

8. Кнут Д. Искусство програ.мJ>tирования, том 1. Основные алго­
ритмы, З-е изд. - М.: Изд. дом «Вильяме», 2000.

9. Кпут Д. Искусство программирования, том 2. Получисленные
алгоритмы, 3-е изд. - М.: Изд. дом «Вильяме», 2000.

10. Кнут Д. Искусство программирования, том З. Сортировка и
поиск, 2-е изд. - М.: Изд. дом «Вильяме», 2000.

1 1. Кобринский Н. , Пекелис В. Быстрее мысли. - М.: Молодая
гвардия, 1959.

12. Кармен, Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: по­
строение и анализ, 2-е изд. - М.: Изд. дом «Вильяме», 2005.

13. Корн Г., Корн Т. Справочник по математике (для научных ра­
ботников и инженеров). - М.: Наука, 1978.

14. Красикова И.Е., Красиков И.В. С++. Просто как дважды
два. - М.: Эксмо, 2005.

15. Линник Ю.В. Метод наименьших квадратов и основы мате­
матико-статистической теории обработки наблюдений. -
М.: Фи:зм;пгиз, 1962.

16. Меёr Ж. Астроно,иичеа.ие фор.мулы для калькуляторов. -
М.: Мир, 1988.

1 7. Самарский А.А. , �Y.'I ИII А. R. Числе1tные методы. -- М.: Наую1,
1989.

Список литературы 243

18. Саттер [Решение СJlОЖНЪIХ задач на С++. - М.: Изд. дом
«Вильяме», 2002.

19. Страуструп Б. Язык программирования С++, 3-е изд. СПб.;
М.: «Невский Диалект» - «Издательство БИНОМ», 1999 г.

20. Уоррен [С. Алгоритмические трюки для программистов. -
М.: Изд. дом « Вильяме», 2003.

2 1 . Levitin А . Introdиction to Тhе Design & Analysis о/ Algorithms.
Addison-Wesley, Reading, МА, 2003.

22. Sedgewick, R. Algorithms iп С++. Зrd edition. Addison-Wesley,
Reading, МА, 1999.

П редметный указатель

L
L lJ Р-ра:�ложснис, 1 77

А
Алгоритм

Беллмана--Форда, 124
времсншш эффективность, 1 1
Джонсона-Троттера, 191
жадный, 220
Копперсмита-- Винограда. 163
рандомизированный, 207
схема Горнера, 137
Флойда- Воршалла, 13 1
Хорспула, 97
Штрассена, 162

Амортизированная
эффективность, 12

Б
Бинарное дерево ноиска, 24
Бинарный поиск, 85
Быстрая сортировка, 70

выбор опорного элемента, 71

в
Вектор, 155

скалярное произведение, 158
тензорное произведение, 158

Времен ная эффективность, 1 1
Вычисление 011ределитсля

матрицы, 171

г
Генератор случайн ых чисел, 207
Генерация всех

деревьев, 203

перестановок, 190
подмножеств, 186
разбиений числа, 197
сочетан ий, 194

Генерация псевдослучайных чисел,
208

Граф
ациклический, 104; 123
кратчайшие пути

иэ одной вершины, 124
между всеми парами вершин, 131

неориентированный, 103
ориентированный, 103
петля, 103
поиск

в глубину, 1 12
в ширину, 106

ПОЛНЫЙ, 105
пре!{ставление

в виде списков, 105
с помощью матрипы, 105

свяэный, 104

д
Дважды связанный список, 20
Дерево, 24; 105
Динамическое

множество, 14
программирование, 213

и
Интерполяционный поиск, 87
Интерполяция фунющй, 138

к
Кластериэания, 92
Код Грея, 188

Предметный указатель

Коллизия, 89; 90
Кольцевой список, 20
Красно-черное дерево, 39

л
Лес, 105

м
Матрица, 155

LUР-разложение, 177
вырожденная, 159
вычисление определителя, 1 71
вычитание, 157
детерминант, 159
диагональная, 156
единичная, 156
минор, 159
нулевая, 156
обратная, 159
обращение, 169
определитель, 159
перестановки, 157
пссвдообратпая, 184
ранг, 159
симметричная, 157
скалярное произведение, 157
сложение, 157
смежности графа, 106
транспонированная, 155
трехдиаrональная, 156
умножение, 157; 160

Метод
бисскции, 144
ветвей и границ, 231
градиентного спуска, 14 7
исключения Гаусса, 163

с выбором ведущего
элемента, 167

касателы1ых, 145
ли11сари:�ац11и, 184
ломаной Эйлера, f.18
Монте- Карло, 2 10

наименьших квадратов, 182
Ньютона, 145
прогонки, 1 73
Рунге, 149
Рунге- Кутта, 149
секущих, 146

н
Наилучший случай, 12
Наихудший случай, 12

о
Обращение матрицы, 169
Обход бинарного дерева, 25
Очередь, 17

п
Пирамида, 56
Пирамидальная сортировка, 75
Поиск

бинарный, 85
в бинарном дереве поиска, 87
интерполяционный, 87
подстрок, 95
подстрок Хорспула, 9 7
последовательный, 83

Полином Лагранжа, 139
Поразрядная сортировка, 81
Последовательный поиск, 83
Пузырьковая сортировка, 67

р
Решение

245

нелинейных уравнений, 143
систем линейных уравнений, 163

с
Связанный список, 19
Словарь, 88
Случайная перестановка, 209
Сортировка

быстран, 70

246

выбор опорного элемента, 71
вставкой, 64

н бинарное !{ерево поиска, 78
выбором, 66
пирамидальная, 7)
подсчетом, 78
норазрядная, 81
пузырьковая, 67
слиянием, 72
топологическая, 121
устойчивость, 64
шейкерная, 69

Стек, 15

т
Топологическая сортировка, 12 1

у
Умножение матриц, 158; 160

ф
Формула

Рунге- Кутта, 150
Симпсона, 142
трапеций, 140
Хойне, 150

Предметный указатель

х
Хеширование, 88

закрытое, 90
кластеризация, 92
коллизия, 89
коэффициент заполнения, 90
открытое, 89

ч
Численное

дифференцирование, 140
интегрирование, 140

ш
Шейкерная сортировка, 69

Научно-популярное издание

Красиков И горь Владимирович
Краси кова Ирина Евгеньевна

А Л Г О Р И Т М Ы
ПРОСТО КАК ДВ/\.ЖДЫ ДВА

Зав. редакцией И. Е. Федосова

Ответственный редактор 8. В. Александров

Литературный редактор А. А. Макиевская

Художественный редактор Н. С. Никонова

Верстка Р. А. Марчишин

Корректор А. А. Гловацкая

ООО «Издательство «Эксмо»
1 27299, Москва, ул. Клары Цеткин, д. 1 8/5. Тел. 41 1 -68-86, 956-39-21 .

Home page: www.eksmo.ru E-mail: info@eksmo.ru
Оптовая торговля книгами «Эксмо»:

ООО «ТД «Эксмо». 1 42702, Московская обл., Ленинский р-н1 г. Видное,
Белокаменное ш" д. 1 , многоканальный тел. 4 1 1 -50-74.

E-mail: reception@eksmo-sale.ru

по вопросам приобретения книг «Эксмо» зарубежными оптовыми покупате­
лями обращаться в отдел зарубежных продаж ООО ТД «Эксмоп

E-mail: foreignseller@eksmo-sale.ru

lntematlonal Sales: Fаг Fareign whalesale orders, please contact lnternationa/ Sales
Department at foreignseller@eksmo-sale.ru

по вопросам заказа книr «Эксмо• s специальном оформлении обращаться в от­
дел корпоративных продаж 00() "ТД «Эксмо» E-mail: project@eksmo-sale.ru

Оптовая торговля 6умажно-6елоsыми 111 канцелярскими товарами для школь�
и офиса «Канц-Эксмо»: Компания «Канц-Эксмо»: 1 42700, Московская обл., Ле­

нинский р-н, r. Видное-2, Белокаменное ш., д. 1, а/я 5. Тел./факс +7 (495)
745-28-87 (многоканальный). e-mail: kanc@eksmo-sale.ru, сайт:

www.ksnc-eksmo.ru

полный ассортимент книr иэдательства «�дm1оптовых покупателей:
В Санкт-Петербурrе: ООО СЗКО, пр-т Обуховской Обороны, д. 84Е.

Тел. (8 1 2) 365-46-03/04. В Нижнем Новгороде: ООО ТД •Эксмо НН-, ул. Маршала
Воронова, д. 3. Тел. (8312) 72-36-70. В Казани: ООО •НКП Казань•, ул. Фрезерная,
д. 5. Тел. (843) 570-40-45/46. В Самаре: ООО •РДЦ-Самара•, пр-т Кирова, д. 75/1 ,
литера •Е•. Тел. (846) 269-66-70. В Ростове-на-Дону: ООО •РДЦ-Ростов-, пр. Стач-

ки, 243А. Тел. (863) 268-83-59/60. В Екатеринбурrе: ООО •РДЦ-Екатеринбург•,
ул. Прибалтийская, д. 24а. Тел. (343) 378-49-45. В Киеве: ООО ДЦ •Эксмо-Украина-,
ул. Луrовая, д. 9. Т ел.(факс: (044) 537-35-52. Во Льаове: ТП ООО ДЦ •Эксмо-Украина•,
ул. Бузкова, д. 2. Тел./факс: (032) 245-00- 1 9 . В Симферополе: ООО •Эксмо-Крым•

ул. Киевская, д. 1 53. тел./факс (0652) 22-90-03, 54-32-99.

МелКОО1ТТОаа• торговля книгами «Эксмо• и канцтоварами «Канц-Эксмо»:
1 1 7192, Москва, Мичуринский пр-т, д. 1 2/1 . Тел.(факс: (495) 4 1 1 -50-76.

1 27254, Москва, ул. Добролюбова, д. 2. Тел.: (495) 745-89-15, 780-58-34.

Подписано в печать 06.02. 2007.

Формат 84х 1 08 '/". Печать офсетная. Бумага писчая.

Усл. печ. л . 1 3 ,44. Тираж 3 ООО экз . Заказ No 1 0 1 .

Отпечатано в ОАО «ИПП «Уральский рабочий•

62004 1 , ГСП - 1 48 , г. Екатеринбург, ул. Тургенева , 1 3
l1ttp://www. ш�alpriпt. ru

e-mail: book@шalpriпt.ru

	Содержание
	Глава 1. Структуры данных
	Описание эффективности и асимптотические обозначения
	Стеки и очереди
	Стек
	Очереди

	Связанные списки
	Бинарные деревья поиска
	Красно-черные деревья

	Пирамиды

	Глава 2. Сортировка и поиск
	Сортировка
	Сортировка вставкой
	Сортировка выбором
	Пузырьковая и шейкерная сортировки
	Быстрая сортировка
	Сортировка слиянием
	Пирамидальная сортировка
	Сортировка вставкой в бинарное дерево поиска
	Сортировки за линейное время

	Поиск
	Последовательный поиск
	Бинарный поиск
	Интерполяционный поиск
	Поиск в бинарном дереве поиска
	Хеширование

	Поиск подстрок
	Алгоритм Хорспула

	Глава 3. Графы
	Основные свойства графов
	Поиск в ширину
	Поиск в глубину
	Топологическая сортировка
	Кратчайшие пути
	Кратчайшие пути из одной вершины
	Кратчайшие пути между всеми парами вершин

	Глава 4. Численные методы
	Вычисление значений полиномов и интерполяция функций
	Интерполяция функций

	Численное дифференцирование и интегрирование
	Решение нелинейных уравнений
	Решение обыкновенных дифференциальных уравнений с начальными условиями

	Глава 5. Матрицы
	Свойства матриц
	Операции над матрицами
	Обратные матрицы, ранги и определители

	Умножение матриц
	Метод исключения Гаусса
	Обращение матрицы
	Вычисление определителя
	Трехдиагональная система линейных уравнений

	LUР-разложение
	Метод наименьших квадратов

	Глава б. Комбинаторные алгоритмы
	Генерация всех подмножеств данного множества
	Генерация всех перестановок
	Генерация всех сочетаний
	Генерация всех разбиений числа
	Генерация всех деревьев

	Глава 7. Дополнительные вопросы
	Рандомизированные алгоритмы
	Генераторы псевдослучайных чисел
	Получение случайной перестановки
	Метод Монте-Карло

	Динамическое программирование
	Жадные алгоритмы

	Поиск с возвратом
	Метод ветвей и границ

	Алгоритмы для работы с календарем

	Список литературы
	Предметный указатель

