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FOREWORD

Learning from real examples can fi lter theoretical distractions and inject less glamorous realities. 
Real experiences and examples help us to see what matters the most.

In this book, I am pleased that Stephen shares tips from his interviews to understand how to really 
use tools and develop parallel code. The result is a book with value that is not apparent from simply 
browsing the table of contents.

For instance, I know data layout critically affects the ability to process data in parallel, but I like 
to be convinced by real examples. The topic of data layouts, such as the need to use “structures 
of arrays” instead of “arrays of structures” (SOA vs. AOS), is brought to the forefront by Stephen 
 asking the provocative question, “If you were doing the project again, is there anything you would 
do differently?” in the “Parallel Track Fitting in the CERN Collider” interview (Chapter 15). In 
response, the interviewed developer highlights the importance of data models to getting effective 
parallel programs. “The World’s First Sudoku ‘Thirty-Niner’” (Chapter 13) highlights that “much 
of the time taken was used in reworking the code so that there was less need to share data between 
the different running tasks.”

The ubiquitous nature of parallelism affects every aspect of programming today. I’m encouraged by 
Stephen’s work, which walks through each aspect instead of just coding. Covering the issues of dis-
covery, debugging, and tuning is critical to understanding the challenges of parallel programming. 
I hope this book is an inspiration to all who read it.

“Think Parallel.”

—James Reinders
Director, Parallel Evangelist, Intel

Portland, Oregon, 
March 2012
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INTRODUCTION

Nearly all the computers sold today have a multi-core processor, but only a small number of applica-
tions are written to take advantage of the extra cores. Most programmers are playing catch-up. A 
recent consultation with a group of senior programming engineers revealed the top three hurdles in 
adopting parallelism: the challenges of porting legacy code, the lack of education, and the lack of 
the right kinds of programming tools. This book helps to address some of these hurdles. 

This book was written to help you use Intel Parallel Studio XE to write programs that use the latest 
features of multi-core CPUs. With the help of this book, you should be able to produce code that 
is fast, safe, and parallel. In addition to helping you write parallel code, some chapters cover other 
optimization topics that you can use in your code development, regardless of whether or not you are 
developing parallel code. Most of the chapters include hands-on activities that will help you apply 
the techniques being explained. 

WHO THIS BOOK IS FOR

If you are writing parallel code or are interested in writing parallel code, this book is for you. The 
target audience includes: 

 � C and C++ developers who are adding parallelism to their code. The required technical skill 
is “average” to “experienced.” Knowledge of C programming is a prerequisite.

 � Students and academics who are looking to gain practical experience in making code parallel.

 � Owners and users of Intel Parallel Studio XE.

WHAT THIS BOOK COVERS

This book, written using Parallel Studio XE 2011, shows how you can profi le, optimize, and paral-
lelize your code. By reading this book, you will learn how to:

 � Analyze applications to determine the best place to implement parallelism.

 � Implement parallelism using a number of language extensions/standards.

 � Detect and correct diffi cult to fi nd parallel errors.

 � Tune parallel programs.

 � Write code that is more secure.

 � Use the compiler switches to create optimized code that takes advantage of the latest CPU 
extensions.
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 � Perform an architectural analysis to answer the question, “Is my program making the best 
use of the CPU?”

HOW THIS BOOK IS STRUCTURED

The book is comprised of the following parts:

 � Part I: An Introduction to Parallelism

 � Part II: Using Parallel Studio XE

 � Part III: Case Studies

Every chapter in the book, with the exception of the fi rst two chapters, offers hands-on activities. 
These activities are an important part of the book, although you can read the book without com-
pleting them. 

Chapters 6–9 are intended to be used in sequence, showing how to add parallelism to your code 
using a well-tested, four-step methodology (analyze, implement, error-check, and tune). Examples of 
parallelism are provided using Cilk Plus, OpenMP, and Threading Building Blocks.  

The case studies are based on larger projects and show how Parallel Studio XE was used to parallel-
ize them. 

WHAT YOU NEED TO USE THIS BOOK

You need the following to use this book:

 � Intel Parallel Studio XE. You can download an evaluation version from the Intel 
Software Evaluation Center (http://software.intel.com/en-us/articles/
intel-software-evaluation-center/).

 � If you are using Windows:

 � Visual Studio (not the Express edition) version 2005, 2008, or 2010

 � Windows XP, Windows 2008, or Windows 7

 � If you are using Linux:

 � An installation of the GNU GCC compiler development tools

 � Debian* 6.0; Red Hat Enterprise Linux* 4 (Deprecated), 5, 6; SUSE Linux Enterprise 
Server* 10, 11 SP1; or Ubuntu* 10.04

 � A PC based on an IA-32 or Intel 64 architecture processor supporting the Intel Streaming 
SIMD Extensions 2 (Intel SSE2) instructions (Intel Pentium 4 processor or later), or compat-
ible non-Intel processor. If you use a non-Intel processor, you will not be able to carry out 
the activities in Chapter 12, “Event-Based Analysis with VTune Amplifi er XE.”
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INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of 
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotten 
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current 
discussion.

As for styles in the text:

 � We italicize new terms and important words when we introduce them.

 � We show keyboard strokes like this: Ctrl+A.

 � We show fi lenames, URLs, and code within the text like so: persistence.properties. 

 � We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context 
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book 
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the 
Search box or one of the title lists) and click the Download Code link on the book’s detail page to 
obtain all the source code for the book. Code that is included on the Web site is highlighted by the 
following icon:

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code 
note such as this: 

Code snippet fi lename
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Because many books have similar titles, you may fi nd it easiest to search by 
ISBN; this book’s ISBN is 978-0-470-89165-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, 
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one 
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake 
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may 
save another reader hours of frustration, and at the same time, you will be helping us provide even 
higher-quality information. 

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box 
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you 
can view all errata that have been submitted for this book and posted by Wrox editors. A complete 
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages
/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport.shtml and complete the form there to send us the error you have found. We’ll check 
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in 
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based 
system for you to post messages relating to Wrox books and related technologies and interact with 
other readers and technology users. The forums offer a subscription feature to e-mail you topics 
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other 
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as 
you read this book, but also as you develop your own applications. To join the forums, just follow 
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

flast.indd   xxxflast.indd   xxx 3/26/2012   12:37:07 PM3/26/2012   12:37:07 PM

http://www.wrox.com/dynamic/books/download
http://www.wrox.com
http://www.wrox.com/misc-pages
http://www.wrox.com/contact
http://p2p.wrox.com


Blair-Chappell   fl ast   V4 - 03/16/2012

xxxi

INTRODUCTION

 3. Complete the required information to join, as well as any optional information you wish to 
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post 
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the web. If you would like to have new messages from a particular forum 
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works, as well as many common questions specifi c to P2P 
and Wrox books. To read the FAQs, click the FAQ link on any P2P page. 

flast.indd   xxxiflast.indd   xxxi 3/26/2012   12:37:07 PM3/26/2012   12:37:07 PM



flast.indd   xxxiiflast.indd   xxxii 3/26/2012   12:37:08 PM3/26/2012   12:37:08 PM



Blair-Chappell   c01.indd   V3 - 02/24/2011 Page 1

PART I

An Introduction to Parallelism

 � CHAPTER 1: Parallelism Today

 � CHAPTER 2: An Overview of Parallel Studio XE

 � CHAPTER 3: Parallel Studio XE for the Impatient
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Parallelism Today

WHAT’S IN THIS CHAPTER?

 � How parallelism arrived and why parallel programming is feared

 � Diff erent parallel models that you can use, along with some potential 

pitfalls this new type of programming introduces

 � How to predict the behavior of parallel programs 

The introduction of multi-core processors brings a new set of challenges for the programmer. 
After a brief discussion on the power density race, this chapter looks at the top six parallel 
programming challenges. Finally, the chapter presents a number of different programming 
models that you can use to add parallelism to your code. 

 THE ARRIVAL OF PARALLELISM

Parallelism is not new; indeed, parallel computer architectures were available in the 1950s. 
What is new is that parallelism is ubiquitous, available to everyone, and now in every 
computer. 

The Power Density Race

Over the recent decades, computer CPUs have become faster and more powerful; the clock 
speed of CPUs doubled almost every 18 months. This rise in speed led to a dramatic rise in 
the power density. Figure 1-1 shows the power density of different generations of processors. 
Power density is a measure of how much heat is generated by the CPU, and is usually dis-
sipated by a heat sink and cooling system. If the trend of the 1990s were to continue into the 
twenty-fi rst century, the heat needing to be dissipated would be comparable to that of the sur-
face of the sun — we would be at meltdown! A tongue-in-cheek cartoon competition appeared 
on an x86 user-forum website in the early 1990s. The challenge was to design an alternative 
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use of the Intel Pentium Processor. The winner suggested a high-tech oven hot plate design using 
four CPUs side-by-side.
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FIGURE 1-1: The power density race

Increasing CPU clock speed to get better software performance is well established. Computer game 
players use overclocking to get their games running faster. Overclocking involves increasing the 
CPU clock speed so that instructions are executed faster. Processors often are run at speeds above 
what the manufacturer specifi es. One downside to overclocking is that it produces extra heat, which 
needs dissipating. Increasing the speed of a CPU by just a fraction can result in a chip that runs 
much hotter. So, for example, increasing a CPU clock speed by just over 20 percent causes the power 
consumption to be almost doubled. 

Increasing clock speed was an important tool for the silicon manufacturer. Many of the perfor-
mance claims and marketing messages were based purely on the clock speed. Intel and AMD typi-
cally were leapfrogging over each other to produce faster and faster chips — all of great benefi t 
to the computer user. Eventually, as the physical limitations of the silicon were reached, further 
increases in CPU speed gave diminishing returns. 

Even though the speed of the CPU is no longer growing rapidly, the number of transistors used in 
CPU design is still growing, with the new transistors used to supply added functionality and per-
formance. Most of the recent performance gains in CPUs are because of improved connections to 
external memory, improved transistor design, extra parallel execution units, wider data registers 
and buses, and placing multiple cores on one die. The 3D-transistor, announced in May 2011, which 
exhibits reduced current leakage and improved switching times while lowering power consumption, 
will contribute to future microarchitecture improvements.

The Emergence of Multi-Core and Many-Core Computing

Hidden in the power density race is the secret to why multi-core CPUs have become today’s solution 
to the limits on performance.
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Rather than overclocking a CPU, if it were underclocked by 20 percent, the power consumption 
would be almost half the original value. By putting two of these underclocked CPUs on the same 
die, you get a total performance improvement of more than 70 percent, with a power consumption 
being about the same as the original single-core processor. The fi rst multi-core devices consisted of 
two underclocked CPUs on the same chip. Reducing power consumption is one of the key ingredi-
ents to the successful design of multi-core devices.

 Gordon E. Moore observed that the number of transistors that can be placed on integrated circuits 
doubles about every two years — famously referred to as Moore’s Law. Today, those transistors are 
being used to add additional cores. The current trend is that the number of cores in a CPU is dou-
bling about every 18 months. Future devices are likely to have dozens of cores and are referred to as 
being many-core.

It is already possible to buy a regular PC machine that supports many hardware threads. For exam-
ple, the workstation used to test some of the example programs in this book can support 24 parallel 
execution paths by having:

 � A two-socket motherboard

 � Six-core XEON CPUs 

 � Hyper-threading, in which some of the internal electronics of the core are duplicated to 
double the amount of hardware threads that can be supported

One of Intel’s fi rst many-core devices was the Intel Terafl op Research Chip. The processor, which 
came out of the Intel research facilities, had 80 cores and could do one terafl op, which is one tril-
lion fl oating-point calculations per second. In 2007, this device was demonstrated to the public. As 
shown in Figure 1-2, the heat sink is quite small — an indication that despite its huge processing 
capability, it is energy effi cient. 

FIGURE 1-2: The 80-core Terafl op Research Chip
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There is the huge difference in power consumption between the lower and higher clock speeds; 
Table 1-1 provides sample values. With a one-terafl op performance (1 ¥ 1012 fl oating-point calcula-
tions per second), 62 watts of power is used; to get 1.81 terafl ops of performance, the power 
consumption is four times larger. 

TABLE 1-1: Power-to-Performance Relationship of the Terafl op Research Chip

SPEE D 

(GHZ)

POWER 

(WATTS)

PERFORMANCE 

(TERAFLOPS)

  3.16   62 1.01

5.1   175 1.63

5.7 265 1.81

The Intel Many Integrated Core Architecture (MIC) captures the essentials of Intel’s current many-
core strategy (see Figure 1-3). Each of the cores is connected together on an internal network. 
A 32-core preproduction version of such devices is already available.
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FIGURE 1-3: Intel’s many-core architecture

Many programmers are still operating with a single-core computing mind-set and have not taken up 
the opportunities that multi-core programming brings. 

For some programmers, the divide between what is available in hardware and what the software is 
doing is closing; for others, the gap is getting bigger.

Adding parallelism to programs requires new skills, knowledge, and the appropriate software devel-
opment tools. This book introduces Intel Parallel Studio XE, a software suite that helps the C\C++ 
and Fortran programmer to transition from serial programmer to parallel programmer. Parallel 
Studio XE is designed to help the programmer in all phases of the development of parallel code.

The challenge (and opportunity) for the developer is knowing how to reap the rewards of improved 
performance through parallelism. 
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THE TOP SIX CHALLENGES

In a recent open forum in Nice, France, a group of software programmers and project managers 
were asked, “What’s stopping you adopting parallelism?” Many reasons were cited, but when the 
comments were collated, a picture began to emerge of a number of commonly held reasons.

Those who took part in this exercise were from some of the key players in the software industry in 
Europe, representing both well-established software houses and newer high-tech startup companies. 
The views they expressed were founded on commercial and technical concerns — both rational and 
irrational.

This book aims to show some practical parallel programming techniques you can use to address 
some of these challenges.

Legacy Code

Adding parallelism to existing code does not sound that unusual. It is common for a programmer to 
start off with serial code and incrementally introduce parallelism. In fact, the method described in 
this book focuses on how to analyze serial programs, fi nd out the best place for introducing parallel-
ism, and then debug and tune the parallel application. 

Some developers spoke of having several million lines of code to maintain. Some of the code was 
30 or 40 years old, with the original designers no longer working with the company. With such 
a large code base, it is not always easy to understand how the code works. The style of old code 
does not always lend itself to easy partitioning for parallelization. Concepts of information hid-
ing, modularization, and other standard software engineering practices are not always present in 
legacy code.

Several years ago, while visiting a large telecom company, I found the following comment in some 
C code: “If anyone knows what this code does, ring me on extension 1234.” The code was startup 
code for a hand-rolled operating system and was part of a large monolithic code base, written 20 or 
so years earlier. Understanding legacy code is not a new problem that has just reared its head. When 
adding parallelism to legacy code, it is important that the legacy code is well understood. 

Chapter 16, “Parallelizing Legacy Code,” shows you how to parallelize legacy 
C code. 

Tools

Almost all the developers at the Nice conference expressed a desire to have better tools for creating 
and debugging parallel code. An ideal scenario was to have tools that just did all the parallelism 
automatically, but most of those present at the forum recognized that this sort of solution was not 
on the near horizon.

Tools should make implementing parallelism easier, not harder. They should integrate seamlessly 
into the current developer’s environment to support both interactive and script-driven development.
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Programmers need good thread-aware tools for debugging parallel applications. Using printf() to 
debug a serial application is fairly common; indeed, some developers do all their debugging using 
printf(), claiming it is much easier than using a debugger. However, when debugging a parallel 
program, using just printf() is impractical. At times it is necessary to be able to debug each thread 
in a program, to examine the contents of each stack, and to single-step or break in specifi c threads. 

Education

The conference delegates were concerned about educating two different groups of people: program-
mers and customers. 

Several of those present said that their companies had one parallel specialist. Whenever any parallel-
ism was to be introduced into the code, the job was passed to the specialist. This kind of programming 
is perceived as a niche topic and diffi cult for the general programmer to achieve. 

Some participants felt that customers needed to be educated about parallelism. The purpose was to 
set expectations. Developers feared that end users would expect unachievable performance improve-
ments when moving to multi-core machines. 

Fear of Many-Core Computing

Programming for two or four cores seems within the scope of most projects, but programming for 
80 cores looks daunting. Making sure that programs written for today’s multi-core machines will 
run on the many-core machines of the future is perceived to be a diffi cult task.

This concern has two aspects. First, being concerned about the number of cores probably indicates 
that there needs to be a change in the thinking of the developers. As in object-oriented program-
ming, the concepts of information hiding and data encapsulation are central; so, in today’s parallel 
programming practices, programmers should not be concerned with how many cores are available. 
When programming in parallel, the question “How many cores are there?” should not be asked. 

The second aspect of this fear is the question of scalability. If a program runs well on 4 cores, is 
it possible to check if it will also run well on a 24-core machine? Will there be a corresponding 
speedup when moving to an architecture that has more cores? 

Maintainability

Programmers want code that is easy to maintain. For some, the fi rst thing they want is to avoid put-
ting low-level, machine-specifi c code in their programs. The parallelism should be expressed with 
high-level abstractions that remain relevant across different generations of the project. Other devel-
opers look for help in tracking correctness and debugging applications. 

Parallel Studio provides high-level parallel language support that makes code easier to understand 
and debug. Amplifi er, Inspector, and the Parallel Debugger Extension help to maintain the code 
under development. The command-line versions of Amplifi er and Inspector are ideal tools to add 
to regression testing. The ability to compare the results of different runs of these tools helps to spot 
potential problems. 
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Return on Investment

Some of the programmers were afraid the effort spent parallelizing a program would not pay off. 
Would the effort result in code that performs better? Would a parallelized program lead to increased 
sales of the product? Would it not be better just buying a faster machine?

You can use Parallel Studio to fi nd which part of the code is the best place to optimize. You can then 
use this information to work out whether the likely effort will be considerable or easy.

Parallel Studio can help determine the performance benefi t of adding parallelism. With Parallel 
Advisor, you can model parallelism in your code before implementing it, asking questions such as 
“What speedup will I achieve?” and “How scalable is my program?” 

PARALLELISM AND THE PROGRAMMER

Today there is no “silver bullet” that will automatically make a serial program parallel. As a pro-
grammer, you have to make choices about what kind of parallelism you will use and in which 
programming language models you will implement the parallelism.

Types of Parallelism

You can achieve parallelism in a number of ways, including: 

 � Distributed parallelism — Complete applications are farmed out to different nodes in a 
cluster of computers. The Message Passing Interface (MPI), a send/receive message-passing 
protocol, is used to distribute and manage the applications.

 � Virtualization — This technique involves running several operating systems on one CPU. 
Virtualization is often supported directly by the CPU. For example, a 2-core machine could 
host two virtual machines, one on each core. Each virtual machine hosts its own operating 
system with dedicated resources such as I/O and memory. Some resources are shared. 
A hypervisor helps manage the virtual machines and resources.

 � Task-level parallelism — The focus is on work or tasks rather than threads. There may 
be many more tasks than there are threads, with each task being scheduled by a runtime 
scheduler.

 � Thread-level parallelism — This parallelism is implemented within a program, with each of 
the parallel parts running on separate threads. In a multi-core environment, each thread runs 
on a separate core. 

 � Instruction-level parallelism — Most CPUs have several execution units; instruction-level par-
allelism is achieved by execution units executing in parallel. This is normally done automati-
cally by the CPU, but it can be infl uenced by the layout of a program’s code.

 � Data-level parallelism — This parallelism relies on the CPU supporting single instruction, 
multiple data (SIMD) operations, such as can be found in the various Streaming SIMD 
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Extensions (SSE). In this mode, one instruction operates on wide registers that could hold 
several variables. So, for example, it is possible to compute four 32-bit additions with one 
instruction, the results being held in a single 128-bit-wide register. The 2nd Generation Intel 
Core architecture supports Intel Advanced Vector Extensions (AVX), increases the register 
size to 256-bit wide registers, and introduces three operand instructions rather than the two 
operand instructions found in SSE2.

You can use all these types of parallelism together. In this book we use examples of task-, thread-, 
data-, and instruction-level parallelism.

Intel’s Family of Parallel Models

Intel’s family of parallel models consists of Cilk Plus, Threading Building Blocks (TBB), domain-
specifi c libraries, established standards, and some research and development products (see Figure 1-4).

Intel Cilk Plus

Intel’s Family of Parallel Models

Intel Threading

Building Blocks

Domain-Specific

Libraries

Established

Standards

Research and

Development

Open sourced Open sourced

Also an Intel
product

Also an Intel
product

C/C++ language

extensions to

simplify

parallelism

Widely used C++

template library

for parallelism

Intel Integrated

Performance

Primitives

Message Passing

Interface (MPI)

Intel Concurrent

Collections

Intel Array

Building Blocks

Intel SPMD

Parallel Compiler

OpenMP*

Coarray Fortran

OpenCL*

Intel Math Kernel

Library

FIGURE 1-4: Intel’s family of parallel models

Cilk Plus and Threading Building Blocks

Cilk Plus and TBB are designed to work seamlessly together.

 � Intel Cilk Plus is a C/C++ language extension that provides new keywords for describing parallel-
ism and a new notation for performing parallel computations on arrays. The language extensions 
simplify task and vector parallelism and consist of keywords/reducers, array notations, elemental 
functions, and a new pragma, #pragma simd, which can be used to force the compiler to vector-
ize code. Using Cilk Plus is one of the easiest ways to make a program parallel. 

 � Intel Threading Building Blocks (TBB) is a C++ template library that provides tasks, parallel 
algorithms, and containers. 

TBB is a library, whereas Cilk Plus is a set of C/C++ language extensions implemented in the Intel 
compiler.
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Domain-Specifi c Libraries

All the functions in fi xed-function libraries are thread-safe and can be used in parallel programs. 
Some functions are already threaded and can be used to add parallelism to a program.

 � Intel Integrated Performance Primitives (IPP) is a large collection of functions spread across 
multiple domains, including cryptography, compression, signal processing, and multimedia. 

 � Intel Math Kernel Library (MKL) is a collection of math functions used by the high-
performance computing (HPC) community. The library includes BLAS, LAPACK, 
ScalaPACK1, sparse solvers, fast Fourier transforms, and vector math functionality.

Established Standards

The following standards can be used to make programs parallel:

 � Intel Message Passing Interface (MPI) is a well-established standard that uses a send/receive 
protocol for running programs in parallel on a cluster of workstations.

 � Open Multi-Processing (OpenMP) is a pragma-based language extension for incrementally 
adding parallelism to C, C++, and Fortran code.

 � Coarray Fortran is part of the Fortran 2008 standard and provides a standardized way of 
doing parallel processing in Fortran.

 � Open Computing Language (OpenCL) is a standard for use on heterogeneous computing 
environments. The language is based on C99.

Research and Development

The following parallel models are experimental and to be used for research only — that is, not for 
producing a commercial product. They reside on the whatif.intel.com website. 

 � Intel Concurrent Collections (CnC) is a parallel programming model that enables program-
mers to write parallel programs without being concerned about the low-level detail. Based on 
C++, CnC is also available for use with Haskell. 

 � Intel Array Building Blocks (ArBB) is a library that provides data-centric parallelization for 
use on arrays. The run time involves a just-in-time (JIT) compiler.

 � Intel SPMD Parallel Compiler is an open-source compiler for single program multiple data 
(SPMD) programs. At run time, multiple program instances execute in parallel on the CPU’s 
SIMD execution units. 

Choosing the Right Parallel Constructs

When writing parallel programs, it is not necessary to stick to one particular set of constructs; you 
can mix and match constructs. This is not a new phenomenon, but the idea of mixing and matching 
may be new to those who are not experienced in parallel programming. For some years the HPC 
community has been mixing OpenMP and MPI constructs; and Windows programmers quite often 
use the Win32 API InterlockedIncrement function rather than the #pragma omp critical con-
struct within their OpenMP programs. 
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Parallel constructs have different levels of abstraction. 
Some constructs are concerned mainly with the manipula-
tion of data, whereas other constructs are task-oriented 
(see Figure 1-5). 

High-Level vs. Low-Level Constructs

The higher levels of abstractions are used to express intent and indicate to the parallel run time, or 
the compiler, the desire that some code should be parallelized. Using the highest levels of abstraction 
does not guarantee that code will operate in parallel; that decision is delegated to the run time. 

The lower-level constructs exert more direct control over the parallelism. Using the lowest-level 
constructs can sometimes break the parallelism and require expert knowledge. For example, the 
careless use of locks in parallel code can lead to a situation in which the whole execution environ-
ment is stalled, unable to progress toward the completion of any task. Low-level constructs are often 
tied to specifi c core count and do not scale automatically in a many-core architecture.

Data Parallelism vs. General Parallelism

Data parallelism is concerned mainly with operations on arrays of data. Some types of data parallel-
ism, such as SIMD, are supported directly in CPU hardware. Other techniques, such as the 
manipulation of arrays, are supported by library and language extensions. Data parallelism has a 
special signifi cance in the era of the many-core computing, where huge numbers of cores are avail-
able on single-chip devices. Writing data-parallel code leads to code that is scalable and capable of 
benefi ting on the trend toward increasing numbers of cores. 

General parallelism is the execution of separate tasks in parallel. Nonnumeric code is usually imple-
mented with task-parallel rather than data-parallel algorithms. 

Examples of Mixing and Matching Parallel Constructs

The following two sections describe examples of mixing and matching parallel constructs. Intel’s 
family of parallel models is intended to be used together, so mixing and matching the constructs is 
anticipated and supported in Parallel Studio.

Cilk Plus and TBB

The code in Listing 1-1 uses a TBB-scalable allocator in a cilk_for loop. Each iteration of the 
cilk_for loop dynamically allocates memory to the array of char pointers. The loop iterations are 
balanced among available workers and run in parallel. 

LISTING 1-1: An example of using Cilk Plus and TBB

#include <stdio.h>
#include <time.h>
#include <cilk/cilk.h>
#include <stdlib.h>

Abstract Data

Parallelism

Low-Level Data

Parallelism

Low-Level Task

Parallelism

Abstract Task

Parallelism

FIGURE 1-5: Diff erent levels of abstraction
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#define MALLOC_SIZE 1
#define ARRAY_SIZE 10000000
#include “tbb/scalable_allocator.h”

char * array[ARRAY_SIZE];

int main(int argc, char* argv[])
{
  clock_t start, stop;

  // get the start time
  start = clock();   

  // load balance scalable malloc between available workers
  cilk_for(int i = 0; i < ARRAY_SIZE; i++)
  {
    array[i] = (char *)scalable_malloc(MALLOC_SIZE);
  }

  // free the blocks of memory
  cilk_for(int i = 0; i < ARRAY_SIZE; i++)
  {
    scalable_free(array[i]);
  }

  // get the stop time
  stop = clock();

  // display the time taken
  printf(“The time was %f seconds\n”,((double)(stop - start)/1000.0));
  return 0;
}

code snippet Chapter1\1-1.cpp

Using a scalable memory allocator on a two-core PC (Intel Mobile Core 2 Duo T7300), the code 
took 1.8 seconds to complete. When the normal malloc and free memory allocation functions 
were used, the code took 12.6 seconds to complete. The speedup was achieved by combining the 
Cilk Plus parallelism with the TBB scalable allocators together. The normal malloc function ensures 
thread-safeness by putting locks around some of its internal code. Locks make the code thread safe, 
but also slow down the code. The scalable_malloc function does not have locks, which means the 
parallel code runs much faster.  

Cilk Keywords and Array Notations

Listing 1-2 shows an example of using different features of Cilk Plus. The code takes advantage of 
the parallelism provided by the CPU cores and the vector unit. The function declared in Lines 2 
and 3 adds the two parameters x and y together and returns the new value. The __declspec
(vector) keyword causes the compiler to generate short vector versions of the function ef_add. 
This elemental function is then applied to each element of the array in Lines 12, 18, and 24.
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LISTING 1-2: An example of using Cilk keywords and array notations

1: include <cilk/cilk.h>
2: __declspec (vector) double ef_add (double x, double y){
3:   return x + y;
4: }
5: int main()
6: {
7:   double a[5];
8:   double b[] = {1,2,3,4,5};
9:   double c[] = {6,7,8,9,10};
10:
11:  // apply function to whole array   
12:  a[:] = ef_add(b[:],c[:]);    
13:  
14:  a[:] = 0;
15:  int n = 2;
16:  int s = 1;
17:  // apply function to a sub range
18:  a[0:n:s] = ef_add(b[0:n:s],c[0:n:s]); 
19:
20:  a[:] = 0;
21:  // apply function in parallel
22:  cilk_for (int j = 0; j < n; ++j) 
23:  {
24:    a[j] = ef_add(b[j],c[j]);
25:  }
26:}

code snippet Chapter1\1-2.cpp

Three arrays (a, b, and c), which are declared outside this code snippet, are arrays of doubles. The 
ef_add function is applied to array a in three different ways:

 � To a whole array — Line 12 is an example of applying the function ef_add to complete 
arrays. Each element of array b is added to each element of array c, with the results written 
into each element of array a. 

a[:] = ef_add(b[:],c[:]);  

 � To part of an array — Line 18 is an example of applying the function ef_add on part of 
an array. The calculation is applied on a subrange of the arrays, with n being the length of 
operation and s being the stride value:

a[0:n:s] = ef_add(b[0:n:s],c[0:n:s]); 

 � In parallel — Lines 22 to 25 present an example of loop-based parallelism. The cilk_for 
construct load-balances the loop iterations between the numbers of workers available. Lines 
14 and 20 set all the values in the array a to zero.

cilk_for (int j = 0; j < n; ++j) 
{
  a[j] = ef_add(b[j],c[j]);
}
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The code at Lines 12 and 18 results in the compiler generating serial code that calls the vector func-
tion. The example at Lines 22 to 25 produces parallel code that calls the vector function.

For more details of the array-notation syntax, see Chapter 2, “An Overview of 
Parallel Studio XE,” and Chapter 4, “Producing Optimized Code.”

Parallel Programming Errors

Adding parallelism to code exposes developers to new categories of programming errors. Some 
errors can be spotted by doing a code inspection or by running the code through a static analysis 
tool, such as lint. Other errors are much more diffi cult to fi nd and can be detected only at run time 
using a dynamic analysis tool. The following threading problems are the most prevalent.

Data Races

Data races are caused when two or more threads running in parallel access the same memory loca-
tion, and at least one of them tries to write to that memory location without using any kind of 
synchronization mechanism.

You can avoid data races by:

 � Making global data local to each task or thread.

 � Demoting the scope of variables by using stack or automatic variables. 

 � Using atomic operations.

 � As a last resort, using locks and mutexes to protect shared resources. Locks and mutexes are 
low-level synchronization primitives that effectively serialize the access to a shared resource. 

The easiest way to detect data races is to use a correctness tool, such as Intel Parallel Inspector XE 
(see Chapter 8, “Checking for Errors”). 

Determinacy Races

A determinacy race occurs when a program produces the right result only when the parallel parts 
execute in a particular order. 

Imagine that you have a program that monitors the rise of temperature in a gas furnace: 

 1. It takes the current temperature.

 2. It waits four seconds.

 3. It takes the new temperature.

 4. If the new temperature is 10 or more degrees greater than the fi rst temperature, the program 
reduces the gas fl ow.

Each step must be made in the right sequence; otherwise, the logic of the program will be broken. 
Making steps 1–3 run in parallel would be a mistake, because there would be no guarantee which 
step would run fi rst. 
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A program can have a determinacy race even though it doesn’t have a data race. Almost every data 
race is a determinacy race, but not vice versa. 

Deadlocks

Deadlocks are caused when two threads are endlessly waiting for each other, neither progressing to 
completion. Consider the following two code examples. At fi rst they seem to be identical; in fact, 
they are supposed to be identical. However, on closer inspection, you can see that the critical sec-
tions, L1 and L2, are used in a different order in the two code excerpts. The critical sections use 
Win32 synchronization objects that control access to the lines of code and act as gatekeepers. 

The Win32 API calls EnterCriticalSection and LeaveCriticalSection to act as gatekeepers for 
the enclosed code. The code between these calls can execute only on one thread.  

Walking through both sets of code shows the problem. Imagine a thread is executing this code:

DWORD WINAPI threadA(LPVOID arg)
{ 
  EnterCriticalSection(&L1); 
    EnterCriticalSection(&L2);
      processA(data1, data2); 
    LeaveCriticalSection(&L2);
  LeaveCriticalSection(&L1);
  return(0);
}

And at the same time a second thread is executing this code:

DWORD WINAPI threadB(LPVOID arg)
{ 
  EnterCriticalSection(&L2);
    EnterCriticalSection(&L1);
      processB(data2, data1) ;
    LeaveCriticalSection(&L1);
  LeaveCriticalSection(&L2);
  return(0);
}

When the fi rst thread hits the line EnterCriticalSection(&L1), it claims the exclusive use of the 
code for itself, protected by the critical section object L1.

At the same time, when the second thread hits the line EnterCriticalSection(&L2), it claims the 
exclusive use of the code for itself, protected by the critical section object L2. 

Now back to the fi rst thread. It tries to execute the next line, EnterCriticalSection(&L2), but it 
has to wait because the critical section object L2 is already being used by the second thread.

Likewise, the second thread cannot execute the next line, EnterCriticalSection(&L1), because 
the critical section L1 is already being used by the fi rst thread.

So, we have deadlock — the fi rst thread is waiting for the second thread to release L2, and the sec-
ond thread is waiting for the fi rst thread to release L1.

Most deadlocks can be avoided by using a consistent order for acquiring locks. As with data races, 
the easiest way to detect deadlocks is to use a correctness tool, such as Intel Parallel Inspector XE. 
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Poor Load Balancing

Load balancing is the act of making sure all threads are working equally hard utilizing all available 
cores on the CPU. Ideally, all threads in a parallel program should do equal amounts of work — that 
is, the load is well balanced. Poor load balancing leads to some threads being idle and constitutes a 
wasted resource. 

The most common cause of poor load balancing is having too coarse a granularity of work assigned 
to each task. This can be fi xed by reducing the amount of work each task can do, along with mak-
ing each chunk of work be of similar size. The easiest way to detect poor load balancing is to use a 
thread-aware profi ling tool, such as Intel Parallel Amplifi er XE.

Threading/Tasking Overhead

Launching threads consumes some processor time, so it is important that threads have a decent 
amount of work to do so that this overhead is insignifi cant compared to the work being done by the 
thread. If the amount of work that a thread does is low, the threading overhead can dominate the 
application. This overhead usually is caused by having too fi ne a granularity of work. This can be 
fi xed by increasing the amount of work each chunk does. 

There is a trade-off between the amount of work a thread does, its impact on threading overhead, 
and the load balancing that can be achieved. Getting the right amount of work per thread may need 
some experimentation before the best results are achieved.

Synchronization Overhead

Synchronization overhead comes from using too many locks, barriers, mutexes, or other synchro-
nization primitives. If you are not careful, you can inadvertently use too many primitives by using 
them in oft-repeated code, such as loops or recursive code. In this case, you should try to use less 
expensive synchronization constructs or restructure the code so that the constructs are used fewer 
times. Some programmers try to avoid using locks altogether by designing their software to use 
just atomic operations. Most lock-free programming relies on atomic operations that compare-and-
swap, or read-modify-write using atomic instructions provided by the CPU.

The easiest way to detect synchronization overhead is to use a synchronization-aware profi ling tool. 
For example, Intel Parallel Amplifi er XE is capable of profi ling locks and waits. 

Memory Errors

When a serial program is made parallel, any memory allocation errors that already exist could result 
in a program that no longer works. Parallel programming also brings two new types of memory 
errors: false sharing and real sharing. 

Memory Allocation Errors

A memory leak — that is, the dynamic allocation of memory without returning the memory to the 
memory manager — can result in excessive consumption of memory. Symptoms will include out-
of-memory messages and excessive disk-thrashing as virtual memory is swapped in and out by the 
memory manager. 

Memory managers that rely on the C runtime library to allocate memory from the heap are poor 
parallel performers. An example is the function malloc, which uses a single block of memory 
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known as the heap. To make sure that threaded calls to malloc do not corrupt the heap pointers, 
malloc uses a lock. This lock has the effect of serializing any parallel use of malloc, making the 
parallel program run slow. 

Scalable and lockless allocation functions are available to overcome this problem — for example, 
scalable_malloc provided with TBB.

Some memory allocation problems can be detected by static analysis of the code, whereas others can 
be detected only at run time. 

False Sharing

False sharing is quite a low-level concept, but it is worth being aware of because it can seriously 
impact a running program. 

Reading and writing from memory is slow, so CPUs have local on-chip memory called caches that 
are used to store copies of code and data from external memory. Each cache is organized into cache 
lines of contiguous memory. 

Most CPUs have two or three cache levels. For example, my laptop (Intel Mobile Core 2 Duo) has 
an L1 and an L2 cache, with the L2 cache being shared between the CPU cores. The L2 cache is 
nearest the external memory; the L1 cache is nearest the CPU. The cache nearest external memory is 
referred to as the last level cache. Sharing the last level cache can introduce false sharing. 

Figure 1-6 shows an example of false sharing. 
Variables Var A and Var B have already been 
loaded from external memory into the L2 cache 
line; in turn, each core also holds its own copy 
in its L1 cache. 

The variables are not shared between the two 
cores; Var A is only ever accessed by Core 1, 
and Var B by Core 2. Because of the close 
proximity in memory of the two variables, they 
end up sitting in the same cache line. 

When Core 2 changes the value of Var B, the 
processor will see that Core 1 also has a copy 
of the cache line and mark Core 1’s cache line 
as invalid. 

When Core 1 then modifi es the value of 
Var A, the CPU will fi rst fl ush its invalid L1 cache line and then reload the cache line from L2. If 
Core 1 alters Var A and then Core 2 alters Var B in a repeated sequence, this will result in the cache 
lines being continually fl ushed and updated. The fl ushing and updating of the cache line adds extra 
cycles to the time it takes to read the variables.

Although the variables are not logically shared between the two cores, because the two variables sit 
on the same cache line, they are effectively being shared by the mechanism the CPU employs to keep 
the cache line values correct. 

External

Memory

Applica-

tion

Copying data from external
memory into cache is slow

Two-core CPU with shared L2 cache

Core 1 Core 2

Reading data from
cache is fast

Var A Var B

Level2 cache

FIGURE 1-6: A 2-core CPU with shared caches
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Detecting false sharing is diffi cult, but it can be made easier with a tool such as VTune Amplifi er 
XE, which enables you to carry out an architectural analysis of the running program. Chapter 12, 
“Event-Based Analysis with VTune Amplifi er XE,” describes how to do this. 

Real Sharing

Real sharing is a variation on false sharing. The difference is that two threads share the same vari-
able. Two cores that are constantly reading and writing to the same memory location will result in a 
similar cache-thrashing and will hurt performance.

Speedup and Scalability

One of the challenges of parallel programming is to write programs that perform better as you run 
them on processors with an additional number of cores. Well-written parallel software should dis-
play improved performance as you increase the number of cores, and should be agnostic as to how 
many cores are available. 

Calculating Speedup

It is useful to be able to work out how fast a program will speed up if made parallel. The process is 
not diffi cult to understand but still worth spelling out.

Speedup

The following code snippet contains three calls to the function work(). At run time the function 
will be called six times, four of the calls coming from within the for loop. If the for loop is made 
parallel — for example, by using Cilk Plus or OpenMP — the projected speedup and scalability can 
be worked out.

1: work(1);
2: for(int i = 0; i < 4; i++)
3: {
4:    work(i+2);
5: }
6: work(6);

Figure 1-7 shows the parallelism that might be achieved on a different number of cores.

If each call to work() consumes 500 steps, the serial execution of the code would take 3,000 
steps — see row (p), column (a). 

Column (b) of Figure 1-7 shows what would happen if the for loop were parallelized and run on a 
2-core machine. The speedup would be 1.5, which is calculated by dividing the original number of 
steps by the new number.  

Speedup = Original number of steps / new number of steps

3000 / 2000 = 1.5

In column (c), the number of cores is increased to 4, so the new speedup is 2.  
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FIGURE 1-7: Calculating speedup

Parallel Overhead

In practice, an overhead is associated with implementing parallelism. The two squares in column 
(d) of Figure 1-7 represent this overhead. If we assume that the overhead in this example introduces 
50 extra steps at the start and end of the parallel code, the total number of steps executed is 2,100, 
with the speedup becoming 1.43. In this example the overhead has had a slight negative impact on 
the speedup.

When making code parallel, it is important that there is suffi cient work done in the parallel part of 
the code; otherwise, the overhead of the threading would dominate the performance. In row (q) of 
Figure 1-7, the same calculations are performed as in row (p), but the function work() now changes 
to consume only 10 steps. In this situation the speedup of the code, including the threading over-
head, is only 0.43 — that is, the code will run at half the speed of the original serial code. 

Amdahl’s Law and Gustafson’s Observation

Two laws are often cited when working out an expected speedup: Amdahl’s Law and Gustafson’s 
comments on Amdahl’s Law (see Figure 1-8).

Amdahl says “…the effort on achieving high parallel processing rates is wasted unless it is accompa-
nied by achievements in sequential processing rates of very nearly the main magnitude.” [Amdahl, 
Gene M., “Validity of the single processor approach to achieving large scale computing capabili-
ties.” AFIPS Spring Joint Computer Conference, 1967]
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S = 

S is the speedup
P is the fraction of code that
 will be made parallel
N is the number of processors

S is the speedup
P is the number of processors
α is the non-parallelized
 part of the program

Amdahl’s Law Gustafson’s Law

S(P) = P − α.(p − 1)
1

(1 − P) + P/N

FIGURE 1-8: Two laws for calculating speedup

Gustafson says “…speedup should be measured by scaling the problem to the number of pro-
cessors not by fi xing the problem size.” [Gustafson, John L., “Reevaluating Amdahl’s Law.” 
Communications of the ACM; Volume 31, 1988]  

Amdahl focused on the best speedup that could be obtained on a given problem size. Gustafson, on 
the other hand, contended that the problem size grows to match the resources available.

Amdahl’s Law is sometimes used to paint a pessimistic picture of parallelism. Gustafson is far more 
optimistic, recognizing that programs grow to take up all resources available to them. Whether you 
use Gustafson’s or Amdahl’s Law, two things are true:

 � The more code you remove from the serial part and make parallel, the better speedup you 
will achieve when executing code on modern multi-core architecture.

 � The best parallel methods scale by solving bigger problems.

Predicting Scalability

Scalability is an observation of the speedup of a program as the number of cores is increased. 
A scalable program is one that responds well to an increased number of cores. A perfectly scalable 
program runs twice as fast on a 4-core machine than on a 2-core machine, and runs four times 
faster on an 8-core machine. In practice, it is rare to achieve perfect scalability.

You can forecast the scalability of the code by increasing the number of cores in the speedup cal-
culation and plotting the trend. Figure 1-9 shows the same code as in the previous section, with 
calculations for 1 to 6 cores. The reading at zero cores represents the original serial code. 

The Work with no overhead line represents the speedup values without the overhead element being 
added to the equation. 

The Large work with overhead and the Small work with overhead lines represent the speedup val-
ues taking into account the synchronization overhead.

As shown in the Work with no overhead line, the speedup fl attens when there are four or more 
cores. The reason for this is that when the for loop is parallelized, the number of loops is shared 
among the available cores. Because the code has only four loops, a maximum of four work() func-
tions can be called in parallel. 
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FIGURE 1-9: Calculating speedup

The key point to note here is that the design of the parallel code has introduced an upper bound into 
the parallelism that can be achieved. 

When the parallel overhead is added to the graph, you can see that with a large amount of work, the 
speedup is only slightly impacted.

When the work() consumes only ten steps, two things happen: the parallel version of the code runs 
slower than the original serial code, and the speedup does not improve as additional cores are added. 

Using language models such as Cilk Plus or TBB, you should be able to write programs that scale 
well as silicon moves from multi-core to many-core. The work-stealing schedulers in these models 
will help you produce software that is automatically load-balanced, with the correct ratio of work-
load-to-overhead software that can be regarded as “future-proof.”

Parallelism and Real-Time Systems

Parallelism introduces some exciting opportunities for those working with real-time or embed-
ded systems. One of the challenges is keeping as much of the program as possible at a high level 
of abstraction without losing the determinacy your program requires. Partitioning your real-time 
requirements between hard and soft real-time may help you.

Hard and Soft Real-Time

Timing requirements for real-time systems can be divided between soft real-time and hard real-time. 
In hard real-time, response rates to some events, such as external interrupts and timer events, need 
to happen within a guaranteed time, usually in the order of microseconds or within in a certain 
number of CPU clock cycles. In soft real-time, the requirements are less deterministic, with response 
rates being measured in the order of milliseconds. 
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The higher-level parallel implementations described in this book are not validated in a hard real-time 
environment. Some of the requirements of hard real-time, such as deterministic behavior, preemptive 
scheduling, and guaranteed execution times, are not designed into the underlying runtime libraries.

A Hard Real-Time Example using RTX

IntervalZeros’s RTX is one example of how to use the higher-level parallel models in a real-time 
system. RTX is a runtime extension to Windows that provides the missing hard real-time behavior. 
As shown in Figure 1-10, the number of cores available on a system is divided between the Win32 side 
(which is running Windows) and the RTX side (the real-time extension). Any parallelism on the RTX 
side is programmed using low-level threading constructs provided by the Windows API. The paral-
lelism on the Win32 side is programmed using higher-level constructs, such as Cilk Plus or OpenMP. 
Any threaded code that requires a hard real-time response is run in the RTX space. Communication 
between the two domains is via interprocess communication (IPC) or using shared memory.

WIN32

Soft real-time
RTX

Hard real-time

Threading

via high-

level

constructs

Threading

via low-

level

primitives

Communication via IPC or shared memory

Core

1

Core

2

Core

3

Core

4

Core

5

Core

6

Six-core CPU

FIGU RE 1-10: A model of achieving hard real-time

Advice for Real-Time Programmers

Everything in this chapter about parallelism is just as relevant to real-time programming as it is to 
non-real-time programming.

If your programs have a real-time aspect, you should:

 � Keep to a higher level of abstraction as much as possible. This will help you produce scalable, 
well-balanced applications.

 � Look out for data races. Use static and dynamic analysis to detect them.
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 � Not be afraid to “borrow” bits from different parallel models.

 � Be very conservative with hard real-time requirements. Most general-purpose parallelism 
libraries are not validated for real-time.

SUMMARY

Multiple cores available on the latest generation of CPUs bring new opportunities for programmers 
to optimize their code. You can use a variety of different parallel programming models to add paral-
lelism to your programs. 

When writing your code, take special care to avoid introducing parallel programming errors into 
your newly parallelized programs. Aim to write parallel programs that exhibit good speedup, have 
good load balancing, and are scalable.

The next two chapters introduce Intel Parallel Studio XE, which is designed to help in all stages of 
the development of parallel code. Chapter 2, “An Overview of Parallel Studio XE,” gives an over-
view of Parallel Studio; Chapter 3, “Parallel Studio XE for the Impatient,” is a hands-on session to 
familiarize you with the different tools. 
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2
An Overview of Parallel 
Studio XE 

WHAT’S IN THIS CHAPTER?

 � An overview of Parallel Studio XE

 � An overview of Advisor XE

 � An overview of Composer XE

 � An overview of Amplifi er XE

 � An overview of Inspector XE

This chapter gives an overview of Intel Parallel Studio XE, highlighting the main features of 
each tool. 

Parallel Studio XE enables you to develop, debug, optimize, and tune both threaded and non-
threaded applications on Linux and Windows. On Windows, Parallel Studio XE plugs into 
Visual Studio; on Linux, it works alongside the GNU Compiler Collection (GCC). 

Developers use Parallel Studio XE in a number of different ways. The chapter concludes with a 
discussion on three different ways that you might want to use Parallel Studio XE. 

WHY PARALLEL STUDIO XE?

In Chapter 1, “Parallelism Today,” high on the list of the top six challenges was tools. 
Programmers need tools that work well together and help productivity. Intel Parallel Studio 
XE is a comprehensive tool suite that is designed to help you develop parallel applications. 
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Programmers and developers like to follow their own way of doing things. Not everyone follows the 
same methodology — some like top-down, others like bottom-up, and others mix and match method-
ologies. Some developers prefer to use tools with a graphical user interface, whereas others fi nd using 
the command line much more productive. Some experienced programmers dive straight into adding 
parallelism to their code with a minimum of guidance, whereas others look for as much help as pos-
sible. Parallel Studio XE is designed to help developers add parallelism to their existing code and to 
develop completely fresh code, regardless of their approach and experience. 

WHAT’S IN PARALLEL STUDIO XE?

Parallel Studio is available in two versions:

 � Intel Parallel Studio XE — Available on both Windows and Linux 

 � Intel Parallel Studio — A Windows-only product

This book is based on Parallel Studio XE, although you can use most of the concepts in the non-XE 
version, as well. 

INTEL PARALLEL STUDIO XE

Parallel Studio XE is a suite of software tools that contains the following: 

 � Intel Parallel Advisor — Parallel Advisor gives advice on how to add parallelism to a pro-
gram. Advisor enables you to model the effect of parallelism before committing to the fi nal 
implementation.

 � Intel Parallel Composer XE — Composer XE contains a compiler and libraries used to create 
optimized and parallel code. Within Composer there is also the Parallel Debugger Extension 
(PDE), which is used to debug threaded code. A standalone debugger — the Intel Debugger 
(IDB) — is available with the Linux version of the tools.

 � Intel Parallel Inspector XE — Inspector XE is used to check a running program for common 
parallel-type errors, such as deadlocks and data races, and memory errors, such as memory 
and resource leaks in both parallel and serial programs.

 � Intel VTune Amplifi er XE — Amplifi er XE is used to profi le an application to identify pro-
gram hotspots and bottlenecks. It also analyzes parallel programs to show how parallel and 
how effi cient they are. You can also use Amplifi er XE to show how well the CPU is being 
used in an application, helping you identify any underlying problems. 

On Windows, Parallel Studio XE is installed alongside Microsoft Visual Studio and is compatible 
with the Microsoft tools. The C/C++ compiler in Composer XE is a plug-and-play replacement for 
the Microsoft compiler. 

On Linux, Parallel Studio XE is installed alongside the GNU software development tools and is 
compatible with GCC. The C/C++ compiler in Composer XE is a plug-and-play replacement for 
GCC on Linux.
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Parallel Studio XE supports program development in C/C++ and Fortran. Table 2-1 lists the features 
that are in Parallel Studio XE along with the non-XE version. 

TABLE 2-1: Key Features of Parallel Studio XE

COMPOSER NON-XE                 XE

C/C++ compiler X X

Fortran compiler X

Profi le-guided optimization X 

Parallel Debugger Extension X X

Intel Debugger (Linux only) X

Threaded performance libraries X X

Threaded math library X

INSPECTOR

Memory and Thread analyses X X

Advanced Memory and Thread analyses X X

Static Security analysis X

AMPLIFIER

Hotspot, Concurrency, and Locks and Waits analyses X X

Timeline X

Frame analysis X

Event-based sampling X

Source view X X

Assembly view X

ADVISOR

Threading advice for serial applications X X

USER INTERFACE

Visual Studio integration X X

Standalone graphical interface X

Command line Basic Advanced 

OPERATING SYSTEM

Windows X X

Linux X
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INTEL PARALLEL ADVISOR 

Intel Parallel Advisor provides a methodology for modeling parallelism in code. The fi ve-step model 
provides an implementation-neutral means of modeling parallelism in an application under develop-
ment. Advisor guides the programmer through each step of the model without the need to commit 
to a particular parallel program implementation until the last step of the modeling. 

The Advisor Workfl ow

Intel Parallel Advisor guides you through a series of steps to help you experiment with adding paral-
lelism to your code (see Figure 2-1). In practice, programmers usually step back and forth between 
some of the steps until they have achieved good results. You can launch each step from the Advisor 
Workfl ow tab (in the Solution Explorer) or from the Advisor toolbar/menus. 

Replace Annotations

Check Correctness
Annotate Code

Check Suitability

Survey Site

Start

FIGURE 2-1: The fi ve-step Advisor workfl ow

Surveying the Site

The fi rst step in the Advisor workfl ow is surveying the site to fi nd any hotspots — that is, code 
with signifi cant CPU activity within the application. Once the survey is run, Advisor reports on 
screen how much time has been spent executing each part of the program. The amount of time of 
each function call and loop is displayed in the Survey Report. In Figure 2-2 the recursive call to 
setQueen is identifi ed as the main hotspot.

FIGURE 2-2: A Survey Report in Advisor
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Annotating Code

After identifying hotspots in the code, the next step is to add annotations to mark areas of parallel-
ism. You can insert the annotations into the code by hand, or you can insert them via the context-
sensitive menu. The Advisor modeling engine uses these markers to predict the effect of adding 
parallelism. Following is an example of code annotation:

#include <advisor-annotate.h>
void solve() 
{
  int * queens = new int[size]; 

  ANNOTATE_SITE_BEGIN(solve)
    for(int i=0; i<size; i++) {
      // try all positions in first row
      ANNOTATE_TASK_BEGIN(setQueen)
        setQueen(queens, 0, i);
      ANNOTATE_TASK_END(setQueen)
    }
  ANNOTATE_SITE_END(solve)
}

You need to include the header fi le advisor-annotate.h before using the annotation macros.

The macros ANNOTATE_SITE_BEGIN and ANNOTATE_SITE_END mark the area of code that will con-
tain one or more tasks. The task itself — that is, the block of code that will be run in parallel — is 
marked with the macros ANNOTATE_TASK_BEGIN and ANNOTATE_TASK_END. 

Note that the code has one error purposefully included. Each task accesses the dynamically allo-
cated array queens. This will cause a data race, but it will be detected when Advisor does the 
correctness modeling.

The annotations do not actually implement parallelism; rather, they help you answer the ques-
tion, “What would happen if I inserted parallelism here?” When Advisor runs the code, the code 
is still run in serial, with Advisor using the annotations to predict what the parallel behavior 
will be. 

The annotations ANNOTATE_LOCK_ACQUIRE and ANNOTATE_LOCK_RELEASE are used to protect a 
shared variable. Manipulation of the shared variable is performed within these two annotations:

ANNOTATE_LOCK_ACQUIRE(0);  
  shared_variable ++;
ANNOTATE_LOCK_RELEASE(0);

Typically, you should add the lock annotations only after you have run the correctness tool and have 
found cases of unprotected data sharing.

Checking Suitability

After adding the annotations to the code, you can use Advisor to generate a Suitability Report. The 
Suitability Report shows the effect of parallelism and the likely scaling that will be achieved. 

The All Sites pane of the Suitability Report displays the speedup of each site in a table (see 
Figure 2-3). You can model the number of CPUs to see how each site responds to different 
CPU counts. 
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FIGURE 2-3: Modeling speedup in the Suitability Report

The Selected Site pane shows a graphical summary of the speedup. Advisor knows the impact the 
parallelism overhead has on the running program. You can use this pane to speculate on the benefi t 
of reducing the overhead. 

Checking Correctness

After creating the Suitability Report, you can use Advisor to check for any potential data-sharing 
problems. You can launch correctness checking by selecting the Correction analysis button on the 
Advisor toolbar. Advisor lists all detected errors in the Correctness Report (see Figure 2-4). 

FIGURE 2-4: A Correctness Report in Advisor
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Replacing Annotations

Once you are satisfi ed with the results of the Suitability and Correctness Reports, the fi nal step is to 
change the annotations in the source code to real parallel programming constructs. You can choose 
these from the family of parallel models that are supported by Parallel Composer, as discussed in 
Chapter 7, “Implementing Parallelism.” The process is not automatic; you are responsible for mak-
ing the changes by hand and fi xing the potential correctness issues identifi ed in the report.

You can fi nd more details about Advisor in Chapter 10, “Parallel Advisor-Driven 
Design.” 

INTEL PARALLEL COMPOSER XE

Intel Parallel Composer XE contains the following:

 � An optimizing C/C++ and Fortran compiler

 � A collection of threading and optimization libraries

 � Threading Building Blocks (TBB)

 � Integrated Performance Primitives (IPP)

 � Math Kernel Library (MKL)

 � Debugging tools

 � Parallel Debugger Extension (PDE) for Windows

 � Intel Debugger (IDB) for Linux

Intel C/C++ Optimizing Compiler

The compiler is a direct replacement for the Microsoft compiler and the GNU GCC compiler, and is 
used to create optimized code. Together, the compiler and libraries support Intel’s family of parallel 
models, as mentioned in Chapter 1.

Table 2-2 lists some of the key features of the compiler (discussed in more detail in Chapter 4, “Producing 
Optimized Code,” Chapter 5, “Writing Secure Code,” and Chapter 7, “Implementing Parallelism”).

TABLE 2-2: Key Features of Intel C/C++ Compiler

OPTIMIZATION DESCRIPTION

Automatic optimization Optimizes an application for speed or size. Use the /O1 option to optimize 

for size, /O2 to optimize for speed, and /O3 for a more aggressive speed 

optimization.

Interprocedural optimi-

zation (IPO)

Performs cross-fi le optimization (sometimes referred to as global 
optimization).

continues
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OPTIMIZATION DESCRIPTION

Profi le-guided optimi-

zation (PGO)

Initial run of the application drives compiler options.

Automatic vectorization Converts calculations within loops to use SSE instructions. You often can 

achieve signifi cant performance improvements with this option.

Floating-point 

performance

Controls the precision and speed of fl oating-point operations. For some 

applications, you can reduce the accuracy of the fl oating-point calcula-

tions (with compiler switches) to get faster results.

Intrinsic functions Inserts SSE, data pre-fetching, and other optimized routines.

PARALLELIZATION

Cilk Plus Provides the easiest way to parallelize a program.

OpenMP Provides support for OpenMP 3.0.

Automatic 

parallelization

Provides loop-centric automatic parallelism.

TOOLS AND REPORTING

Guided auto-

parallelizaton (GAP)

Advises on code changes required to satisfy auto-parallelization and 

auto-vectorization.

Optimization reports Provides detailed reports on all stages of optimization.

Static Security analysis 

(SSA)

Checks for security issues that could compromise the application being 

developed.

Profi le-Guided Optimization

In PGO, you create a set of statistics, or profi les, by running the actual application being devel-
oped, and then feeding this information back into the compilation stage of the program, using the 
profi le to automatically infl uence the behavior of the compiler. You conduct PGO in three stages 
(see Figure 2-5):

 1. Use the compiler option /Qprof-gen to build an instrumented version of an application. You 
use the instrumentation to capture runtime information about your application’s behavior.

 2. Execute the instrumented application my.exe. As the program runs, the instrumentation pro-
duces a .dyn fi le that contains information on how the program executes. 

It is important to use appropriate test data in stage 2. If the application behaves quite differ-
ently with different types of test data, it may be worth doing multiple runs of stage 2.  

 3. Use the compiler option /Qprof-use, which causes the compiler to use the .dyn fi le(s) to 
produce an optimized application. 

TABLE 2-2 (continued)
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Stage 1. An instrumented version of the

application is built.

Stage 3. An optimized version of the

application is built.

Stage 2. The instrumented application is run.

This step can be repeated with different test data,

producing multiple .dyn files.

prof

.lib

Test

data

My

.exe

My

.exe

.dyn

.C

icl

icl

.C

.dyn

.exe

/Qprof-gen

/Qprof-use

FIGURE 2-5: The three stages of PGO

PGO improves application performance by:

 � Reorganizing code layout 

 � Reducing instruction-cache problems 

 � Shrinking code size

 � Reducing branch mispredictions 

Cilk Plus 

Cilk Plus is an extension to C/C++ to support parallelism. Using just three new keywords, Cilk 
Plus is one of the easiest ways to add parallelism to a program. With Cilk Plus you express parallel 
intent, rather than parallel control. 

Cilk Plus has the following key features:

 � Keywords

 � Reducers

 � Array notations

 � Elemental functions

 � SIMD pragma
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The Cilk Plus scheduler decides at run time whether to run the code in parallel. The scheduler auto-
matically takes care of load balancing. You can infl uence the Cilk Plus program with the following 
keywords, environmental variable, and APIs:

 � Keywords

 � cilk_spawn

 � cilk_sync

 � cilk_for

 � Environment variable

 � CILK_NWORKERS

 � APIs

 � __cilkrts_set_param(“nworkers”,”4”)

 � __cilk_get_nworkers()

 � __cilkrts_get_total_workers()

 � __cilkrts_getworker_number()

When you run a Cilk Plus program, a number of workers are created — usually the same number 
as the number of cores on the host system. You can override the default number of workers by 
using the Cilk Plus API. You can also set the number of workers by using the environment variable 
CILK_NWORKERS.

Listing 2-1 shows an example of using cilk_spawn and cilk_sync. The program calculates the 
40th value of the Fibonacci series. 

LISTING 2-1: A simple Cilk program

#include <stdio.h>
#include <cilk/cilk.h>

long fibonacci(long n)
{
  long x, y;
  if (n < 2) return n;

  // find the n-1 number
  x = cilk_spawn fibonacci(n-1);

  // find the n-2 number
  y = fibonacci(n-2);

  // workers wait here until all have finished
  cilk_sync;
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  return (x+y);
}

int main()
{
  // work out the 40th value in fibonacci series
  long fib = fibonacci(40);
  // display the results
  printf(“Fibonacci 50: %d\n”,fib);
}

code snippet Chapter2\2-1.cpp

The lines following the cilk_spawn statement (that is, starting with y = … ) up to the cilk_sync 
statement are known as the continuation. The cilk_spawn keyword gives permission to the run 
time to run fibonacci(n-1) in parallel with the continuation code. At run time, if a spare worker 
is available, the scheduler steals the continuation code from the fi rst worker and assigns it to a sec-
ond worker. At the same time, the fi rst worker continues executing the call to fibonacci(n-2).

Cilk Plus reducers are used to prevent data races by using them in place of nonlocal variables, In 
Listing 2-2, the variable j, which was originally an integer, has been changed into a reducer. This 
change prevents a data race from occurring. At run time, each worker is given its own view of 
the reducer. 

LISTING 2-2: An example of using a Cilk Plus reducer

#include <cilk/cilk.h>
#include <cilk/reducer_opadd.h>
#include <stdio.h>
  
int main()
{
    cilk::reducer_opadd<int> j;

    cilk_for(int i = 0; i < 100; i++)
    {
        j += i;
    }
    printf(”J is %d”,j.get_value());
}

code snippet Chapter2\2-2.cpp

The values of the individual views are combined back together when the parallel strands come back 
together. You retrieve the combined value in the printf statement by calling the reducer function 
get_value(). The operation used to combine the values is specifi c to the type of reducer that is being 
used. In this example the reducer type is a reducer_opadd, so the views are combined by adding the 
values together. Table 2-3 lists other available Cilk Plus reducers. You can also write your own reducers.
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TABLE 2-3: Cilk Plus Reducers

REDUCER DESCRIPTION

reducer_list_append Adds items to the end of a list

reducer_list_prepend Adds items to the beginning of a list

reducer_max Finds the maximum value from a set of values

reducer_max_index Finds the index of maximum values from a set of values

reducer_min Finds the minimum value from a set of values

reducer_min_index Finds the index of minimum values from a set of values

reducer_opadd Performs a sum

reducer_ostream Provides an output stream that can be written in parallel

reducer_basic_string Creates a string using append or += operations

Cilk Plus is one of the easiest ways to add parallelism to a program.

Array notations provide data parallelism for arrays. Elemental functions are functions that can be 
applied to arrays and scalars to enable data parallelism. The SIMD pragma is used to enforce vec-
torization. The compiler issues a warning if it fails to vectorize the code. 

Listing 2-3 is an example of using array notation and elemental functions. Each array element in 
a[] and b[] is added together, putting the results in c[]. The following lines perform the same 
calculations:

int sum = __sec_reduce_add(c[:])

for(int i=0; i<4; i++){c[i] = a[i] + b[i];}.

The call to __sec_reduce_add adds together all the elements of the array c. You can perform the 
addition in parallel if you have suffi cient CPU resources available at runtime.

LISTING 2-3: A simple array notation example

int main()
{
    int a[] = {1,2,3,4};
    int b[] = {2,4,6,8};
    int c[] = {0,0,0,0};
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    c[:]=a[0:4] + b[0:4]; // 3,6,9,12
    int sum = __sec_reduce_add(c[:]);  // 30

    return sum;
}

code snippet Chapter2\2-3.cpp

OpenMP

OpenMP is a well-established standard for parallel programming. Intel Parallel Composer 
supports OpenMP version 3.0. OpenMP consists of pragmas, APIs, and environment variables 
that you can use to add parallelism to code incrementally. 

The OpenMP task example in Listing 2-4 shows how tasks are used. To successfully build the code 
with the Intel compiler, you must use the /Qopenmp option.

LISTING 2-4: A simple OpenMP task example

#include <stdio.h>
#include <omp.h>
int main()
{
  int j = 0;
  // create a parallel region 
  #pragma omp parallel
  {
    // this task will run on just one thread  
    #pragma omp single nowait
      {
         for (int i = 0; i < 10; i++)
         {
            // every time loop iteration hits this next line
            // an omp task will be created and will 
            // be run the moment a thread is available
            #pragma omp task firstprivate(i)
            {
               #pragma omp atomic
               j++;
               printf(“i: %d thread:%d\n”,i,omp_get_thread_num());
            } // end #pragma omp task
         } // end for …
      } //end #pragma omp single nowait
   } // end #pragma omp parallel
   return 0;
}

code snippet Chapter2\2-4.cpp
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At the start of the #pragma omp parallel, a pool of threads is made available. The #pragma omp 
single statement ensures that the following block of code is run by only one thread. 

Within the single running thread is a loop that causes the #pragma omp task statement to create 
ten tasks. Once a task is created, it is free to be executed by the fi rst available free thread. 

Once the single thread has created all the tasks, the thread on which it was running becomes avail-
able to the OpenMP runtime — the nowait clause makes sure the thread is released immediately.

There is an implicit barrier at the end of the #pragma omp parallel block: no thread can go 
beyond this point until all threads have completed their work.

The variable j has the potential to cause a data race, so it is incremented in an atomic operation.

Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) is a C++ template library for parallelizing C++ programs. 
Using TBB to add parallelism to your program makes sense only if you wrote your program in C++ 
and you are comfortable with such concepts as templates, overloading, and inheritance. 

TBB has had wide adoption, with a number of commercial software products having their parallel-
ism provided under the hood by TBB.

The library is available under the GNU Public License (GPL) and non-GPL development. The ver-
sion shipped with Parallel Studio is the non-GPL version.

TBB consists of the following components:

 � Parallel algorithms

 � Task scheduler

 � Concurrent containers

 � Thread local storage and scalable memory allocators

 � Low-level synchronization primitives

The main unit of work is the task, which is scheduled by a work-stealing scheduler. Tasks are allo-
cated to threads by the scheduler and are held in queues. When a thread’s task queue is empty, the 
scheduler will steal a task from another thread’s queue, thereby keeping all the threads busy.

You can mix TBB with other parallel language constructs. For example, you can write a parallel 
program using Cilk Plus and use TBB to supply memory allocation and synchronization. Table 2-4 
lists some of the templates that are available in TBB.

TABLE 2-4: Some TBB Templates

ALGORITHMS DESCRIPTION

parallel_for Performs parallel iteration over a range of values

parallel_reduce Computes reduction over a range

parallel_scan Computes parallel prefi x
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parallel_do Processes work items in parallel

parallel_for_each Provides parallel variant of std::for_each

parallel_pipeline Performs pipelined execution

parallel_sort Sorts a sequence

parallel_invoke Evaluates several functions in parallel

CONTAINERS

concurrent_hash_map Provides associative container with concurrent access

concurrent_queue Provides queue with concurrent operations

concurrent_bounded_queue Provides bounded dual queue with concurrent operations

concurrent_vector Provides class for vectors that can be concurrently grown 

and accessed

concurrent_unordered_map Provides container that supports concurrent insertion and 

traversal

PRIMITIVES

mutex Provides mutual exclusion of threads from sections of code

atomic Used for atomic operations

ALLOCATORS

tbb_allocator Allocates memory (may not be scalable)

scalable_allocator Provides scalable memory allocation

zero_allocator Allocates zeroed memory space

aligned_space Allocates uninitialized memory space

Listing 2-5 shows an example of using the parallel_for algorithm to print the value of a 
loop variable. 

LISTING 2-5: A simple example of the TBB parallel_for algorithm

1: #include “tbb/tbb.h”
2: #include <stdio.h>
3: using namespace tbb;
4:
5: int main()
6: {
7:   parallel_for( size_t(0),size_t(20),size_t(1),

continues
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8:     [=](size_t n) { 
9:       std::printf(“%d “,n);
10:    }
11:  );
12:  return 0;
13:}

code snippet Chapter2\2-5.cpp

The fi rst three parameters of parallel_for are the loop start, loop end, and loop increment values. 

Lines 8 to 10 defi ne a lambda function, which is supported by the C++0x standard. You have to use 
the option /Qstd=c++0x with the Intel compiler to successfully build the code shown in Listing 2-5. 
This parameter does not need to be a lambda function; you could use a normal C function instead.

Parameter n in line 8 is the current loop counter. The scheduler passes in the current loop count via 
this variable.

Lines 9 to 10 are the body of the lambda function, which gets executed once every iteration.

The TBB scheduler load-balances the loop iterations between separate TBB tasks, the order of exe-
cution being indeterminate.

Intel Integrated Performance Primitives

The Intel Integrated Performance Primitives (IPP) library is a vast collection of functions covering 
audio, video, speech, data compression, signal processing, and cryptography (see Table 2-5). Before 
writing your own libraries and algorithms, you should consider using IPP instead. This library 
might stop you from “reinventing the wheel” and signifi cantly shorten your development time.

TABLE 2-5: IPP Libraries and Domains

LIBRARY DOMAIN 

ippAC Audio coding

ippCC Color conversion

ippCH String operations

ippCP Cryptography

ippCV Computer vision

ippDC Data compression

ippDI Data integrity

ippGEN Generated functions

LISTING 2-5 (continued)
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ippIP Image processing

ippJP Image compression

ippMX Small matrix operations

ippRR Rendering and 3D

ippSC Speech coding

ippSP Signal processing

ippSR Speech recognition

ippVC Video coding

ippVM Vector math

The functions in IPP are optimized for different architectures. A top-level, architectural-neutral func-
tion determines at runtime which instruction set the host supports, and then calls the appropriate 
architectural-specifi c, low-level function. This technique, known as software dispatching, is done auto-
matically at run time. Where dispatching is not required, it is possible to link directly to the lower-level 
optimized libraries. You can link applications with the IPP library either statically or dynamically. 

An Application Example

Figure 2-6 gives an example of where the Fast Fourier Transform (FFT) functions of the IPP library 
are the real-time manipulation of a sound stream. 

Audio

out

Wave

File in
Streaming Window

Notifications

Circular Buffer

Write

P
la

y

Direct
Sound

FFT

Block Stream

Inverse FFT

Manipulate

FIGURE 2-6: Real-time sound manipulation

The design was part of a program that changes the characteristics of a wave fi le as it is being played. The 
reading and playing of the sound uses Windows DirectSound, with an FFT being applied in real time. 
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A block of data Block Stream is read from a wave fi le. As each block is read, the play and write 
pointers are maintained as a circular buffer. 

The address of the circular buffer is passed to the FFT function, after which the sound is modifi ed 
using the manipulate block; fi nally, the modifi ed sound data is inverse FFT’d and written back to the 
circular buffer.  

Listing 2-6 shows how the IPP FFT function is called. The code is not complete, but it shows how 
FFT is achieved using IPP. The FFT function ippsFFTFwd_RToPerm_32f does the actual FFT. 
Initialization is performed with the ippsFFTInitAlloc_R_32f and ippsZero_32fc functions.

LISTING 2-6: Using the IPP FFT functions

// Function that will call IPP FFT 
int FFT(float in[], const float out[], int len)
{
  int power = 12;
  Ipp32fc* pFilterCCS;
  IppsFFTSpec_R_32f *pFFTSpec;

  // allocate space for FFT
  pFilterCCS = (Ipp32fc*)ippsMalloc_32f(len+2);

  // FFT configure 
  Ipp32fc one = {1.0, 0.0};

  // zero initialize the FFT space
  ippsZero_32fc( pFilterCCS, len/2+1 );
  
  //initialize the FFT 
  ippsFFTInitAlloc_R_32f( &pFFTSpec, 
                 power, IPP_FFT_DIV_BY_SQRTN, ippAlgHintFast );

  // do the FFT
  ippsFFTFwd_RToPerm_32f(in, (Ipp32f*)out, pFFTSpec, 0 );

  // free up the FFT space
  ippsFree(pFFTSpec);

  return 0;
}

code snippet Chapter2\2-6.cpp

IPP and Threading

Some library functions are already parallelized. A nonparallelized version of the library is also pro-
vided. You can fi nd the list of threaded functions by looking at the fi le ThreadedFunctionsLists
.txt in the documentation directory of your IPP installation. 

All the functions in IPP are thread-safe, which means you can safely use them in your parallel code, 
knowing that the functions will be race-free. 
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The IPP library provides a series of performance tests for each application domain.

When using any library in a threaded or parallel application, it is important that 
you use thread-safe libraries. All IPP libraries are thread-safe.

Intel Parallel Debugger Extension

The Intel Parallel Debugger Extension (PDE) provides:

 � Thread Data-Sharing analysis 

 � Cilk Plus and OpenMP awareness

 � SSE register viewing/debugging

The PDE works alongside the standard Visual Studio debugger and provides additional functionality 
to help debug parallel applications. Figure 2-7 shows an example of some of the PDE windows. 

FIGURE 2-7: Some of the windows in the Parallel Debugger Extension

You can fi nd more details about PDE in Chapter 11, “Debugging Parallel 
Applications.”

Intel Debugger

The Intel Debugger (IDB) is a standalone debugger available on the Linux platform. It has all the 
features you would expect of a debugger, including breakpoints, watchpoints, single-stepping, 
source code, and disassembler views. 

IDB has its own graphical user interface as well as a command-line interface. All the parallel debug-
ging features mentioned in the previous section are available in IDB.

c02.indd   43c02.indd   43 3/26/2012   12:02:27 PM3/26/2012   12:02:27 PM



Blair-Chappell   c02.indd   V1 - 01/20/2011 Page 44

44 x CHAPTER 2  AN OVERVIEW OF PARALLEL STUDIO XE  

Math Kernel Library 

The Math Kernel Library (MKL) is a collection of math routines for use in science, engineering, 
and fi nancial applications. The library is well optimized and often gives superior results over hand-
crafted code or other comparable libraries. The libraries and functions in MKL are well known in 
the HPC community, so they are not described further here.

MKL offers the following functionality:

 � Dense linear algebra

 � Basic Linear Algebra Subprograms (BLAS)

 � Linear Algebra PACKage (LAPACK)

 � Trust Region Solver

 � Sparse linear algebra

 � Sparse BLAS

 � Sparse format converters

 � Sparse solvers

 � PARDISO direct sparse solver 

 � Iterative sparse solvers

 � Preconditioners

 � Fast Fourier transforms

 � Optimized LINPACK benchmark

 � Vector math library

 � Vector random number generators

 � Cluster support

 � Scalable LAPACK (ScaLAPACK)

 � Cluster FFT

You can use the library functions in either Fortran or C/C++ code. Some of the functions have vari-
ants that have parallelism implemented internally. All the functions are thread-safe.

Listing 2-7 shows how to perform a matrix multiplication using the MKL. Two matrices, A and B, 
and are fi lled with random numbers. The function cblas_sgemm is used to multiply A and B and 
write the results in C.

LISTING 2-7: Using the MKL to perform a matrix multiplication

#include <stdlib.h>
#include <time.h>
#include “mkl_cblas.h”
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#define MATRIX_SIZE 100
#define BUFFER_SIZE MATRIX_SIZE * MATRIX_SIZE 
int main(void)
{
  float A[BUFFER_SIZE];
  float B[BUFFER_SIZE];
  float C[BUFFER_SIZE];

  // seed the random number generator
  srand( (unsigned)time( NULL ) );

  // initialize the matrices with random values
  for (int i = 0; i < BUFFER_SIZE; i++)
  {
    A[i] = rand();
    B[i] = rand();
    C[i] = 0;
  }

  // matrix multiply using MKL
  cblas_sgemm(
      CblasRowMajor, 
      CblasNoTrans, 
      CblasNoTrans,
      MATRIX_SIZE,  MATRIX_SIZE,  MATRIX_SIZE, 1.0, 
      A, MATRIX_SIZE,
      B, MATRIX_SIZE, 0.0, 
      C, MATRIX_SIZE
  );
}

code snippet Chapter2\2-7.cpp

Because the MKL is designed to work with a number of different combinations of compilers and 
operating systems, several variants of the libraries ship with Parallel Studio XE. You can use the 
online wizard at http://software.intel.com/en-us/articles/intel-mkl-link-line-
advisor/ to help decide which MLK library to use.

VTUNE AMPLIFIER XE 

VTune Amplifi er XE is a profi ling tool to fi nd bottlenecks in your application. You can conduct the 
analysis at the algorithm level, where the focus is on the code, or at a more advanced level, where 
the performance of code on the processor microarchitecture is considered:

 � Algorithm analysis

 � Hotspots

 � Concurrency 

 � Locks and Waits
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 � Advanced analysis

 � General Exploration

 � Memory Access

 � Bandwidth

 � Cycles and uOps

 � Front-End Investigation

The profi ling results are displayed graphically. A comparison of several results can be displayed 
side by side. 

Advanced-level analysis relies on event-based sampling, which uses counters in the processor to 
measure how well your code performs. Read more in Chapter 12, “Event-Based Analysis with 
VTune Amplifi er XE.”

The fi rst stage of the four-step tuning methodology (see Chapter 3) uses Amplifi er to fi nd code hot-
spots. In the fi nal tuning step, Amplifi er detects any parallel overhead and determines how parallel 
the code is. 

All analyses should be carried out on the optimized version of your application.

Use Amplifi er on the optimized version of your application.

Hotspot Analysis

Hotspot analysis is used to fi nd parts of the code that consume the most CPU activity. Hotspots are 
prime candidates for running in parallel (see Figure 2-8). The top part of the window gives a sum-
mary of the hotspots, the biggest being at the top of the list. To the far right is the call stack of the 
highlighted hotspot. The bottom of the window is a timeline view. 

Concurrency Analysis

The Concurrency analysis gives a summary of how parallel an application runs. Concurrency is a 
measure of how many threads were running in parallel. The colored bars are a summary of how 
much time each function took, and the color of the bars indicates how much concurrency there 
is. You can fi lter the information in the graph by module, thread, processor, and utilization (see 
Figure 2-9). 

Locks and Waits Analysis

The Locks and Waits analysis shows where a program is waiting for synchronization. Two groups 
of synchronization objects are supported: objects used for synchronization between threads, and 
objects used with waits on I/O operations.
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FIGURE 2-8: Hotspot analysis using Amplifi er

FIGURE 2-9: Concurrency analysis using Amplifi er

In Figure 2-10, the longest red bars indicate the synchronization objects that are causing the longest 
wait time. You should try to fi x these fi rst. 

You can also launch Amplifi er XE from the command line. When you perform the profi ling from 
the command line, the results are displayed as text. You can also view the results generated from the 
command line in the graphical version of Amplifi er XE. 
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FIGURE 2-10: Locks and Waits analysis using Amplifi er

Dissassembly Source View

You can drill down to the disassembly view of your code with Amplifi er XE. You can choose to dis-
play assembler, source, or interleaved assembler and source. 

PARALLEL INSPECTOR XE 

Intel Parallel Inspector XE checks for threading and memory allocation errors. Inspector XE detects 
these errors at run time, usually working on an unoptimized version of the program under test. Data 
races and deadlocks are detected and their location pinpointed. 

Predefi ned Analysis Types

Inspector XE is a dynamic analysis tool that observes the application under test while it is running. 
When Inspector XE launches an application, it fi rst instruments the binary and then begins to cap-
ture runtime information. Several predefi ned analysis types are available (see Figure 2-11). 

When Inspector XE executes code, it fl ags errors even if they did not actually cause a problem at run 
time. For example, if you run code that has a potential deadlock but the deadlock did not actually 
happen, Inspector XE still recognizes the potential problem and reports it. 
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FIGURE 2-11: Controlling the analysis depth

Errors and Warnings

Inspector XE reports for the following types of errors and warnings:

 � Threading errors

 � Data races

 � Deadlocks

 � Lock hierarchy violations

 � Potential privacy infringements

 � Other threading information

 � Memory errors

 � GDI resource leaks

 � Incorrect memcpy calls

 � Invalid deallocations

 � Invalid memory access
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 � Invalid partial memory access

 � Kernel resource leaks

 � Memory leaks

 � Uninitialized memory access

 � Uninitialized partial memory access

Figures 2-12 and 2-13 show how the results are displayed.

FIGURE 2-12: A threading error report in Inspector XE

 Some errors that Inspector XE reports may be false positives — that is, they are not really errors but 
the tool thinks they are. Such errors can be added to a suppression fi le, and these errors are ignored 
in subsequent runs.

In addition to the GUI version of Inspector XE, a command-line version of Inspector is available, 
with the results displayed as text. You can also view the results generated from the command line in 
the graphical version of the tool.

You can read more about Inspector XE in Chapter 8, “Checking for Errors.”
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FIGURE 2-13: A memory error report in Inspector XE

STATIC SECURITY ANALYSIS

The primary goal of SSA is to harden applications against security attacks; it is also useful as a way 
to detect some programming errors. SSA relies on Composer XE and Inspector XE. The compiler 
performs the analysis, and Inspector XE displays the results.

The analysis checks for the following:

 � Buffer overfl ows 

 � Misuse of pointers and heap storage

 � Unsafe or incorrect use of C/C++ language and libraries

 � Unsafe or incorrect use of Fortran language and libraries

 � Misuse of OpenMP 

 � Misuse of Cilk Plus

When the compiler performs an SSA, it does not produce a working executable; however, it 
does produce intermediate object fi les, which contain extra information that is analyzed at the 
link stage.
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Various scripts are available to help in preparing an analysis. For a more detailed 
description, see Chapter 5, “Writing Secure Code.”

DIFFERENT APPROACHES TO USING PARALLEL STUDIO XE

Parallel Studio XE contains many different components to help you write parallel code and supports 
more than one model of use. Not all developers stick to one particular way of doing things. When 
using Parallel Studio XE, take a moment to consider which approach to using Parallel Studio might 
suit you. Here are some suggestions that might help: 

 � If you are looking for as much guidance as possible — Use Parallel Advisor, which offers a 
high-level methodology of developing parallelism. Advisor uses the technology of the under-
lying tools but does not rely on you fi ring up individual tools. This methodology doesn’t suit 
everyone. If you are looking for a technique that helps model parallelism before implement-
ing it, and keeps an overarching view of what you are doing, this might be for you. 

Chapters 10 and 18 are dedicated to developing code using the Advisor-driven methodology.

 � If you prefer to control individual analysis and development steps — Use the individual tools 
from Parallel Studio XE, launching the tools directly from the toolbars (rather than relying 
on Advisor). You can use the tools in Parallel Studio XE (Amplifi er XE, Composer XE, and 
Inspector XE) as part of the popular four-step development cycle. 

Chapter 3 introduces the four-step development cycle: analysis, implementation, error 
checking, and tuning.

 � If you hate graphical user interfaces or prefer script-driven development — Use a compiler-
centric focus, with all development work being carried out from the heart of your code using 
just command-line tools. You can drive the compiler, libraries, Amplifi er XE, and Inspector 
XE from the command line.

SUMMARY

Parallel Studio XE includes most of the tools you need to write and debug simple and complex par-
allel applications.   

Composer XE, which includes a C/C++ and Fortran compiler along with a set of optimized thread-
safe libraries, can be used to write optimized/parallelized code. Amplifi er XE and Inspector XE are 
used to profi le and error-check your applications. Parallel Advisor enables you to model the effect of 
introducing parallelism into your code before committing to a particular implementation.

The next chapter gives you the chance to try Parallel Studio by following hands-on examples.
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3
Parallel Studio XE for the 
Impatient

WHAT’S IN THIS CHAPTER?

 � An overview of the four-step methodology for adding parallelism

 � Using Cilk Plus to add parallelism

 � Using OpenMP to add parallelism

The previous chapter introduced three ways of using Intel Parallel Studio XE: Advisor-driven 
design, compiler-centric development, and a four-step methodology. 

This chapter describes the four-step methodology for transforming a serial program into a 
parallel program. The chapter’s hands-on content guides you through the steps to create 
a completely parallelized program.

In the examples in this chapter, you use two parallel models, Intel Cilk Plus and OpenMP, to 
add parallelism to the serial code. Cilk Plus is regarded as one of the easiest ways to add paral-
lelism to a program. OpenMP is a well-established standard that many parallel programmers 
have traditionally used.

You use various key components of Intel Parallel Studio XE to achieve the parallelization. This 
chapter describes how to use Intel VTune Amplifi er XE 2011, an easy-to-use yet powerful pro-
fi ling tool, to identify hotspots in the serial application, as well as analyze the parallel program 
for synchronicity, effi ciency, and load balancing. 

You use Composer XE to build the newly parallelized application, and then use Intel Inspector 
XE 2011 to reveal threading and memory errors. Finally, you return to Amplifi er XE to check 
for thread concurrency and fi ne-tuning.
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THE FOUR-STEP METHODOLOGY

Initially, parallelizing a serial program may seem fairly simple, with the user following a set of 
simple rules and applying common sense. But this may not always achieve the most effi cient parallel 
program running at the expected speeds. Indeed, it is possible that faulty attempts at parallelization 
will actually make a program run more slowly than the original serial version, even though all par-
allel cores are running.

The four-step methodology, as shown in Figure 3-1, is a tried and tested method of adding parallel-
ism to a program.

Step 1: Look for hotspots in

application. These are best

candidates to make parallel.

Step 2: Add parallel constructs

into source code.

Step 4: Tune the parallel

application.

Step 3: Check if any parallel-

type errors have been

introduced.

Analyze

Implement

Debug

Tune

FIGURE 3-1: The four-step methodology

 1. Analyze the serial program for opportunities to parallelize. This is probably the most impor-
tant step; decisions made here will affect the fi nal parallelized program. 

 2. Implement the parallelism using constructs from the parallel model you have chosen to use. 

 3. Debug or check if any parallel-type errors have been introduced. Is the program running cor-
rectly? Does it have threading or memory errors? 

 4. Tune the parallel application. Are all the threads doing equal amounts of work? Has an 
excessive overhead been introduced into the program as a result of adding parallelism? 

With the exception of the debug step, you should carry out the steps on an optimized version of 
the application.

EXAMPLE 1: WORKING WITH CILK PLUS

In this example, you add parallelism to a serial program using Cilk Plus. Later, you parallelize the 
same serial code using OpenMP.
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Obtaining a Suitable Serial Program

Not all serial programs are suitable for making parallel. Parallelization itself carries an overhead, 
which you must take into account when considering whether a program would benefi t from being 
parallelized. You must test parallel programs extensively both by running them and by using ana-
lytical tools to ensure their results are the same as their serial versions.

Listing 3-1 shows the simple serial program that you’ll make parallel using the four-step methodol-
ogy. This is a contrived program, put together to show parallelization problems. 

The program incorporates two loops: an outer loop and an inner work loop. The outer loop is 
designed to run the timed inner work loop several times; this reveals variations in timings caused by 
other background tasks being carried out by the computer. The time taken for the work loop to run 
is captured and reported back. The work loop itself iterates many times, with each iteration contain-
ing two further nested loops that calculate the sums of arithmetic series. The number of terms in 
the two series is determined by the loop count of the work loop. That is, as the work loop iteration 
count increases, the number of terms in the series increases, meaning that more work is required to 
calculate each series.

Then the inverse of the square root of each series is added to a running total; this is output at the 
end of the work loop. This stops the compiler from optimizing all the calculated values out of exis-
tence. Also, the output after each work loop has fi nished reveals the number of times the work loop 
has iterated, and the time taken for it to run.

LISTING 3-1: The starting serial program

// Example Chapter 3 Serial Program
#include <stdio.h>
#include <windows.h>
#include <mmsystem.h>
#include <math.h>

const long int VERYBIG = 100000;
// ***********************************************************************
int main( void )
{
  int i;
  long int j, k, sum;
  double sumx, sumy, total;
  DWORD starttime, elapsedtime;
// -----------------------------------------------------------------------
  // Output a start message
  printf( “None Parallel Timings for %d iterations\n\n”, VERYBIG );
      
  // repeat experiment several times
  for( i=0; i<6; i++ )
  {
    // get starting time
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    starttime = timeGetTime();

    // reset check sum & running total
    sum = 0;
    total = 0.0;
    // Work Loop, do some work by looping VERYBIG times
    for( j=0; j<VERYBIG; j++ )
    {
      // increment check sum
      sum += 1;

      // Calculate first arithmetic series
      sumx = 0.0;
      for( k=0; k<j; k++ )
        sumx = sumx + (double)k;

      // Calculate second arithmetic series
      sumy = 0.0;
      for( k=j; k>0; k-- )
        sumy = sumy + (double)k;

      if( sumx > 0.0 )total = total + 1.0 / sqrt( sumx );
      if( sumy > 0.0 )total = total + 1.0 / sqrt( sumy );
    }

    // get ending time and use it to determine elapsed time
    elapsedtime = timeGetTime() - starttime;

    // report elapsed time
    printf(”Time Elapsed %10d mSecs  Total=%lf   Check Sum = %ld\n”,
                  (int)elapsedtime, total, sum );
  }

  // return integer as required by function header
  return 0;
}
// **********************************************************************

code snippet Chapter3\3-1.cpp

Even novice C programmers should have no problem understanding most of this program; however, 
it does contain a few lines of code that merit explanation. The program uses calls to the Windows 
API function timeGetTime(), which returns the current system time in milliseconds. By calling this 
function before and after the main work loop, you can determine the time involved in executing the 
loop. The time is returned by the function in a DWORD type variable. Looking at the start of the pro-
gram code, you can see that a number of declarations are made:

 � #include <stdio.h>,  to enable input and output to and from the program in the usual 
manner.

 � #include <windows.h>,  to enable DWORD variable types to be declared.
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 � #include <mmsystem.h>,  because it holds the prototype of the library function 
timeGetTime().

 � const long int VERYBIG 100000, which sets a constant that is used to control the number 
of times the main work loop will repeat. This is the controlling variable, which you can alter 
to vary the amount of work to be carried out, and therefore the length of time taken. This is 
shown as 100000.

Running the Serial Example Program

Before you undertake any parallelism, it is a good idea to build and run the existing serial version 
of the program. This gives a benchmark for the application and also shows what the output should 
look like. After parallelization, you should always check that the output of the program remains the 
same as for the serial version. 

Creating the Project

To create a new project in Microsoft Visual Studio, perform the following steps:

 1. Create a new project in Microsoft Visual Studio; it should be an empty console applica-
tion project with no precompiled headers. Add a new C++ code fi le and paste the code from 
Listing 3-1. 

 2. Select the Release version of the project in the drop-down box at the top of the screen 
(Figure 3-2). 

 3. Add an additional library so that timeGetTime() can be used. Select Project Í Properties 
and add the library name winmm.lib to the Additional Dependencies fi elds of the Linker 
Input category (Figure 3-3).

 4. Select Project Í Properties and make sure Optimization is set to Maximum Speed (Figure 3-4).

To avoid compilation errors from being produced when Cilk Plus reducers are 
used later in this chapter, it is important that the fi le extension is .cpp, not .c.

FIGURE 3-2: Selecting the Release confi guration
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FIGURE 3-3: Adding winmm.lib to the linker options

FIGURE 3-4: Optimizing for speed

Running the Serial Version of the Code

You will be building two serial versions of the application; the fi rst version uses the Microsoft com-
piler, and then the second version uses the Intel compiler.

Using the Microsoft Compiler

You are now ready to build and run the serial example. The example program can be built using the 
Microsoft compiler in the usual manner. You can launch the program from within Visual Studio by 
pressing Ctrl+F5. Figure 3-5 shows the output, using the initial controlling constant VERYBIG set as 
100000. Your output timings may be different due to differences between computer systems.
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FIGURE 3-5: Serial timings for 100,000 iterations using the Microsoft compiler

Using the Intel Compiler

The fi rst version of the program was built using the Microsoft compiler. To change to use the Intel 
compiler, follow these steps within the Microsoft Visual Studio environment:

 1. Select Project Í Intel C++ Composer XE Í Use Intel C++.

A pop-up box asks if you want your project to be reconfi gured for using the Intel C++ com-
piler. Click OK. It is prudent to just check that the project properties remain the same.

 2. Build and run the program and compare the results. Remember to use Ctrl+F5 to run. 

You should fi nd that the executable runs a lot faster, as shown in Figure 3-6. This is because 
the Intel compiler optimizer is smarter about removing and refactoring redundant or expensive 
computations.

FIGURE 3-6: Serial timings for 100,000 iterations built with Intel compiler

The check sum value is a consistent 100000, which is the same as the number of iterations of the 
inner or working loop. The Total value is the result of the arithmetic calculations involved within 
the inner loop. If you want to reduce the time taken to run the program, make the value of VERYBIG 
smaller. Figure 3-7 shows the output run for a value of 10000.

FIGURE 3-7: Serial timings for 10,000 iterations
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Step 1: Analyze the Serial Program 

The purpose of this step is to fi nd the best place to add parallelism to the program. In simple pro-
grams you should be able to spot obvious places where parallelization might be applied. However, 
for any program of even just moderate complexity, it is essential that you use an analysis tool, such 
as Intel Parallel Amplifi er XE. Although this is a rather trivial programming example, you can use 
the steps on more complex programs.

Using Intel Parallel Amplifi er XE for Hotspot Analysis

When Intel Parallel Studio XE was installed into Microsoft Visual Studio, it set up a number of 
additional toolbars, one of which is for Intel Parallel Amplifi er XE (introduced in Chapter 2). 
Amplifi er is a profi ling tool that collects and analyzes data as the program runs.

This example uses Amplifi er XE to look for parts of the code that are using the most CPU time; 
referred to as hotspots, they are prime candidates for parallelization.

Because Amplifi er XE does slow down the execution of the program considerably, it is recom-
mended that you run an application with reduced data. Provide data input and reduce loop 
iterations, where possible, to reduce the run time.

For this example, the outer loop is reduced to 1. This will not prevent Amplifi er from fi nding the 
hotspots, because the outer loop merely runs through the same work loop several times. Hotspots 
found in the fi rst iteration of the work loop will be the same in any further iterations of it. Also, 
leave VERYBIG set as 10000. You will need to rebuild with these new settings before using Amplifi er.

Amplifi er XE is described in more detail in Chapter 6, “Where to Parallelize.”

Starting the Analysis

To start the analysis, follow these steps:

 1. Select New Analysis from the Amplifi er XE part of the toolbar, as shown in Figure 3-8. This 
brings up the start-up page.

FIGURE 3-8: Selecting a new Amplifi er analysis
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 2. Select the analysis type Hotspots, as shown in Figure 3-9. Hotspot analysis looks for code 
that is consuming the most CPU activity.

FIGURE 3-9: Start-up page of the Amplifi er XE

 3. Click the Start button. Amplifi er runs a hotspot analysis on your program. Because there is 
no pause at the end of your program, Amplifi er will both start and fi nish your program itself. 

Figure 3-10 shows the results.

FIGURE 3-10: Hotspot analysis using Amplifi er XE
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Drilling Down into the Source Code

Figure 3-10 shows how much CPU time was spent in each function. In this example, because there 
is only a single function, main, only this one entry is present. To examine the source code of the 
hotspot, double-click the entry for function main. This reveals the program code, with the hotspots 
shown as bars to their right with lengths proportional to CPU time spent on each line (Figure 3-11). 
Note that the code pane has been expanded within the Amplifi er window, and that line numbers 
within Parallel Studio have been turned on.

In the code shown, Amplifi er automatically centers on the line of code that consumes the most CPU 
time — in this case, line 43. Two groups of three lines are using most of the CPU time; these involve 
the loops calculating the two arithmetic series. The remaining code lines consume little CPU time 
in comparison and so show nothing. These arithmetic loops are the hotspots within your program. 
Your own computer system may give different times, but it should follow a similar pattern.

You should also note that the Amplifi er results for this run are placed in the Amplifi er XE folder 
under the project solution. You can see this to the left of the screen.

FIGURE 3-11: Hotspot analysis using Amplifi er XE, showing hotspots

Parallelization aims to place hotspots within a parallel region. You could just attempt a parallelism 
of each of the arithmetic loops. However, parallelization works best if the largest amount of code 
can be within a parallel region. Parallelizing the work loop places both sets of hotspots within the 
same loop.

Step 2: Implement Parallelism using Cilk Plus

After identifying the hotspots in the code, your next step is to parallelize the code in such a way as 
to include the hotspots within a parallel region. 
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To make the code parallel, follow these steps: 

 1. Add the following include to the top of the program:

#include <cilk/cilk.h>

 2. Add a cilk_for loop by changing the C++ for loop to a cilk_for loop. Notice that you 
must declare the loop counter within the loop control bracket: 

// Work Loop, do some work by looping VERYBIG times
cilk_for( int j=0; j<VERYBIG; j++ )

 3. Change the output start message, for completeness:

// Output a start message
printf( “Cilk Plus Parallel Timings for %d iterations \n\n”,VERYBIG );

And that’s it! Simple, isn’t it?

Well, not quite. You have a few problems to overcome. You should rebuild a Release version of your 
program with VERYBIG set as 10000, but change your outer loop count back to the original 6. 

When your program now runs, it creates a pool of threads, where the number of threads is usually 
the same as the number of cores. These threads are made ready to be available within the parallel 
regions. When a parallel region is reached, such as the cilk_for loop, the threads distribute the 
work of executing the loop among themselves dynamically. This should, in theory, speed up the 
execution time.

In fact, when you now run your program, you will fi nd that instead of reducing the execution time, 
it has actually increased it enormously. Figure 3-12 shows the new timings, using a 4-core installa-
tion. Compare these timings with the serial version shown in Figure 3-7; the parallelized version is 
much slower. And remember that all 4 cores were running, so it is actually four times slower than 
the numbers suggest. Also, notice the values of Total and Check Sum are incorrect.

FIGURE 3-12: Timings for the initial Cilk Plus parallelized program

Obviously, something is wrong. The problem is, by introducing parallelism, you also introduced 
problems caused by concurrent execution. In the next few steps you investigate how to fi x 
these problems by enhancing both the speed and performance of the application.

Step 3: Debug and Check for Errors

With the introduction of parallelism into the program, the program no longer runs correctly. This 
step checks the program to see if any parallel-type errors exist, such as deadlocks and data races, 
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which are responsible for slowing down the program. These errors are caused by multiple threads 
reading and writing the same data variables simultaneously — always a potential cause of trouble.

Checking for Errors

You can fi nd data races and deadlocks by using Intel Parallel Inspector XE. It is recommended 
that you perform any error checking on the debug version of the program, not the Release version. 
Building in the Release version will carry out optimizations, including in-lining, which may acciden-
tally hide an error. Using the debug build also means that the information reported by Inspector is 
more precise and more aligned with the actual code written.

Running an Inspector analysis is a lot slower than just running the program normally. As with 
Amplifi er, you should reduce the running time by reducing loop counts and using small data sets.

To check for errors, follow these steps:

 1. Change the solution confi guration to be a debug version, but don’t rebuild just yet.

 2. Because Inspector is slow, reset VERYBIG to just 1000, and reduce the outer loop to be just 1:

// repeat experiment several times
for( i=0; i<1; i++ )

Errors found in the fi rst iteration of the loop will just be repeated in further loops, so there 
is no point in having more loops.

 3. Add the dependency winmm.lib to the linker, as in the Release version, and set it for no 
optimization. Of course, for a debug build any optimizations will be ignored, even if their 
options are set. 

 4. Rebuild the application.

 5. Launch Inspector XE from the toolbar, and select New Analysis (Figure 3-13).

FIGURE 3-13: Selecting a new Inspector analysis

 6. In Inspector’s confi guration window, select the analysis type Locate Deadlocks and Data 
Races (Figure 3-14).
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FIGURE 3-14: Selecting for locating deadlocks and data races

 7. Click the Start button. Inspector runs your program, carrying out an analysis as it does so. 
Inspector targets the analysis to fi nd deadlocks and data races, with the results as shown in 
Figure 3-15. 

The top-left pane of the Inspector window summarizes the problems. The bottom-left 
pane shows the events associated with any selected problem. Try clicking on the various 
problems. In Figure 3-15 problem P3, a data race, is selected; its associated events are 
listed in the lower pane. Altogether, fi ve problems, P2 to P6, are shown as data races. 
These are marked with an x in a red circle. The other problem, “Cross-thread stack 
access,” is actually just information, as indicated by its associated yellow triangle, and 
can be ignored.

 8. Double-click the P3 problem to reveal the code associated with it (Figure 3-16). 

Two code snippets are shown, with the location of one of the events in each. The top code 
pane, Focus Code Location, shows where the data race was detected during a write event. 
The lower of the two code snippets, Related Code Location, shows the read event that was 
involved in the data race. 

c03.indd   65c03.indd   65 3/26/2012   12:04:09 PM3/26/2012   12:04:09 PM



Blair-Chappell   c03.indd   V3 - 02/24/2012

66 x CHAPTER 3  PARALLEL STUDIO XE FOR THE IMPATIENT

FIGURE 3-15: Summary of threading errors detected by the Inspector XE analysis

FIGURE 3-16: A data race exposed in the source code
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From these two code snippets you can determine that variable sumx is the problem. The Focus Code 
Location pane shows the variable being changed (write), at line 37 of the code. The Related 
Code Location pane shows the variable being read, at line 39 of the code. When multiple threads 
are running there arises the danger of one thread changing the value of sumx (resetting to 0), while a 
second concurrently running thread is still using it, thereby making the second thread have an incor-
rect value. This is referred to as a data race.

Examining the other data race problems, you should be able to determine which variables they involve. 
The full list of variables causing data races is sum, total, sumx, sumy, and k. All fi ve of these variables 
were created at the start of the function, and their scope is that of the function. However, the argu-
ments that follow would be the same regardless of whether these variables are global or static. During 
parallel execution all the threads are competing to read from and write to these function-scoped vari-
ables. These are referred to as shared variables, and they are all shared by the concurrently executing 
threads. For future reference, they will be referred to as nonlocal variables.

Inspector XE is described in more detail in Chapter 8, “Checking for Errors.”

Narrowing the Scope of the Shared Variables

Looking at the variables k, sumx, and sumy, you can see that they are set and used wholly within the 
parallel region; they are not used outside it. One solution for this is to declare them within the paral-
lel region. As each thread independently runs through the code of the parallel region, it creates its 
own private versions of these variables. They will be local variables to each thread.

Indeed, this is exactly what happened when the Cilk Plus version of the for loop was declared: its 
loop variable j was declared within the loop control bracket. It is a local variable that will be pri-
vate for each thread.

You can modify the fi rst few lines of the work loop, as shown in Listing 3-2. You can remove the 
original declarations of these variables from the top of the program if you wish. Removing them 
cleans up the program and makes it easier for other programmers to understand; however, if you 
don’t remove the variables from the top of the program, the compiler simply creates locally scoped 
variables that overlay the variables at the top of the program. This also applies to loop counter j, 
which was redeclared within the loop control bracket.

LISTING 3-2: Amendments to beginning of the work loop for Cilk Plus implementation 

// Work loop, do some work by looping VERYBIG times
cilk_for( int j=0; j<VERYBIG; j++ )
{
  long int k;
  double sumx, sumy;

  // increment check sum
  sum += 1;

code snippet Chapter3\3-2.cpp
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Set the work loop controlling variable VERYBIG to 100000, and the outer loop iteration value back 
to 6. Then rebuild a Release version of the application and rerun. Figure 3-17 shows the timings 
for this new run on a 4-core machine. Remember, your actual values may be different for your 
computer.

FIGURE 3-17: Timings for the Cilk Plus parallelized program using loop local variables

Notice that the Total and Check Sum values are incorrect and inconsistent between the runs. These 
errors are also caused by data races, but making thread-private copies of the offending variables 
total and sum locally within the loop will not help in this case, because these variables must be 
shared between all the threads.

Figure 3-18 illustrates what happens when more than one thread attempts to increment the check 
sum in the code line:

sum += 1;

As you can see from Figure 3-18, if sum starts with a value of 12, after both threads have incre-
mented the result is 13, instead of the expected 14.

sum

read sum

increment

write sum

read sum

increment

write sum

12

12

13

13

Register

Thread 1 Thread 2

12

12

13

Register

12

13

13

FIGURE 3-18: Problematic access to global variables

One solution for a variable of this type is to use a synchronization object or primitive, such as a 
lock. This ensures that only a single thread at a time has access to it. Other threads requiring access 
at the same time must wait for the variable to become free. However, this solution has the drawback 
of slowing down the execution time. Alternatively, Cilk Plus offers a special variable form called a 
reduction variable, which is discussed in the next section.

Adding Cilk Plus Reducers

Cilk Plus reducers are objects that address the need to use shared variables in parallel code. 
Conceptually, a reducer can be considered to be a shared variable. However, during run time each 
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thread has access to its own private copy, or view, of the variable, and works on this copy only. As 
the parallel strands fi nish, the results of their views of the variable are combined asynchronously 
into the single shared variable. This eliminates the possibility of data races without requiring time-
consuming locks.

A Cilk Plus reducer is defi ned in place of the normal nonlocal shared variable defi nition. Remember 
that here, nonlocal refers to automatic and static function variables as well as program global vari-
ables. The Cilk Plus reducer has to be defi ned outside the scope of the parallel section of code in 
which it is to be used. 

To add Cilk Plus reducers to the code, follow these steps:

 1. Add an extra header declaration:

   #include <cilk/reducer_opadd.h>

 2. Delete the declaration for sum and total at the top of the program. 

 3. Redeclare the variables sum and total to be Cilk Plus reducers. The reducer implicitly resets 
the variable to 0, but it is always a good idea to explicitly say what you want. This gives you 
more control.

cilk::reducer_opadd<long int> sum(0);
cilk::reducer_opadd<double> total(0.0);

Place these within the outer loop, in place of the statements:

sum = 0;
total = 0.0;

This ensures that for every iteration of the outer loop, sum and total will be reset to zero.

 4. Change the printf statement to use the reducer function get_value(), which gives the 
combined value of a reducer variable:

printf(“Time Elapsed %10d mSecs  Total=%lf   Check Sum = %ld\n”,
       (int)elapsedtime, total.get_value(), sum.get_value() );

 5. Build and rerun the program to make sure the results are correct.

Listing 3-3 gives the fi nal Cilk Plus program.

LISTING 3-3: The fi nal version of the Cilk Plus parallelized program 

// Example Chapter 3 Cilk Plus Program
#include <stdio.h>
#include <windows.h>
#include <mmsystem.h>
#include <math.h>
#include <cilk/cilk.h>
#include <cilk/reducer_opadd.h>
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const long int VERYBIG = 100000;
// ***********************************************************************
int main( void )
{
  int i;
  DWORD starttime, elapsedtime;
// -----------------------------------------------------------------------
  // Output a start message
  printf( “Cilk Plus Parallel Timings \n\n” );
      
  // repeat experiment several times
  for( i=0; i<6; i++ )
  {
    // get starting time
    starttime = timeGetTime();

    // define check sum and total as reduction variables
    cilk::reducer_opadd<long int> sum(0);
    cilk::reducer_opadd<double> total(0.0);

    // Work Loop, do some work by looping VERYBIG times
    cilk_for( int j=0; j<VERYBIG; j++ )
    {
      // define loop local variables
      long int k;
      double sumx, sumy;

      // increment check sum
      sum += 1;

      sumx = 0.0;
      for( k=0; k<j; k++ )
        sumx = sumx + (double)k;

      sumy = 0.0;
      for( k=j; k>0; k-- )
        sumy = sumy + (double)k;

      if( sumx > 0.0 )total = total + 1.0 / sqrt( sumx );
      if( sumy > 0.0 )total = total + 1.0 / sqrt( sumy );
    }

    // get ending time and use it to determine elapsed time
    elapsedtime = timeGetTime() - starttime;

    // report elapsed time
    printf(“Time Elapsed %10d mSecs  Total=%lf   Check Sum = %ld\n”,
          (int)elapsedtime, total.get_value(), sum.get_value() );
  }

  // return integer as required by function header
  return 0;
}
// **********************************************************************

code snippet Chapter3\3-3.cpp
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Running the Corrected Application 

Figure 3-19 shows the application’s new timings on a 4-core machine after you have fi xed all the 
errors and rebuilt a new Release version. Again, these timings were generated on a 4-core computer 
system and may differ from your timings, depending on what system you are running.

FIGURE 3-19: Timings for the Cilk Plus parallelized program with reducers added

A speedup ratio of about 3.74 was achieved compared to the speeds shown in Figure 3-6. The 
Check Sum and Total values are now correct, being the same as in the serial version of the program. 
Running the Intel Parallel Inspector again shows that the data race problems have been resolved.

It is important to note that using the Intel C++ compiler with Cilk Plus parallelization has sped up 
the process approximately 13 times over the timings obtained using the default Microsoft C++ com-
piler shown in Figure 3-5.

Step 4: Tune the Cilk Plus Program

Cilk Plus works by allowing the various parallel threads to distribute work among themselves 
dynamically. In most cases this leads to a well-balanced solution; that is, each thread is doing an 
equal amount of work overall. To use Intel Parallel Amplifi er XE to check for this concurrency and 
effi ciency, follow these steps:

 1. Start a new analysis from the Parallel Studio menu bar, as before.

 2. Select Concurrency from the list of analysis types.

 3. Run Amplifi er for concurrency analysis by clicking its Start button. Amplifi er will now run 
your program and generate a new output of results. 

 4. Click the drop-down button (Figure 3-20) to obtain a list of alternative ways to display the 
information, and select /Thread/Function/Call Stack. Figure 3-21 shows the result. Your 
actual results may look different to that shown, depending on the number of cores your 
machine has. 

The top pane of Figure 3-21 shows the threads and their utilization, in order of usage. 
The highlighted thread, mainCRTStartup, is the management thread, which executes the 
serial part of the program and creates the four Cilk Plus worker threads (for a 4-core 
machine). These threads are run on the 4 cores concurrently during parallel execu-
tion. The two other threads were created by the operating system and are not Cilk Plus 
worker threads; they do no work and can be ignored.

The CPU Time by Utilization column shows how well each thread was used by means of a 
bar. The bars are color-coded to indicate how effi ciently their time was utilized; the aim is 
to get as large a portion showing Ideal as possible. All the threads are shown as being ide-
ally utilized for most of their time. Also note that the lengths of the bars indicate how much 
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time each thread was used; they are nearly the same, showing a well-balanced execution. As 
before, note that the times shown may be different on your computer system.

FIGURE 3-20: Selecting for viewing concurrency information

FIGURE 3-21: Concurrency analysis from Amplifi er for Cilk Plus program
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The bottom pane of Figure 3-21 shows how these threads were used during execution. It 
shows a profi le analysis timeline of the threads. You may need to move the boundaries 
between upper and lower panes, and move parts of your display around to get the same 
view, or just use the scroll buttons to view. 

The top fi ve timelines show the activity of the main (serial) thread, mainCRTStartup, 
and the four Cilk Plus worker threads. Notice the main thread does six spurts of work, 
which correspond to the outer loop of the program being iterated, doing some work, and 
then entering the parallel regions. Try changing the iteration count of the outer loop to 4 
and see what happens.

The next timeline, CPU Usage, shows that usage was very nearly consistently 100 percent. 
The fi nal timeline, Thread Concurrency, shows a nearly 100 percent thread concurrency 
usage. Indeed, when the percentage of concurrency usage dropped, it coincided with the 
main thread doing its work in serial.

 5. Finally, for now, select the Summary tab along the top of the Amplifi er to obtain summary 
information. Scroll down until you get to the view shown in Figure 3-22. This shows the time 
spent when 0, 1, 2, 3, and 4 threads were running concurrently. For most of the time four 
threads were running in concurrent operation, which led to an overall average of concurrency 
of 3.74 — the speedup achieved by parallelizing the serial program.

FIGURE 3-22: Amplifi er information showing thread concurrency for the Cilk Plus program

All this Amplifi er information shows that the Cilk Plus program is highly effi cient and concurrent. 
As such, no further tuning is required.

EXAMPLE 2: WORKING WITH OPENMP

The following sections assume that you are using the Intel C++ compiler. However, note that 
Microsoft Visual C++ compiler also supports OpenMP, should you want to use it.
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Step 1: Analyze the Serial Program

The analysis step is identical to the one you already did for the Cilk Plus example, so there is no 
need to do anything else. If you didn’t run the fi rst analysis, go to Example 1 and, starting from 
Listing 3-1, complete the steps outlined in the following sections:

 1. Obtaining a Suitable Serial Program 

 2. Running the Serial Example Program

 3. Step 1. Analyze the Serial Program

Once you have done these you are ready to start the next section.

Step 2: Implement Parallelism using OpenMP

OpenMP uses pragma directives within existing C++ code to set up parallelism. You can modify the 
directives using clauses.

To add parallelism to the original serial program of Listing 3-1, follow these steps: 

 1. Enable OpenMP on the project property pages (Figure 3-23).

 2. Add an OpenMP directive immediately before the loop to be parallelized. Remember that 
after the Amplifi er analysis toward the beginning of this chapter, it was decided to apply par-
allelism to the work loop:

// Work loop, do some work by looping VERYBIG times
#pragma omp parallel for
for( int j=0; j<VERYBIG; j++ )
{

 3. Add an additional include fi le:

#include <omp.h>

 4. Build and run a Release version of the program, with an outer loop count of 6 and VERYBIG 
set as 100000. 

When the OpenMP directive is encountered, a parallel region is entered and a pool of threads is cre-
ated. The number of threads in the pool usually matches the number of cores. Execution of the for 
loop that follows is parallelized, with its execution being shared between the threads.

Figure 3-24 shows the timings for a 4-core processor. The timings are not very encouraging when 
compared against the serial timings given in Figure 3-6. And, once again, the Total and Check Sum 
values are incorrect. As in the Cilk Plus case, the problem is with data races. Remember, your times 
may be different from those shown here.
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FIGURE 3-23: Enabling OpenMP in the compiler

FIGURE 3-24: Timings for the OpenMP parallelized program, initial stage

Step 3: Debug and Check for Errors

An inspection of the threading errors using Intel Parallel Inspector shows the same data race prob-
lems occurring as revealed in the Cilk Plus example (refer to Figure 3-15). Remember to limit the 
activity of the program and build a debug version. The solutions applied to eliminate the data races 
revealed are similar but work subtly differently from those applied under Cilk Plus. As before, the 
data races break down into two types: those that can be solved by using private variables, and those 
that need to use reduction variables. OpenMP can handle both types, but it does so in a different 
way from Cilk Plus, by using clauses on its directives.

Making the Shared Variables Private

You can fi x the data races caused by variables sumx, sumy, and k by creating private variables for 
each thread by adding a private clause to the parallel pragma directive, as follows:

#pragma omp parallel for \
private( sumx, sumy, k )
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The backslash (\) is used as a continuation marker and its use after the fi rst line is merely to indicate 
that the directive continues onto the next line. In an OpenMP parallelized for loop, its loop counter 
is, by default, always made private, which is why it did not show up in the inspection as an extra 
data race. The variables in the list must already exist as declared nonlocal variables — that is, as 
automatic, static, or global variables.

When the worker threads are created, they automatically make private versions of all the variables 
in the private list. During execution each thread uses its own private copy of variables, so no con-
fl icts occur and the data races associated with these variables are resolved. 

Adding a Reduction Clause

As with the Cilk Plus solution, a different approach is required for variables within the loop that 
must be shared by the threads; they cannot be made private. This is handled in OpenMP by adding 
a reduction clause to the OpenMP directive:

#pragma omp parallel for      \
    private( sumx, sumy, k )  \
    reduction( +: sum, total )

When the parallel section is reached, each participating thread creates and uses private copies, or 
versions, of the listed reduction variables. When the parallel section ends, the private thread ver-
sions of the variables are operated on according to the operator within the reduction brackets — in 
this case, they are added together. The resultant value is then merged back into the original nonlo-
cal variable for future use. Other operators, such as multiply and subtract (but not divide), are also 
allowed. Note that it is up to the programmer to ensure that the operation on the variables within 
the loop body matches the operator of the reduction clause. In this case, both sum and total are 
added to each iteration of the work loop, which matches the reduction operator of +.

After rebuilding and running the Release version, you should see the times obtained for a 4-core 
machine (Figure 3-25). This corrects the Check Sum and Total values, but with an average time 
increase of only 2.28 times that of Figure 3-6. Further tuning is required. Remember, your times 
may be different, depending on the system you are running.

FIGURE 3-25: Timings for the OpenMP parallelized program, with private and reduction variables

Step 4: Tune the OpenMP Program

To use Intel Parallel Amplifi er XE to check for concurrency and effi ciency within the OpenMP pro-
gram, follow these steps:

 1. Start a new analysis from the Parallel Studio menu bar, as before.
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 2. Select Concurrency from the list of analysis types.

 3. Run the Amplifi er for concurrency analysis by clicking its Start button. Amplifi er will now 
run your program and generate a new output of results.

 4. Click the drop-down button to obtain a list of alternative ways to display the information, 
and select /Thread/Function/Call Stack. The result should be as shown in Figure 3-26. As 
with the Cilk Plus concurrency analysis (refer to Figure 3-21), the various panes have had 
their borders moved to produce the display shown. Your actual results may look different to 
that shown, depending on the number of cores your machine has.

FIGURE 3-26: Concurrency information showing unbalanced loads

The results are very different from those shown for Cilk Plus. The top pane shows the mainCRT-
Startup thread, as with the Cilk Plus model, but now there are only three other OMP Worker 
Threads, numbered 1 to 3 — because the main (serial) thread is also used as one of the parallel 
threads. This is different from Cilk Plus. Two other threads, created by the operating system, do not 
take part in the parallel operations and do no work, so you can ignore them.

The top pane, which shows CPU utilization time for each thread, clearly indicates an imbalance 
between the threads, with the mainCRTStartup thread doing less than a third of the work of OMP 
Worker Thread 3. 

This imbalance is refl ected in the lower pane, where the timelines of each of the parallel threads are 
given. Brown shows when a thread is doing work, and green shows when it is idle. You can clearly 
see that the mainCRTStartup thread is doing little work compared to the OMP Worker Thread 3. 
Also notice the same sixfold pattern to the work caused by the outer loop running six times. 
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The CPU Usage and Thread Concurrency timelines both show poor performance. This is dem-
onstrated in Figure 3-27, which can be obtained by clicking the Summary button. This shows the 
amount of time spent with 0, 1, 2, 3, and 4 threads running concurrently. Only a small part of the 
time are four threads running together, with more than a quarter of the time spent running only a 
single thread. Overall, an average of 2.26 threads were running concurrently, which agrees almost 
exactly with the increase in speed.

FIGURE 3-27: Amplifi er showing thread concurrency for the OpenMP program before tuning

The problem occurs because the arithmetic series required more terms as the iteration count of 
the work loop grew larger. As the work loop counter increases, so too does the amount of work 
required to calculate the arithmetic series. However, unlike Cilk Plus, the default scheduling opera-
tion of OpenMP is to simply divide the execution of the work loop between the available threads in 
a straightforward fashion. Each thread is given the task of iterating the work loop a fi xed number 
of times, referred to as the chunk size. For example, on a 4-core machine, with an iterative count of 
100,000, OpenMP simply divides the iterations of the loop by four equal ranges:

 � One thread is given iterations for loop counter 0 to 24,999.

 � The next thread is given iterations for loop counter 25,000 to 49,999.

 � The next thread is given iterations for loop counter 50,000 to 74,999.

 � The fi nal thread is given iterations for loop counter 75,000 to 99,999.

For most purposes, this would be a balanced workload, with each thread doing an equal amount of 
work. But not in this case. Threads working through higher-value iterations encounter arithmetic 
series with greater numbers of terms, the number of terms being dependent on the iteration value. 
This means that the threads working on the higher iterations have to do more work, creating unbal-
anced loading of the threads.

Figure 3-28 demonstrates a simplifi ed problem with unbalanced loads. In this example a serial 
program enters a loop with a count of 12, where each iteration of the loop carries out work whose 
execution takes longer. This is indicated by the blocks marked 1 through 12 on the top bar, labeled 
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Single Thread (78 time units). This bar represents the running of the serial program, where the 
width of each block is the time taken to execute each of the 12 loops. In this example the fi rst loop 
takes 1 time unit, the second loop takes 2 time units, and so on, with the fi nal loop taking 12 time 
units — making a total time of 78 time units to run the serial program. 

Single thread (78 time units)

Thread 1

Thread 2

Thread 3

Thread 4

Showing Idealized conditions. Scheduling does

incur additional overheads not shown here.

Multiple threads using default

scheduling, iterations are shared

out equally in one go.

Thread 1 has iterations 1 to 3

Thread 2 has iterations 4 to 6

Thread 3 has iterations 7 to 9
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Multiple threads with dynamic

scheduling of 2 iterations at a time
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FIGURE 3-28: Example demonstrating unbalanced loading

Ideally, the parallelized time to run the same loop on a 4-core machine should be 78/4 = 19.5 time 
units; however, this is not the full story.

The default scheduling behavior for OpenMP is to distribute the loops equally to all the available 
threads — in this case, as follows:

 � Thread 1 is allocated iterations 1 to 3.

 � Thread 2 is allocated iterations 4 to 6.

 � Thread 3 is allocated iterations 7 to 9.

 � Thread 4 is allocated iterations 10 to 12.

When you run the parallel program under these default conditions, the result is shown by the second 
block of Figure 3-28. Thread 4 has all the high iterations, which take more time. Thread 4’s run-
ning time is 10+11+12=33 time units, which is clearly shown in the diagram. Concurrently running 
thread 3 takes only 7+8+9=24 time units to execute its allocated work. Thread 2 takes 15 time units, 
and thread 1 takes only 6 time units. Since all threads must synchronize at the end of the parallel-
ized loop before continuing, it means that threads 1 to 3 must wait for thread 4 to complete. A lot of 
time that could be otherwise used is wasted.

You can alter the scheduling preferences of OpenMP by using the scheduling clause. This clause 
enables you to set how many iterations each thread will be allocated — referred to as the chunk size. 
Each thread will execute its allocated iteration of the loop before coming back to the scheduler for more.
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The third block of Figure 3-28 shows what happens when a new scheduling preference of 2 is used. 
At the start of the loop each available thread receives two iterations, as follows:

 � Thread 1 is allocated iterations 1 and 2.

 � Thread 2 is allocated iterations 3 and 4.

 � Thread 3 is allocated iterations 5 and 6.

 � Thread 4 is allocated iterations 7 and 8.

In this case thread 1 quickly executes its 2 allocated iterations, taking only 3 time units to do so. 
It then returns to the scheduler for more, and is given iterations 9 and 10 to execute. Thread 2 also 
fi nishes its allocated work, taking 7 time units, before returning back to the scheduler to be given 
iterations 11 and 12 to execute.

When threads 3 and 4 fi nish, they also return back to the scheduler, but since there is no more itera-
tions to be executed they are given no more work. These threads must idle until the other threads 
fi nish their work. The fi rst thread must also idle for a time since the execution of its allocated itera-
tions fi nishes before the second thread. All this is clearly shown by the third block of Figure 3-28, 
where the second thread dictates the overall time of execution — in this case, 30 time units.

The fourth block of Figure 3-28 demonstrates what happens if the chunk size for the scheduler is 
reduced to just 1. The overall time of execution, decided by the fourth thread, reduces to just 20 
time units and minimal idle time.

There is an overhead because scheduling chunks takes time; too small of a chunk size could end up 
being detrimental to the operation. Only by trying various values can you fi nd the correct chunk size 
for your particular program.

Improving the Load Balancing

To obtain a balanced load, you need to override the default scheduling behavior. In this case the 
loop iterates 100,000 times, so as a fi rst attempt use a chunk size of, say, 2000. You can override the 
default scheduling algorithm for a for loop by using the schedule clause on the directive: 

#pragma omp parallel for        \
    private( sumx, sumy, k )    \
    reduction( +: sum, total )  \
    schedule( dynamic, 2000 )

This causes the OpenMP directive to use the fi xed chunk size given in parentheses  — in this case, 
2000. After each thread fi nishes its chunk of work (2,000 iterations), it comes back for more. This 
divides the work more evenly. Adjusting the size of the chunk fi ne-tunes the solution further. The 
problem of an unbalanced load does not arise with Cilk Plus, because its approach for dividing up 
the work is different.

After rebuilding the solution with these changes, run Parallel Amplifi er again to check for concur-
rency. Again, select Thread/Function/Call Stack. Figure 3-29 shows the result.
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FIGURE 3-29: Concurrency showing balanced (but still not ideal) loads

The fi gure shows nicely balanced loads, but the load bars show mainly Ok (orange), not Ideal 
(green). Figure 3-30 shows the Thread Concurrency Histogram, with the average number of threads 
running concurrently still only 2.76.

FIGURE 3-30: Concurrent information after fi rst tuning attempt

You can try tuning further by changing the chunk size to 1000. Figure 3-31 shows the results 
of the concurrency; clearly, all four threads are running in an Ideal state (green). This is verifi ed in 
the Thread Concurrency Histogram (Figure 3-32), which shows an average thread concurrency of 
3.75 — in line with the speedup shown in Figure 3-33 compared to the serial times given in Figure 3-6.

c03.indd   81c03.indd   81 3/26/2012   12:04:14 PM3/26/2012   12:04:14 PM



Blair-Chappell   c03.indd   V3 - 02/24/2012

82 x CHAPTER 3  PARALLEL STUDIO XE FOR THE IMPATIENT

FIGURE 3-31: Concurrency showing balanced and ideal loads

FIGURE 3-32: Concurrent thread information after fi nal tuning

 FIGURE 3-33: Final timings for the OpenMP parallelization
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Listing 3-4 gives the fi nal OpenMP program. Its performance compares very well with that achieved 
using the Cilk Plus method of parallelization.

LISTING 3-4: The fi nal version of the OpenMP program

// Example Chapter 3 OpenMP Program
#include <stdio.h>
#include <windows.h>
#include <mmsystem.h>
#include <math.h>
#include <omp.h>

const long int VERYBIG = 100000;
// ***********************************************************************
int main( void )
{
  int i;
  long int j, k, sum;
  double sumx, sumy, total, z;
  DWORD starttime, elapsedtime;
  // ---------------------------------------------------------------------
  // Output a start message
  printf( “OpenMP Parallel Timings for %d iterations \n\n”, VERYBIG );
      
  // repeat experiment several times
  for( i=0; i<6; i++ )
  {
    // get starting time
    starttime = timeGetTime();

    // reset check sum and total
    sum = 0;
    total = 0.0;

    // Work loop, do some work by looping VERYBIG times
    #pragma omp parallel for       \
      private( sumx, sumy, k )     \
      reduction( +: sum, total )   \
      schedule( dynamic, 1000 )
      for( int j=0; j<VERYBIG; j++ )
      {
        // increment check sum
        sum += 1;

        // Calculate first arithmetic series
        sumx = 0.0;
        for( k=0; k<j; k++ )
          sumx = sumx + (double)k;

        // Calculate second arithmetic series
        sumy = 0.0;
        for( k=j; k>0; k-- )
          sumy = sumy + (double)k;
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        if( sumx > 0.0 )total = total + 1.0 / sqrt( sumx );
        if( sumy > 0.0 )total = total + 1.0 / sqrt( sumy );
      }

      // get ending time and use it to determine elapsed time
      elapsedtime = timeGetTime() - starttime;

      // report elapsed time
      printf(”Time Elapsed %10d mSecs  Total=%lf   Check Sum = %ld\n”,
                  (int)elapsedtime, total, sum );
  }

  // return integer as required by function header
  return 0;
}
// **********************************************************************

code snippet Chapter3\3-4.cpp

SUMMARY

The four-step method (analyze, implement, debug, and tune) is used to transform a serial program 
into a parallel program using the tools of Intel Parallel Studio XE. The technique can be used for 
small or large programs.

This chapter described using both Intel Cilk Plus and OpenMP to make a serial program parallel. 
The use of Intel Parallel Studio XE makes the transformation from serial to parallel effi cient and 
effective. The tools also detect both threading and memory errors, and enable you to check a pro-
gram’s concurrency. 

Other parallel programming techniques are available and are introduced in subsequent chapters of 
the book. Which parallelizing methodology is best to use remains the choice of the programmer. 
That decision can be infl uenced by many things, including the type of problem being solved, the 
software tools available, or just what the programmer feels comfortable with. 

Part II, “Using Parallel Studio XE,” takes a more detailed look at the four steps. A greater under-
standing of the pitfalls that can occur when parallelizing will give you much more confi dence to 
tackle large and complex programs, where you can reap the full benefi t of using parallel computing. 
Part II covers each step in turn, revealing the detailed nuances that enable you to undertake effi cient 
and, more important, safe parallelism.
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PART II

Using Parallel Studio XE

 � CHAPTER 4: Producing Optimized Code

 � CHAPTER 5: Writing Secure Code

 � CHAPTER 6: Where to Parallelize

 � CHAPTER 7: Implementing Parallelism

 � CHAPTER 8: Checking for Errors

 � CHAPTER 9: Tuning Parallel Applications

 � CHAPTER 10: Parallel Advisor-Driven Design

 � CHAPTER 11: Debugging Parallel Applications

 � CHAPTER 12: Event-Based Analysis with VTune Amplifi er XE
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4
Producing Optimized Code

WHAT’S IN THIS CHAPTER?

 � A seven-step optimization process

 � Using diff erent compiler options to optimize your code

 � Using auto-vectorization to tune your application to diff erent CPUs

This chapter discusses how to use the Intel C/C++ compiler to produce optimized code. You 
start by building an application using the /O2 compiler option (optimized for speed) and then 
add additional compiler fl ags, resulting in a speedup of more than 300 percent.

The different compiler options you use are the course-grained general options, followed by 
auto-vectorization, interprocedural optimization (IPO), and profi le-guided optimization 
(PGO). The chapter concludes with a brief look at how you can use the guided auto-
parallelization (GAP) feature to get additional advice on tuning auto-vectorization.

The steps in this chapter will help you to maximize the performance you get from the Intel compiler. 

Most of the text of this chapter uses the Windows version of the compiler 
options. You can use the option-mapping tool to fi nd the equivalent Linux 
option. The following example is used to fi nd the Linux equivalent of /Oy-:

map_opts -tl -lc -opts /Oy-
Intel(R) Compiler option mapping tool
 
mapping Windows options to Linux for C++
 
‘-Oy-’ Windows option maps to
  --> ‘-fomit-frame-pointer-’ option on Linux
  --> ‘-fno-omit-frame-pointer’ option on Linux
  --> ‘-fp’ option on Linux

continues
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 (continued)

The -t option is used to set the target OS, which can be l (or linux) and w (or 
windows).

The -l option sets the language, and can be either c or f (or fortran).  All text 
after the -opts option is treated as options that should be converted. The option-
mapping tool does not compile any code; it only prints out the mapped options.

To use the option-mapping tool, make sure that the Intel compiler is in your path.

INTRODUCTION

When buying a new product — a must-have kitchen gadget, a new PC, or the latest-and-greatest 
release of your favorite software — it’s likely that you will not look at the user manual. Most of 
us just power up the new gizmo to see what it can do, referring to the manual only when the thing 
doesn’t work.

Product manufacturers spend huge amounts of effort in making sure this fi rst out-of-the-box experi-
ence is a good one. Software developers, and in particular compiler vendors, are no different; they, 
too, want their customers to have a good fi rst experience.

When you fi rst try out the Intel compiler, it should seamlessly integrate into your current develop-
ment environment and produce code that has impressive performance. Many developers, however, 
simply use the compiler out of the box, without considering other compiler options. The following 
story illustrates the point. 

A company that specializes in providing analysis software to the oil exploration industry is an 
enthusiastic user of the Intel compiler. Just before it was about to release a new version of its soft-
ware, the developers decided to experiment with a new version of the Intel compiler. To their 
amazement, the new compiler gave a 40 percent speedup of its application. Normally, they would 
not consider swapping compilers so close to the software release dates, but with such a signifi cant 
speedup, they thought the upgrade was worth doing. So, what was the reason for the speedup? The 
answer was the auto-vectorizer in the compiler. 

In earlier versions of the Intel compiler, users had to turn on auto-vectorization explicitly; it was not 
enabled by default. As a result, many developers failed to reap the benefi ts of this great feature. A 
newer version of the compiler changed that behavior so that auto-vectorization was enabled out of 
the box. When the company built its code with the newer compiler, the code was auto-vectorized by 
default, resulting in the 40 percent speedup.

Once the developers realized that the performance improvements delivered by the new compiler 
were also available in the old compiler, they added the extra options to the current build environ-
ment and got the speedup. They also scheduled an upgrade of the compiler once the current soft-
ware release had been completed. 

The moral of the story is this: Don’t rely on the compiler’s default options, because you may inadver-
tently miss out on a performance benefi t. 
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THE EXAMPLE APPLICATION

This chapter’s example application reuses some of the code from Chapter 2, but it also includes an 
additional matrix multiplication. The full source code, which is divided into several smaller fi les, is 
in Listing 4-5 at the end of this chapter. Table 4-1 lists the fi les involved.

TABLE 4-1: The Example Application Files

FILE DESCRIPTION

chapter4.c Dynamically creates three matrices, and then initializes two of them with a 

numeric series and multiplies the m together. This is done six times, with the 

timing printed to screen each time.

work.c Contains the work()function that is used to initialize one of the matrices. 

Called from main(), it contains a large loop that calls series1() and 

series2().

series.c Contains the functions series1() and series2(), which calculate two 

numeric series.

addy.c Contains AddY(), which is called from Series2() and adds two values.

wtime.c Contains code to measure how long the parts of the program run.

chapter4.h Has the function prototypes and defi nes.

Makefile This is the makefi le used to build the application.

The example application is quite contrived and doesn’t solve any particular problem. Its only pur-
pose is to provide some code that you can optimize and see an improvement in performance as you 
perform each optimization step. Figure 4-1 shows the output of the program. As you can see, the 
output is very similar to the application used in Chapter 3 — the main difference being that the 
Total and Check sum displayed are different values from that chapter.

FIGURE 4-1: Output of the example application

In addition to using the code example in Listing 4-5, you might like to try applying the seven opti-
mization steps to your own code or from code in one of the case studies (Chapters 13 through 18). 
You may fi nd that some optimization steps deliver signifi cant performance improvements, whereas 
other steps may actually slow down your application.
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The results shown in this chapter were from three different machines:

 � Core 2 laptop — Lenovo T66, Intel Core 2 Duo CPU, T7300 @ 2.00 GHz, 2GB RAM.

 � Sandy Bridge laptop — Lenovo W520, Intel Core i7-2820QM @ 2.30 GHz, 8GB RAM.  
This machine is used to give two sets of results, one with Intel Turbo Boost Technology 2.0 
enabled, and one without. 

 � Xeon workstation — OEM, Intel Xeon CPU, X5680 @ 3.33 GHz (2 processors, 12GB RAM).

“Intel Turbo Boost Technology 2.0 automatically allows processor cores to run 
faster than the base operating frequency if it’s operating below power, current 
and temperature specifi cation limits.”

 — www.intel.com/content/www/us/en/architecture-and-technology/

turbo-boost/turbo-boost-technology.html

OPTIMIZING CODE IN SEVEN STEPS

Figure 4-2 shows the steps followed in this chapter, which are based on the Quick-Reference Guide 
to Optimization (which you can fi nd at http://software.intel.com/sites/products/
collateral/hpc/compilers/compiler_qrg12.pdf).

Start
Example options

Windows (Linux)
Build with

optimization disabled
/Od

/01,/02,/03

/Qguide

Use Intel family of parallel models

(-parallel)/Qparallel

(-guide)

/Qprof-gen

/Qprof-use (-prof-use)

(-prof-gen)

/Qipo (-ipo)

/QxSSE4.2

/QxHOST

(-xsse4.2)

(-xhost)

(-O1, -O2, -O3)

(-O0)

Use general

optimizations

Use processor-specific

options

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Add interprocedural

optimization

Use profile-guided

optimization

Tune automatic

vectorization

Implement parallelism

or use automatic

parallelism

Step 1

FIGURE 4-2: The seven optimization steps
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In the fi rst step you build the application with no optimization. You do this to make sure that your 
program works as expected. Sometimes an optimization step can break the application, so it’s pru-
dent to start with an unoptimized application. Once you are confi dent that no errors exist in your 
program, it’s okay to go to the next step. 

Figure 4-2 shows the Windows and Linux versions of the options used in this chapter. In most of the 
text of this chapter the Windows version of the options is used, but they can be substituted with the 
Linux options.

This chapter doesn’t cover step 7, implementing parallelism; that’s covered by 
Chapters 6–9.

Using the Compiler’s Reporting Features 

For each optimization step, the Intel compiler can generate a report that is useful for gleaning what 
optimizations the compiler has carried out:

 � Optimization report — Use the /Qopt-report option, as described in the section “Step 2: 
Use General Optimizations.” 

 � Auto-Vectorization report — Use the /Qvec-report option, as described in the section 
“Step 3: Use Processor-Specifi c Optimizations.”

 � Auto-Parallelism report — Use the /Qpar-report option, as described in Chapter 6, “Where 
to Parallelize.”

 � Guided Auto-Parallelism report — Use the /Qguide option, as described in the section 
“Step 6: Tune Auto-Vectorization.”

Step 1: Build with Optimizations Disabled

Before doing any optimization you should ensure that the unoptimized version of your code works. 
On very rare occasions optimizing can change the intended behavior of your applications, so it is 
always best to start from a program you know builds and works correctly.

The /Od (-O0) option actively stops any optimizations from taking place. It generally is used while 
the application is being developed and inspected for errors. Single-stepping through code with a 
debugger is much easier with programs built at /Od. If you ever end up having to look at the assem-
bler code the compiler generates, it is much easier to understand the output from /Od than from 
some of the other options. 

Table 4-2 shows the results of building the application with optimizations disabled using the /Od 
option as well as the default build (/O2). The program has a loop that executes six times, printing 
the time each iteration took. The table records the lowest value.  
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TABLE 4-2: Results of Running the /Od and /O2 Builds

BUILD MACHINE /OD /O2

Core 2 laptop 3.041 0.474

Sandy Bridge 2.164 0.293

Sandy Bridge (with Turbo Boost) 1.588 0.211

Xeon workstation 1.325 0.238

If you are benchmarking on a machine that supports Turbo Boost Technology, it is better that you 
disable it in the computer’s BIOS before proceeding. When Turbo Boost Technology is turned on, 
the clock speed of the CPU can dynamically change, depending on how busy the CPU is, which can 
distort the results. Of course, you should turn it back on again at the end.

Another technology that can lead to an inconsistent set of benchmarks is Intel Hyper-Threading 
Technology. When hyper-threading is enabled, the processor looks as though it has twice as many 
cores as it really has. This is done by sharing the execution units and using extra electronics that 
save the state of the various CPU registers. One side effect of using hyper-threading is that the 
results of your benchmarks can be distorted as the different hyper-threads contend for resources 
from the execution units.

Many optimization practitioners choose to turn off both Turbo Boost Technology and Hyper-
Threading Technology so that they get more consistent results in the different stages of tuning. You 
should be able to disable both technologies in the BIOS of your PC. See your PC’s handbook for 
instructions.

The Intel compiler assumes that you are building code for a computer that can support SSE2 
instructions. If you are building for a very old PC (for example, a Pentium 3), you will need 
to add the option /arch32 (Windows) or -mia32 (Linux) for your code to run successfully. 
Architecture-specifi c options are discussed more in the section “Step 3: Use Processor-Specifi c 
Optimizations.” 

You can try out this fi rst step for yourself in Activity 4-1. 

ACTIVITY 4-1: BUILDING AN UNOPTIMIZED VERSION OF THE EXAMPLE 

APPLICATION

In this activity you build an unoptimized version of the example application. 

Setting Up the Build Environment

 1. Copy the contents of Listing 4-5 into the separate source fi les.

 2. Copy the Makefile from Listing 4-6. If you are using Linux, you will need to 
comment out the Windows-specifi c variables at the beginning of the Makefile 
and uncomment the Linux variables.
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 3. Open a command prompt or shell:

 � On Windows, open an Intel compiler command prompt. The path to the 
command prompt will be similar to the following. (The exact names and 
menu items will vary, depending on which version of Parallel Studio and 
Visual Studio you have installed.) 

Start Í All Programs Í Intel Parallel Studio XE 2011 Í Command 
Prompt Í Intel64 Visual Studio Mode

 � On Linux, make sure the compiler variables have been sourced:

$ source /opt/intel/bin/compilervars.sh intel64 

If you are running a 32-bit operating system, the parameter passed to 
the compilervars.sh fi le should be ia32.

Building and Running the Program

 4. Build the application intel.noopt.exe using the Intel compiler:

 � Linux

make clean
make TARGET=intel.noopt CFLAGS= -O0 (Note : this is a capital ‘O’
followed by zero)

 � Windows

nmake clean
nmake TARGET=intel.noopt CFLAGS=/Od

 5. Run the program intel.noopt.exe and record the results. Use the lowest 
time as the benchmark fi gure.

Note that if your CPU supports Turbo Boost Technology Mode, you may want to 
disable it in the BIOS. See your PC’s handbook for instructions.

Step 2: Use General Optimizations

Table 4-3 describes four course-grained optimization switches: /O1, /O2, /O3, and /Ox. These 
switches are a good starting point for optimizing your code. Each option is progressively more 
aggressive at the optimizations it applies. The option /O1 generates smaller code than the other 
options. When you call the compiler without any switches, the compiler defaults to using /O2. 

It’s always worth trying all the general options. Sometimes /O2 produces faster 
code than /O3, and occasionally even /O1 produces the fastest code. 
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TABLE 4-3: The General Optimization Switches

OPTION DESCRIPTION

/O1 (-O1) Optimizes for speed and size. This option is very similar to /O2 except that it 

omits optimizations that tend to increase object code size, such as the inlining of 

functions. The option is generally useful where memory paging due to large code 

size is a problem, such as server and database applications. 

Note that auto-vectorization is not turned on at /O1, even if it is invoked individu-

ally by its fi ne-grained switch /Qvec. However, at /O1 the vectorization associ-

ated with array notations is enabled.

/O2 (-O2) Optimizes for maximum speed. This option creates faster code in most cases. 

Optimizations include scalar optimizations; inlining and some other interproce-

dural optimizations between functions/subroutines in the same source fi le; vec-

torization; and limited versions of a few other loop optimizations, such as loop 

versioning and unrolling that facilitate vectorization.

/O3 (-O3) Optimizes for further speed increases. This includes all the /O2 optimizations, as 

well as other high-level optimizations, including more aggressive strategies such 

as scalar replacement, data pre-fetching, and loop optimization, among others.

/Ox (Windows 

only) 

Full optimization. This option generates fast code without some of the fi ne-

grained option strategies adopted by /O2. 

Using the General Options on the Example Application

Figure 4-3 shows the results of running the example application on the four target platforms.

 � The option /O1, an option designed to produce smaller code, runs slower than the other 
options. 

 � There is no difference between the performance of the /O2 option and the more aggressive 
/O3 or /Ox options.

There is no guarantee that the more aggressive optimization options will result in your application 
running faster. In the case of the example application, /O2 seems the best choice. 
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FIGURE 4-3: The results of running the example application
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Generating Optimization Reports Using /Qopt-report

The compiler can produce reports on what optimizations were carried out. By default, these reports 
are disabled. Enabling the reports can sometimes help you identify whether a piece of code has been 
optimized. Note that the coarse- and fi ne-grained options you use determine which optimizations 
are applied, including auto-vectorization. If auto-parallelization is also turned on by /Qparallel, 
messages about auto-parallelizing of loops are also included. You can read more about auto-
parallelism and the /Qparallel option in Chapter 6, “Where to Parallelize.”

Reducing the Size of the Report

Using /Qopt-report on its own can result in a fairly large report. To reduce the size of the report, 
you can:

 � Control the level of detail by using /Qopt-report: n, where n is a number between 0 and 3.

 � 0 — No reports.

 � 1 — Tells the compiler to generate reports with minimum level of detail.

 � 2 — Tells the compiler to generate reports with medium level of detail. This is the 
default level of reporting when this option is not included on the command line.

 � 3 — Tells the compiler to generate reports with maximum level of detail.

 � Select which phases to have a report on by using the /Qopt-report-phase option.

 � Limit the report to specifi c functions by using the /Qopt-report-routine:<string> 
option. 

Table 4-4 shows the different phases used with the /Qopt-report-phase option.

TABLE 4-4: Phase Names Used in Report Generation 

PHASE DESCRIPTION

ipo_inl Gives an inlining report from the interprocedural optimizer

hlo Reports on high-level optimization (HLO), including loop and memory optimizations

hpo Reports on high-performance optimization (HPO), including auto-vectorization and 

auto-parallelization optimizations

pgo Reports on profi le-guided optimizations

Creating Focused Reports

Each phase in Table 4-4 is a collection of even smaller reports — too many to describe here. If you 
are interested in just one specifi c phase, you can generate one of these smaller reports using the 
option /Qopt-report-phase. Running the option /Qopt-report-help as follows brings up a list of 
all the phases available: 

icl /Qopt-report-help
Intel(R) C++ Intel(R) 64 Compiler XE for applications running on Intel(R) 64, 

c04.indd   95c04.indd   95 3/26/2012   12:04:59 PM3/26/2012   12:04:59 PM



Blair-Chappell   c04.indd   V3 - 02/24/2012 Page 96

96 x CHAPTER 4  PRODUCING OPTIMIZED CODE

Version 12.0.3.175 Build 20110309
Copyright (C) 1985-2011 Intel Corporation. All rights reserved.

Intel(R) Compiler Optimization Report Phases
usage:  -Qopt_report_phase <phase>

ipo, ipo_inl, ipo_cp, ipo_align, ipo_modref, ipo_lpt, ipo_subst, ipo_ratt, ipo_vaddr,
ipo_pdce, ipo_dp, ipo_gprel, ipo_pmerge, ipo_dstat, ipo_fps, ipo_ppi, ipo_unref, ipo_wp,
ipo_dl, ipo_psplit, ilo, ilo_arg_prefetching, ilo_lowering, ilo_strength_reduction, 
ilo_reassociation, ilo_copy_propagation, ilo_convert_insertion, ilo_convert_removal, 
ilo_tail_recursion, hlo, hlo_fusion, hlo_distribution, hlo_scalar_replacement,
hlo_unroll, hlo_prefetch, hlo_loadpair, hlo_linear_trans, hlo_opt_pred, hlo_data_trans,
hlo_string_shift_replace, hlo_ftae, hlo_reroll, hlo_array_contraction,
hlo_scalar_expansion, hlo_gen_matmul, hlo_loop_collapsing, hpo, hpo_analysis,
hpo_openmp, hpo_threadization, hpo_vectorization, pgo, tcollect, offload, all

After using the general optimizations, the next step is to experiment with processor-specifi c optimi-
zation. Before doing that, however, try out the general optimizations by completing Activity 4-2.

ACTIVITY 4-2: BUILDING THE EXAMPLE APPLICATION USING THE 

GENERAL OPTIMIZATION OPTIONS

In this activity you use the general optimization options to build the code from 
Listing 4-5.

 1. Build the application from Activity 4-1 using the Intel compiler:

 � Linux

make clean
make CFLAGS=”-O1” TARGET=”intel.O1”

 � Windows

nmake clean
nmake CFLAGS=”/O1” TARGET=”intel.O1”

 2. Run the program intel.01.exe and record the results. 

 3. Repeat steps 1 and 2 using the options O2, O3, and Ox (Windows only).

To spot which optimizations have been carried out, turn on the optimization 
reports using the /Qopt-report (Windows) or -opt-report (Linux) option.

Step 3: Use Processor-Specifi c Optimizations

Auto-vectorization is one of the most signifi cant contributions the Intel compiler makes to getting 
really fast code. Four points need to be made straight away:

 � When you use the compiler out of the box (that is, the default behavior), auto-vectorization 
is enabled, supporting SSE2 instructions. This is safe to use on all but the very oldest Intel 
and non-Intel devices. 
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 � You can enhance the optimization of auto-vectorization beyond the default behavior by 
explicitly using some additional options. In the following example, the example application is 
rebuilt to support AVX instructions, leading to a 10 percent improvement when the applica-
tion is run on the Sandy Bridge laptop.

 � If you run an application on a CPU that does not support the level of auto-vectorization you 
chose when it was built, the program will fail to start. The following error message will be 
displayed: This program was not built to run on the processor in your system. 

 � You can get the compiler to add multiple paths in your code so that your code can run on 
both lower- and higher-spec CPUs, thus avoiding the risk of getting an error message or pro-
gram abort. This topic is covered later in this chapter in “Building Applications to Run on 
More Than One Type of CPU.”

What Is Auto-Vectorization?

Auto-vectorization makes use of the SIMD (Single Instruction Multiple Data) instructions within 
the processor to speed up execution times. The original SIMD instructions, MMX (MultiMedia 
eXtensions), were written for special 64-bit registers resident within the processor. This has been 
superseded by the SSE (Streaming SIMD Extension), which was fi rst introduced in 1999 and oper-
ated on 128-bit fl oating-point registers. Figure 4-4 shows the innovations in SIMD from then until 
the present date. 
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FIGURE 4-4: The SIMD timeline

SIMD instructions operate on multiple data elements in one instruction using the extrawide SIMD 
registers. The Intel compiler uses these SIMD instructions to apply auto-vectorization to loopy code. 
Consider the following code snippet:

#define MAX 1024
float x[MAX];
float y[MAX];
float z[MAX];
for(i = 0; i <= MAX; i++)
  z[i] = x[i] + y[i];
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Without auto-vectorization, the compiler produces a separate set of instructions that does the fol-
lowing for each iteration of the loop:

 � Reads x[i] and y[i] for the current loop iteration

 � Adds them together

 � Writes the results in z[i] for the current loop iteration

Array z would be updated 1,024 times. The compiler might even use SSE scalar instructions — that 
is, instructions that operate on one data item at a time.

If auto-vectorization is enabled, the compiler will use SSE packed instructions rather than scalar 
instructions. Figure 4-5 shows a scalar and a packed instruction. The fi rst instruction, addss, is a 
scalar instruction that adds x1 to y1. One calculation is performed on one data item.

x4 x3 x2 x1

y4 y3 y2 y1

x4 x3 x2 x1

y4 y3 y2 y1

x4 x3 x2 x1 + y1

x1 + y1x2 + y2x3 + y3x4 + y4

addSS Scalar Single-FP Add

Single-precision FP data

Single-precision FP data

packed execution mode

Scalar execution mode

addps Packed Single-FP Add

FIGURE 4-5: An example of scalar and packed SSE instructions

The second instruction, addps, is a packed (or vector) instruction that adds x1, x2, x3, and x4 to y1, 
y2, y3, and y4. One calculation is performed simultaneously on four data items.

By applying the auto-vectorizer to the preceding code snippet, the compiler can reduce the loop 
count MAX by a factor of four, so only 256 iterations of the loop need be performed, rather than the 
original 1,024. 

Auto-Vectorization Guidelines

To be amenable to auto-vectorization, any loops must follow the following guidelines:

 � The loop trip count must be known runtime at loop entry and remain the same for the dura-
tion of the loop. 

 � The loop counter may be a variable as long as that variable is set before the loop starts and 
remains unchanged during the loop run.

 � The loop cannot be terminated within itself or by some data dependency within the loop, 
because this would imply an inconstant loop count. By the same considerations, the loop 
must be a single entry-and-exit loop.
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 � There must be no backward dependencies between iterations of the loop. If the compiler can-
not determine that there are no dependencies, it will assume there are and subsequently not 
vectorize the loop.

 � Loops involving overlapping arrays cannot be vectorized because loop dependencies may 
occur. Usually the compiler can easily determine if declared arrays overlap, because their 
addresses are constants. The compiler will assume overlapping arrays have loop dependencies 
unless told otherwise by the programmer. In simple cases, the compiler can test for overlap-
ping arrays at run time.

 � There must be no function calls in a loop. However, inlined functions and elemental func-
tions (as used in array notation) will not cause a problem.

Turning On Auto-Vectorization

Auto-vectorization is included implicitly within some of the general optimization options, and 
implicitly switched off by others. It can be further controlled by the auto-vectorization option 
/Qvec. Normally, the only reason you would use the /Qvec option would be to disable auto-
vectorization (that is, /Qvec-) for the purposes of testing.

Here’s the default behavior of the general options:

 � The general options /O2, /O3, and /Ox turn on auto-vectorization. You can override these 
options by placing the negative option /Qvec- directly on the compiler’s command line.

 � The general options /Od and /O1 turn off auto-vectorization, even if it is specifi cally set on 
the compiler’s command line by using the /Qvec option.

Enhancing Auto-Vectorization

When auto-vectorization is enabled, the compiler uses the SSE2 instructions, which were introduced 
in 2000. If your target CPU is more recent, you can get better performance by using the 
/Qx<architecture> option, where <architecture> can be one of SSE2, SSE3, SSSE3, SSE4.1, 
SSE4.2, or AVX. 

Table 4-5 shows the speed of the example application on the Sandy Bridge laptop with Turbo Boost 
Technology disabled. Turning on AVX gives a performance boost of a further 9 percent, compared 
to using the default auto-vectorization.

TABLE 4-5: Auto-Vectorization Speedup 

SETTING TIME SPEEDUP

SSE2 0.293 1

AVX 0.270 1.09

Using the /Qx option to enhance auto-vectorization causes two potential problems. The moment 
you build an application using the /Qx option, it will not run on a non-Intel CPU. For example, any 
application built with /Qx will not run on an AMD device. To solve this, you should use the /arch 
options rather than the /Qx options, described in the following section.
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If you run the optimized application on a generation of Intel CPU that does not support the option 
you used, the application will fail to run. For example, an application built with /QxAVX will not run 
on a fi rst-generation Intel Core 2 CPU. 

Figure 4-6 shows an example of a message you will get if you run an application on hardware that 
does not support the level of auto-vectorization you have chosen.

FIGURE 4-6: Running a mismatched application

Building for Non-Intel CPUs

If you intend to run code on Intel and non-Intel devices, you should use the /arch:<architecture> 
option, where architecture can be ia32, SSE2, SSE3, SSSE3, or SSE4.1. 

For example, using the option /arch:SSE4.1 produces an application that will run on any CPU that 
supports SSE4.1, whether it is an Intel CPU or not.

If you intend your code to run on a non-Intel processor, do not use the /Qx 
option; instead, use the /arch: option.

Determining That Auto-Vectorization Has Happened

You can get a detailed report from the vectorizer by using the /Qvec-report option. The 
/Qvec-report n option reports on auto-vectorization, where n can be set from 0 to 5 to specify the 
level of detail required in the report, as follows:

 � n = 0 — No diagnostic information (default if n omitted).

 � n = 1 — Reports only loops successfully vectorized.

 � n = 2 — Reports which loops were vectorized and which were not (and why not). 

 � n = 3 — Same as 2 but adds the dependency information that caused the failure to vectorize.

 � n = 4 — Reports only loops not vectorized.

 � n = 5 — Reports only loops not vectorized and adds dependency information.

When you build the example application with the /Qvec-report1 option, the compiler reports the 
following:

chapter4.c(64): (col. 5) remark: PERMUTED LOOP WAS VECTORIZED.
series.c(7): (col. 5) remark: LOOP WAS VECTORIZED.
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Building with the /Qvec-report4 option gives a list of loops that are not vectorized. Here’s a 
cut-down version of the output:

chapter4.c(54): (col. 5) remark: loop was not vectorized: not inner loop.
... lots more like this

chapter4.c(45): (col. 3) remark: loop was not vectorized: nonstandard loop is not a 
vectorization candidate.

chapter4.c(11): (col. 7) remark: loop was not vectorized: existence of 
vector dependence.

For a further discussion on these types of failures to vectorize, see the next section, “When Auto-
Vectorization Fails.” There’s a further development of the auto-vectorized code after IPO has been 
applied — see the section “The Impact of Interprocedural Optimization on Auto-Vectorization.”

When Auto-Vectorization Fails

The auto-vectorizer has a number of rules that must be fulfi lled before vectorization can happen. 
When the compiler is unable to vectorize a piece of code, the vectorization report will tell you which 
rules were broken (provided you have turned on the right level of reporting detail — refer to the 
section “Determining That Auto-Vectorization Has Happened” earlier in this chapter). 

Error Messages

Following are some of the main report messages associated with non-vectorization of a loop:

 � Low trip count — The loop does not have suffi cient iterations for vectorization to be 
worthwhile.

 � Not an inner loop — Only the inner loop of a nested loop may be vectorized, unless some 
previous optimization has produced a reduced nest level. On some occasions the compiler 
can vectorize an outer loop, but obviously this message will not then be generated.

 � Nonstandard loop is not a vectorization candidate — The loop has an incorrect structure. 
For example, it may have a trip count that is modifi ed within the loop, or it may contain one 
or more breakouts. 

 � Vector dependency — The compiler discovers, or suspects, a dependency between 
successive iterations of the loop. You can invite the compiler to ignore its suspicions by 
using the #pragma ivdep directive, provided you know that any vectorization would be 
safe.

 � Vectorization possible but seems ineffi cient — The compiler has concluded that vectorizing 
the loop would not improve performance. You can override this by placing #pragma vector 
always before the loop in question.

 � Statement cannot be vectorized — Certain statements, such as those involving switch and 
printf, cannot be vectorized.

 � Subscript too complex — An array subscript may be too complicated for the compiler to 
handle. You should always try to use simplifi ed subscript expressions.
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Organizing Data to Aid Auto-Vectorization 

Sometimes auto-vectorization will fail because access to data is not performed consecutively within 
the vectorizable loop. 

You can load four consecutive 32-bit data items directly from memory in a single 128-bit SSE 
instruction. If access is not consecutive, you need to reorder the code to achieve auto-vectorization. 

When working on legacy code that has a lot of nonsequential data items, some programmers write 
wrapper functions and use intermediate data structures to make auto-vectorization possible.  

Non-Unit Strides

Consider the following matrix multiplication example. The nested loop results in access to array c 
being nonconsecutive (that is, a non-unit stride):

double a[4][4], b[4][4], c[4][4];
for (int j = 0; j < 4; j++)
 for (int i = 0; i <= j; i++)
   c[i][j] = a[i][j]+b[i][j];

The example loops through the rows, which means that the data items in a vector instruction will 
not be adjacent. The compiler reports the following:

elem2.cpp(15): (col. 3) remark: loop was not vectorized: not inner loop.
elem2.cpp(16): (col. 4) remark: loop was not vectorized: vectorization possible but
seems inefficient.

However, the code can be made to be vectorizable by changing the order in which the data is stored 
and, therefore, changing the order of the loop:

double a[4][4], b[4][4], c[4][4];
for (int j = 0; j < 4; j++)
 for (int i = 0; i <= j; i++)
   c[j][i] = a[i][j]+b[i][j];

The compiler will now report success:

elem2.cpp(15): (col. 1) remark: loop was not vectorized: not inner loop.
elem2.cpp(16): (col. 2) remark: LOOP WAS VECTORIZED.    

Notice that arrays a and b are still accessed by row, and hence non-unit strides.

Figure 4-7 shows how a two-dimensional array has its columns stored consecutively in memory, but 
its row elements are stored in memory with a gap (or stride) between each. By iterating through such 
an array by columns, rather than by rows, vectorization becomes possible. 

Structure of Arrays vs. Arrays of Structures

The simplest data structure in use is the array, which contains a contiguous collection of data items 
that can be accessed by an ordinal index, making it ideal for vectorizing. Data organized as a struc-
ture of arrays (SOA) are also ideal candidates for vectorizing because it is still being done at the 
array level. However, data organized as an array of structures (AOS), although an excellent format 
for encapsulating data, is a poor candidate for vector programming. 
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FIGURE 4-7: Stride values when accessing a two-dimensional array

Helping the Compiler to Vectorize

To ensure correct code generation, the compiler treats any assumed dependencies as though they 
were proven dependencies, which prevents vectorization. The compiler always assumes a dependency 
where it cannot prove that it is not a dependency. However, if you are certain that a loop can be 
safely vectorized and any dependencies ignored, the compiler can be informed in the following ways.

Using #pragma ivdep

One way of informing the compiler that there are no dependencies within a loop is to place #pragma 
ivdep just before the loop. The pragma applies only to the single following loop, not all the follow-
ing loops. Note that the compiler will ignore only assumed dependencies; it won’t ignore any that it 
can prove. Use #pragma ivdep only when you know that the assumed loop dependencies are safe to 
ignore.

The following example will not vectorize without the ivdep keyword if the value of k is unknown, 
because it may well be negative:

             #pragma ivdep
             for(int i = 0;i < m; i++)
                 a[i] = a[i + k] * c;

Using the restrict Keyword

Another way to override assumptions concerning overlapping arrays is to use the restrict keyword 
on pointers when declaring them. The use of the restrict keyword in pointer declarations informs 
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the compiler that it can assume that during the lifetime of the pointer only this single pointer has 
access to the data addressed by it — that is, no other pointers or arrays will use the same data space. 
Normally, it is adequate to just restrict pointers associated with the left-hand side of any assignment 
statement, as in the following code example. Without the restrict keyword, the code will not 
vectorize.

void f(int n, float *x, float *y, float *restrict z, float *d1, float *d2)
{
  for (int i = 0; i < n; i++)
    z[i] = x[i] + y[i]-(d1[i]*d2[i]);
}

The restrict keyword is part of the C99 standard, so you will have to either enable C99 in the 
compiler (using /Qstd:c99) or use the /Qrestrict option to force the compiler to recognize the 
restrict keyword. 

Using #pragma vector always

The compiler will not vectorize if it thinks there is no advantage in doing so, issuing the message:

C:\Multiplicity.CPP(11): (col. 5) remark: loop was not vectorized: vectorization 
possible but seems inefficient

If you want to force the compiler to vectorize a loop, place #pragma vector always immediately 
before the subsequent loop in the program, as in the following code:

void vec_always(int *a, int *b, int m)
{  
  #pragma vector always  
    for(int i = 0; i <= m; i++)    
      a[32*i] = b[99*i];
}

Again, it applies only to the loop that follows; its use instructs the compiler to vectorize the fol-
lowing loop, provided it is safe to do so. You can use #pragma vector always to override any 
effi ciency heuristics during the decision to vectorize or not, and to vectorize non-unit strides or 
unaligned memory accesses. The loop will be vectorized only if it is safe to do so. The outer loop of 
a nest of loops will not be vectorized, even if #pragma vector always is placed before it.

Using #pragma simd

You can use #pragma simd to tell the compiler to vectorize the single loop that follows. This option 
is more dangerous than the other vectorization pragmas because it forces the compiler to vectorize a 
loop, even when it is not safe to do so. This complements, but does not replace, the fully automatic 
approach. You can use #pragma simd with a selection of clauses, including: 

 � vectorlength (n1[,n2]… ), where n is a vector length, which must be an integer of value 
2, 4, 8, or 16. If more than one integer is specifi ed, the compiler will choose from them.

 � private (var1[,var2]… ), where var must be a scalar variable. Private copies of each 
variable are used within each iteration of the loop. Each copy takes on any initial value the 
variable might have before entry to the loop. The value of the copy of the variable used in 
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the last iteration of the loop gets copied back into the original variable. Multiple clauses get 
merged as a union.

 � linear (var1:step1[,var2:step2] … ), where var is a scalar variable and step is a 
compile-time positive integer constant expression. For each iteration of a scalar loop, var1 is 
incremented by step1, var2 is incremented by step2, and so on. Multiple clauses get merged 
as a union.

 � reduction (oper:var1[,var2] … ), where oper is a reduction operator, such as +, -, or 
*, and var is a scalar variable. The compiler applies the vector reduction indicated by oper 
to the variables listed in a similar manner to that of the OpenMP reduction clause.

 � [no]assert, which directs the compiler to assert (or not to assert) when the vectorization 
fails. The default is noassert. Note that using assert turns failure to vectorize from being a 
warning to an error.

See Chapter 8 for more information on OpenMP. 

Following is an example using #pragma simd:

#pragma simd private(b)
for( i=0; i<MAXIMUS; i++ )
{
  if( a[i] > 0 )
  {
    b = a[i];
    a[i] = 1.0/a[i];
  }
  if( a[i] > 1 )a[i] += b;      
}

The compiler will report success with the following message:

C:\Multiplicity.cpp(42): (col. 4) remark: SIMD LOOP WAS VECTORIZED.

Placing the negative option /Qsimd- on the compiler command line disables any #pragma simd
statements in the code. 

Using #pragma vector [un]aligned

The compiler can also write more effi cient code if aligned data is used, starting either on 32-bit 
boundaries in the case of IA-32 processors, or 64-bit boundaries for 64-bit processors. If the com-
piler cannot decide if a data object is aligned, it will always assume it is unaligned. Coding for 
unaligned data is less effi cient than coding for aligned data. You can always override the failsafe ten-
dencies of the compiler by using the following two pragmas:

 � #pragma vector aligned — Instructs the compiler to use aligned data movement instruc-
tions for all array references when vectorizing.

� #pragma vector unaligned — Instructs the compiler to use unaligned data movement 
instructions for all array references when vectorizing.
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All code following the use of #pragma vector aligned is assumed to be aligned; likewise, all code 
following the use of #pragma vector unaligned is assumed to be unaligned. By using these prag-
mas, you can tell the compiler that different parts of your code can be assumed to use aligned or 
unaligned data. If you use the aligned pragma on an unaligned SSE data access, it is likely to result 
in failure. This is not the case for AVX.

You can align data by using __declespec(align) or the _mm_malloc() SSE-intrinsic function, as 
follows:

// align data to 32-byte address 
__declepec(align(32)) double data[15];

// Allocate 100 bytes of memory; the start address is aligned to 16 bytes 
double *pData = (double *)_mm_malloc(100,16);

// free the memory
_mm_free(pdata);

The call to _mm_malloc() results in the allocation of 100 bytes of memory that is aligned to a 
16-byte address, which is later deallocated using the function _mm_free().

ACTIVITY 4-3: BUILDING THE EXAMPLE APPLICATION USING AUTO-

VECTORIZATION OPTIONS

In this activity you build the example application from Listing 4-5 using the auto-
vectorization options.

Controlling the Default Auto-Vectorization Options

 1. Build and run the application from Listing 4-5 with no options, apart from the 
TARGET name:

 � Linux

make clean
make TARGET=default 
.\default.exe 

 � Windows

nmake clean
nmake TARGET=default 
default.exe

 2. Repeat step 1, adding the CFLAG option /Qvec-  (Windows) or -vec- (Linux) 
to disable the auto-vectorization (notice the minus sign at the end of the 
option). 

 � Linux

make clean
make CFLAGS=”-vec-“ TARGET=novec 
.\novec.exe 
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 � Windows

nmake clean
nmake CFLAGS=”/Qvec-“”TARGET=novec 
novec.exe

The two executables from steps 1 and 2 should run at different 
speeds.

 3. Investigate how vectorization differed by generating a vectorization report for 
both builds. To do this, add the option /Qvec-report2 (Linux: 
-vec-report2) to the CFLAGS.

Enhancing the Auto-Vectorization Options

 4. Build and run the application several times using the different /Qx (Linux: -x) 
options (SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX). For example:

 � Linux

make clean
make CFLAGS=”-xSSE2“ TARGET=intel.SSE2 
.\intel.SSE2.exe 

 � Windows

nmake clean
nmake CFLAGS=”-/QxSSE2“ TARGET=intel.SSE2 
intel.SSE2.exe 

Note that if you don’t have an Intel processor, use the /arch: (Linux: -m) options 
instead.

Creating a Portable Application 

 5. Rebuild using the /QaxAVX  (Linux: -xAVX) option:

 � Linux

make clean
make CFLAGS=”-axAVX“ TARGET=intel.axAVX 
.\intel.axAVX.exe 

 � Windows

nmake clean
nmake CFLAGS=”-/QaxAVX“ TARGET=intel.axAVX 
intel.axAVX.exe 

 6. Run the program. The program should run fi ne, even if your CPU does not 
support AVX.
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Step 4: Add Interprocedural Optimization

Interprocedural optimization (IPO) performs a static, topological analysis of an application. With 
the option /Qip the analysis is limited to occur within each source fi le. With the option /Qipo the 
analysis spans across all the source fi les listed on the command line. IPO analyzes the entire pro-
gram and is particularly successful for programs that contain many frequently used functions of 
small and medium length. IPO reduces or eliminates duplicate calculations and ineffi cient use of 
memory, and simplifi es loops.

Other optimizations carried out include alias analysis, dead function elimination, unreferenced 
variable removal, and function inlining to be carried out across source fi les. IPO can reorder the 
functions for better memory layout and locality. In some cases, using IPO can signifi cantly increase 
compile time and code size.

Figure 4-8 shows how the compiler performs IPO. First, each individual source fi le is compiled, and 
an object fi le is produced. The object fi les hold extra information that is used in a second compila-
tion of the fi les. In this second compilation, all the objects are read together, and a cross-fi le opti-
mization is performed. The output from this second pass is one or more regular objects. The linker 
is then used to combine the regular objects with any libraries that are needed, producing the fi nal 
optimized application.  

Source files

f1.c
IP

Compile
f1.obj

Intermediate

language

(mock) objects

f2.obj

.lib

libraries

f.exe

Executable

IPO

Compile

Link

IP

Compile
f2.c

FIGURE 4-8: Interprocedural optimization

During build time you can control the number of object fi les created from the multiple source fi les 
by using the option /Qipo<n>, where n is the number of object fi les to be created. If n is zero or is 
omitted (the default), the compiler is left to decide how many objects are created. For large programs 
several object fi les may be created; otherwise, just one. The maximum number of object fi les that 
can be created is one for each source fi le.

Adding Interprocedural Optimization to the Example Application 

The fourth column of Table 4-6 gives the results of using IPO on the example application. As you 
can see, there is more than a 60 percent speedup on three of the platforms when comparing an /O2 
build with a /Qipo build.
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TABLE 4-6: The Results of Using IPO with /O2 and /QhHost

PLATFORM O2 IPO QX SPEEDUP

O2 TO IPO

SPEEDUP

O2 TO QX

Core 2 laptop 0.474 0.272 0.266 1.74 1.78

SNB without Turbo Boost 0.293 0.181 0.171 1.62 1.71

SNB with Turbo Boost 0.211 0.132 0.124 1.60 1.70

Xeon workstation 0.239 0.211 0.209 1.13 1.14

If you are using Microsoft Visual Studio, rather than the command line, you will fi nd that /Qipo is 
already enabled in the release build of your project.

The Impact of Interprocedural Optimization on Auto-Vectorization

The Quick-Reference Guide to Optimization recommends that you carry out IPO after using any 
processor-specifi c options. The truth is that in many cases auto-vectorization will bring better 
results after IPO has been applied. However, experience shows that using IPO is sometimes diffi -
cult to achieve, so for pragmatic reasons IPO has been placed later in the optimization cycle. In this 
book we have the luxury of being able to spend a few more words explaining the issues — hence, the 
extra feedback arrow that was introduced in Figure 4-2.

IPO introduces extra time and complexity into the build process. Occasionally the compiler can run 
out of memory or slow down to such a pedestrian pace that the developer gets impatient and aban-
dons IPO. On some large projects, it is impossible to successfully complete an IPO session. Because 
of these potential diffi culties, IPO has been placed after some of the easier-to-handle optimizations 
in the optimization steps. One downside of doing this is that code presented to the auto-vectorizer 
will not have had the benefi t of IPO, especially the cross-fi le function inlining. 

If it’s not practical to use the /Qipo option in your build environment, try using /Qip, which does 
IPO just within the single fi les. 

IPO Improves Auto-Vectorization Results of the Example Application

If you fi nd that your project will run IPO successfully, it is worthwhile to apply the auto-
vectorization options again, especially if you have already ruled out one of the higher specifi cation 
options because you saw no difference in performance. The sixth column of Table 4-6 shows the 
impact of using IPO on the example application when enhanced auto-vectorization has been used. 
For each build, the highest SIMD instruction set that the CPU could support was used. 

IPO Brings New Auto-Vectorization Opportunities

It is also worth getting a fresh vectorization report to see what new things turn up. In the previ-
ous step, when the vectorization reports were generated, they were generated for each individual fi le 
at compilation time. Once /Qipo is used, the report generation is delayed until the fi nal cross-fi le 
compilation. 
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Building with the /Qvec-report3 option gives a list of loops that were not vectorized. What is 
interesting is that both new failures and new successes are reported for line 51:

chapter4.c(51): (col. 11) remark: LOOP WAS VECTORIZED.
. . .
chapter4.c(51): (col. 11) remark: loop was not vectorized: not inner loop.
chapter4.c(51): (col. 11) remark: loop was not vectorized: not inner loop.
chapter4.c(51): (col. 11) remark: loop was not vectorized: existence of vector 
dependence.

The reason for more than one vectorization activity being reported on a single line is that the use of 
/Qipo has resulted in several of the functions being inlined. You effectively have a triple-nested loop 
at line 51. This line has a call to the work() function. The following code snippet shows the nested 
loop within the work() function that calls the Series1() and Series2() functions:

for (i=0;i<N;i++){
    for (j=0;j<N;j++) {
      sum += 1;
      // Calculate first Arithmetic series
      sumx= Series1(j);

      // Calculate second Arithmetic series
      sumy= Series2(j);
 
      // initialize the array
      if( sumx > 0.0 )*total = *total + 1.0 / sqrt( sumx );
      if( sumy > 0.0 )*total = *total + 1.0 / sqrt( sumy );
      a[N*i+j] = *total;
    }
  }

The effect of /Qipo inlining means that the most deeply nested loops associated with line 51 come 
from Series1()and Series2():

double Series1(int j)
{
  int k;
  double sumx = 0.0;
    for( k=0; k<j; k++ )
      sumx = sumx + (double)k;
  return sumx;
}

double Series2(int j)
{
  int k;
  double sumy = 0.0;
  for( k=j; k>0; k--,sumy++ )
    sumy = AddY(sumy, k);
  return sumy;
}

The two messages about the loop not being an inner loop refer to the two loops in work.c, which 
have become outer loops as a result of the inlining. The question is, what is the loop-dependency 
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message referring to? One way to fi nd out which message refers to which loop is to comment out the 
call to Series1() and Series2() in turn and see which messages disappear from the vectorization 
report. After experimenting, it is clear that the call to Series2() is the cause of the vector-
dependency message. By commenting out the sumy++ in the loop and the sumy-- in the AddY()func-
tion, the dependency is removed, as shown in Listing 4-1. 

LISTING 4-1: Modifi cations to the AddY function

series.c

double Series2(int j)
{
  int k;
  double sumy = 0.0;
  for( k=j; k>0; k--)
  {
    // sumy++; 
    sumy = AddY(sumy, k);
  }
  return sumy;
}

addy.c

double AddY( double sumy, int k ) 
{
// sumy--;
sumy = sumy + (double)k;
  return sumy;
}

code snippet Chapter4\4-1\series.c and addy.c

Making the preceding changes has a positive impact on performance, improving it by an additional 
20 percent.

You can try out IPO for yourself in Activity 4-4.

ACTIVITY 4-4: BUILDING THE EXAMPLE APPLICATION USING 

INTERPROCEDURAL OPTIMIZATION OPTIONS

In this activity you use the IPO options to build the code from Listing 4-5.

 1. Build and run the application using the /Qipo option:

 � Linux

make clean
make CFLAGS=”-ipo” TARGET=”intel.ipo.exe”
.\intel.ipo.exe

continues
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 continued

 � Windows

nmake clean
nmake CFLAGS=”/Qipo” TARGET=”intel.ipo.exe”
intel.ipo.exe

 2. Repeat step 1, adding the highest auto-vectorization that works on your plat-
form (SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX). For example, a Sandy bridge 
would use the following options:

 � Linux

make clean
make CFLAGS=”-ipo -xAXV” TARGET=”intel.ipo.xavx.exe”
.\intel.ipo.xavx.exe

 � Windows

nmake clean
nmake CFLAGS=”/Qipo /QxAVX” TARGET=”intel.ipo.xavx.exe”
intel.ipo.xavx.exe

Step 5: Use Profi le-Guided Optimization

So far, all the optimization methods described have been static — that is, they analyze the code 
without running it. Static analysis is good, but it leaves many questions open, including:

 � How often is variable x greater than variable y?

 � How many times does a loop iterate?

 � Which part of the code is run, and how often?

Benefi ts of Profi le-Guided Optimization

PGO uses a dynamic approach. One or more runs are made on unoptimized code with typical data, 
collecting profi le information each time. This profi le information is then used with optimizations set 
to create a fi nal executable. 

Some of the benefi ts of PGO include:

 � More accurate branch prediction

 � Basic code block movements to improve instruction cache behavior

 � Better decision of functions to inline

 � Can optimize function ordering

 � Switch-statement optimizer

 � Better vectorization decisions
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The Profi le-Guided Optimization Steps

Carrying out PGO involves three steps, as shown in Figure 4-9.

Step 1

Step 2

Step 3

Compile + link to add

instrumentation:

icc -prof-gen prog.c

Instrumented

executable:

prog.exe

Dynamic profile:

12345678.dyn

Merged .dyn files:

pgopti.dpi

Optimized executable:

prog.exe

profmerge

Execute instrumented program:

prog.exe (on a typical dataset)

Compile + link using feedback:

icc -prof-use prog.c

FIGURE 4-9: The three steps to using PGO

 1. Compile your unoptimized code with PGO:

 � Windows — icl /Qprof-gen prog.c

 � Linux — icc -prof-gen prog.c

This instruments the code to collect profi le information when run. This step automatically 
disables some optimizations if they are inadvertently left on.

 2. Make multiple runs with different sets of typical data input; each run automatically produces 
a dynamic information (.dyn) fi le.

Each .dyn fi le is given a different name and resides by default in the release directory of the 
project. 

The test data in the example runs must be representative of typical usage scenarios; otherwise, 
profi le-guided feedback has the potential of harming the overall performance of the fi nal 
executable. It is important that you directly remove unwanted fi les before the fi nal build; oth-
erwise, runs representing wrong data sets will be averaged and incorporated into the fi nal feed-
back information used by the optimizations. For example, if you change your code during test 
runs, you need to remove any existing .dyn fi les before creating others with the new code. 

 3. Finally, switch on all your desired optimizations and do a feedback compile with PGO to 
produce a fi nal PGO executable:

 � Windows — icl /Qprof-use prog.c 

 � Linux — icc -prof-use prog.c 

PGO uses the results of the test runs of the instrumented program to help apply the fi nal optimiza-
tions when building the executable. For example, the compiler can decide whether a function is 
worth inlining by using the profi le feedback information to establish how often the function is called. 
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The various .dyn fi les are averaged to produce a single version, which is then used. After step 3 has 
completed, the fi les are deleted.

Table 4-7 shows the different options that you can use in PGO. 

TABLE 4-7: PGO Compiler Options

LINUX WINDOWS DESCRIPTION

-prof-gen /Qprof-gen Adds PGO instrumentation, which cre-

ates a new .dyn fi le every time the 

instrumented application is run

-prof-use /Qprof-use Uses collected feedback from all the 

.dyn fi les to create the fi nal opti-

mized application

-prof-gen=srcpos /Qprof-gen:srcpos Creates extra information for use with 

the Intel code coverage tool

-opt-report-phase=pgo /Qopt-report-phase:pgo Creates a PGO report

Table 4-8 shows the results of using PGO on four different platforms. 

TABLE 4-8: The Results of Using PGO 

PLATFORM IPO PGO SPEEDUP

Core 2 laptop 0.370 0.261 1.42

SNB without Turbo Boost 0.264 0.198 1.33

SNB with Turbo Boost 0.189 0.141 1.34

Xeon workstation 0.211 0.131 1.61

ACTIVITY 4-5: BUILDING THE EXAMPLE APPLICATION USING PROFILE-

GUIDED OPTIMIZATION OPTIONS

In this activity you use the general optimization options to build the code from 
Listing 4-5.

 1. Build the application from Listing 4-5, enabling PGO generation:

 � Linux

make reallyclean
make CFLAGS=”-prof-gen” TARGET=”intel.pgo.gen.exe”
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 � Windows

nmake reallyclean
nmake CFLAGS=”/Qprof-gen” TARGET=”intel.pgo.gen.exe”

Notice the reallyclean target, which deletes any intermediate PGO 
fi les that might be lying around. 

 2. Run the program intel.pgo.gen.exe. 

Look in the directory where you ran the program. A .dyn fi le should 
have been created.

 3. Rebuild the application, telling the compiler to use the dynamic information 
you just generated:

 � Linux

make clean
make CFLAGS=”-prof-use” TARGET=”intel.pgo.exe”

 � Windows

nmake clean
nmake CFLAGS=”/Qprof-use” TARGET=”intel.pgo.exe”

 4. Run the program intel.pgo.exe. You should see a signifi cant improvement 
in performance.

One of the main optimizations the PGO does on the example code is to change the 
instructions generated for the initialization of matrix b, especially where the vari-
able denominator is used:

// initialize matrix b;
    for (i = 0; i < N; i++) {
      for (j=0; j<N; j++) {
        for (k=0;k<DENOM_LOOP;k++) {
          sum += m/denominator;
        }
        b[N*i + j] = sum; 
      }
    }

Try to confi rm that this is the case. Hint: generate an optimization report using /
Qopt-report-phase:pgo (Linux: -opt-report-phase=pgo). Also, generate an 
assembler fi le using the /S (Linux: -S) option to see which different instructions are 
generated by the compiler. Be sure to delete or rename the assembler fi le afterward, 
because make’s default rules will try to build them into your application the next 
time you do a build.
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The Results

Figure 4-10 shows the results from the various steps applied to 
the example application in Listing 4-5. The application was run 
on the Sandy Bridge laptop. In each step, new optimizations were 
incrementally added using the compiler options. The result labeled 
“Fix” is where the code in Series2.c was modifi ed. 

If the application had been built with just the default options, the 
application would have run at the /O2 setting, giving a run time of 
0.211 seconds. At the PGO step, the fi nal speed was 0.064 seconds, 
giving an impressive speedup of 3.3. 

Step 6: Tune Auto-Vectorization

The auto-vectorizer in the Intel compiler expects a certain stan-
dard of code. You can use the compiler’s reporting features to tell 
you when the compiler was unable to auto-vectorize. The section 
“When Auto-Vectorization Fails” covers many of the rules and 
error messages that can help you understand what the compiler is doing. In addition to the compil-
er’s reporting features, you can also use the GAP option to give you additional advice. Table 4-9 lists 
some of the differences between the GAP and vectorizer reports. 

TABLE 4-9: Diff erences Between GAP and Vectorizer Reports 

FEATURE VECTORIZER 

REPORTS

GAP

Executable or usable object produced Y N

Performs application-wide analysis N Y

Detects breaking of vectorization rules Y Y

Gives advice on what to do N Y

It is best that you do not use both /Qguide and /Qvec-report at the same time, because this can 
lead to confusion; rather, use them sequentially after each other. Don’t be tempted to skip one of 
these reports, because experience shows that there will be occasions when the vectorizer will emit a 
message but the GAP option will not give any specifi c advice.

GAP gives advice on auto-vectorization and auto-parallelization. This section considers only tuning 
auto-vectorization; Chapter 6, “Where to Parallelize,” discusses using GAP for auto-parallelism.

Activating Guided Auto-Parallelization

You can activate GAP by using the following option switch:

 /Qguide=n
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FIGURE 4-10: Applying all the 

optimization steps results in 

a speedup of more than 300 

percent
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where n can be set from 1 to 4, as follows:

n = 1 — Simple diagnostics are generated.

n = 2 — Moderate diagnostics are generated.

n = 3 — Maximum diagnostics are generated.

n = 4 — Extreme diagnostics are generated (the default if n is not set).

The higher the value of n, the deeper the analysis and the longer it takes.

While the GAP option is set, the compiler will not build an executable; it runs in advisor mode 
only, generating diagnostic messages telling you how you can improve the code. After making any 
changes you feel happy with, you need to recompile the application without the /Qguide option to 
produce an executable fi le. 

GAP requires a general optimization level of /O2 or higher; otherwise, the com-
piler will simply ignore the /Qguide option.

An Example Session

Listing 4-2 is an example session that uses both /Qguide and /Qvec-report options.

LISTING 4-2: Sample code suitable for vectorization 

void f(int n, float *x, float *y, float *z, float *d1, float *d2)
{
  for (int i = 0; i < n; i++)
    z[i] = x[i] + y[i] – (d1[i]*d2[i]);
}

code snippet Chapter4\4-2.cpp

The following steps show what output the auto-vectorizer and GAP produces when you compile 
Listing 4-2:

 1. Compile the code, asking for a report from the auto-vectorizer:

icl /c test.cpp /Qvec-report2 /c

C:\dv\guide\test.cpp(3): (col. 3) remark: loop was not vectorized: existence of
vector dependence.

Notice from the generated message that the loop was not vectorized, but no real hint is 
given about what to do next.

 2. Use GAP to see if it can provide any other useful advice:

icl /c test.cpp /Qguide /c

test.cpp
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GAP REPORT LOG OPENED ON Thu Aug 25 18:33:06 2011

remark #30761: Add -Qparallel option if you want the compiler to generate
recommendations for improving auto-parallelization.

C:\dv\guide\test.cpp(3): remark #30536: (LOOP) Add -Qno-alias-args option for better
type-based disambiguation analysis by the compiler, if appropriate (the option will
apply for the entire compilation). This will improve optimizations such as vectorization
for the loop at line 3. [VERIFY] Make sure that the semantics of this option is obeyed
for the entire compilation. [ALTERNATIVE] Another way to get the same effect is to add
the “restrict” keyword to each pointer-typed formal parameter of the routine “f”. 
This allows optimizations such as vectorization to be applied to the loop at line 3.
[VERIFY] Make sure that semantics of the “restrict” pointer qualifier is satisfied:
in the routine, all data accessed through the pointer must not be accessed through 
any other pointer. Number of advice-messages emitted for this compilation session: 1.
END OF GAP REPORT LOG

The compiler does not know if any of the pointers overlap and advises you to use either 
-Qno-alias-args or the restrict keyword.

 3. Help the compiler to successfully vectorize the code by using the command-line option /Qno-
alias-args, per the advice from GAP:

icl /c test.cpp /Qguide /Qno-alias-args

test.cpp
GAP REPORT LOG OPENED ON Thu Aug 25 19:01:29 2011

remark #30761: Add -Qparallel option if you want the compiler to generate
recommendations for improving auto-parallelization.

Number of advice-messages emitted for this compilation session: 0.
END OF GAP REPORT LOG

Now the advice message has gone.

 4. Compile the code, asking for a report:

icl /c test.cpp /Qvec-report2 /Qno-alias-args
test.cpp
C:\dv\guide\test.cpp(3): (col. 3) remark: LOOP WAS VECTORIZED.

Presto, you have a vectorized loop!

MORE ON AUTO-VECTORIZATION

Two additional vectorization-related topics are worth examining: 

 � Building applications that will safely run on different CPUs

 � Other ways of inserting vectorization into your code

Building Applications to Run on More Than One Type of CPU

First, a gentle reminder: If you build an application and use just the general options, or no options at 
all, then any vectorized code will run on all CPUs that support SSE2. Default builds are safe!
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Once you start enhancing auto-vectorization, the compiler adds CPU-specifi c code into your appli-
cation — that is, code that will not run on every CPU.

CPU dispatch (sometimes called multipath auto-vectorization) is a means whereby you can add 
several coexisting specialized paths to your code. Figure 4-11 illustrates the concept. The compiler 
generates the specialized paths when you use the /Qax option, rather than the /Qx option. (Notice 
the extra a.) 

CPUID

IA32

Default path

set by options

/arch or /Qx

Additional paths can be

added by extending the

/Qax option

(e.g., /QaxSSE4.2,AVX,SSE3)

Specialized

path set by

/Qax option
AVX SSE3SSE4.2

FIGURE 4-11: Multipath auto-vectorization

When the code is run, the CPU is fi rst identifi ed using the CPUID instruction. The most appropriate 
code path is then selected based on the instruction set your CPU can support. When you use the 
/Qax option, the compiler generates a default path and one or more specialized paths. 

You can set the specifi cation of the default path with either the /arch option or the /Qx option. If 
you think your code will ever be run on a non-Intel CPU, you must not use the /Qx option to create 
the default path, but rather use the /arch option. For non-Intel devices, the default path is always 
taken.

Table 4-10 gives some examples of how to use the /Qax option. 

TABLE 4-10: Multipath Vectorization Example

EXAMPLE DEFAULT SPECIALIZED

Intel Non-Intel Intel Non-Intel

1 /QaxSSE2 SSE2 SSE2 SSE2 N/A

2 /QaxSSE3 SSE2 SSE2 SSE3 N/A

3 /QaxAVX /arch:SSE3 SSE3 SSE3 AVX N/A

4 /QaxAVX,SSE4.1 SSE2 SSE2 AVX and SSE4.1 N/A

5 /QaxAVX /QxSSE3 SSE3 Error AVX Error
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Examples 1 to 4 will run on Intel and non-Intel devices. Example 5 will run only on an Intel device, 
because the default path has been set up using the /Qx option.

Example 3 is a little more complicated. If the code runs on:

 � An Intel device that supports AVX, it will use the AVX specialized path.

 � An older Intel device that does not support AVX but still supports SSE3, it will use the 
default path.

 � An older Intel device that supports only SSE2 (or lower), the program will fail to run.

 � A non-Intel device that is capable of supporting SSE3 (or higher), it will run on the default 
path.

 � An older non-Intel device that supports only SSE2 (or lower), the program will fail to run. 

For best portability and superior optimization, use the -/Qax (-ax) option or 
one of its variants.

Additional Ways to Insert Vectorization

In addition to using auto-vectorization, you can insert vectorization in your code by other means. 
The ways mentioned in Figure 4-12 range from the fully automatic vectorization to low-level assem-
bler writing. The lower in the diagram, the more diffi cult it is to do.

Compiler: Fully automatic vectorization

Cilk Plus array notation

User-mandated vectorization

(SIMD directive)

Compiler: Auto-vectorization hints

 (#pragma ivdep, ...)

Manual CPU dispatch

 (__declspec(cpu_dispatch...))

SIMD-intrinsic class (F32vec4 add)

Vector-intrinsic class (mm_add_ps())

Assembler code (addps) Programmer control

Ease of use

FIGURE 4-12: Other ways of inserting vectorized code
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Note the following: 

 � The vector-intrinsic functions are supported by other compilers as well as the Intel compiler.

 � The SIMD-intrinsic classes are C++ classes provided by the Intel compiler. You can see an 
example of SIMD-intrinsic classes in Chapter 13, “The World’s First Sudoku ‘Thirty-Niner.’”

 � User-mandated vectorization and auto-vectorization hints are discussed in the section “When 
Auto-Vectorization Fails.” 

 � Cilk Plus array notation and manual CPU dispatching are discussed in the following sections, 
respectively. 

Using Cilk Plus Array No tation

Array extensions are a very convenient way of adding vectorized code to your application. When you 
build an application at optimization level /O1 or higher, the compiler replaces the array notation with 
vectorized code. If you build with no optimization (/Od), the compiler generates nonvectorized code. 

The compiler uses exactly the same rules as for auto-vectorization with respect to which instruction 
set is used. By default, the compiler uses SSE2 instructions. You can override this behavior by using 
the /arch, /Qx, or /Qax options.

The Section Operator

Cilk Plus array notation is an extension to the normal C/C++ array notation and is supported by 
the Intel compiler. A section operator (:) is provided that enables you to express data-parallel opera-
tions over multiple elements in an array. The section operator has the format Array[lower bound : 
length : stride]. Here are some examples:

A[:] // All of array A 
B[4:7] // Elements 4 to 10 of array B 
C[:][3] // Column 3 of matrix C 
D[0:3:2] // Elements 0,2,4 of array D

The fi rst example accesses all the elements of array a[].  The other three examples access arrays 
B[], C[], and D[] portions as a range, a column, and a stride, respectively.

C/C++ Operators

Most C/C++ operators are available for use on array sections. Each operation is mapped implicitly 
to each element of the array. Here are two examples of using operators:

z[:] = x[:] * y[:] // element-wise multiplication
c[3:2][3:2] = a[3:2][3:2] + b[5:2][5:2] // 2x2 matrix addition

In the fi rst example, each element of x[] is multiplied by its corresponding element in y[], and the 
results are written to the corresponding element in z[]. 

The second example shows that two submatrices are accessed and added and the results placed in 
another submatrix. The code is equivalent to the following:

c[3][3] = a[3][3] + b[5][5];
c[3][4] = a[3][4] + b[5][6];
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c[4][3] = a[4][3] + b[6][5];
c[4][4] = a[4][4] + b[6][6];

The Assignment Operator

The assignment operator (=) applies in parallel every element of the right-hand side to every element 
of the left-hand side. For example:

a[:][:] = b[:][2][:] + c;
e[:] = d;

The equivalent code for the fi rst example is as follows (assuming array declarations of a[3][3] and 
b[3][3][3]):

a[0][0] = b[0][2][0] + c;
a[0][1] = b[0][2][1] + c;
a[0][2] = b[0][2][2] + c;
a[1][0] = b[1][2][0] + c;
a[1][1] = b[1][2][1] + c;
a[1][2] = b[1][2][2] + c;
a[2][0] = b[2][2][0] + c;
a[2][1] = b[2][2][1] + c;
a[2][2] = b[2][2][2] + c;

In the second example, the value of d is assigned to every element of array e[].

Reducers

Reducers accumulate all the values in an array using one of nine reducer functions, or alternatively 
using your own user-defi ned function. The nine provided reducers are as follows:

 � __sec_reduce_add — Adds values

 � __sec_reduce_mul — Multiplies values

 � __sec_reduce_all_zero — Tests that all elements are zero

 � __sec_reduce_all_nonzero — Tests that all elements are nonzero

 � __sec_reduce_any_nonzero — Tests that any element is nonzero

 � __sec_reduce_max — Determines the maximum value

 � __sec_reduce_min — Determines the minimum value

 � __sec_reduce_max_ind — Determines index of element with maximum value

 � __sec_reduce_min_ind — Determines index of element with minimum value

Here’s an example of using the __sec_reduce_add reducer: 

// add all elements using a reducer
int sum = __sec_reduce_add(c[:]) 

// add all elements using a loop
int sum = 0; for(int i = 0;i < sizeof(c);i++){sum += c[i]); 
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In the fi rst line of code, every element of c[] is added together using the reducer __sec_reduce_
add. In the second line, the same operation is performed using a loop. 

Elemental Functions

Elemental functions are user-defi ned functions that can be used to operate on each element of an 
array. The three steps to writing a function are as follows:

 1. Write the function using normal scalar operations. Restrictions exist on what kind of code 
can be included. Specifi cally, you must not include loops, switch statements, goto, setjmp, 
longjmp, function calls (except to other elemental functions or math library intrinsics), oper-
ations on a struct (other than selection), cilk_spawn, array notations, or C++ exceptions.

 2. Decorate the function name with __declspec(vector). As an interesting aside, you can 
make the function CPU-specifi c by using the processor(cpuid) clause. 

 3. Call the function with vector arguments. 

In the following code snippet, the multwo function is applied to each element of array A. At optimi-
zation levels /O1 and above, the compiler generates vectorized code for the example.

int __declspec(vector) multwo(int i){return i * 2;}

int main()
{
  int A[100];
  A[:] = 1;
  for (int i = 0 ; i < 100; i++)
    multwo(A[i]);
}

Using Array Notations in the Example Application

The most obvious place to use the array notation is in the multiplication of the matrix in 
chapter4.c. Listing 4-3 fi rst shows the original code and then the new version. 

LISTING 4-3: Using array notation in the matrix multiplication

ORIGINAL VERSION

void MatrixMul(double a[N][N], double b[N][N], double c[N][N])
{
  int i,j,k;
  for (i=0; i<N; i++) {
    for (j=0; j<N; j++) {
      for (k=0; k<N; k++) {
        c[i][j] += a[i][k] * b[k][j];
       }
    }
  }
}

continues
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VERSION USING ARRAY NOTATION

void MatrixMul(double a[N][N], double b[N][N], double c[N][N])
{
  int i,j;
  for (i=0; i<N; i++) {
    for (j=0; j<N; j++) {
      c[i][j] += a[j][:] * b[:][j];
    }
  }
}

code snippet Chapter4\4-3.c

By building the application with the /S option, you can examine the assembler code and confi rm 
that the code has been vectorized. The highlighted lines in the following code snippet use a packed 
multiply double and a packed add double instruction (indicated by the p and d in the instruction’s 
name). Remember that a packed instruction is performing a SIMD operation.

movsd     xmm1, QWORD PTR [r14+r13*8]                   ;14.31
movsd     xmm0, QWORD PTR [r8]                          ;14.10
movhpd    xmm0, QWORD PTR [8+r8]                        ;14.10
unpcklpd  xmm1, xmm1                                    ;14.31
mulpd     xmm1, xmm0                                    ;14.31
movsd     xmm2, QWORD PTR [rdi+r9*8]                    ;14.10
movhpd    xmm2, QWORD PTR [8+rdi+r9*8]                  ;14.10
addpd     xmm2, xmm1                                    ;14.10

Manual CPU Dispatch: Rolling Your Own CPU-Specifi c Code

Occasionally, developers want to write their own CPU-specifi c code that they can dispatch manu-
ally. The Intel compiler provides two functions to achieve this:

 � __declspec(cpu_dispatch(cpuid,cpuid…))

 � __declspec(cpu_specific(cpuid))

Listing 4-4 gives an example. First, you should declare an empty function (lines 3 and 4) that must list 
all the different CPUIDs to be used in the __declspec statement. Table 4-11 shows the valid CPUIDs.

TABLE 4-11: CPUID Parameters for Manual Dispatching

PARAMETER ARCHITECTURE

core_2nd_gen_avx  Intel AVX 

core_aes_pclmulqdq AES

core_i7_sse4_2 SSE4.2

LISTING 4-3 (continued)
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PARAMETER ARCHITECTURE

atom Intel Atom processors

core_2_duo_sse4_1 SSE4.1

core_2_duo_ssse3 SSSE3

pentium_4_sse3 SSE3

pentium_4 Pentium 4

pentium_m Pentium M

pentium_iii Pentium III

generic Other IA-32 or Intel 64 (Intel and 

non-Intel)

Each CPUID declared in the empty function list then needs to have its own CPU-specifi c function, 
as shown at lines 7 and 10. The code will also work if the functions have return types rather than 
void functions. Note that all the CPUIDs, except the generic one, are Intel-specifi c.

LISTING 4-4: Example of manual dispatching

1:  #include <stdio.h>  
2:  // need to create specific function versions
3:  __declspec(cpu_dispatch(generic, future_cpu_16))
4:  void dispatch_func() {};  
5:  
6:  __declspec(cpu_specific(generic))  
7:  void dispatch_func() {  printf(“Generic \n”);}
8: 
9:  __declspec(cpu_specific(future_cpu_16))
10: void dispatch_func(){ printf(“AVX!\n”);}
11: 
12: int main()
13: {
14:   dispatch_func();
15:   return 0;
16: }

code snippet Chapter4\4-4.c

SOURCE CODE

Listing 4-5 contains the source coded for the example application used in this chapter. The code is 
written in such a way that the different compiler optimizations used in the chapter “make a differ-
ence.” As mentioned previously, the code is not an example of writing good optimized code; in fact, 
some of the code is quite contrived and artifi cial.
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LISTING 4-5: The example application

chapter4.c

// Example Chapter 4 example program
#include <stdio.h>
#include <stdlib.h>
#include “chapter4.h”

void MatrixMul(double a[N][N], double b[N][N], double c[N][N])
{
  int i,j,k;
  for (i=0; i<N; i++) {
    for (j=0; j<N; j++) {
      for (k=0; k<N; k++) {
        c[i][j] += a[i][k] * b[k][j];
      }
    }
  }
}

// ***********************************************************************
int main( int argc, char * argv[] )
{
  int i,j,k,l,m;
  long int sum;
  double ret, total;
  int denominator = 2;
  double starttime, elapsedtime;
  double *a,*b,*c;

// -----------------------------------------------------------------------
  m = 2;

  if(argc == 2)
    denominator = atoi(argv[1]);

  // allocate memory for the matrices
  a = (double *)malloc(sizeof (double) * N * N);
  if(!a) {printf(”malloc a failed!\n”);exit(999);}

  b = (double *)malloc(sizeof (double) * N * N);
  if(!b) {printf(”malloc b failed!\n”);exit(999);}

  c = (double *)malloc(sizeof (double) * N * N);
  if(!c) {printf(”malloc c failed!\n”);exit(999);}

  // repeat experiment six times
  for( l=0; l<6; l++ )
  {
    // get starting time
    starttime = wtime();

    // initialize matrix a
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    sum = Work(&total,a);

    // initialize matrix b;
    for (i = 0; i < N; i++) {
      for (j=0; j<N; j++) {
        for (k=0;k<DENOM_LOOP;k++) {
          sum += m/denominator;
        }
        b[N*i + j] = sum; 
      }
    }

    // do the matrix multiply
    MatrixMul( (double (*)[N])a, (double (*)[N])b, (double (*)[N])c);

     // get ending time and use it to determine elapsed time
    elapsedtime = wtime() - starttime;

    // report elapsed time
    printf(”Time Elapsed %03f Secs  Total=%lf   Check Sum = %ld\n”,
                  elapsedtime, total, sum );
  }
  // return a value from matrix c
  // just here to make sure matrix calc doesn’t get optimized away.
  return (int)c[100];
}
// **********************************************************************

work.c

#include “chapter4.h”
#include <math.h>

long int Work(double *total,double a[]) 
{
  long int i,j,sum;
  double sumx, sumy;
  sum = 0;
  *total = 0.0;

  for (i=0;i<N;i++){
    for (j=0;j<N;j++) {
      sum += 1;
      // Calculate first Arithmetic series
      sumx= Series1(j);

      // Calculate second Arithmetic series
      sumy= Series2(j);
 
      // initialize the array
      if( sumx > 0.0 )*total = *total + 1.0 / sqrt( sumx );
      if( sumy > 0.0 )*total = *total + 1.0 / sqrt( sumy );
      a[N*i+j] = *total;

continues
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    }
  } 
  return sum;
}

series.c

extern double AddY( double sumy, int k );

double Series1(int j)
{
  int k;
  double sumx = 0.0;
    for( k=0; k<j; k++ )
      sumx = sumx + (double)k;
  return sumx;
}

double Series2(int j)
{
  int k;
  double sumy = 0.0;
  for( k=j; k>0; k--,sumy++ )
    sumy = AddY(sumy, k);
  return sumy;
}

addy.c

double AddY( double sumy, int k ) 
{
  sumy = sumy + (double)k -1;
  return sumy;
}

wtime.c

#ifdef _WIN32  
#include <windows.h> 
double wtime() 
{ 
  LARGE_INTEGER ticks; 
  LARGE_INTEGER frequency;     
  QueryPerformanceCounter(&ticks);     
  QueryPerformanceFrequency(&frequency);     
  return (double)(ticks.QuadPart/(double)frequency.QuadPart); 
}  
#else  
#include <sys/time.h> 
#include <sys/resource.h>  
double wtime() 

LISTING 4-5 (continued)
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{     
  struct timeval time;     
  struct timezone zone;     
  gettimeofday(&time, &zone);     
  return time.tv_sec + time.tv_usec*1e-6; 
}  
#endif

chapter4.h

#pragma once
#define N 400
#define DENOM_LOOP 1000
// prototypes
double wtime();
long int Work(double *total,double a[]);  
double Series1(int j);
double Series2(int j);
double AddX( double sumx, int k );
double AddY( double sumy, int k );

code snippet Chapter4\4-5\chapter4.c, work.c, series.c, addy.c, wtime.c, and chapter4.h

Listing 4-6 is the makefi le used to build the application. If you are using Linux, then you will need 
to comment out the fi rst three lines of the fi le (where CC, DEL and OBJ are set), and uncomment their 
equivalent lines that are just below.

LIST ING 4-6: The makefi le

## TODO: EDIT next set of lines according to OS

## WINDOWS OS specific vars.
CC=icl 
DEL=del
OBJ=obj

# LINUX SPECIFIC, uncomment these for LINUX
# CC=icc 
# DEL=rm -Rf
# OBJ=o

## -------------- DO NOT EDIT BELOW THIS LINE -------------
LD=$(CC)
CFLAGS = 
LFLAGS = 

OBJS = addy.$(OBJ) chapter4.$(OBJ) series.$(OBJ) work.$(OBJ) wtime.$(OBJ) 
TARGET = main
.c.$(OBJ):
    $(CC) -c $(CFLAGS) $<

continues
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$(TARGET).exe:$(OBJS) chapter4.h Makefile
    $(LD) $(LFLAGS) $(OBJS) $(LIBS) -o $@

clean:
    $(DEL) $(OBJS)
    $(DEL) $(TARGET).exe

reallyclean:
    $(DEL) $(OBJS)
    $(DEL) *.exe
    $(DEL) *.pdb
    $(DEL) *.dyn
    $(DEL) *.dpi
    $(DEL) *.lock
    $(DEL) *.asm
    $(DEL) *.s

code snippet Chapter4\4-6\Makefi le

SUMMARY

You should use the seven optimization steps in this chapter as a starting point for all your optimiza-
tion work. Most of the optimizations can be enabled by just adding an additional compiler option. 
Although the optimization switches seem to make no difference, you can use the reporting features 
of the compiler to help you understand what might be stopping the compiler from doing a better job.

Of all the optimization options available, auto-vectorization stands out as one of the great favorites 
among developers. When you combine this feature with some of the hand-tuning of the code that 
can be done, you can potentially get some astounding results.  

Using the different optimization options of the Intel compiler can result in some great performance 
improvements. This chapter demonstrated that it is important not to just accept the out-of-the-box 
settings. The steps taken in this chapter are the foundation for further optimization work. 

The next chapter looks at how to write safe code — code that is less vulnerable to hacking and mali-
cious attacks.

LISTING 4-6 (continued)
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WHAT’S IN THIS CHAPTER?

 � Running a Static Security analysis

 � Tracking the status of security problems throughout the life of a 

project

 � Understanding the programming practices that can leave your code 

vulnerable to attack

Many security threats take advantage of weaknesses introduced in programs written in C or 
C++. The weak type checking and the ability to write programs that directly access memory 
and hardware make it easy to write insecure programs. Most attacks fall into one of two 
categories:

 � Threats that crash or overwhelm an application 

 � Threats that hijack the code path by inserting foreign code

The Intel compiler’s Static Security analysis detects many of these code weaknesses, displaying 
the results in Intel Inspector XE. More than 250 different errors are detected in the following 
categories:

 � Buffer overfl ows and boundary violations

 � Uninitialized variables and objects

 � Memory leaks

 � Incorrect usage of pointers and dynamically allocated memory

 � Dangerous use of unchecked input

 � Arithmetic overfl ow and divide by zero

c05.indd   131c05.indd   131 3/26/2012   12:00:13 PM3/26/2012   12:00:13 PM



Blair-Chappell   c05.indd   V2 - 02/02/2012

132 x CHAPTER 5  WRITING SECURE CODE

 � Dead or redundant code

 � Misuse of string, memory, and formatting library routines

 � Inconsistent object declarations in different program units

 � Incorrect use of OpenMP and Intel Cilk Plus

 � Error-prone C++ and Fortran language usage

This chapter discusses how to use Intel Parallel Studio XE to perform Static Security analysis on 
your code. The primary goal of Static Security analysis is to harden applications against security 
attacks, but it is also useful for detecting some programming errors. 

A SIMPLE SECURITY FLAW EXAMPLE

Listing 5-1 has security errors that could be used in an attack. An attacker could use the unchecked 
user input to create a buffer overfl ow.

LISTING 5-1: A program with several security errors

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// user functions
int NotePad(){printf(“    USER: here we launch notepad\n\n”); return 0;}
int Exit(){ exit(0);}

// system functions
int Dir(){printf(“    SYSTEM: here we launch dir\n\n”); return 0;}
int Delete(){printf(“    SYSTEM:  here we launch Del\n\n”); return 0;}
int ReturnToMain(){return -1;}

int SystemMenu();
int MainMenu();

int (*user_table[])(void) = {NotePad, SystemMenu,Exit};
int (*system_table[])(void) = {Dir, Delete, ReturnToMain};

int SystemMenu()
{
  char password[20];
  int id;
  int ret = 0;
  printf(“System Menu\n”);
  printf(”Enter the Password before continuing!...\n”);
  scanf(”%s”,password);
  if (strcmp(password, ”PASSWORD”) == 0)
  {
    while (ret != -1)
    {
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      printf(”Enter a number:\n”);
      printf(”1: dir\n”);
      printf(”2: delete everything\n”);
      printf(”3: back to main menu\n”);
      scanf(“%d”,&id);
      ret = system_table[id-1]();
    }
  }
  else
  {
    printf(”Invalid Password!\n”);
    return 0;
  }
  return 0;
}

int MainMenu()
{
  int id;
  printf(”What would you like to do?\n”);
  printf(”Enter a number:\n”);
  printf(”1: run Notepad\n”);
  printf(”2: go to system menu\n”);
  printf(”3: quit\n”);
  scanf(”%d”,&id);
  return user_table[id-1]();
}

int main ()
{
  int ret = 0;
  while( ret != -1)
    ret = MainMenu();
  return ret;
}

code snippet Chapter5\5-1.c

The program consists of two menus: a user menu and a system menu. When the program fi rst starts, 
the MainMenu() function gives the user three choices:

What would you like to do?
Enter a number:
1: run Notepad
2: go to system menu
3: quit

The user input is captured using scanf(), which stores the result in id. The value in id (minus 1) is 
used as an index into the array user_table, which is an array of function pointers.

Choosing 1 calls the NotePad function; choosing 2 causes the SystemMenu() function to display the 
system menu; choosing 3 exits the program via the Exit() function.
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The SystemMenu() function works in a similar way to MainMenu(), using the array system_table 
to jump to the Dir(), Delete(), and ReturnToMain() functions. Before the system menu is 
launched, the user is prompted for a password (PASSWORD). If the password is wrong, a message is 
displayed and control is returned to the MainMenu() calling function, which, in turn, returns zero to 
the while loop in main(). 

Choosing 2 from the user menu displays the password-controlled system menu. The following shows 
the menu after the correct password has been entered:

System Menu
Enter the password before continuing!...
PASSWORD
Enter a number:
1: dir
2: delete everything
3: back to main menu

UNDERSTANDING STATIC SECURITY ANALYSIS 

It is diffi cult to anticipate how an attacker will attack a program. Attackers are cunning and devi-
ous, taking advantage of any weakness in your code. Writing a series of runtime tests or debugging 
an application will not help fi nd many weaknesses. At best, using such methods, you can test only 
what is actually executed, with some kinds of threats being impossible to test for.

Static Security analysis differs from standard debugging in that it analyzes the code without execut-
ing it. Every possible code path is examined, even those that are never executed by any of your tests.

Running a Static Security analysis on Listing 5-1 reports the following error messages. The prob-
lems could be used as a vehicle for a security attack.

 � main.c(28): error #12329 — specify fi eld width in format specifi er to avoid buffer over-
fl ow on argument 2 in call to scanf.

 � main.c(38): error #12305 — unvalidated value is received from call to an external func-
tion at (file:main.c line:37), which can be used in index expression of system_table.

 � main.c(59): error #12305 —  unvalidated value is received from call to an external func-
tion at (file:main.c line:58), which can be used in  index expression of user_table.

Someone could attack the code as follows:

 � By using invalid user input to bypass the system menu password — If you enter a number 
higher than 3 in the user menu, the functions from the system menu are executed. A pass-
word is not even requested!

What would you like to do?
Enter a number:
1: run Notepad
2: go to system menu
3: quit
5
    SYSTEM:  here we would launch Del
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This happens because the arrays user_table and system_table are next to each other in 
memory. The user_table array has three entries. Using an index of 4 means that a function 
pointer gets constructed from memory that is beyond the end of the array, reading the fi rst 
entry in the system_table array.

 � By using invalid user or system input to cause the program to crash or to execute random 
code — If you enter a very high number for the menu choice, the program will start execut-
ing code at an address not taken from either of the arrays. If you are lucky, the code will be 
harmless or will simply crash. In the worst case, you could start executing some valid and 
dangerous code. 

 � By passing in a very long password to cause the application to crash — The variable 
password can hold 20 characters. The following example uses a password that is much 
longer. When scanf is called, the extra characters corrupt the stack, causing the program 
to crash.

What would you like to do?
Enter a number:
1: run Notepad
2: go to system menu
3: quit
2
System Menu
Enter the Password before continuing!...
A_VERY_VERY_LONG_PASSWORD
Invalid Password!
 . . .               (program crashes after this)

False Positives

Not all the threats that Static Security analysis reports will be real problems — these are called false 
positives. 

In the following code, the Static Security analyzer is not smart enough to know that the false part of 
the fi rst if statement and the true part of the second if statement will never be executed together:

int y;
if ((x & 1) == 0) {
  y = 0;
}
if (x == ((x >> 1) << 1)) {
  z = y; // is y always zero here, or can it be uninitialized?
}

The fi rst if statement checks if bit 0 in variable x is set to 1. If it is not, y gets initialized to zero. 

The second if statement compares the variable x to the value of y, which has been shifted right by 
one and then shifted left by one. This shifting has the effect of clearing the lowest bit.

So, if x holds the value 0, the fi rst test will evaluate to true and y will get initialized to 0; the second 
test will also evaluate to true, and the line z = y will be executed. 
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If x holds the value 1, both the fi rst and second tests will evaluate to false, so the code y=0 and z=0 
will not be executed. 

Despite this, the analysis will report a “possible uninitialized variable,” which is a false positive. 

Static Security Analysis Workfl ow

The central activity when working with the results of Static Security analysis is to investigate the 
potential security problems that were reported and decide whether they need to be fi xed. You record 
the results of your investigation as state information attached to the diagnostic. Typically, you 
would mark genuine errors as “Confi rmed” and false positives as “Not a problem.” You should log 
confi rmed issues in whatever bug-tracking system you normally use for later correction.

Static Security analysis works on the whole program. This means that every fi le in the program is 
analyzed together. Because of the time it takes to run a whole program analysis, running the analy-
sis each time you fi x a problem is not a practical way forward, unless the program is small. Rather, 
it is better to run the Static Security analysis periodically. 

Conducting a Static Security Analysis

The Intel compiler runs in a special mode to perform a Static Security analysis. In this mode, the 
compiler skips generating any instructions (see Figure 5-1). The compiler fi rst processes the source 
fi les, generating a collection of pseudo-object fi les that contain analysis information. At link time 
these pseudo-object modules are combined and analysis is done. During this fi nal analysis step, 
errors that span function and fi le boundaries are detected. The results are stored in XML format, 
which can be viewed and manipulated by Inspector XE. When the results are viewed in Inspector 
XE, its engine (represented by inspxe in the diagram) updates the states of the new results.
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FIGURE 5-1: How Static Security analysis works
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If you want the sources of a library to be part of the analysis, you must fi rst perform the analysis on 
the library sources and build the library from the resulting pseudo-object modules. For example, in 
Figure 5-1, the contents of lib-a will participate fully in the error analysis, but lib-b, which might be 
a third-party library or some other library whose sources have not been analyzed, will not participate. 

You can use either the GUI or the command-line version of Inspector XE to view or manage the results.

As you investigate the results using Inspector XE, record your conclusions by assigning state infor-
mation to diagnostics. You can mark a problem as Confi rmed, meaning it is a real issue that needs 
to be fi xed, or as Not a problem, meaning the issue described in the diagnostic does not require 
fi xing. This state information is carried forward from the previous result automatically when a new 
result is fi rst loaded into Inspector XE. 

When new results are loaded, Inspector XE constructs a problem-by-problem correspondence 
between the old and the new results. The correspondence engine is quite intelligent and is able to 
match problems between the old and new results, even if the sources have been moved around. 
Thanks to the correspondence engine, you should not have to reinvestigate old problems as your 
code grows and changes.

The steps for conducting a Static Security analysis are as follows:

 � If you are building inside Visual Studio

 1. Select the projects or solution that you want to analyze.

 2. Invoke the menu item in the Build menu named Build Solution for Intel Static Security 
Analysis.

The fi rst time you do this, a new build confi guration, Intel_SSA, is created. The analysis 
session then commences by building this confi guration.

 � If you are not using Visual Studio

 1. Create a new build confi guration specifi cally for the analysis. This should be based on a 
debug build.

 2. Adjust the settings for the new confi guration, adding the compiler and linker options 
that enable Static Security analysis (see Table 5-1).

TABLE 5-1: Options to Enable Static Security Analysis

OPTION DESCRIPTION

/Qdiag-enable:sc{[1|2|3]}

(linux -diag-enable:sc …)

Enables Static Security analysis. The number specifi es the 

severity level of diagnostics reported, as follows:

1 — Only cri tical errors

2 — All errors

3 — All errors and warnings

/Qdiag-enable:sc-include

(linux 

-diag-enable:sc-include)

Analyzes include fi les as well as source fi les. By default, 

apparent errors in include fi les are not reported.
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 3. Build the Intel_SSA confi guration of the project. This causes the analysis to run. 

You can view the results with the GUI version of Inspector XE with the command inspxe-
gui <directory where result is>. If the analysis is run from Visual Studio, Inspector 
XE launches automatically. Figure 5-2 shows the summary screen. 

Each problem is given a weight, a state, and a category, with the problems initially sorted in 
weight order. The errors with the highest weight are considered to be the most dangerous. 

FIGURE 5-2: The summary screen

Investigating the Results of the Analysis

Once you have the list of problems, the next step is to investigate each issue and assign a state:

 1. Choose a problem and investigate it. Examine the source locations associated with the prob-
lem. When you have understood the implications of the problem, change its state accord-
ingly. You should handle confi rmed problems using your normal bug-tracking process. You 
can manipulate the states via a context menu (see Figure 5-3). To display the menu, highlight 
a message and click the right mouse button. 

The next section describes the signifi cance of each state in more detail.

 2. Keep working on the problems (that is, repeat step 1).

You can use fi lters to reduce the number of errors that are displayed or to focus in on a 
particular kind of problem. The problems can be fi ltered in or out, based on the Severity, 
Problem, Source, State, Category, and so on (see Figure 5-4). One particularly useful choice 
is to fi lter to “Not investigated” problems, which causes problems to disappear after you 
have investigated them.

The left-hand portion of Figure 5-4 shows the view without any fi lters applied, and the 
right-hand portion shows the content being fi ltered by source fi le. The set of problems 
shown in the summary window are reduced accordingly. 
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FIGURE 5-3: Changing the state of a problem

FIGURE 5-4: The one-click fi lters

 3. If you don’t understand the meaning of a problem, use the context menu to read an explana-
tion (see Figures 5-5 and 5-6).

 4. At some point you will want to stop analyzing the results and start modifying the application 
sources to fi x the problems that were found (or to analyze a newer source version). Go back 
to step 3 and analyze the updated sources.

 5. Repeat all the steps you have just done, starting at step 3 from the previous section, 
“Conducting a Static Security Analysis,” until no problems remain to be investigated.
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FIGURE 5-5: Choosing Explain Problem from the context menu

FIGURE 5-6: An example explanation

You can try these steps for yourself in Activity 5-1.

Working with Problem States

Problems will be in one of six states (see Figure 5-7). 

A typical workfl ow would be as follows:

 � The tool sets initial state = New

 � You decide: does it need fi xing?
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 � No: set state = Not a problem

 � Yes: set state = Confi rmed

 � When you fi x a Confi rmed issue, set state = Fixed

 � If the tool sees a New issue again, state = Not fi xed

This means it’s still uninvestigated, just not new.

 � If the tool sees a Fixed issue again, state = Regression

This means your fi x didn’t work.

 � Each problem is either Investigated or Not investigated.

 � You will never come to a point where no problems exist. For example, there will 
always be false positives that you mark as Not a problem.

 � The goal is to have all problems Investigated.

 � When viewing the results in Inspector XE, it is good practice to fi lter the results so 
that only the Not investigated problems are displayed.

Not Fixed

Key

Not Investigated

Investigated

Regression

New

Not a

Problem
Confirmed

Fixed

State changed by user

State changed by tool

Not Investigated
Investigated

FIGURE 5-7: Tracking the investigation status

Table 5-2 describes each state. 

TABLE 5-2: Problem States

STATE DESCRIPTION CLASSIFICATION

New A new problem. This state is set by the analysis tool and not 

the user.

Not investigated

Not fi xed A problem from a previous analysis, either New or Not fi xed. 

This state is set by the analysis tool, not the user.

Not investigated

continues
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STATE DESCRIPTION CLASSIFICATION

Not a problem A problem is not really a problem (for example, it might be a 

false positive). This state is set by the user. 

Investigated

Fixed The problem has been fi xed. This state is set by the user. Investigated

Confi rmed A problem is confi rmed to be a problem. This state is set by 

the user. 

Investigated

Regression A problem previously marked as being Fixed still exists. This 

state is set by the analysis tool, not the user.

Not investigated

ACTIVITY 5-1: RUNNING A STATIC SECURITY ANALYSIS

In this activity you run a Static Security analysis session either from within Visual 
Studio or from the command line. The command-line version can be run on 
Windows or Linux. 

Choose which environment you want to use, and then jump to the appropriate 
section: 

 � For Visual Studio IDE, start at step 1.

 � For the command prompt, start at step 9.

Creating a Project (Visual Studio)

Begin by performing the following steps:

 1. Open Visual Studio.

 2. Create a new console application. 

 3. Ensure the project is empty and does not use precompiled headers (just a per-
sonal preference of the author).

 4. Add two new fi les, main.c and test.c, to the project.

 5. Copy the source code from Listings 5-2 and 5-3 (at the end of the chapter) into 
the two empty fi les.

Creating a Dedicated Build and Running the Analysis (Visual Studio)

When performing Static Security analysis, you should always create a specifi c build 
confi guration dedicated to the analysis activity. This will keep the pseudo-objects 
separate from your regular build objects.

 6. Highlight the project and select Build Í Build Solution for Intel Static Security 
Analysis.

TABLE 5-2 (continued)
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The resulting dialog asks permission to prepare the project so that the 
Intel compiler can build a confi guration. Note that this dialog will not 
appear if you are using Visual Studio 2010.

 7. Click the Prepare project(s) and Continue button.

The resulting dialog shows the settings that will be used for Static 
Security analysis and offers to create a build confi guration. Accept the 
default settings.

 8. Select the Create Confi guration and Build for SSA button.  

A confi guration fi le named Intel_SSA is created and built. When the 
analysis is complete, Inspector XE automatically opens the results of 
analysis.

Visual Studio users should now jump to step 14 to continue the activity.

Creating a Project (Command Prompt) 

Begin by performing the following steps:

 9. Copy the contents of Listing 5-2 and Listing 5-3 into the separate source fi les.

 10. Copy the Makefile from Listing 5-4. If you are using Linux, you will need to 
comment out the Windows-specifi c variables at the beginning of the Makefile 
and uncomment the Linux variables.

 11. Open a command prompt or shell:

 � On Windows, open an Intel compiler command prompt. The 
path to the command prompt will be similar to the following. 
(The exact names and menu items will vary, depending on which 
version of Parallel Studio and Visual Studio you have installed.) 

Start Í All Programs Í Intel Parallel Studio XE 
2011 Í Command Prompt Í Intel64 Visual Studio Mode

 � On Linux, make sure the compiler variables have been sourced:

$ source /opt/intel/bin/compilervars.sh intel64 

If you are running a 32-bit operating system, the parameter passed to the 
compilervars.sh fi le should be ia32.

Creating a Dedicated Build and Running the Analysis (Command 

Prompt)

When performing Static Security analysis, you should always create a specifi c build 
confi guration dedicated to the analysis activity. This will keep the pseudo-objects 
separate from your regular build objects.

continues
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 continued

 12. Build the application enabling Static Security analysis:

 � Linux

make clean
make CFLAGS=”-diag-enable sc3” LFLAGS=”-diag-enable sc3”

 � Windows

nmake clean
nmake CFLAGS= /Qdiag-enable:sc3 LFLAGS=/Qdiag-enable:sc3

The results will be placed in a folder called r000sc in the current working directory. 

 13. Start the GUI version of inspector to view the results:

inspxe-gui r000sc

Remember that each time you run an analysis session, the compiler generates a 
folder named r xxx sc for the results, incrementing the xxx part of the name on 
each analysis. If you have run the analysis more than once, the folder name you use 
will be different.

Fixing the Errors

 14. For each problem reported:

 a. Decide if the errors are genuine and not false positives.

 b. Mark any false positives as Not a problem.

 c. Mark those that are errors as Confi rmed.

 15. Set the fi lter to show only problems in the Confi rmed state.

 16. For each Confi rmed problem: 

 a. Implement a solution in the source.

 b. Mark each diagnostic as Fixed.

 17. Run the analysis again using step 6 (Visual Studio) or step 12 (command 
prompt).

 18. View the new results as before. This time the results folder will be r0001sc:

inspxe-gui r000sc

This time the problems you fi xed should not appear. If any of your 
fi xes failed to repair the problem, those diagnostics will appear in a 
Regression state.
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Activity 5-1 Summary

In this activity you ran a Static Security analysis twice — the fi rst time to fi nd 
any problems, and the second time to confi rm that the problems had been fi xed. 
Between the two runs you modifi ed the state of each problem as it was being inves-
tigated and fi xed.

You could have run the analysis after every fi x, but the better way is to fi rst investi-
gate a number of problems, fi x the problems, and then rerun the analysis. 

Although the programming errors in the sample code are rather trivial and obvi-
ous, in a real program these kinds of errors could be easily missed and become a 
security risk.

Some errors are genuine programming errors, whereas others, from a programming 
point of view, are correct. Both kinds of errors pose a security risk. 

Note for Visual Studio Users

You can also change the options for Static Security analysis by modifying the prop-
erties for the Intel_SSA confi guration. To do this, you can use the following prop-
erty pages:

C/C++ Í Diagnostics Í Level of Static Security Analysis

C/C++ Í Diagnostics Í Analyze Include Files

C/C++ Í Diagnostics Í Analysis results container (The default location is My 
Inspector XE Results-<product name>directory in the project root directory.)

THE BUILD SPECIFICATION

The recommended fi rst step in doing Static Security analysis is to create a new build confi guration 
that is dedicated just to the analysis. If you do not build under Visual Studio and your build environ-
ment makes it diffi cult to create a new build confi guration, you can create a build specifi cation fi le. 

A build specifi cation fi le holds all the commands necessary for performing a Static Security analysis 
build, and can be launched from a command-line utility.

You can create a build specifi cation fi le in two ways: by injection and by wrapping. Both methods 
are supported by utilities that come with the Intel compiler. 

When using injection, the utility inspxe-inject launches your normal build and captures a history 
of the compilation, librarian, or linker steps. This information is stored in a build specifi cation fi le. 

Wrapping involves manually inserting a call to the utility inpsxe-wrap around every compilation, 
librarian, or linker step in your build scripts. When you run the instrumented build script, the wrap 
utility executes the wrapped commands and then adds them to the build specifi cation fi le. 
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Creating a Build Specifi cation File by Injection

The inspxe-inject utility automatically 
recognizes the Intel C++ compiler, Intel 
Fortran compiler, Microsoft C compiler, and 
the GNU GCC compiler. Figure 5-8 shows 
how the injection works. 

The inspxe-inject utility launches a build. 
Each invocation of the compiler, linker, or 
librarian is recorded in a build specifi cation fi le. 

After creating the build specifi cation fi le, you 
can use it to run an analysis. Start the analy-
sis by calling the utility inpxe-runsc. This 
replays every action in the build specifi cation 
fi le, but uses the Intel compiler and adds the 
options to enable Static Security analysis. 
This has the benefi t that your main build 
could use another compiler, for example GCC, but the Intel compiler would still be used to per-
form the Static Security analysis. The results are placed in the folder specifi ed on the command line 
(test1 in this example).

You can either view the results from the GUI version of Inspector XE or query them from the 
command-line version of Inspector XE. When the results are fi rst loaded into Inspector XE, each 
problem found is given a state.

Following is an example call to the inspxe-inject utility All the options after the -- are the build 
commands. In this example, make is called to perform a build:

inspxe-inject -save-spec myfile.spec -- make 

After creating the specifi cation fi le, use inpxe-runsc to launch an analysis:

inspxe-runsc -spec-file myfile.spec  -r test1

Utility Options

Table 5-3 shows the command-line options available with the inspxe-inject utility. 

TABLE 5-3: Injection and Wrapping Tool Options

OPTION DESCRIPTION

-?, -h, -help Displays brief tool description and usage

-V, -version Displays version information

-option-file=<string> Specifi es the fi le that contains a list of tool options

-tmp-dir=<string> Uses the specifi ed directory to store temporary fi les

inspxe-

inject

Capture build

commands to

specification file

Launch Build

build build build

Specification

Results

Update Stateinspxe-

gui/cli

View/manage

with Inspector

Run analysis

inspxe-

runsc

build

FIGURE 5-8: Command injection
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OPTION DESCRIPTION

-log-dir=<string> Uses the specifi ed directory to store log fi les

-v, -verbose Prints additional information

-q, -quiet Suppresses nonessential messages

-save-spec=<string> Specifi es the fi le for storing the build specifi cation

The Directory Structure of the Results

Figure 5-9 shows how the results are stored. Each time you run an analysis session, the compiler 
generates a folder named r xxx sc for the results, incrementing the xxx part of the name on each 
analysis. 

User defined test3

My Inspector XE Results - main.exe

r000sc
Last part of

name based on

target being

built

r001sc

r002sc

Defined by

inspxe-runsc

Defined by

compiler

FIGURE 5-9: The directory structure of the results

The folder structure is the same whether you are running on Windows or Linux so that results gen-
erated on a Linux machine can be read on a Windows platform and vice versa.

As you load a new set of results into Inspector XE, Inspector looks at the previous set of results and 
assigns a state to all the problems found in the current set. The highest-level directory (test3) is user 
defi ned; the My Inspector XE Results folder is defi ned by the inspxe-runsc utility, which adds 
the name of the executable (main.exe) to the folder name.

ACTIVITY 5-2: USING BUILD CONFIGURATIONS

In this activity you use the inspxe-inject utility to create a build confi guration 
fi le. The activity is intended to be run from the command prompt or shell.

Building the Program

To start:

 1. Copy Listings 5-2 to 5-4 (from the end of the chapter) into a new directory.   

 2. Call make to ensure the program builds

 � Linux

make clean
make

continues
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 continued

 � Windows

nmake clean
nmake 

 3. Run the program. Even though the code built okay, it’s quite likely that the 
program will abort at run time due to the programming errors. 

On Linux, your run time errors message may look like this:

[sblairch@localhost ssa]$ ./main
Start of application
*** glibc detected *** ./main: double free or corruption (top):
    0x0000000007078010 ***

On Windows, the application will just run for an unduly long time.

Creating a Build Specifi cation Using Injection

Do the following:

 4. Clean the build and call the make fi le using the inspxe-inject utility:

 � Linux

make clean
inspxe-inject -save-spec myspec01.spec -v -- make

 � Windows

nmake clean
inspxe-inject -save-spec myspec01.spec -v -- nmake

You add the -v (verbose) option so that you can see which actions are 
being carried out.

 5. Open the specifi cation fi le myspec01.spec with a text editor and see if you 
can understand the contents. 

 6. Use the specifi cation fi le to run the Static Security analysis:

inspxe-runsc -spec-file myspec01.spec -r test1

The utility will report where the results have been stored. You should 
copy this for use in the next step.

 7. Open the results in the GUI version of Inspector XE:

inspxe-gui “<path to the results folder from step 7>”

 8. Explore the results, and then close Inspector XE.
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Other Activities

If you want: 

 9. Correct all the errors reported.

 10. Rerun the analysis.

Activity 5-2 Summary

You created a build specifi cation fi le using injection. The injection method is fairly 
automatic, requiring few or no changes to the build environment. However, you 
do need to regenerate the build specifi cation fi le each time the project changes (for 
example, if a new source fi le is added).

Occasionally, the injection method may capture commands that are not required 
to perform the analysis. When fi rst running a Static Security analysis session, it 
is prudent to examine the contents of the specifi cation fi le to make sure it has the 
expected contents. You can delete unwanted commands in the fi le using a text 
editor.

USING STATIC SECURITY ANALYSIS IN A QA ENVIRONMENT

Some developers and managers use Static Security analysis for regression testing and metrics track-
ing, often in an automatic or a scripted environment. 

Regression Testing

The main goal of regression testing is to track the status of a project to ensure that no new problems 
are introduced when adding code changes to an application. The steps might be as follows:

 1. Analyze the application (the base line).

 2. Make some source changes/updates.

 3. Reanalyze the application. This could be part of a nightly build.

 4. Look for new problems that appear. 

Steps 1 and 2 are carried out by the developer as part of his or her usual schedule; steps 3 and 4 are 
for regression testing using the command-line version of Inspector XE, and could be carried out 
by the developer or a quality assurance engineer. The output from step 3 (reanalyze, etc.) will look 
similar to this when new errors have been found:

inspxe-cl –user-data-dir “QA1/My Inspector XE Results - main” -report problems \ 
–filter-include state=New
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The sample output: 

Problem P1: New Error: Double free
main.cpp(14): error #12294: memory pointed by “pGlobal” was already deallocated at
  (file:main.cpp line:13)
X1: Deallocation site: main.cpp(13): Function main
X2: Deallocation site: main.cpp(14): Function main: Variable Name pGlobal

The command assumes that a set of results is already available from a previous analysis. The loca-
tion of the results will change with each analysis, and take the form rxxxsc, where xxx is a number 
that is incremented each time the analysis is run. The –user-data-dir switch selects as input the 
highest-numbered (latest) result. 

You can detect new problems by fi ltering the report so that only problems in a “new” state are 
reported. The results can then easily be mailed to the author of the most recent change.

Metrics Tracking

Project managers can use metrics to track a team’s progress in investigating the results of analysis. 
For example, you can track the percentage of problems that have been investigated or fi xed over a 
period of time. 

 1. Developer analyzes code using the GUI, changing the states of the problems detected as he 
investigates them (similar to Activity 5-1).

 2. Developer makes source changes.

 3. Developer repeats steps 1 and 2.

 4. On a less frequent basis than the developer, the project manager runs the command-line ver-
sion of Inspector XE to capture the status.

 5. Over a period of time, the manager repeats step 4 and records the status. He might use the 
ratio of problems investigated versus problems not investigated as a “% investigated” metric.

You can fi nd the status of each problem with the following command:

inspxe-cl –r “DEV1/My Inspector XE Results - main/r001sc” -report status 

The results might look like this:

196 problem(s) found
2 Investigated
194 Not investigated
Breakdown by state:
1 Confirmed
1 Fixed
194 New

You can parse the results using either a Perl script or a shell script.

Activity 5-3 gives an example of how to use Static Security analysis in regression testing and metric 
tracking.
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ACTIVITY 5-3: REGRESSION TESTING

In this activity you run a Static Security analysis session from the command line 
and track the results. This activity will be of special interest to those who want to 
incorporate Static Security analysis in their QA or regressions testing, where 
semiautomatic, batch-driven testing is the norm.

Building the Program and Running an Analysis

If you haven’t already done so:

 1. Do Activity 5-2. 

 2. Run the command-line version of Inspector, asking for a report on errors:

 � Linux

inspxe-cl -r “test1/My Inspector/ XE/ Results/ - main/r000sc” 
–report problems –filter-include state=New

 � Windows

inspxe-cl -r “test1\My Inspector XE Results - main\r000sc” 
-report problems –filter-include state=New

Changing the State Implicitly

 3. Rerun the specifi cation fi le:

inspxe-runsc -spec-file myspec03.spec -r test3

This should result in all the new fi les becoming “Not fi xed.”

 4. Look at the results again:

 � Linux

inspxe-cl -r “test1/My Inspector/ XE/ Results/ - main/r001sc” 
-report problems –filter-include state=New

 � Windows

inspxe-cl -r “test1\My Inspector XE Results - main\r001sc” 
-report problems –filter-include state=New

No new problems should be reported.

Adding a New Error

 5. Edit the test.c fi le to introduce a new error:

void test(int num)
{
  int i;
  pBuff[0] = num/i;
} continues
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 continued

 6. Clean the application and then run the specifi cation fi le (Windows users use 
nmake):

make clean
inspxe-runsc -spec-file myspec03.spec -r test3

 7. Run the command-line version of Inspector, asking for a report on the prob-
lems detected:

inspxe-cl -r “test1/My Inspector XE Results - main/r002sc”  \
-report problems –filter-include state=New

You will now see that there is a mixture of “new” problems and “Not 
fi xed” problems.

Activity 5-3 Summary

The analysis carried out was run from the command line, with the results being 
fi ltered so that just new problems were reported. Each time a set of results is 
loaded into Inspector XE, the problems are assigned a state. In the fi rst analy-
sis, all the problems were reported as new. When the analysis was rerun and 
reloaded into Inspector XE, the previously found problems had their state 
changed to “Not fi xed.” In regression testing, it is the “new” problems that are 
of interest.

SOURCE CODE

Two fi les, main.c and test.c, are used in the hands-on activities. Each of the source fi les has 
some silly and obvious mistakes. The Makefile in Listing 5-4 is used for Activity 5-2 and 
Activity 5-3. 

LISTING 5-2: main.c

#include <stdio.h>
#include <stdlib.h>
extern test();
char *pBuff;
int main()
{
    int not_used;
    printf(“Start of application\n”);
    pBuff = malloc(100);    
    test();
    free (pBuff);
    free (pBuff);
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    return (int)pBuff;
}

code snippet Chapter5\main.c

LISTING 5-3: test.c

#include <stdlib.h>
void test(int num);
extern int *pBuff;

void test(int num)
{
    pBuff[0] = num;
}

code snippet Chapter5\test.c

LISTING 5-4: Makefi le

## TODO: EDIT next set of lines according to OS

## WINDOWS OS specific vars.
CC=icl 
DEL=del
OBJ=obj

# LINUX SPECIFIC, uncomment these for LINUX
# CC=icc 
# DEL=rm -Rf
# OBJ=o

## -------------- DO NOT EDIT BELOW THIS LINE -------------
CFLAGS =
LFLAGS = 

OBJS = main.$(OBJ) test.$(OBJ)
TARGET = main
.c.$(OBJ):
      $(CC) -c $(CFLAGS) $<

$(TARGET).exe:$(OBJS)  Makefile
      $(LD) $(LFLAGS) $(OBJS) $(LIBS) -o $@

clean:
      $(DEL) $(OBJS)
      $(DEL) $(TARGET).exe

code snippet Chapter5\Makefi le
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SUMMARY

Writing code that is secure and not vulnerable to attack is important. By performing a Static Security 
analysis on your source code, you can identify and fi x many of the potential problems. Many of the 
vulnerabilities are caused by common programming errors or misuse of standard libraries. Using the 
Intel compiler and Inspector XE together is an effective method of identifying these vulnerabilities.

Chapter 6, “Where to Parallelize,” introduces the fi rst of a four-step process for making code 
parallel. The chapter shows how to spot regions of your code that are suitable for making parallel.
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6
Where to Parallelize

WHAT’S IN THIS CHAPTER?

 � Hotspot analysis using the Intel compiler

 � Hotspot analysis using the auto-parallelizer

 � Hotspot analysis using Amplifi er XE

The purpose of parallelization is to improve the performance of an application. Performance 
can be measured either by how much time a program takes to run or by how much work a 
program can do per second. Within a program, it is the busy sections, or hotspots, that should 
be made parallel. The more the hotspots contribute to the overall run time of the program, the 
better the performance improvement you will obtain by parallelizing them.

Hotspot analysis is an important fi rst step in the parallelism process. This chapter shows three 
different ways to identify hotspots in your code using Parallel Studio XE. Without carrying 
out Hotspot analysis, there is a danger that you will end up making little or no difference to 
your program’s performance.  The section “Hotspot Analysis Using the Auto-Parallelizer” 
includes some tips on how to help the auto-parallelizer do its job better.

A NOTE FOR LINUX USERS

Most of the text of this chapter uses the Windows version of the compiler options. 
You can use the option-mapping tool to fi nd the equivalent Linux option. The fol-
lowing example fi nds the Linux equivalent of /Oy-:

map_opts -tl -lc -opts /Oy-
Intel(R) Compiler option mapping tool
 
mapping Windows options to Linux for C++
 
‘-Oy-’ Windows option maps to continues
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 continued

  --> ‘-fomit-frame-pointer-’ option on Linux
  --> ‘-fno-omit-frame-pointer’ option on Linux
  --> ‘-fp’ option on Linux

The -t option sets the target OS and can be either l (or linux) or w (or windows).

The -l option sets the language and can be either c or f (or fortran). All the text 
after the -opts option is treated as options that should be converted. The option-
mapping tool does not compile any code; it only prints the mapped options.

To use the option-mapping tool, make sure that the Intel compiler is in your path. 

DIFFERENT WAYS OF PROFILING

You are already familiar with the four steps to parallelization (described in Chapter 3, “Parallel 
Studio XE for the Impatient”): analyze, implement, debug, and tune. It’s now time to carry out the 
fi rst of those steps, analyzing the hotspots in your code. 

This book describes four ways of conducting a Hotspot analysis, the fi rst three of which are covered 
in this chapter:

 � Using the Intel compiler’s loop profi ler and associated profi le viewer

 � Letting the Intel compiler’s auto-parallelizer help you fi nd the hotspots

 � Using Amplifi er XE

 � Performing a survey using Advisor (covered in Chapter 10, “Parallel Advisor Driven 
Design”)

Each approach has its merits, and you will probably grow to like a particular one. What you 
shouldn’t do is guess where the hotspots are! If you do, you could end up spending wasted effort 
making code parallel with little or no return on your invested time. 

LOOPS ARE NOT THE ONLY PLACE TO PARALLELIZE

All the hotspot examples in this chapter use loop parallelism. Most of the time, 
you will fi nd that you implement your parallelism effort at the loop level. However, 
other programming constructs also lend themselves to being made parallel, such as 
sequential code sections, recursive code, linked lists, and pipelines. These kinds of 
examples are explored in Chapter 7, “Implementing Parallelism.”

In this chapter the focus is on loop parallelism, but the Hotspot analysis techniques 
can be used for other programming patterns, as well.
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THE EXAMPLE APPLICATION

The code in Listing 6-1 (at the end of this chapter) produces a black-and-white picture of a 
Mandelbrot fractal. The picture is stored as a PPM fi le and can be viewed with any PPM viewer. If 
you don’t have a viewer, try IrfanView (www.irfanview.com). 

Listing 6-1 is split into the following fi les:

 � main.cpp — The entry point to the program

 � mandelbrot.cpp — Calculates the fractal

 � mandelbrot.h — Contains a number of defi nes and prototypes

 � ppm.cpp — Prints the fractal to a PPM fi le

 � wtime.c — A utility for measuring the 
application run time

When you run the example application, it displays 
the following simple text on the screen:

calculating...
printing... 
Time to calc :...3.707
Time to print :...7.548
Time (Total) :...11.25

Figure 6-1 shows the default.ppm fi le gener-
ated by running the application and viewed using 
IrfanView.

Table 6-1 shows the results of running the pro-
gram built with the Intel compiler, using the 
options /O2 (optimize for speed) and 
/Qipo (enable interprocedural optimization). The 
results are the best of fi ve runs, on an Intel Xeon 
Workstation with an Intel Xeon CPU, X5680 @ 
3.33 GHz (two processors, supporting a total of 
24 hardware threads).

TABLE 6-1: Time Taken to Run the Example Application

FUNCTION TIME

Calculating 3.433

Printing 2.206

Total 5.638

FIGURE 6-1: The output of the Mandelbrot 

application
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ACTIVITY 6-1: BUILDING THE EXAMPLE APPLICATION

In this activity you build and run the Mandelbrot program.

 1. Copy the source code in Listing 6-1 and place each script in a separate fi le.

 2. Open an Intel Parallel Studio XE command prompt.

 3. Build the program with the following command:

icl  /O2 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -o 6-1.exe

 4. Run the program you have just created and record the time taken.

6-1.exe

 5. Examine the generated default.ppm fi le with a PPM viewer.

Instructions for Linux Users

All the activities in this chapter can be carried out on a Linux platform, but you’ll 
need to use the Linux compiler icc instead of icl. You will also need to fi nd the 
equivalent Linux compiler options by following the instructions in the section “A 
Note for Linux Users.”

SOURCING THE COMPILER AND AMPLIFIER XE

To make the Parallel Studio XE tools available from a shell, source the following 
scripts (or add the commands to your ./bash_profile):

source /opt/intel/composerxe/bin/compilervars.sh intel64
source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
source /opt/intel/inspector_xe/inspxe-vars.sh 

This assumes you’ve installed Parallel Studio XE in the default location.

VIEWING THE PPM FILE

Your Linux systems should have a default PPM viewer installed, such as gthumb, 
eog, or gwenview.

HOTSPOT ANALYSIS USING THE INTEL COMPILER

A well-kept secret is that the Intel compiler has its own profi ler and viewer. These are different prod-
ucts from Amplifi er XE and rely on the compiler instrumenting your code.
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With the profi ler and viewer you can:

 � Profi le functions

 � Profi le loops

 � View the output in a standalone viewer

 � Read the results from a text fi le

Profi ling Steps

Figure 6-2 shows the steps for profi ling an application: 

 1. Compile the source code using the /Qprofile-functions and /Qprofile-loops options.  
The compiler instruments each loop and each function with extra code that will track each 
time they are used.

 2. Run the program. This produces a text fi le for each profi le (having the .dump extension) and 
an XML fi le. 

 3. View the results with the command loopprofileviewer, passing it the name of the XML 
fi le that has just been generated. 

1 Compile to add instrumentation

Run the

program

prog.exe

exe

2

3
View the

results

Loopprofileviewer <filename>

icl /Qprofile-functions
/Qprofile-loops:all prog.c

Function

profile

Loop

profile

FIGURE 6-2: Using the Intel compiler to fi nd the hotspots

If you do not want to use the profi le viewer or the XML, you can read the results from the .dump 
fi le. You can disable the generating of an XML fi le by setting the INTEL_LOOP_PROF_XML_DUMP 
environment variable to zero. Table 6-2 lists the options for controlling the profi ling.
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TABLE 6-2: Profi ling Options and Their Arguments

OPTION ARGUMENTS

/Qprofile-functions None

/Qprofile-loops:<arg> Inner, outer, all

/Qprofile-loops-report:<arg> 1 or 2 (times, or times and counts)

INLINING: WHERE ARE MY SYMBOLS?

When doing a Hotspot analysis with interprocedural optimization (IPO) or inlin-
ing enabled, some functions end up being inlined and are not visible in the Hotspot 
analysis. Here are three different strategies you can use to get better visibility:

 � Don’t use IPO. You can disable it with the compiler option /Qipo-.

 � Disable inlining using the /Ob0 or /Ob1 option.

 � Use the /Qopt-report-phase ipo_inl option to get a list of inlined func-
tions so that you can manually reconstruct the call tree. 

Note that the fi rst two options improve visibility but may have a detrimental effect 
on performance.

An Example Session

Taking the Mandelbrot program, which by now you should be familiar with, here is a description of 
the profi ling steps and the output generated. You can try this for yourself in Activity 6-2.

 1. The program is compiled with optimization level /O2:

icl /Zi /O2 /Qipo wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o m1.exe  \
   /Qprofile-functions  /Qprofile-loops:all /Qprofile-loops-report:2

The /Qprofile-functions option tells the compiler to profi le the functions. The 
/Qprofile-loops:all option tells the compiler to profi le both inner and outer loops. 
The /Qprofile-loops-report option selects the level of detail the report should contain; 
specifying 2 tells the compiler to report loop times and iteration counts.

 2. Running the program gives the usual output:

C:\>m1.exe
calculating...
printing...
Time to calc :...3.707
Time to print :...7.548
Time (Total) :...11.25

When the program has fi nished running, the directory will contain the following fi les:

C:\dv\CH6>dir /b
default.ppm
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loop_prof_1317923290.xml
loop_prof_funcs_1317923290.dump
loop_prof_loops_1317923290.dump
m1.exe
m1.ilk
m1.pdb
main.cpp
main.obj
mandelbrot.cpp
mandelbrot.h
mandelbrot.obj
ppm.cpp
ppm.obj
vc90.pdb

The names of the XML and dump fi les are augmented with a time stamp.

 3. To call the viewer, the name of the XML fi le is passed in:

loopprofileviewer  loop_prof_1317923290.xml

(Linux users: loopprofileviewer.sh or loopprofileviewer.csh)

Figure 6-3 shows the results displayed in the viewer. The top set of results is the function 
profi le, and the bottom set is the loop profi le. You can sort the results by clicking at the 
tops of the columns. There is also a facility for fi ltering what is displayed by threshold. For 
example, you can choose to display only the top 10 percent of hotspots.

FIGURE 6-3: The standalone loop-profi ling viewer
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Table 6-3 shows the results of profi ling the Mandelbrot program M1.exe with inlining 
enabled. The biggest hotspots are the three loops at the top of the table. Time refers to the 
time the loop takes including any function calls. Self time refers to the time the loop takes 
without including any called functions.

The fi rst loop at mandelbrot.cpp:19 is reported as being in the main function, but this 
is not true. The cause of the apparent error is that the function in which the loop resides 
has been inlined. Using the options /Qopt-report-phase ipo_inl and /Qopt-report-
routine:main shows that the nested function calls to CalcMandelbrot(), SetZ(), and 
Mandelbrot() have all been inlined:

-> INLINE: ?Mandelbrot@@YAXXZ(2905) (isz = 71) (sz = 74 (31+43))
    -> INLINE: ?SetZ@@YAXHHMM@Z(2906) (isz = 51) (sz = 62 (19+43))
      -> INLINE: ?CalcMandelbrot@@YAMMM@Z(2907) (isz = 26) (sz = 36 (17+19))

 4. Rebuilding the application with inlining disabled (using the /Ob0 option) improves visibility 
but has a huge impact on the WriteMandelBrot() function. Instead of taking fewer than 4 
seconds to complete, it now takes more than 40 seconds. Table 6-4 shows the loop analysis 
with inlining disabled.

 5. The next thing to decide is which loop should be made parallel. Two criteria are important:

 � There should be a decent number of iterations of the loop.

 � The individual loops should do a reasonable amount of work.

As shown in Table 6-4, two loops have a large number of iterations, ppmt.cpp:12 and 
mandelbrot.cpp:32. Both have a self time of around 1 percent, which translates to about 
a third of a second — this is plenty of work to consider making parallel. You can view the 
exact value in the loopprofileviewer.

There are other considerations, such as loop dependencies, to take into account when it comes 
to implementing the parallelism. At this stage, however, the only task is to identify the hotspots.

Overhead Introduced by Profi ling

Using the profi ling option of the compiler adds an overhead to the run time. Table 6-5 records the 
time taken for each type of profi ling. On the Mandelbrot program, with all the profi ling options 
enabled, the program runs twice as slow as when no profi ling is carried out.

TABLE 6-5: Time Taken to Run the Example Application

TYPE OF PROFILING TIME SPEEDUP

No profi ling 5.638 1

Functions 7.953 0.71

Functions and outer loops (time) 10.68 0.53

Functions and outer loops (time and count) 10.86 0.52

Functions and all loops (time) 10.98 0.51

Functions and all loops (time and count) 11.25 0.50
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PROS AND CONS OF PROFILING WITH THE INTEL COMPILER

 � Pros

 � Easy to use

 � Everything you need is available with the compiler, including a 
standalone viewer

 � Profi les loops as well as functions

 � Cons

 � Very basic functionality

 � Requires code to be instrumented, introducing a compile-time 
and a runtime overhead, which can be signifi cant

 � No call tree, so you have to construct the call stack manually

 � No comparison facility

ACTIVITY 6-2: USING THE COMPILER’S LOOP PROFILER

In this activity you use the Intel compiler to instrument the Mandelbrot program 
and then fi nd the busiest hotspots using the loopprofileviewer.

 1. Make sure you have carried out Activity 6-1.

 2. Rebuild the application, adding the /Zi option to generate debug information, 
and the /Qprofile options so that the compiler instruments the code:

icl /Zi /O2 /Qipo wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o 6-2.exe \
    /Qprofile-functions  /Qprofile-loops:all /Qprofile-loops-report:2

 3. Run the program you have just created and record the time taken:

 6-2.exe

 4. Start the loopprofileviewer from the command line, and browse to the 
XML fi le that has just been generated.

Dealing with the Lack of Symbol Visibility

One of the diffi culties of profi ling an optimized application is that the compiler will 
inline some function calls.

 5. Repeat steps 2 to 4, adding the option /Ob0 to the end of the build options. 

 6. Repeat steps 2 to 4 again, but this time use the following options:

icl /Zi /O2 /Qipo wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o 6-2.exe \
   /Qprofile-functions  /Qprofile-loops:all \
/Qprofile-loops-report:2  /Qopt-report-phase ipo_inl \
/Qopt-report-routine:main
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 7. Look at the report the compiler prints to the screen. This should help you to 
identify which functions have been inlined.

Instructions for Linux Users

Refer to the “Instructions for Linux Users” section in Activity 6-1 before carrying 
out this activity.

HOTSPOT ANALYSIS USING THE AUTO-PARALLELIZER

The Intel compiler has an auto-parallelizer that can automatically add parallelism to loops. By 
default, the auto-parallelizer is disabled, but you can enable it with the /Qparallel option. Some 
developers use this feature to give hints on where best to parallelize their code. 

The auto-parallelizer does four things:

 � Finds loops that could be candidates for making parallel

 � Decides if there is a suffi cient amount of work done to justify parallelization

 � Checks that no loop dependencies exist

 � Appropriately partitions any data between the parallelized code

Profi ling Steps

Figure 6-4 shows the steps for profi ling with the help of the auto-parallelizer: 

 1. Compile the sources with the /Qparallel option. To get superior results, it’s always best to 
enable interprocedural optimization (/Qipo). The option /Qpar-report2 instructs the com-
piler to generate a parallelization report, listing which loops were made parallel. 

 2. Look at the results from the compiler and make a note of any lines that were successfully 
parallelized.

 3. Add your own parallel constructs to the identifi ed loops. 

 4. Rebuild the application without the /Qparallel option.

You might ask, “Why not just accept the results of the parallelizer?” The following are two of the 
common reasons:

 � The auto-parallelizer (at the time of writing) uses OpenMP. Many developers prefer to use 
a more composable parallelism, such as that provided with Cilk Plus or Threading Building 
Blocks. In this context, “composability” refers to how well a parallel model can be mixed 
with other models.

 � Some developers don’t like relying on automatic features. They prefer to have more control 
over where and when threading is implemented.
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Compile, enabling auto-

parallelism and reports

Results

(20) remark: loop was auto-parallelized

(67) remark: loop was not parallelized:

existence of parallel dependence*

Look at

the results

Add your own parallel code

where auto-vectorizer was

successful

Rebuild without auto-parallelism

* You can also look at the
loops that could not be
parallelized. It might be worth
fixing the problem reported.
Adding the option/Qguide may
give you extra information.

icl /02 /Qipo /Qparallel
/Qpar-report2 prog.c

icl /02 /Qipo /prog.c

20: cilk_for{int=0;i<100;i++}
21:{
22:    / etc
.
45:}

1

3

2

4

FIGURE 6-4: Using the auto-parallelizer to fi nd hotspots

An Example Session

Here’s an example session of fi nding hotspots with the auto-parallelizer. You can try this out for 
yourself in Activity 6-3. 

 1. The serial version of the code is run so that you have some results to compare against:

C:\ >serial.exe
calculating...
printing...
Time to calc :...3.667
Time to print :...2.311
Time (Total) :...5.978

 2. The Mandelbrot application is then built with auto-parallelism enabled (/Qparallel). The 
optimization level must be at least /O1 to engage the auto-parallelizer:

icl /Zi /O2  wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o m1.exe  \
/Qparallel /Qipo /Qpar-report2 

The compiler will report on every loop it fi nds, including the header fi les, so the screen will 
get fi lled with messages. Here are the ones related to the source code:

main.cpp(14):(col.3) remark: LOOP WAS AUTO-PARALLELIZED
main.cpp(14):(col.3) remark: loop was not parallelized: insufficient inner loop
main.cpp(14):(col.3) remark: loop was not parallelized: existence of parallel dependence
.
.
ppm.cpp(11):(col.3) remark: loop was not parallelized: existence of parallel dependence
ppm.cpp(12):(col.5) remark: loop was not parallelized: existence of parallel dependence
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As an experiment, running the parallelized code shows that the time taken to do the cal-
culations is much better than the 3.667 seconds that was previously achieved without 
parallelism:

C:\>parallel.exe
calculating...
printing...
Time to calc :...0.596
Time to print :...2.272
Time (Total) :...2.868

 3. The parallelized loop reported at line 14 of main.cpp is examined. The fi rst thing you will 
discover is that there is no loop, but rather a call to Mandelbrot()! 

main.cpp 12: std::cout << “calculating...” << std::endl;
main.cpp 13:   double start = wtime();
main.cpp 14:   Mandelbrot();
main.cpp 15:   double mid = wtime();

The loop in question is in the Mandelbrot() function in Mandelbrot.cpp, but it has been 
inlined by the use of the option /Qipo:

mandelbrot.cpp 27:  void Mandelbrot ()
mandelbrot.cpp 28:  {
mandelbrot.cpp 29:    float xinc = (float)deltaX/(maxI-1);
mandelbrot.cpp 30:    float yinc = (float)deltaY/(maxJ-1);
mandelbrot.cpp 31:    for (int i=0; i<maxI; i++) {
mandelbrot.cpp 32:      for (int j=0; j<maxJ; j++) {
mandelbrot.cpp 33:      SetZ(i, j, xinc, yinc);
mandelbrot.cpp 34:      }
mandelbrot.cpp 35:    }
mandelbrot.cpp 36:  }

To make the code parallel using the Cilk Plus method, replace the outer for(..) with  
cilk_for()and add the Cilk include fi le to the top of the Mandelbrot.cpp fi le:

mandelbrot.cpp  0:  #include “mandelbrot.h”
mandelbrot.cpp  1:  #include <cilk/cilk.h>
mandelbrot.cpp 30:    float yinc = (float)deltaY/(maxJ-1);
mandelbrot.cpp 31:    cilk_for (int i=0; i<maxI; i++) {
mandelbrot.cpp 32:      for (int j=0; j<maxJ; j++) {

 4. Building and running the program gives a better performance improvement than with the 
auto-parallelism:

icl /Zi /O2  wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o myparallel.exe /Qipo

C:\>myparallel.exe
calculating...
printing...
Time to calc :...0.2475
Time to print :...2.178
Time (Total) :...2.426
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Programming Guidelines for Auto-Parallelism

Although this chapter is about using the auto-parallelizer to fi nd hotspots, this is a good time to 
mention how you can help the auto-parallelizer to do its job better. For auto-parallelism to succeed, 
you must follow certain guidelines:

 � The loop must be countable at compile time. Try to use constants where possible.

 � There must be no data dependencies between loop iterations.

 � Avoid placing structures in loop bodies (for example, function calls, pointers with ambiguous 
indirection to globals, and so on).

 � Don’t use the option /Od (or /Zi) on its own. Auto-parallelism will work only at optimiza-
tion levels /O1 or greater.

 � Use IPO (/Qipo). IPO gets applied before auto-parallelism and can improve the chance of the 
code being made parallel.

 � Try to help the compiler by using the #pragma parallel option. (See the section “Using 
#pragma parallel.”)

Additional Options

Table 6-6 lists other options that you can use. Refer to the compiler help for more information.

TABLE 6-6: Some Auto-Parallelizer Options

OPTION DESCRIPTION

Qpar-affinity Specifi es thread affi  nity

Qpar-num-threads Specifi es the number of threads to use in a parallel region

Qpar-report Controls the diagnostic information reported by the auto-parallelizer

Qpar-runtime-control Generates code to perform runtime checks for loops that have sym-

bolic loop bounds

Qpar-schedule Specifi es a scheduling algorithm or a tuning method for loop iterations

Qpar-threshold Sets a threshold for the auto-parallelization of loops

Qparallel Tells the auto-parallelizer to generate multithreaded code for loops 

that can be safely executed in parallel

Qparallel-source-info Enables or disables source location emission when OpenMP or auto-

parallelization code is generated

Qpar-adjust-stack Tells the compiler to generate code to adjust the stack size for a fi ber-

based main thread
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Helping the Compiler to Auto-Parallelize

To ensure correct code generation, the compiler treats any assumed dependencies as if they were 
proven dependencies, which prevents any auto-parallelization. The compiler will always assume a 
dependency where it cannot prove that it is not a dependency. However, if the programmer is certain 
that a loop can be safely auto-parallelized and any dependencies can be ignored, the compiler can be 
informed of this in several ways.

Using #pragma parallel

Used immediately before a loop, the #pragma parallel option instructs the compiler to ignore any 
assumed loop dependencies that would prevent correct auto-parallelization. It complements, but 
does not replace, the fully automatic approach; the loop will still not be parallelized if the compiler 
can prove that any dependencies exist. 

Any loop being parallelized must conform to the for-loop style of an OpenMP work-sharing con-
struct. The pragma can be used by itself or in conjunction with a selection of clauses, such as pri-
vate, which acts in a similar way to the clauses used in the OpenMP method. 

Currently, the clauses include the following:

 � always[assert], which overrides the compiler heuristics that determine whether parallel-
izing a loop would increase performance. Using this clause forces the compiler to parallelize 
if it can, even if it considers that doing so might not improve performance. Adding assert 
causes the compiler to generate an error if it considers that the loop cannot be vectorized.

 � private( var1[ :expr1][, var2[ :expr2] ] … ), where var is a scalar or array vari-
able. When parallelizing a loop, private copies of each variable are created for each thread. 
expr is an optional expression used for array or pointer variables, which evaluates to an 
integer number giving the number of array elements. If expr is absent, the rules are the same 
as those used in the OpenMP method, and all the array elements are privatized. If expr is 
present, only that number of elements of the array are privatized. Multiple private clauses 
are merged as a union.

 � lastprivate( var1[ :expr1][, var2[ :expr2] ] … ), where var and expr are the 
same as for private. Private copies of each variable are used within each thread created by 
the parallelization, as in the private clause; however, the values of the copies within the 
fi nal iteration of the loop are copied back into the variables when the parallel region is left.

Following is an example of using #pragma parallel:

(41)    #pragma parallel private(b)
(42)    for( i=0; i<MAXIMUS; i++ )
(43)    {
(44)        if( a[i] > 0 )
(45)        {
(46)            b = a[i];
(47)            a[i] = 1.0/a[i];
(48)        }
(49)        if( a[i] > 1 )a[i] += b;
(50)    }
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This results in the loop being both vectorized and parallelized, with the following messages:

C:\Test.cpp(42): (col. 4) remark: LOOP WAS AUTO-PARALLELIZED.
C:\Test.cpp(42): (col. 4) remark: LOOP WAS VECTORIZED.

Using  #pragma noparallel

You can use the #pragma noparallel option immediately before a loop to stop it from being 
auto-parallelized. 

Note that both #pragma parallel and #pragma noparallel are ignored unless the /Qparallel 
option is set.

PROS AND CONS OF PROFILING WITH THE AUTO-PARALLELIZER

 � Pros

 � Easy to carry out

 � Quickly helps you spot the right places to parallelize

 � Auto-parallelized loop can be compared with your own manu-
ally implemented parallelism

 � Cons

 � Can easily be confounded by nontrivial code

 � Diffi cult to identify loops when IPO is enabled

ACTIVITY 6-3: USING THE AUTO-PARALLELIZER TO HELP FIND HOTSPOTS

In this activity you enable the Intel compiler’s auto-parallelizer and use the location 
of the successfully parallelized loops to add your own parallel code.

 1. Make sure you have carried out Activity 6-1. You will need the results of 
 running the application to compare with the results in this activity.

 2. Rebuild the application, adding the /Qparallel option to enable  auto-
parallelism, and the /Qpar-report2 option to tell the compiler to  generate a 
report:

icl /Zi /O2 /Qipo wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o 6-3.exe \
   /Qparallel /Qpar-report2

 3. Examine the messages from the compiler. You should fi nd that one of the 
loops has been auto-parallelized.

 4. Run 6-3.exe. Calculate the speedup compared to 6-1.exe, which you created 
in Activity 6-1. The application should be faster.
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You can calculate the speedup using the following formula. New time is 
the time taken by 6-3.exe, and original time is the time taken by 
6-1.exe.

speedup = new time / original time

 5. Add a cilk_for and an include to the loop that the auto-parallelizer has 
identifi ed:

#include <cilk/cilk.h>
.
.
 cilk_for (...etc ) {
.
.
.

 6. Rebuild the application using the following options. Note that auto-parallelism 
is no longer enabled.

icl /Zi /O2 /Qipo wtime.c main.cpp  mandelbrot.cpp  ppm.cpp -o 6-3b.exe

 7. Run the program and calculate the speedup.

Instructions for Linux Users

Refer to the “Instructions for Linux Users” section in Activity 6-1 before carrying 
out this activity.

HOTSPOT ANALYSIS WITH AMPLIFIER XE

The Hotspot analysis used in Amplifi er XE helps you to identify the most time-consuming source 
code. Hotspot analysis also collects stack and call tree information. The analysis can be used to 
launch an application/process or attach to a running program/process.

Conducting a Default Analysis

The steps for conducting a Hotspot analysis with Amplifi er XE were described in Chapter 3.

To get the best view of the application in Amplifi er XE, it is best to disable inlining by using the 
/Ob0 or /Ob1 compiler options. The /Ob0 option disables all inlining, whereas the/Ob1 inlines only 
code that has been marked with the keywords inline, __inline__ , __forceinline, _inline, or 
with a member function defi ned within a class declaration. (See online help for more information 
on these keywords.)  Figure 6-5 shows the summary page of two Hotspot analysis sessions: one 
with inlining enabled (a) and one without (b). You can see that when inlining is disabled, the symbol 
names of the different functions become available.
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(a) With inlining (b) Without inlining

FIGURE 6-5: Analysis summary with and without inlining

Finding the Right Loop to Parallelize

At the time of writing, Amplifi er XE does not have a loop profi ler, so you have to manually traverse 
up the call stack of a hotspot to fi nd the best place to add parallelism. Figures 6-6 through 6-9 show 
screenshots of doing such a traversal. Clicking on the hotspot in Figure 6-6 displays the source view 
of the hotspot (Figure 6-7).

FIGURE 6-6: Bottom-up view of the hotspots

FIGURE 6-7: Source code view of the hotspots
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By double-clicking the stack pane on the right (see Figures 6-7 and 6-8), it is possible to traverse up 
the call stack until an appropriate place to add the parallelism is found, as in Figure 6-9. 

FIGURE 6-8: Source code view, one stack up

FIGURE 6-9: Source code view, two stacks up

ACTIVITY 6-4: CONDUCTING A HOTSPOT ANALYSIS WITH AMPLIFIER XE

In this activity you carry out a Hotspot analysis on the Mandelbrot program with 
Amplifi er XE.

 1. Make sure you have carried out Activity 6-1.

 2. Rebuild the application, adding the /Zi fl ag to generate debug information:

icl  /O2 /Qipo /Zi wtime.c main.cpp mandelbrot.cpp ppm.cpp -o 6-4.exe

 3. Start an Amplifi er XE GUI from the command line:

amplxe-gui continues
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 continued

 4. Create a new project named Chapter 6.

 a. Select File Í New Í Project.

 b. In the Project Properties dialog, make sure the Application Field 
points to your Mandelbrot application.

 5. Carry out a Hotspot analysis by selecting File Í New Í Hotspot Analysis. 

Dealing with the Lack of Symbol Visibility

You’ve already seen in the previous activities that functions disappear because of 
compiler inlining. Adding the /Ob1 option to the build improves visibility.

 6. Repeat steps 2 to 5, using the following compiler options. You should notice 
an improvement in what you see.

icl  /O2 /Qipo /Zi /Ob1 wtime.c main.cpp mandelbrot.cpp ppm.cpp \
    -o 6-4.exe

Traversing Up the Call Stack

 7. From the bottom-up view, double-click the largest hotspot. The source view 
should be displayed.

 8. In the stack pane (on the right of the source view), manually trace back up the 
call stack (by double-clicking the call stack entries) until you fi nd code that has 
a loop in it. 

You should be able to fi nd the best place to add parallelism by doing 
this manual stack traversal.

Instructions for Linux Users

Refer to the section “Instructions for Linux Users” in Activity 6-1. 

Large or Long-Running Applications

In very large or long-running projects, the amount of data collected may grow to an unmanageable 
size. The postprocessing of the collected data (fi nalization) and opening and viewing very large data 
sets can become very sluggish and almost impractical to use.

Reducing the Size of Data Collected

Some strategies for reducing the amount of data collected include:

 � Adjust the duration time estimate. Amplifi er XE reduces the amount of samples it collects on 
very long runs. You can change the duration time estimate from “under 1 minute” to “over 3 
hours,” with some intermediate values, as well.
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 � Automatically stop collection after a short period of time (for example, 30 seconds).

 � Modify the data-collection limit. The default is 100MB.

 � Use the Pause and Resume APIs to limit when data is collected.

The fi rst three items in the list are all confi gurable from the Project Properties dialog 
(see Figure 6-10), which you can access from the Amplifi er XE menu File Í Properties.

FIGURE 6-10:  The Project Properties page

Using the Pause and Resume APIs

You can insert calls to the Pause and Resume APIs in your application to pause and resume data col-
lection, respectively. By doing this you can reduce the amount of data that is collected. These APIs 
have to be used with caution, especially when analyzing threaded code, because important events 
may be missed, leading to a meaningless analysis. 

The following code snippet shows how to use __itt_pause() and __itt_resume() functions in the 
Mandelbrot program:

#include “ittnotify.h”
.
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int main()
{
  .
  . 
  std::cout << “calculating...” << std::endl;
  double start = wtime();
  __itt_resume();
   Mandelbrot();
  double mid = wtime();

  std::cout << “printing...” << std::endl;
  WriteMandlebrot();
  __itt_pause();
  double end = wtime();
  .
  .
}

Once this code is inserted, any Hotspot analysis should be started by clicking the Start Paused but-
ton rather than the Start button.

To use the APIs, include the ittnotify.h header fi le. If you get an unresolved symbol at link time, 
you may have to add the libittnotify.lib library, which you can fi nd in the Amplifier XE\lib32 
or Amplifier XE\lib64 folders. Use the lib64 version if you are building a 64-bit application; other-
wise, use the lib32 version. 

Table 6-7 shows the difference in the size of data that is collected when doing a normal Hotspot 
analysis versus doing one with pauses and waits. As you can see, there is a signifi cant saving in the 
amount of data collected.

TABLE 6-7: Amount of Data Collected when Profi ling with and without 

the Pause and Resume APIs

METHOD DATA SIZE 

Without pause/resume 253.9k

With pause/resume 172.0k

PROS AND CONS OF PROFILING WITH AMPLIFIER XE

 � Pros

 � Very small profi ling overhead

 � Easy to traverse the call stack 

 � No special build needed, other than providing debug symbols

 � Multiple options for collection and viewing 

 � Results can be compared

c06.indd   176c06.indd   176 3/26/2012   12:08:02 PM3/26/2012   12:08:02 PM



Blair-Chappell   c06.indd   V1 - 12/20/2011 Page 177

Source Code x 177

 � Cons

 � No loop profi ler

 � No call graph (but see the comments on manual call stack tra-
versing in the section “Finding the Right Loop to Parallelize”)

SOURCE CODE

The source code in Listing 6-1 consists of several fi les and is used in the hands-on activities. 

LISTING 6-1: main.cpp

main.cpp

#include <fstream>
#include <iostream>
#include <iomanip>
#include “mandelbrot.h”

float zr[maxI][maxJ],zi[maxI][maxJ];
float zcolor[maxI][maxJ];
extern “C” double wtime();

int main()
{
  std::cout << “calculating...” << std::endl;
  double start = wtime();
  Mandelbrot();
  double mid = wtime();

  std::cout << “printing...” << std::endl;
  WriteMandlebrot();
  double end = wtime();

  std::cout << “Time to calc :...”<< std::setprecision(4) \
     << mid-start <<std::endl;
  std::cout << “Time to print :...” << end-mid <<std::endl;
  std::cout << “Time (Total) :...” << end-start <<std::endl;
}

code snippet Chapter6\main.cpp

mandelbrot.cpp

#include “mandelbrot.h”

float CalcMandelbrot(float r,float  i)
{
  float zi = 0.0;
  float zr = 0.0;

continues
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  int itercount = 0;

  float maxit = (float)maxIteration;
  while(1) {
  itercount++; 
  float temp = zr * zi; 
  float zr2 = zr * zr;
  float zi2 = zi * zi;
  zr = zr2 - zi2 + r;
  zi = temp + temp + i;
  if (zi2 + zr2 > maxThreshold)
    return (float)256*itercount/maxit;
  if (itercount > maxIteration)
    return (float)1.0;
  }
  return 1;
}

void SetZ( int i, int j, float xinc, float yinc )
{
  zr[i][j] = (float) -1.0*deltaX/2.0 + xinc * i;
  zi[i][j] = (float) 1.0*deltaY/2.0 - yinc * j;
  zcolor[i][j] = CalcMandelbrot(zr[i][j], zi[i][j] ) /1.0001;
}

void Mandelbrot ()
{
  float xinc = (float)deltaX/(maxI-1);
  float yinc = (float)deltaY/(maxJ-1);
  for (int i=0; i<maxI; i++) {
    for (int j=0; j<maxJ; j++) {
      SetZ(i, j, xinc, yinc);
    }
  }
}

code snippet Chapter6\mandelbrot.cpp

mandelbrot.h

#ifndef __MANDLE_H__
#define __MANDLE_H__
const int factor = 8; 
const int  maxThreshold = 96;
const int  maxIteration = 500;
const int maxI = 1024 * factor;
const int  maxJ = 1024 * factor;
const float deltaX = 4.0;
const float deltaY = 4.0;

LISTING 6-1 (continued)
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extern float zr[maxI][maxJ],zi[maxI][maxJ];
extern float zcolor[maxI][maxJ];

void Mandelbrot ();
void WriteMandlebrot();
#endif

code snippet Chapter6\mandelbrot.h

ppm.cpp

#include <fstream>
#include “mandelbrot.h”

// write to a PPM file.
void WriteMandlebrot()
{
  std::ofstream ppm_file(“default.ppm”);
  ppm_file << “P6 “ << maxI << “ “ << maxJ << “ 255” << std::endl;

  unsigned char red, green, blue; // BLUE - did minimal work
  for (int i=0; i<maxI; i++) {
    for (int j=0; j<maxJ; j++) {
      float color = (float)zcolor[i][j] ;
      float temp = color;
      if (color >= .99999) 
      {
        red = 255 ; green = 255; blue = 255;
      } 
      else 
      {
        red = 0 ; green = 0; blue = 0;
      }
      // write to PPM file
      ppm_file << red  << green << blue;
    }
  }
}

code snippet Chapter6\ppm.cpp

wtime.c

#ifdef _WIN32  
#include <windows.h> 
double wtime() 
{ 
  LARGE_INTEGER ticks; 
  LARGE_INTEGER frequency;
  QueryPerformanceCounter(&ticks); 
  QueryPerformanceFrequency(&frequency); 
  return (double)(ticks.QuadPart/(double)frequency.QuadPart); 
}  

continues
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#else  
#include <sys/time.h> 
#include <sys/resource.h>  
double wtime() 
{     
  struct timeval time;     
  struct timezone zone;     
  gettimeofday(&time, &zone);     
  return time.tv_sec + time.tv_usec*1e-6; 
}  
#endif

code snippet Chapter6\wtime.c

SUMMARY

This chapter described several methods of fi nding hotspots within an application. In practice you 
would probably want to use a combination of the methods to get best results. The identifi cation of 
the hotspots is essential if you want to avoid wasted effort in attempting parallelism of any existing 
code.

It is very easy to apply parallelism at every opportunity you see within the code — for example, at 
every loop. However, many of these loops may not be invoked often enough nor do enough work, to 
make the effort of their parallelism worthwhile. Some loops that are tempting to parallelize may not 
really contribute much to the overall run time.

Finding the parallelization opportunities within your code is the goal of Hotspot analysis. It is an 
essential fi rst step in adding parallelism to your code. Without this knowledge of your program, you 
are in danger of making code parallel without seeing any improvement in performance.

Having found the hotspots, the next steps are to implement the parallelism, check for errors, and, 
fi nally, tune the threaded application. The next chapter shows how to use different programming 
models to implement parallelism.

LISTING 6-1 (continued)
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Implement ing Parallelism 

WHAT’S IN THIS CHAPTER?

 � Parallelizing loops

 � Parallelizing sections and functions

 � Parallelizing recursive functions

 � Parallelizing pipelined applications

 � Parallelizing linked lists

There are a number of different ways to add parallelism to a program. Figure 7-1 shows how 
you can use Intel Parallel Studio XE to make your code parallel by using:

 � Libraries, such as the Math Kernel Library 
(MKL) and the Integrated Performance 
Primitives (IPP) library.

 � Automatic parallelism, asking the com-
piler to automatically parallelize your 
code using the /Qparallel option; you 
can also use the guided auto-paralleliza-
tion of the compiler (enabled with the 
/Qguide option) to help tune the 
 auto-parallelism. You can fi nd more 
about auto-parallelism in Chapter 6, 
“Where to Parallelize.”

 � Programmatic parallelism, adding paral-
lel constructs to your code using Cilk Plus, 
OpenMP, Threading Building Blocks (TBB), 
or native threads (POSIX or WIN32).

FIGURE 7-1: Adding parallelism using 

Intel Parallel Studio XE

Libraries

Automatically

Programmatically

MKL

IPP

Use/Qparallel

and/Qguide

options

Click Plus

OpenMP

TBB

Native threads

Covered in this chapter

7
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This chapter shows how to add parallelism to fi ve of the more common serial code patterns: loops, 
sequential code, recursive functions, pipelined applications, and linked lists. For each pattern, exam-
ples are shown using Cilk Plus, OpenMP, and TBB. The MKL, IPP, and native threading examples 
are not discussed.

Note that the chapter is not a full treatise for each of these parallel languages. The focus here is on is 
how you can quickly and easily introduce parallelism into your code.

You already know from reading Chapter 1, “Parallelism Today,” that adding 
parallelism to legacy or preexisting code is one of the biggest challenges that the 
software industry faces. In line with this challenge, the examples in this chapter 
assume you have already written some code and want to make it parallel. What 
isn’t covered is how to design a new parallel program from scratch. 

C OR C++, THAT IS THE QUESTION

One implementation detail can have a big impact on which parallel construct you decide to use — C 
or C++.

Cilk Plus and TBB are very C++ friendly, whereas OpenMP is not. Table 7-1 gives some suggestions 
on which parallel models to use depending on how C++-like your code is.

TABLE 7-1: Parallel Model Suggestions

SOURCE CHARACTERISTIC CILK PLUS TBB OPENMP

.c Y N Y

.cpp, but code is really C Y Y Y

.cpp fi les, using C++ features Y Y N

Other factors that might infl uence which mode you choose include:

 � When using Cilk Plus in .c fi les, Cilk reducers are awkward to use, requiring use of many 
C macros.

 � Multiple OpenMP programs running on the same system do not always share the threading 
resources very well, and can lead to oversubscription.

 � TBB is heavily C++ oriented. Use TBB only if you are comfortable with concepts such as 
classes and templates and operator overloading. Having said that, you will easily understand 
most of the TBB examples in this chapter even if you are uncomfortable with C++.
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TAKING A SIMPLE APPROACH

All three of the programming models used in this chapter  —  Cilk Plus, OpenMP, and TBB  —  support 
different levels of complexity and abstraction. The intention of this chapter is to keep to a higher 
level of abstraction as possible by: 

 � Thinking in terms of tasks, not threads. All the programming examples concentrate on what 
work needs to be done without being concerned about threads. Emphasis is on work-sharing 
and relying on automatic scheduling. The question “How many threads do I have?” is not asked.

 � Using lambda functions rather than body objects (TBB specifi c). When TBB was fi rst 
released, the snippets of parallel code had to be embedded within new C++ classes, which in 
turn were used to create body objects. Since the introduction of the C++11 standard, you can 
now use lambda functions instead for many of the TBB templates. This reduces the amount 
of boilerplate code you have to write, leading to much simpler code. 

 � Keeping it simple. There is no attempt made to describe solutions that are complex. All the exam-
ples use high-level abstractions, avoiding anything that is intricate. If your parallel programming 
requires that you have a fi ne level of control, or if you need to use a different kind of scheduling, 
the higher-level parallel abstractions used in the examples may not suit your requirements. 

 � The code examples are ANSI C-like rather than fully blown C++. If you are passionate about 
writing good C++ programs, this will no doubt annoy you. The reason for doing this is so 
that the code can be accessible to non-C++ programmers. The code examples here are fairly 
easy to classify (as in writing C++). 

This chapter is not intended to teach you everything about Cilk Plus, OpenMP, or TBB. You can 
read more on how to deal with data races in Chapter 8, “Checking for Errors,” and more on sched-
uling and tuning in Chapter 9, “Tuning Parallel Applications.”

THE BEAUTY OF LAMBDA FUNCTIONS

Lambda functions are included in the C++11 standard (formerly known as C++0x) and provide a 
means of declaring the body of a function in-place. They are sometimes referred to as anonymous 
functions or functors.

Figure 7-2 shows the syntax of a lambda function. Within the body of the function you can refer to 
external variables; the capture_mode options defi ne how these variables get their values. 

Can omit if there are

no parameters and
return type is implicit

[capture_mode] (formal_parameters) -> return_type {body}

Can omit if return

type is void or code
is “return expr;”

[&] ⇒ by reference

[=]  ⇒ by value

[ ]  ⇒ no capture

FIGURE 7-2: The syntax of the lambda functions

Source: Intel
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Listing 7-1 shows an example of using a lambda function with the Standard Template Library (STL) 
for_each method. The program examines each character of the Message string and counts how 
many spaces there are. 

LISTING 7-1: Using a lambda function

 1: #include <iostream>
 2: #include <algorithm>
 3: using namespace std;
 4: int main() 
 5: { 
 6:   int Spaces = 0;
 7:   char Message[]=”The Beauty of Lambda!”; 
 8:
 9:   for_each(                                // use STL for_each  
10:     Message,                               // beginning of string  
11:     Message + sizeof(Message),             // end of string
12:
13:     // The lambda function
14:     [&Spaces] (char c) { if (c == ‘ ‘) Spaces++;}
15:   );                                       // end of for_each 
16:             
17:   cout “’”<< Message << “’”<< “ has “ << Spaces <<” spaces <<endl;
18: }

code snippet Chapter7\7-1.cpp

Line 14 contains the lambda function, which takes the c parameter and checks to see if it is a 
space. If so, the function increments the Spaces variable, which has been explicitly captured in the 
lambda function by reference. You don’t have to capture variables explicitly; you can rely on the 
compiler to capture them for you automatically. For example, you could use the following code in 
place of line 14:

[&] (char c) { if (c == ‘ ‘) Spaces++;}

The beauty of lambda function in the context of parallelism is that you can wrap existing code 
in a lambda function and then use the wrapped function in your parallelism strategy. This leads 
to fewer code changes when parallelizing your code and can simplify the use of some parallel 
constructs.  

Be sure to enable the lambda support in the compiler! In the Intel compiler, use 
the /Qstd=c++0x option. 
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PARALLELIZING LOOPS

Loops provide one of the most natural places to add parallelism. The following two requirements 
need to be satisfi ed before a loop can be usefully parallelized:

 � There must be a suffi cient amount of work being done in each loop. Any loop being paral-
lelized should be a hotspot. See Chapter 6, “Where to Parallelize,” to fi nd out more about 
hotspots in your code.

 � Each loop iteration must be independent of any other. For example, iteration n must not 
depend on iteration n-1 to be able to perform correctly.

The order in which the loops are executed is not important.

This chapter considers two loop constructs, the for loop and the while loop, along with two vari-
ants, the nested for loop and the reduction for loop. 

The for Loop

You can use the Cilk Plus cilk_for, the  OpenMP #pragma omp for, and the TBB parallel_for 
to parallelize a C/C++ for loop.

The Cilk Plus cilk_for Loop

Cilk Plus has its own equivalent of the serial for loop. By replacing a standard for loop with the 
cilk_for loop, the iterations within the loop are shared between the available workers. The follow-
ing code shows a simple cilk_for loop: 

#include <cilk/cilk.h>

cilk_for (int i=0; i < 100;i++)
{
  work(i);
}

Here’s an example of a cilk_for loop that uses STL vectors and iterators:

cilk_for (T::iterator i(vec.begin()); i != vec.end(); ++i)
{
    Work(i);
}

A cilk_for loop must follow these guidelines:

 � The loop variable can be declared in advance in C, but not in C++.

 � There must be only one loop control variable.

 � The loop control must not be modifi ed in the body of the loop.
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 � Termination conditions should not be changed once the loop has started.

 � No break or return statement is allowed in the loop body.

 � You can use a goto as long as the target is within the loop body.

 � Loops cannot wrap around.

 � Infi nite loops are not allowed.

Load balancing is carried out automatically by the Cilk Plus run time. The cilk_for loop uses a 
divide-and-conquer strategy. The loops are repeatedly divided into chunks, until a minimum size, 
known as the grain size, is reached. Each chunk is then shared among the available workers.  

You can infl uence the performance of the loop by changing the grain size and the number of 
workers. 

Grain Size

The grain size is used to control the maximum number of loops each chunk can contain. Normally, 
you do not need to be concerned about setting a value for the grain size; the Cilk Plus run time sets 
the value automatically. You can specify the grain size using the cilk_grainsize pragma:

#pragma cilk_grainsize = 1

Increasing the grain size reduces the overhead of parallelization, but can lead to poorer 
parallelism. 

The default grain size will have a value between 8 and 512, and is calculated using the following 
formula:

Grain size = min (512, number-of-loops /(8 * number-of-workers))

Number of Workers

You can set the number of workers using the environment variable CILK_NWORKERS or by using the 
Cilk Plus API command __cilkrts(). This command sets the number of workers to 20: 

 __cilkrts(“nworkers”, ”20”);

Loop Control Variable

You can use different types, including your own custom types, for the loop control variable. 
Whatever type you use, it must have:

 � A means of determining the loop range size

 � An operator to work out the difference between two such variables

 � An operator to increment or decrement the variable

For more information on this topic, refer to the Intel Composer XE online help. 
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The OpenMP for Loop

The #pragma omp for statement is a work-sharing construct that causes the loops to be executed 
in parallel by a pool of threads. In the following code example, a pool of threads is created by the 
#pragma omp parallel statement. The loops of the for statement are then executed in parallel by 
the different threads. 

#pragma omp parallel
{ 
  #pragma omp for
  for (int i=0; i < 100;i++)
  {
    work(i);
  }
} // end of parallel region

The two pragmas in this code can be concatenated into a single pragma, #pragma omp parallel for.

At the end of the loop, there is an implicit barrier where all the threads wait until the last thread has 
completed. If you add a nowait clause to the #pragma omp for statement, there will be no barrier 
and the threads will be free to continue on to the next section of code.

Infl uencing the Scheduling

You can modify the runtime behavior of the for loop with the schedule clause. The following are 
the three most common clauses used: 

 � #pragma omp for schedule(static, chunk_size) — The number of threads is divided into 
chunk_size and scheduled in a round-robin fashion among the pool of threads. When no 
chunk_size is specifi ed, the number of chunks is the same as the number of threads.

 � #pragma omp for schedule (dynamic, chunk_size) — The chunks are requested by the 
threads. When a thread becomes free, it requests a new chunk. When no chunk_size is 
specifi ed, the chunk_size is 1.

 � #pragma omp for schedule (guided, chunk_size) — Each thread is assigned a chunk of 
work that is greater than the chunk_size. As each thread requests new chunks, the size of 
the chunk is decreased until it becomes chunk_size. When no chunk_size is specifi ed, the 
chunk_size is 1.

Number of Threads

You can set the number of threads by using the environment variable OMP_NUM_THREADS or the API 
call omp_set_num_threads(num). If you build an application that includes the following code, 
and then set the environment variable to be two  (set OMP_NUM_THREADS=2), the fi rst loop will be 
shared between two threads, and the second loop will be shared between fi ve threads.

void do_work()
{
  #pragma omp parallel for
  for (int i=0; i < 100;i++)
  {
    work(i);
  }
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  omp_set_num_threads(5)
  #pragma omp parallel for
  for (int j=0; j < 100;j++)
  {
    work(j);
  }
} // end of parallel region

Loop Control Variable

The loop control variable can be a signed/unsigned integer, a C++ iterator, or a pointer type. For 
example, the following code uses a pointer as the control variable:

#include <stdio.h>
int main()
{
  char mem[10] = {‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’};
  #pragma omp parallel for
  for (char *p = &mem[0]; p < &mem[10]; p++)
  {
    printf(“0x%p:%c\n”,p,*p);
  }
  return 0;
}

The TBB for Loop

The following example uses a compact version of the parallel_for construct that can iterate over a 
range of integers. The code being executed is wrapped in a lambda function.

#include <tbb.h>
.
.
parallel_for (size_t(0), 100,[=](size_t i) {
    work(i);
  } // end of lambda code
); // end of parallel _for

Nested for Loops

When you parallelize a nested loop, it is usually to parallelize just the outer loop. However, on some 
occasions you should consider parallelizing the inner loop as well as, or instead of, the outer loop. 
Consider, for example, the following code:

for(int i = 0; i<5;i++)
  for(int j = 0; j < 100; j++)
{
  Work(i*100 + j);
}

You can see that 

 � The outer loop has a low trip count, much lower than the inner loop. 

 � The outer loop trip count could well be less than the number of hardware threads that can be 
supported.
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If you were to run the code on a 24-core PC, the maximum speedup you could obtain by paral-
lelizing the outer loop would only be 5, even though the hardware can support a speedup of 
up to 24.

A variation on this example might be if the inner and outer loops both have a low trip count:

for(int i = 0; i<5;i++)
  for(int j = 0; j < 5; j++)
{
  Work((i*5) + j);
} 

To achieve a better parallelization of these kinds of nested loops, you should do one of the 
following:

 � Parallelize the inner loop instead of the outer loop.

 � Parallelize both inner and outer loops.

 � Rewrite the loops so the inner and outer loops are swapped, and then parallelize the new 
outer loop.

In OpenMP, you can collapse loops together using the COLLAPSE clause. In the following code exam-
ple, the outer two for statements are collapsed together:

#pragma omp parallel for collapse(2)
for (int i=0; i < 2;i++)
  for (int j=0; j < 10;j++)
    for (int k=0; k < 100;k++)
    {
      Work(k);
    }

Using nested parallelism in Cilk Plus and TBB should not cause a problem as long as the inner loop 
does a suffi cient amount of work. The act of work-stealing performed by their respective schedulers 
will automatically load-balance the work.

In OpenMP, the situation is slightly more complicated. If nested parallelism is enabled, a fresh pool 
of threads is created for each parallel region. Nested parallelism can lead to oversubscription, where 
the number of threads running exceeds the number the hardware can support. 

By default, nested parallelism is disabled. If you want, you can enable nested parallelism by using the 
omp_set_nested(expression) API command or the environment variable OMP_NESTED. Likewise, 
you can check if nested parallelism is enabled using the omp_get_nested() API command.

For more information on this and other OpenMP features, look at the OpenMP standard, which 
you can download from www.openmp.org.

The for Loop with Reduction

On some occasions you will want to combine the results of several parallel computations — a tech-
nique known as reduction. In loop reduction, each parallel strand manipulates its own reduction 
variable(s), which are combined at the end of the parallel region. 
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Take, for example, the loop in Figure 7-3. Here the loops are split into three chunks and executed 
in parallel. When each parallel strand has completed, the value of each r is combined together using 
the addition operator. You can perform reduction using different operators as well as the addition 
operator. Cilk Plus, OpenMP, and TBB all support reduction.

FIGURE 7-3: A for loop with reduction 
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Cilk Plus Reduction

Cilk Plus provides special objects known as reducers to support reduction. You can fi nd a list of 
reducers in Chapter 2 (Table 2-3), along with a code example in Listing 2-2, “An example of using a 
Cilk Plus reducer.”

OpenMP Reduction

The following code gives an example of reduction: 

int r = 0;
#pragma omp parallel for reduction(+:r)
for (i=0; i < 29; i++) 
{ 
  r++;
}

The reduction clause causes each thread to have its own private copy of the r variable. The val-
ues of each private copy are combined back together using the + operator at the end of the for 
loop. You can use the following operators with the reduction clause: +, *, -, &, |, ^, &&, ||, max, 
and min.
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TBB Reduction

TBB provides the parallel_reduce template to support reduction. Listing 7-2 shows how to use 
it with lambda functions. You must provide two lambda functions: one for the code you want to 
execute in the loop, and a second one that provides the reduction operator.

LISTING 7-2: Parallel reduction using TBB

#include “tbb/parallel_reduce.h”
#include “tbb/blocked_range.h”
using namespace tbb;
float ParallelSum( float array[], size_t n ) 
{
  return parallel_reduce(
    // range
    blocked_range<float*>( array, array+n ),
    // identity
    0.f,
    // lambda function 
    [](const blocked_range<float*>& r, float init)->float 
    {
      for( float* a=r.begin(); a!=r.end(); ++a )
      init += *a;
      return init;
    },
    //lambda function providing the reduction operator
    []( float x, float y )->float 
    {
      return x+y;
    }
  );
}

code snippet Chapter7\7-2.cpp

The while Loop

You can use the  Cilk Plus cilk_spawn, the  OpenMP #pragma omp task, and the TBB parallel_
do to parallelize a C/C++ while loop.

Cilk Plus

The simplest way to make a while loop parallel is to use the cilk_spawn keyword in each iteration. 
However, if the amount of work done in a loop is low, you may fi nd that the program runs slower 
than the original serial version. In the following code, the Prime function is cilk_spawned 100 times:

    int j = 0; 
    while (j < 100)
    {
      cilk_spawn Prime(Pri);  
      j++;
    }
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If your while loop has a precomputable trip count, as in the preceding example, you could 
consider converting it to a cilk_for loop, which employs a divide-and-conquer work-stealing 
algorithm. 

In some circumstances part of the while loop will need to stay sequential because of some loop 
dependency, with only part of the while loop being able to run in parallel. In the following exam-
ple, the traversal through the linked list has to be sequential, but as each link is traversed, the call to 
Work() can be parallelized by using cilk_spawn:

#include <cilk/cilk.h>
// linked list iteration
void RunThoughLinkedList()
{
  node *pHead = Head;
  while(pHead != NULL)
  {
    cilk_spawn Work(pHead);
    pHead = pHead->next;
  }
}

OpenMP

Prior to OpenMP 3.0, while loops were diffi cult to make parallel, requiring the programmer either 
to convert the loops to a standard for loop or to write some handcrafted code. The following code 
uses OpenMP tasks that were introduced in OpenMP 3.0. The bold lines show where extra code has 
been added to make the while loop parallel.

 � The #pragma omp parallel forms a team of threads and starts parallel execution.

 � Within the parallel region, the code marked with #pragma omp single runs only on one 
thread. 

 � On each iteration of the while loop (that is running on one thread), the #pragma omp task 
statement causes an OpenMP task to be created. The moment a task is created it is free to 
start executing. Each task has its own initialized copy of the counter variable. 

 � When the single thread has completed creating all the tasks, the thread becomes available for 
use by the OpenMP run time. This only happens because of the nowait clause.

 � There is an implicit barrier at the end of the parallel region. Once all the threads have com-
pleted, code execution can continue beyond the end of the parallel region.

#pragma omp parallel
{
  #pragma omp single nowait  
  {
    int counter = 0;
    while(counter < 10)
    {
      counter++;
      #pragma omp task firstprivate(counter)   
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      {
        work(counter);
      }
    }
  }
}  // implicit barrier

A do-while loop can also be made parallel using the same technique.

TBB

You can use the parallel_do template to perform, as the TBB manual describes it, a “cook until 
done” algorithm. You can use this when you don’t know how much data has to be processed. A 
parallel_do creates TBB tasks from a list, fi nishing when the list is empty and all tasks have com-
pleted their execution. 

Listing 7-3 shows parallel_do iterating through the items in vector s and calling the Work() 
function. The fi rst two parameters of parallel_do are STL iterators describing the beginning and 
end of the vector. The third parameter is the code that is executed within the loop — in this case, a 
lambda function.

LISTING 7-3: TBB parallel_do

#include <tbb.h>
#include <vector>
.
void Work(int Val){ // do some work here}

Func()
{
  std::vector<int> s;
  s.push_back(0);
  s.push_back(1);
  s.push_back(2);
  s.push_back(3);

  tbb::parallel_do(s.begin(), s.end(),
   [&](int Val) { Work(Val);});
}

code snippet Chapter7\7-3.cpp

PARALLELIZING SECTIONS AND FUNCTIONS

You can parallelize sections of code or a series of function calls using Cilk Plus, OpenMP, or TBB. 
A sequence of code can be made parallel as long as each block:

 � Is independent of any other block

 � Performs enough work
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This kind of parallelism is not scalable — that is, the program’s performance will not keep increas-
ing once you have matched the number of cores with the number of parallel strands. It is still worth 
considering, especially if you have two or more blocks of code that consume a signifi cant amount of 
time. In this section, a short series of function calls are parallelized in two different ways, as shown 
in Figure 7-4. 

Figure 7-4 (a) shows the layout of the serial program, alongside two parallel patterns. In Figure 
7-4 (b) all three functions are run in parallel. Figure 7-4 (c) assumes Work1() and Work2() have a 
dependency, and so their order of execution must be maintained by running them in the same paral-
lel strand. 

The potential speedup for each solution is limited by the number of parallel strands in the pro-
gram. Figure 7-4 (c), for example, has only two parallel strands, with its maximum 
potential speedup being achieved on a 2-core CPU. If you ran same the code on a 3-core CPU, 
it wouldn’t run any faster. Similarly, Figure 7-4 (b)’s maximum speedup will be achieved on a 
3-core CPU.

At the end of the parallelized sections, there is a barrier that can be crossed only after all the threads 
have completed executing the individual strands.

FIGURE 7-4: Functional parallelism 
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The Serial Version

Listing 7-4 holds the serial version of the code and has three functions: Work1(), Work2(), and 
Work3(). Each function prints a message at its entry and exit. The Delay() function slows down the 
execution time by iterating through a large loop.

If you decide to build any of the examples in this section, build them unoptimized using the /Od 
(Windows) or -O0 (Linux) compiler fl ag; otherwise, the compiler will “optimize-away” most of 
the code.
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LISTING 7-4: Serial version of code

#include <stdio.h>
void Delay(){for (int i=0; i < 1000000000; i++);}
void Work1(){printf(“Start 1\n”);Delay();printf(“End 1\n”);}
void Work2(){printf(“Start 2\n”);Delay();printf(“End 2\n”);}
void Work3(){printf(“Start 3\n”);Delay();printf(“End 3\n”);}

int main()
{
  Work1();
  Work2();
  Work3();
}

code snippet Chapter7\7-4.cpp

Cilk Plus

You can use the cilk_spawn keyword to parallelize sections of code. Listings 7-5 and 7-6 show 
the two versions (b) and (c), respectively. At the end of both examples, the cilk_sync keyword is 
used to place a barrier, as shown in Figure 7-4. In this particular example, cilk_sync is not really 
needed, because the compiler automatically inserts an implicit cilk_sync at the end of every func-
tion that contains a cilk_spawn.

In the fi rst example, all three functions execute in parallel, subject to there being suffi cient workers 
available. 

In the second example, you can see how useful lambda functions are in wrapping together Work1() 
and Work2() so they execute serially within the same strand, which, in turn, executes in parallel 
with Work3().

LISTING 7-5: Cilk Plus functional parallelism version (b)

#include <cilk/cilk.h>
.
.
int main()
{
  cilk_spawn Work1();
  cilk_spawn Work2();
  Work3();
  cilk_sync;// not really needed, because there is an implicit sync here
}

code snippet Chapter7\7-5.cpp
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LISTING 7-6: Cilk Plus functional parallelism version (c)

#include <cilk/cilk.h>
.
.
int main()
{
  cilk_spawn []{
    Work1();
    Work2();
  }
  Work3();
  cilk_sync;// not really needed, because there is an implicit sync here
}

code snippet Chapter7\7-6.cpp

OpenMP

In OpenMP, you can use the sections construct to divide and execute blocks of code, as shown 
in Listings 7-7 and 7-8. The sections construct has to reside in a parallel region. In the following 
examples, the parallel and section constructs are concatenated together into a single statement.

In the fi rst example, Work1(), Work2(), and Work3() execute in parallel. In the second example, the 
fi rst block of code containing Work1() and Work2() runs in parallel with Work3().

LISTING 7-7: OpenMP functional parallelism version (b)

int main()
{
  #pragma omp parallel sections
  {
    #pragma omp section
    Work1();
    #pragma omp section
    Work2();
    #pragma omp section
    Work3();
  }
}

code snippet Chapter7\7-7.cpp

LISTING 7-8: OpenMP functional parallelism version (c)

int main()
{
  #pragma omp parallel sections
  {
    #pragma omp section
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    Work1();
    Work2();
    #pragma omp section
    Work3();
  }
}

code snippet Chapter7\7-8.cpp

TBB

Listings 7-9 and 7-10 show how to use the TBB parallel_invoke template to run the three func-
tions in parallel. At the time of writing, the maximum number of parameters you can pass to 
parallel_invoke is ten. 

LISTING 7-9: TBB functional parallelism version (b)

#include <tbb/tbb.h>
.
.
int main()
{
  tbb::parallel_invoke(
    []{Work1();},
    []{Work2();},
    []{Work3();}
  );
}

code snippet Chapter7\7-9.cpp

LISTING 7-10: TBB functional parallelism version (c)

#include <tbb/tbb.h>
.
.
int main()
{
  tbb::parallel_invoke(
    []{
        Work1();
        Work2();
    },
    []{Work3();}
  );
}

code snippet Chapter7\7-10.cpp

Again, you can see how useful the lambda functions are in simplifying the calls to 
parallel_invoke.
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PARALLELIZING RECURSIVE FUNCTIONS

Recursion is a very common pattern found in many programs and is relatively easy to parallelize. 
Figure 7-5 shows a recursive function, Work(). 

FIGURE 7-5: The recursive construct 

Start

Work( )

{

   if(some-condition)

        Work( );

}

Y Exit?

N

End

Work( )

A recursive function has three features:

 � The function calls itself.

 � There is an exit condition that is eventually reached.

 � As in any C function, each called function has its own stack, holding its own variables and 
parameters.

Like any body of code that is to be threaded, the body of your recursive function should perform 
a decent amount of work; otherwise, you may end up just slowing down the code. If the body of 
your recursive function does not do much work, you might fi nd it better to convert your recursive 
code to be loop-oriented, and then use one of the parallel loop structures that have already been 
discussed.

The Serial Version

Listing 7-11 shows a recursive function, Work(). When the function is fi rst called, it is passed the i 
parameter, which has been initialized to zero. Each time Work() makes a call to itself, it passes in 
the value i + 1. 

On entry to the function, the exit condition if(i>4) is queried. If the test is satisfi ed, the function 
returns; otherwise, it proceeds with the recursive call. Work() prints a message before and after the 
recursive call.

In this example the recursion will nest four levels deep before returning, unrolling its stack as it 
returns through the recursive calls.
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LISTING 7-11: A serial recursive function

#include <stdio.h>
void Delay(){for (int i=0; i < 1000000000; i++);}
void Work(int i)
{
  if(i > 4)
    return;
  printf(“S%d\n”,i);
  Work(i + 1);
  Delay();
  printf(“E %d\n”,i);
}

int main()
{
  int i = 0;
  Work(i);
}

code snippet Chapter7\7-11.cpp

Cilk Plus

You can use the cilk_spawn keyword to parallelize a recursive function. In Listing 7-12, the only 
modifi cation to the serial version is the addition of cilk_spawn in front of the recursive call to Work().

LISTING 7-12: A Cilk Plus recursive function

#include <cilk/cilk.h>
void Delay(){for (int i=0; i < 1000000000; i++);}

void Work(int i)
{
  if(i > 4)
    return;
  printf(“S%d\n”,i);
  cilk_spawn Work(i + 1);
  Delay();
  printf(“E %d\n”,i);
}

int main()
{
  int i = 0;
  Work(i);
}

code snippet Chapter7\7-12.cpp
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OpenMP

The recursive OpenMP example in Listing 7-13 uses tasks. In the main() function, a parallel region 
is declared containing a single threaded brace. Within the brace is a call to the Work() function. 

The recursive call within Work() is encapsulated in an OpenMP task. The moment the task is cre-
ated, it is free to start execution. Each recursive call results in a new task being created, which is 
then free to be run in parallel with any existing tasks.

LISTING 7-13: An OpenMP recursive function

void Work(int i)
{
  if(i > 4)
    return;
  #pragma omp task firstprivate(i)
  {
    printf(“S%d\n”,i);
    Work(i + 1);
    Delay();
    printf(“E %d\n”,i);
  }
}

int main()
{
  int i = 0;
#pragma omp parallel
#pragma omp single
  {
    Work(i);
  }
}

code snippet Chapter7\7-13.cpp

TBB

The recursive program in Listing 7-14 uses TBB tasks. The code is parallelized in three steps:

 � By declaring of the task_group variable g.

 � By wrapping the body of the Work() function in a lambda function, which is then spawned 
as a new task using the g.run() method.

 � By adding a g,wait() barrier in main(), after the call to Work().

LISTING 7-14: A TBB recursive function

#include <stdio.h>
#include <tbb/tbb.h>
void Delay(){for (int i=0; i < 1000000000; i++);}
tbb::task_group g;
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void Work(int i)
{
  if(i > 4)
    return;
  g.run(
    [=]{    // spawn a task
      printf(“S%d\n”,i);
      Work(i + 1);
      Delay();
      printf(“E %d\n”,i);
    }
  );
}

int main()
{
  int i = 0;
  Work(i);
  g.wait();     // wait for tasks to complete
}

code snippet Chapter7\7-14.cpp

PARALLELIZING PIPELINED APPLICATIONS

The software pipeline pattern mimics a common assembly line in a factory. During the manufactur-
ing process, the object being made is passed from one station to the next, with each station being 
responsible for carrying out a specifi c task.

Figure 7-6 (a) shows a pipelined application. The complete pipeline reads a set of numbers from the fi le
Test.data, calculates the square root of the numbers, and then stores the results in a second fi le, Root.data.

The pipeline consists of three phases, or steps, as shown in Figure 7-6 (b). In the fi rst phase, 
GetLine reads a line of numbers from the input fi le. In the second step, SqRoot calculates the square 
root for all the numbers in the line. Finally, PutLine writes the results into an output fi le.

FIGURE 7-6: The recursive construct 
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The relation between each pipeline stage is that of producer/consumer. The fi rst stage, GetLine, 
produces data that is consumed by the second stage, SqRoot. This second stage then becomes the 
producer for data that will be consumed by the last stage, PutLine.

Parallel Pipelined Patterns

To make a pipeline parallel, you allocate each pipeline station to a separate thread. You should only 
consider parallelizing course-grained pipeline applications, where each pipeline stage is doing a rea-
sonable amount of work. 

Within a particular pipeline stage you may also be able to introduce parallelism. In the example 
used in this chapter, stages 1 and 3 use fi le I/O and are therefore kept serial. The middle stage, how-
ever, performs calculations that are independent of each other, so parallelism can be added here. 
Figures 7-7 and 7-8 show two different approaches you can take to parallelizing the middle stage:

 � In Figure 7-7, a single consumer/producer is threaded, so the contents of the current line are 
manipulated in parallel.

 � In Figure 7-8, multiple consumer/producers are spawned, and so can manipulate multiple 
lines at the same time.

The thread IDs in the two diagrams are not signifi cant; they merely indicate that the different pipe-
line stages are running on different threads or parallel strands.

When parallelizing a pipelined application, you have to take care how you pass the data between the 
different stages. In the serial version (see Listing 7-15), a single array is used to hold the current line. 
Once the pipeline is made parallel, several lines may need to be queued or stored, so they can be 
manipulated in parallel without causing data races. 

FIGURE 7-7: Using a single consumer/producer 
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FIGURE 7-8: Using multiple consumer/producers
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The parallel examples in this chapter simply make the LineIn and LineOut arrays 
 two-dimensional so that each line has its own storage area. Another approach to storing the data 
that is passed along the pipeline is to dynamically allocate separate variables for each line as they 
are read in. Once the data has been consumed, the variable can then either be freed or passed back 
to the fi rst pipeline for reuse.

The two parallel examples are based on OpenMP and TBB. There is no Cilk Plus example, but 
you can fi nd an example of a pipelined application at http://software.intel.com/en-us/
articles/a-parallel-bzip2/.

The Serial Version

Listing 7-15 shows the serial version of the pipelined application. The outer for loop in main() 
applies the three pipeline stages, one line at a time. 

 � In the fi rst stage, a line of the fi le Test.data is read, and the data is placed in the array 
LineIn. 

 � The second stage of the pipeline calculates the square root of all the integers stored in 
LineIn. Rather than using a library call to calculate the square root, a slower, hand-rolled 
sqroot() function is used. Using this slower function helps to give the pipeline suffi cient 
work to do, which is helpful for demonstration purposes. The results of the square root oper-
ation are stored as fl oats in LineOut. 

 � The last stage of the pipeline writes the results held in LineOut to the fi le Root.data. 
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LISTING 7-15: A serial pipelined application

#include <stdio.h>
#include <stdlib.h>

#define LINE_LENGTH 8000
#define NUM_LINES 100
#define NUM_ENTRIES LINE_LENGTH * NUM_LINES

int LineIn[LINE_LENGTH];
float LineOut[LINE_LENGTH];

float sqroot(int n)  
{  
  float i = 0;  
  float x1, x2;  
  while( i*i<= n )  
    i+=0.1;  
  x1 = i;  
  for(int j=0; j<10; j++)  
  {  
     x2 = n;  
     x2 = x2/x1;  
     x2 = x2+x1;  
     x2 = x2/2;  
     x1 = x2;  
  }  
  return x2;  
}  

int main()
{
  FILE *pFile = fopen(”.\\Test.Data”,”r”);
  if(!pFile){ printf(”Couldn’t open Test.Data”);exit(999);}

  FILE *pOutputFile = fopen(”Squared.Data”,”w”);
  if(!pOutputFile){ printf(”Couldn’t open Squared.Data”);exit(999);}

  // for every line in file ...
  for (int i = 0; i < NUM_LINES; i++)
  {
    // Pipeline STAGE 1
    for (int j = 0; j < LINE_LENGTH; j++)
      fscanf( pFile,”%d “,&LineIn[j]);

    // Pipeline STAGE 2
    for (int j = 0; j < LINE_LENGTH; j++)
      LineOut[j]=sqroot((float)LineIn[j]);

    // Pipeline STAGE 3
    for (int j = 0; j < LINE_LENGTH; j++)
      fprintf(pOutputFile,“%f “,LineOut[j]);
    fprintf(pOutputFile,“\n“);
  }
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  fclose(pFile);
  fclose(pOutputFile);
  return 0;
}

code snippet Chapter7\7-15.cpp

OpenMP

Listing 7-16 implements a pipeline using OpenMP. You will see that 

 � The fi rst and third stages of the pipeline need to run on single threads because of the fi le I/O 
operations that are serial in nature. 

 � The second stage of the pipeline uses a single consumer/producer. The processing of the 
individual numbers in the LineIn array is performed in parallel using the #pragma omp for 
construct.

 � The nowait clauses in the fi rst and third stages are added to improve performance. 

 � The arrays LineIn and LineOut that are used to pass data from the different pipeline stages 
are converted to a two-dimensional array so that each line can be manipulated without caus-
ing a data race.

 � The fi rst line from the fi le is read before the start of the parallel region and the subsequent 
reads fetch the line number i + 1.

LISTING 7-16: An OpenMP pipelined application

int main()
{
  FILE *pFile = fopen(“.\\Test.Data”,”r”);
  if(!pFile){ printf(“Couldn’t open Test.Data”);exit(999);}

  FILE *pOutputFile = fopen(“OpenMP_Squared.Data”,”w”);
  if(!pOutputFile){ printf(“Couldn’t open OpenMP_Squared.Data”);exit(999);}

  // preload line 0
   for (int j = 0; j < LINE_LENGTH; j++)
        fscanf( pFile,”%d “,&LineIn[0][j]);

  #pragma omp parallel
  {
    for (int i = 0; i < NUM_LINES; i++)
    {
      // Pipeline STAGE 1
      #pragma omp single nowait
      {
        // start reading the next line
        // Don’t read beyond end

continues
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        if(i <  NUM_LINES-1);
        {
          for (int j = 0; j < LINE_LENGTH; j++)
          fscanf( pFile,”%d ”,&LineIn[i+1][j]);
        }
      }

      // Pipeline STAGE 2
      #pragma omp for schedule(dynamic)
        for (int j = 0; j < LINE_LENGTH; j++)
          LineOut[i][j]=sqroot((float)LineIn[i][j]);

      // Pipeline STAGE 3
      #pragma omp single nowait
      {
        for (int j = 0; j < LINE_LENGTH; j++)
          fprintf(pOutputFile,”%f ”,LineOut[i][j]);
        fprintf(pOutputFile,”\n”);
      }
    }
  }
  fclose(pFile);
  fclose(pOutputFile);
  return 0;
}

code snippet Chapter7\7-16.cpp

The OpenMP version of the pipeline is based on an idea from T. G. Mattson 
and B. Chapman’s tutorial from the ACM/IEEE Conference on Supercomputing 
(2005), titled “OpenMP in Action.” You can get a copy of the slides from 
http://openmp.org/wp/presos/omp-in-action-SC05.pdf.

TBB

You can use the TBB parallel_pipeline template to parallelize the pipeline code, as shown in 
Listing 7-17. The different pipeline stages are handled by fi lters, which can operate either in serial or 
in parallel. 

To construct a pipeline using TBB, you should

 1. Instantiate the pipeline class. This is done in the example using the parallel_pipeline 
template.

 2. Add fi lters. Listing 7-17 uses lambda functions to provide the fi lter code.

 3. Run the pipeline. This is done automatically when using the parallel_pipeline template.

LISTING 7-16 (continued)
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Notice that the outer loop from the original serial code no longer exists. Iteration through the Test
.data fi le is controlled by incrementing variable i in the fi rst stage of the pipeline.

You can pass tokens between the fi lters. In the example here, the value of the variable i is passed in 
and out of the different fi lters.

The ntoken parameter controls the level of parallelism. In Listing 7-17, all the fi lters are of type 
filter::serial_in_order, so the value of ntoken has no effect. 

Listing 7-18 shows an alternate middle fi lter, which is of type filter::parallel. By doing this you 
will be changing the design so that the middle pipeline stage is using multiple consumer/producers, 
as shown in Figure 7-8. When this fi lter is used, multiple tokens can be processed by the fi lter. In this 
situation the parameter ntokens limits the number of tokens that can be in fl ight at any one time.

The flow_control fc object is used to control the pipeline and indicates to the scheduler when the 
pipeline should stop.

As in the OpenMP version, the LineIn and LineOut arrays are promoted to be two-dimensional arrays. 

LISTING 7-17: A pipelined application using TBB

using namespace tbb;

int main()
{
  int i = 0;
  int ntokens = 24;
  FILE *pFile = fopen(“.\\Test.Data”,”r”);
  if(!pFile){ printf(“Couldn’t open Test.Data”);exit(999);}

  FILE *pOutputFile = fopen(“TBB_Squared.Data”,”w”);
  if(!pOutputFile){ printf(“Couldn’t open OpenMP_Squared.Data”);exit(999);}

  parallel_pipeline(
     ntokens,  
     tbb::make_filter<void,int>(
        filter::serial_in_order, [&i,&pFile](flow_control& fc)->int {
           if (i < NUM_LINES)
           {
             for (int j = 0; j < LINE_LENGTH; j++)
               fscanf( pFile,”%d “,&LineIn[i][j]);
             return i++;
           }
           else
              fc.stop();

           return -1;
        }) &

     tbb::make_filter<int,int>(
       filter::serial_in_order, [](int i)->int {
         parallel_for (size_t(0), (size_t)LINE_LENGTH,[&](size_t j){

continues
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           LineOut[i][j]=sqroot((float)LineIn[i][j]);
          });
          return i;
        }) &

     tbb::make_filter<int,void>(
        filter::serial_in_order, [&pOutputFile](int i) {
        for (int j = 0; j < LINE_LENGTH; j++)
          fprintf(pOutputFile,”%f “,LineOut[i][j]);
        fprintf(pOutputFile,”\n”);
        })
   );  
}

code snippet Chapter7\7-17.cpp

LISTING 7-18: Using an alternate TBB fi lter

.

. 
          tbb::make_filter<int,int>(
        filter::parallel, [](int i)->int {
          {
            for (int j = 0; j < LINE_LENGTH; j++)
             LineOut[i][j]=sqroot((float)LineIn[i][j]);
            return i;
          }
        }) &

.

.

code snippet Chapter7\7-18.cpp

PARALLELIZING LINKED LISTS

A linked list consists of a number of data nodes that are daisy-chained together via a pointer, as shown 
in Figure 7-9. The end of the iteration space is not known in advance, and has to be detected by look-
ing for a NULL value in the Next pointer. Linked lists can have nodes inserted or deleted dynamically.

  
FIGURE 7-9: The linked list construct 
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LISTING 7-17 (continued)
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Listing 7-19, which is taken from Listings 7-23, 7-24, and 7-25 at the end of the chapter, 
traverses through the linked list until the pointer pHead has the value NULL.

The parallel versions use techniques that have been described earlier in this chapter. 

Serial Iteration of the Linked List

Listing 7-19 shows the serial code to iterate through the linked list. You can fi nd the complete ver-
sion in the source code at the end of this chapter.

LISTING 7-19: Serial iteration of linked list

// linked list iteration
void RunThoughLinkedList()
{
  node *pHead = Head;
  while(pHead != NULL)
  {
    Work(pHead);
    pHead = pHead->next; 
 }
}

code snippet Chapter7\7-19.cpp

Parallel Iteration of the Linked List

Listings 7-20, 7-21, and 7-22 show how to parallelize the linked list iteration using Cilk Plus, 
OpenMP, and TBB, respectively. All three listings follow the same strategy:

 � The iteration of the linked list is done in serial.

 � As each node is visited, a task that runs the function Work() is launched.

 � The tasks can run in parallel. 

LISTING 7-20: Linked list iteration using Cilk Plus

#include <cilk/cilk.h>
// linked list iteration
void RunThoughLinkedList()
{
  node *pHead = Head;
  while(pHead != NULL)
  {
    cilk_spawn Work(pHead);
    pHead = pHead->next;
  }
}

code snippet Chapter7\7-20.cpp

c07.indd   209c07.indd   209 3/26/2012   12:09:05 PM3/26/2012   12:09:05 PM



Blair-Chappell   c07.indd   V3 - 03/09/2012 Page 210

210 x CHAPTER 7  IMPLEMENTING PARALLELISM 

LISTING 7-21: Linked list iteration using OpenMP

// linked list iteration
void RunThoughLinkedList()
{
  #pragma omp parallel
  {
    #pragma omp single
    {
      node *pHead = Head;
      while(pHead != NULL)
      {
         #pragma omp task firstprivate(pHead) 
         {     
           Work(pHead);
         }
         pHead = pHead->next;
      }     
    } 
  }
}

code snippet Chapter7\7-21.cpp

Listing 7-22: Linked list iteration using TBB

void RunThoughLinkedList()
{
  tbb::task_group g; 
  node *pHead = Head;
  printf(“Starting Linked List\n”);
  while(pHead != NULL)
  {
    g.run([=]{Work(pHead);});
    pHead = pHead->next;
  }
  g.wait();
}

code snippet Chapter7\7-22.cpp

ACTIVITY 7-1: PARALLELIZING THE SAMPLE APPLICATION

In this activity you parallelize the source code in Listings 7-23, 7-24, and 7-25 
using some of the techniques described in this chapter.

Building the Program

If you haven’t already done so:

1. Copy the three fi les from the end of the chapter into a directory.

2. Check that the program builds:

icl  /O2 main.cpp prime.cpp wtime.c
(LINUX: icc -O2 main.cpp prime.cpp wtime.c)
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3. Run the program and record the time taken between each phase of the 
program:

[sblairch@localhost ssa]$ ./main
Start of application
*** glibc detected *** ./main: double free or corruption 
    (top): 0x0000000007078010 ***

Implementing Parallelism

4. Choose one programming model, either Cilk Plus, OpenMP, or TBB.

5. Identify the loops in the program and implement a parallel solution for 
each one.

Hint: You may want to run Amplifi er XE to do a Hotspot analysis to fi nd the busi-
est parts of the program.

Moving on to the Next Model

6. Work your way through the other programming models, repeating the paral-
lelization steps.

SOURCE CODE

Using the techniques highlighted in this chapter, you should be able to speed up the source code in 
Listings 7-23, 7-24, and 7-25. The source code is split into three fi les: main.cpp, wtime.cpp, and 
prime.c.

The code is somewhat artifi cial, in that it doesn’t do anything particularly useful. Its sole purpose is 
to provide a “playgound” for you to experiment with parallelization.

With the source code you will fi nd loops and linked lists that you can make parallel using Cilk Plus, 
OpenMP, and TBB. Activity 7-1 gives some suggestions for you to try out. 

LISTING 7-23: Serial version of the example application

#include <stdio.h>
#include <memory.h>
extern int Prime(int end);
extern int PrimeRecursive(int end);
extern “C” double wtime();

#define PRIME_NUMS 1000000
#define PRIME_NUMS_RECURSE 20000
#define NUM_NODES 5

enum Op { OpPrime,OpPrimeRecursive};

continues
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struct node
{ 
  int ValueIn;
  Op Operation;
  int NumPrimes;    
  double Start;   // time
  double End;     // time
  node *next;     // the reference to the next node
  void Init(int v,Op o,node* n){ValueIn = v;Operation=o;next=n;}
  node(){Start=0;End=0;next=NULL;};
}; 

node List[NUM_NODES];
node * Head;

void Init()
{
  memset(List,’\0’,sizeof(List));
  // set up the link
  List[0].Init(PRIME_NUMS,OpPrime,&List[4]);
  List[1].Init(PRIME_NUMS_RECURSE,OpPrimeRecursive,&List[2]);
  List[2].Init(PRIME_NUMS,OpPrime,NULL);
  List[3].Init(PRIME_NUMS_RECURSE,OpPrimeRecursive,&List[1]);
  List[4].Init(PRIME_NUMS,OpPrime,&List[3]);
  Head = &List[0];
}

void Work( node * pHead ) 
{
  pHead->Start = wtime();
  switch(pHead->Operation)
  {
  case OpPrime:
    pHead->NumPrimes=Prime(pHead->ValueIn);
    break;
  case OpPrimeRecursive:
    pHead->NumPrimes=PrimeRecursive(pHead->ValueIn);
    break;
  };
  pHead->End = wtime();
  printf(“Work Time  %7.2f\n”,pHead->End-pHead->Start);
}

// linked list iteration
void RunThoughLinkedList()
{
  node *pHead = Head;
  while(pHead != NULL)
  {
    Work(pHead);
    pHead = pHead->next;
  }
}

LISTING 7-23 (continued)
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// manual iterations
void RunExplicit()
{
  Work(&List[0]);
  Work(&List[1]);
  Work(&List[2]);
  Work(&List[3]);
  Work(&List[4]);
}

int main() 
{
  Init();
  double start = wtime();
  double start_linked_list = wtime();
  RunThoughLinkedList();
  double end_linked_list = wtime();
  double start_explicit = wtime();
  RunExplicit();
  double end_explicit = wtime();
  double end = wtime();

  printf(“Time through Linked List %7.2f\n”
    “Time through explicit %7.2f\n”
    “Total Time taken %7.2f\n”,
    end_linked_list-start_linked_list,
    end_explicit-start_explicit,
    end-start
    );
}

Chapter7\\main.cpp

LISTING 7-24: A utility to measure time taken

#ifdef _WIN32  
#include <windows.h> 
double wtime() 
{ 
  LARGE_INTEGER ticks; 
  LARGE_INTEGER frequency;     
  QueryPerformanceCounter(&ticks);     
  QueryPerformanceFrequency(&frequency);     
  return (double)(ticks.QuadPart/(double)frequency.QuadPart); 
}  
#else  
#include <sys/time.h> 
#include <sys/resource.h>  
double wtime() 
{     
  struct timeval time;     
  struct timezone zone;     
  gettimeofday(&time, &zone);     
  return time.tv_sec + time.tv_usec*1e-6; 
}  
#endif

Chapter7\ wtime.c
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LISTING 7-25: Code to check if a number is prime

#include <math.h>
long  gPrimes[1000000];

bool isPrimeRecurse(int p, int i=2)
{
  if (i==p) return 1;//or better  if (i*i>p) return 1;
  if (p%i == 0 || p == 1) return 0;
  return isPrimeRecurse (p, i+1);
}

bool isPrime(int val)
{
    int limit, factor = 3;
    limit = (long)(sqrtf((float)val)+0.5f);
    while( (factor <= limit) && (val % factor))
        factor ++;
    return (factor > limit);
}

int Prime(int Num)
{
  int NumPrimes = 0;
  for( int i = 3; i <= Num; i += 2 )
  {
      if( isPrime(i) )
          gPrimes[NumPrimes++] = i;
  }
  return NumPrimes;
}

int PrimeRecursive(int Num)
{
  int NumPrimes = 0;
  for( int i = 3; i <= Num; i += 2 )
  {
    if( isPrimeRecurse(i) )
      gPrimes[NumPrimes++] = i;
  }
  return NumPrimes;
}

Chapter7\prime.cpp

c07.indd   214c07.indd   214 3/26/2012   12:09:06 PM3/26/2012   12:09:06 PM



Blair-Chappell   c07.indd   V3 - 03/09/2012 Page 215

Summary x 215

SUMMARY

This chapter demonstrated that making code parallel is not as diffi cult as it initially may seem. Cilk 
Plus, OpenMP, and TBB all offer ways of parallelizing loops, recursive calls, blocks of code, and 
pipelined applications. 

Note that this chapter has not addressed the thorny problem of data races and how to deal with 
shared variables.

In earlier chapters you saw how reducers in Cilk Plus and private and shared variables in OpenMP 
can be used to prevent data races. The next chapter shows how to detect memory and threading 
errors using Intel Parallel Inspector XE, and how you can fi x such errors in Cilk Plus, OpenMP, and 
TBB.
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8
Checking for Errors

WHAT’S IN THIS CHAPTER?

 � Detecting threading errors

 � Fixing data races

 � Detecting memory errors

 � Controlling the right level of detail

 � Creating a custom analysis

Using multiple threads with common memory can easily lead to parallel-type errors, such as 
data races and deadlocks. Resolving these errors can often be frustrating and time-consuming, 
so it is vital that you detect them at an early stage of development.

You can use several different tools from Parallel Studio XE to help debug your parallel 
programs:

 � Parallel Advisor — Advisor guides developers to add parallelism within their existing 
C/C++ programs. However, you need to add Advisor notations to identify the possible 
parallel regions. For more details, see Chapter 10, “Parallel Advisor–Driven Design.”

 � Parallel Debugger Extension — This extension pairs the parallel tools provided for 
developing multithreaded applications with the debug extensions, to allow for parallel 
features within the debugger. See Chapter 11, “Debugging Parallel Applications,” for 
more details.

 � Static Security analysis — Static Security analysis is carried out by the compiler and 
identifi es both coding errors and security vulnerabilities through deep analysis of the 
source code. However, no fi nal execution fi le is produced. For more details, see 
Chapter 5, “Writing Secure Code.”
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This chapter describes the operation of Intel Parallel Inspector XE, which you can use to fi nd 
threading and memory errors after you have attempted parallelization. Creating parallel programs 
introduces the prospect of new types of errors involved with concurrent threading. These errors 
can have serious consequences on the effi ciency and correctness of your parallel programs. Without 
tools such as Inspector XE, these threading errors can be notoriously diffi cult to fi nd. You can also 
use Inspector XE to fi nd many types of memory errors.

You have already used Inspector XE in Chapter 3, “Parallel Studio XE for the Impatient.” If you 
haven’t read that chapter or tried its hands-on activities, now would be a good time to do so. 

PARALLEL INSPECTOR XE ANALYSIS TYPES

Chapter 3 describes the four steps you can use to make your code parallel: analyze, implement, 
debug, and tune. In the debug step you must check to see if you have introduced any parallel-type 
errors into your program. This is where you can use Inspector XE.

Inspector XE has predefi ned analysis types to help you (see Figure 8-1). These are split into three 
categories:

 � Memory Error analysis — Detects and locates memory leaks, and fi nds other memory 
problems

 � Threading Error analysis — Detects and locates data races and deadlocks

 � Custom analysis types — Stores your own analysis types

FIGURE 8-1: Inspector XE’s Confi gure Analysis Type window

Each analysis type performs analysis to a different scope; the wider the scope, the more impact 
the analysis has on the time taken to run the program under test. Table 8-1 describes the likely 
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impact of each scope. The descriptions are taken directly from the Confi gure Analysis Type 
window.

TABLE 8-1: The Scope of Each Analysis Type

SCOPE ANALYSIS TYPES IMPACT ON PROGRAM UNDER TEST

Narrowest Detect Leaks

Detect Deadlo cks

Minimizes the load on the system. Minimizes the time 

required to perform the analysis. Increases the chances 

the analysis will complete successfully, particularly on 

large applications/large data sets.

Medium Detect Memory 

    Problems

Detect Deadlocks and 

    Data Races

Increases the load on the system. Increases the time 

required to perform the analysis. Increases the chances 

the analysis will fail because the system may run out of 

resources.

Widest Locate Memory 

    Problems

Locate Deadlocks and 

    Data Races

Maximizes the load on the system. Maximizes the time 

required to perform the analysis. Maximizes the chances 

the analysis will fail because the system may run out of 

resources.

You can fi nd more details on exactly what options each analysis type uses in the section “Creating a 
Custom Analysis” later in this chapter.

If you are working on very large applications, it is best that you perform your fi rst analysis using the nar-
rowest scope level, and then when you have fi xed all the problems at one scope level, move on to the next. 

DETECTING THREADING ERRORS

You already know how to run a threading analysis session; you did this back in Chapter 3. Using 
Listing 8-4 (at the end of the chapter), this section reminds you how to look for threading errors. 
You can try this analysis out for yourself in Activity 8-1 and Activity 8-2.

Types of Threading Problems

Inspector XE can report the following types of problems:

 � Thread information

 � Potential privacy infringement

 � Data races

 � Deadlocks

Thread Information

Inspector XE provides information about the location and number of threads created during the exe-
cution of the program; it does not mean that there is a problem. Typically in a parallel program, a pool 
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of threads is created, with the number of threads based on the number of cores in the machine or a 
user-specifi ed number. If Inspector XE reports only a single thread being created, you may be running 
a serial program or be executing on a single-core machine. For some parallel models, for example, 
OpenMP, you also need to specifi cally enable the right compiler options to enable the parallelism.

Potential Privacy Infringement

Privacy infringement can occur when one thread accesses the stack memory of another thread. 
Inspector XE reports a potential problem when it detects variables of one thread being accessed by 
another thread. This is actually a remark only, giving an advisory message that there may poten-
tially be some problem; in many cases it may not matter. Accessing cross-stack data can cause unex-
pected behavior, including a crash, if no protocols are in place to ensure safe accesses.

Variables involved in data races can be the cause of privacy infringements. Where possible, it is bet-
ter not to allow threads to share variables on the stack.

Data Races

A data race occurs when multiple threads are trying to access the same memory location without 
proper synchronization — for example, when one or more threads is reading a variable while another 
thread is concurrently writing to it. Threads that read the variable before the writing thread updates 
the variable will obtain a different value from any threads reading the variable after the update. 

Deadlocks

A deadlock is a situation where one thread is waiting for another thread to fi nish with a mutually 
exclusive resource, while at the same time that thread is waiting for the fi rst thread to fi nish with its 
mutually exclusive resource. Neither thread can fi nish; therefore, a deadlock ensues.

Deadlocks are a common problem in multiprocessing, and are particularly troublesome because 
there is no general solution to avoid them.

An Example Application Involving Deadlocks

The code in Listing 8-4 uses approximate integration to calculate the values of pi. Figure 8-2 shows the 
principle used. By adding up the area of each bar under the curve, an approximation of pi is calculated.

The code is parallelized using the OpenMP sections directive, but it has errors. The code is not 
intended to be an example of how to write good threaded code; rather, it is written to help dem-
onstrate the different threading errors that you can detect in Inspector XE. The following lines in 
Listing 8-4 provide the parallelism:

 � Line 32 — The for loop is responsible for iterating over every bar. On each iteration of the 
loop, the area of four bars is calculated. 

 � Lines 35–63 — The OpenMP sections directive contains two section directives. Each 
section runs in parallel and calculates the area of two bars. The results of the calculations 
from each section are stored by calling the SafeAdd() function. 

 � Lines 10–18 — The SafeAdd() function adds the values held in the parameters sum1 and 
sum2 into the global variables gsum1 and gsum2, respectively. Two OpenMP locks, lock1 
and lock2, are used to protect access to the two global variables. 
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We know that:
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FIGURE 8-2: Calculating pi

Because of the programming errors in the code, the program will not run correctly. Figure 8-3 
shows the output from the program once you have corrected all the errors. 

FIGURE 8-3: The output window of the application

DETECTING DEADLOCKS

Detecting deadlocks using Inspector XE is straightforward. Even if a deadlock does not actually 
happen, you should be able to detect it — that is, as long as you have executed the code path on 
which the deadlock resides.

When you run the pi program from Listing 8-4, you will see that the log reports a deadlock, as 
shown in Figure 8-4.

The Summary window shows the results of running a Detect Deadlocks analysis on the 
code from Listing 8-4 in more detail (see Figure 8-5). The two reported problems, P1 and P2, 
are related. P2 is a deadlock and is caused by the lock hierarchy violation, as reported in 
problem P1. The snippets of code in the Code Locations pane show the source of the P2 
deadlock problem. In total, six observations associated with the deadlock are detected, 
and are labeled X7 to X12.
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Sometimes you will fi nd it useful to look at the Timeline view (see Figure 8-6). You can access the 
Timeline view by clicking the Timeline tab at the top right of the Code Locations pane. 

FIGURE 8-4: The log report from Inspector XE

FIGURE 8-5: Code snippets related to the P2 deadlock
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X9:Allocation Site 

X10:Allocation Site

X7:Lock Owned

X12:Lock Wanted

X11:Lock Owned

X8:Lock Wanted

FIGURE 8-6: The Timeline view

The two horizontal bars are the two threads that were running. The four diamond markers show 
the time where the six events (X7 to X12) happened. Events X9 and X10 are located at the fi rst dia-
mond. If you hover the mouse over the diamond markers, the names of the events are displayed. If 
you then examine the locks associated with these six events, by looking at the code displayed in the 
Code Locations pane (as in Figure 8-5), the sequence of events looks like this:

First event, X9,Thread 0: Allocation Site - lock1

Second event, X10,Thread 0: Allocation Site - lock2

Third event, X7,Thread 0: Lock Owned - lock1 

Fourth event, X11,Thread 1: Lock Owned - lock1

Fifth event, X12,Thread 0: Lock Wanted - lock2

Sixth event, X8,Thread 1: Lock Wanted - lock2

You immediately should be suspicious of what you see: 

 � Apparently both threads own lock1 (at events X7 and X11). This is impossible; two threads 
cannot own the same lock at the same time.

 � No thread owns lock2, yet the lock is wanted at X12 and X8.

Something must be really wrong with the program. With a bit more investigation you will real-
ize that the cause of the problem is the order in which the locks are being used when calling the 
SafeAdd() function. The order of the locks has been accidently swapped in Lines 48 and 61 of 
Listing 8-4:

48:        SafeAdd(sum1,sum2,lock1,lock2);
61:        SafeAdd(sum1,sum2,lock2,lock1);

You can resolve the deadlock problem relatively easily. If both threads use the same locks in the 
same order, no deadlock will result. By changing the order of the parameters lock1 and lock2 so 
that both calls to SafeAdd() use them in the same sequence, you can fi x the deadlock: 

48:        SafeAdd(sum1,sum2,lock1,lock2);
61:        SafeAdd(sum1,sum2,lock1,lock2);

This was a relatively simple case. However, deadlocks can be very diffi cult to detect without the 
right tools, which is where the use of Inspector XE comes into its own.
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ACTIVITY 8-1: DETECTING AND FIXING A DEADLOCK

In this activity you use Inspector XE to detect and fi x a deadlock. You can run this 
activity on Linux or Windows.

Building and Running the Program

 1. Copy the source code in Listing 8-4 into a fi le named pi.cpp.

 2. Open an Intel Parallel Studio XE command prompt.

 3. Build the program with the following command:

WINDOWS

icl  /Od /Qopenmp /Zi pi.cpp -o 8-1.exe

LINUX

icc  -OO -openmp -g pi.cpp -o 8-1.exe

 4. Run the program:
8-1.exe

You should see that the program will hang.

Detecting and Fixing the Deadlock

 5. Start the Inspector XE GUI from the command line:
inspxe-gui

 6. Create a new project named Chapter 8:
 � Select File Í New Í Project.

 � In the Project Properties dialog, fi ll in the application details.

 7. Carry out a Detect Deadlocks analysis:
 � Select File Í New Í Analysis.

 � Highlight the Detect Deadlocks analysis.

 � Make sure the Terminate on Deadlock box is selected.

 � Click the Start button.

 8. After the analysis is displayed, look at the problem(s) reported to ensure you 
understand the issue.

 9. Fix the deadlock issue by editing lines 48 and 61 of pi.cpp to look like this:
48:        SafeAdd(sum1,sum2,lock1,lock2);
61:        SafeAdd(sum1,sum2,lock1,lock2);

 10. Rebuild the application (see step 3 and step 4) and then run the program. The 
program should run to completion without hanging. 

 11. Rerun the deadlock analysis (see step 7). No errors should be reported. 

In this activity you used Detect Deadlocks analysis to fi nd the deadlock. The 
program also has a data race, but it was not detected. In Activity 8-2, you use 
Inspector XE to detect and fi x the data race.
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DETECTING DATA RACES

Once the deadlock from Listing 8-4 has been fi xed, it’s time to look for any data races by running 
the Detect Deadlocks and Data Races analysis. The steps are identical to what you did when you ran 
a Detect Deadlocks analysis, except you choose a different prebuilt analysis type.

Running the Threaded Program

Before running the analysis you should run the program several times to see if the results are 
deterministic. Table 8-2 shows the value of pi for ten runs of the program. In the fi rst fi ve runs, the 
program ran in parallel; in the last fi ve runs, only one thread was made available by setting the 
OMP_NUM_THREAD=1 environment variable. You can see that when the program runs with more than 
one thread, the value of pi varies. 

TABLE 8-2: The Value of pi

ATTEMPT # VALUE OMP_NUM_THREADS

1 3.145416887792414700000 Not Set

2 3.141616771104690700000 Not Set

3 3.141592656670666500000 Not Set

4 3.142346075956167900000 Not Set

5 3.142247551357102900000 Not Set

6 3.141592653641859900000 1

7 3.141592653641859900000 1

8 3.141592653641859900000 1

9 3.141592653641859900000 1

10 3.141592653641859900000 1

First Results of the Analysis 

When you run a Detect Deadlocks and Data Races analysis, you should get results similar to Figure 8-7. 
Three data races, P1, P2, and P3, are detected. With the P1 error highlighted, you can see that the prob-
lem is related to simultaneously reading from and writing to the variable x1. Similarly, P2 and P3 relate 
to variables x2, sum1, and sum2.

You can fi x these data races by modifying line 35 so that each thread has its own private copy of x1, 
x2, sum1, and sum2:

35:    #pragma omp parallel sections private(x1,x2,sum1,sum2)

With the problem fi xed, when you rerun the program you will see that:

 � The value of pi stays the same value when you run the program several times. 

 � Running a fresh Inspector XE analysis gives the result “No Problems Found.” 

c08.indd   225c08.indd   225 3/26/2012   12:10:09 PM3/26/2012   12:10:09 PM



Blair-Chappell   c08.indd   V1 - 02/08/2011 Page 226

226 x CHAPTER 8  CHECKING FOR ERRORS

FIGURE 8-7: Three data race problems are revealed after the resolving deadlock

You can try out these steps for yourself in Activity 8-2.

ACTIVITY 8-2: DETECTING AND FIXING DATA RACES

In this activity you use Inspector XE to help detect and fi x a data race. You can run 
this activity on Linux or Windows.

Building and Running the Program

 1. Continue to work with the modifi ed version of Listing 8-4. This step assumes 
you have fi xed the deadlock identifi ed in Activity 8-1.

 2. Build the program 8-2.exe with the following command:

WINDOWS

icl  /Od /Qopenmp /Zi pi.cpp -o 8-2.exe

LINUX

icc  -OO -openmp -g pi.cpp -o 8-2.exe

 3. Run the program several times to make sure it works:

8-2.exe

 4. Set the number of threads to be 1 using the OMP_NUM_THREADS environment 
variable, and then run the program several times and note its behavior:
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WINDOWS

set OMP_NUM_THREADS=1 
8-2.exe

LINUX

export OMP_NUM_THREADS=1 
  ./8-2.exe

Detecting and Fixing the Data Race

 5. Carry out a Detect Deadlocks and Data Races analysis in Inspector XE (in the 
Inspector project you created in Activity 8-1):

 � Select File Í New Í Analysis.

 � Highlight the Detect Deadlocks and Data Races analysis.

 � Click the Start button.

 6. After the analysis is displayed, look at the problem(s) reported. Make sure you 
understand the issues.

 7. Fix the data races by editing line 35 of pi.cpp to look like this:

35:   #pragma omp parallel sections private(x1,x2,sum1,sum2)

 8. Repeat steps 2 to 5 to confi rm that you have fi xed the data races.

Controlling the Right Level of Detail

The pi program is very small and has only a few data races. You may have many more errors in your 
programs. You need to avoid two extremes when analyzing your code:

 � Failing to test all the code paths

 � Collecting and/or displaying too much information

Testing All the Code Paths

When you perform an analysis, it’s important that you choose the right test data so that all your code 
paths are executed. You might fi nd it quite hard to test some of your code, especially if it is in a path 
that is not normally executed (for example, error handling code). To help overcome this, you can:

 � Build your program in debug mode with optimization disabled — This ensures that none of 
your code paths are optimized away, and all the functions and symbols will be available in 
your results. For example, no inlining of functions will occur. 

 � Write test cases that exercise the less obvious paths through your code — That is, manipulate 
the data to force the program to run down the obscure pathways through your code. Don’t 
assume a pathway will never occur in general operation; they always will.

 � Do a Static Security analysis — As described in Chapter 5, “Writing Secure Code,” this kind 
of analysis tests all the paths in the code, although it cannot detect every kind of threading 
problem. Some problems can be detected only when you actually run your program. 
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Avoiding Being Overwhelmed by the Amount of Data

The more information you collect, the slower your analysis session will take to run. The analysis 
might even fail to complete if you generate too much data. Strategies you can use for reducing the 
amount of data include:

 � Use a minimum test set. For example, where a loop is involved, reduce the loop count to a 
minimum.

 � Don’t use a higher depth of analysis than you need. Deeper depth investigations take longer 
and generate more data. In the predefi ned analysis pane, the fi rst items in the list are the ones 
that have the lowest overhead. See the “Creating a Custom Analysis” section for more infor-
mation on what each analysis type contains.

 � Use the one-click fi lters to display a subset of the results. You can fi lter the results based on 
severity, problem type, source fi le, module, state, and suppression mode. You can read more 
about the one-click fi lters in the “Investigating the Results of the Analysis” section in 
Chapter 5.

 � Use suppression fi les where large numbers of problems exist to help reduce the information 
to manageable chunks.

Using Suppression Files

The threading example used in this chapter is fairly simple and creates only a few errors that can be 
easily managed. In other, more complex and extensive situations, the sheer quantity of problems and 
observations may well overwhelm and confuse you. You may also know that some errors are false 
positives and can be ignored. 

Creating Suppression Files

You can suppress problems and observations in Inspector XE using suppression rules. In effect, 
these rules declutter the overview of problems and their observational events, making it easier for 
you to focus on a subset of the problems reported. You can experiment with suppression rules by 
using the output from Activity 8-1 (refer to Figure 8-7). 

Assume that you want to suppress the results of the fi rst data race, P1. To do this, perform the fol-
lowing steps:

 1. Click the data race P1 within the Problems pane.

 2. Right-click the fi rst observation event (X15) within the Code Locations pane, and select 
Suppress from the drop-down menu.

In the Create Private Suppression window (Figure 8-8), three related observations are 
checked. The rule will take effect only when all the selected observations are present. You 
can selectively choose whether to have all entries or just one entry checked. 

 3. Note the default fi le being used, default.sup. You can change this to one of your own, if 
required.

 4. Click the Create button. 

Upon creating this new suppression rule, the summary display will be changed, as shown in 
Figure 8-9. Notice that P1 and its associated observations have been crossed through.
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FIGURE 8-8: The pop-up window for creating private suppressions

FIGURE 8-9: Simple suppression of the fi rst data race

Deleting Suppression Files

To remove the private suppression rule you just made:

 1. Right-click, as before, on an observation.

 2. In the drop-down menu, select Do Not Suppress. 

 3. In the pop-up window, check the box next to the fi lename and click the Remove button.

After you have removed this suppression rule, notice that problem P1 and its associated observations 
are no longer crossed through.
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Suppressing by Type Rather Than by Instance

You can also choose to suppress not just a single occurrence of a type of problem, but all occur-
rences of the type:

 1. Click the fi rst data race (P1) within the Problems pane.

 2. Right-click the fi rst observation event (X15) within the Code Locations pane, and select 
Suppress from the drop-down menu.

 3. In the Create Private Suppression window, click the line numbers and select *(any) (see 
Figure 8-10).

 4. Click the Create button. 

FIGURE 8-10: Suppressing all data races

A new suppression rule is created suppressing all data races. You should notice that all three data 
race problems have now been crossed through. Once you have created the suppression rules, the 
next time you run an analysis all the suppressed problems will be ignored. 

Changing the Suppression Mode

You can use the Project Properties window to change how the suppression rules are used (see 
Figure 8-11). Three options are available from the Suppression mode drop-down menu:

 � Do not use suppressions — Use this if you want to ignore all suppressions.

 � Mark problems — Displays the problems and associated events with each item being written 
through.

 � Delete problems — This is the default behavior. Any events that match the suppression rules 
will not be displayed. There will be no hint that they have been supressed!

When a suppression fi le is being used, and you use Delete problems suppression 
mode, it is almost impossible to tell from the results of any analysis that some 
errors have been deleted. It is strongly recommended that as a sanity check, you 
should always run a fi nal analysis with the suppression mode being either Do not 
use suppressions or Mark problems.
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FIGURE 8-11: Changing how suppression fi lters are used

Suppressing known problems can aid with development. If you are already aware of certain prob-
lems, you can suppress them, which enables you to focus on and fi x those problems of which you 
were not aware. At the end of this chapter is a discussion on different ways of fi xing data races in 
Cilk Plus, OpenMP, and TBB. 

The next section of this chapter shows how to detect memory errors. Before you read that, however, 
you can use Activity 8-3 to experiment with suppression fi les.

ACTIVITY 8-3: USING THE SUPPRESSION FILTERS

Creating a Suppression Rule

 1. Repeat Activity 8-1.

 2. Suppress the data race problem P1:

 � Right-click one of its observations in the Code Locations pane.

 � Select the Suppress option from the drop-down menu.

 � In the Create Private Suppression window, click the Create button.

The fi rst data race problem (P1) and its observations should now be crossed 
through.

continues
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 continued

 3. Run a new analysis:

 � Select File Í New Í Analysis.

 � Highlight the Detect Deadlocks and Data Races analysis.

 � Click the Start button.

You should notice that all the previous errors are no longer displayed.

Deleting a Suppression Rule

 4. Start a new analysis, but before clicking the Start button, modify the suppres-
sion mode in the Project Properties window:

 � Select File Í New Í Analysis.

 � Highlight the Detect Deadlocks and Data Races analysis.

 � Click the Project Properties button.

 � In the Advanced section of the Project Properties dialog, set the suppres-
sion mode to Mark problems, and then click OK.

 � Click the Start button.

 5. In the new analysis:

 � Right-click one of its observations within the Code 
Locations pane.

 � Select the Do Not Suppress option from the drop-down menu.

 � In the Delete Private Suppressions window, check the box for the name of 
the fi le (in the top half of the window).

 � Click the Remove button.

The fi rst data race problem (P1) and its observations are no longer crossed 
through.

 6. Run a new analysis.

You should see that the P1 problem is now displayed.

Suppressing by Type

 7. Delete all the suppression rules (as in steps 4 to 6).

 8. Run a new analysis, but before you click Start, make sure that Delete problems 
is selected in the Project Properties window.

 9. Suppress all data races:

 � Select the P1 data race problem.

 � Right-click one of its observations within the Code 
Locations pane.
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 � Select the Suppress option from the drop-down menu.

 � In the Create Private Suppression window, click in the line number col-
umn of the fi rst entry. This enables you to access a drop-down menu, 
where you should select *(any).

 � Repeat this for the remaining lines.

 � Click the Create button.

All data race problems are now shown as crossed through. Notice that the Read 
observation of P1 problem that is not crossed through. This is because when you 
created the suppression rule, the lines all had the Write description. 

 10. If you like, you can re-create the suppression rule and change the Write entries 
to *(any), as in step 9. Now all observations will be suppressed.

FIXING DATA RACES

After detecting deadlocks or data races in your program, you need to fi x them. Cilk Plus, OpenMP, 
and TBB each have their own constructs that will help. Don’t forget that you can borrow constructs 
from one parallel model and use them in another (see the section “Choosing the Right Parallel 
Constructs” in Chapter 1).

You can use the following strategies to deal with data races:

 � Use local variables rather than shared variables.

 � Restructure your code or change your algorithm. 

 � Use objects that are designed to be safely shared across threads.

 � Use atomic operations.

 � Use locks or other synchronization constructs to enforce mutual exclusion.

Before deciding to use a construct, you should see if you can fi x your data race problem by using 
local variables or restructuring your code.

Using Cilk Plus

You can use three different kinds of Cilk Plus objects to handle shared data:

 � Reducers

 � Holders

 � Home-grown reducers

Home-grown reducers are not covered in the book. You can fi nd more information about them in 
the online help that is distributed with the Intel compiler.

Cilk Plus does not have any locks available, but you can use synchronization objects from TBB or 
system locks provided by the OS.
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Cilk Plus Reducers

Cilk Plus reducers are objects that address the need to use shared variables in parallel code. 
Conceptually, a reducer can be considered to be a shared variable. However, during run time each 
thread has access to its own private copy, or view, of the variable, and works on this copy only. As 
the parallel strands fi nish, the results of their views of the variable are combined asynchronously 
into the single shared variable. This eliminates the possibility of data races without requiring 
time-consuming locks.

Listing 3-3 in Chapter 3 uses a cilk::reducer_opadd to overcome the data races caused by the 
sum and total shared variables. Each type of reducer has its own default initialization value, but 
you can initialize them yourself when they are declared. In Listing 3-3 the values are explicitly set to 
zero (which also happens to be the default value for the reducer_opadd): 

// define check sum and total as reduction variables
cilk::reducer_opadd<long int> sum(0);
cilk::reducer_opadd<double> total(0.0);

Each type of Cilk Plus reducer has its own header fi le that should be included. For the 
reducer_opadd this is:

#include <cilk/reducer_opadd.h>

To obtain the fi nal merged values of the reduction variables, use the get_value() method:

printf(“Time Elapsed %10d mSecs  Total=%lf   Check Sum = %ld\n”,
       (int)elapsedtime, total.get_value(), sum.get_value() );

If none of the reducers available in the Cilk Plus reducer library fi t your need, you can write your 
own. You can fi nd an example of writing your own reducer in the online help that is distributed 
with the Intel compiler.

Cilk Plus Holders

Holders are similar to Cilk Plus reducers in that you can use them to provide variables that can 
be used in parallel code. However, Cilk Plus holders do not preserve all the views beyond the 
parallel strands. One view will be maintained, based on the holder policy, which can be one 
of holder_keep_indeterminate, include holder_keep_last, holder_keep_last_copy, 
holder_keep_last_swap, and holder_keep_last_move. For more information on these poli-
cies, refer to the Intel compiler online help. The default policy in the template defi nition is 
holder_keep_indeterminate: 

template <typename Type,
        holder_policy Policy = holder_keep_indeterminate,
        typename Allocator = std::allocator<Type> >
class holder
{
  //etc.
};

You can use holders to provide the equivalent of thread-local storage. You can even wrap hold-
ers with your own class to reduce the amount of code edits you have to make. Chapter 16, 
“Parallelizing Legacy Code,” contains an example of defi ning your own wrappers.
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Listing 8-1 gives an example of using Cilk Plus holders and how you can create your own wrapper.

LISTING 8-1: Using Cilk Plus holders

1:  #include <cilk/holder.h>
2: 
3:  cilk::holder<int> g;
4:  
5:  // code that uses Cilk Plus holder
6:  void test1()
7:  {
8:    int i;
9:    g() = 8;
10:   cilk_spawn[]
11:   {  
12:     g()=100;
13:     i = g();
14:   }();
15:   g()= 37;
16:   cilk_sync;
17: }
18:
19: // template for wrapper
20: template <typename T>
21: class myholder
22: {
23:   private:
24:     cilk::holder<T> m_holder;
25:   public:
26:     myholder<T> & operator=(const T &rhs)
27:     {
28:       m_holder() = rhs;return *this;
29:     }
30:     operator T &(){return m_holder();} 
31: };
32: 
33: // code that uses the wrapper
34: myholder<int> h;
35: void test2()
36: {
37:   int i;
38:   h = 8;
39:   cilk_spawn[]
40:   {  
41:     h=100;
42:     i = h;
43:   }();
44:   h = 37;
45:   cilk_sync;
46: }

code snippet Chapter8\8-1.cpp
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Line 3 declares a cilk::holder, which is used in the cilk_spawn/cilk_sync parallel code 
(lines 10–16). Notice that to access the values of the g variable, the function operator has to be used:

12:     g()=100;
13:     i = g();

At line 34, the h variable uses a wrapper template, the wrapper being defi ned in lines 20–31. You 
will immediately notice that the access to the h variable does not need to use a function operator:

41:     h=100;
42:     i = h;

Both the cilk::holder and the myholder templates provide variables that are safe to use in 
parallel code. Each parallel strand treats the variables as its own private variable without any data 
races occurring.

Using OpenMP

OpenMP provides a number of constructs that you can use to implement mutual exclusion, 
including locks, critical sections, atomic operations, and reduction clauses.

Using Locks

You’ve already seen how you can use OpenMP locks to enforce mutual exclusion earlier in the 
chapter. Be careful when you use locks; it is very easy to forget to release a lock. Many programmers 
prefer not to use any locks in their code. If you can, avoid locks.

Using Critical Sections

The following code shows how you can protect a shared variable with a #pragma omp critical 
construct. You could use this code in place of the existing code in lines 10–17 of Listing 8-3. In this 
example, the critical constructs have been given a name (you can use any name).

#pragma omp critical(gsum1)
gsum1 += sum1;

#pragma omp critical(gsum2)
gsum2 += sum2;

Any #pragma omp critical statements that do not have a name are all given the same 
anonymous name.

Using Atomic Operations

The following code shows how you can use an atomic operation to enforce mutual exclusion. You 
can use atomic operations to protect a memory update. For example, placing the #pragma omp 
atomic directive before the variable gsum1 ensures that there is no data race:

#pragma omp atomic
gsum1 += sum1;

#pragma omp critical
gsum2 += sum2;
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Atomic operations are much more effi cient than using locks or critical sections.

Using a reduction Clause

For an example of using an OpenMP reduction clause, see the section “Parallelizing Loops” in 
Chapter 7, “Implementing Parallelism.” 

Using TBB

By using the algorithms in TBB, you should be able to avoid concurrent access. TBB also provides a 
number of concurrent containers that you can use to avoid data races. The containers are very 
similar to the STL containers. 

Listing 8-2 is an example of using the tbb::concurrent_queue. The queue is fi rst fi lled with values 
from 0 to 99 using queue.push(). Two while loops, each embedded in its own lambda function, 
are then executed in parallel using parallel_invoke. Each parallel strand pops values off the queue 
until the queue is empty. The try_pop() function returns true if an item has been returned from 
the queue; otherwise, it returns false.

LISTING 8-2: Using a TBB container

1: #include <tbb/tbb.h>
2: #include <stdio.h>
3: int main()
4: {
5:   int a,b;
6:   tbb::co ncurrent_queue<int> queue;
7:   for(int i =0; i< 100; i++)
8:     queue.push(i);
9: 
10:  tbb::parallel_invoke(
11:  [&]{
12:       while(queue.try_pop(a)){
13:         printf(“a%d “,a);
14:       }
15:    },
16:  [&]{
17:       while(queue.try_pop(b)){
18:         printf(“b%d “,b);
19:       }
20:     }
21:   );
22: }

code snippet Chapter8\Memory8-2.cpp

On rare occasions, you may want to introduce mutual exclusion into your code to prevent some race 
condition or enforce some deterministic behavior into your code. You can use TBB mutexes and 
atomic operations to enforce mutual exclusion. 
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Variants of the mutex include spin_mutex, queueing_mutex, spin_rw_mutex, and queueing_rw_
mutex. Like all C++ variables, mutexes work within the scope they are declared. Once a mutex goes 
out of scope, its destructor is called, which releases the lock. 

The atomic<T> template class provides a single atomic operation on a single variable. Methods 
include read, write, fetch-and-add, fetch-and-store, and compare-and-swap.

Listing 8-3 shows the use of a tbb::mutex and a tbb::atomic. Within the cilk_for loop, three 
variables (a, b, and c) are incremented. Variable a is protected by the TBB mutex m.lock() and 
m.unlock() methods; variable b is declared to be a tbb::atomic operation; and variable c has no 
protection against data races. When the code is built and run, the values of the incremented vari-
ables are printed to the screen. All the values are incremented 1,000 times, but the value of c will 
almost certainly be wrong due to a data race.

LISTING 8-3: Using TBB locks

1: #include <cilk/cilk.h>
2: #include <tbb/mutex.h>
3: #include <stdio.h>
4: int main()
5: {
6:   int a = 0;
7:   tbb::atomic<int> b;
8:   b = 0;
9:   int c = 0;  
10:  tbb::mutex m;
11:
12:  cilk_for(int i =0; i< 10000; i++)
13:  {
14:    m.lock();
15:    a++;
16:    m.unlock();  
17:    b++;
18:    c++;
19:  }
20:  printf(“a:%d, b:%d, c:%d\n”,a,b,c);
21:}

code snippet Chapter8\8-3.cpp

DETECTING MEMORY ERRORS

Inspector XE has three predefi ned analysis types dedicated to fi nding memory errors (refer to Figure 8-1):

 � Detect Leaks — Use this to detect where memory or resources are allocated but never 
released. This is the narrowest scope of analysis and will have the least impact on your code. 
For large applications, it is best to start an analysis with this type.

 � Detect Memory Problems — Use this to detect memory leaks (as in the previous bullet) and 
invalid or uninitialized access to memory.
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 � Locate Memory Problems — Use this to perform the most detailed analysis. In addition 
to detecting memory problems, the analysis has enhanced checks for dangling pointers (a 
pointer that has been used after it has been freed) and enables guard zones. Inspector XE 
adds guard zones to the end of allocated memory to test for any memory access that strays 
beyond the end of a memory block. Of the three analysis types, this analysis will have the 
most impact on your application. On large applications, the analysis may fail due to 
insuffi cient resources.

Types of Memory Errors

You can use Inspector XE to detect memory errors in both parallel and nonparallel code. Parallel 
programs can be much more sensitive to memory errors than serial programs. A memory error 
often can introduce unpredictable behavior; when you run a program with a memory error, it’s 
not always obvious that there is a problem. It is important that you don’t forget to run a memory 
analysis on your code.

You can detect several types of memory errors, including the following:

 � GDI resource leak — This occurs when a Graphics Device Interface (GDI) object is created 
but never deleted.

 � Incorrect memcpy call — This occurs if you use the memcpy function with two pointers that 
overlap. This error is checked only on Linux systems; on Windows, the overlapping of 
memcpy pointers is considered safe.

 � Invalid deallocation — This happens when you try to call a deallocation function with an 
address pointing to memory that has not been allocated dynamically.

 � Invalid memory access — This occurs when a read or write instruction references invalid 
memory. This can happen, for example, when you use stale or dangling pointers. A dangling 
pointer is one that has been freed but has not been set to the value NULL.

 � Invalid partial memory access — This occurs when a block of memory is accessed that is 
partially invalid. Often the cause of such errors is the miscalculation of the size of an object 
before dynamically allocating it.

 � Kernel resource leak — This happens when a kernel object handle is created but never 
closed.

 � Memory growth — This happens when memory is allocated but not deallocated during 
application execution. For example, the continual allocation of memory in a loop without the 
memory being deallocated will lead to memory growth.

 � Memory leak — This occurs when a block of memory is allocated but never released.

 � Mismatched allocation/deallocation — This happens, for example, when you attempt to 
deallocate memory with the delete function that was allocated with the malloc function. 

 � Missing allocation — This occurs when you attempt to free a previously freed block of 
memory, or free a memory block that was never allocated.
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 � Uninitialized memory access — This occurs when you read memory that has not been initial-
ized (for example, when you dynamically create a block of memory and start reading from it 
without fi rst initializing its values).

 � Uninitialized partial memory access — This occurs when you read memory that has been 
only partially initialized (for example, if you dynamically create a struct but initialize only 
some of the members, and start reading from one of the uninitialized members).

An Example Application for Memory Analysis

Listing 8-5 (at the end of the chapter) shows an example program that reveals several types of 
memory errors. Each potential memory error has been explicitly commented on within the example 
program. The program has an outer loop within which the following actions take place:

 � Line 23 — A drawing object is created, but never deleted. This creates a GDI resource leak, 
where each iteration of the outer loop uses up more resources allocated for graphical pur-
poses. Eventually, the limits of these resources will be used up and the program will stop. 
These types of memory errors are notoriously diffi cult to detect because they do not affect the 
correct operation of the program; only after the program has been running for some time will 
graphical allocation limits be reached and the program stop running. This code is included 
only if you are building under Windows.

 � Line 26 — A region of memory in heap space is reserved by the dynamic allocation call 
to calloc and used as a temporary array to hold data for some calculations that follow. 
However, the space is never freed. Each iteration of the outer loop will reserve a new region 
of heap without freeing the previous ones. This is a memory leak. Unless corrected, eventu-
ally all the heap space will be used up. Again, this sort of error does not affect the immediate 
running of the program; only later, when all the heap space has been consumed, will the pro-
gram fail to carry on running.

 � Line 35 — A second region of heap space is reserved and used as another temporary array. 
However, the program accesses the array with an index beyond its limits (lines 40–43). This 
is an invalid memory access error. Pointer operations of this type would not be picked up by 
the compiler.

 � Lines 42 and 45 — This second reserved space is then released; however, the released pointer 
is then used to access memory. This is another invalid memory access error.

 � Line 47 — An attempt is then made to free the second reserved space again, which creates a 
missing allocation error. Although this will not affect the outcome of the program or stop its 
operation, it does use up valuable executing time.

 � Line 48 — An uninitialized pointer is then used to allocate memory. This is another invalid 
memory access error.

Because these activities lie within a loop, any activities not tightly controlled will be found by the 
inspection — for example, allocation of heap space without associated release of this space.

As before, with the threading errors example, it is advisable to use a small representative data set when 
inspecting. To this end, the example program has been altered to run only once through its outer loop. 

Run a new inspection of the example program using Inspector XE’s Locate Memory Problems anal-
ysis, the fullest and most comprehensive analysis possible for memory errors (see Activity 8-4).
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After a successful analysis, the output shown in Figure 8-12 will result. All six possible memory 
errors are accounted for, marked as problems P1 to P6 in the Problems pane of the Inspector XE’s 
output. Clicking each problem results in the corresponding associated observations event data for 
that problem being shown in the Code Locations pane (the lower-left pane). 

FIGURE 8-12: Inspector XE output from the memory errors example

The Filters pane shows a summary of problems, including how many of each. To fi lter the problems 
by type, you can just select (by clicking) one of the problem types. For example, clicking on Invalid 
memory access results in Figure 8-13, which shows only invalid memory access errors. Filtering like 
this concentrates the mind onto a particular error type, before moving onto the rest. Clicking the 
All button brings all the memory problems back.

FIGURE 8-13: Filtered memory errors observations
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Clicking one of the squares to the left of any event in the Code Locations pane brings up a snippet 
of code that is responsible for that observation. This is demonstrated for problem P4 in Figure 8-14, 
where events X4, X6, and X7 have been selected. The summary information to the right has been 
closed to give a better view of the code.

FIGURE 8-14: Code snippets associated with events of problem P5

Alternatively, you can reveal these same code snippets by double-clicking the problems themselves 
within the Problems pane, as shown in Figure 8-15, where problem P1 has been selected. In this 
example, the problem X2 occurs when a deallocation was attempted.Also shown is the associated 
event X1 where the original deallocation was carried out. Obviously, you cannot deallocate a mem-
ory address that has already been deallocated. You can solve the P1 problem simply by removing the 
second deallocation.

The P2 problem is a GDI resource leak, caused by hDefpen (see line 23 of Listing 8-5) being repeat-
edly created but never deleted. As new pens are continually created for each loop iteration, the 
graphical resources may eventually be used up, causing the program to fail. Problems of this sort are 
notoriously hard to predict.

In this example, although there is only a single outer loop for testing purposes, and therefore the 
leak cannot cause a program failure because the closing of the application will automatically release 
any resources it uses, Inspector XE will still fl ag it as a potential problem.

Figure 8-16 shows the code snippet associated with the P2 problem, clearly indicating that there is a 
problem with pen creation. You can solve this by deleting the pen at the end of each loop iteration.
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FIGURE 8-15: Revealing the off ending code responsible for the P1 problem

FIGURE 8-16: Revealing the off ending code responsible for the P2 problem

The memory leak problems are similarly caused by continuously reserving space within the heap 
space without freeing up any of it. Again, eventually all the heap space will be used up and the 
application will fail. This is clearly shown for problem P6 by the code snippet shown in Figure 8-17.
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FIGURE 8-17: Revealing the off ending code responsible for the P12 problem

ACTIVITY 8-4: DETECTING MEMORY ERRORS

In this activity you use Inspector XE to detect and analyze some memory errors.

Building and Running the Program

 1. Copy the source code in Listing 8-5 into a fi le named MemoryErrors.cpp.

 2. Open an Intel Parallel Studio XE command prompt.

 3. Build the program with the following command:

WINDOWS

icl /Od /Zi MemoryErrors.cpp -D__WINDOWS__ gdi32.lib -o 8-4.exe

LINUX

icc  -OO -g MemoryErrors.cpp -o 8-4.exe

 4. Run the program to make sure it works:

8-4.exe

Detecting Memory Problems

 5. Start the Inspector XE GUI from the command line:

inspxe-gui

 6. Create a new project named Chapter 8-memory:

 � Select File Í New Í Project.

 � In the Project Properties dialog, fi ll in the application details.
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 7. Carry out a Detect Memory Problems analysis:

 � Select File Í New Í Analysis.

 � Highlight the Detect Memory Problems analysis.

 � Click the Start button.

The results are shown in Figure 8-12.

 8. After the analysis is displayed, look at the problem(s) reported. Make sure you 
understand the issues.

 9. Work through each problem and fi x them in the code. As you fi x a problem, 
change its state on the Summary page:

 � Highlight the problem you have fi xed.

 � Right-click and select Change State from the context menu.

 � Change the state to Fixed.

 10. After fi xing all the problems, rebuild the application (see step 3), and run a 
fresh analysis (see step 7).

CREATING A CUSTOM ANALYSIS

When you select a new analysis for Inspector XE, the Confi gure Analysis Type window 
appears. This window enables you to select the analysis type and to confi gure it to your own 
requirements. Six analysis types are offered; however, you can also create a customized analysis 
of your own.

To create a custom analysis type, right-click on the Custom Analysis Type in the Confi gure Analysis 
Type window (see Figure 8-18). 

FIGURE 8-18: Creating a custom analysis type

You can select a new Memory Errors analysis or a new Threading Errors analysis, or you can copy 
the analysis you have currently selected. When creating a new analysis, you can confi gure a number 
of options. The following descriptions are taken directly from the tooltips in Inspector XE’s Custom 
Analysis dialog box:
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 � Memory Errors analysis options

 � Detect memory leaks — Detect problems where a block of memory is allocated but 
never released. Extremely low cost, especially if used only with “Remove duplicates” 
selected.

 � Detect resource leaks — Detect problems where a kernel object handle is created but 
never closed, or where a GDI object is created but never deleted. Useful when 
analyzing Windows GUI applications. Low cost.

 � Detect invalid/uninitialized accesses — Detect problems where a read or a write 
instruction references memory that is logically or physically invalid, or a read 
instruction accesses an uninitialized memory location. Medium cost.

 � Analyze stack access — Analyze invalid and uninitialized accesses to thread stacks. 
High cost.

 � Enable enhanced dangling pointer check — Detect if an application is trying to access 
memory after it was logically freed. Medium to high cost.

 � Byte limit before reallocation — Set the amount of memory Inspector XE defers 
returning to the pool of available memory.

 � Enable guard zones — Show offset information if Inspector XE detects memory use 
beyond the end of an allocated block. Useful when an application exhibits unex-
pected behavior or when you need more context about heap allocations to interpret 
invalid memory access problems. Low cost.

 � Stack frame depth — A high setting is useful when analyzing highly object-oriented 
applications. A higher number does not signifi cantly cost.

 � Remove duplicates — When deselected, reports all instances of detected errors on the 
timeline. Low cost.

 � Threading Errors analysis options

 � Detect lock hierarchy violations and deadlocks — Useful when an application has 
complicated synchronization and it is hard to verify correctness, or when you suspect 
deadlock problems that are not yet evident. Low cost unless an application has a sig-
nifi cant number of locks.

 � Terminate on deadlock — Stop analysis and application execution if Inspector XE 
detects a deadlock. Low cost.

 � Cross-thread stack access detection — Set alert mechanism for when a thread 
accesses stack memory of another thread. Low cost.

 � Stack frame depth — A high setting is useful when analyzing highly object-oriented 
applications. The higher the number, the higher the cost.

 � Detect data races — Detect problems where multiple threads access the same memory 
location without proper synchronization and at least one access is a write. High cost.

 � Memory access byte granularity — Set the byte size of the smallest memory block on 
which Inspector XE should detect data races. 
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 � Detect data races on stack accesses — Detect data races for variables on the stack.

 � Remove duplicates — When deselected, reports all instances of detected errors on the 
timeline. Low cost.

 � Defer memory check — Do not allocate shadow memory for given block until second 
thread access.

 � Save stack on fi rst access — Report as much information as possible on all threads 
involved in a data race. High cost.

 � Save stack on allocation — Identify the allocation site of dynamically allocated mem-
ory objects involved in a data race. Medium cost.

THE SOURCE CODE

Listing 8-4 contains a program with threading errors and is used in Activities 8-1, 8-2, and 
8-3. Listing 8-5 contains a program with memory errors and is used in Activity 8-4. 

LISTING 8-4: A program with threading errors

1: #include <stdio.h>
2: #include <omp.h>
3: static long num_steps = 10000 * 4;  
4: double step;
5: double gsum1;
6: double gsum2;
7: 
8: void SafeAdd(double sum1, double sum2, omp_lock_t &lock1,omp_lock_t &lock2 )
9: {
10:  // lock gsum1 and update
11:  omp_set_lock( &lock1 );
12:  gsum1 += sum1;
13:  // lock gsum2 and update
14:  omp_set_lock( &lock2 );
15:  gsum2 += sum2;
16:  omp_unset_lock( &lock2 );
17:  omp_unset_lock( &lock1 );
18:}
19:
20:int main()
21:{
22:  int i;
23:  double x1,x2;
24:  omp_lock_t  lock1, lock2; 
25:  gsum1=0.0;
26:  gsum2=0.0;
27:
28:  omp_init_lock(&lock1);
29:  omp_init_lock(&lock2);
30:  printf(“Calculating Pi ...\n”);
31:  step = 1.0/(double) num_steps; 
32:  for (i=0;i< num_steps; i+=4)

continues
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33:  {
34:    double sum1,sum2;
35:    #pragma omp parallel sections
36:    {
37:      #pragma omp section 
38:      {
39:        // calculate first bar
40:        x1 = (i+ 0.5)*step;
41:        x1*=x1;
42:        sum1 = 4.0/(1.0+x1);
43:
44:        // calculate second bar
45:        x2 = (i+ 1.5)*step;
46:        x2*=x2;
47:        sum2 = 4.0/(1.0+x2);
48:        SafeAdd(sum1,sum2,lock1,lock2);
49:      }
50:      #pragma omp section
51:      {
52:        // calculate third bar
53:        x1 = (i+ 2.5)*step;
54:        x1*=x1;
55:        sum1 = 4.0/(1.0+x1);
56:
57:        // calculate fourth bar
58:        x2 = (i+ 3.5)*step;
59:        x2*=x2;
60:        sum2 = 4.0/(1.0+x2);
61:        SafeAdd(sum1,sum2,lock2,lock1);
62:      }
63:    }
64:  }
65:
66:  // calc value of pi
67:  double pi = step * (gsum1+gsum2);
68:  printf(“pi: %2.21f\n”,pi);
69:  omp_destroy_lock( &lock1 );
70:  omp_destroy_lock( &lock2 );
71:}

code snippet Chapter8\pi.cpp

LISTING 8-5: A program with memory errors

1: #include <stdio.h>
2: #include <stdlib.h>
3: #ifdef __WINDOWS__
4: #include <windows.h>
5: #endif
6: #include <omp.h>
7: 
8: #define STORESIZE 1000

LISTING 8-4 (continued)
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9: int main( void )
10:{
11:  int i, j;
12:  int * ptr_begin_space;
13:      int * ptr_another_space;
14:      int * ptr = NULL;
15:     #ifdef __WINDOWS__
16:      HGDIOBJ hDefpen;
17:   #endif
18:
19:      printf( “Detecting Memory Errors >\n\n” );
20:      for( i=0; i<1; i++ )
21:      {
22:         #ifdef __WINDOWS__
23:          hDefpen = CreatePen( PS_SOLID, 1, RGB( 255, 255, 255 ) );
24:         #endif
25:     
26:          ptr_begin_space = (int *)calloc( STORESIZE, sizeof(int) );
27:          if( ptr_begin_space == NULL )
28:              printf( “Unable to allocate space on iteration %d\n”, i );
29:          else
30:          {
31:              for( j=0; j<STORESIZE; j++ )
32:                  *(ptr_begin_space+j) = j;
33:          }
34:
35:          ptr_another_space = (int *)calloc( STORESIZE, sizeof(int) );
36:          if( ptr_begin_space == NULL )
37:              printf( “Unable to allocate space on iteration %d\n”, i );
38:          else
39:          {
40:              for( j=0; j<STORESIZE+1; j++ )
41:              {
42:                  ptr_another_space[j] = j;
43:              }
44:          }
45:          free( ptr_another_space );
46:          *ptr_another_space = 7;
47:          free( ptr_another_space );
48:          *ptr = 5;
49:      }
50:      return 0;
51:  }

code snippet Chapter8\MemoryErrors.cpp

SUMMARY

Eliminating parallel-type errors such as deadlocks and data races from programs has always been 
a major problem. As programs become increasingly complex, the ability to fi nd and eliminate such 
problems becomes more diffi cult. In addition, you have to overcome all the extra problems that 
can be created when running parallel concurrent code. The greatest obstacle to solving these prob-
lems is fi nding them in the fi rst place. Many problems can be subtle in their operation, showing 
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up only under ideal circumstances. Software tools that can fi nd all these types of errors become 
invaluable.

Intel Parallel Inspector XE is a sophisticated and versatile tool capable of fi nding a wide range of 
potential problems within both parallel and serial programs. Its fl exibility and the presentation of its 
results make it a powerful tool for developers. This chapter has demonstrated just some of Inspector 
XE’s capabilities. The case studies in Part III will amplify these capabilities even further.

The next chapter shows how to use Amplifi er XE to tune the parallelism in your programs.
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9
Tuning Parallel Applications

WHAT’S IN THIS CHAPTER?

 � Using Amplifi er XE to profi le a parallel program

 � The fi ve tuning steps 

 � Using the Intel Software Autotuning Tool

Chapters 6–8 described the fi rst three steps to make your code parallel — analyze, implement, 
and debug. This chapter discusses the fi nal challenge — tuning your parallel application so 
that it is load-balanced and runs effi ciently.

The chapter begins by describing how to use Amplifi er XE to check the concurrency of your 
parallel program, and then shows how to detect and tune any synchronization problems. The 
chapter concludes by describing the experimental Intel Software Autotuning Tool (ISAT).

Note that all the screenshots and instructions in this chapter are based on Windows XE; 
however, you can run the hands-on activities on Linux, as well.

INTRODUCTION

Amplifi er XE provides two predefi ned analysis types to help tune your parallel application:

 � Concurrency analysis — Use this to fi nd out which logical CPUs are being used, to 
discover where parallelism is incurring synchronization overhead, and to identify 
potential candidates for further parallelization.

 � Locks and Waits analysis — Use this to identify where your application is waiting on 
synchronization objects or I/O operations, and to discover how these waits affect your 
program performance.
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In this chapter, you use the Concurrency analysis as the main vehicle for parallel tuning. If your 
program has a lot of synchronization events, you may fi nd the Locks and Waits analysis useful. 
Because both of these analysis types run in user mode, you can use them on both Intel and non-Intel 
processors. 

Figure 9-1 shows the different tuning steps carried out in this chapter. You should have already fi xed 
any data races and deadlocks (refer to Chapter 8, “Checking for Errors”) before starting to tune 
your parallel application. 

1. Defining a

Baseline

2. Identifying

Concurrency Hotspots

Activity 9-1

Activity 9-3

Activity 9-4

Activity 9-5

Activity 9-2

3. Analyzing the

Timeline

4. Analyzing an

Algorithm

5. Conducting Further

Analysis and Tuning

FIGURE 9-1: The fi ve steps for tuning parallel applications

DEFINING A BASELINE

The fi rst step to undertake for any performance tuning is to create a baseline to compare against. 
Ideally, the baseline test should give the same results each time you run it; otherwise, it would be 
very diffi cult to be certain that an improvement in performance is not just due to some random 
behavior of your program or system.

Ensuring Consistency

If the program you are testing gives wildly different results, try the following:

 � Turn off Turbo Boost, speed-step, and hyper-threading in the BIOS of your computer (but 
do not turn off multi-core support). These options can cause huge variations from one run 
to the next of your program. For more discussion on this point, see Chapter 4, “Producing 
Optimized Code.” Once you have fi nished performance tuning, you should remember to turn 
these features back on.

 � If possible, disable any antivirus software. If this is not possible, run your program twice 
after each rebuild. Often the antivirus software will kick in only on the fi rst run of a 
program.

 � Run the program more than once, and take an average result of any timing values.
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Measuring the Performance Improvements

When tuning parallel programs you need to keep an eye on two things:

 � The total time the program runs (assuming time taken is the key performance measure).

 � Performance improvements of the parallel part of the program within your code.

In the prime numbers example used in this chapter (ParallelPrime.cpp, from Listing 9-4 at the 
end of the chapter), three different timing values are available: 

 � The time it takes to calculate the prime numbers, as printed out in the program.

 � The elapsed time, as recorded by Amplifi er XE.

 � The time taken to execute the parallel region, as recorded by Amplifi er XE.

Most of the time you should concentrate on performance improvements of the parallel region, but 
remember to keep an eye on the other fi gures as well.

Measuring the Baseline Using the Amplifi er XE Command Line 

You can use the command-line version of Amplifi er XE to profi le your code and produce a report. If 
you like, you can then look at the results generated from the command line with the GUI version of 
Amplifi er XE.

In Activity 9-1 you build and test a program that calculates prime numbers. The program has been 
parallelized using the OpenMP method. Once the test program has been built, the following com-
mand produces a concurrency report, which in this case is the result of running the application on a 
12-core machine. Your report may be different.

amplxe-cl -collect concurrency ./9-1.exe
100%
Found     13851 primes in  7.7281 secs
Using result path ‘C:\CH9\r000cc’
Executing actions 75 % Generating a report
Summary
-------

Average Concurrency:  0.975
Elapsed Time:         8.028
CPU Time:             55.051
Wait Time:            85.423
Executing actions 100 % done

You can see that:

 � The Average Concurrency — the measure of how many threads were running in 
parallel — is very poor. In fact, the program has effectively been serialized. 

 � The Elapsed Time — the total time for the program to run — was just over eight seconds. 
This includes a slight overhead introduced by the act of profi ling.
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 � The program has more Wait Time than CPU Time. Wait Time is the amount of time the 
threads are waiting for a resource. CPU Time is the sum of the time each core has spent 
executing code.

You can use the Amplifi er XE command-line interface to generate a hotspot report. The example 
shown in Figure 9-2 generates a hotspot report, with the results grouped by openmp-task. This is a 
convenient way of seeing how much time the parallel for loop (in lines 51–60 of ParallelPrime
.cpp) took. 

FIGURE 9-2: A command line hotspot report

Notice that no results folder is passed to Amplifi er XE, which causes Amplifi er XE to use the most 
recently generated results.

From the results, you can see the following:

 � The parallel region consumes most of the execution time of the program. This is good; it 
means that any improvement you make in the parallel section of the code will positively 
impact the performance of the whole program.

 � The concurrency rate of the parallel region is Poor. A well-tuned parallel program should 
have a concurrency of at least OK.

 � For 20 percent of the time, the parallel region is Idle. A well-tuned parallel program ideally 
should have no Idle time.

ACTIVITY 9-1: DEFINING A BASELINE

In this activity you build the code from Listings 9-4 and 9-5 and use Amplifi er XE 
to look at how parallel the resulting program is. You can run this activity on Linux 
or Windows. 

Building and Running the Program

 1. Copy the source code in Listing 9-4 into a fi le named ParallelPrime.cpp, 
and the source code in Listing 9-5 into a fi le named wtime.c. 

 2. Build the program with the following command:

WINDOWS 

icl /O2 /Zi /Qopenmp /Ob1 ParallelPrime.cpp wtime.c -o 9-1.exe
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LINUX

icc -O2 -g -openmp -inline-level=1 ParallelPrime.cpp wtime.c -o 9-1.exe 
The option /Zi (-inline-level=1) 

 3. Run the program and record the time taken: 

9-1.exe

 4. If the program does not run for about two to three seconds, edit the value in 
the #define LAST statement in ParallelPrime.cpp and rebuild and run the 
program until it runs for about two seconds.

#define LAST 300000

Using the Command-Line Version of Amplifi er XE to Get a Timestamp

 5. Start the command-line version of Amplifi er XE, and record the elapsed time 
and average concurrency:

amplxe-cl -collect concurrency ./9-1.exe 

Make a note of the results directory (for example, r000cc). You will need this 
for Activity 9-2.

 6. Generate a report and record the amount of time that is spent in the OpenMP 
parallel region:

amplxe-cl -report hotspots -group-by openmp-task

IDENTIFYING CONCURRENCY HOTSPOTS

Having created a baseline of your parallel application, you can start looking at the performance in 
more detail by examining how well the program is using the CPU cores. You can try this out for 
yourself in Activity 9-2.

Thread Concurrency and CPU Usage

Thread concurrency and CPU usage will help you get a good feel for how parallel your 
program is. 

 � Thread concurrency is a measure of how many threads are running in parallel. Ideally, the 
number of threads running in parallel should be the same as the number of logical cores your 
processor can support. 

 � CPU usage measures how many logical cores are running simultaneously. 

Figure 9-3 shows the thread concurrency of the application when it is run on a 12-core Windows-
based workstation. As you can see, it runs with a low concurrency, with most of the time no threads 
running concurrently. The concurrency information is split into four regions — Poor, OK, Ideal, and 
Over — and are colored red, orange, green, and blue, respectively (albeit not shown in the fi gure). 
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You can change the crossover point between each region by highlighting and dragging the triangu-
lar shaped cursors that are positioned just below the horizontal bar.

FIGURE 9-3: Concurrency of the Windows application

Figure 9-4 shows the CPU usage of the baseline program on Windows. It shows the length of time 
when various numbers of CPUs were running concurrently. For example, for almost a second no 
CPUs were running, and for approximately 1.3 seconds two CPUs were running concurrently. 
Ideally, there would be a single entry showing 12 CPUs running all the time. In this case you can see 
that not all the CPUs were in use all the time. The dotted vertical line indicates that the average 
concurrent CPU usage is almost 7. 

FIGURE 9-4: CPU usage of the Windows application

Identifying Hotspots in the Code

The Bottom-up view of the analysis shows the main hotspots in the system (see Figure 9-5).  

The largest hotspot is the PrintProgress function, with most of the bar colored red. When you 
tune any parallel code, your goal is to get the colored bar to be green, indicating that the concur-
rency is ideal.
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Double-clicking the hotspot brings up the Source view of the hotspot (see Figure 9-6). 

FIGURE 9-5: Source code view of CPU usage

FIGURE 9-6: The biggest hotspot in the code

Notice the following:

 � The PrintProgress function has three hotspots, at lines 18, 19, and 22. Line 18 is the big-
gest hotspot, with a CPU Time of just over 46 seconds. 

 � Lines 18 and 22 have signifi cant amounts of Wait Time by Utilization. This is discussed more 
in the section “Analyzing the Timeline.”

 � The stack pane (on the right) reports fi ve stacks, and that the current stack contributes 
to 80.2% of the hotspot. If you toggle through the fi ve stacks, by clicking the arrow (next to 
“1 of 5”), the other stacks are reported as contributing 10.1%, 7.6%, 2.0%, and 0.1%. In 
this program, the call stack information is not needed for tuning purposes, but you may fi nd 
it useful when you analyze other programs.
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ACTIVITY 9-2: IDENTIFYING THE CONCURRENCY HOTSPOTS

In this activity you use the GUI version of Amplifi er XE to examine the results 
from Activity 9-1. You can run this activity on Linux or Windows.

 1. Open the GUI version of Amplifi er XE, using the results directory that you 
noted in step 5 of Activity 9-1:

amplxe-gui r000cc

 2. Look at the Thread Concurrency Histogram and the CPU Usage Histogram in 
the Summary page. (This page will have automatically been displayed in step 1 
of this activity.)

 3. Display the Bottom-up page by clicking the Bottom-up button, and make note 
of the biggest hotspot. You will see that most of the time, the hotspot is identi-
fi ed as being Poor. (The horizontal bar will be red.)

 4. Look at the timeline view. Notice that there are many transition lines. 

 � Highlight a small part of the timeline.

 � Right-click and select Zoom in on Selection.

 � Repeat these steps until you can see about a dozen or so transitions.

 � Hover the mouse over some of the transition lines and identify which 
type of transition is occurring.

 5. Double-click the main hotspot (in the top pane), and fi nd out which line of 
code is responsible for the hotspot.

 6. Toggle through the different stacks by clicking the arrow and see what per-
centage the other stacks contribute to the hotspot.

ANALYZING THE TIMELINE

You can use the timeline of an analysis to better understand how your program is behaving. 
Figure 9-7 shows the timeline of the baseline application. You can glean further information about 
the program from four distinct areas of the display:

 � In the list of threads (the left-hand side) are twelve OpenMP worker threads plus one master 
thread. Not all the worker threads are displayed, but you can see them by either scrolling 
down or resizing the timeline pane.

 � Each horizontal bar gives more information about the runtime behavior of each thread. You 
can see when a thread is running or waiting. A running thread is colored dark green, and a 
waiting thread is colored light green. You can also see the transitions between threads. There 
are so many transitions that the whole of the timeline appears as a solid block of yellow. You 
can always turn the transitions off by unchecking its box on the right.
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 � The CPU Usage chart shows that most of the CPUs are used all the time, but nine rather 
interesting dips where the CPU usage drops dramatically.

 � The Thread Concurrency bar is empty (that is, no concurrency). It seems that for most of 
the time, the program is running serially — a fact you already know from the summary 
analysis.

FIGURE 9-7: The application timeline

Questions to Answer

From the information in the timeline, you need to answer three questions:

 � Why are there so many transition lines?

 � Why is the concurrency so poor?

 � What is the cause of the dips in the CPU usage?

The last question is answered in the section, “Analyzing an Algorithm.”

When you analyze your own programs, you may see other patterns that need more exploration. The 
important thing is that you make sure you understand all the patterns you see.

The poor concurrency and the reason for the many transition lines can be deduced from a zoomed-
in view of the timeline (see Figure 9-8). There is only ever one thread running at any time; the other 
threads are waiting. Between each thread is a transition line. If you hover your mouse over a transi-
tion line, details about that transition are displayed (as in the fi gure), which show that a critical 
section is involved. 

FIGURE 9-8: Zooming in on the transitions

c09.indd   259c09.indd   259 3/26/2012   12:11:20 PM3/26/2012   12:11:20 PM



Blair-Chappell   c09.indd   V3 - 03/14/2011 Page 260

260 x CHAPTER 9  TUNING PARALLEL APPLICATIONS

Fixing the Critical Section Hotspot

If you double-click the transition line, the source code of the object is displayed (the same source 
code that you have already seen in Figure 9-6).

The #pragma omp critical construct is used to protect the reading and writing of the gProgress 
shared variable that is being incremented. Without the critical section, there would be a data race. 
A variable can be incremented much more effi ciently by using an atomic operation.

The following code shows how you can use the #pragma omp atomic construct to protect the incre-
menting of gProgress. The reading of gProgress at line 19 does not need protecting, because a 
data race occurs only when there are unsynchronized reads and writes. Reading shared variables 
will not cause data races.

// old code
16:  #pragma omp critical
17:  {
18:    gProgress++;
19:    Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
20:  }    

// new code
16:  #pragma omp atomic
17:  gProgress++;
18:
19:  Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
20:

With the fi x in place, running a new analysis shows an improvement, as shown in Table 9-1. The 
program now has a much shorter elapsed time, and the CPU time used in the parallel part of the 
code has reduced by a factor of almost eight. You can try out Activity 9-3 to see these results for 
yourself. Often solving simple problems involving just a few of the many lines of program’s code can 
result in large improvements in its operation. 

TABLE 9-1: The Results of Replacing the Critical Section with an Atomic Operation

METRIC ORIGINAL WITH ATOMIC 

Average Concurrency 0.975 0.715

Elapsed Time 8.028 2.777

CP U Time 55.051 7.441

Wait Time 85.423 28.418

Parallel Region CPU Time 54.901 7.090

Parallel Region Idle Time 15.739 3.432
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ACTIVITY 9-3: ANALYZING THE TIMELINE

In this activity you use the GUI version of Amplifi er XE to examine the timeline 
from Activity 9-1, and fi x a synchronization problem identifi ed. You can run this 
activity on Linux or Windows.

 1. If the GUI version of Amplifi er XE is not already open, open it using the 
results directory that you noted in step 5 of Activity 9-1: 

amplxe-gui r000cc

 2. Display the Bottom-up page by clicking the Bottom-up button.

 3. In the timeline pane, keep expanding the view until you can clearly see the 
individual transition lines. You should see that only one thread is ever running 
at any one time.

 4. Hover your mouse over a transition line and read the information displayed.

 5. Double-click the transition line, which should take you to the source lines.

 6. In ParallelPrime.cpp, edit lines 16 to 20 so that they look the same as the 
following:

16:  #pragma omp atomic
17:  gProgress++;
18:
19:  Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
20:

 7. Rebuild and run the modifi ed program (see steps 2–6 of Activity 9-1). Record 
the name of the results directory; you will need it in Activity 9-4.

 8. Compare the results from Activity 9-1 with your new results. Your results 
should be similar to Table 9-1. 

In the next step, you explore the dips in the CPU usage, which look like they might be caused by a 
fl aw in the algorithm of the program. 

ANALYZING AN ALGORITHM

In Figure 9-7 you saw nine distinct dips in the CPU usage. Once you have fi xed the data race by 
adding the #pragma omp atomic, the dips are less pronounced but are still clearly visible (see 
Figure 9-9).

To see what is causing the dips, zoom in and fi lter on the timeline (see Figure 9-10). Notice that the 
call stack mode on the bottom right has been set to user + 1 so that the function calling the hotspot 
is also displayed. You can see that the hotspot is the printf function, which has a high Wait Time 
by Utilization. Notice that all the threads are mostly light green, indicating that they are in a wait-
ing state, with just OMP Worker Thread #4 showing some activity in the middle of the timeline. 
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FIGURE 9-9: The timeline after the atomic operation has been introduced

FIGURE 9-10: Examining the CPU usage dips

Looking at the code that calls printf in the function PrintProgress, you can see that whenever 
the percent value is a multiple of 10, printf is called: 

21:   if( Percent % 10 == 0 )
22:     printf(“%s%3d%%”, CursorBack,Percent);

The intention is to display the progress on the screen after each 10 percent increment of work.

Looking at the length of the timeline, you can see that it has a length of approximately 0.13 
seconds — an awfully long time to do one printf! You should suspect that something is wrong with 
this code and is causing the nine dips in CPU usage. 

When you fi nd a section of code that may be causing a problem, one quick test you can try is to 
comment out the code and see what difference it makes. Figure 9-11 shows the timeline of the 
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application with lines 21 and 22 commented out. You can see that the dips in CPU usage have disap-
peared, confi rming that lines 21 and 22 were the cause.

FIGURE 9-11: The application timeline with the printf removed

Amplifi er XE will not tell you how to fi x problems with your program algorithms, but it will let you 
observe any odd behavior. 

In lines 21 and 22, the problem is caused because the printf is not only called when you fi rst reach 
a percent value that is divisible by ten, but that it is then repeatedly called until Percent % 10 == 0 
evaluates to false.

By modifying the code to look like Listing 9-1 (as you’ll do in Activity 9-4), printf should be called 
only once on each 10 percent increment; the changes to the code are highlighted:

LISTING 9-1: The modifi ed PrintProgress function

12:  // Display progress
13: void PrintProgress(int Range )
14: {
15:   int Percent = 0;
16:   static int lastPercentile = 0;
17:   #pragma omp atomic
18:   gProgress++;
19:   Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
20:   if( Percent % 10 == 0 ) 
21:   {
22:     // we should only call this if the value is new!
23:     if(lastPercentile < Percent / 10)
24:     {
25:       printf(“%s%3d%%”, CursorBack,Percent);
26:       lastPercentile++;
27:     }
28:   }
29: }

code snippet Chapter9\9-1.cpp
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ACTIVITY 9-4: ANALYZING AN ALGORITHM

In this activity you use the GUI version of Amplifi er XE to examine the timeline 
from Activity 9-1, and fi x a synchronization problem identifi ed. You can run this 
activity on Linux or Windows.

Examining the CPU Utilization Dip

 1. Open the GUI version of Amplifi er XE, using the results directory that you 
noted in step 8 of Activity 9-3. (You should replace r000cc with your results 
directory name.)

amplxe-gui r000cc

 2. Display the Bottom-up page by clicking the Bottom-up button.

 3. In the Timeline pane:

 � Select one of the dips in the CPU utilization.

 � Right-click and select Zoom in and Filter by Selection.

 � Change the call stack mode (see bottom right of screen) to user 
“functions + 1.”

You should fi nd that the function involved in the selected timeline is printf, 
with most threads in a waiting state.

 4. (Optional) If you like, prove that the printf function is the problem by 
commenting out lines 21 and 22 of ParallelPrime.cpp, and then rebuild and 
rerun the analysis. 

Correcting the Problem

 5. In ParallelPrime.cpp edit the PrintProgress function so that it looks the 
same as Listing 9-1.

 6. Rebuild and run the modifi ed program (see steps 2–6 of Activity 9-1).

 7. Open the GUI version of Amplifi er XE, using the results directory that you 
noted in step 6. (You should replace r000cc with your results directory name.)

amplxe-gui r000cc

 8. Display the Bottom-up page by clicking the Bottom-up button. Look at the 
timeline. The dips in the CPU usage should have disappeared.

CONDUCTING FURTHER ANALYSIS AND TUNING

You’ve already carried out some analysis of the code and fi xed two programming problems. With 
the two problems in PrintProgress fi xed, a new Concurrency analysis will reveal a different part 
of the code GetPrimes$omp$parallel_for@57 as the biggest concurrency hotspot (see Figure 9-12). 
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FIGURE 9-12: The new concurrency hotspot

Double-clicking the hotspot GetPrimes$omp$parallel_for@57 in the Bottom-up page reveals that 
the hotspot is in a critical section in the function GetPrimes, as shown in Figure 9-13. Notice that 
the line numbers in the fi gure no longer match those of Listing 9-4 due to the changes made in pre-
vious sections.  The GetPrimes function increments through every even number between a Start 
value and an End value, and tests to see if each number is a prime number by calling the IsPrime 
function.

FIGURE 9-13: Source code of the new concurrency hotspot

The critical section is applied to line 57, where the global variable gNumPrimes is incremented, and 
then used as an index so that the current prime (held in the variable i) can be stored into the global 
array gPrimes.

By now you should know what you can do to fi x this — use an atomic instruction instead of the 
#pragma omp critical. By splitting the line into two lines, you can apply a #pragma omp 
critical to the incrementing of gNumPrimes:

// old code
56:       #pragma omp critical
57:       gPrimes[gNumPrimes++] = i;

// new code
56:       #pragma omp atomic
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57:       gNumPrimes++;
58:       gPrimes[gNumPrimes] = i;

After you implement this code, a new analysis shows a further improvement in performance. 
Table 9-2 shows the performance improvement of the parallel region over the last three code 
changes that have been made. 

TABLE 9-2: Performance Improvements 

VERSION TIME IN PARALLEL REGION 

(SECONDS)

COMMENTS

Original 8.308

#1 2.847 Replaced critical with atomic in PrintProgress

#2 0.403 Rewrote PrintProgress

#3 0.015 Replaced critical with atomic in GetPrimes

Figure 9-14 shows the timeline of the parallel region. The darker part of the horizontal bars 
represents the time that the threads are running. Each of the start and end points of the thread are 
staggered; when you see such a pattern, it probably means there is scope for further tuning.

FIGURE 9-14: Timeline of the parallel region before tuning

You can use a schedule clause with the #pragma parallel for to try to improve the load balanc-
ing. (The schedule clause was discussed in Chapter 7, “Implementing Parallelism.”)

Most developers experiment with the different schedule clauses, keeping the one that produces the 
best results. Listing 9-2 shows a new listing of the GetPrimes function with the previous changes 
and the schedule clause added. The ISAT tool was used to fi nd the best combination of schedule 
type and chunk size. You’ll read more about ISAT later in this chapter. 
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LISTING 9-2: The GetPrimes function with the schedule clause

void GetPrimes(int Start, int End)
{
  // Make Start to always be an even number
  Start += Start %2;

  // If Start is 2 or less, then just record it
  if(Start<=2) gPrimes[gNumPrimes++]=2;

  #pragma omp parallel for schedule(guided,512) num_threads(12)
  for( int i = Start; i <= End; i += 2 )
  {
    if( IsPrime(i) )
    {
      #pragma omp atomic
      gNumPrimes++;
      gPrimes[gNumPrimes] = i;
    }
    PrintProgress(End-Start);
  }
}

code snippet Chapter9\9-2.cpp

Figure 9-15 shows the results of the schedule clause. Note the following:

 � All the threads stop running at about the same time. 

 � The length of the parallel region is now shorter (0.010 seconds compared with 0.015 
seconds).

 � The start of the threads is still staggered. Between each thread starting there is about a 1ms 
delay (0.001 seconds). This is probably a feature of the OpenMP run time that cannot be 
changed.

FIGURE 9-15: Timeline of the parallel region after tuning
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Using Other Viewpoints 

The only analysis type you have used so far is the Concurrency analysis. Within this analysis you 
can change the viewpoint to see the information captured with differing emphasis.

Figure 9-16 shows the viewpoints available:

 � Hotspots

 � Hotspots by CPU Usage

 � Hotspots by Threading Concurrency

 � Locks and Waits

You can access this menu by clicking on the spanner icon. In your version of Amplifi er XE, addi-
tional viewpoints may be available.

FIGURE 9-16: The menu to switch viewpoints

Using Locks and Waits Analysis

In addition to changing viewpoints, you can use other analysis types. Using the Locks and Waits 
analysis will give you slightly more information than a locks and waits viewpoint available from the 
Concurrency analysis.

Here’s an example of running the Locks and Waits analysis from the command line: 

amplxe-cl -collect locksandwaits ./9-1.exe
100%
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Found     13851 primes in  7.6617 secs
Using result path `C:\dv\CH9\Release\r001lw’
Executing actions  0 % Finalizing results
Executing actions 75 % Generating a report
Summary
-------

Average Concurrency:  0.912
Elapsed Time:         7.940
CPU Time:             53.586
Wait Time:            85.153
Executing actions 100 % done

Once you have run the Locks and Waits analysis, you can view the results using the GUI version of 
Amplifi er XE:

amplxe-gui r001lw

Figure 9-17 shows the analysis of the application in Listing 9-4 (without all the corrections you 
made earlier) using the Locks and Waits analysis. One of the differences between this analysis and a 
Concurrency analysis is that the hotspots are presented using synchronization objects. The fi rst two 
synchronization objects listed are both critical sections. Notice that the Spin Times of the fi rst four 
objects are shaded. A spinning thread is one that is executing code in a tight loop, waiting for some 
resource to become available. While the thread is spinning it is consuming CPU time, but it is not doing 
any useful work. Amplifi er XE shades the values to warn you that the values are unacceptably high.

FIGURE 9-17: The hotspots of a Locks and Waits analysis

Other Analysis Types

You can also use other analysis types to help tune your application. Apart from the user analysis 
types mentioned in this chapter, you can also use Hotspot analysis (described in Chapter 6, “Where 
to Parallelize”) and event-based sampling (described in Chapter 12, “Event-Based Analysis with 
VTune Amplifi er XE”).
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ACTIVITY 9-5: FURTHER ANALYSIS AND TUNING

In this activity you fi x a synchronization overhead in the code, and then tune the 
OpenMP parallel loop.

Analyzing the New Hotspot

 1. Using the Amplifi er XE Concurrency analysis that you already have open 
(from Activity 9-4), click the Bottom-up button and examine the hotspots.

 2. Double-click the biggest hotspot and confi rm that it is in the GetPrimes 
function.

 3. In ParallelPrime.cpp, edit the GetPrimes function so that it looks like this. 
(Your line numbers may be different.)

// old code
56:       #pragma omp critical
57:       gPrimes[gNumPrimes++] = i;

// new code
56:       #pragma omp atomic
57:       gNumPrimes++;
58:       gPrimes[gNumPrimes] = i;

 4. Rebuild and run the modifi ed program (see steps 2–6 of Activity 9-1). 
Amplifi er XE will automatically create a new results folder — make a note of 
its name. 

 5. Open the GUI version of Amplifi er XE, using the results directory that you 
noted in step 4. (You should replace r000cc with your results directory name.)

amplxe-gui r001cc

 6. Display the Bottom-up page by clicking the Bottom-up button. Look at the 
time taken in the parallel region. It should be about 20 times shorter than the 
results from Activity 9-4.

Tuning the OpenMP Parallel Loop

 7. Expand the timeline so just the parallel region is displayed. Notice that the 
start and end positions of the threads are staggered.

 8. In ParallelPrime.cpp, edit the GetPrimes function to add the schedule 
clause to the #pragma omp parallel for loop (so that it looks the same as 
Listing 9-2). 

 9. Rebuild and run the modifi ed program. (See steps 2–6 of Activity 9-1.)

 10. Open the GUI version of Amplifi er XE, using the results directory that you 
noted in step 9. (You should replace r000cc with your results directory name.) 

amplxe-gui r002cc
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 11. Display the Bottom-up page by clicking the Bottom-up button. Expand 
the timeline so just the parallel region is displayed. You should notice the 
following:

 � The running threads fi nish at about the same time.

 � The execution time of the parallel section is shorter than you saw in step 7.

USING THE INTEL SOFTWARE AUTOTUNING TOOL

The Intel Software Autotuning Tool (ISAT) is an experimental tool that you can use to automati-
cally tune Cilk, OpenMP, and TBB parallel code. You can download the tool from http://
software.intel.com/en-us/articles/intel-software-autotuning-tool. At the time of this 
writing, ISAT is available only for use in a Linux environment, although it may eventually be avail-
able for Windows as well.

ISAT works by automatically searching for the optimal values of program parameters that have a 
signifi cant impact on parallel performance. Parameters include scheduling policy and granularity 
within the OpenMP method, task granularity within the TBB method, and cache blocking factors in 
matrix-intensive applications.

You control which code should be tuned by inserting directives in the form of pragmas within your 
existing code. 

ISAT produces two outputs:

 � Source code with the best scheduling parameters automatically added

 � A graph of all the results (see Figure 9-18)

x_blksize

Tuned region=tr0

y_blksize

7

6.5

6

5.5

5

4.5

200
250

300
350

400
450

500
550

600
200

250
300

350
400

450
500

550
600

e(sec) 

7

6.5

6

5.5

5

4.5

e(sec)

FIGURE 9-18: Visualization of ISAT results
S ource: Intel
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Listing 9-3 shows the ISAT profi ling pragmas added to the ParallelPrime.cpp code. The fi rst 
pragma, #pragma isat tuning scope..., tells ISAT the names of the start and end of the code to 
be tuned (M_begin and M_end, respectively). The three variables in the pragma set the range of val-
ues to use for the schedule type, chunk size, and number of threads. For more information, refer to 
the help that is distributed with ISAT.

LISTING 9-3: The code with ISAT macros added

// NOTE: this pragma is written on ONE line
#pragma isat tuning scope(M_begin, M_end) measure(M_begin, M_end)
variable(@omp_schedule_type, [static,dynamic,guided])
variable(@omp_schedule_chunk, range(5, 10, 1, pow2))
variable(@omp_num_threads, range(1, $NUM_CPU_THREADS, 1)) search(dependent) 

// go through all numbers in range and see which are primes
void GetPrimes(int Start, int End)
{
  // Make Start to always be an even number
  Start += Start %2;

  int Range = End - Start; 
  // if start is 2 or less, then just record it
  if(Start<=2) gPrimes[gNumPrimes++]=2;

  #pragma isat marker M_begin
  #pragma omp parallel for
  for( int i = Start; i <= End; i += 2 )
  {
    if( IsPrime(i) )
    {
      #pragma omp atomic
      gNumPrimes++;

      gPrimes[gNumPrimes] = i;
    }
    PrintProgress(Range);
  }
  #pragma isat marker M_end
}

code snippet Chapter9\9-3.cpp

SOURCE CODE

Listing 9-4 is a badly tuned implementation of a parallel program that calculates the number of 
primes between two values, FIRST and LAST. As the values are calculated, the program prints a 
status message. The message is updated in 10 percent intervals. Listing 9-5 is a timing utility used to 
measure how long the program takes.
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LISTING 9-4: A parallel program to calculate prime numbers

1:  #include <stdio.h>
2:  #include <math.h>
3:  extern “C” double wtime();
4:  #define FIRST 1
5:  #define LAST 300000
6:  #define CursorBack “\b\b\b\b”
7:  // globals
8:  int gProgress  = 0;
9:  int gNumPrimes = 0;
10: int gPrimes[10000000];
11: 
12:  // Display progress
13: void PrintProgress(int Range )
14: {
15:   int Percent = 0;
16:   #pragma omp critical
17:   {
18:     gProgress++;
19:     Percent = (int)((float)gProgress/(float)Range *200.0f + 0.5f);
20:   }
21:   if( Percent % 10 == 0 )
22:     printf(“%s%3d%%”, CursorBack,Percent);
23: }
24:
25: // Test to see if a number is a prime
26: bool IsPrime(int CurrentValue)
27: {
28:   int Limit, Factor = 3;
29: 
30:   if( CurrentValue == 1 )
31:     return false;
32:   else if( CurrentValue == 2 )
33:     return true;
34: 
35:   Limit = (long)(sqrtf((float)CurrentValue)+0.5f);
36:   while( (Factor <= Limit) && (CurrentValue % Factor))
37:     Factor ++;
38: 
39:   return (Factor > Limit);
40: }
41:
42: // Go through all numbers in range and see which are primes
43: void GetPrimes(int Start, int End)
44: {
45:   // Make Start to always be an even number
46:   Start += Start %2;
47: 
48:   // If start is 2 or less, then just record it
49:   if(Start<=2) gPrimes[gNumPrimes++]=2;
50:

continues

c09.indd   273c09.indd   273 3/26/2012   12:11:26 PM3/26/2012   12:11:26 PM



Blair-Chappell   c09.indd   V3 - 03/14/2011 Page 274

274 x CHAPTER 9  TUNING PARALLEL APPLICATIONS

51:   #pragma omp parallel for
52:   for( int i = Start; i <= End; i += 2 )
53:   {
54:     if( IsPrime(i) )
55:     {
56:       #pragma omp critical
57:       gPrimes[gNumPrimes++] = i;
58:     }
59:     PrintProgress(End-Start);
60:   }
61: }
62:
63: int main()
64: {
65:   double StartTime = wtime();
66:   GetPrimes(FIRST, LAST);
67:   double EndTime = wtime();
68:    
69:   printf(“\nFound  %8d primes in %7.4lf secs\n”, 
70:       gNumPrimes,EndTime - StartTime);
71: }

code snippet Chapter9\ParallelPrime.cpp

LISTING 9-5: A function to fi nd the current time

#ifdef _WIN32  
#include <windows.h> 
double wtime() 
{ 
  LARGE_INTEGER ticks; 
  LARGE_INTEGER frequency;
  QueryPerformanceCounter(&ticks);
  QueryPerformanceFrequency(&frequency);
  return (double)(ticks.QuadPart/(double)frequency.QuadPart); 
}  
#else  
#include <sys/time.h> 
#include <sys/resource.h>  
double wtime() 
{     
  struct timeval time;     
  struct timezone zone;     
  gettimeofday(&time, &zone);     
  return time.tv_sec + time.tv_usec*1e-6; 
}  
#endif

code snippet Chapter9\wtime.c

LISTING 9-4 (continued)
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SUMMARY

This chapter showed how you can use Amplifi er XE to help tune a parallel program. Using 
Amplifi er XE’s predefi ned analysis types, you can quickly fi nd out how much concurrency your 
program exhibits and observe how well any synchronization objects are performing.

The examples in the chapter used OpenMP, but you can use Amplifi er XE to profi le Cilk Plus, TBB, 
and native threading code as well.

The next chapter shows how to model parallelism in your code using Intel Parallel Advisor.
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10
Parallel Advisor–Driven Design

WHAT’S IN THIS CHAPTER?

 � Using Parallel Advisor

 � Surveying the application

 � Adding annotations

 � Assessing suitability

 � Checking for correctness

 � Moving from annotations to parallel implementations

This chapter introduces a parallel development cycle that uses Intel Parallel Advisor. Advisor 
helps programmers become more productive, because it reveals the potential costs and benefi ts 
of parallelism by modeling (simulating) this behavior before programmers actually implement 
the parallelism in their code. 

USING PARALLEL ADVISOR

The problem that Advisor helps you solve is to parallelize existing C/C++ programs to obtain 
parallel speedup. Advisor’s value is increased productivity; it enables you to quickly and easily 
experiment with where to add parallelism so that the resulting program is both correct and 
demonstrates effective performance improvement. The experiments are performed by model-
ing the effect of the parallelism, without adding actual parallel constructs.

Advisor is a time-tested methodology for successfully parallelizing code, along with a set of 
tools to provide information about the program. Advisor has several related personas:

 � A design tool that assists you in making good decisions to transform a serial algorithm 
to use multi-core hardware
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 � A parallel modeling tool that uses Advisor annotations in the serial code to calculate what 
might happen if that code were to execute in parallel as specifi ed by the annotations inserted 
by the user

 � A methodology and workfl ow to educate users on an effective method of using parallel 
programming

The objective of parallelization is to fi nd the parallel program lurking within your serial pro-
gram. The parallelism may be hiding due to the serial program being over-constrained — for 
example, having read-write global variables that cause no problems for serial code but inhibit 
parallelism. 

Advisor is not an automatic parallelization tool. It is aimed at code that is larger and messier than 
simple loop nests. Instead, it guides you through the set of decisions you must make, and provides 
data about your program at each step. In summary, Advisor provides a lightweight methodology 
that allows you to easily experiment with parallelism in different places. 

Your parallel experiments with Advisor may all fail, which can be a blessing in disguise — you can 
avoid wasting time trying to parallelize an inherently serial algorithm. You may need to investigate 
alternative algorithms that can be parallelized, or just leave your program serial and investigate 
serial optimizations.

Who can use Advisor?

 � Architects — To design where introducing parallelism will provide the best return on invest-
ment (ROI): improved performance for a reasonable development cost.

 � Developers — To discover opportunities for parallelization and modify the program to make 
it parallel-ready. A program is parallel-ready when there is a predicted parallel speedup and 
no predicted data-sharing (correctness) issues exist.

The key technology in Advisor is the use of parallel modeling of the serial program. You don’t 
actually add parallelism to your code — you just indicate where you want to add it and the Advisor 
tools model how that parallel code would behave. This is a huge advantage over having to imme-
diately add parallel constructs. Your still-serial program doesn’t crash or produce incorrect results 
because of incorrect and likely nondeterministic parallel execution (such as unprotected data sharing 
among tasks). Test suites generate identical results, because your serial program will not show the 
nondeterminism caused by parts of the program running in different orders due to parallelism. This 
also enables you to refactor your program to remove data-sharing errors and make it parallel-ready, 
while it is still serial.

Advisor does have some disadvantages, compared with plunging ahead and immediately adding par-
allel constructs:

 � You have to add annotations to describe where you want to experiment with parallelism. 
Later, you convert them to parallel constructs.

 � Analyzing (modeling) the correctness of the pretend tasks’ use of shared memory can be 
signifi cantly slower than the program’s normal execution time. Not only do you use a 
Debug build, but the Correctness tool also must instrument and track every load and store 
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as the program runs to detect these kinds of errors. But it has the advantage of relatively 
quickly fi nding problems that are otherwise diffi cult to uncover using traditional debugging 
techniques.

 � The tools analyze your running program, so they tell you only about parts of the program 
that are actually executed. However, you would encounter this same limitation by attempting 
to introduce parallelism immediately.

Understanding the Advisor Workfl ow

Intel Parallel Advisor guides you through a series of steps (see Figure 10-1). In practice, program-
mers usually move back and forth between some of the steps until they achieve good results. 

Replace Annotations

Check Correctness
Annotate Code

Check Suitability

Survey Site

Start

FIGURE 10-1: The fi ve-step Advisor workfl ow

The Advisor Workfl ow tab guides you through these steps, 
highlighting the current step in blue (see Figure 10-2). The Start 
buttons are used to launch each analysis, and the Update buttons 
are used to re-run an analysis tool. You can view the results by 
pressing the blue right arrow button. 

The following fi ve basic steps help you fi nd hidden parallel 
programs:

 1. Use the Survey tool to determine where your program 
spends most of its time.

 2. Insert Advisor annotations into your source code, which 
indicate to the Advisor tools where you might like to use 
parallelism.

 3. Use the Suitability tool to determine whether these loca-
tions will provide suitable parallel speedups.

 4. Use the Correctness tool to discover which data depen-
dencies and shared data problems will occur with this 
parallelism, and then fi x them. Can you correctly tease 
a parallel program out of the serial one? If you modify 
the annotations or source code, you need to run the 
Suitability and Correctness tools again.

 5. Convert your serial program to a parallel program by 
replacing annotations with parallel constructs.

Now that you have a parallel program, you can apply the rest of 
Parallel Studio.

FIGURE 10-2: The Advisor 

Workfl ow tab
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You can follow several strategies for investigating multiple parallel region (site) opportunities:

 � Depth-fi rst — Take a region through all steps before picking another region; you can focus 
on the behavior of one region of code.

 � Breadth-fi rst — Take all regions through the steps together; you can focus on the purpose 
and information provided by each tool.

 � Modifi ed depth-fi rst — Take each region through the fi nal correctness checking step, and 
then convert all regions to parallel constructs together; your program remains serial for as 
long as possible, preserving the benefi t of identical test suite results.

Finding Documentation

Advisor provides copious documentation, which you can access in one of the following ways:

 � Help Í Intel Parallel Studio 2011 Í Parallel Studio Help Í Advisor Help

 � Help Í Intel Parallel Studio 2011 Í Getting Started Í Advisor Tutorial

 � The Workfl ow tab and its hot links into Advisor help

 � Visual Studio context-sensitive F1 help

 � Right click in any Advisor report, and choose “What should I do next?” 

Getting Started with the NQueens Example Program

This chapter uses the NQueens example program that ships with Advisor to demonstrate how 
Advisor works. Listing 10-1 shows the two functions, setQueen() and solve(), that are the focus 
of the analysis.

LISTING 10-1: The setQueen() and solve() functions 

void setQueen(int queens[], int row, int col) 
{
    int i = 0;
    for (i=0; i<row; i++) {
        // vertical attacks
        if (queens[i]==col)
        return;
        // diagonal attacks
        if (abs(queens[i]-col) == (row-i) )
        return;
    }

    // column is ok, set the queen
    queens[row]=col;

    if (row==g_nsize-1)
    {
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        nrOfSolutions ++;
    }
    else {
        // try to fill next row
        for (i=0; i<g_nsize; i++)
            setQueen(queens, row+1, i);
    }
}

void solve(int size)
{
    g_nsize = size; 

    for(int i=0; i<g_nsize; i++)
    {
        // create separate array for each recursion
        int* pNQ = new int[g_nsize];

        // try all positions in first row
        setQueen(pNQ, 0, i);

        delete pNQ;
    }

}

The NQueens program computes the number of ways you can place n queens on an nxn chess-
board with none being attacked. It prints the result and the elapsed time. The program’s default 
value for n is 13. The NQueens algorithm proceeds in the following way. The loop in the 
solve() function places a queen in each of the size columns of the fi rst row, and then calls the 
setQueen() function to place queens in the remaining rows. The setQueen() function tries a 
queen in each column of the next row. If it doesn’t “fi t,” setQueen() goes to the next column. If 
more rows exist, it calls itself recursively on the next row; otherwise, a solution has been found 
and the nrOfSolutions global variable is incremented — and in these cases setQueen() also 
goes on to the next column.

You can fi nd the nqueens_Advisor.zip fi le that ships with Advisor in the Samples\<locale> 
folder in the Parallel Studio 2011 install folder, usually C:\Program Files\Intel\Parallel 
Studio 2011. Unzip the fi le into a writable folder. Start Visual Studio 2005, 2008, or 2010, and 
open the solution fi le nqueens_Advisor\nqueens_Advisor.sln in that folder; for VS 2008 or 
2010, the .sln fi le will be converted — follow the wizard’s directions.

Figure 10-3 shows the Advisor toolbar, which appears in 
the Visual Studio toolbar area. It provides one of the several 
ways of invoking Advisor and the Advisor tools.

You should start by opening the Workfl ow tab. In addition to 
using the toolbar, you can start the three analysis tools from 
the Workfl ow tab either by clicking the corresponding button 
or by selecting VS Tools Í Intel Parallel Advisor 2011.

FIGURE 10-3: The Advisor toolbar
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SURVEYING THE SITE

Recall the discussion of Amdahl’s Law in Chapter 1, “Parallelism Today,” which says that paral-
lel speedup is limited by the execution time of the portion of the program that remains serial. The 
obvious conclusion is that you need to discover where your serial program spends the most time and 
focus there in order to fi nd the most effective parallel speedup. 

This is what the Survey tool helps you do: it runs and profi les the program to show where the pro-
gram spends its time. 

Your goal in this step is to fi nd candidate parallel regions. You make the decisions — the Survey tool 
provides timing information and helps you navigate your program. You may already have candidate 
regions in mind, but run a Survey analysis anyway so that you have quantitative data about how 
much time is spent in each portion of the program. 

If you were doing serial optimization, you would fi nd hotspots that have the highest Self Time and 
reduce the time there (that is, by reducing the number of executed instructions). Looking elsewhere 
will not help serial execution time! 

In contrast, with parallel optimization you don’t need to focus just on a hotspot — you can also look 
along the chain of loops and function calls from the application’s entry point to the hotspot for can-
didate parallel regions that have high Total Time — time spent there and in called functions (includ-
ing the hotspot). This is because the objective of parallel optimization is to distribute the execution 
time (the executed instructions) over as many tasks/cores as possible. The parallel program typically 
executes more instructions than the serial program (due to task overhead), but it consumes less 
elapsed time because the work is spread among multiple tasks at the same time on multiple cores.

Running a Survey Analysis

To run a Survey analysis, begin by building a release confi guration of your program. For best 
results, turn on debug information so that the Survey tool can access symbols, and turn off inlining 
so that all functions in the source-level call chain appear in the Survey Report. Survey analysis has 
low overhead — it allows the program to execute at nearly full speed — so employ a data set that 
exercises the program the way it is normally used. Start the Survey analysis using the Advisor tool-
bar, Workfl ow tab, or the Tools Í Intel Parallel Advisor 2011 menu.

The Survey Report

The Survey Report for NQueens has several columns (see Figure 10-4):

 � Function Call Sites and Loops — Call/loop chains starting from the main entry point (upper 
left). All distinct chains appear, sorted by highest Total Time toward the top. You can use the 
[+] or [–] to open/close a call chain, respectively.

 � Total Time % (and Total Time) — The percentage of and actual elapsed time, respectively, 
spent in a function or loop and all functions called from this location (used to estimate the 
time that could be covered by a parallel region). 

 � Self Time — Elapsed time spent in only the function or loop (used to fi nd hotspots).

 � Source Location — The fi le name and line number of the function or loop.
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FIGURE 10-4: The Survey Report for NQueens

Finding Candidate Parallel Regions

The basic strategy is to look along hot call/loop chains in the Function Call Sites and Loops column 
from the upper left toward the lower right for candidate parallel regions:

 � Data parallelism — Loops can be promising parallel regions because if each instance of the 
loop body can be a task, then you naturally create numerous tasks (one per iteration) over 
which to distribute the execution. This is why the Survey Report displays loops as well as calls.

 � Task parallelism — Alternatively (or in addition on the same call/loop chain as a candidate 
loop), look for a high Total Time function F that makes direct calls to several functions G 
and H that also have high Total Times — for example, F: 60%, G: 40%, H: 20%. The calls 
to G and H could be put in two different tasks that can execute in parallel, assuming G and 
H are “independent.” This can provide scaling that seems to be limited to 2 cores (but see the 
following “nested parallelism” bullet).

 � Nested parallelism — Several candidate regions along the same call chain; inner parallel 
regions are “nested” within outer parallel regions. For example:

 � Several directly nested loops. If you select the m outer iterations and the n inner itera-
tions as tasks, there will be m*n parallel tasks executing the body of the inner loop.

 � Task parallelism in a recursive function. For example:

Qsort(array) {
    Partition array into [less_eq_array, ”center” element, greater_array];
    Qsort(less_eq_array);
    Qsort(greater_array);
    }

With task parallelism the two recursive Qsort calls occur in different tasks. At each 
level of the recursion you get 2, 4, 8, 16, … parallel tasks. So, with this recursive 
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decomposition you are not limited to a fi xed number of tasks, even though you see 
only two tasks in the source code.

 � Easy and hard cases — If you can fi nd a candidate parallel region that covers 90 percent of 
the total time you may be in good shape. In contrast, if you have ten candidates each cover-
ing 10 percent of the time, you may have to work harder to get the full parallel speedup.

The Survey Source Window

Double-clicking a loop or function call in the Survey Report takes you to the Survey Source win-
dow, which shows the source code to help you determine if this is a good parallel site (see Figure 
10-5). The information displayed includes:

 � Total Time — Shows the total time spent in a function. Values appear only on some 
statements. 

 � Loop Time — Represents the total time over all of the statements in a loop. The value 
appears on some statement in the loop, often the loop header. 

 � Call Stack with Loops — Shows the chain of calls used. You can navigate to the source for 
different locations in the stack by clicking the corresponding stack entry.

FIGURE 10-5: The Survey Source window

Double-click in the Survey Source window to enter the Visual Studio editor on the correspond-
ing fi le. Return to the Survey Report from the editor by selecting the My Advisor Results tab for 
the current Visual Studio project, or click the arrow icon in the “1. Survey Target” section of the 
Workfl ow tab. To return from Survey Source to the Survey Report, click the Survey Report button 
or the arrow icon.
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How Survey Analysis Works

When you start a Survey analysis, it runs the current program. Occasionally it takes a sample of 
where the program is executing, computing the call chain and also noting locations along the chain 
that are in a loop. When the program completes, the analysis scales the samples to determine the 
Self Time and the Total Time, sorts the call/loop chains by highest Total Time, and displays the 
Survey Report. Because the Survey Report employs coarse sampling, there is usually minimal slow-
down of the program. The coarse sampling is suffi cient because the Survey Report is trying to iden-
tify high-frequency events: hotspots and hot call chains.

ACTIVITY 10-1: SURVEYING THE NQUEENS APPLICATION

In this activity you will run a Survey analysis on the serial version of the NQueens 
application, and examine the resulting report.

 1. Unzip and open a copy of the NQueens example shipped with Parallel Studio 
2011. You should fi nd the project in

C:\Program Files (x86)\Intel\Parallel Studio 2011\Samples\en_US
\nqueens_Advisor.zip

or

C:\Program Files\Intel\Parallel Studio 2011\Samples\en_US
\nqueens_Advisor.zip

Notice that the solution has three projects, 1_nqueens_serial, 
2_nqueens_annotated, and 3_nqueens_cilk.

 2. Set the 1_nqueens_serial project to be the startup project, and build its 
release confi guration.

 3. Run the project without debugging; the window shows the results for 13 
queens and tells the elapsed execution time.

 4. Run a Survey analysis on the program.

 5. Explore the Survey Report.

 a. Open and close call/loop chains.

 b. Go to the Survey Source window and back.

 c. Go to the Survey Source window and to the editor, and back.

 6. Pick some candidate parallel regions in the nqueens_serial.cpp fi le and 
roughly estimate the parallel speedup on 4 cores. For example, if you pick a 
loop with 40% total time, it will take 10% on 4 cores, assuming perfect scal-
ing, plus 60% for the remaining serial portion, or (100%)/(10%+60%) 
= 1.4x).

 7. Extra credit: Look for a case of potential (recursive) nested parallelism.
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ANNOTATING YOUR CODE

You communicate to Advisor where you want to try candidate parallel regions by adding annota-
tions to your program. This section describes the parallel model that annotations simulate, the com-
mon annotations and parallel constructs they can represent, and how to add them to your program. 
Recall that Advisor is an inexpensive way to try parallelism in different places. Annotations are 
cheap — feel free to experiment!

Advisor’s Suitability and Correctness tools run your serial program and model how it would 
behave if it were parallel as specifi ed by the annotations — that is, they pretend it is running in 
parallel.

Site Annotations

Advisor tools model fork-join parallelism as expressed by the following Advisor annotations:

 � ANNOTATE_SITE_BEGIN(<site name>); — After you execute this annotation, subsequently 
created tasks belong to this site and pretend to run in parallel with other tasks of this 
site. This is sort of a pretend “fork” point, except tasks are not created until you execute 
ANNOTATE_TASK_BEGIN.

 � ANNOTATE_SITE_END(<same site name>); — Execution of SITE_END is a “join” point for 
all tasks created in this site; execution pretends to wait here until all owned tasks have com-
pleted — that is, the tasks do not run in parallel with code at the same syntactic level following 
the SITE_END. Note that if the site is (dynamically) nested within another site, tasks of the nested 
site may run in parallel with other tasks belonging to the parent site.

 � ANNOTATE_TASK_BEGIN(<task name>); — Execution of TASK_BEGIN pretends that the code 
from here to the execution of the matching ANNOTATE_TASK_END(<same task name>); 
executes in parallel with other “tasks” belonging to the owning site.

 � ANNOTATE_TASK_END(<same task name>); — Execution of TASK_END simulates the com-
pletion of the execution of the corresponding named task.

Fork-join parallelism is suffi cient to model Intel Cilk Plus, OpenMP, and most of the parallel algo-
rithms in Intel Threading Building Blocks (TBB).  Following are some examples of Advisor annota-
tions for parallel regions:

 � Loop parallelism — To model that the bodies of all iterations of the loop may execute in par-
allel (also referred to as data parallelism):

ANNOTATE_SITE_BEGIN(big_loop);
     for (i = 0; i < n; i++) {
            ANNOTATE_TASK_BEGIN(loop);
                   Statement1;
                   …
                   Statementk;
            ANNOTATE_TASK_END(loop);
     }
ANNOTATE_SITE_END(big_loop);
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 � Task parallelism — To model that the two Qsort calls may execute in parallel. Notice that 
this example also uses recursion: 

// Qsort sorts the array a in place, and uses modeled recursive parallelism
void Qsort(array a){
// If a is small enough, sort it directly and return.
// Otherwise, pick an element e from array a.
// Rearrange the elements within a so that it is partitioned in 3 parts
// a == [elements <= e; e; elements > e]
// Let array less_eq_qsort be a reference to the first partition of a
// Let array greater_qsort be a reference to the last partition of a
// Recursively apply Qsort to each of these array references, in parallel.
ANNOTATE_SITE_BEGIN(qsort);
      ANNOTATE_TASK_BEGIN(qsort_low);
              Qsort(less_eq_array);
      ANNOTATE_TASK_END(qsort_low);

      ANNOTATE_TASK_BEGIN(qsort_high);
             Qsort(greater_array);
      ANNOTATE_TASK_END(qsort_high);
ANNOTATE_SITE_END(qsort);
}

 � Nested parallelism — This example is an extract from the Tachyon ray tracing example that 
ships with Advisor:  

// Inner loop nest (simplified) from Ray Tracing sample program tachyon_Advisor.
// Two nested loops on y and x, each inner iteration renders
// one pixel in a rectangular grid.
// Processing one pixel is independent of every other pixel, so they
// can all be done in parallel. This is modeled using nested parallelism.
ANNOTATE_SITE_BEGIN(allRows);
    for (int y = starty; y < stopy; y++){ 
      ANNOTATE_TASK_BEGIN(eachRow);

           ANNOTATE_SITE_BEGIN(allColumns);
               for (int x = startx; x < stopx; x++) {
                   ANNOTATE_TASK_BEGIN(eachColumn);
                      color_t c = render_one_pixel (x, y, …);
                      put_pixel(c);
               ANNOTATE_TASK_END(eachColumn);
               }
            ANNOTATE_SITE_END(allColumns);

        ANNOTATE_TASK_END(eachRow);
    }
ANNOTATE_SITE_END(allRows);

Lock Annotations

Lock annotations can be used to pretend to protect access to shared data by multiple tasks. Note 
that you usually add lock annotations only after you have run the Correctness tool and have found 
cases of unprotected data sharing that need to be fi xed.
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 � ANNOTATE_LOCK_ACQUIRE(<address>); — After a task executes this annotation, model-
ing pretends that no other task may enter a region protected by LOCK_ACQUIRE of the same 
address — that is, only one task at a time can execute any protected region. 

 � ANNOTATE_LOCK_RELEASE(<address>); — Execution of this annotation ends the locked 
region corresponding to <address> — that is, modeling can pretend that another “waiting” 
task can enter the protected region.

The following example shows how to protect the incrementing of a shared variable inside a task 
using lock annotations:

ANNOTATE_LOCK_ACQUIRE(0);  // zero is a convenient address
      shared_variable ++;
ANNOTATE_LOCK_RELEASE(0);

Although the preceding examples show paired site and task annotations that match statically in the 
source code, the paired annotations actually must match at execution time, because they have their 
parallel modeling effect at run time. So, if multiple execution paths are exiting such a region, it is 
necessary to have multiple “closing” annotations (two lock-releases in this case):

static int my_lock;
ANNOTATE_LOCK_ACQUIRE(&my_lock);
if (shared_variable == 0) {
             ANNOTATE_LOCK_RELEASE(&my_lock);
             return; }
shared_variable ++;
ANNOTATE_LOCK_RELEASE(&my_lock);

Some other special-purpose annotations are explained in the Advisor documentation.

Adding Annotations

Advisor has some features to simplify adding annotations to your code in the editor. Note that you 
make the decisions about parallel regions; Advisor helps you generate the correct syntax. To add 
annotations, follow these steps:

 1. Navigate to the location in the source fi le where 
you want to insert annotations: for example, 
double-click a line in the call/loop chain in the 
Survey Report to see the Survey Source window, 
and double-click again to reach the editor.

 2. Use the mouse (left-click and drag) to select a 
code region to be surrounded by an annota-
tion pair.

 3. Right-click and select Intel Parallel Advisor 
2011.

 4. You can select one of the annotation types 
displayed in Figure 10-6. This will cause the FIGURE 10-6: The Annotation menu in the 

editor
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annotation pair to be entered into the source around the selected code, with a unique name 
chosen as the argument.

Alternatively, select Annotation Wizard, which guides you through several steps for select-
ing annotation kinds and argument names. It also explains the semantics of the selected 
annotation kind. Figure 10-7 shows the Annotation Wizard, where Annotate Task has been 
selected as the annotation type from the pull-down menu. The two panes show what the 
code will look like near the ANNOTATE_TASK_BEGIN and ANNOTATE_TASK_END annotations.

FIGURE 10-7: The Annotation Wizard window

Recall that if the fl ow of control can leave a region by different paths (for example, a return), it 
may be necessary to have multiple ending annotations. The Annotation Wizard does not handle 
this case, so you will need to recognize this situation and insert the additional *END annotation 
by hand.

Annotations are actually C/C++ macros that expand into calls to null functions with special names; 
the Advisor tools recognize the names and model the corresponding behavior. And because annota-
tions are just macros, you can employ any C/C++ compiler to build your annotated program.

Every source fi le using annotations needs to include the fi le advisor-annotate.h, which defi nes the 
annotation macros: 

#include “advisor-annotate.h”

The Annotation Wizard in the editor can help with this step. This include fi le is located in the 
directory $(ADVISOR_2011_DIR)/include, so you also need to add this include path to the 
Additional Include Directories in Build Confi gurations under Properties Í C/C++ Í General for all 
projects and confi gurations using annotations.
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ACTIVITY 10-2: ADDING ANNOTATIONS TO NQUEENS

In this activity you add annotations to the NQueens application.

 1. In the 1_nqueens_serial project, enter the VS editor on a source fi le and use 
the Annotation Wizard to add several annotation kinds. Use the editor’s Undo 
command to remove them.

 2. In the same project, add site and task annotations for all the candidate parallel 
regions you selected in Activity 10-1. Add the include fi le to the source fi le(s). 
Also add the include path to the build confi gurations. Build the program and 
correct any compilation errors.

 3. One way of parallelizing NQueens is to select the loop in the solve() function 
as a parallel site. It covers 100 percent of the Total Time, so it has the poten-
tial for being a good site. The source fi le nqueens_serial.cpp in project 
1_nqueens_serial contains commented-out annotations at this loop, as well 
as a commented out #include of advisor-annotate.h. Uncomment this code, 
add the include path to the build confi gurations, and then rebuild the project.

 4. Alternatively, move to the 2_nqueens_annotated project, which already has 
annotations added at this site (see the nqueens_annotated.cpp fi le). Set this 
as the startup project and build it. This project is used in the next two sections.

CHECKING SUITABILITY

Suitability analysis provides coarse-grained speedup estimates for the annotated code. The purpose 
of the performance information is to guide your decisions about these sites:

 � If the estimate is good, keep going with this site.

 � If the estimate is bad, either adjust the site or abandon the experiment.

In either case, you have made progress with a small expenditure of effort because you are using 
modeling.

You can answer other questions. Does the performance match your expectations from the Survey 
Report? Are there parallelization-related performance issues (for example, overhead items)?

If you have fi xed correctness issues by adding locks or restructuring the code (on the previous itera-
tion through the Advisor workfl ow), the projected parallel performance may have changed since the 
last time you ran the Suitability analysis. So, you need to run it again after modifying your annota-
tions or your code.

Running a Suitability Analysis

To run a Suitability analysis, begin by building a release confi guration of your program (similar 
to a Survey analysis, but the program now has annotations) and use the same data set. Start the 
Suitability analysis from the Advisor toolbar, Workfl ow tab, or from the Tools menu. The Suitability 

c10.indd   290c10.indd   290 3/26/2012   12:07:00 PM3/26/2012   12:07:00 PM



Book Title   <Chapter No>   V 3 03/14/2012 Page 291

Checking Suitability x 291

tool runs the program, analyzing what its performance characteristics might be. There is typically 
less than a 10 percent slowdown compared to normal program execution. However, if many task 
instances have a small number of executed instructions, the modeling overhead could be higher 
and the accuracy of the estimates may suffer. For example, if the average time for tasks is less than 
0.0001 seconds (displayed in the Selected Site pane), the instrumentation overhead in the Suitability 
tool may cause the predicted speedups to be too small.

The Suitability Report

The Suitability Report for NQueens appears in Figure 10-8. It displays the following panes of infor-
mation. All performance data consists of modeled estimates about how the program might behave if 
it were parallel.

 � All Sites — Summarizes performance information about parallel sites and the whole program 
and contains:

 � Maximum Program Gain For All Sites — The speedup of the whole program due to 
all sites, for the current Target CPU Number.

 � A list of each site with their individual Maximum Site Gain (speedup), contribution 
to Maximum Total Gain of the program, Average Instance Time, and Total Time.

 � Model parameters — Drop-down lists for changing the Target CPU Number and 
Threading Model. You can select different values to see how the results behave.

 � Selected Site — Shows details about the currently selected site in the All Sites pane. The infor-
mation includes:

 � Scalability of Maximum Site Gain graph — A log-log graph of the site’s maximum 
gain versus the number of CPUs. Each vertical bar shows the range of values for that 
number of cores, and the ball on the bar shows the estimate with the current set of 
model parameters and parallel choices.

 � Green area — Good speedup (linear, or close to linear scaling)!

 � Yellow area — Some speedup but there may be opportunities for 
improvement.

 � Red area — No (or negative) speedup; may need signifi cant effort to improve, 
or perhaps this site should be abandoned.

 � A list of tasks and locks associated with the current site along with performance 
information such as maximum, average, and minimum times. 

 � Changes I will make to this site to improve performance — Lists fi ve parallel choices 
you make about sites, tasks, and locks. This area of the pane indicates if any of these 
items impact performance, and if so, Advisor may recommend how to reduce the 
impact and what speedup might be achieved. You can change a choice by clicking in 
the corresponding box. (Click the underlined name for additional documentation.)

 � Reduce Site Overhead — The time to create and complete a parallel site.

 � Reduce Task Overhead — The time to start and stop a task.

 � Reduce Lock Overhead — The time to acquire and release a lock.
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 � Reduce Lock Contention — The time spent in one task waiting for another 
task to release a lock.

 � Enable Task Chunking — Combining multiple tasks into a single task to 
reduce the task overhead (for example, in a parallelized loop, performing 
numerous consecutive iterations in one task). Several parallel frameworks, 
such as Intel Cilk Plus, Intel TBB, and OpenMP, perform task chunking by 
default.

FIGURE 10-8: The Suitability Report for NQueens

Double-clicking a site or task name displays the corresponding source code in the Suitability Source 
window. Return to the Suitability Report by clicking the Suitability Report.

A summary of all your annotations is provided in the Summary Report. This is described in the 
later section “Replacing Annotations.” An example appears in Figure 10-13.

Parallel Choices

This section describes the meaning and effect of the parallel choice boxes in the Selected Site pane of 
the Suitability Report.

Figure 10-9 shows the Selected Site pane for a program with lock annotations. In the scalability 
graph, the balls indicating current estimated gain are in the red, meaning no speedup. However, the 
bars reach into the green and indicate that there is a range of performance depending on the parallel 
choices listed to the right. In particular, Advisor shows that a 5.35x speedup can be achieved if you 
select Reduce Lock Contention, and also recommends that you do so.

Figure 10-10 shows the result of clicking the Reduce Lock Contention box. The balls in the graph 
are now in the green, representing very good speedup. By clicking the box, you have agreed to take 
some action(s) to reduce lock contention when you convert to actual parallel constructs. Note that 
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Advisor only predicts the effect of reducing lock contention — you have the responsibility of imple-
menting that decision later when you add parallel code!

FIGURE 10-9: The Selected Site pane before making a parallel choice

FIGURE 10-10: The Selected Site pane after making a parallel choice

Using the Suitability Report

You have multiple ways to use the Suitability Report to determine what parallel performance 
your program might have, and what you might change to achieve improvements. First look at the 
Maximum Program Gain, and then for each site examine the scalability graph and the parallel 
choices. Is the program gain what you expected? Change the number of CPUs to check the scalabil-
ity or to match the number of CPUs on your target platform. Answer the same questions about the 
gain for each site, and study the scalability graph for each site.

If a site’s speedup is low, click it and examine its Selected Site pane:

 � In which region of the scalability graph (green, yellow, red) is the result?

 � Are there recommended changes to the parallel implementation choices? If so, try clicking the 
corresponding box.

 � How many task instances are there for each site instance? Too few may limit scalability.

 � If there are numerous tasks with very small average time, you probably already have recom-
mendations to Reduce Task Overhead and/or to Enable Task Chunking. Task times less than 
0.0001 second can cause the instrumentation overhead of the Suitability tool to degrade the 
accuracy of the speedup estimates.

c10.indd   293c10.indd   293 3/26/2012   12:07:01 PM3/26/2012   12:07:01 PM



Book Title   <Chapter No>   V 3 03/14/2012 Page 294

294 x CHAPTER 10  PARALLEL ADVISOR–DRIVEN DESIGN

 � Compare Total Time for the tasks with that of the site. Recall that if the tasks cover only 50 
percent of the site’s time, then Amdahl’s Law says the speedup limit is 2x.

 � If you have a small number of tasks and a large time deviation, there may be a problem with 
load balancing (see Chapter 9, “Tuning Parallel Applications”). The large tasks continue run-
ning while some tasks fi nish early and there are no other tasks to run, so some CPUs will be 
idle. Try to make the amount of work in each task similar, or at least cause the large tasks to 
start executing fi rst.

 � Is the number of locking instances large? This will probably also show up in Reduce Lock 
Overhead.

 � Is the Total Time in locks similar to that for tasks? This may also show up as a Reduce Lock 
Contention recommendation.

You can also experiment with the sensitivity of the performance by varying the model parameters 
and the parallel choices, looking for signifi cant changes in the results. This Sensitivity analysis is fast 
because all the results have been precomputed — Suitability analysis is not run again.

How Suitability Analysis Works

When you start a Suitability analysis, it runs the current program, keeping track of site, task, and 
lock annotations, and the time spent in each. It then models what the performance of the program 
would be if it were run in parallel as specifi ed by the annotations, and for all combinations of mod-
eling parameters and parallel choices. It then displays the coarse-grained estimates in the Suitability 
Report. 

Here is a more detailed description of the Suitability analysis:

 � Data collection — While the program runs, the Suitability tool collects timestamps for the 
beginning and end of each site, task, and lock region, and computes the elapsed times. (Recall 
that annotation macros expand into calls to specially named null functions; the tool identi-
fi es the kind of annotation by the name of the function.) Data collection generates a program 
trace as a stream of ordered times and information about the regions. It also compresses the 
data. For example, if 100 consecutive instances of task(foo) are similar, each with about the 
same elapsed time of 3 seconds, then this could be represented as “100 * task(foo) total 300 
seconds.”

 � Construct task execution tree — The next step is to build an ordered tree representing the 
sites and their contained tasks (and nested sites and their tasks) from the ordered stream 
coming from data collection. Under each tree node for a task are also the instances of locked 
regions that were executed in the task. The ordering in the tree represents the serial execution 
order of the regions. To keep the amount of memory consumed by the tree reasonable, the 
tree is limited to a fi xed number of nodes. This is accomplished by employing another kind of 
compression: if the size limit is reached and more data is still arriving, the tree-building pro-
cess aggregates the effects of the leaves of a node into the node, and then deletes the leaves. 
For example, the times for the tasks belonging to a site can be summed and stored in the 
site’s tree node before the tasks’ nodes are removed.
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 � Modeling — The purpose of creating the tree is to provide a structure for modeling the 
performance characteristics of parallel executions of the program as represented by the anno-
tations. The modeling is performed by simulating the execution of the program in parallel on 
a fi xed number of simulated cores, where the only operations simulated are the beginnings 
and ends of sites and tasks, and the acquiring and releasing of locks. Time is estimated by 
using simulated clocks for each core. When a task “runs” on a core, the core’s clock is incre-
mented by the time the task took during the data collection run (as stored in the tree). 

A key component of parallel modeling is the task scheduler. It has a queue of tasks that are ready 
to “execute.” The scheduler assigns tasks to cores as the cores complete other tasks. The simulator 
keeps track of the simulated elapsed time for the sites, tasks, and locks. Note that the simulation 
does not take into account cache or memory effects from tasks running on different cores. The only 
inter-task performance impacts are from locks.

The simulation is run for every combination of number of CPUs, threading model, and the fi ve par-
allel choices, and then the results are saved. When you change one of the values in the Suitability 
Report, the new result is displayed immediately because it has been precomputed. The reason for 
building the execution tree is that it is used multiple times for the simulations.

The Target CPU Number affects how many cores are available for the scheduler to allocate to tasks. 
The Threading Model affects the overheads of individual site, task, and lock operations. The paral-
lel choices have different impacts. For example, the option “fi x task overhead” is modeled by having 
the simulator use zero for task overhead. For the option “fi x lock contention,” the simulator never 
makes a task wait for a lock. (Normally, the simulator causes a task to wait for the lock to be free 
and records the additional simulated elapsed time for that task.)

ACTIVITY 10-3: RUNNING THE SUITABILITY ANALYSIS ON NQUEENS

In this activity you run a Suitability analysis on the annotated NQueens application 
and explore the effect choosing different modeling parameters.

 1. Run the Suitability analysis on the program with your annotations from 
Activity 10-2, or use the 2_nqueens_annotated project.

 2. Examine the different sections of the Suitability Report.

 3. Change the number of CPUs and the threading model parameters. Are there 
any parallel choice recommendations to select?

CHECKING FOR CORRECTNESS

You have run the Suitability analysis and are feeling good because you have found some sites that 
are projected to provide parallel speedups. Now it’s time for a reality check; if you parallelize your 
program in these locations, will there be data-sharing problems or deadlocks that will cause the par-
allel program to be incorrect? The purpose of checking correctness is to predict if these issues will 
occur.
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Not only does correctness modeling tell you if errors exist, but it also helps you navigate to all of the 
source locations participating in a data-sharing error or a deadlock. You need this in order to fi x the 
problem.

Or, you may decide that the correctness errors are too diffi cult to fi x or will take too much develop-
ment time relative to the projected speedup for a parallel site. So, if the return on investment (ROI) 
is too small, abandon this site and remove its annotations. You have been able to quickly experiment 
with this site, and now you can go on to other sites.

Running a Correctness Analysis

To run a Correctness analysis, begin by building a debug confi guration on your program, making 
sure that the build confi guration uses the dynamic runtime library (Confi guration Properties Í C/
C++ Í Code Generation Í Runtime Library is /MD or /MDd). Correctness needs optimization 
off so that all memory references are retained in the generated code, and retained in their original 
program order, because the modeling tracks all the loads and stores. Correctness modeling causes 
a signifi cant slowdown of the program, such as 100 times slower. Thus, you should use a reduced 
input data set to minimize the run time. However, the reduced data set should cause the program to 
traverse all the paths within the sites. For example, if the Survey or Suitability input data set causes 
a “parallel” loop to execute one million iterations, it is probably suffi cient for correctness modeling 
if the reduced data set causes the loop to execute only a few iterations. Start the Correctness analysis 
using the Advisor toolbar, Workfl ow tab, or Tools Í Intel Parallel Advisor 2011 menu.

As mentioned, performing a Correctness analysis can cause a signifi cant expansion of execution 
time. So when the Correctness tool is running your program, it displays each “observation” as the 
program runs. If enough error observations have occurred, you can stop the program by clicking the 
red Stop button on the Advisor toolbar, or by closing your program’s window. A Correctness Report 
will be created for these observations, even though the program has not run to completion.

The Correctness Report

The Correctness Report for NQueens displays several panes of information (see Figure 10-11):

 � Problems and Messages — Correctness combines multiple “observations” into a single 
“problem”; for example, if an error occurs on the currently indexed element of an array on 
every iteration of a one-million-iteration loop, you will see one problem instead of having to 
sift through a million observations on the individual elements of the array.

 � Memory reuse: Observations — For the currently selected problem (for example, P1 in 
Figure 10-11), this section displays a highlighted source line and a surrounding source code 
“snippet” for the distinct observations (for example, X4, X5) associated with the problem. 
Clicking the [–] for an observation eliminates the source code lines and shrinks it to a single 
line describing the observation; clicking the [+] redisplays the source snippet.

 � Filter — Lists a number of problems and messages by different categories. Click a line to 
display only problems and messages in the upper-left pane satisfying that fi lter category. For 
example, you can display only problems in a particular fi le, or only errors (omitting warnings 
and remarks).
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FIGURE 10-11: The Correctness Report for NQueens

The Correctness Source Window

You can navigate to the Correctness Source window by double-clicking the corresponding line in the 
Correctness Report. Figure 10-12 shows the Correctness Source window for the P1 memory reuse. 
The following panes of information appear:

 � Source code snippets for two observations for the problem (upper-left panes) — Shows more 
lines of code than in the Correctness Report window. Double-clicking a line navigates to the 
VS editor.

 � Call Stacks for the two source snippets (upper-right panes) — Shows the call stack to get to 
the displayed source observation. Clicking a function in the stack displays the corresponding 
source code for that level in the stack.

 � Memory reuse: Observations (lower-left pane) — Shows one line for each of the observations 
for the problem. Double-clicking an observation opens the corresponding source view in the 
upper pane.

 � Relationship Diagram (lower-right pane) — Shows dependencies among the critical observa-
tions of the problem. This identifi es the important observations and how they relate to each 
other, which can help you understand the problem.

Double-click a snippet in the Correctness Source window to enter the Visual Studio editor on the 
corresponding fi le. Return to the Correctness Report from the editor by selecting the My Advisor 
Results tab for the current VS project, or click the arrow in the “4. Check Correctness” section of 
the Workfl ow tab. To return from the Correctness Source window to the Correctness Report, click 
either the Correctness Report button or the arrow.
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FIGURE 10-12: The Correctness Source window for NQueens

Understanding Common Problems

Correctness analysis discovers the following four problem categories that you need to understand 
and fi x (or abandon the site). The components of the Correctness Report attempt to assist you in 
deciphering the cause of the problem.

 � Memory reuse — A shared object is referenced by multiple tasks, and in the serial program 
some tasks that write to the object do so before reading from it. Because multiple tasks are 
reading and writing the object, this would cause data-sharing problems if the program were 
actually parallel. However, no values fl ow from one task to another — they are just “reusing” 
the same memory. This is called incidental sharing. The tasks are sharing an object but do not 
need the sharing; instead, each task could use its own copy of the object. Privatizing — pro-
viding a private object for each task — is exactly the way to fi x this problem.

Refer to problem P1 in Figure 10-11, which is an instance of memory reuse. The following 
program fragment shows another instance, where the temp variable declared outside of the 
parallel site is used to temporarily hold the value of an array element:

static int temp;
…
ANNOTATE_SITE_BEGIN(big_loop);
    for (i = 0; i < n; i++) {
        ANNOTATE_TASK_BEGIN(loop);
            temp = a[i];
            b[i] = … temp …;
        ANNOTATE_TASK_END(loop);
    }
ANNOTATE_SITE_END(big_loop);
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When the loop body becomes a task, all the task instances will (potentially) be using the sin-
gle temp at the same time. Changing the program, as follows, to declare a temp automatic 
variable inside the loop causes each task to have its own copy of temp — problem solved!

ANNOTATE_SITE_BEGIN(big_loop);
    for (i = 0; i < n; i++) {
        ANNOTATE_TASK_BEGIN(loop);
            int temp;
            temp = a[i];
            b[i] = … temp …;
        ANNOTATE_TASK_END(loop);
    }
ANNOTATE_SITE_END(big_loop);

 � Data communication — A shared object is referenced by multiple tasks, at least one of which 
performs a write. In the serial program, values fl ow from a write in one task to a read in 
another. This is another instance of a data-sharing problem, but it may be more diffi cult to 
resolve than memory reuse. In solving this kind of problem you have to work out whether 
the data values are independent of each other:

 � Independent updates — This is a case where the tasks are updating an object and the 
fi nal result does not depend on the order in which the tasks update the object. For 
example, each task is adding a value to a counter; it does not matter in what order 
the updates are done, as long as multiple tasks do not access the object at the same 
time. You can solve this problem by using a lock, which will enforce that only one 
task at a time is allowed to update the object.

Problem P2 in Figure 10-10 is a data communication error, which is actually a case 
of independent updates of the nrOfSolutions variable. (You will investigate and 
fi x this error in Activity 10-4.) Another instance is shown in the following program 
fragment, which shows a counter that every task (iteration) increments:

static int counter = 0;
…
ANNOTATE_SITE_BEGIN(big_loop);
    for (i = 0; i < n; i++) {
        ANNOTATE_TASK_BEGIN(loop);
            …
            counter++ ;
            …
        ANNOTATE_TASK_END(loop);
    }
ANNOTATE_SITE_END(big_loop);

It does not matter in what order the increments occur — they just must occur one at 
a time. The following fragment shows the corrected example with lock annotations 
added:

static int counter = 0;
static int my_lock;
…
ANNOTATE_SITE_BEGIN(big_loop);
    for (i = 0; i < n; i++) {
        ANNOTATE_TASK_BEGIN(loop);
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            …
            ANNOTATE_LOCK_ACQUIRE(&my_lock);
                counter++ ;
            ANNOTATE_LOCK_RELEASE(&my_lock);
            …
        ANNOTATE_TASK_END(loop);
    }
ANNOTATE_SITE_END(big_loop);

 � True dependence — If the serial order of access to the object must be retained so 
that the correct answer is achieved, then the problem is more diffi cult to fi x. It may 
be necessary to move task boundaries or to combine multiple tasks into a single task 
(for example, so that multiple references are in a single task), or it may be necessary 
to abandon this site altogether.

 � Inconsistent lock use — A shared object is protected by one lock at one location in the code 
and by a different lock (or is unprotected) when referenced at another location in the code. 
Your goal is to protect the object from a data communication error since a lock is used in at 
least one place. However, because the same lock is not used every time, there might still be a 
sharing problem. The usual fi x is to consistently employ the same lock at all points of refer-
ence. The following example demonstrates inconsistent lock use:

ANNOTATE_LOCK_ACQUIRE(&lock1);
    counter++;
ANNOTATE_LOCK_RELEASE(&lock1);
…
ANNOTATE_LOCK_ACQUIRE(&lock2);
     // protected by different lock
     counter++;
ANNOTATE_LOCK_RELEASE(&lock2);
…
// not protected by any lock
counter++;

In the preceding code, the counter variable is inconsistently protected by lock1 in the fi rst 
use, by lock2 in the second use, and is unprotected in the third use.

 � Lock hierarchy violations — This is a case where two tasks have nested locked regions, and 
the locks are acquired in different orders in the two regions. This can cause a deadlock, as 
described in Chapter 8, “Checking for Errors.” The following example demonstrates a lock 
hierarchy violation:

//Region 1
ANNOTATE_LOCK_ACQUIRE(&lock1);
     ANNOTATE_LOCK_ACQUIRE(&lock2);
     …
     ANNOTATE_LOCK_RELEASE(&lock2);
ANNOTATE_LOCK_RELEASE(&lock1);
…
//Region 2
ANNOTATE_LOCK_ACQUIRE(&lock2);
      ANNOTATE_LOCK_ACQUIRE(&lock1);
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      …
      ANNOTATE_LOCK_RELEASE(&lock1);
ANNOTATE_LOCK_RELEASE(&lock2);

Imagine that two tasks execute the code snippet above. Suppose that task 1 is about to exe-
cute Region 1, and task 2 is about to execute Region 2 at the same time. Task 1 acquires 
lock1 and task 2 acquires lock2. In order for task 1 to acquire lock2, it has to wait for 
task 2 to complete Region 2 and release lock2. But in order for task 2 to acquire lock1, 
it has to wait for task 1 to complete Region 1 and release lock1. Both tasks will wait for-
ever — this is a deadlock.

The fi x is to have all tasks that acquire multiple locks acquire them in the identical order. In 
other words, they must use the same hierarchy of locks.

Using the Correctness Report

There are several approaches to using the Correctness Report and Correctness Source window to 
fi nd, understand, and fi x sharing problems that would occur if your program were parallel.

Diagnose in detail what is causing each problem by exploring the corresponding source locations 
and call stacks. The problem statement and observation code snippets in the Correctness Report 
may be suffi cient for discovering the error. For example, if you are incrementing a global counter, 
you need a lock.

In other cases, the Correctness Source window provides more details about what leads to the occur-
rence of the problem. One complication is that you have to comprehend the distinct code that two 
tasks might be executing at the same time, which can cause the interference. Another is that the 
object being shared might be a parameter, so it may have different names in the two tasks. This is 
where the call stack is handy; it enables you to examine the source code at different levels of the 
stack so that you can track how an object is passed through multiple function calls.

Decide if there are too many hard problems to fi x for this site, in which case you can either change 
the location of the site and tasks or abandon the site altogether. Otherwise, fi x the problems by 
employing your understanding of each problem, picking a strategy to fi x it, and using the source 
locations to enter the editor at the appropriate places to make the required source changes.

Rebuild the modifi ed program and run a fresh Correctness analysis to verify that your changes do 
in fact fi x the identifi ed problems and do not introduce new problems. (And after converting your 
program to parallel constructs, use Intel Parallel Inspector XE to determine if any other classes of 
memory-sharing problems exist.) Now return to the Suitability analysis step to see what impact 
these changes may have on performance.

Correctness Analysis Limitation

There is a case of a potential data-sharing problem that Correctness analysis cannot distinguish 
from the safe usage of a local variable. The potential error is not reported because it would also 
report errors on the safe case, thus causing false positives. This is one reason you should always run 
Intel Parallel Inspector XE after adding parallel constructs — Inspector can distinguish these two 
cases.

c10.indd   301c10.indd   301 3/26/2012   12:07:03 PM3/26/2012   12:07:03 PM



Book Title   <Chapter No>   V 3 03/14/2012 Page 302

302 x CHAPTER 10  PARALLEL ADVISOR–DRIVEN DESIGN

The following code fragment demonstrates both a data-sharing issue and a safe usage:

void foo(…) {
    int relatively_global = 0; 
    …
    ANNOTATE_SITE_BEGIN(big_loop);
        for (i = 0; i < n; i++) {
            ANNOTATE_TASK_BEGIN(loop);
                int relatively_local = 0;
                …
                relatively_local++ ;  //safe
                relatively_global++ ; //unprotected sharing! 
                …
            ANNOTATE_TASK_END(loop);
        }
    ANNOTATE_SITE_END(big_loop);

The relatively_global variable is local to the foo function but global relative to the tasks in the 
loop. All the tasks share the object, so when it is incremented in the tasks in the parallel program, 
there is a data-communication error. In contrast, the relatively_local variable is declared within 
the tasks, and when the program is parallel, each task will have its own copy. So, incrementing 
relatively_local will not cause a sharing problem.

The issue is that in the serial program, the compiler creates both variables as local stack variables 
of the foo function. Therefore, the Correctness tool cannot distinguish the two different cases. The 
design choice was to report either both as errors or neither as errors. The decision was made to avoid 
annoying false positives and rely on Inspector to catch any true sharing errors. Note that 
this situation arises only when the task is in a function and the variable declaration (for example, 
relatively_global) occurs in the same function or the calling function.

How Correctness Analysis Works

When you start a Correctness analysis, it runs the current program, tracking all memory references 
and annotations that occur. It models which references to the same object could occur in different 
tasks at the same time if the program were run in parallel, taking into consideration the constraints 
of which tasks can run at the same time, and lock regions. It then combines related observations 
into problems and displays them in the Correctness Report.

Here is a more detailed description of Correctness analysis:

 � Data collection — While the program runs, Correctness data collection captures the loads and 
stores them for every object, and also tracks the start and end of each site, task, and lock region.

 � Construct task execution tree — The Correctness tool builds an ordered tree representing the 
sites and their contained tasks (and nested sites and their tasks). The tree is used to answer 
the question: if two tasks reference the same object, can they be executing at the same time 
in a parallel program? This is one condition necessary for a data-sharing issue to occur. For 
effi ciency, the tree is constructed and destroyed on-the-fl y. For example, if a parallel site is 
not nested in any other sites, when it fi nishes executing, it and its tasks can be removed from 
the tree because they will never be able to execute in parallel with subsequent tasks. So, the 
answer to the question will be no if one of the tasks is not in the tree.
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 � Locksets — The set of locks (lockset) that is held by a task at an instant of execution is all 
the locks that have been acquired without yet being released. If two tasks reference the same 
object, the tasks can execute in parallel (answer from the tree), and one of the references is 
a write, then there may be a data-sharing error. If at the time of the two references the tasks 
hold a lock in common (lockset(task1) & lockset(task2) != NULL), then that lock will 
prevent them from executing the references at the same instant — thus, no error. However, if 
the intersection of the locksets is NULL (that is, the locksets are disjoint), a data-sharing prob-
lem could occur in a parallel execution.

 � Modeling — As the serial program runs, for each load or store, the Correctness tool stores 
the following information into the model’s database associated with the object’s address:

 � The object’s address and size

 � Whether it is a read or write

 � The current task identity

 � The task’s lockset

The Correctness modeler then examines other references to this same object in the database, 
looking for other tasks that:

 � Can execute at the same time as the current task.

 � Has a disjoint lockset.

 � Has at least one reference that is a write.

If these conditions hold, then this data-sharing error observation is passed to the 
Correctness Report. Actually, only a small number of entries need to be kept in the data-
base for each object; data-sharing errors will still be found. In spite of this optimization, the 
sheer number of loads and stores to be processed can cause Correctness modeling to take up 
to 100 times longer than the original program.

 � Correctness Report — Correctness Report processing combines similar observations into 
single problems that are displayed. For example, there may be multiple observations with dif-
ferent object addresses and task instances, but the referencing instructions have the same line 
number. This is probably a case of a “parallel” loop iterating through a data structure — you 
want this reported as only a single problem to be fi xed.

 � References — The fi rst paper describes the Intel Thread Checker, a tool similar to Advisor’s 
Correctness analysis that models parallelism while executing a serial program. It uses the 
compiler to insert instrumentation code, whereas Correctness instruments the program as it 
runs. The second paper describes the use of locksets for fi nding race conditions.

 � P. Petersen and S. Shah. OpenMP Support in the Intel Thread Checker. Proceedings 
of WOMPAT 2003, LNCS Springer Lecture Notes in Computer Science, 2716:1–12, 
2003.

 � S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A 
Dynamic Race Detector for Multithreaded Programs. ACM Transactions on 
Computer Systems (TOCS), 15(4): 391–411, November 1997.
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ACTIVITY 10-4: RUNNING A CORRECTNESS ANALYSIS ON NQUEENS

In this activity you run a Correctness analysis on the annotated NQueens applica-
tion, and then fi x the errors that are detected.

 1. Build a debug confi guration of the 2_nqueens_annotated project, and run a 
Correctness analysis. The debug confi guration solves a smaller problem to reduce 
the execution time: n is 8, not 13 (as is used for the release confi guration).

 2. In the Correctness Report, click each problem and scroll through the corre-
sponding observations.

 3. Explore the Filter pane. Click different items to see what problems are dis-
played, and return to all problems by clicking All.

 4. From the Correctness Report, navigate to the Correctness Source window by 
clicking on a problem or an observation. Click different levels of the call stack 
to see the corresponding source code, and then return to the Correctness Report.

 5. From the Correctness Report, navigate to the VS editor on the source corre-
sponding to a problem or an observation, and then return to the Correctness 
Report.

 6. Fix each problem, and then rebuild and rerun the Correctness analysis. Are all 
the problems gone?

 7. Make a release build and run a Suitability analysis. Is the projected perfor-
mance still good?

In the nqueens_annotated.cpp source fi le in the 2_nqueens_annotated project, 
comments and commented-out code in the solve() and setQueen() functions 
describe how to fi x the memory reuse and data communication errors, respectively. 
Uncomment the code and rebuild. Run the Correctness tool again to make sure the 
problems were fi xed.

REPLACING ANNOTATIONS

When you have a site or sites with good predicted performance and the correctness issues have been 
resolved, you can convert your parallel-ready program to a true parallel program. First, choose 
a parallel programming model, such as one of the Intel Parallel Building Blocks, or some other 
approach. (See Chapter 7, “Implementing Parallelism,” for descriptions of parallel models and how 
to use them.) Then replace each Advisor annotation with the corresponding parallel construct. This 
section shows some of these mappings; Advisor documentation contains a more complete set of 
mappings for Intel Threading Building Blocks and Intel Cilk Plus.

The Summary Report

Figure 10-13 shows the Summary Report, which you can display either by clicking the Summary 
button at the top of the Advisor window or by clicking the arrow icon for the “5. Add Parallel 
Framework” step in the Workfl ow tab.
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 FIGURE 10-13: The Summary Report for NQueens

The Summary Report provides a high-level overview of the progress on sites, suitability, and cor-
rectness in the program. It shows the kind and location of every annotation in the program. For 
each site, the report displays the estimated speedup of the site and the entire program (if Suitability 
analysis has been run) and the number of correctness problems (if Correctness analysis has been 
run). Figure 10-13 shows the Summary Report for NQueens before the data-sharing problems have 
been fi xed (there are still two errors). The bottom of the report shows the modeling assumptions 
used (for example, eight CPUs), which you compare against the speedups.

An ROI comparison can be performed from the Summary Report. For a program with numer-
ous parallel sites, you can use the Summary Report to balance the amount of speedup against the 
amount of development work needed to fi x the correctness problems for a site, and then compare the 
sites to each other to prioritize sites where you can expect the best ROI.

The Summary Report is also the natural place to start when you are moving to parallel constructs, 
because all the annotations in the program are listed here. Navigate to each annotation so that it can 
be replaced by a parallel construct, double-click a line for an annotation in the Summary Report 
to take you into the Visual Studio editor on the fi le at the line containing that annotation, and then 
insert the corresponding parallel construct.

Common Mappings

This section shows simple mappings from annotations representing loop parallelism and task paral-
lelism to Intel Threading Building Blocks (Intel TBB) and Intel Cilk Plus. It also demonstrates how 
to replace lock annotations with the Intel TBB spin_mutex for both Intel TBB and Intel Cilk Plus.

 � Loop parallelism

ANNOTATE_SITE_BEGIN(big_loop);
    for (i = 0; i < n; i++) {
        ANNOTATE_TASK_BEGIN(loop);
            Statement;
        ANNOTATE_TASK_END(loop);
    }
ANNOTATE_SITE_END(big_loop);

 � Intel TBB (using lambda expression)

#include <tbb/tbb.h>
…
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tbb::parallel_for(0, n,
    [&](int i) {statement;}
);

 � Intel Cilk Plus

#include <cilk/cilk.h>
…
cilk_for (i = 0; i < n; i++) {
    Statement;
}

 � Task parallelism

ANNOTATE_SITE_BEGIN(qsort);
    ANNOTATE_TASK_BEGIN(qsort_low);
        Qsort(less_eq_array);
    ANNOTATE_TASK_END(qsort_low);

    ANNOTATE_TASK_BEGIN(qsort_high);
        Qsort(greater_array);
    ANNOTATE_TASK_END(qsort_high);
ANNOTATE_SITE_END(qsort);

 � Intel TBB (using lambda expressions)

#include <tbb/tbb.h>
…
tbb::parallel_invoke(
    [&] { Qsort(less_eq_array);},
    [&] { Qsort(greater_array);}
);

 � Intel Cilk Plus 

#include <cilk/cilk.h>
…
// version 1 for function calls
cilk_spawn Qsort(less_eq_array);
Qsort(greater_array);
cilk_sync;

// version 2 for general statements wrapped in lambda expressions
cilk_spawn [&] {statement-1}();
statement-2
cilk_sync;

The fi rst version is simple because the two statements are function calls. Note that cilk_spawn 
is not needed on the last task before the cilk_sync. The second version assumes arbitrary 
statements, so lambda expressions are used to create functions for all but the last statement.

 � Locks for Intel TBB and Intel Cilk Plus

static int my_lock;
…
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ANNOTATE_LOCK_ACQUIRE(&my_lock);  
shared_variable ++;
ANNOTATE_LOCK_RELEASE(&my_lock);

The following Intel TBB spin_mutex has low overhead for a low-contention lock, and can 
be used for both Intel TBB and Intel Cilk Plus. Intel TBB’s other mutex types would be used 
in the same manner.

#include “tbb/spin_mutex.h”
…
static tbb::spin_mutex my_mutex;
…
{ // Declare my_lock in its own scope; on scope exit
  // the destructor will unlock it.
  tbb::spin_mutex::scoped_lock my_lock(my_mutex);

shared_variable ++;
}

You could avoid using locks altogether by declaring shared_variable to be a Cilk Plus reducer. If 
you look at the 3_nqueens_cilk project, you will see how to do this.

ACTIVITY 10-5: IMPLEMENTING PARALLELISM IN NQUEENS

In this activity you convert the annotated NQueens application to a parallel pro-
gram, fi rst using TBB and then Cilk Plus.

 1. Explore the Summary Report for the 2_nqueens_annotated project. Navigate 
to the editor for each annotation.

 2. Convert the annotations in nqueens_annotated.cpp to Intel TBB. Set the 
current project to 3_nqueens_tbb and examine the nqueens_tbb.cpp fi le, 
comparing it to the changes you made in nqueens_annotated.cpp. Change 
the confi guration to Release_TBB, which has directory paths for the include 
fi les, the library fi les, and the shared library fi les. Build and run the Intel 
TBB version on a multi-core machine. Is it faster than the original serial 
version?

 3. Convert the annotations in nqueens_annotated.cpp to Intel Cilk Plus. Set 
the current project to 3_nqueens_cilk and examine the nqueens_cilk.cpp 
fi le, comparing it to the changes you made in nqueens_annotated.cpp. (Note 
that this project uses the Intel Parallel Composer compiler, which supports 
the Intel Cilk Plus extensions. You could use Intel Composer XE, which also 
supports Intel Cilk Plus.) Change the confi guration to Release_Cilk, which 
has directory paths for the include fi les, the library fi les, and the shared library 
fi les. Build and run this version on a multi-core machine. Is it faster than the 
original serial version?
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SUMMARY

Intel Parallel Advisor is a unique tool that helps you add parallelism to your programs. This chapter 
has demonstrated how to use Advisor effectively:

 � The modeling provides information about your parallel experiments. 

 � Advisor’s methodology takes you through the necessary steps, but you remain in control; 
Advisor does not automatically change your program.

 � You progressively refactor your serial program into a parallel solution.

You should now understand the value of parallel modeling:

 � The modeling maintains your original application’s semantics and behavior.

 � You can quickly experiment with parallelism in different regions and transform the predicted 
most promising regions to be parallel-ready.
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11
Debugging Parallel Applications

WHAT’S IN THIS CHAPTER

 � Introducing the Intel Debugger and its workfl ow

 � Detecting data races 

 � Observing the runtime behavior of a threaded program

This chapter shows how to use the parallel debugging features of the Intel Debugger on your 
parallel or threaded application. One of the biggest challenges in parallel programming is track-
ing down data races. In this chapter you use the debugger to detect data races as you debug. 

Unlike the error-fi nding techniques presented in other chapters, with a debugger you can 
single-step into your code and examine your parallel applications to confi rm that the program 
is running as you expect. You can, as it were, sit inside your program and observe what is hap-
pening around you.

INTRODUCTION TO THE INTEL DEBUGGER

You are probably reading this chapter because you are developing or debugging a parallel pro-
gram. Compared to pure serial software, parallel programs introduce additional issues that 
can produce problems that are diffi cult to track down and debug. The most common error 
is a data race, where one thread tries to read data that is being written by another thread. 
Programmers solve data races by inserting synchronization primitives in the code so that only 
one thread at a time can access shared data. Adding these primitives may solve the data race 
issue, but could inadvertently introduce a deadlock, with both threads waiting for each other 
to release the shared resource.

In addition to the risk of introducing data races and deadlocks, making a program parallel 
could break its integrity, with the program no longer working as intended. The newly parallel-
ized program needs to be correct, free from programming and algorithmic errors.
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Debuggers help developers to solve such software issues in real time by following, examining, and 
modifying a program’s runtime execution. Intel Parallel Studio XE has a debugger dedicated to 
debugging the parallel features of your program. The debugger has two variants:

 � Intel Parallel Debugger Extension (PDE) — A Windows plug-in to Visual Studio

 � Intel Debugger (IDB) — A Linux Eclipse-based standalone debugger 

This chapter uses the term Intel Debugger (or simply debugger) to refer to both 
the Windows version and the Linux version. Where comments refer to a particu-
lar version, the chapter uses the terms PDE-Windows and IDB-Linux.

The debugger enables you to:

 � Identify data races in Cilk, OpenMP, and native (WIN32 and POSIX) threaded programs.

 � Investigate a program’s parallel behavior, by checking that the parallelized version runs the 
same way as the serial version.

 � Filter out data race events that are of no interest.

 � Detect events from a defi ned “focus” region.

 � Serialize a threaded region to compare serial and parallel execution.

 � Display OpenMP tasks, locks and barriers, call stack, and task hierarchy.

 � Display Cilk Plus call stacks (PDE-Windows only).

In addition, the IDB-Linux version, which is a fully featured symbolic debugger, helps programmers to: 

 � Debug programs.

 � Disassemble and examine machine code and examine machine register values.

 � Debug programs with shared libraries.

 � Debug multithreaded applications.

This chapter concentrates on the parallel debugging features that are common to both PDE-
Windows and IDB-Linux.

To use the Intel parallel debugging features, your code must be built with the 
Intel compiler. 

The Parallel Debugger Workfl ow

You can use the debugger in two ways:

 � Curative — To fi x errors and problems

 � Preventative — To ensure a program runs as you expect
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Figure 11-1 shows a suggested workfl ow for both 
approaches. You should fi x parallel issues during 
run time, using a short, repetitive debug cycle, 
where very little time is spent between identifying 
and fi xing problems. 

The starting point assumes you have seen some 
strange behavior in the parallel program you are 
developing, so you run the Intel Debugger to try to 
fi nd the problem. 

Usually, it is best to identify and fi x one problem at 
a time before moving on to the next problem. (This 
is the approach taken in this chapter.) However, 
some developers prefer to identify a whole series of 
problems before fi xing them.

The fi rst step is to serialize the code by turning 
off the threading. Serialization is available only 
for Cilk and OpenMP code. If rerunning the 
program shows the problem still exists, 
you should debug the program in serial mode 
and fi x it.

If serialization makes the problem disappear, the 
problem is caused by the parallelism in the code. 
You should turn off serialization, thus reenabling 
the parallelism, before continuing.

To use the data race detection feature in the Intel Debugger, you need to rebuild 
the application with the Intel compiler with the added -debug parallel option.

For each problem, use the debugger to pinpoint the source of the error, looking for data races or unex-
pected behavior. Each time you fi x a problem, you should rebuild and test. If you prefer, after each error 
has been fi xed, you can go back to the serialization stage (refer to the dotted line in Figure 11-1).

USING THE INTEL DEBUGGER TO DETECT DATA RACES

Most of the activities in this chapter use the Tachyon ray-tracing application that ships with 
Composer XE. The Tachyon example is quite large — much bigger than a simple “hello world” pro-
gram and more like a real-world example.

In ray tracing, the paths of light in an image are simulated, displaying the shadows and refl ections 
that will occur. The example program draws a set of colored balls along with shadows. In the paral-
lel version of the program, the picture has some blemishes caused by data races. 

Start

Serialize

Problem?

Problem?

Fix problem

No

No

Yes

Yes

Done

Turn off

serialization

Build with

-debug parallel

Debug

(problem is

nonparallel)

FIGURE 11-1: Parallel Debugger workfl ow
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The program consists of a ray tracer in which a very busy loop calculates the value of each pixel. For 
the sake of simplicity, the main focus is on the parallelization of this loop, without discussing the 
rest of the program. The purpose is to improve execution performance.

You perform the following steps to detect the data races in the program:

 1. Build and run the serial program.

 2. Add parallelism.

 3. Observe the results by looking at the picture.

 4. Use the debugger to discover any faults, especially data races.

 5. Fix the data races.

Building the Serial Program

The Tachyon example consists of several projects: 

 � Build_serial — Nonparallel version of program

 � Build_with_cilk — Uses Cilk Plus

 � Build_with_openmp — OpenMP version

 � Build_with_tbb — Uses Threading Building Blocks

 � Tachyon.common — Shared between all other projects

You can build the serial version of the Tachyon program by completing Activity 11-1.

ACTIVITY 11-1: BUILDING AND RUNNING THE SERIAL VERSION

In this activity you build and run the serial version of the Tachyon ray-tracing 
program. Use steps 1–5 if you are using Windows, and steps 6–10 if you are using 
Linux. 

PDE-Windows

 1. Unzip the Tachyon example to a directory for which you have read/
write access (usually located at <Parallel Studio XE Installation 
 directory>\Samples\en_US\C++\tachyon_compiler.zip).

 2. Open the tachyon_compiler.sln project, which you can fi nd in the vc8 
folder. (Visual Studio conversion will take place.) 

 3. Make sure build_serial is set as the start-up project by selecting it in the 
Solution Explorer and then selecting Project Í Set as StartUp Project.

 4. Build the program by selecting Build Í Build build_serial.

 5. Press Ctrl+F5 to run the program.
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IDB-Linux

 6. Untar the Tachyon example to a directory for which you have read\write 
access:

tar xvfz /opt/intel/composerxe/Samples/en_US/C++/tachyon.tar.gz ./

 7. Build the build_serial (Debug) solution:

make build_serial_debug

 8. Run the program:

./tachyon.serial dat/balls.dat &

Adding Parallelism

The sample code uses OpenMP to add parallelism. The solution is purposefully naïve; the intention 
is to show how to use the debugger, not how to write perfect parallel code. 

Listing 11-1 is a modifi ed version of the draw_task function from build_with_openmp.cpp. (You’ll 
be using this listing in Activity 11-1.) The function draws the ray-traced picture on the screen. The 
#pragma omp parallel for statement causes the loop iterations to be shared among the available 
threads. 

LISTING 11-1: The imperfectly parallelized code

static void draw_task (void)
{
  unsigned int serial = 1;
  int ison=1;
  unsigned int mboxsize = sizeof(unsigned int)*(max_objectid() + 20);
  unsigned int * local_mbox = (unsigned int *) alloca(mboxsize);
  memset(local_mbox,0,mboxsize);
  
  // Add parallelism - NOTE THIS WILL INTRODUCE DATA RACES!
  #pragma omp parallel for 

  // each iteration will draw a raster
  for(int y = starty; y < stopy; y++) { 
    if (ison) {
      drawing_area drawing(startx, totaly-y, stopx-startx, 1);

      // draw the individual line
       for (int x = startx; x < stopx; x++) {
        // work out the right color
        color_t c = render_one_pixel (x, y, local_mbox, serial,
                                        startx, stopx, starty, stopy);
        // draw the pixel
        drawing.put_pixel(c);
      }

continues
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      ison = video->next_frame();
    }
  }
}

code snippet Chapter11\11-1.cpp

As the parallel program runs, each thread writes a series of rasters to the screen. The left-hand 
picture in Figure 11-2 shows the program running on a machine that has two 6-core CPUs with 
Simultaneous Multi Threading, giving support for 24 hardware threads. The snapshot was taken 
part way through the picture being drawn. 

FIGURE 11-2: Noisy image generated by the parallel program

The middle picture in Figure 11-2 is complete. Although it looks almost right, a closer look shows 
that there is some “noise” in the resulting image. The right-hand picture enlarges the top corner of 
the middle picture. You can clearly see that the background is not very clean.

ACTIVITY 11-2: BUILDING THE OPENMP VERSION

In this activity you make the ray-tracing program parallel using OpenMP. When 
you run the parallelized program, the displayed image will be imperfect. Use steps 
1–9 if you are using Windows, and steps 10–14 if you are using Linux. 

PDE-Windows

 1. If not already open, open the tachyon_compiler.sln project.

 2. Make sure the build_with_openmp is the start-up project:

 a. Highlight the build_with_openmp project.

 b. Right-click and select Set as StartUp Project from the drop-down 
menu.

 3. Open the build_with_openmp.cpp fi le.

 4. Replace the draw_task function with the code in Listing 11-1.

LISTING 11-1 (continued)
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 5. Make sure the debug version is selected from the solution confi guration.

 6. Make sure that OpenMP has been enabled in the project properties by select-
ing Project Í Properties Í C/C++ Í Language Í OpenMP support.

 7. Build the debug version from the menu Build Í Build build_with_openmp.

 8. Press Ctrl+F5 to run the program.

 9. Compare the picture with the one in Activity 11-1. You should notice a degra-
dation in quality.

IDB-Linux

 10. Open the src/build_with_openmp/build_with_openmp.cpp fi le. 

 11. Replace the draw_task function with the code in Listing 11-1.

 12. Build the debug version:

make build_openmp_debug

 13. Run the program:

./tachyon.serial dat/balls.dat &

 14. Compare the picture with the one in Activity 11-1. You should notice a 
 degradation in quality.

Using the preceding hypothetical case as a real-life debugger issue, you should next investigate the 
issue using the debugger. It is intuitive that many errors are introduced with the very rough parallel-
ization code. Looking more closely at the picture, you can see that the differences with the neighbor 
pixels are really high. It’s time to start a data-race analysis. 

Observing the Results

Imagine that you have just received from your quality assurance team a defect report pointing out 
the noisy image and you are not sure what is causing the problem. It could be an incorrect imple-
mentation of the algorithm or a mistake in the parallelization of the algorithm. If the underlying 
algorithm is wrong, the defect should be observable, whether the code is running parallel or not. 
The fi rst step is to run the code with parallelism turned off — that is, to serialize the application. 

Serializing the Parallel Code

With the debugger you can serialize a parallel application at the click of the Serialize button. When 
working on Cilk code, the debugger stops the Cilk scheduler from stealing work; for OpenMP code, 
the debugger sets the number of threads available in a parallel region to one. 

You can serialize a parallel application three different ways:

 � By clicking the Serialize button on the debugger toolbar
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 � By selecting Debug Í Intel Parallel Debugger Extension Í Serialize Execution 

 � By using the commands (IDB-Linux only) idb set openmp-serialization on and idb 
set cilk-serialization on in the control window

Figure 11-3 shows the PDE-Windows toolbar with the sixth button from the left (the serialization 
button) pressed. The dark line around the icon indicates the serialization is active. The IDB-Linux 
also has a similar looking toolbar.

FIGURE 11-3: Parallel Debug Extension toolbar with the serialization button pressed

In the case of the Tachyon program, when you click the serialization button and the program is 
executed, the image is completely clean. This means two things: the program algorithm is okay, and 
problems exist with the parallel part of the code. Try out the serialization for yourself in Activity 11-3.

ACTIVITY 11-3: TURNING ON SERIALIZATION

In this activity you use the PDE serialization button to serialize the parallel pro-
gram to confi rm that it runs okay when just one thread is used. Use steps 1–4 if you 
are using Windows, and steps 5–7 if you are using Linux. 

PDE-Windows

 1. Modify the tachyon_compiler solution to use the Intel compiler solution. Be 
sure to convert the whole solution, which contains fi ve projects:

 a. Highlight the tachyon_compiler solution in the Solution Explorer.

 b. Right-click and select Intel C++ Composer XE 2011 Í Use Intel C++ 
from the drop-down menu.

 2. Build the debug version of the build_with_openmp project by selecting 
Build Í Build build_with_openmp.

 3. Click the serialization button on the toolbar. This sets the number of OpenMP 
threads to one.

 4. Press F5 to start debugging the program. (Notice that you do not press Ctrl.) 
Compare the picture with the one from Activity 11-1. The picture quality 
should be the same.

IDB-Linux

 5. Start the debugger:

idb -args tachyon.with_openmp dat/balls.dat 

 6. Select Parallel Í Serialize Execution to enable serialization.

 7. Press F5 to start debugging. Compare the picture with the one from Activity 
11-1. The picture quality should be the same.
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Detecting Data Races

Once you suspect that your code contains data races, whether by seeing inconsistent results or any 
other reason, it is time to start a data sharing analysis.

Before conducting a data sharing analysis, you need to enable two features:

 � Enable Parallel Debug Checks (in the compiler) — This option adds extra helper or instru-
mentation code to the application so that the debugger can handle the parallel code appro-
priately. It is important to apply this option to all code you are interested in. In the Tachyon 
example, the option should be applied to all the code; otherwise, there is a danger of missing 
some data races. Figure 11-4 shows enabling parallel debug checks in the compiler tab of the 
project properties page. This is equivalent to using the compiler option /debug::parallel 
(in Linux, use -debug parallel).

 � Parallel Debug Environment (required only in PDE-Windows) — Figure 11-5 shows enabling 
the parallel debug environment in the project properties page.

FIGURE 11-4: Enabling parallel debug checks in the compiler

To start a data sharing analysis, follow these steps:

 1. Click the data sharing analysis button — the second from the left in the toolbar (see Figure 11-6). 
In IDB-Linux you can also use the idb sharing on command in the console window.

You can also enable data sharing analysis through the menu Debug Í PDE Í Thread Data 
Sharing Detection Í Enable Detection.

c11.indd   317c11.indd   317 3/26/2012   12:29:25 PM3/26/2012   12:29:25 PM



Blair-Chappell   c11.indd   V2 - 03/07/2012 Page 318

318 x CHAPTER 11  DEBUGGING PARALLEL APPLICATIONS

FIGURE 11-5: Enabling the parallel debug environment in Visual Studio

 2. Start debugging your code by either single-stepping though it or by running the program with 
the debugger. You can use these function keys:

 � PDE-Windows

 � Single step:  <F10>

 � Run with debugging:  <F5>

 � IDB-Linux

 � Single step: <F11>

 � Run with debugging: <F5>

FIGURE 11-6: The toolbar’s data sharing analysis button 

in the state of performing an analysis

When you execute code that involved a data race, the debugger presents a list of events, showing the 
operation (read/write), the code location or data involved, and the thread performing that operation 
(see Figure 11-7).

After detecting an event, you need to examine the code to determine whether the problem is genuine 
or just a false positive. You may see that there is a data race but decide it is harmless. If you want to 
ignore an event, you can apply a fi lter to stop the event from appearing in the events list.

c11.indd   318c11.indd   318 3/26/2012   12:29:25 PM3/26/2012   12:29:25 PM



Blair-Chappell   c11.indd   V2 - 03/07/2012 Page 319

Using the Intel Debugger to Detect Data Races x 319

FIGURE 11-7: A list of data sharing events

Using Filters

Filtering events is a very important step of the data sharing analysis. Filters enable you to fi nd the 
source of the current issue and reduce the performance penalty caused by the analysis itself.

Filtering operates in two different modes: 

 � Suppression

 � Suppression fi lters discard events.

 � Suppression fi lters work by exclusion.

 � Focus

 � Focus fi lters home in on code or data ranges that you specify.

 � Focus fi lters work by inclusion. 

It’s quite normal to use both kinds of fi lters in the same analysis session, swapping between fi lter 
sets as you narrow down a problem. The following examples use two different approaches to using 
the fi lters. In the fi rst example, when an error is detected, you apply a suppression fi lter and then 
search for the next data race. The second example assumes that you have a good idea which part of 
the code is causing a problem. You then set up focus fi lters to home in on this area. 

Using Suppression Filters to Discard Unwanted Events

The build_with_openmp program has several data races that have already been identifi ed. Clicking 
the data sharing analysis button and starting a debug session results in the debugger stopping at the 
fi rst data race event. The debugger displays the region of the code where the data race is located. 

There is no guarantee in which order the data races occur, so the events pre-
sented here may appear in a different location for every run. 

The debugger stops at the source location where a data sharing issue occurs (see Figure 11-8). The 
serial variable seems to be the source of the problem.

Three events are captured, as shown in Figure 11-9. Three threads are accessing the same serial 
variable. Two of them are trying to read from and write into the serial variable, and one is reading 
from it. Two threads are incrementing the  serial variable at line 101, and one thread is reading 
serial at line 102 (primary.serial = serial). 
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FIGURE 11-8: The source location where a data-sharing issue was detected

After detecting an issue, you should investigate the 
origin of the variable and which other functions 
are using it. Looking at the call stack will help. The 
serial variable is instantiated in the draw_task 
function and is passed by reference to the render_
one_pixel function.

The render_one_pixel routine is not a thread-safe 
routine because it alters the parameters passed to it. 
The serial variable is shared between all the threads and needs to be made thread safe (which you 
will do in Activity 11-5). 

Creating the Filters

At this point you can use the debugger to:

 � Try to solve the problem, recompile the program, and run the analysis again.

 � Single-step a little further in the code to help your investigations. Here you are “stepping 
through” code causing the date race condition.

FIGURE 11-9: The Thread Data Sharing 

Events window, displaying and logging the 

events that have been detected
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 � Suppress this detection and look for the next error. 

You might fi nd it more interesting to take the second approach — that is, continue the investigation 
to get a more comprehensive overview of the damage caused by sharing variables. 

To fi lter out issues coming from the serial variable, right-click one of the events in the Thread 
Data Sharing Events window and select Add Filter. The option Add Filter Í To This Data Object 
suppresses all the events coming from the serial variable (see Figure 11-10). Once a fi lter has been 
created, it is listed in the Thread Data Sharing Filters window (see Figure 11-11).

FIGURE 11-10: Inserting a fi lter from the Thread Data Sharing Events window

FIGURE 11-11: The suppression fi lters

Once you have inserted the fi lter for serial, you can continue the debugging. You will see that most 
data races involve data passed by parameter from draw_task to each thread. 

You will fi nd that one of the data races deserves special mention. The mbox variable is an array (see 
Figure 11-12). After creating a fi lter for an array, you can adjust the range of the fi lter so that it 
spans the address space of the array. This means that any data race on any element of the mbox vari-
able will be fi ltered.

c11.indd   321c11.indd   321 3/26/2012   12:29:26 PM3/26/2012   12:29:26 PM



Blair-Chappell   c11.indd   V2 - 03/07/2012 Page 322

322 x CHAPTER 11  DEBUGGING PARALLEL APPLICATIONS

FIGURE 11-12: A data race derived from the mbox variable

ACTIVITY 11-4: DETECTING AND FILTERING DATA RACES

In this activity you build the code with the Intel compiler, adding special options to 
support parallel debugging. A data race is detected, and you create a fi lter so that 
the data race events are ignored. Use steps 1–7 if you are using Windows, and steps 
8–14 if you are using Linux. 

PDE-Windows

 1. Highlight the two projects, build_with_openmp and tachyon.common. 
Open the project properties page by pressing Alt+F7 and ensure the following 
options are set:

Intel Debugging Í Parallel Debug Environment: Auto

C/C++ Í Debug Í Enable Parallel Debug Checks: Yes

 2. Rebuild the debug version using the menu Build Í Build build_with_openmp.
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 3. Make sure the serialization button is not selected!

 4. Click the data sharing analysis button.

 5. Press F5 to start debugging the program. The program should stop at a data 
race (probably in the render_one_pixel at serial++ function). Press F5 
again. 

 6. In the Thread Data Sharing Events window, highlight the event and from the 
context menu select Add Filter Í To This Data Object.

 7. Press F5. The program will ignore all events associated with the object identi-
fi ed in step 6, and will stop at the next data race.

IDB-Linux

 8. Rebuild the debug version (note the extra command):

export CXXFLAGS=”-debug parallel”
make clean
make build_openmp_debug

 9. Launch the debugger:

idb -args tachyon.with_openmp dat/balls.dat &

 10. Make sure the serialization button is not selected.

 11. Choose Parallel Í Enable Detection to enable data race detection.

 12. Press F5 to start debugging the program. The program should stop at a data 
race (probably in the render_one_pixel at serial++ function). Press F5 
again. 

 13. In the Thread Data Sharing Events window, highlight the event and from the 
context menu select Add Filter Í To This Data Object.

 14. Press F5. The program will ignore all events associated with the object identi-
fi ed in step 6, and will stop at the next data race.

Fixing the Data Races

Having identifi ed the data races, you now need to come up with a solution. Listing 11-2 gives one 
possibility. If you place the start of the parallel region using the #pragma omp parallel construct 
before the declaration of ison, serial, mboxsize, and local_mbox, each variable will become 
thread-local.
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LISTING 11-2: Fixing data races by moving the parallel region

static void draw_task (void)
{
  // Start a parallel region
  #pragma omp parallel
  {
    // each thread will have its own copy of these variables
    int ison              = 1;
    unsigned int serial   = 1;
    unsigned int mboxsize = sizeof(unsigned int)*(max_objectid() + 20);
    unsigned int * local_mbox = (unsigned int *) alloca(mboxsize);
    memset(local_mbox, 0, mboxsize);
     // workshare the loops between the threads
    #pragma omp for
    for(int y = starty; y < stopy; y++) {
      if (ison) {
        drawing_area drawing(startx, totaly-y, stopx-startx, 1);
        for (int x = startx; x < stopx; x++) {
          color_t c = render_one_pixel (x, y, local_mbox, serial, startx,  
                                      stopx, starty, stopy);
          drawing.put_pixel(c);
        }
        ison = (video->next_frame()? 1 : 0);
      }
    }
  }
  return;
}

code snippet Chapter11\11-2.cpp

After you recompile and rerun the application, the image should be completely clean. If you run a 
data sharing analysis again, you will still detect some issues. Those are mainly related to image dis-
play, and in practice are not relevant for the image generation, so they will not be resolved here.

ACTIVITY 11-5: FIXING THE OPENMP DATA RACE

In this activity you fi x the data races. On closer examination, however, the picture 
still has imperfections. Use steps 1–5 if you are using Windows, and steps 6–10 if 
you are using Linux.

PDE-Windows

 1. Open the build_with_openmp.cpp fi le and replace the draw_task function 
with the code in Listing 11-2.

 2. Build the debug version from the menu Build Í Build build_with_openmp.
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 3. Press Ctrl+F5 to run the program.

 4. Compare the picture with the one in Activity 11-1. You should notice degrada-
tion in quality.

 5. Use the PDE to see if any data races still exist. (See steps 2–5 of Activity 11-4.)

IDB-Linux

 6. Open the build_with_openmp.cpp fi le and replace the draw_task function 
with the code in Listing 11-2.

 7. Build the debug version:

export CXXFLAGS=”-debug parallel”
make build_openmp_debug

 8. Run the program:

./tachyon.with_openmp dat/balls.dat

 9. Compare the picture with the one in Activity 11-1. You should notice degrada-
tion in quality.

 10. Use the Debugger to see if any data races still exist. (See steps 2–5 of Activity 11-4.)

Using the suppress fi lters presents a straightforward model of detecting and fi nding data races in 
the code. However, this mode has as a side effect: there will be a high performance penalty because 
every fi le is taking part in the data sharing detection. A more effi cient way is to use focus fi lters.

Using Focus Filters to Examine a Selected Portion of Code

When working with more complex examples, focusing on a specifi c region may be a more effi cient 
way of working. In the suppression mode, data race detection is applied to every fi le that has been 
instrumented with the Intel compiler. This can lead to a large number of events being generated that 
have to be examined. If you are working on a large project written by several developers, you may 
want to focus on just the code that you have written. You can do this in the debugger by setting it to 
focus mode. 

To enable focus mode, choose Use Filter Set (Focus) Í Focus in the Thread Data Sharing Events 
window (see Figure 11-13). 

Before adding and creating any fi lters, you could modify the code example to fi x some of the data 
races you are already aware of. In Listing 11-3, the serial and ison stack variables are declared to 
be firstprivate in the #pragma omp statement. By doing this, each thread gets its own initialized 
copy of those variables. 
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FIGURE 11-13: Setting the fi lter mode to focus

LISTING 11-3: Image generated by the Tachyon example

// This code fixes some of the data races but not all of them!
// WARNING: THERE ARE STILL SOME DATARACES IN HERE
static void draw_task (void)
{
  unsigned int serial = 1;
  int ison=1;
  unsigned int mboxsize = sizeof(unsigned int)*(max_objectid() + 20);
  unsigned int * local_mbox = (unsigned int *) alloca(mboxsize);
  memset(local_mbox,0,mboxsize);
  
  // Each thread has its own initialized copy of serial and ison
  #pragma omp parallel for firstprivate(serial, ison) 
  for(int y = starty; y < stopy; y++) {
    if(ison) {
      drawing_area drawing(startx, totaly-y, stopx-startx, 1);
      for (int x = startx; x < stopx; x++) {
        color_t c = render_one_pixel (x, y, local_mbox, serial,
                                   startx, stopx, starty, stopy);
        drawing.put_pixel(c);
      }
      ison = video->next_frame();
    }
  }
  return;
}

code snippet Chapter11\11-3.cpp

Note that running the program now produces a near perfect image. However, if you enlarge the 
image, you will see that some pixels still have the wrong color, as shown in Figure 11-14. 
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FIGURE 11-14: A close examination shows some pixels are wrong

Creating the Filters

Before running the data sharing analysis, you have to defi ne the region that you are inter-
ested in. For the purpose of this exercise, the local_mbox stack variable was not declared to be 
 firstprivate, so all the threads are still sharing it. Any half-decent programmer would have 
already fi xed this by now, but it was ignored; so, a data sharing error still exists.

Before inserting any kind of fi lter, you should identify the chain of functions that make use of 
local_mbox. The variable is fi rst used in the render_one_pixel function, which, in turn, passes a 
reference to the trace, intersect_object, and grid_intersect functions. 

To insert a fi lter:

 1. Right-click the Thread Data Sharing Filters window and select New Code Range Filter. 

 2. Specify the function {,,build_with_openmp.exe}function_name. 

After doing this for each of the trace, intersect_object, grid_intersect, and render_one_
pixel functions, the window will look similar to Figure 11-15. 

FIGURE 11-15: The Thread Data Sharing Filters window

When the fi lters are fi rst created, their state will be marked as pending. Once you start a debug ses-
sion, the state of the fi lters will change to active.

After enabling the data-race analysis and debugging, the fi rst problem detected is in the grid_
intersect function in grid.cpp. The variable ry->mbox is originally derived from the previously 
mentioned local_box stack variable:
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static void grid_intersect(grid * g, ray * ry) 
{
  // .
  // code omitted
  // .

  while (1) {
    if (tmax.x < tmax.y && tmax.x < tmax.z) {
      cur = g->cells[voxindex];
        // iterate through a linked list
        while (cur != NULL) {
        if (ry->mbox[cur->obj->id] != ry->serial) {
         // THIS CODE CAUSES A DATA RACE! 
         ry->mbox[cur->obj->id] = ry->serial; 
          cur->obj->methods->intersect(cur->obj, ry);
        }
        // go to next link in the list
        cur = cur->next;
      }
  // .
  // code omitted
  // .
  }
}

ACTIVITY 11-6: USING A FOCUS FILTER

In this activity you fi x some of the data races. You create a fi lter to focus on captur-
ing data races in four functions. Use steps 1–6 if you are using Windows, and steps 
7–12 if you are using Linux.

PDE-Windows

 1. Open the build_with_openmp.cpp fi le and replace the draw_task function 
with the code in Listing 11-3.

 2. Build the debug version from the menu Build Í Build build_with_openmp.

 3. Right-click the Thread Data Sharing Events window and select Use Filter Set 
(Focus) Í Focus.

 4. Right-click the Thread Data Sharing Filters window and select New Code 
Range Filter. In the Entire Function fi eld, add the text {,,build_with_openmp.
exe}render_one_pixel, and then click OK.

 5. Repeat step 4 using the following function names:

{,,build_with_openmp.exe}trace
{,,build_with_openmp.exe}intersect_objects
{,,build_with_openmp.exe}grid_intersect

 6. Press F5 to debug the program.
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IDB-Linux

 7. Open the build_with_openmp.cpp fi le and replace the draw_task function 
with the code in Listing 11-3.

 8. Build the debug version:

export CXXFLAGS=”-debug parallel”
make build_openmp_debug

 9. Right-click the Thread Data Shari ng Events window and select Use Filter Set 
(Suppress) Í Focus.

 10. Right-click the Thread Data Sharing Filters window and select New Code 
Range Filter. In the Entire Function fi eld, add the text {,,build_with_openmp.
exe}render_one_pixel.

 11. Repeat step 4 using the following function names:

{,,build_with_openmp.exe}trace
{,,build_with_openmp.exe}intersect_objects
{,,build_with_openmp.exe}grid_intersect

 12. Press F5 to debug the program.

Correcting the mbox Data Race

At this point you must decide where to perform the fi x — either on the parallelized loop or in the 
function where the problem was detected. 

One way to fi x the error would be to insert a #pragma critical statement immediately before the 
data race. The shared variable is used twice, so adding a local variable called localID will work:

#pragma critical  
int localID = cur->obj->id;
   if (ry->mbox[localID] != ry->serial) {
          ry->mbox[localID] = ry->serial; 

The code is now thread safe, but inserting the critical section in the code introduces a performance 
penalty because only one thread can access this code at any time; all the other threads have to wait. A 
much better solution is to create an independent buffer for every thread. Listing 11-4 does exactly this.

The code in Listing 11-4 defi nes a new ParameterForRendering class, with member 
items _ison, _serial, _mboxsize, and _local_mbox being used to replace the original stack 
variables. The initialization code for _local_mbox is moved from its original place into the 
constructor ParameterForRendering(unsigned int box_size).

The ParameterForRendering (const ParameterForRendering &input) copy constructor is also 
implemented because the compiler will implicitly call it in the firstprivate clause. 

The original stack variables are replaced with an instantiation of the ParameterForRendering 
pars(mboxsize) object. In turn, this is declared to be firstprivate in the #pragma omp for loop, 
creating an object for every thread. 
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A schedule (dynamic) scheduling clause is added to the OpenMP loop. When you run the code 
with this scheduling loop, you will see that each raster is drawn in equal time. In the original pro-
gram some rasters were completed much earlier than others.

LISTING 11-4: Using an object to pass the parameters

// A new class used to hold the former stack variables
class ParameterForRendering {
public:
  int           _ison;
  unsigned int  _serial;
  unsigned int  _mboxsize;
  unsigned int *_local_mbox;
public:
  // constructor
  ParameterForRendering(unsigned int box_size) : 
    _ison(1),
    _serial(1),
    _mboxsize(box_size),
    _local_mbox(NULL) {
      _local_mbox = (unsigned int *) malloc(_mboxsize);
      memset(_local_mbox, 0, _mboxsize);
    }

  // copy constructor
  ParameterForRendering(const ParameterForRendering &input) : 
    _ison(input._ison),
    _serial(input._serial),
    _mboxsize(input._mboxsize),
    _local_mbox(NULL) {
      _local_mbox = (unsigned int *) malloc(_mboxsize);
      memset(_local_mbox, 0, _mboxsize);
    }
  // destructor
  ~ParameterForRendering() {
    free (_local_mbox);
  }
};

static void draw_task (void)
{
  unsigned int mboxsize = sizeof(unsigned int)*(max_objectid() + 20);
 
  // instantiate class object
  ParameterForRendering pars(mboxsize);
  
  // share loop iterations between threads
  // each thread gets its own initialized copy of ‘pars’
  #pragma omp parallel for firstprivate (pars) schedule (dynamic)
  for(int y = starty; y < stopy; y++) {
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    if (pars._ison) {
      drawing_area drawing(startx, totaly-y, stopx-startx, 1);
       for (int x = startx; x < stopx; x++) {
        color_t c = render_one_pixel (x, y, pars._local_mbox, pars._serial,  
                        startx, stopx, starty, stopy);
        drawing.put_pixel(c);
      }
      pars._ison = (video->next_frame()? 1 : 0);
    }
  }
  return;
} 

code snippet Chapter11\11-4.cpp

After you implement the preceding modifi cations, the image is generated without any defect. You 
can try this for yourself in Activity 11-7. An interesting task is to compare the performance of this 
solution against a version that uses a critical section.

Data race issues still exist in the display routines, but they are not addressed here. 

ACTIVITY 11-7: FIXING THE DATA RACE

In this activity you fi x the remaining data races. Use steps 1–3 if you are using 
Windows, and steps 4–6 if you are using Linux.

PDE-Windows

 1. Open the build_with_openmp.cpp fi le and replace the draw_task func-
tion with the code in Listing 11-4. Notice the listing also adds a new 
ParameterForRendering class that will be used to pass parameters.

 2. Build the debug version from the menu Build Í Build build_with_openmp.

 3. Press F5 to debug the program. There should be no data races detected in the 
four functions that are being monitored.

IDB-Linux

 4. Open the build_with_openmp.cpp fi le and replace the draw_task func-
tion with the code in Listing 11-4. Notice the listing also adds a new 
ParameterForRendering class that will be used to pass parameters.

 5. Build the debug version.

 6. Press F5 to debug the program. There should be no data races detected in the 
four functions being monitored.
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MORE ABOUT FILTERS

Filters are an important part of the debugger. They help you to determine where and what to investi-
gate when analyzing data races in your code. As you have already seen, two different kinds of fi lters 
exist: suppress fi lters and the focus fi lters. You don’t have to apply the fi lters to all your code; you 
can instead apply the fi lters to a specifi c range within your code. Table 11-1 shows how to apply the 
fi lters to different ranges. 

TABLE 11-1: Specifying the Filter Range

RANGE PURPOSE INPUT

Entire function Used when you are not interested/

interested in the detections coming 

from a specifi c function.

{function,[sourc e],[module] }

Entire source 

fi le

Used when you are not interested/

interested in the detections coming 

from a specifi c source fi le.

{,source,[module] }

Address range Used to fi lter (out/in) the complete 

address range of a translation unit. It 

can be set by line range or address 

range.

{,source,[module] }@line

Data range/

Filter

Used to fi lter (out/in) events coming 

from any specifi c data.

Symbol name or address. If you refer-

ence arrays, you must also state their 

size.

You can insert fi lters in two ways: either straight from an event in the Thread Data Sharing Events 
window or by right-clicking the Thread Data Sharing Filters window. After inserting a fi lter, you 
can modify its properties in a dialog box (see Figures 11-16 and 11-17), which you can reach by 
right-clicking the fi lter name in the Thread Sharing Filters Window.

FIGURE 11-16: The Modify Data Range Filter dialog
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FIGURE 11-17: The Modify Code Range Filter dialog

RUNTIME INVESTIGATION: VIEWING THE STATE 

OF YOUR APPLICATION

As shown in Table 11-2, the debugger offers several specialized windows to help you investigate the 
current state of your application and its threads. 

TABLE 11-2: Intel Debugger Windows

WINDOW DESCRIPTION MODEL

Tasks Displays the state of a task, the parent task, and the number of 

spawned tasks.

OpenMP

Spawn Tree Displays a tree of spawned tasks; tasks that have not spawned 

anything are shown as leaf nodes.

OpenMP

Locks Displays the state a lock, the type of lock, the number of threads 

holding the lock, and references to the lock.

OpenMP

Barriers Displays the state of a barrier, the number of threads that have 

reached the barrier, and the location of the barrier.

OpenMP

Teams Displays the team of threads that supports a parallel region. OpenMP

Taskwaits Displays the state of a taskwait, the number of tasks the taskwait 

is waiting for, and the location of the taskwait.

OpenMP

Cilk Thread 

Stack

Displays a call stack of worker threads. Cilk Plus
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The OpenMP windows give information about the team hierarchy and the relationship between 
tasks and source code. This will help you to identify what code the thread is executing.

You can access the OpenMP windows either by clicking the corresponding but-
tons on the toolbar (see Figure 11-18) or by selecting Debug Í Intel Parallel Debugger 
Extension Í Windows Í OpenMP Í [window] (see Figure 11-19).

OpenMP Tasks

OpenMP Spawn Tree

OpenMP Locks OpenMP Barriers

OpenMP Teams

OpenMP Taskwaits

FIGURE 11-18: The OpenMP windows toolbar

FIGURE 11-19: Accessing the OpenMP window from the menu

Using the OpenMP Tasks Window to Investigate Variables 

Within a Parallel Region

Using the Tachyon solution in Listing 11-3, you can use the OpenMP windows to investigate what 
happened to the variables created inside of the #pragma omp parallel region. However, at fi rst, it 
doesn’t appear obvious how to fi nd out what code (and thread) a particular OpenMP task has used.
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You can use the information from the Tasks window and the Spawn Tree window to associate 
a parallel task to a specifi c thread. You can then examine the call stack for that thread (and 
the local variables) all the way back to the point where the thread was fi rst created within the 
parallel region. 

Figure 11-20 shows the windows needed to map the OpenMP task to the correct call stack. You can 
examine the contents of an OpenMP task’s call stack as follows:

 1. Get the thread ID of a task in OpenMP’s Tasks window. In the example, task 47 has a thread 
ID of 3400.

 2. Double-click thread 3400 in the Threads window.

 3. Examine the Locals window to see the stack variables. These are thread-specifi c in the 
example.

 4. Examine the Call Stack window to see the function hierarchy.

FIGURE 11-20: Examining the OpenMP task states
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Using the OpenMP Spawn Tree Window to View the Behavior 

of Parallel Code

You can use the OpenMP Spawn Tree window to confi rm that your OpenMP parallelism is working 
as intended. For example, consider the Fibonacci number calculator. Fibonacci numbers are integer 
numbers that follow the sequence 0, 1, 1, 2, 3, 5, 8, 13, and so on. Each Fibonacci number is the 
sum of the previous two numbers in the sequence. The fi rst two numbers in the sequence are always 
0 and 1. Listing 11-5 contains a parallel version. The bolded code makes the program parallel. If 
you delete that code, you will end up with the original serial version.

LISTING 11-5: Simple implementation of a Fibonacci calculator

// This code has an ERROR in it which will cause a SEGMENTATION fault! 
#include <stdio.h>
long long int fibonacci(int n) {
  if (n > 1) {
    long long int r_1, r_2;
    // create a task to calculate the n-1 number
    #pragma omp task  default(none) shared(r_1,n)
    {
      // recursive call
      r_1 = fibonacci(n - 1);
    }
    // create a task to calculate the n-2 number
    #pragma omp task  default(none) shared(r_2,n)
    {
      // recursive call
      r_2 = fibonacci(n - 2);
    }
    return r_1 + r_2;
  } else {
    // exit point for the recursion
    // this seeds the first two numbers in the sequence
    // ie 0 and 1 
    if (n==0) return 0;
    return 1;
  }
}

int main()
{
  int i = 50;
  long long int t  =0 ;
  // create a parallel region
  #pragma omp parallel
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  {
    // run as a single thread 
    #pragma omp single
   // calculate the 50th number in the fibonacci sequence  
   t = fibonacci(i);
  }
  printf(“%d\n”,t);
  return 0;
}

code snippet Chapter11\11-5.cpp

Two independent OpenMP tasks are used to add parallelism to the fibonacci function. The fi rst 
task calculates fibonacci(n-1), and the second calculates fibonacci(n-2). This should generate a 
tree of spawned tasks, branching twice for every execution of the fibonacci function. 

If you compile and execute the code, a segmentation fault occurs. Figure 11-21 shows the OpenMP 
spawn tree at the point the fault happens. Although you can see that two tasks are spawned from 
task 55, a strange pattern is displayed that does not match the expected behavior for the task 
hierarchy.

FIGURE 11-21: The spawning tree for the wrong parallelization suggested for the 

Fibonacci example

The cause of the problem is a missing taskwait clause (see the bold code in Listing 11-6). This miss-
ing statement causes each task to overlap, corrupting the stack and causing a segmentation fault and 
chaos on the spawned tree. Inserting a #pragma omp taskwait statement before the return state-
ment in the fibonacci function should eliminate this effect. With this addition, both tasks run to 
completion. 

Listing 11-6 shows the modifi ed code with the taskwait clause, and Figure 11-22 shows the spawn 
tree of the corrected code. 
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LISTING 11-6: Right parallelization for the Fibonacci example

#include <stdio.h>
long long int fibonacci(int n) {
  if (n > 1) {
    long long int r_1, r_2;

    // create a task to calculate the n-1 number
    #pragma omp task  default(none) shared(r_1,n)
    {
      r_1 = fibonacci(n - 1);
    }

    // create a task to calculate the n-2 number
    #pragma omp task  default(none) shared(r_2,n)
    {
      r_2 = fibonacci(n - 2);
    }
     // wait here until both tasks have finished running.
     #pragma omp taskwait

    return r_1 + r_2;
  } else {
    // exit point for the recursion
    // this seeds the first two numbers in the sequence
    if (n==0) return 0;
    return 1;
  }
}

int main()
{
  int i = 50;
  long long int t  =0 ;
  // create a parallel region
  #pragma omp parallel
  {
    // run as a single thread 
    #pragma omp single
   // calculate the 50th number in the fibonacci sequence  
    t = fibonacci(i);
  }
  printf(“%d\n”,t);
  return 0;
}

code snippet Chapter11\11-6.c
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F IGURE 11-22: The spawn tree after the correction of the parallel Fibonacci example

SUMMARY

Viewing a parallel program while it is running is a very different experience from error-detection 
techniques described in other chapters. Finding data races and observing program behavior becomes 
a dynamic process rather than a batch-driven process. 

Using the Intel Debugger to detect data races brings a new level of visibility and confi dence when 
debugging. In this chapter you used the debugger to fi x data races in the Tachyon ray-tracing pro-
gram, and corrected the execution order in a Fibonacci calculator. You can see another example of 
using the debugger in Chapter 14, “Nine Tips to Parallel-Programming Heaven,” where you use it to 
detect data races in a Cilk Plus program.

Chapter 12, “Event-Based Analysis with VTune Amplifi er XE,” shows how to use Amplifi er XE to 
see how well your program is using the CPU architecture.
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12
Event-Based Analysis with 
VTune Amplifi er XE

WHAT’S IN THIS CHAPTER?

 � Using the cycles per instruction retired (CPI) metric to spot potentially 

unhealthy programs

 � Using Amplifi er XE’s General Exploration analysis to identify perfor-

mance issues in your program

 � Drilling down into architectural hotspots

 � Using Amplifi er XE’s APIs to control data collection

When we are ill, most of us know how to check the obvious. Do we have a fever? Are we 
aching anywhere? Is our pulse rate normal? Wouldn’t it be great if there were an easy way 
of measuring the health of a program? The good news is that some equivalent indicators can 
be used to monitor the health of an application, and Amplifi er XE can be used to get those 
measurements. 

This chapter shows how to check the health of an application using Amplifi er XE’s archi-
tectural analysis types. Starting with a system-wide view of your system, you learn how to 
observe how well different programs are performing. 

TARGET ARCHITECTURE

The principles described in this chapter can be applied to any CPU architecture. 
However, Amplifi er XE’s architectural analysis features are specifi cally targeted 
at Intel devices. You will not be able to carry out the activities in this chapter on a 
non-Intel device.
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TESTING THE HEALTH OF AN APPLICATION

When looking at the health of an application, several facts need to be ascertained. Like people, each 
piece of software has its own unique traits. Even if two programs do the same thing — for example, 
predicting the weather — they may work quite differently internally. These internal differences 
often have a direct impact on how quickly a program runs and how well the software makes use 
of the CPU. A well-written “healthy” program will run effi ciently, whereas a poorly written “sick” 
 program may run slowly and waste CPU resources.

The following are basic questions to ask when optimizing software:

 � How long does the program run?

 � How much work does the program do?

 � Does the program have any ineffi ciencies? 

Fortunately, all Intel CPUs have hardwired into them electronics that can measure myriad 
parameters and statistics. Two fundamental parameters (clock ticks and instructions retired), 
and an associated ratio (cycles per instruction retired), can be used to quickly spot unhealthy 
software.

 � Clock ticks show how many CPU cycles a program consumed. They are a measure of time. 
Depending on the processor you are running on, clock ticks might be measured per logical 
core or per CPU. 

 � Instructions retired measure the number of instructions that have progressed all the way 
through the CPU pipeline and have not been abandoned along the way. The retired 
 instructions represent the real work being done by the program.

 � Cycles per instruction retired (CPI) gives an average fi gure of how much time each executed 
instruction took in cycles. The formula is as follows: 

CPI = clock ticks / instructions retired

You can use this ratio to measure a program’s effi ciency. The lower the CPI value, the more 
effi cient the program is. Low is good, high is bad.

What Causes a High CPI?

In modern CPUs, it is theoretically possible to have four instructions retired on each cycle, giving a 
CPI of 0.25; however, this low of a fi gure is rarely achieved. If your application has a CPI of below 1, 
you are doing pretty well. In the hands-on activities you will see CPI values varying from 26, which 
is terrible, down to about 0.4, which is excellent.

If you take every cycle of a program, you will fi nd that each cycle can be classed in one of three 
ways (see Figure 12-1). 
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 � Cycles where instructions are executed and usefully employed (A)

 � Cycles where the CPU is doing nothing (B)

 � Cycles where instructions are read and possibly executed but are then abandoned or “thrown 
away” (C)

A

Executed

and used

B

None executed

C

Abandoned

before

completion

Total

number

of CPU

cycles

Total cycles consumed = A + B + C

FIGURE 12-1: Every cycle the CPU consumes can be categorized based on how they use 

instructions

A healthy program will have very few of categories B and C, with most of the cycles being executed 
and used. An unhealthy program will have a lot of cycles that are not doing anything useful. The 
more B or C type cycles, the worse the CPI. (Note that the terms A, B, and C have no special 
 signifi cance; they are used merely to help identify the segments in Figure 12-1.)

You will probably fi nd that your application is dominated by one of the segments. You can use 
Amplifi er XE to detect these different cycles by looking for the hotpots in your code. 

Is CPI on Its Own a Good Enough Measure of Health?

Although CPI can be used to indicate that some programs have wasted cycles and hence present 
optimization opprtunities, using just CPI can occasionally be misleading.

In Activities 12-3 and 12-4 later in the chapter, you will see that the speed of the matrix 
 multiplication program improves but the CPI gets worse. 

When doing any optimization work, always keep an eye on the most fundamental 
 measurement — that is, how long a program took to run; otherwise, you may spend a lot of 
 unfruitful time improving the CPI but ending up with a slower program.

Conducting a System-Wide Analysis

It’s sometimes educational to do a system-wide analysis on a PC with Amplifi er XE to see which 
programs have the best CPI and which have the worst. To perform a system-wide analysis, you fi rst 
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set the project properties to Profi le System, as shown in Figure 12-2, and then launch a Lightweight 
Hotspots analysis. This kind of hotspot uses the performance monitoring capabilities of the CPU, 
has a very low impact on the running programs, and is capable of sampling everything that running 
on your PC. 

FIGURE 12-2: Editing the project properties to enable system-wide profi ling

Once you’ve run a profi ling session, you’ll probably be fascinated by the results. Figure 12-3 shows 
the results of doing an analysis on a dual core laptop (the one that was used to write this chapter). 
Notice that autocheck.exe has a huge CPI of nearly 36. As it happens, this value is expected. 
Autocheck.exe is part of Windows and is designed to be non-CPU-intensive, running in the 
 background doing some maintenance activities. Amplifi er XE highlights the CPIs to alert you to 
 values that need further investigation.

FIGURE 12-3: A system-wide analysis reveals the CPI rate of every program
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Looking at CPI of different programs is entertaining, but there is a serious part to exercise as 
well. Apart from CPI spotting, you can use the same system-wide analysis to see if one particular 
 program is hogging all the CPU time, as the following story illustrates. 

In a recent code-optimization training session at a university, a student complained that his 
 “optimized” applications ran unexpectedly slow. By running a system-wide analysis with Amplifi er 
XE, the reason for the slowdown became obvious. Another user was logged on to the same node 
and running an MP3 player; the player had been running for the last fi ve days! After a little further 
exploration, the user of the MP3 software was identifi ed as being someone from the university’s IT 
department. Once the MP3 player was killed, the application ran as expected. 

When installing Amplifi er XE on a cluster or other high-performance comput-
ing (HPC) environment, make sure your administrator knows Amplifi er XE’s 
capabilities. 

ACTIVITY 12-1: CONDUCTING A SYSTEM-WIDE ANALYSIS

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

 1. Start Amplifi er XE GUI from the command line:

amplxe-gui

 2. Create a new Chapter 12 project by selecting File Í New Í Project. In the 
Project Properties dialog, select Profi le System from the Target tab.

 3. Carry out a Hotspot Analysis by selecting File Í New Í Analysis... Í 
Algorithm Analysis Í Lightweight Hotspots.

 4. Stop the data collector after about ten seconds or so. 

 5. Explore the results and fi nd the following:

 � The application with the largest CPI

 � Any fi elds highlighted in pink

CONDUCTING A HOTSPOT ANALYSIS

Once it is established that someone is not well, a more detailed diagnosis is needed, with the 
doctor prodding, poking, and asking appropriate questions. The doctor will need to work out 
what the problem is in order to decide on the best treatment. Someone complaining of feeling hot 
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and having stomach pain should be dealt with quite differently from someone with a suspected 
broken leg. Knowing the location and nature of any discomfort or pain is essential for a correct 
diagnosis. 

In the same way, once you’ve identifi ed that your program is running poorly by looking at the CPI 
and the time the program took to run, you should conduct a hotspot analysis to fi nd out where the 
bottlenecks are in your code. After identifying the hotspots, you then need to fi nd the cause of the 
hotspots and apply suitable remedies. 

Hotspot Analysis Types

Amplifi er XE has two hotspot analysis types: 

 � Lightweight Hotspots analysis — This uses hardware event-based sampling and samples all the 
processes running on a system. The overhead of this type of collection is very low. No stack 
information is collected in this analysis type. The lightweight hotspot analysis can be applied 
either to a single application or to the whole system, depending on whether you choose Profi le 
System or Launch Application in the project properties. If you choose Launch Application, 
only information about the application will be displayed; the rest will be fi ltered out.

 � Hotspots analysis — This employs user-mode sampling and, unlike lightweight hotspots, 
will collect stack and call tree information. You cannot use this kind of analysis to do a 
 system-wide analysis; it is used to analyze a single application or process. You can fi nd 
more information on this kind of analysis in Chapter 6, “Where to Parallelize.”

To reduce confusion about the terms “Lightweight Hotspots analysis” and 
“Hotspots analysis,” the rest of this chapter refers to the latter as User Mode 
Hotspots analysis.

User Mode Hotspots Versus Lightweight Hotspots

It’s worth spending a few minutes looking at the difference between the two types of analysis. The 
screenshots in this section use the code from matrix.cpp in Listing 12-3 (at the end of the chapter). 
The machine used has a second-generation Intel Core Architecture (aka Intel Sandy Bridge) 3.0 GHz 
processor, 8GB of memory running Centos 5 (64-bit 2.6.18 Kernel). The CPU has 4 cores and 
supports hyper threading, giving a total availability of 8 logical CPUs.

The Results Tabs

Amplifi er XE displays the data collected from a hotspot analysis in different tabs (see Figure 12-4). 
Notice that the User Mode Hotspots analysis has fi ve tabs, whereas the Lightweight Hotspots 
 analysis has only four tabs. The extra tab, Top-down Tree, is available only in the User Mode 
Hotspots analysis because only this analysis collects stack and call graph information.
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(a) Lightweight Hotspot

(b) User Mode Hotspot

FIGURE 12-4: The results tabs

The Summary Tab

When you select the Summary tab, the Lightweight Hotspots analysis gives two extra pieces of 
information: Instructions Retired and CPI Rate (see Figure 12-5). Notice that the Lightweight 
Hotspots analysis lists what seems to be two OS-related functions: vmlinux and _dl_relocate_
object. The Paused Time records the amount of time the analysis ran with the collector paused. 

(a) Lightweight (b) User Mode

FIGURE 12-5: A summary page showing the two types of hotspot analysis

The Bottom-up Tab

You can group and display the results in the Bottom-up tab according to different objects, such as 
Process, Module, Thread, and so on. Table 12-1 lists the different objects used in the two types of 
hotspot analysis. Most terms will be familiar to you or will be explained later; however, the follow-
ing two terms need a quick explanation now:

 � Package refers to the physical CPUs. A dual-CPU system has two packages. 

 � H/W context refers to logical CPUs. 
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TABLE 12-1: Objects Used in the Bottom-up Results Grouping 

OBJECT LIGHTWEIGHT USER MODE

Process Y N

Module Y Y

Thread Y Y

Source fi le Y Y

Function Y Y

Basic nlock Y N

Code location Y N

Class Y Y

H/W context Y N

Package Y N

Frames Y Y

 Call stack N Y

OpenMP regions N Y

Task type N Y

Figure 12-6 shows an example of lightweight hotspots grouped by module/function.

FIGURE 12-6: Lightweight hotspots grouped by module/function

The Top-down Tree Tab

Only the User Mode Hotspots analysis has a top-down view. This view displays the call stack and 
timeline view as shown in Figure 12-7. 
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FIGURE 12-7: The Top-down Tree tab of the User Mode Hotspots analysis

Viewpoints

All analysis types have a default view. You can change the view by clicking the spanner next to the 
analysis title (see Figure 12-8). The Lightweight Hotspots analysis has four views, whereas the User 
Mode Hotspots analysis has only two views. Viewpoints are simply different ways of presenting the 
collected data. Because the User Mode Hotspots analysis does not collect any hardware events, only 
two viewpoints are available.

(a) Lightweight Hotspot

(b) User Mode Hotspot

FIGURE 12-8: Diff erent viewpoints for the two types of analysis
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To summarize, the major differences between the two types of hotspot analysis are as follows: 

 � Lightweight Hotspots analysis is system wide but does not collect call stack information. It 
collects CPU events, and therefore can display metrics such as CPI. 

 � User Mode Hotspots analysis is not system wide but does provide call stack information. 
This type of analysis is primarily concerned with the amount of time each part of a program 
takes. It cannot display events or CPI.

Finding Hotspots in Code

Back to the task at hand. The purpose of doing a hotspot analysis is to determine the health of your 
code and to understand the nature of any bottlenecks. For this type of analysis you need to use a 
Lightweight Hotspots analysis rather than a User Mode Hotspots analysis.

As shown in Figure 12-6, the biggest lightweight hotspot in ijk.gcc.exe is the main() function, 
which is using just over 7.5 seconds of CPU time. This is the sum of how much time each individual 
hardware thread used. The CPI is 2.293, indicating that there may be a problem. By clicking on the 
hotspot, you can drill down to the source code (see Figure 12-9). 

FIGURE 12-9: The Source view

Looking at the C code of the hotspot, you can see that three arrays (a, b, and c) are accessed:

for (i = 0; i < N; i++) {
  for (j=0; j<N; j++) {
    for (k=0; k<N; k++) {
      c[N*i+j] += a[N*i+k] * b[N*k+j];
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      // printf(”%p,%p,%p\n”, &c[N*i+j],&a[N*i+k],&b[N*k+j]);
    }
  }
}

The right side of the Source view in Figure 12-9 shows the disassembly window (duplicated in 
Table 12-2). The instructions that take the most time are addsdq and movsdq. 

TABLE 12-2: The Assembly Lines

ADDRESS LINE ASSEMBLY CPU TIME

0x400970 44 cdqe 

0x400972 44 movsdq (%r11,%rax,8), %xmm0 0.002s

0x400978 44 mulsdq (%r10,%rdx,8), %xmm0 0.309s

0x40097e 44 addsdq (%rsi), %xmm0 5.314s

0x400982 44 movsdq %xmm0, (%rsi) 1.323s

0x400986 43 jnle 0x400960 <Block 16> 0.298s

Both of the addsdq and movsdq instructions access memory, so the underlying problem might be 
related to memory. If you are not an expert on assembler instructions, you can use the online 
context-sensitive help to display the instruction description, as shown in Figure 12-10. 

FIGURE 12-10: Online instruction help

The code was built as a 64-bit application using GNU GCC version 4.1.2. If you have built a 
32-bit application or used a different compiler, you may get different assembler instructions. 
The events that have been captured do not yet tell exactly what is happening in the CPU, 
although depending on your profi ling experience you might be able to guess as to what the 
underlying cause is.

Try out a Lightweight Hotspots analysis for yourself using the instructions in Activity 12-2. 
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ACTIVITY 12-2: CONDUCTING A LIGHTWEIGHT HOTSPOTS ANALYSIS

In this activity you look for the hotspots in the application memory.exe. You can 
run this activity on Linux or Windows.

 1. Build the matrix.cpp application from Listing 12-3 (at the end of the 
chapter):

LINUX

g++ matrix.cpp -g -O2 -o matrix.exe

WINDOWS  

cl matrix.cpp /Zi /O2 -o matrix.exe

 2. In the Amplifi er Project you already have open (from Activity 12-1), start 
a new Amplifi er analysis and choose Lightweight Hotspots (File Í New Í 
Analysis... Í Algorithm Analysis Í Lightweight Hotspots). 

 3. In the Project Properties Target tab, select Launch Application.

 4. Start the analysis by pressing the Start button.

 5. When the analysis is complete, fi nd the biggest hotspot in from the Bottom-up tab.

 6. Double-click the hotspot and fi nd the following in the source code:

 � The C line taking up the most time

 � The assembler instruction taking up the most time

 � The CPI rate of the bottleneck

 7. Look in the Summary window and confi rm that the hotspot you discovered is 
the same as the one mentioned on the summary page. (Figure 12-4 shows the 
summary button that you can use to display the summary page.)

CONDUCTING A GENERAL EXPLORATION ANALYSIS

A good doctor will fi nd the underlying cause of an illness. Sometimes the reason will be obvious, 
and sometimes fi nding the exact cause will be diffi cult. You have the same set of challenges when 
examining your software.

You already know where the bottleneck is, so now you need to dig a little deeper to fi nd out what 
is causing the hotspot. Amplifi er XE’s General Exploration analysis is designed to help you do this. 
The General Exploration analysis looks for hardware issues that can cause problems. Amplifi er XE 
has multiple versions of this analysis type that are dedicated to different CPUs. This chapter uses the 
version for Intel Microarchitecture Code Name Sandy Bridge. If you use a different version (because 
your system is from a different CPU family), the results may be  categorized differently. 

When an analysis has completed, the Bottom-up window is displayed, as shown in Figure 12-11. 
Several fi elds are highlighted to draw your attention to potential problems. 
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FIGURE 12-11: The Bottom-up window with each issue highlighted

As shown in Figure 12-12, the summary page identifi es four hardware issues: CPI Rate,  Back-end 
Bound Pipeline Slots, LLC Miss, and DTLB Overhead. Figure 12-12 shows only the top part 
of the summary page; more entries are available further down the list, but none of them are 
highlighted.  

FIGURE 12-12: A summary of the General Exploration analysis

If you hover the mouse over each highlighted fi eld, a description of the problem 
and the threshold value formula are displayed. When a ratio exceeds the thresh-
old value, Amplifi er highlights the fi eld in pink. 
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Every ratio, apart from CPI, has a value between 0 and 1. The nearer the value is to 0, the better the 
performance. Before exploring further what these entries mean, try out Activity 12-3.

ACTIVITY 12-3: CONDUCTING A GENERAL EXPLORATION ANALYSIS

In this activity you run a General Exploration analysis on matrix.cpp and discover 
the underlying hardware issue. You can run this activity on Linux or Windows.

 1. If you haven’t already done so, build the matrix.cpp application from 
Listing 12-3:

LINUX

   g++ matrix.cpp -g -O2 -o matrix.exe 

WINDOWS

   cl matrix.cpp /Zi /O2 -o matrix.exe

 2. Start new Amplifi er analysis and choose General Exploration.

File Í New Í Analysis...

 3. In the Project Properties Target tab, select Launch Application and make sure 
the application to launch is matrix.exe.

 4. In the list of prebuilt analysis types, chose < CPU architecture > Í General 
Exploration, where CPU architecture will be one of the following:

 � Advanced Intel Core 2 Processor Family Analysis

 � Advanced Intel Microarchitecture Code Name Nehalem Analysis

 � Advanced Intel Microarchitecture Code Name Sandy Bridge 
Analysis

 � Advanced Intel Atom Processor Analysis

Amplifi er XE will only let you choose the analysis type that fi ts your 
CPU. If you choose an invalid option, the message This analysis 
type is only defined for processors based on... will be dis-
played, and the Start button will be disabled.

 5. Start the analysis by selecting the Start button.

 6. When the analysis is complete, look at the summary page. You should see 
some fi elds highlighted in pink. 

 7. Browse the Bottom-up view and fi nd the biggest hotspot. 

 8. Navigate to the source code by double-clicking the hotspot and identify which 
source line is causing the problem. 

c12.indd   354c12.indd   354 3/26/2012   12:30:49 PM3/26/2012   12:30:49 PM



Blair-Chappell   c12.indd   V2 - 03/07/2012 Page 355

Conducting a General Exploration Analysis x 355

A Quick Anatomy Class

One of the most daunting aspects of optimizing code is coming to grips with the internals of the 
CPU. Fortunately, Amplifi er XE helps out by providing predefi ned analysis types along with helpful 
on-screen explanatory notes. Here’s an example of the explanatory note attached to the CPI ratio:

“Cycles per instruction retired, or CPI, is a fundamental performance metric 
indicating approximately how much time each executed instruction took, in units of 
cycles. Modern superscalar processors issue up to four instructions per cycle, 
suggesting a theoretical best CPI of .25. But various effects (long latency memory, 
floating-point, or SIMD operations; nonretired instructions due to branch 
mispredictions; instruction starvation in the front-end) tend to pull the observed 
CPI up. A CPI of 1 is generally considered acceptable for HPC applications but 
different application domains will have very different expected values. Nonetheless, 
CPI is an excellent metric for judging an overall potential for application 
performance tuning” 

CPU Internals

Just as knowing what to call different parts of your anatomy is helpful when describing your aches 
and pains to the doctor, it is helpful to know a few terms to help describe bottlenecks. 

Figure 12-13 shows a high-level view of a typical processor, split into two halves: the front-end and 
the back-end.

CPU
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FIGURE 12-13: The basic blocks of a CPU

The front-end is responsible for the following:

 � Fetching instructions from memory.

 � Decoding instructions into micro-operations, a format the CPU understands.

 � Predicting the direction branch instructions will take and prefetching those instructions ahead 
of when they are actually needed.

The back-end is responsible for the following:

 � Executing the micro-operations. Several execution engines can run in parallel, thus providing 
instruction-level parallelism. Some engines are dedicated to specifi c types of instructions.

 � Retiring the instructions. 

 � Preserving the order layout of retired instructions. Some of the micro-operations will be 
executed out of order. The reorder mechanism makes sure that all retired instructions will be 
retired in the same order they appeared in the original source code. 
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The buffers between the front-end and back-end help to mitigate against delays known as stalls. As 
long as micro-operations are stored in the buffer, even if there is a stall in the front-end, the back-end 
can still be fed micro-operations from the buffer. This reduces the chance of a front-end stall causing a 
back-end stall. In fact, many buffers throughout the CPU are not shown in Figure 12-13.

Categories of Execution Behavior

As mentioned previously (in the section “What Causes a High CPI?”), a program’s cycles can be 
split between cycles where something useful is done and cycles where nothing useful is done. The 
different cycle categories are caused by how the code is executing on the CPU. The categories of 
execution can be split into the following four types, all of which can indicate that there are tuning 
optimizations to be had:

 � Retirement-dominated execution

 � Front-end-bound execution

 � Back-end-bound execution

 � Cancellation-dominated execution

In each of the following diagrams (Figures 12-14 to 12-17), the fl ow of instructions through the 
CPU is shown by the arrow. The thickness of the arrow represents the volume of throughput. Some 
of the blocks within the diagrams are shaded, which represents a lot of activity (or bottlenecks), 
whereas others have no shading, which indicates that the blocks are doing very little. 

Your program could display all these characteristics in different parts of the program, or it could be 
dominated by one particular type of behavior. 

Retirement-Dominated Execution

In retirement-dominated execution, all the different stages of the CPU are working effi ciently with 
no signifi cant stalls (see Figure 12-14). Typically, the CPI will be low (less than, say, 0.4), and the 
percentage of CPU utilization will be approaching 100 percent. The main opportunity for optimiza-
tion is in reducing the amount of code that needs to be executed.

All stages of CPU being used effectively
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FIGURE 12-14: Retirement-dominated execution

Front-End-Bound Execution

As shown in Figure 12-15, front-end-bound code does not provide enough micro-operations to the 
back-end. Front-end problems are usually caused by: 

 � Delays in fetching code — for example, due to instruction cache misses

 � Time taken to decode instructions
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Delays in front-end slowing down throughput
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FIGURE 12-15: Front-end-bound execution

Back-End-Bound Execution

Back-end-bound code is not able to accept micro-operations from the front-end. The front-end 
 supplies more micro-operations than the back-end can handle, leading to the back-end’s inter-
nal queues being full. This usually is caused by the back-end’s data structures being taken up by 
 micro-operations that are waiting for data in the caches.

The hollow arrows in Figure 12-16 are intended to show that the front-end is capable of providing 
many instructions but cannot because of a busy back-end.
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FIGURE 12-16: Back-end-bound execution

Cancellation-Dominated Execution

In cancellation-dominated execution, many micro-operations are cancelled or “thrown away” (see 
Figure 12-17). The most common reason for this type of behavior is the front-end mispredicting 
branch instructions. You often see this kind of behavior in database applications or in code that is 
doing a lot of pointer chasing, such as in linked lists.

Many mispredictions
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FIGURE 12-17: Cancellation-dominated execution
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FIXING HARDWARE ISSUES

An experienced doctor will consider the facts he knows, fi lter out the unimportant data, and make 
a diagnosis based on his knowledge and experience. Ideally, after making the right diagnosis, the 
 doctor will procure the correct remedy.

You’ve seen that Amplifi er XE does a great job of collecting the facts and fi ltering out the 
 unimportant data, eventually coming up with a list of four problems. You probably didn’t notice it, 
but the General Exploration analysis you carried out captured more than 33 different types of events 
and checked every hotspot against at least 26 different rules. 

The next step in the process is to fi x the problems identifi ed. It sounds so simple, doesn’t it? The 
question is, which problem should be fi xed fi rst? Here are some guidelines that will help you:

 � Always fi x one problem at a time. Even if you know how to fi x more than one problem at once, 
always focus on just one. Quite often fi xing one problem will have a radical effect on other 
problems; therefore, it’s best to go one step at a time, doing a fresh analysis between each fi x.

 � You can choose in which order to fi x the problems either by fi xing the problem with the 
highest ratio or by using Table 12-3, which lists the most common issues in their rough order 
of likelihood.

TABLE 12-3: Suggested Order of Fixing Problems

PRIORITY PROBLEM CHARACTERISTIC

1 Cache misses Back-end-bound

2 Contested access Back-end-bound

3 Other data-access issues Back-end-bound

4 Allocation stalls Back-end-bound

5 Micro assists Retirement-dominated

6 Branch mispredictions and machine clears Cancellation-dominated

7 Front-end stalls Front-end-bound

As shown previously in Figure 12-12, the four problems identifi ed by Amplifi er XE are as follows: 

 � CPI Rate — The high CPI rate is a result of the other hardware issues. Once the issues are 
fi xed, the CPI will drop.

 � Back-end-Bound Pipeline Slots — On the machine these tests were run on (a Sandy Bridge), 
the front-end could provide up to 4 micro-operations per cycle to the back-end. Back-end-
bound means the back-end was not able to accept enough operations to match the rate at 
which the front-end was supplying them. 

 � LLC Miss — An LLC miss is one of the most common causes of poor performance. 
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 � DTLB overhead — The Data Translation Look-aside Buffer is used to support memory 
access. Partial copies of this table are normally held in cache. If a program accesses a memory 
address that is not referenced by the DTLB in cache, the new DTLB entries have to be loaded 
from external memory, causing a high overhead. 

Using Table 12-3 as a guide, the LLC miss is tackled fi rst. 

Reducing Cache Misses

The code used for the matrix multiplication, matrix.cpp,  is accessing memory in a cache-ineffi cient 
way. Figure 12-18 shows two 4x4 matrices, a and b being multiplied together, with the results in 
matrix c. In Figure 12-18(a) the nested loop uses the variables i, j, and k, with the outermost loop 
using i, and the innermost loop using k. The diagram shows each of the matrices sitting in the L1 
cache and taking up two cache lines. 

(b) Cache-friendly(a) Cache-inefficient
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for (i = 0; i < 4; i++) {

   for ( j=0; j< 4; j++) {

      for (k=0; k<4; k++) {

       c[4*i+j] += a[4*i+k] * b[4*k+j];

} } }

for (i = 0; i < 4; i++) {

   for (k=0; k<4; k++) {

      for ( j=0; j< 4; j++) {

       c[4*i+j] += a[4*i+k] * b[4*k+j];

} } }

= a * b

c

b

3

FIGURE 12-18: Cache-ineffi  cient and cache-friendly access

The numbers inside the cells are to show which cell is accessed in each iteration of the nested loop. 
The underlined numbers represent a sequence of four accesses on the same cell.

In Figure 12-18(a) you can see the following:

 � Matrix a is accessed sequentially on each iteration. 

 � The fi rst cell of matrix c is accessed on loops 0 to 3, and the second cell is accessed on loops 4 to 7.

 � The access to the cells of matrix b is not sequential, with the cache line boundary being tra-
versed between alternate loops.
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Although this diagram shows only a 4 ¥ 4 matrix, you can imagine that in very large matrices the 
code in Figure 12-18(a) would result in huge gaps in the address accessed between each read of 
matrix b, along with cache misses as far back as the Last Level Cache. 

You can solve the cache misses by changing the loop sequence so that i and j are swapped. This 
results in the access to each cell becoming sequential, as shown in Figure 12-18(b). 

Rerunning the code with this modifi cation results in the application running much quicker. 
Table 12-4 shows the results of a General Exploration analysis on the modifi ed application. You can 
see the following:

 � The application runs more than fi ve times faster.

 � The CPI rate is much improved.

 � The cache misses (LLC) have reduced by a factor of 10.

 � The DTLB Overhead likewise is substantially reduced.

 � The back-end-bound pipeline slot is reduced by a factor of 5.

 � The front-end-bound pipeline slots have increased. 

TABLE 12-4: Comparison of the Original and Loop-swapped Code

ISSUE ORIGINAL SWAPPED

Elapsed Time 7.801 1.535

CPI Rate 2.303 0.410

Back-end-Bound Pipeline Slots 0.84 0.159

LLC Miss 0.687 0.073

DTLB Overhead 0.625 0.010

Front-end-Bound Pipeline Slots 0.040 0.163

Having fi xed the fi rst problem, it’s time to move onto the next issue. Although the back-end-bound 
pipeline slots are much reduced, they are still present and need to be addressed further. 

Using More Effi  cient Instructions 

In the assembler view of the application, you may have already noticed that the multiplication is car-
ried out using the mulsd instruction. This instruction is a scalar SSE instruction — that is, it oper-
ates only on one value at a time. One way of improving the performance would be to use a packed 
SSE instruction instead. You can tell whether an instruction is scalar or packed by the presence of 
the letter s and p in the instruction name. The following code snippet shows packed SSE instruc-
tions being used in the inner loop:

for (j=0; j<N; j++) {              
        res = _mm_mul_pd(*pA,pB[j]);
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        res = _mm_hadd_pd ( res , res);
        _mm_store_sd(&c[N*i+j],res);
      }

By using the packed instruction, there should be a speedup of about two, because packed SSE 
instructions can calculate two double-precision fl oating-point values in one instruction.

Listing 12-4 (at the end of the chapter) has a new version of the main() function in which packed 
SSE instructions have been inserted into the code. Three major changes are made to the code:

 � The dynamic allocated memory is aligned to a 16-byte boundary using the _mm_malloc
function; it is then freed using the _mm_free function.

 � Two pointers, pA and pB (of type __m128d), are used to point to the matrices a and b, 
respectively. 

 � The calculations are carried out using SSE instructions. The _mm_hadd function performs a 
horizontal add to add together the results of the vectorized multiplication.

Table 12-5 gives the new results, comparing them to the version that already has its loops swapped. 
The elapsed time has reduced, but note again that the CPI has increased. The two items in bold are 
highlighted in pink in Amplifi er XE, suggesting that they need further investigation.

TABLE 12-5: A Comparison of the Loop-swapped and SSE Code

ISSUE LOOP-SWAPPED SSE

Elapsed Time 1.535 0.960

CPI Rate 0.410 0.591

Back-end-Bound-Pipeline Slots 0.159 0.233

LLC Miss 0.073 0.178

DTLB Overhead 0.010 0.016

Front-end-Bound Pipeline Slots 0.163 0.144

Machine Clears 0 0.027

Obviously, you still have more opportunities to optimize the code, but rather than using SSE intrin-
sic functions in your code, it’s time to try a different strategy by using the Intel compiler to auto-
matically do the optimizations.  

Using the Intel Compiler

Up until now in this chapter, the code has been built with GNU GCC. If you use the Intel compiler, 
you will fi nd that it automatically does both loop swapping and uses SSE instructions. Figure 12-19 
shows the results of building Listing 12-3 with the Intel compiler. The fi rst thing to notice is that the 
speed has improved yet again, even though the CPI got worse. 
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FIGURE 12-19: The results using the Intel compiler

Amplifi er XE has identifi ed that there is still more optimization work that could be explored. 
Because this chapter is mainly about using Amplifi er XE, the optimization effort will not be pur-
sued anymore here. If you want to consider some more optimization techniques, refer to Chapter 4, 
“Producing Optimized Code.”

ACTIVITY 12-4: OPTIMIZING THE APPLICATION 

In this activity you fi x the hardware issue identifi ed in Activity 12-3. In the fi rst 
two parts, optimization is achieved by modifying the code. In the last part, the 
optimizations are achieved automatically by using the Intel compiler. You can run 
this activity on Linux or Windows.

Implementing Loop Swapping

 1. Copy the contents of Listing 12-3 into a fi le named swapped.cpp.

 2. Swap the three nested loops so that the sequence is as follows:

// do the matrix calculation c = a * b 
  for (i = 0; i < N; i++) {
    for (k=0; k<N; k++) {
       for (j=0; j<N; j++) {
         c[N*i+j] += a[N*i+k] * b[N*k+j];
       }
    }
  }

 3. Build swapped.cpp:

LINUX

  g++ swapped.cpp -g -O2 -o swapped.exe 

c12.indd   362c12.indd   362 3/26/2012   12:30:53 PM3/26/2012   12:30:53 PM



Blair-Chappell   c12.indd   V2 - 03/07/2012 Page 363

Fixing Hardware Issues x 363

WINDOWS

cl swapped.cpp /Zi /O2 -o swapped.exe

 4. Make sure the Project Properties page points to swapped.exe.

 5. Start a new Amplifi er analysis and choose General Exploration (following the 
same instructions as Step 4 of Activity 12-3).

 6. Start the analysis by pressing the Start button.

 7. When the analysis is complete, look in the summary window. There should be 
fi elds highlighted in pink. (The results may vary, depending on what PC you 
are running on. You may even fi nd that there are no highlighted fi elds in your 
results.)

 8. Browse to the Bottom-up view and fi nd the biggest hotspot.

 9. Navigate to the source code by double-clicking the hotspot and confi rm that 
the hardware issues from the summary page are associated with that line.

Using SSE Instructions to Speed Up the Code

 10. Copy the contents of Listing 12-3 into a fi le named sse.cpp.

 11. Replace the main function with the code in Listing 12-4.

 12. Build sse.cpp:

LINUX

g++ sse.cpp -msse3 -g -O2 -o sse.exe 

WINDOWS

cl sse.cpp /Zi /O2 -o sse.exe

 13. Repeat steps 4 to 9, looking at sse.exe.

Using the Intel compiler

 14. Rebuild the original matrix.cpp  (which you created in step 1 of this activity) 
with the Intel compiler:

LINUX

icc matrix.cpp -g -O2 -o intel.exe 

WINDOWS

icl matrix.cpp /Zi /O2 -o intel.exe

 15. Repeat steps 4 to 9, looking at intel.exe.
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USING AMPLIFIER XE’S OTHER TOOLS

Like all good doctors, you will want to use a choice of instruments to help diagnose an unhealthy 
application. Amplifi er XE’s bag of instruments includes:

 � Predefi ned analysis types

 � Viewpoints

 � APIs

 � Command-line interface

 � Context-sensitive help and Internet-based resources

Using Predefi ned Analysis Types

You’ve already seen how the clock ticks, the number of instructions retired, and the CPI can be 
gathered from a Lightweight Hotspots analysis. You’ve also used the General Exploration analysis 
to spot issues in your code. To do a yet more detailed examination of your program, you can use 
one of the other predefi ned analysis types. 

A CPU can generate hundreds of different types of events. Using Amplifi er XE’s predefi ned analysis 
types takes the pain out of choosing the right events. Table 12-6 shows the analysis types available. 

TABLE 12-6: Predefi ned Analysis Types for CPU Architecture-level Analysis 

ANALYSIS DESCRIPTION

General Exploration As the starting point for advanced analysis, identifi es and locates the most sig-

nifi cant hardware issues that aff ect performance

Memory Access Identifi es where memory access issues aff ect performance

Cycles and uOps Identifi es where micro-operation fl ow issues aff ect performance

Bandwidth Identifi es where memory bandwidth issues aff ect performance

Bandwidth 

Breakdown

Identifi es where memory bandwidth issues aff ect performance; transactions 

are broken down into reads and write backs

Front End 

Investigation

Identifi es where front-end issues aff ect performance

Custom designed Enables you to create your own analysis type based on any of the predefi ned 

types

Using Viewpoints

Amplifi er XE has a number of different viewpoints that represent the results of an analysis. The name 
of the current viewpoint is displayed in the results tabs, just after the name of the analysis type. 
Figure 12-20 shows the viewpoint menu, which you can access by clicking on the spanner icon. 
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FIGURE 12-20: Changing the viewpoint

Sometimes it is worth switching between the different viewpoints. For example, while in the General 
Exploration viewpoint, you might want to see the actual event counts by fl ipping to the Hardware 
Event Counts viewpoint. Figure 12-21 shows the summary page of such a viewpoint. In the different 
viewpoints Amplifi er XE uses the existing data but presents it in a different layout. No data is lost 
or has to be resampled as you swap between viewpoints.

FIGURE 12-21: The Hardware Event Counts viewpoint
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Using APIs

Amplifi er XE has a number of APIs that you can insert into a program to control an analysis. 
Table 12-7 lists some of the commonly used APIs when doing an event-based analysis. Some addi-
tional user-mode APIs are also available, which have already been described in earlier chapters. 

TABLE 12-7: Supported APIs

PAUSE/RESUME API DESCRIPTION

__itt_pause Inserts a pause command so that application continues to run but 

no profi ling information is being collected.

__itt_resume Inserts a resume command so that the application continues to run 

and profi ling information is collected.

FRAME APIS

__itt_domain_create Creates a domain to hold frame data. You can create multiple 

domains to help you separate the data into distinct groupings in 

the GUI.

__itt_frame_begin_v3 Marks the start of a frame.

__itt_frame_end_v3 Marks the end of a frame.

At the time of this writing, some API names were going through a name change. 
If you have unresolved externals when using the API examples, look in the 
header fi le <Amplifier XE install dir>/include/ittnotify.h or check the 
online documentation.

You can use the Pause and Resume API to turn data collection off and on, respectively, from within 
the application under test. The Frame API is used to measure the time between two markers, or 
frames. Use the Frame API when you want to get accurate timing information between two posi-
tions in your source code.

The Pause and Resume API

Listing 12-1 uses the __itt_pause() and __itt_resume() functions to pause and resume the data 
collection, respectively. The code consists of two functions, LoopOne() and LoopTwo(). The content 
of these functions is not important; they are added simply to make the example run long enough 
when profi ling. The ITT_PAUSE and ITT_RESUME user-defi ned macros are used to include and 
exclude the API from the code, depending on whether or not the USE_API macro is defi ned.
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LISTING 12-1: An example of using the Pause and Resume API 

#include <stdio.h>
#define USE_API
#ifdef USE_API
#include “ittnotify.h”
#define ITT_PAUSE  __itt_pause()
#define ITT_RESUME __itt_resume()
#else
#define ITT_PAUSE
#define ITT_RESUME
#endif

int LoopTwo(){int i;for (i = 0 ; i < 100000000; i++);return i;}

int LoopOne(int i)
{
      i++;
      if (i > 50)
            return i;
      for (int j = 0 ; j < 10000000; j++);
      return LoopOne(i);
}

int main(int argc, char * argv[])
{
      int a,b;
      ITT_PAUSE;        // start paused

      a = LoopOne(0);
      printf(“LoopOne Returns %d\n”,a);

      ITT_RESUME;       // collect data

      b = LoopTwo();
      printf(“LoopTwo Returns %d\n”,b);
      ITT_PAUSE;        // pause data collection

      return a + b;
}

code snippet Chapter12\12-1.cpp

If you try to build this code, you must add libittnotify.lib, which you can fi nd in the 
Amplifier\lib32 or Amplifier\lib64 folders. Use the lib64 version if you are building a 64-bit 
application; otherwise, use the lib32 version.

You can use the Pause and Resume API to reduce the amount of data you collect. Table 12-8 shows 
the total size of the data collected with and without the pause/resume.
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TABLE 12-8: Amount of Data Collected when Profi ling Listing 12-1

METHOD DATA SIZE 

No pauses 92.2k

With pauses/resumes 42.0k

The Frame API

Frame rate analysis was added to Amplifi er XE to help game programmers analyze how many 
frames or pictures are being displayed per second. Although developed with game programmers in 
mind, the Frame API can be applied to any piece of code. Listing 12-2 shows a loop that iterates 
100,000 times — this is the frame in this example. Within the loop, two delays are inserted to 
simulate frames with different amounts of time. 

LISTING 12-2: An example of using the Frame API

#include <ittnotify.h>
int main()
{
  __itt_domain* pD = __itt_domain_create( “Time” );
  pD->flags = 1; // enable domain
    
  for(int i = 0; i < 100000; i++)
  {  
    // mark the beginning of the frame
    __itt_frame_begin_v3( pD,NULL);

    // simulate frames with different timings
    if(i%3)  
      for(int j = 0; j < 30000; j++);  // a delay
    else
      for(int j = 0;  j < 11200; j++);  // another delay
    
    // mark the end of the frame 
    __itt_frame_end_v3( pD,NULL);
  }
  return 0;
} 

code snippet Chapter12\12-2.cpp

On Windows the program can be built using the following command: 

cl /Od /Zi main.cpp -I”%VTUNE_AMPLIFIER_XE_2011_DIR%include” 
“%VTUNE_AMPLIFIER_XE_2011_DIR%/lib64/libittnotify.lib”
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Figure 12-22 shows a zoomed-in view of the analysis. In the timeline view there is an extra bar 
that displays the frame rate. At the top of the timeline, each frame is marked with a blue line. The 
Bottom-up pane is organized by Frame Domain/Frame Type/Frame Function. Notice that Amplifi er 
XE splits the frames into fast and slow frames.

FIGURE 12-22: An example frame analysis

Chapter 15, “Parallel Track Fitting  in the CERN Collider,” includes another 
example of using the Frame API.

Using Amplifi er XE from the Command Line

You can use the command-line interface (CLI) to Amplifi er to collect, compare, and view profi l-
ing data. The tool uses the same data collector as the GUI version, so the data collected has the 
same level of detail as if the profi ling were launched from the GUI. The CLI was designed so that 
Amplifi er could be used in scripted and automated test environments.

You can generate a command line from an existing project by clicking the Get Command Line but-
ton in the Analysis Type window (see Figure 12-23).
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FIGURE 12-23: An Analysis Type window with the Get Command Line button

Here’s the command-line syntax:

ampl-cl <action-option> [modifier-options] [[--] <target> [target-options]] 

 �   <action-option> is the action Amplifi er XE performs — for example, collecting data or 
generating a performance report.

 �  [modifier-options] are various command-line options defi ning the action.

 �  <target> is the application to analyze. 

 �  [target options] are the options of the analyzed application. 

 So, for example:

$ ampl-cl -collect hotspots -r r001hs -- C:\test\example.exe 

 �   -collect is an action. 

 �  hotspots is an argument of the action option. 

 �  -r is a modifi er option.

 �  r001hs is an argument of modifi er option. 

 �  C:\test\example.exe is the target. 

 � If you have correctly installed Parallel Studio XE, the command ampl-xe should be available 
from the Parallel Studio XE command prompt (Windows) and the command shell (Linux). 

Finding More Information

Here are some resources that you might fi nd helpful:

 � The online help that comes with Amplifi er XE

 � Intel 64 and IA-32 Architectures Software Developers Manuals (www.intel.com/products/
processor/manuals)
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 � The Software Optimization Cookbook, Second Edition: High-Performance Recipes for IA-32 
Platforms, by Richard Gerber et al. (www.intel.com/intelpress)

 � VTune Performance Analyzer Essentials: Measurement and Tuning Techniques for Software 
Developers, by James Reinders (www.intel.com/intelpress)

 � User forums, such as at http://software.intel.com/en-us/forums/intel-
vtune-performance-analyzer

THE EXAMPLE APPLICATION

LISTING 12-3: matrix.cpp

//Naive matrix multiply
//Warning, this implementation is SLOW!
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

#define DEFAULT_SIZE 1000

// pointers for matrices
double *a, *b, *c;
int N;  // stores width of matrix(if N = 2, then matrix will be 2 * 2)

// function prototypes
void init_arr(double a[]);
void print_arr(char* name, double array[]);
void zero_arr(double a[]);
int main(int argc, char* argv[])
{
  clock_t start, stop;
  int i,j,k;

  // if user does not input matrix size, DEFAULT_SIZE is used
  if(argc == 2)
  {
    N = atoi(argv[1]);
  }
  else
  N = DEFAULT_SIZE;

  // allocate memory for the matrices
  a = (double *)malloc(sizeof (double) * N * N);
  if(!a) {printf(“malloc a failed!\n”);exit(999);}

  b = (double *)malloc(sizeof (double) * N * N);
  if(!b) {printf(“malloc b failed!\n”);exit(999);}

  c = (double *)malloc(sizeof (double) * N * N);

continues
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  if(!c) {printf(“malloc c failed!\n”);exit(999);}

  init_arr(a);
  init_arr(b);
  zero_arr(c);

  start = clock();

  // do the matrix calculation c = a * b  
  for (i = 0; i < N; i++) {
    for (j=0; j<N; j++) {
       for (k=0; k<N; k++) {
         c[N*i+j] += a[N*i+k] * b[N*k+j];
       }
    }
  }
  stop = clock();

  // print how long program took.
  printf(”%-6g  ”,((double)(stop - start)) / CLOCKS_PER_SEC);

  // free dynamically allocated memory
  free(a);
  free(b);
  free(c);
}

// print out a matrix
void print_arr(char * name, double array[])
{
  int i,j;
  printf(”\n%s\n”,name);
  for (i=0;i<N;i++){
    for (j=0;j<N;j++) {
       printf(”%g\t”,array[N*i+j]);
    }
    printf(”\n”);
  }
}
 
// initialize array to values between 0 and 9
// this is just to make the printout look better
void init_arr(double a[])
{
  int i,j;
  for (i=0; i< N;i++) {
    for (j=0; j<N;j++) {
      a[i*N+j] = (i+j+1)%10;
    }
  }
}
// initialize array entries to zero

LISTING 12-3 (continued)
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void zero_arr(double a[])
{
  int i,j;
  for (i=0; i< N;i++) {
    for (j=0; j<N;j++) {
      a[i*N+j] = 0;
    }
  }
}

code snippet Chapter12\matrix.cpp

LISTING 12-4: Using SSE instructions to optimize calculations

// This code should be used to replace the function main()
// from Listing 12-3. 
// NOTE: this is not the BEST solution! The best solution is 
// simply to build the original code with the Intel Compiler.

// We need some additional headers
#ifdef _WIN32
  #include <intrin.h>   
#else
  #ifndef __INTEL_COMPILER
    #include <pmmintrin.h> 
  #else
    #include <xmmintrin.h>
  #endif
#endif

int main(int argc, char* argv[])
{
      clock_t start, stop;
      int i, j,k;

  if(argc == 2)
  {
    N = atoi(argv[1]);
  }
  else
    N = DEFAULT_SIZE;

  // printf(“Using Size %d\n”, N);
  a = (double *)_mm_malloc(sizeof (double) * N * N,16);
  if(!a) {printf(“malloc a failed!\n”);exit(999);}

  b = (double *)_mm_malloc(sizeof (double) * N * N,16);
  if(!b) {printf(“malloc b failed!\n”);exit(999);}

  c = (double *)_mm_malloc(sizeof (double) * N * N,16);
  if(!c) {printf(“malloc c failed!\n”);exit(999);}

  init_arr(a);

continues
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  init_arr(b);
  zero_arr(c);

  __m128d *pA;
  __m128d *pB;
  start = clock();

  for (i = 0; i < N; i++) {
    for (k=0; k<N; k+=2) {
      pA=(__m128d *)&a[N*i+k];
      pB =(__m128d *)&b[N*k];
      __m128d res = _mm_setzero_pd();
      for (j=0; j<N; j++) {              
        res = _mm_mul_pd(*pA,pB[j]);
        res = _mm_hadd_pd ( res , res);
        _mm_store_sd(&c[N*i+j],res);
      } 
    }
  }
  stop = clock();
  printf(”%-6g  ”,((double)(stop - start)) / CLOCKS_PER_SEC);

  _mm_free(a);
  _mm_free(b);
  _mm_free(c);
}

code snippet Chapter12\12-4.cpp

SUMMARY

Detecting the health of a program is not easy. Amplifi er XE is a very powerful tool, which you can 
use to fi nd out how well your program is using the CPU.

By fi rst running a system-wide analysis on your PC, you can see how well your program inter-
acts with its environment. You can use the CPI rate as a fi rst indicator of your program’s health. 
Programs with a poor CPI rate are likely to be good candidates for optimization. 

Performing a hotspot analysis will show you where the bottlenecks are. You can then use some of 
the Amplifi er XE’s predefi ned analysis types to get more detailed information about the bottlenecks 
you have discovered.

Amplifi er XE’s predefi ned analysis types helps you spot unhealthy code. By becoming aware of the 
underlying hardware issues in the various bottlenecks of your code, you can begin to address the 
problems.

Chapter 13, “The World’s First Sudoku ‘Thirty Niner,’” is the fi rst of fi ve case studies that show 
examples of how Intel Parallel Studio XE has been used in different projects. 

LISTING 12-4 (continued)
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PART III

Case Studies

 � CHAPTER 13: The World’s First Sudoku “Thirty-Niner”

 � CHAPTER 14: Nine Tips to Parallel-Programming Heaven

 � CHAPTER 15: Parallel Track Fitting in the CERN Collider

 � CHAPTER 16: Parallelizing Legacy Code
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13
The World’s First Sudoku 
“Thirty-Niner”

WHAT’S IN THIS CHAPTER?

 � Lars Peters Endresen and Håvard Graff , two talented engineers from 

Oslo, share how they created what may be the world’s fi rst Sudoku 

puzzle that has 39 clues

 � A hands-on exercise that mimics some of the programming 

techniques they used

This case study solves an intriguing problem: fi nding a Sudoku puzzle with 39 clues using the 
latest hardware advances. Multiple execution units, together with multiple cores, enable the 
modern programmer to tackle engineering problems that in the past would have been doable 
only on a supercomputer. 

This case study uses the Streaming SIMD Extensions (SSE) registers and instructions in an 
ingenious way. The tricks used here can easily be used in other projects. The code is fi rst 
optimized to run on one core, and then parallelism is introduced so that the code runs on 
several cores.

THE SUDOKU OPTIMIZATION CHALLENGE

Sudoku is a number-placement puzzle that uses a 9 ¥ 9 grid of squares into which the numbers 1 
through 9 are placed. The grid is further subdivided into 3 ¥ 3 boxes, within each of which are 
3 ¥ 3 cells. The puzzle starts with an almost empty grid with some of the cells already fi lled. 
The aim of the puzzle is to fi ll the grid so that every row, every column, and every 3 ¥ 3 box 
contains the numbers 1 through 9. This implicitly means that no row, column, or box can have 
duplicated numbers within it (see Figure 13-1). 
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45 2 9 7 3 1 6 8

93 1 4 6 2 8 7 5

19 4 5 2 7 3 8 6

72 3 8 1 4 6 5 9

37 6 1 9 8 5 2 4

FIGURE 13-1: Starting and solved grids for a typical Sudoku puzzle

The challenge Endresen and Graff faced was how to generate a puzzle with 39 clues — one with 
38 clues having already been produced by others. Generating Sudoku puzzles using software may 
seem like an easy exercise, requiring the following steps:

 1. Write a solver using some sort of nested loop to traverse the puzzle’s grid, writing logic to 
test that they comply with certain rules.

 2. Write a generator that populates the puzzle with clues, using the solver to validate the puzzles 
being generated.

However, if you were to follow this approach, you would soon discover that the total number of 
puzzles that have to be processed makes the task almost impossible to achieve because of the length 
of time it would take to iterate through every possible solution.

The Nature of the Challenge

More than 6 ¥ 1021 different valid Sudoku boards exist. If a developer were to use brute force to 
try all the combinations of numbers, the programming exercise would be quite easy. However, the 
algorithm would require the lifetime of the programmer to complete the calculations. It has been 
estimated that a brute-force approach to producing a valid “thirty-niner” would take approximately 
150 years to complete. This time can be reduced to something approaching a month by applying a 
number of strategies to produce an optimized version of the generator.

Four strategies are used to slim down the execution time:

 � Use an algorithm that fi nds shortcuts through the brute-force approach by starting with a 
partially constructed board.

 � Modify the code to take advantage of the enhanced execution units available in most of 
today’s CPUs.

 � Add parallelism to the code.

 � Enable the generator to be dispatched across a cluster of machines.

The following sections go deeply into the fi rst strategy. Although applied to Sudoku, these 
same strategies can be applied to a programmer’s own complex algorithms in a similar fashion. 
Techniques learned here will enable programmers to produce fast, optimized code.
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A number of other programming and algorithm “tricks” were used 
under the hood — such as checking for redundant clues — but they 
are not explained here because they are not important for our 
actual goals. The development of the code took place over a 
two-year period, much of it done in the developers’ spare time. 
Figure 13-2 shows one of the fi rst 39-clue puzzles to be discovered 
and is an example of a diffi cult Sudoku puzzle.

A puzzle is valid only if it has one unique solution. If more than 
one solution exists, it cannot be classed as a Sudoku puzzle. A 
minimal solution is one where every clue is integral to the solu-
tion — that is, the puzzle has no redundant clues. In such a 
puzzle, removing any one of the clues would result in a puzzle that 
has more than one solution. Today, the smallest Sudoku puzzle in 
the world has 17 clues, and the largest puzzle has 39 clues. The race 
is on to fi nd a puzzle with 40 clues.

The High-Level Design

The Sudoku program design that was used is made up of two components: the generator and the 
solver. To reduce the number of calculations required and increase the chance of success, the genera-
tor starts with an existing puzzle. One or two clues are then removed from the puzzle. New clues are 
then added and a brute-force iterative process is used to call the solver to determine if any valid solu-
tions exist for the new puzzle. This process is repeated for every clue in the original puzzle.

Figure 13-3 shows how to create a new 17-clue puzzle. The generator strips two clues from an 
18-clue puzzle, adds a new clue, and then uses the solver to search for any valid solutions. 

Generator

Strip clues

Solver

Add clues

FIGURE 13-3: The generator and solver

As shown in Figure 13-4, clues 3 and 9 in the left-hand puzzle are fi rst removed from the fi rst 
column. The generator then populates each unsolved cell with a list of valid options (see the middle 
puzzle). The gray values are values where the cell can hold only one value. The solver then recur-
sively prunes down the options to fi nd a valid puzzle, taking care that no redundant clues exist (see 
the right-hand puzzle). The gray number 6 is the new clue that has been added.
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13 6 7

76 4 9 1 3

45 3 2

37 4 6 2 5

2 5 7 1

2 5 7 1 6 4

54 6 2 9 1 7

2

FIGURE 13-2: One of the fi rst 

39-clue puzzles
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FIGURE 13-4: Creating a 17-clue Sudoku puzzle

This method of creating a new puzzle is known as the minus-two-plus-one algorithm. A similar 
technique is used to fi nd the “thirty-niner.” Taking an existing “thirty-eighter,” one clue is removed 
and two new clues are added — in other words, a minus-one-plus-two algorithm.

Optimizing the Solver Using SSE Intrinsics 

Modern CPUs have instructions that can work on more than one data item at the same time — that 
is, Single Instruction Multiple Data (SIMD) instructions. Examples of such instructions include 
MMX and the various Streaming SIMD Extensions (SSE, SSE2, and so forth). Because these 
instructions work on more than one element of data at a time, the resulting code is referred to as 
vectorized code. Vectorization is covered in detail in Chapter 4, “Producing Optimized Code.” 
Vectorized code runs much faster than code that has not been vectorized.

S SE intrinsics are compiler-generated assembler-coded functions that can be called from C/C++ code 
and that provide low-level access to SIMD functionality without the need to use an inline assembler. 
Compared to using an inline assembler, intrinsics can improve code readability, assist instruction 
scheduling, and help reduce the debugging effort. Intrinsics provide access to instructions that can-
not be generated using the standard constructs of the C and C++ languages.

The Intel compiler supports a wide range of architectural extensions, from the early MMX instruc-
tions to the latest generation of SSE instructions. By using these SIMD instructions, it is possible to 
do some quite creative manipulation of the puzzle data. SSE2 (and later) supports 128-bit registers, 
and the individual bits of these can be used to hold all the data in a Sudoku puzzle. Note that only 
the fi rst 81 bits need be used to represent all the cells on a Sudoku board. Each bit in the 128-bit 
array values corresponds to a cell location. The 128-bit value at BinNum[0] records any cell contain-
ing a 1. BinNum[1] records any cell that contains a 2, and so on. Figure 13-5 gives an example of 
how this happens.

The following code shows how the values in Figure 13-5 would be stored in the BinNum array:

__m128i BinNum[9];        // Declare array of 128-bit values

BinNum[0] = 0x400100;     // 1’s in cells 9 and 23
BinNum[1] = 0x800000000;  // 2’s in cell 36
  .
  .
BinNum[8] = 0x80088000;   // 9’s in cells 16, 20 and 32

c13.indd   380c13.indd   380 3/26/2012   12:32:19 PM3/26/2012   12:32:19 PM



Blair-Chappell   c13.indd   V2 - 03/07/2012 Page 381

The Sudoku Optimization Challenge x 381

1

9

4 9 1 7

29 3

FIGURE 13-5: A typical Sudoku puzzle that stores its numbers into 128-bit variables

To fi nd out if a puzzle holds a particular value, predefi ned masks are used. The masks are again held 
in an array of 128-bit SSE variables:

__m128i BinBox[9];      // holds binary mask of all boxes
__m128i BinRow[9];      // holds binary mask of all rows
__m128i BinColumn[9];   // holds binary mask of all columns

These masks hold binary bitmaps representing a whole row, column, or box, as shown in 
Figure 13-6. BinRow[0] represents the fi rst row; BinRow[1] represents the second row; and so on. 
For example:

BinRow[1] = 0x3FE00;   // mask for row 2
BinBox[0] = 0x1C0E07;  // mask for box 1

To check if row 2 contains a 3 now only requires the mask of row 2 to be ANDed with the variable 
for number 3, as follows:

Result = BinRow[1]  & BinNum[2]; 

The result will be nonzero if row 1 does contain a 3; otherwise, the result will be zero.

The fi rst version of the Sudoku generator 
did not use SSE instructions or intrinsics. 
Reworking the fi rst version of the code to use 
SSE2 registers took a signifi cant amount of 
time. Using SSE2 registers and adding SSE 
intrinsics resulted in a speedup of several hun-
dred times using the same hardware.

Using SSE intrinsics does have drawbacks, 
because it is possible to end up locking your 
implementation to a particular generation of 
architecture. Also, the long names of the SSE 
functions can make your C++ code almost 
unreadable, and there is a signifi cant learn-
ing curve for the programmer to climb. Only 
experience can determine when it is advantageous to use intrinsics. However, in the case of the 
Sudoku generator, the performance improvement far outweighed the extra effort required.

3

13 6 7

76 4 9 1 3

45 3 2

37 4 6 2 5

2 5 7 1

2 5 7 1 6 4

54 6 2 9 1 7

2

BinRow[0]

BinBox[0]

BinColumn[0]

FIGURE 13-6: The rows, columns, and boxes of the 

Sudoku grid are represented by an array of registers
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If you want to examine the code in more detail, download the code that is used in the hands-on 
section. 

A dding Parallelism to the Generator

Intel VTune Performance Analyzer was applied to the Sudoku generator, allowing hotspots to be 
identifi ed within code. The biggest hotspot, which was found to be in the top hierarchy of the 
generator, was then parallelized using OpenMP tasks.

OpenMP tasks, introduced in OpenMP 3.0, can be used to add parallelism to loops, linked lists, 
and recursive calls. OpenMP tasks are good at producing balanced loads, especially when 
the amount of work between each loop may be uneven; the same is true for linked lists and 
recursive calls.

OpenMP tasks and load balancing are described in Chapter 7, “Implementing 
Parallelism,” and Chapter 9, “Tuning Parallel Applications.”

Listing 13-1 shows how a number of tasks were created in a single-threaded loop. Each task was 
then scheduled and run by the OpenMP run time. As a thread completes the execution of one task, 
it is given another task to execute. 

LISTING 13-1: Using OpenMP tasks to add parallelism to the generator

1: int node;
2: #pragma  omp parallel shared(omp_log, node) 
3: {
4:   #pragma omp single nowait
5:   {
6:     for(node = 0; node < Num_SudokuNode ; node++) 
7:     {
8:       #pragma omp task firstprivate(omp_log, node)
9:       {
10:        int result = AddClues(SudokuNode[node], omp_log);
11:      }
12:    }
13:  }
14: }

code snippet Chapter13\13-1.cpp

The code is part of the minus-one-plus-two algorithm. The SudokuNode[] array holds a number 
of Sudoku puzzles that have already had one clue removed. For example, when looking for a 
new “thirty-niner,” this array would hold 38 copies of a “thirty-eighter,” with one clue having 
already been removed sequentially from each puzzle. Each puzzle is then fi lled with an additional 
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two clues by a call to AddClues(), with the number of successfully generated puzzles being 
returned. The omp_log variable points to a fi le that is used to store each new “thirty-niner” that 
is generated. 

At line 2, the OpenMP run time creates a pool of threads (as explained in Chapter 7). By default, 
the number of threads is the same number as the number of hardware threads the environment can 
support, although the programmer can override this. 

The code between lines 4 and 13 will run on just one thread. The enclosed loop is responsible 
for creating a number of tasks that will be run in parallel, with each thread running one task at 
a time. At line 8, an OpenMP task is created on each iteration of the loop. The tasks are free to 
start execution straight away. Variables outside the parallel region, which is defi ned by the fi rst 
pair of braces, are visible to all threads by default. To make a thread have a private instance of 
such a variable, you use the private or firstprivate keyword. In line 2, the shared keyword 
is redundant, because the default behavior of OpenMP is that all data is shared. The shared key-
word is added here as a reminder to the programmer that the variables omp_log and node can be 
accessed by all the threads.

Adding firstprivate at line 8 causes the OpenMP run time to create private copies of the vari-
ables omp_log and node for each created task. A firstprivate variable differs from a private 
variable in that a firstprivate variable is automatically initialized with the values from the shared 
variable, whereas a private variable is uninitialized.

There is an implicit barrier at line 13: the end of the omp single thread. To allow the single thread 
to be made available to execute some of the newly created OpenMP tasks, the nowait keyword 
has been added at line 4. Without this keyword, once the single thread had completed creating the 
OpenMP tasks, it would simply sit at line 13 until all the other threads have completed their execu-
tion. By adding nowait, the effi ciency of the threaded execution is improved by making the single 
thread available for joining in executing the tasks.

The Results

Once the parallel code was added to the project, it was rewarding to see that on a quad-cored 
machine running hyper-threading, which can support 12 hardware threads, all 12 hardware threads 
were kept busy. Figure 13-7 shows that with the parallelism implemented in the code, each hardware 
thread ran at 100 percent. However, it should be emphasized here that the goal is to reduce overall 
time, not just to increase CPU utilization.

One of the most diffi cult aspects of adding OpenMP was grasping how variables were treated. 
Much of the time taken was used in reworking the code so that there was less need to share data 
between the different running tasks. Some effort was also spent on reducing the number of depen-
dencies between loops so that they could be easily parallelized. Adding the parallelism took about 
two weeks of work, which felt like a lot of effort at the time, but in relation to the length of the proj-
ect, the time was fairly short.

As a result of the work done, three new “thirty-niners” were discovered, as shown in 
Figure 13-8. 
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FIGURE 13-7: A fully utilized CPU
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FIGURE 13-8: The three 39-clue minimal solutions found using the minus-one-plus-two search

HANDS-ON EXAMPLE: OPTIMIZING THE SUDOKU GENERATOR

The code used for this hands-on section shows how to optimize a Sudoku generator by using the 
same techniques as those used in the project that led to the fi rst “thirty-niner.” The sample code 
does not check for redundant clues or log the results correctly. Some error checking has also been 
ignored. This was done to make the example simpler and easier to understand and to reduce the 
required computation time.

The code consists of a solver and a generator. The solver uses a brute-force recursive algorithm to 
solve a partially populated puzzle. The generator creates a stack of partially populated puzzles that 
are passed on to the solver. The algorithm used in the generator is the minus-two-plus-one search.
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About the Code

The code for the hands-on activities is available for download as a Visual Studio project 
(Chapter13\sudoku.zip). As you work your way through the activities, you will be asked to switch 
to different confi gurations, with names such as STEP_1, STEP_2, and so forth (using the drop-down 
confi guration menu in Visual Studio). As you swap confi gurations, different preprocessor macros 
will be automatically added to the build parameters of the project.

A number of header fi les are associated with the project. Of particular note is Config.h, which 
contains macros to control inclusion of different optimization features. The various source fi les are 
as follows:

 � File.cpp contains fairly rudimentary code that reads a single-line text fi le containing a 
partially completed Sudoku puzzle.

 � Generator.cpp holds the code for the minus-two-plus-one code.

 � Main.cpp holds the main body of the code for the solver.

 � Print.cpp contains code to print the clues and puzzles to 
the screen.

Figure 13-9 gives the project structure as seen within Visual Studio.

In this hands-on section there is no need to change any code. All the 
required changes are added automatically when you choose the correct 
build confi guration. Figure 13-10 shows the seven activities in this hands-
on section. Activity 13-1 uses the Microsoft compiler, and then switches 
to the Intel compiler.  

Find hotspot Activity 13-1

Activity 13-2

Solver

Generator

Activity 13-3

Activity 13-4

Activity 13-5

Activity 13-6

Activity 13-7

Find hotspot

Add SSE

intrinsics

Add OpenMP

code

Check

correctness

Fix

correctness

Tune

parallelism

FIGURE 13-10: The solver is fi rst optimized and then parallelism is added to the generator

FIGURE 13-9: The code 

consists of a number of 

source fi les and a user-

editable Confi g.h
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The reasons for using the Microsoft compiler and then switching to the Intel compiler are as follows:

 � The original Sudoku project started with the Microsoft compiler.

 � To show that Intel VTune Amplifi er XE can be used with the Microsoft compiler. (This is 
also true of Inspector and Advisor.)

 � To show how to swap to the Intel compiler.

 � To take advantage of the optimized code that the Intel compiler produces.

 � The Intel compiler supports Open MP tasks, which is not currently the case with the 
Microsoft compiler.

The running program accepts a single-line fi le as input, where each cell is represented by a digit. 
Where there is no clue, a zero is placed instead. The test.txt fi le is used in the hands-on exercise 
and contains the following:

000704005020010070000080002090006250600070008053200010400090000030060090200407000

The code used here is not the same code as that used in the “thirty-niner” proj-
ect. To be able to produce a “thirty-niner,” some important features would need 
to be added to the code, such as the fi ltering out of nonredundant clues and 
certain “under-the-hood” algorithmic tricks. 

The Solver

Figure 13-11 illustrates the solver’s recursive backtracking algorithm. 

The solver fi rst is passed a partially completed puzzle (Table A). For simplicity, only the top-left cor-
ner of the puzzle is shown. The solver starts at the fi rst empty cell, Idx1 (row 1, column 2), which 
could be assigned the values 4, 7, or 9 (determined by the clues in the same row, column, and box). 
The solver is called recursively two more times, taking the cells Idx2 (row 1, column 3) and Idx 20 
(row 3, column 3). The table now looks like Table B. Because Idx 20 cannot legitimately be fi lled 
with any value, the solver returns, removing the cell content of the cells along the way. The solver 
returns back to Idx 1 and places the next available clue (7) and in Idx1 and does a fresh recursive 
call. The solver then fi lls the next empty cell (Idx 2) with the lowest potential clue (4). This is 
followed by another recursive call, in which Idx 20 is fi lled with the value 9. The puzzle now looks 
like Table C. This recursive procedure is continued until the puzzle is solved.

Listing 13-2 shows the structures used in the solver. The SUDOKU structure contains an array of 81 
NODE structs.

LISTING 13-2: Structures used in the solver

1:  typedef struct NODE
2:  {
3:     int cell;
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4:     int number;
5:     int TempCellsLeft;
6:  }_NODE;
7: 
8:  typedef struct SUDOKU
9:  {
10:    NODE Nodes[NUM_NODES];
11: }_SUDOKU;

code snippet Chapter13\13-2.cpp

Solve

Idx 1

Idx 2

Idx 20

Idx 2

Idx 20

LastIdx

The Solver

Idx 28
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Table A

Table B

Table C

9

0

4

9

0

9

FIGURE 13-11: The solver uses a recursive backtracking algorithm to solve the puzzle

Listing 13-3 shows the solver’s recursive algorithm. When the solver is fi rst called, it is passed 
pPuzzle, which is a pointer to the current puzzle, and NodeIdx, which is an index to the current cell 
that is being considered.  
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LISTING 13-3: The solver’s recursive code

1: bool Solve(SUDOKU *pPuzzle,int PuzzleIdx,int NodeIdx,int &NumRecursions)
2: {
3:     NumRecursions ++;
4:     if (NodeIdx >= NUM_NODES)
5:         return true;
6: 
7:    if(!FillPossibilities(pPuzzle,NodeIdx))
8:        return false;
9:
10:    NODE BackupNode;
11:    for(int i=1; i<=MAX_NUM; i++)
12:    {
13:        if(Allowed(pPuzzle,NodeIdx,i))
14:        {
15:          StoreNumber(pPuzzle,NodeIdx,BackupNode,NumRecursions,i);
16:            int NewIdx = GetNextIdx(pPuzzle, NodeIdx);
17:
18:            if (!Solve(pPuzzle,PuzzleIdx,NewIdx,NumRecursions))
19:                ClearNumber(pPuzzle,NodeIdx,BackupNode,i);
20:        }
21:    }
22:    return false;
23: }

code snippet Chapter13\13-3.cpp

In line 7, the solver fi rst populates the partially populated puzzle’s empty cells with a list of all valid 
possibilities. The loop at line 11, which iterates from 1 to 9, along with the call to Allowed, is used 
to drive the next recursive call to Solve at line 18. 

If Solve fails, it returns false; otherwise, it returns true — once it has visited all the nodes in the 
puzzle (line 8). Each time Solve is called, the NewIdx (line 16) is incremented to point to the next 
empty cell in the puzzle.

Finding Hotspots in the Solver

The details of using Intel Parallel Amplifi er are presented in Chapter 6, “Where to Parallelize,” 
and need not be repeated here. However, Activity 13-1 lists the steps for using Amplifi er to fi nd the 
hotspots within the code. As mentioned in Chapter 6, it is good practice to optimize the serial code 
fi rst, before making any code parallel. Code that consumes signifi cant amounts of the total run time 
of the program is the ideal candidate for optimization. After running Amplifi er, you can see that 
the biggest consumer of CPU time is the NumInRow function, closely followed by NumInColumn (see 
Figure 13-12). 

Examining the code of the fi rst hotspot within Parallel Amplifi er shows that the majority of the time 
consumed is due to two things: the iteration of the array of nodes and the divide calculation (see 
Figure 13-13).
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FIGURE 13-12: Intel Parallel Amplifi er shows the hotspots in the solver code

FIGURE 13-13: The code of the solver hotspot

ACTIVITY 13-1: FINDING HOTSPOTS

In this activity you build the serial version of the solver with the Microsoft compiler 
and then the Intel compiler. You analyze the code for hotspots using Amplifi er XE.

 1. Open the suduko_c.sln project.

 2. Build the STEP_1 confi guration.

 3. Run the program by pressing Ctrl+F5, and record the time taken.

 4. Switch to the Intel compiler.

 5. Repeat steps 2 and 3.

 6. Check for hotspots using Parallel Amplifi er.
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Optimizing the Code Using SSE Intrinsics

The code in the STEP_2 version of the project has been changed to use SSE intrinsics, as described 
in the fi rst part of this case study. The following SSEHasNumber function is used for checking the 
existence of a number in a row column or box:

1: bool SSEHasNumber(SUDOKU *pPuzzle,__m128i BinArray[], int i, int j)
2: {
3:     __m128i Tmp1 = ( _mm_and_si128(pPuzzle->BinNum[j-1], BinArray[i]));
4:     __m128i Tmp2 = _mm_setzero_si128();
5: 
6:     Tmp2 = _mm_cmpeq_epi32(Tmp2, Tmp1);
7:

Once the new code is included in the build (by choosing the STEP_2 build confi guration in Visual 
Studio), the total execution reduces signifi cantly, giving a speed up of 12 when using the same hard-
ware as the serial version (see Table 13-1). 

TABLE 13-1: Speedup with and without SSE Intrinsics

TIME (SECONDS) SPEEDUP

Without SSE 1.78 1

With SSE 0.14 12

ACTIVITY 13-2: ADDING SSE INTRINSICS

In this activity you build the version of the code that has SSE intrinsics.

 1. Build the STEP_2 confi guration.

 2. Run the program by pressing Ctrl+F5, and record the time taken.

The Generator

The generator uses a minus-two-plus-one search algorithm to remove two clues from an existing 
puzzle, and then traverses the puzzle, fi lling in each empty square with a new clue before passing the 
partially completed puzzle on to the solver. 

The code consists of four nested loops: 

 � The outermost loop removes the fi rst clue and creates a copy of the puzzle. 

 � The second nested loop is responsible for removing the second clue. 

 � The third nested loop traverses through each empty cell, using the innermost loop (the fourth 
loop) to try out all the new potential clues in the current cell. 

c13.indd   390c13.indd   390 3/26/2012   12:32:25 PM3/26/2012   12:32:25 PM



Blair-Chappell   c13.indd   V2 - 03/07/2012 Page 391

Hands-On Example: Optimizing the Sudoku Generator x 391

To summarize, the outermost loop and the second nested loop are responsible for the minus-two 
part of the search, and the other two loops are responsible for the plus-one part.

Finding the Hotspots in the Generator

When parallelizing a hotspot, the usual rule 
of thumb is that it is not the hotspot itself 
that is parallelized, but rather the parallelism 
is added higher up in the calling sequence. 
Activity 13-3 shows the steps involved with 
running Intel Parallel Amplifi er on the genera-
tor code to reveal hotspots.

Activity 13-3 reveals that the main hotspot 
is SSEHasNumber, which is called by Solve, 
which, in turn, is called by GenDoWork. The 
GenDoWork function is called from the outer-
most loop in the generator code. Figure 13-14 
shows these relationships.

ACTIVITY 13-3: FINDING THE HOTSPOT IN THE GENERATOR

In this activity you build the serial version of the generator and analyze it for hotspots.

 1. Build the STEP_3 confi guration.

 2. Run the program by pressing Ctrl+F5, and record the time taken.

 3. Check for hotspots using Parallel Amplifi er.

Adding Parallelism to the Generator Using OpenMP

After using intrinsics and vectorization (SSE instructions), further enhancements in speed are 
obtained by adding parallelism. This is accomplished by adding OpenMP tasks to the code high up 
in the calling hierarchy of the generator. In Listing 13-4, OpenMP-specifi c code is added to lines 5, 8, 
and 14. This code works in a similar manner to Listing 13-1.

LISTING 13-4: Adding OpenMP tasks to the generator

1: SUDOKU Puzzles[NUM_NODES];
2:
3: int Generate(SUDOKU *pPuzzle)
4: {
5:      #pragma omp parallel 
6:      for(int i = 0 ; i < NUM_NODES -1; i++ )
7:      {
8:          #pragma omp single nowait
9:          {
10:             NODE Node1 = pPuzzle->Nodes[i];
11:             if(Node1.number > 0)

FIGURE 13-14: Using Amplifi er to fi nd the gen-

erator hotspots and calling sequence

continues
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12:             {
13:                 memcpy(&Puzzles[i],pPuzzle,sizeof(SUDOKU));
14:                 #pragma omp task firstprivate(i)
15:                 GenDoWork(&Puzzles[i],i);
16:             }
17:         }
18:     }
19:     return gNumCalls; //global incremented on each call to solver
20: }

code snippet Chapter13\13-4.cpp

Using the same architecture as the nonparallelized code, the application ran nearly 7 times faster on 
a machine that had 12 threads (see Table 13-2).

TABLE 13-2: Speedup with and without OpenMP

TIME (SECONDS) SPEEDUP

Without OpenMP 213 1

With OpenMP  32 6.7

ACTIVITY 13-4: ADDING OPENMP CODE

In this activity you build and run the parallel version of the generator.

 1. Build the STEP_4 confi guration.

 2. Run the program by pressing Ctrl+F5, and record the time taken.

 3. Calculate the speedup (and compare with Activity 13-3).

Checking Correctness in the Generator

It is essential when introducing parallelism into code to check for data races and other similar problems. 
Activity 13-5 involves running the Intel Parallel Inspector to search for problems that may occur when 
parallelizing code. The results show several data races that need to be resolved (see Figure 13-15).

ACTIVITY 13-5: CHECKING FOR PARALLELIZATION PROBLEMS

In this activity you check the newly parallelized code to see if any errors exist.

 1. Build the STEP_5 confi guration.

 2. Check for data races using Parallel Inspector.

LISTING 13-4 (continued)
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FIGURE 13-15: The Inspector reveals several data races

Fixing Correctness in the Generator

The data races are caused by the following three things: 

 � Reading/writing the global variable gNumSolutions without appropriate synchronization

 � Reading/writing the global variable gNumCalls, again without appropriate synchronization

 � Calling the std::map functions

To solve the data races, you need to protect the access to the global variables by adding a synchroni-
zation directive. Various OpenMP directives were covered in Chapters 8 and 9. To fi x the 
gNumSolutions and gNumCalls data races, you can use the atomic directive, as follows:

#pragma omp atomic 
   gNumSolutions++;

#pragma omp atomic
   gNumCalls++;

To fi x the data race caused by calls to std::map functions, wrap the call to StoreSolution within 
a critical section using the #pragma omp critical directive: 

// StoreSolution returns true if solution is unique
#pragma omp critical
{
                   res = StoreSolution(pPuzzle,PuzzleIdx);
}

ACTIVITY 13-6: FIXING CORRECTNESS

In this activity, the data races identifi ed in Activity 13-5 have been corrected.

 1. Build the STEP_6 confi guration.

 2. Check for data races using Inspector XE.
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Tuning Performance

After correcting errors in the parallel code, the next step is to tune the application with respect to 
parallelism. Typically, you need to address the following issues:

 � Parallel overhead

 � Load balancing

 � Scalability

In Activity 13-7, you solve the load-balancing problem using Intel Parallel Amplifi er XE (refer to 
Chapter 9 for more details). Using Amplifi er to analyze the code shows the newly parallel code 
apparently performing well. Amplifi er reports that all 12 logical CPUs are fully utilized (see 
Figure 13-16). The color of the scale indicates how good the concurrency is. The color of the scale 
indicates how good the concurrency is. In this case, the large histogram block in the Ideal section 
(colored green on your PC) shows excellent CPU usage.

FIGURE 13-16: Apparently all the cores are being used, which hides an underlying problem

On closer examination, you can see that although the CPU usage is high, the number of simultane-
ous running threads is poor (see Figure 13-17). 

FIGURE 13-17: The program is running with very poor concurrency

Looking at the time line, you can see a lot of vertical transition lines (see Figure 13-18). A healthy 
program should not be dominated by these transitions. 
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FIGURE 13-18: The timeline is dominated by vertical transition lines

Looking at the source view of the bottleneck, it is clear that an ill-placed #pragma omp critical 
directive is the cause of the problem (see Figure 13-19).

FIGURE 13-19: The reason for the poor concurrency is the critical section

Removing the #pragma omp critical directive leads to a better concurrency (see Figure 13-20).

FIGURE 13-20: Removing the critical section leads to a better concurrency
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ACTIVITY 13-7: TUNING PARALLELISM

In this activity you analyze the concurrency of the generator.

 1. Build the STEP_7 confi guration.

 2. Check for concurrency using Amplifi er XE.

 3. Build the STEP_8 confi guration. (This removes the critical section.)

 4. Check the concurrency to see how it has improved.

Even though the program has a reasonable concurrency level, not all threads are doing the same 
amount of work. As shown in Figure 13-21, some threads fi nish their work much earlier than oth-
ers. Although some further work could be carried out to try to improve the balance, the perfor-
mance is quite adequate. 

FI GURE 13-21: Not all threads are doing an equal amount of work

SUMMARY

The Sudoku puzzle case study gives a fascinating insight into how carefully crafted code using SSE 
intrinsics can lead to dramatic performance improvements over non-SSE code. Parallelizing using 
OpenMP tasks can produce well-balanced parallel applications.

The skills used to produce solutions for Sudoku puzzles in this chapter can readily be used in many 
applications to produce effi cient and optimized code.

Chapter 14, “Nine Tips to Parallel-Programming Heaven,” explores an alternative way of paral-
lelizing using Intel Cilk Plus. The techniques learned there can likewise be applied to this Sudoku 
problem.
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14
Nine Tips to Parallel-Programming 
Heaven

WHAT’S IN THIS CHAPTER?

 � Improving the application heuristics

 � Doing an architectural analysis

 � Adding parallelism

This chapter is like a TV program with three interweaving plots running in parallel. 
It includes the following:

 � A set of tips on how to write successful parallel programs, based on an interview with 
Dr. Yann Golanski of York.

 � A description of Dr. Golanski’s n-bodies research project looking at star formation.

 � A set of hands-on exercises. Note that the code is not the same code that Dr. Golanski 
used, but is it written to show some of the key elements of his work.

THE CHALLENGE: SIMULATING STAR FORMATION

The original research project investigated how adding coolants to the interstellar medium 
(ISM) could induce the medium to collapse and thus increase the likelihood of star formation. 
The problem is a classic n-bodies simulation problem, where calculations are made on how 
particles interact with each other. As new particles are added to the model, the number of 
calculations required increases by N2, where N is the number of particles in the model. 
Because of this N2 relationship, the number of calculations that have to be performed on any 
decent-size model expands to an almost unmanageable fi gure.

c14.indd   397c14.indd   397 3/26/2012   12:33:13 PM3/26/2012   12:33:13 PM



Blair-Chappell   c14.indd   V2 - 03/10/2011 Page 398

398 x CHAPTER 14  NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

Using brute force to calculate how the particles interact with each other is practical for small num-
bers of particles, but for a large collection of particles the time needed to perform all the calcula-
tions becomes too long to be useful. Dr. Golanski puts it like this:

The simulation works fi ne for 12 particles; it even works fi ne for 100 particles. 
If you try to use 1,000 particles, it takes ages; if you try to use 10,000 particles, 
forget it! If you try to use 100K or one million particles, then that’s just a joke.

You can employ the following strategies to overcome the “order-of-magnitude” problem: 

 1. Modify the algorithm of the n-bodies calculation so that the number of calculations required 
becomes an N-log-N relationship rather than N2. 

 2. Use VTune Amplifi er XE to analyze the code for bottlenecks.

 3. Use VTune Amplifi er XE to fi nd hotspots in the code, and then parallelize them to take 
advantage of multi-core workstations.

The simulation code was written in C and based on the Barnes-Hut force calculation, where the 
whole environment to be simulated is split into a hierarchical set of boxes or cubes. 

In the original research project, the development of the code was initially done on a single-core 
machine, the program being written in a single thread. After the model was suffi ciently developed, 
the code was migrated to an 8-core workstation and the code was parallelized. The fi nal step in 
the development was to enable the application to work on a cluster of machines. Synchronous pro-
cess communication between the different nodes on the cluster handled the Message Passing 
Interface APIs.

The Formation of Stars

It is thought that stars are formed from the interstellar medium (ISM), 
an area that is populated with particles of predominantly hydro-
gen and helium. Within the ISM are dense clouds. These clouds are 
normally in equilibrium, but can be triggered by various events to 
collapse. 

In the research work done by Dr. Golanski, the model simulates 
the collapse of the ISM by seeding it with coolants from a super-
nova — the coolants being atoms and molecules other than hydrogen 
(H) and helium (He), notably gaseous water (H2O), carbon monoxide 
(CO), molecular oxygen (O2), and atomic carbon (C).

The collapsing cloud, known as a protostellar cloud, continues to col-
lapse until equilibrium is reached. Further contraction and fusion of 
the protostellar cloud takes place, resulting in the eventual formation 
of a star. Figure 14-1 shows a picture of an interstellar cloud taken 
from the Hubble telescope.

FIGURE 14-1: A cloud of cold 

interstellar gas

Photo Credit: NASA, ESA, and 

M. Livio and the Hubble 20th 

Anniversary Team (STScI)
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THE HANDS-ON ACTIVITIES

The n-bodies project contains the following fi les:

 � main.cpp and main.h — Contain the top-level function main() that drives the simulation.

 � hash.cpp and hash.h — Contain the hashed octree simulation code.

 � n-bodies.cpp and n-bodies.h — Contain the code to initialize the array of body particles 
and to perform a serial simulation.

 � octree.cpp and octree.h — Contain the octree simulation code.

 � Makefile — Used to build the application. There are seven targets, 14-1 to 14-7, which 
correspond to the seven hands-on activities. 

 � print.cpp and print.h — Used to print position of bodies (only for debugging purposes).

The Makefile is used to build the n-bodies project, which you can use in either Windows or Linux. 
Following are the different targets that are used for each of the hands-on activities. Notice that Step 
6 uses the Debug build — to give maximum amount of information when tracking down data races. 
In each of the steps, all the required code changes are already included in the sources and are 
controlled by a series of #defines. 

 � 14-1 — Serial version of n-bodies application, built with optimization enabled. Use it to 
perform a Hotspot analysis with Amplifi er XE.

 � 14-2 — Uses octree heuristic.

 � 14-3 — Uses hashed octree heuristic

 � 14-4 — Same as 14-3 but with optimized division code.

 � 14-5 — Same as 14-5 with Cilk Plus parallelism. You must use the Intel compiler for this and 
the following targets. This version contains data races.

 � 14-6a — A debug version of 14-5 but with a smaller data set. Use this version to perform a 
Data Race analysis with Inspector XE.

 � 14-6b — Same as 14-6a but with data races fi xed with a cilk::reducer_opadd reducer.

 � 14-7 — Same as 14-6b but with a full-size data set. This is the fi nal version of the n-bodies.

To use the Cilk Plus part of the hands-on (Activities 14-5 to 14-7), you must build the project using 
the Intel compiler, because the Microsoft compiler does not support Cilk Plus at this time. You can 
build all the other steps with either the Intel or the Microsoft compiler (GCC on Linux).

All the screenshots and source code in this case study are taken from the 
hands-on activities, not the original research project.
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Performance Tuning

The original project used Intel VTune Performance Analyzer to profi le the application. The 
XE version of Intel Parallel Studio includes the latest version of VTune, referred to as Amplifi er XE.  

Amplifi er XE works by “listening” to various performance counters while the application runs. The 
workfl ow involves the following steps:

 1. Build the release version of the application.

 2. Run a Hotspot analysis using Amplifi er XE.

 3. Examine the results, and then apply changes to the code or environment to improve the per-
formance of the code.

 4. Keep repeating steps 1–3, fi xing one performance issue on each iteration.

Using the preceding steps to optimize an application, it is good practice to perform the tuning at 
three different scopes, or levels:

 � System-wide — First, look at how the application is interacting with the system.

 � Application-level — Once you have corrected any system-wide problems, try to improve any 
application heuristics.

 � Architectural-level — Finally, having completed system-wide and application-level tuning, 
focus on any architectural bottlenecks.

This case study concentrates on the application heuristics and architectural bottlenecks. Once these 
two areas are improved, the program is then parallelized.

APPLICATION HEURISTICS

Intuitive judgment can often be used to reduce the computational effort needed to solve a problem. 
The brute-force approach using Newton’s law of universal gravitation to calculate the forces on each 
particle leads to an unacceptable solution. The time needed to calculate such a solution on a reason-
able number of particles may be longer than the lifetime of the programmer. Other, more experiential, 
methods must be applied. Many cosmologists have tried a variety of ways of reducing the computa-
tional effort, most using some sort of averaging function. This case study uses a variation on this.

Finding the Hotspots

Any optimization effort should focus on parts of the code with the most intense CPU activity. 
Figure 14-2 shows the results of an Amplifi er XE Hotspot analysis session. The main hotspot 
consuming most of the CPU activity is the addAcc() function. You can try this out for yourself in 
Activity 14-1.

The fundamental problem of an n-bodies simulation is the number of calculations that need to be 
performed.  

You can easily see how the number of calculations needed rapidly grows by looking at the serial ver-
sion of the n-bodies code. All the bodies in the simulation are held in the array body.  The size of the 
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array BODYMAX is the same as the number of bodies you are simulating. Each element of the array body 
holds a BODYTYPE structure, which stores the position, velocity, acceleration, and mass of the body:

struct BODYTYPE {
    double pos[NUMDIMENSIONS];
    double vel[NUMDIMENSIONS];
    double acc[NUMDIMENSIONS];
    double mass;
// ...
}; 
BODYTYPE body[BODYMAX];

FIGURE 14-2: The Hotspot analysis shown in Amplifi er XE

To perform a brute-force simulation, the interaction between every body is calculated in a triple-nested 
loop within the function runSerialBodies. At the innermost level of the loop, the function addAcc 
combines the acceleration of the two bodies. Once all the accelerations have been calculated, the function 
ApplyAccelerationsAndAdvanceBodies applies the new accelerations to each body in the simulation:

void runSerialBodies(int n)
{
  // Run the simulation over a fixed range of time steps
  for (double s = 0.; s < STEPLIMIT; s += TIMESTEP) 
  {
    int i, j;
    // Compute the accelerations of the bodies
    for (i = 0; i < n - 1; ++i) 
      for (j = i + 1; j < n; ++j) 
        addAcc(i, j);
    // apply new accelerations 
    ApplyAccelerationsAndAdvanceBodies(n);
    }
}
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In Dr. Golanski’s work, the simulation time was reduced by using a hashed tree-based n-bodies 
simulation using a modifi ed Barnes-Hut algorithm.1

ACTIVITY 14-1: CONDUCTING A HOTSPOTS ANALYSIS

In this activity you look for the hotspots in the n-bodies application. You can run 
this activity on Linux or Windows.

Setting Up the Build Environment

 1. Download the source fi les from the Wrox website.

 2. Edit the Makefile. If you are using Linux, you will need to comment out the 
include windows.inc at the beginning of the Makefile and uncomment 
the include linux.inc:

## TODO: EDIT next set of lines according to OS

#include windows.inc
include linux.inc

 3. Open a command prompt or shell as follows:

WINDOWS

Open an Intel compiler command prompt. The path to the command prompt 
will be similar to the following. (The exact names and menu items will vary, 
depending on which version of Parallel Studio and Visual Studio you have 
installed.) 

Start Í All Programs Í Intel Parallel Studio XE 2011 Í Command Prompt Í 
Intel64 Visual Studio Mode

LINUX

Make sure the compiler variables have been sourced:

$ source /opt/intel/bin/compilervars.sh intel64 

If you are running a 32-bit operating system, the parameter passed to the 
compilervars.sh fi le should be ia32.

Building and Running the Program

 4. Build the application 12-1.exe by calling make:

LINUX

make clean
make 14-1

1J. E. Barnes and P. Hut. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature. 324, 446
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WINDOWS

nmake clean
nmake 14-1

 5. Run the program 14-1.exe and record the results. 

Notice the message on the screen tells you that you are running a Release 
build of the Serial version with 1024 bodies. When the program runs, it fi rst 
initializes the bodies with a random value and then runs the simulation. In 
the serial version no signifi cant time is spent on initializing the bodies.

Running with 1024 bodies
Running Serial  Release version
Body initialization took  0.0000 seconds
Simulation took 19.218 seconds
Number of Calculations: 524299776

Performing a Hotspot Analysis

 6. Start an Amplifi er XE GUI from the command line:

amplxe-gui

 7. Create a new project named Chapter 14.

 � Select File Í New Í Project.

 � In the Project Properties dialog, make sure the Application fi eld points to 
your 14-1.exe application.

 8. Carry out a Hotspots analysis by selecting File Í New Í Hotspots Analysis. 
You should fi nd that the main hotspot is a call to addAcc().

Using a Tree-Based N-Bodies Simulation

The trick in the Barnes-Hut algorithm is to group together clusters of particles and treat them as 
a single body. When calculating the effect of such a group on a nearby particle, the distance of the 
particle to the group is fi rst examined. If a group is greater than a certain distance away, the com-
bined mass of the group is used rather than the mass of the individual particles within the group. 
Because of this grouping, the time taken to calculate the effect of particles on each other is reduced 
signifi cantly. 

The fi rst stage in building up the simulation model is to create a single cube that represents the 
entire space of the environment. As the model is populated, this cube is partitioned into smaller 
cubes. Each cube can contain at most only one particle, so when two particles would occupy the 
same cube, the cube is split into sub-cubes so that each particle can be in its own cube. Figure 14-3 
shows how this cube division takes place:

 � The fi rst particle is placed into the single cube. This is represented by the head node in the 
octree.
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 � Introducing a second particle causes the head 
cell to be split into eight, the two particles now 
being stored in the second- level of the tree.

 � Additional particles are placed in the new 
leaf(s). When two particles end up being in the 
same cube, the cube is split into a further eight 
cuboids. 

 � A fully constructed tree consists of nodes and 
leaf(s). Only a leaf can contain a particle.

The collection of nested cubes is stored in an octree. 
An octree works the same way as a binary tree, except 
that each node has eight children rather than the usual 
two. The octree is traversed recursively using standard 
linked-list techniques. The mass and center of mass is 
calculated for every node in the tree.

The following code snippet shows the three structures 
that are used to store the octree — NODE, NODES, and 
TREE. The width of the octree is determined by 
TREE_WIDTH, which is defi ned to have the value 8.

struct NODE
{
       int Id;
       BODYTYPE * pCell;
       NODES *  pNodes;
       MINMAX MinMax;
       NODE * pNext; // used in linked list to all siblings
       NODE * pChild; // used in linked list to all children
       double CentreOfMass[NUMDIMENSIONS];
       double Mass;
};

struct NODES 
{
       NODE Nodes[TREE_WIDTH];
};   

struct TREE
{
       int NumNodes; // this includes number of leafs 
       int NumLeafs;
       NODE Head;
}

Simulation space The octree

FIGURE 14-3: The entire environment to be 

simulated is represented as a set of cubes, 

which is stored as an octree
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ACTIVITY 14-2: BUILDING THE OCTREE SOLUTION

In this activity you build and run the octree version of the n-bodies simulation. You 
can run this activity on Linux or Windows.

 1. Repeat steps 4 to 6 of Activity 14-1 but use the target 14-2 for the Makefile. 
The main difference between this target and the previous target is the option 
-DOCTREE, which is equivalent to using a #defi ne OCTREE in the source code.

 2. Run the new executable 14-2.exe. It should run much quicker than the serial 
version.

 3. Carry out a Hotspots analysis and confi rm the name of the hotspot (by repeat-
ing step 8 of Activity 14-1, but don’t forget to change the name of the applica-
tion to 14-2.exe in the project properties window). 

 4. Browse into the source code by double-clicking on the hotspot in the 
Bottom-up window. Find out which lines take up the most time.

 5. Optional. Search for all occurrences of the preprocessor macro OCTREE in the 
source fi les and see which new sources are included in the build when this 
macro is defi ned.

Using a Hashed Octree

One way to implement the octree is to use linked lists, where each node of the linked list points to 
eight sub-children. Tree traversal using linked lists is expensive. Algorithms that use pointer-chasing 
techniques often suffer from poor performance due to ineffi cient use of memory. By using a hash-
based algorithm rather than a linked list to store the tree, the traversal and manipulation of the tree 
is signifi cantly reduced. 

Dr. Golanski used a hash-based algorithm in which the xyz coordinates of the particle are used to 
construct a hash key, as described by Warren and Salmon.2 Where the hash key is calculated to be 
the same for two different particles, the values are chained together under the same key. For exam-
ple, in Figure 14-4(a) the bottom hash table entry has two additional entries (Bin 1 and Bin 2) that 
are daisy-chained to the #2249 hash. 

In the n-bodies simulation code, the HASHTABLE structure is used to hold the hash table. Each entry of 
the hash table is stored in the Data array, with the size of the array being controlled by the MAXKEYS:

struct HASHTABLE
{
       unsigned int NumNodes;

2M. Warren and J. Salmon. 1993. A parallel hashed oct-tree N-body algorithm. Supercomputing '93 
Proceedings. 12–21
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       unsigned int NumLeafs;
       unsigned int NumChainedLeafs;
       QUEUE SortedList;

       NODE Data[MAXKEYS];

};

(a) (b)

Octree

XYZ Coordinates as Bits

X Y Z

Bit-Interleaved Hash Key

1 101 011 011 100 111 001 000 110

1001 1001 0110 1001 1110 1100

1 XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ

Hash Table

#1

#1

#3

#44

#2249

#3

#44

#2249 Bin 1
Bin 1

Bin 2
Bin 2

FIGURE 14-4: Tree traversal and hash generation

Implementing the simulation using a hashed octree resulted in a further improvement on the time 
taken for each simulation when using the same hardware. Figure 14-5 shows how the changes in the 
n-bodies algorithm affect the simulation time. In the traditional n-bodies solution, the time taken in 
the simulation rises very sharply as new bodies are introduced. The most favorable algorithm is the 
hashed octree, which produces a very manageable rate of rise. 

128

T
im

e
 f

o
r 

S
im

u
la

ti
o

n
 (
S

e
c
o

n
d

s
)

0

10

20

30

40

50

60

70

256

Number of Bodies

512 1024

N-bodies

Octree

Hashed Octree

FIGURE 14-5: Signifi cant performance improvements can be made by changing the heuristics 

of the application
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ACTIVITY 14-3: BUILDING THE HASHED OCTREE SOLUTION

In this activity you build and run the hashed octree version of the n-bodies simula-
tion. You can run this activity on Linux or Windows.

 1. Build the application using the target 14-3 for the Makefile. The main differ-
ence between this target and the previous target is the option -DHASHTREE.

 2. Run the new executable 14-3.exe. It should run quicker than the octree ver-
sion you ran in Activity 14-2.

 3. Carry out a Hotspots analysis and confi rm the name of the hotspot (by repeat-
ing step 8 of Activity 14-1, but don’t forget to change the name of the applica-
tion to 14-3.exe in the project properties window). 

 4. Optional. Search for all occurrences of the preprocessor macro HASHTREE in 
the source fi les, and see which new sources are included in the build when this 
macro is defi ned.

ARCHITECTURAL TUNING

Once you have suitably tuned the heuristics of the application, it’s time to turn your attention to the 
architectural bottlenecks. Amplifi er XE is used to perform the architectural analysis. A number of 
predefi ned analysis types are available for architectural analysis, including the following event-based 
types, which are targeted for Intel micro-architecture (see Chapter 12, “Event-Based Analysis with 
VTune Amplifi er XE,” for more details):

 � Lightweight Hotspots — Event-based sampling that captures the amount of time you spend 
in different parts of your code. This is different from the Hotspots analysis you have already 
used in Activities 14-1, 14-2, and 14-3 in that it does not collect any stack information.

 � General Exploration — Event-based sampling collection that provides a wide spectrum of 
hardware-related performance metrics

 � Memory Access — Event-based analysis that helps you understand where the memory access 
issues affect the performance of your application

 � Bandwidth — Event-based analysis that helps you understand where the bandwidth issues 
affect the performance of your application

 � Cycles and uOps — Event-based analysis that helps you understand where the uOp fl ow 
issues affect the performance of your application

As you become more experienced in architectural analysis, it is sometimes possible to guess what the 
likely bottlenecks will be. In the n-bodies code, the effi ciency of the arithmetic operations, such as 
division, and how memory is used are at the top of the list of suspects you should investigate. 

Within the identifi ed hotspot function, there is code that contains several divisions:

  // compute the unit vector from j to i
  double ud[3];
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  ud[0] = dx/dist;
  ud[1] = dy/dist;
  ud[2] = dz/dist;

This code can be rewritten to use a reciprocal, resulting in the compiler generating much faster code:

    // compute the unit vector from j to i
    double ud[3];
    double dd=1.0/dist;
    ud[0] = dx * dd;
    ud[1] = dy * dd;
    ud[2] = dz * dd;

Table 14-1 shows the result of making such code changes on the different heuristics using the same 
hardware. The code was built using the Microsoft compiler. The number of particles used was 1024. 
Remember that it is better to look at the architectural bottlenecks after completing any heuristic 
optimization, not before. In the hashed tree solution — the code that has the most optimized 
heuristic — the speedup is 13 percent on a set of 1K particles and 11 percent on a set of 10K 
particles. 

TABLE 14-1: Results of Optimizing Several Divisions

TIME (SECONDS)

HEURISTIC DIVIDE RECIPROCAL SPEEDUP

Serial 22.56 17.28 30%

Tree 19.64 19.58 0.3%

Hashed tree (1K nodes) 2.23 1.97 13%

Hashed tree (10K nodes) 638 570 11%

You often can make code, especially mathematical number-crunching code, more effi cient by look-
ing at how the calculations are done. By simply rearranging equations you can reduce the compu-
tational effort. The preceding divisional example is one such way of reducing the effort. In this 
example, a temporary variable was calculated and used three times. This idea can be further devel-
oped by precalculating parts of equations and carrying the results forward. Where several equations 
occur, make sure you are not calculating some part of the various equations more than once; again, 
use temporary variables. Often, array calculations can be broken down into several parts; this also 
increases the chances of their successful vectorization. All these approaches can reduce time even 
before other methods are considered.
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ACTIVITY 14-4: OPTIMIZING THE DIVISION

In this activity you build and run a version of the n-bodies simulation that has opti-
mized division code and compare its CPI rate with and without this optimization. 
You can run this activity on Linux or Windows.

 1. Carry out a Lightweight Hotspot analysis on the application you built in 
Activity 14-3:

 � Select  File Í New Í Lightweight Hotspots Analysis. Notice that we are 
using lightweight hotspots!

 � In the Project Properties dialog, make sure the Application fi eld points to 
your 14-3.exe application.

 � Start the analysis.

 2. Examine the results and make a note of the following:

 � The elapsed time of the program

 � The function name and CPU time of the biggest hotspot

 � The CPI of the biggest hotspot (for a refresher on CPI, see Chapter 12, 
“Event-Based Analysis with VTune Amplifi er XE”)

You should see that one hotspot has a terrible CPI (a good CPI value should 
be less than 1). 

 3. Build the new application using the target 14-4. The main difference between 
this target and the previous target is the option -DUSE_RECIPROCAL_DIVIDE.

 4. Run a new Lightweight Hotspot analysis using 14-4.exe for the Makefile.

 5. The new executable, 14-4.exe, should have a shorter elapsed time than that 
of 14-3.exe. Calculate the speedup using the following formula:

speedup = new time \ old time

 6. Compare the CPI rate and CPU time of the hotspot in 14-3.exe with the same 
source line in 14-4.exe. In the new executable the CPI should be lower, and 
the elapsed time shorter.

 7. Optional. Search for all occurrences of the preprocessor macro 
USE_RECIPROCAL_DIVIDE in the source fi les, and see which new sources are 
included in the build when this macro is defi ned.
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ADDING PARALLELISM

Once the serial version of the code is suffi ciently well optimized, it’s time to move on to making the 
code parallel. In the original research, the parallel algorithms were based on the suggestions made 
by Warren and Salmon. By splitting the sorted list of particles into groups, these groups can be 
simulated in parallel.  Once the sorted particles are split into groups, a tree is created for each dis-
joint group — called local trees. Using a sorted list means that each group of particles is in spatially 
distinct parts of the cube. Where there is the possibility that a particle could sit in the node of an 
adjacent local tree, a copy of the node is held in both trees.

Identifying the Hotspot and Discovering the Calling Sequence

In the simulation, the same calculation is repeated thousands of times on the particles in the envi-
ronment. Using Amplifi er XE to identify the hotspots in the code shows that most of the time is 
spent adding the acceleration to the moving particles (refer to Figure 14-2). 

Although the original research used MPI to implement parallelism, the steps that were undertaken 
to add parallelism are common to whatever language implementation is used. 

The steps undertaken were as follows: 

 1. Identify the hotspot. 

 2. Discover the calling sequence and number of function calls. 

 3. Identify any dependencies.

 4. Implement the parallelism.

 5. Check for any errors introduced by parallelization, such as data races, and correct them.

 6. Tune the parallel application.

The most signifi cant hotspot in the code is in the HashAdvance function. Normally, when applying 
parallelism, it is usual to add the parallel construct to one of the parent functions of the hotspot. As 
shown in Figure 14-6, the Step function looks like an ideal candidate. The function controls 99.5 
percent of the CPU time.

Implementing Parallelism 

As previously mentioned, the original implementation was done using MPI. Intel Parallel Composer 
provides a number of different ways of implementing parallelism, including OpenMP, Cilk Plus, and 
Threading Building Blocks. Cilk Plus is ideal for this kind of problem where load balancing is of 
upmost importance. Cilk Plus’s task-stealing scheduler does a great job at load balancing and has an 
intuitive programming approach. Listing 14-1 shows how Cilk Plus can be applied to the problem.

Listing 14-1 shows how a for loop can be easily parallelized by using the cilk_for keyword at 
line 7. The code snippet is based on the Step() function found in Hash.cpp. The only other addi-
tion to the code was to include the statement #include <cilk/cilk.h> at the top of the fi le. 
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FIGURE 14-6: Identifying the hotspot and call stack

LISTING 14-1: Introducing parallelism by replacing the for loop at line 7 with a cilk_for

1: // This code has known data race bugs and is used as an example
2: // to explain how to detect parallelization problems.
3: unsigned int stepcount;
4: void Step()
5: {
6:   // parallelize following loop using cilk_for in place of C for
7:   cilk_for(int i = 0; i < theTable.SortedList.Cursor; i++)
8:   {
9:     // declare and set hash table value
10:    unsigned int Hash = theTable.SortedList.List[i];
11:    if(Hash != 0)
12:    {
13:      // declare pointers to first & next nodes
14:      NODE *pNode = GetNode(Hash);
15:      NODE *pChain = pNode->pNext;
16:      // advance to next node and increment stepcount
17:      HashAdvance(pNode,GetNode(0));
18:      stepcount++;
19:      // while not end of list

continues
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20:      while(pChain)
21:      {
22:        // advance to next node
23:        HashAdvance(pChain, GetNode(0));
24:        pChain = pChain->pNext;
25:        stepcount++;
26:      }
27:    }
28:  }
29: }

code snippet  chapter14\14-1.cpp

ACTIVITY 14-5: PARALLELIZING THE CODE WITH CILK PLUS 

In this activity you make the n-bodies program parallel using Cilk Plus. You can 
run this activity on Linux or Windows.

 1. Build the application using the target 14-5 for the Makefile. The main differ-
ence between this target and the previous target is the option -DUSE_CILK.

 2. Run the new executable 14-5.exe, and compare the output messages with the 
ones that you get from running 14-4.exe. 

You should notice that the program runs faster (because it is running in par-
allel) but that the number of calculations reported in 14-5.exe is different 
from 14-4.exe.The differences are almost certainly caused by a data race, 
which you will detect and fi x in Activity 14-6.

 3. Optional. Search for all occurrences of the preprocessor macro USE_CILK in 
the source fi les, and see which new sources are included in the build when this 
macro is defi ned.

Detecting Data Races and Other Potential Errors

Once parallelism has been introduced, there is always the risk that data races or other parallel-type 
errors have been accidentally introduced. Access within the threaded code to any global variable 
will cause problems. These problems can be detected using such tools as Intel Parallel Inspector (see 
Chapter 8, “Checking for Errors”).

A visual inspection of Listing 14-1 shows that the incrementing of the stepcount variable at line 18 
and line 25 is likely to cause a data race. The variable is not declared with the scope of the paral-
lelized loop, and can thus be accessed simultaneously by two or more worker threads. Using Intel 
Parallel Inspector XE will also show any problems.

The Intel Parallel Debug Extension (PDE) is another great way to detect data races. Figure 14-7 
shows PDE detecting the data race. See Chapter 11, “Debugging Parallel Applications,” for more 
information on how to use PDE to detect data races.

LISTING 14-1 (continued)
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FIGURE 14-7: Using Parallel Debugging Extension to detect data races

Correcting the Data Race

Cilk Plus provides a number of different ways to fi x data races. The most obvious way is to restruc-
ture the code so that global variables are not needed. If you cannot restructure the code, protect 
access to the variable so that only one thread can modify it at any one time. By declaring the 
stepcount variable to be a cilk::reducer_opadd<unsigned int>, the Cilk Plus run time auto-
matically ensures that no data race occurs. The Cilk Plus reducer does this by creating private 
copies or views of the variable within the parallel region, and then adding the private copies together 
(reducing the result) when leaving the parallel region.

ACTIVITY 14-6: DETECTING AND FIXING DATA RACES

In this activity you use Inspector XE to look for and fi x any data races in the appli-
cation you built in Activity 14-5. You can run this activity on Linux or Windows.

Performing a Data Race Analysis

 1. Build the application using the target 14-6a for the Makefile. The main 
differences between this target and the previous target are the option 
-DUSE_256_WORLD, which reduces the number of bodies to 256, and the inclu-
sion of fl ags to build a debug version.

 2. Start an Inspector XE GUI from the command line:

inspxe-gui continues
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 continued

 3. Create a new project named Chapter 14.

 � Select File Í New Í Project.

 � In the Project Properties dialog, make sure the Application Field points to 
14-6a.debug.exe application.

 4. Carry out a Data Race analysis by selecting File Í New Í Find Deadlocks and 
Data Races. You should fi nd that there are two data races.

Fixing the Data Race

 5. Build the application using the target 14-6b for the Makefile. The main dif-
ference between this target and 14-6a is the option -DUSE_CILK_REDUCER, 
which introduces two cilk::reducer_opadd reducers to the code.

 6. Carry out a Data Race analysis, making sure that the Application fi eld in the 
Project Properties dialog points to 14-6b.debug.exe.The two data races 
should now be fi xed. 

 7. Optional. Search for all occurrences of the preprocessor macro USE_CILK_
REDUCER in the source fi les, and see which new sources are included in the 
build when this macro is defi ned.

Load Balancing

Once the n-bodies program is correctly running, verify that all the threads are employed usefully. 
The concurrency level is a measure of how parallel the program was running over its life. 
Figure 14-8 shows the concurrency view displayed in Parallel Amplifi er XE. The application spends 
most of its time running all eight available cores.

FIGURE 14-8: Parallel Amplifi er XE shows that the application has ideal thread 

concurrency
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ACTIVITY 14-7: CHECKING THE LOAD BALANCING 

In this activity you run a Concurrency analysis to see if the program is load bal-
anced. You can run this activity on Linux or Windows.

 1. Build the application using the target 14-7 for the Makefile.

 2. Run the new executable 14-7.exe. It should run almost as quickly as 
14-5.exe and have the same output messages as 14-4.exe.

 3. Use Amplifi er XE to carry out a Concurrency analysis. (Don’t forget to change 
the Application fi eld to 14-7.exe.)

 4. Look at the results and confi rm that each thread is doing the same amount 
of work by observing their start and end times in the timeline view of the 
Bottom-up window.

The Results

The original research work showed that adding coolant to the interstellar medium could result in a 
medium that was good enough to begin star formation. You can fi nd a more detailed description of 
the results in the paper by Golanski and Woolfson. Figure 14-9 is a snapshot of the original simula-
tion showing how introducing a coolant leads to the formation of two protostellar clouds, which 
eventually form dense cold clouds — the precursor to the formation of a star. The contours represent 
density; the shading, temperature; and the arrows, velocity and direction.

 FIGURE 14-9: A snapshot of the original simulation
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NINE TIPS TO PARALLEL HEAVEN

The following tips were recorded over a pleasant Thai meal in the city of York. 
Between the distractions of the different dishes, Dr. Golanski spoke about what 
advice he’d give to someone starting to parallelize an application. At the end of 
the meal the restaurant owner asked if the restaurant could be mentioned. Well, 
here goes: If you are ever in the center of York, look for the Siam House, on 
Goodramgate.

 � Buy a faster machine — First, look at how much it will cost to make your 
program parallel. If it will take, say, two months of coding, consider a 
faster machine that will give you the speedup you want. Of course, once 
you reach the limits of a machine’s speed, you are going to have to do some 
parallelization.

 � Start small — Don’t try to make everything parallel at once; just work on small 
bits of code.

 � Use someone else’s wheel — If you are starting from scratch, see what other 
people have done fi rst. Learn from others. Don’t reinvent the wheel.

 � Find a way of logging and/or debugging your application — Make sure you 
have a way of tracing what your application is doing. If necessary, buy some 
software tools that will do the trick. Using printfs on their own will probably 
not help.

 � Look at where the code is struggling — Examine the runtime behavior of your 
application. Profi le the code with Intel VTune Performance Analyzer. The hot-
spots you fi nd should be the ones to make parallel.

 � Write a parallel version of the algorithm — Try rewriting the algorithm to be 
parallel-friendly.

 � Stop when it’s good enough — When you think it’s good enough, stop! Step 
back and go for a pint. Have set goals — when you have achieved them, you 
are done.

 � Tread carefully — Take care with the parallel code. Some innocent errors 
could blow up your program. Use a good tool to check for any data races and 
other parallel errors.

 � Get the load balancing right — Once you’ve made your code parallel, make 
sure all the threads are doing equal amounts of work.

SUMMARY

This chapter showed how you can look at the heuristics of a program to improve its 
effi ciency — that is, reduce time. Simply changing the code can, in many instances, bring an 
instant speedup.
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The performance was improved further by removing, where possible, architectural bottlenecks. 
The Intel VTune Amplifi er XE was used to help in identifying and understanding the low-level 
bottlenecks. 

The Intel Cilk Plus method of parallelization was then used in this case study to introduce parallel 
execution of the application, Cilk being ideal in this case due to its ease of use and ability to produce 
load-balanced code.

Chapter 15, “Parallel Track Fitting in the CERN Collider,” includes an example that shows how to 
use Intel Array Building Blocks (ArBB) to achieve parallelism on a collection of workstations. ArBB 
brings a fl exible approach to parallelism, in which the runtime engine works alongside a just-in-time 
(JIT) compiler to produce optimized code, leading to software that can adapt itself to new genera-
tions of silicon as they become available.
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15
Parallel Track Fitting in the 
CERN Collider

WHAT’S IN THIS CHAPTER?

 � Introducing particle track fi tting

 � Introducing Intel Array Building Blocks

 � Parallelizing programs using Intel Array Building Blocks

This chapter looks at parallelizing code that determines particle tracks within high-energy 
physics experiments. This represents some of the work done at the CERN GSI establishment 
in Darmstadt, Germany. The group is well known for its discovery of the elements bohrium, 
hassium, meitnerium, darmstadtium, roentgenium, and copernicium. 

Intel Array Building Blocks (ArBB) is a research project, and consists of a C++ template library 
that provides a high-level data parallel programming solution. By using ArBB to parallelize 
software, you can produce thread-safe, future-proofed applications. The six hands-on 
activities let you try out parallelizing a serial track-fi tting program using ArBB.

THE CASE STUDY

The Compressed Baryonic Matter (CBM) project is designed to explore the properties of 
super-dense nuclear matter by using a particle accelerator to collide charged particles against a 
fi xed target. 

The word baryonic in the project title refers to baryons, large particles made up of three 
quarks — a quark being an elementary particle from which all matter is made. Quarks are 
found neither on their own nor in isolation. 

c15.indd   419c15.indd   419 3/26/2012   12:34:05 PM3/26/2012   12:34:05 PM



Blair-Chappell   c15.indd   V2 - 03/10/2011 Page 420

420 x CHAPTER 15  PARALLEL TRACK FITTING IN THE CERN COLLIDER 

One of the aims of the CBM experiment is to search for the transition of baryons to quarks and 
gluons (the particles that hold together the quarks). The CBM project is carried out at GSI (center 
for heavy ion research) and its adjacent facility FAIR (Facility for Antiproton and Ion Research) in 
Darmstadt, Germany. Researchers from around the world use this facility for experiments using the 
unique, large-scale accelerator for heavy ions. You can fi nd more information about CBM at 
www.gsi.de/forschung/fair_experiments/CBM/index_e.html.

INTERVIEW QUESTIONS

Dispersed through this chapter are several questions that the program developers 
were asked. Their answers are intended to tease out their experiences using ArBB. 

THE STAGES OF A HIGH-ENERGY PHYSICS EXPERIMENT

Generally, a high-energy physics experiment goes through eight stages, as shown in Figure 15-1.

1. Acceleration

8. Offline

Data Analysis

7. Vertexing

6. Track

Fitting

5. Track

Finding

4. Data

Acquisition

3. DetectionStages of Experiment

The software
in this

case study is
used here

2. Collisions

FIGURE 15-1: The stages of a high-energy physics experiment
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 � In the fi rst two steps, acceleration and collision, particles are accelerated to almost the speed 
of light and then collided against a fi xed target or against other accelerated particles.

 � In the next two steps, detection and data acquisition, particles are detected as they pass 
through detector planes. In the case of the CBM experiment, there are seven such planes, 
referred to as stations. Each station records the position of particles passing through 
them — these are the particle hits. The collected data is then used to determine what 
actually happened.

 � The track-fi nding and the track-fi tting stages are used to reconstruct the path that the par-
ticles took. Track fi nding determines which hits in the various stations belong to which track. 
Track fi tting is used to take into account the inaccuracies of the detection system. The station 
data and its extraction are noisy, resulting in inaccurate hit coordinates. An attempt is made 
to eliminate these inaccuracies and refi ne the particle tracks. The method involves the use of a 
Kalman fi lter and is the subject of this case study.

 � At the vertexing stage, various constraints to the tracks are applied. For example, a particular 
particle may decay along its track and produce a number of other tracks, all of which must 
originate from the same point. This is an attempt to fi nd correlation between tracks.

 � Finally, the captured data is used for offl ine data analysis and the physical interpretation 
of events.

The Track Reconstruction Stages

The CBM experiment looks at hadrons, electrons, and photons emitted in heavy-ion collisions. 
Once each particle is detected, the correct path or track has to be calculated, the data then being 
used to help interpret what has happened.

Each event (collision) results in many thousands of potential tracks passing through the detectors. 
These events can be repeated many thousands of times per second, requiring extremely high data-
processing rates. Modern high-energy physics experiments typically have to process terabytes of 
input data per second. The track-reconstruction stages are the most time-consuming parts of the 
analysis; therefore, the speed of any track-determination algorithms becomes very important in the 
total processing time. 

Track determination would be trivial were it not for complications arising because of inaccuracies 
due to detector noise and scattering due to electric charge, energy loss, nonuniform magnetic fi elds, 
and so on. 

Figure 15-2 shows a typical problem, with multiple planes positioned at different z positions across 
the trajectories of the particles. Each plane registers the x and y positions of the particles as they 
pass through (referred to as hits). The problem then becomes to reconstruct the paths of the various 
particles by using their positions on each detector. 

Listing 15-1 shows the structure used to store the station information. The code is much reduced; 
if you want to see the original code, look in the class.h fi le from the hands-on project (see 
Activity 15-1). Notice that the class contains 15 different pointers (for example, *z). Each pointer 
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gets allocated dynamic memory within the init method, which is called by the Stations 
constructor.

Notice, too, that when malloc is used in the init() function, it creates enough space for all the 
stations. This is true for all 15 pointers that you can see. 

Y

X

ZStations

Collision

point

FIGURE 15-2: Typical hits at stations along trajectory

LISTING 15-1: The Stations class in the serial version of the code

// NOTE: See class.h for complete listing.
// The listing here is not intended to be compiled.

class Stations{
public:
  int nStations;

  ftype *z, *thick, *zhit, *RL, *RadThick,*logRadThick,*Sigma,*Sigma2,*Sy;
  ftype (**mapX), (**mapY), (**mapZ); // polinom coeff.

  void initMap( int i, ftype *x, ftype *y, ftype *z){// init code }
  Stations( int ns )    {init( ns );}
  void init( int ns )
  {
    // allocate memory all 7 stations are together   
    nStations = ns;
    z = (ftype*)malloc(ns*sizeof(ftype));
    // ... repeat for thick zhit RL RadThick logRadThick Sigma 
    // Sigma2 Sy mapX mapY mapZ mapXPool mapYPool mapZPool 
  }

  ~Stations()    {// free dynamically allocated memory}

private:
  // pointers to private pool
  ftype *mapXPool, *mapYPool, *mapZPool;  
};

code snippet Chapter15\15-1.h
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Track Finding

Track fi nding involves determining which hits on each of the planes were made by the same particle, 
therefore indicating its path through the detector. This is time-consuming and involves using the 
properties of a particle (spatial, velocity, mass, charge) at one plane to predict its hit position on the 
next plane. Once the prediction has been made, a search is made for the closest hit.

To make matters more interesting, the whole detector is embedded within a magnetic fi eld, so any 
charged particles will respond accordingly (see Figure 15-3). The direction and radius of any trajec-
tory curvature depend on the strength and polarity of the charged particle.

Magnetic

Coil

FIGURE 15-3: Detector stations embedded within a magnetic fi eld

A lot of track fi nding can be related to pattern recognition, which is something humans are particu-
larly good at, and which computers are not. Figure 15-4 shows a predicted hit on the last plane after 
using the two previous hits to fi t a predicted curved arc. The nearest measured hit is then taken.

Predicted curved arc

trajectory (3D)

Predicted hit on plane, and

search area

Take nearest hit

FIGURE 15-4: Using prediction to determine the next hit
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Listing 15-2 shows the Tracks class that is used to hold all the track information. At run time more 
than 20,000 track details are held in the instantiation of this class. Notice, again, like the Stations 
class previously discussed, a number of pointers are used to hold dynamically allocated memory. 
When ArBB is added to the code, one of the fi rst things to address is to replace the dynamically 
allocated structures with ArBB containers.

LISTING 15-2: The Tracks class in the serial version of the code

// NOTE: See class.h for complete listing.
// The listing here is not intended to be compiled.

class Tracks
{
public:
  unsigned int nStations;
  unsigned int nTracks;

  ftype *MC_x, *MC_y, *MC_z, *MC_px, *MC_py, *MC_pz, *MC_q;
  int *nHits, *NDF;
  ftype **hitsX, **hitsY;
  ftype *hitsX2, *hitsY2;
  int **hitsIsta;

  void init( int ns, int nt )
  {
    nTracks = nt;
    MC_x = ( ftype* ) malloc( sizeof( ftype ) * nt );
  
    // repeat for : MC_y MC_z MC_px MC_py MC_pz MC_q  nHits
    // NDF hitsX  hitsY  hitsIsta 

    memXPool = ( ftype* ) malloc( sizeof( ftype ) * nt * nStations );
    // repeat for : memYPool  memIstaPool hitsX2 hitsY2 
  }

  ~Tracks()    {}

  void setHits( int i, int *iSta, ftype *hx, ftype *hy )
  {
    // record hits
  }

private:
  ftype *memXPool, *memYPool;
  int *memIstaPool;
};

code snippet Chapter15\15-2.h
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INTERVIEW Q1: WHAT WAS THE HARDEST PART OF USING ARBB IN THE 

TRACK-FITTING CODE?

The original code was developed without “parallel programming” in mind, and it 
didn’t follow a particular programming model. We had various contributors along 
the road. When focusing on “minimal changes,” the programming model of choice 
is obviously to augment code with pragmas or directives, to aim for SIMD vector-
ization, and to harvest parallelism across cores using multithreading. Using ArBB 
caused us to think about parallel operators and “what to do” rather than “how 
to do it.” Instead of employing (nested) loops, we had to collect data in “dense 
containers” (arrays) and modify our data model. On the other hand, this helped 
us understand our own code better. To summarize, we had to think through the 
workload instead of applying hints to our existing code. We’re looking forward to 
a more math-style formulation in order to stick with an algorithmic description of 
our work, and to have more descriptive/expressive code in the future because of 
using Intel ArBB.

Track Fitting

After determining the track by successive plane hits, track-fi tting algorithms are then applied to 
smooth out any track irregularities due to inaccuracies along the paths. This forms the bulk of the 
work in this case study.

Successive station hits of a particular track may not follow a highly accurately determined track, due 
to noise and other inaccuracies. Track fi tting is used to minimize how close the measured hits are to 
what they are assumed to be for a particular fi t hypothesis. By using a particle’s location at one sta-
tion, the environment between it and the next station, together with the physical properties of the 
particle, a prediction can be made as to where the particle will hit the following station. A weighted 
average is then taken between the recorded hit position and the predicted hit position to determine 
the actual particle position.

Kalman Filter Overview

The Kalman fi lter is a mathematical method designed to fi lter out noise and other inaccuracies in 
measurements observed over time. It is used in almost all high-energy physics experiments to carry 
out track fi tting. The Kalman fi lter calculates estimates of the true values of measurements recur-
sively over time using incoming measurements and a mathematical process model. 

Determining a track requires two things:

 � A model that approximates the track’s trajectory

 � An understanding of the physical properties of the detector
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The Kalman fi lter is very good at this because it can determine the presumed path and take all the 
complications of an irregular topology (both of the physical detector and nonlinear magnetic fi eld) 
in its stride. 

Figure 15-5 shows a Kalman fi lter-based track fi tting. As more track hits are corrected, the con-
fi dence about the track is increased and the predicted precision becomes higher. This is shown in 
the illustration by the decreasing thicknesses of the prediction arrows. Various fi ltering effects are 
applied to arrive at the fi nal track’s trajectory positions.

Actual

track

Prediction position.

Thickness indicates

precision

Measured hit

position

Corrected position

after filtering

FIGURE 15-5: Using a Kalman fi lter to obtain an accurate path

Kalman Filter Steps

Figure 15-6 shows the steps of a Kalman fi lter. The symbol r is the state vector of the particle at 
each plane (position and velocity), and C is the covariance (confi dence) matrix. The other symbols 
represent the magnetic fi eld and various states of the system:

 � The initial approximation step sets an approximate value of the vector r0 and the covariance 
matrix C0.

 � The prediction step describes the deterministic changes of the vector over time to 
an adjacent station.

 � The process noise step describes probabilistic deviations of the vector due to noise (Qk), 
and so on.

 � The fi nal step fi lters the actual values Mk, Hk, and Vk, taking into account the previous 
three steps.

The CBM team at GSI has implemented a fast Kalman fi lter for use in the track-fi tting stage of their 
high-energy particle analysis. For each track, two arrays are maintained — one for particle state 
(position, velocity, and momentum), and another for the covariance values used for determining 
trajectory confi dence. The fi lter is applied to each track in turn at each station along its trajectory to 
smooth out inaccuracies and errors, and used to derive a corrected track position.
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Initial approximation

Noise

Kalman filter

block diagram

r0, C0

Ck′ = Ck′ + Qk

Kk = Ck′ Hk/ (Vk + Hk Ck′ Hk )

rk = rk′ + Kk(mk − Hk rk′ )
Ck = (I − Kk Hk) Ck′

Qk

mk, Hk, Vk

Measurement

Prediction

Process noise

Filtering

(finish)

rk′ = Ak−1 rk−1

Ck′ = Ak−1 Ck−1 Ak−1

FIGURE 15-6: The Kalman fi lter operation

The fi lter has been implemented using single-precision fl oating-point calculations. (Traditional 
Kalman fi lters use double precision.) Additional research has been applied to ensure that working 
with single precision gives an accurate enough result. Using single precision over double reduces the 
space needed to store the data by half and results in faster calculations.

INTERVIEW Q2: WHAT WAS THE EASIEST PART OF USING ARBB?

Once we had stepped back from our original data design and looked at the big 
picture, we found that the vector-processing style of the original code and the loop-
oriented code was easily modifi ed to use the map-operator and elemental functions 
of ArBB. It seemed a very natural fi t.

WHAT IS ARRAY BUILDING BLOCKS?

ArBB is C++ template library that provides a high-level data parallel programming solution 
intended to free developers from dependencies on low-level parallelism mechanisms and hardware 
architectures.  

ArBB is designed to take advantage of multi-core processors, many-core processors, and GPUs. 
Under normal use, ArBB applications are automatically free of data races and deadlocks. Its main 
features are as follows:

 � Has its own embedded language

 � Uses dynamic compilation with just-in-time (JIT) compiler

 � Provides implicit parallelism for computationally intensive maths

 � Works across multiple cores and varying SIMD widths
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 � Provides structured data parallelism (patterns) with no data races

 � Uses separate memory space with no pointers

 � Does not require synchronization primitives

The essence of ArBB is collections (containers) and their associated operators. Collections are 
designed to work on arrays. The arrays can be any size and dimension, regularly or irregularly 
shaped. Containers either are bound to existing C/C++ data and take on the size and shape of the 
bound data, or they can be constructed independently without any binding. An ArBB range is used 
to transfer data from the ArBB code to the C/C++ code.

Once a set of containers is bound to existing data entities, you can work on them as though they 
were single variables. For example, if containers A, B, and C have been declared and bound to three 
separate C/C++ arrays (of any dimension), they may be processed as if normal single variables:

A += (B * C);

ArBB will produce executable code that fully utilizes any SIMD instructions and multiple 
cores available to carry out the operation. This is done without any further intervention by the 
programmer.

In general, when a container appears on both the left and right side of an expression, ArBB gener-
ates a result as if all the inputs were read before any outputs are written. In practice, you must put 
this expression within a function and invoke that function with a call operation.

ArBB is delivered as a library that provides data collections, operators for data processing, and an 
associated syntax. 

As shown in Figure 15-7, the application code is written in C/C++ and looks like fairly standard 
nonthreaded code. You add ArBB code using a C++ API. 

Program

Interface
C++ API

Virtual

Machine

Virtual Machine

Virtual

ISA

Debug

Services

Memory

Manager

JIT

Compiler

Many CoreGPUCPU

Threading

Run Time

Hardware

FIGURE 15-7: The ArBB platform
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The ArBB runtime uses a virtual machine (VM) and employs a just-in-time (JIT) compiler. The VM 
works out at run time the best performance paths based on its knowledge of the hardware platform. 
By deferring the fi nal compilation of the ArBB code until it resides on the target platform, the JIT 
compiler can produce architecture-specifi c optimized code.

Listing 15-3 is a program that shows a simple ArBB program. The sum_of_differences function 
will be compiled and executed at run time; the main function is a normal C++ function and is com-
piled in the usual way.

The main function has two dense containers, a and b, similar to the STL’s std::vector, whose size 
is set to 1024. 

The fi rst time you run the application, the ArBB call operator causes the JIT compiler to compile 
sum_of_differences. The ArBB code is then executed. If there were further calls to the function 
sum_of_differences, it would not need to be recompiled.

LISTING 15-3: An ArBB program skeleton

#include <arbb.hpp>
#include <cstdlib> 

void sum_of_differences(dense<f32> a, dense<f32> b, f64& result)
{
  result = add_reduce((a – b) * (a - b));
}

int main()
{
  std::size_t size = 1024;
  dense<f32> a(size), b(size);
  f64 result;
  range<f32> data_a = a.read_write_range();
  range<f32> data_b = a.read_write_range();

  for (std::size_t i = 0; i != size; ++i) {
    data_a[i] = static_cast<float>(i);
    data_b[i] = static_cast<float>(i + 1);
    call(&sum_of_differences)(a, b, result);
    std::cout << “Result: ” << value(result) << ‘\n’;
  }
  return 0;
}

code snippet Chapter15\15-3.cpp

The big advantage of ArBB is the optimization performed by the JIT compiler. Because the ArBB 
code is compiled at run time, you can optimize the code to take advantage of the hardware it is run-
ning on. When you introduce the same code to a newer-generation CPU, the code will be optimized 
to match the new features available in the CPU. 
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PARALLELIZING THE TRACK-FITTING CODE

In the case study, a serial version of a track-fi tting benchmark was parallelized using ArBB.  

Adding Array Building Blocks to Existing Code

Figure 15-8 shows the steps to convert a serial program into a parallel ArBB program:

 1. The kernel signature (that is, function prototype) of the entry point to the ArBB code is estab-
lished. The code in the diagram is cut down, but you can see that the parameters to the func-
tion have new types.

 2. ArBB containers and variables are defi ned. Some of these will need to be associated with 
variables and structures that exist in the coexisting C++ code. The association is done either 
with arbb::bind(…) or by employing an ArBB range. 

 3. A call to the kernel signature that was constructed in step 1 is inserted in the appropriate 
place in the source code. The kernel is called using arbb::call(…). 

 4. The contents of the kernel are converted to ArBB. 

Step 1

Figure out the

kernel signature

fitTracksArBBEntry(i32 vSize,

 dense<FTYPE>MC_x,

 dense<FTYPE>MC_y,

 etc ... );

dense<FTYPE>MC_x;

bind(MC_x, vTracks.MC_x, vTracks.nTracks);

etc ...;

call(fitTracksArBBEntry)(vSize,

 structTracks.MC_x,

_for( j = (usize)0, j < Ntimes, j ++ ){

       fitArBB( vTracksArBB, vStationsArBB,

                     magFieldArBB, vtT, vtC );

}_end_for;

Step 2

Allocate size and

bind containers

Step 3

Invoke kernel

through call

Step 4

Implement kernel

FIGURE 15-8: Converting a serial program to a parallel ArBB program

In the “Hands-On Project” section later in this chapter, you apply these steps to the fi lter 
driver code.
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INTERVIEW Q3: WERE THERE ANY SPECIAL TRICKS IN THE CODE THAT 

YOU CONSIDER CLEVER OR WORTH EXPOUNDING?

No tricks! We learned to stick with the most natural formulation. We’re looking 
forward to seeing robust performance independent of tricky variations.

Code Refactoring

Some of the original code required more reworking before the preceding four steps were carried out:

 � Any references to global variables were removed so that access was by parameters passed in 
via the function call. 

 � A wrapper function was inserted in the call stack to help marshal the parameters and data 
structures.

 � The code that was to be made parallel was changed to an inline function. This was done so 
that it would be easy to change the size of the data types within the code. 

 � Some local variables were moved into a higher-level function with the address being 
passed in. 

 � Each array of structures (AoS) was changed to a structure of arrays (SoA).

An Example of Class Change

Listing 15-4 shows a cut-down version of the StationsArBB class. This is the ArBB replacement for 
the Stations class shown in Listing 15-1. Note that all the variables are now dense containers and 
that there is no dynamic memory allocation. 

LISTING 15-4: The ArBB version of the Stations class

/! define stations (SOA)
// NOTE: See arbb_classes.h for complete listing.
// The listing here is not intended to be compiled.

template<typename U>
class StationsArBB
{
public:
  dense<U> z, thick, zhit, RL, RadThick, logRadThick, Sigma, Sigma2, Sy;
  dense<U, 2> mapX, mapY, mapZ; // polynomial coeff.
public:
  StationsArBB(){};
  void field( const usize &i, const dense<U> &x, 
  const dense<U> &y,   dense<U> H[3] )
  {

continues
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    dense<U> x2 = x*x;
    // etc  ...
  }
};

code snippet Chapter15\15-4.h

An Example of Kernel Code Change

Listing 15-5 shows the changes that were done to the main loop in the Kalman fi lter. You can see 
how the structure of the ArBB code is similar to the original serial code: 

 � The C for loop is replaced by an ArBB _for loop.

 � The order and names of functions called are the same.

 � Some new ArBB types are used in place of the C types.

If you want to compare the changes for yourself, you can fi nd the original source code for the 
Kalman fi lter in the fi le serial_KF.cpp, with the converted code being in parallel_KF.cpp.

LISTING 15-5: Example of loop in Kalman fi lter (ArBB and serial code)

// NOTE THIS CODE IS INCOMPLETE AND WILL NOT COMPILE!
// IT IS INCLUDED HERE FOR COMPARISON PURPOSES ONLY

SERIAL VERSION

for( --i; i>=0; i-- ){
  //   h = &t.vHits[i];
  z0 = vStations.z[i];
  dz = (z1-z0);
  vStations.field(i,T[0]-T[2]*dz,T[1]-T[3]*dz,H0);
  vStations.field(i,vTracks.hitsX[iTrack][i],vTracks.hitsY[iTrack][i], HH);
  combine( HH, h_w, H0 );
  f.set( H0, z0, H1, z1, H2, z2);

  extrapolateALight( T, C, vStations.zhit[i], qp0, f );

  addMaterial( iTrack, i, qp0, T, C );
  filter( iTrack, xInfo, vTracks.hitsX[iTrack][i], h_w, T, C );
  filter( iTrack, yInfo, vTracks.hitsY[iTrack][i], h_w, T, C );
  memcpy( H2, H1, sizeof(ftype) * 3 );
  memcpy( H1, H0, sizeof(ftype) * 3 );
  z2 = z1;
  z1 = z0;
}

LISTING 15-4 (continued)
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ARBB VERSION

// Note ‘U‘ is a template parameter and becomes an ArBB floating point type
_for( i -= 1, i >= 0, i-- ){
  U z0 = ss.z[i];
  dz = z1 - z0;
  ss.field( i, T[0] - T[2] * dz, T[1] - T[3] * dz, H0 );
  ss.field( i, ts.hitsX2.row( i ), ts.hitsY2.row( i ), HH );
  combineArBB<U>( HH, w, H0 );

  //! note: FieldRegionArBB f sets values here, needn‘t pass parameters
  f.set( H0, z0, H1, z1, H2, z2);

  extrapolateALightArBB2<U>( T, C, ss.zhit[i], qp0, f );
  addMaterialArBB( ts, ss, i, qp0, T, C );
  filterArBB( ts, ss, xInfo, ts.hitsX2.row( i ), w, T, C );
  filterArBB( ts, ss, yInfo, ts.hitsY2.row( i ), w, T, C );
  for( int j = 0; j < 3; j ++ ){
    H2[j] = H1[j];
    H1[j] = H0[j];
  }
  z2 = z1;
  z1 = z0;
}_end_for;

code snippet Chapter15\15-5.h

Changing to Structure of Arrays

One of the changes made in the project was how data structures are used. In the original project 
there were a number of places where a data structure was held as an array of structures (AoS); these 
were changed to structures of arrays (SoA). Actually, ArBB automatically transforms each AoS to an 
SoA, but relying on the automatic transformation has some associated penalties:

 � Host pointers cannot be aliased in a relaxed safety model.

 � De-interleaving/interleaving needs to happen (“copy-in,” “copy-out”) explicitly/implicitly.

 � Explicit control for transfer and control of memory “mirror space” is often a must.

Figure 15-9 shows that by using an SoA rather than an AoS, the layout in memory of the data 
elements is contiguous. The user-defi ned type whatever_udt has two member items, m_index 
and m_value. If the ArBB dense container is declared using the class whatever_udt, it looks 
like an AoS — the dense container data being equivalent to an array, and the class 
whatever_udt being the structure. If you look at the layout in memory, you will see that to 
access a series of, say, three m_index values, the address locations are not next to each other.

To get optimal performance, it is much better to restructure the class to be like a structure 
of arrays.
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In object-oriented programming, some programmers will naturally write their code like the 
fi rst example (SoA), but the better way from a performance point of view would be to write 
code like the second example (AoS). The fi rst example is not incorrect; it just carries a higher 
overhead.

Array of Structures (AoS)

// class definition
class whatever_udt {
public:
 ...
private:
  usize m_index;
  f32 m_value;
}
// object instantiation - AOS
dense<whatever_udt> data;

class whatever {
public:
...
private:
  dense<usize> m_indices;
  dense<f32> m_values;
};
// object instantiation - SOA
whatever data;

m_index

data [0]

data [1]

data [2]

data.m_indices

data.m_values

m_index

m_index

m_value

m_value

m_value

Structure of Arrays (SoA) m_indices[0]

m_indices[2]

m_values[1]

m_indices[1]

m_values[0]

m_values[2]

FIGURE 15-9: Using SoA helps to keep memory access contiguous

INTERVIEW Q4: WHAT WOULD YOU SAY IS THE BIGGEST ADVANTAGE TO 

USING ARBB IN THE PROJECT (AS OPPOSED TO, SAY, OPENMP)?

Using ArBB in the project is just a fi rst try to evaluate a more operator-style 
(functional) formulation. Our main focus is to apply algorithmic improvements 
resulting from our research in the physics domain. Using ArBB gives us a more 
portable and forward-scaling programming language, which should protect the 
value of our work.

The Results

For the results of the parallel version of the track-fi tting software to be of any use, the program must 
produce correct results and produce them fast. Let’s consider the following aspects:
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 � Correctness

 � Speedup and scalability

 � Parallelism and concurrency 

Correctness 

A special version of the track-fi tting software was written that compared the serial and parallel 
versions. This version fi rst runs the serial code, obtaining the minimum time over fi ve attempts, as 
before. Then the parallel version is run, again obtaining the minimum time over fi ve attempts. The 
results of the parallel run are compared against the serial run to make sure that no errors exist.

Figure 15-10 shows the results of running the special version, showing no errors and a speedup 
factor of more than 43. The machine used has a two-socket motherboard containing two Intel Xeon 
X5680 (3.33GHz) processors, 12 GB of memory running Microsoft Windows 7 (64-bit). Each 
CPU has 6 cores and supports hyper-threading, giving a total availability of 24 hardware threads. 
Remember, your timings may differ.

FIGURE 15-10: The results show a huge speedup with no errors

Figure 15-11 shows graphs of the residuals and pulls. Residuals show the deviation between simu-
lated and estimated values. Pulls are a measure of the correctness of the error propagation. The reco 
and mc labels in the graphs refer to reconstructed values and true Monte-Carlo values, respectively. 

These results are identical to the serial version (not shown), proving that the ArBB version and the 
original version have the same track quality.

Speedup and Scalability

Figure 15-12 shows how well the parallel program responds to different numbers of hardware 
threads. As you can see, there is a respectable speedup factor of almost 11 when using all 24 hard-
ware threads available. The baseline for the speedup is the time the program takes when running 
one thread (not to be confused with the serial version). The speedup is calculated as follows:

speedup = parallel speed / speed with one thread
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FIGURE 15-11: The parallel results showing residuals and pulls of the estimated track parameters
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FIGURE 15-12: The scalability and effi  ciency of the ArBB version

Using the lower number of threads, the parallel program runs at its most effi cient; as the number 
of threads increases, the effi ciency deteriorates. The two dotted lines in the graph mark the point 
where the number of ArBB threads is equal to the number of physical and logical cores (that is, 
hardware threads), respectively. Each of the 12 physical cores supports hyper-threading, giving a 
total of 24 logical cores.

Once the number of ArBB threads exceeds the number of hardware threads that the test machine 
can support, the speedup begins to drop — this is most likely due to the extra context switching the 
operating system has to perform.

The effi ciency fi gure in Figure 15-12 is a measure of how well the CPU resources are being used. If 
a program uses all the CPU cycles available, it is said to be 100 percent effi cient. The effi ciency is 
calculated as follows:

efficiency = (total CPU time / (duration * num cores)) * 100

The number of cycles used was measured using Amplifi er XE’s Lightweight Hotspots analysis. To 
measure the scalability and effi ciency of the program, two program modifi cations are made: 

 � Amplifi er XE’s Frame API is used to insert markers at the beginning and end of the measure-
ment points in the code:

#include “ittnotify.h”  // to use Amplifier XE API
__itt_domain* pD = __itt_domain_create( “TrackFitter” );
pD->flags = 1; // enable domain 
for(i=0; i<NUM_RUNS;i++)
{
  // create time variable
  double time;
  {
    // start ArBB scoped timer which will measure
    // time within its scoped lifetime
    // start a frame for vtune
    __itt_frame_begin_v3(pD, NULL);
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    const arbb::scoped_timer timer(time);
    // call main parallel track-fitting function
    fitTracksArBB( T1, C1, nT, nS );
  }
  // scoped time ends here, var time holds its value
  // reset Timing to minimum time so far
  Timing = std::min(Timing, time);
  __itt_frame_end_v3(pD, NULL);
}
 � The ArBB API is used to control the maximum number of ArBB threads the ArBB kernel 

can use:

#include “arbb.hpp”    // to access the ArBB libraries
. . .
int main(int argc, char* argv[])
{
  ...
  int num_threads = 0;
  if(argc==2)
  {
    num_threads=atoi(argv[1]);
    arbb::num_threads(num_threads);
    printf(“WARNING: Max threads set to: %d\n”,num_threads);
  }
...
}

Parallelism and Concurrency

Figure 15-13 shows the screenshot of an Amplifi er XE Concurrency analysis. The timeline view at 
the bottom half of the screen displays two of the threads, a CPU Usage line, a Thread Concurrency 
line, and a Frame Rate line.

FIGURE 15-13: The ArBB version of the application is highly parallel
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Notice the following:

 � For most of the program, only one thread appears to be running. This is because the early 
part of the program was taken up with reading the data fi les and doing the JIT compilation. 

 � There is a blip of activity at the end of the program. Both the Thread Concurrency bar and 
the CPU Usage bar show that there is signifi cant parallel activity. This is when the main track 
fi tting is done.

Zooming in on a dense area of activity gives a better view of what is happening (see Figure 15-14). 
The timeline shows fi ve distinct periods of activity — hence, the bumps in the CPU Usage bar.

FIGURE 15-14: The CPU Usage bar confi rms that all 24 hardware threads are being used

At the beginning of each area period of activity is a vertical bar. This bar is a thread transition/
synchronization point. When you hover your mouse over one of the transition lines, the gray box 
pops up and displays information about the synchronization object. It is a critical section in the 
Threading Building Blocks (TBB) scheduler. ArBB relies on its implementation of parallelism by 
using TBB under the hood. 

In the top half of the screenshot is a bar that indicates how parallel this part of the program 
is — that is, the concurrency:

 � The fi rst tenth of the bar is colored red. (Sorry, you won’t see the color in the printed version 
of the fi gure.) This means for 10 percent of the time the concurrency was poor. 

 � The next seven-tenths of the bar is colored orange, meaning that for 70 percent of the time 
the amount of parallelism is okay. 

 � The last two-tenths of the bar is colored green, meaning that for 20 percent of the time the 
concurrency level was perfect, with the number of the threads running being equal to the 
number of hardware threads the system can support.
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INTERVIEW Q5: IF YOU WERE DOING THE PROJECT AGAIN, IS THERE 

ANYTHING YOU WOULD DO DIFFERENTLY?

I would have a look at the data model fi rst (in terms of a natural/appropriate rep-
resentation), and express the algorithm starting from there. The original serial 
code was completely decomposed in an object-oriented manner. Not that OOP is 
not great with ArBB, but the original decomposed code was relatively complicated 
because of the scattered storage model. It was a long path to fi nd that this isn’t 
great in terms of data parallelism (local access, alignment, and so on) in general.

THE HANDS-ON PROJECT

This section leads you through the steps to change the serial version of the track-fi tting code to use 
ArBB. Two modules, the driver driver.cpp and the fi lter serial_KF.cpp, will be converted to 
using ArBB. This example takes one signifi cant shortcut: the ArBB version of the fi lter is provided 
“ready-made.” You still have the opportunity of going through the four steps to add ArBB, because 
the fi lter driver code has to be “ArBB-ized.”

The Activities

Figure 15-15 shows the steps to perform. You start with a serial version of the code and progres-
sively convert the program to use ArBB. The most signifi cant parts of the hands-on are in Activity 
15-3 to Activity 15-6. The steps you take here are typical of the steps you can take when adding 
ArBB to any project.

Build Serial

Version
Activity 15-1 Serial

Parallel

The four

steps to

add ArBB

Activity 15-2

Activity 15-3

Activity 15-4

Activity 15-5

Activity 15-6

Configure

ArBB Build

Environment

Identify Kernel

Signature

Allocate &

Bind

Invoke Call

Implement

Kernel

FIGURE 15-15: The steps of the hands-on activities
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The Projects

The following three projects are provided with this case study:

 � serial_track_fit — Contains the serial version of the track-fi tting software. This is the 
version you will copy and modify.

 � ArBB_track_fit — This is the solution. Your version should look like this once you have 
completed the hands-on activities.

 � combined_track_fit — This version runs both the serial and parallel versions and checks 
their accuracy against each other and compares their run times. This version is not used 
in the hands-on, but it is supplied in case you are interested in looking how to validate the 
results. (Figure 15-10 showed an example of the output.)

Building and Running the Serial Version 

Figure 15-16 shows the fi les included in the serial version of the track-fi tting software:

 � main.cpp — Contains the main function of the program.

 � ReadFiles.cpp — Contains the function readInput, which reads two data fi les, Geo.dat 
and Tracks.dat. This function creates dynamic arrays into which it places the information. 
The addresses of these arrays are stored within the pointer data of the three classes defi ned 
within the header fi le classes.h.

 � driver.cpp — Contains the driving function fitTracks of the serial Kalman fi lter.

 � serial_KF.cpp — Contains the serial version of the Kalman fi lter.

 � classes.h — Contains three classes, for magnetic fi elds, stations, and tracks. Their data 
consists of pointers that are loaded with the start addresses of the dynamically allocated 
arrays created and loaded within ReadFiles.cpp.

 � fit_util.h — Contains a set of constant values.

The Serial Track-Fitting Code

The track-fi tting code fi rst applies the Kalman fi lter to all 20,000 tracks and then repeats this 100 
times, obtaining a time for doing so. This is then repeated fi ve times, with the smallest of the fi ve 
results taken as the fi nal benchmark time. 

Following is the main loop at the heart of the main function in main.cpp that calls the Kalman 
fi lter driver fitTracks fi ve times. The time taken for each iteration is measured and stored in the 
Elapsed variable. The iteration that records the smallest time value is accepted as the benchmark 
timing. On Windows, the serial version uses timeGetTime() to record the timestamps. 

for(i=0; i<NUM_RUNS;i++)
{
  // set start time
  StartTime = timeGetTime();
  // call main serial track-fitting function
  fitTracks( T1, C1, nT, nS );
  // determine elapsed time
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  Elapsed = (int)(timeGetTime() - StartTime);
  // get minimum time so far
  Timing = std::min(Timing, Elapsed);
}

main.cpp classes.h fit_util.h

main( . . . )

ReadFiles.cpp

readInput( . . . )

fitTracks( . . . )

fit( . . . )

extrapolateALight( . . . )

Other functions making

up the serial

Kalman filter track fitter

Serial program for benchmark test

of serial Kalman filter track fitter

driver.cpp

serial_KF.cpp

Classes:

 FieldRegion

 Stations

 Tracks

Constants

FIGURE 15-16: Confi guration of the serial benchmark program

The T1 parameter is a pointer to an array that holds the track information; the C1 parameter points 
to the covariance matrix; and the nT and nS parameters are used to store the number of tracks and 
stations, respectively.

Listing 15-6 shows the driver.cpp fi le, which contains the driver function fitTracks, which is 
called from main(). The Kalman fi lter track fi tter fit( i, T[i], C[i] ) is applied to each track 
in turn. This is then repeated 100 times to get an overall average performance. Once this has been 
carried out, the state and covariance data matrices for each track are extrapolated back to their 
start. In this hands-on, the most signifi cant code edits will be made in driver.cpp.

LISTING 15-6: The serial version of driver.cpp

#include <math.h>
#include “fit_util.h”         // set of constants
#include “classes.h”          // Main Kalman filter classes

typedef float ftype;          // set ftype to be single precision data

using namespace std;

extern FieldRegion  magField;
extern Stations     vStations;
extern Tracks       vTracks;
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// -------------------------- Prototypes
void fit( int iTrack, ftype T[6], ftype C[15] );
void extrapolateALight( ftype T[], ftype C[], const ftype zOut, ftype qp0,
                                 FieldRegion &F );

// ***** Driver of Serial Version of Kalman Filter Track Fitter *****
void fitTracks( ftype (*T)[6], ftype (*C)[15], int nT, int nS )
{
  // Repeat the Kalman filtering 100 times
  for( int times=0; times<Ntimes; times++)
  {
    // take each track in turn and process
    for( unsigned int i=0; i<nT; i++ )
    {
      // apply Kalman filter to track
      fit( i, T[i], C[i], nT, nS );
    }
  }
  // extrapolate all tracks back to start
  for( unsigned int i=0; i<nT; i++ )
  {
    extrapolateALight( T[i], C[i], vTracks.MC_z[i], T[i][4], magField );
  }
}

code snippet Chapter15\15-6.cpp

The Application Output

Figure 15-17 shows the output from the program. After displaying some setup information involv-
ing magnetic fi elds and the number of stations and tracks, the timing information is given. In this 
example, the time shown is just under three seconds. You need to be patient, however, because this 
is the best of fi ve attempts; the actual run time is in excess of 15 seconds. You can build and run the 
serial version of the program for yourself in Activity 15-1.

FIGURE 15-17: Results of running the serial version of track-fi tting software
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The machine used has a two-socket motherboard containing two Intel Xeon X5680 (3.33GHz) proces-
sors, 12 GB of memory running Microsoft Window 7 (64-bit). Each CPU has 6 cores, and supports 
hyper-threading, giving a total availability of 24 hardware threads. Remember, your timings may vary.

ACTIVITY 15-1: BUILDING AND RUNNING THE SERIAL VERSION

In this activity you build and run the serial version of the track-fi tting program.

Building the Program

 1. Unzip the TrackFitter.zip fi le to a directory for which you have read/write 
access. 

 2. Open a Parallel Studio Composer command prompt and navigate to the 
serial_track_fit folder.

 3. Clean and then build the build_serial solution using nmake:

nmake -f Makefile-WIN32 clean 
nmake -f Makefile-WIN32 

Running the Program

 4. Run the program by calling it:

serial-intel64.exe

Note that if you are building a 32-bit application, the name will be serial-ia32
.exe. Remember that the main loop in the program runs fi ve times, so although the 
program may report minimum time taken of, say, fi ve seconds, the time to run the 
program will be at least fi ve times that.

Other Activities

 5. Examine the makefi le Makefile-WIN32. Which compiler was used to build the 
program? (Hint: Look at the variable CPP.)

 6. Replace the CPP macro so that the Microsoft compiler is used:

CPP=cl

 7. Rebuild and run the program, and then compare the time. You should fi nd 
that the program built with the Intel compiler is faster.

 8. Swap back to the Intel compiler by reversing the edit you did in step 6.

Parallelizing the Track-Fitting Code

As stated earlier, the Kalman fi lter is already provided for you with the complete ArBB code; how-
ever, you still need to modify the driver code.

Confi guring the Array Building Blocks Build Environment

Some fi les will need to be modifi ed, and others replaced. (You can try this for yourself in 
Activity 15-2.)
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 � The main function should call the new parallel driver fitTracksArBB.

 � The ArBB-aligned functions for dynamic memory allocation and deallocation are added to 
the fi les classes.h and ReadFiles.cpp.

When binding C structures to the ArBB containers, you will get a performance improve-
ment if the C structures are aligned. ArBB containers are aligned automatically.

In the serial code, several C constructs are dynamically allocated using malloc. By using 
the arbb::aligned_malloc ArBB function, the required alignment is achieved. The 
following code snippet gives an example of dynamically allocating and then freeing an 
aligned structure:

int lNHits = 100; 
int *lIsta = (int*)arbb::aligned_malloc(lNHits*sizeof(int));
// some code to use 
// etc ...
// now free the dynamic structure
arbb::aligned_free( lIsta );

 � The new parallel Kalman fi lter parallel_KF replaces the serial version serial_KF.cpp.

The new fi lter is provided already built. It was developed using the same methodology 
as the driver — that is, identify the kernel, bind and allocate, add the call, and implement 
the kernel. 

Figure 15-18 shows the new confi guration for the parallel version. New fi les have a double line 
around them; original fi les that need editing have a dotted box around them; original unmodifi ed 
fi les have a single box around them. 

main.cpp classes.h fit_util.h

arbb_classes.h

main( . . . )

ReadFiles.cpp

readInput( . . . )

fitTracksArBB( . . . )

fitTracksArBBEntry( . . . )

fitArBB( . . . )

extrapolateALightArBB( . . . )

Other functions making

up the parallel

Kalman filter track fitter

Parallel program for benchmark test

of parallel Kalman filter track fitter

driver.cpp

parallel_KF.cpp

Classes:

 FieldRegion

 Stations

 Tracks

Classes:

 FieldRegionArBB

 StationsArBB

 TracksArBB

Constants

FIGURE 15-18: Confi guration of the parallel benchmark program
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ACTIVITY 15-2: PREPARING THE ARBB ENVIRONMENT

In this activity you prepare the parallel version of the track-fi tting program. 

Make sure you have installed ArBB on your computer. At the time of writing, ArBB 
is available as a separate product, downloadable from www.intel.com/go/arbb/.

Copying Files and Modifying the Makefi le

 1. Copy the contents of serial_track_fit into a new folder. 

 2. Into that new folder, copy the arbb_classes.h and parallel_KF.cpp fi les 
from the ArBB_track_fit folder. 

 3. Edit Makefile-WIN32 (in your new folder): 

 � Add the following lines to the top of the fi le, making sure that the path 
ARBB_ROOT points to the place where you installed ArBB:

ARBB_ROOT = c:\PROGRA~2\Intel\arbb\Beta5~1
ARBB_INCS=”$(ARBB_ROOT)\include”
ARBB_LIBS=”$(ARBB_ROOT)\lib\$(TARGET_ARCH)”

 � Change the following lines:

EXE=serial-$(TARGET_ARCH).exe

serial_build: driver.obj main.obj ReadFiles.obj serial_KF.obj
  $(CPP) /o $(EXE) $** winmm.lib

to:

EXE=parallel-$(TARGET_ARCH).exe

build: driver.obj main.obj ReadFiles.obj parallel_KF.obj
  $(CPP) /o $(EXE) $** /link /LIBPATH:$(ARBB_LIBS) arbb.lib  

 � Save your changes.

Modifying main.cpp

The driver function name should be modifi ed to fitTracksArBB. The scoped_
timer function is used to measure the time duration within its scope — hence, the 
reason for the extra braces. This eliminates a pair of includes but requires the new 
include for the ArBB libraries. 

 4. Edit main.cpp:

 � Add an extra include:

#include <limits>         // for data limits
#include “arbb.hpp”       // to access the ArBB libraries
#include “fit_util.h”     // a set of constants

 � Comment out the following include:

// #include <mmsystem.h>   // for timeGetTime() function
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 � Change the name of the prototype fitTracks to fitTracksArBB:

void fitTracksArBB( ftype (*T)[6], ftype (*C)[15], int nT, int nS );

 � Comment out the declaration of StartTime at the beginning of main:

int main(int /*argc*/, char* /*argv*/[])
{
    int i, nT, nS;   // loop counter, number of tracks & stations
    DWORD StartTime; // Start time
    double Timing, Elapsed;  // Timing values

 � Replace the loop in main so that it looks like this:

    for(i=0; i<NUM_RUNS;i++)
    {
      // create time variable
      double time;
      {
        // start ArBB scoped timer which will measure
        // time within its scoped lifetime
        const arbb::scoped_timer timer(time);
        // call main parallel track-fitting function
        fitTracksArBB( T1, C1, nT, nS );
      }
      // scoped time ends here, var time holds its value
      // reset timing to minimum time so far
      Timing = std::min(Timing, time);
    }

 � Save your changes.

Modifying ReadFiles.cpp and classes.h

You need to modify the calls to malloc and free in ReadFiles.cpp and 
classes.h to use aligned ArBB calls.

 5. In ReadFiles.cpp and classes.h:

 � Replace all calls to malloc with arbb::aligned_malloc.

 � Replace all calls to free with arbb::aligned_free.

 � Include the header arbb.hpp at the top of the fi le:  

#include <arbb.hpp>

 � Save your changes.

Editing driver.cpp

 6. In driver.cpp: 

 � Change the name of the fitTracks function to fitTracks ArBB:

void fitTracksArBB( ftype (*T)[6], ftype (*C)[15], int nT, int nS )

continues
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 continued

 � Change the name of the extrapolateALight function to 
extrapolateALightArBB:

extrapolateALightArBB

 � Save your changes.

Building the Files 

 7. Build the new fi les:

nmake -f Makefile-WIN32

You will get two linker errors complaining about unresolved external symbols. 
You’ll deal with these errors in Activity 15-3.

Writing the Parallel Driver

Figure 15-19 shows the calling sequence of the original code and the new parallel version. To make 
the marshalling of parameters, you should add an extra fitTracksArBBEntry function to the parallel 
sequence. 

main() main()

Call 5 times Call 5 times Allocation,

binding and

calling done

here

Kernel

implementation

done here

ArBB

Code

Call 100 times Call 100 times

fitTracks() fitTracksArBB()

fitTracksArBBEntry

fitArBB

inline fitArBB

fit

(a) Serial Version (b) Parallel Version

FIGURE 15-19: The calling sequence, before and after adding ArBB

The bottom box of the parallel version contains the Kalman fi lter and is supplied with ArBB code 
already implemented. You will add all the preceding blocks in Activities 15-3 to 15-6.

As described in the fi rst part of this case study (refer to Figure 15-8 and associated text), you should 
apply ArBB in four steps:

 1. Identify the kernel in the driver.

 2. Allocate new ArBB containers and bind them to the existing data structures.
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 3. Invoke the kernel.

 4. Implement the kernel.

 If you get confused while trying out these four steps, you can always look at the 
serial and parallel versions of the source code, which are in Listings 15-6 and 
15-7, respectively.

Identifying the Kernel in the Driver

The kernel, which is invoked by a call operator, contains the entire contents of the serial driver.

New Prototype

The kernel prototype has fi ve parameters, the fi rst three being based on the original C code, the sec-
ond two being the addresses to the newly introduced ArBB containers vtT and vtC:

void fitTracksArBBEntry( i32 vSize, TracksArBB<FTYPE> vTracksArBB,
                         StationsArBB<FTYPE> vStationsArBB,
                         dense< array<FTYPE, 6> > &vtT,
                         dense< array<FTYPE, 15> > &vtC    );

New Classes

The classes for magnetic fi elds, stations, and tracks defi ned in classes.h need to be replaced 
with ArBB equivalents. Two new classes, StationsArBB and TracksArBB, and one structure, 
FieldRegionArBB, are provided for you in classes_arbb.h, and have the same member items as 
the original classes. However, instead of being pointers, they are ArBB containers. For example, the 
original class Tracks had public members:

class Tracks
{
public:
  float  *MC_x, *MC_y, *MC_z, *MC_px, *MC_py, *MC_pz, *MC_q;
  int    *nHits, *NDF;
  float  **hitsX, **hitsY;
  float  *hitsX2, *hitsY2;
  int    **hitsIsta;
    
  Tracks(){};

The new class, TracksArBB, refl ects these members as containers:

class TracksArBB
{
public:
  dense<f32>     MC_x, MC_y, MC_z, MC_px, MC_py, MC_pz, MC_q;
  dense<i32>     nHits, NDF;
  dense<f32, 2>  hitsX, hitsY;
  dense<f32, 2>  hitsX2, hitsY2;
  dense<i32, 2>  hitsIsta;

  TracksArBB(){};
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Note that within all the project fi les, the following type defi nitions have been used:

    typedef float ftype;    // set ftype to be single precision data
    typedef f32   FTYPE;    // set FTYPE to be ArBB single precision data

ACTIVITY 15-3: IDENTIFYING THE KERNEL

In this activity you adapt the driver code to use ArBB. It is important that you have 
fi rst completed Activity 15-2.

 1. Open the driver.cpp fi le.

 2. Rename fitTracks to fitTracksArBB.

 3. Disable the contents of the new fitTracksArBB function with a #if 0:

void fitTracksArBBEntry(…)
{
  #if 0
…
  #endif
}

 4. Create a new fitTrackArBBEntry function:

void fitTracksArBBEntry( i32 vSize, TracksArBB<FTYPE> vTracksArBB,
                         StationsArBB<FTYPE> vStationsArBB,
                         dense< array<FTYPE, 6> > &vtT,
                         dense< array<FTYPE, 15> > &vtC    )
{
}

 5. Replace the function prototypes in driver.cpp with the function prototypes 
founds in lines 10–29 of Listing 15-7. 

 6. Move the contents of fitTracksArBB into fitTracksArBBEntry (that is, 
everything you disabled in step 2, including the #if 0 ... #endif statements).

 7. Add two new header fi les:

#include “classes.h”       // Main Kalman filter classes
#include “arbb_classes.h”  // Added classes for parallel driver
#include “arbb.hpp”        // Added for ArBB namespace data

 8. Build the project:

nmake -f Makefile-WIN32

There should be no errors. You should be able to run the executable, but it will 
print out only the introductory information.

Allocating and Binding

Each of the new ArBB classes now needs to be instantiating, and the original data bound to this new 
instantiation. This binding is carried out in driver.cpp, in the function fitTracksArBB. You can 
try out the allocating and binding for yourself in Activity 15-4.
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Binding TracksArBB and StationArBB

An instance of the old Tracks class already exists within ReadFiles.cpp, called vTracks. 
The member items of this class contain all the track information loaded from the data fi les. 
You must now bind these member items with the containers in the new class TracksArBB — 
for example: 

TracksArBB<FTYPE> vTracksArBB;       // create new instance of new class
                                     // bind with existing information from
                                     // instance of old class Tracks
bind(vTracksArBB.MC_x, vTracks.MC_x, nT );
bind(vTracksArBB.MC_y, vTracks.MC_y, nT );
.  .  .  .  .  . etc

Similarly, an instance of the new class StationsArBB must be created and bound with the existing 
information from the instance of the old Stations class:

StationsArBB<FTYPE> vStationsArBB;   // create new instance of new class
                                     // bind with existing information from
                                     // instance of old class Stations
bind(vStationsArBB.z, vStations.z, nS );
bind(vStationsArBB.thick, vStations.thick, nS );
.  .  .  .  .  . etc

Swapping the Order of the Track 

The original track hit information is held in members hitsX and hitsY. These are two-dimensional 
arrays with the track number fi rst and station number last. For ArBB parallelization, which aims 
to simultaneously process tracks, you should store this information in reverse order, with the track 
number last. To facilitate this, create two new arrays, X2hits and Y2hits, into which the hit infor-
mation is transferred in the correct order. In the following example code, nT and nS are the number 
of tracks and stations, respectively:

ARBB_CPP_ALIGN(ftype * X2hits);
ARBB_CPP_ALIGN(ftype * Y2hits);
// reserve array space 
X2hits = ( ftype * ) arbb::aligned_malloc( sizeof( ftype ) * nS * nT  );
Y2hits = ( ftype * ) arbb::aligned_malloc( sizeof( ftype ) * nS * nT  );
// load hit data in reverse order
for(int ix = 0; ix < nT; ix ++)
{
  for(int jx = 0; jx < nS; jx ++)
  {
    X2hits[jx * nT + ix] = vTracks.hitsX[ix][jx];
    Y2hits[jx * nT + ix] = vTracks.hitsY[ix][jx];
  }
}

Notice the use of ArBB alignment macros and functions. You can bind these new arrays to members 
of the new TracksArBB class instance vTrackArBB as follows:

bind(vTracksArBB.hitsX2, X2hits, nT, nS);
bind(vTracksArBB.hitsY2, Y2hits, nT, nS);
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Swapping the Order of the State and Covariance Matrices 

The order of the two-dimensional state and covariance matrices T and C also need to be swapped. 
These are empty arrays at this point, so no actual data needs to be transferred. However, you should 
create new matrices of the correct order and bind them to appropriate ArBB containers. For 
example, the T state matrix has a new matrix, TBuf, which is bound to the container vtT:

// define a state array of 6 pointers
ARBB_CPP_ALIGN(ftype *TBuf[6]);
// reserve array space for each, size number of tracks
for( int i = 0; i < 6; i ++ )
{
  TBuf[i] = ( ftype * ) arbb::aligned_malloc( sizeof( ftype ) * nT );
}
// define array of 6 dense containers for state matrix
dense< array<FTYPE, 6>  >  vtT;
// bind to state matrix
bind(vtT, nT, TBuf[0], TBuf[1], TBuf[2], TBuf[3], TBuf[4], TBuf[5]);

You should repeat this with the 15-component covariance matrix C, where a new matrix, CBuf, 
needs to be created and bound with a new container, vtC.

ACTIVITY 15-4: ALLOCATING AND BINDING

In this activity you adapt the driver code to use ArBB. It is important that you have 
fi rst completed Activity 15-3.

 1. In the driver.cpp fi le, bind the track and station variables with their ArBB 
equivalents by copying lines 91 to 126 of Listing 15-7 into the fitTracksArBB 
function.

 2. To swap the order of the covariance and state matrices, copy lines 62 to 90 of 
Listing 15-7 into the start of fitTracksArBB function.

 3. To swap the order of the track data, copy lines 40 to 61 of Listing 15-7 into 
the start of fitTracksArBB function.

 4. Build the project:

nmake -f Makefile-WIN32

There should be no errors. You should be able to run the executable, although it 
will print out only the introductory information.

Invoking the Kernel

The kernel is invoked through a call operation. This new function is passed the ArBB-style data 
containers, as follows:
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// set number of tracks in ArBB data type
i32 vSize = nT;
// Invoke Kalman filter track fitter by call operator
call(fitTracksArBBEntry)(vSize, vTracksArBB, vStationsArBB, vtT, vtC);

At this point in the code you can now invoke the kernel function through a call operation, as shown 
in step 3 of Activity 15-5.

Before returning from the fitTracksArBB function, you must store the contents of matrices TBuf 
and CBuf into the originally passed matrices of T and C, and release their spaces. You also need 
to release the space used for the X2hits and Y2hits matrices. The following snippet uses TBuf 
as an example:

// Store TBuf data into T matrix in desired order
for( int i = 0; i < nT; i ++ )
{
  for( int j = 0; j < 6; j ++ )
  {
    T[i][j] = TBuf[j][i];
    }
  }
  // Release memory of TBuf matrix
  for( int i = 0; i < 6; i ++ )
  {
    arbb::aligned_free( TBuf[i] );
  }

ACTIVITY 15-5: INVOKING THE CALL

In this activity you adapt the driver code to use ArBB. It is important that you have 
fi rst completed Activity 15-4.

 1. In the driver.cpp fi le, invoke the call to the driver kernel by copying lines 
127 to 133 of Listing 15-7 into the end of function fitTracksArBB.

 2. Add the results back into the covariance and state matrices by copying lines 
134 to 152 of Listing 15-7 into the end of the fitTracksArBB function.

 3. Free up the dynamically allocated memory by copying lines 153 to 167 of 
Listing 15-7 into the end of the fitTracksArBB function.

 4. Build the project: 

nmake -f Makefile-WIN32

There should be no errors. You should be able to run the executable, but it will 
print out only the introductory information.
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Implementing the Kernel

Your last step in converting the program to use ArBB is to implement the contents of the 
fitTracksArBBEntry kernel function. 

Calling the Parallel Kalman Filter

The new code has the same heuristics as the original serial code, applying the Kalman fi lter on the 
20,000 tracks in a for loop iterating 100 times, and then extrapolating the start points of 
the tracks.

An ArBB-type _for loop is used in the fi rst part:

_for( j = (usize)0, j < Ntimes, j ++ )
{
  fitArBB( vTracksArBB, vStationsArBB, magFieldArBB, vtT, vtC );
}_end_for;

where usize is an ArBB data type used for indices.

Finally, the extrapolation of the tracks requires you to use a local state and covariance matrices 
T and C, which you must load with the current values from the containers vtT and vtC. The follow-
ing example uses the T state matrix:

// define local matrices of dense containers
dense<FTYPE> T[6];
dense<FTYPE> C[15];

// load T with contents of vtT
T[0] = vtT.get<FTYPE, 0>();
T[1] = vtT.get<FTYPE, 1>();
T[2] = vtT.get<FTYPE, 2>();
T[3] = vtT.get<FTYPE, 3>();
T[4] = vtT.get<FTYPE, 4>();
T[5] = vtT.get<FTYPE, 5>();

Then call the parallel version of the extrapolation function:

// Call extrapolation function
extrapolateALightArBB( T, C, vTracksArBB.MC_x, T[4], magFieldArBB );

Loading New Values Back into the C Structures

The last action is to reload the new T and C values into the containers vtT and vtC, respectively:

// Reload vtT with new contents of T
vtT.set<0>(T[0]);
vtT.set<1>(T[1]);
vtT.set<2>(T[2]);
vtT.set<3>(T[3]);
vtT.set<4>(T[4]);
vtT.set<5>(T[5]);
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ACTIVITY 15-6: IMPLEMENTING THE KERNEL

In this activity you adapt the driver code to use ArBB. It is important that you have 
fi rst completed Activity 15-5. Note that you are now editing the fitTracksArBB-
Entry function.

 1. In the driver.cpp fi le, add the call to the Kalman fi lter:

 � Delete the #if 0 … #endif clause (and its contents) in the fitTracks-
ArBBEntry function.

 � Copy lines 174 to 187 of Listing 15-7 into the end of the fitTracks-
ArBBEntry function.

 2. Extrapolate the track starting points by copying lines 188 to 217 of Listing 
15-7 into the end of the fitTracksArBBEntry function.

 3. Load the new values back into the C structures by copying lines 218 to 244 of 
Listing 15-7 into the end of the fitTracksArBBEntry function.

 4. Build the project:

nmake -f Makefile-WIN32

There should be no errors, and everything should run. Congratulations!

You are now ready to build and run the application, which should produce the output shown in 
Figure 15-20. 

FIGURE 15-20: Results of running the ArBB version of track-fi tting software

As before, after outputting some setup information involving magnetic fi elds and the number of sta-
tions and tracks, the timing information is given between the dashed lines. Compared to the serial 
timings (refer to Figure 15-17), the ArBB version is 42 times faster.
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LISTING 15-7: Parallel driver for the parallel version of Kalman fi lter track fi tter

1:  #include “fit_util.h”         // a set of constants
2:  #include “classes.h”          // Main Kalman filter classes
3:  #include “arbb_classes.h”     // Added classes for parallel driver
4:  #include “arbb.hpp”           // added for arbb namespace data
5:  
6:  typedef float ftype;
7:  typedef f32 FTYPE;            // Added for parallel driver
8:  
9:  using namespace std;
10:  using namespace arbb;        // Access to arbb 
11:  
12:  // ---------------------------------- Prototypes
13:  
14:  
15:  void fitTracksArBBEntry( i32 vSize, TracksArBB<FTYPE> vTracksArBB,
16:                           StationsArBB<FTYPE> vStationsArBB,
17:                           dense< array<FTYPE, 6> > &vtT,
18:                           dense< array<FTYPE, 15> > &vtC    );
19:  
20:  void fitArBB( TracksArBB<FTYPE> &ts, StationsArBB<FTYPE> &ss,
21:                FieldRegionArBB<FTYPE> &f,
22:                dense< array<FTYPE, 6> > &vtT,
23:              dense< array<FTYPE, 15> > &vtC   );
24:
25:void extrapolateALightArBB( dense<FTYPE> *T, dense<FTYPE> *C,
26:dense<FTYPE>
27:                            &zOut,dense<FTYPE>& qp0, 
28:                            FieldRegionArBB<FTYPE> &F);
29:
30:// ------------------------- Global data, instances of classes
31:
32:extern FieldRegion     magField;
33:extern Stations        vStations;
34:extern Tracks          vTracks;
35:
36:// *** Driving ArBB Parallel Version of Kalman Filter Track Fitter ***
37:
38:void fitTracksArBB( ftype (*T)[6], ftype (*C)[15], int nT, int nS )
39:{
40:  int ix, jx;
41:
42:  // -----------------------------------------------------------------
43:  // Create new arrays to hold track hits and load with track hit data. 
44:  // The new data is transposed so the last index is track number, 
45:  // rather than first
46:  // Create two pointers for track hit data
47:  ARBB_CPP_ALIGN(ftype * X2hits);
48:  ARBB_CPP_ALIGN(ftype * Y2hits);
49:  // reserve array space 
50:  X2hits = ( ftype * ) arbb::aligned_malloc( sizeof(ftype) * nS * nT  );
51:  Y2hits = ( ftype * ) arbb::aligned_malloc( sizeof(ftype) * nS * nT  );
52:  // load hit data in reverse order
53:  for(ix = 0; ix < nT; ix ++)
54:  {
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55:    for(jx = 0; jx < nS; jx ++)
56:    {
57:      X2hits[jx * nT + ix] = vTracks.hitsX[ix][jx];
58:      Y2hits[jx * nT + ix] = vTracks.hitsY[ix][jx];
59:    }
60:  }
61:
62:  // ---------------------------------------------------------------
63:  // Create new temporary set of arrays for state 
64:  // and covariance matrix data.
65:  // The passed T & C matricies are 2D in the wrong order, 
66:  // with track number as the first index.
67:  // Define a state array of 6 pointers
68:  ARBB_CPP_ALIGN(ftype *TBuf[6]);
69:  // reserve array space for each, size number of tracks
70:  for( int i = 0; i < 6; i ++ )
71:  {
72:    TBuf[i] = ( ftype * ) arbb::aligned_malloc( sizeof( ftype ) * nT );
73:  }
74:  // define a covariance array of 15 pointers
75:  ARBB_CPP_ALIGN(ftype *CBuf[15]);
76:  // reserve array space for each
77:  for( int i = 0; i < 15; i ++ )
78:  {
79:    CBuf[i] = ( ftype * ) arbb::aligned_malloc( sizeof( ftype ) * nT );
80:  }
81:  // define array of 6 dense containers for state matrix
82:  dense< array<FTYPE, 6>  >  vtT;
83:  // bind to state matrix
84:  bind(vtT, nT, TBuf[0], TBuf[1], TBuf[2], TBuf[3], TBuf[4], TBuf[5]);
85:  // define array of 15 dense containers for covariance matrix
86:  dense< array<FTYPE, 15> >  vtC;
87:  // bind to covariance matrix
88:  bind(vtC, nT, CBuf[0], CBuf[1], CBuf[2], CBuf[3], CBuf[4], CBuf[5],
89:  CBuf[6], CBuf[7], CBuf[8], CBuf[9], CBuf[10], CBuf[11],
90:  CBuf[12], CBuf[13], CBuf[14]);
91:  // ---------------------------------------------------------------
92:  // Create and bind new instances of TrackArBB and StationArBB data
93:  // create new instance of new class
94:  TracksArBB<FTYPE> vTracksArBB;
95:  // bind with existing information from
96:  // instance of old class Tracks
97:  bind(vTracksArBB.MC_x, vTracks.MC_x, nT );
98:  bind(vTracksArBB.MC_y, vTracks.MC_y, nT );
99:  bind(vTracksArBB.MC_z, vTracks.MC_z, nT );
100:  bind(vTracksArBB.MC_px, vTracks.MC_px, nT );
101:  bind(vTracksArBB.MC_py, vTracks.MC_py, nT );
102:  bind(vTracksArBB.MC_pz, vTracks.MC_pz, nT );
103:  bind(vTracksArBB.MC_q, vTracks.MC_q, nT );
104:  bind(vTracksArBB.nHits, vTracks.nHits, nT );
105:  bind(vTracksArBB.NDF, vTracks.NDF, nT ); 
106:  bind(vTracksArBB.hitsX, vTracks.hitsX[0], nS, nT );
107:  bind(vTracksArBB.hitsY, vTracks.hitsY[0], nS, nT );
108:  bind(vTracksArBB.hitsX2, X2hits, nT, nS);
109:  bind(vTracksArBB.hitsY2, Y2hits, nT, nS);

continues
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110:  bind(vTracksArBB.hitsIsta, vTracks.hitsIsta[0], nS, nT );
111:  // create new instance of new class
112:  StationsArBB<FTYPE> vStationsArBB;
113:  // bind with existing information from
114:  // instance of old class Stations
115:  bind(vStationsArBB.z, vStations.z, nS );  
116:  bind(vStationsArBB.thick, vStations.thick, nS );
117:  bind(vStationsArBB.zhit, vStations.zhit, nS ); 
118:  bind(vStationsArBB.RL, vStations.RL, nS );
119:  bind(vStationsArBB.RadThick, vStations.RadThick, nS );
120:  bind(vStationsArBB.logRadThick, vStations.logRadThick, nS );
121:  bind(vStationsArBB.Sigma, vStations.Sigma, nS );
122:  bind(vStationsArBB.Sigma2, vStations.Sigma2, nS );
123:  bind(vStationsArBB.Sy, vStations.Sy, nS );
124:  bind(vStationsArBB.mapX, vStations.mapX[0], 10, nS );
125:  bind(vStationsArBB.mapY, vStations.mapY[0], 10, nS );
126:  bind(vStationsArBB.mapZ, vStations.mapZ[0], 10, nS );
127:  // ---------------------------------------------------------------
128:  // Invoke call to track fitter by a call operation
129:  // set number of tracks in ArBB data type
130:  i32 vSize = nT;
131:  // Invoke Kalman filter track fitter by call operator
132:  call(fitTracksArBBEntry)(vSize,vTracksArBB,vStationsArBB,vtT,vtC);
133:
134:  // copy container to C buffers
135:  vtT.read_only_range();
136:  vtC.read_only_range();
137:
138:  // --------------------------------------------------------------
139:  // Pack temporary array data back into T & C arrays, transposing
140:  // order of storage back to the original with track number being the   
141:  // first index
142:  for( int i = 0; i < nT; i ++ )
143:  {
144:    for( int j = 0; j < 6; j ++ )
145:    {
146:      T[i][j] = TBuf[j][i];
147:    }
148:    for( int j = 0; j < 15; j ++ )
149:    {
150:      C[i][j] = CBuf[j][i];
151:    }
152:  }
153:  // --------------------------------------------------------------
154:  // Release memory of TBuf and CBuf matrices
155:  for( int i = 0; i < 6; i ++ )
156:  {
157:    arbb::aligned_free( TBuf[i] );
158:  }
159:  for( int i = 0; i < 15; i ++ )
160:  {
161:    arbb::aligned_free( CBuf[i] );

LISTING 15-7 (continued)
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162:  }
163:
164:  arbb::aligned_free( X2hits );
165:  arbb::aligned_free( Y2hits );
166:}
167:
168://******************************************************************
169:void fitTracksArBBEntry( i32 vSize, TracksArBB<FTYPE> vTracksArBB,
170:                                    StationsArBB<FTYPE> vStationsArBB,
171:                                    dense< array<FTYPE, 6> > &vtT,
172:                                    dense< array<FTYPE, 15> > &vtC   )
173:{
174:  // create a FieldRegion class instance
175:  FieldRegionArBB<FTYPE> magFieldArBB(vSize);
176:  // create an ArBB index type 
177:  usize j;
178:
179:  // -------------------------------------------------------------
180:  // Repeat 100 times the call to the
181:  // Kalman filter Track fitter
182:  // Using ArBB type for loop
183:  _for( j = (usize)0, j < Ntimes, j ++ )
184:  {
185:    fitArBB( vTracksArBB, vStationsArBB, magFieldArBB, vtT, vtC );
186:  }_end_for;
187:
188:  // -------------------------------------------------------------
189:  // Extrapolate to start of tracks as in serial version
190:  // define local matrices of dense containers 
191:  dense<FTYPE> T[6];
192:  dense<FTYPE> C[15];
193:  // load T with contents of vtT
194:  T[0] = vtT.get<FTYPE, 0>();
195:  T[1] = vtT.get<FTYPE, 1>();
196:  T[2] = vtT.get<FTYPE, 2>();
197:  T[3] = vtT.get<FTYPE, 3>();
198:  T[4] = vtT.get<FTYPE, 4>();
199:  T[5] = vtT.get<FTYPE, 5>();
200:
201:  // load C with contents of vtC
202:  C[0] = vtC.get<FTYPE, 0>();
203:  C[1] = vtC.get<FTYPE, 1>();
204:  C[2] = vtC.get<FTYPE, 2>();
205:  C[3] = vtC.get<FTYPE, 3>();
206:  C[4] = vtC.get<FTYPE, 4>();
207:  C[5] = vtC.get<FTYPE, 5>();
208:  C[6] = vtC.get<FTYPE, 6>();
209:  C[7] = vtC.get<FTYPE, 7>();
210:  C[8] = vtC.get<FTYPE, 8>();
211:  C[9] = vtC.get<FTYPE, 9>();
212:  C[10] = vtC.get<FTYPE, 10>();
213:  C[11] = vtC.get<FTYPE, 11>();
214:  C[12] = vtC.get<FTYPE, 12>();
215:  C[13] = vtC.get<FTYPE, 13>();
216:  C[14] = vtC.get<FTYPE, 14>();

continues
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217:
218:  // Call extrapolation function within the filter
219:  extrapolateALightArBB( T, C, vTracksArBB.MC_x, T[4], magFieldArBB );
220:
221:  // Reload vtT with new contents of T
222:  vtT.set<0>(T[0]);
223:  vtT.set<1>(T[1]);
224:  vtT.set<2>(T[2]);
225:  vtT.set<3>(T[3]);
226:  vtT.set<4>(T[4]);
227:  vtT.set<5>(T[5]);
228:
229:  // Reload vtC with new contents of C
230:  vtC.set<0>(C[0]);
231:  vtC.set<1>(C[1]);
232:  vtC.set<2>(C[2]);
233:  vtC.set<3>(C[3]);
234:  vtC.set<4>(C[4]);
235:  vtC.set<5>(C[5]);
236:  vtC.set<6>(C[6]);
237:  vtC.set<7>(C[7]);
238:  vtC.set<8>(C[8]);
239:  vtC.set<9>(C[9]);
240:  vtC.set<10>(C[10]);
241:  vtC.set<11>(C[11]);
242:  vtC.set<12>(C[12]);
243:  vtC.set<13>(C[13]);
244:  vtC.set<14>(C[14])
245:}

code snippet Chapter15\15-7.cpp

SUMMARY

This case study was used as an introduction to ArBB. Starting with a serial version of the 
track-fi tting application, the program was altered in many steps before fi nally producing 
a parallel version. 

ArBB is an excellent parallelism tool for programs that are heavily data-centric. Its 
containers, pseudo data objects that can be bound to existing C/C++ data, allow calculations 
through the use of simple mathematical operators between them. The ArBB libraries overlay 
complex operations between arrays and matrices (even of different sizes) as if they were single 
variables.

LISTING 15-7 (continued)
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As a programmer, you are not explicitly responsible for any parallelization in ArBB. This means 
data races and other such problems that can occur due to parallelization are eliminated. ArBB’s 
methods also ensure a balanced load between the threads of a parallel program.

Because of the JIT compiler, ArBB “future-proofs” your application against new CPU 
architectures. When an ArBB function is fi rst called, the JIT compiler generates code tuned to its 
runtime environment.

Chapter 16, “Parallelizing Legacy Code,” looks at some of the issues you might face when 
parallelizing old code. Using the Dhrystone benchmark, the code is made parallel using OpenMP 
and Cilk Plus.
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16
Parallelizing Legacy Code

WHAT’S IN THIS CHAPTER?

 � Introducing the Dhrystone benchmark

 � Parallelizing the C version

 � Parallelizing the C++ version

One of the biggest challenges programmers face is making existing code parallel. The older 
and bigger the code, the more diffi cult the task is. Successful parallelism should lead to 
improved performance and scalability without having to make wholesale changes to the code.

Legacy code represents the huge investment of time and effort that programmers have made. 
For most programmers, maintaining and modifying legacy code is a signifi cant headache, 
because it often includes the following characteristics:

 � Large, monolithic code base

 � Unknown or misunderstood content

 � Old-style programming

 � Ubiquitous use of global variables

This case study begins by introducing the Dhrystone benchmark, and then explores adding 
parallelism to the code using OpenMP and Cilk Plus. The hands-on activities give you an 
opportunity to try out the different approaches. You explore the following ways of adding
parallelism to the benchmark:

 � Synchronizing shared variable access

 � Duplicating global variables

 � Wrapping the application in a C++ class

 � Using Cilk Plus holders
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Taking the original serial version of the Dhrystone benchmark, the fi rst three attempts at parallel-
ization use OpenMP, and the last attempt uses Cilk Plus. In all these attempts, the following 
questions are addressed:

 � Will adding parallelism improve the performance of the code?

 � Can the parallelism be added without too much programming effort?

INTRODUCING THE DHRYSTONE BENCHMARK

The Dhrystone benchmark is a typical example of code written in the 1980s, with versions available 
in C, Pascal, and Ada. Its intention was to refl ect good programming practices of the day, and was 
designed to be an easy-to-use integer benchmark that could be used to compare the performance of 
different CPUs and compilers.

When I fi rst attempted to make the benchmark parallel, I spent a lot of time studying the code to 
understand what it was doing. Thankfully, the intentions of the author are well documented in 
several white papers. The benchmark itself also includes fi ve pages of notes in the source code. 
In this respect, the benchmark is not typical of code that you might have to work on.

The benchmark uses old-style K&R programming, with its obsolete calling convention, lack of 
function prototypes, and missing return types in the function defi nitions. K&R C is so called after 
the 1978 edition of The C Programming Language, by Brian Kernighan and Dennis Ritchie. Even 
though the language has been superseded by ANSI C, many compilers, including the Intel compiler, 
can still support K&R C code. Part of this case study involves using C++ fi les rather than C fi les, 
which meant much of the quirkiness of the K&R-style coding had to be attended to before the code 
could be compiled successfully.

The Structure of the Code

The Dhrystone benchmark code is not huge; it is split among 12 functions over two fi les (see Figure 16-1). 
The main fi le, dhry_1.c, consists of a number of global variables, the main() function, and a collection 
of test routines. The second fi le, dhry_2.c, has a number of test functions that are called from within the 
test loop of main(). Each iteration of the loop is classed as one Dhrystone. Any code executed outside of 
the loop does not contribute to the benchmark results.

After the benchmark runs, the results are printed to the screen. The main reason for including the 
print routines is not to verify the results — that is a secondary requirement. The real reason for add-
ing this code is to make sure that the results of the benchmark are used. If the results were not used, 
there would be a danger that the optimization phase of the compiler would see the benchmark as 
being “unused” or “dead” code and proceed to optimize it away.

Global and Shared Variables

The benchmark has a mixture of global and local variables. Within the main() function there is a 
central for loop that will become the target of the parallelization effort. As shown in Figure 16-1, 
both global and local variables are declared outside this loop. This means that all these variables 
will be shared between the parallelized loop and possibly lead to data races. These shared variables 
will become the biggest problem to overcome.
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FIGURE 16-1: The structure of the Dhrystone benchmark
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dhry_1.c dhry_2.c

The /Qdiag-enable:thread Intel compiler option produces threading-related diagnostic messages, 
including information about global variables. The compiler reports that 12 global variables are 
accessed more than 50 times (see Table 16-1). Access to these variables and the shared local vari-
ables will need to be protected so that only one thread can access them at any one time.

TABLE 16-1: Global Variables Reported by /Qdiag-enable:thread 

VARIABLE NUMBER OF TIMES ACCESSED

Arr_2_Glob 2

Begin_Time 2

Bool_Glob 3

Ch_1_Glob 4

Ch_2_Glob 3

Dhrystones_Per_Second 2

End_Time 2

Int_Glo b 5

Microseconds 2

Next_Ptr_Glob 7

Ptr_Glob 17

User_Time 4
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THE HANDS-ON PROJECTS

Six projects are associated with this case study (see Table 16-2). You can rebuild each of these 
projects yourself in Activities 16-1 to 16-6. The fi rst three activities use C, starting with the 
original C code, and the last three activities use C++. Each of the following sections describes the 
steps that were taken to implement the different approaches. At the end of each section, a hands-
on activity gives instructions on how to build the new version. All the code changes are already 
included in the project fi les; all you need to do is navigate to the correct directory and follow the 
build instructions.

TABLE 16-2: The Diff erent Approaches

ACTIVITY MODEL APPROACH TYPE PROJECT NAME

16-1 Serial The original code C 16-1-ORGFILES

16-2 OpenMP Synchronizing shared variable 

access

C 16-2-OMP-C

16-3 OpenMP Duplicating global variables C 16-3-OMP-DUP

16-4 Serial Converting to C++ C++ 16-4-CPPFILES

16-5 OpenMP Application wrapping C++ 16-5-WRAPEVERYTHING

16-6 Cilk Plus Using Cilk Plus holders C++ 16-6-CILKHOLDER

Building the Projects

Within each project folder is a Makefile. You need to edit this fi le, as follows, so that the correct 
OS-specifi c include fi le is used:

## TODO: EDIT next set of lines according to OS

include ../CONFIG/windows.inc
#include ../CONFIG/linux.inc

To build a project, simply call nmake on Windows, or make on Linux.

Project Targets

The Makefile has a number of different targets that can be built (see Table 16-3).

After building any of the hotspot, concurrency, or datarace targets, you can examine the results 
by using Amplifi er XE (for hotspot and concurrency) or Inspector XE (for datarace) to view the 
results. See the section “Viewing the Results” for more information.
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TABLE 16-3: The Targets in the Makefi le 

TARGET DESCRIPTION

<no target> Builds an executable, main.exe.

To change the name, use TARGET flag (for example, make TARGET=test pro-

duces a fi le test.exe).

benchmark Calls the benchmark.

hotspot Calls the command-line version of Amplifi er XE to do a hotspot analysis.

concurrency Calls the command-line version of Amplifi er XE to do a concurrency analysis.

datarace Calls the command-line version of Inspector XE to look for data races and 

deadlocks.

clean Deletes objects and the .exe.

An Example Build 

Always call make clean (for Windows, use nmake clean) before doing any build. Here’s an 
example of creating and running the benchmark on a Windows platform: 

>cd 16-1-ORGFILES
>nmake clean
>nmake benchmark
<... output from compiler here ... (deleted for brevity)>
        main.exe 100000000

Dhrystone Benchmark, Version 2.1 (Language: C)

Program compiled without ‘register’ attribute

Execution starts, 100000000 runs through Dhrystone
Execution ends

Final values of the variables used in the benchmark:

Int_Glob:            5
        should be:   5
Bool_Glob:           1
        should be:   1
Ch_1_Glob:           A
        should be:   A
Ch_2_Glob:           B
        should be:   B
Arr_1_Glob[8]:       7
        should be:   7
Arr_2_Glob[8][7]:    100000010
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        should be:   Number_Of_Runs + 10
Ptr_Glob->
  Ptr_Comp:          5991072
        should be:   (implementation-dependent)
  Discr:             0
        should be:   0
  Enum_Comp:         2
        should be:   2
  Int_Comp:          17
        should be:   17
  Str_Comp:          DHRYSTONE PROGRAM, SOME STRING
        should be:   DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
  Ptr_Comp:          5991072
        should be:   (implementation-dependent), same as above
  Discr:             0
        should be:   0
  Enum_Comp:         1
        should be:   1
  Int_Comp:          18
        should be:   18
  Str_Comp:          DHRYSTONE PROGRAM, SOME STRING
        should be:   DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc:           5
        should be:   5
Int_2_Loc:           13
        should be:   13
Int_3_Loc:           7
        should be:   7
Enum_Loc:            1
        should be:   1
Str_1_Loc:           DHRYSTONE PROGRAM, 1’ST STRING
        should be:   DHRYSTONE PROGRAM, 1’ST STRING
Str_2_Loc:           DHRYSTONE PROGRAM, 2’ND STRING
        should be:   DHRYSTONE PROGRAM, 2’ND STRING

Microseconds for one run through Dhrystone:  0.040
Dhrystones per Second:                      25000000.0

The call to nmake benchmark did two things: it built the benchmark, and then it ran the 
benchmark, passing in the value 100000000, which was used to control the number of iterations 
the benchmark ran.

After the benchmark runs, it checks that the values held in the various variables are correct, print-
ing out messages confi rming their value. The last piece of information displayed is how many 
Dhrystones per second was achieved.     

Adding Amplifi er XE APIs to Timestamp the Dhrystone Loop

To help measure the duration of the benchmark more accurately, Amplifi er XE API calls have been 
added to the for loop in Activities 16-2 to 16-6. This enables Amplifi er XE’s data collector to 
record the time between the two points.

main()
{
// initialize Amplifier XE frame domain 
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 __itt_domain* pD = __itt_domain_create( “My Domain” );
  pD->flags = 1; // enable domain
.
.
.
  __itt_frame_begin_v3(pD, NULL);  // record start
  for(...)
  {
    // body of loop
  }
  __itt_frame_begin_v3(pD, NULL); // record end
}

If you are using Windows, you will get more accurate timing results from Amplifi er XE’s collector 
if you run the application in administrator mode. To do this, open a compiler command prompt (via 
Start Í All Programs Í Intel Parallel Studio XE Í Command Prompt) in administrator mode, as 
shown in Figure 16-2.

FIGURE 16-2: Opening a command prompt as Administrator in Windows

Viewing the Results

To view the results of a hotspot or concurrency target, open the results fi le with the GUI versions 
of Amplifi er XE. To view the results of a datarace target, use Inspector XE. You can also use the 
command-line version to give you a report. For example, to build the WRAPEVERYTHING projects and 
run a concurrency analysis:

>cd 16-5-WRAPEVERYTHING
>nmake concurrency
<... output from compiler here ... (deleted for brevity)>
<>
Microsoft (R) Program Maintenance Utility Version 9.00.30729.01
Copyright (C) Microsoft Corporation.  All rights reserved.

        amplxe-cl -collect concurrency -knob collect-signals=true -follow-child
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 -mrte-mode=auto -target-duration-type=short -no-allow-multiple-runs -no-analyze
-system  -data-limit=100 -slow-frames-threshold=40 -fast-frames-threshold=100 --
  ./main.exe 100000000 SILENT
0.9300 Elapsed Secs
Using result path `C:\dv\CH16\16-5-WRAPEVERYTHING\r000cc’
Executing actions 75 % Generating a report
Summary
-------

Average Concurrency:  12.710
Elapsed Time:         1.308
CPU Time:             15.551
Wait Time:            6.228
Executing actions 100 % done

Notice that the command-line collector reports which directory the results are stored in:

Using result path 'C:\dv\CH16\16-5-WRAPEVERYTHING\r000cc’

You can view the results by calling the GUI version of Amplifi er XE from the command line:

amplxe-gui ./r000cc

In the bottom-up view of the results, you can read the Frame Time if you group the results by 
Frame Domain, Frame Type, Function, or Call Stack (which is available from the Grouping 
pull-down menu), as shown in Figure 16-3.

FIGURE 16-3: View the timestamp for the benchmark by looking at the Frame Time
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ACTIVITY 16-1: BUILDING THE SERIAL VERSION

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

Building the Project

1. If you haven’t already done so, download a copy of the project fi les and navi-
gate to the 16-1-ORGFILES folder:

cd 16-1-ORGFILES

2. Edit the Makefile so that the correct include fi le is used.

WINDOWS

include ../CONFIG/windows.inc

LINUX

include ../CONFIG/linux.inc

3. Build the serial project:

WINDOWS

Open a Parallel Studio XE command prompt by selecting Start Í All programs 
Intel Parallel Studio XE 2011 Í Command Prompt Í Parallel Studio XE Í 
Command Prompt Í <command prompt>. The exact location may vary, depending 
on which version of Parallel Studio XE you installed.

nmake clean
nmake

LINUX

make clean
make

If there is build error, edit the *.inc fi le mentioned in step 2 so that the variable 
VTUNEDIR is correctly pointing to your Amplifi er XE installation directory.

Measuring Performance

 4. Run the program and record how many Dhrystones were achieved:

WINDOWS

nmake benchmark

LINUX

make benchmark

If you see the message Measured time too small to obtain meaning-
ful results Please increase number of runs, then edit the Makefile and 
increase the value assigned to the variable LOOPCOUNT.
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PARALLELIZING THE C VERSION

In this section, the original C code of the benchmark is parallelized using OpenMP. You can 
build the completed versions in Activity 16-2 and 16-3. Two attempts are made at parallelizing:

 � The fi rst attempt looks at synchronizing all the access to shared variables.

 � The second attempt duplicates the global variables so that each running thread has its own 
thread-specifi c copy. 

Before diving into each attempt, it’s a good idea to fi nd out how many data races need to be fi xed. 
You can do this by making the for loop of the benchmark parallel using the #pragma omp 
parallel for construct, and then running Inspector XE to fi nd out how many data races exist.

Figure 16-4 shows a list of data races that are produced using this naïve parallelization step. The 
program has 18 data races and also an unhandled exception. It looks as though there is quite of lot 
of work to be done for such a small program!

FIGURE 16-4: Inspector XE shows the data races to fi x

Attempt One: Synchronizing Shared Variable Access

In the fi rst attempt, the benchmark was made parallel in three steps, as shown in Figure 16-5. 
You can examine the results of these code changes in Activity 16-1.

 1. The main loop is made parallel by adding a #pragma parallel omp for loop. 
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 2. Each shared variable is either made private or, where this isn’t possible, accesses are 
synchronized.

 3. The result is displayed. Values of local variables in the threaded section are propagated back 
into the main part of the program by adding a lastprivate clause to the for loop.

FIGURE 16-5: The steps to parallelizing with OpenMP
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The following code snippet shows the OpenMP constructs used to parallelize the loop. Each vari-
able marked as lastprivate has its fi nal value copied back to the original shared variables.

#pragma omp parallel for lastprivate(Int_1_Loc,Int_2_Loc,Int_3_Loc, \
  Enum_Loc,Str_1_Loc,Str_2_Loc) private(Ch_Index,tmp_Glob) 
for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)
{
  .
  .
}

Any access to shared variables that could not be made private were declared to be a critical section. 
This allows only one thread to operate on the variable at any time:

#pragma omp critical
Int_Glob = Run_Index;

It was diffi cult and at times tedious to add these critical sections. At one stage a deadlock was 
accidentally introduced because of the function nesting in the benchmark. Luckily, Inspector XE 
detected this. 

The Results

The new parallel program runs very slow, with each Dhrystone taking more than 300 microseconds 
to complete: 

Microseconds for one run through Dhrystone:  300.0
Dhrystones per Second:                      3333.3
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The Amplifi er XE data collector generates so much data that it issues the following warning:

Warning: The result contains a lot of raw data. Finalization may take a long 
time to complete.

Changing the loop count from 1,000,000 to 1,000 reduces the amount of data generated to a 
manageable size.

Figure 16-6 shows the Dhrystones per second that are achieved for different numbers of threads. 
The number of threads is changed using the OMP_NUM_THREADS environment variable. 

Notice that the moment more than one thread is used, the Dhrystones fi gures dives to well under 
10,000. 

FIGURE 16-6: The performance of the OpenMP version
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The summary page of the Locks and Waits analysis shows what the problem is. (The summary 
page opens when you fi rst do an analysis; you can also reach it by clicking on the Summary button.) 
As shown in Figure 16-7, the Spin Time is excessive. Looking at the list of top waiting objects, 
you can see that the OMP Critical sync object is the cause if the poor performance.

FIGURE 16-7: Spin Time is the biggest problem

c16.indd   474c16.indd   474 3/26/2012   12:27:58 PM3/26/2012   12:27:58 PM



Blair-Chappell   c16.indd   V1 - 01/10/2011 Page 475

Parallelizing the C Version x 475

An expanded view of the time line shows that only one thread runs at once, and it spends more time 
waiting than running (see Figure 16-8). The dark areas on the horizontal bars are when the thread is 
running; the lighter areas are where the threads are waiting.

Despite having 24 threads available, this part of the code is only ever running on one thread at a 
time, with all the other threads in a wait condition.

FIGURE 16-8: The expanded timeline view

Is It Successful?

In a word, no! Synchronizing the many shared variables does not seem to be a good solution. 
The code ends up running signifi cantly slower than the serial version. 

From an editing perspective, nearly every function of the benchmark had to be modifi ed. It would 
be a painful task to replicate this effort on a larger project. 

This approach does not seem too helpful. The next attempt at parallelization tries to remove the 
need for synchronization by duplicating the shared variables.

ACTIVITY 16-2: USING OPENMP WITH SYNCHRONIZATION 

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

 1. Navigate to the 16-2-OMP-C folder:

cd 16-2-OMP-C

 2. Repeat steps 2 to 6 of Activity 16-1.
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Attempt Two: Duplicating Global Variables

The fi rst attempt to parallelize the code was unsuccessful, with the parallel program running much 
slower than the nonthreaded version. This second attempt duplicates all the global variables, so there 
is no need to protect access to them with a critical section. The steps are as follows (see Figure 16-9): 

 1. The main for loop is parallelized using the #pragma omp for construct. As in the previous 
attempt, the local variables are declared as private or lastprivate.

 2. The global variables are duplicated in an array of structures. 

 3. Each reference to the global variables is edited. 

 4. The results are displayed from only one thread. 

FIGURE 16-9: Duplicating the shared variables
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The following code shows how the global variables are changed into a structure and placed in dhry.h. 
The highlighted part is an identical copy of the original global variables, copied from dhry_1.c.

// Structure to duplicate globals (declared in dhry.h)
typedef struct _globals
{
  Rec_Pointer     Ptr_Glob, Next_Ptr_Glob;
  int             Int_Glob;
  Boolean         Bool_Glob;
  char            Ch_1_Glob, Ch_2_Glob;
  int             Arr_1_Glob [50];
  int             Arr_2_Glob [50] [50];
} GLOB_STRUCT;

A new pointer, Ptr_Glob_Arr, is used to point to an array of the struct _globals. Memory is 
dynamically allocated using the OpenMP API calls omp_get_max_threads() and omp_set_num_
thread() to make sure that the right amount of space is allocated:
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// Allocating enough space for each thread
num_threads = omp_get_max_threads();
omp_set_num_threads(num_threads);
Ptr_Glob_Arr = malloc(sizeof(GLOB_STRUCT) * num_threads);

Initializing and Accessing the Global Variables

Each copy of the global variables must be initialized in every OpenMP thread (see the following 
highlighted code). Wherever the global variables are referenced in the source code, a new level of 
indirection is added so that each thread can access its own copy of the variables. The omp_get_
thread_num() function is used to get the index of the current thread.

#pragma omp parallel private (id)
{
  // set pointer to current globals
  id = omp_get_thread_num();

  Ptr_Glob_Arr[id].Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
  Ptr_Glob_Arr[id].Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));

  #pragma omp barrier

  #pragma omp for  private(Run_Index) firstprivate(Str_1_Loc,Number_Of_Runs)
    lastprivate (Int_1_Loc,Int_2_Loc,Int_3_Loc,Ch_Index,Enum_Loc,Str_1_Loc,Str_2_Loc)
  for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)
  {
    // other code here
  }
  .
  .
} // end parallel region

The Results 

The newly built application runs much better than the application from the fi rst attempt, and has 
good scalability. The big disadvantage of this approach is the time taken to modify the fi les. 
Figure 16-10 shows the results of running the tests on a workstation that supports 24 cores.

FIGURE 16-10: The performance of the duplicated variables version
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Figure 16-11 shows the summary page from Amplifi er XE. The number of simultaneously running 
threads is ideal, with between 20 and 24 threads running together most of the time, for an average 
concurrency of just under 18.

FIGURE 16-11: The concurrency of the duplicated variables version

Is It Successful?

Yes and no! Duplicating the shared variables works well and gives vast improvement when 
compared to attempt 1. However, from an editing perspective, not only nearly every function 
of the benchmark had to be modifi ed, but also nearly every line. (A slight exaggeration, but it felt 
that way.) The editing task felt signifi cantly more onerous that in attempt 1.

This approach seems more helpful than the fi rst attempt, but the editing effort is considerable. In 
the next attempt at parallelization, the benchmark is converted to C++ and then encapsulated into a 
C++ class. 

ACTIVITY 16-3: USING OPENMP WITH DUPLICATED VARIABLES

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

 1. Navigate to the 16-3-OMP-DUP folder:

cd 16-3-OMP-DUP

 2. Repeat steps 2 to 6 of Activity 16-1.

PARALLELIZING THE C++ VERSION

The original benchmark is written using C fi les; renaming the fi les to have a C++ extension will 
make it easier to experiment with other threading models as well as take advantage of some C++-
specifi c features such as classes and automatic variables.

It would be nice when changing legacy code if you only had to change the fi le extension to .cpp. 
With some legacy code, this is possible; unfortunately, the Dhrystone benchmark is not so straight-
forward. The benchmark uses old-style K&R programming, with its obsolete calling convention, 
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lack of function prototypes, and missing return types in the function defi nitions. All of these 
problems have to be fi xed before the code can be successfully compiled. 

In the next two parallelization attempts, the C++ version of the benchmark is used, fi rst using 
OpenMP and then using Cilk Plus.

ACTIVITY 16-4: BUILDING THE C++ VERSION OF DHRYSTONE

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

 1. Navigate to the 16-4-CPPFILES folder:

cd 16-4-CPPFILES

 2. Repeat steps 2 to 6 of Activity 16-1.

Attempt Three: Wrapping the Application in a C++ Class

Moving to C++ means that it becomes relatively easy to wrap the whole Dhrystone application in 
a single class and then instantiate multiple instances of the class in its own thread. By doing this, 
fewer code changes should be needed. The steps are as follows (see Figure 16-12):

 1. A class is declared in dhry_1.cpp that encapsulates the complete source code. 

 2. dhry_2.cpp is incorporated into dhry_1.cpp by way of an include statement.  

 3. A new fi le, driver.cpp, is written that pulls in dhry_1.cpp via an include statement. 

 4. Within an OpenMP for loop, multiple instances of the new class are created. The loop is 
designed to iterate the same amount of times as the number of threads available.

 5. The dhystone::main() method is called from each iteration of the loop.

4

5

1
Wrap entire

Dhrystone in class
3

Include dhry_1.cpp

in new driver file

Instantiate multiple

instances in a

parallel loop

Call MyTest.main()

2
Include dhry_2.cpp

in dhry_1.cppdriver.cpp

dhry_1.cpp

dhry_2.cpp

#include “dhry_1.cpp" class dhrystone
{

};

int main(int num)

{

}

#include "dhry_2.cpp"

#pragma omp parallel for
for(i=0;i<numCalls; i++)
{
 dhrystone MyTest;
 MyTest.main(num);
}

FIGURE 16-12 The steps to wrap the application
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Using the #include statement to pull in the different source fi les is quite a nice trick, but it has one 
negative side effect for the benchmark. If you remember, the Dhrystone benchmark is intention-
ally split across two fi les so that inter-module access can be tested. The build instructions that come 
with Dhrystone say that the compiler must not do any cross-fi le inlining. By using the #include 
statements, all such inter-module access is removed, thus breaking one of the design goals of the 
benchmark.

Scheduling the Parallel Runs

In good parallel programming, you should not be asking how many threads you have; good 
parallel programs should be agnostic about the number of threads available. The following code 
iterates through each loop, with each loop running on a separate thread. The number of iterations 
can be overridden by a command-line parameter, read from argv[3]. The schedule(static,1) 
clause instructs the OpenMP run time to schedule each loop to a separate thread. 

int main(int argc, char * argv[])
{
  int NumCalls = omp_get_max_threads();
  int NumDhrystoneLoops = 1000001;
  bool bSilent = false;
  .
  .
  .
  if(argc == 4)
    NumCalls = atoi(argv[3]);
  double start = wtime();
  #pragma omp parallel for schedule(static,1)
  for(int i = 1; i <= NumCalls; i++)
  {
    int num = NumDhrystoneLoops/NumCalls;
    if (i ==NumCalls)
      num += NumDhrystoneLoops % NumCalls ;
    dhrystone MyTest;
    printf(“running with %d\n”,num);
    MyTest.main(num,bSilent);
  }
  double stop = wtime();
  printf(“%4.4f Elapsed Secs\n”,stop - start);
}

The number of Dhrystone loops each parallel test does is calculated by dividing the number of 
Dhrystone tests stored in NumDhystoneLoops by the number of iterations that will be performed.

Silencing the Output

One of the consequences of wrapping the whole of the original main() function in a new class is 
that the code to print out the results is also run multiple times. To minimize the clutter on the 
output, an extra Boolean fl ag is added to the code to control whether the results are printed to 
the screen: 
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class 
{
  void main (int num,__itt_event & Event,bool bSilent)
  {
  .
  .
  // compiler will not optimize this away, because it cannot know at compiler time
  // what the value of bSilent will be. 
  if(!bSilent)
  { 
    printf (“etc\n”);
  }
  .
  .
}

If you remember, one of the reasons for having the output printed to the screen is to stop any opti-
mizing compiler from removing what it considers to be unused code. Without the printfs, the com-
piler will see that some of the results of the benchmark are not used and optimize away most of the 
code. By using a Boolean variable that is initialized at run time using a scanf, the compiler will not 
strip away most of the code, because it cannot know at compile time whether or not the printfs are 
being used.

The Results

Figure 16-13 shows the results running with different threads on a 24-core machine. There is still 
a measure of scalability, but the performance is poorer than the previous attempt. The spike at 16 
threads is probably an anomaly. Running the tests several times gave results that varied by more 
than 20 percent.
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FIGURE 16-13: The results of the wrapped application

Figure 16-14 is a timeline view of the application. If you look at the thread concurrency bar (the 
one next to the bottom bar), you will notice that concurrency is not uniform. In the fi rst and last 
quarters of the time period, concurrency is low. It looks like many of the threads do not start 
 straight-away or fi nish together.
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FIGURE 16-14: The time-line view of the wrapped application

Is It Successful?

Well, sort of. The application displayed scalability, but the rate of change is much poorer than the 
previous attempt. And the editing effort required was moderate and required less effort than the 
previous two attempts.

Some more work needs to be done on this project. If the threading can be tuned so that it has a 
much punchier start and fi nish, the performance would improve.

ACTIVITY 16-5: WRAPPING THE APPLICATION IN A C++ CLASS

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

 1. Navigate to the 16-5-WRAPEVERYTHING folder:

cd 16-5-WRAPEVERYTHING

 2. Repeat steps 2 to 6 of Activity 16-1.

Attempt Four: Using Cilk Plus Holders 

One of the main concerns when adding a new feature to a piece of code is the amount of time it 
takes and the extent of the code changes. The less code has to be changed, the less likely the risk of 
introducing errors. 

The Cilk Plus parallelization of the Dhrystone benchmark is a good example of where the simplic-
ity of Cilk Plus can be combined with the powerfulness of the C++ language (such as templates and 
overloading) to add parallelism to legacy code with very few changes required in the original code. 
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The steps to introduce Cilk Plus holders into the benchmark are as follows (see Figure 16-15):

 1. The main loop is parallelized using the keyword cilk_for.

 2. A set of wrapper classes is written that act as the interface between a cilk::holder and the 
shared variables.

 3. Each shared variable is declared to be one of the new myholder wrappers.

1

2 Write

cilk::holder
wrappers

template <typename T>
class myholder
{
 private:
 cilk::holder<T> m_holder;
 public:
 //etc
};

3

Globals

Locals

Loop

Init locals & globals

Print results

dhry_1.cpp

Declare all

variables to be of

class
myholder

Parallelize

loop

main()

FIGURE 16-15: The steps to introduce Cilk Plus holders into the application

Developing the Wrappers

In the three previous examples of parallelizing the benchmark, the shared variables were either 
reduced in scope, their access locked, or the variables duplicated. For the purpose of the benchmark, 
duplicating the variables is a legitimate approach and has proved to be the best performing solution. 

Cilk Plus Hyperobjects

Cilk Plus’s hyperobjects are designed to help fi x data race problems associated with shared variables. In 
the case of the Dhrystone benchmark, the cilk::holder objects can be used to provide local variables 
for each worker (that is, each thread). Holders are discussed in Chapter 6, “Where to Parallelize.”

Listing 16-1 shows how a wrapper can be placed around a cilk::holder object to provide almost 
transparent local storage. It is transparent in the sense that very little of the legacy code needs to be 
changed to use the wrapper class.

Without these wrappers, every access to the global variables would have to be modifi ed to call the 
function operator. As you can see, however, the use of the function operator is hidden in the over-
loaded operators of the class myholder. For example, operator-> calls the m_holder() function 
operator in the implementation code.
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LISTING 16-1: Wrapper code for the Cilk Plus holder

#include <cilk/holder.h>
#include “dhry.h”
template <typename T>
class myholder
{
  private:
    cilk::holder<T> m_holder;
  public:
    T & operator->(){return m_holder();}
    myholder<T> & operator=(const T &rhs ){m_holder()=rhs;return *this;}
    myholder<T> & operator +=(const T &rhs ){m_holder()+=rhs;return *this;}
    T * operator &(){return &(m_holder());}
    operator T (){return m_holder();} 
    void operator ++(){m_holder()++;}
};

code snippet Chapter16\16-1.cpp

In the benchmark code, the only changes that have to be made are to change the declaration of 
the shared variables. For example, in the following code snippet, the original global variables are 
replaced with holder wrappers of the same name:

#if 0                     // original globals
Rec_Pointer               Ptr_Glob, Next_Ptr_Glob;
int                       Int_Glob;
Boolean                   Bool_Glob;
char                      Ch_1_Glob, Ch_2_Glob;
#else                     // new code
myholder<Rec_Pointer>     Ptr_Glob,Next_Ptr_Glob;
myholder<int>             Int_Glob;
myholder<Boolean>         Bool_Glob;
myholder<char>            Ch_1_Glob, Ch_2_Glob;
#endif

Arrays require slightly more complicated treatment, because you cannot return an array in C/C++. 
Some of the derived classes in the cilk::holder class expect to return objects, so arrays need to be 
encapsulated. 

Listing 16-2 shows how single-dimensional arrays are handled. A similar holder will also need to be 
constructed for two-dimensional arrays (see holder.h in the example project).

LISTING 16-2: An array holder

template <typename T, int SZ>
struct CArrayOneDimension
{
  T Data[SZ];
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};

template <typename T, int SZ>
class array_holder
{
  private:
    cilk::holder<CArrayOneDimension<T,SZ>> m_holder;
  public:
      operator T* (){return m_holder().Data;} 
};

code snippet Chapter16\16-2.cpp

Listing 16-3 shows the declaration of the original global variable Arr_1_Glob with the new holder 
version underneath:

LISTING 16-3: A two-dimensional array holder

// int             Arr_1_Glob [50];
array_holder<int,50> Arr_1_Glob;

template <typename T, int SZ1, int SZ2>
struct CArrayTwoDimension
{
  T Data[SZ1][SZ2];
};

template <typename T, int SZ1,int SZ2>
class array_2_holder
{
  private:
    cilk::holder<CArrayTwoDimension<T,SZ1,SZ2>> m_holder;
  public:
    operator Arr_2_Dim &(){return m_holder().Data;}   
    T* operator[](const T x){return m_holder().Data[x];}
};

code snippet Chapter16\16-3.cpp

Initializing the Global Variables

The original initialization code for the global variables sits outside the main for loop. To make the 
initialization be on a per-thread basis, the code is moved to sit inside the new parallel loop (see the 
following code snippet). One new holder variable, myholder<bool> bInitialized, is introduced 
outside the loop. On instantiation all the different worker views of the variable will be automatically 
initialized to false. As each new Cilk Plus worker enters the loop for the fi rst time, it will see that 
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bInitialized is false, and therefore execute the initialization code. On subsequent iterations of the 
loop by the same worker, the initialization code will not be run because its view of bInitialized 
will have been set to true.

In the same code snippet, you can see that the local variables are moved from the top of the main() 
function to be within the cilk_for loop. This has the desired effect of making the variables 
thread-specifi c.

myholder<bool> bInitialized;
cilk_for(int Run_Index = 1; Run_Index < Number_Of_Runs+1; ++Run_Index)
{        
  // locals moved from beginning of main
  One_Fifty       Int_1_Loc;
  REG   One_Fifty Int_2_Loc;
  //... etc
  // move initialization into loop
  if(!bInitialized)
  {
    Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
    Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
    // ... etc
    bInitialized = true;
  }
  // ... rest of for loop
}

The Results

Figure 16-16 shows the results of the Cilk Plus version. The performance dips, because the number 
of threads is the same as the number of cores available on the workstation that was used.

1

0

5000000

10000000

15000000

20000000

25000000

2 4 8

Number of Threads

16 24

D
h

ry
s
to

n
e

s
 p

e
r 

S
e

c
o

n
d

FIGURE 16-16: The performance using Cilk Plus

Is It Successful?

In one word, yes (well, almost yes). The performance is still less than the serial version, but the pro-
gramming is scalable, with a decent rate of change; the editing effort on the original source fi les is 
minor; and the fact that the shared variable references stay exactly as they are (you only change the 
declarations of the variables) makes this solution extremely attractive.
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ACTIVITY 16-6: USING CILK PLUS WRAPPERS

In this activity you perform a system-wide analysis to see how well the programs 
are running on your machine. You can run this activity on Linux or Windows.

 1. Navigate to the 16-6-CILKHOLDER folder:

cd 16-6-CILKHOLDER

 2. Repeat steps 2 to 6 of Activity 16-1.

OVERVIEW OF THE RESULTS 

The main interest in the results of the different parallelization efforts is performance and editing 
effort. Ideally, there should be a performance improvement without having to completely rewrite the 
original source code. 

Performance

You can use two metrics — speedup and scalability — to measure an application’s performance. The 
speedup metric is expressed by the number of Dhrystones executed in one second. Scalability can be 
observed by plotting a graph of the improved speed as the number of threads is increased.

Figure 16-17 shows how many Dhrystones per second were executed in the main for loop of the 
benchmark program; the bigger the fi gure, the better the performance. You can see the following:
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 FIGURE 16-17: The Dhrystone results of the parallelized benchmark

 � The serial version (the top line on the graph) runs better than any of the parallel versions. 
The root cause of this is the lack of suffi cient work being executed in the Dhrystone tests, 
combined with the excessive use of shared variables.

 � The best performing parallel version is the one using Cilk Plus holders.
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 � The two most scalable solutions are the Cilk Plus holders and the OpenMP duplicated 
variables.

 � The OpenMP version using synchronization does not scale and has terrible performance.

Editing Eff ort

One of the goals of this exercise was to keep any code changes to a minimum. The benchmark is 
quite small, so the total coding effort is quite small. Table 16-4 shows the number of words that were 
changed in adding the parallelism. Because the main measure should be how much the original code 
has been changed, the new fi les that have been added have not been included in Changes column.

TABLE 16-4: Editing Eff ort

BUILD WORDS CHANGES NEW FILE

ORG 4800 0 0

HOLDER* 4934 105 149

WRAPEVERYTHING* 4979 112 159

OMP 4894 114 0

CPP 4871 171 0

OMP-DUP 4938 302 0

*Compared to CPP fi le

You can see the following:

 � The solution that required the fewest changes to the original legacy code (if you ignore the 
effort of making the benchmark a C++ fi le) is the HOLDER project. 

 � The OMP-DUP has the highest number of changes. 

 � If you consider the cost of changing a project to C++, the projects needing the fewest changes 
are WRAPEVERYTHING and OMP.

SUMMARY

Adding parallelism to legacy code is not easy; indeed, the examples you saw in this case study show 
how hard it can be. Given a suffi cient workload, it should be possible to incrementally parallelize 
your old code, using tools such as Amplifi er XE and Inspector XE to help verify that the parallelism 
is correct and optimal. Cilk Plus holders stand out as an interesting way of dealing with global vari-
ables without demanding many changes to the original source code.

The case study in the next chapter shows you how to parallelize a program for fi nding duplicate 
code blocks using Intel Parallel Advisor XE.
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-?, SSA injection, 146
* (asterisk), reduction(), 105
\ (backslash), continuation marker, 76
= (equals sign), assignment operator, 122
- (minus sign)

call chains, 282
reduction(), 105

+ (plus sign)
call chains, 282
reduction(), 105

2nd Generation Intel Core 
architecture, 10

128-bit SSE variables, 380–381

A

a g, wait(), 200
abstraction, 11
acceleration, high-energy physics 

experiment, 421
addAcc, 400–401
addps, 98
addsdq, 351
addss, 98
AddY(), 89, 111
addy.c, 89, 128
Advanced Vector Extensions (AVX), 10

auto-vectorization, 97
Intel, 120

Sandy Bridge laptop, 97
speedup, 99

Advisor, 27–31
annotations, 279, 286–290

replacing, 304–307
C/C++, 277
Correctness, 278–279, 295–304
design, 277–308
disadvantages, 278–279
documentation, 280
errors, 217
lock annotations, 287–288
mappings, 305–307
NQueens example program, 280–281
ROI, 278
serial code, 278
site annotations, 286–287
Suitability, 279, 290–295
Summary Report, 304–305
Survey, 282–285
workfl ows, 279–280

aligned_space, 39
always[assert], 169
AMD, 99
Amdahl’s Law, 20–21, 282
Amplifi er XE, 8, 19, 26, 45–48, 251–271

algorithm analysis, 261–264
analysis types, 364
APIs, 366–369

for, 468
timestamps, 468–469
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Amplifi er XE – /arch

Amplifi er XE (continued)
Bandwidth, 364
Bandwidth Breakdown, 364
baselines, 252–255
cache misses, 359–360
call stacks, 174
CLI, 253–255, 369–370
compiler, 361–363, 386
Concurrency analysis, 71–73, 251–252, 

414–415, 438–440
hotspots, 270

CPI, 341–345, 353–354
CPU, 355–357
CPU Usage, 255–256
Custom designed, 364
Cycles and uOps, 364
data collection, 468, 474
event-based analysis, 341–374
frame rate analysis, 368–369
Front End Investigation, 364
General Exploration analysis, 352–357, 

364
hardware, 358–363
health, 342–345
hotspots, 254, 256–258
hotspot analysis, 171–177, 345–352, 

400, 467
__it_pause(), 366–368
Locks and Waits analysis, 46–48, 251, 

268–269, 474–475
loops, 172–174
loop profi ler, 172
Memory Access, 364
n-bodies simulation, 400
OpenMP, 76–77, 270–271
order-of-magnitude problem, 398
predefi ned analysis types, 364
Results tab, 346–347

source code, 173
SSE, 360–361
Sudoku, 394–396
Thread Concurrency, 255–256
timeline, 258–261
viewpoints, 268, 349–350, 364–365

analysis types, 218–219. See also specifi c 
analysis type
custom, 218, 245–247
predefi ned, Amplifi er XE, 364

ANNOTATE_LOCK_ACQUIRE(), 288
ANNOTATE_LOCK_RELEASE(), 288
ANNOTATE_SITE_BEGIN(), 286
ANNOTATE_SITE_END(), 286
ANNOTATE_TASK_BEGIN(), 286
ANNOTATE_TASK_END(), 286
annotations, 29

Advisor, 279, 286–290
locks, 287–288
replacing, 304–307

C/C++ compiler, 289
Composer XE, 30–31
NQueens, 290

Annotation Wizard, 289
anonymous functions. See lambda 

functions
ANSI C-like code, 183
antivirus software, 252
AOS. See array of structures
APIs, Amplifi er XE, 366–369

for, 468
timestamps, 468–469

ApplyAccelerationAndAdvancedBodies, 
401

ArBB. See Array Building Blocks
arbb::bind(...), 430
ArBB_track_fit, 441
/arch, 99–100
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/arch32 – Barnes-Hut algorithm

/arch32, 92
/arch:SSE4.1, 100
argv[3], 480
arithmetic overfl ow, 131
Arr_2_Glob, 465
Array Building Blocks (ArBB), 11, 

427–429
for, 432
binding, 450–452
classes.h, 449–450
Concurrency analysis, 438–440
Correctness, 435
covariance matrices, 452
Kalman fi lter, 432
kernel, 452–460
Lightweight Hotspots analysis, 437
scalability, 435–438
serial code, 435
speedup, 435–438
TBB, 439
track-fi tting, 425, 430–440, 

444–460
array notations, Cilk Plus, 33, 36

elemental functions, 123
keywords, 13–15
vectorization, 121–124

array of structures (AOS), 102, 431
assignment operator, 122
atom, 125
atomic, 39
atomic operations, 236–237
auto-parallelism. See also guided 

auto-parallelization
C/C++ compiler, 32
programming guidelines, 168
/Qguide, 181
/Qparallel, 181
reports, 91

auto-parallelizer
hotspots, 156
hotspot analysis, 165–171
OpenMP, 165
profi ling, 165–168

auto-vectorization, 87
AVX, 97
compiler, 99, 103–107
enhancing, 99–100
error messages, 101
failure, 101–103
GAP, 116–118
guidelines, 98–99
IPO, 109–111
loopy code, 97
MMX, 97
multipath, 118–120
optimized code, 116–118
organizing data, 102–103
processor-specifi c optimizations, 96–107
/Qx, 99
reports, 91, 100–101
SIMD, 97
speedup, 99
SSE, 32, 96, 97, 99
turning on, 99

Average Concurrency, 253
AVX. See Advanced Vector Extensions

B

back-end, 355–356
Back-end Bound Pipeline Slots, 358
back-end-bound execution, 357
Bandwidth, Amplifi er XE, 364, 407
Bandwidth Breakdown, 

Amplifi er XE, 364
Barnes-Hut algorithm, 403
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Barriers – C/C++

Barriers, IDB, 333
baryons, 419
baselines, Amplifi er XE, 252–255
./bash_profile, 158
Basic Linear Algebra Subprograms 

(BLAS), 44
Begin_Time, 465
benchmark, 467
benchmarking, 92
binding, ArBB, 450–452
BinNum, SSE intrinsics, 380–381
BinRow, SSE intrinsics, 381
BIOS, Turbo Boost Technology, 93
BLAS. See Basic Linear Algebra 

Subprograms
body, 401
BODYMAX, 401
Bool_Glob, 465
Bottom-up tab, User Mode 

Hotspots, 347–348
boundary violations, SSA, 131
buffer overfl ows, 51, 131
build specifi cation, SSA, 145–149
Build_serial, 312
Build_with_cilk, 312
Build_with_openmp, 312–313
Build_with_tbb, 312

C

C. See also C/C++
Dhrystone benchmark, 472–478
global variables, 476–478
hotspots, 350–351
legacy code, 472–478
shared variables, 472–475

C++. See also C/C++
Cilk Plus, 482–487
class, 479–482

compiler, OpenMP, 73
Dhrystone benchmark, 478–487
exceptions, elemental functions, 123
legacy code, 478–487
SIMD, 121
SSA, 132
TBB, 10, 38, 182

The C Programming Language (Kernighan 
and Ritchie), 464

C runtime library, 17
C99, 104
cache, 18
cache misses, 359–360
call

ArBB, 429
kernel, 449–450, 452–453

call chains, 282
call stacks, Amplifi er XE, 174
Call stack with Loops, 284
Call Stacks for the two source 

snippets, 297
calling sequence, n-bodies simulation, 410
cancellation-dominated execution, 357
candidate parallel regions, 283
capture_mode, 183
category, SSA, 138
CBM. See Compressed Baryonic Matter
C/C++, 182

Advisor, 277
ArBB, 428
Cilk Plus, 10, 121–122
cilk_for, 185
compiler, 31–37

annotations, 289
optimized code, 87–130

Composer XE, 26
Parallel Studio XE, 27
SSA, 51
SSE intrinsics, 380
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cdqe – clock speed

cdqe, 351
CERN Collider. See track-fi tting
Ch_1_Glob, 465
Ch_2_Glob, 465
chapter4.h, 89, 128–129
Check Sum, 68, 74, 89
check sum, 59
chunk size, 78, 79
Cilk Plus

for, 67, 185–186
reduction, 190

annotations, 305–307
array notation

elemental functions, 123
matrix multiplication, 123–124
vectorization, 121–124

assignment operator, 122
C++, 482–487
C/C++, 121–122, 182

compiler, 32, 33–37
Concurrency analysis, 71–73
data races, 233–236
Dhrystone benchmark, 482–487
elemental functions, 123
four-step methodology, 54–73
global variables, 485–486
holders, data races, 234–236
hyperobjects, 483–485
IDB, 333–334
Intel, 10
ISAT, 271
keywords, array notations, 13–15
legacy code, 482–487
linked lists, 209
n-bodies simulation, 399, 410
nested for loops, 189
PDE, 43
recursive functions, 199

reducers, 33, 35, 68–70, 122–123, 190
compilation errors, 57
data races, 234

sections, 195–196
serial programs

analysis, 60–62
debugging, 63–71
errors, 63–71
implementation, 62–63
tuning, 71–73

shared variables, 67–68
SSA, 51, 132
Tachyon, 312
TBB, 11–12, 38
while, 191–192
wrappers, 483–486

Cilk Thread Stack, 333
cilk_for, 11, 14, 34, 185–186, 238

for, 63, 410
cilk_grainsize, 186
cilk::holder, 236

wrappers, 483
CILK_NWORKERS, 34
cilk::reducer_opadd, 234, 413–414
cilk_spawn, 34–35, 236

elemental functions, 123
recursive functions, 199
sections, 195–196
while, 191–192

cilk_sync, 34, 236
class, C++, 479–482
classes.h, 441, 447

ArBB, 449–450
class.h, 421
clean, 467
CLI. See command-line interface
clock speed

CPU, 3–4, 5
Turbo Boost Technology, 92
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clock ticks – core_2nd_gen_avx

clock ticks, 342
CnC. See Concurrent Collections
Coarray Fortran, 11
collections, ArBB, 428
collision, high-energy physics experiment, 

421
combined_track_fit, 441
command-line interface (CLI)

Amplifi er XE, 253–255, 369–370
baselines, 253–255

communication
data communication, Correctness, 

299–300
IPC, 23

Compare Total Time, 294
compilation errors, Cilk Plus 

reducers, 57
compiler, 59

Amplifi er XE, 361–363, 386
auto-vectorization, 99, 

103–107
C++, OpenMP, 73
C/C++, 31–37

annotations, 289
optimized code, 87–130

Dhrystone benchmark, 465
function calls, 164–165
hotspot analysis, 158–165
intel.noopt.exe, 93
JIT, 427, 429
lambda functions, 184
loop profi ler, 156
n-bodies simulation, 399
PGO, 113–114
-Qno-alias-args, 118
reports, 91
restrict, 103–104, 118
SIMD, 97
SSE, 92, 380

Sudoku, 386
compilervars.sh, 93
Composer XE

annotations, 30–31
C/C++, 26

Compressed Baryonic Matter (CBM), 
419–461

concurrency, 467, 469
Concurrency analysis

Amplifi er XE, 46, 47, 71–73, 251–252, 
414–415, 438–440

hotspots, 270
ArBB, 438–440
Cilk Plus, 71–73
n-bodies simulation, 415
OpenMP, 76–80

Concurrent Collections (CnC), 11
concurrent_bounded_queue, 39
concurrent_hash_map, 39
concurrent_queue, 39
concurrent_unordered_map, 39
concurrent_vector, 39
Confi gure Analysis Type, 245
Confi rmed, SSA problem state, 137, 

141, 142
consistency, baselines, 252
const long int VERYBIG 100000, 57
constants, auto-parallelism, 168
continuation, 35
continuation marker, 76
control, 33
Core 2 laptop, 90

IPO, 109
optimized code, general options, 94
PGO, 114
/QxAVX, 100

core_2_duo_sse4_1, 125
core_2_duo_ssse3, 125
core_2nd_gen_avx, 124
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core_aes_pclmulqdq – data races

core_aes_pclmulqdq, 124
core_i7_sse4_2, 124
Correction analysis, 30

Advisor, 278–279, 295–304
ArBB, 435
data collection, 302
data communication, 299–300
deadlocks, 300
debugging, 296
limitations, 301–302
lock annotations, 287
locks, 300–301
locksets, 303
memory, 298–299
modeling, 303
NQueens, 304
problems, 298–301
references, 303
serial code, 302
Sudoku generator, 392–393
task execution tree, 302
track-fi tting, 435

Correctness Report, 303
NQueens, 296–297

Correctness Source window, 297–298
covariance matrices, ArBB, 452
CPI. See cycles per instruction
CPU

addAcc(), 400
Amplifi er XE, 355–357
back-end, 355–356
back-end-bound execution, 357
cancellation-dominated execution, 357
clock speed, 3–4, 5
dispatch, 119
execution behavior, 356–357
front-end, 355–356
front-end-bound execution, 356–357
optimized code, 124–125

power density, 3–4
retirement-dominated execution, 356
SIMD, 380
Turbo Boost Technology, 92

CPU Time by Utilization, 71–72
CPU Time.Wait Time, 254
CPU Usage, 78

Amplifi er XE, 255–256
timeline, 259
track-fi tting, 439

CPUID, 124–125
critical sections

hotspots, 260–261
OpenMP, data races, 236

custom analysis types, 218, 245–247
Custom designed, Amplifi er XE, 364
Cycles and uOps, Amplifi er XE, 364, 407
cycles per instruction (CPI), 341

Amplifi er XE, 341–345, 353–354
hardware, 358

D

data acquisition, high-energy physics 
experiment, 421

data collection
Amplifi er XE, 468, 474
Correctness, 302
limit, 175
Suitability, 294

data communication, Correctness, 299–300
data parallelism, 11, 283, 286

ArBB, 428
data races, 15

ArBB, 427
Cilk Plus, 233–236
deadlocks, 220–221
debugging, 227, 309
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data races – dhry_l.cpp

data races (continued)
detecting, 225–233
fi xing, 233–238, 323–331
IDB, 311–331

fi xing, 325
Inspector XE, 49, 64, 66, 67, 225–233, 

467
Linux, 227, 323

fi xing, 325
mbox, 329–331
n-bodies simulation, 412–414
OpenMP, 236–237

fi xing, 324–325
parallel regions, 324
PDE, 412–413

fi xing, 324–325
#pragma omp atomic, 261
SSA, 227
suppression fi lters, 228–233, 319–323
TBB, 237–238
threading, 220
Windows, 227, 322–323

fi xing, 324–325
Data Translation Look-aside Buffer 

(DTLB), 359
data-level parallelism, 9–10
datarace, 467
dead code, SSA, 132
deadlocks, 16

ArBB, 427
Correctness, 300
data races, 220–221
debugging, 309
detecting, 221–225
Inspector XE, 49, 64, 221–225

deallocation, 239
debugging, 309–339. See also Intel 

Debugger; Parallel Debugger Extension
Cilk Plus serial programs, 63–71

Correctness, 296
data races, 227, 309
deadlocks, 309
fi lters, 332–333
/Od, 91
OpenMP serial programs, 75–76
Parallel Studio XE, 310
printf(), 8
runtime, 333–339
serial code, 311, 315–316
Visual Studio, PDE, 43
workfl ows, 310–311

__declespec(align), 106
__declspec, 124
__declspec(vector), 13, 123
default.sup, 228
#define LAST, 255
#defines, 399
de-interleaving, 433
Delete(), 134
dependencies

auto-parallelism, 168
loop, 110–111
vector, 101

Detect Deadlocks analysis, 
221–225

Detect Deadlocks and Data Races analysis, 
225–233

Detect Leaks, 238
Detect Memory Problems, 238
detection, high-energy physics experiment, 

421
determinacy races, 15–16
dhry_1.c, 476
dhry_1.cpp, 479
dhry_2.c, 464
dhry.h, 476
dhry_l.c, 464
dhry_l.cpp, 479
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Dhrystone benchmark – fi lters

Dhrystone benchmark
C, 472–478
C++, 478–487
Cilk Plus, 482–487
global variables, 464–465, 476–478
legacy code, 464–465
Makefile, 466
serial code, 471–472
shared variables, 464–465, 472–475

dhrystone::main(), 479
Dhrystones_Per_Second, 465
Dir(), 134
disassembly source view, 48
distributed parallelism, 9
divide by zero, 131
_dl_relocate_object, 347
documentation, Advisor, 280
domain-specifi c libraries, 11
draw_task, 313

serial, 320
driver.cpp, 441, 447–448

dhry_l.cpp, 479
fitTracks, 442

DTLB. See Data Translation Look-aside 
Buffer

duration time estimate, 174
DWORD, 56
.dyn, 114

/Qprof-use, 32
dynamically allocated memory, 131

E

education, 8
ef_add, 13–14
Elapsed Time, 253
elemental functions, Cilk Plus, 33, 36, 123
Enable Parallel Debug Checks, 317

Enable Task Chunking, 292
End_Time, 465
EnterCriticalSection, 16
eog, 158
errors, 15–19, 217–250

Advisor, 217
auto-vectorization, 101
Cilk Plus serial programs, 63–71
compilation errors, Cilk Plus reducers, 57
Inspector XE, 49–51
memory

Inspector XE, 49–50, 238–245
types, 239–240

Memory Error analysis, 218
custom analysis types, 246

n-bodies simulation, 412–414
PDE, 217
SSA, 134, 217
threading, Inspector XE, 49–50, 66
Threading Error analysis, 218, 219–221

custom analysis types, 246–247
event-based sampling, 46
execution behavior, 356–357
Exit(), 133

F

Facility for Antiproton and Ion Research 
(FAIR), 420

false positives, 135–136
false sharing, 18–19
Fast Fourier Transform (FFT), 41–42

MKL, 44
File.cpp, 385
fi lters

Correctness Report, 296
debugging, 332–333
focus, 325–328
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fi lters – GDI

fi lters (continued)
Kalman fi lter, 445

ArBB, 432
fitTracks, 441
for, 454
high-energy physics experiment, 

421, 425–427
suppression fi lters, data races, 228–233, 

319–323
fi lters step, Kalman fi lters, 426
filter::serial_in_order, ntoken, 207
firstprivate, 325

local_mbox, 327
threading, 383

fitTracks
driver.cpp, 442
Kalman fi lter, 441
main(), 442

fitTracksArBB, main, 445
fitTracksArBBEntry, 448
fit_util.h, 441
Fixed, SSA problem state, 141, 142
fl oating-point performance, 32
flow_control fc, 207
Focus Code Location, 65
focus fi lters, 325–328
foo, 302
for, 185–188

Amplifi er XE APIs, 468
ArBB, 432
Cilk Plus, 67, 185–186
cilk_for, 63, 410
deadlocks, 220
hotspot analysis, 254
Kalman fi lter, 454
lastprivate, 473
main(), 464
nested loops, 188–189
OpenMP, 187–188

reduction, 190

#pragma omp for, 476
#pragma omp parallel, 472
reduction, 189–191
schedule, 187
speedup, 19
TBB, 188

reduction, 191
__forceinline, 171
for_each, 184
fork-join parallelism, 286
for-loop, 169
Fortran

Parallel Studio XE, 27
SSA, 51, 132

frame rate analysis, Amplifi er XE, 368–369
free, 13
Front End Investigation, Amplifi er XE, 364
front-end, 355–356
front-end-bound execution, 356–357
functions, 193–197

elemental, Cilk Plus, 33, 36, 123
lambda, 183–184

compiler, 184
TBB, 183

recursive, 198–201
Cilk Plus, 199
OpenMP, 200
serial code, 198–199
TBB, 200–201

TBB, 197
function calls

auto-parallelism, 168
compiler, 164–165

Function Call Sites and Loops, 283
functors. See lambda functions

G

GAP. See guided auto-parallelization
GCC. See GNU Compiler Collection
GDI. See Graphics Device Interface
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General Exploration analysis – hotspots

General Exploration analysis
Amplifi er XE, 352–357, 364, 407
n-objects simulation, 407–409

general options, optimized code, 
93–96

general parallelism, 11
generator

OpenMP, 382–383
Sudoku, 379–380

optimizing, 384–396
Generator.cpp, 385
generic, 125
Geo.dat, 441
GetLine, 201–202
GetPrimes, 266–267, 270
get_value(), 234

reducers, 35
global optimization, 31
global variables

C, 476–478
Cilk Plus, 485–486
Dhrystone benchmark, 464–465, 

476–478
legacy code, 476–478
OpenMP, 477
wrappers, 483

GNU Compiler Collection (GCC), 25, 26, 
399

GNU Public License (GPL), 38
gNumPrimes, 265
goto, 123, 186
GPL. See GNU Public License
gProgress, 260
Graphics Device Interface (GDI), 49, 239
gthum, 158
guided auto-parallelization (GAP), 32

auto-vectorization, 116–118
reports, 91

Gustavson’s observation, 20–21
gwenview, 158

H

hard real-time, 22–23
hardware

Amplifi er XE, 358–363
CPI, 358

HashAdvance, 410
Hash.cpp, 410
hashed octree, 405–407
HASHTABLE, 405
health, Amplifi er XE, 342–345
heaps, 18
high-energy physics experiment, 420–427

acceleration, 421
collision, 421
data acquisition, 421
detection, 421
Kalman fi lter, 421, 425–427
serial code, 422
track reconstruction stages, 421–427
track-fi nding, 421, 423–425
track-fi tting, 421, 425–427, 430–440
vertexing, 421

high-level constructs, 11
high-level optimization (HLO), 95
high-performance computing (HPC), 11
high-performance optimization 

(HPO), 95
hits, 421
hitsX, 451
hitsY, 451
HLO. See high-level optimization
hlo, 95
holders, Cilk Plus, data races, 234–236
hotspot, 467, 469
hotspots, 155. See also User Mode 

Hotspots
Amplifi er XE, 254, 256–258

Concurrency analysis, 270
auto-parallelizer, 156

bindex.indd   499bindex.indd   499 3/26/2012   12:36:30 PM3/26/2012   12:36:30 PM



Blair-Chappell   bindex   V3 - 03/22/2012

500

hotspots – Intel

hotspots (continued)
C, 350–351
critical sections, 260–261
printf, 261
PrintProgress, 256–257
Sudoku

generator, 391
solver, 388–389

hotspot analysis. See also Lightweight 
Hotspots analysis
Amplifi er XE, 46, 60–61, 171–177, 

345–352, 400, 467
auto-parallelizer, 165–171
compiler, 158–165
inlining, 160
IPO, 160
loops, 156
octree, 405

HPC. See high-performance computing
HPO. See high-performance optimization
hpo, 95
hyperobjects, 483–485
Hyper-Threading, 5

baselines, 252
benchmarking, 92
disabling, 92

hypervisor, virtualization, 9

I

ia32, 93
id, 133
IDB. See Intel Debugger
idb openmp-serialization on, 316
idb set cilk-serialization on, 316
idb sharing on, 317
if, 135
*.inc, 471
incident sharing, 298

#include, 63, 74, 480
dhry_1.cpp, 479
Makefile, 466
SSA, 137

#include <cilk/cilk.h>, 410
#include <mmsystem.h>, 57
#include <stdio.h>, 56
#include <windows.h>, 56
independent updates, 299
init(), 422
initial approximation step, 

Kalman fi lters, 426
injection, SSA, 146–147
inline, 171
_inline, 171
__inline__, 171
inlining, 160, 162, 171
inpxe-runsc, 146
Inspector XE, 8, 26, 48–51

Custom analysis types, 245–247
data races, 64, 66, 67, 225–233, 467
deadlocks, 64, 221–225
memory errors, 238–245
SSA, 131–132
state information, 137
threading errors, 66
Threading Errors analysis, 219
XML, 136

inspxe, 136
inspxe-gui, 138
inspxe-inject, 146–149
instruction-level parallelism, 9
instructions retired, 342
Integrated Performance Primitives (IPP), 11, 

31, 40–43, 181
Intel. See also specifi c topics

AVX, 120
Cilk Plus, 10
domain-specifi c libraries, 11
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Intel – ittnotify.h

MIC, 6
multipath auto-vectorization, 119
Parallel Studio XE, 6
research and development, 11
standards, 11
Terafl op Research Chip, 5–6

Intel compiler. See compiler
Intel Debugger (IDB), 43, 310, 317

Barriers, 333
Cilk Plus, 333–334
data races, 311–331

fi xing, 325
focus fi lters, 329
Linux, 26, 31, 316
Locks, 333
OpenMP, 333–339
serial code, 315–316
Spawn Tree, 333, 336–339
Tasks, 333

parallel regions, 334–335
Taskwaits, 333
Teams, 333
windows, 333–334

Intel Software Autotuning Tool (ISAT), 
251, 271–272

INTEL_LOOP_PROF_XML_DUMP, 159
intel.noopt.exe, 93
Intel_SSA, 138
intent, 33
interleaving, 433
InterlockedIncrement, 11
interprocedural optimization (IPO), 31, 87, 

108–112
auto-parallelism, 168
auto-vectorization, 109–111
hotspot analysis, 160
/Qipo-, 160

interprocess communication (IPC), 23
interstellar medium (ISM), 397, 398

IntervalZero, 23
Int_Glob, 465
intrinsics, SSE, 380–382, 390
invalid deallocation, 239
invalid memory access, 239
invalid partial memory access, 239
invalid users, SSA, 134–135
Investigated, SSA problem state, 141–142
I/O

Locks and Waits analysis, 46
virtualization, 9

IPC. See interprocess communication
IPO. See interprocedural optimization
ipo_inl, 95
IPP. See Integrated Performance Primitives
ippAC, 40
ippCC, 40
ippCH, 40
ippCP, 40
ippCV, 40
ippDC, 40
ippDI, 40
ippGEN, 40
ippIP, 41
ippJP, 41
ippMX, 41
ippRR, 41
ippSC, 41
ippSP, 41
ippSR, 41
ippVC, 41
ippVM, 41
irfanview.com, 157
ISAT. See Intel Software Autotuning Tool
ISM. See interstellar medium
ison, 325
iteration, 209–211
__it_pause(), 366–368
ittnotify.h, 176
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ITT_PAUSE – Linux

ITT_PAUSE, 366
__itt_pause(), 175–176
ITT_RESUME, 366
__itt_resume(), 175–176

J

jnle, 351
just-in-time (JIT), 427, 429

K

Kalman fi lter, 445
for, 454
ArBB, 432
fitTracks, 441
high-energy physics experiment, 421, 

425–427
__kcilkrts(), 186
kernel

ArBB, 452–460
call, 449–450, 452–453
resource leak, 239
track-fi tting, 449–450

Kernighan, Brian, 464
keywords, Cilk Plus, 33–34

array notations, 13–15
K&R C code, 464

L

L1 cache, 18
L2 cache, 18
lambda functions, 183–184

compiler, 184
TBB, 183

LAPACK. See Linear Algebra PACKage

Large work with overhead, 21
last level cache, 18
lastprivate, 169, 473, 476
Launch Application, 346
LeaveCriticalSection, 16
legacy code, 7, 463–488

C, 472–478
C++, 478–487
Cilk Plus, 482–487
Dhrystone benchmark, 464–487
global variables, 476–478
shared variables, 472–475

lib-a, 137
libittnotify.lib, 176
Lightweight Hotspots analysis, 346–352

ArBB, 437
n-objects simulation, 407–409
track-fi tting, 437

linear(), 105
Linear Algebra PACKage (LAPACK), 44
LineIn, 203, 205, 207
LineOut, 203, 205, 207
linked lists, 208–211

Cilk Plus, 209
OpenMP, 210
parallel iteration, 209–211
serial iteration, 209
TBB, 210

Linux
Amplifi er XE baseline, 255
compiler, 363
data races, 227, 323

fi xing, 325
Dhrystone benchmark, 471
focus fi lters, 329
GCC, 26
General Exploration analysis, 354
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LLC miss – main.c

IDB, 26, 31, 310, 316
ISAT, 271
loop swapping, 362
Makefile, 92
n-bodies simulation, 399

hotspot analysis, 402–403
option-mapping, 155–156
/Oy-, 155–156
PGO, 114
PPM, 158
SSE speedup, 363
Tachyon, 313, 316

LLC miss, 358
load balancing, 17

cilk_for, 186
n-bodies simulation, 414–415
OpenMP, 79–84, 382

local trees, 410
local_mbox, 327
Locate Memory Problems, 239, 240
locks

annotations, Advisor, 287–288
Correctness, 300–301
IDB, 333
OpenMP, data races, 236
Suitability Report, 292
TBB, 238

Locks and Waits analysis, 46–48, 251, 
268–269, 474–475

locksets, 303
longjmp, 123
loops, 185–193. See also for; while

Amplifi er XE, 172–174
auto-vectorization, 98–99
control variables

cilk_for, 186
OpenMP, 188

counter, 98, 474
elemental functions, 123
hotspot analysis, 156
OpenMP, 382, 473
swapping, 360–363
work.c, 110

loop parallelism. See data parallelism
loop profi ler

Amplifi er XE, 172
compiler, 156
inlining, 162

Loop Time, 284
loop trip count, 98
LOOPCOUNT, 471
loop-dependency, 110–111
LoopOne(), 366
loopprofileviewer, 159, 164
LoopTwo(), 366
loopy code, 97
Low trip count, 101
low-level constructs, 11

M

main, 62, 429, 445
main(), 89, 480

for, 464
fitTracks, 442
a g, wait(), 200
n-bodies simulation, 399
OpenMP, 200
packed SSE instructions, 361

main.c, 152–153
main.c(28) : error #12329, 134
main.c(38) : error #12305, 134
main.c(59) : error #12305, 134
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Main.cpp – modeling

Main.cpp, 385
main.cpp, 157, 399, 441, 446–447
mainCRTStartup, 71, 73, 77
main.h, 399
MainMenu(), 133, 134
maintainability, 8
make clean, 467, 471
Makefile, 89, 129–130, 153, 399

include, 466
legacy code, 466
Linux, 92
n-bodies simulation

hashed octree, 405
octree, 405

malloc, 13
init(), 422
memory, 17–18

errors, 239
serial code, 445

mandelbrot.cpp, 157
mandelbrot.h, 157
manual CPU dispatch, 124–125
Many Integrated Core Architecture (MIC), 6
many-core computing, 4–6, 8
mappings, Advisor, 305–307
Math Kernel Library (MKL), 11, 31, 

44–45, 181
matrix multiplication, 123–124
Maximum Program Gain For All Sites, 291
Maximum Site Gain, 291
MAXKEYS, 405
mbox, 329–331
memcpy, 49, 239
memory

ArBB, 428
Correctness, 298–299
errors, 17–19

Inspector XE, 49–50, 238–245
types, 239–240

growth, 239
leaks, 17, 238, 239

Inspector XE, 50
SSA, 131

OpenMP, 476
SoA, 433
virtualization, 9

Memory Access, Amplifi er XE, 364, 407
Memory Error analysis, 218, 246
Memory reuse: Observations, 296, 297
Message Passing Interface (MPI), 9, 11, 410
metrics tracking, 145–151
m_holder(), 483
-mia32, 92
MIC. See Many Integrated Core 

Architecture
Microseconds, 465
Microsoft compiler, 58–59
m_index, 433
minimal solution, 379
minus-one-plus-two algorithm, 380
minus-two-plus-one algorithm, 380, 

390–391
mirror space, 433
mismatched allocation/deallocation, 239
missing allocations, 239
MKL. See Math Kernel Library
_mm_hadd, 361
_mm_malloc(), 106
MMX. See MultiMedia eXtensions
model parameters, 291
modeled estimates, Suitability Report, 291
modeling

Correctness, 303
Suitability, 295
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Moore – NumInRow

Moore, Gordon E., 5
Moore’s Law, 5
movsdq, 351
MPI. See Message Passing Interface
mulsd, 360
mulsdq, 351
multi-core computing, 4–6
MultiMedia eXtensions (MMX), 97
multipath auto-vectorization, 

118–120
multwo, 123
mutex, 39
mutexes, 237–238
m_value, 433
myholder, 236, 483

N

n-bodies simulation, 399–400
calling sequence, 410
Concurrency analysis, 415
data races, 412–414
errors, 412–414
hashed octree, 405–407
hotspot analysis, 400–403
Linux, hotspot analysis, 

402–403
load balancing, 414–415
octree, 403–405
PDE, 412–413
Windows, hotspot analysis, 402–403

n-bodies.cpp, 399
n-bodies.h, 399
nested loops, 188–189
nested parallelism, 283, 287
New, SSA problem state, 141

NewIdx, 388
Next_Ptr_Glob, 465
nmake benchmark, 468, 471
<no target>, 467
[no]assert, 105
NODE, 403
NodeIdx, 387
NODES, 403
non-Intel processors

AMD, 99
multipath vectorization, 119

Nonstandard loop is not a vectorization 
candidate, 101

non-unit strides, 102
Not a problem, SSA problem state, 137, 

141, 142
Not an inner loop, 101
Not fi xed, SSA problem state, 141
Not investigated, SSA problem state, 

141–142
NotePad, 133
nowait, 192, 205
NQueens

Advisor, 280–281
annotations, 290, 307
Correctness analysis, 304
Correctness Report, 296–297
Suitability analysis, 295
Suitability Report, 291–292
Summary Report, 305
Survey Report, 282–283

nrOfSolutions, 299
ntoken, 207
NULL, 239
NumInColumn, 388
NumInRow, 388
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/O1 – Open Multi-Processing 

O

/O1, 93–94, 168
/O2, 91–94, 108–109
/O3, 93–94
/Ob0, 171
/Ob1, 171, 174
object declarations, 132
octree, 403–405
OCTREE, 405
octree.cpp, 399
octree.h, 399
/Od, 91–92

auto-parallelism, 168
debugging, 91

offl ine data analysis, 421
omp single, 383
OMP Worker Thread 3, 77
omp_get_max_threads(), 476
omp_get_nested(), 189
OMP_NESTED, 189
OMP_NUM_THREAD=1, 225
OMP_NUM_THREADS, 187–188
omp_set_nested(expression), 189
omp_set_num_threads(), 187–188, 476
Open Multi-Processing (OpenMP), 11, 

37–38
for, 187–188

reduction, 190
Amplifi er XE, 76–77, 270–271
atomic operations, data races, 

236–237
auto-parallelizer, 165
C++ compiler, 73
C/C++, 182

compiler, 32
Concurrency analysis, 76–80
critical sections, data races, 236

data races, 236–237
fi xing, 324–325

for-loop, 169
four-step methodology, 73–84
generator, 382–383
global variables, 477
IDB, 333–339
ISAT, 271
linked lists, 210
load balancing, 79–84, 382
locks, data races, 236
loops, 382, 473
loop control variables, 188
main(), 200
memory, 476
n-bodies simulation, 410
nested for loops, 189
PDE, 43
pipelines, 205–206
#pragma omp critical, 11
recursive functions, 200
reduction clause, 76, 105, 190

data races, 237
sections, 196–197

deadlocks, 220
serial programs

analysis, 74
debugging, 75–76
implementation, 74–75
tuning, 76–84

shared variables, 75–76
SSA, 51, 132
Sudoku, 382

generator, 391–392
Tachyon, 312, 314–315
tasks, 382
threading, 182
while, 192–193
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oper – parallel_do

oper, 105
operator->, 483
operators

ArBB, 428
assignment, 122

optimization reports, 32, 91
/Qopt-report, 95–96

optimized code
auto-vectorization, 116–118
C/C++ compiler, 87–130
CPU, 124–125
disabling, 91–93
example application, 89–90

auto-vectorization, 106–107
Cilk Plus array notations, 123–124
general options, 94, 96
IPO, 108–109, 111–112
PGO, 114–116
unoptimized version, 92–93

general options, 93–96
IPO, 108–112
PGO, 112–116
processor-specifi c optimizations, 

96–107
producing, 87–130
seven steps, 90–125
source code, 125–130

option-mapping, 155–156
-opt-report-phase=pgo, 114
-opts, 156
order-of-magnitude problem, 398
overclocking, 4
overfl ow

arithmetic, 131
buffer, 51, 131

overhead, 20, 21
profi ling, 163–165
Suitability Report, 291

synchronization, 17
threading, 17

/Ox, 93–94
/Oy-, 155–156

P

packed instructions
SIMD, 124
SSE, 98, 360–361

Parallel Advisor. See Advisor
parallel choices, Suitability Report, 

292–293, 295
Parallel Debug Environment, 317
Parallel Debugger Extension (PDE), 8, 26, 

31, 43, 310
data races, 412–413

fi xing, 324–325
errors, 217
focus fi lters, 328
n-bodies simulation, 412–413
Tachyon, 312, 316

Parallel Inspector XE. See Inspector XE
parallel iteration, 209–211
parallel overhead, 20
parallel regions

data races, 324
IDB Tasks, 334–335

Parallel Studio XE, 181
./bash_profile, 158
C/C++, 27
debugging, 310
errors, 217–250
Fortran, 27
n-bodies simulation, 400
unoptimized version, 92

parallel_do, 39
Work(), 193
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parallel_for – PrintProgress

parallel_for, 38, 39–40, 188
parallel_for_each, 39
parallel_invoke, 39, 197, 237
parallel_KF, 445
parallel_KF.cpp, 432
parallel_pipeline, 39, 206–208
ParallelPrime.cpp, 255, 264, 270
parallel_reduce, 38, 191
parallel_scan, 38
parallel_sort, 39
PARDISO, 44
PASSWORD, 134
passwords, SSA, 134–135
Pause API, 175–176
Paused Time, 347
PDE. See Parallel Debugger Extension
pentium_4, 125
pentium_4_sse3, 125
pentium_iii, 125
pentium_m, 125
Performance Analyzer

n-bodies simulation, 400
Sudoku, 382

PGO. See profi le-guided optimization
pgo, 95
pipelines, 201–208

OpenMP, 205–206
phases, 201
serial code, 203–205
TBB, 206–208
threading, 202

pointers
ArBB, 428
auto-parallelism, 168
global variables, 476
high-energy physics experiment, 

421–422
SoA, 433
SSA, 131

POSIX, 181
power density, 3–4
PPM, 157, 158
ppm.cpp, 157
pPuzzle, 387
pragma, OpenMP, 37
#pragma omp, 325
#pragma omp atomic, 260, 261
#pragma omp critical, 236–237

gNumPrimes, 265
gProgress, 260
OpenMP, 11

#pragma omp for, 187–188, 205, 476
#pragma omp for schedule(), 187
#pragma omp parallel, 38, 187–188, 

192, 313, 472
#pragma omp single, 38
#pragma omp task, 38, 192
#pragma parallel, 168, 169–170
#pragma parallel for, 266
#pragma simd, 104–105
#pragma vector aligned, 105–106
#pragma vector always, 101, 104
#pragma vector unaligned, 

105–106
predefi ned analysis types, Amplifi er XE, 

364
prediction step, Kalman fi lters, 426
Print.cpp, 385
print.cpp, 399
printf, 8, 101, 481

hotspots, 261
PrintProgress, 262
reducers, 35

print.h, 399
PrintProgress

hotspots, 256–257
ParallelPrime.cpp, 264
printf, 262
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privacy – /Qved

privacy
Inspector XE, 49
threading, 220

private, 476
shared variables, 75–76, 473
threading, 383

private()
#pragma parallel, 169
#pragma simd, 104–105

problem states, SSA, 140–142
Problems and Messages, 296
process noise step, Kalman fi lters, 426
processor-specifi c optimizations, 96–107
-prof-gen, 114
-prof-gen=srcpos, 114
Profi le System, 344, 346
profi le-guided optimization (PGO), 31–33, 

87, 112–116
compiler, 113–114
/Qopt-report-phase, 95

profi ling, 156. See also loop profi ler
auto-parallelizer, 165–168
hotspot analysis with compiler, 158–165
overhead, 163–165

-prof-use, 114
Project Properties, suppression fi lters, 230
protostellar cloud, 398
Ptr_Glob, 465
Ptr_Glob_Arr, 476
PutLine, 201–202

Q

QA environment, 149–151
/Qax, 119
/Qdiag-enable:thread, 464
/Qguide, 91

auto-parallelism, 181

GAP, 116–117
/Qvec-report, 116

/Qguide=n, 116
/Qipo, 109–110, 165, 168
/Qipo-, 160
/Qipo<n>, 108
-Qno-alias-args, 118
/Qopenmp, 37
/Qopt-report, 91, 95–96
/Qopt-report-phase, 95
/Qopt-report-phase:pgo, 114, 115
Qpar-adjust-stack, 168
Qpar-affinity, 168
Qparallel, 168
/Qparallel, 165, 181
Qparallel-source-info, 168
Qpar-num-threads, 168
Qpar-report, 168
/Qpar-report, 91, 165
Qpar-runtime-control, 168
Qpar-schedule, 168
Qpar-threshold, 168
/Qprof-gen, 114
/Qprof-gen:srcpos, 114
/Qprofile-functions, 159, 160
/Qprofile-loops, 159
/Qprofile-loops:<arg>, 160
/Qprofile-loops-report:<arg>, 160
/Qprof-use, 32, 114
Qsort, 287
/Qstd.c99, 104
quarks, 419
queueing_mutex, 238
queueing_rw_mutex, 238
Quick-Reference Guide to Optimization, 

90, 109
/Qvec-report, 91, 100–101, 116
/Qvec-report3, 110
/Qved, 99

bindex.indd   509bindex.indd   509 3/26/2012   12:36:31 PM3/26/2012   12:36:31 PM



Blair-Chappell   bindex   V3 - 03/22/2012

510

/Qx – runtime

/Qx
AMD, 99
auto-vectorization, 99
non-Intel processors, 100

/QxAVX, 100

R

range, ArBB, 428
ray tracing. See Tachyon
ReadFiles.cpp, 441, 447
readInput, 441
real sharing, 19
real-time systems, 22–24
recursive backtracking algorithm, 386–387
recursive decomposition, 283–285
recursive functions, 198–201

Cilk Plus, 199
OpenMP, 200
serial code, 198–199
TBB, 200–201

Reduce Lock Contention, 292–293
Reduce Lock Overhead, 291
Reduce Site Overhead, 291
Reduce Task Overhead, 291
reducers

Cilk Plus, 33, 35, 68–70, 122–123, 190
compilation errors, 57
data races, 234

views, 234
reducer_basic_string, 36
reducer_list_append, 36
reducer_list_prepend, 36
reducer_max, 36
reducer_max_index, 36
reducer_min, 36
reducer_min_index, 36
reducer_opadd, 35, 36

reducer_ostream, 36
reduction, for, 189–191
reduction(), 105
reduction clause, OpenMP, 76, 105, 190

data races, 237
reduction variables, 68
redundant clues, 379
redundant code, SSA, 132
references, Correctness, 303
Regression, SSA problem state, 142
regression testing, 149–152
Related Code Location, 65
Relationship Diagram, 297
relatively_global, 302
render_one_pixel, 320
reports

auto-parallelism, 91
auto-vectorization, 91, 100–101
compiler, 91
GAP, 91

research and development, 11
restrict, 103–104, 118
Results tab, Amplifi er XE, 346–347
__resume_(), 366–368
Resume API, 175–176
retirement-dominated execution, 356
return on investment (ROI), 9

Advisor, 278
Summary Report, 305

ReturnToMain(), 134
Ritchie, Dennis, 464
ROI. See return on investment
RTX, 23
runSerialBodies, 401
runtime

C runtime library, 17
debugging, 333–339
threading, 258
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SafeAdd – series1

S

SafeAdd(), 220
Sandy Bridge laptop, 90

AVX, 97
/Od and /O2, 92

scalability, 19–22
ArBB, 435–438
Maximum Site Gain, 291
track-fi tting, 435–438

Scalable LAPACK (ScaLAPACK), 44
scalable_allocator, 39
scalable_malloc, 13, 18
ScaLAPACK. See Scalable LAPACK
scalar instructions, SSE, 98, 360
scanf(), 133
schedule, 80

for, 187
GetPrimes, 266–267, 270
#pragma parallel for, 266

schedule(static,1), 480
scoped_timer, 446
2nd Generation Intel Core 

architecture, 10
__sec_reduce_add, 122
__sec_reduce_all_nonzero, 122
__sec_reduce_all_zero, 122
__sec_reduce_any_nonzero, 122
__sec_reduce_max, 122
__sec_reduce_max_ind, 122
__sec_reduce_min, 122
__sec_reduce_min_ind, 122
__sec_reduce_mul, 122
sections, 193–197

Cilk Plus, 195–196
sections, OpenMP, 196–197, 220
security. See also Static Security analysis

threats, 131

self time, 163, 282
serial

draw_task, 320
#pragma omp, 325

serial code, 7
Advisor, 278
ArBB, 435
Correctness, 302
debugging, 311, 315–316
Dhrystone benchmark, 

471–472
high-energy physics experiment, 

422
IDB, 315–316
malloc, 445
pipelines, 203–205
recursive functions, 

198–199
sections, 194–195
track-fi tting, 435, 441–443

serial iteration, linked lists, 209
serial programs

Cilk Plus, 55–73
analysis, 60–62
debugging, 63–71
implementation, 62–63

OpenMP
analysis, 74
debugging, 75–76
implementation, 74–75
tuning, 76–84

serial_KF.cpp, 432, 
441, 445

serial_track_fit, 441
Series1()

loops, 111
/Qipo, 110

series1(), 89
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Series2 – Statement cannot be vectorized

Series2()
loops, 111
/Qipo, 110

series2(), 89
series.c, 89, 128
setjmp, 123
setQueen(), 280–281
shared variables

C, 472–475
Cilk Plus, 67–68
Dhrystone benchmark, 464–465, 

472–475
legacy code, 472–475
OpenMP, 75–76
private, 75–76, 473

SIMD. See single instruction, multiple data
SIMD pragma, Cilk Plus, 33, 36
simulated cores, 295
simulation. See also n-bodies simulation

star formation, 397–398
Simultaneous Multi Threading, 314
single entry-and-exit loop, 98
single instruction, multiple data (SIMD), 

9–10, 97. See also Streaming SIMD 
Extensions
ArBB, 427
C++, 121
CPU, 380
packed instructions, 124
timeline, 97
vectorization, 425

single program multiple data (SPMD), 
11

site annotations, Advisor, 286–287
Small work with overhead, 21
SNB

IPO, 109
optimized code, general options, 94
PGO, 114

SOA. See structure of arrays
soft real-time, 22–23
Solve, 388
solve(), 280–281
solver, Sudoku, 379–380, 

386–390
source code, 211–214

Amplifi er XE, 173
ISAT, 271
optimized code, 125–130
security threats, 131
SSA, 131–132, 152–153
writing, 131–154

Spaces, 184
Spawn Tree, 333, 336–339
speedup, 19–22, 194, 282

ArBB, 435–438
auto-vectorization, 99
SSE, 363
Suitability Report, 291
track-fi tting, 435–438

Spin Time, 474–475
spin_mutex, 238, 305
spinning threads, 269
spin_rw_mutex, 238
SPMD. See single program multiple data
SqRoot, 201–202
sqroot(), 203
SSA. See Static Security analysis
SSE. See Streaming SIMD Extensions
SSEHasNumber, 390
Standard Template Library (STL), 

184, 185
standards, 11
star formation, 397–398
state, SSA, 138
state information, Inspector XE, 

137
Statement cannot be vectorized, 101
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Static Security analysis – Summary Report

Static Security analysis (SSA), 32, 51–52
basics, 134–145
build specifi cation, 145–149
conducting, 136–145
data races, 227
enabling, 137
errors, 134, 217
false positives, 135–136
include, 137
injection, 146–147
Inspector XE, 131–132
invalid users, 134–135
metrics tracking, 145–151
passwords, 134–135
problem states, 140–142
QA environment, 149–151
regression testing, 149–152
results, 138–140

directory structure, 147
source code, 131–132, 152–153
Visual Studio, 142–145
workfl ows, 136

StationsArBB, 431, 449–450, 451
Step, 410
STL. See Standard Template Library
Streaming SIMD Extensions (SSE), 9–10, 97

Amplifi er XE, 360–361
auto-vectorization, 32, 96, 99
compiler, 92
intrinsics, Sudoku, 380–382, 390
multipath auto-vectorization, 119
packed instructions, 98, 360–361
PDE, 43
scalar instructions, 98, 360
speedup, 99, 363
Sudoku, 377

stride values, 102–103
struct

elemental functions, 123
memory errors, 240

struct_globals, 476
structure of arrays (SOA), 102, 431, 

433–434
Subscript too complex, 101
Sudoku, 377–396

Amplifi er XE, 394–396
BinNum, 380–381
challenge of, 378–379
compiler, 386
generator, 379–380

Correctness, 392–393
hotspots, 391
minus-two-plus-one algorithm, 

390–391
OpenMP, 391–392
optimizing, 384–396

high-level design, 379–380
minus-one-plus-two algorithm, 

380
minus-two-plus-one algorithm, 

380
OpenMP, 382
Performance Analyzer, 382
solver, 379–380, 386–390

hotspots, 388–389
SSE, 377

intrinsics, 380–382, 390
Visual Studio, 385

Suitability analysis, 279, 290–295
data collection, 294
modeling, 295
NQueens, 295
task execution tree, 294
timestamps, 294

Suitability Report, 29–30, 291–294
NQueens, 291–292
parallel choices, 292–293, 295

sum, 68
reduction clause, 76

Summary Report, Advisor, 304–305
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sum_of_diff erences – threading

sum_of_differences, 429
sumx, 67
sumy++, 111
sumy--, 111
suppression fi lters, data races, 228–233, 

319–323
Survey analysis, 282–285
Survey Report, 282–283
Survey Source window, 284
switch, 101, 123
synchronization

overhead, 17
primitives, ArBB, 428

SystemMenu(), 133, 134
system_table, 134, 135

T

Tachyon ray-tracing application, 311-331
Linux, 313, 316
OpenMP, 314–315
PDE, 316
Windows, 312, 316

Tachyon.common, 312
Target CPU Number, 291, 295
tasks

IDB, 333
parallel regions, 334–335

OpenMP, 382
TBB, 38
threading, 183

task chunking, 292
task execution tree

Correctness, 302
Suitability, 294

task parallelism, 9, 283
Qsort, 287

task scheduler, 295
task_group, 200
Taskwaits, 333
TBB. See Threading Building Blocks
tbb_allocator, 39
tbb::atomic, 238
tbb::concurrent_queue, 237
tbb::mutex, 238
TBuf, 452
Teams, IDB, 333
temp, 298–299
templates

STL, 184, 185
TBB, 38–39
wrappers, 236

Terafl op Research Chip, Intel, 5–6
test.c, 152
This program was not built to 

run on the processor in your 
system., 97

Thread Concurrency, 78
Amplifi er XE, 255–256
Histogram, 81–82
timeline, 259
track-fi tting, 439

Thread Data Sharing Events, 
320, 325, 327
fi lters, 332

threading
chunk size, 78, 79
data races, 220
errors, Inspector XE, 49–50, 66
firstprivate, 383
Hyper-Threading, 5

baselines, 252
benchmarking, 92
disabling, 92

information, 219–220
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Threading Building Blocks  – trees

IPP, 42–43
OpenMP, 182
overhead, 17
pipelines, 202
privacy, 220
runtime, 258
Simultaneous Multi Threading, 314
spinning threads, 269
tasks, 183
views, 69

Threading Building Blocks (TBB), 10, 31, 
38–40, 181
for, 188

reduction, 191
annotations, 305–307
ArBB, 439
C++, 182
Cilk Plus, 11–12
data races, 237–238
functions, 197
ISAT, 271
lambda functions, 183
linked lists, 210
locks, 238
mutexes, 237–238
n-bodies simulation, 410
nested for loops, 189
parallel_invoke, 197
parallel_pipeline, 206–208
parallel_reduce, 191
pipelines, 206–208
recursive functions, 200–201
spin_mutex, 305
Tachyon, 312
templates, 38–39
while, 193, 237

Threading Error analysis, 218, 219–221
custom analysis types, 246–247

Threading Model, 295

thread-level parallelism, 9
thread-safe, 42

MKL, 44
timeGetTime(), 56, 57, 441
timeline, Amplifi er XE, 258–261
timestamps

Amplifi er XE APIs, 468–469
Suitability, 294

tools, 7–8
Top-down Tree tab, User Mode Hotspots, 

348–349
Total, 59, 68, 74, 89
total, 68

reduction clause, 76
Total Time, 284, 294
track-fi nding, 421, 423–425
track-fi tting, 419–461

ArBB, 430–440, 444–460
Correctness, 435
CPU Usage, 439
high-energy physics experiment, 421, 

425–427, 430–440
kernel, 449–450
Lightweight Hotspots analysis, 

437
scalability, 435–438
serial code, 435, 441–443
speedup, 435–438
Thread Concurrency, 439

TracksArBB, 449–450
binding, 451

Tracks.dat, 441
TREE, 403
trees

hashed octree, 405–407
local, 410
octree, n-bodies simulation, 

403–405
Spawn Tree, 333, 336–339
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trees  – -version

trees (continued)
task execution tree

Correctness, 302
Suitability, 294

Top-down Tree tab, User Mode 
Hotspots, 348–349

TREE_WIDTH, 403
true dependence, 300
Trust Region Solver, 44
try_pop(), 237
Turbo Boost Technology, 90

baselines, 252
benchmarking, 92
BIOS, 93
disabling, 92
IPO, 109
optimized code, general options, 94
PGO, 114

U

unchecked input, SSA, 131
underclocking, 5
uninitialized memory access, 240
uninitialized partial memory 

access, 240
uninitialized variables and objects, 131
USE_API, 366
USE_CILK, 399
USE_CILK_REDUCER, 414
User Mode Hotspots, 346–350

Bottom-up tab, 347–348
Top-down Tree tab, 348–349
viewpoints, 349–350

user_table, 133
system_table, 135

User_Time, 465
usize, 454

V

var, 105
variables

global
C, 476–478
Cilk Plus, 485–486
Dhrystone benchmark, 464–465, 

476–478
legacy code, 476–478
OpenMP, 477
wrappers, 483

loop control
cilk_for, 186
OpenMP, 188

reduction, Cilk Plus, 68
shared

C, 472–475
Cilk Plus, 67–68
Dhrystone benchmark, 

464–465, 472–475
legacy code, 472–475
OpenMP, 75–76
private, 75–76, 473

uninitialized, SSA, 131
vector dependency, 101
vectorization. See also 

auto-vectorization
alternative means, 

120–125
Cilk Plus array notation, 

121–124
SIMD, 425
SSE intrinsics, 380

Vectorization possible but seems 
ineffi cient, 101

vectorlength(), 104
-verbose, 147
-version, 146
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vertexing – wtime.c

vertexing, 421
VERYBIG, 58, 63, 68
views

reducers, 35, 234
threading, 69

viewpoints
Amplifi er XE, 268, 349–350, 

364–365
User Mode Hotspots, 349–350

virtual machine (VM), 428–429
virtualization, 9
visibility, 174
Visual Studio, 26

compiler, 59
debugging, PDE, 43
SSA, 142–145
Sudoku, 385
unoptimized version, 92

VM. See virtual machine
vmlinux, 347
vtC, 449, 454
vtT, 449, 454
VTUNEDIR, 471

W

Wait Time, 254
Wait Time by Utilization, 261
weight, 138
whatever_udt, 433
while, 191–193

Cilk Plus, 191–192
OpenMP, 192–193
TBB, 193, 237

Win32
EnterCriticalSection, 16
InterlockedIncrement, 11
LeaveCriticalSection, 16

win32, 181
Windows

Amplifi er XE baseline, 
254

compiler, 363
data races, 227, 322–323

fi xing, 324–325
Dhrystone benchmark, 

471
focus fi lters, 328
General Exploration 

analysis, 354
ISAT, 271
loop swapping, 363
n-bodies simulation, hotspot analysis, 

402–403
PGO, 114
SSE speedup, 363
Tachyon, 312, 316

winmm.lib, 57, 64
Work(), 198

lambda functions, 200
parallel_do, 193

work(), 19, 21–22, 89
Work with no overhead, 21
work.c, 127–128

loops, 110
workfl ows

Advisor, 279–280
debugging, 310–311
SSA, 136

WRAPEVERYTHING, 469–470
wrappers

Cilk Plus, 483–486
cilk::holder, 483
global variables, 483
templates, 236

wtime.c, 89, 128–129, 157
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X2hits – /Zi

X

X2hits, 451
Xeon workstations, 90

IPO, 109
/Od and /O2, 92
optimized code, general options, 94
PGO, 114

x[i], 98
XML, 136

Y

Y2hits, 451
y[i], 98

Z

zero_allocator, 39
/Zi, 168
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Professional ASP.NET MVC 3
ISBN: 978-1-118-07658-3
MVC 3.0 is the latest update to Microsoft’s Model-View-Controller technology, which enables 
developers to build dynamic, data-driven web sites. This in-depth book shows you step by step 
how to use MVC 3.0. Written by top ASP.NET MVC experts at Microsoft, the latest edition of this 
popular book covers new and updated features such as the new View engine, Razor, NuGet, and 
much more. The book’s practical tutorials reinforce concepts and allow you create real-world 
applications. Topics include controllers and actions, forms and HTML helpers, Ajax, unit testing, 
and much more.

Professional Team Foundation Server 2010
ISBN: 978-0-470-94332-8
Microsoft Visual Studio Team Foundation Server (TFS) has evolved until it is now an essential tool 
for Microsoft’s Application Lifestyle Management suite of productivity tools, enabling collaboration 
within and among software development teams. Professional Team Foundation Server 2010, written 
by an accomplished team of Microsoft insiders and Microsoft MVPs, provides the thorough, step-
by-step instruction you need to use TFS 2010 efficiently so you can more effectively manage and 
deliver software products in an enterprise.

Professional JavaScript for Web Developers, 3rd Edition
ISBN: 978-1-118-02669-4
As the key scripting language for the web, JavaScript is supported by every modern web browser 
and allows developers to create client-side scripts that take advantage of features such as 
animating the canvas tag and enabling client-side storage and application caches. After an 
in-depth introduction to the JavaScript language, this updated edition of a bestseller progresses 
to break down how JavaScript is applied for web development using the latest web development 
technologies. Veteran author and JavaScript guru Nicholas Zakas shows how JavaScript works with 
HTML5 as well as other significant advances in web development as it relates to JavaScript.
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ISBN: 978-1-118-10227-5
The fast-growing popularity of Android smartphones and tablets creates huge opportunities for 
developers. If you’re an experienced developer, you can start creating robust mobile Android apps 
right away with this professional guide to Android 4 application development. Written by one 
of Google’s lead Android developer advocates, this practical book walks you through a series of 
hands-on projects that illustrate the features of the Android SDK. That includes all the new APIs 
introduced in Android 3 and 4, including building for tablets, using the Action Bar, Wi-Fi Direct, 
NFC Beam, and more. 
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