Quick answers to common problems

OpenCL Parallel Programming
Development Cookbook

Accelerate your applications and understand high-performance
computing with over 50 OpenCL recipes

Raymond Tay

PUBLISHING

OpenCL Parallel
Programming

Development
Cookbook

Accelerate your applications and understand
high-performance computing with over
50 OpenCL recipes

Raymond Tay

PUBLISHING

BIRMINGHAM - MUMBAI

OpenCL Parallel Programming Development
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2013
Production Reference: 1210813

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-452-0
www . packtpub.com

Cover Image by Suresh Mogre (suresh.mogre. 99@gmail . com)

Credits

Author
Raymond Tay

Reviewers
Nitesh Bhatia

Darryl Gove

Seyed Hadi Hosseini
Kyle Lutz

Viraj Paropkari

Acquisition Editors
Saleem Ahmed

Erol Staveley

Lead Technical Editor

Ankita Shashi

Technical Editors
Veena Pagare

Krishnaveni Nair
Ruchita Bhansali
Shali Sashidharan

Project Coordinator
Shiksha Chaturvedi

Proofreader
Faye Coulman

Lesley Harrison

Paul Hindle

Indexer
Tejal R. Soni

Graphics
Sheetal Aute

Ronak Druv
Valentina D'silva
Disha Haria
Abhinash Sahu

Production Coordinator

Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Raymond Tay has been a software developer for the past decade and his favorite
programming languages include Scala, Haskell, C, and C++. He started playing with GPGPU
technology since 2008, first with the CUDA toolkit by NVIDIA and OpenCL toolkit by AMD,
and then Intel. In 2009, he decided to submit a GPGPU project on which he was working to
the editorial committee working on the "GPU Computing Gems" to be published by Morgan
Kauffmann. And though his work didn't make it to the final published work, he was very
happy to have been short-listed for candidacy. Since then, he's worked on projects that

use GPGPU technology and techniques in CUDA and OpenCL. He's also passionate about
functional programming paradigms and their applications in cloud computing which has led
him investigating on various paths to accelerate applications in the cloud through the use
of GPGPU technology and the functional programming paradigm. He is a strong believer of
continuous learning and hopes to be able to continue to do so for as long as he possibly can.

This book could not have been possible without the support of foremost,

my wife and my family, as | spent numerous weekends and evenings away
from them so that | could get this book done and | would make it up to them
soon. Packt Publishing for giving me the opportunity to be able to work on
this project and I've received much help from the editorial team and lastly to
the reviewing team, and | would also like to thank Darryl Gove - The senior
principal software engineer at Oracle and Oleg Strikov - the CPU Architect
at NVIDIA, who had rendered much help for getting this stuff right with their
sublime and gentle intellect, and lastly to my manager, Sau Sheong, who
inspired me to start this. Thanks guys.

About the Reviewers

Nitesh Bhatia is a tech geek with a background in information and communication
technology (ICT) with an emphasis on computing and design research. He worked with
Infosys Design as a user experience designer, and is currently a doctoral scholar at the Indian
Institute of Science, Bangalore. His research interests include visual computing, digital human
modeling, and applied ergonomics. He delights in exploring different programming languages,
computing platforms, embedded systems and so on. He is a founder of several social media
startups. In his leisure time, he is an avid photographer and an art enthusiast, maintaining

a compendium of his creative works through his blog Dangling-Thoughts (http://www.
dangling-thoughts.com).

Darryl Gove is a senior principal software engineer in the Oracle Solaris Studio team, working
on optimizing applications and benchmarks for current and future processors. He is also the
author of the books, Multicore Application Programming, Solaris Application Programming,

and The Developer's Edge. He writes his blog at http://www.darrylgove.com.

Seyed Hadi Hosseinli is a software developer and network specialist, who started his
career at the age of 16 by earning certifications such as MCSE, CCNA, and Security+. He
decided to pursue his career in Open Source Technology, and for this Perl programming
was the starting point. He concentrated on web technologies and software development for
almost 10 years. He is also an instructor of open source courses. Currently, Hadi is certified
by the Linux Professional Institute, Novell, and CompTIA as a Linux specialist (LPI, LINUX+,
NCLA and DCTS). High Performance Computing is one of his main research areas. His first
published scientific paper was awarded as the best article in the fourth Iranian Bioinformatics
Conference held in 2012. In this article, he developed a super-fast processing algorithm

for SSR in Genome and proteome datasets, by using OpenCL as the GPGPU programming
framework in C language, and benefiting from the massive computing capability of GPUs.

Special thanks to my family and grandma for their invaluable support.
I would also like to express my sincere appreciation to my wife, without
her support and patience, this work would not have been done easily.

Kyle Lutz is a software engineer and is a part of the Scientific Computing team at Kitware,
Inc, New York. He holds a bachelor's degree in Biological Sciences from the University of
California at Santa Barbara. He has several years of experience writing scientific simulation,
analysis, and visualization software in C++ and OpenCL. He is also the lead developer of the
Boost .Compute library - a C++ GPU/parallel-computing library based on OpenCL.

Viraj Paropkari has done his graduation in computer science from University of Pune,

India, in 2004, and MS in computer science from Georgija Institute of Technology, USA, in

2008. He is currently a senior software engineer at Advanced Micro Devices (AMD), working

on performance optimization of applications on CPUs, GPUs using OpenCL. He also works on
exploring new challenges in big data and High Performance Computing (HPC) applications
running on large scale distributed systems. Previously, he was systems engineer at National
Energy Research Scientific Computing Center (NERSC) for two years, where he worked on one
of the world's largest supercomputers running and optimizing scientific applications. Before that,
he was a visiting scholar in Parallel Programming Lab (PPL) at Computer Science Department
of University of lllinois, Urbana-Champaign, and also a visiting research scholar at Oak Ridge
National Laboratory, one of the premier research labs in U.S.A. He also worked on developing
software for mission critical flight simulators at Indian Institute of technology, Bombay, India, and
Tata institute of Fundamental Research (TIFR), India. He was the main contributor of the team
that was awarded the HPC Innovation Excellence Award to speed up the CFD code and achieve
the first ever simulation of a realistic fuel-spray related application. The ability to simulate this
problem helps reduce design cycles to at least 66 percent and provides new insights into the
physics that can provide sprays with enhanced properties.

I'd like to thank my parents, who have been inspiration to me and also thank
my beloved wife, Anuya, who encouraged me in spite of all the time it took
me away from her.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www . PacktPub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

@ PACKT! i 1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Using OpenCL 7
Introduction 7
Querying OpenCL platforms 14
Querying OpenCL devices on your platform 18
Querying OpenCL device extensions 22
Querying OpenCL contexts 25
Querying an OpenCL program 29
Creating OpenCL kernels 35
Creating command queues and enqueuing OpenCL kernels 38
Chapter 2: Understanding OpenCL Data Transfer and Partitioning 43
Introduction 43
Creating OpenCL buffer objects 44
Retrieving information about OpenCL buffer objects 50
Creating OpenCL sub-buffer objects 54
Retrieving information about OpenCL sub-buffer objects 58
Understanding events and event synchronization 61
Copying data between memory objects 64
Using work items to partition data 71
Chapter 3: Understanding OpenCL Data Types 79
Introduction 79
Initializing the OpenCL scalar data types 80
Initializing the OpenCL vector data types 82
Using OpenCL scalar types 85
Understanding OpenCL vector types 88
Vector and scalar address spaces 100

Configuring your OpenCL projects to enable the double data type 103

Table of Contents

Chapter 4: Using OpenCL Functions 109
Introduction 109
Storing vectors into an array 110
Loading vectors from an array 114
Using geometric functions 117
Using integer functions 120
Using floating-point functions 123
Using trigonometric functions 126
Arithmetic and rounding in OpenCL 129
Using the shuffle function in OpenCL 132
Using the select function in OpenCL 135

Chapter 5: Developing a Histogram OpenCL program 139
Introduction 139
Implementing a Histogram in C/C++ 139
OpenCL implementation of the Histogram 142
Work item synchronization 153

Chapter 6: Developing a Sobel Edge Detection Filter 155
Introduction 155
Understanding the convolution theory 156
Understanding convolution in 1D 157
Understanding convolution in 2D 159
OpenCL implementation of the Sobel edge filter 162
Understanding profiling in OpenCL 168

Chapter 7: Developing the Matrix Multiplication with OpenCL 173
Introduction 173
Understanding matrix multiplication 174
OpenCL implementation of the matrix multiplication 178
Faster OpenCL implementation of the matrix multiplication
by thread coarsening 181
Faster OpenCL implementation of the matrix multiplication
through register tiling 185
Reducing global memory via shared memory data prefetching
in matrix multiplication 187

Table of Contents

Chapter 8: Developing the Sparse-Matrix Vector Multiplication

in OpenCL 193
Introduction 193
Solving SpMV (Sparse Matrix-Vector Multiplication) using the Conjugate 195
Gradient Method 195
Understanding the various SpMV data storage formats including ELLPACK, 199
ELLPACK-R, COO, and CSR 199
Understanding how to solve SpMV using the ELLPACK-R format 204
Understanding how to solve SpMV using the CSR format 208
Understanding how to solve SpMV using VexCL 216

Chapter 9: Developing the Bitonic Sort with OpenCL 221
Introduction 221
Understanding sorting networks 222
Understanding bitonic sorting 224
Developing bitonic sorting in OpenCL 230

Chapter 10: Developing the Radix Sort with OpenCL 241
Introduction 241
Understanding the Radix sort 242
Understanding the MSD and LSD Radix sorts 244
Understanding reduction 247
Developing the Radix sort in OpenCL 254

Index 281

Preface

Welcome to the OpenCL Parallel Programming Development Cookbook! Whew, that was

more than a mouthful. This book was written by a developer, that's me, and for a developer,
hopefully that's you. This book will look familiar to some and distinct to others. It is a result of
my experience with OpenCL, but more importantly in programming heterogeneous computing
environments. | wanted to organize the things I've learned and share them with you, the reader,
and decided upon taking an approach where each problem is categorized into a recipe. These
recipes are meant to be concise, but admittedly some are longer than others. The reason

for doing that is because the problems I've chosen, which manifest as chapters in this book
describe how you can apply those techniques to your current or future work. Hopefully it

can be a part of the reference, which rests on your desk among others. | certainly hope that
understanding the solution to these problems can help you as much as they helped me.

This book was written keeping a software developer in mind, who wishes to know not only
how to program in parallel but also think in parallel. The latter is in my opinion more important
than the former, but neither of them alone solves anything. This book reinforces each concept
with code and expands on that as we leverage upon more recipes.

This book is structured to ease you gently into OpenCL by getting you to be familiar with

the core concepts of OpenCL, and then we'll take deep dives by applying that newly gained
knowledge into the various recipes and general parallel computing problems you'll encounter
in your work.

To get the most out of this book, it is highly recommended that you are a software developer
or an embedded software developer, and is interested in parallel software development but
don't really know where/how to start. Ideally, you should know some C or C++ (you can pick
C up since its relatively simple) and comfortable using a cross-platform build system, for
example, CMake in Linux environments. The nice thing about CMake is that it allows you to
generate build environments for those of you who are comfortable using Microsoft's Visual
Studio, Apple's XCode, or some other integrated development environment. | have to admit
that the examples in this book used neither of these tools.

Preface

What this book covers

Chapter 1, Using OpenCL, sets the stage for the reader by establishing OpenCL in its purpose
and motivation. The core concepts are outlined in the recipes covering the intrinsics of
devices and their interactions and also by real working code. The reader will learn about
contexts and devices and how to create code that runs on those devices.

Chapter 2, Understanding OpenCL Data Transfer and Partitioning, discusses the buffer
objects in OpenCL and strategies on how to partition data amongst them. Subsequently,
readers will learn what work items are and how data partitioning can take effect by
leveraging OpenCL abstractions.

Chapter 3, Understanding OpenCL Data Types, explains the two general data types that
OpenCL offers, namely scalar and vector data types, how they are used to solve different
problems, and how OpenCL abstracts native vector architectures in processors. Readers
will be shown how they can effect programmable vectorization through OpenCL.

Chapter 4, Understanding OpenCL Functions, discusses the various functionalities offered by
OpenCL in solving day-to-day problems, for example, geometry, permuting, and trigonometry.
It also explains how to accelerate that by using their vectorized counterparts.

Chapter 5, Developing a Histogram OpenCL program, witnesses the lifecycle of a typical
OpenCL development. It also discusses about the data partitioning strategies that rely on
being cognizant of the algorithm in question. The readers will inadvertently realize that not
all algorithms or problems require the same approach.

Chapter 6, Developing a Sobel Edge Detection Filter, will guide you in how to build an edge
detection filter using the Sobel's method. They will be introduced into some mathematical
formality including convolution theory in one-dimension and two-dimensions and its
accompanying code. And finally, we introduce how profiling works in OpenCL and its
application in this recipe.

Chapter 7, Developing the Matrix Multiplication with OpenCL, discusses parallelizing the
matrix multiplication by studying its parallel form and applying the tranformation from
sequential to parallel. Next, it'll optimize the matrix multiplication by discussing how to
increase the computation throughput and warming the cache.

Chapter 8, Developing the Sparse Matrix-Vector Multiplication with OpenCL, discusses

the context of this computation and the conventional method used to solve it, that is, the
conjugate gradient through enough math. Once that intuition is developed, readers will be
shown how various storage formats for sparse matrices can affect the parallel computation
and then the readers can examine the ELLPACK, ELLPACK-R, COO, and CSR.

Chapter 9, Developing Bitonic Sort Using OpenCL, will introduce readers, to the world of
sorting algorithms, and focus on the parallel sorting network also known as bitonic sort.
This chapter works through the recipes, as we did in all other chapters by presenting
the theory and its sequential implementation, and extracting the parallelism from the
transformation, and then developing the final parallel version.

—21

Preface

Chapter 10, Developing the Radix Sort with OpenCL, will introduce a classic example of
non-comparison based sorting algorithms, for example, QuickSort where it suits a GPU
architecture better. The reader is also introduced to another core parallel programming
technique known as reduction, and we developed the intuition of how reduction helps radix
sort perform better. The radix sort recipe also demonstrates multiple kernel programming
and highlights the advantages as well as the disadvantages.

What you need for this book

You need to be comfortable working in a Linux environment, as the examples are tested
against the Ubuntu 12.10 64-bit operating system. The following are the requirements:

» GNU GCC C/C++ compiler Version 4.6.1 (at least)

» OpenCL 1.2 SDK by AMD, Intel & NVIDIA

» AMD APP SDK Version 2.8 with AMD Catalyst Linux Display Driver Version 13.4

» Intel OpenCL SDK 2012

» CMake Version 2.8 (at least)

» Clang Version 3.1 (at least)

» Microsoft Visual C++ 2010 (if you work on Windows)

» Boost Library Version 1.53

» VexCL (by Denis Demidov)

» CodeXL Profiler by AMD (Optional)

» Atleast eight hours of sleep

» An open and receptive mind

» Afresh brew of coffee or whatever that works

Who this book is for

This book is intended for software developers who have often wondered what to do with
that newly bought CPU or GPU they bought other than using it for playing computer games.
Having said that, this book isn't about toy algorithms that works only on your workstations at
home. This book is ideally for the developers who have a working knowledge of C/C++ and
who want to learn how to write parallel programs that execute in heterogeneous computing
environments in OpenCL.

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use

of the #include directive."
A block of code is set as follows:

[default]

cl uint sortOrder = 0; // descending order else 1 for ascending order

cl uint stages = 0;
for (unsigned int i =
++stages;
clSetKernelArg (kernel,
clSetKernelArg (kernel,
#ifdef USE_SHARED MEM

clSetKernelArg (kernel,
uint) ,NULL) ;
#elif def USE SHARED MEM 2

LENGTH;

i > 1; 1 >>= 1)

0, sizeof(cl mem), (void*) &device A in);
3, sizeof(cl uint), (void*) &sortOrder) ;

4, (GROUP_SIZE << 1) *sizeof(cl

When we wish to draw your attention to a particular part of a code block, the relevant lines

or items are set in bold:

[default]

cl uint sortOrder = 0; // descending order else 1 for ascending order

cl uint stages = 0;
for (unsigned int i =
++stages;
clSetKernelArg (kernel,
clSetKernelArg (kernel,
#ifdef USE_SHARED MEM

clSetKernelArg (kernel,
uint) ,NULL) ;
#elif def USE SHARED MEM 2

LENGTH;

1> 1; i >>=1)

0, sizeof(cl mem), (void*) &device A in);
3, sizeof(cl uint), (void*) &sortOrder) ;

4, (GROUP_SIZE << 1) *sizeof(cl

Any command-line input or output is written as follows:

gcc -Wall test.c -o test

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "clicking on the Next

button moves you to the next screen".

Preface

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

(s |-

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Using OpenCL

In this chapter, we will cover the following recipes:

» Querying OpenCL platforms

» Querying OpenCL devices on your platform
» Querying for OpenCL device extensions

» Querying OpenCL contexts

» Querying an OpenCL program

» Creating OpenCL kernels

» Creating command queues and enqueuing OpenCL kernels

Introduction

Let's start the journey by looking back into the history of computing and why OpenCL

is important from the respect that it aims to unify the software programming model for
heterogeneous devices. The goal of OpenCL is to develop a royalty-free standard for
cross-platform, parallel programming of modern processors found in personal computers,
servers, and handheld/embedded devices. This effort is taken by "The Khronos Group" along
with the participation of companies such as Intel, ARM, AMD, NVIDIA, QUALCOMM, Apple, and
many others. OpenCL allows the software to be written once and then executed on the devices
that support it. In this way it is akin to Java, this has benefits because software development
on these devices now has a uniform approach, and OpenCL does this by exposing the
hardware via various data structures, and these structures interact with the hardware via
Application Programmable Interfaces (APls). Today, OpenCL supports CPUs that includes
x86s, ARM and PowerPC and GPUs by AMD, Intel, and NVIDIA.

Using OpenCL

Developers can definitely appreciate the fact that we need to develop software that is
cross-platform compatible, since it allows the developers to develop an application on
whatever platform they are comfortable with, without mentioning that it provides a coherent
model in which we can express our thoughts into a program that can be executed on any
device that supports this standard. However, what cross-platform compatibility also means
is the fact that heterogeneous environments exists, and for quite some time, developers
have to learn and grapple with the issues that arise when writing software for those devices
ranging from execution model to memory systems. Another task that commonly arose from
developing software on those heterogeneous devices is that developers were expected to
express and extract parallelism from them as well. Before OpenCL, we know that various
programming languages and their philosophies were invented to handle the aspect of
expressing parallelism (for example, Fortran, OpenMP, MPI, VHDL, Verilog, Cilk, Intel TBB,
Unified parallel C, Java among others) on the device they executed on. But these tools were
designed for the homogeneous environments, even though a developer may think that it's to
his/her advantage, since it adds considerable expertise to their resume. Taking a step back
and looking at it again reveals that is there is no unified approach to express parallelism in
heterogeneous environments. We need not mention the amount of time developers need

to be productive in these technologies, since parallel decomposition is normally an involved
process as it's largely hardware dependent. To add salt to the wound, many developers only
have to deal with homogeneous computing environments, but in the past few years the
demand for heterogeneous computing environments grew.

The demand for heterogeneous devices grew partially due to the need for high performance
and highly reactive systems, and with the "power wall" at play, one possible way to improve
more performance was to add specialized processing units in the hope of extracting every
ounce of parallelism from them, since that's the only way to reach power efficiency. The
primary motivation for this shift to hybrid computing could be traced to the research headed
entitled Optimizing power using Transformations by Anantha P. Chandrakasan. It brought out
a conclusion that basically says that many-core chips (which run at a slightly lower frequency
than a contemporary CPU) are actually more power-efficient. The problem with heterogeneous
computing without a unified development methodology, for example, OpenCL, is that
developers need to grasp several types of ISA and with that the various levels of parallelism
and their memory systems are possible. CUDA, the GPGPU computing toolkit, developed

by NVIDIA deserves a mention not only because of the remarkable similarity it has with
OpenCL, but also because the toolkit has a wide adoption in academia as well as industry.
Unfortunately CUDA can only drive NVIDIA's GPUs.

The ability to extract parallelism from an environment that's heterogeneous is an important
one simply because the computation should be parallel, otherwise it would defeat the entire
purpose of OpenCL. Fortunately, major processor companies are part of the consortium

led by The Khronos Group and actively realizing the standard through those organizations.
Unfortunately the story doesn't end there, but the good thing is that we, developers,

realized that a need to understand parallelism and how it works in both homogeneous and
heterogeneous environments. OpenCL was designed with the intention to express parallelism
in a heterogeneous environment.

—e1]

Chapter 1

For a long time, developers have largely ignored the fact that their software needs to take
advantage of the multi-core machines available to them and continued to develop their
software in a single-threaded environment, but that is changing (as discussed previously).
In the many-core world, developers need to grapple with the concept of concurrency, and
the advantage of concurrency is that when used effectively, it maximizes the utilization of
resources by providing progress to others while some are stalled.

When software is executed concurrently with multiple processing elements so that threads
can run simultaneously, we have parallel computation. The challenge that the developer
has is to discover that concurrency and realize it. And in OpenCL, we focus on two parallel
programming models: task parallelism and data parallelism.

Task parallelism means that developers can create and manipulate concurrent tasks. When
developers are developing a solution for OpenCL, they would need to decompose a problem into
different tasks and some of those tasks can be run concurrently, and it is these tasks that get
mapped to processing elements (PEs) of a parallel environment for execution. On the other side
of the story, there are tasks that cannot be run concurrently and even possibly interdependent.
An additional complexity is also the fact that data can be shared between tasks.

When attempting to realize data parallelism, the developer needs to readjust the way they
think about data and how they can be read and updated concurrently. A common problem
found in parallel computation would be to compute the sum of all the elements given in an
arbitrary array of values, while storing the intermediary summed value and one possible way
to do this is illustrated in the following diagram and the operator being applied there, that is,
@ is any binary associative operator. Conceptually, the developer could use a task to perform
the addition of two elements of that input to derive the summed value.

input_array|12|3|7|21|89|11|3|5|

output array | 12 | 15 | 22 | 43 [132143 146] 151 |

Using OpenCL

Whether the developer chooses to embody task/data parallelism is dependent on the
problem, and an example where task parallelism would make sense will be by traversing a
graph. And regardless of which model the developer is more inclined with, they come with
their own sets of problems when you start to map the program to the hardware via OpenCL.
And before the advent of OpenCL, the developer needs to develop a module that will execute
on the desired device and communication, and I/0 with the driver program. An example
example of this would be a graphics rendering program where the CPU initializes the data and
sets everything up, before offloading the rendering to the GPU. OpenCL was designed to take
advantage of all devices detected so that resource utilization is maximized, and hence in this
respect it differs from the "traditional" way of software development.

Now that we have established a good understanding of OpenCL, we should spend some time
understanding how a developer can learn it. And not to fret, because every project you embark
with, OpenCL will need you to understand the following:

» Discover the makeup of the heterogeneous system you are developing for

» Understand the properties of those devices by probing it

» Start the parallel program decomposition using either or all of task parallelism
or data parallelism, by expressing them into instructions also known as kernels
that will run on the platform

» Set up data structures for the computation
» Manipulate memory objects for the computation
» Execute the kernels in the order that's desired on the proper device
» Collate the results and verify for correctness
Next, we need to solidify the preceding points by taking a deeper look into the

various components of OpenCL. The following components collectively make up
the OpenCL architecture:

» Platform Model: A platform is actually a host that is connected to one or more
OpenCL devices. Each device comprises possibly multiple compute units (CUs)
which can be decomposed into one or possibly multiple processing elements,
and it is on the processing elements where computation will run.

» Execution Model: Execution of an OpenCL program is such that the host program
would execute on the host, and it is the host program which sends kernels to execute
on one or more OpenCL devices on that platform.

Chapter 1

When a kernel is submitted for execution, an index space is defined such that a
work item is instantiated to execute each point in that space. A work item would

be identified by its global ID and it executes the same code as expressed in the
kernel. Work items are grouped into work groups and each work group is given an ID
commonly known as its work group ID, and it is the work group's work items that get
executed concurrently on the PEs of a single CU.

That index space we mentioned earlier is known as NDRange describing an
N-dimensional space, where N can range from one to three. Each work item has a
global ID and a local ID when grouped into work groups, that is distinct from the other
and is derived from NDRange. The same can be said about work group IDs. Let's use
a simple example to illustrate how they work.

Given two arrays, A and B, of 1024 elements each, we would like to perform the
computation of vector multiplication also known as dot product, where each element
of A would be multiplied by the corresponding element in B. The kernel code would
look something as follows:

__kernel void vector multiplication(__global int* a,
__global int* b,
__global int* c) {
int threadId = get global id(0); // OpenCL function
cl[i]l = alil * blil;

}

In this scenario, let's assume we have 1024 processing elements and we would
assign one work item to perform exactly one multiplication, and in this case our work
group ID would be zero (since there's only one group) and work items IDs would range
from {O ... 1023}. Recall what we discussed earlier, that it is the work group's work
items that can executed on the PEs. Hence reflecting back, this would not be a good
way of utilizing the device.

In this same scenario, let's ditch the former assumption and go with this: we still

have 1024 elements but we group four work items into a group, hence we would

have 256 work groups with each work group having an ID ranging from {O ... 255},
but it is noticed that the work item's global ID still would range from {0 ... 1023}
simply because we have not increased the number of elements to be processed. This
manner of grouping work items into their work groups is to achieve scalability in these
devices, since it increases execution efficiency by ensuring all PEs have something to
work on.

s

Using OpenCL

The NDRange can be conceptually mapped into an N-dimensional grid and the
following diagram illustrates how a 2DRange works, where WG-X denotes the length
in rows for a particular work group and WG-Y denotes the length in columns for a
work group, and how work items are grouped including their respective IDs in a

work group.
work-item-O | work-item-1 | work-item-2
(0,0) (0,1) (0,2)
NDRange-X.”
y work-item-3 work-item-4 work-item-5
/ b (1,0 1,2) 0,2)
> . -7
)
c
IS
o
% - = work-item-6 | work-item-7 | work-item-8
T (2,0) 2,1) 2,2)
> ~
0} TSRS
= h
WG-X

Before the execution of the kernels on the device(s), the host program plays an
important role and that is to establish context with the underlying devices and laying
down the order of execution of the tasks. The host program does the context creation
by establishing the existence (creating if necessary) of the following:

u]

u]

All devices to be used by the host program

The OpenCL kernels, that is, functions and their abstractions that will run
on those devices

The memory objects that encapsulated the data to be used / shared by the
OpenCL kernels.

Once that is achieved, the host needs to create a data structure called a
command queue that will be used by the host to coordinate the execution

of the kernels on the devices and commands are issued to this queue and
scheduled onto the devices. A command queue can accept: kernel execution
commands, memory transfer commands, and synchronization commands.
Additionally, the command queues can execute the commands in-order,

that is, in the order they've been given, or out-of-order. If the problem

is decomposed into independent tasks, it is possible to create multiple
command queues targeting different devices and scheduling those tasks
onto them, and then OpenCL will run them concurrently.

Chapter 1

Memory Model: So far, we have understood the execution model and it's time to
introduce the memory model that OpenCL has stipulated. Recall that when the
kernel executes, it is actually the work item that is executing its instance of the kernel
code. Hence the work item needs to read and write the data from memory and each
work item has access to four types of memories: global, constant, local, and private.
These memories vary from size as well as accessibilities, where global memory

has the largest size and is most accessible to work items, whereas private memory

is possibly the most restrictive in the sense that it's private to the work item. The
constant memory is a read-only memory where immutable objects are stored and can
be shared with all work items. The local memory is only available to all work items
executing in the work group and is held by each compute unit, that is, CU-specific.

The application running on the host uses the OpenCL API to create memory objects
in global memory and will enqueue memory commands to the command queue

to operate on them. The host's responsibility is to ensure that data is available to

the device when the kernel starts execution, and it does so by copying data or by
mapping/unmapping regions of memory objects. During a typical data transfer from
the host memory to the device memory, OpenCL commands are issued to queues
which may be blocking or non-blocking. The primary difference between a blocking
and non-blocking memory transfer is that in the former, the function calls return only
once (after being queued) it is deemed safe, and in the latter the call returns as soon
as the command is enqueued.

Memory mapping in OpenCL allows a region of memory space to be available for
computation and this region can be blocking or non-blocking and the developer
can treat this space as readable or writeable or both.

Hence forth, we are going to focus on getting the basics of OpenCL by letting our
hands get dirty in developing small OpenCL programs to understand a bit more,
programmatically, how to use the platform and execution model of OpenCL.

The OpenCL specification Version 1.2 is an open, royalty-free standard for general purpose
programming across various devices ranging from mobile to conventional CPUs, and lately
GPUs through an APl and the standard at the time of writing supports:

>

>

>

Data and task based parallel programming models

Implements a subset of ISO C99 with extensions for parallelism with some
restrictions such as recursion, variadic functions, and macros which are
not supported

Mathematical operations comply to the IEEE 754 specification

Porting to handheld and embedded devices can be accomplished by establishing
configuration profiles

Interoperability with OpenGL, OpenGL ES, and other graphics APIs

Throughout this book, we are going to show you how you can become proficient
in programming OpenCL.

[}

Using OpenCL

As you go through the book, you'll discover not only how to use the API to perform all kinds
of operations on your OpenCL devices, but you'll also learn how to model a problem and
transform it from a serial program to a parallel program. More often than not, the techniques
you'll learn can be transferred to other programming toolsets.

In the toolsets, | have worked with OpenCL™, CUDA™, OpenMP™, MPI™, Intel thread building
blocks™, Cilk™, CilkPlus™, which allows the developer to express parallelism in a homogeneous
environment and find the entire process of learning the tools to application of knowledge to be
classified into four parts. These four phases are rather common and | find it extremely helpful to
remember them as | go along. | hope you will be benefited from them as well.

» Finding concurrency: The programmer works in the problem domain to identify the
available concurrency and expose it to use in the algorithm design

» Algorithm structure: The programmer works with high-level structures for organizing
a parallel algorithm

» Supporting Structures: This refers to how the parallel program will be organized and the
techniques used to manage shared data

» Implementation mechanisms: The final step is to look at specific software constructs for
implementing a parallel program.

Don't worry about these concepts, they'll be explained as we move through the book.

The next few recipes we are going to examine have to do with understanding the usage of
OpenCL APIs, by focusing our efforts in understanding the platform model of the architecture.

Querying OpenCL platforms

Before you start coding, ensure that you have installed the appropriate OpenCL development
toolkit for the platform you are developing for. In this recipe, we are going to demonstrate how
you can use OpenCL to query its platform to retrieve simple information about the compliant
devices it has detected and its various properties.

Getting ready

In this first OpenCL application, you'll get to query your computer for the sort of OpenCL
platform that's installed. In the setup of your computer, you could have a configuration where
both NVIDIA and AMD graphic cards are installed, and in this case you might have installed
both the AMD APP SDK and NVIDIA's OpenCL toolkit. And hence you would have both the
platforms installed.

The following code listing is extracted from Chl/platform details/platform
details.c.

Chapter 1

How to do it...

Pay attention to the included comments, as they would help you to understand each
individual function:

#include <stdio.h>
#include <stdlib.h>

#ifdef APPLE

#include <OpenCL/cl.h>
f#telse

#include <CL/cl.h>
#endif

void displayPlatformInfo(cl platform id id,
cl platform info param name,
const char* paramNameAsStr) {
cl int error = 0;
size t paramSize = 0;

error = clGetPlatformInfo(id, param name, 0, NULL,

¶mSize) ;
char* moreInfo = (char*)alloca(sizeof (char) * paramSize) ;
error = clGetPlatformInfo(id, param name, paramSize,
moreInfo, NULL) ;
if (error != CL_SUCCESS) {

perror ("Unable to find any OpenCL platform
information") ;
return;

}

printf ("$s: %$s\n", paramNameAsStr, moreInfo) ;

int main() {
/* OpenCL 1.2 data structures */
cl platform id* platforms;
/* OpenCL 1.1 scalar data types */
cl uint numOfPlatforms;
cl int error;

/*
Get the number of platforms
Remember that for each vendor's SDK installed on the
Computer, the number of available platform also

]

Using OpenCL

increased.
*/
error = clGetPlatformIDs (0, NULL, &numOfPlatforms) ;
if (error < 0) {
perror ("Unable to find any OpenCL platforms") ;
exit (1) ;
}
// BAllocate memory for the number of installed platforms.
// alloca(...) occupies some stack space but is
// automatically freed on return
platforms = (cl platform id*) alloca(sizeof (cl platform id)
* numOfPlatforms) ;
printf ("Number of OpenCL platforms found: %d\n",
numOfPlatforms) ;

// We invoke the API 'clPlatformInfo' twice for each
// parameter we're trying to extract
// and we use the return value to create temporary data
// structures (on the stack) to store
// the returned information on the second invocation.
for(cl uint 1 = 0; 1 < numOfPlatforms; ++1i) {
displayPlatformInfo(platforms[i],
CL_PLATFORM_ PROFILE,
"CL PLATFORM PROFILE") ;

displayPlatformInfo(platforms[i],
CL_PLATFORM_ VERSION,
"CL PLATFORM VERSION") ;

displayPlatformInfo(platforms[i],
CL_PLATFORM_ NAME,
"CL PLATFORM NAME") ;

displayPlatformInfo(platforms[i],
CL_PLATFORM_ VENDOR,
"CL PLATFORM VENDOR") ;

displayPlatformInfo(platforms[i],
CL_PLATFORM_ EXTENSIONS,
"CL PLATFORM EXTENSIONS") ;

Chapter 1

To compile it on the UNIX platform, you would run a compile command similar to the following:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o platform
details platform details.c -framework OpenCL

When that happens, you would have a binary executable named platform details.

To run the program, simply execute the platform details program, and a sample output
will be an OSX:

Number of OpenCL platforms found: 1
CL_PLATFORM_PROFILE: FULL PROFILE

CL_PLATFORM VERSION: OpenCL 1.0 (Dec 23 2010 17:30:26)
CL PLATFORM NAME: Apple

CL_PLATFORM VENDOR: Apple

CL_PLATFORM EXTENSIONS:

When you first learn to program OpenCL, it can be a daunting task but it does get better as we
move along. So, let's decipher the source code that we've just seen. The file is a C source file
and what you'll notice is that it's arranged such that the system header files are almost always
placed right near the top:

| #include <stdlib.h>
| #include <stdio.h>

Next is what the C programmers would call as the platform-dependent code:

| #ifdef APPLE

| #include <OpenCL/cl.h>
| #else

| #include <CL/cl.h>

| #endif

The OpenCL header files are needed for the program to be compiled because they contain
the method signatures. Now, we will try to understand what the rest of the code is doing. In
OpenCL, one of the code conventions is to have data types be prefixed by c1 _and you'll find
data types for each of the platform, device and context as c1_platform XX, cl device
XX, cl _context XX, and APIs prefixed in a similar fashion by c1 and one such APl is
clGetPlatformInfo

In OpenCL, the APIs do not assume that you know exactly how many resources (for example
platforms, devices, and contexts) are present or are needed when you write the OpenCL code.
And in order to write portable code, the developers of the language have figured out a clever
way to present the API such that you use the same API to pose a general question and based
on the results of that question, request more information via the same API. Let me illustrate
with an example.

[}

Using OpenCL

In the code, you will notice that c1GetPlatformInfo () was invoked twice. The first
invocation was to query the number of platforms that were installed on the machine. Based
on the results of that query, we invoked cl1GetPlatformInfo again, but this time we passed
in context-sensitive information, for example, obtaining the name of the vendor. You'll find this
pattern recurring when programming with OpenCL and the cons, | can think of is that it makes
the API rather cryptic at times, but the nice thing about it is that it prevents the proliferation of
APlIs in the language.

Admittedly, this is rather trivial when it comes to the entire ecosystem of programming
OpenCL, but subsequent chapters will show how you can transform sequential code to
parallel code in OpenCL.

Next, let's build on the code and query OpenCL for the devices that are attached to the platform.

Querying OpenCL devices on your platform

We'll now query OpenCL devices that are installed on your platforms.

Getting ready

The code listing discussed in the How to do it... section presents an abbreviated portion of the
code in Chl/device details/device details.c. This code demonstrates how you can
obtain the types of devices installed on your platform via c1GetDeviceIDs. You'll use that
information to retrieve detailed data about the device by passing it to c1GetDeviceInfo.

How to do it...

For this recipe, you need to completely reference the appropriate chapter code. Pay attention
to the included comments, as they would help you understand each individual function.
We've included the main part of this recipe with highlighted commentary:

/* C-function prototype */
void displayDeviceDetails(cl_device_id id, cl_device_info param_name,
const char* paramNameAsStr) ;

void displayDeviceInfo(cl platform id id,
cl device type dev_type) {
/* OpenCL 1.1 device types */

cl_int error = 0;
cl_uint numOfDevices = 0;

/* Determine how many devices are connected to your
platform */

Chapter 1

error = clGetDevicelIDs(id, dev_type, 0, NULL,

gnumOfDevices) ;
if (error != CL_SUCCESS) {
perror ("Unable to obtain any OpenCL compliant device
info") ;
exit (1) ;
}
cl device id* devices = (cl_device id¥)

alloca(sizeof (cl device id) * numOfDevices) ;

/* Load the information about your devices into the
Y
variable 'devices'

*/

error = clGetDevicelIDs (id, dev_type, numOfDevices, devices,
NULL) ;

if (error != CL_SUCCESS) {

perror ("Unable to obtain any OpenCL compliant device
info") ;
exit (1) ;

}

printf ("Number of detected OpenCL devices:
%d\n",numOfDevices) ;

/*
We attempt to retrieve some information about the
devices.

*/

for(int i = 0; i < numOfDevices; ++ 1) {

displayDeviceDetails(devices[i], CL_DEVICE TYPE, "CL DEVICE
TYPE") ;

displayDeviceDetails(devices[i], CL_DEVICE VENDOR ID, "CL
DEVICE VENDOR ID");

displayDeviceDetails(devices[i], CL_DEVICE MAX COMPUTE UNITS,
"CL_DEVICE MAX COMPUTE UNITS");

displayDeviceDetails(devices[i], CL_DEVICE MAX WORK ITEM
DIMENSIONS, "CL DEVICE MAX WORK ITEM DIMENSIONS") ;

displayDeviceDetails(devices[i], CL_DEVICE MAX WORK ITEM
SIZES, "CL_DEVICE MAX WORK ITEM SIZES");

displayDeviceDetails (devices[i], CL_DEVICE MAX WORK GROUP_
SIZE, "CL_DEVICE MAX WORK GROUP_SIZE") ;

}

[}

Using OpenCL

void displayDeviceDetails(cl device id id,
cl device info param name,
const char* paramNameAsStr) {
cl int error = 0;
size t paramSize = 0;

error = clGetDeviceInfo(id, param name, 0, NULL, ¶mSize) ;
if (error != CL_SUCCESS) {
perror ("Unable to obtain device info for param\n") ;

return;

}
/*

The cl device info are preprocessor directives defined in cl.h

*/

switch (param name) {
case CL_DEVICE TYPE: {
cl device type* devType = (cl device type¥*)
alloca(sizeof (cl device type) * paramSize);
error = clGetDeviceInfo(id, param name, paramSize,
devType, NULL) ;

if (error != CL_SUCCESS) {
perror ("Unable to obtain device info for param\n") ;

return;

}

switch (*devType) {
case CL_DEVICE TYPE CPU
printf ("CPU detected\n") ;break;
case CL_DEVICE TYPE GPU
printf ("GPU detected\n") ;break;
case CL_DEVICE TYPE DEFAULT
printf ("default detected\n") ;break;

}

}break;

// omitted code - refer to source "device details.c"
} //end of switch

}

On UNIX platforms, you can compile device details.c by running this command
on your terminal:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o device details
device details.c -framework OpenCL

=]

Chapter 1

And a binary executable named device details should be deposited locally on your
machine.

When you execute the binary executable depending on your machine's setup, you will see
varying results. But on my OSX platform here is the output when executed on a machine with
Intel Core i5 processor with a NVIDIA mobile GPU GT330m (extensions are highlighted):

Number of OpenCL platforms found: 1
CL_PLATFORM_PROFILE: FULL_ PROFILE
CL_PLATFORM_VERSION: OpenCL 1.0 (Dec 23 2010 17:30:26)
CL PLATFORM NAME: Apple
CL_PLATFORM VENDOR: Apple
CL_PLATFORM_EXTENSIONS:
Number of detected OpenCL devices: 2
GPU detected
VENDOR ID: 0x1022600
Maximum number of parallel compute units: 6
Maximum dimensions for global/local work-item IDs: 3
Maximum number of work-items in each dimension: 512
Maximum number of work-items in a work-group: 512
CPU detected
VENDOR ID: 0x1020400
Maximum number of parallel compute units: 4
Maximum dimensions for global/local work-item IDs: 3
Maximum number of work-items in each dimension: 1
Maximum number of work-items in a work-group: 1

Don't worry too much if the information doesn't seem to make sense right now,
the subsequent chapters will reveal all.

Leveraging the work we did in the previous section, now we have made use of the platform

via clGetPlatformInfo, that was detected to query for the devices attached. This time,

we used new API functions, c1lGetDeviceIDs and clGetDeviceInfo. The former attempts
to uncover all the basic information about the devices attached to the given platform, and

we use clGetDeviceInfo to iterate through the results to understand more about their
capabilities. This information is valuable when you are crafting your algorithm and is not very
sure about what device it's going to be run on. Considering that OpenCL supports various
processors, it's a good way to write portable code.

There is actually a lot more information you can derive from your device and I'd strongly
suggest you to refer http://www.khronos.org/registry/cl/sdk/2.0/docs/man/
xhtml/ and look at the main page for c1GetDeviceInfo.

s

Using OpenCL

Now that we've understood how to query the platform and the attached devices, we should
take a look at how to query OpenCL extensions. The extensions allow the vendor to define
additional capabilities that's delivered with the OpenCL compliant device, which in turn

allows you, the programmer, to utilize them.

Querying for OpenCL device extensions

The extensions in OpenCL allow the programmer to leverage on additional capabilities
provided by the vendor of the device, and hence they're optional. However, there are
extensions that are recognized by OpenCL and purportedly supported by major vendors.

Here's a partial list of the approved and supported extensions in OpenCL 1.2. If you wish to
discover the entire list of extensions that adopters of OpenCL have made public (some are
given in the table), please refer to the PDF document via this link: http://www.khronos.
org/registry/cl/specs/opencl-1.2-extensions.pdf.

Extension name

Description

cl khr fpé64

cl _khr inté64 base_atomics

cl _khr int64 extended atomics

cl_khr 3d image_writes

cl khr fpleé

cl khr global int32 base atomics

cl khr global int32 extended atomics
cl khr local int32 base atomics

cl khr local int32 extended atomics

This expression gives a double precision
floating-point

This expression gives 64-bit integer
base atomic operations, provides atomic
operations for addition, subtraction,
exchange, increment/decrement, and
CAS

This expression gives 64-bit integer
extended atomic operations, provides
atomic operations for finding the
minimum, maximum, and boolean
operations such as and, or, and xor

This expression writes to 3D image
objects

This expression gives a halfly precised
floating point

This expression gives atomics for 32-bit
operands

This expression gives more atomic
functionality for 32-bit operands

This expression gives atomics for 32-bit
operands in shared memory space

This expression gives more atomic
functionality for 32-bit operands in
shared memory space

=

Chapter 1

Extension name

Description

cl khr byte addressable store

cl APPLE gl sharing

cl_khr gl sharing
cl_khr gl event

cl khr d3d10_sharing

This expression allows memory writes to
bytes less than a 32-bit word

This expression provides MacOSX
OpenGL sharing, and also allows
applications to use the OpenGL buffer,
texture, and render buffer objects as
OpenCL memory objects

This expression provides OpenGL sharing

This expression retrieves CL event
objects from GL sync objects

This expression shares memory objects
with Direct3D 10

Next, let's find out how we can determine what extensions are supported and available on
your platform by leveraging the previous code we've worked on.

Getting ready

The listing below only shows the interesting portion of the code found in Chl/device
extensions/device extensions.c. Various devices that are OpenCL compliant will have
different capabilities, and during your application development you definitely want to make
sure certain extensions are present prior to making use of them. The code discussed in the
How to do it... section of this recipe shows you how to retrieve those extensions.

How to do it...

We've included the main querying function, which allows you to implement this

particular recipe:

void displayDeviceDetails(cl_device id id,

cl device_info param name,

const char* paramNameAsStr) {

cl_int error = 0;
size t paramSize = 0;

error = clGetDeviceInfo(id, param name, 0, NULL, ¶mSize) ;

if (error != CL_SUCCESS) ({

perror ("Unable to obtain device info for param\n") ;

return;

}

/* the cl device_info are preprocessor directives defined in cl.h

s

Using OpenCL

*/

switch (param name) {
// code omitted - refer to "device extensions.c"
case CL_DEVICE EXTENSIONS : {

size t* ret = (size t*) alloc(sizeof(size t) * paramSize);
error = clGetDeviceInfo(id, param name, paramSize, ret,
NULL) ;
char* extension info = (char*)malloc(sizeof (char) *
(*ret));

error = clGetDeviceInfo(id, CL DEVICE EXTENSIONS,
sizeof (extension info), extension info, NULL);
printf ("\tSupported extensions: %s\n",
extension info) ;
}break;
} //end of switch

}

To compile the code, do as you did before by running a similar command on your terminal
like this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o device
extensions device extensions.c -framework OpenCL

On a UNIX platform, here's what we got when executed on an Intel Core i5 processor with
an NVIDIA mobile GPU GT330m (extensions are highlighted):

Number of OpenCL platforms found: 1
CL_PLATFORM_PROFILE: FULL_ PROFILE
CL_PLATFORM VERSION: OpenCL 1.0 (Dec 23 2010 17:30:26)
CL_PLATFORM NAME: Apple
CL_PLATFORM VENDOR: Apple
CL_PLATFORM_ EXTENSIONS:
Number of detected OpenCL devices: 2
GPU detected
VENDOR ID: 0x1022600
Maximum number of parallel compute units: 6
Maximum dimensions for global/local work-item IDs: 3
Maximum number of work-items in each dimension: (512 512 64)
Maximum number of work-items in a work-group: 512
Supported extensions: cl khr byte addressable store cl khr
global int32 base atomics cl khr global int32 extended atomics
cl APPLE gl sharing cl APPLE SetMemObjectDestructor cl APPLE
ContextLoggingFunctions cl khr local int32 base atomics cl khr local
int32 extended atomics
CPU detected

VENDOR ID: 0x1020400

=

Chapter 1

Maximum number of parallel compute units: 4

Maximum dimensions for global/local work-item IDs: 3
Maximum number of work-items in each dimension: (1 1 1)
Maximum number of work-items in a work-group: 1

Supported extensions: cl khr fp64 cl khr global int32 base atomics
cl khr global int32 extended atomics cl khr local int32 base atomics
cl khr local int32 extended atomics cl khr byte addressable store
cl APPLE gl sharing cl APPLE SetMemObjectDestructor cl APPLE
ContextLoggingFunctions

When we examine the work we just did, we simply leveraged on the existing code and added
the needed functionality where it was required, namely by adding code to handle the case
where CL._DEVICE_ EXTENSIONS was being passed in. We created an array of a fixed size on
the stack and passed that array to c1GetDeviceInfo, where the API will eventually store
the information into the array. Extracting the information is as simple as printing out the array.
For advanced usage, you might want to deposit that information into a global table structure
where the other parts of the application can make use of it.

To understand what those extensions mean and how you can take advantage of them, I'd
suggest that you refer to the Khronos register for OpenCL: http://www.khronos.org/
registry/cl/.

We won't dwell too much on each extension that we've seen so far. Let's move on to
understanding the OpenCL contexts.

Querying OpenCL contexts

An OpenCL context is created with one or more devices. Contexts are used by the OpenCL
runtime for managing objects such as command queues (the object that allows you to send
commands to the device), memory, program, and kernel objects, and for executing kernels on
one or more devices specified in the context.

In more detail, OpenCL contexts can be created by associating a collection of devices that are
available for the platform via c1CreateContext or by associating it with a particular type of
device, for example, CPU, GPUs, and so on, via c1CreateContextFromType. However, in
either way you cannot create contexts that are associated with more than one platform. Let's
use the example of vector multiplication in the Introduction section to demonstrate these
concepts. The problem of vector multiplication or dot product can be solved using: pen and
paper, CPU, GPU, or GPU + CPU. Obviously, the first option doesn't quite scale when we have a
little more than 20 elements and with OpenCL you have more options. The first thing you need
to decide is which platform it should be run, and in OpenCL it means deciding whether to use
the AMD, NVIDIA, Intel, and so on. And what comes next is to decide whether to run the dot
product on all of the devices listed for that platform or only some of it.

=]

http://www.khronos.org/registry/cl/
http://www.khronos.org/registry/cl/

Using OpenCL

So, let's assume that the platform reports one Intel Core i7 and 3 AMD GPUs and the
developer could use the clCreateContext FromType to restrict execution to either
CPUs or GPUs, but when you use clCreateContext, you can list all the four devices to
be executed against, theoretically speaking (however, in practice it's hard to use all CPUs
and GPUs effectively because the GPU can push more threads for execution than the CPU).
The following diagram illustrates the options available to the developer to create contexts
assuming the host environment is installed with both Intel and AMD's OpenCL platform
software. The configuration gets a little more interesting when you consider the Ivy Bridge
Intel processor, which includes an HD Graphics co-processor that allows a context that's
both CPU and GPU aware.

Intel OpenCL platform AMD OpenCL platform
Intel OCL AMD OCL

context-cpu-gpu|context-cpu context-cpu-gpu context-gpu

by
Sl

Contexts have another interesting property, that is, it retains a reference count so that third-
party libraries can refer to it and hence utilize the devices. For example, if the c1 khr
d3d10_sharing extension is available on your device, you can actually interoperate between
OpenCL and Direct3D 10, and treat Direct3D 10 resources similar to memory objects as
OpenCL memory objects that you can read from or write to. However, we will not demonstrate
the capability with this extension in this book and will instead leave it to the reader to engage
themselves in further exploration.

Getting ready

The code listing given in the How to do it... section is extracted from Chl/context query/
context details.c, and itillustrates how to create and release OpenCL contexts.

How to do it...

To query an OpenCL context, you need to include a function similar to the following in your
code. You should reference the full code listing alongside this recipe:

void createAndReleaseContext (cl platform id id,
cl device type dev_type) {

Chapter 1

/* OpenCL 1.1 scalar types */
cl int error = 0;
cl uint numOfDevices = 0;

/* Determine how many devices are connected to your platform */
error = clGetDeviceIDs(id, dev_type, 0, NULL, &numOfDevices) ;
if (error != CL_SUCCESS) {
perror ("Unable to obtain any OpenCL compliant device info");
exit (1) ;
}
cl device id* devices = (cl_device id¥)
alloca(sizeof (cl device id) * numOfDevices) ;

/*
Load the information about your devices into the variable

'devices'

*/

error = clGetDeviceIDs(id, dev_type, numOfDevices, devices, NULL) ;
if (error != CL_SUCCESS) {
perror ("Unable to obtain any OpenCL compliant device info");
exit (1) ;

printf ("Number of detected OpenCL devices: %d\n",
numOfDevices) ;

/*
We attempt to create contexts for each device we find,
report it and release the context. Once a context is
created, its context is implicitly
retained and so you don't have to invoke

'clRetainContext'
*/
for(int i = 0; i < numOfDevices; ++ 1) {

cl context context = clCreateContext (NULL, 1,
&devices [1i],
NULL, NULL,
&error) ;

cl uint ref cnt = 0;

if (error != CL_SUCCESS) {

perror ("Can't create a context");
exit (1) ;

e

Using OpenCL

error = clGetContextInfo (context,
CL_CONTEXT_ REFERENCE_COUNT,
sizeof (ref cnt), &ref cnt,
NULL) ;

if (error != CL_SUCCESS) {
perror ("Can't obtain context information") ;
exit (1) ;
}
printf ("Reference count of device is %d\n", ref cnt);
// Release the context
clReleaseContext (context) ;

}
On UNIX platforms, you can compile and build the program by typing the following command

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o context
details context details.c -framework OpenCL

On the test machine, we have two OpenCL compliant devices. The first is the Intel Core i5 CPU,
and the second is the NVIDIA mobile GT330m GPU. And the following is the output:

Number of OpenCL platforms found: 1
Number of detected OpenCL devices: 2
Reference count of device is 1
Reference count of device is 1

If you have been following the book, you should realize that we didn't do anything special other
than leverage on the previous exercises where we discover the sort of platforms installed,

and with that uncover the devices and finally use that information to create the relevant
contexts. Finally, with those relevant contexts we can query them. What you will notice is

that the context's reference count is one in both cases, which indicates that a memory

object is currently referencing it and the fact that we passed in CL._CONTEXT REFERENCE
COUNT reflects this. This counter is only good when you want to detect if the application is
experiencing a context leak, which actually means a memory leak. For OpenCL devices such
as the CPU or GPU, the problem might not sound as a big deal. But for mobile processors, it
would pose quite a serious problem since memory leaks, in general, wastes resources and the
ultimately depleting battery life.

=]

Chapter 1

There are actually more details where you can query the context via c1GetContextInfo
by passing in various c1_context info types. Here's a list of them:

cl_context_info Return type Information returned in
param_name

CL_CONTEXT_REFERENCE COUNT cl_uint This variable returns the
context reference count

CL_ CONTEXT NUM DEVICES cl_uint This variable returns the
number of devices in context

CL_CONTEXT DEVICES cl device idl] This variable returns a list of
devices in context

CL_CONTEXT_ PROPERTIES cl context This variable returns the

properties properties argument specified

in clCreateContext or
clCreateContext
FromType

Now that we've understood the basics of querying the platform, devices, extensions, and
contexts | think it's time to take a look at OpenCL kernels and how you can program them.

Querying an OpenCL program

In OpenCL, kernels refer to a function declared in a program. A program in OpenCL consists
of a set of kernels that are functions declared with the _ kernel qualifier in the code. Such
a program encapsulates a context, a program source or binary, and the number of kernels
attached. The following sections explain how to build the OpenCL program and finally load the
kernels for execution on the devices.

Getting ready

In order to run OpenCL kernels, you need to have a program (source or binary). Currently,
there are two ways to build a program: from source files and other from binary objects via
clCreateProgramWithSource and clCreateProgramWithBinary respectively
(clever names). These two APIs return a program object represented by the OpenCL type,

cl program when successful. Let's examine the method signatures to understand it better:

cl program clCreateProgramWithSource (cl context context,
cl uint count,
const char** strings,
const size t* lengths,
cl int* errcode ret)

s

Using OpenCL

If you read the signature carefully, you'll notice that the OpenCL context needs to be created
prior to build our program from source. Next the strings and lengths arguments hold
the various (kernel) filenames and their respective file lengths, and the last argument,
errcode_ret reflects the presence of errors while building the program:

cl program clCreateProgramWithBinary (cl context context,
cl uint num devices,
const cl _device_ id* device list,
const size t* lengths,
const unsigned char** binaries,
cl _int* binary status,
cl _int* errcode ret)

Examine the sighature and you can quickly realize that the binaries and lengths
arguments hold the pointers to the program binaries and their respective lengths. All the
binaries are loaded into the devices represented by the device list argument through

the context. Whether the program was loaded onto the device successfully is reflected in the
binary status argument. The developer would find this manner of program creation useful
when the binary is the only artifact that can be exposed to customers or even during system
integration tests.

For a developer to be able to create a valid OpenCL program by pulling offline binaries using
clCreateProgramWithBinary, he needs to generate the offline binaries in the first place
using the platform's compiler and this process is unfortunately vendor specific. If you are
using the AMD APP SDK, then you would need to enable the c1_amd offline devices
AMD extension, and when you create the context, you need to pass in the CL._ CONTEXT _
OFFLINE DEVICES_ AMD property. If you are developing for the Intel or Apple OpenCL
platforms, we would recommend you to consult the documentation at their websites.

Next, we need to build the program by invoking c1BuildProgram passing it the created

cl program object from clCreateProgramFromSource and during program creation, the
developer can provide additional compiler options to it (just as you perform when compiling
C/C++ programs). Let's see an example of how you might do this in the code given in the

How to do it... section, abbreviated from Chl/build opencl program/build opencl
program. c and the OpenCL kernel files are listed in Chl/build_opencl program/
{simple.cl, simple 2.cl.

How to do it...

To query an OpenCL program, you need to include a function similar to the following in your
code. You should refer to the complete code listing alongside this recipe:

int main(int argc, char** argv)
// code omitted - refer to "build opencl program.c"

// Search for a CPU/GPU device through the installed

NED

// platform. Build a OpenCL program and do not run it.
for(cl uint 1 = 0; i < numOfPlatforms; i++) {

// Get the GPU device

error = clGetDevicelIDs (platforms[i],

CL_DEVICE_TYPE GPU, 1,

&device, NULL) ;

if (error != CL_SUCCESS) {

// Otherwise, get the CPU

error = clGetDevicelIDs (platforms[i],
CL_DEVICE_TYPE_ CPU,
1, &device, NULL) ;

if (error != CL_SUCCESS) {

Chapter 1

perror ("Can't locate any OpenCL compliant device");

exit (1) ;

}

/* Create a context */

context = clCreateContext (NULL, 1, &device, NULL, NULL,

&error) ;
if (error != CL_SUCCESS) {
perror ("Can't create a valid OpenCL context") ;
exit (1) ;

}

/* Load the two source files into temporary
datastores */
const char *file names[] = {"simple.cl",
"simple 2.cl"};
const int NUMBER OF FILES = 2;
char* buffer [NUMBER OF FILES];
size t sizes[NUMBER OF FILES];
loadProgramSource (file names, NUMBER OF FILES, buffer,
sizes) ;

/* Create the OpenCL program object */

program = clCreateProgramWithSource (context,
NUMBER OF FILES,
(const
char**)buffer,
sizes, &error) ;

if (error != CL_SUCCESS) {

perror ("Can't create the OpenCL program object") ;

exit (1) ;

Es

Using OpenCL

/*

Build OpenCL program object and dump the error

message, if any

*/

char *program log;

const char options[] = "-cl-finite-math-only \

-cl-no-signed-zeros";

size t log size;

error = clBuildProgram(program, 1, &device, options,
NULL, NULL) ;

// Uncomment the line below, comment the line above;

// build the program to use build options dynamically

// error = clBuildProgram(program, 1, &device, argv([1l],

// NULL, NULL) ;

if (error != CL_SUCCESS) {
// If there's an error whilst building the program,
// dump the log
clGetProgramBuildInfo (program, device,
CL_PROGRAM BUILD LOG, O,
NULL,
&log _size);
program log = (char*) malloc(log size+l);
program logl[log_size] = '\0';
clGetProgramBuildInfo (program, device,
CL_PROGRAM BUILD LOG,
log size+l, program log,
NULL) ;
printf ("\n=== ERROR ===\n\n%s\n=============\n",
program_log) ;
free (program log) ;
exit (1) ;

/* Clean up */

for(i=0; i< NUMBER OF FILES; i++) { free(buffer([i]); }
clReleaseProgram (program) ;

clReleaseContext (context) ;

}
Similar to what you did previously, the compilation command won't be too far off:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o build opencl
program build opencl program.c - framework OpenCL

=

Chapter 1

You'll find the executable file named build opencl program deposited on the filesystem.

There are two ways to run the program, depending on how you compile it. If you reexamine
the code snippet shown earlier, you would notice that the compiler options is defined in the
source code and hence it's static, but there's another dynamic way in which the compiler
options can be passed during compilation and the following are those two simple approaches
are as follows:

If you chose the option of defining the build options statically, that is, if you have the
following lines:

const char options[] = "-cl-nosigned-zeros -cl-finite-math-only";
error = clBuildProgram(program, 1, &device, options, NULL, NULL) ;

OpenCL will simply build the program based on those build options you provided. This is rather
suitable as the shipped application will have consistent results when running across different
customer's setups.

To run the program, simply click on the build opencl program executable.

However, if you chose the other option of allowing your users to pass in options of their choice
(largely depending on your algorithm design), that is, if you have something like this:

error = clBuildProgram(program, 1, &device, argv[1l], NULL, NULL);

In place of options, we have the array of pointers to strings, traditionally used to pass in
arguments to the program via the command line (conveniently known to the C programmer
as argv), then you would have allowed the user to pass in multiple build options.

To run the program, you would enter a command similar to this where you quote the multiple
options (enclosed with quotes) you wish to pass to the program via -D:

./build opencl program -D"-cl-finite-math-only -cl-no-signed-zeros"

The code example in this section is a little more involved than what we've been doing so far.
What we did was to build an OpenCL program with two files: simple.cl and simple 2.cl
which contains two simple OpenCL kernels via this (earlier) code snippet.

const char *file names[] = {"simple.cl",
"simple 2.cl"};

We demonstrated on to create the necessary data structures to store the contents of both
files and the length of their program in two variables, buffer and sizes.

s

Using OpenCL

Next, we demonstrated how you built an OpenCL program using the c1_program object
that's returned by c1CreateProgramWithSource with build options that are either pre

or user defined. We've also learnt how to use the c1GetProgramInfo to query the program
object for the result of the build. Also, the host application has the capability to dump any
build errors from this process.

Finally, we released the data structures associated with the program and contexts in
reverse order of their creation. In OpenCL 1.2, there is another new manner in which
you can build a OpenCL program object but you would need to use both of the new APIs:
clCompileProgramand clLinkProgram. The rationale behind them is to facilitate
separation, compilation, and linkage.

The build options deserved a further mention here, as there are in general four groups of
options available to the OpenCL programmer. Go through the following for more information.

There are, in general, three groups of options available when you wish to build the OpenCL
program: options to control behavior in math, optimizations, and miscellaneous.

The following table presents the math options available:

-cl-single- This option treats double precision floating point as a single
precision- precision constant.

constant

-cl-denorms-are- This option controls how single and double precision denormalized
Zero numbers are handled. The compiler can choose to flush these

numbers to zero. See http://www.khronos.org/registry/
cl/sdk/1.1/docs/man/xhtml/.

-cl-fp32- This option can be passed to c1BuildProgram or
correctly- clCompileProgram, which allows an application to specify that
rounded-divide- a single precision floating point divide (x / y and 1 / x) and sqrt
sgrt used in the program source are correctly rounded.

The following table highlights the optimization options available:

-cl-opt-disable This option disables all optimizations.
Optimizations are enabled by default

-cl-mad-enable This option allows a * b + ¢ to be computed with
reduced accuracy

-cl-unsafe-math-optimizations This option combines the —cl-mad-enable
and -cl-no-signed-zeros options

-cl-no-signed-zeros This option allows floating point arithmetic to
ignore the signedness of zero, since according to
IEEE 754, there's a difference between +0.0 and
-0.0

Chapter 1

-cl-finite-math-only This option allows optimizations to assume no
floating point argument to take a NaN or an
infinite value

-cl-fast-relaxed-math This option combines the —cl-unsafe-math-
optimizations and the —cl-finite-math-
only options

The following table here highlights the miscellaneous options available:

-w This option prevents all warning messages

-Werror This option turns all warning messages into errors

-cl-std=VERSION This option builds the program based on the version
of the OpenCL compiler (VERSION={CL1.1})

Let's move on to a bigger example where we create and query OpenCL kernels and eventually
place them on a command queue for a device.

Creating OpenCL kernels

So far, we've managed to create a program from the source files. These source files are
actually the OpenCL kernel code. Here's an example of how they look like:

__kernel void simpleAdd(global float *a,
__global float *b,
__global float *c) {

int gid = get global id(0);

c[gid] algid] + blgid];

}

The kernels are identified by kernel qualified to the C-like function. The _ global
qualifiers refer to the memory space in which the variables reside. We'll have more to say
about this in later chapters.

But this program cannot execute on the device even though we have created the program
objects, as described previously. Recall that a program can reference several kernels and we
need to hold on to those kernels, because it is the kernel that gets scheduled for execution on
the devices and not the program object. OpenCL gives us the function to extract those kernels
via clCreateKernel or clCreateKernelsInProgram. Let's take a close look at them:

cl kernel clCreateKernel (cl program program,
const char* kernel name,
cl int* errcode ret)

s

Using OpenCL

By looking at this code, you'll notice that in order to create the kernel we first need to create
the program object, the name of the kernel function plus the capture of the return status.
This APl returns a c1_kernel, which represents the kernel object when successful. This
API provides the programmer with an option of not transforming every kernel function in the
program into actual OpenCL kernel objects ready for execution.

But if you wish to simply transform all kernel functions in the program into kernel objects,
then clCreateKernelsInProgranm is the API to use:

cl _int clCreateKernelsInProgram(cl program program,
cl_uint num kernels,
cl kernel* kernels,
cl_uint* num kernels_ret)

You use this API to ask OpenCL to create and load the kernels into the kernels
argument, and you hint to the OpenCL compiler how many kernels you're expecting
with the num kernels argument.

Getting ready

The complete code can be found in chl/kernel query/kernel query.c.An abbreviated
code is shown in the code snippet discussed in the How to do it... section of this recipe to
keep us focused on the key APIs. This code requires one or more OpenCL source files, that

is, *.c1 and once you've placed them together you need to change the program's variables,
file names and NUMBER OF FILES to reflect the files accordingly.

How to do it ...

To query an OpenCL kernel, you'll need to include a function similar to the following in your
code. You should reference the full code listing alongside this recipe:

/*
Query the program as to how many kernels were detected
*/
cl_uint numOfKernels;
error = clCreateKernelsInProgram(program, 0, NULL,

&gnumOfKernels) ;
if (error != CL_SUCCESS) {
perror ("Unable to retrieve kernel count from
program") ;
exit (1) ;
}
cl kernel* kernels = (cl _kernel*)

alloca(sizeof (cl_kernel) *
numOfKernels) ;

Chapter 1

error = clCreateKernelsInProgram(program, numOfKernels,
kernels, NULL) ;

for(cl uint i = 0; i < numOfKernels; i++) {
char kernelName[32];
cl uint argCnt;
clGetKernelInfo (kernels[i],
CL_KERNEL_FUNCTION NAME,
sizeof (kernelName) ,
kernelName, NULL) ;
clGetKernelInfo (kernels[i], CL_KERNEL NUM ARGS,
sizeof (argCnt), &argCnt, NULL) ;
printf ("Kernel name: %s with arity: %d\n",
kernelName,
argCnt) ;
}
/* Release the kernels */
for(cl uint i = 0; I < numOfKernels; i++)
clReleaseKernel (kernels[i]) ;

The compilation is very similar to that of build opencl program.c illustrated in the
previous section, so we're skipping this step. When this application is run with two OpenCL
source files, the output we will get is:

Number of OpenCL platforms found: 1

Kernel name: simpleAdd with arity: 3

Kernel name: simpleAdd 2 with arity: 3

The two source files, each defined a simple kernel function that adds its two arguments
and stores the result into the third argument; and hence the arity of the function is 3.

The code invokes clCreateKernelsInProgram twice. If you recall, this pattern recurs for
many of the OpenCL APIs, where the first call would query the platform for certain details,
which in this case is the number of kernels detected in the program. The subsequent calls
would ask OpenCL to deposit the kernel objects into the storage referenced by kernels.

Finally, we invoke c1GetKernelInfo, passing to it the retrieved kernel objects, and printing
out some information about the kernel functions, such as the kernel function's name and the
arity of the function through the CL,. KERNEL FUNCTION NAME and CL_KERNEL NUM ARGS
variables.

Eis

Using OpenCL

A complete list of details that can be queried from the kernel objects is reflected in the
following table:

cl_kernel_info Return Type Information returned in param_
value

CL_KERNEL_FUNCTION_NAME char[] This variable returns the kernel
function's name

CL_KERNEL NUM ARGS cl uint This variable returns the number of
arguments to kernel

CL_KERNEL REFERENCE COUNT cl uint This variable returns the kernel
reference count

CL_KERNEL CONTEXT cl context This variable returns the associated
context for this kernel

CL_KERNEL_ PROGRAM cl _program This variable returns the program
object, that will be bound to the
kernel object

Now that we've figured out how to create kernel objects, we should take a look at how to
create command queues and start enqueuing our kernel objects and data for execution.

Creating command queues and enqueuing

OpenCL kernels

This section will show you how to enqueue OpenCL kernel objects on the device. Before we
do that, let's recall that we can create kernels without specifying an OpenCL device and the
kernels can be executed on the device via the command queue.

At this point, we probably should spend some time talking about in-order execution

and how they can be compared with out-of-order execution, though this subject is complex
but intriguing as well. When a program is to be executed, the processor has the option

of processing the instructions in the program in-order or out-of-order; a key difference
between these two schemes is that in-order results in an execution order that is static,
while out-of-order allows instructions to be scheduled dynamically. Out-of-order execution
typically involves reordering the instructions, so that all computation units in the processors
are utilized and driven by the goal of minimizing the stalling of the computation.

However, kernels are not the only objects that can be queued on the command queue.

A kernel needs data so that it can perform its operations and data needs to transferred to the
device for consumption, and these data could be OpenCL buffer / sub-buffer or image objects.
The memory objects that encapsulate the data need to be transported into the device and you
have to issue memory commands to the command queue for that to occur; and in many use
cases, it is common to hydrate the device with data prior to computation.

NED

Chapter 1

The following diagram highlights this use case where a kernel is scheduled for
in-order execution, assuming that the kernel needs the data to be copied explicitly
or memory-mapped, and upon completion of computation, the data is copied from
the device's memory to host memory.

| copy data to host kernel execute copy data to device | command queue

>
I

Time

Also multiple command queues can be created and enqueued with commands and the
reason for their existence is because the problem you wish to solve might involve some, if not
all of the heterogeneous devices in the host. And they could represent independent streams
of computation where no data is shared, or dependent streams of computation where each
subsequent task depends on the previous task (often, data is shared). Take care that these
command queues will execute on the device without synchronization, provided that no data is
shared. If data is shared, then the programmer needs to ensure synchronization of the data
through synchronization commands provided by the OpenCL specification.

As an example of independent streams of computation, the following diagram assumes
that three independent tasks have been identified and they need to execute on a device.
Three command queues (in-order execution only) with tasks enqueued in each of them and
a pipeline can be formed, such that the device executes the kernel code while 1/0 is being
performed to achieve better utilization by not having the device sit idle waiting for data.

copy data to host | kernel execute | copy data to device | command-queue-2

A |
F
i
|
i
i
|
i

I copy data to host kernel execute copy data to device | command-queue-1

| i
copy data to host | kernel execute copy data to device |command-queue-0

Time

s

Using OpenCL

u Be aware that even though by default, commands enqueued in the
~ command queue execute in-order, you can enable out-of-order execution
Q by passing the CL._ QUEUE_OUT_OF ORDER EXEC MODE_ENABLE
flag when creating the command queue.

An example of out-of-order execution is shown in the following diagram, and let's assume
that our problem is decomposed into three interdependent kernels, where each kernel will
consume and process the data and then pass it to the next phase. Let's assume further that
the execution of the kernels is out-of-order. What would happen next is mayhem and that's
probably why this option is never the default.

A Any of the Kernels"a","b"and"c"
can be executed in out-of-order
fashion

1 1 1
! ! =
: : i command-queue
copy data to host kernel-c kernel-b kernel-a copy data to device
Time

However, the reader should be aware about CPUs from AMD and Intel.

When you start working on the kernels, you might discover that certain kernels seem to have
better performance than others. And you can profile the kernel while you are fine-tuning it by
passing the CL._QUEUE_PROFILING_ ENABLE flag when creating the command queue.

Getting ready

Without repeating too much of the previous code, here's the relevant code that is derived
from chl/kernel queue/kernel gqueue.c. This code listing would need valid OpenCL
kernel file(s) with distinct kernel function names (function overloading is disallowed) and valid
function parameters. In chl/kernel queue/hello_world.cl you can see an example of
such a function or kernel otherwise.

__kernel void hello(_ global char* data) {

}

=)

Chapter 1

How to do it...

You should reference the full code listing alongside this recipe:

cl kernel* kernels = (cl kernel*) alloca(sizeof (cl kernel) *
numOfKernels) ;
error = clCreateKernelsInProgram(program, numOfKernels,
kernels, NULL) ;
for(cl uint i = 0; i < numOfKernels; i++) {
char kernelName [32];
cl uint argCnt;
clGetKernelInfo (kernels[i], CL_KERNEL FUNCTION NAME,
sizeof (kernelName), kernelName, NULL) ;
clGetKernelInfo (kernels[i], CL_KERNEL NUM ARGS,
sizeof (argCnt) ,
&argCnt, NULL) ;
printf ("Kernel name: %$s with arity: %d\n", kernelName,
argCnt) ;
printf ("About to create command queue and enqueue this
kernel...\n");

/* Create a command queue */
cl command queue cQ = clCreateCommandQueue (context,
device,
0,
&error) ;
if (error != CL_SUCCESS) {
perror ("Unable to create command-queue") ;
exit (1) ;
}
/* Create a OpenCL buffer object */
cl mem strObj = clCreateBuffer (context,CL _MEM READ ONLY |
CL_MEM_COPY HOST PTR,
sizeof (char) * 11,
"dummy value", NULL) ;

/*
Let OpenCL know that the kernel is suppose to receive an
Argument
*/
error = clSetKernelArg(kernels[i],
0,
sizeof (cl mem),
&strObj) ;

@l

Using OpenCL

if (error != CL_SUCCESS) {
perror ("Unable to create buffer object");
exit (1) ;
}
/* Enqueue the kernel to the command queue */
error = clEnqueueTask (cQ, kernels[i], 0, NULL, NULL) ;

if (error != CL_SUCCESS) {
perror ("Unable to enqueue task to command-queue") ;
exit (1) ;
}
printf ("Task has been enqueued successfully!\n");
/* Release the command queue */
clReleaseCommandQueue (cQ) ;
}
/* Clean up */
for(cl uint i = 0; i < numOfKernels; i++) {
clReleaseKernel (kernels[i]) ;

}

As before, the compilation steps are similar to that in kernel guery.c with a command
like:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o kernel queue
kernel queue.c - framework OpenCL

Here's the sample output when | execute the application on my machine:

Number of OpenCL platforms found: 1
Kernel name: hello with arity: 1
About to create command queue and enqueue this kernel...

Task has been enqueued successfully!

From the output, you can tell that the task has been enqueued onto a command
queue successfully!

Following from the previous section where we successfully queried the OpenCL kernel
objects for information, we leverage on that code to create a command queue via
clCreateCommandQueue, enqueue the kernel into the queue via c1EnqueueTask,
but not before setting the data needed for the kernel via c1SetKernelArg and
clCreateBuffer. You can ignore these two APIs for now, until we explain them in

a later chapter.

=

Understanding OpenCL
Data Transfer and
Partitioning

In this chapter, we'll cover the following recipes:

» Creating OpenCL buffer objects

» Retrieving information about OpenCL buffer objects

» Creating OpenCL sub-buffer objects

» Retrieving information about OpenCL sub-buffer objects
» Understanding events and event-synchronization

» Copying data between memory objects

» Using work items to partition data

Introduction

In this chapter, we're going to explore how to invoke the OpenCL's data transfer APlIs,
query memory objects, and data/work partitioning between the GPUs and CPUs.

Be aware that not all OpenCL SDKs support the compilation and execution
M on both GPUs and CPUs. AMD's OpenCL implementation supports its
Q own AMD and Intel CPUs and GPUs; NVIDIA supports its GPUs and Intel
supports its own Intel Core CPUs and Intel HD Graphics. Check with the
vendor for supported devices.

Understanding OpenCL Data Transfer and Partitioning

In the Open Computing Language (OpenCL) development, you would inevitably need data
to be processed, and the standard does not permit you to manipulate memory objects
directly as you would do when you program in C or C++, because the data memory in the
host is ultimately transferred to the devices in a heterogeneous environment for processing,
and previously you would use the programming constructs in various libraries or languages
to access them which is one of the reasons why OpenCL came about; hence to unify these
approaches, the standard added abstractions to shield the developer from these concerns.

With respect to data types, there are a few you need to be aware of other than the
one-dimensional data buffer. OpenCL buffer objects can be used to load and store
two/three-dimensional data. The next data type in OpenCL is the image object; these
objects are used to store two or three dimensional images (we won't cover much of using
the image objects in this book).

The OpenCL 1.1 new data transfer capabilities includes the following:

» Using sub-buffer objects to distribute regions of a buffer across multiple
OpenCL devices

» 3-component vector data types

» Using the global work offset which enables kernels to operate on different portions
of the NDRange—global work offset refers to the data points in the input data where
work items can start processing

» Reading, writing, or copying a 1D, 2D or 3D rectangular region of a buffer object

Creating OpenCL buffer objects

In the previous chapter, we understood the need to create or wrap our host's memory objects
into an abstraction that OpenCL can operate on, and in this recipe we'll explore how to create
a particular type of memory object defined in the specification that is commonly used for
general purpose computation—buffer object. The developer can choose to create a one,

two or three dimensional memory object that best fits the computational model.

Creating buffer objects is simple in OpenCL and is akin to the way in which you would use C's
memory allocation routines such as malloc and alloca. But, that's where the similarity
ends for the reason that OpenCL cannot operate directly on memory structures created by
those routines. What you can do is to create a memory structure that lives on the devices that
can be mapped to the memory on the host and the data is transferred to the device by issuing
memory transfer commands to the command queue (which you recall is the conduit to the
device). What you need to decide is the sort of objects, and how much of these objects you
would like the device to compute.

=

Chapter 2

In this example, we're going to learn how to create buffer objects based on user-defined
structures also known as structs in the C/C++ language. Before that, let's understand
the API:

cl_mem clCreateBuffer (cl_context context,
cl_mem_flags flags,
size t size,
void* host ptr,
cl _int* errcode ret)

You can create a buffer by specifying which context it should attach to (recall that contexts
can be created with several devices), specify the size of the data, and where to reference it
with size and host_ptr respectively, specify how memory is to be allocated and whether
that memory is to be of type read, read-only, read-write, or write only via £1ags; lastly capture
the resultant error code in errcode_ret. Note that c1CreateBuffer doesn't queue the
command to conduct the memory transfer from host to device memory.

Getting ready

Here's a portion of the code from Ch2/user buffer/user buffer.c where you will see
how to use the c1CreateBuffer API to allocate memory for a user-defined structure. The
problem we are trying to solve in this example is to send a million user-defined structures to

the device for computation. The computation encapsulated by the kernel is a simple one—sum
of all elements of each user-structure. The astute reader would have noticed we could have
demonstrated this data structure with a vector data type in OpenCL, int4; the reason why we
didn't do it that way is a two fold: (a) it's an example of application domain modeling, (b) because
in a few paragraphs from current we wanted to illustrate how you could use the data type
alignment construct, and don't fret over the data types now because we'll dive into the various
data types in the next chapter. Continuing further, the user-defined structure is as follows:

typedef struct UserData {
int x;

int y;

int z;

int w;

} UserData;

What you will need to do is to create a buffer on the host application using standard C/C++
dynamic/static memory allocation techniques such as new, malloc, and alloca. Next, you
will need to initialize that data buffer, and finally you will have to invoke c1CreateBuffer
and you should make sure it's done prior to the call to c1SetKernelArg; recall that we
mentioned that kernels get scheduled for execution on the device, well before it executes the
kernel code on the device it would need data and values to work against, and you can achieve
this by an invocation to c1SetKernelArg and you typically do this when the buffer object

is created.

=]

Understanding OpenCL Data Transfer and Partitioning

The API c1setKernelArg looks like the following code and it'll be important for you to
understand how it works:

cl _int clSetKernelArg(cl kernel kernel,
cl_uint arg_index,
size_ T arg_size,
const void *arg value);

The kernel can take no arguments or at least one and probably more arguments, and how you
configure them is simple. The following code snippet should complete the story:

// in the kernel code

kernel void somefunction(global int* argl, _ global int* arg2) {..}
// in the host code

int main(int argc, char**argv) ({

// code omitted

cl kernel kernel;

// kernel is initialized to point to "somefunction" in the kernel file
clSetKernelArg (kernel, 0, sizeof(cl mem), (void*) &memoryobjectA);
clSetKernelArg (kernel, 1, sizeof(cl mem), (void*) &memoryobjectB) ;

Therefore, the kernel arguments are configured programmatically with the understanding that
if the kernel function has n arguments then the arg_index would range from 0 to (n - 1).

How to do it...

We've included the main part of this recipe from Ch2/user buffer/user buffer.c,
with the highlighted commentary:

/* Defined earlier */
#define DATA SIZE 1048576
UserData* ud_in = (UserData*) malloc (sizeof (UserData) *
DATA SIZE); // input to device
/* initialization of 'ud_in' is omitted. See code for details.*/
/* Create a OpenCL buffer object */

cl_mem UDObj = clCreateBuffer (context,
CL_MEM_READ ONLY |
CL_MEM COPY HOST PTR,
sizeof (UserData) * DATA SIZE,
ud_in, &error);

if (error != CL_SUCCESS) {
perror ("Unable to create buffer object");
exit (1)

=)

Chapter 2

On OSX, you would compile the program by running the following command on your terminal:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o user buffer
user buffer.c -framework OpenCL

On the Ubuntu Linux 12.04 with Intel OpenCL SDK, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o user buffer user buffer.c
-I . -I /usr/include -L/usr/libé64/OpenCL/vendors/intel -lintelocl -1ltbb
-ltbbmalloc -1lcl logger -ltask executor

On the Ubuntu Linux 12.04 with AMD APP SDK v2.8, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o user buffer user buffer.c
-I. -I/opt/AMDAPP/include -L/opt/AMDAPP/lib/x86 64 -1OpenCL

Regardless of the platform, a binary executable user buffer would be deposited locally.

Running the application on both platforms, we would get the following result:
Number of OpenCL platforms found: 1

Kernel name: hello with arity: 1
s

About to create command queue and enqueue this kernel...
Task has been enqueued successfully!
Check passed!

The application created a million of the UserData objects on the host. Refer to the following
code snippet:

/*
Prepare an array of UserData via dynamic memory allocation

*/

UserData* ud_in = (UserData*) malloc(sizeof (UserData) * DATA SIZE);
// input to device
UserData* ud_out = (UserData*) malloc(sizeof (UserData) * DATA_SIZE) ;

// output from device
for(int i = 0; i < DATA SIZE; ++1i) {

(ud_in + 1)->x = i;
(ud_in + 1i)->y = i;
(ud_in + i)->z = i;
(ud_in + i)->w = 3 * 1i;

@1

Understanding OpenCL Data Transfer and Partitioning

The application then sends it to the device for computation after the program and kernel
objects have been initialized, and we assign the recently created UDObj memory object
to the kernel as its argument. Refer to the following code snippet:

error = clSetKernelArg(kernels[i], 0, sizeof (cl _mem), &UDODbJ) ;
if (error != CL_SUCCESS) {
perror ("Unable to create buffer object");
exit (1) ;

}

Next, we issue a kernel execution command to the command-queue, cQ, and the code will run
against the device, the following code snippet demonstrates the enqueuing of the kernel:

/* Enqueue the kernel to the command queue */
error = clEnqueueTask (cQ, kernels[i], 0, NULL, NULL) ;

if (error != CL_SUCCESS) {
perror ("Unable to enqueue task to command-queue") ;
exit (1) ;

}

After that's done, the data in the device's memory is read back and we indicated that we wish
to read the data back until the device has completed its execution by passing CL._TRUE to
indicate blocking read which otherwise could result in partial data read back; finally the data
is verified, demonstrated by the following code snippet:

/* Enqueue the read-back from device to host */
error = clEnqueueReadBuffer (cQ, UDObj,
CL_TRUE, // blocking read
0, // write from the start
sizeof (UserData) * DATA SIZE,
// how much to copy
ud_out, 0, NULL, NULL) ;
if (valuesOK(ud_in, ud out)) {
printf ("Check passed!\n") ;
} else printf ("Check failed!\n");

Let's explore how we used clCreateBuffer further.

In this scenario, you would want to allocate memory on the device as read-only when it comes
to providing input to the device and because you want to be sure nothing else is writing to

the data store. Therefore, the flag CL. MEM_READ ONLY is passed, but if your input data was
meant to be readable and writable then you would need to indicate it using CL. MEM READ
WRITE. Notice that we actually created a data store on the host via ud_in and, we wanted
our OpenCL memory object to be the same size as ud_in and the C statement reflects this;
finally we wanted OpenCL to know that the new memory object is to copy its values from
ud_in and we provided the flag CI. MEM_COPY HOST_PTR t00, and we use the bitwise OR
operator that is represented on the standard US keyboard as a pipe symbol, |, to merge these
two flags.

=

Chapter 2

Conceptually, you can visualize it to be an 1D-array-of-structs for short or an
array-of-structures in general.

UserData UserData UserData e UserData

Provide the same declaration of the application data type to the OpenCL
M kernel file (* . ¢1) as well as the host application files (* . c, * . h, * . cpp,
Q * hpp); else the OpenCL runtime will emit errors to reflect that the struct
it is looking for does not exist, and the replication is necessary as OpenCL
prohibits the C header file inclusion mechanism.

Let's spend some time to understand the C struct we just used in this example. The C
structure we just used, UserData, is an example of an application data type. OpenCL makes
no requirement about the alignment of OpenCL data types outside of buffers and images;
hence developers of OpenCL need to make sure the data is properly aligned. Fortunately,
OpenCL has provided attribute qualifiers so that we can annotate our types, functions and
variables to suit the algorithm and CPU/GPU architecture with the primary motivation being

to improve memory bandwidth. The alignment needs to be a power of two and at least a
perfect multiple of the lowest common multiple of all the alignments of all the members of the
struct or union.

Refer to Section 6.11.1 Specifiying Attributes of Types in
s the OpenCL 1.2 specification

Let's take a look at what is available to developers when it comes to aligning data types such
as enum, struct, Or union.

Data alignment is a direct result of how various computer systems restrict the allowable
addresses for the primitive data types, requiring that the address for some type of object must
be a multiple of some value K (typically 2, 4, or 8), and this actually simplifies the design of
the hardware between the processor and the memory system. For example, if the processor
were to always fetch 8 bytes from memory with an address that must be a multiple of 8, then
the value can be read or written in a single memory operation otherwise, the processor needs
to perform two or more memory accesses.

Alignment is enforced by making sure that every data type is organized and allocated in such
a way that every object within the type satisfies its alignment restrictions.

Let's use an example for this illustration. Following is the generic manner in which alignment
can be defined for application data type such as UserData. While examining the code, you
will notice that without the aligned attribute, this data structure will be allocated on a 17-byte
boundary assuming int is 4-bytes and char is 1-byte on a 32-bit / 64-bit system architecture.
Once this attribute is included, following is the alignment:

| attribute ((aligned))

@]

Understanding OpenCL Data Transfer and Partitioning

The alignment is now determined by the OpenCL compiler to be aligned to 32-bytes instead of
17-bytes, that is, summing all the struct member's sizes, and the specification designates the
alignment size to be the largest power of 2 and therefore it is 2° because, the 2* is 1-byte too

many; however if you were to change the previous alignment to the following alignment:

| __attribute_ ((aligned (8)))
Then the alignment will be at least 8-bytes as shown in the following code:

typedef struct _ attribute ((aligned)) UserData f{
int x;
int y;
int z;
int w;
char c;
} UserData;

Equivalently, you can also write in more explicit form as follows:
typedef struct _ attribute ((aligned(32)) UserData {..}

In general, the golden rule of designing the data to be memory aligned is still a necessary
practice; a rule of thumb | keep in mind is 16-byte aligned for 128-bit access and 32-byte
aligned for 256-bit access.

On the other side of the story, you may find yourself wishing that the alighment wasn't that
large, and with OpenCL you can indicate that by using the packed attribute as in the following
code assuming that LargeUserData is an imaginary large data structure:

typedef struct _ attribute ((packed)) LargeUserData {..}

When you apply this attribute to a struct or union, you're effectively applying the attribute
to every member of the data; applying to an enum means that the OpenCL compiler will
select the smallest integral type found on that architecture. You can refer to the Ch2 /user__
buffer alignment/user buffer align.c to review what's done and how to profile the
performance of the application via AMD APP SDK in the readme . txt file.

Retrieving information about OpenCL

buffer objects

To retrieve information about a buffer or sub-buffer object, you'll need to use the API
clGetMemObjectInfo and its signature as in the following code:

cl_int clGetMemObjectInfo(cl_mem memobj,
cl_mem_info param_name,
size t param value_ size,
void* param value,
size t* param value size ret)

SNED

Chapter 2

To query the memory object, simply pass the object to memobj specifying the type of
information you want in param_name, inform OpenCL the size of the returned information in
param value size and where to deposit it in param_value; the last parameter, param
value size ret, is largely optional but it returns the size of the value in param value
slze.

Getting ready

Here's an excerpt from the code in Ch2/buffer query/buffer query.c where it
shows how to extract the information about the memory object, UDOb7 is encapsulated into

a user-defined function displayBufferDetails because, the code can be long depending
on how many attributes you wish to extract about a memory object and you would place

the invocation to this function after you've created the buffer object or if you have been

given a handle to the memory object. The following code illustrates how it would display the
information about a memory object by abstracting the OpenCL memory retrieval APIs into the
function displayBufferDetails:

cl_mem UDObj = clCreateBuffer (context, .. sizeof (UserData) *
DATA SIZE, ud_in, &error);

/* Extract some info about the buffer object we created */

displayBufferDetails (UDObj) ;

How to do it...

We've included the main part of this recipe, as shown in the following code:

void displayBufferDetails(cl mem memobj)

cl mem object type objT;

cl_mem flags flags;

size_t memSize;

clGetMemObjectInfo (memobj, CL_MEM TYPE,
sizeof (cl_mem object type), &objT, 0);

clGetMemObjectInfo (memobj, CL MEM FLAGS, sizeof (cl mem flags),
&flags, 0);

clGetMemObjectInfo (memobj, CL MEM SIZE, sizeof (size t),
&memSize, O0);

char* str = '\0';
switch (objT) {
case CL_MEM_OBJECT_BUFFER: str = "Buffer or Sub

buffer";break;
case CL_MEM OBJECT_IMAGE2D: str "2D Image Object";break;
case CL_MEM OBJECT_ IMAGE3D: str

}

char flagStr[128] = {'\0'};

"3D Image Object";break;

i

Understanding OpenCL Data Transfer and Partitioning

if (flags & CL_MEM READ WRITE) strcat(flagStr, "Read-Write|");
if (flags & CL_MEM WRITE ONLY) strcat(flagStr, "Write Only|");
if (flags & CL_MEM READ ONLY) strcat(flagStr, "Read Only|");
if (flags & CL_MEM COPY HOST PTR) strcat(flagStr, "Copy from
Host|") ;
if (flags & CL_MEM USE HOST PTR) strcat(flagStr, "Use from
Host|") ;
if (flags & CL_MEM ALLOC HOST PTR) strcat (flagStr, "Alloc from
Host|") ;

printf ("\tOpenCL Buffer's details =>\n\t size: %$lu MB, \n\t object
type is: %s,\n\t flags:0x%1lx (%s) \n", memSize >> 20, str, flags,
flagStr) ;

}
On OSX, you will compile the program by running the following command on your terminal:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o buffer query
buffer query.c - framework OpenCL

On Ubuntu Linux 12.04 with Intel OpenCL SDK, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o buffer query buffer query.c
-I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel -lintelocl -1ltbb
-ltbbmalloc -1lcl logger -ltask executor

On Ubuntu Linux 12.04 with AMD APP SDK v2.8, the command will be as follows:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o buffer query buffer query.c
-I. -I/opt/AMDAPP/include -L/opt/AMDAPP/lib/x86 64 -1OpenCL

Regardless of the platform, a binary executable buffer query would be deposited locally.

Executing the program on an 0SX 10.6 and Ubuntu 12.04 with AMD APP SDK v2.7 would
present the following result:

Number of OpenCL platforms found: 1
Kernel name: hello with arity: 1
About to create command queue and enqueue this kernel. ..
OpenCL Buffer's details =>
size: 128 MB,
object type is: Buffer or Sub-buffer,
flags:0x21 (Read-Write|Copy from Host)
Task has been enqueued successfully!
Check passed!

=

Chapter 2

The host application proceeds to first create the buffer that it will send to the device, then
the application queries for information about the buffer. The full list of attributes that can be
queried is as shown in the following table:

cl_mem_info Return type Info. Returned in param_value

CL_MEM_TYPE cl_mem_object_type Itreturns CL_MEM OBJECT
BUFFER if memobj is created
with c1CreateBuffer or
clCreateSubBuffer.

Cl_MEM FLAGS cl mem flags It returns the flags argument
specified when memob7j is
created with c1lCreateBuffer,
clCreateSubBuffer,
clCreateImage2D, Or
clCreateImage3D.

CL_MEM SIZE size t It returns the actual size of the
data associated with memobj in
bytes.

CL_MEM HOST PTR void* If memob7j is created
with clCreateBuffer
or clCreateImage2d,
clCreateImage3D, then it
returns the host_ptr argument
specified when memob7j is
created.

If memob7j is created with
clCreateSubBuffer, then

it returns the host_ptr plus
origin specified when memob;j
was created.

See clCreateBuffer for what

host ptris.
CL_MEM_MAP_ COUNT cl uint Map count.
CL_MEM_REFERENCE cl uint It returns memobi's reference
COUNT count.

Understanding OpenCL Data Transfer and Partitioning

cl_mem_info Return type Info. Returned in param_value

CL_MEM_CONTEXT cl_context It returns the context specified
when the memory is created.
If memobj is created using
clCreateSubBuffer, the
context associated with the
memory object specified as
the buf fer argument to
clCreateSubBufferis

returned.
CL_MEM ASSOCIATED cl_mem It return memory object from
MEMOBJECT which memob7 is created.

In clCreateSubBuffer, it
returns the buf fer argument;
else NULL is returned.

CL_MEM OFFSET size t Applicable to memobj created
via clCreateSubBuffer. It
returns offset or O.

Creating OpenCL sub-buffer objects

Sub-buffers are incredibly useful data types and as you continue to explore OpenCL in this
chapter, you'll notice that this data type can be used to partition the data and distribute them
across your OpenCL devices on your platform.

. Atthe time of this writing, sub-buffer support is not enabled on OpenCL
delivered in the OSX 10.6, because the official version is OpenCL 1.0.
s However, if you have OSX 10.7 then you'll be able to run this code
without any problem.

Let's take a look at the method signature and examine it:

cl_mem clCreateSubBuffer (cl_mem buffer,
cl mem flags flags,
cl buffer create type bufferType,
const void* buffer create_info,

cl int* errcode ret)

The argument buf fer refers to the buffer you created via c1CreateBuffer, the flags
argument refers to the options you wish this offer to have and if it's zero then the default
option is CL. MEM_READ WRITE, this flag can adopt any values from the previous table.
The argument buf ferType is of a data structure:

=

Chapter 2

typedef struct cl buffer region ({
size t origin;
size t size;

} ¢l buffer region;

Therefore, you indicate where to start creating the region via the origin argument and how
large it is going to be via the size argument.

Getting ready

In the How to do it... section of this recipe there is an excerpt from ch2/sub buffers/
sub_buffer.c where we create two sub-buffer objects and each of them holds one-half of
the data; these two sub-buffers will be sent to each OpenCL device on my setup, and they're
computed and results are checked. Conceptually, here's what the code is doing:

| I |
V \

How to do it...

We've included the main part of this recipe as shown in the following code:

/* Chop up the data evenly between all devices & create sub-
buffers */

cl buffer region region;
region.size = (sizeof (UserData) *DATA SIZE) / numOfDevices;
region.origin = offset * region.size;
cl _mem subUDObj = clCreateSubBuffer (UDObjJ,
CL_MEM READ WRITE, // read-write
CL_BUFFER_CREATE TYPE REGION,
®ion, &error);
if (error != CL_SUCCESS) {
perror ("Unable to create sub-buffer object");
exit (1) ;

}

/* Let OpenCL know that the kernel is suppose to receive an
argument */

error = clSetKernelArg(kernels([j], 0, sizeof(cl _mem), &subUDODbJ) ;
// Error handling code omitted

s

Understanding OpenCL Data Transfer and Partitioning

As noted earlier, this application doesn't work on OSX 10.6 and hence to compile it using the
AMD APP SDK, you will enter the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o sub buffer sub buffer.c -I.
-I/opt/AMDAPP/include -L/opt/AMDAPP/lib/x86 64 -1OpenCL

For the Intel OpenCL SDK, you will enter the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o sub buffer sub buffer.c -I.
-I/usr/include

-L/usr/1ib64/0OpenCL/vendors/intel
-lintelocl

-1tbb

-ltbbmalloc

-lcl logger

-ltask executor
For NVIDIA on Ubuntu Linux 12.04, you will enter the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o sub buffer sub buffer.c -I.
-I/usr/local/cuda/include -1OpenCL

Regardless of the platform, a binary executable sub_buf fer would be deposited locally.

In the setup | have with Ubuntu Linux 12.04 with a NVIDIA GTX460 graphics chip with both
NVIDIA's and Intel's OpenCL toolkit installed, | have the following output:

Number of OpenCL platforms found: 2

Number of detected OpenCL devices: 1

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel...
Task has been enqueued successfully!

Check passed!

In the other setup with Ubuntu Linux 12.04 with an ATI 6870x2 graphics chip and AMD APP
SDK installed, the difference in the output is only that the number of platforms is one and
data is split between the CPU and GPU:

Number of OpenCL platforms found: 1

Number of detected OpenCL devices: 2

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel...
Task has been enqueued successfully!

Check passed!

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel...
Task has been enqueued successfully!

Check passed!

5]

Chapter 2

The application basically discovers all the OpenCL compliant devices and keeps tracks of how
it discovered. Next, the application uses the prior information to divide the data among the
devices before enqueuing the data for execution and the code snippet demonstrates

the following:

cl buffer region region;

region.size = (sizeof (UserData) *DATA SIZE) / numOfDevices;

region.origin = offset * region.size;

cl mem subUDObj = clCreateSubBuffer (UDObjJ,
CL_MEM READ WRITE, // read-write
CL_BUFFER_CREATE TYPE_ REGION,
®ion, &error) ;

Finally, the data is checked for sanity after reading the data back from the device memory
to the host memory as the following code snippet shows:

error = clEnqueueReadBuffer (cQ,
subUDOb7,
CL_TRUE, // blocking read

region.origin, // write from the last
offset

region.size, // how much to copy
ud out, 0, NULL, NULL);
/* Check the returned data */
if (valuesOK(ud_in, ud_out, DATA SIZE/numOfDevices) {
printf ("Check passed!\n") ;
} else printf ("Check failed!\n");

What you've just seen is a data partitioning technique also known as the distributed array
pattern on a one-dimensional block of data.

| Based on the distributed array pattern, there had been three
% general techniques that were developed, and they are over
i one-dimensional and two-dimensional blocks of data and
finally the block-cyclic pattern.

7}

Understanding OpenCL Data Transfer and Partitioning

Depending on whether you've installed one or more OpenCL toolkits from the vendors, the
OpenCL will report the appropriate platforms and the OpenCL Installable Client Driver (ICD)
allows multiple OpenCL implementations to co-exist on the same physical machine. Refer to
the URL http://www.khronos.org/registry/cl/extensions/khr/cl khr icd.
txt for more information about ICDs. This explains why your program may display distinct
numbers for each installed platforms. The ICD actually identifies the vendors who provided the
OpenCL implementation on the machine you have setup and its main function is to expose the
platforms to the host code so that the developer may choose to run the algorithm in question
against. The ICD has two pieces of information—(a) entry points to the vendor's OpenCL
implementation in the library on the filesystem on which it's been installed, (b) the suffix string
used to identify the suffix for OpenCL extensions provided by that vendor.

Retrieving information about OpenCL

sub-buffer objects

The retrieval of information about OpenCL sub-buffers is very similar to that described in the
previous recipe and involves the invocation of c1GetMemObjInfo. Let's take a look at it.

M 0OSX Caveat—you will need a OpenCL 1.1, at least the implementation
Q to see this build and run; since OSX 10.6 doesn't support that version,
you'll have to get a OSX 10.7 to get this code to run.

Getting ready

Inthe Ch2/sub_buffer query/subbuffer query.c,you'll find an excerpt of the
following code demonstrating how we would pass the sub-buffer memory object to our
defined function displayBufferDetails

cl buffer region region;

region.size = sizeof (UserData) *DATA SIZE;

region.origin = 0;

cl mem subUDObj = clCreateSubBuffer (UDObJ,
CL_MEM READ WRITE, // read-write
CL_BUFFER_CREATE TYPE REGION,
®ion, &error) ;

displayBufferDetails (subUDObj) ;

NED

During my experimentation, | found that the NVIDIA CUDA 5 OpenCL toolkit
was stricter in evaluating the attributes in the argument flags that's passed
to clCreateSubBuffer as compared to AMD's APP SDK v2.7. Take note
that the bug may be fixed by the time you read this book. As a concrete
example, the following code throws an error using NVIDIA as opposed to
AMD when you write:

clCreateSubBuffer (buffer,CL, MEM READ WRITE|CL MEM
COPY HOST_ PTR,...) to reflect the fact that CL. MEM COPY HOST PTR
doesn't make sense.

How to do it...

We've included the main part of this recipe, as shown in the following code:

void displayBufferDetails(cl mem memobj)
cl mem object type objT;
cl mem flags flags;
size t memSize;
size t memOffset;
cl mem mainBuffCtx;
clGetMemObjectInfo (memobj, CL_MEM TYPE,

sizeof (cl mem object type), &objT, 0);

clGetMemObjectInfo (memobj, CL MEM FLAGS, sizeof (cl mem flags),

&flags, 0);

clGetMemObjectInfo (memobj, CL MEM SIZE, sizeof (size t),

gmemSize, O0);

clGetMemObjectInfo (memobj, CL MEM OFFSET, sizeof(size t),
&memOffset, 0); // 'CL_MEM OFF SET' new in OpenCL

1.2

clGetMemObjectInfo (memobj, CL_MEM ASSOCIATED MEMOBJECT,

sizeof (size t),
smemOffset, 0);

char* str = '\0';
if (mainBuffCtx) { // implies that 'memobj' is a sub-buffer
switch (objT) {

}

case CL_MEM_OBJECT BUFFER: str = "Sub-buffer";break;
case CL_MEM_OBJECT IMAGE2D:
case CL_MEM_OBJECT IMAGE3D: str

} else {
switch (objT) {
case CL_MEM_OBJECT_BUFFER: str = "Buffer";break;
case CL_MEM OBJECT IMAGE2D: str = "2D Image Object";break;
case CL_MEM OBJECT IMAGE3D: str = "3D Image Object";break;

str = "2D Image Object";break;
"3D Image Object";break;

Chapter 2

s

Understanding OpenCL Data Transfer and Partitioning

}

char flagsStr[128] = {'\0'};
if (flags & CL_MEM READ WRITE) strcat (flagStr, "Read—Write|");

if (flags & CL_MEM WRITE ONLY) strcat(flagStr, "Write Only|");
if (flags & CL_MEM READ ONLY) strcat(flagStr, "Read Only|");
if (flags & CL_MEM COPY HOST PTR) strcat(flagStr, "Copy from
Host|") ;
if (flags & CL_MEM USE HOST PTR) strcat(flagStr, "Use from
Host|") ;
if (flags & CL_MEM ALLOC HOST_ PTR) strcat (flagStr, "Alloc from
Host|") ;

printf ("\tOpenCL Buffer's details =>\n\t size: %$lu MB, \n\t object
type is: %s,\n\t flags:0x%1lx (%s) \n", memSize >> 20, str, flags,
flagStr) ;

}
On the Ubuntu Linux 12.04 with AMD's APP SDK v2.8, the following command would suffice:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o subbuffer query subbuffer
query.c -I. -I/opt/AMDAPP/include -L/opt/AMDAPP/lib/x86 64 -1OpenCL

For the Intel OpenCL SDK, you would enter the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o subbuffer query subbuffer
query.c -I. -I/usr/include

-L/usr/l1ib64/OpenCL/vendors/intel

-lintelocl

-1tbb

-ltbbmalloc

-lcl logger

-ltask executor
For NVIDIA on Ubuntu Linux 12.04, you would enter the following command :

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o subbuffer query subbuffer
query.c -I. -I/usr/local/cuda/include -1OpenCL

Regardless of the platform, a binary executable subbuffer query would be
deposited locally.

When you run the program, you should get something similar to the following output:

Number of OpenCL platforms found: 2

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel. ..
OpenCL Buffer's details =>

&)

Chapter 2

size: 128 MB,
object type is: Buffer,
flags:0x21 (Read-Write|Copy from Host|)
OpenCL Buffer's details =>
size: 128 MB,
object type is: Sub-buffer,
flags:0x1 (Read-Write|)
Task has been enqueued successfully!
Check passed!

The application could decipher whether it's an OpenCL sub-buffer object because of the two
flags introduced in OpenCL 1.2. They are CL. MEM_OFFSET and CL, MEM ASSOCIATED
MEMOBJECT; using either one of the flags would reveal whether it's a sub-buffer, but the
catch is that CL._ MEM_OFFSET can be zero for a sub-buffer because that indicates to OpenCL
where to start to extract the data from; a better, recommended option is to use CL. MEM _
ASSOCIATED MEMOBJECT since the presence implies the argument memobj is a sub-buffer.
See the earlier recipe, Retrieving information about OpenCL buffer objects.

Understanding events and

event-synchronization

The previous recipes demonstrated how you can create memory objects that encapsulates
the data that is to be transferred from the host memory to the device memory, and discusses
how you can partition the input data among the devices via sub-buffers.

In this recipe, we are going to develop an understanding of how the developer can make use
of the event system in OpenCL to control execution of kernel commands as well as memory
commands. This is beneficial to the developer because it offers myriad ways in which you can
control execution flow in a heterogeneous environment.

Events are, generally, passive mechanisms when the developers wish to be notified of an
occurrence, and having the choice of conducting processing past that occurrence; contrasting
to the say, polling where it's a more active mechanism as the application makes an active
enquiry into the current state and decides what to do when a particular condition is met.

Events in OpenCL fall into two categories as follows:

» Host monitoring events
» Command events

[ei-

Understanding OpenCL Data Transfer and Partitioning

In both the event types, the developer needs to create the events explicitly and associate
them with the objects through waitlists; waitlists are nothing more than a container of events
that the command must wait upon completion, that is, the event's status is CL._COMPLETE
or CL._SUCCESS before progressing. The difference between these two event types (as we
shall soon see) is in the manner in which the next subsequent command in the queue gets
executed, host events are updated by the developer and when this is done it is indicative by
the program source, command events in the waitlists on the other hand are updated by the
OpenCL runtime. Considering that the events held up in the waitlists must be of a certain
state before the next command executes means that waitlists are actually synchronization
points since no progress can be made without emptying that list.

Let's start by examining the host events. So far, we understood that commands needs

to be placed onto the command queue so that they can be scheduled for execution, and
what host monitoring events allow the developer is to monitor the state of enqueued
command and we can, optionally, attach a callback function to the event so that when it
returns with a state we desire, the callback function will execute. This is made possible

via the APIs c1CreateUserEvent, clSetUserEventStatus, clReleaseEvent, and
clSetEventCallback. An example in the How to do it section would illustrate how this
can be achieved.

Getting ready

Assume that a kernel wishes to process two 1D memory objects named objA and objB
and write the result to objC (for this example, we can ignore the output of objC). We wish
that the copying of input data from objB should only take place when we have indicated to
the host program.

How to do it...

The full source is demonstrated in Ch2/events/{events.c, sample kernel.cl} and
we have to first create the necessary data structures as before; next we will create the event
object as follows:

eventl = clCreateUserEvent (context, &ret);

In this event object, we can next assign a call back function to the event and indicate that
upon the event's status changes to CL._ COMPLETE, the callback would execute like the
following code:

void CL_CALLBACK postProcess(cl_event event, cl_int status, void
*data) {

printf ("$s\n", (char*)data);
}
clSetEventCallback (eventl, CL_COMPLETE, &postProcess, "Looks like its
done.") ;

&

Chapter 2

Then the host program would continue to conduct memory transfers for obja and objB, but
it doesn't proceed to process any more OpenCL commands enqueued on the command queue
till the status of the event1 is setto CL. COMPLETE.

ret = clEnqueueWriteBuffer (command queue, objA, CL TRUE, O,
4x4*gizeof (float), A, 0, NULL, NULL);
printf ("A has been written\n") ;
/* The next command will wait for eventl according to its status*/
ret = clEnqueueWriteBuffer (command queue, objB, CL TRUE, O,
4*4*xgizeof (float), B, 1, &eventl, NULL);
printf ("B has been written\n") ;
clSetUserEventStatus (eventl, CL_COMPLETE) ;
//...code omitted
clReleaseEvent (eventl) ;

Another APl we will introduce is the c1WaitForEvents with it's signature:

Cl _int clWaitForEvents(cl uint num events, const cl event* event
list);

This is typically used to stall the host thread until all the commands in the event list have
completed (the next code snippet demonstrates how).

The next topic we look at are the command events, which are typically used when you wish
to be notified of certain happenings associated with commands. A typical use case would be
the following where you have a command-queue and you want to be notified of the status of
an memory transfer command like c1EnqueueWriteBuf fer and take a particular action
depending on that status:

cl event eventl;

// create memory objects and other stuff

ret = clEnqueueWriteBuffer (queue, object, CL_TRUE, 0, 1048576,
hostPtrA, 1, &eventl, NULL) ;

clWaitForEvents (&eventl); // stalls the host thread until 'eventl' has
a status of CL_COMPLETE.

You can easily extrapolate the scenario where you have a large heterogeneous computing
environment with large numbers of CPUs and GPUs and obviously you wish to maximize your
computational power, and the events mechanism in OpenCL allows the developer to design
how to sequence those computations and coordinate those computations. However, as a
best practice you probably want to clean up the event object associated with the commands,
but you need to discover the state of the event you're watching otherwise you might release
the event prematurely, and here's how you can do that by polling the APl c1GetEventInfo
passing in the event you are watching; the following code demonstrates this idea:

int
waitAndReleaseEvent (cl_event* event) {
cl_int eventStatus = CL_QUEUED;

Understanding OpenCL Data Transfer and Partitioning

while (eventStatus != CL_COMPLETE) {
clGetEventInfo (*event,

CL_EVENT_ COMMAND_ EXECUTION_ STATUS,
sizeof (¢l _int),
&eventStatus, NULL) ;

}

clReleaseEvent (*event) ;

return O0;

}

There's more...

There are two scenarios that deserve mentioning and they address the situation where

(a) you like to receive notification for a group of events (assuming that they are associated

to memory objects) and (b) you like to stall the execution of any commands further down

the pipeline, that is, command-queue, until this group of events you are watching for have
completed. The APl c1EnqueueMarkerWithwWaitList is for the former situation whereas
clEnqueueBarrierWithWaitList suits the latter. You are encouraged to explore them in
the OpenCL 1.2 specification.

If you are still using OpenCL 1.1, you can use
clEnqueueMarker and clEnqueueBarrier (which are

the older versions of cl1EnqueueMarkerWithWaitList and
g clEnqueueBarrierWithWaitList) but be aware that they

are both deprecated in OpenCL 1.2.

Copying data between memory objects

You will quickly realize how useful the event mechanism in OpenCL is in controlling the
various parts of your algorithm, and it can be found in the common kernel and memory
commands. This recipe will continue from creating memory objects and focus on how

those memory objects can be transferred from the host memory to the device memory

and vice versa and we'll be fixated on the data transfer APIs c1EnqueueReadBuffer

and clEnqueueWriteBuf fer, which is for one-dimensional data blocks, and
clEnqueueReadBufferRect and clEnqueueWriteBufferRect for two-dimensional
data blocks; we'll also look at c1EnqueueCopyBuffer for data transfers between memory
objects in the device. First, we look at copying data between memory objects.

=

Chapter 2

There will come times when you have to copy data between distinct memory objects, and
OpenCL provides us a convenient way to do this via c1EnqueueCopyBuffer. It can only take
place between two different memory objects (for example, one is a plain buffer and the other
is a sub-buffer) or between two similar objects (for example, both are sub-buffers or plain
buffers) and the area of copy cannot overlap. Here's the method signature:

cl_int clEnqueueCopyBuffer (cl command queue command queue,
cl mem src_buffer,
cl mem dst_ buffer,
size_t src_offset,
size_t dst_offset,
size t cb,
cl uint num events in wait list,
const cl_event* event wait list,
cl _event* event)

The list of functions for copying data between memory objects are as follows:

» clEnqueueCopyBuffer

» clEnqueueCopyImage

» clEnqueueCopyBufferToImage
» clEnqueueCopyImageToBuffer
» clEnqueueCopyBufferRect

To copy a buffer, you need to indicate the source and destination c1_mem objects via
src_buffer and dst_buffer, indicate where to start the copying by indicating the offsets
of the src_buffer and dst_buffer via src_offset and dst_offset respectively
together with the size of data to copy via cb. If you wish for the copying of the data to take
place after some operations, you need to indicate the number of those operations and a valid
array of c1_event objects that represent each operation via num events in wait list
and event wait_ list respectively.

\ Take note that you can query the device on the status of the copying,
~ when your data array is large, by passing an event object to the event
Q argument. Another approach is to enqueue a c1EnqueueBarrier

command.

]

Understanding OpenCL Data Transfer and Partitioning

Getting ready

The following code is an extract from Ch2/copy buffer/copy buffer.c, and itillustrates
how to enqueue a clEnqueueCopyBuffer command to the command queue, and the
kernel uses this copy of the data for computation. This process is iterated among the detected
OpenCL devices on the machine. The following diagram illustrates how the original data block
(previous diagram) is copied to another c1_mem object (next diagram) and passed off to the
OpenCL devices for computation.

L
| V |

How to do it...

We've included the main part of this recipe, with the highlighted commentary:

cl mem UDObj = clCreateBuffer (context,
CL_MEM_READ WRITE |
CL_MEM_COPY HOST PTR,
sizeof (UserData) * DATA SIZE,
ud_in, &error);
.. // code omitted. See the source.
/* Create a buffer from the main buffer 'UDObj' */
cl mem copyOfUDObj = clCreateBuffer (context, CL MEM READ WRITE,
sizeof (UserData) * DATA SIZE,
0, &error)
if (error != CL_SUCCESS) {
perror ("Unable to create sub-buffer object");
exit (1) ;
}
/* Let OpenCL know that the kernel is suppose to receive an argument
*/

error = clSetKernelArg(kernels[j],

(&)

Chapter 2

0,
sizeof (cl mem),

©OfUDOb]) ;
if (error != CL_SUCCESS) {
perror ("Unable to set buffer object in kernel");

exit (1) ;
}
// code omitted. See the source.
/* Enqueue the copy-write from device to device */
error = clEnqueueCopyBuffer (cQ,

UDObT,

copyOfUDObJ,

0, // copy from which offset
0, // copy to which offset

sizeof (UserData) *DATA SIZE,
0, NULL, NULL) ;

printf ("Data will be copied!\n");

// Code for enqueueing kernels is omitted.

/* Enqueue the read-back from device to host */

error = clEnqueueReadBuffer (cQ,

copyOfUDODbJ,
CL_TRUE, // blocking read
0, // read from the start

sizeof (UserData) *DATA SIZE,
ud_out, 0, NULL, NULL) ;

On OSX, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DAPPLE -arch i386 -o copy buffer copy
buffer.c - framework OpenCL

On Ubuntu Linux 12.04 with Intel OpenCL SDK installed, you can run the following command:
gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé64 -o copy buffer copy buffer.c

-I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel -lintelocl -1ltbb
-ltbbmalloc -1lcl logger -ltask executor

On Ubuntu Linux 12.04 with NVIDIA CUDA 5 installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -mé4 -o copy buffer copy buffer.c
-I. -I/usr/local/cuda/include -1OpenCL

A binary executable named copy buffer will be deposited on the directory.

&7}

Understanding OpenCL Data Transfer and Partitioning

Depending on how many OpenCL SDKs are installed on your machine, your output may vary
but on my 0SX, the following is the output:

Number of OpenCL platforms found: 1

Number of detected OpenCL devices: 2

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel...
Task has been enqueued successfully!

Data will be copied!

Check passed!

Kernel name: hello with arity: 1

About to create command queue and enqueue this kernel...
Task has been enqueued successfully!

Data will be copied!

Check passed!

The application needed to compute the copied buffer, and you can tell this because
clsetKernelArg was defined that way by this statement:

error = clSetKernelArg(kernels[j], 0, sizeof(cl mem), ©OfUDObJ) ;

Next, we can perform a copy operation, which takes place in the device's memory,
via c1lEnqueueCopyBuf fer and finally retrieve the computed values via
clEnqueueReadBuffer.

M The created command queue will default to in-order execution, instead
Q of out-of-order execution so the device will execute the commands in
the order of the queueing.

Now, we are going to talk about the one-dimensional and two-dimensional data

transfer APIs such as c1EnqueueReadBuffer, clEnqueueWriteBuffer,
clEnqueueWriteBufferRect, and clEnqueueReadBufferRect and we are doing

this now because you have seen that most of our examples, so far, we demonstrated the
creation of memory objects via clCreateBuffer by associating with a memory structure

in the host and though that might suffice for some situations, you probably want APIs that
gives you more control when memory objects in the device memory are to be written or read
from. The control these APIs give you, the developer, is from the fact that they are enqueued
onto the command-queue with any events the developer might craft; and that provides a good
permutation of strategies and flexibilities for structuring I/0 in heterogeneous environments.

Chapter 2

Be aware that there are similar APIs for reading and writing two or
three dimensional images to/from host to the device memory. Their
names are clEnqueueReadImage, clEnqueueWriteImage,
’ clEnqueueReadImageRect, and clEnqueueWriteImageRect.
Refer to the OpenCL 1.2 Specifications for more details.

These APIs allows us to indicate to the device when we wish the data transfer to occur,
very much like clEnqueueCopyBuffer. Let's take a look at their method signatures:

cl_int clEnqueueReadBuffer (cl command queue command gueue,
cl mem buffer,
cl_bool blocking_read,
size_t offset,
size t cb,
void *ptr,
cl uint num events in wait list,
const cl_event *event wait list,
cl event *event)
cl int clEnqueueWriteBuffer (cl command gqueue command queue,
cl mem buffer,
cl_bool blocking write,
size_t offset,
size t cb,
const void *ptr,
cl uint num events in wait list,
const cl_event *event wait list,
cl event *event)

These two functions are very similar to one another, and they basically say if you wish to
read/write to/from a memory buffer , that is, a c1_mem object, you need to indicate which
command queue is it via command_queue, what buffer it is via buf fer, whether to be a
blocking-read/write via blocking read/blocking write, where to read/write from for
what size via of fset and cb, where to read the data or write the data to via ptr, should
this read/write command occur after some events via num_events _in wait list and
event wait-list. The last argument in the function is event, which allows the reading
or writing operation to be queried which is described in c1EnqueueCopyBuffer.

Blocking reads in c1EnqueuReadBuf fer means that the command does not exit until

the host pointer has been filled by the device memory buffer; similarly blocking-writes in
clEnqueueWriteBuffer means that the command doesn't exit until the entire device
memory buffer has been written to by the host pointer.

[}

Understanding OpenCL Data Transfer and Partitioning

To see how these calls are used, you can refer to the earlier illustrated code in the recipe
Understanding events and event-synchronization and for your convenience the following
is the relevant code in Ch2/events/events.c:

ret = clEnqueueWriteBuffer (command queue, objA, CL TRUE, O,
4*4*gizeof (float), A, 0, NULL, NULL);

ret = clEnqueueWriteBuffer (command queue, objB, CL TRUE, O,
4*4*xgizeof (float), B, 1, &eventl, NULL);

Having the capability to model one-dimensional memory objects is fantastic, but OpenCL
goes a notch further by facilitating two-dimensional memory object memory transfers.

Here is an example of reading a two-dimensional data blocks from the device's memory

to the output buffer in the host memory; extracted from Ch2/simple 2d readwrite/
simple 2d readwrite.c. The code illustrates the usage of the buffer origin, host
origin, and region as in the API. The application will read from the UDObj cl mem object,
which represents the one-dimensional input data, hostBuffer, as a 2 x 2 matrix and writes
them into the host memory data block represented by outputPtr. The application reads
back the data from the device to host memory and checks for sanity.

cl _int hostBuffer [NUM BUFFER ELEMENTS] = {0, 1, 2, 3, 4, 5, 6, 7,
8,9,10,11,12,13,14,15};
cl _int outputptrl16] = {-1, -1, -1, -1,-1, -1, -1, -1,-1, -1, -1,
-1,-1, -1, -1, -1};
for(int idx = 0; idx < 4; ++ idx) {

size t buffer origin[3] = {idx*2*sizeof (int), idx, 0};
size_t host_origin[3] = {idx*2+*sizeof (int), idx, 0};
size t region[3] = {2*sizeof (int), 2, 1};
error = clEnqueueReadBufferRect (cQ,
UDObJ ,
CL_TRUE,

buffer origin,
host_origin,
region,
0, //buffer row pitch,
0, //buffer slice pitch,
0, //host_row pitch,
0, //host_slice pitch,
outputPtr,
0, NULL, NULL);

}//end of for-loop

Chapter 2

In this example, we used the for loop and standard array indexing techniques in C to model
how you might iterate through a two-dimensional array and referencing the elements so that
we progressively copy the input. We won't dwell too much into this because, building and
running it is very similar to the previous, and you should explore the directory to see how the
build and program works via the Makefile.

Using work items to partition data

In the previous chapter, we introduced how work can be partitioned in a one-dimensional
array across several work items (you should flip back now if you cannot remember), and
also how each work item would obtain an index in which the kernel can use to conduct the
computation in the kernel code vector multiplication. In this recipe, we are going to
build on that by exploring two-dimensional data partitioning in more detail.

By now, you should realize that one of the cornerstones of OpenCL is getting the data into
the device/s for processing via kernels, and you've seen how data can be partitioned among
different devices via kernels. In the former, you've seen how we used the distributed array
pattern to partition the data among the devices; this refers to coarse grain data-parallelism.
The latter refers to the coarse grained task-parallelism that OpenCL provides and it is coarse
grained because OpenCL is capable of both data-parallelism and task-parallelism.

Most of the code you've seen so far have been using c1EnqueueTask to execute the kernel
based on the one-dimensional data blocks and to get your kernel to process two or three
dimensional data we need to understand c1EnqueueNDRangeKernel; and how data

can be laid out conceptually in two or three dimensional space.

1
‘Q It is helpful to visualize the two or three dimensional data layout in the

device memory to be row-based instead of column-based.

The NDRange in c1EnqueueNDRangeKernel refers to a data indexing scheme that is
supposed to span an N-dimensional range of values and hence, the given name. Currently,

N in this N-dimensional index space can be one, two, or three. Next, we can split each
dimensional into chunks of sizes two, three, four, or more till we reached the maximum
allowable by the parameter CL. DEVICE MAX WORK ITEM DIMENSIONS. Refer tothe Cchi/
device details/device details.c on how to obtain the values. This would decide how
many processing groups we can run in parallel, and in OpenCL they are called work groups.
The work groups would have a number of available processing elements that are called

work items though I like to think of them as executable threads.

7}

Understanding OpenCL Data Transfer and Partitioning

Let's work through an example using a two-dimensional data size of 12 rows by 12 columns,
thatis, a 12 x 12 matrix. Let's look at the following diagram to understand how the work groups

and work items are related to one another:

— R

In this example, I've decided to partition the two-dimensional space to create nine work groups
where each work group is a 4 x 4 matrix. Next, to decide how many work items there should be
in each work group, and you have two choices: a) assign one work-item to process each cell in
your 4 x 4 matrix, b) assign one work item to process n-cells in your 4 x 4 matrix; in the second
option it would be similar to vector processing where n-values are loaded together for the work
item to process. Let's assume that we've decided to choose the option a

1
‘Q We'll look at the various data types in the Chapter 3,

Understanding OpenCL Data Types.

At this time, let's take a detailed look at the APl c1EnqueueNDRangeKernel with the
following method signature, and understand how to input those values with our example:

cl_int

clEnqueueNDRangeKernel (cl command queue command gqueue,
cl_kernel kernel,
cl_uint work dim,
const size_t *global_ work offset,
const size_t *global_ work size,
const size_t *local_ work_ size,
cl_uint num events in wait_list,
const cl_event *event wait_ list,
cl_event *event)

=

Chapter 2

Let's look at what those variables in c1EnqueueNDRangeKernel are for; the command
queue refers to the particular queue like the kernel, to execute on. Next, you need to
indicate how many dimensions your input data has via work dim; the next two variables
global work sizeand local work size would indicate how many work groups there
are and how many work items / work threads can execute in each work group. Recall that the
kernel gets scheduled on the device, but it is the work group that gets assign compute units of
the device and the work items execute on the processing element in the compute unit. Next,
if you need the launch of the kernel to wait on a couple of events in your algorithm, you can
indicate them through num events in wait list and event wait list, and finally if
you wish to associate an event to this kernel's state you can pass in an event type to event in
this API.

The method signature should not look that intimidating to you by now. Given a 12 x 12 matrix
partitioned into nine work groups where each work group is a 4 x 4 matrix and each work item
will process one data cell, we will code it like the following code snippet:

cl uint work dim = 2; // 2-D data

size t global work offset[2] = {0,0}; // kernel evals from (0,0)
{12,12};
{4.4};

clEnqueueNDRangeKernel (command g, kernel, work dim,

size_t global work size([2]

size t local work_size[2]

global work offset,global work size, local work size, 0,

NULL, NULL) ;

To ensure you have got your calculations correct, you can use the following simple formula:

~"Q Number of work-groups = (global_work_size[0]*...*global_work_size[n-1]) /

(local_work_size[0]*...*local_work_size[n-1])

Next, we are going to take a look at how we can enable this task-parallelism and
data-parallelism to be processed by the CPU and GPU where each device will copy

a one-dimensional data array from the input buffer and treat it like a two-dimensional
matrix for parallel computing, and finally output the results to a one-dimensional matrix.

Understanding OpenCL Data Transfer and Partitioning

Getting ready

In Ch2/work partition/work partition.c, we saw an excerpt where we need to copy
a million elements from an input buffer to an output buffer using a two-dimensional data
format. We proceed to partition the data into a 1024 x 1024 matrix where each work item
processes a single cell and we create work groups of the size 64 x 2 matrix.

R Caveat—during my experimentation, this program crashed when executing
S on the OSX 10.6 Intel Core i5 with OpenCL 1.0 as the work group can only
Q be of size one in each dimension. We'll look in the Chapter 3, Understanding
OpenCL Data Types on how to make our programs more portable.

The kernel function, copy2Dfloat4 is a typical function which is executed on the device and
we like to express the idea of transferring a vector of elements from one point to another and
once that's done, the application will conduct a data sanity check which will pass or fail the
program; Refer to the Ch2/work partition/work partition.cl

How to do it...

We've included the main part of this recipe, with the highlighted commentary in the
following code:

/)] --------- file: work partition.cl --------------

#tdefine WIDTH 1024

#define DATA TYPE float4

/*
The following macros are convenience 'functions'
for striding across a 2-D array of coordinates (x,Vy)
by a factor which happens to be the width of the block
i.e. WIDTH

*/

#idefine A(x,y) A[(x)* WIDTH + (y)]

#idefine C(x,y) C[(x)* WIDTH + (y)]

__kernel void copy2Dfloat4(global DATA TYPE *A, global DATA TYPE

*C)
{
int x = get _global id(0);
int y = get _global id(1);
// its like a vector load/store of 4 elements
C(x,y) = A(x,Y);
}
/)] -----=---- file: work partition.c ---------
cl float* h in = (float*) malloc(sizeof (cl float4) * DATA SIZE); //

7

Chapter 2

input to device
cl float* h out = (float*) malloc(sizeof(cl float4) * DATA SIZE); //
output from device
for(int i = 0; i < DATA SIZE; ++i) {
h in[i] = (float)i;
}
// code omitted
cl mem memInObj = clCreateBuffer (context, CL_MEM READ WRITE | CL_MEM
COPY HOST PTR, sizeof(cl float4) * (DATA SIZE), h in, &error);
cl mem memOutObj = clCreateBuffer (context,
CL_MEM_WRITE ONLY ,
sizeof (cl float4) * (DATA SIZE),
NULL, &error) ;
if (error != CL_SUCCESS) {
perror ("Can't create an output buffer object");
exit (1) ;

}

/* Let OpenCL know that the kernel is suppose to receive two arguments

*/

error = clSetKernelArg(kernels[j]l, 0, sizeof(cl mem), &memInObj) ;
if (error != CL_SUCCESS) {

perror ("Unable to set buffer object in kernel");

exit (1) ;
}
error = clSetKernelArg(kernels[j], 1, sizeof (cl mem), &memOutObj) ;
if (error != CL_SUCCESS) {

perror ("Unable to set buffer object in kernel");
exit (1) ;
}
/* Enqueue the kernel to the command queue */
size t globalThreads[2];
globalThreads [0]=1024;
globalThreads [1]=1024;
size t localThreads|[2];
localThreads [0] = 64;
localThreads [1] = 2;
cl event evt;
error = clEngqueueNDRangeKernel (cQ,
kernels[j],
2,
0,
globalThreads,
localThreads,
0,

(7]

Understanding OpenCL Data Transfer and Partitioning

NULL, &evt) ;
clWaitForEvents (1, &evt) ;
if (error != CL_SUCCESS) {
perror ("Unable to enqueue task to command-queue") ;
exit (1) ;

}

clReleaseEvent (evt) ;
On OSX, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DAPPLE -arch i386 -o work partition work
partition.c - framework OpenCL

On Ubuntu Linux 12.04 with Intel OpenCL SDK installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o work partition work
partition.c -I . -I /usr/include -L/usr/lib64/OpenCL/vendors/intel
-lintelocl -1ltbb -ltbbmalloc -lcl logger -ltask executor

On Ubuntu Linux 12.04 with NVIDIA CUDA 5 installed, you can run the following command:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -m64 -o work partition work
partition.c -I. -I/usr/local/cuda/include -1OpenCL

A binary executable named work_partition will be deposited on the directory.

On Ubuntu Linux 12.04 with AMD APP SDK v2.8 and NVIDIA CUDA 5 installed, | have the
following output. If you ran the program using the Intel® OpenCL SDK, then you will not see
the output related to the discrete graphics chip. In this example, we have demonstrated both
coarse-grained and fine-grained data and task parallelism:

Number of OpenCL platforms found: 2

Number of detected OpenCL devices: 1

Running GPU
=> Kernel name: copy2Dfloat4 with arity: 2
=> About to create command queue and enqueue this kernel...
=> Task has been enqueued successfully!

Check passed!

Number of detected OpenCL devices: 1

Running on CPU
=> Kernel name: copy2Dfloat4 with arity: 2
=> About to create command queue and enqueue this kernel...
=> Task has been enqueued successfully!

Check passed!

7@

Chapter 2

The host application allocates two buffers that are capable of storing a million elements of
the data type c1_float4, which is a OpenCL vector data type. Next we proceed to build

the program via c1BuildProgramWithSource (refer to Ch2/work partition/work
partition.c), and pick up all the kernels in the kernel file (* . c1). Each detected device will
pick up a one-dimensional input buffer, transform it to a two-dimensional matrix, and partition
the data among its parallel computing units where each work group will compute the following:

» Obtain the index for the row via get _global id (0); which can be thought of as the
thread's ID in the x-axis

» Obtain the index for the column via get _global id(1); which can be thought of as
the thread's ID in the y-axis

» Together with the row and column indexes, perform a memory load of 4 elements and
store the samevia C (x,y) = A(x,y)

The OpenCL runtime would have partition the data among the work groups, together with the
IDs for the work items as well as work groups; hence there would not be a situation where
the thread IDs being duplicated and hence waging mayhem on the computation (the OpenCL
vendor has that responsibility of ensuring it doesn't occur). OpenCL knows how to do this
because the dimensions of the input data, together with the number of work groups and
number of executing work items are passed via the parameters work dim, global work
size,and local work_ size inthe clEnqueueNDRangeKernel AP

An example should clarify this: Assume that the imaginary input data has two-dimensions
and the global work sizeis 8192 and local work size is 16*16, then we will have
8192/(16*16) = 32 work groups; to be able to reference any element in a two-dimensional
data block, you will write some code similar to this to generate the global thread ID in

(this is not the only way to do this, but it is the generally preferred method):

int x = get _local 1d(0);//x would range from 0 to 15

int y = get _local id(1);//y would range from 0 to 15

int blockIdX get group 1id(0);

int blockIdY = get group id(1);

int blockSizeX = get local size(0); // would return 16

int blockSizeY = get local size(l); // would return 16

uint globalThreadId = (blockIdx * blockSizeX + x) +
(blockIdY * blockSizeY + y);

The OpenCL kernel will complete its computation eventually because of an invocation to
clWaitForEvents (we'll talk about this in the next chapter), and then the output buffer
is stored with data from the device memory via c1EnqueueReadBuffer and the data is
sanity checked.

(77}

Understanding OpenCL
Data Types

In this chapter, we are going to cover the following recipes:

» Initializing the OpenCL scalar data types
» Initializing the OpenCL vector data types
» Using OpenCL scalar types

» Understanding OpenCL vector types

» Vector and scalar address spaces

» Configuring your OpenCL projects to enable the double data type

Introduction

OpenCL supports a wide range of data types derived from the C programming language.
They are widely classified into two groups called scalars and vectors. Scalars are basically
elemental values, whereas vectors are a collection of elemental values and a good thing
about vectors is that many OpenCL SDK vendors have provided automated vectorization
which allows the values to be loaded into wide, that is, 128-bit, 256-bit, or 512-bit registers
for consumption.

OpenCL scalar integral data types consists of the signed and unsigned types of bool, char,
short, int, long, uchar, ushort, uint, and ulong respectively; for floating-point values
there are float, half, and double. To represent those types in your host program, you have
to just prepend the letters c1_ to each type, which the OpenCL compiler will understand.

Understanding OpenCL Data Types

OpenCL vector data types consists of a multiple of scalar data integral and floating-point
data types and they are char<N>, short<N>, int<N>, long<N>, uchar<N>, ushort<N>,
uint<N>, ulong<N>, and float<N> where <N> represents a value of 2, 3, 4, 8, or 16.
Similarly, you will represent those types in your host program by prepending the letters
cl_to the data types.

In both the cases, if you prefer the explicit form of an unsigned type, then you can replace
the letter u in the data types with the keyword unsigned.

Initializing the OpenCL scalar data types

In this recipe, we are going to demonstrate various ways to initialize scalar types, and most
of the techniques will make a lot of sense if you already have programmed using the C
programming language.

Getting ready

In addition to the regular data types defined in C which works in OpenCL, the standard have
added a few more data types in addition to the ones we have mentioned in the previous
section, and the following table illustrates them:

Type Description

half Itis a 16-bit floating-point. The half data type must conform to
the IEEE 754-2008 half precision storage format.

bool It is a conditional data type that evaluates to true or false. The
value true expands to an integer 1 while false expands to O.

size t It is the unsigned integer type of the result of the sizeof operator.
This can be a 32-bit or 64-bit unsigned integer.

ptrdiff t It is a 32-bit or 64-bit signed integer and usually it is used to
represent the result of subtracting two points

intptr t It is a 32-bit or 64-bit sighed integer with the property that any

valid point to avoid can be converted to this type, and then
converted back to point to void and the result will compare equal
to the original pointer.

uintptr t It is a 32-bit or 64-bit unsigned integer that has got the same
property as intptr_t.

(&)

Chapter 3

OpenCL allows the following data types to be used interchangeably in your source codes:

Type in OpenCL

Type in application

bool

char

short
unsigned short,

int

long

float
double
half
size_t
ptrdiff t
intptr t
uintptr t

void

unsigned char, uchar

unsigned int, uint

unsigned long, ulong

n/a

cl char
cl _uchar
cl short
cl ushort
cl_int

cl _uint
cl long
cl ulong
cl float
cl double
cl half
n/a

n/a

n/a

n/a

void

So following are a few examples on how you can possibly declare and define scalar data types

in your source code in the kernels and host:

float £ = 1.0f;

char ¢ = 'a';

const char* cs = "hello world\n";

cl char cl1 = 'b';
cl float f1 = 1.0f;
const cl_char* css =

In the OpenCL kernel
In the OpenCL kernel

in the host program
in the host program

"hello world\n";

In the previous chapter, Understanding OpenCL Data Transfer and Partitioning, we spent
some time discussing about data types and how alignment works or in other words, how data
misalignment can affect the performance. Scalar data types are always aligned to the size of
the data type in bytes. Built-in data types whose sizes are not a power of two must be aligned
to the next larger power of two. That is, a char variable will be aligned a 1-byte boundary,
a float variable will be aligned to a 4-byte boundary.

s

Understanding OpenCL Data Types

How to do it...

If your application needs user-defined data types, then you need to place __attribute
((aligned)) to those types; refer to the Chapter 2, Understanding OpenCL Data Transfer
and Partitioning for more details.

In OpenCL, several operators convert operand values from one type to another, and this is
commonly referred to as implicit conversions; another way is to apply a cast operation on
operands or on the result of a binary operation. Implicit conversions between scalar built-in
types are supported with the exception of void and half data types. What it means is shown
in the following code:

cl int x = 9;
cl float y = x; // y will get the value 9.0

Or

int x = 9;
float v = x; // y will get the value 9.0

You can use both forms in your application code. You can coerce a data type to another
data type in OpenCL too, just as you can do in the C programming language. Refer to the
following example:

float £ = 1.0f;
int i = (int) f£; // i would receive the value of 1

You can also coerce a scalar data type to a vector data type in OpenCL with the following code:

float £ = 1.0f;

float4 vf = (float4)f; // vE is a vector with elements (1.0, 1.0, 1.0,
1.0)
uchar4 vtrue = (uchar4)true; // vtrue is a vector with elements (true,

true, true, true)
// which is actually (0xff, Oxff, Oxff, Oxff)

Initializing the OpenCL vector data types

Vectors are extremely powerful to an OpenCL programmer because it allows the hardware
to bulk load/store data to/from memory; such computations typically take advantage of the
algorithms spatial and temporal locality properties. In this recipe, we are going to familiarize
ourselves with creating various types of vectors.

Chapter 3

Getting ready

You can initialize a vector in two primary manners and they are as follows:

» Vector literal
» Vector composition

Creating a vector literal simply means that you can construct your vector of whatever type you
wish as shown in the following code:

float a = 1.0f;
float b = 2.0f;
float ¢ = 3.0f;
float d = 4.0f;
float4 vf = (float4) (a, b, c, 4d);

//vE will store (1.0f, 2.0f, 3.0f, 4.0f)

Another way to initialize a vector is to do it via a scalar value as shown in the following code:
uint4 ui4 = (uint4) (9); // ui4 will store (9, 9, 9, 9)

You can also create vectors in the following fashion:

float4 £ = (float4) ((float2) (1.1f, 2.2f),
(float2) (3.3f, 4.4f));
float4 £2 = (float4) (1.1f, (float2) (2.2f, 3.3f), 4.4f);

The data type on the left-hand-side and right-hand-side must be same or the OpenCL compiler
will issue a complaint.

How to do it...

Vectors have another remarkable property, and that is, you can access the individual
components through indexes, that is to say if you wish to access each component of a
float4 vector, v, then you would do so viav.x, v.y, v. z, v.w respectively, and for larger
vectors of 8 or 16 elements we would access those individual elements via v.s0, v.s1
throughto v.s7,and v.s0, v.s1, v. sa through to v. sf respectively. Hence, vectors of type
char2, uchar2, short2, ushort2, int2, uint2, long2, ulong2, and £loat2 can access
their .xy elements.

Following is another way of creating vectors and that is through composition:

float4 c;

c.xyzw = (float4) (1.0f, 2.0f, 3.0f, 4.0f);
float4 d;

d.x = ¢c.X;

d.y = c.y;

d.z = ¢c.z;

d.w = ¢c.w; // d stores (1.0f, 2.0f, 3.0f, 4.0f)

Understanding OpenCL Data Types

On a similar note, you can use numerical indexes to reference the components in your vector
and create vectors in turn. The following table shows a list of indexes for the various vector
data types:

Vector components Numeric indexes that can be used

2-component 0, 1

3-component 0, 1, 2

4-component 0, 1, 2, 3

8-component o, 1, 2, 3, 4, 5, 6, 7

16-component o, 1, 2, 3, 4, 5, 6, 7, 8, 9, a,
A, b, B, ¢, C, d, D, , E, £, F

To use these numerical indexes, you have to precede by the letter s or S, and following
are a few quick examples on how to create vectors:

float4 pos = (float4) (1.0f, 2.0f, 3.0f, 4.0f);

float4 swiz= pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)
float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)
float4 £, a, b;

f.xyzw = a.s0123 + b.s0123;

Lastly, vector data types can use the . 1o (or .even)and .hi (or . odd) suffixes to compose
new vector types, or to combine smaller vector types to a larger vector type. Multiple levels of
.lo (or .even)and .hi (or .odd) suffixes can be used until they refer to a scalar term. The
.lo and .hi suffix refers to the lower and upper halves of a vector. The .even and .odd
suffixes of a vector refer to the even and odd elements of a vector. Following are the examples
of vector creation via composition:

float4 vE = (float4) (1.0f, 2.0f, 3.0f, 4.0f);

float2 low = vf.lo; // returns vi.xy

float2 high = vf.hi; // returns vf.zw

float4 vf4 = (float4) (low, high);// returns (1.0f, 2.0f, 3.0f, 4.0f)

Vectors are disallowed from implicit conversions so you cannot perform the following operation:

float4 vf4, wf4;

int4 if4;

wf4 = vf4; // illegal
if4 = wf4; // illegal

=

Chapter 3

Explicit casts between vector types are also disallowed, and in fact the only form of explicit
cast to a vector type is when you're initializing a vector with a scalar:

float £ = 4.4f;
float4 va = (float4) (f); // va stores (4.4f, 4.4f, 4.4f, 4.4f)

If you were to extract components of a 3-component vector type via the suffixes . 1o
(or .even), .hi (or .odd), then the 3-component vector type would behave as if itis a
4-component vector type with the exception that the w component would be undefined.

Using OpenCL scalar types

The scalar data types are quite similar to what you would expect if you were programming in the
C language. However, two topics deserve more attention and we'll touch on that in this recipe;
we'll look at the half data type and examine how OpenCL devices might order their data.

Getting ready

Many of the OpenCL compliant devices are actually little-endian architectures, and developers
need to ensure that their kernels are tested on both big-endian and little-endian devices to
ensure source compatibility with current and future devices. Let's use a simple example to
illustrate endian-ness.

How to do it...

Consider a variable x that holds the value 0x01234567 and the address of x starts at 0x100.
In computer architecture terminology, the value 0x01 is the most significant byte (MSB) and
0x67 is the least significant byte (LSB). Big-endian storage scheme stores the MSB first till it
meets the LSB and little-endian storage schemes stores the LSB first till it meets the MSB.

Big-endian
Address 0x100 0x101 0x102 0x103
Values 0x01 0x23 0x45 0x67
Little-endian
Address 0x100 0x101 0x102 0x103
Values 0ox67 0x45 0x23 0x01

Understanding OpenCL Data Types

byte orderings.

Refer to the following code:

#include <stdio.h>
typedef unsigned char* byte pointer;
void show bytes (byte pointer start, int len)

int i;
for(i = 0; 1 < len; i++)
o

7

printf (" %.2x", startl[i]);
printf ("\n")

}

void show_int (int x) {

}

void show float (float x) {

}

void show pointer (void* x) {

}

show _bytes ((byte pointer) &x, sizeof (int)) ;

show bytes ((byte pointer) &x, sizeof (float));

show _bytes ((byte pointer) &x, sizeof (void¥)) ;

void test show bytes(int wval) {
int ival = val;
float fval = (float) ival;
int* pval = &ival;

show_int (ival) ;
show_float (fval) ;
show_pointer (pval) ;

}

Review the full code listed in Ch3 /byte ordering/show bytes.c,
_ compile the code by running the commands cmake and make in that
% order; that will generate a binary named ShowBytes, and then run that
L program to see its output. This code will print out a series of output, and
depending on the endian-ness of the architecture, you will notice different

Since you've understood how byte ordering affects the way data (scalar) is being read and

written; let's take a look at how the ordering affects vector data types in OpenCL. With vector

data types, both, the order of the bytes within each value and the order of the values with
respect to one another are reversed. Using an example of a uint4 vector which contains

the values 0x000102030405060708090A0BOCODOEOF, at address 0x100, following table

shows how a little-endian storage scheme would look:

0x100 0x104 0x108

0x1b0

OxOFOEODOC OxOBOA0908 0x07060504

0x3020100

~[ee]

Chapter 3

Awareness of this fact is important if you are working with data compression and
computer-imaging algorithms since these two classes of algorithms have a significant
amount of byte-level operations and you don't want to be bitten by these issues.

The half-precision data type, conveniently called half actually has half the storage and
precision of a regular £1oat type. The half type is IEEE754-2008 compliant and was first
introduced by NVIDIA, and Industrial Light and Magic. The only thing you can do with this type
is to declare a pointer to a buffer that contains half values; those values must be finite and
normal numbers, de-normalized numbers, infinities, and NaN.

You can choose to use the vector load and store functions such as vload half, vlioad
halfn, vstore half, and so on. However, bear in mind that the load/store operation will
create an intermediate floating -point value.

The 1oad function read the half values from memory and converts

it to a regular £1oat value. The store functions take a float as an
g input, convert it to a half value and store that value into memory.

To determine if your device supports this, you can run the program in Ch2/device
extension/device extensions, and the output should contain c1_khr fplse;
alternatively you can query the device by passing the parameter CL. DEVICE EXTENSIONS
to c1lGetDeviceInfo. Following is the code snippet from Ch2/device extensions/
device extensions.c

/* --- file: device extensions.c --- */
displayDeviceDetails(devices[i], CL_DEVICE EXTENSIONS, "CL DEVICE
EXTENSIONS") ;

void displayDeviceDetails(cl device id id,
cl device info param name,
const char* paramNameAsStr) {
cl int error = 0;
size t paramSize = 0;
error = clGetDeviceInfo(id, param name, 0, NULL, ¶mSize) ;
if (error != CL_SUCCESS) {
perror ("Unable to obtain device info for param\n") ;
return;
}
/* the cl device_ info are preprocessor directives defined in cl.h */
switch (param name) {
// code omitted
case CL_DEVICE_EXTENSIONS : {

Understanding OpenCL Data Types

// beware of buffer overflow; alternatively use the OpenCL C++ //
bindings
char* extension info[4096];
error = clGetDeviceInfo(id, CL DEVICE EXTENSIONS,
sizeof (extension info), extension info, NULL);
printf ("\tSupported extensions: %$s\n", extension info) ;
}break;
} //end of switch

Understanding OpenCL vector types

When you start working through your OpenCL project you are inevitably going to use both the
scalar and vector data types to model the algorithm. Scalars work like any variable declaration/
definition you may have come across in most of the programming languages, and you should
think of vectors as a wide container that can deliver all items in that container in parallel, and
the one thing that differentiates scalars and vectors is the fact that when an operation is applied
to a scalar, it affects just a single value while the same operation applied to a vector affects all
items in it in parallel.

In the modern processors, there exist a specialized hardware unit that processes more data
per cycle and they are often termed as Single Instruction Multiple Data (SIMD) or known as
Streaming SIMD Extensions (SSE) which is intel's implementation of SIMD. The advantage
that SIMD instructions provide is that they allow multiple values to be operated upon in a
large register in a cycle; quite often there are many such units, thus increasing performance
of the program. We should be clear that SIMD describes a mechanism that allows parallelism
to occur gleaned from Flynn's taxonomy, while SSE describes how two CPU processor
manufacturers namely, Intel and AMD implemented SIMD.

The first part of the story is to tell you how OpenCL kernels run on the CPUs before we
reveal how it would work on the GPU, and for now we place our attention on the Intel CPU
architecture. On these architectures, OpenCL sees a single device with multiple compute
units and if you are guessing each core is a compute unit then you're correct and hence,
your kernels run on all compute units unless you are using the device fission extension,
which is new in OpenCL 1.2.

Device fission (c1_khr device_ fission)which is new in OpenCL
1.2 is currently supported by multicore CPUs by Intel, AMD, and IBM Cell
T~ Broadband. GPUs are currently not supported.

The next part of the story is to describe, how OpenCL kernels would run on GPUs
manufactured by AMD, and we focus on the AMD GPU we used for this book which is based
on AMD's Southern Island Architecture which includes their Radeon HD 7900, 7800, and
7700 GPUs; on a side note, you might wish to consult NVIDIA's website for more product
details pertaining to their GPUs at www.nvidia.com.

(e

Chapter 3

Kernels basically execute instructions that are either scalar-based or vector-based, and

work is assigned to a compute unit in blocks of 64 work items, which is termed as wavefront.
A wavefront has a single program counter, and is considered as a small unit of work and what
that means is that they execute in lock-step.

When your application passes workloads to the GPU, it must first compile the kernel and load
it into memory. It must also bind buffers for the source and result data, and finally it would
decide how to execute the given workload on the GPU. When the workload is to be executed,
the GPU divides the input domain into blocks of 64 threads aka wavefronts and dispatches
them to the compute unit (CU). The kernel is next fetched into the instruction cache and the
compute unit begins dispatching instructions to the execution units; each compute unit can
work on multiple wavefronts in parallel, simultaneously processing vector and scalar ALU
computations, as well as memory accesses. The wavefront continues executing until the end
of the kernel is reached, when the wavefront is terminated and a new one can take its place
on the GPU.

Taking into account the fact that memory accesses by wavefronts happens in parallel, you
will expect some sort of latency to occur and the processor is pretty clever in dealing with
that situation, and what it does is executing many wavefronts in parallel and it works such
that if one wavefront is waiting for results from the memory, other wavefronts can issue
memory requests, and they can execute ALU operations in parallel with outstanding memory
requests if and only if they are independent calculations. Factors that increase the amount
of parallelism that can be extracted from the program varies, but one of them would be

the actual number of hardware units available for parallel computation and in OpenCL
terminology, it is known as the CU and in both CPUs and GPUs they are basically

the processor.

A compute unit is the basis of parallel computation, and in the Southern Island Architecture
which hosts other products, the number of compute units varies and each compute unit
basically contains the following;:

» Scalar ALU and scalar GPRs (General-Purpose Registers) aka SGPRs

» Four SIMDs, each consisting of a vector ALU and vector GPRs, aka VGPRs

» Local memory

» Read/write access to vector memory through a Level-1 cache

» Instruction cache, which is shared by four CUs, that is, compute units

» Constant cache, which is shared by four CUs, that is, compute units

]

Understanding OpenCL Data Types

Now we will focus on the vector operations on GPUs, which include ALU and memory
operations. Each of the four SIMDs contains a vector-ALU that operates on wavefronts over
four cycles; each SIMD also can host ten wavefronts in flight, that is, one CU can have forty
wavefronts executing in parallel. In the AMD GPU based on the Southern Island Architecture
used for this book which is the AMD HD 7870, we have 20 compute units and we know now
that each CU holds four SIMDs and each SIMD would execute a wavefront means that we can
have 20 x 4 x 10 x 64 = 51,200 work items at any one time, and if you were to imagine

that each work item is at the stage of executing vector operations then the parallelism
offered by GPUs is considerably larger than that of the CPU; the specific CPU we are referring
to is the Intel Xeon Phi which has 60 cores and each core hosts 4 work items which provides
60 x 4 = 240 work items; be aware that we're not stating that GPUs are superior to CPUs since
each device has its niche but we illustrate these numbers to demonstrate a simple fact that
GPU has a higher throughput than the CPU.

Having said all that, we are going to see an example soon but first recall that vector operations
are component-wise and that vectors can be accessed via numeric indexes, and each index
can be combined into larger group of indices to perform a store/load to/from memory. Refer
to the following code:

float4 v, u;

float f;

v =u + f;

// equivalent to
// v.x = u.x + £
// v.y = u.y + £
// v.z =u.z + £
// v.w = u.w + £
float4 a, b, c;

c=a+b
// equivalent to

// ¢c.Xx = a.x + b.x
// c.y = a.y + b.y
// c.z = a.z + b.z
// c.w = a.w + b.w

The component-wise manner in which vectors can be aggregated to perform an operation
without code verbosity actually helps the programmer in their daily work and increases
productivity. Next, we can a dive into how vector types are translated to utilize your hardware.

Getting ready

The demonstration we are going to describe has two parts in it. First, we are going to use the
Intel OpenCL compiler on Windows to demonstrate the implicit vectorization of the kernel
code; secondly, we are going to demonstrate how to enable native vector type notation in your
code to express the desire to generate vectorized code using the AMD APP SDK v2.7 or v2.8
on Linux.

5]

Chapter 3

We combined these two approaches with the intention to solve the problem of transferring a
large input array from one part of the device memory to another part of the device memory,
and finally we extract and compare them for equality. As before, we would prepare the data
structures for transfers on the host code and write a suitable OpenCL kernel to actually
transfer the memory contents across. The source can be found in Ch3 /vectorization,
and we build the program using the AMD APP SDK.

Readers who are interested in the OpenCL code generation for AMD CPU
+and GPU platforms should consult the AMD CodeXL product as the
AMD APP Kernel Analyzer has been retired. You may wish to consult the
AMD Intermediate Language Manual in conjunction when you study the
intermediate language output.

Implicit vectorization is a required feature that is supported by all the compliant OpenCL
compiler implementations, and the reason we chose to demonstrate this feature with the
Intel OpenCL compiler is the fact that the generated SIMD instructions are more likely to

be recognized by the reader than would the intermediate code generated by other compiler
implementations such as AMD or NVIDIA's. The kernel code we have for you can be found in
Ch3/vectorization/vectorization.cl, and we reveal it as in the following code:

__kernel void copyNPaste(_ global float* in, _ global float8* out) ({
size t id = get global id(0);
size t index = id*sizeof (float8);
float8 t = vload8 (index, in);

out [index] .s0 = t.s0;
out [index] .s1 = t.sl;
out [index] .82 = t.s2;
out [index] .83 = t.s3;
out [index] .s4 = t.s4;
out [index] .s5 = t.s5;
out [index] .s6 = t.s6;
out [index] .87 = t.s7;

}

This kernel's main action is to transfer the contents from one place to another, and it does this
by transporting it in parallel using two vectors of eight floats each and you will notice that we
use the vector component notation to state these memory transfers explicitly.

In the next demonstration, we swing from the kernel code back to the host code assuming
that the developer has a desire to control the code generation in a more explicit manner;
and this can be done through the native vector type notation.

Understanding OpenCL Data Types

We ask the reader to refer to the section There's more... for details, but the demonstration
here rests on the assumption that the developer would like to hand tune the procedure that
handles data validation once the memory transfers have been completed in the device, and
this function can be found in Ch3 /vectorization/vectorization.c named valuesOK
and the following code is how it is implemented:

#ifdef _ CL_FLOAT4_
int valuesOK(cl float8* to, cl float8* from, size t length) ({
#ifdef DEBUG
printf ("Checking data of size: %$lu\n", length);
#endif
for(int i = 0; i < length; ++i) {
#ifdef SSE
_cl float4 _ toFirstValue = to->v4[0];
_cl float4 _ toSecondvValue = to->v4[1];
_cl float4 _ fromFirstValue = from->v4[0];
_cl float4 _ fromSecondvalue = from->v4[1l];

_ ml28i vemp = (_ ml28i) _mm_cmpneqg _ps(__ toFirstValue,
fromFirstValue) ;

uintlé_t test = mm movemask_epi8 (vcmp) ;

~ ml28i vemp 2 = (_ ml28i) _mm_cmpneqg ps(__toSecondValue,
fromSecondvalue) ;

uintlé_t test 2 = mm movemask epi8 (vcmp_ 2) ;

if ((test|test_2) != 0) return 0; // indicative that the result
failed
#else

#terror "SSE not supported, which is required for example code to
work!"
#endif

}

return 1;
}
#endif

How to do it...

Implicit vectorization through the Intel OpenCL compiler is relatively easy and the purpose of
this simple example, we have chosen to install it on the Windows operating system. You can
download the compiler from http://software.intel.com/en-us/vcsource/tools/
opencl.

Chapter 3

To witness how the implicit vectorization can be achieved through this compiler, you would
copy and paste the kernel code (the previous code) into the editor pane of the GUI and start
the compilation. Once compiled, you would be able to view the generated code by clicking on
the ASM or LLVM buttons on the GUI. An example of this is shown in the following screenshot:

& Compider 201 TP -4 = s .
Eile View Tools Help
\ - ¥
B S G S [asum e (inte
OpenCl Code Assembly View
I8 kernel void copyNPasce(_ global float® in, glebal floar8* put) » -amad 3 # 0x3
2 size_t id = gec_global_id({0): .text
3 size_t index = id*sizeof (floatl): .globl Vectorized .copyNPaste
3 floath © = vloads(index, in): .align 16, Ox90
5 out [index].s0 = ©.a0; __Vectorized .copylPaste: # E__Vectorized .copyNPaste
& out [index].sl = £.al; # BE#O:
7 cut [index].s2 = £.a2; sub RSP, 120
8 cut [index].s3 = t.s3; movdga PTR [RSP + 32], XMMB # 16-Dyte Spill
] cut [index].sd = t.a4: movdga MMMWORD PTR [RSP + 48], X407 # 16-byte Spill
1o cut [index].s5 = £.a5; movdga XMMWORD PTR [BSP + 64], X446 # 16-byte Spill
s cut [index].s6 = t.a6; moy QWORD PTR [RSF + 86], R14 # S-byte Spill
1z out [ingex].a7 = T.a7: mov QWORD FTR [RSF + 96], RSI # B-byte Spill
a3 mov OWORD PTR [RSP + 104], RDI # 8-byte Spill
mov QWORD PTR [RSP + 112], RBX # B-byte Spill
mory RAX, -1
mov RCX, QWORD PTR [RSP + 224]
mov RDX, QWORD PTR [RSP + 208]
mory RSI, QWORD PTR [RSP + 200]
mov RDI, QWORD PTR [RSE + 168]
mov RB, QWORD PTR [RSP + 160]
mov RSD, 1
= . MBMORD PTR [RIP + LCPI4 O]
L e LN g+ | .align 16, Ox30
- LBB4_1: # ¥5yncBB
LD # =>This Inner Loop Header:
|tUsing defaulc aec mov R10, QWORD PTR [RDX]
Iatel CpenCL CPU device waa found! add R10, QWORD FTR [RSI]
/Devics name: Intel(R) Core(IM) 17 CPU 965 @ 3.20GHZ movg o801, R10
|Device version: OpenCL 1.1 (Build 31360.31441) movihps XMM1, XML # xoml = sl [0,0]
Device vendor: Intel (R} Corporation movyg M2, RS
Device profile: FULL PROFILE pslldg XMM2, 8
Bulild scarted pat 02, X0an
Hernel was 11y Tized 0441, 040
. pslly Xaa, 3
Build succeeded! pextrq Ri0, X1, 1
shl RiO0, 5
movdgu XMM3, XMMWORD PTR [RE + R10]
movdgu MM4, XMMWORD PTR [R8 + R10 + 16]
mevery 11, e
.]

The next item is to hand-tune our data validation code, valuesOX, to exhibit vectorization.
This example is only meant to illustrate how one would go about accomplishing something
similar to this and you don't have to do anything besides invoking make in the directory
Ch3/vectorization, and an executable vectorization will be dropped into the filesystem
to which we'll next dissect it.

. If you are running OpenCL 1.1 on Mac 0SX 10.7, then passing the flag
% -cl-auto-vectorizer-enable to c1BuildProgram as a build
s option will vectorize the kernels that will execute on the CPU. The SIMD

instructions will be similar to the ones you see in this recipe.

55}

Understanding OpenCL Data Types

Hand-tuning your code in such a manner basically turns implicit vectorization off, and you will
need to judge for your scenario whether the effort justifies with respects to the complexity

of the issue. To view the generated SIMD code, it would be best to put the program under

a debugger, and on Linux the best debugger will be the GNU GDB. You basically load the
program into the debugger and issue the command disassemble /mvaluesOXK to verify
that the SIMD instructions were indeed generated. Following is a sample gdb session where
the disassembly is interleaved with the source code:

$ gdb ./Vectorization

GNU gdb (GDB) 7.5-ubuntu

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later sac<http://gnu.org/licenses/
gpl.html>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. ..

Reading symbols from /home/tayboonl/PACKT OpenCL_Book/src/Ch3/
vectorization/Vectorization. ..done.

(gdb) disassemble /m valuesOK

Dump of assembler code for function valuesOK:

warning: Source file is more recent than executable.

31 int valuesOK(cl float8* to, cl float8* from, size t length) {
0x000000000040117¢c <+0>: push %rbp
0x000000000040117d <+1>: mov %rsp, $rbp
0x0000000000401180 <+4>: sub $O0xf0,%rsp
0x0000000000401187 <+11>: mov %rdi,-0xd8 (%rbp)
0x000000000040118e <+18>: mov %rsi,-0xe0 (%rbp)
0x0000000000401195 <+25>: mov %rdx, -0xe8 (%rbp)

32 #ifdef DEBUGE

33 printf ("Checking data of size: %$lul\n", length);
0x000000000040119c <+32>: mov -0xe8 (%rbp),%$rax
0x00000000004011a3 <+39>: mov S%rax,%rsi
0x00000000004011a6 <+42>: mov $0x4020a8,%edi
0x00000000004011lab <+47>: mov $0x0,%eax
0x00000000004011b0 <+52>: callg 0x400f20 <printfeplts

34 #endif

35 for(int i = 0; i < length; ++i) {
0x00000000004011b5 <+57>: movl $0x0,-0xc4 (%$rbp)
0x00000000004011bf <+67>: jmpg 0x4012a9 <valuesOK+301>
0x00000000004012a2 <+294>: addl $0x1,-0xc4 (%rbp)
0x00000000004012a9 <+301>: mov -0xc4 (%rbp), %eax
0x00000000004012af <+307>: cltg

0x00000000004012b1 <+309>: cmp -0xe8(%rbp),%rax
0x00000000004012b8 <+316>: jb 0x4011lc4 <valuesOK+72>

36 #ifdef SSE

37 _cl float4 toFirstValue = to->v4[0];
0x00000000004011c4 <+72>: mov -0xd8 (%rbp), $rax
0x00000000004011cb <+79>: movaps (%rax), $xmm0
0x00000000004011ce <+82>: movaps %xmmO, -0xcO (%$rbp)

38 __cl float4 _ toSecondValue = to->v4[1];
0x00000000004011d5 <+89>: mov -0xd8 (%rbp), $rax
0x00000000004011dc <+96>: movaps 0x10 (%rax) , $xmm0
0x00000000004011e0 <+100>: movaps %$xmmO, -0xbO0 (%$rbp)

39 _cl float4 _ fromFirstValue = from->v4[0];
0x00000000004011e7 <+107>: mov -0xe0 (%rbp), $rax
0x00000000004011lee <+114>: movaps (%rax), $xmmO
x00000000004011f1 <+117>: movaps %xmmO, -0xa0 (%$rbp)

40 ~_cl float4 _ fromSecondvValue = from->v4[1];
0x00000000004011£f8 <+124>: mov -0xe0 (%rbp), %rax
0x00000000004011ff <+131>: movaps 0x10 (%$rax), $xmmO
0x0000000000401203 <+135>: movaps %$xmmO, -0x90 (%$rbp)
0x000000000040120a <+142>: movaps -0xcO (%rbp), $xmmO
0x0000000000401211 <+149>: movaps %$xmmO, -0x60 (%$rbp)

---Type <return> to continue, or g <return> to quit---
0x0000000000401215 <+153>: movaps -0xal (%$rbp), $xmmO
0x000000000040121c <+160>: movaps %$xmmO, -0x50 (%$rbp)

41 ~ ml28i vemp = (_ ml28i) mm cmpneq ps(toFirstValue,

fromFirstvValue) ;
0x0000000000401229 <+173>: movdga $%$xmmO, -0x80 (%$rbp)
0x000000000040122e <+178>: movdga -0x80 (%$rbp) , $xmmO
0x0000000000401233 <+183>: movdga %$xmmO, -0x40 (%$rbp)

42 uintlé t test = mm movemask epi8 (vcmp) ;
0x0000000000401241 <+197>: mov %ax, -0xc8 (%rbp)
0x0000000000401248 <+204>: movaps -0xb0 ($rbp), $xmmO
0x000000000040124f <+211>: movaps %$xmmO, -0x30 (%$rbp)
0x0000000000401253 <+215>: movaps -0x90 (%$rbp) , $xmmO0
0x000000000040125a <+222>: movaps %$xmm0, -0x20 (%$rbp)

43 ~ ml28i vemp 2 = (_ ml28i) mm_cmpneqg ps(_ toSecondValue,

fromSecondvalue) ;
0x0000000000401267 <+235>: movdga $%$xmmO, -0x70 (%$rbp)
0x000000000040126c <+240>: movdga -0x70 (%$rbp) , $xmmO
0x0000000000401271 <+245>: movdga %$xmmO, -0x10 (%$rbp)

44 uintlé t test 2 = mm movemask epi8(vcmp 2) ;
0x000000000040127f <+259>: mov %ax, -0xc6 (%$rbp)

Chapter 3

45 if((test|test_2) != 0) return 0; // indicative that the result

[55]-

Understanding OpenCL Data Types

failed
0x0000000000401286 <+266>: movzwl -0xc6 (%$rbp), $eax
0x000000000040128d <+273>: movzwl -0xc8 (%rbp), $edx
0x0000000000401294 <+280>: or %edx, %eax
0x0000000000401296 <+282>: test %ax,%ax
0x0000000000401299 <+285>: je 0x4012a2 <valuesOK+294>
0x000000000040129b <+287>: mov $0x0, %eax
0x00000000004012a0 <+292>: jmp 0x4012c3 <valuesOK+327>

46 #else

47 #terror "SSE not supported, which is required for example code to
work!"

48 #endif
49 |}
50 return 1;
0x00000000004012be <+322>: mov $0x1, %eax
51}
0x00000000004012c3 <+327>: leaveq
0x00000000004012c4 <+328>: retqg
End of assembler dump
(gdb)

Implicit vectorization is a piece of complicated software written into the compiler provided
by the implementation, and is definitely hardware dependent and often represented by an
intermediate language (IL) that's proprietary to the processor manufacturer and to our
disappointment, not very well documented so we like to focus on how native vector type
notation works in more detail.

The interested reader is however invited to explore the ILs developed by
i AMD and NVIDIA, which are known as AMD IL, and NVIDIA's PTX respectively.

This method of hand-tuning allows the developer to reference the built-in vector data type of
the platform they're working on instead of relying on the OpenCL compiler to auto-vectorize
the code, and may bring about performance benefits. The manner in which it is being done
in OpenCL so far is to abstract these differences into platform dependent macros in the file
cl platform.h. Let's work out how this would work in our example.

The example, we saw previously, was tested on the Ubuntu Linux 12.04 operating system
with an Intel Core i7 CPU and an AMD Radeon HD 7870 GPU, but since our example focuses
on explicit vectorization on the host code, it implies that we need to know the width of SIMD
vectors based on the Intel instruction set. We know this to be 128-bits and what this means
is as follows:

5]

Chapter 3

float4 a,b;
float4d ¢ = a + b;

The preceding code gets translated to the following C code snippet:

~ ml28 a, b;
~ ml28 ¢ = _mm add ps(a, b);

The function _mm_add_ps is the SIMD function for adding two vectors by adding their single
precision floating-point values component-wise in this manner and at first hand, it will look
like syntax sugar but this is one of the many ways in which OpenCL provides cross platform
compatibility and removes the pain of delivering customized vectorized code for various
processor architectures so in this way a facade is actually a good thing.

Coming back to the problem we are trying to solve, which is to vectorize the procedure for
performing data validation for the input and output arrays. In our example, we chose arrays

or rather vectors that can contain 8 floats and what we will like to do is to examine them and
compare them for equality. Using the native vector type notation in OpenCL, we know that

the vector-of-8 can be decomposed into vector-of-4 elements because, OpenCL stipulates
that if a platform can support a native vector type then the macro is identified in the c1
platform.h file by the name CL <TYPEN>, where <TYPEN> can be UCHAR16, CHARLSG,
INT4, FLOAT4, that is, the vectorized primitive types and in general, you can access the
native components using the .v<N> subvector notation where <N> is the number of elements
in the subvector.

Using this newly found information, we can dissect the program we saw previously with the
fact that the memory content of the original host memory is represented by the c1_floats$
* to while the copied memory contents from host to device are held by the c1_float8* from:

int valuesOK(cl float8* to, cl float8* from, size t length) ({
// code omitted
for(int i = 0; i < length; ++i) {

We need to iterate through the vectors in both input and output arrays and proceed to extract
the first and second vector-of-4s from the host pointer as follows:

__cl float4 hostFirstValue = to->v4[0];
__cl float4 _ hostSecondvValue = to->v4[1];

Then we extract the first and second vector-of-4s from the device pointer as follows:

_cl float4 _ deviceFirstValue = from->v4[0];
_cl float4 _ deviceSecondvValue = from->v4([1];

o7}

Understanding OpenCL Data Types

Now, we compare each of the halves by using the SSE APl mm_cmp_neq_ps, and keep
the result of each test into the variables test and test2 as shown in the following code:

ml28i vemp = (. ml28i) mm cmpneq ps(hostFirstValue,
deviEgFirstValue); o - B o o
uintlé_t test = mm movemask_epi8 (vcmp) ;
ml28i vemp 2 = (ml28i) mm cmpneq ps(hostSecondValue,
deviEgSecondValug); o - B o o
uintlé_t test 2 = mm movemask epi8 (vcmp_ 2) ;

Finally, we compare those results as follows:

if ((test|test_2) != 0) return 0; // indicative that the result
failed

#telse

There's more...

Another part of the vectorization story that we wanted to tell you is that you, the developer,
has the option of controlling the auto-vectorization by providing an explicit compiler hint to
the kernel code. This can be useful if you want to hand-tune the vectorization of your code.

The compiler hint we are referring to is the vec_type hint (<type>) where <types> is any
of the built-in scalar or vector data types we mentioned previously. The attribute vec_type
hint (<type>) represents the computation width of the kernel and if it's not specified, the
kernel is assumed to have the vec_type hint (int) qualifier applied to the kernel, that is,
4-bytes wide. The following code snippets illustrate how the computation width of the kernel
changes from 16-bytes to 8-bytes and finally to 4-bytes which happens to be the default:

// autovectoize assuming float4 as computation width
__kernel _ attribute ((vec_type hint (float4)))

void computeThis(global float4*p) {..}

// autovectorize assuming double as computation width
__kernel _ attribute ((vec_type hint (double)))

void computeThis(global float4*p) {..}

// autovectorize assuming int (default) as computation width
__kernel _ attribute ((vec_type hint (int)))

void computeThis(global float4*p) {..}

For you, the developer, to be able to use this, you will need to know the width of the vector
units in your platform which could be running on a CPU or GPU. In the next diagram, we
have two scenarios where we assume that both the _ kernel functions are declared
with _ attribute ((vec_type hint(float4))) and __attribute ((vec_type
hint (char4))) respectively. Furthermore, we assumed that the kernel is running on
256-bit wide registers and how the auto-vectorizer might choose to run one or more

work items so that the register's usage is maximized; this is of course dependent on

5]

Chapter 3

the compiler's implementation. The following figure is a conceptual view of how the OpenCL
compiler might generate work items to consume the data in the wide registers:

256-bit register

<4————work-item-X——» <4—work-item-X+1)——»

<

_kernel
attribute((vec_type_hint(float4)))
void computeThis(_global float4*p) {...}

256-bit register
work-item-0 work-item-1 work-item-2 work-item-3work-item-4 work-item-5 work-item-6 work-item-7

_kernel
attribute((vec_type_hint(char4)))
void computeThis(_global chard*p) {...}

In the native vector type notation method for explicit vectorization, we mentioned that native
vector types are identified in c1_platform.hbythe CL <TYPEN> preprocessor
symbols aka C macros but, we haven't told you how we came to use the SSE instructions in
the code example. Let's now find out why, and we need to reference the c1_platform.h
defined by the OpenCL 1.2 standard (which you can download from http://www.khronos.
org/registry/cl/api/1.2/cl platform.h)

The code example was tested on the Ubuntu Linux 12.04 64-bit operating system with an Intel
Core i7 CPU and a AMD Radeon HD 7870 GPU, and we should ignore the presence of the GPU
as it has no relevance other than to inform you the machine setup.

What this setup tells us is that we have a SSE-capable instruction set and as a convention
adopted by the UNIX and GCC community in general, is to look forthe SSE__ preprocessor
symbol and we indeed do that as follows:

#if defined(_SSE)

#if defined(_ MINGW64_)

#include <intrin.hs>

#telse

#include <xmmintrin.hs>

#endif

#if defined(_ GNUC_)

typedef float ¢l float4 attribute ((vector size(16)));

Understanding OpenCL Data Types

#else

typedef m128 ¢l float4;// statement 1
#endif

#define _ CL_FLOAT4__ 1// statement 2
#endif

From the preceding code snippet, we know we should be focusing on the statement 1

as it has provided us the indicative width of the SIMD vectors, and we also know that by
convention _ m128 indicates that its vector's width is 128-bits; other values includes
64-bits and 256-bits. We should also be careful to contain the explicit vectorization within
the preprocessor guard, as a best practice, thatis, #ifdef = CL FLOAT4_ _.Using this
understanding, we can proceed to search for the appropriate SSE APIs that allows us to
manipulate data values of the desired width. The interested reader is invited to check the
Intel Developer Manuals and AMD Developer Manuals, and explore how these ISAs compare
and most importantly where they differ.

Vector and scalar address spaces

Now that we have understood how to use scalars and vectors in OpenCL, it's time to examine
the OpenCL's defined four address spaces: global, local, constant,and
private in which vectors and scalars can exist in. These spaces are mapped to the memory
units and hence, limited by the actual resource on the device and define how work items can
access memory.

Getting ready

Following is a conceptual diagram of the various memory domains:

Compute Unit N

Compute [compute Unit 1

Device Private memory

Private memory (Reg Files)
(Reg Files)

Processing Element

Processing Elemen | (ALV)

(ALU)
\4
|—Local Memory N
Local Memory 1
V. N
Compute | Global Memory | |Constant Memory|

Device Memory

100

Chapter 3

The Global Memory and Constant Memory found in the lower-half of the preceding diagram
corresponds to the global and ___constant domain. The Local Memory associated with
each compute unit in OpenCL (that executes the kernel code) will have a memory space that's
shared by all work items in the block which corresponds tothe ~ 1ocal memory space while
each processing element will have its own namespace to store data and, it is represented by
the private memory space. Be aware that there is no way in which a work item can access
the (__private) memory space of another work item regardless of whether they're in the same
work group or not, the same can be said of shared memory, thatis, 1ocal memory where no
two work groups can inspect the other's memory.

Each compute unit in the device has a certain number of processing elements which executes
work items and the compute unit as a whole would access the local, constant, or global
memory space as determined by the computation. Each processing element (work group

or work item), stores its own private variables in its private memory space.

How to do it...

The global address space name is used to refer to memory objects allocated from the
global memory pool. To determine the actual amount of resources available on the device,
you need to pass the parameter CL. DEVICE_GLOBAL MEM SIZE t0o clGetDeviceInfo.
The following snippet is drawn from Ch2/device details/device details.c:

displayDeviceDetails(devices[i], CL_DEVICE_GLOBAL MEM SIZE, "CL_
DEVICE GLOBAL_MEM SIZE") ;
void displayDeviceDetails(cl_device id id,

cl device_info param name,

const char* paramNameAsStr) {

cl_int error = 0;
size t paramSize = 0;
error = clGetDeviceInfo(id, param name, 0, NULL, ¶mSize) ;
if (error != CL_SUCCESS) ({
perror ("Unable to obtain device info for param\n") ;
return;

}

/* the cl device_info are preprocessor directives defined in cl.h */
switch (param name) {
case CL_DEVICE GLOBAL MEM SIZE:
case CL DEVICE MAX MEM ALLOC SIZE: {
cl ulong* size = (cl_ulong*) alloca(sizeof (cl ulong) *
paramSize) ;
error = clGetDeviceInfo(id, param_name, paramSize, size, NULL
)i

if (error != CL_SUCCESS) ({
perror ("Unable to obtain device name/vendor info for
param\n") ;
return;

}

Understanding OpenCL Data Types

The local address space name is used to describe variables that need to be allocated

in the local memory and shared by all work items of a work group. You can determine the
maximum size of this space by passing the parameter CL. DEVICE MAX LOCAL MEM SIZE
to clGetDevicelInfo.

The constant address space name is used to describe non-mutable variables that need
to be allocated as read-only in global memory, and can be read by all work items during

the kernel's execution. You can determine the maximum size of this space by passing the
parameter CL, DEVICE MAX CONSTANT BUFFER SIZE to clGetDeviceInfo. This
address space is useful if there is a specific value that does not change and is needed by
the kernel functions.

The private address space is used to describe objects private-only distinct work items;
hence work items cannot inspect one another's variables if they were marked by private.
By default, variables inside a kernel function not declared with any address space qualifiers
such as: _global, local,or constant are marked private; this includes all
variables in the non-kernel functions and function arguments. The following kernel code from
Ch3/vectorization/vectorization.cl will illustrate the global and private memory
spaces whereby the variables id, index, and t are in the private memory space and hence
not visible across other work items, therefore, free from interference, whereas the variables
in and out exist in the global memory space and are visible by all work items:

__kernel void copyNPaste(global float* in, _ global float8* out) ({
size t id = get_global id(0);
size_t index = id*sizeof (float8);
float8 t = vload8 (index, in) ;
out [index] .s0 = t.s0;
//code omitted
out [index] .s7 = t.s7;

}

The following diagram illustrates the OpenCL programming model:

102

Chapter 3

OpenCL Programming Model
Compute Unit N

Compute Unit 1
_kernel doCompute(...) {
_kernel doCompute(...) { Vl\/o V|V1 V|VzV|V3\fV4
Wy W, W, Wy W, R
[T VU www
L T I }
V V.V VYV
} 7IV 7|V /\

4

Local Memory N
Local Memory 1 N

A

<
)
-

Compute Global Memory Constant Memory
Device Memory

Let's use the preceding diagram to understand how your kernel will function in OpenCL.
Imagine you have a kernel named doCompute that takes several arguments that reference
the global, constant, local, or private memory spaces. Work and data is divided among the
kernels across the compute units represented by the W_ ; they would represent either work
groups (collection of work items) or work items.

0..47

Typically, computing in OpenCL often either involves individual work items performing the
computation independently via the global, private, or constant spaces, or collecting these
work items to form a work group so that they can load and store data more efficiently via
utilizing the local memory space since that space allows sharing of data across all work
items in the work group hence, preventing multiple memory loads from device memory.

Configuring your OpenCL projects to enable

the double data type

Today's modern processors from Intel, AMD, and ARM have their floating-point units (FPUs)
IEEE 754 compliant; however, ARM has both hardware and software support for half-precision
numbers in addition to single-precision and double-precision numbers. Hence this implies that
your OpenCL programs can actually utilize half-precision on ARM-based processors and this
raise a question on how can one determine what sort of floating-point support does the

device have.

Understanding OpenCL Data Types

The answer to that question is to query the device via the c1GetDeviceInfo APl and
passing in any of the following parameters: CL. DEVICE SINGLE FP CONFIG, CL DEVICE
DOUBLE_FP CONFIG, and CL._DEVICE HALF FP_CONFIG which identifies whether the
device supports single-precision, double-precision, or half-precision number operations.

1
*‘Q CL_DEVICE HALF FP CONFIGand CL_DEVICE DOUBLE FP

CONFIG are not supported on Mac OSX 10.6 for OpenCL 1.0.

The result of API invocation returns an object of c1 device fp config type.

1
‘Q At the time of this writing, CL_ FP_SOFT_FLOAT was not available on Mac

0SX 10.6, but available on AMD APP SDK v2.7 and Intel OpenCL SDK.

In the case of the double-precision floating-point values, the OpenCL device extension,

cl _khr fpé64, needs to be present before you can utilize the double data type in the kernel.
As of OpenCL 1.2, the developer no longer has to query the device's extensions to verify the
existence of the double-precision floating-point support, and we'll explain what you'll need to
do in this case in the later part of this recipe.

As of OpenCL 1.1, the working committee does not mandate the support
M of the double data type except through the OpenCL 1.1 device extension
Q cl _khr fpé4. If you are using AMD devices, you should know that AMD
provides an extension that implements a subset of c1_khr fpé64 andis
known as cl_amd_ fpé64.

Let's understand this with a simple example.

Getting ready

In the upcoming example, the goal of the example is to illustrate the use of a double data type
to hold the intermediate result of adding two floats, after which we send this double to be
stored as a float in a result array. Take note that you cannot use the double type in the kernel
code if the extension c1_khr fpé64 orcl amd fpé64 (for AMD devices) is enabled.

The two test machines involved have c1_khr fpé64 supported on the Intel Core i7 processor
and a NVIDIA GPU but the ATl 6870x2 GPU doesn't support c1_khr fpé64 or cl_amd fpé64.

104

Chapter 3

How to do it...

Following is the code excerpt from Ch3 /double support/double support.cl,
which illustrates the kernel code:

#ifdef fp64
#pragma OPENCL EXTENSION cl khr fp64 : enable
#endif
__kernel void add3(_global float* a, _ global float* b, _ global
float* out)
int id = get global id(0);
#ifdef fp64
double d = (double)alid] + (double)b[id];

out [1d] = d;
#else

out [1d] = alid] + b[id];
#endif

}

Next, is the code snippet from Ch3/double support/double support.c, where it shows
how to set the kernel arguments to the function add3s:

// memobjl & memobj2 refers to float arrays for consumption
// outObj refers to the output float array

error = clSetKernelArg(kernels[j], 0, sizeof(cl mem), &memobjl);
error = clSetKernelArg(kernels[j]l, 1, sizeof(cl mem), &memobj2);
error = clSetKernelArg(kernels[j]l, 2, sizeof(cl mem), &outObj) ;
if (error != CL_SUCCESS) {

perror ("Unable to set buffer object in kernel arguments") ;
exit (1) ;
}
/* Enqueue the kernel to the command queue */
size t local[l] = {1};
size t global[l] = {64};
error = clEnqueueNDRangeKernel (cQ, kernels[j], 1, NULL, global, local,
0, NULL, NULL);

if (error != CL_SUCCESS) {
perror ("Unable to enqueue task to command-queue") ;
exit (1) ;}

Understanding OpenCL Data Types

To build the program with CMake, navigate to the directory Ch3 /double_ support, and
enter make. It should drop a nice binary named DoubleSupport upon which you can
execute it to observe the results. On both the test machines, the results for a small run,
that is, 64-floating-point values are good with the runs on CPU and GPU.

Number of OpenCL platforms found: 1

Number of detected OpenCL devices: 2

Kernel name: add3 with arity: 3

About to create command queue and enqueue this kernel...

Task has been enqueued successfully!

Checking data of size: 64

Check passed!

Kernel name: add3 with arity: 3

About to create command queue and enqueue this kernel...

Task has been enqueued successfully!

Checking data of size: 64

Check passed!

The code in this example was constructed in such a manner that even if double wasn't
supported the program will run. Upon inspecting the code, you will realize that its use case
was to hold the result of adding two £1oat values (which by intention will not overflow) but

in other situations, you might want to use doubles, and the conditional-directives, that is,
#ifdef, #else, and #endif used to check for the presence of double floating-point support
for the device and it is a standard technique.

The type, c1_device fp config is actually composed of several values (shown in the
following table) and you can determine whether a particular feature is supported or not by
performing a bitwise-AND operation and for example, if we wish to determine which rounding
modes are supported in double-precision operations then, we will have the following code:

cl device fp config config;
clGetDeviceInfo(deviceId, CL DEVICE DOUBLE FP CONFIG, sizeof (config),
&config, NULL) ;

if (config & CL_FP ROUND TO NEAREST) printf ("Round to nearest is
supported on the device!");

106

Chapter 3

Parameter float double half
CL_FP_DENORM Optional Supported Optional
CL_FP_INF NAN Supported Supported Supported
CL_FP_ROUND_TO NEAREST Supported Supported Optional
CL_FP_ROUND_ TO ZERO Optional Supported Supported
CL_FP_ROUND TO INF Optional Supported Supported
CL_FP_FMA Optional Supported Optional
CL_FP_SOFT_ FLOAT Optional Optional Optional

For those who are inclined to use OpenCL 1.2, the specification has made double-precision
an optional feature instead of an extension, and this means that instead of checking for the
existence of the extensions c1_khr fpé4 orcl amd fpé4 in the device, you will simply
check that the returned value of the call to c1GetDeviceInfo when passed the parameter
CL_DEVICE PREFERRED VECTOR WIDTH DOUBLE and CL_DEVICE NATIVE VECTOR
WIDTH must be equal to 1 if the device were to support double-precision. The following code
snippet illustrates how to check for the preferred native vector width size for built-in scalar

types that can be put into vectors:

cl uint vectorWidth;
size t returned size;

clGetDeviceInfo(deviceId, CL_DEVICE PREFERRED VECTOR WIDTH

DOUBLE, sizeof (¢l uint), &vectorWidth,

&returned size) ;

if (vectorWidth > 0) printf ("Vectors of size %d for

vectorWidth) ;

are:",

Using OpenCL
Functions

In this chapter, we'll cover the following recipes:

» Storing vectors to an array

» Loading vectors from an array

» Using geometric functions

» Using integer functions

» Using floating-point functions

» Using trigonometric functions

» Arithmetic and rounding in OpenCL
» Using the shuffle function in OpenCL

» Using the select function in OpenCL

Introduction

In this chapter, we are going to explore how to utilize the common functions provided

by OpenCL in your code. The functions we are examining would be mostly mathematical
operations applied to the elements, and in particular applied to a vector of elements.

Recall that the vectors are OpenCL's primary way to allow multiple elements to be processed
on your hardware. As the OpenCL vendor can often produce vectorized hardware instructions
to efficiently load and store such elements, try to use them as much as possible.

Using OpenCL Functions
In detail, we are going to take a dive into how the following works:

» Data load and store functions for vectors
» Geometric functions

» Integer functions

» Floating-point functions

» Trigonometric functions

Finally, we will present two sections on how the OpenCL's shuffle and select functions
would work if you choose to use them in your applications.

Storing vectors to an array

In the previous chapters, you caught glimpses of how we use vectors in various ways from a
tool to transport data in an efficient manner to the device and from the device. We have also
learned that OpenCL provides a substantial amount of functions that actually work on vectors.
In this section, we will explore how we can store vectors to an array (when we use arrays in
this context with a vector, we mean an array that contains scalar values).

The vstore<N> functions, where <N is 2, 3, 4, 8, and 16, are the primary functions you
will use to actually signal the OpenCL that you wish to store the elements in your vector that
has to be transported in a parallel fashion to a destination; this is often a scalar array or
another vector.

We should be clear that gentypeN is not a C-like type alias for a data type, but rather a
logical placeholder for the types such as char, uchar, short, ushort, int, uint, long,
ulong, float, and double. The N stands for whether it is a data structure that aggregates
2, 3, 4, 8, or 16 elements. Remember that if you wish to store vectors of the type double,
then you need to ensure that the directive #pragma OPENCL EXTENSION cl khr fpé64
enable is in your code before any double precision data type is declared in the kernel code.

Hence, the vstoreN APl will write sizeof (gentypeN) bytes given by the
M data to the address (p + (offset *N)).The address computed as (p
Q + (offset * N)) mustbe 8-bit aligned if gentype is char or uchar;
16-bit aligned if gentype is short or ushort; 32-bit aligned if gentype is
int oruint; 64-bit aligned if gentype is 1ong, ulong or double.

You should notice that the memory writes can span from the global memory space (__global)
tolocal (_ local), or even to a work item private memory space (__private) but never to

a constant memory space (__constant is read-only). Depending on your algorithm, you may
need to coordinate the writes to another memory space with memory barriers otherwise known
as fences.

Chapter 4

R The reason why you will need memory barriers or fences is that the
~ memory reads and writes, in general, can be out of order, and the main
Q reason for this is that the compiler optimization of the source code
re-orders the instructions so that it can take advantage of the hardware.

To expand on that idea a little, you might be aware that C++ has a keyword, volatile, which
is used to mark a variable so that the compiler optimizations generally do not apply optimized
load-stores to any use of that variable; and basically any use of such variable typically involves
a load-use-store cycle at every use-site also known as sequence points.

Loop unrolling is an optimization technique where the compiler attempts to remove branching
in the code and hence, emitting any branch predication instructions so that the code executes
efficiently. In the loops that you are accustomed to, you often find an expression as follows:

for(int i = 0; i <mn; ++1i) { ... }

What happens here is that when this code is compiled, you will notice that the ISA will issue
an instruction to compare the value of i against that of n, and based on the result of that
comparison, perform certain actions. Branching occurs when the executing thread takes a
path if the condition is true or another path if the condition is false. Typically, a CPU executes
both paths concurrently until it knows with a 100 percent certainty that it should take one of
these paths, and the CPU can either dump the other unused path or it needs to backtrack
its execution. In either case, you will lose several CPU cycles when this happens. Therefore,
the developer can help the compiler and in our case, give a hint to the compiler what the
value of n should be so that the compiler doesn't have to generate code to check for i < n.
Unfortunately, OpenCL 1.2 doesn't support loop unrolling as an extension, but rather the AMD
APP SDK and CUDA toolkits provide the following C directives:

#pragma unroll <unroll-factors>
#pragma unroll 10
for(int i = 0; i < n; ++1i) { ... }

Using OpenCL Functions

Without these functions, the OpenCL kernel would potentially issue a memory load-store for
each processed element as illustrated by the following diagram:

Multiple
Memory Stores

OpenCL Global
OpenCL Kernel Memory Space

Let's build a simple example of how we can use these vstoreN functions in a simple example.

Getting ready

This recipe will show you a code snippet from Ch4/simple vector store/simple
vector store.cl where a vector of 16 elements is loaded in and subsequently copied by
using vstorelé6 (. ..). This APl isn't exactly sugar syntax for a loop unrolling of 16 elements,
and the reason is the compiler generates instructions that loads a vector of 16 elements from
memory; also loop unrolling doesn't exist in OpenCL 1.1 as we know it but, it doesn't hurt to
think in terms of that if it helps in understanding the concept behind the vstoreN APIs.

How to do it...

The following is the kernel code where we will demonstrate the data transfers:

//

// This kernel loads 64-elements using a single thread/work-item
// into its _ private memory space and writes it back out

__kernel void wideDataTransfer(global float* in,
__global float* out) ({

size t id = get global id(0);
size t offsetA = id ;

size t offsetB = (id+1l);
size t offsetC = (id+2);
size t offsetD = (id+3);

// each work-item loads 64-elements
floatlé A = vloadlé6 (offseth, in);
floatlé B = vloadlé6 (offsetB, in);
floatlé C = vloadlé6 (offsetC, in);

112

Chapter 4

floatlé D = vloadlé (offsetD, in);

vstorelé6 (A, offsetA, out

()
vstorelé (B, offsetB, out);
vstorelé6 (C, offsetC, out);
vstorelé (D, offsetD, out);

}
To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
VectorStore vector store.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple vector store/.
When that happens, you will have a binary executable named VectorStore.

To run the program on OS X, simply execute the program VectorStore and you should
either see the output: Check passed! or Check failed! as follows:

Check passed!

This code can be understood from the perspective that a large vector exists in the global

memory space, and our attempt is to load the vector into a variable in the private memory,

that is, each work item has a unique variable named t; do nothing to it and store it back out

to another in-memory array that is present in the global memory space.

- In case you are curious about how this works, the memory writes are actually ™
coalesced so that the writes are issued in bursts of bytes. The size of this
burst is dependent on the hardware's internal architecture. As a concrete
example in AMD's ATl GPUs, these memory writes are issued once every 16
writes are known to occur and it is related to the implementation of work
items in the GPU. You see that it's very inefficient for the GPU to issue a read

\1 or write for every work item. When you combine this with the fact that there
~ could be potentially hundreds of thousands of computing threads active in
Q a clustered GPU solution, you can imagine the complexity is unfathomable

if the manufacturers were to implement a logic that allows the developer to
manage the programs on a work item/per-thread granularity. Hence graphic
card manufacturers have decided that it is more efficient to implement
the graphical cards to execute a group of threads in lock-step. ATl calls this
group of executing threads a wave-front and NVIDIA calls it a warp. This
understanding is critical when you start to develop nontrivial algorithms on

b your OpenCL device. -

Using OpenCL Functions

When you build the sample application and run it, it doesn't do anything in particularly special
from what we have seen but it is useful to see how the underlying code is generated, and in
this example the Intel OpenCL SDK is illustrative.

& I_Westorized wideDataTransfnr

xnl — wd(0,.3,0,0]

¥ ool — wwe1]0,0,0.0]

. mescn PTR [LCPIS 0]

o, Ben

i]

WML, DO, WSO PR (LCPLS L]

ed BAX, DL, 3
BAX, &

DWORD PTR [ESP ¢ 013], EAX # 4-byts spill
WCX, DWORD FTR (KRR ¢ A1

, MOMORD OTR [ECK + EAX]
s DOMORD FTA [ESP + 10341, X8G # 16-byte Spill
AGI, DOGORD PTR |ECK + BAX + 18]
* 1000], 1080 § 1h-byle Spill

¥AX + 33]

¢+ T B 16-bybe Spill

XS, XKD PTR [KCK + EAZ + 48]

n XDOMORD PTR [RAT + 97€], DAME # 16-bybe Spill
EAX. DM, 2

EAX, &

DWORD TR [ESF + T32], EAX # d-Lytm Spill

BaG, BENOED PTR [ECE + RAX]

1, DaaE # 16-byte pill

AT + 18]
Da3 # 16-byte Spill

+EAX + 23]
1, DML # 1e-byte Spiil
+ EAX + 801

2], DS # lé-byte Spill

AMstE™ua a4

The assembly code snippet in particular is that of the resultant translation to SSE2/3/4
or Intel AVX (Advanced Vector Extensions) code.

Loading vectors from an array

The v1oadN functions are typically used to load multiple elements from an in-memory array to a
destination in-memory data structure and are often a vector. Similar to the vstoreN functions,
the v1oadN functions also load elements from the global (__global), local (_ local), work
item private (__private), and finally constant memory spaces (__constant).

We should be clear that gentypeN is not a C-like type alias for a data type but rather a logical
placeholder for the types: char, uchar, short, ushort, int, uint, long, ulong, float,
or double and the N stands for whether it's a data structure that aggregates 2, 3, 4, 8, 0r 16
elements. Without this function, the kernel needs to issue potentially multiple memory loads
as illustrated by the following diagram:

114

Chapter 4

Getting ready

Multiple
Memory Loads

OpenCL Global
Memory Space

OpenCL Kernel “

The following is an excerpt from Ch4/simple vector load/simple vector load.

c1. We focus our attention to understand how to load vectors of elements from the device
memory space for computation within the device, that is, CPU/GPU. But this time round, we
use an optimization technique called prefetching (its warming up the cache when your code
is going to make use of the data soon and you want it to be near also known as spatial and
temporal locality), and is typically used to assign to local memory space so that all work items
can read the data off the cache without flooding requests onto the bus.

How to do it...

The following is the kernel code from which we shall draw our inspiration:

__kernel void wideDataTransfer(global float* in,
__global float* out) ({

size t id

get group id(0)

get local id(0);

size t STRIDE
size t offsetA
prefetch(in +
barrier (CLK _LOCAL MEM FENCE) ;

floatle A

float all1l6];

alo]
alll
al2]
al[3]
al4]
al[5]
ale6]
al7]

A.

s0;

A.sl;

> o o

.82;
.83;
.84;
.85;
.86;
.87;

16;

= id;
(id*64),

vloadlé (offsetAh,

64) ;

* get local size(0) +

in);

Using OpenCL Functions

al[8] = A.s8;

al[9] = A.s9;

al[l1l0] = A.sa;

al[ll] = A.sb;

al[l2] = A.sc;

al[l13] = A.sd;

al[l4] = A.se;

al[l5] = A.sf;

for(int i = 0; i < 16; ++i) {

out [offsetA*STRIDE+1] = alil;

}
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
VectorLoad vector load.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4 /simple vector load/.
When that happens, you will have a binary executable named VectorLoad.

To run the program on OS X, simply execute the program VectorLoad and you should either
see the output: Check passed! or Check failed! as follows:

Check passed!

The kernel would proceed to prefetch the 16 values of type £loat from the global memory
space to the global cache via the first work item in the work group, which would ultimately arrive
in the work item's _ private memory space via the vloadl6 APl Once that value is loaded,
we can assign individual floats to the array and finally output them to the destination via an
explicit write to the _ global memory space of out. This is one method in which you can
conduct memory load from a scalar array that resides in the global memory space.

prefetch(in +(id*64), 64);

The preceding line is an optimization technique used to improve data reuse by making
it available before it is required; this prefetch instruction is applied to a work item in a
work group and we've chosen the first work item in each work group to carry this out. In
algorithms where there is heavy data reuse, the benefits would be more significant than
the following example:

Another thing you may have noticed is that we didn't write the following code:

out [offset*STRIDE + i] = A; // 'A' is a vector of 16 floats

Chapter 4

The reason why we did not do this is because OpenCL forbids the implicit/explicit conversion
of a vector type to a scalar.

Vactorisad wideDataTransfus: ® §_Vostorired widsbataranster
nag

ulel e, oM, 0 ® wwll = wl] [8,0,0,00
0DBH, DN, DSMCED PTIL [LEPLE O]
nhj NMARORD PTR [ESP + 160]. D0 8 16-Tyte Apill

. oM, 4
% xesemn PTH [ESF ¢ 1761, D0 4 16-byts mpall
EAK, 30840

HAEA PR~ aq S0

One interesting thing that is worth pointing out other than the generated SSE instructions is
the fact that multiple hardware prefetch instructions are generated, even though the code
only mentions one prefetch instruction. This is the sort of fagade that allows OpenCL vendors
to implement the functionality based on an open standard, while still allowing the vendors to
hide the actual implementation details from the developer.

Using geometric functions

The geometric functions are used by the programmers to perform common computation

on vectors, for example, cross or dot products, normalizing a vector, and length of a

vector. To recap a little about vector cross and dot products, remember that a vector in the
mathematical sense represents a quantity that has both direction and magnitude, and these
vectors are used extensively in computer graphics.

Quite often, we need to compute the distance (in degrees or radians) between two vectors
and to do this, we need to compute the dot product, which is defined as:

ab=a]|p]cos &

Using OpenCL Functions

It follows that if a is perpendicular to b then it must be that a . b = 0. The dot product is also
used to compute the matrix-vector multiplication which solves a class of problems known as
linear systems. Cross products of two 3D vectors will produce a vector that is perpendicular
to both of them and can be defined as:

o> v]|= Ju|[]sin &

The difference between these products is the fact that the dot product produces a scalar
value while the cross product produces a vector value.

The following is a list of OpenCL's geometric functions:

Function Description

float4 cross(float4 m, float4 n) Returns the cross product of m.xyz and

float3 cross (float3 m, float3 n) n.xyz and the w component in the result
vector is always zero

float dot(floatn m, floatn n) Returns the dot product of two vectors

float distance(floatn m, floatn Returns the distance between m and n.

n) This is computed as:1length (m - n)

float length(floatn p) Return the length of the vector p

floatn normalize (floatn p) Returns a vector in the same direction as p
but with a length of 1

float fast distance(floatn poO, Returns fast length(p0 - pl)

floatn pl)

float fast_ length(floatn p) Returns the length of vector p computed
as:
half sqgrt()

floatn fast_normalize(floatn p) Returns a vector in the same direction as p
but with a length of 1. fast normalize
is computed as:
p * half sgrt()

You should be aware that these functions are implemented in OpenCL using the round to
nearest even rounding mode also known as rte-mode.

Next, let's take a look at an example that utilizes some of these functions.

Chapter 4

Getting ready

The code snippet in Ch4/simple dot product/matvecmult.cl illustrates how to
compute the dot product between a 2D vector and a matrix and write back the result of that
computation to the output array. When you are starting out with OpenCL, there might be two
probable ways in which you will write this functionality, and | think it is instructive to discover
what the differences are; however we only show the relevant code snippet that demonstrates
the dot API.

How to do it...

The following is the simplest implementation of the matrix dot product operation:

__kernel void MatVecMultUsingDotFn(_ global float4* matrix,
__global float4* vector, _ global float* result) {

int i = get global id(0);
result[i] = dot(matrix([i], vector[0]);

}
To compile this on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
MatVecMult matvecmult.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple dot product/.
When that happens, you will have a binary executable named MatvecMult.

To run the program on OS X, simply execute the program MatVecMult and you should
either see the output: Check passed! or Check failed! as follows:

Check passed!

The previous code snippet is probably the simplest you will want to write to implement the
matrix dot product operation. The kernel actually reads a vector of 4 floats from the global
memory spaces of both inputs, computes the dot product between them, and writes it back out
to _ global memory space of the destination. Previously, we mentioned that there might be
another way to write this. Yes, there is and the relevant code is shown as follows:

__kernel void MatVecMult (const _ global float* M,
const _ global float* V, uint width, uint height,
__global float* W) {

// Row index
uint y = get global id(0);
if (y < height) {

// Row pointer

Using OpenCL Functions

const _ global float* row = M + y * width;
// Compute dot product
float dotProduct = 0;
for (int x = 0; X < width; ++x)
dotProduct += rowl[x] * VI[x];
// Write result to global memory
W([y] = dotProduct;

}
}

When you compare this implementation without using the dot API, you will discover that you
not only need to type more but also you will have increased the number of work item variables
which happens to be inthe private memory space; often you don't want to do this
because it hinders the code readability, and also quite importantly scalability because too
many registers are consumed.

In OpenCL implementations, they would need to manage the available
resources on the device, which could be available memory or available
compute units. One such resource is the register file that contains a fixed
number of general-purpose registers that the device has for executing one
_ormany kernels. During the compilation of the OpenCL kernel, it will be
a determined how many registers are needed by each kernel for execution.
s An example would be where we assume that a kernel is developed that
uses 10 variables in the private memory space and the register file
is 65536, and that would imply that we can launch 65536 / 10 = 6553
work items to run our kernel. If you rewrite your kernel in such a way that
uses more data sharing through the _ 1ocal memory spaces, then you
can free more registers and you can scale your kernel better.

Using integer functions

The integer functions in OpenCL primarily provides useful ways in which you can use them to
perform the usual mathematical calculations such as obtaining an absolute value, halving

a value, locating the minimum or maximum of three values, cyclic shift of a number, and
specialized form of multiplication which is designed to work for a certain class of problems.
Many of the functions that we have mentioned such as min and max do not perform the
comparisons in an atomic fashion, but if you do like to ensure that, then a class of atomic
functions can be used instead and we'll examine them later.

A class of integer functions is the atomic functions, which allows the developer to swap values
(single-precision floating-point values too) in an atomic fashion, and some of these functions
implements CAS (Compare-And-Swap) semantics. Typically, you may want to ensure some sort
of atomicity to certain operations because without that, you will encounter race conditions.

120

Chapter 4

Thread 2
Thread 1 ‘ Thread 3

The atomic functions typically take in two inputs (they have to be of integral types, only
atomic_xchg supports single-precision floating-point types), where the first argument is a
pointer to a memory location in the global (_ global)and local (_ local) memory spaces
,and they are typically annotated with the volatile keyword, which prevents the compiler from
optimizing the instructions related to the use of the variable; this is important as the reads and
writes could be out of order and could affect the correctness of the program. The following is an
illustration of a mental model of how atomic operations serialize the access to a piece of
shared data:

Thread 2 Thread 3

>0 O O

Thread 1

The following example, atomic_add, has two versions which work on signed
or unsigned values:

int atomic_add(volatile _ global int*p, int wval)
unsigned int atomic_add(volatile _ global uint*p, uint wval)

Another observation you need to be aware of is the fact that just because you can
apply atomicity to assert the correctness of certain values, it does not necessarily
imply program correctness.

The reason why this is the case is due to the manner in which work items are implemented
as we mentioned earlier in this chapter, that NVIDIA and ATl executes work items in groups
known as work groups and each work group would contain multiple chunks of executing
threads, otherwise, known as warp (32 threads) and wavefront (64 threads) respectively.
Hence when a work group executes on a kernel, all the work items in that group are executing
in lock-step and normally this isn't a problem. The problem arises when the work group is
large enough to contain more than one warp/wavefront; then you have a situation where

one warp/wavefront executes slower than another and this can be a big issue.

Using OpenCL Functions

The real issue is that the memory ordering cannot be enforced across all compliant OpenCL
devices; so the only way to tell the kernel that we like the loads and stores to be coordinated is
by putting a memory barrier at certain points in your program. When such a barrier is present,
the compiler will generate the instructions that will make sure all the loads-stores to the
global/local memory space prior to the barrier is done for all the executing work items before
executing any instructions that come after the barrier, which will guarantee that the updated
data is seen; or in compiler lingo: memory loads and stores will be committed to the memory
before any loads and stores follows the barrier/fence.

These APIs provide the developer with a much better level of control when it comes to ordering
both reads and writes, reads only, or writes only. The argument flags, can take a combination
of CLK_LOCAL MEM FENCE and/or CLK_GLOBAL_ MEM FENCE.

Getting ready

The recipe will show you the code snippet in Ch4 /par min/par min.cl for finding the
minimum value in a large array in the device, that is, GPU or CPU memory space. This example
combines a few concepts such as using the OpenCL's atomic directives to enable atomic
functions and memory barriers to coordinate memory loads and stores.

How to do it...

The following code demonstrates how you might want to find the minimum number in a large
container of integers:

#pragma OPENCL EXTENSION cl khr local int32 extended atomics

enable
#pragma OPENCL EXTENSION cl khr global int32 extended atomics
enable
_ _kernel void par_min(__global uint4* src,
__global uint * globalMin, _ local wuint * localMin,
int numOfItems) {
uint count = (numOfItems / 4) / get global size(0);

uint index = get global id(0) * count;

uint stride = 1;

uint partialMin = (uint) -1;

for(int i = 0; i < count; ++i,index += stride) ({
partialMin = min(partialMin, src[index] .x);
partialMin = min(partialMin, src[index].y);
partialMin = min(partialMin, src[index].z);
partialMin = min(partialMin, src[index] .w)

7

}

if (get_local id(0) == 0) localMin[0] = (uint) -1;
barrier (CLK_LOCAL MEM_FENCE) ;

atomic min(localMin, partialMin) ;

barrier (CLK_LOCAL MEM_FENCE) ;

122

Chapter 4

if (get local id(0) == 0)
globalMin[get group id[0]] = localMin[O0];

}

__kernel void reduce(_ global uint4* src,
__global uint * globalMin) {
atom min(globalMin, globalMin[get global id(0)1) ;
}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
ParallelMin par min.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4 /par_min/. When that happens,
you will have a binary executable named ParallelMin.

To run the program on OS X, simply execute the program ParallelMin and you should either
see the output: Check passed! or Check failed! as follows:

Check passed!

The way this works is that a work item walks through the source buffer and attempts to locate
the minimum value in parallel, and when the kernel is running on the CPU or GPU, the source
buffer is chopped evenly between those threads and each thread would walk through the
buffer that's assigned to them in __global memory and reduces all values into a minimum
value inthe _ private memory.

Subsequently, all threads will reduce the minimum values in their _ private memories to
__local memory via an atomic operation and this reduced value is flushed to the global
memory.

Once the work groups have completed the execution, the second kernel, that is, reduce
will reduce all the work group values into a single value in the __global memory using an
atomic operation.

Using floating-point functions

So far, you have seen a couple of functions that takes argument as input or output
single-precision or double-precision floating-point values. Given a floating-point value x, the
OpenCL floating-point functions provide you with the capability to extract the mantissa and
exponent from x via frexp (), decompose x via modf (), compute the next largest/smallest
single-precision floating-point value via nextafter (), and others. Considering that there are so
many useful floating-point functions, there are two functions which are important to understand
because it's very common in OpenCL code. They are the mad () and fma () functions which is
Multiply-Add and Fused Multiply-Add instruction respectively.

Using OpenCL Functions

The Multiply-Add (MAD) instruction performs a floating-point multiplication followed by a
floating-point addition, but whether the product and its intermediary products are rounded is
undefined. The Fused Multiply-Add (FMA) instruction only rounds the product and none of its
intermediary products. The implementations typically trade off the precision against the speed
of the operations.

We probably shouldn't dive into academic studies of this nature; however in times like this, we
thought it might be helpful to point out how academia in many situations can help us to make
an informed decision. Having said that, a particular study by Delft University of Technology
entitled A Comprehensive Performance Comparison of CUDA and OpenCL link http://
www.pds.ewi.tudelft.nl/pubs/papers/icpp201la.pdf, suggests that FMA has a
higher instruction count as compared to MAD implementations, which might lead us to the
conclusion that MAD should run faster than FMA. We can guess approximately how much
faster by taking a simple ratio between both instruction counts, which we should point out

is a really simplistic view since we should not dispense away the fact that compiler vendors
play a big role with their optimizing compilers, and to highlight that NVIDIA conducted a study
entitled Precision & Performance: Floating Point and IEEE 754 compliance for NVIDIA GPUs,
which can be read at: http://developer.download.nvidia.com/assets/cuda/
files/NVIDIA-CUDA-Floating-Point.pdf. The study suggests that FMA can offer
performance in addition to precision, and NVIDIA is at least one company that we are aware
of who is replacing MAD with FMA in their GPU chips.

Following the subject of multiplication, you should be aware that there are instructions for
the multiplication of integers instead of floats; examples of those are mad_hi, mad_sat, and
mad24, and these functions provide the developer with the fine grain control of effecting a
more efficient computation and how it can be realized using these optimized versions. For
example, mad24 only operates on the lower 24-bits of a 32-bit integer because the expected
value is in the range of [-223, 223 -1] when operating signed integers or [0, 224 -1] for
unsigned integers.

Getting ready

The code snippet in Ch4/simple fma vs mad/fma mad_ cmp.cl demonstrates
how we can test the performance between the MAD and FMA instructions, if you so wish,
to accomplish the computation. However, what we are going to demonstrate is to simply
run each one of the kernels in turn, and we can check that the results are the same in
both computations.

How to do it...

The following code demonstrates how to use the MAD and FMA functions in OpenCL:

__kernel void mad test(_global float* a, _ global float* b,
__global float* ¢, _ global float* result) {

Chapter 4

float temp = mad(a, b, c);
result [get global id(0)] = temp;
}

___kernel void fma test(global float* a, _ global float* b,

__global float* ¢, _ global float* result) {
float temp = fma(a, b, c);
result [get global id(0)] = temp;

}
To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
FmaMadCmp fma mad cmp.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple fma vs mad/.
When that happens, you will have a binary executable named FmaMadCmp.

To run the program on OS X, simply execute the program FmaMadCmp and you should either
see the output: Check passed! or Check failed! as follows:

Check passed!

The driver code uses single-precision floating-point values to compute the value of the
equation by running the two kernels in turn on the GPU/CPU. Each kernel would load the
values from the _ global memory space to the work item/thread's private memory
space. The difference between both kernels is that one uses the FMA instruction while the
other uses the MAD instruction. The method that is used to detect whether FMA instruction
support is available on the device of choice is to detect whether cCP_FP_FMA is returned
after a call to c1GetDeviceInfo passing in any of the following parameters: CL. DEVICE
SINGLE FP_CONFIG, CL_ DEVICE DOUBLE FP CONFIG, and CL._DEVICE HALF FP
CONFIG. We use the flag CP_FP_FMA and FP_FAST FMA to load the £ma functions on our
platform by including the header file #include <math.hs>.

The C-macro FP_FAST FMA, if defined is set to the constant of 1 to indicate
that the fma () generally executes about as fast, or faster than, a multiple
and an addition of double operands. If this macro is undefined, then it
% implies that your hardware doesn't support it.In the GNU GCC compiler suite,
' the macro you want to detectis FP_FAST FMA, which links to the FP__
FAST FMA if defined or passing -mfused-madd to the GCC compiler (on by
default, autogenerate the FMA instructions if ISA supports).

Using OpenCL Functions

Using trigonometric functions

The trigonometric functions are very useful if you were in the computer graphics industry ,

or you are writing a simulation program for weather forecasts, continued fractions, and so on.
OpenCL provides the usual suspects when it comes to the trigonometry support with cos,
acos, sin, asin, tan, atan, atanh (hyperbolic arc tangent), sinh (hyperbolic sine),

and so on.

In this section, we will take a look at the popular trigonometric identity function:
sin2 +cos2 =1

From the Pythagoras's theorem, we understood that a right-angled triangle with sides a,b,c
and angle t at the vertex where a and ¢ meet, cos(t) is by definition a/c, sin(t) is by definition
b/c, and so cos2(t) + sin2(t) = (a/c)2 + (b/c)2 when combined with the fact that a2 + b2 = ¢c2
hence cos2(t) + sin2(t) = 1.

Having armed ourselves with this knowledge, there are many interesting problems you can
solve with this identity but for the sake of illustration let's suppose that we want to find the
number of unit circles.

Unit circles are another way of looking at the identity we just talked about. A contrived
example of this would be to determine which values would be valid unit circles from the
given two arrays of supposedly values in degrees.

Getting ready

The code snippet in Ch4/simple trigonometry/simple trigo.cl demonstrates the
OpenCL kernel that is used to compute which values from the two data sources can correctly
form a unit circle.

If you recall from basic trigonometry lessons you took, when you add the
result of sin(x) + cos(x) where x is drawn from either positive or negative

numbers, it will produce two distinct straight line functionsy=1andy =-1
’ and when you square the results of sin(x) and cos(x), the result of cos2(t) +
sin2(t) = 1 is obvious. See the following diagrams for illustration:

126

The preceding diagram and the following diagram reflect the graphs of sin(x)

and cos(x) respectively:

The following diagram illustrates how superimposing the previous two graphs would

give a straight line that is represented by the equation:

&
&
IS
&
N
iR
.

N+

W

P

-

o+

Chapter 4

Using OpenCL Functions

How to do it...

The following code snippet shows you the kernel code that will determine unit circles:

__kernel void find unit circles(global floatlée* a,
__global floatlé* b, global floatlé* result) {

uint id = get global id(0);

floatlée x = alid];

floatlé y = b[id];

floatlée tresult = sin(x) * sin(x) + cos(y) * cos(y);
result [id] = tresult;

}
To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
SimpleTrigo simple trigo.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple trigonometry/.
When that happens, you will have a binary executable named SimpleTrigo.

To run the program on OS X, simply execute the program SimpleTrigo and you should either
see the output shown as follows:

Find Unit Circle:

Unit circle with x=1, y=1

The driver program conducts its usual operations of loading the two data sources by filling it
up with values. Then the data sources is registered on the device command queue along with
the kernel program objects that are ready for execution.

During the execution of the kernel, the data sources are loaded into the device via a
single-precision floating-point 16-element vector. As highlighted in previous chapters,

this takes advantage of the device's vectorized hardware. The in-memory vectors are

passed into the sine and cosine functions which comes in two versions where one takes a
scalar value and second takes a vector value, and we flush the result out to global memory
once we are done; and you will notice that the multiplication/addition operator actually does
component-wise multiplication and addition.

128

Chapter 4

Arithmetic and rounding in OpenCL

Rounding is an important topic in OpenCL and we have not really dived into it yet but that's
about to change. OpenCL 1.1 supports four rounding modes: round to nearest (even number),
round to zero, round to positive infinity, and round to negative infinity. The only round mode
required by OpenCL 1.1 compliant devices is the round to nearest even.

If the result is intermediate between two representable values, the even
s representation is chosen. Even, here, means that the lowest bit is zero.

You should be aware that these are applicable to single-precision floating-point values
supported in OpenCL 1.1; we have to check with the vendors who provide functions that
operate on double-precision floating-point values, though the author suspects that they
should comply at least to support the round to nearest even mode.

Another point is that, you cannot programmatically configure your kernels to inherit/change
the rounding mode used by your calling environment, which most likely is where your program
executes on the CPU. In GCC at least, you can actually use the inline assembly directives, for
example, asm("assembly code inside quotes") to change the rounding mode in your
program by inserting appropriate hardware instructions to your program. The next section
attempts to demonstrate how this can be done by using the regular C programming with a
little help from GCC.

In the Intel 64 and |IA-32 architectures, the rounding mode is controlled by
a 2-bit rounding control (RC) field, and the implementation is hidden in two
p hardware registers: x87 FPU control register and MXCSR register. These
%‘\ two registers have the RC field and the RC in the x87 FPU control register is
’ used by the CPU when computations are performed in the x87 FPU, while
the RC field in the MXCSR is used to control rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

Getting ready

In the code snippet found in Ch4/simple rounding/simple rounding.cl,

we demonstrate how round to nearest even mode is the default mode in the built-in
functions provided by OpenCL 1.1. The example proceeds to demonstrate how a particular
built-in function and remainder, will use the default rounding mode to store the result of a
floating-point computation. The next couple of operations is to demonstrate the usage of the
following OpenCL built-in functions such as rint, round, ceil, floor, and trunc.

Using OpenCL Functions

How to do it...

The following code snippet examines the various rounding modes:

__kernel void rounding demo(global float *mod input,

__global float *mod output, _ global float4 *round input,
__global float4 *round output) {
mod_output [1] = remainder (mod input [0], mod input[1]);
round output [0] = rint (*round input) ;
round output [1] = round(*round input) ;
round output [2] = ceil (*round input) ;
round output [3] = floor (*round input) ;
round output [4] = trunc(*round input) ;

}
To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
SimpleRounding simple rounding.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple rounding/. When that
happens, you will have a binary executable named SimpleRounding.

To run the program on OS X, simply execute the program SimpleRounding and you should
either see the output shown as follows:

Input: -4.5f, -1.5f, 1.5f, 4.5f

Rint:

Round:

Ceil:

Floor:

Trunc:

As before, the in-memory data structures on the host are initialized with values and they

are issued to the device once the device's command queue is created; once that's done the
kernel is sent off to the command queue for execution. The results is subsequently read back
from the device and displayed on the console.

In order to understand how these functions work, is important that we study their behavior by
first probing their method signatures, and subsequently analyzing the results of executing the
program to gain insights into how the results came to be.

130

Chapter 4

There's more...

OpenCL 1.2 brings a wealth of mathematical functions to arm the developer and four of the
common ones are computing the floor and ceiling, round-to-integral, truncation, and rounding
floating-point values. The floor's method signature is:

gentype floor (gentype x) ;
// gentype can be float,float2,float3,float4,floats8,floatlé

This function rounds to the integral value using the round to negative infinity rounding

mode. First of all, your OpenCL device needs to support this mode of rounding, and you can
determine this by checking the existence of the value CL._ FP_ ROUND_TO INF when you pass
in CL_ DEVICE DOUBLE_ FP_CONFIG1t0 clGetDeviceInfo(device id, ...).

The next method, ceil's signature is:

gentype ceil (gentype x) ;
// gentype can be float,float2,float3,float4,floats8,floatlé

This function rounds to the integral value using the round to positive infinity rounding mode.

Be aware that when a value between -1 and 0 is passed to ceil, then the result is
automatically -o.

The method for rounding to the integral value has a signature like this:

gentype rint (gentype x) ;
// gentype can be float,float2,float3,float4,floats8,floatlé

This function rounds to the integral value using the round to nearest even rounding mode.

Be aware that when a value between -0.5 and 0 is passed to rint, then the result is
automatically -o.

The truncation function is very useful when precision is not high on your priority list and its
method signature is:

gentype trunc (gentype x) ;
// gentype can be float,float2,float3,float4,floats8,floatlé

This function rounds to the integral value using the round to zero rounding mode.
The rounding method signature is:

gentype round (gentype x) ;
// gentype can be float,float2,float3,float4,floats8,floatlé

This function returns the integral value nearest to x rounding halfway cases away from zero,
regardless of the current rounding direction. The full list of available functions can be found
in the Section 6.12.2 of the OpenCL 1.2 specification.

E

Using OpenCL Functions

When you run the program, you should get the following result:

Input: -4.5, 1.5, 1.5, 4.5
Rint: -4.0, -2.0, 2.0, 4.0
Round: -5.0, -2.0, 2.0, 5.0
Ceil: -4.0, -1.0, 2.0, 5.0
Floor: -5.0, -2.0, 1.0, 4.0
Trunc: -4.0, -1.0, 1.0, 4.0

Using the shuffle function in OpenCL

The shuffle and shuffle2 functions were introduced in OpenCL 1.1 to construct a
permutation of elements from their inputs (which are either one vector or two vectors),
and returns a vector of the same type as its input; the number of elements in the returned
vector is determined by the argument, mask, that is passed to it. Let's take a look at its
method signature:

gentypeN shuffle(gentypeM x, ugentypeN mask) ;
gentypeN shuffle(gentypeM x, gentypeM y, ugentypeN mask) ;

The N and M used in the signatures represents the length of the returned and input vectors
and can take values from {2,3,4,8,16}. The ugentype represents an unsigned type, gentype
represents the integral types in OpenCL, and floating-point types (that is, half, single,

or double-precision) too; and if you choose to use the floating-point types then recall the
extensions c1_khr fplé orcl khr fpé4.

Here's an example of how it works:

uint4 mask = {0,2,4,6};

uint4 elements = {0,1,2,3,4,5,6};
uint4 result = shuffle(elements, mask) ;
// result = {0,2,4,6};

Let's take a look at a simple implementation where we draw our inspiration from the popular
Fisher-Yates Shuffle(FYS) algorithm. This FYS algorithm generates a random permutation

of a finite set and the basic process is similar to randomly picking a numbered ticket from a
container, or cards from a deck, one after another until none is left in the container/deck.
One of the nicest properties of this algorithm is that it is guaranteed to produce an unbiased
result. Our example would focus on how shuffling would work, since what it essentially does is
to select a particular element based on a mask that's supposed to be randomly generated.

132

Chapter 4

Getting ready

The code snippetin Ch4/simple shuffle/simple shuffle.cl pretty much captured
most of the ideas we are trying to illustrate. The idea is simple, we want to generate a mask
and use the mask to generate permutations of the output array. We are not going to use a
pseudo random number generator like the Mersenne twister, but rather rely on C's stdlib.h
function, a random function with a valid seed from which we generate a bunch of random
numbers where each number cannot exceed the maximum size of the array of the output
array, thatis, 15.

*+ The rand () functionin stdlib.h is not really favored because it
%j%“ generates a less random sequence than random (), because the lower
’ dozen bits generated by rand () go through a cyclic pattern.

How to do it...

Before we begin the shuffling, we need to seed the RNG prior, and we can do that via a simple
API call to srandom () passing the seed. The next step is to run our kernel a number of times
and we achieve this by enclosing the kernel execution in a loop. The following code snippet
from the host code in Ch4/simple shuffle/simple shuffle.c shows this:

#define ITERATIONS 6
#define DATA SIZE 1024
srandom (41L) ;
for(int iter = 0; iter < ITERATIONS; ++iter) ({
for(int i = 0; i < DATA SIZE; ++i) {
mask [i] = random() % DATA SIZE;
// kernel is invoked
}// end of inner-for-loop
}//end of out-for-loop

The following kernel code transports the inputs via a and b and their combined element
size is 16, the mask is being transported on the constant memory space (that is, read-only).

__kernel void simple shuffle(global float8* a,
__global float8* b, _ constant uintlé mask,
__global floatlé* result) ({

uint id = get global id(0);

float8 inl = al[id];

float8 in2 = b[id];

result [id] shuffle2(inl, in2, mask);

Using OpenCL Functions
To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
SimpleShuffle simple shuffle.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple shuffle/.
When that happens, you will have a binary executable named SimpleShuffle.

To run the program on OS X, simply execute the program SimpleShuffle and you should
see the output shown as follows:

Shuffle:

The following diagram suggests that each executing kernel works through a portion of the
source array, which contains of k elements by fetching the data from the _ global memory
space to the _ private memory space. The next operation is to run the shuffling using a
vector of random numbers, which we have pregenerated on the host and for each partitioned
data block, the kernel will produce a resultant array; and once that's done the kernel flushes
out the data to the __global memory space. The following diagram illustrates the idea
where the resultant array consists of a permutated array made from its individual constituents
which are themselves permutations:

-4.5f£, -1.5f£, 1.5f£, 4.5f

| array of n elements(indices from O to n-1)

U

U

U

I R T T
shuffling shuffling shuffling shuffling
Kernel Kernel Kernel Kernel

4

4

4

U

| Permutated-k | | Permutated-k | | Permutated-k | | Permutated-k |

Y

U

Y

U

| Permuted array of n elements(indices from O to n-1)

Chapter 4

Using the select function in OpenCL

The select function is first of all similar to the shuffle and shuffle2 functions we

have seen in the previous section and is also known as the ternary selection, and it is a
member of the relational functions in OpenCL, which is commonly found in the C++ and Java
programming languages; but there is a significant difference and that is the select function
and its variant bitselect works not only with single-precision or double-precision floating
types, but also vectors of single-precision or double-precision floating-point values. Here's
what it looks like:

(predicate_is_true? eval expr if true : eval expr if false)

Hence, when the predicate is evaluated to be true the expression on the left-hand side of
the colon will be evaluated; otherwise the expression on the right-hand side of the colon is
evaluated and in both evaluations, a result is returned.

Using an example in OpenCL, the conditional statement as follows:

if (x == 1) r = 0.5;
if (x == 2) r = 1.0;

can be rewritten using the select () function as:

r = select(r, 0.5, isequal(x, 1));
r = select(r, 1.0, isequal(x, 2));

And for such a transformation to be correct, the original i f statement cannot contain any
code that calls to 1/0.

The main advantage select/bitselect offers is that vendors can choose to eradicate
branching and branch predication from its implementation, which means that the resultant
program is likely to be more efficient. What this means is that these two functions act as a
facade so that vendors such as AMD could implement the actual functionality using the ISA
of SSE2 mm_cmpeq pd,and mm cmpneq pd; similarly, Intel could choose from the
ISA of Intel AVXsuchas mm cmp pd, mm256 cmp pd, or from SSE2 to implement the
functionality of select or bitselect.

Getting ready

The following example demonstrates how we can use the function, select. The function
demonstrates the convenience that it offers since it operates on the abstraction of applying
a function to several data values, which happens to be in a vector. The code snippet in Ch4 /
simple select filter/select filter.cl attempts to conduct a selection by picking
the elements from each list in turn to establish the result, which in this example happens to
be a vector.

Using OpenCL Functions

How to do it...

The following snippet demonstrates how to do use the select function in OpenCL:

__kernel void filter by selection(global float8* a,
__global float8* b, _ global float8* result) ({
uint8 mask = (uint8) (0,-1,0,-1,0,-1,0,-1);
uint id = get global id(0);
float8 inl = al[id];
float8 in2 = b[id];
result [id]

select (inl, in2, mask);

}

To compile it on the OS X platform, you will have to run a compile command similar to this:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o
SelectFilter simple select.c -framework OpenCL

Alternatively, you can type make in the source directory Ch4/simple select/.
When that happens, you will have a binary executable named SelectFilter.

To run the program on OS X, simply execute the program SelectFilter and you should
either see the output shown as follows:

select: -4.5f, -1.5f, 1.5f, 4.5f

The program proceeds to establish a context to the OpenCL compliant device through the APIs
clGetPlatformIDs and clGetDeviceIDs. Once that is established, we go about creating
our in-memory data structures and prepare it for submission to the device's command queue.

The in-memory data structures on the host are small arrays, which we can submit to the
device for consumption by sending it across the system bus to hydrate the structures in the
device memory. They stay in the device memory as local variables represented by variables
inl and in2.

Once the data is inflated in the device's memory, the algorithm in select filter.cl

will proceed to select each element in turn by conducting a bit comparison where the most
significant bit is checked; if the MSB is equal to 1 the corresponding value from Buffer B

is returned; otherwise the corresponding position from Buffer A is returned. Recall from
computer science that -1, that is, unary minus 1, works out to be 0xffff in 2's complement
notation and hence the MSB of that value would most definitely be equal to 1.

136

Chapter 4

The following diagram illustrates this selection process. As before, once the selection process

is completed, it is flushed out to the results vector, result.

Buffer A

o & 2z = |2 [Jo |-
Mask/l\ ,]\ ,[\

o < Je o Jo [& Jo |-
Buffer B ‘/ ‘/

o e = = 1= s e I°

Developing a Histogram
OpenCL program

In this chapter, we'll cover the following recipes:

» Implementing a histogram in C/C++
» OpenCL implementation of the histogram

» Work-item synchronization

Introduction

Anyone who has taken elementary math in school would know what a histogram is. It's one
of the myriad of ways by which one can visualize the relationship between two sets of data.
These two sets of data are arranged on two axes such that one axis would represent the
distinct values in the dataset and the other axis would represent the frequency at which
each value occurred.

The histogram is an interesting topic to study because its practical applications are found
in computational image processing, quantitative/qualitative finance, computational fluid
dynamics, and so on. It is one of the earliest examples of OpenCL usage when running on
CPUs or GPUs, where several implementations have been made and each implementation
has its pros and cons.

Implementing a Histogram in C/C++

Before we look at how we can implement this in OpenCL and run the application on the
desktop GPU, let's take a look at how we can implement it using a single thread of execution.

Developing a Histogram OpenCL program

Getting ready

This study of the sequential code is important because we need a way to make sure our
sequential code and parallel code produce the same result, which is quite often referred
to as the golden reference implementation.

In your role as an OpenCL engineer, one of the items on your to-do list
_would probably be to translate sequential algorithms to parallel algorithms,
% and it's important for you to be able to understand how to do so. We
S attempt to impart some of these skills which may not be exhaustive in all
sense. One of the foremost important skills to have is the ability to identify
parallelizable routines.

Examining the code that follows, we can begin to understand how the histogram
program works.

How to do it...

Here, we present the sequential code in its entirety, where it uses exactly one executing
thread to create the memory structures of a histogram. At this point, you can copy the
following code and paste it in a directory of your choice and call this program chs/
histogram cpu/histogram.c:

#define DATA SIZE 1024
#define BIN SIZE 256

int main(int argc, char** argv)

unsigned int* data = (unsigned int*) malloc(DATA SIZE *
sizeof (unsigned int)) ;
unsigned int* bin = (unsigned int*) malloc(BIN SIZE *

sizeof (unsigned int)) ;
memset (data, 0x0, DATA SIZE * sizeof (unsigned int)) ;
memset (bin, 0x0, BIN SIZE * sizeof (unsigned int)) ;

for(int i = 0; i < DATA SIZE; i++) {
int indx = rand() % BIN_SIZE;
datal[i] = indx;

for(int i = 0; i < DATA SIZE; ++i) {
bin[datal[i]]++;

140

Chapter 5

To build the program, we are assuming that you have a GNU GCC compiler. Type the following
command to into a terminal:

/usr/bin/gcc -o histogram Ch5/histogram c/histogram.c

Alternatively, run make at the directory Ch5/histogram_c, and an executable named
histogram will be deposited in your directory where you issued that command.

To run the program, simply execute the program histogram deposited on the folder
Ch5/histogram_c, and it should output nothing. However, feel free to inject C's output
function printf, sprintf into the previous code and convince yourself that the histogram
is working as it should.

To make a histogram, we need to have an initial dataset where it contains values. The values
in a histogram are computed by scanning through the dataset and recording how many times a
scanned value has appeared in the dataset. Hence, the concept of data binning. The following
diagram illustrates this concept:

In-memory data structure with various values
|123|44|123|255|44|44|22|78| 1 |

@ data binning

123| —»| 2

44| —| 3

8|—»| 1

2|—» | 1

255|—» | 1

In the following code, we see that the first for loop fills up the array data with values ranging
from 0 to 255:

for(int i = 0; i < DATA SIZE; i++) {
int indx = rand() % BIN_SIZE;
data[i] = indx;

Developing a Histogram OpenCL program

The second for loop walks the data array and records the occurrence of each value, and
the final for loop serves to print out the occurrence of each value. That is the essence of
data binning.

for(int i = 0; i < DATA SIZE; ++1i) {
bin[datal[il]++;

}
Finally, you would iterate the binned data and print out what you've found:

for(int i = 0; i < BIN SIZE; i ++) ({
if (bin[i] == 0) continue;
else printf ("bin[%d] = %d\n", i, bin[i]);

}

Next, we are going to look at how OpenCL can apply data binning into its implementation.

OpenCL implementation of the Histogram

In this section, we will attempt to develop your intuition to be able to identify possible areas
of parallelization and how you can use those techniques to parallelize sequential algorithms.

Not wanting to delve into too much theory about parallelization, one of the key insights about
whether a routine/algorithm can be parallelized is to examine whether the algorithm allows
work to be split among different processing elements. Processing elements from the OpenCL's
perspective would be the processors, that is, CPU/GPU.

Recall that OpenCL's work items are execution elements that act on a set of

data and execute on the processing element. They are often found in a work
s group where all work items can coordinate data reads/writes to a certain
degree and they share the same kernel and work-group barriers.

Examining the code, you will notice that the first thing that is probably able to fulfill
the description:

"...allows work to be split among different processing elements”

This would be to look for for loops. This is because loops mean that the code is executing

the same block of instructions to achieve some outcome, and if we play our cards right, we
should be able to split the work in the loop and assign several threads to execute a portion
of the code along with the data.

142

Chapter 5

Getting ready

In many algorithms, you will see that splitting the work sometimes does not necessarily

imply that the data needs to be cleanly partitioned, and that's because the data is

read-only; however, when the algorithm needs to conduct both reads and writes to the data,
then you need to figure out a way to partition them cleanly. That last sentence deserves some
explanation. Recall in Chapter 2, Understanding OpenCL Data Transfer and Partitioning,
where we discussed work items and data partitioning, and by now you should have
understood that OpenCL does not prevent you, the developer, from creating race conditions
for your data if you miscalculated the data indexing or even introduced data dependencies.

With great power, comes great responsibility.

In building a data parallel algorithm, it's important to be able to understand a couple of things,
and from the perspective of implementing an OpenCL histogram program, here are some
suggestions:

» Understand your data structure: In the previous chapters, we have seen how we can
allow user-defined structures and regular 1D or 2D arrays to be fed into the kernel for
execution. You should always search for an appropriate structure to use and make
sure you watch for the off-by-one errors (in my experience, they are more common
than anything else).

» Decide how many work items should execute in a work-group: If the kernel only
has one work item executing a large dataset, it's often not efficient to do so because
of the way the hardware works. It makes sense to configure a sizeable number of
work items to execute in the kernel so that they take advantage of the hardware's
resources and this often increases the temporal and spatial locality of data, which
means your algorithm runs faster.

» Decide how to write the eventual result: In the histogram implementation we've
chosen, this is important because each kernel will process a portion of the data and
we need to merge them back. We have not seen examples of that before, so here's
our chance!

Let's see how those suggestions could apply. The basic idea is to split a large array among
several work groups. Each work group will process its own data (with proper indexing) and
store/bin that data in the scratchpad memory provided by the hardware, and when the work
group has finished its processing, its local memory will be stored back to the global memory.

We have chosen the 1D array to contain the initial set of data and this data can
potentially be infinite, but the author's machine configuration doesn't have limitless
memory, so there's a real limit. Next, we will split this 1D array into several chunks,
and this is where it gets interesting.

Developing a Histogram OpenCL program

Each chunk of data will be cleanly partitioned and executed by a work group. This work group
has chosen to house 128 work items and each work item will produce a bin of size 256
elements or a 256 bin.

Each work group will store these into the local memory also known as scratchpad memory
because we don't want to keep going back and forth global and device memory. This is a real
performance hit.

In the code presented in the following section, one of the techniques you will learn is to use
the scratchpad memory or local memory in aiding your algorithm to execute faster.

Local memory is a software controlled scratchpad memory, and hence its
name. The scratchpad allows the kernel to explicitly load items into that
memory space, and they exist in local memory until the kernel replaces
%i\ them, or until the work group ends its execution. To declare a block of
’ local memory, the _ local keyword is used and you can declare them in
the parameters to the kernel call or in the body of the kernel. This memory
allocation is shared by all work items in the work group.

The host code cannot read from or write to local memory. Only the kernel can access
local memory.

So far you have seen how to obtain memory allocation from the OpenCL device and fire the
kernel to consume the input data and reading from that processed data subsequently for
verification. What you are going to experience in the following paragraphs might hurt your
head a little, but have faith in yourself, and I'm sure we can get this through.

How to do it...

The complete working kernel is presented as follows from Ch5/histogram/histogram.cl,
and we have littered comments in the code so as to aid you in understanding the motivation
behind the constructs:

#define MEMORY BANKS 5U // 32-memory banks.
__kernel

void histogram256 (_ global const unsigned int4* data,
_ local uchar* sharedArray,
__global uint* binResult) {

// these 4 statements are meant to obtain the ids for the first
// dimension since our data is a 1-d array

size t localId = get local id(0);

size t globalId = get global id(0);

Chapter 5

size t groupId = get group id(0);
size t groupSize = get local size(0);

int offSetl localId & 31;
int offSet2 4 * offSetl;
int bankNumber = localId >> MEMORY BANKS;

__local uchar4* input = (_ local uchar4*) sharedArray;

// In a work-group, each work-item would have an id ranging from

// [0..127]

// since our localThreads in 'main.c' is defined as 128

// Each work-item in the work-group would execute the following

// sequence:

// work-item id = 0, input[128 * [0..63]] = 0

// Not forgetting that input is a vector of 4 unsigned char type,
// that effectively means

// that each work-group would execute this loop 8192 times and each
// time it would set

// 4 bytes to zero => 8192 * 4 bytes = 32-KB and this completes the
// initialization of the

// local shared memory array.

for(int i = 0; i < 64; ++1i)
input [groupSize * i + locald] = 0;

// OpenCL uses a relaxed consistency memory model which means to say
// that the state of

// memory visible to a work-item is not guaranteed to be consistent
// across the collection

// of work-items at all times.

// Within a work-item memory has load/store consistency. Local memory
// 1s consistent

// across work-items in a single work-group at a work-group barrier.
// The statement below

// is to perform exactly that function.

// However, there are no guarantees of memory consistency between

// different

// work-groups executing a kernel

// This statement means that all work-items in a single work-group

// would have to reach

// this point in execution before ANY of them are allowed to continue
// beyond this point.

Developing a Histogram OpenCL program

barrier (CLK_LOCAL MEM FENCE) ;

// The group of statements next fetch the global memory data and
// creates a binned
// content in the local memory.
// Next, the global memory is divided into 4 chunks where the
// row_size = 64 and'
// column_size = 128. The access pattern for all work-items in the
// work-group is
// to sweep across this block by accessing all elements in each
// column 64-bytes at a time.
// Once that data is extracted, we need to fill up the 32-KB local
// shared memory so we
// next extract the vector values from the local variable "value" and
// £ill them up. The
// pattern we used to store those values is as follows:
// value.s0 can only range from [0..255] and value.s0 * 128 would
// indicate which row
// and column you like to store the value. Now we land in a
// particular row but we need
// to decide which 4-byte chunk its going to store this value since
// value.s0 is a int and
// sharedArray is a uchar-array so we use offSet2 which produces an
// array [0,4,8...124]
// and now we need which chunk its going to land in. At this point,
// you need to remember
// that value.s0 is a value [0..255] or [0x00..0xFF] so we need to
// decide which element in
// this 4-byte sub-array are we going to store the value.
// Finally, we use the value of bankNumber to decide since its range
// is [0..3]
for(int i = 0; i < 64; ++i) {

uint4 value = datalgroupId * groupSize * BIN SIZE / 4 + 1 *
groupSize + localId];

sharedArray([value.s0 * 128 + offSet2 + bankNumber] ++;
sharedArray([value.sl * 128 + offSet2 + bankNumber]++;
sharedArray([value.s2 * 128 + offSet2 + bankNumber] ++;
sharedArray([value.s3 * 128 + offSet2 + bankNumber] ++;

// At this point, you should have figured it out that the 128 * 256
// resembles a hashtable
// where the row indices are the keys of the 256-bin i.e. [0..255]

146

Chapter 5

//
//
//
//
//
//
//
//
//
//
//
//

and the "list" of wvalues

following each key is what it looks like
[0] -> [1,3,5,6 ...]

[1] -> [5,6,2,1... 1]

[255] -> [0,1,5,..]

Next, we go through this pseudo-hashtable and aggregate the values
for each key

and store this result back to the global memory.

Apply the barrier again to make sure every work-item has completed
the population of

values into the local shared memory.

barrier (CLK_LOCAL MEM FENCE) ;

//
//
//
//
//
//

Now, we merge the histograms

The merging process is such that it makes a pass over the local
shared array

and aggregates the data into 'binCount' where it will make its way
to the

global data referenced by 'binResult'

if (localid == 0) { // each work-group only has 1 work-item executing
this code block

}

for(int i = 0; i < BIN SIZE; ++i) {

uint result = 0;
for(int j = 0; j < groupSize; ++j) {
result += sharedArrayl[i * groupSize + jl;

}

binResult [groupId * BIN SIZE + i] = result;

To compile it on the OSX platform, you would run a compile command similar to the following:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o Histogram
main.c -framework OpenCL

Alternatively, you can run make at the directory Ch5/histogram, and you would have
a binary executable named Histogram.

To run the program, simply execute the program, Histogram. A sample output on my
machine, which is an OS X, is:

Passed!

Developing a Histogram OpenCL program

In the host code, we first assign the necessary data structures that we need to implement
the histogram. An excerpt from the source Ch5/histogram/main.c demonstrates the
code that creates a single device queue, with the kernel and your usual suspects.

The variables inputBuffer and intermediateBinBuf fer refer to the unbinned
array and intermediate bins:

queue = clCreateCommandQueue (context, device, 0, &error);
cl kernel kernel = clCreateKernel (program, "histogram256", &error);

inputBuffer = clCreateBuffer (context,
CL_MEM_READ ONLY|CL_MEM COPY HOST PTR,
width * height * sizeof (cl uint),
data,
&error) ;

intermediateBinBuffer = clCreateBuffer (context,

CL_MEM_WRITE ONLY,

BIN SIZE * subHistogramCount *
sizeof (¢l uint),

NULL,

&error) ;

clSetKernelArg (kernel, 0, sizeof (cl mem), (void*)& inputBuffer);

// the importance of uchar being that its unsigned char i.e. value //
range [0x00..0xff]

clSetKernelArg(kernel, 1, BIN SIZE * GROUP_SIZE * sizeof (cl uchar),
NULL) ; // bounded by LOCAL MEM SIZE in GPU

clSetKernelArg (kernel, 2, sizeof(cl mem), (void*)&
intermediateBinBuffer) ;

So conceptually, the code splits the input data into chunks of 256 elements and each such
chunk would be loaded into device's local memory, which would be processed by the work
items in the work group. The following is an illustration of how it looks like:

148

Chapter 5

inputDataBuffer
Host

256-bin 256-bin 256-bin ; 256-bin 256-bin 256-bin

% % intermediateBinBuffers

work-group-0 work-group-0 OpenCL device

work-item-127 work-item-127

Now, imagine the kernel is going to execute the code and it needs to know how to fetch the
data from the global memory, process it, and store it back to some data store. Since we have
chosen to use the local memory as a temporary data store, let's take a look at how local
memory can be used to help our algorithm, and finally examine how it's processed.

Local memory resembles a lot to any other memory in C, hence you need to initialize it to a
proper state before you can use it. After this, you need to make sure that proper array indexing
rules are obeyed since those one-off errors can crash your program and might hang your
OpenCL device.

The initialization of the local memory is carried out by the following program statements:

__local uchar* input = (_ local uchar4*) sharedArray;

for(int i = 0; i < 64; ++1i)

input [groupSize * i + localId] = 0;

barrier (CLK _LOCAL MEM FENCE) ;

At this point, | should caution you to put on your many-core hat now and imagine that 128
threads are executing this kernel. With this understanding, you will realize that the entire
local memory is set to zero by simple arithmetic. The important thing to realize by now,

if you haven't, is that each work item should not perform any repeated action.

Developing a Histogram OpenCL program

The initialization could have been written in a sequential fashion and
it would still work, but it means each work item's initialization would
overlap with some other work item's execution. This is, in general, bad

% since in our case, it would be harmless, but in other cases it means
that you could be spending a large amount of time debugging your
algorithm. This synchronization applies to all work items in a work
group, but doesn't help in synchronizing between work groups.

Next, we see a statement that we probably have not seen before. This is a form of
synchronization or memory barrier. The interesting observation about barriers is that all the
work items must reach this statement before being allowed to proceed any further. It's like a
starting line for runners in a 100 meter race.

Reason for this is that our algorithm's correctness depends on the fact that each element
in the local memory must be 0 prior to any work-item wishing to read and write to it.

You should be aware that you cannot set a value for the local memory
* greater than what is available on the OpenCL device. In order to

determine what is the maximum configured scratchpad memory on your
’ device, you need to employ the APl c1GetDeviceInfo passingin the

parameter CL, DEVICE LOCAL MEM SIZE.

Conceptually, here's what the previous piece of code is doing—each work item sets all
elements to zero in a column-wise fashion and sets the elements collectively as a work group
with 128 work items executing it, sweeping from left to right. As each item is a uchar4 data
type, you see that the number of rows is 64 instead of 256:

work-item-0 work-item-127

work-item-1
work-item-2
work-item-3
‘/A/A,work,nem,zl local memory

64

128

uchar4

O —

150

Chapter 5

Finally, let's attempt to understand how the values are fetched from global memory and stored
in the scratchpad.

When a work group begins executing, it will reach into global memory and fetch the contents
of four values and stores them into a local variable and once that's done, the next four
statements are executed by each work item to process each retrieved value using the
component selection syntax, that is, value.s0, value.sl, value.s2, value.s3.

The following illustration, provides how a work item can potentially access four rows of data on
the scratchpad and update four elements in those rows by incrementing them. The important
point to remember is that all elements in the scratchpad must be written before they can be
processed, and hence this is the barrier.

This type of programming technique where we build intermediate data structures so that

we can obtain the eventual data structure is often called thread-based histograms in some
circles. The technique is often employed when we know what the final data structure looks like
and we use the same ADT to solve for smaller portions of data so that we can merge them in
the end.

for(int i = 0; i < 64; i++)
{

uint4 value = datalgroupId * groupSize * BIN SIZE/4 + 1 *
groupSize + localId];

sharedArray[value.s0 * 128 + offSet2 + bankNumber]++;
sharedArray[value.sl * 128 + offSet2 + bankNumber]++;
sharedArray[value.s2 * 128 + offSet2 + bankNumber]++;
sharedArray[value.s3 * 128 + offSet2 + bankNumber]++;

}

barrier (CLK_LOCAL MEM_FENCE) ;

local memory
L4 I HEEEEEEEEEENE
et T e ——— 056
\‘ | AR
! T T T T Ty
128
EEE- value to be updated via ‘bankNumber’

Developing a Histogram OpenCL program

If you analyze the memory access pattern, you will realize that what we have created an
Abstract Data Type (ADT) known as the hash table where each row of data in the local
memory represents the list of frequencies of the occurrence of a value between O and 255.

With that understanding, we can come to the final part of solving this problem. Again, imagine
that the work group has executed to this point, you have basically a hash table, and you want
to merge all those other hash tables held in the local memories of the other work groups.

To achieve this, we need to basically walk through the hash table, aggregate all the values for
each row, and we would have our answer. However, now we only need one thread to perform
all this, otherwise all 128 threads executing the walk would mean you're overcounting your
values by 128 times! Therefore, to achieve this, we make use of the fact that each work item
has a local ID in the work group, and we execute this code by selecting one particular work
item only. The following code illustrates this:

if (localld == 0) {
for(int i = 0; i < BIN SIZE; ++1i) ({
uint result = 0;

for(int j = 0; j < 128; ++3) {
result += sharedArray[i * 128 + jl;

}

binResult [groupId * BIN SIZE + i] = result;

}

There is no particular reason why the first work item is chosen, | guess this is done just
by convention, and there's no harm choosing other work items, but the important thing
to remember is that there must only be one executing code.

Now we turn our attention back to the host code again, since each intermediate bin has
been filled conceptually with its respective value from its respective portions of the large
input array.

The (slightly) interesting part of the host code is simply walking through the returned data held
in intermediateBins and aggregating them to deviceBin

for(int i = 0; i < subHistogramCount; ++1i)
for(int j = 0; j < BIN SIZE; ++Jj) {
deviceBin[]j] += intermediateBins[i * BIN SIZE + j];

}

And we are done!

152

Chapter 5

Work item synchronization

This section is to introduce you to the concepts of synchronization in OpenCL. Synchronization
in OpenCL can be classified into two groups:
» Command queue barriers

» Memory barriers

Getting ready

The command queue barrier ensures that all previously queued commands to a command
gueue have finished execution before any following commands queued in the command
queue can begin execution.

The work group barrier performs synchronizations between work items in a work group
executing the kernel. All work items in a work group must execute the barrier construct
before any are allowed to continue execution beyond the barrier.

How to do it...

There are two APIs for the command queue barriers and they are:

cl_int clEnqueueBarrierWithWaitList
(cl_command queue command queue,
cl uint num events in wait list,
const cl_event *event wait list,
cl event *event)

cl _int clEnqueueMarkerWithWaitList
(cl_command gqueue command queue,
cl uint num events in wait list,
const cl_event *event wait list,
cl event *event)

But as of OpenCL 1.2, the following command queue barriers are deprecated:

cl_int clEnqueueBarrier (cl command queue queue) ;
cl_int clEnqueueMarker (cl command queue queue, cl event* event);

These four/two APIs in OpenCL 1.2/1.1 respectively, allow us to perform synchronization
across the various OpenCL commands, but they do not synchronize the work items.

Developing a Histogram OpenCL program

There is no synchronization facility available to synchronize between
s work groups.

We have not seen any example codes on how to use this, but it is still good to know they exist,
if we ever need them.

Next, you can place barriers to work items in a work group that performs reads and writes

to/from local memory or global memory. Previously, you read that all work items executing
the kernel must execute this function before any are allowed to continue execution beyond
the barrier. This type of barrier must be encountered by all work items in a work group.

The OpenCL APl is as follows:

void barrier (cl mem fence flags);
where flags can be CLK_LOCAL MEM FENCE or CLK_GLOBAL_MEM FENCE. Be careful where
you place the barrier in the kernel code. If the barrier is needed in a conditional statement
that is like an if-then-else statement, then you must make sure all execution paths by the
work items can reach that point in the program.

The CLK_LOCAL_MEM FENCE barrier will either flush any variables stored
- inlocal memory or queue a memory fence to ensure correct ordering of
% memory operations to local memory.
2

The CLK_GLOBAL MEM _ FENCE barrier function will queue a memory fence
to ensure correct ordering of memory operations to global memory.

Another side effect of placing such barriers is that when they're to be placed in loop construct,
all work items must execute the barrier for each iteration of the loop before any are allowed

to continue execution beyond the barrier. This type of barrier also ensures correct ordering of
memory operations to local or global memory.

Developing a Sobel
Edge Detection Filter

In this chapter, we'll cover the following recipes:

» Understanding the convolution Theory

» Understanding convolution in 1D

» Understanding convolution in 2D

» OpenCL implementation of the Sobel edge filter
» Understanding profiling in OpenCL

Introduction

In this chapter, we are going to take a look at how to develop a popular image processing
algorithm known as edge detection. This problem happens to be a part of solving a more

general problem in image segmentation.

Image segmentation is the process of partitioning a digital image into
R multiple segments (sets of pixels, also known as super pixels). The goal
% of segmentation is to simplify and/or change the representation of an
L image into something that is more meaningful and easier to analyze.
Image segmentation is typically used to locate objects and boundaries
(lines, curves, and so on) in images.

The Sobel operator is a discrete differentiation operator, computing an approximation of the

gradient of the image density function. The Sobel operator is based on convolving the image

with a small, separable, and an integer-value filter in both horizontal and vertical directions.

Thus, it is relatively inexpensive in terms of computations.

Developing a Sobel Edge Detection Filter

Don't worry if you don't understand these notations right away, we are going to step through
enough theory and math, and help you realize the application in OpenCL.

Briefly, the Sobel filtering is a three-step process. Two 3 x 3 filters are applied separately

and independently on every pixel and the idea is to use these two filters to approximate the
derivatives of x and y, respectively. Using the results of these filters, we can finally approximate
the magnitude of the gradient.

The gradient computed by running Sobel's edge detector through each pixel (which also
uses its neighboring eight pixels) will inform us whether there are changes in the vertical
and horizontal axes (where the neighboring pixels reside).

For those who are already familiar with the convolution theory, in general, may skip to the
How to do it section of this recipe.

Understanding the convolution theory

In the past, mathematicians developed calculus so that there's a systematic way to reason
about how things change, and the convolution theory is really about measuring how these
changes affect one another. At that time, the convolution integral was born.

fO®g(x) = [f(x).gu—x)= [g(x).f~x)

And the &® operator is the convolution operator used in conventional math. An astute reader will
notice immediately that we have replaced one function with the other, and the reason why this
is done is because of the fact that the convolution operator is commutative, that is, the order of
computation does not matter. The computation of the integral can be done in discrete form, and
without loss of generality, we can replace the integral sign (J) with the summation sign (%), and
with that, let's see the mathematical definition of convolution in discrete time domain.

Getting ready

Later we will walk through what the following equation tells us over a discrete time domain:
yInl=x[n]*hn]=Y." x[k]ehln—k]

where x[n] is an input signal, h[n] is an impulse response, and y/n] is the output.

The asterisk (*) denotes convolution. Notice that we multiply the terms of x[k] by the terms
of a time-shifted h[n] and add them up. The key to understanding convolution lies behind
impulse response and impulse decomposition.

156

Chapter 6

How to do it...

In order to understand the meaning of convolution, we are going to start from the concept

of signal decomposition. The input signal can be broken down into additive components, and
the system response of the input signal results in by adding the output of these components
passed through the system.

The following section will illustrate on how convolution works in 1D, and once you're proficient
in that, we will build on that concept and illustrate how in convolution works 2D and we'll see
the Sobel edge detector in action!

Understanding convolution in 1D

Let's imagine that a burst of energy (signal) have arrived into our system and it looks similar
to the following diagram with x[n] = {1,3,4,2,1}, forn = 0,1,2,3,4.

2 2
I l 1
n > n
o 1 2 3 4 [
Input: x[n] Impluse Response: h[n]

And let's assume that our impulse function has a non-zero value whenevern =0 or 1,
while it'll have a zero value for all other values of n.

How to do it...

Using the preceding information, let's work out what the output signal would be by quickly
recalling the following equation:

Vil =xinl*hn]= Y7 x[k]ehin—k]

Developing a Sobel Edge Detection Filter

Following this equation faithfully, we realize that the output signal is amplified initially and
quickly tapers off, and after solving this manually (yes, | mean evaluating the equation on a
pencil and paper) we would see the following final output signal:

MO0 =x[k]*A[0]=D"" x[k]eh[0—k]=x[0]*h[0]=1*2

M =x{k1* A1) =" x{k]eh[l—k]=x[0]* 41— 0]+ x[1]*A[1 —1] = x[0]* A1]+ x[1]* A[1-1] = 0*1+3*2 =6

W2l =xk1*h[2]="" x[k]eh[2—k]=x[0]*H[2—0]+x[1]* {2~ 1]+ x[2]*A[2—2] =1*0+3*1+4*2 =9

VB1=x{k1*A[31=" x{k]eh[3—k]=x{0]* h[3— 0]+ x[1]* h[3— 1]+ x{2]* h[3 - 2]+ x[3]* A[3-3] = 1*0+3*0+ 4*1+2*2 =8

WA =xk1*h[4]="" x[k]eh[4—k]=x[0]* h[4— 0]+ x[1]* A4 — 1]+ x[2]* h[4 — 2]+ x{3]* H[4 = 3] + x[4]* H{4 — 4] = 1*0+3*0+4*0+2*1 +1*2=4

Output: y[n]

Looking at the preceding equation again, this time we rearrange them and remove all terms
that evaluate to zero. Let's try to see whether we can discover a pattern:

0

V[0 = x[A]*A[0] =D " x[k]eA[0—k]=h[0]*x[0]
A= xkT* A1 =D x[k]e hll—k]=A[O]* x[1]+ A[1]* x[0]
y2]=xk1*h2] =D x[k]e h[2—k]=H[0]*x[2]+ A[1]*x{1]
V3] =x[k]*h[3] = Z:ﬂ x[k]eh[3—k]=h[0]*x[3]+ A[1]* x[2]
V4= xkT*H[4]= D x[k]e h[4—k]=A[O]* x[4]+ A[1]* x[3]
And | believe you can see that each output value is computed from its previous two output

values (taking into account the impulse function)! And now we may conclude, quite comfortably,
that the general formula for computing the convolution in 1D is in fact the following:

Y11= x[i]* H[0]+ x[i — 1]* A[1]+ x[i — 21* H[2] + ...+ x[i — (k = D)]* H[k —1]

158

Chapter 6

Finally, you should be aware that (by convention) any value that is not defined for any x[i-k]
is automatically given the value zero. This seemingly small, subtle fact will play a role in our
eventual understanding of the Sobel edge detection filter which we'll describe next.

Finally for this section, let's take a look at how a sequential convolution code in 1D might
look like:

// dataCount is size of elements in the 1D array
// kernelCount is the pre-defined kernel/filter e.g. h[0]=2,h[1]=1
// hix]=0 for x ={..,-1,2,3,..}
for(int i = 0; i < dataCount; ++i) ({

y[il = 0;

for(int j = 0; j < kernelCount; ++j) {

yI[il += x[1 - j] * h[j]l; // statement 1

}

}

Examining the code again, you will probably notice that we are iterating over the 1D array and
the most interesting code would be in statement 1, as this is where the action really lies.
Let's put that new knowledge aside and move on to extending this to a 2D space.

Understanding convolution in 2D

Convolution in 2D is actually an extension of the previously described Understanding
convolution in 1D section, and we do so by computing the convolution in two dimensions.

Getting ready

The impulse function also exists in a 2D spatial domain, so let's call this function. b[x,y]
has the value 1, where x and y are zero, and zero where x,y * 0. The impulse function is
also referred to as filter or kernel when it's being used in image processing.

How to do it...

Using the previous example as a guide, let's start thinking from the perspective of a signal
which can be decomposed into the sum of its components and impulse functions, and their
double summation accounts to the fact that this runs over both vertical and horizontal axes
in our 2D space.

Mmnl=3 S i jle flm—in—j]

J=—00 i=—00

Developing a Sobel Edge Detection Filter

Next, | think it's very helpful if we use an example to illustrate how it works when we have two
convolution kernels to represent the filters we like to apply on the elements in a 2D array. Let's
give them names, Sx and Sy. The next thing is to try out how the equation would develop itself
in a 2D setting, where the element we want to convolve is at x[1,1] and we make a note of its
surrounding eight elements and then see what happens.

If you think about why we are choosing the surrounding eight elements, it's the only way we
can measure how big a change is with respect to every other element.

(0,0) (0,1) (0,2)
(0,1) (1,1) (1,2)
0,2) (1,2) (2,2)
121 -1 {0
o|0f(O0 2102
-1 -2 -1 -1 0]
Sy Sx

Let's give it a go:

ML= S i 1o All—i1—]

Jj=—00 i=—00

V[L1]=x[0,07* B[1,1]+ x[1,01* B[0,1]+ x[2,0]* B[-1,0]+ x[0,1]* B[1,0]+ x[1,1]* B[0,0]+ x[2,1]* B[-1,0]+ x[0, 2] * S[1,-1]
+x[1,2]* 0,11+ x[2,2]* p[-1,—-1]

This results in the summation of nine elements (including the element we're interested in),
and this process is repeated for all elements in the 2D array. The following diagram illustrates
how convolution in 2D works in a 2D space.

You may wish to read Irwin Sobel's 1964 original doctoral thesis since he's
S the inventor, and this author had a good fortune of meeting the man himself.

160

Chapter 6

What happens when you attempt to convolve around the elements that border the 2D

array or in image processing, are they referred to as edge pixels? If you use this formula for
computation, you will notice that the results will be inaccurate, because those elements are
undefined and hence they're in general discounted from the final computation. In general, you
can imagine a 3 x 3 filtering operation being applied to each element of the 2D array and all
such computations will result in a new value for that element in the output data array.

Next, you may wonder what is being done to this output array? Remember that this array now
contains values, which basically shows how big is the change detected in a particular element
is. And when you obtain a bunch of them in the vicinity, then it usually tells you major color
changes, that is, edges.

Sy Sy
convolving at the edge

Sy

convolvutioh at non-edges

With this understanding, you can probably begin to appreciate why we took this effort to
illustrate the theory behind a concept.

When you want to build non-trivial OpenCL applications for your customers, one of the things
you have to deal with is learning how to interpret a problem and convert it to a solution. And
what that means is mostly about formulating an algorithm (or picking existing algorithms to
suit your case) and verifying that it works. Most of the problems you're likely to encounter are
going to involve some sort of mathematical understanding and your ability to learn about it.
You should treat this as an adventure!

Developing a Sobel Edge Detection Filter

Now that we've armed ourselves with what convolution is in a 2D space, Let's begin by taking
a look at how convolution in 2D would work in regular C/C++ code with the following snippet:

// find centre position of kernel (assuming a 2D array of equal
// dimensions)
int centerX = kernelCols/2;
int centerY = kernelRows/2;
for(int i = 0; i < numRows2D; ++i)
for(int j = 0; j < numCols2D; ++j)
for(m = 0; m < kernelRows; ++m) {
mm = kernelRows - 1 - m;
for(n = 0; n < kernelCols; ++n)
nn = kernelCols - 1 - n;
ii = i + (m - centerX);
j3 = j + (n - centerY);
if (ii >= 0 && ii < rows && jj >= 0 && jj < numCols)
out [1] [J] += in[ii]l [jj] * kernel [mm] [nn]; // statement 1
}
}
}
}

This implementation is probably the most direct for the purpose of understanding the concept,
although it may not be the fastest (since it's not many-core aware). But it works, as there are
conceptually two major loops where the two outer for loops are for iterating over the entire
2D array space, while the two inner for loops are for iterating the filter/kernel over the
element, that is, convoluting and storing the final value into an appropriate output array.

Putting on our parallel algorithm developer hat now, we discover that statement 1 appears
to be a nice target for work items to execute over. Next, let's take a look at how we can take
what we've learnt and build the same program in OpenCL.

OpenCL implementation of the Sobel edge

filter

Now that you've been armed with how convolution actually works, you should be able to
imagine how our algorithm might look like. Briefly, we will read an input image assuming
that it's going to be in the Windows BMP format.

Getting ready

Next we'll construct the necessary data structures for transporting this image file in the
OpenCL device for convolution, and once that's done we'll read and write the data out to
another image file, so that we can compare the two.

162

Chapter 6

APIs provided by OpenCL, and we'll leave it as an exercise for the reader to make

4 Optionally, you can choose to implement this using the c1CreateImage (.. .)
! I the attempt.

In the following sections, you will be shown with an implementation from what is translated,
what we have learnt so far. It won't be the most efficient algorithm, and that's really not our
intention here. Rather, we want to show you how you can get this done quickly and we'll let
you inject those optimizations which include the not withstanding, following data binning,
data tiling, shared memory optimization, warp / wavefront-level programming, implementing
2D-convolution using fast fourier transformations, and so many other features.

A possible avenue from where | derived a lot of the latest techniques about
solving convolution was by reading academic research papers published by
AMD and NVIDIA, and also by visiting gpgpu .org, developer.amd.
% com, developer.nvidia.com, and developer.intel.com. Another
’ good resource | can think of are books on image processing and computer
vision from your favorite local bookstores. Also, books on processor and
memory structure released by Intel are also good resources if you like.

How to do it...

We only show the code for the kernel found in Ché6/sobelfilter/sobel detector.cl,
since this is where our algorithm translation will reach its Xenith. And we've not shown the
host code in Ch6/sobelfilter/SobelFilter. c, since we believe that you would

be confident to know what typically resides in there:

__kernel void SobelDetector(global uchar4* input,
__global uchar4* output) ({
uint x = get global id(0);
uint y = get global id(1);

uint width = get global size(0) ;
uint height = get global size(1);

float4 Gx = (float4) (0);
float4 Gy (float4) (0) ;

// Given that we know the (x,y) coordinates of the pixel we're
// looking at, its natural to use (x,y) to look at its

// neighbouring pixels

// Convince yourself that the indexing operation below is

// doing exactly that

Developing a Sobel Edge Detection Filter

// the variables 100 through to i22 seek to identify the pixels
// following the naming convention in graphics programming e.g.
// OpenGL where i00 refers

// to the top-left-hand corner and iterates through to the bottom
// right-hand corner

if(x >= 1 && x < (width-1) && y >= 1 && y < height - 1)

{
float4 100 convert float4 (input[(x - 1) + (y - 1) * widthl);
float4 110 = convert float4 (input[x + (y - 1) * width]);
float4 i20 = convert float4 (input[(x + 1) + (y - 1) * width]l);
float4 i01 = convert float4 (input[(x - 1) + y * width]);
float4 i1l = convert float4 (input[x + y * widthl]);
float4 i21 = convert float4 (input[(x + 1) + y * width]);
float4 i02 = convert float4 (input[(x - 1) + (y + 1) * width]l);
float4 il2 = convert float4 (input[x + (y + 1) * width]);
float4 i22

convert float4 (input[(x + 1) + (y + 1) * width]l);

// To understand why the masks are applied this way, look
// at the mask for Gy and Gx which are respectively equal
// to the matrices:

/7 (-1, 0, 1}, { {-1,-2,-1},

// {-2, 0,2}, {0, 0, 0},

/7 {-1, 0, 1}} {1, 2, 1}}

Gx = 100 + (float4) (2) * 110 + i20 - 102 - (float4) (2) * il2 -i22;
Gy = 100 - 120 + (float4) (2)*i01 - (float4) (2)*i21 + i02 - 1i22;

// The math operation here is applied to each element of
// the unsigned char vector and the final result is applied
// back to the output image
output [x + y *width] = convert uchar4 (hypot (Gx, Gy)/(float4) (2));
}
}

An astute reader will probably figure out by reading the code, that the derived values for Gx
and Gy should have been as follows:

Gx = 100 + (float4) (2) * 110 + i20 - i02 - (float4) (2) * i12 - 122+
0*101+0*i11+0*i21;

Gy = 100 - 120 + (float4) (2)*i01 - (float4) (2)*i21 + i02 - i22+
0*110+0*i11+0*1i12;

But since we know their values will be zero, there is no need for us to include the computation
inside it. Although we did, it's really a minor optimization. It shaved off some GPU processing
cycles!

164

Chapter 6

As before, the compilation steps are similar to that in Ch6/sobelfilter/SobelFilter.c
with the following command:

gcec -std=c99 -Wall -DUNIX -g -DDEBUG -DAPPLE -arch i386 -o SobelFilter
SobelFilter.c -framework OpenCL

To execute the program, simply execute the executable file (SobelFilter) on the ché/
sobelfilter directory, and an output image file named OutputImage.bmp would be
presented (it's the output of reading in Input Image.bmp and conducting the convolution
process against it).

The net effect is that the output contains an image that outlines the edges of the original
input image, and you can even refer to the picture images in the How it works... section
of this recipe to see how these two images are different from one another.

At first, we create a representation of a pixel to represent each of the channels in the
RGBA fashion. That structure is given a simple name, uchar4, where it consists of four
unsigned char data types which will correctly represent each color's range from [0..255]
or [0x00..0xFF], since that's how each color's range is defined by convention.

We omit the description of the mechanism behind pulling the pixel information from the

input image to how we construct the final in-memory representation of the image. Interested
readers can search on the Internet regarding the Windows BMP format to understand how we
parse the image data or read the source code in the bmp . h file via the 1oad function, and we
write out the image using the write function.

Skipping the OpenCL device memory allocation, since that by now is standard fare we arrived
quickly at the portion where we look at how the kernel processes each pixel of the input data.

Before we do that, let's quickly recall from the kernel launching code how many global
work-items have been assigned and whether the work-group composition is like:

clEnqueueNDRangeKernel (command, queue, 2, NULL, globalThreads,
localThreads, 0, NULL, NULL) ;

localThreads is configured to have work-groups of sizes {256,1}, work-items processing
a portion of the input 2D image data array.

When the image is loaded into the device memory, the image is processed in blocks.

Each block has a number of work-items or threads if you process the image. Each work-item
proceeds the next to perform the convolution process on the center of the pixel and also on
its eight neighbors. The resultant value generated by each work-item will be outputed as pixel
value into the device memory. Pictorially, the following diagram illustrates what a typical
work-item will perform.

Developing a Sobel Edge Detection Filter

u You need to watch out and that is we actually used the data type conversion
~ function, convert float4 to apply our unsigned char data values
Q encapsulated within each pixel, which effectively widens the data type so
that it doesn't overflow when the Sobel operator is applied on them.

Finally, once we have the masked the values we need to compute the magnitude of this
gradient and the standard way of computing that is to apply /G<* +Gy* where Gx =", .

0 0 0
-1 0 1

andGy=_, , ,. o2

Input Image in 2D Edge pixels are not computed

-1i00 | i10 i20l0 ----- » i00 | i10 | i20

01 |i11 |21 * Gx

102 | i12 i22|0 ----- > i02 | i12 | i22

i00 i20
i01 i21
i02 i22
*
Gx

Whether this algorithm works, the only way is to check it through an image. The following

is the side-by-side comparison, where the first image is before the Sobel operator is applied
and the second one is after it's being applied.

166

Chapter 6

However, there is another nice optimization which we could have done, and it would have
helped if we understood that a 3 X 3 convolution kernel (for example, the Sobel operator) is
actually equivalent to the product of two vectors. This realization is behind the optimization
algorithm also known as separable convolution.

Developing a Sobel Edge Detection Filter

Technically, a two-dimensional filter is considered to be separable if it can be expressed as
an outer product of two vectors. Considering the Sobel operator here, we can actually write
-1 0 1 -1 -2 -1

-2 0 2 and 0 0 0 .

-1 0 1=[1 2 1I.[-1 0 1] 12 1=[-1017*1 2 1]

K The superscript T is the transpose of a row vector, which is equivalent
~ to the column-vector and vice versa. Note that convolution is itself
Q associative, so it doesn't really matter in which way you multiply the
vectors against the input image matrix.

Why is this important? The main reason is because we actually save processing cycles

by using this separable convolution kernel. Let's imagine we have a X-by-Y image and a
convolution kernel of M-by-N. Using the original method, we would have conducted XYMN
multiples and adds while using the separable convolution technique, we would have actually
done XY (M + N) multiples and adds. Theoretically speaking, applying this to our 3-by-3
convolution kernel we would have increased our performance to 50 percent or 1.5 times
and when we use a 9-by-9 convolution kernel, we would have increased our performance to
81/ 18 = 4.5 or 450 percent.

Next, we are going to talk about how you can profile your algorithms and their runtimes so that
you can make your algorithms not only run faster, but also deepen your understanding of how
the algorithm works and more often than not, help the developer develop a better intuition on
how to make better use of the OpenCL device's capabilities.

Understanding profiling in OpenCL

Profiling is a relatively simple operation from the perspective of an OpenCL developer, since

it basically means that he/she wishes to measure how long a particular operation took.

This is important because during any software development, users of the system would often
specify the latencies which are considered acceptable, and as you develop bigger and more
complex systems, profiling the application becomes important in helping you understand the
bottlenecks of the application. The profiling we are going to take is a look done programmatically
by the developer to explicitly measure the pockets of code. Of course, there is another class

of profilers which profiles your OpenCL operations on a deeper level with various breakdowns

on the running times measured and displayed, but that is out of the scope of the book.

But we encourage readers to download the profilers from AMD and Intel to check them out.

168

Chapter 6

While writing this book, AMD has made its OpenCL profiler and a generally
available debugger named CodeXL found at http://developer.amd.
com/tools-and-sdks/heterogeneous-computing/codexl/.
Intel has a similar package offered separately and you can refer to the
S following URL for more details:

http://software.intel.com/en-us/vesource/tools/
opencl-sdk-2013. As for NVIDIA GPGPUs, you can only use the APIs
provided by OpenCL.

Getting ready

The two operations that OpenCL allows the developer to have such insight into their
runtimes are data transfer operations and kernel execution operations; the times are
all measured in nanoseconds.

i Since all devices cannot resolve to a nanosecond, it's important to
& determine what is the level of resolution, and you can know this by
i passing the CL. DEVICE PROFILING TIMER RESOLUTION flag
to clGetDeviceInfo for the appropriate device ID.

How to do it...

All you have to do is to pass the CL. QUEUE_PROFILING ENABLE flag as
part of the properties argument, when you create the command queue
via clCreateCommandQueue. The API looks like this:

cl command gqueue
clCreateCommandQueue (cl context context,

cl device_id device,

cl command queue properties properties, cl int*
error_ret) ;

Once the profiling is enabled, the next thing you need to do is to inject OpenCL events into
areas of the code, where you want to know how the runtimes fare. To achieve this, you need
to create a c1_event variable for the regions of code you wish to monitor and associate this
variable with one of the following APIs:
» Data transfer operations:

0 clEnqueue{Read|Write|Map}Buffer

0 clEnqueue{Read|Write|Map}BufferRect

0 clEngueue{Read|Write|Map}Image

0 clEnqueueUnmapMemObject

Developing a Sobel Edge Detection Filter

0 clEnqueuCopyBuffer

0 clEnqueueCopyBufferRect

0 clEnqueueCopyImage

0 clEnqueueCopyImageToBuffer
0 clEnqueueCopyBufferToImage

» Kernel operations:
0 clEnqueueNDRangeKernel

0o clEngqueueTask

o clEnqueueNativeTask

The way to obtain the runtimes for these operations is to invoke the
clGetEventProfilingInfo API, passing in one of these flags: CL. PROFILING

COMMAND QUEUED, CL, PROFILING COMMAND SUBMIT, CL, PROFILING COMMAND START,
or CL. PROFILING COMMAND END. The API looks like this:

cl_int

clGetEventProfilingInfo(cl event event,
cl profiling info param name,
size t param value size,
void* param value,

size t* param value size ret);

To obtain the time spent by the command in the queue, you invoke
clGetEventProfilingInfo with CL. PROFILING COMMAND SUBMIT once, and at
the end of the code region invoke clGetEventProfilingInfo with CL. PROFILING
COMMAND QUEUED again to get the difference in time.

To obtain the duration that the command took to execute, invoke
clGetEventProfilingInfo once with CL. PROFILING COMMAND START and invoke the
same API with CL. PROFILING COMMAND END, from the difference in the runtimes you will
obtain the value.

170

Chapter 6

The following is a small code snippet which illustrates the basic mechanism:

cl _event readEvt;

cl ulong startTime;

cl ulong endTime;

cl ulong timeToRead;

cl command queue queue = clCreateCommandQueue (context, device, CL_
QUEUE_PROFILING ENABLE, NULL);

clEnqueueReadBuffer (queue, some buffer, TRUE, 0, sizeof(data), data,O,
NULL, &readEvt); a

clGetEventProfilingInfo (readEvt, CL PROFILING COMMAND START, sizeof (sta
rtTime) , &startTime, NULL) ; B B B
clGetEventProfilingInfo (readEvt, CL PROFILING COMMAND

END, sizeof (endTime) , &endTime, NULL)? B B

timeToRead = endTime - startTim;

Developing the Matrix
Multiplication with
OpenCL

In this chapter, we will cover the following recipes:

» Understanding matrix multiplication

» OpenCL implementation of the matrix multiplication

» Faster OpenCL implementation of the matrix multiplication by thread coarsening
» Faster OpenCL implementation of the matrix multiplication through register tiling

» Reducing global memory via shared memory data prefetching in matrix multiplication

Introduction

In this chapter, we are going to take a look at the problem of multiplying two matrices to produce
another matrix. This problem is also known as the matrix multiplication and its applications
range from mathematics, finance, physics, and it is a popular system for solving linear
equations. For illustration purposes, we present a typical use case for solving linear equations:

ax+by=c
dx+ey=f

Developing the Matrix Multiplication with OpenCL

These equations can be modeled as L[;]:]H:m where the L.H.S of the equation consists
of a 2 x 2 matrix which is multiplied by a 2 x 1 matrix (often called a vector, and they can be
row vectors or column vectors) which is equal to the vector on the R.H.S. Considering the
fact that matrices can have any order of rows and columns, mathemgticians invented the
notation, 4x = b where to solve this, we have to determine u: ,Hd ﬂ’.Here, as we can see
that the inverse of the matrix needs to be known. At this point, that's all we like to say about
the wonderful world of matrices, lest we fall into the rabbit hole!

X You should be aware that only square matrices have inverses, and
% even among such matrices the inverses are not guaranteed to be
i present. We won't be covering computing inverses in this chapter

or book.

Understanding matrix multiplication

The product C of two matrices A and B is defined as C;, = aijbjk, where j is the sum of
all possible values of i and k. There is an implied summation over the indices i, j, and k.
The dimensions of the matrix C is: (nxm)(mx p)=(nxp), where (axb) denotes a matrix

with @ rows and b columns and when we write out the product explicitly, it looks as follows:

¢, =a,b,+a,b,+..+a,b

ml

S O Cip a, 4ap q, b, b, 1
Cy Cp Cop | |G Gy o Gy b, by, b, »
Cnl an Cnp anl anZ e anp bnl bn2 tee np

¢, =a,b,+a,b,, +..+a,b

m2

¢, = a“blp +a12b2p +...+a1mbmp

¢y =ayb, +ayb, +..+a, b

ml

¢, =aub,+a,b, +..+a,b

nm=mp

Chapter 7

Another property of matrix multiplication is that multiplication is associative and distributive
over addition, but they are however not commutative.

Two matrices A and B are considered commutative if they are diagonal
s matrices and are of the same dimension.

Knowing these properties will help us in formulating our initial algorithm stemming from

this formula: ¢;, = aijbjk- The commutative property basically informs us that the order of
multiplication between matrices A and B matters, while the associative property allows

us the flexibility to explore what happens when two matrices A and B are too huge to fit into
available memory on the OpenCL device and we need to partition the matrix data across
multiple devices. The following diagram illustrates what happens when a row of matrix A and a
column of matrix B is read and its aggregated result is written into the appropriate location in

the output matrix, C:

A P
w
l'
A)*BGO) g
A g e P
x| ¥ K
m ——+ Write order —'m
v
n (o

Getting ready

At this point, we are in pretty good shape to take a stab at matrix multiplication. As before,
we begin with an implementation in C/C++, which is a direct translation of the formula
and from there we will develop a better intuition on how to import it to OpenCL and apply
suitable optimizations.

Developing the Matrix Multiplication with OpenCL

For the rest of this chapter, we are going to craft our algorithm so that it runs on the GPU on
your desktop/laptop. The reason for this is because the GPU has more computation units
than a CPU, and GPUs are often equipped with other hardware components that allows the
OpenCL to take advantage of that hardware (including local data stores, out of order execution
units, shared data store, and so on), which often allows an enormous number of threads to
execute in. Current CPU processors don't implement OpenCL shared memory, so using GPUs
is probably the best option!

information is good enough for these experiments.

How to do it...

By now, you should be familiar with creating the necessary data structures to represent
our three matrices in question (let's call them A, B, and C). Coincidentally, they happen
to be square matrices, but this does not affect our understanding in any way.

1
[‘Q Get a GPU that supports OpenCL 1.1 and the preceding]

When we examine this problem from the previous section, we understand that we want
to basically iterate through both matrices in the following fashion:

1. Pick a row from matrix A.
2. Pick a column from matrix B.

3. Multiply each element from the picked row with the corresponding element from the
picked column.

From this description, we can begin to think of various implementation methods and one such
method could be as follows:

1. Create two in-memory data structures for A and B, say TmpA and TmpB.

2. Loop through A and pick a row for which each element to deposit into its
corresponding position in TmpA, do the same for a picked column and deposit
into TmpB:

loop until i < number of rowsA:
TmpA[i] = A[i]

endloop

loop until i < number of colsB:
TmpB[i] = B[i]

endloop

3. Loop through TmpA and TmpB and perform the matrix multiplication.

176

Chapter 7

4. In pseudo code, it looks something like this:

loop until (i,j) < (rowA * colB):
loop through A[i] [] deposit values into TmpA
loop through B[] [j] deposit values into TmpB
foreach value in TmpA and TmpB:
Cla]l] = TmpA[x] * TmpB [yl
endloop

Another implementation is very similar to this one with the exception that we use standard
C/C++ array indexing techniques to reference the respective row(s) and column(s) and we
present an implementation in the following sections.

There are various ways of implementing matrix multiplication algorithm in C/C++ as we've
discussed previously. And it seems that there isn't a best design to adopt. Personally, I've
always favored a readable design versus a convoluted design. However, it's necessary to
write high performance code from time to time, so that you can squeeze all the power
that the programming language or hardware can provide.

At this point, you may or may not have developed the necessary intuition
M to design your algorithms, but one way is to continuously practice using
Q different techniques and measure each implementation with some
benchmarks, and never clump all the optimizations in one algorithm
unless you're confident.

Now that we have some inkling as to what is meant by matrix multiplication, it is definitely
time for us to start exploring what the algorithm looks like after being translated into its
sequential form. The following is an example of the matrix multiplication program in
sequential form (the code is executed by only one thread):

Void matrixMul (float *C,
const float *A,
const float *B,
unsigned int hA,
unsigned int wA,
unsigned int wB)
for (unsigned int i = 0; i < hA; ++1)
for (unsigned int j = 0; j < wB; ++3){

float sum = 0;

for (unsigned int k = 0; k < wA; ++k) {
double a = A[i * wA + k]; // statement 1
double b = B[k * wB + jl; // statement 2
sum += a * b;

Developing the Matrix Multiplication with OpenCL
}

C[i * wB + j] = (float)sum; // statement 3

}

When you examine this code, you will notice that there are three loop structures and we use
regular C/C++ array indexing techniques to reference each subsequent element from their
respective rows and columns. Take some time now to convince that we are actually computing
the matrix multiplication.

As before, we put on our parallel developer hat and try to see how we can provide a parallel
OpenCL form of the equivalent program. Again, I'm naturally drawn to the loop structures and
we have three of them!

We noticed that as we iterate through the matrices A and B, the innermost loop is the

code block that is performing all the heavy lifting for statement 1, statement 2, and
statement 3. These statements will represent the core of our OpenCL kernel and let's go
and take a look at how we can map it to OpenCL.

OpenCL implementation of the matrix

multiplication

We have spent a good amount of time understanding how matrix multiplication works and
we've looked at how it looks in its sequential form. Now we're going to attempt to map this
to OpenCL in the most direct way.

The implementation technique here makes use of the fact that we create 2D thread blocks
where each thread/work item in each dimension will access their respective elements in the
row/column dimension.

Getting ready

In this recipe, we are going to use two matrices of dimensions 1024 x 1024 (we call A and B),
and we'll multiply these two matrices together to produce a third matrix of 1024 x 1024,
we call C.

You may wish to refresh your basic matrix theory at this point to convince
s yourself that this is the case.

178

Chapter 7

We construct the familiar data structures in our host code and fill them with random values.
The host code in Ch7/matrix multiplication 0l1/MatrixMultiplication.c looks
as follows:

matrixA = (cl_int*)malloc(widthA * heightA * sizeof (cl_int));
matrixB = (cl_int*)malloc(widthB * heightB * sizeof (cl _int));
matrixC = (cl_int*)malloc(widthB * heightA * sizeof (cl_int));

memset (matrixA, 0, widthA * heightA * sizeof(cl_int));
memset (matrixB, 0, widthB * heightB * sizeof(cl_int));
memset (matrixC, 0, widthB * heightA * sizeof(cl_int));

fillRandom(matrixA, widthA, heightA, 643);
fillRandom(matrixB, widthB, heightB, 991);

Next, we set up the OpenCL command queue to enable profiling because we want to
keep looking at the effects of the subsequent optimizations that we are going to apply.
It's definitely very important to establish a reference point to which your measurements
can be compared against.

. Recall that OpenCL command queues can be created such that
% commands are executed out-of-order. In this book, all command queues
s are created in-order so that they execute in program order also known as
program reading order.

How to do it...

We present our first attempt to provide you an OpenCL version of the sequential matrix
multiplication algorithm. The kernel can be found in Ch7/matrix multiplication 01/
simple mm mult.cl:

__kernel void mmmult (int widthB,
int heighta,
__global int* A,
__global int* B,
__global int* C) {

int i = get _global id(0);
int j = get _global id(1);
int tmp = 0;

if ((i < heightA) && (j < widthB)) {
tmp = 0;
for(int k = 0; k < widthB; ++k) {

Developing the Matrix Multiplication with OpenCL

tmp += A[i*heightA + k] * Blk*widthB + jIl;

}

C[i*heightA + j] = tmp;

}

Given the preceding OpenCL kernel code, we need to build an executable so that it can
execute on your platform. As before, the compilation will look familiar to you. On my setup with
an Intel Core i7 CPU & AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks
like this and it'll create an executable called MatrixMultiplication into the directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication
-framework OpenCL

At this point, you should have an executable deposited in that directory and all you need to
do now is to run the program, simply execute the MatrixMultiplication program in the
directory and you should have noticed an output as follows:

Passed!

Execution of matrix-matrix multiplication took X.Xs

We discussed how the matrices were initialized and the next thing is to realize the execution
model where each work item in each dimension would work on each element. And to
accomplish this, we have to ensure that the invocation to execute the OpenCL kernel

code doesn't dictate the size of the thread block:

size t globalThreads[] = {widthB, heightA};

cl event exeEvt;
cl ulong executionStart, executionEnd;
error = clEnqueueNDRangeKernel (queue,
kernel,
2,
NULL,
globalThreads,
NULL,
0,
NULL,
&exeEvt) ;
clWaitForEvents (1, &exeEvt) ;

180

Chapter 7

We achieve this by passing in the NULL value to the placeholder meant for dictating

work group size in the c1EnqueueNDRangeKernel API. Next, we set the values of the global
work items to be equivalent to that of width of matrix B and height of A represented by the
widthB and heightA variables respectively.

The following diagram serves to illustrate what the execution would have looked like:

2D thread block
P
> B
Yy VVVVYVYYVYY >
MR R EREEER > n
19 [t1ojt11t1 2t 31 4ft1 sjr16 >
P
A V| V| VIV|IVIVIV|VY C
m Write order — m
v
n

An astute reader would probably start guessing that this isn't the best way to conduct this
business and you're right! We are going to take a deeper look at how we can make this work
better soon.

Faster OpenCL implementation of the matrix

multiplication by thread coarsening

In this section, let's try to make this beast run faster by applying a technique in parallel
programming: thread coarsening. This is important because when you have a work item
accessing an element, and then you have large matrices you could potentially have millions
of work items running! In general, that's not a good thing because many devices today cannot
support millions of work items in n dimensions unless it's a supercomputer. But there are
often clever ways to reduce the amount of work items needed.

Developing the Matrix Multiplication with OpenCL

Getting ready

The general technique here is to explore ways in which we can merge threads so that each
thread now calculates multiple elements. When we reexamine the preceding code, we might
wonder if we could do with fewer threads and have them compute more elements, and
indeed we can.

The strategy we have adopted will basically have one work item updating an entire row in the
matrix C while walking through matrices A and B. At this time, we need not even explore the
use of atomic functions in OpenCL, since that's an aspect we should try to delay exploring as
long as possible. The main reason for not exploring the use of atomics is simply because their
execution time is too long and it isn't mature of utilizing the capabilities of the

OpenCL devices.

How to do it...

This OpenCL kernel is revised based on the concept of thread coarsening and can be found
in Ch7/matrix multiplication 02/mmult.cl

__kernel void mmmult (int widthB,
int heightA,
__global int* A,
__global int* B,
__global int* C) {

int i = get global id(0);
int tmp = 0;

if (i < heighta) {
for(int j = 0; j < widthB; ++3j)
tmp = 0;
for(int k = 0; k < widthB; ++k) {
tmp += A[i*heightA + k] * Blk*widthB + jIl;
}

C[i*heightA + j] = tmp;

}

Now that we have taken a good look at the OpenCL kernel, we need to build an executable form.
As before, the compilation will look familiar to you. On my setup with an Intel Core i7 CPU & AMD
HD6870x2 GPU running Ubuntu 12.04 LTS the compilation looks as follows, and it'll create an
executable called MatrixMultiplication into the directory:

182

Chapter 7

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication
-framework OpenCL

At this point, an executable should have been deposited in the directory and to execute it,
simply execute the program MatrixMultiplication in the directory and you should have
noticed an output as follows:

Passed!

Execution of matrix-matrix multiplication took X.Xs

Now if you were to compare the results with the previous one you would notice that it is
running faster!

The hard part of this is being able to recognize when redundant work is being applied. But
in our case, it won't take too much effort to recognize that we are actually using too many
threads. How so you may ask? The clue lies in the fact that the original matrix multiplication
algorithm ran with one executing thread, so the fact that we are using more than one

work item does imply that there's more we can do to improve it.

Hence when we look back at the algorithm, we discover a way to make them run faster by
getting more creative in the way we obtain those values using one work item. At this point,
you should convince yourself that the OpenCL kernel we just looked at is indeed referencing
the data values from the matrices A and B as expected.

To achieve what we did, we made some changes to the code in Ch7/matrix_
multiplication 02/MatrixMultiplication.c as follows

size t globalThreads[] = {heightA};

size t localThreads[] = {256};

cl event exeEvt;

cl ulong executionStart, executionEnd;

error = clEnqueueNDRangeKernel (queue,
kernel,
1,
NULL,
globalThreads,
localThreads,
0,
NULL,
s&exeEvt) ;

clWaitForEvents (1, &exeEvt) ;

Developing the Matrix Multiplication with OpenCL

The problem size is known to us, which is to perform matrix multiplication for matrices

of dimensions 1024 x 1024 and the reason why | chose the work group size to be 256 is
because my GPU has four compute units and you can discover this by passing CL. DEVICE
MAX COMPUTE_UNITS to clGetDeviceInfo. The following diagram illustrates what it is like
with thread coarsening;:

thread block
[t1]t2]3]w]t5]t6]t7]18] p
> B
>
>
— n
»
>
>
>
P
A [w C
v
v
v .
m v Write order — m
v
v
v v
n

When you are able to reduce redundant work through thread coarsening, the kernel would
now execute faster and scale better because now more processors can execute. It may seem
counter intuitive because it defies common sense, since more threads executing the kernel
means that it should execute faster. Well, that's the simple picture.

What happens under the hood is more complicated and it starts from the fact that each GPU
has a number of processors and each of those processors would execute the kernel. For a
GPU to be able to execute at full capacity, naturally its processors must be filled with data in
the data cache and instructions should be ready to be fired and execute the OpenCL kernel.

However due to poor data spatial and temporal locality, the data caches perform suboptimal
and that causes stalls in the instruction pipeline, which translates to delayed execution.
Another problem is also related to the fact that memory access patterns could be erratic

or non-coalesced which translates to cache misses and possibly memory ejection.

This finally causes more delays.

Coming back to the problem, there is another solution for optimizing the kernel and that's
by reusing the hardware registers of the work items.

184

Chapter 7

Faster OpenCL implementation of the matrix

multiplication through register tiling

Register tiling is another technique we can apply to our matrix multiplication algorithm. What it
basically means is to explore opportunities to reuse the hardware registers. In our case, what
it means is that we need to examine the kernel code and find opportunities to reuse registers.

Now we need to put on our hardcore C developer hat (this person needs to think on the
level of the processor core, how data moves on buses, memory loads and stores, and so on).
And once your mind is sensitive enough to this level, then things become better.

Recall the kernel code in the previous section and we would notice after careful scrutiny
thatthe A[i * heightA + k] statementis always executed in the loop structure, and
this causes a lot of memory traffic to transpire because data needs to be loaded from device
memory into the registers of the device.

Getting ready

To reduce the global memory traffic caused by the A[i * heightA + k] statement, we can
pull that statement out of the loop structure and create a thread local memory structure that
is visible only to the work item executing thread, and then we can reuse that prefetched data
in the subsequent computations.

How to do it

This OpenCL kernel code is found in Ch7/matrix multiplication 03/mmult.cl:

__kernel void mmmult (int,

int widthB heightA,

__global int* A, __global
int* B,

__global int* C) {

int i = get_global id(0) ;
int tmp = 0;
int tmpDatal[1024];
if (i < heighta) {
for(int k = 0; k < widthB; ++k)

tmpData[k] = A[i*heightA + kI;

for(int j = 0; j < widthB; ++3j)

Developing the Matrix Multiplication with OpenCL

tmp = O;
for(int k = 0; k < widthB; ++k)

tmp += tmpDatalk] * B[k*widthB + j];
}

C[i*heightA + j] = tmp;

}

Now that we have taken a good look at the OpenCL kernel, we need to build an executable form,
where we can execute. As before, the compilation will look familiar to you. On my setup with an
Intel Core i7 CPU & AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks like
this and it'll create an executable called MatrixMultiplication into the directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication
-framework OpenCL

At this point, the executable should be available to you in the directory. To run the program,
simply execute the program in the MatrixMultiplication directory and you should notice
an output as follows:

Passed!

Execution of matrix-matrix multiplication took X.Xs

Now if you were to compare the results with the previous one you would notice that it is
running faster.

The idea originated from a technique found in high performance computing and some folks
like to call it scalar replacement. This is the form we have applied in this section. Let's take
some time to understand this with a simple algorithm.

Let's say we have the following algorithm:

for i1 = 1 to 6
for i2 = 1 to 6
Af[il,i2] = A[il - 1, i2] + A[i1l,i2 -2]

Now we unroll the loop so that it looks like this:

for il = 1 to 6 step-by-2
for i2 = 1 to 6 step-by-2
A[il,i2] = A[i1 -1, i2] + A[i1,i2 -2] //statement 1
A[il +1,4i2] = A[i1,4i2] + A[il+1,i2 -1] //statement 2
Alil,i2 +1] = A[il1 -1, i2+11 + A[i1,i2] //statement 3
Alil+1,i2+1] = A[il, i2 +1] + A[il+1,i2]

186

Chapter 7

When we will carefully observe this code, we will notice that the statement 1, statement
2,and statement 3 have something in common and that is this code, A[i1,i2].In
computer science terms, we noticed that there is one store to memory and two loads from
memory to registers. In scalar replacement, we replace A[i1, 12] with a variable, which we
call X for now. The code now looks as follows after scalar replacement:

for il = 1 to 6 step-by-2

X = A[i1, 0]

for i2 = 1 to 6 step-by-2
X = A[i1 -1, i2] + X
Alil +1,1i2] X + Alil+1,12 -1]
Afli1,i2 +1] Ali1 -1, i2+1] + X
Alil1+1,i2+1] = A[il, i2 +1] + A[il+1,i2]
Afi1,i2] = X

When the replacements have been done consistently and the algorithm is still working as it
should, we are good for now. Have a cup of tea!

Let's have a look at what we did. We have replaced array references (which are in fact memory
references) with scalars, and how it helps is that we have actually reduced memory traffic by
processing those items in register memory. Considering that memory speed is significantly
much slower than register read-write speed, this revised algorithm is in much better form.

\ Loop unrolling is often used to explode the loop, so that we can identify
~ expressions or statements that can possibly be repeating and allowing
Q scalar replacement to extract those expressions/statements into
thread private register memory.

Scalar replacement is actually more complicated in actual practice, but the presentation
here serves its purpose in illustrating the general concept.

Another thing we like to share with you is to optimize memory usage for the work items
and we've caught several glimpses of it before in previous chapters.

Reducing global memory via shared memory

data prefetching in matrix multiplication

Our revised matrix multiplication algorithm appears to be pretty good but it isn't quite there
yet. The algorithm is still making a lot of references to matrix B over global memory and we
can actually reduce this traffic by prefetching the data. You may not have noticed, but the
concept of prefetching, which is to keep the cache "hot" (an idea borrowed from the CPU).
A CPU typically has a good size of data and instruction caches (which are really hardware
registers), so that the processor can take advantage of the spatial and temporal localities
of the data. How does this concept map into other OpenCL devices, for example, the GPU?

Developing the Matrix Multiplication with OpenCL

Every GPU that is an OpenCL compliant has a small amount of memory designed for this
purpose and their sizes typically are 32 KB to 64 KB. If you wish to determine the exact
amount of available high speed memory, simply pass the CL. DEVICE LOCAL MEM SIZE
variable to c1GetDeviceInfo for a device.

Getting ready

In order for us to be able to reduce references to global memory, we need to make changes in
our code so that we load the data we need. Sieving through the code again, we see that there
is indeed one such opportunity and it is the following statement:

for(int j = 0; j < widthB; ++3j) {

tmp = 0;
for(int k = 0; k < widthB; ++k) {

tmp += tmpDatalk] * B[k*widthB + j];
}

//more code omitted

}

Concentrating on this loop, we noticed that matrix B always gets loaded and its values are
always reused by all work items executing this kernel. We could of course preload this data
into shared memory. That should reduce global memory requests significantly.

How to do it...

The following OpenCL kernel can be found in Ch7/matrix _multiplicatione 04 /mmult.
cl:

__kernel void mmmult (int widthB,
int heighta,
__global int* A,
__global int* B,
__global int* C,
__local int* shared) ({

int i = get_global id(0) ;

int id = get _local id(0);

int size = get_local size(0);
int tmp = 0;

int tmpDatal[1024];
if (i < heightd) {

/*

Pre-load the data into the work-item's register memory that

188

Chapter 7

is
Visible to the work-item only.
*/
for(int k = 0; k < widthB; ++k) {
tmpData[k] = A[i*heightA + kI;

/*

Data pre-fetching into shared memory allows all work-items
To read the data off it instead of loading the data from

global

Memory for every work-item

*/

for(int k = id; k < widthB; k += size)

shared[k] = Blk*widthB +k];

barrier (CLK _LOCAL MEM FENCE) ;

for(int j = 0; j < widthB; ++3j) {
tmp = O;
for(int k = 0; k < widthB; ++k)
tmp += tmpDatal[k] * sharedl[k];

}

C[i*heightA + j] = tmp;

}

Now that you have taken a look at the OpenCL kernel, you would want to compile the code
and run it. As before the compilation will look familiar to you. On my setup with an Intel Core i7
CPU and AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks like this and
it'll create an executable called MatrixMultiplication into the directory.

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o MatrixMultiplication
-framework OpenCL

To run the program, simply execute the MatrixMultiplication program in the directory
and you should get an output that resembles this:

Passed!

Execution of matrix-matrix multiplication took X.Xs

Now if you were to compare the results with the previous one, you would notice that it is
running much faster!

Developing the Matrix Multiplication with OpenCL

The code that we have introduced might cast some doubts within yourself that because
it looks sequential, it is actually executed in parallel during runtime. The parallelism is
introduced by the value indicated in the 1ocalThreads variable, which is passed to
clEnqueueNDRangeKernel. The memory barrier we placed into the code serves

to stop all work items from executing beyond that point, until all functions before

that point have been executed and the following diagram serves to illustrate this:

|t17]t18]t19]t20[t21]t22[123]24]

memory loads
19 [t10[t11]t12]t13]t12]t14]t15)

Global memory

memory stores

ule[eluln]w|r]s]

v memory stores v

Shared memory

Memory Banks

_J[Cannot execute beyond this point |

\|/
Memory barrier X
TR

v

So far you have seen changes made to the OpenCL kernel code, and now we need to make
changes to our host code so that we can actually accomplish this. The following code snippet
is taken from Ch7/matrix multiplication 04/MatrixMultiplication.c

clSetKernelArg (kernel, , sizeof(cl _int), (void*) &widthB) ;
&heightAd) ;
&matrixAMemObj) ;
, (void*) &matrixBMemObj) ;

, sizeof (cl mem), (void*) &matrixCMemObj) ;

clSetKernelArg (kernel, , sizeof(cl int), (void*

clSetKernelArg cl mem), (void*

)
)
)
)

clSetKernelArg (kernel, , sizeof (cl _mem

0
1

kernel, 2, sizeof
3
clSetKernelArg (kernel, 4
5

(()
(()
(()
(()
(()
clSetKernelArg (kernel, , sizeof (cl _int) *heightA,NULL) ;
size t globalThreads[] = {heightA};
size t localThreads[] = {256};
cl_event exeEvt;
cl ulong executionStart, executionEnd;
error = clEnqueueNDRangeKernel (queue,

kernel,

1,

NULL,

190

Chapter 7

globalThreads,
localThreads,
0,

NULL,

s&exeEvt) ;

clWaitForEvents (1, &exeEvt) ;

The schematics of the final algorithm have seen us tailoring the algorithm, so that it
achieves an initial reasonable performance and can be conceptually represented by
the following diagram:

Matrix Multiplication Kernel

thread block [t1[t2[t3[t4[t5]t6[t7 8|

Work-item local
memory

Each work items sees its own local memory

All work items can read/write to share memory

Shared memory

All work-items can

read pre-loaded data

Memory Banks

If you want to know how much shared memory you can possibly
create and pass the CL. DEVICE LOCAL MEM SIZE parameter to
clGetDeviceInfo for your device and the value returned will be in
bytes. Typical values are between 32 KB to 64 KB.

Developing the
Sparse Matrix Vector
Multiplication in
OpenCL

In this chapter, we are going to cover the following recipes:
» Solving the SpMV (Sparse Matrix Vector Multiplication) using the conjugate
gradient method

» Understanding the various SpMV data storage formats including ELLPACK,
ELLPACK-R, COO, and CSR

» Understanding how to solve SpMV using the ELLPACK-R format
» Understanding how to solve SpMV using the CSR format
» Understanding how to solve SpMV using VexCL

Introduction

In the previous chapter on matrix multiplication, we developed an appreciation of the problem
space as well as its domain of application, but what we didn't tell you earlier was that there
are dense matrices as well as sparse matrices in addition to their dense and sparse vectors.
When we say dense or sparse matrix/vector, we mean that there are a lot of non-zero or zero
values, respectively.

Developing the Sparse Matrix Vector Multiplication in OpenCL

The fact that a matrix is dense or sparse matters from a computational point of view, since
it doesn't really make sense to multiply any value with zero as the result is evidently zero; if
you were to apply the naive method of solving this problem, which is to use the methods you
developed during the matrix multiplication to solve the problem where the matrix or vector
is sparse, but you would not be taking advantage of that brand new OpenCL CPU/GPU you
just bought, you are simply wasting processor cycles and also wasting massive amounts of
bandwidth. The question lies in solving this problem in an efficient manner and this requires
understanding how to compute this efficiently, which solves one part of the issue. The other
part of this issue is to investigate how to store the sparse matrices efficiently, since allocating
a ¥R} matrix to store a matrix that is populated with mostly zeroes is wasteful of

memory space.

We are going to take a whirlwind tour of this subject, however it will not be exhaustive.

There is a lot of literature already published on this subject. However, we will spend some
time to formulate a basic and general idea by recognizing that most of the past and

current work focuses on a combination of creating data structures that are efficient and
compact to represent the sparse structures. We will also spend some time devising efficient
computational methods on those data structures. As far as matrices go, we won't look into the
possibilities of dynamic matrices (via insertion or deletion), and instead we will focus on static
sparse matrix formats.

Next, we are going to present the theory behind solving SpMV efficiently through building

up our knowledge to the conjugate gradient (via steepest descent and Gram-Schmidt), and
before applying that algorithm we'll look into some of the common data storage schemes.
We'll present an implementation using the VexCL using the Conjugate Gradient (CG) method
which is an OpenCL framework build using C++.

The following are some of the examples of sparse matrices:

Chapter 8

Solving SpMV (Sparse Matrix Vector

Multiplication) using the Conjugate
Gradient Method

The conjugate gradient method is the most popular iterative method for solving sparse linear
systems, and | will attempt to make you understand how it works. Along this journey, we will
look into steepest descent, conjugate gradient convergence, and so on.

\ | wanted to say a big thank you to Jonathan Richard Shewchuk (AP of
~ University of California), without whom | might not have understood
Q why conjugate gradients matter You can learn more about him at
http://www.cs.cmu.edu/~jrs/.

A reason why the CG method is popular in solving sparse systems is that it not only handles
really large sparse matrices well but it is also very efficient.

In the previous chapter on matrix multiplication, we have seen what it means to multiply two
matrices, and this time round, we are focusing on the problem of Ax=5b where A is a known
square and positive definite matrix, x is an unknown vector, and b is a known vector.

Getting ready

The inner product of two vectors is written as x'y, and it represents the scalar sum E"ﬂ AT
xTy is equivalent to yTx, and if x and y are orthogonal (at right angles to one another, and this
will be important to realize when we study steepest descent), then xTy = 0.

1
~ A positive-definite matrix A is such that for every
non-zero vector x, xTAx > 0.
A quadratic form is actually a scalar and quadratic function of a vector of the form as:

Jr-— - rns

Developing the Sparse Matrix Vector Multiplication in OpenCL

Just like any linear function, we would know its gradient that can be expressed in this derived
formas J = 1 LM« I ELE | (yep, it's not a typo, and we mean the transpose of matrix

A), and when we know that matrix A is symmetric, that is, 1/2(4" + 4) becomes A because
AT=A, then this equation reduces to / '(x) = 4x—b, Like any derivate of a linear equation, we
know that the mathematical solution to f'(x) can be found when it is equal to O and by solving
Ax =b. The goal is to find a particular value of x which minimizes f(x). Diagrammatically,

it can be imagined as a parabola like the one in the following diagram, which is what f(x)
evaluates to be exactly:

This forms our foundation to study the steepest descent and its cousin method—the conjugate
gradient method. In the following sections, let us first explore the concepts behind steepest
descent and then head over to conjugate gradient.

In the steepest descent method, we start at an arbitrary point X0 and slide down to the
bottom of the paraboloid. We keep taking steps x(1), x(2), and so on until we are pretty
confident in saying that we have come to the solution x. That's basically how it works.
Generally speaking, we haven't said anything about how to choose the next point to slide
to though, as always the devil is in the details. Solder on!

When we take a step, we choose the direction in which f(X) decreases most quickly, and now
it's appropriate to introduce two vectors, which we will use to gauge for ourselves whether or
not we're dropping in the right direction (that is, if we are moving towards the bottom of the
parabola). The error vector €:) = X ~* measures how far we are from the solution from the
current step. The residual vector 7;,) = b — Ax, measures how far we are from the correct
value of b, and this vector can be thought of as the direction of steepest descent. When we
take the next step so that we can be closer to the actual solution, x, we are actually choosing
a point X = X.1) T &%), and you will notice that another variable has been chosen which is
alpha, O.

196

Chapter 8

This variable & of whichever value will tell us whether we have reached the bottom of the
parabola. To put this another way, imagine yourself falling into a salad bowl (closest thing

| could think of) and the only way you can stop falling is when you sit at the bottom of the
bowl. We know from calculus that the derivative of that point (X, ¥) where you land is zero,
that is, its gradient is also O. To determine this value, we have to set the derivative of that
point to be equal to zero and we already have seen the equation f'(x) = Ax—b, and we know
now that / '(x) =).

How to do it...

Let's now calculate the directional derivative of — /) when |t is equal to zero
because o minimizes f. Using the chain rule, we know that - f(xu.> AN
and plugging in what we know of f'(x), we have the foIIowmg sequence of
derivations by which we derive the value of :

T
Vi) = 0,
(b—Ax(M))Tr. =0
(b—A(x(l)+ar))) 1y =0,
(b—A%»fG»—aCAmQ Ty =0
(b—Ax(i))Tr. = a(A(V(i))T Fiys

T
Tty = “rAQw
T
/N2
~_ oo
a(l)_ TA
Ty A

In summary, the steepest descent comprises the following equations:

Ty =b—Ax,
T

a(l) (l) (1)
on

Xaivny = Xy T Ty

Using the steepest descent means is that | take a step down the rabbit hole and before | take
the next step I'm going to guess what its going to be and take it; if I'm right, hooray!

Developing the Sparse Matrix Vector Multiplication in OpenCL

The conjugate gradient method builds on steepest descent, and the two share a lot of
similarities such that the conjugate gradient makes guesses which will eventually lead to the
solution in x. Both methods use the residual vector to judge how far the guesses are from the
correct answer.

The idea is to pick a set of orthogonal search directions, and in each direction we'll take
exactly one step (pretty much the same as what we have seen before) X, = X, + @, d;).

It turns out that we need to make the search direction A-orthogonal instead of orthogonal.
We say that two vectors d;,, and d,,, are A-orthogonal if d, Ad,;, = 0. When we use a search
direction, one of the things that we want to minimize is the amount of space in which we
search, and for this we would need linear independent vectors Uy,U;,U,,.... From there,
we can use the Gram-Schmidt process to generate them and we would have the following:

i-1
diy =g + Zﬁikd(w
k=0

As we did in the steepest descent method, let's use the same trick to determine what ﬁ,—k
is since it looks really familiar like &, and we derive it using the following;:

i-1
dyAd;, =ul Ad,, + Zk:o BudiAd,,),
0=uAd,, +f,d’ Ad

i4n9h>
T
- u; Ad
ij T
d)Ad,,

From the previous equation, we plug in the fact that two vectors are A-orthogonal, that is,
the left-hand side of the equation is O, and we solve for the right-hand side which resulted
in ;. When we compare this value with ¢, we would discover that they are pretty much the
same except for the fact that the CG method uses linear independent vectors instead of the
residual vector, as found in steepest descent.

The CG method builds on the Gram-Schimdt process/conjugation and steepest descent,
whereby it removes the presence of search vectors. It favors the use of residual vectors
instead, and this is important from a computational point of view, otherwise your program
would need to store all of the search vectors, and for a large domain space it would probably
be a very bad idea. There is a fair bit of math that we skipped, but feel free to download the
original paper from Jonathan Shewchuk from the following link

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient .pdf

198

Chapter 8

In the method of conjugate gradient, we have the following equations:

diy =1y =b—Ax),
T
_ o
YO ad,”

093
Xy = Xy T U
Ty =Ty ~ Ay Ad iy
B = ’”(,'T+1)’"(i+1)

R

d(i+l) =iy T IB(M)d(i)

We're going to see how we can translate this into OpenCL. But first, it's time for a cup
of coffee!

Now that we have established a basic idea of what the CG method is like, its time to take

a look at how a simple SpMV kernel can be implemented. However, recall that | mentioned

that we have to understand how the data in the sparse matrix can be stored. That turns out
to be crucial in the implementation, and it's justifiable to spend the next couple of sections

illustrating to you the well-known data storage formats.

Understanding the various SpMV data

storage formats including ELLPACK,
ELLPACK-R, COO, and CSR

There are a wide variety of sparse matrix representations, each with a different storage
requirement, even computational characteristics, and with those come the varieties in which
you can access and manipulate elements of the matrix. | made a remark earlier that we will
be focusing on static sparse matrix formats, and | present here four storage formats that
have been proven to be rather popular not only because of the decent performance but also
because they were also some of the earliest formats which have been popular among scalar
and vector architectures, and quite recently, in GPGPUs.

Developing the Sparse Matrix Vector Multiplication in OpenCL

In the following paragraphs, we are going to introduce you to the following sparse matrix
representations in the following order:

» ELLPACK format

» ELLPACK-R format

» Coordinate format

» Compressed sparse row format
Let's start with the ELLPACK format. This format is also known as ELL. For an M x N matrix
with a maximum of K non-zero values per row, the ELLPACK format stores the non-zero values
into a dense M x K array which we'll name data, where rows with lesser than K non-zero
values are zero padded. Similarly, the corresponding column indices are stored in another

array, which we'll name indices. Again, a zero or some sentinel value is used for padding
this array. The following representation of matrices illustrates what it looks like:

6900]
10284
A_5019
0001/
69*] o1~
_|284|, . 1123
data= 519,/nd/ces 023
1**_ 3**

A quick analysis on this format means that if the maximum number of non-zero values in each
row does not differ too much from the average, the ELL format is rather appealing because it
is intuitive, at least to me.

Next, we examine the ELLPACK-R format. This format is a variant of the ELLPACK format, and
in addition to the data arrays that you have seen earlier, we have a new array r1, which is
used to store the actual length of each row. The following representation illustrates what it
looks like:

6900]
A=0284
5019
000 1.
69 * o1+ 2
284|. .. 123 3
data= 5109 ,indices= 023 = 3
1**_ 3** 1

200

Chapter 8

It's not obvious now how this differs from ELLPACK, but the serial and parallel kernel which
we will see later will make use of this new array to make the code and data transfers tighter.

We proceed with the coordinate format. The coordinate format is a simple storage scheme. The
arrays row, col, and data store the row indices, column indices, and values, respectively of
the non-zero matrix entries. COO is a general sparse matrix representation since the required
storage is always proportional to the number of non-zero values. The following is what the COO
format looks like:

17001
_102802
00640

30395
row= [0,0,0,1,1,1,2,2,2,2,3,3,4,4,4,4]
co/=[0,0,0,1,1,1,2,2,2,2,3,3,4,4,4,4]
data= [1,7,1,2,8,2,5,3,9,9,5,4,3,3,9,5]

A

In this format, there are three one-dimensional arrays—row, col, and data.

Last one on this list is the Compressed Sparse Row (CSR) format. The CSR format is a
popular, general-purpose sparse matrix representation. Like the COO Format, CSR explicitly
stores column indices and non-zero values in the arrays indices and data. A third array of
row pointers, ptr, takes the CSR representation. For an M x N matrix, ptr has length M + 1,
and stores the offset into the ith row in ptr [1]. The last entry in ptr, which would otherwise
correspond to the M + 1" row, stores the number of non-zero values in the matrix. The
following representation illustrates what it looks like:

17001
02802
~|50399

30395
ptr=[0,3,6,1,0,1,2,1,6]
indices= [0,1,4,1,2,4,0,2,3,4,2,3,0,2,3,4]
data= [1,7,1,2,8,2,5,3,9,9,6,4,3,3,9,5]

A

At this point, this is all | want to discuss about data representations for sparse matrices.

You should be aware that there are other formats like DIA, also known as,

diagonal format, Hybrid/HYB for ELL/COO, and packet (for processors
g that resemble vector architectures).

201

Developing the Sparse Matrix Vector Multiplication in OpenCL

How to do it...

Now that we have examined three data storage formats, let's go on a little further and check
out how we would solve the SpMV problem using the ELLPACK format. As before, we would
like to start this section by kicking off with a code presentation on how the SpMV CPU kernel
would look:

// num_rows - number of rows in matrix

// data - the array that stores the non-zero values

// indices - the array that stores the column indices for zero, non-
// zero values in the matrix

// num_cols - the number of columns.

// vec - the dense vector

/]y - the output

void spmv_ell cpu(const int num_rows,
const int num cols,
const int * indices;
const float * data,
const float * vec, float * out) ({
for(int row = 0; row < num rows, TrOW++) {
float temp = 0;
// row-major order
for(int n = 0; n < num _cols; n++) {
int col = indices[num _cols * row + n];
float value = data[num cols * row + n];
if (value != 0 && col != 0)
temp += value * vec/[col];
}
out [row] += temp;
}
}

Take a few moments to convince yourself that we are indeed using the ELLPACK format to
solve SpMV, and the data when stored in the low-level memory, is in row-major order. Putting
on your parallel developer hat again, one strategy is to have one thread / work item process
one row of the matrix data, and this implies that you can remove the outer loop structure thus
giving you this possible SpMV ELL kernel.

// num_rows - number of rows in matrix

// data - the array that stores the non-zero values

// indices - the array that stores the column indices for zero, non-
// zero values in the matrix

// num_cols - the number of columns.

// vec - the dense vector

/]y - the output

___kernel void

202

spmv_ell gpu(_ global const int num rows,
__global const int num cols,
__global const int * indices;
__global const float * data,
__global const float * vec, float * out) {
int row = get global id(0);
if (row < num rows) {
float temp = 0;
// row-major order
for(int n =

0; n < num _cols; n++) {

int col = indices[num cols * row + nl;
float value = data[num cols * row + n];
if (value != 0 && col != 0)

}

temp += value * vec[coll];

out [row] +=

}
}

temp;

Chapter 8

The first thing you would probably notice is that the outer loop structure has been removed,
and that is intuitive when you consider the fact that that structure was present initially so that
we can iterate over the inner loop which contains the actual work of the dot product between
a row of the matrix and vector.

Now, when we examine its memory access patterns using our strategy of fine-grained

parallelism, we would have something like the following representation and it would

exhibit similar problems when we look at the SpMV CSR kernel in a later section:

A

data=

6900]
o284
5019

000 1]

69*]
284
519

Memory access patterns for SpMV ELLPACK Serial

o1~
123

Lindices= 023

1**]

3**
data
thread-O—[6]9 [0[2[4[8[5[]1[9[1[0f0]
thread-1—»(6 [9[0[2[4[8[]5[1]9[1]0f0]
thread-2—»[6 [9J0[2]4[8[65JaJ9[1[0f0]
thread-3—»[6 [9[0[2[4[8[5[]1[9[1[0J0]

cache memory (each line= 16 elements)
line-0 [61970[2[4[8[5[1[9[1[0J0[]
line-1 [2T4[8[5[4]9[a[0f0o[[[[]
line-2 [BTATOTA[OJO[[[[[[T 1T
ine-3 [AJoTol [[[[[[[[1

203

Developing the Sparse Matrix Vector Multiplication in OpenCL

Understanding how to solve SpMV using the

ELLPACK-R format

ELLPACK-R is a variant of the ELLPACK format, and apparently it is rather popular for
implementing SpMV on GPUs. ELLPACK-R should be used if no regular substructures such
as off-diagonals or dense blocks can be exploited. The basic idea is to compress the rows
by shifting all non-zero entries to the left and storing the resulting M x N matrix column by
column consecutively in main host memory, where N is the maximum number of non-zero
entries per row.

How to do it

The SpMV ELLPACK-R scalar kernel is called scalar because of the fact that we have not
taken advantage of a particular aspects unique to GPUs when it comes to parallel program
development in OpenCL. This aspect is known as wavefront-/warp-level programming. We'll
talk more about this in the SpMV CSR kernel presentation in the next section. Hence, in this
part we will present our OpenCL kernel, as shown in the following code, that employs the
strategy of using one thread to process a row of the matrix data, and this time, we have the
help of another array, rowLengths, which records the actual length of each row in the matrix
where it contains non-zero values:

// data - the 1-D array containing non-zero values

// vec - our dense vector

// cols - column indices indicating where non-zero values are

// rowLengths - the maximum length of non-zeros in each row

// dim - dimension of our square matrix

// out - the 1-D array which our output array will be

__kernel void

spmv_ellpackr kernel(global const float * restrict data,
__global const float * restrict vec
__global const int * restrict cols,
__global const int * restrict rowLengths,
const int dim,
__global float * restrict out) ({

int t = get global id(0);

if (t < dim)
{
float result = 0.0;
int max = rowLengths[t];
for (int i = 0; i < max; i++)
int ind = 1 * dim + t;
result += data [ind] * vec[cols[ind]];

204

Chapter 8

out [t] = result;

}

Examining the previous code, we noticed that once again we have reduced two for loops into
one by recognizing the fact that each thread or work item (in OpenCL parlance, if you recall)
can perform the work in the inner loop independently.

In the following code we present our kernel that has been "vectorized", we recognized that
our SpMV ELLPACK-R kernel could be improved by taking advantage of the hardware's inbuilt
feature to run a bunch of threads executing the code and in lock step.

M This vectorization will not work if you were to execute it on your
Q OpenCL x86 compliant CPU unless it has the vectorization hardware
available to the GPUs.

This is incredibly useful when the occasions call for it, and this situation calls for it. This
resulted in our SpMV ELLPACK-R vector kernel shown in the following code. Our strategy is to
have a warp processed at each row of the matrix, and we break each row so that data can be
processed by the threads in a warp or wavefront:

// data - the 1-D array containing non-zero values

// vec - our dense vector

// cols - column indices indicating where non-zero values are

// rowLengths - the maximum length of non-zeros in each row

// dim - dimension of our square matrix

// out - the 1-D array which our output array will be

#define VECTOR SIZE 32 // NVIDIA = 32, AMD = 64

__kernel void

spmv_ellpackr vector kernel(global const float * restrict val,
__global const float * restrict vec,
__global const int * restrict cols,
__global const int * restrict rowLengths,
const int dim,
__global float * restrict out) {

// Thread ID in block

int t = get local id(0);

// Thread id within warp/wavefront

int id = t & (VECTOR SIZE-1);

// one warp/wavefront per row

int threadsPerBlock = get local size(0) / VECTOR SIZE;

int row = (get group id(0) * threadsPerBlock) + (t / VECTOR SIZE);

205

Developing the Sparse Matrix Vector Multiplication in OpenCL

__local float volatile partialSums[128];

if (row < dim)
float result = 0.0;
int max = ceil (rowLengths [row] /VECTOR_SIZE) ;
// the kernel is vectorized here where simultaneous threads
// access data in an adjacent fashion, improves memory
// coalescence and increase device bandwidth
for (int i = 0; i < max; i ++) {
int ind = i * (dim * VECTOR SIZE) + row * VECTOR SIZE +
id;
result += val[ind] * vec[cols[ind]l];
}
partialSums[t] = sum;
barrier (CLK _LOCAL MEM FENCE) ;

// Reduce partial sums

// Needs to be modified if there is a change in vector length
if (id < 16) partialSums[t] += partialSums[t +16];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 8) partialSums[t] += partialSums[t + 8];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 4) partialSums[t] += partialSums[t + 4];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 2) partialSums[t] += partialSums[t + 2];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 1) partialSums[t] += partialSums[t + 1];
barrier (CLK _LOCAL MEM FENCE) ;

// Write result
if (tid == 0)

{

out [row] = partialSums[tid];

206

Chapter 8

This vector kernel takes advantage of two facts:

» The kernel is executed by groups of threads and those threads execute in lock step

» Parallel reduction: Parallel reduction is rightfully a topic by itself and the variant
technique we are using is known as segmented reduction

To help you understand how parallel reduction works, let's assume and imagine we have a
one-dimensional array filled with 16 elements and each array element is given a number.
Now, | like to ask you how you would go about calculating the sum of all elements in this given
array? There are definitely more than two ways in which you can do this, but let's say you are
giving the fact that eight work items can execute in lock step. how can you take advantage

of that?

One way is to have each work item add two array elements and that would give you the partial
sums, but how would you be able to add all of these partial sums to produce one single sum
that represents the summation of the array? Without going into too much detail, let's use the
following diagram and see if you can figure out how it would have worked:

Parmallel Eeduction

\'HLE':EI'IHE‘:'FI'IE'IT:'H'HE|E||I:I!E|E-!4|5|1|E|!1|D!D|1|2|2-!4|

alues (Shared mermon)

. |~ - |~

T p— n#rmwn%m'swn’h'rm‘mnﬁ'z‘mﬂ

I d_ﬂ___r-" I ;"

Walues (shaned mermon) E-F]QIEIEIIE-I-‘I-IIEIlIEEil|D|D|1E12|':"|4|

values (hared memon [ER] o] 22 1al4 A1 [Ad 1 JaJof1iad 27 [4]

by A—el-tread

207

Developing the Sparse Matrix Vector Multiplication in OpenCL

Understanding how to solve SpMV using the

CSR format

After viewing all these different data representations for sparse matrices, you will probably
realize there's more to the picture than we earlier imagined, and this serves to highlight the
fact that researchers and engineers have spent a lot of time and effort to solve what looks
like a deceptively simple problem in an efficient manner. Hence in this section, we are going to
take a look at how to solve the SpMV problem using the CSR format looking at various recipes
from sequential, scalar, and finally vector kernels in that order.

Getting ready

Now, let us take a look at what SpMV code would look like in its sequential form, that is,
when executed on a modern CPU, using the CSR format, and then let's take a look at
a naive implementation of the SpMV:

// num_rows - number of rows in matrix
// ptr - the array that stores the offset to the i-th row in ptr[i]

// indices - the array that stores the column indices for non-zero
// values in the matrix

// x - the dense vector

/]y - the output

void spmv_csr cpu(const int num rows,
const int * ptr;
const int * indices;
const float * data,
const float * vec, float * out) {

for(int row = 0; row < num rows, YOW++) {
float temp = 0;
int start row = ptr[row];
int end row = ptr[row+l];
for(int jj = start row; jj < end row; jj++)

temp += datal[jj] * vec [indices[jjl];
out [row] += temp;
!
!

Examining the preceding code, you will notice that the array ptr is being used to pick the
non-zero elements in the array—data—which is desirable, and ptr is also being used to
index into the indices array to retrieve the correct element in the vector vec so that we
never conduct operations that multiply a zero value. This point is important to note from a
computational point of view because it means we are not wasting precious processor cycles
performing work we will never use; from another perspective, this representation also means
that the caches are always filled with values we will need and not stored with values that are
inherently zero valued.

208

Chapter 8

As promised, let us take a look at another solution that focuses on matrix-vector multiplication
executing on a modern desktop CPU, and in both these examples, the only difference is the
fact that the previous code took into account the matrix is sparse while the following code
assumes the matrix is dense:

// M - the matrix with dimensions 'height' x 'width'
// V - the dense vector of length 'width'
// W - the output

void matvec_cpu(const float* M, const float* V, int width, int height,
float* W)

{
for (int i = 0; i < height; ++i) {
double sum = 0;
for (int j = 0; j < width; ++3j) {

double a = M[1i * width + jl;
double b = VI[j];
sum += a * b;

}

W[i] = (float)sum;

}

Take a few moments and examine both code bases, and you will realize the amount of
computational cycles and memory bandwidth that was saved and wasted needlessly.

M It is always recommended to compare the sequential form against
Q the parallel form so that you can derive basic metrics about your
transformed algorithm.

How to do it

Now that we have made done some basic comparisons, we need to figure out what our
parallelization strategy is going to be. For this, we need to put on our parallel developer
hat again and scrutinize the code for the SpMV CSR serial kernel shown earlier and look
for parallelizable portions. One of the things you might have already recognized is the fact
that the dot product between a row of the matrix and the vector vec, may be computed
independently of all other rows.

209

Developing the Sparse Matrix Vector Multiplication in OpenCL

The following code demonstrates the implementation where we have one work item process
a row of the matrix, and some literature would call this the scalar kernel. In this kernel, as
before, our strategy focuses on looking at the two loop structures, and we discover that the
outer loop structure can be flattened out and replaced by work items / threads, and we know
how to achieve that; focusing back on the inner loop structure which is essentially what one
work item /thread is executing on, we find that we can retain all of its execution flow and
mimic that in the OpenCL kernel.

Next, let's take a look at how the SpMV kernel is written with the CSR format in mind:

__kernel void
spmv_csr scalar kernel(_ global const float * restrict wval,
__global const float * restrict vec,
__global const int * restrict cols,
__global const int * restrict ptr,
const int dim, _ global float * restrict out) {
int row = get global id(0);

if (row < dim)
float temp=0;
int start = ptrlrowl];
int end = ptrlrow+l];
for (int j = start; j < end; j++) {
int col = cols[j];
temp += val[j] * vec[coll];

}

out [row] = temp;

}

If you can recall, in the previous chapter we noted that such an execution model uses really
fine-grained parallelism, and such a kernel will probably not perform very well. The issue does
not lie within the CSR representation, it lies within the fact that the work items / threads are

not accessing those values in the CSR simultaneously. In fact, each thread that was working on
each row of the matrix produces a memory access pattern in the following diagram. After tracing
the execution of this SpMV CSR kernel for four work items / threads, you will notice that each
thread would refer to a different portion of the array val (which contains all non-zero entries in
the matrix A), and memory loads will be latched on the caches (which contain memory banks
and memory lanes/lines) and finally the hardware registers will execute upon them.

From this point onwards, you should be thinking in terms
i of how GPUs work on a low-level basis.

Chapter 8

Let's use the matrix found in the CSR format earlier as an example to illustrate how this SpMV
CSR is not really working too well. Each cache is actually implemented by lanes/lines such
that each line can hold a number of bytes, and in our example, it assumes each line can hold
16 elements (assuming each element is of the size 4 bytes which translates to 64 bytes).

It should be obvious to you by now that there's a lot of wastage of cache bandwidth. Since our
kernel is parallel, we could conceptually have four different lines holding various parts of the
input array. What would have been desirable is to allow all the data in at once and keeping the
cache hot while processing it.

One way of achieving this is to apply the previous techniques you've learned. Kudos for
thinking about that. However, let's learn another technique and in some literature it is known
as warp-/wavefront-level programming. We saw it in action in the previous section.

Recall in another chapter, where we introduced the fact that threads of some of the OpenCL
devices, GPUs notably execute a bunch of threads in lock step in the processor. The following
figure illustrates the memory access pattern for a SpMV CSR kernel when building and
executing on a CPU in a serial fashion:

1700l
OZ2B0z .
A= gt Memony sccess patterns for SpMW C5RE Serial
20329
phr=[3,2,5,1,0,1,2,1,9]
idicas= [04,4,1,2 4,02 3,422,023,
data= [1,7,1,2,2,2,52,99,5,4,2,2,5 5]

it
headO—w I T [T [T [[Ela[alalel4[F[Z]a]F]
treadi—w | | Jzlafzlelalolaleal4lalalalb]
fread2—w | | | | | [Efa]jalolje]|4[a]afa]e]
treadz—w | | [[[| | | [[ef4]afafafs]

cache memory feach line= 16 dernerts
imex [AfTlafz2(alz[e(alala[cl4[a[a][a][E]

lime-1 L2lfafe]ajaja]la]ajafa]a]afh] | | |

ine-2 [N = =T =)) =) - I I I I I

ine-2 Lelddf=2i=y9f=f | 1 1 [[1 T T [1
s To optimize your algorithm with respect to memory access, have your

-~
Q work items in a single wavefront/warp access the memory locations
from the same cache line.

Developing the Sparse Matrix Vector Multiplication in OpenCL

Next, you would want to ask yourself the question on how you go about working out a kernel
that is able to load the elements you need into the same cache line and take advantage of
the fact that threads in a warp or wavefront execute in the lock step. This fact also implies
that you need coordination, but don't worry, we won't have to use the atomic functions found
in OpenCL for this.

When | see the term lock step, | immediately conjure the image of 10 runners, akin to
executing threads in a warp/wavefront, lined up for a 100 meter dash, and the exception here
as compared to the warp-/wavefront-level programming is that all these runners need to reach
the finishing line together. Weird, | know, but that's how it works. Coordinating this batch of
runners is like strapping leashes on eight horses dragging a wagon and the cowboy driving the
carriage using his whip to accelerate or decelerate.

At this point, | like to digress a little and point out to you that Intel Math
Kernel Library (Intel MKL) 11.0 implements sparse solvers using data
storage formats based on the CSR formats and has good performance
’ for running on Intel CPUs as they not only optimize memory management
but also take advantage of Instruction Level Parallelism (ILP).

Now, you have to recognize and imagine your kernel to be executed by a bunch of threads and
for starters, let's imagine 32 or 64 of them running at once. Each of these threads have an

ID and that's the primary method in which you identify and control them, that is, placing the
control-flow constructs that allows or restrict threads from running. To illustrate the point, let
us take a look at the following improved SpMV CSR vector kernel.

The SpMV CSR OpenCL kernel is found in Ch8/SpMV/spmv . cl:

#define VECTOR SIZE 32
// Nvidia is 32 threads per warp, ATI is 64 per wavefront
__kernel void
spmv_csr vector kernel(global const float * restrict val,
__global const float * restrict vec,
__global const int * restrict cols,
__global const int * restrict ptr,
const int dim, _ global float * restrict out) {
int tid = get local id(0);
int id = tid & (VECTOR_SIZE-1) ;
// One row per warp
int threadsPerBlock = get local size(0) / VECTOR SIZE;
int row = (get _group id(0) * threadsPerBlock) + (tid / VECTOR_
SIZE) ;

__local volatile float partialSums[128];
partialSums[t] = 0;

Chapter 8

if (row < dim)
{
int vecStart = ptr[rowl];
int vecEnd = ptrlrow+l];
float sum = O;
for (int j = vecStart + id; j < vecEnd; j += VECTOR SIZE) ({
int col = cols[j];
sum += val[j] * vec[col];
}
partialSums[tid] = sum;
barrier (CLK _LOCAL MEM FENCE) ;

// Reduce partial sums

// Needs to be modified if there is a change in vector length
if (id < 16) partialSums[tid] += partialSums[t +16];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 8) partialSums[tid] += partialSums[tid + 8];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 4) partialSums[tid] += partialSums[tid + 4];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 2) partialSums[tid] += partialSums[tid + 2];
barrier (CLK _LOCAL MEM FENCE) ;

if (id < 1) partialSums[tid] += partialSums[tid + 1];
barrier (CLK _LOCAL MEM FENCE) ;

// Write result
if (id == 0)

{

out [row] = partialSums[tid];

}

Now that we have taken a good look at the OpenCL kernel, we need to build an executable
form on which to execute. As before, the compilation will look familiar to you. On my setup
with an Intel Core i7 CPU and AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the
compilation looks like the following and it'll create an executable called SpMV into the
working directory:

gcc -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o SpMV -framework OpenCL

Developing the Sparse Matrix Vector Multiplication in OpenCL

At this point, the executable should be available to you on the directory. To run the program,
simply execute the program SpMV in the directory, and you should notice an output that
resembles the following:

Passed!

The way this works deserves a significant number of explanations, but first of all is the fact
that we have adapted our parallel reduction into another form, which is otherwise known as
segmented reduction. By this time, you should be relatively familiar with the rest of the code,
so | won't walk you through that as you may doze off.

Parallel reduction, in all its forms, is a very effective way to conduct reduction across
processors and even architectures. The famous Hadoop framework is an example of parallel
reduction across architectures, and the form we are seeing now is that confined to the
processor residing on the OpenCL GPU.

Let me walk you through what happened here in our segmented reduction example for the
SpMV CSR vector kernel. Initially, we set up a shared memory space in our kernel to hold 128
elements of the type float:

__local volatile float partialSums[128];

You might be curious as to why we need the keyword volatile when
defining the array partialSums. The main reason is because on

M the level of warp/wavefront-level programming, OpenCL does not have
synchronization functions like the memory fences we have encountered
so far, and when you do not place the volatile keyword when declaring
shared memory, the compiler is free to replace the store to and load from
__local memory with register storage, and execution errors will arise.

The intention was for each thread in the warp/wavefront to store its own computation into its
own slot marked by its thread ID.

Next, we see the following bunch of code:

if (id < 16) partialSums[tid] += partialSums[t +16];
barrier (CLK_LOCAL MEM FENCE) ;

if (id < 8) partialSums[tid] += partialSums[tid + 8];
barrier (CLK_LOCAL MEM FENCE) ;

if (id < 4) partialSums[tid] += partialSums[tid + 4];
barrier (CLK_LOCAL MEM FENCE) ;

if (id < 2) partialSums[tid] += partialSums[tid + 2];
barrier (CLK_LOCAL MEM FENCE) ;

if (id < 1) partialSums[tid] += partialSums[tid + 1];

214

Chapter 8

barrier (CLK_LOCAL MEM FENCE) ;

// Write result
if (id == 0) {
out [row] = partialSums[tid];

}

This code does two things—first is that it only allows threads with certain IDs to execute and
the second thing it does is to only allow the thread with ID 0, that is, zero to write out the total
sum into the appropriate element of the output array, out.

Let's get into the details. When an executing thread / work item attempts to execute the
following piece of code, the kernel will first determine if its ID is allowed, and the threads with
IDs ranging from O to 15 will get to execute, while those in the following code will not execute,
and we will have thread divergence:

if (id < 16) partialSums[tid] += partialSums[t +16];
barrier (CLK _LOCAL MEM FENCE) ;

_ Recall that thread divergence occurs at branches, that is, 1 f-then-
% else, switches, and so on, which basically partition™s a warp/
i wavefront into two, where one part of the group executes code while
the other part doesn't.

At this point, you should convince yourself that pair-wise reduction takes place for the entire
shared-memory array, partialSums, and | find it helpful when | trace it on paper or the
computer (whatever is your preference). When the executing threads have finished the parallel
reduction, notice that there are no overlapping writes (this is intentional), and we need to
place a memory fence at that point just to make sure every thread has reached that point
before proceeding. This memory fence is important, otherwise bad things will happen. Next,
the parallel reduction occurs again, but this time we only need to process half of the array,
and we restrict the number of threads to 8:

if (id < 8) partialSums[tid] += partialSums[t +8];
barrier (CLK _LOCAL MEM FENCE) ;

We repeat this cycle by dropping the number of executable threads by the power of two till
it reaches 1, and at that point, the final aggregated value will be in the zero" position in the
array, partialSums.

Developing the Sparse Matrix Vector Multiplication in OpenCL

Once we have our final aggregated value in the zero" position of the array partialSums,
we can write it out to its appropriate position in the array out indexed by the row we've
processed. This segmented reduction is drawn out in the following diagram:

Segmented Reduction (pairmee reductions ot allane showm)

etues e memory |3 0] 2] o] #[] 1 s[4 o[of1] 2] 3] 4[s[s[o[2]a 4] [s[s]1]a]a[s]2]a]4]
T T T T

——

e — =

vz et [6]s[of 2] o 4] &1]e]s o] o] 2] 4[s [s |02 e [+ [S]1 |a]s o af1]2]2]4]
|

walues (shared ren

oy
|'f|9|':'|2|5|4|5|1|9|1|':'|':'|1|2|3|4|5|9|':'|2|5|4|5|1|9|1|':'|':'|1|2|3|4|

valles (shared memnan

[E[=[o 2] e]+[5[+]s]1[o[o]1]2[=]4[s[s]o]z=[+]s]s |s]1 [ojafs]z]o]+]

Walues fshared memon

BRI 22| <[5[1]o]1[ofo]1[2[]+[s]o]o]2]e [+]8]s |s]s Jajofs|2[a]+]

el=]o=]=] [5[+[=[[o] 04[22 #[e]=[o]z]2 |+][+ [[s [o]o]s [2]=]+]

Lo

Understanding how to solve SpMV using

VexCL

Finally, | would like to present solving the SpMV CSR kernel using the conjugate gradient
method. We have studied this method in the beginning of this chapter and hopefully, we still
remember what it is. Let me help you by refreshing your memory of the core equations on the
CG method:

diy =1 =b—Ax,
VT}"
_ v
o= Ad,
0)

0
Xy = X+ Aoy
Ty =T ~ o Ad s
5= Tas ot

R

d(m) =Ty t ﬂ(H])d(i)

Chapter 8

So far, we have developed a pretty good idea about how to solve SpMV problems using various
ways through the SpMV ELLPACK, ELLPACK-R, and CSR formats in both scalar and vector forms,
but it took us a while to get there for sure. In this section, you will be introduced to an OpenCL
framework for solving problems, and its called VexCL. It can be downloaded from:

» VexCL main page: https://github.com/ddemidov/vexcl
» VexCL Wiki: https://github.com/ddemidov/vexcl/wiki

OpenCL has suffered, in the author's opinion, on the lack of tooling support, and VexCL is
again, in the author's opinion, one of the better wrappers around OpenCL C++ and | like to
take this section to briefly introduce you to it and you can go download it.

Getting ready

For VexCL to work with you, you will need a C++11 compliant compiler, and GNU GCC 4.6
and the Boost Libs fit the bill. On my setup, I've got the GCC 4.7 compiled with Boost List
Version 1.53 without much trouble. That means | won't list the installation instructions
as the installation process is relatively straightforward.

How to do it

The following OpenCL kernel is found in Ch8/SpMV_VexCL/SpMV. cpp:

#define VEXCL_SHOW KERNELS
// define this macro before VexCL header inclusion to view output
// kernels

#include <vexcl/vexcl.hpp>
typedef double real;
#include <iostream>
#include <vectors

#include <cstdlibs>

void gpuConjugateGradient (const std::vector<size t> &row,
const std::vector<size_t> &col,
const std::vector<reals> &val,
const std::vector<real> é&rhs,
std: :vector<real> &x) {
/*
Initialize the OpenCL context
*/
vex::Context oclCtx(vex::Filter::Type (CL _DEVICE TYPE GPU) &&
vex::Filter::DoublePrecision) ;

size t n = x.size();
vex::SpMat<real> A(oclCtx,
data());

vex: :vector<real> f (oclCtx,
vex: :vector<real> u(oclCtx,
vex: :vector<real> r (oclCtx,
vex::vector<real> p(oclCtx,
vex::vector<real> g(oclCtx,

n,

rhs) ;

Developing the Sparse Matrix Vector Multiplication in OpenCL

n,

x) ;

8B BB

)
) .
)

7
7

1

row.data (),

vex: :Reductor<real,vex: :MAX> max (oclCtx) ;

vex: :Reductor<real,vex: :SUM> sum(oclCtx) ;

/*

col.data(),

val.

Solve the equation Au = f with the "conjugate gradient" method

See http://en.wikipedia.org/wiki/Conjugate gradient method

*/
float rhol, rho2;
r =f - A * u;

for (uint iter = 0; max(fabs(r))
rhol = sum(r * r);
if (iter == 0) {
p = r;
} else {

float beta = rhol / rho2;

P = ¥ + beta * p;

}

q = A * p;

> le-8 && iter < n;

float alpha = rhol / sum(p * q);

u += alpha * p;
r -= alpha * g;
rho2 = rhol;

using namespace vex;

vex::copy(u, x); // copy the result back out

to the host

iter++) {

vector

Chapter 8

The host code basically fills the one-dimensional arrays with the required values so that

they can conform to the CSR format. After this, the device vectors are declared with their
appropriate data types and linked with their appropriate host vectors (the copying will take
place but it happens behind the scenes), and two reductors are defined (they are basically the
reduction kernels we have seen before); the reductor will only execute in the OpenCL device
using a single thread of execution, so it isn't quite the same as the parallel reduction we have
seen back then; its reduction is alright, but it is carried out in a sequential fashion.

Next, we initialized an ADT known as SpMAT which holds the representation of a sparse
matrix, and this ADT has the capability to span multiple devices, which is very desirable
property since the written code is transparent to its actual underlying computing devices.

In the background, the C++ code you have been shown will cause code generation to occur,
and that is the code that will be used, compiled, and executed again; if you like to see the
generated kernel code, simply place the C macro VEXCL_SHOW KERNELS. We finally transfer
the processed data from the device memory to the host memory using the copy function from
the vex namespace.

Developing the Bitonic
Sort with OpenCL

In this chapter, we will cover the following recipes:

» Understanding sorting networks
» Understanding bitonic sorting

» Developing bitonic sorting in OpenCL

Introduction

Sorting is one of the most important problems in computer science and the ability to sort
large amounts of data efficiently is absolutely critical. Sorting algorithms were traditionally
been implemented on CPUs and they work very well there, but on the flipside implementing
them on GPUs can be challenging. In the OpenCL programming model, we have both task
and data parallelism and getting a sorting algorithm to work on the OpenCL model can be
challenging, but mostly from the algorithm point of view, that is, how to create an algorithm
that takes advantage of the massive data and task parallelism that OpenCL offers.

Sorting methods can largely be categorized into two types: data-driven and data-independent.
Data-driven sorting algorithms execute the next step of the algorithm depending on the value of
the key under consideration, for example, the QuickSort. Data-independent sorting algorithms is
rigid from this perspective because they do not change the order of processing according to the
values of the key, so in that sense it doesn't behave like data-driven sorting algorithms. They can
be implemented in GPUs to exploit the massive data and task parallelism it offers. Hence we are
going to explore the bitonic sort, as it's a classic example of data-independent sorting algorithm
and we'll see how it can be represented by sorting networks, and eventually how they can be
implemented efficiently in OpenCL to execute on GPUs.

Developing the Bitonic Sort with OpenCL

Ken Batcher invented bitonic sort in 1968. And for n items it would
i have a size of O(nlog” n) and a depth of O(log® n).

The bitonic sort works effectively by comparing two elements at any point in time and what
this means is that it consumes two inputs and decides whether a is equal to b, a is less than
b, or a is greater than b, that is, the algorithm primarily operates on two elements, given an
input. The bitonic sort is an example of a non-adaptive sorting algorithm.

A non-adaptive sorting algorithm is the one where the sequence of
operations performed is independent of the order of the data also
known as data-independent.

To give you a more concrete idea of what non-adaptive sorting methods are like, let's create
a fictitious instruction cmpxchg, which has the semantics of comparing two elements and
exchanging them when necessary. This is how it would look if we were to implement a
compare-swap operation between two elements. In the following example, we illustrate the
fact that non-adaptive methods are equivalent to straight line programs for sorting and they
can be expressed as a list of compare-exchange operations to be performed.

cmpxchg (a[0], all1l);
cmpxchg (a 1], al2]);
cmpxchg (a[0], all1l);

For example, the preceding sequence is a straight line program for sorting three elements;
and quite often the goal of developing such an algorithm is to define for each n, a fixed
sequence of the cmpxchg operations that can sort any set of n keys. To put it in another
way, the algorithm doesn't take into account whether the data to be sorted is sorted prior
or partially sorted.

Understanding sorting networks

In the previous section, we looked at a non-adaptive sorting algorithm and what it's nature is in
its fundamental form. In this section, let's look at a model frequently used to study non-adaptive
sorting algorithms. Technical literature has called this model, the sorting network. This form of
sorting is also known as comparator networks, and is the idea behind the bitonic sort.

Sorting networks are the simplest model for this study, as they represent an abstract machine
which accesses the data only through compare-exchange operations, and it comprises of atomic
compare-exchanges also known as comparators which are wired together to implement the
capability of general sorting,.

222

Chapter 9

How to do it...

The following is an illustration for sorting four keys. By convention, we draw a sorting network
for n items as a sequence of n horizontal lines, with comparators connecting a pair of lines.
We also imagine that the keys to be sorted pass from right to left through the network,

with a pair of numbers exchanged if necessary to put the smaller on the top whenever the
comparator is encountered:

Cc B B A A A
B C C Cc Cc C
D D A B B B
A A D D D D

From the preceding diagram, you will notice that the keys move from left to right on the lines
in the network. The comparators that they encounter would exchange the keys if necessary
and continually push the smaller key towards the top of this network. An astute reader will
notice that no exchanges were done on the fourth comparator. This sorting network will sort
any permutation of four keys.

There are other sorting networks other than this and the following network also sorts the
same input as before, but it takes two more compare-exchange operations as compared to
the previous sorting network. It is interesting to study and that's why this is left as an exercise
for you to research on your own.

¢ —p——— B B B B
B —o— Cc Cc Cc Cc
D D D A A
A A A D D
B B p— A
A A — B
D —p— X Cc (o]
D —o—mm D D

223

Developing the Bitonic Sort with OpenCL

This sorting network exhibits a particular property and that is as long as the comparators do
not overlap, then we can actually conduct the compare-exchange operations in parallel. Next,
we need to understand how we can exact parallelism from this by grouping what can be done
in parallel and needs to be performed in the next stage. Here's the sorting network that is
optimal for sorting any four keys and we show the operations that can be conducted in parallel
which are broken into three stages of sorting:

‘thread-l ‘thread-| : thread-l

: ‘thread-0

thread0 o
Stage-0 Stage-| Stage-2

Although it is not the most efficient, the earlier diagram illustrates a possible parallel sorting
network for any four keys. In this parallel sorting network, we could potentially launch threads
where it will conduct the compare-exchange operations in three stages, and the result is that
the input is sorted.

M Notice that this sorting network for sorting four keys is optimal
Q from a computational point of view, as it has only to perform five
compare-exchange operations in three stages.

Understanding bitonic sorting

Previously we have discussed sorting networks and it closely relates to bitonic sorting,
because sorting networks are employed to implement non-adaptive sorting algorithms,

for example, bitonic sort. In bitonic sorting, we basically have an input (defined elsewhere)
that's a bitonic sequence. A bitonic sequence is one that monotonically increases (decreases),
reaches a single maximum (minimum), and then monotonically decreases (increases).

A sequence is considered bitonic if it can be made so by cyclically shifting the sequence.

Chapter 9

In general, we consider a few scenarios for determining whether the input is suitable for sorting
(after all processor cycles are precious and it is a good idea not to waste them doing needless
work). In fact, when we wish to sort some input based on a particular sorting algorithm, we
would always consider whether the input is already sorted based on our criteria. In the context
of bitonic sorting, we could possibly receive a bitonic sequence, and what we do for that is apply
what is known as a bitonic split sequence or an arbitrary sequence, in the case of an operation
on the input sequence and keep doing this until we reach the final sorted state.

A bitonic split is an operation on a bitonic sequence, such thatif @; > 4,,,»

% the two elements are exchanged, 1<i < n and the operation produces two
A bitonic sequences A and B, such that the elements in A are less than the
elements in B.

How to do it...

The diagram shows how two bitonic sequences (at the top of the diagram) can be conceptually
combined to a larger sequence (at the bottom of the diagram) by repeated application of this
sorting algorithm:

Ty : '1]

sequence A sequence B

v

'] Ty :

sequence C

225

Developing the Bitonic Sort with OpenCL

In the situation where we receive an arbitrary sequence, that is, unsorted and not in bitonic
order, we have to basically produce a bitonic sequence from this unsorted input and then
apply the same trick as before using the bitonic splits until we reach the final sorted state.
The following diagram illustrates how a bitonic split or merge (as it's often called) operates
on separate sequences and produces the final sorted sequence either in ascending or
descending order:

bitonic sequence A bitonic sequence B
A
bitonic split/merge | bitonic split/merge -
—————= =
bitonic sequence A bitonic sequence B

7 N

bitonic split/merge

IrTTTTH HTTHH :

v

sorted sequence

manmHH

v

In either case, we will know when to terminate if the split sizes have reached two, because
at this point, it's a comparison operation between a and b, where either a is greater than or
equal to b or b is greater than or equal to a. And it holds and depending on the sorting order,
we will place them into their appropriate position in the output.

Bitonic Sorting uses a principle created by Donald Knuth and it's known as the Knuth's
0/1 principle, which is: If a sorting algorithm that performs only element comparisons
and exchanges on all sequences of zeros and ones, and then it sorts all sequences of
arbitrary numbers.

Before we proceed to develop the bitonic sort algorithm using OpenCL, it's proper that
we only introduce it through its sequential form from which we can begin to look for
opportunities for parallelism.

226

Chapter 9

The following code snippet is from src/Ch9/BitonicSort CPU 02/BitonicSort.c and
the relevant portions of the code are shown. This implementation is a translation of Batcher's
algorithm, that for illustration purpose is a recursive one and looks like this:

void merge (int al[], int 1, int r) {

}

int i, m = (l+r)/2;
if (r == (1+1)) compareXchg(a, 1, r);
if (r < (1+2)) return;

unshuffle(a, 1, r);

merge(a, 1, m);

merge (a, m+l, 1);

shuffle(a, 1, r);

// In the original algorithm the statement was the following:
// for(i = 1+1; i < r; i+= 2) compareXchg(a, 1, i+1);

for(i = 1; 1 < r; i+= 2) compareXchg(a, i, i+1);

This recursive program works is by repeatedly splitting its original input by half and it proceeds
to sort each of the halves and merges those halves into bigger segments. This process is
continued until the segment reaches the original size. Notice that it uses two other supporting
functions to accomplish this and they're called shuffle and unshuffle. They work similarly
to the same functions in OpenCL (which isn't a wonder because the same functions in OpenCL
drew inspiration from them). Here are those functions:

void shuffle(int all], int 1, int r) {

int* aux = (int*)malloc (sizeof (int) * r);
int i, 3, m = (l+xr)/2;
for(i =1, § = 0; i <=1; i +=2, J++) {
aux[i] = all+jl;
aux[i+1] = a[m+1+3j];
}
for(i = 1; i <= r; i++) alil = aux[i];

void unshuffle(int al[], int 1, int r) {

}

int* aux = (int*)malloc(sizeof (int) * r);
int i, 3, m = (l+xr)/2;
for(i =1, § = 0; i <=1; i +=2, J++) {
aux[1+j] = alil;
aux [m+1+j] = ali+1];
}
for(i = 1; i <= r; i++) alil = aux[i];

void compareXchg(int* arr, int offsetl, int offset2) {

227

Developing the Bitonic Sort with OpenCL

if (arrloffsetl] >= arr[offset2]) {
int t = arr[offsetl];
arr [offsetl] = arr[offset2];
arr [offset2] = t;
}
}

And what they do is this: shuffling actually splits the input into halves again and picks each
element from each half and place them side-by-side until it reaches the end of both halves.
Unshuffling does exactly the opposite by removing those elements and placing them into their
original positions and for those algorithm geeks in you, you would recognize that this is the
program implementation of the top-down mergesort algorithm and belongs to the class of
algorithms that uses the divide-and-conquer approach. As a refresher, an illustration is shown
in the How it works... section of this recipe, which depicts how both shuffling and un-shuffling
works in this algorithm.

The concept of shuffling and unshuffling was explored in Chapter 4, Using OpenCL Functions
and we invite you to head back there and refresh yourself with the concepts. The following
diagram illustrates how shuffle and unshuffle (as defined before) would work given an
imaginary input: 8,12, 4,15,2,11,6,3,5,14,16,10,1,9,13, 7:

How shuffling/unshuffling works in Bitonic Sort
unshuffing
[8 |12 4[15] 2116 [3[5]14a]16]10] 1|9 [13] 7]

v
[8
. *elements are sorted in memory in-place
shuffing

[8]4]2]6]5]16]1[13[12]15]11][3[14]10] 0] 7]

228

Chapter 9

Recursive algorithms similar to the one we have just presented are good for understanding
the general flow of the algorithm, but it doesn't work well when you wish to run this algorithm
on OpenCL GPUs because recursion isn't fully supported on GPUs. Even though you were to
choose an implementation that runs on the CPU via OpenCL, it'll work but it won't be portable.

We need an iterative version of this algorithm we just discussed, and fortunately for us we can
convert this recursive algorithm to an iterative one. We will look at the following solution from
src/Ch9/BitonicSort CPU 02/BitonicSort.c

void merge iterative(int al[], int 1, int r) ({

int i, 7 , k, p, N = r -1+1;
for(p = 1; p < N; p += p)

for(k = p; k > 0; k /= 2)

for(j = k%p; j+k < N; j += (k+k))

for(i = 0; i < k; i++)
if(§j+i+k < N)
if ((§+1) / (p+p) == (F+i+k)/ (p+p))
compareXchg(a, 1l+j+i, l+j+i+k);

}

This algorithm is divided into phases indexed by the p variable. The last phase, which is when
p is N, and each phase applies the sorting and merging to segments of sizesN / 2,N / 4,
N / 8to 2E‘ When examining this code deeper by tracing the execution flow, you would notice
that it is actually computing the sorting network that accepts 32 inputs (corresponding to the
number of inputs in our input buffer), and when you read the diagram from left to right, you
will notice that it approaches solving this problem in a bottom-up manner:

" 1 1 !
S RE I8 i§
}I lll 11 11
. = l lII =
- [= [
iII 1 1 |III Ili
b] = |I =
- 1 l 1 !
! [[11 11
IR s "
L = = =

229

Developing the Bitonic Sort with OpenCL

What | meant by bottom-up approach is that figure should be read from left to right (that's
also the flow of the data through this sorting network). When you draw columns around

the first column, you'll notice that the algorithm creates segments of sizes two. Then the
second and third columns form segments of sizes 4, then the fourth, fifth, and sixth columns
form segments of size eight. They continue to form to sort/merge segments of sizes that

are a power of two up to the point where it sorts and merges all the N elements in the

input array. You will probably have realized that the algorithm doesn't create any temporary
data structures to hold temporary values and it's actually sorting in-place. The immediate
consequence of a sorting algorithm that sorts in-place is that it is memory efficient, since the
output is written into the input and doesn't create any memory storage at all. The following is
an illustration of the partition sizes that the algorithm works on while at every stage:

Bitonic Sort in stages
II . 1 1 !
5§§EII,§ IS S SE
;}:;I : = [[l Iyt 11
b _— lI 1 =
1 [[[
== = | IH i=
SELEi=m e 1y |
Ay I o I =
SEeasme b l ! !
e . = [[III III
e 11 [1 i I 1
SRR S H H

To develop our understanding of the bitonic sort and sorting networks, it is important
to understand how parallelism can be subsequently extracted from.

Developing bitonic sorting in OpenCL

In this section, we will walk through an implementation of sorting an arbitrary input by using
the bitonic sort in OpenCL which runs better on a GPU.

We recall that bitonic sorting recursively sorts elements in the input by building up sequences
and merging those into bigger sized sequences and then repeats the cycle, and the two

key operations performs it really does is to conduct: a pairwise comparison to determine

the greater/smaller of the two elements in a sequence, and merging the two sequences by
applying the bitonic sort between them.

230

Chapter 9

Getting ready

So far we have seen how we can apply the bitonic sort to bitonic sequences. The question we
need to address next is what do we do with an input that is entirely arbitrary? The answer to
that question is to make it into a bitonic sequence and then apply a series of bitonic splits/
merge. At the beginning, pairwise compare-exchange operations are conducted for elements
in the input, and at the end of this stage we have sorted segments of size two. The next stage
is to group two segments of size two and perform compare-exchange producing segments of
size four. The cycle repeats itself and the algorithm keeps creating bigger segments of size 2",

Recall from the previous section, where we saw the iterative version of the bitonic sort (the
algorithm is repeated here) which uses an array index, p, to denote the phases in which the
sort will take place and with each phase of the algorithm, the algorithm sorts and merges
segments of sizes two, four, eight, and so on. And building up on that idea, each phase of the
sort is going to be parallel. Also remember that we need to do two things:

» Build a comparator network (bitonic split/sort) that sorts two smaller bitonic
sequences into a large one, remembering the fact that sizes are powers of two.
This pairwise comparison between two elements will be conducted by a single
executing thread/work item.

» Build bitonic sequences on each half, such that one half is monotonically increasing
and the other half is monotonically decreasing.

How to do it...

Our strategy focuses on using a single executable thread performing the compare-exchange
operation, and following is the Bitonic Sort OpenCL kernel which uses this simple strategy.

The following code excerpt is taken from Ch9/BitonicSort GPU/BitonicSort.cl:

___kernel

void bitonicSort(global uint * data,
const uint stage,
const uint subStage,
const uint direction) {

uint sortIncreasing = direction;
uint threadId = get global id(0);

// Determine where to conduct the bitonic split

// by locating the middle-point of this 1D array
uint distanceBetweenPairs = 1 << (stage - subStage);
uint blockWidth = 2 * distanceBetweenPairs;

// Determine the left and right indexes to data referencing
uint leftId = (threadId % distanceBetweenPairs) +

231

Developing the Bitonic Sort with OpenCL

}

(threadId / distanceBetweenPairs) * blockWidth;
uint rightId = leftId + distanceBetweenPairs;

uint leftElement = datal[leftId];
uint rightElement = datal[rightId];

// Threads are divided into blocks of size

// 2" sameDirectionBlockWidth

// and its used to build bitonic subsequences s.t the sorting is
// monotically increasing on the left and decreasing on the right
uint sameDirectionBlockWidth = 1 << stage;

if ((threadId/sameDirectionBlockWidth) % 2 == 1)
sortIncreasing = 1 - sortIncreasing;

uint greater;
uint lesser;
// perform pairwise comparison between two elements and depending
// whether its to build the bitonic that is monotically increasing
// and decreasing.
if (leftElement > rightElement) {

greater = leftElement;

lesser = rightElement;
} else {
greater = rightElement;
lesser = leftElement;
}
if (sortIncreasing) {
input[leftId] = lesser;
input [rightId] = greater;
} else {
input[leftId] = greater;

input [rightId] = lesser;

Using the preceding OpenCL kernel code we need to build an executable, so that it can execute
on our platform. As before, the compilation will look familiar to you. On my setup with an Intel
Core i7 CPU and AMD HD6870x2 GPU running Ubuntu 12.04 LTS, the compilation looks as
follows, and it'll create an executable called BitonicSort into the working directory:

gcec -std=c99 -Wall -DUNIX -g -DDEBUG -arch i386 -o BitonicSort -framework

OpenCL

232

Chapter 9

At this point, you should have an executable deposited in that directory. All you need to do
now is to run the program, simply execute the BitonicSort program in the directory and
you should have noticed an output that resembles this:

Passed!

Execution of the Bitonic Sort took X.Xs

The algorithm starts from the basic strategy of using a thread to conduct the pairwise
comparison-exchange operation. The details is that the host code will break down the original
input into its respective phases, and for our testing purposes we have an input of 16 million
elements which works out to 24 phases. In the host code, we use the stage variable to
indicate that. Next at each phase, the algorithm will apply the bitonic split/sort and merge
segments of sizes progressively from the least power of two to the greatest power of two,
smaller or equal to the phases, for example if we are sorting for elements of size eight, then
we would sort to produce segments of size two, then four, and finally we will sort and merge
4-by-4 sequences to get eight.

In detail when the kernel starts executing, it has to start building the bitonic subsequences by
using the bitonic split. And to do that the kernel needs to know where to split the array, taking
into account the current stage of the sort and it does this with the following code:

uint distanceBetweenPairs = 1 << (stage - subStage);
uint blockWidth = 2 * distanceBetweenPairs;

// Determine the left and right indexes to data referencing
uint leftId = (threadId % distanceBetweenPairs) +
(threadId / distanceBetweenPairs) * blockWidth;

uint rightId = leftId + distanceBetweenPairs;

Next, the kernel loads the data values from the array by using the 1eftId and rightId
indices and stores them in the thread's local register memory. The next part of the algorithm
is to build bitonic sequences, such that one half is monotonically increasing and the other half
is monotonically decreasing. And we use the variable, sameDirectionBlockWidth, asa
heuristic to guide whether we are going to sort increasingly or decreasingly. The following code
does that:

uint sameDirectionBlockWidth = 1 << stage;

if ((threadId/sameDirectionBlockWidth) % 2 == 1)
sortIncreasing = 1 - sortIncreasing;

233

Developing the Bitonic Sort with OpenCL

As an example, let's assume that stage is three which implies that
sameDirectionBlockWidth is eight. The following figure demonstrates what will eventually
happen when the sortIncreasing variable flips based on the (above) computation, and
hence creates the desired effect of bitonic sequencing;:

same DirectionBlockWidth = 8

threads threads threads

[8]wo|uo|ui[uz]us[usfus| [w]u|e|[v[u|t][w]|7]| [ws|ur|us[u|wo]wl]w2]ws]
decreasing increasing decreasing
NTT‘I’ : ‘I’TTH : HTT‘I’ ;
sequence 1 | sequence 2 | sequence 3

The rest of the kernel code is concerned with the pairwise comparison-exchange operation,
which we are familiar with by now.

Another aspect of this implementation is that the algorithm is compute bound and it's
executed iteratively on the OpenCL GPU via the CPU, and the kernel is notified of which
stage it's at including its substages. This can be accomplished in the host code like this:

for(cl uint stage = 0; stage < stages; ++stage) {
clSetKernelArg (kernel, 1, sizeof(cl uint), (void*)&stage) ;

for(cl uint subStage = 0; subStage < stage +1; subStage++) {
clSetKernelArg (kernel, 2, sizeof (cl uint), (void*) &subStage) ;
cl_event exeEvt;
cl ulong executionStart, executionEnd;
error = clEngqueueNDRangeKernel (queue,
kernel,
1,
NULL,
globalThreads,
threadsPerGroup,
0,
NULL,
&exeEvt) ;
clWaitForEvents (1, &exeEvt) ;

Chapter 9

The code basically iterates over all the stages and its substages, and invokes the GPU to
work on the same input buffer notifying the kernel which stage and substage the kernel is
executing by invoking c1SetKernelArg for the appropriate parameter. And then waits until
the sorting is done in that phase before starting work on another (this is critical, otherwise
the input buffer would be corrupted). In order to make the input buffer be both readable and
writeable by the algorithm, it was created like this:

device_A in = clCreateBuffer (context,
CL_MEM READ WRITE|CL_MEM COPY HOST PTR,
LENGTH * sizeof (cl_int),
host_A in,
&error) ;

The execution of this algorithm will see the execution flow entering the host, and then leaving
for the GPU and continuing to do this until the stages run out. This process is illustrated in the
following diagram, though it cannot be scaled:

CPU vs GPU execution time graph

Time
key:

10 @ cru
T1 D eru
2 C o) () cruide
3 oD

T4 C)
T5 D

» wall clock

235

Developing the Bitonic Sort with OpenCL

We can actually apply an optimization on this kernel by employing a technique we have
understood quite well so far, and that is using the shared memory. Shared memory, as you
probably know by now, allows the developer to reduce global memory traffic since the program
does not have to repeatedly request elements from the global memory space, but instead use
what has been stored in its internal memory. Here's a refresher on how the memory model in
OpenCL looks like:

Memory Model in OpenCL
compute device | compute device |

A A
| Global / Constant Memory Data Cache

Applying the techniques we have learnt so far, we actually have one possible point in which
we can apply shared memory techniques by looking out for code that is fetching data from the
global memory. We will develop a solution using shared memory and expanding it slightly to
have our program load it in strides. We'll get into that in a short while. Let's start at a plausible
point for reworking our bitonicSort program taking into account the presence of

shared memory:

uint leftElement = data[leftId];
uint rightElement = datalrightId];

We present the following kernel that uses shared memory, we'll explain how it works,
found in Ch9/BitonicSort GPU/BitonicSort.cl:

__kernel
void bitonicSort sharedmem(global uint * data,
const uint stage,
const uint subStage,
const uint direction,
__local uint* sharedMem)
// more code omitted here

236

Chapter 9

// Copy data to shared memory on device

if (threadId == 0) {
sharedMem[threadId] = data[leftId];
sharedMem[threadId+1l] = datal[rightId];
} else {

sharedMem [threadId+1]
sharedMem [threadId+2]

data[leftId];
data[rightId];

}

barrier (CLK_LOCAL MEM FENCE) ;

// more code omitted
uint greater;
uint lesser;

if (threadId == 0) {
if (sharedMem|[threadId] > sharedMem|[threadId+1])
greater = sharedMem[threadId];

lesser = sharedMem[threadId+1];
} else {
greater = sharedMem[threadId+1];
lesser = sharedMem|[threadId];
}
} else {

if (sharedMem [threadId+1] > sharedMem|[threadId+2])
greater = sharedMem[threadId+1];
lesser = sharedMem[threadId+2];
} else {
greater = sharedMem[threadId+2];
lesser = sharedMem[threadId+1];

}

What we did basically was to introduce a variable called sharedMem and the strategy for
loading those values is simple: each thread will store two values (adjacent) in the shared
memory data store, where it will be read out in the subsequent section and all reads which
used to refer to the global memory is now conducted in the local/shared memory.

237

Developing the Bitonic Sort with OpenCL

The host code that is responsible for allocating this memory space is the following code
snippet from Ch9/BitonicSort GPU/BitonicSort.c taking into account that each
thread writes two adjacent values. And hence it requires twice the amount of memory
for a work group of 256 threads:

#ifdef USE_SHARED MEM
clSetKernelArg (kernel, 4, (GROUP_SIZE << 1) *sizeof(cl uint),NULL) ;
#endif

And to see it in action you can compile the program like this (invoking gcc directly):

gcc -DUSE_SHARED MEM -Wall -std=c99 -1OpenCL ./BitonicSort.c -o
BitonicSort GPU

This deposits the BitonicSort GPU program into that directory; another way is to invoke
cmake at the root of this code base like this:

cmake —DUSE_SHARED_MEM:l -DDEBUG .
And navigate to Ch9/BitonicSort_ GPU/ and invoke make like this:
make clean;make

The following is a diagram of how the writes to the shared memory are done with respect to the
scheme we just described. Remember that all subsequent reads is through sharedMem instead
of the global memory traffic, which means that a significant amount of bandwidth is saved:

How shared memory is written

thread-O thread-1 thread-2 thread-3 thread-4 thread-5 thread-6 thread-7
N N N N IN IN IN N

[N [N [N [N [N [N [N [N

\

\
\
\

1
i AN i i i i AN i
vV 4 VvV 4 VvV 4 VvV 4 VvV 4 VvV 4 VvV 4 Vv A
sharedMem | kO [vO | k1 | vl | k2 | v2 | k8 [V3 | k4 | vA | k5 | vB | k6 | v6 | k7 | k7

We can explore the algorithm a little further by examining the original kernel, bitonicSort,
where the last part of the algorithm involves essentially a comparison-exchange operation
before writing that result back out to global memory. In this situation, we can extrapolate the
shared memory concept further by applying it again and our strategy is rather simple here: we
have each executing thread writing two pairs, where each pair is this [(keykﬁ‘”.gh,,d:value,m,‘g,.mm) 1,
and referenced by a key and a value. And in our algorithm the key refers to the output index
(thatis, 1eftId, rightId)and the value refers to the sorted value (that is, lesser, greater)
that will reside at that key. The following diagram illustrates how each thread would have written
the two pairs into the aux shared memory, and how they could be laid out in memory:

238

Chapter 9

How shared memory is written with a striding factor of 4

thread-0 thread-1 thread-2 thread-3
AN AN AN AN
I So I So I So I So
I ~o I ~o I ~o I ~o
! ‘\\ ! ‘\\ ! ‘\\ ! ‘\\
v AV A v AV A
aux [kO | vO [k1 | vl | k2 | v2 | k3 [Vv3 | k4 [v4d | kKb [vD | k6 | v6 | k7 | K7

The following kernel modifications are found at Ch9/BitonicSort GPU/BitonicSort.cl
in the kernel named bitonicSort sharedmem 2. We will look at the portions where
the changes were different relative to the bitonicSort sharedmem kernel:

// Each thread will write the data elements to its own
// partition of the shared storage without conflicts.
const uint stride = 4;
if (sortIncreasing) {

aux [threadId*stride] = leftId;

aux [threadId*stride+1] = lesser;
aux [threadId*stride+2] = rightId;
aux [threadId*stride+3] = greater;
} else {

aux [threadId*stride] = leftId;
aux [threadId*stride+1] = greater;
aux [threadId*stride+2] = rightId;
aux [threadId*stride+3] = lesser;

}

barrier (CLK _LOCAL MEM FENCE) ;

if (threadIld == 0) {
for(int i = 0; i < GROUP_SIZE * stride; ++i) ({
data[aux[i*stride]] = aux[i*stride+1];
data[aux[i*stride+2]] = aux[i*stride+3];

}

The final section of the kernel illustrates how we allow only one executing thread, that is,
the thread with ID zero, from each work group to conduct the actual write back to global
memory from the shared memory, aux. Do note that the memory fence is necessary, since
the memory in aux may not have been filled by the time the thread with ID zero has begun
execution. Therefore, it's placed there to ensure memory coherency.

239

10

Developing the Radix
Sort with OpenCL

In this chapter, we are going to explore the following recipes:

» Understanding the Radix sort

» Understanding the MSD and LSD Radix sorts
» Understanding reduction

» Developing the Radix sort in OpenCL

Introduction

In the previous chapter, we learned about developing the Bitonic sort using OpenCL.
In this chapter, we are going to explore how to develop the Radix sort with OpenCL.
Radix sorting is also known as bucket sorting, and we'll see why later on.

. The first Radix sort algorithms came from a machine called the Hollerith
a machine that was used in 1890 to tabulate the United States census,
s and though it may not be quite as famous as the machine created by
Charles Babbage, it does have its place in computing history.

Developing the Radix Sort with OpenCL

Understanding the Radix sort

The Radix sort is not a comparison-based sorting algorithm, and it has a few qualities that
make it more suitable to parallel computation, especially on vector processors such as GPU
and modern CPUs.

| am somewhat reluctant to use the term modern since processor

technology has evolved so quickly over time that the use of this word
g somehow seems dated.

The way the Radix sort works is rather interesting when you compare it with the comparison-
based sorting algorithms such as quicksort; the main difference between them is how they
process the keys of the input data. The Radix sort does this by breaking down a key into
smaller sequences of sub-keys, if you will, and sorts these sub-keys one by one.

Numbers can be translated in binary and can be viewed as a sequence of bits; the same
analogy can be drawn from strings where they are sequences of characters. The Radix sort,
when applied to such keys, does not compare the individual keys, but rather it works on
processing and comparing pieces of those keys.

Radix sort algorithms treat the keys like numbers in a base-R number system. R is known
as the radix, hence the given name of this algorithm. Different values of R can be applied
to different types of sorting. Examples could be:

» R =256 would be sorting strings where each character is an 8-bit ASCII value

» R =65536 would be sorting Unicode strings where each character is a 16-bit
Unicode value

» R =2 would be sorting binary numbers

How to do it...

At this point, let's examine an example to see how the Radix sort would sort the numbers
44565, 23441, 16482, 98789, and 56732, assuming that each number is a five-digit
number laid out in memory in contiguous locations

44565 23441 16482 98789 56732

We are going to extract each digit in a right-to-left fashion examining the least significant digit
first. Therefore, we have the following:

E 1 2 9 2

242

Chapter 10

Let's assume we apply counting sort to this array of numbers and it becomes the following:

This translates to the following order. Take note that the sorting is stable:

23441 16482 56732 44565 98789

Next, we shift to the left by one digit. Notice that now the array of numbers is:

4 8 3 6 8

Applying the counting sort again and translating it back to the order of the numbers,
we have:

56732 23441 16482 98789 44565

For the 1000™ digit we have:

23441 16482 56732 98789 44565

For the 10,000" digit we have:

23441 44565 16482 56732 98789

For the 100,000™ digit we have:

16482 23441 44565 56732 98789

Voila! Radix sorting sorted the array of five-digit numbers. We should note that the sort
is stable.

243

Developing the Radix Sort with OpenCL

Stable sorting refers to the capability of the algorithm to be able to
maintain the relative order between any two elements with equal keys.

. Letusassumethatan array, int al[5], of the values 1, 2, 3, 4, 9, and
% 2, through some sorting algorithm, X, will sort the elementsto 1, 2, 2, 3,
s 4, and 9. The point here is that the two equal values we saw, which are
both the number 2, occur at positions 1 and 5 (assuming arrays are zero
indexed). Then, through X, the sorted list will be such thata [1] is always

before a [5].

There are actually two basic approaches to Radix sorting. We have seen one approach in
which we examine the least-significant digit and sort it. This is commonly referred to as LSD
Radix sorting since we work our way from right to left. The other approach would be to work
from left to right.

The key consideration in Radix sorting is the concept of the key. Depending on the context,
a key may be a word or a string, and each of them would be of fixed length or variable length.

Understanding the MSD and LSD Radix sorts

Let us take some time to understand how the MSD Radix sort and the LSD Radix sort work
before we start working on developing the equivalent on OpenCL.

How to do it...

The Radix sort assumes that we wish to sort Radix-R numbers by considering the most
significant digit first. For this to happen, we can partition the input into R rather than just
two, and we have actually seen this done before. This is data binning, but it extends that with
the counting sort. A Radix sort can be run on ASCII characters, Unicode characters, integer
numbers (32-bit / 64-bit), or floating-point numbers (sorting floating-point numbers is tricky).
You need to figure out what constitutes a key. Keys can be thought of as 8-bit keys, 16-bit
keys, and so on, and we know by now that Radix sorts require repeated iterations to extract
the keys and sort and bin them based on base R.

In the following code snippet, we have an MSD Radix sort that sorts the characters in a given
string in the programming language C, and the radix we use is 256 (the maximum value of an
unsigned 8-bit number, otherwise a signed 8-bit would be -128 to 127):

#define N // integers to be sorted with values from 0 - 256
void MSD(char[] s) {
msd_sort (s, 0, len(s), 0);
}
void msd_sort (char[] [] s, int lhs, int rhs, int 4) ({
if (rhs <= 1lhs + 1) return;
int* count = (int*)malloc (257 *sizeof (int)) ;

Chapter 10

for(int 1 = 0; 1 < N; ++1)
count [s[i] [d]+1]++;
for(int k = 1; k < 256; ++k)
count [k] += count[k-1];
for(int j = 0; j < N; ++3)
temp [count [s[1] [d]]++] = alil;
for(int 1 = 0; 1 < N; ++1)
s[i] = templ[i];
for(int i = 0; i<255;++1)
msd_sort(s, 1 + count[i], 1 + count[i+1], d+1);
!

The second approach in Radix sorting scans the input from right to left and examines each
element by applying a similar operation as in an MSD Radix sort. This is known as the Least
Significant Digit (LSD) Radix sort. LSD Radix sorting works because when any two elements
differ, the sorting will place them in the proper relative order, and even when these two elements
differ, the fact that LSD exhibits stable sorting means that their relative order is still maintained.
Let's take a look at how it would work for sorting three character strings:

LSD radix sort on 3-character strings
dla|b dla|b dla|b alc|e
a|d|d cla|d clalb afd|d
clal|b elb|b flal|b bla|d
flald ald|d bfa|d ble|e
fle|e flald dla|d ble|e
bla|d bja|d e|lb|b clal|b
dlald dla|d ajc|e dfa|b
ble|e fleld ald|d dla|d
fleld ble|d fle|d elbl|b
ble|d flele ble|e flal|b
e|b|b ble|e flel|e fleld
alcle alc|e blel|e flele

sor‘cT key s,ortT key sortTkey

A typical LSD Radix sort for sorting characters in a given string might look like the following
code (assuming all keys have a fixed width; let's call it W):

void 1lsd_sort (char([] [] a) {
int N = len(a);

int W = len(al[0]);

for(int d = W - 1; d >= 0; d--) {
int [] count = (int*) malloc(sizeof (int) * 256) ;
for(int i = 0; i< N; ++1)

count [a[i] [d]l+1]++;
for(int k = 1; k < 256; k++)

count [k] += count [k-1];
for(int i = 0; i< N; ++1)

245

Developing the Radix Sort with OpenCL

temp [count [a[i] [d]]++] = alil;
for(int i= 0; i< N; ++1)
ali]l = templil;

}

Both approaches are similar as they both bin the characters into R bins, that is, 256 bins, and
they also use the idea of the counting sort to work out where the final sorting arrangement is
going to be using a temporary storage, temp, and then use that temporary storage and move
the data to their sorted places. The nice thing about MSD over LSD Radix sorts is that MSD may
not examine all of the keys and works for variable-length keys; although, in that lies another
problem—MSD can experience sub-linear sorts; in practice LSD is generally preferred when the
size of the key is fixed.

The runtime of an LSD Radix sort is O(n) when compared to the runtimes of other sorting
algorithms that are based on the divide-conquer approach, which generally have a runtime
of O(nlog2 n) you might be tempted to conclude that Radix sorting would be faster than
comparison-based sorts like quicksort, and you could be right. But, in practice, a well-tuned
quicksort can outperform a Radix sort by 24 percent by applying more advanced techniques
to improve cache friendliness during the execution. However, technology is constantly
evolving, and researchers and engineers will find opportunities to maximize the performance.

M You may wish to read the papers The influence of cache on sorting by
Q LaMarca and Adapting Radix Sort to the memory hierarchy by Rahman
and Raman for more algorithmic improvements that they have worked on.

246

Chapter 10

Understanding reduction

Radix sorting employs two techniques: reduction and scan. These are classified as data
collection patterns as they occur frequently in parallel computing. This recipe will focus on
reduction, which allows data to be condensed to a single element using associative binary
operators. The scan pattern can be easily mistaken for the reduction pattern and the key
difference is that this pattern reduces every subsequence of a collection up to every position
in the input. We'll defer the discussion of scans until we get to the next section.

In the reduction pattern, we typically have an associative binary operator, f(a,b) = (a® b)
that we use to collate all elements in a container in a pair-wise fashion. The fact that we need
an associative binary operator is an important one, because it implies that the developer can
reorganize the combination function to check if it performs efficiently; we'll go into that a

little later. Let's take a look at a serial algorithm for conducting reduction in the following
code snippet:

template<typename T>
T reduce(T (*f) (T, T),
size t n,
T all,
T identity) {
T accumulator = identity;
for(size t i = 0; i < n ; ++1)
accumulator = f (accumulator, alil);
return accumulator;

}

The algorithm basically takes an associative binary operator, £ (that is, a pointer to a
function), and an array a, of length n and computes the operation (((identify ®4,)®a,)®a,)...®4, |
over the array with an initial value identified by identity.

An associative binary operator can allow the developer to extract parallelism from it because
associativity means that the operator would produce the same result regardless of the order
in which it is applied to the elements. That is to say:

((((identi]ﬁz@ao)@a,)®a2)....®an_1)

The previous expression is equivalent to:

(((ao ®al)®(a2 ®a3))®....®((an74 ®an73)®(an72 ®an71)))

247

Developing the Radix Sort with OpenCL

Putting on the many core hat, we can actually imagine a tree of computations in which the
sub-trees represent the computation of the form((4, ®a,)®(a, ®a,)). The first sweep would
compute the result of this sub-tree while the second sweep would collate the results of the
other sub-trees. This will be evident once you have had a chance to examine them visually
in the next two diagrams:

feris] | [| [|]

N
]

(((identity ® a,) ®a,)® a,)...®a,_,) v

J A
1

It will be very useful for you to contrast the manner in which these diagrams differ. One of the
ways is that the former implies a sequence of operations in traversal order, and this is very
different from the latter (as shown in the following diagram):

e]] | [[[1 |

NN

(4, ®a)®(a,®a))®...8((a, ,®a,;)®(a,,®a,)))
A 4

[]

248

Chapter 10

It's great news to know that associative operators allow the reduction to be parallelized, but
it's not the entire story, because associativity only allows us to group the operations and

does not reveal to us whether these groups of binary operations need to occur in a specific
order. If you are wondering whether we are talking about commutativity, you are spot on!
Commutativity gives us the important property of changing the order of application. We know
that some operations exhibit one of these while others exhibit both; for example, we know that
addition and multiplication of numbers is both associative and commutative. The following is
what a commutative parallel reduction might look like:

lgensy] | | | [[[|
L —]

v /‘u//ié/
stride=4

v v
stride=2

v K
stride=1

commutative parallel reduction

Now, seeing this information, you might wonder how this can be translated into OpenCL.
We are going to demonstrate a few reductions kernels in this recipe where each one will
provide you with an improvement over the previous one.

How to do it...

For this recipe, we are going to assume that we have a large array of a few million elements
and that we like to apply the reduction algorithm to compute the sum of all elements. The first
thing to do is produce a parallel algorithm for the serial version we saw earlier. All the kernels
we are demonstrating are in Ch10/Reduction/reduction.cl.

In the serial version of the algorithm, you would have noticed that we simply pass the
accumulator into the binary function to perform the operation. However, we cannot use this
method in the GPU since it cannot support tens of thousands of executing threads and also
the device can contain many more processors than an x86 CPU has. The only solution is to
partition the data across the processors so that each block processes a portion of the input,
and when all of the processors are executing in parallel, we should expect the work to be
completed in a short span of time.

249

Developing the Radix Sort with OpenCL

Assuming that a block has computed its summed value, we still need a way to collate all
those partial sums from all blocks, and considering that OpenCL does not have a global
synchronization primitive or API, we have two options: have OpenCL collate the partial sums
or have the host code collate the partial sums; for our examples, the second option is chosen.

The first kernel, reduce0, is a direct translation of the serial algorithm:

__kernel void reduceO(_ global uint* input,
__global uint* output,
__local uint* sdata) {
unsigned int tid = get local_ 1id(0);
unsigned int bid = get group_1id(0);
unsigned int gid = get global id(0);
unsigned int blockSize = get local size(0);

sdata[tid] = input[gid];

barrier (CLK_LOCAL MEM_FENCE) ;
for (unsigned int s = 1; s < BLOCK SIZE; s <<= 1) {
// This has a slight problem, the %-operator is rather slow

// and causes divergence within the wavefront as not all
threads

// within the wavefront is executing.
if (tid % (2*s) == 0)
{

sdata[tid] += sdataltid + s];

}

barrier (CLK_LOCAL MEM_FENCE) ;

// write result for this block to global mem
if (tid == 0) output[bid] = sdatal0];

}

This kernel block would load the elements to its shared memory, sdata, and we conduct the
reduction in sdata in various stages governed by the for loop, allowing work items with IDs
that are multiples of two to perform the pair-wise reduction. Therefore, in the first iteration of
the loop, work items with IDs {0, 2, 4, 6, 8, 10, 12, 14, ..., 254} would execute, in the second
iteration, only work items with IDs {0, 4, 8, 12, 252} would execute, and so on. Following the
reduction algorithm, the partial sum would be deposited into sdata [0]1, and finally this value
would be copied out by one thread which happens to have an ID value equal to 0. Admittedly,
this kernel is pretty good but it suffers from two problems: the modulus operator takes a
longer time to execute and wavefronts are diverged. The larger issue here is the problem of

250

Chapter 10

wavefront divergence since it means that some work items in the wavefronts are executing
while some are not, and in this case, the work items with odd IDs are not executing while
those with even IDs are, GPUs deal with this problem by implementing predication, and this
means that all work items in the following code snippet actually get executed. However,

the predication unit on the GPU will apply a mask so that only those work items whose IDs
matched the condition, if (tid % (2*s) == 0), will execute the statementin the if
statement, while those work items who fail the condition, false, would invalidate their
results. Obviously, this is a waste of computing resources:

if (tid % (2*s) == 0)
{
sdata[tid] += sdataltid + s];

}
Fortunately, this can be solved with little effort, and the next kernel code demonstrates this:

__kernel void reducel(_ global uint* input,
__global uint* output,
__local uint* sdata) {
unsigned int tid = get local_ 1id(0);
unsigned int bid = get group_1id(0);
unsigned int gid = get global id(0);
unsigned int blockSize = get local size(0);

sdata[tid] = input[gid];

barrier (CLK_LOCAL MEM_FENCE) ;
for (unsigned int s = 1; s < BLOCK SIZE; s <<= 1) {
int index = 2 * g * tid;
if (index < BLOCK SIZE)
{
sdata[index] += sdatalindex + s];

}

barrier (CLK_LOCAL MEM_FENCE) ;

// write result for this block to global mem
if (tid == 0) output[bid] = sdatal0];

}

We replaced the conditional evaluation after the modulus operator has been applied to
something more palatable. The appetizing portion is the fact that we no longer have diverging
wavefronts, and we have also made strided accesses to the shared memory.

251

Developing the Radix Sort with OpenCL

So far, we have seen how we can apply our understanding of associativity to build the
reduction kernel and also how to make use of our new understanding of commutativity in

the reduction process. The commutative reduction tree is actually better than the associative
reduction tree because it makes better use of the shared memory by compacting the reduced
values and hence raising efficiency; the following kernel, reduce2, reflects this:

__kernel void reduce2(_global uint* input,
__global uint* output,
__local uint* sdata) ({
unsigned int tid = get_local_id(0);
unsigned int bid = get_group_id(0);
unsigned int gid = get_global id(0) ;
unsigned int blockSize = get_local size(0);

sdata[tid] = input[gid];

barrier (CLK_LOCAL MEM_FENCE) ;
for (unsigned int s = BLOCK SIZE/2; s > 0 ; s >>= 1) {
// Notice that half of threads are already idle on first
iteration
// and with each iteration, its halved again. Work efficiency
isn't very good
// now
if(tid < s)

{
}

barrier (CLK_LOCAL MEM_FENCE) ;

sdata[tid] += sdataltid + s];

// write result for this block to global mem
if (tid == 0) output[bid] = sdatal0];

}

However, this isn't very good because now during the first iteration, we have already made
half of those work items idle and efficiency is definitely affected. Fortunately, however, the
remedy is simple. We reduce half the number of blocks and during the hydration of the
shared memory, we load two elements and store the sum of these two elements instead of
just loading values from global memory and storing them into shared memory. The kernel,
reduce3, reflects this:

_ _kernel void reduce3(__global uint* input,
__global uint* output,

252

Chapter 10

__local uint* sdata) ({
unsigned int tid = get local id(0);
unsigned int bid = get group id(0);
unsigned int gid = get global id(0);

// To mitigate the problem of idling threads in 'reduce2' kernel,
// we can halve the number of blocks while each work-item loads
// two elements instead of one into shared memory

unsigned int index = bid* (BLOCK SIZE*2) + tid;

sdata[tid] = input[index] + input [index+BLOCK SIZE] ;

barrier (CLK _LOCAL MEM FENCE) ;
for (unsigned int s = BLOCK SIZE/2; s > 0 ; s >>= 1) {
// Notice that half of threads are already idle on first

iteration

// and with each iteration, its halved again. Work efficiency

isn't very good

}

// now
if (tid < s)
{
sdata[tid] += sdatal[tid + s];

}

barrier (CLK_LOCAL MEM FENCE) ;

// write result for this block to global mem
if (tid == 0) output[bid] = sdatal0];

Now, things are starting to look much better and we've used what we call reversed loop

(which is basically counting backwards) to get rid of the problem of divergent wavefronts;

in the meantime, we have also not reduced our capacity to reduce elements because we've
performed that while hydrating the shared memory. The question is whether there's more we
can do? Actually, there is another idea we can qualify and that is to take advantage of atomicity
of wavefronts or warps executing on GPUs. The next kernel, reduce4, demonstrates how we
utilized wavefront programming to reduce blocks atomically:

__kernel void reduce4(_ global uint* input,

__global uint* output,

__local uint* sdata) ({
unsigned int tid = get local id(0);
unsigned int bid = get group id(0);
unsigned int gid = get global id(0);
unsigned int blockSize = get local size(0);

253

Developing the Radix Sort with OpenCL

unsigned int index = bid* (BLOCK SIZE*2) + tid;
sdata[tid] = input[index] + input [index+BLOCK SIZE] ;

barrier (CLK _LOCAL MEM FENCE) ;
for (unsigned int s = BLOCK SIZE/2; s > 64 ; s >>= 1) {
// Unrolling the last wavefront and we cut 7 iterations of
this
// for-loop while we practice wavefront-programming
if (tid < s)
{

sdata[tid] += sdatal[tid + s];

}

barrier (CLK_LOCAL MEM FENCE) ;

if (tid < 64) {

if (blockSize >= 128) sdatal[tid] += sdatal[tid + 64];
if (blockSize >= 64) sdatal[tid] += sdatal[tid + 32];
if (blockSize >= 32) sdatal[tid] += sdatal[tid + 16];
if (blockSize >= 16) sdatal[tid] += sdata[tid + 8];
if (blockSize >= 8) sdatal[tid] += sdataltid + 4];
if (blockSize >= 4) sdatal[tid] += sdatal[tid + 2];
if (blockSize >= 2) sdatal[tid] += sdatal[tid + 1];

}

// write result for this block to global mem
if (tid == 0) output[bid] = sdatal0];

}

In the code block demarcated by the statement if (tid < 64), we no longer need to
place the memory barriers because the code block only hosts one wavefront which executes

atomically in the lock step.

Developing the Radix sort in OpenCL

From this section onwards, we are going to develop this sorting method for OpenCL. We are
going to do two things: implement the parallel Radix sort described in the paper that Marco
Zagha and Guy E. Blelloch wrote in 1991 titled Radix Sort for Vector Multiprocessors. The
former algorithm was crafted for the CRAY Y-MP computer (which, in turn, was adapted from
the parallel Radix sort algorithm that worked on the Connection Machine (CM-2)).

Chapter 10

Getting ready

Radix sorting attempts to treat keys as multi-digit numbers, where each digit is an integer
depending on the size of the Radix, R. An example would be sorting a large array of 32-bit
numbers. We can see that each such number is made up of four bytes (each byte is 8-bits
on today's CPU and GPU processors), and if we decide to assume that each digit would be
8-bits, we naturally would treat a 32-bit number as comprised of four digits. This notion is
most natural when you apply the concept back to a string of words, treating each word as
comprising of more than one character.

The original algorithm worded in the 1999 paper basically uses the counting sort algorithm
and it has three main components which will in turn sort the input by iterating all three
components until the job is done. The pseudo code, which is a serial algorithm, is presented
as follows:

COUNTING-SORT
HISTOGRAM-KEYS
do i =0 to 2" -1
Bucket [i] = 0
doi=0¢toNS-1
Bucket [D[]j]] = Bucket[DI[j]] + 1
SCAN-BUCKETS
Sum = 0
doi=0to2 -1
Val = Bucket[i]
Bucket [1] = Sum
Sum = Sum + Val
RANK-AND-PERMUTE
do j =0toN-1
A = Bucket[DI[]j]]
R[A] = KI[]]
Bucket [D[]j]] = A + 1

The algorithm HISTOGRAM-KEYS is something that we have already encountered a few
chapters ago, and it is really the histogram. This algorithm computes the distribution of the
keys that it encounters during the sort. This algorithm is expressed in a serial fashion, that is,
it is supposed to run on a single executing thread; we have already learned how to parallelize
that and you can apply those techniques here. However, what we are going to do now deviates
from what you have seen in that previous chapter, and we'll reveal that soon enough.

The next algorithm is SCAN-BUCKETS, and it is named as such because it actually scans the
entire histogram to compute the prefix sums (we'll examine prefix sums in fair detail later). In
this scan operation, Bucket [i] contains the number of digits with a value, j, such that j is
greater than i, and this value is also the position, that is, the array index in the output.

255

Developing the Radix Sort with OpenCL

The final algorithm is RANK-AND-PERMUTE, and each key with a digit of value of i is placed
in its final location by getting the offset from Bucket [1] and incrementing the bucket so that
the next key with the same value i gets placed in the next location. You should also notice
that COUNTING SORT is stable.

Before we dive into parallelization of the algorithms and how they work in a cohesive manner,
it's important to take the next few paragraphs to understand what prefix sums are; the next
paragraph highlights why they matter in Radix sorts.

In the previous sections, we introduced MSD and LSD Radix sorts and the prefix sums
computation is embedded in the code. However, we didn't flag it out for you then. So, now's the
time and the following is the code (taken from the previous 1sd_sort and msd_sort sections):

for(int k = 1; k < 256; k++)
count [k] += count [k-1];

If you recall how MSD/LSD works, we basically create a histogram of the values we have
encountered and, at each stage of the sorting, we compute the prefix sums so that the
algorithm can know where to place the output in a sorted order. If you are still doubtful,
you should stop now and flip back to that section and work through the LSD sorting for
strings of three characters.

The prefix sums is actually a generalization of the global sum, and its

original formulation goes something like the following;:

The prefix sum operation takes a binary associative operator ®, and

an ordered set of n elements, [ao,al,...,an,l], and returns the ordered set
[ao,(ao ®q,),(a,®a ®a,),....(a, ®al...®a”_l)] .

A

We use a concrete example like taking a summation over an arbitrary array like [39, 23,
44, 15, 86].Using the addition operator, the output would be [39, 62, 108, 125,
2111, and it is not obvious why this sort of computation is important or is even needed.

In fact it is not even clear whether there is a direct way to parallelize this algorithm because
of dependencies that each subsequent computation relies on the previous.

A sequential version of the prefix sums which has a runtime of 0(n) can be expressed as
follows, assuming there are two arrays in_arr and out_arr, and out_arr is designed
to contain the prefix sums for in_arr:

sum = 0
out_arr[0] = 0
do i = 0 to lengthOf (in_arr)

t = in_arr[i+1]
sum = sum + t
out_arr[i] = sum

256

Chapter 10

To extract parallelism from this, we need to adjust the way we view the arbitrary array of
input values, and the adjustment we are talking about is actually imagining the array to be
consumed by a tree of computations. Let's go on a little further to see why.

At this point, we think it's important to step back into history and see who came up with the
original prefix sum computation. As far as | am aware, two researchers in 1986, Daniel Hillis
and Guy L. Steele, presented a version of the prefix sum as part of an article titled Data
Parallel Algorithms in the ACM (Association for Computing Machinery) magazine, and the
algorithm they presented worked as follows (cited as such in that article):

for j = 1 to log,n do
for all k in parallel do
if (k >= 23) then
x[k] = x[k - 2311 + x[k]
fi
endfor
endfor

The following diagram (courtesy of Mark Harris from the NVIDIA Corporation), pictorially
illustrates what the Hillis and Steele algorithm does. It starts at the level where all eight
elements are looked upon as leaves of the binary tree and proceeds to work its way through
computing the partial sums. Each level of the computation, 4, will compute partial sums
based on the previous level's computation. An assumption found in the algorithm is that it
assumes that there are as many processors as there are elements and this is demonstrated
by the conditional statement in the algorithm, if (k >= 27j).Another problem it has got is
that it's not very efficient; it has a runtime complexity of O(nlog, n), and you will recall that our
sequential scan runs at 0(n), so it is definitely slower.

Z(%0-%o) [Z(%o-X) | Z(%,-X,) [2 (%%,) [Z(%5e%,) [Z (X4 X5)| 2(%5-X6) | Z(%6-%5)

257

Developing the Radix Sort with OpenCL

However, Guy Blelloch found ways to improve this, and they are based on the idea of building
a balanced binary tree and building out that tree by performing addition on each node
(conceptually speaking). Because such a tree with n leaves (which is corresponding to the
number of elements in the array) would have d = log, n levels and each level has 27 nodes,
the runtime complexity is O(»). The following diagram is an illustration of how a balanced
binary tree can compute the array of arbitrary values:

Array 12 3 41 31 8 16 7 6

The previous diagram created juxtaposition, and it alters the way the same piece of data
you saw, that is, one dimensional flat array containing arbitrary values. Imagine a tree of
computations that scans and operates on two values. One way of storing those partial
sums is to write the value in place to the array and another way is to use shared memory
on the device.

The astute reader in you would notice that we can probably parallelize the computation at
each level of the tree by allowing one thread to read two elements, sum them up, and write
them back into the array, and then you just read off the last element of that array for the final
sum. This algorithm that we just described is known as a reduction kernel or an up-sweep
kernel (since we are sweeping values up to the root of the tree), and we have seen how it
works in the chapter where we discussed about sparse matrix computations in OpenCL.

The following is the more formal definition of the reduction phase by Guy Blelloch when

it's applied to a balanced binary tree with depth lg#n:

for d from 0 to (log, n) - 1
in parallel for i from 0 to n - 1 by 2%
array[i + 2% - 1] = arrayl[i + 2¢ - 1] + array[i + 2% - 1]

258

Chapter 10

You might think that this up-sweep kernel still doesn't compute the prefix sums, but we do
appear to have found a solution to solving summation in parallel; at this point, the following
diagram will help us learn what actually goes on during a run of the up-sweep, and we find it
helpful to flatten the loop a little to examine its memory access pattern.

Assuming we have eight elements in our array (thatis, n = 8), our tree would have a depth of
3 and d would range from 0 to 2. Imagining that we are atd = 0, through to 2 we would have
the following expressions:

d=0=>1= [0..7,2] arrayl[i + 1] = arrayl[i]l + arrayl[i + 1]
d=1-=>1= [0..7,4] arrayl[i + 3] = arrayl[i + 1] + arrayl[i + 3]
d=2=>1= [0..7,8] arrayl[i + 7] = arrayl[i + 3] + arrayl[i + 7]

The next diagram best explains the evaluation of the preceding expressions, and a picture
does reveal more about the story than plain equations:

o Z(xp-x,) 2 Z(xpx5) X4 Z(x4-X5) e Z(x-x7)

X 2 (xp-%,) X, | X(x-Xy)| Ka o |X(xgxs)| xs N (XgeX,)

X, 2 (Xo-X,) X, Y (x,.x;) Xy Y (x4-X5) X6 > (x4-X5)

N R B B

X, X, X, X X, X5 X X,

From this diagram, we can observe that partial sums are built up at each level of the tree and
one of the efficiencies introduced here is not repeating any addition, that is, no redundancies.
Let's demonstrate how this would work for an array of eight elements, and we will also employ
the up-sweep algorithm.

259

Developing the Radix Sort with OpenCL

The following diagram illustrates the writes that occurred at each level of the tree we're
scanning; in that diagram, the boxes colored blue represent the partial sums that were
built up at each level of the tree, and the red box represents the final summed value:

Array 12| 3 |41 |31|8 |16]| 7 | 6
stage-0 |12 | 45 | 41 | 72 | 8 | 24 | 7 | 13
stage-1 | 12 | 15 | 41 | 87 | 8 | 24 | 7 | 37
stage-2 | 12 |12 | 41 | 87 | 8 | 24 | 7 |124

To be able to compute the prefix sums from the up-sweep phase we need to proceed from
the root of this tree and perform a down-sweep using this algorithm by Guy Blelloch:

x[n-1]=0
for d = log, n - 1 to 0 do
for all k = 0 ton - 1 by 2%' in parallel do
temp = x[k + 29 - 1]

x[k + 29 - 1] = x[k + 2% - 1]
x[k + 2%t - 1] = temp + x[k + 2% - 1]
endfor
endfor

260

Chapter 10

This down-sweep works its way down from the top (or root) of the tree after the reduce phase
and builds the prefix sums. Let's flatten the loop to examine its memory access pattern.

As before with the up-sweep, let's assume that we have eight elements (thatis,n = 8);
we would have a depth of 3, and that implies d would range from 0 to 2. The following are
the flattened expressions:

d=2=>%k = [0..7,8]

temp = x[k + 3]

x[k + 3] x[k + 7]

x[k + 7] = temp + x[k + 7]
d=1-=>%k = [0..7,4]

temp = x[k + 1]

x[k + 1] x[k + 3]

x[k + 3] = temp + k[x + 3]
d=0-=>k = [0..7,2]

temp = x[k]

x[k] = x[k + 1]

x[k + 1] = temp + x[k + 1]

The following diagram best expresses how the prefix sums are computed from the
reduce/up-sweep phase:

Xq N (xp-X,) X, | Z(xeX3)| Xe |X(x.x)| xe Y(Xo-X,)

Zero

v

X, 2 (Xo-X,) X, > (Xo-X3) Xy | 2(x4.x5)| Xe 0

d=0 - — v
%o Z(xo-%y) X2 0 = 2 (x,.%5) 2L 2 (%o-%;)

d=1 \v v
X, 0 X, S(xpx)| X [Z(xpeXp)| xe > (xg-X5)

d=2 N 4 v N 4 \v
0 X, S (%p-X)) | Z(X0-%;) [Z(%geX5) [T (%X,) [Z(Xo-X5) | X (%0-X4)

261

Developing the Radix Sort with OpenCL

Let us concretize these ideas by looking at how the down-sweep phase would proceed after
the reduce/up-sweep phase using the following diagram; the input array is the original
array, and we have kept it there for you to verify that the prefix sum computation according to
the previous algorithm is correct. The lower portion of the diagram illustrates how memory is
accessed. Keep in mind that updates are done in place, and when you combine the diagrams
of the up-sweep and down-sweep phases, you'll notice that we make two passes over the
original input array to arrive at the solution of prefix sums, which is what we wanted:

input| 0 |12|15|56|87|85|111|118|

clearxn-11 | 12 | 15 | 41 | 87 8 24 7 0

d=2 12 | 15 | 41 0 8 24 7 87

d=1 12 0 41 | 15 8 87 7 (111

d=0 0 |12 | 15 | 56 | 87 | 85 | 111 | 118

How to do it ...

The kernel we present here is found in Ch10/RadixSort GPU/RadixSort.cl, and the
implementation drew inspiration from the academic paper entitled Radix Sort for Vector
Multiprocessors by Mark Zagha and Guy E. Blelloch for 32-bit integers. The algorithm is based
on the LSD Radix sort, and it iterates all the keys while shifting the keys based on the chosen
Radix and executing OpenCL kernels in sequence; this is best described in the previous diagram.

As before, we present the sequential version of the Radix sort that was translated based on
Zagha and Blelloch, and like what we have done previously, this is the golden reference which
we will use to determine the correctness of the data calculated by the OpenCL equivalent.

We won't spend too much time discussing about this implementation here, but rather it serves
as a reference point where you can draw the similarities and contrasts when we demonstrate
how the parallel and sequential code differs:

262

Chapter 10

int radixSortCPU(cl uint* unsortedData, cl uint* hSortedData)

cl uint *histogram = (cl uint*) malloc(R * sizeof (cl uint));
cl uint *scratch = (cl uint*) malloc (DATA SIZE * sizeof (cl uint));
if (histogram != NULL && scratch != NULL) ({

memcpy (scratch, unsortedData, DATA SIZE * sizeof (cl uint));
for(int bits = 0; bits < sizeof (cl uint) * bitsbyte ; bits +=
bitsbyte) {

// Initialize histogram bucket to zeros
memset (histogram, 0, R * sizeof (cl uint));

// Calculate 256 histogram for all element
for(int 1 = 0; 1 < DATA SIZE; ++1i)
{
cl uint element = scratchl[i];
cl uint value = (element >> bits) & R_MASK;
histogram([valuel ++;

// RApply the prefix-sum algorithm to the histogram
cl uint sum = 0;
for(int i = 0; i < R; ++1)
{
cl uint val = histograml[i];
histogram[i] = sum;
sum += val;

// Rearrange the elements based on prescanned histogram
// Thus far, the preceding code is basically adopted from
// the "counting sort" algorithm.
for(int 1 = 0; 1 < DATA SIZE; ++1i)
{

cl uint element = scratchl[i];

cl uint value = (element >> bits) & R_MASK;

cl uint index = histogram[value];

hSortedData[index] = scratchl[i];

histogram([value] = index + 1;

// Copy to 'scratch' for further use since we are not done

263

Developing the Radix Sort with OpenCL

yet

if (bits != bitsbyte * 3)
memcpy (scratch, hSortedData, DATA SIZE * sizeof (cl

uint)) ;

}

free (scratch) ;
free (histogram) ;
return 1;

This sequential code is akin to the 1sd_sort code we showed earlier, and it essentially builds
a histogram of the examined keys that uses the counting sort to sort them, and it keeps doing
this until all data is acted upon.

The following kernels are taken from Ch10/RadixSort GPU/RadixSort.cl, and we'll refer
to the appropriate code when we explain the internal workings of the algorithm:

#define bitsbyte 8
#idefine R (1 << bitsbyte)

__kernel void computeHistogram(global const uint* data,

__global uint* buckets,
uint shiftBy,
__local uint* sharedArray)

size t localld = get local id(0);
size t globalId = get global id(0);
size t groupId = get group id(0);
size t groupSize = get local size(0);

/* Initialize shared array to zero i.e. sharedArray[0..63] = {0}*/
sharedArray([localId] = 0;

barrier (CLK_LOCAL MEM FENCE) ;

/* Calculate thread-histograms local/shared memory range from 32KB

to 64KB */

264

uint result= (datal[globalId] >> shiftBy) & O0xFFU;
atomic_inc (sharedArray+result) ;

barrier (CLK_LOCAL MEM FENCE) ;

/* Copy calculated histogram bin to global memory */

Chapter 10

uint bucketPos = groupId * groupSize + localld ;
buckets [bucketPos] = sharedArrayl[localId];

___kernel void rankNPermute(global const uint* unsortedData,
__global const uint* scannedHistogram,
uint shiftCount,

__local ushort* sharedBuckets,
__global uint* sortedData)

size t groupId = get group id(0);
size t idx = get local id(0);

size t gidx = get global id(0);
size t groupSize = get local size(0);

/* There are now GROUP_SIZE * RADIX buckets and we fill
the shared memory with those prefix-sums computed previously
*/
for(int i = 0; i < R; ++1)
{
uint bucketPos = groupId * R * groupSize + idx * R + 1i;
sharedBuckets[idx * R + 1] = scannedHistogram[bucketPos] ;

barrier (CLK_LOCAL MEM FENCE) ;

/* Using the idea behind COUNTING-SORT to place the data values in
its sorted

order based on the current examined key
*/
for(int i = 0; i < R; ++1)
{
uint value = unsortedDatal[gidx * R + i];
value = (value >> shiftCount) & OxFFU;
uint index = sharedBuckets[idx * R + value];
sortedData [index] = unsortedData[gidx * R + 1i];
sharedBuckets [idx * R + value] = index + 1;
barrier (CLK _LOCAL MEM FENCE) ;

__kernel void blockScan(_ global uint *output,
__global uint *histogram,
__local uint* sharedMen,
const uint block size,

265

Developing the Radix Sort with OpenCL

*/

266

__global uint* sumBuffer) {
int idx = get local id(0);
int gidx = get _global id(0);
int gidy = get_global id(1);
int bidx = get group id(0);
int bidy = get group id(1);

int gpos (gidx << bitsbyte) + gidy;

int groupIndex = bidy * (get _global size(0)/block size) + bidx;

/* Cache the histogram buckets into shared memory
and memory reads into shared memory is coalesced

*/

sharedMem[idx] = histogram[gpos];

barrier (CLK LOCAL MEM FENCE) ;

/*
Build the partial sums sweeping up the tree using
the idea of Hillis and Steele in 1986

*/
uint cache = sharedMem][O0] ;
for (int stride = 1; stride < block size; stride <<= 1)

{

if (idx>=stride)

{
}

barrier (CLK_LOCAL MEM FENCE); // all threads are blocked here

cache = sharedMem[idx-stride] +block [1dx] ;

sharedMem[idx] = cache;
barrier (CLK _LOCAL MEM FENCE) ;

/* write the array of computed prefix-sums back to global memory

if (idx == 0)

{

/* store the value in sum buffer before making it to 0 */

sumBuffer [groupIndex] = sharedMem[block size-1];
output [gpos] = 0;

}

else

{
output [gpos] = sharedMem[idx-1];

Chapter 10

}

__kernel void unifiedBlockScan(global uint *output,
__global uint *input,
__local uint* sharedMem,
const uint block size) {

int id = get local id(0);
int gid = get global id(0);
int bid = get group id(0);

/* Cache the computational window in shared memory */

sharedMem[id] = input [gid];
uint cache = sharedMem[O0] ;

/* build the sum in place up the tree */

for (int stride = 1; stride < block size; stride <<= 1)

{

if (id>=stride)

{

cache = sharedMem[id-stride] +sharedMem[id] ;

}

barrier (CLK_LOCAL MEM FENCE) ;

sharedMem[id] = cache;
barrier (CLK _LOCAL MEM FENCE) ;

}

/*write the results back to global memory */

if (tid == 0) {
output [gid] = 0;
} else {
output [gid] = sharedMem[id-1];

}

__kernel void blockPrefixSum(_ global uint* output,
__global uint* input,
__global uint* summary,
int stride)

int gidx = get _global id(0);
int gidy = get global id(1);
int Index = gidy * stride +gidx;

267

Developing the Radix Sort with OpenCL

output [Index] = 0;

// Notice that you don't need memory fences in this kernel

// because there is no race conditions and the assumption

// here is that the hardware schedules the blocks with lower

// indices first before blocks with higher indices

if (gidx > 0)

{

for(int 1 =0;i<gidx;i++)

}

// Write out all the prefix sums computed by this block
if (gidx ==
summary [gidy] = output[Index] + input[gidy * stride +

output [Index]

(stride - 1))

___kernel void blockAdd(_ global uint* input,

}

__kernel void mergePrefixSums(_ global uint* input,

268

int
int
int
int

int

int

uint temp;

temp

gidx
gidy
bidx
bidy

gpos

__global uint* output,
uint stride)

get _global id(0);
get _global id(1);
get_group_id(0) ;
get_group_id (1) ;

gidy + (gidx << bitsbyte);

groupIndex = bidy * stride + bidx;

= input [groupIndex] ;

output [gpos] += temp;

int gid
int gid
int gpo

output [gpos]

X
Y

__global uint* output)

get_global id(0) ;
get _global id(1);

s = gidy + (gidx << bitsbyte);

+= input [gidy] ;

+= input [gidy * stride +i];

{

(stride

Chapter 10

The strategy we present here is to break keys, that is, break 32-bit integers into 8-bit digits,
and then sort them one at a time starting from the least significant digit. Based on this idea,
we are going to loop four times and at each loop number i, we are going to examine the i
numbered 8-bit digit.

The general looping structure based on the previous description is given in the following code:

void runKernels(cl uint* dSortedData, size t numOfGroups, size t
groupSize) {

for (int currByte = 0; currByte < sizeof(cl uint) * bitsbyte;
currByte += bitsbyte) {

computeHistogram (currByte) ;

computeBlockScans () ;

computeRankingNPermutations (currByte, groupSize) ;

}
}

The three invocations in the loop are the work horses of this implementation and they invoke
the kernels to compute the histogram from the input based on the current byte we are looking
at. The algorithm will basically compute the histogram of the keys that it has examined; the
next phase is to compute the prefix sums (we'll be using the Hillis and Steele algorithm for
this), and finally we will update the data structures and write out the values in a sorted order.
Let's go into detail about how this works.

In the host code, you will need to prepare the data structures slightly differently than what we
have shown you so far, because these structures need to be shared across various kernels while
we swing between host code and kernel code. The following diagram illustrates this general idea
for runKernels (), and this situation is because we created a single command queue which all
kernels will latch on to in program order; this applies to their execution as well:

runKernels() execution time graph
key:
Time - GPU - kernel code running on the GPU

0 C) CPU - Host code, in C, running on the CPU

! (_Deruide
™ X)

. -
’ " @
T5 / -

U

shared datg structurgs cached jon devic |

» wall clock

269

Developing the Radix Sort with OpenCL

For this implementation, the data structure that holds the unsorted data (that is,
unsortedData_d) needs to be read and shared across the kernels. Therefore, you need to
create the device buffer with the flag CL. MEM USE_HOST_ PTR since the OpenCL specification
guarantees that the implementations cached it across multiple kernel invocations. Next, we
will look at how the histogram is computed on the GPU.

The computation of the histogram is based on the threaded histogram we introduced in a
previous chapter, but this time around, we decided to show you another implementation which
is based on using atomic functions in OpenCL, and in particular using atomic_inc (). The
atomic_inc function will update the value pointed by the location by one. The histogram
works on the OpenCL-supported GPU because we have chosen to use the shared memory
and CPU doesn't support that yet. The strategy is to divide our input array into blocks of N x R
elements where R is the radix (in our case R = 8 since each digit is 8-bits wide and 28=256)
and N is the number of threads executing the block. This strategy is based on the assumption
that our problem sizes are always going to be much larger than the amount of threads
available, and we configure it programmatically on the host code prior to launching the kernel
as shown in the following code:

void computeHistogram(int currByte) {
cl_event execEvt;
cl_int status;
size_t globalThreads

DATA SIZE;
BIN SIZE;
status = clSetKernelArg(histogramKernel, 0, sizeof (cl _mem),

size_t localThreads

(void*) &unsortedData d) ;
status = clSetKernelArg(histogramKernel, 1, sizeof (cl_mem),
(void*) &histogram d) ;
status = clSetKernelArg(histogramKernel, 2, sizeof(cl_int),
(void*) &currByte) ;
status = clSetKernelArg(histogramKernel, 3, sizeof(cl_int) *
BIN_SIZE, NULL) ;
status = clEnqueueNDRangeKernel (
commandQueue,
histogramKernel,
1,
NULL,
&globalThreads,
&localThreads,
0,
NULL,
&execEvt) ;
clFlush (commandQueue) ;
waitAndReleaseDevice (&execEvt) ;

270

Chapter 10

By setting up the OpenCL thread block to be equal to BIN SIZE, thatis, 256, the kernel waits
for the computation to complete by polling the OpenCL device for its execution status; this
poll-release mechanism is encapsulated by waitAndReleaseDevice ().

When you have multiple kernel invocations and one kernel waits on
% the other, you need synchronization, and OpenCL provides this via
e clGetEventInfo and clReleaseEvent.

In the histogram kernel, we built up the histogram by reading the inputs into shared memory
(after initializing it to zero), and to prevent any threads from executing kernel code that reads
from shared memory before all data is loaded into it, we placed a memory barrier as follows:

/* Initialize shared array to zero i.e. sharedArray[0..63] = {0}*/
sharedArray([localId] = 0;
barrier (CLK _LOCAL MEM FENCE) ;

. It's debatable whether we should initialize the shared memory, but
% it's best practice to initialize data structures, just like you would do in
i other programming languages. The trade off, in this case, is program
correctness versus wasting processor cycles.

Next, we shift the data value (residing in shared memory) by a number, shiftBy, which is

the key we are sorting, extract the byte, and then update the local histogram atomically. We
placed a memory barrier thereafter. Finally, we write out the binned values to their appropriate
location in the global histogram, and you will notice that this implementation performs what
we call scattered writes:

uint result= (datal[globalId] >> shiftBy) & O0xFFU; //5
atomic_inc (sharedArray+result) ; //6

barrier (CLK LOCAL MEM FENCE) ; //7
/* Copy calculated histogram bin to global memory */

uint bucketPos = groupId * groupSize + locallId ; //8
buckets [bucketPos] = sharedArray([localId]; //9

Once the histogram is established, the next task that runKernels () performs is to execute
the computations of prefix sums in the kernels blockScan, blockPrefixSum, blockAdd,
unifiedBlockScan, and mergePrefixSums in turn. We'll explain what each kernel does
in the following sections.

271

Developing the Radix Sort with OpenCL

The general strategy for this phase (encapsulated in computeBlockScans ()) is to pre-
scan the histogram bins so that we generate the prefix sums for each bin. We then write out
that value to an auxiliary data structure, sum_in_d, and write out all intermediary sums into
another auxiliary data structure, scannedHistogram_d. The following is the configuration
we sent to the blockScan kernel:

size t numOfGroups = DATA SIZE / BIN_SIZE;
size t globalThreads[2] = {numOfGroups, R};
size t localThreads[2] = {GROUP_SIZE, 1};
cl _uint groupSize = GROUP_SIZE;

status = clSetKernelArg(blockScanKernel, 0, sizeof (cl _mem),
(void*) &scannedHistogram d) ;
status = clSetKernelArg(blockScanKernel, 1, sizeof (cl_mem),
(void*) &histogram d) ;
status = clSetKernelArg(blockScanKernel, 2, GROUP_SIZE *
sizeof (cl_uint), NULL);
status = clSetKernelArg(blockScanKernel, 3, sizeof(cl_uint),
&groupSize) ;
status = clSetKernelArg(blockScanKernel, 4, sizeof (cl_mem), &sum_
in d);
cl_event execEvt;
status = clEnqueueNDRangeKernel (
commandQueue,
blockScanKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
&execEvt) ;
clFlush (commandQueue) ;
waitAndReleaseDevice (&execEvt) ;

The general strategy behind scanning is illustrated in the following diagram, where the input is
divided into separate blocks and each block will be submitted for a block scan. The generated
results are prefix sums, but we need to collate these results across all blocks to obtain a
cohesive view. After which, the histogram bins are updated with these prefix sum values,

and then finally we can use the updated histogram bins to sort the input array.

272

Chapter 10

T T T
iscan block-O1scan block-11scan block-21scan block-31

¥ v A 4 A 4
\\ I’ /// - ’
\ 1 ’ -
\ 1 i -7
\\ 1 7z P
_i] 4 -7
Store the block sums to auxiliary array | v | * &
1 1
]]
v v
scan block sums | |
// \ AN S
add block sums to histogram bins / Y N S~
’ \ AN ~
| 3 A A

Let's look at how the block scan is done by examining blockScan. First, we load the
values from the previously computed histogram bin into its shared memory as shown

in the following code:

__kernel void blockScan(_ global uint *output,
__global uint *histogram,
__local uint* sharedMen,
const uint block size,
__global uint* sumBuffer) ({

+ bidx;

int idx = get local id(0);

int gidx = get _global id(0);

int gidy = get _global id(1);

int bidx = get group id(0);

int bidy = get group id(1);

int gpos = (gidx << bitsbyte) + gidy;

int groupIndex = bidy * (get _global size(0)/block size)

/* Cache the histogram buckets into shared memory
and memory reads into shared memory is coalesced

*/

sharedMem[idx] = histogram[gpos] ;

barrier (CLK_LOCAL MEM FENCE) ;

273

Developing the Radix Sort with OpenCL

Next, we perform the Hillis and Steele prefix sum algorithm locally, and build the summed
values for the current block:
/*
Build the partial sums sweeping up the tree using
the idea of Hillis and Steele in 1986
*/
uint cache = sharedMem[O0];
for(int dis = 1; dis < block_size; dis <<= 1)
{
if (idx>=dis)

{
}

barrier (CLK_LOCAL_MEM_FENCE); // all threads are blocked here

cache = sharedMem[idx-dis]+block[idx];

sharedMem[idx] = cache;
barrier (CLK_LOCAL MEM_FENCE) ;

}
Finally, we write out a prefix sum for this block to sum_in_d, represented in the following
code by sumBuf fer, and the intermediary prefix sums to the scannedHistogram_d object,
represented here by output:

/* write the array of computed prefix-sums back to global memory
*/
if (idx == 0)

{

/* store the value in sum buffer before making it to 0 */

sumBuffer [groupIndex] = sharedMem[block size-1];
output [gpos] = 0;

} else {
output [gpos] = sharedMem[idx-1];

274

Chapter 10

The following diagram illustrates this concept for two parallel block scans (assuming we
have a shared memory that holds eight elements) and shows how it's stored into the output:

sharedMem |®(X0"X0) | @(x,-x,) |®(X0"X2) | @(x,-%5) | ®(x,-%,) | ®(xp-%5) | @(x0-%) | @(xg-%7) |

output |@(xo..x0) | @(xp-x,) |G—)(x0..x2) | @(x,-%;) | ®(xp-x,) | @®(x-x5) | @(x0-X) |

block-scan-0 sumBuffer[block-0]| @(x,-x)

sharedMem |@(x,-%,)| @(x-x,) | (x0-%.)| @0 %,) | D%, | D(x0-%5) | D(x0-%6) | D0,

output |®(X0..X0)|®(XO..X1) |®(Xo--x2)|®(xn"x3)|®(Xo--x4) |®(X0..x5) |®(Xo--xs)|

block-scan-1 sumBuffer[block-1]|@(xp-X;)

At this phase of the computation, we have managed to compute the prefix sums for all the
individual blocks. We need to collate them through the next phase, which is in the kernel
blockPrefixSum where the individual block's summed value is accumulated by each work
item. The work done by each thread will compute the sum across different blocks. Depending
on the thread with ID, i, will gather all sums from block number 0 to (i - 1). The following
code in blockPrefixSum illustrates this process:

__kernel void blockPrefixSum(_ global uint* output,
__global uint* input,
__global uint* summary,
int stride) ({

int gidx = get _global id(0);
int gidy = get _global id(1);
int Index = gidy * stride +gidx;
output [Index] = 0;

if (gidx > 0)
for(int 1 =0;i<gidx;i++)

output [Index] += input[gidy * stride +i];

275

Developing the Radix Sort with OpenCL

The astute reader will notice that we have left out the prefix sum for one block, and the following
remedies are obtained by computing the final accumulated prefix sums for this block:

// Write out all the prefix sums computed by this block
if (gidx == (stride - 1))
summary [gidy] = output [Index] + input[gidy * stride + (stride
-1

The following diagram best represents what computation goes on in the previous kernel
code. It assumes that we have a block scan for 16 elements that has been completed in
blockScanKernel, and each element contains the prefixed sum. To collate these sums,
we configure our kernel to run eight threads with a striding factor of 8 (assuming a block size
of eight), and the diagram expresses what each of the eight threads are working on.

The threads collate the sums by working out the summation of the entire input, progressively
computing @ (x,...x;) @ (xy... X,) @ (Xg.. %5,) © (xg... X5) © (X529) © (XX) @ (%...X5)

and writing them out to sum out d and summary in d.

The following is a diagram that illustrates the process where given an input, all elements
of that input are the summed values of the block scan for all blocks; the algorithm basically
sums everything and writes to the output array:

input

thread-1

thread-2

thread-3

\ \
\ \

N i . |
N | N |
. I \ I
. | N |
S I S I
N Nt
o o
N N

thread-4

some threads
are omitted
here

thread-8

N
o «
O(x,.X,) (X, Xg)

276

Chapter 10

At this point, we have to collate the intermediary prefix sums computed, that is,

® (xo...x7) ® (xo...x14) ® (xo...x21) D (Xg.- X) D (5.2) ® (xo...x49) ® (xo...x56)

inside sum_out_d, and with that from scannedHistogram_d. We basically add the

two intermediary sums together using blockaAddKernel. The following is how we prepare
the kernel prior to launch:

cl event execEvt2;

size t globalThreadsAdd[2] = {numOfGroups, R};

size t localThreadsAdd[2] = {GROUP SIZE, 1};

status = clSetKernelArg(blockAddKernel, 0, sizeof (cl mem),
(void*) &sum out d);

status = clSetKernelArg(blockAddKernel, 1, sizeof (cl mem),
(void*) &scannedHistogram d) ;

status = clSetKernelArg(blockAddKernel, 2, sizeof (cl uint),
(void*) &stride) ;
status = clEnqueueNDRangeKernel (
commandQueue,
blockAddKernel,
2,
NULL,
globalThreadsAdd,
localThreadsAdd,
0,
NULL,
&execEvt2) ;
clFlush (commandQueue) ;
waitAndReleaseDevice (&execEvt2) ;

We then basically collate them back to scannedHistogram d with blockAddKernel
whose code is shown as follows:

__kernel void blockAdd(_ global uint* input,
__global uint* output,
uint stride)

int gidx = get global id(0);
int gidy = get global id(1);
int bidx = get group id(0);
int bidy = get group id(1);
int gpos = gidy + (gidx << bitsbyte);

int groupIndex = bidy * stride + bidx;

uint temp;

277

Developing the Radix Sort with OpenCL

temp = input [groupIndex] ;

output [gpos] += temp;

}

Finally, we perform another prefix sum to collate the values in summary in_d, asall
elements inside that array contains each individual block's prefix sum. Because our chosen
Radix value is 256, we need to work out the prefix sums computation for blocks 0 to y using

D (x,..%,)blockfothrough to ®(Xo---xn71)b,oﬂk_y. This is illustrated in the following diagram, and

it is encapsulated in the unifiedBlockScan kernel. We won't show the kernel code as it's
similar to the blockPrefixSum kernel.

summery_in_d | Gﬂ(xo...xn_1)bhmk_0 | (-B(x(,...xn_1)bhwk_1 | @ (xo...xn_1)block—2 | (-B(Jco...xﬂ_1)bmk_3 |

~ =< =< T
~ ~ ~
~ 1 ~ 1 ~ 1
~
~ ~
~] ~] ~]
~ ~ ~

AV B / B /
summery_out_d [@ (%, 1), o] @005)0 |00

n-l)block—ll

summery_out_d @ (%, 1), o| B0y |00

-1)blockflz

|G—)(x0..x

“n-l)block703 |

At this point in time, we are left with writing the collated prefix sums we have just performed
previously into scannedHistogram_d. This collation exercise is different from the previous
one where we gather the intermediary prefix sums across the blocks, but nonetheless,

it's still a collation exercise, and we need to push in the values from summary in d.

We accomplished this with mergePrefixSumsKernel with the inputs reflected in the
following host code:

cl event execEvt4;
size t globalThreadsOffset[2] = {numOfGroups, R};

status = clSetKernelArg(mergePrefixSumsKernel, 0, sizeof (cl
mem) , (void*)&summary out d) ;

status = clSetKernelArg(mergePrefixSumsKernel, 1, sizeof (cl
mem) , (void*)&scannedHistogram d) ;

status = clEnqueueNDRangeKernel (commandQueue,
mergePrefixSumsKernel, 2, NULL, globalThreadsOffset, NULL, 0, NULL,
&execEvt4) ;

clFlush (commandQueue) ;
waitAndReleaseDevice (&execEvt4) ;

278

Chapter 10

The mergePrefixSumsKernel exercise is a relatively simple exercise to shift the values to

their proper positions with the following kernel code:

__kernel void mergePrefixSums(_global uint* input,
__global uint* output)

int gidx get_global 1id(0) ;
get_global id(1);
int gpos = gidy + (gidx << bitsbyte);

output [gpos] += input [gidy];

int gidy

}

{

With this, the prefix sums are properly computed. The next phase of the algorithm will be to
rank and permute the keys using each work item / thread to permute its 256 elements via
the prescanned histogram bins, encapsulated in computeRankNPermutations ().

The following is the host code for the kernel launch:

void computeRankingNPermutations (int currByte, size t groupSize) {

cl_int status;
cl_event execEvt;

size t globalThreads = DATA SIZE/R;
size t localThreads = groupSize;

status = clSetKernelArg(permuteKernel, 0, sizeof (cl_mem),

(void*) &unsortedData d) ;

status = clSetKernelArg(permuteKernel, 1, sizeof (cl_mem),

(void*) &scannedHistogram d) ;

status = clSetKernelArg(permuteKernel, 2, sizeof(cl_int),

(void*) &currByte) ;

status = clSetKernelArg(permuteKernel, 3, groupSize * R *

sizeof (¢l ushort), NULL); // shared memory

status = clSetKernelArg(permuteKernel, 4, sizeof (cl_mem),

(void*) &sortedData_d) ;

status = clEnqueueNDRangeKernel (commandQueue, permuteKernel, 1,

NULL, &globalThreads, &localThreads, 0, NULL, &execEvt);

clFlush (commandQueue) ;
waitAndReleaseDevice (&execEvt) ;

Once the kernel has completed successfully, the data values will be in a sorted order and
will be held in the device memory by sortedData_d. We need to copy those data into
unsortedData d again, and we will continue to do this until we have not completed the

iteration of the keys.

279

Developing the Radix Sort with OpenCL

In the rankNPermute kernel, we will again make use of shared memory. The data into
shared memory, and the data is organized as GROUP_SIZE * RADIX where the GROUP SIZE
= 64 and RADIX = 256 expressions hold true, and because each work group is configured
to execute with 64 threads, we basically have one thread hydrating 256 elements of its
shared memory (which the following code snippet demonstrates):

_ _kernel void rankNPermute(_ global const uint* unsortedData,
__global const uint* scannedHistogram,
uint shiftCount,

_ local ushort* sharedBuckets,
__global uint* sortedData) {
size t groupId = get group id(0);
size t idx = get_local id(0);
size t gidx = get global id(0);
size t groupSize = get local size(0);
for(int i = 0; i < R; ++1i) {
uint bucketPos = groupId * R * groupSize + idx * R + 1i;
sharedBuckets[idx * R + i] = scannedHistogram[bucketPos];

}

barrier (CLK_LOCAL MEM_FENCE) ;

Next, it ranks the elements based on the same idea as in the sequential algorithm, and
you should refer back to that now. The difference is that we are pulling data values from
unsortedData in global device memory, processing them in device memory, figuring out
where the values should be, and writing them out to sortedbata:

for(int i = 0; i < R; ++1i) {
uint value = unsortedDatal[gidx * R + 1];
value = (value >> shiftCount) & O0xFFU;
uint index = sharedBuckets[idx * R + valuel;
sortedData[index] = unsortedData[gidx * R + 1i];
sharedBuckets[idx * R + value] = index + 1;
barrier (CLK_LOCAL MEM_FENCE) ;

}

After the ranking and permutation is done, the data values in the sortedData_d object are
sorted based on the current examined key. The algorithm will copy the data in sortedbata_d
into unsortedData_d so that the entire process can be repeated for a total of four times.

280

Symbols

1D, convolution 157, 159

2-bit rounding control (RC) field 129
2D, convolution 159-162

__constant address space name 102
__global address space name 101
__local memory space 101
__private memory space 101

A

Abstract Data Type (ADT) 152
alloca 44
arithmetic operation 129-131
array
vectors, loading from 114-117
vectors, storing to 110-114
associative reduction tree 252

base-R number system 242
bitonic sort 222, 241
bitonic sorting
about 224, 226
developing, in OpenCL 230-239
working 226-230
bitonic split 225
bool data type 80
bucket sorting. See Radix sort
buffer 136
buffer objects, OpenCL
creating 44-50
information, retrieving about 50-53

Index

C

CAS (Compare-And-Swap) 120
C/C++
histogram, implementing 139-142
cl_APPLE_gI_sharing extension 23
clGetPlatforminfo() method 18
CLK_GLOBAL_MEM_FENCE barrier 154
cl_khr_3d_image_writes extension 22
cl_khr_byte_addressable_store extension 23
cl_khr_d3d10_sharing extension 23
cl_khr_fp16 extension 22
cl_khr_fp64 extension 22
cl_khr_gl_event extension 23
cl_khr_global_int32_base_atomics extension
22
cl_khr_global_int32_extended_atomics
extension 22
cl_khr_gl_sharing extension 23
cl_khr_int64_base_atomics extension 22
cl_khr_int64_extended_atomics extension 22
cl_khr_local_int32_base_atomics extension
22
cl_khr_local_int32_extended_atomics
extension 22
CLK_LOCAL_MEM_FENCE barrier 154
command events 61
command queues
creating 38-42
commutative property 175
commutative reduction tree 252, 253
compute units (CUs) 10, 89
configuration, OpenCL projects
double data type, enabling 103-107

conjugate gradient method 216
about 194, 195, 216
used, for solving SpMV 195-199
Connection Machine (CM-2) 254
constant memory 101
convolution
in 1D 157, 159
in 2D 159-162
convolution theory 156, 157
CO0O format 201
cratchpad memory 144
CRAY Y-MP computer 254
CSR format (Compressed Sparse Row)
about 201
used, for solving SpMV 208-215
CUDA 8

D

data

copying, between memory objects 64-71
data binning 141
data-driven sorting algorithms 221
data-independent sorting algorithms 221
data partitioning

work-items, using for 71-77
data storage formats, SpMV

Compressed Sparse Row (CSR) format 201

COO format 201

ELLPACK format 200

ELLPACK-R format 200
data transfer capabilities, OpenCL 1.1 44
data types, OpenCL

bool 80, 81

char 81

double 81

float 81

half 80, 81

int 81

intptr_t 80, 81

long 81

ptrdiff_t 80, 81

short 81

size_t 80, 81

uchar 81

uint 81

282

uintptr_t 80, 81
ulong 81
unsigned char 81
unsigned int 81
unsigned long 81
unsigned short 81
ushort 81
void 81
device fission 88
diagonal format (DIA) 201
double data type
enabling 103-107

edge detection algorithm 155
ELLPACK format 200, 204
ELLPACK-R format

about 200, 204

used, for solving SpMV 204-207
events, OpenCL

command events 61

host monitoring events 61
event-synchronization 62, 63

Execution Model, OpenCL architecture 11, 12

F

Fisher-Yates Shuffle(FYS) algorithm 132
floating-point functions
using 123-125
fma() function 123
frexp() function 123
Fused Multiply-Add (FMA) instruction 124

G

geometric functions
about 117
using 117-120
global memory
about 101

reducing, via shared memory data prefetching

187-191
golden reference implementation 140
GPRs (General-Purpose Registers) 89
Gram-Schimdt process/conjugation 198

H

half data type 80
half-precision data type 87
hash table 152
histogram
about 139
implementing, in C/C++ 139-142
implementing, in OpenCL 142-152
HISTOGRAM-KEYS algorithm 255
Hollerith machine 241
host events 62

image segmentation 155
implicit vectorization 91, 92
information
retrieving, about OpenCL buffer objects
50-53
retrieving, about OpenCL sub-buffer objects
58-60
Installable Client Driver (ICD) 58
Instruction Level Parallelism (ILP) 212
integer functions
about 120
using 120-123
Intel AVX (Advanced Vector Extensions) 114
Intel Math Kernel Library (Intel MKL) 212
intermediate language (IL) 96
intptr_t data type 80

K

kernels 88
key 244

L

least significant byte (LSB) 85
Least Significant Digit Radix sort. See LSD
Radix sort
linear systems 118
local memory 101, 144
loop unrolling 111
LSD Radix sort
about 244
working 245, 246

mad() function 123
Makefile 71
malloc 44
matrix 194
matrix multiplication
about 174, 175
global memory, reducing via shared memory
data prefetching 187-191
implementing 178-181
implementing, by thread coarsening 181-184
implementing, through register tiling 185-187
working 176-178
memory domains
conceptual diagrams 101
Memory Model, OpenCL architecture 13
memory objects
data, copying between 64-71
modf() function 123
most significant byte (MSB) 85
MSD Radix sort
about 244
working 244, 246
Multiply-Add (MAD) instruction 124
MXCSR register 129

NDRange 11
nextafter() function 123
non-adaptive sorting algorithm 222

0

OpenCL

about 7-10, 44

arithmetic operation 129-131

bitonic sorting, developing 230-239

buffer objects, creating 44-50

goals 7

histogram, implementing 142-152

implementation, of Sobel edge filter 162-168

matrix multiplication, implementing 178-181

matrix multiplication, implementing by thread
coarsening 181-184

matrix multiplication, implementing through
register tiling 185-187

283

profiling, implementing 169, 170
Radix sort, developing in 254-280
rounding operation 129-131
scalar data types, initializing 80-82
scalar data types, using 85-87
sub-buffer objects, creating 54-58
synchronization concept 153, 154
vector data types, initializing 82-84
vector data types, using 88-100
OpenCL 1.1
data transfer capabilities 44
OpenCL architecture
components 10
Execution Model 10-12
Memory Model 13
Platform Model 10
OpenCL buffer objects 44
OpenCL contexts
about 25
querying 25-29
OpenCL device extensions
Cl_APPLE_g|_sharing 23
cl_khr_3d_image_writes 22
cl_khr_byte_addressable_store 23
cl_khr_d3d10_sharing 23
cl_khr_fp16 22
cl_khr_fpe4 22
cl_khr_gl_event 23
cl_khr_global_int32_base_atomics 22

cl_khr_global_int32_extended_atomics 22

cl_khr_gl_sharing 23
cl_khr_int64_base_atomics 22
cl_khr_int64_extended_atomics 22
cl_khr_local_int32_base_atomics 22
cl_khr_local_int32_extended_atomics 22
querying for 22-25
OpenCL devices
querying, on platforms 18-22
OpenCL functions
floating-point functions 123-125
geometric functions 117-120
integer functions 120-123
select function 135-137
shuffle function 132-134
trigonometric functions 126-128

284

OpenCL histogram program
suggestions 143
OpenCL kernels
creating 35-38
enqueuing 38-42
OpenCL platforms
querying 14-18
OpenCL program
querying 29-35
OpenCL programming model 103
OpenCL specification Version 1.2 13
Open Computing Language. See OpenCL
0SX Caveat 58

P

parallelizable routines 140
parallel reduction 207
parallel sorting network 224
Platform Model, OpenCL architecture 10
prefetching 115
prefix sums 256
processing elements (PEs) 9
profiling

about 168

in OpenCL 169, 170
ptrdiff_t data type 80

Q

QuickSort 221

Radix sort
about 242,243
developing, in OpenCL 254-280
Radix sorting
reduction pattern 247-251
scan pattern 247
rand() function 133
random() function 133
RANK-AND-PERMUTE algorithm 256
reduction kernel 258
reduction pattern 247-251
register tiling
about 185

matrix multiplication, implementing through
185-187
reversed loop 253
rounding 129
rounding operation 129-131
round to nearest even rounding 131
rte-mode 118

S

scalar address space
examining 100-103
scalar data types, OpenCL
about 79
initializing 80-82
using 85-87
SCAN-BUCKETS algorithm 255
scan pattern 247
segmented reduction 207
select function
using, in OpenCL 135-137
shared memory data prefetching
global memory, reducing via 187-191
shuffle function
using, in OpenCL 132-134
shuffling 228
SIMD floating-point 129
Single Instruction Multiple Data (SIMD) 88
size_t data type 80
Sobel edge filter
implementing 162-168
Sobel filtering 156
Sobel operator 155
sorting 221
sorting algorithms 221
sorting methods
data-driven sorting algorithms 221
data-independent sorting algorithms 221
sorting networks
about 222
working 224
Sparse Matrix Vector Multiplication (SpMV)
data storage formats 199-203
solving, conjugate gradient method used
195-199
solving, CSR format used 208-215
solving, ELLPACK format used 204-207

solving, VexCL used 216-219
SpMV ELLPACK-R scalar kernel 204
SpMV ELLPACK-R vector kernel
about 205
facts 207
SSE2/3/4 114
SSE/SSE2 instructions 129
stable sorting 244
stdlib.h function 133
Streaming SIMD Extensions (SSE) 88
structs 45
sub-buffer objects, OpenCL
creating 54-58
information, retrieving about 58, 60
synchronization concept, OpenCL 153, 154

T

task parallelism 9
ternary selection 135
thread-based histograms 151
thread coarsening

matrix multiplication, implementing by

181-184

thread divergence 215
trigonometric functions

about 126

using 126-128
truncation function 131

U

uintptr_t data type 80
unshuffling 228
up-sweep kernel 258

\'}

vector address space
examining 100-103

vector data types, OpenCL
about 80
initializing 82-84
using 88-100

vectors
loading, from array 114-117
storing, to array 110-114

285

VexCL
used, for solving SpMV 216-219
vloadN functions 114
volatile keyword 111
vstoreN function 114

W

warp 121
wavefront 121
wavefront-/warp-level programming 204

286

work-groups 71
work-items
about 71
used, for data partitioning 71-77

X
x87 FPU control register 129

Thank you for buying
rusLisninea OpenCL Parallel Programming
Development Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to authorepacktpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

OpenCV 2 computer Vision
Application Programming Cookbook

OpenCV 2 Computer Vision
Application Programming
Cookbook

ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1. Teaches you how to program computer vision
applications in C++ using the different features of
the OpenCV library

2. Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3. Describes fundamental concepts in computer
vision and image processing

4. Gives you advice and tips to create more effective
object-oriented computer vision programs

OpenGL 4.0 shading
Language Cookbook

OpenGL 4.0 Shading
Language Cookbook
ISBN: 978-1-84951-476-7 Paperback: 340 pages

Over 60 highly focused, practical recipes to maximize
your use of the OpenGL Shading language

1. Afull set of recipes demonstrating simple and
advanced techniques for producing high-quality,
real-time 3D graphics using GLSL 4.0

2. How to use the OpenGL Shading Language to
implement lighting and shading techniques

3. Use the new features of GLSL 4.0 including
tessellation and geometry shaders

Please check www.PacktPub.com for information on our titles

PUBLISHING

Mastering OpenCV with
Practical Computer Vision

Projects
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve comman real-world
computer vision problems for desktop or mobile, from
augmented reality and number plate recognition to face

Mastering OpenCV with Practical recognition and 3D head tracking

ComputsyVision Frojects _ 1. Allows anyone with basic OpenCV experience

to rapidly obtain skills in many computer vision
topics, for research or commercial use

2. Each chapter is a separate project covering a
computer vision problem, written by a professional
with proven experience on that topic

3. All projects include a step-by-step tutorial and full
source-code, using the C++ interface of OpenCV

OpenGL Development
Cookbook

ISBN: 978-1-84969-504-6 Paperback: 326 pages

Over 40 recipes to help you learn, understand, and
implement modern OpenGL in your applications

1. Explores current graphics programming
techniques including GPU-based methods from
OpenGL Development the outlook of modern OpenGL 3.3

Cookbook

2. Includes GPU-based volume rendering algorithms

3. Discover how to employ GPU-based path and ray
tracing

I

naiipmian

Muhammad Mobeen Movania [

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Using OpenCL
	Introduction
	Querying OpenCL platforms
	Querying OpenCL devices on your platform
	Querying for OpenCL device extensions
	Querying OpenCL contexts
	Querying an OpenCL program
	Creating OpenCL kernels
	Creating command queues and enqueuing OpenCL kernels

	Chapter 2: Understanding OpenCL Data Transfer and Partitioning
	Introduction
	Creating OpenCL buffer objects
	Retrieving information about OpenCL
buffer objects
	Creating OpenCL sub-buffer objects
	Retrieving information about OpenCL
sub-buffer objects
	Understanding events and event-synchronization
	Copying data between memory objects
	Using work items to partition data

	Chapter 3: Understanding OpenCL Data Types
	Introduction
	Initializing the OpenCL scalar data types
	Initializing the OpenCL vector data types
	Using OpenCL scalar types
	Understanding OpenCL vector types
	Vector and scalar address spaces
	Configuring your OpenCL projects to enable the double data type

	Chapter 4: Using OpenCL Functions
	Introduction
	Storing vectors to an array
	Loading vectors from an array
	Using geometric functions
	Using integer functions
	Using floating-point functions
	Using trigonometric functions
	Arithmetic and rounding in OpenCL
	Using the shuffle function in OpenCL
	Using the select function in OpenCL

	Chapter 5: Developing a Histogram OpenCL program
	Introduction
	Implementing a Histogram in C/C++
	OpenCL implementation of the Histogram
	Work item synchronization

	Chapter 6: Developing a Sobel Edge Detection Filter
	Introduction
	Understanding the convolution theory
	Understanding convolution in 1D
	Understanding convolution in 2D
	OpenCL implementation of the Sobel edge filter
	Understanding profiling in OpenCL

	Chapter 7: Developing the Matrix Multiplication with OpenCL
	Introduction
	Understanding matrix multiplication
	OpenCL implementation of the matrix multiplication
	Faster OpenCL implementation of the matrix multiplication by thread coarsening
	Faster OpenCL implementation of the matrix multiplication through register tiling
	Reducing global memory via shared memory data prefetching in matrix multiplication

	Chapter 8: Developing the Sparse Matrix Vector Multiplication in OpenCL
	Introduction
	Solving SpMV (Sparse Matrix Vector Multiplication) using the Conjugate
	Gradient Method
	Understanding the various SpMV data storage formats including ELLPACK,
	ELLPACK-R, COO, and CSR
	Understanding how to solve SpMV using the ELLPACK-R format
	Understanding how to solve SpMV using the CSR format
	Understanding how to solve SpMV using VexCL

	Chapter 9: Developing the Bitonic Sort with OpenCL
	Introduction
	Understanding sorting networks
	Understanding bitonic sorting
	Developing bitonic sorting in OpenCL

	Chapter 10: Developing the Radix Sort with OpenCL
	Introduction
	Understanding the Radix sort
	Understanding the MSD and LSD Radix sorts
	Understanding reduction
	Developing the Radix sort in OpenCL

	Index

