Parallel .

Programming
with Intel Parallel Studio XE

Foreword by James Reinders, Director, Parallel Evangelist, Intel

Stephen Blair-Chappell, Andrew Stokes

PARALLEL PROGRAMMING
WITH INTEL® PARALLEL STUDIO XE

FOREWORD ...ttt ittt iitiieneienneneneneenensonenenennenennnns XXV
INTRODUCTION. ..ottt ittt ittt ittt ittt ittt itnettnneeenneeenneeenns XXVii
» PARTI AN INTRODUCTION TO PARALLELISM

CHAPTER1 Parallelism Todayoii i e e 3
CHAPTER2 An Overview of Parallel Studio XE 25
CHAPTER 3 Parallel Studio XE forthe Impatient 53
» PARTII USING PARALLEL STUDIO XE

CHAPTER4 Producing Optimized Code i 87
CHAPTERS5 Writing Secure Code i e 131
CHAPTER 6 Whereto Parallelize. 155
CHAPTER 7 Implementing Parallelism 181
CHAPTER 8 Checking for Errorsot 217
CHAPTER 9 Tuning Parallel Applications. i 251
CHAPTER 10 Parallel Advisor—Driven Design. 277
CHAPTER 11 Debugging Parallel Applications. 309
CHAPTER 12 Event-Based Analysis with VTune Amplifier XE................... 341
» PART Il CASE STUDIES

CHAPTER 13 The World’s First Sudoku “Thirty-Niner” 377
CHAPTER 14 Nine Tips to Parallel-Programming Heaven 397
CHAPTER 15 Parallel Track Fitting inthe CERN Collider 419
CHAPTER 16 ParallelizingLegacy Code i 463
11T 5 = 489

Parallel Programming
with Intel® Parallel Studio XE

Parallel Programming
with Intel® Parallel Studio XE

Stephen Blair-Chappell
Andrew Stokes

WILEY
John Wiley & Sons, Inc.

Parallel Programming with Intel® Parallel Studio XE

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-89165-0

ISBN: 978-1-118-22113-6 (ebk)
ISBN: 978-1-118-23488-4 (ebk)
ISBN: 978-1-118-25954-2 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http: //
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2011945570

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Intel is a registered trademark of Intel Corporation. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

ABOUT THE AUTHORS

STEPHEN BLAIR-CHAPPELL has been working for Intel in the Software and Services Group (SSG) for
the past 15 years. During his time with Intel, Stephen has worked on the compiler team as a devel-
oper and, more recently, as a technical consulting engineer helping users make the best use of the
Intel software tools. Prior to working with Intel, Stephen was managing director of the UK office of
CAD-UL, a German-based compiler and debugger company. During his time at CAD-UL Stephen
was primarily responsible for technical support in the UK. Projects he worked on during that time
included the design and specification of a graphical linker; the development and teaching of pro-
tected mode programming courses to programmers; and support to many varied companies in the
telecoms, automotive, and embedded industries.

Stephen first studied electronics as a technician at Matthew Boulton Technical College, and later

studied Applied Software Engineering at Birmingham City University (BCU), where he also eventu-
ally taught. Outside work, Stephen is a regular contributor to the life of his local church, St Martin
in the Bull Ring, Birmingham, where he plays the organ, preaches, and leads the occasional service.

ANDREW STOKES is a retired lecturer in software and electronics at Birmingham City University
(BCU), UK. Prior to lecturing, Andrew was a software developer in the research and commercial
fields. He first started software development in the 1980s at Cambridge University Engineering
Laboratory, where he worked on software for scanning electron microscopes. These software devel-
opments continued in the commercial field, where he worked on graphical programs in support of a
Finite Element Analysis package.

During his time at BCU, Andrew developed many software simulation tools, including programs
for artificial neural network simulation, CPU simulation, processor design, code development tools,
and a PROLOG expert system. Andrew continues these software interests during retirement, with
a healthy interest in games programming, such as 3-D chess, where parallel programming is para-
mount. Away from computing, Andrew is a keen gardener and particularly likes the vibrant colors
of the typical English garden.

ABOUT THE TECHNICAL EDITORS

KITTUR GANESH is a Senior Technical Consulting Engineer at Intel, providing consulting, sup-
port, and training for more than 7 years on various software products targeting Intel architecture.
Previously, for more than 6 years at Intel, Kittur designed and developed software primarily used
for fracturing design data of Intel chips. Prior to joining Intel more than 13 years ago, Kittur was
involved in developing commercial software in the EDA industry for more than 10 years. Kittur has
a M..S. (Computer Science), M.S. (Industrial Engineering) and a B.S. (Mechanical Engineering).

PABLO HALPERN is a Senior Software Engineer at Intel Corporation, working in the parallel runtime
libraries group. He is a member of the C++ Standards Committee and helped produce the recent
C++11 revision of the standard. Pablo is the author of the well-received book, The C++ Standard
Library from Scratch and a coauthor of the paper, Reducers and Other Cilk++ Hyperobjects, which
was named best paper at ACM SPAA in 2009. He has more than three decades of experience in the
software industry, with expertise in C++, language and compiler design, large-scale development
and testing, and network management protocols. During this time, he has developed and taught
both beginning and advanced courses on C++ programming. He currently lives in New Hampshire
with his wife and two children.

CREDITS

ACQUISITIONS EDITOR
Paul Reese

PROJECT EDITOR
John Sleeva

TECHNICAL EDITORS
Kittur Ganesh
Pablo Halpern

PRODUCTION EDITOR
Daniel Scribner

COPY EDITOR
Kim Cofer

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
Mark Steven Long

INDEXER
Robert Swanson

COVER DESIGNER
LeAndra Young

COVER IMAGE
© Orlando Rosu / iStockPhoto

ACKNOWLEDGMENTS

FIRST, WE WOULD LIKE TO THANK our families and friends for being supportive and patient while we
wrote this book.

We want to thank everyone at Wrox for giving us this opportunity. Thanks to Paul Reese, the
acquisitions editor, who first asked us to write this book; to John Sleeva, the project editor, without
whose help and guidance this book would not have made it to completion; to Kim Cofer, the copy
editor; to Kittur Ganesh and Pablo Halpern, the technical editors, whose timely advice was a great
help; to Gaston Hillar, who assisted by providing further technical reviews; and to the all the people
in the graphics department, for your work on all the figures.

We’d like to say a special “thank you” to those who have contributed to the book, especially to
Mark Davis, who wrote Chapter 10, “Parallel Advisor-Driven Design,” and to Fred Tedeschi, who
wrote Chapter 11, “Debugging Parallel Applications.”

We also want to thank those who allowed us to write about their experiences in the case studies.
Thanks to Lars Peters Endresen and Havard Graff for their work in Chapter 13, “The World’s First
Sudoku ‘Thirty-Niner’”; to Dr. Yann Golanski, for his input into Chapter 14, “Nine Tips to Parallel-
Programming Heaven”; and to Hans Pabst, for his help with Chapter 15, “Parallel Track Fitting in
the CERN Collider.”

Our appreciation also goes to the many colleagues from Intel who tirelessly reviewed different
chapters — in particular, Levent Akyil, Bernth Andersson, Julian Horn, Martyn Corden, Maxym
Dmytrychenko, Max Domeika, Hubert Haberstock, Markus Metzger, Mark Sabahi, and Thomas
Zipplies.

Finally, thanks to James Reinders, who encouraged the writing of this book and has been kind
enough to provide the Foreword.

— STEPHEN BLAIR-CHAPPELL
ANDREW STOKES

CONTENTS

FOREWORD XXV
INTRODUCTION XXVii
CHAPTER 1: PARALLELISM TODAY 3
The Arrival of Parallelism 3
The Power Density Race 3
The Emergence of Multi-Core and Many-Core Computing 4
The Top Six Challenges 7
Legacy Code 7
Tools 7
Education 8
Fear of Many-Core Computing 8
Maintainability 8
Return on Investment 9
Parallelism and the Programmer 9
Types of Parallelism 9
Intel’s Family of Parallel Models 10
Cilk Plus and Threading Building Blocks 10
Domain-Specific Libraries il
Established Standards 1
Research and Development 1
Choosing the Right Parallel Constructs 1
High-Level vs. Low-Level Constructs 12

Data Parallelism vs. General Parallelism 12
Examples of Mixing and Matching Parallel Constructs 12
Parallel Programming Errors 15
Data Races 15
Determinacy Races 15
Deadlocks 16

Poor Load Balancing 17
Threading/Tasking Overhead 17
Synchronization Overhead 17
Memory Errors 17

CONTENTS

Speedup and Scalability 19
Calculating Speedup 19
Predicting Scalability 21

Parallelism and Real-Time Systems 22
Hard and Soft Real-Time 22
A Hard Real-Time Example using RTX 23
Advice for Real-Time Programmers 23

Summary 24
CHAPTER 2: AN OVERVIEW OF PARALLEL STUDIO XE 25
Why Parallel Studio XE? 25
What'’s in Parallel Studio XE? 26
Intel Parallel Studio XE 26
Intel Parallel Advisor 28

The Advisor Workflow 28
Surveying the Site 28
Annotating Code 29
Checking Suitability 29
Checking Correctness 30
Replacing Annotations 31

Intel Parallel Composer XE 31

Intel C/C++ Optimizing Compiler 31
Profile-Guided Optimization 32
Cilk Plus 33

OpenMP 37

Intel Threading Building Blocks 38

Intel Integrated Performance Primitives 40
An Application Example 41
IPP and Threading 42

Intel Parallel Debugger Extension 43

Intel Debugger 43

Math Kernel Library 44

VTune Amplifier XE 45

Hotspot Analysis 46

Concurrency Analysis 46

Locks and Waits Analysis 46

Dissassembly Source View 48

Parallel Inspector XE 48

Predefined Analysis Types 48

Errors and Warnings 49

Xiv

CONTENTS

Static Security Analysis 51
Different Approaches to Using Parallel Studio XE 52
Summary 52
CHAPTER 3: PARALLEL STUDIO XE FOR THE IMPATIENT 53
The Four-Step Methodology 54
Example 1: Working with Cilk Plus 54
Obtaining a Suitable Serial Program 55
Running the Serial Example Program 57
Creating the Project 57
Running the Serial Version of the Code 58

Step 1: Analyze the Serial Program 60
Using Intel Parallel Amplifier XE for Hotspot Analysis 60

Step 2: Implement Parallelism using Cilk Plus 62
Step 3: Debug and Check for Errors 63
Checking for Errors 64
Narrowing the Scope of the Shared Variables 67
Adding Cilk Plus Reducers 68
Running the Corrected Application 71

Step 4: Tune the Cilk Plus Program 71
Example 2: Working with OpenMP 73
Step 1: Analyze the Serial Program 74
Step 2: Implement Parallelism using OpenMP 74
Step 3: Debug and Check for Errors 75
Making the Shared Variables Private 75
Adding a Reduction Clause 76

Step 4: Tune the OpenMP Program 76
Improving the Load Balancing 80
Summary 84
CHAPTER 4: PRODUCING OPTIMIZED CODE 87
Introduction 88
The Example Application 89
Optimizing Code in Seven Steps 20
Using the Compiler’s Reporting Features 91
Step 1: Build with Optimizations Disabled 91
Step 2: Use General Optimizations 93

XV

CONTENTS

Using the General Options on the Example Application 94
Generating Optimization Reports Using /Qopt-report 95

Step 3: Use Processor-Specific Optimizations 96
What Is Auto-Vectorization? 97
Auto-Vectorization Guidelines 98
Turning On Auto-Vectorization 99
Enhancing Auto-Vectorization 99
Building for Non-Intel CPUs 100
Determining That Auto-Vectorization Has Happened 100
When Auto-Vectorization Fails 101
Helping the Compiler to Vectorize 103

Step 4: Add Interprocedural Optimization 108
Adding Interprocedural Optimization to the Example Application 108

The Impact of Interprocedural Optimization on Auto-Vectorization 109

Step 5: Use Profile-Guided Optimization 12
Benefits of Profile-Guided Optimization 12

The Profile-Guided Optimization Steps 13

The Results 116

Step 6: Tune Auto-Vectorization 116
Activating Guided Auto-Parallelization 116

An Example Session 117
More on Auto-Vectorization 118
Building Applications to Run on More Than One Type of CPU 18
Additional Ways to Insert Vectorization 120
Using Cilk Plus Array Notation 121
Manual CPU Dispatch: Rolling Your Own CPU-Specific Code 124
Source Code 125
Summary 130
CHAPTER 5: WRITING SECURE CODE 131
A Simple Security Flaw Example 132
Understanding Static Security Analysis 134
False Positives 135
Static Security Analysis Workflow 136
Conducting a Static Security Analysis 136
Investigating the Results of the Analysis 138
Working with Problem States 140

The Build Specification 145
Creating a Build Specification File by Injection 146
Utility Options 146

The Directory Structure of the Results 147

XVi

CONTENTS

Cilk Plus Reduction

Using Static Security Analysis in a QA Environment 149
Regression Testing 149
Metrics Tracking 150

Source Code 152

Summary 154

CHAPTER 6: WHERE TO PARALLELIZE 155

Different Ways of Profiling 156

The Example Application 157

Hotspot Analysis Using the Intel Compiler 158
Profiling Steps 159
An Example Session 160
Overhead Introduced by Profiling 163

Hotspot Analysis Using the Auto-Parallelizer 165
Profiling Steps 165
An Example Session 166
Programming Guidelines for Auto-Parallelism 168

Additional Options 168
Helping the Compiler to Auto-Parallelize 169

Hotspot Analysis with Amplifier XE 171
Conducting a Default Analysis 171
Finding the Right Loop to Parallelize 172
Large or Long-Running Applications 174

Reducing the Size of Data Collected 174

Using the Pause and Resume APIs 175
Source Code 177
Summary 180
CHAPTER 7: IMPLEMENTING PARALLELISM 181

C or C++, That Is the Question 182

Taking a Simple Approach 183

The Beauty of Lambda Functions 183

Parallelizing Loops 185
The for Loop 185

The Cilk Plus cilk_for Loop 185
The OpenMP for Loop 187
The TBB for Loop 188
Nested for Loops 188
The for Loop with Reduction 189

190

xvii

CONTENTS

OpenMP Reduction 190

TBB Reduction 191

The while Loop 191
Cilk Plus 191
OpenMP 192

TBB 193
Parallelizing Sections and Functions 193
The Serial Version 194
Cilk Plus 195
OpenMP 196
TBB 197
Parallelizing Recursive Functions 198
The Serial Version 198
Cilk Plus 199
OpenMP 200
TBB 200
Parallelizing Pipelined Applications 201
Parallel Pipelined Patterns 202
The Serial Version 203
OpenMP 205
TBB 206
Parallelizing Linked Lists 208
Serial Iteration of the Linked List 209
Parallel Iteration of the Linked List 209
Source Code 21
Summary 215
CHAPTER 8: CHECKING FOR ERRORS 217
Parallel Inspector XE Analysis Types 218
Detecting Threading Errors 219
Types of Threading Problems 219
Thread Information 219
Potential Privacy Infringement 220

Data Races 220
Deadlocks 220

An Example Application Involving Deadlocks 220
Detecting Deadlocks 221
Detecting Data Races 225
Running the Threaded Program 225
First Results of the Analysis 225

xviii

CONTENTS

Controlling the Right Level of Detail 227
Testing All the Code Paths 227
Avoiding Being Overwhelmed by the Amount of Data 228
Using Suppression Files 228

Fixing Data Races 233

Using Cilk Plus 233
Cilk Plus Reducers 234
Cilk Plus Holders 234

Using OpenMP 236
Using Locks 236
Using Critical Sections 236
Using Atomic Operations 236
Using a reduction Clause 237

Using TBB 237

Detecting Memory Errors 238

Types of Memory Errors 239

An Example Application for Memory Analysis 240

Creating a Custom Analysis 245
The Source Code 247
Summary 249
CHAPTER 9: TUNING PARALLEL APPLICATIONS 251
Introduction 251
Defining a Baseline 252

Ensuring Consistency 252

Measuring the Performance Improvements 253

Measuring the Baseline Using the Amplifier XE Command Line 253

Identifying Concurrency Hotspots 255
Thread Concurrency and CPU Usage 255
Identifying Hotspots in the Code 256

Analyzing the Timeline 258
Questions to Answer 259
Fixing the Critical Section Hotspot 260

Analyzing an Algorithm 261

Conducting Further Analysis and Tuning 264

Using Other Viewpoints 268

Using Locks and Waits Analysis 268

Other Analysis Types 269

Using the Intel Software Autotuning Tool 271

Source Code 272

Summary 275

Xix

CONTENTS

CHAPTER 10: PARALLEL ADVISOR-DRIVEN DESIGN 277
Using Parallel Advisor 277
Understanding the Advisor Workflow 279
Finding Documentation 280
Getting Started with the NQueens Example Program 280
Surveying the Site 282
Running a Survey Analysis 282
The Survey Report 282
Finding Candidate Parallel Regions 283

The Survey Source Window 284

How Survey Analysis Works 285
Annotating Your Code 286
Site Annotations 286
Lock Annotations 287
Adding Annotations 288
Checking Suitability 290
Running a Suitability Analysis 290
The Suitability Report 291
Parallel Choices 292
Using the Suitability Report 293

How Suitability Analysis Works 294
Checking for Correctness 295
Running a Correctness Analysis 296
The Correctness Report 296

The Correctness Source Window 297
Understanding Common Problems 298
Using the Correctness Report 301
Correctness Analysis Limitation 301
How Correctness Analysis Works 302
Replacing Annotations 304
The Summary Report 304
Common Mappings 305
Summary 308
CHAPTER 11: DEBUGGING PARALLEL APPLICATIONS 309
Introduction to the Intel Debugger 309
The Parallel Debugger Workflow 310
Using the Intel Debugger to Detect Data Races 31
Building the Serial Program 312

Adding Parallelism 313

XX

CONTENTS

Observing the Results 315
Serializing the Parallel Code 315
Detecting Data Races 317
Using Filters 319
Using Suppression Filters to Discard Unwanted Events 319
Creating the Filters 320
Fixing the Data Races 323
Using Focus Filters to Examine a Selected Portion of Code 325
Creating the Filters 327
Correcting the mbox Data Race 329
More About Filters 332
Runtime Investigation: Viewing the State of Your Application 333
Using the OpenMP Tasks Window to Investigate Variables
Within a Parallel Region 334
Using the OpenMP Spawn Tree Window to View the Behavior
of Parallel Code 336
Summary 339
CHAPTER 12: EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE 341
Testing the Health of an Application 342
What Causes a High CPI? 342
Is CPIl on Its Own a Good Enough Measure of Health? 343
Conducting a System-Wide Analysis 343
Conducting a Hotspot Analysis 345
Hotspot Analysis Types 346
User Mode Hotspots Versus Lightweight Hotspots 346
Finding Hotspots in Code 350
Conducting a General Exploration Analysis 352
A Quick Anatomy Class 355
CPU Internals 355
Categories of Execution Behavior 356
Fixing Hardware Issues 358
Reducing Cache Misses 359
Using More Efficient Instructions 360
Using the Intel Compiler 361
Using Amplifiers XE’s Other Tools 364
Using Predefined Analysis Types 364
Using Viewpoints 364
Using APIs 366
The Pause and Resume API 366
The Frame API 368

XXi

CONTENTS

Using Amplifier XE from the Command Line 369
Finding More Information 370
The Example Application 371
Summary 374
CHAPTER 13: THE WORLD’S FIRST SUDOKU “THIRTY-NINER” 377
The Sudoku Optimization Challenge 377
The Nature of the Challenge 378
The High-Level Design 379
Optimizing the Solver Using SSE Intrinsics 380
Adding Parallelism to the Generator 382
The Results 383
Hands-On Example: Optimizing the Sudoku Generator 384
About the Code 385
The Solver 386
Finding Hotspots in the Solver 388
Optimizing the Code Using SSE Intrinsics 390

The Generator 390
Finding the Hotspots in the Generator 391
Adding Parallelism to the Generator Using OpenMP 391
Checking Correctness in the Generator 392
Fixing Correctness in the Generator 393
Tuning Performance 394
Summary 396
CHAPTER 14: NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN 397
The Challenge: Simulating Star Formation 397
The Formation of Stars 398
The Hands-On Activities 399
Performance Tuning 400
Application Heuristics 400
Finding the Hotspots 400
Using a Tree-Based N-Bodies Simulation 403
Using a Hashed Octree 405
Architectural Tuning 407
Adding Parallelism 410
Identifying the Hotspot and Discovering the Calling Sequence 410

xXii

CONTENTS

Implementing Parallelism 410
Detecting Data Races and Other Potential Errors 412
Correcting the Data Race 413
Load Balancing 414
The Results 415
Summary 416
CHAPTER 15: PARALLEL TRACK FITTING IN THE CERN COLLIDER 419
The Case Study 419
The Stages of a High-Energy Physics Experiment 420
The Track Reconstruction Stages 421
Track Finding 423
Track Fitting 425
What Is Array Building Blocks? 427
Parallelizing the Track-Fitting Code 430
Adding Array Building Blocks to Existing Code 430
Code Refactoring 431
An Example of Class Change 431

An Example of Kernel Code Change 432
Changing to Structure of Arrays 433

The Results 434
Correctness 435
Speedup and Scalability 435
Parallelism and Concurrency 438

The Hands-On Project 440
The Activities 440
The Projects 441
Building and Running the Serial Version 441
The Serial Track-Fitting Code 441

The Application Output 443
Parallelizing the Track-Fitting Code 444
Configuring the Array Building Blocks Build Environment 444
Writing the Parallel Driver 448
Identifying the Kernel in the Driver 449
Allocating and Binding 450
Invoking the Kernel 452
Implementing the Kernel 454
Summary 460

xxiii

CONTENTS

CHAPTER 16: PARALLELIZING LEGACY CODE 463
Introducing the Dhrystone Benchmark 464
The Structure of the Code 464
Global and Shared Variables 464
The Hands-On Projects 466
Building the Projects 466
Project Targets 466

An Example Build 467
Adding Amplifier XE APIs to Timestamp the Dhrystone Loop 468
Viewing the Results 469
Parallelizing the C Version 472
Attempt One: Synchronizing Shared Variable Access 472
The Results 473

Is It Successful? 475
Attempt Two: Duplicating Global Variables 476
Initializing and Accessing the Global Variables 477

The Results 477

Is It Successful? 478
Parallelizing the C++ Version 478
Attempt Three: Wrapping the Application in a C++ Class 479
Scheduling the Parallel Runs 480
Silencing the Output 480

The Results 481

Is It Successful? 482
Attempt Four: Using Cilk Plus Holders 482
Developing the Wrappers 483

The Results 486

Is It Successful? 486
Overview of the Results 487
Performance 487
Editing Effort 488
Summary 488
INDEX 489

XXiv

FOREWORD

Learning from real examples can filter theoretical distractions and inject less glamorous realities.
Real experiences and examples help us to see what matters the most.

In this book, I am pleased that Stephen shares tips from his interviews to understand how to really
use tools and develop parallel code. The result is a book with value that is not apparent from simply
browsing the table of contents.

For instance, I know data layout critically affects the ability to process data in parallel, but I like
to be convinced by real examples. The topic of data layouts, such as the need to use “structures

of arrays” instead of “arrays of structures” (SOA vs. AOS), is brought to the forefront by Stephen
asking the provocative question, “If you were doing the project again, is there anything you would
do differently?” in the “Parallel Track Fitting in the CERN Collider” interview (Chapter 15). In
response, the interviewed developer highlights the importance of data models to getting effective
parallel programs. “The World’s First Sudoku ‘Thirty-Niner’” (Chapter 13) highlights that “much
of the time taken was used in reworking the code so that there was less need to share data between
the different running tasks.”

The ubiquitous nature of parallelism affects every aspect of programming today. I’'m encouraged by
Stephen’s work, which walks through each aspect instead of just coding. Covering the issues of dis-
covery, debugging, and tuning is critical to understanding the challenges of parallel programming.
I hope this book is an inspiration to all who read it.

“Think Parallel.”

—JAMES REINDERS

Director, Parallel Evangelist, Intel
Portland, Oregon,

March 2012

INTRODUCTION

Nearly all the computers sold today have a multi-core processor, but only a small number of applica-
tions are written to take advantage of the extra cores. Most programmers are playing catch-up. A
recent consultation with a group of senior programming engineers revealed the top three hurdles in
adopting parallelism: the challenges of porting legacy code, the lack of education, and the lack of
the right kinds of programming tools. This book helps to address some of these hurdles.

This book was written to help you use Intel Parallel Studio XE to write programs that use the latest
features of multi-core CPUs. With the help of this book, you should be able to produce code that

is fast, safe, and parallel. In addition to helping you write parallel code, some chapters cover other
optimization topics that you can use in your code development, regardless of whether or not you are
developing parallel code. Most of the chapters include hands-on activities that will help you apply
the techniques being explained.

WHO THIS BOOK IS FOR

If you are writing parallel code or are interested in writing parallel code, this book is for you. The
target audience includes:

> Cand C++ developers who are adding parallelism to their code. The required technical skill
is “average” to “experienced.” Knowledge of C programming is a prerequisite.

Students and academics who are looking to gain practical experience in making code parallel.

» Owners and users of Intel Parallel Studio XE.

WHAT THIS BOOK COVERS

This book, written using Parallel Studio XE 2011, shows how you can profile, optimize, and paral-
lelize your code. By reading this book, you will learn how to:

> Analyze applications to determine the best place to implement parallelism.
Implement parallelism using a number of language extensions/standards.
Detect and correct difficult to find parallel errors.

Tune parallel programs.

Write code that is more secure.

Y VYV VY Y Y

Use the compiler switches to create optimized code that takes advantage of the latest CPU
extensions.

INTRODUCTION

>

Perform an architectural analysis to answer the question, “Is my program making the best
use of the CPU?”

HOW THIS BOOK IS STRUCTURED

The book is comprised of the following parts:

>

>

>

Part I: An Introduction to Parallelism
Part II: Using Parallel Studio XE
Part III: Case Studies

Every chapter in the book, with the exception of the first two chapters, offers hands-on activities.
These activities are an important part of the book, although you can read the book without com-
pleting them.

Chapters 6-9 are intended to be used in sequence, showing how to add parallelism to your code
using a well-tested, four-step methodology (analyze, implement, error-check, and tune). Examples of
parallelism are provided using Cilk Plus, OpenMP, and Threading Building Blocks.

The case studies are based on larger projects and show how Parallel Studio XE was used to parallel-
ize them.

WHAT YOU NEED TO USE THIS BOOK

You need the following to use this book:

>

XXviii

Intel Parallel Studio XE. You can download an evaluation version from the Intel
Software Evaluation Center (http://software.intel.com/en-us/articles/
intel-software-evaluation-center/).

If you are using Windows:

> Visual Studio (not the Express edition) version 2005, 2008, or 2010
» Windows XP, Windows 2008, or Windows 7

If you are using Linux:
> An installation of the GNU GCC compiler development tools

> Debian* 6.0; Red Hat Enterprise Linux* 4 (Deprecated), 5, 6; SUSE Linux Enterprise
Server* 10, 11 SP1; or Ubuntu* 10.04

A PC based on an IA-32 or Intel 64 architecture processor supporting the Intel Streaming
SIMD Extensions 2 (Intel SSE2) instructions (Intel Pentium 4 processor or later), or compat-
ible non-Intel processor. If you use a non-Intel processor, you will not be able to carry out
the activities in Chapter 12, “Event-Based Analysis with VTune Amplifier XE.”

http://software.intel.com/en-us/articles/intel-software-evaluation-center
http://software.intel.com/en-us/articles/intel-software-evaluation-center
http://software.intel.com/en-us/articles/intel-software-evaluation-center
http://software.intel.com/en-us/articles/intel-software-evaluation-center
http://software.intel.com/en-us/articles/intel-software-evaluation-center
http://software.intel.com/en-us/articles/intel-software-evaluation-center

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotten
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

As for styles in the text:

> We italicize new terms and important words when we introduce them.

> We show keyboard strokes like this: Ctrl+A.

> We show filenames, URLs, and code within the text like so: persistence.properties.

> We present code in two different ways:
We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the Web site is highlighted by the

following icon:

Available for
download on
Wrox.com

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

Code snippet filename

XXiX

http://www.wrox.com

INTRODUCTION

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-89165-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages
/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport .shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

XXX

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http: //p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

http://www.wrox.com/dynamic/books/download
http://www.wrox.com
http://www.wrox.com/misc-pages
http://www.wrox.com/contact
http://p2p.wrox.com

INTRODUCTION

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, You must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

PART |
An Introduction to Parallelism

» CHAPTER 1: Parallelism Today
» CHAPTER 2: An Overview of Parallel Studio XE

» CHAPTER 3: Parallel Studio XE for the Impatient

Parallelism Today

WHAT’S IN THIS CHAPTER?

> How parallelism arrived and why parallel programming is feared

> Different parallel models that you can use, along with some potential
pitfalls this new type of programming introduces

> How to predict the behavior of parallel programs

The introduction of multi-core processors brings a new set of challenges for the programmer.
After a brief discussion on the power density race, this chapter looks at the top six parallel
programming challenges. Finally, the chapter presents a number of different programming
models that you can use to add parallelism to your code.

THE ARRIVAL OF PARALLELISM

Parallelism is not new; indeed, parallel computer architectures were available in the 1950s.
What is new is that parallelism is ubiquitous, available to everyone, and now in every
computer.

The Power Density Race

Over the recent decades, computer CPUs have become faster and more powerful; the clock
speed of CPUs doubled almost every 18 months. This rise in speed led to a dramatic rise in
the power density. Figure 1-1 shows the power density of different generations of processors.
Power density is a measure of how much heat is generated by the CPU, and is usually dis-
sipated by a heat sink and cooling system. If the trend of the 1990s were to continue into the
twenty-first century, the heat needing to be dissipated would be comparable to that of the sur-
face of the sun — we would be at meltdown! A tongue-in-cheek cartoon competition appeared
on an x86 user-forum website in the early 1990s. The challenge was to design an alternative

4 | CHAPTER1 PARALLELISM TODAY

use of the Intel Pentium Processor. The winner suggested a high-tech oven hot plate design using
four CPUs side-by-side.

ehere Sun’s surface j——~
1,000 Rocket nozzle Ji//
b //
2~ /
SNE 100 Nuclear reactor Ji//
9] /
3 = ya
a 8086 Hot plate J
= Pentium
processors
1
'70 '80 90 '00 10

FIGURE 1-1: The power density race

Increasing CPU clock speed to get better software performance is well established. Computer game
players use overclocking to get their games running faster. Overclocking involves increasing the
CPU clock speed so that instructions are executed faster. Processors often are run at speeds above
what the manufacturer specifies. One downside to overclocking is that it produces extra heat, which
needs dissipating. Increasing the speed of a CPU by just a fraction can result in a chip that runs
much hotter. So, for example, increasing a CPU clock speed by just over 20 percent causes the power
consumption to be almost doubled.

Increasing clock speed was an important tool for the silicon manufacturer. Many of the perfor-
mance claims and marketing messages were based purely on the clock speed. Intel and AMD typi-
cally were leapfrogging over each other to produce faster and faster chips — all of great benefit

to the computer user. Eventually, as the physical limitations of the silicon were reached, further
increases in CPU speed gave diminishing returns.

Even though the speed of the CPU is no longer growing rapidly, the number of transistors used in
CPU design is still growing, with the new transistors used to supply added functionality and per-
formance. Most of the recent performance gains in CPUs are because of improved connections to
external memory, improved transistor design, extra parallel execution units, wider data registers
and buses, and placing multiple cores on one die. The 3D-transistor, announced in May 2011, which
exhibits reduced current leakage and improved switching times while lowering power consumption,
will contribute to future microarchitecture improvements.

The Emergence of Multi-Core and Many-Core Computing

Hidden in the power density race is the secret to why multi-core CPUs have become today’s solution
to the limits on performance.

The Arrival of Parallelism | 5

Rather than overclocking a CPU, if it were underclocked by 20 percent, the power consumption
would be almost half the original value. By putting two of these underclocked CPUs on the same
die, you get a total performance improvement of more than 70 percent, with a power consumption
being about the same as the original single-core processor. The first multi-core devices consisted of
two underclocked CPUs on the same chip. Reducing power consumption is one of the key ingredi-
ents to the successful design of multi-core devices.

Gordon E. Moore observed that the number of transistors that can be placed on integrated circuits
doubles about every two years — famously referred to as Moore’s Law. Today, those transistors are
being used to add additional cores. The current trend is that the number of cores in a CPU is dou-
bling about every 18 months. Future devices are likely to have dozens of cores and are referred to as
being many-core.

It is already possible to buy a regular PC machine that supports many hardware threads. For exam-
ple, the workstation used to test some of the example programs in this book can support 24 parallel
execution paths by having:

> A two-socket motherboard
» Six-core XEON CPUs

> Hyper-threading, in which some of the internal electronics of the core are duplicated to
double the amount of hardware threads that can be supported

One of Intel’s first many-core devices was the Intel Teraflop Research Chip. The processor, which
came out of the Intel research facilities, had 80 cores and could do one teraflop, which is one tril-
lion floating-point calculations per second. In 2007, this device was demonstrated to the public. As
shown in Figure 1-2, the heat sink is quite small — an indication that despite its huge processing
capability, it is energy efficient.

FIGURE 1-2: The 80-core Teraflop Research Chip

6 | CHAPTER1 PARALLELISM TODAY

There is the huge difference in power consumption between the lower and higher clock speeds;
Table 1-1 provides sample values. With a one-teraflop performance (1 x 10'? floating-point calcula-
tions per second), 62 watts of power is used; to get 1.81 teraflops of performance, the power
consumption is four times larger.

TABLE 1-1: Power-to-Performance Relationship of the Teraflop Research Chip

SPEED POWER PERFORMANCE
(GHZ) (WATTS) (TERAFLOPS)
3.16 62 1.01
5.1 175 1.63
5.7 265 1.81

The Intel Many Integrated Core Architecture (MIC) captures the essentials of Intel’s current many-
core strategy (see Figure 1-3). Each of the cores is connected together on an internal network.
A 32-core preproduction version of such devices is already available.

VECTOR VECTOR VECTOR VECTOR
IA CORE IA CORE IA CORE IA CORE

INTERPROCESSOR NETWORK

CACHE CACHE CACHE CACHE

CACHE CACHE _— CACHE CACHE

INTERPROCESSOR NETWORK

FIXED FUNCTION LOGIC

VECTOR VECTOR VECTOR VECTOR
IA CORE IA CORE IA CORE IA CORE

n
LL
]
<
L
o
LU
—
=
@)
=
ie]
c
@©
>
@
o
=
LU
b=

FIGURE 1-3: Intel’s many-core architecture

Many programmers are still operating with a single-core computing mind-set and have not taken up
the opportunities that multi-core programming brings.

For some programmers, the divide between what is available in hardware and what the software is
doing is closing; for others, the gap is getting bigger.

Adding parallelism to programs requires new skills, knowledge, and the appropriate software devel-
opment tools. This book introduces Intel Parallel Studio XE, a software suite that helps the C\C++
and Fortran programmer to transition from serial programmer to parallel programmer. Parallel
Studio XE is designed to help the programmer in all phases of the development of parallel code.

The challenge (and opportunity) for the developer is knowing how to reap the rewards of improved
performance through parallelism.

The Top Six Challenges | 7

THE TOP SIX CHALLENGES

In a recent open forum in Nice, France, a group of software programmers and project managers
were asked, “What’s stopping you adopting parallelism?” Many reasons were cited, but when the
comments were collated, a picture began to emerge of a number of commonly held reasons.

Those who took part in this exercise were from some of the key players in the software industry in
Europe, representing both well-established software houses and newer high-tech startup companies.
The views they expressed were founded on commercial and technical concerns — both rational and
irrational.

This book aims to show some practical parallel programming techniques you can use to address
some of these challenges.

Legacy Code

Adding parallelism to existing code does not sound that unusual. It is common for a programmer to
start off with serial code and incrementally introduce parallelism. In fact, the method described in
this book focuses on how to analyze serial programs, find out the best place for introducing parallel-
ism, and then debug and tune the parallel application.

Some developers spoke of having several million lines of code to maintain. Some of the code was
30 or 40 years old, with the original designers no longer working with the company. With such
a large code base, it is not always easy to understand how the code works. The style of old code
does not always lend itself to easy partitioning for parallelization. Concepts of information hid-
ing, modularization, and other standard software engineering practices are not always present in
legacy code.

Several years ago, while visiting a large telecom company, I found the following comment in some
C code: “If anyone knows what this code does, ring me on extension 1234.” The code was startup
code for a hand-rolled operating system and was part of a large monolithic code base, written 20 or
so years earlier. Understanding legacy code is not a new problem that has just reared its head. When
adding parallelism to legacy code, it is important that the legacy code is well understood.

Chapter 16, “Parallelizing Legacy Code,” shows you how to parallelize legacy
C code.

Tools

Almost all the developers at the Nice conference expressed a desire to have better tools for creating
and debugging parallel code. An ideal scenario was to have tools that just did all the parallelism
automatically, but most of those present at the forum recognized that this sort of solution was not
on the near horizon.

Tools should make implementing parallelism easier, not harder. They should integrate seamlessly
into the current developer’s environment to support both interactive and script-driven development.

8 | CHAPTER1 PARALLELISM TODAY

Programmers need good thread-aware tools for debugging parallel applications. Using printf () to
debug a serial application is fairly common; indeed, some developers do all their debugging using
printf (), claiming it is much easier than using a debugger. However, when debugging a parallel
program, using just printf () is impractical. At times it is necessary to be able to debug each thread
in a program, to examine the contents of each stack, and to single-step or break in specific threads.

Education

The conference delegates were concerned about educating two different groups of people: program-
mers and customers.

Several of those present said that their companies had one parallel specialist. Whenever any parallel-
ism was to be introduced into the code, the job was passed to the specialist. This kind of programming
is perceived as a niche topic and difficult for the general programmer to achieve.

Some participants felt that customers needed to be educated about parallelism. The purpose was to
set expectations. Developers feared that end users would expect unachievable performance improve-
ments when moving to multi-core machines.

Fear of Many-Core Computing

Programming for two or four cores seems within the scope of most projects, but programming for
80 cores looks daunting. Making sure that programs written for today’s multi-core machines will
run on the many-core machines of the future is perceived to be a difficult task.

This concern has two aspects. First, being concerned about the number of cores probably indicates
that there needs to be a change in the thinking of the developers. As in object-oriented program-
ming, the concepts of information hiding and data encapsulation are central; so, in today’s parallel
programming practices, programmers should not be concerned with how many cores are available.
When programming in parallel, the question “How many cores are there?” should not be asked.

The second aspect of this fear is the question of scalability. If a program runs well on 4 cores, is
it possible to check if it will also run well on a 24-core machine? Will there be a corresponding
speedup when moving to an architecture that has more cores?

Maintainability

Programmers want code that is easy to maintain. For some, the first thing they want is to avoid put-
ting low-level, machine-specific code in their programs. The parallelism should be expressed with
high-level abstractions that remain relevant across different generations of the project. Other devel-
opers look for help in tracking correctness and debugging applications.

Parallel Studio provides high-level parallel language support that makes code easier to understand
and debug. Amplifier, Inspector, and the Parallel Debugger Extension help to maintain the code
under development. The command-line versions of Amplifier and Inspector are ideal tools to add
to regression testing. The ability to compare the results of different runs of these tools helps to spot
potential problems.

Parallelism and the Programmer | 9

Return on Investment

Some of the programmers were afraid the effort spent parallelizing a program would not pay off.
Would the effort result in code that performs better? Would a parallelized program lead to increased
sales of the product? Would it not be better just buying a faster machine?

You can use Parallel Studio to find which part of the code is the best place to optimize. You can then
use this information to work out whether the likely effort will be considerable or easy.

Parallel Studio can help determine the performance benefit of adding parallelism. With Parallel
Advisor, you can model parallelism in your code before implementing it, asking questions such as
“What speedup will T achieve?” and “How scalable is my program?”

PARALLELISM AND THE PROGRAMMER

Today there is no “silver bullet” that will automatically make a serial program parallel. As a pro-
grammer, you have to make choices about what kind of parallelism you will use and in which
programming language models you will implement the parallelism.

Types of Parallelism
You can achieve parallelism in a number of ways, including:

> Distributed parallelism — Complete applications are farmed out to different nodes in a
cluster of computers. The Message Passing Interface (MPI), a send/receive message-passing
protocol, is used to distribute and manage the applications.

> Virtualization — This technique involves running several operating systems on one CPU.
Virtualization is often supported directly by the CPU. For example, a 2-core machine could
host two virtual machines, one on each core. Each virtual machine hosts its own operating
system with dedicated resources such as I/0O and memory. Some resources are shared.
A hypervisor helps manage the virtual machines and resources.

> Task-level parallelism — The focus is on work or tasks rather than threads. There may
be many more tasks than there are threads, with each task being scheduled by a runtime
scheduler.

> Thread-level parallelism — This parallelism is implemented within a program, with each of
the parallel parts running on separate threads. In a multi-core environment, each thread runs
on a separate core.

> Instruction-level parallelism — Most CPUs have several execution units; instruction-level par-
allelism is achieved by execution units executing in parallel. This is normally done automati-
cally by the CPU, but it can be influenced by the layout of a program’s code.

> Data-level parallelism — This parallelism relies on the CPU supporting single instruction,
multiple data (SIMD) operations, such as can be found in the various Streaming SIMD

10 |

CHAPTER1

PARALLELISM TODAY

Extensions (SSE). In this mode, one instruction operates on wide registers that could hold
several variables. So, for example, it is possible to compute four 32-bit additions with one
instruction, the results being held in a single 128-bit-wide register. The 2nd Generation Intel
Core architecture supports Intel Advanced Vector Extensions (AVX), increases the register
size to 256-bit wide registers, and introduces three operand instructions rather than the two
operand instructions found in SSE2.

You can use all these types of parallelism together. In this book we use examples of task-, thread-,
data-, and instruction-level parallelism.

Intel’s Family of Parallel Models

Intel’s family of parallel models consists of Cilk Plus, Threading Building Blocks (TBB), domain-
specific libraries, established standards, and some research and development products (see Figure 1-4).

Intel’s Family of Parallel Models

Intel Cilk Plus

C/C++ language
extensions to
simplify
parallelism

Open sourced

Also an Intel
product

Intel Threading
Building Blocks

Widely used C++
template library
for parallelism

Open sourced

Also an Intel
product

Domain-Specific
Libraries

Intel Integrated
Performance
Primitives

Intel Math Kernel
Library

Established
Standards

Message Passing
Interface (MPI)

OpenMP*

Coarray Fortran

OpenCL*

Research and
Development

Intel Concurrent
Collections

Intel Array
Building Blocks

Intel SPMD
Parallel Compiler

FIGURE 1-4: Intel’s family of parallel models

Cilk Plus and Threading Building Blocks
Cilk Plus and TBB are designed to work seamlessly together.

> Intel Cilk Plus is a C/C++ language extension that provides new keywords for describing parallel-

ism and a new notation for performing parallel computations on arrays. The language extensions
simplify task and vector parallelism and consist of keywords/reducers, array notations, elemental
functions, and a new pragma, #pragma simd, which can be used to force the compiler to vector-
ize code. Using Cilk Plus is one of the easiest ways to make a program parallel.

Intel Threading Building Blocks (TBB) is a C++ template library that provides tasks, parallel
algorithms, and containers.

TBB is a library, whereas Cilk Plus is a set of C/C++ language extensions implemented in the Intel
compiler.

Parallelism and the Programmer | 11

Domain-Specific Libraries

All the functions in fixed-function libraries are thread-safe and can be used in parallel programs.
Some functions are already threaded and can be used to add parallelism to a program.

>

Intel Integrated Performance Primitives (IPP) is a large collection of functions spread across
multiple domains, including cryptography, compression, signal processing, and multimedia.

Intel Math Kernel Library (MKL) is a collection of math functions used by the high-
performance computing (HPC) community. The library includes BLAS, LAPACK,
ScalaPACK1, sparse solvers, fast Fourier transforms, and vector math functionality.

Established Standards

The following standards can be used to make programs parallel:

>

Intel Message Passing Interface (MPI) is a well-established standard that uses a send/receive
protocol for running programs in parallel on a cluster of workstations.

Open Multi-Processing (OpenMP) is a pragma-based language extension for incrementally
adding parallelism to C, C++, and Fortran code.

Coarray Fortran is part of the Fortran 2008 standard and provides a standardized way of
doing parallel processing in Fortran.

Open Computing Language (OpenCL) is a standard for use on heterogeneous computing
environments. The language is based on C99.

Research and Development

The following parallel models are experimental and to be used for research only — that is, not for
producing a commercial product. They reside on the whatif.intel.com website.

>

Intel Concurrent Collections (CnC) is a parallel programming model that enables program-
mers to write parallel programs without being concerned about the low-level detail. Based on
C++, CnC is also available for use with Haskell.

Intel Array Building Blocks (ArBB) is a library that provides data-centric parallelization for
use on arrays. The run time involves a just-in-time (JIT) compiler.

Intel SPMD Parallel Compiler is an open-source compiler for single program multiple data
(SPMD) programs. At run time, multiple program instances execute in parallel on the CPU’s
SIMD execution units.

Choosing the Right Parallel Constructs

When writing parallel programs, it is not necessary to stick to one particular set of constructs; you
can mix and match constructs. This is not a new phenomenon, but the idea of mixing and matching
may be new to those who are not experienced in parallel programming. For some years the HPC
community has been mixing OpenMP and MPI constructs; and Windows programmers quite often
use the Win32 API InterlockedIncrement function rather than the #pragma omp critical con-
struct within their OpenMP programs.

12 | CHAPTER1 PARALLELISM TODAY

Parallel constructs have different le.vels of abStl‘aCthI.l. [T E——— JTE——
Some constructs are concerned mainly with the manipula- Parallelism Parallelism
tion of data, whereas other constructs are task-oriented

(see Figure 1-5).

High_Leve| vs. Low-Level Constructs FIGURE 1-5: Different levels of abstraction

The higher levels of abstractions are used to express intent and indicate to the parallel run time, or
the compiler, the desire that some code should be parallelized. Using the highest levels of abstraction
does not guarantee that code will operate in parallel; that decision is delegated to the run time.

The lower-level constructs exert more direct control over the parallelism. Using the lowest-level
constructs can sometimes break the parallelism and require expert knowledge. For example, the
careless use of locks in parallel code can lead to a situation in which the whole execution environ-
ment is stalled, unable to progress toward the completion of any task. Low-level constructs are often
tied to specific core count and do not scale automatically in a many-core architecture.

Data Parallelism vs. General Parallelism

Data parallelism is concerned mainly with operations on arrays of data. Some types of data parallel-
ism, such as SIMD, are supported directly in CPU hardware. Other techniques, such as the
manipulation of arrays, are supported by library and language extensions. Data parallelism has a
special significance in the era of the many-core computing, where huge numbers of cores are avail-
able on single-chip devices. Writing data-parallel code leads to code that is scalable and capable of
benefiting on the trend toward increasing numbers of cores.

General parallelism is the execution of separate tasks in parallel. Nonnumeric code is usually imple-
mented with task-parallel rather than data-parallel algorithms.

Examples of Mixing and Matching Parallel Constructs

The following two sections describe examples of mixing and matching parallel constructs. Intel’s
family of parallel models is intended to be used together, so mixing and matching the constructs is
anticipated and supported in Parallel Studio.

Cilk Plus and TBB

The code in Listing 1-1 uses a TBB-scalable allocator in a cilk_for loop. Each iteration of the
cilk_for loop dynamically allocates memory to the array of char pointers. The loop iterations are
balanced among available workers and run in parallel.

‘) LISTING 1-1: An example of using Cilk Plus and TBB

Available for #include <stdio.h>

dmg;‘fzglﬂ" #include <time.h>
#include <cilk/cilk.h>
#include <stdlib.h>

Parallelism and the Programmer | 13

#define MALLOC_SIZE 1
#define ARRAY_SIZE 10000000
#include "tbb/scalable_allocator.h"

char * array[ARRAY_SIZE];

int main(int argc, char* argvl[])
{
clock_t start, stop;

// get the start time
start = clock();

// load balance scalable malloc between available workers
cilk_for(int 1 = 0; 1 < ARRAY SIZE; i++)
{
array[i] = (char *)scalable_malloc (MALLOC_SIZE) ;
}

// free the blocks of memory
cilk_for(int 1 = 0; 1 < ARRAY SIZE; i++)
{

scalable_free(array[il);
}

// get the stop time
stop = clock();

// display the time taken
printf ("The time was %f seconds\n", ((double) (stop - start)/1000.0));
return 0;

code snippet Chapter1\1-1.cpp

Using a scalable memory allocator on a two-core PC (Intel Mobile Core 2 Duo T7300), the code
took 1.8 seconds to complete. When the normal malloc and free memory allocation functions
were used, the code took 12.6 seconds to complete. The speedup was achieved by combining the
Cilk Plus parallelism with the TBB scalable allocators together. The normal malloc function ensures
thread-safeness by putting locks around some of its internal code. Locks make the code thread safe,
but also slow down the code. The scalable_malloc function does not have locks, which means the
parallel code runs much faster.

Cilk Keywords and Array Notations

Listing 1-2 shows an example of using different features of Cilk Plus. The code takes advantage of
the parallelism provided by the CPU cores and the vector unit. The function declared in Lines 2
and 3 adds the two parameters x and y together and returns the new value. The __declspec
(vector) keyword causes the compiler to generate short vector versions of the function ef_add.
This elemental function is then applied to each element of the array in Lines 12, 18, and 24.

14 | CHAPTER1 PARALLELISM TODAY

‘) LISTING 1-2: An example of using Cilk keywords and array notations

Available for
download on
Wrox.com

1
2
3
4:
5
6
7
8

9:

include <cilk/cilk.h>

: __declspec (vector) double ef_add (double x, double y){

return x + y;

}

int main()

10:

11:
12:

13:

14:
15:
16:
17:
18:

{
double al[5];
double b[] = {1,2,3,4,5};
double c[] = {6,7,8,9,10};
// apply function to whole array
al:] = ef_add(b[:]1,c[:]);
al:] = 0;

int n = 2;
int s = 1;
// apply function to a sub range

19:

20:
21:
22:
23:
24
25:
0}

26

al0:n:s] = ef_add(b[0:n:s],c[0:n:s]);
al:1 = 0;
// apply function in parallel
cilk_for (int j = 0; j < n; ++3)
{

aljl = ef_add(b[j],cli]);
}

code snippet Chapteri\1-2.cpp

Three arrays (a, b, and c), which are declared outside this code snippet, are arrays of doubles. The
ef_add function is applied to array a in three different ways:

>

To a whole array — Line 12 is an example of applying the function ef_add to complete
arrays. Each element of array b is added to each element of array c, with the results written
into each element of array a.

al:] = ef_add(b[:]1,cl:]);

To part of an array — Line 18 is an example of applying the function ef_add on part of
an array. The calculation is applied on a subrange of the arrays, with n being the length of
operation and s being the stride value:

al0:n:s] = ef_add(b[0:n:s],c[0:n:s]);

In parallel — Lines 22 to 25 present an example of loop-based parallelism. The cilk_for
construct load-balances the loop iterations between the numbers of workers available. Lines
14 and 20 set all the values in the array a to zero.
cilk_for (int j = 0; j < n; ++3)
{

aljl = ef_add(bljl,clil);
}

Parallelism and the Programmer | 15

The code at Lines 12 and 18 results in the compiler generating serial code that calls the vector func-
tion. The example at Lines 22 to 25 produces parallel code that calls the vector function.

For more details of the array-notation syntax, see Chapter 2, “An Overview of
Parallel Studio XE,” and Chapter 4, “Producing Optimized Code.”

Parallel Programming Errors

Adding parallelism to code exposes developers to new categories of programming errors. Some
errors can be spotted by doing a code inspection or by running the code through a static analysis
tool, such as lint. Other errors are much more difficult to find and can be detected only at run time
using a dynamic analysis tool. The following threading problems are the most prevalent.

Data Races

Data races are caused when two or more threads running in parallel access the same memory loca-
tion, and at least one of them tries to write to that memory location without using any kind of
synchronization mechanism.

You can avoid data races by:

> Making global data local to each task or thread.

> Demoting the scope of variables by using stack or automatic variables.
> Using atomic operations.
>

As a last resort, using locks and mutexes to protect shared resources. Locks and mutexes are
low-level synchronization primitives that effectively serialize the access to a shared resource.

The easiest way to detect data races is to use a correctness tool, such as Intel Parallel Inspector XE
(see Chapter 8, “Checking for Errors”).

Determinacy Races

A determinacy race occurs when a program produces the right result only when the parallel parts
execute in a particular order.

Imagine that you have a program that monitors the rise of temperature in a gas furnace:
1. It takes the current temperature.
2. It waits four seconds.
3. It takes the new temperature.
4

. If the new temperature is 10 or more degrees greater than the first temperature, the program
reduces the gas flow.

Each step must be made in the right sequence; otherwise, the logic of the program will be broken.
Making steps 1-3 run in parallel would be a mistake, because there would be no guarantee which
step would run first.

16 | CHAPTER1 PARALLELISM TODAY

A program can have a determinacy race even though it doesn’t have a data race. Almost every data
race is a determinacy race, but not vice versa.

Deadlocks

Deadlocks are caused when two threads are endlessly waiting for each other, neither progressing to
completion. Consider the following two code examples. At first they seem to be identical; in fact,
they are supposed to be identical. However, on closer inspection, you can see that the critical sec-
tions, 1.1 and 1.2, are used in a different order in the two code excerpts. The critical sections use
Win32 synchronization objects that control access to the lines of code and act as gatekeepers.

The Win32 API calls EnterCriticalSection and LeaveCriticalSection to act as gatekeepers for
the enclosed code. The code between these calls can execute only on one thread.

Walking through both sets of code shows the problem. Imagine a thread is executing this code:

DWORD WINAPI threadA (LPVOID arg)
{
EnterCriticalSection(&L1);
EnterCriticalSection(&L2);
processA(datal, data2);
LeaveCriticalSection (&L2) ;
LeaveCriticalSection (&L1) ;
return(0) ;

}

And at the same time a second thread is executing this code:

DWORD WINAPI threadB(LPVOID arg)
{
EnterCriticalSection(&L2);
EnterCriticalSection(&L1);
processB(data2, datal) ;
LeaveCriticalSection (&L1) ;
LeaveCriticalSection (&L2) ;
return(0) ;

}

When the first thread hits the line EntercriticalSection (&L1), it claims the exclusive use of the
code for itself, protected by the critical section object 1.1.

At the same time, when the second thread hits the line EntercriticalSection (&L2), it claims the
exclusive use of the code for itself, protected by the critical section object 1.2.

Now back to the first thread. It tries to execute the next line, EnterCriticalSection (&L2), but it
has to wait because the critical section object 1.2 is already being used by the second thread.

Likewise, the second thread cannot execute the next line, EnterCriticalSection (&L1), because
the critical section 1.1 is already being used by the first thread.

So, we have deadlock — the first thread is waiting for the second thread to release 1.2, and the sec-
ond thread is waiting for the first thread to release 1.1.

Most deadlocks can be avoided by using a consistent order for acquiring locks. As with data races,
the easiest way to detect deadlocks is to use a correctness tool, such as Intel Parallel Inspector XE.

Parallelism and the Programmer | 17

Poor Load Balancing

Load balancing is the act of making sure all threads are working equally hard utilizing all available
cores on the CPU. Ideally, all threads in a parallel program should do equal amounts of work — that
is, the load is well balanced. Poor load balancing leads to some threads being idle and constitutes a
wasted resource.

The most common cause of poor load balancing is having too coarse a granularity of work assigned
to each task. This can be fixed by reducing the amount of work each task can do, along with mak-
ing each chunk of work be of similar size. The easiest way to detect poor load balancing is to use a
thread-aware profiling tool, such as Intel Parallel Amplifier XE.

Threading/Tasking Overhead

Launching threads consumes some processor time, so it is important that threads have a decent
amount of work to do so that this overhead is insignificant compared to the work being done by the
thread. If the amount of work that a thread does is low, the threading overhead can dominate the
application. This overhead usually is caused by having too fine a granularity of work. This can be
fixed by increasing the amount of work each chunk does.

There is a trade-off between the amount of work a thread does, its impact on threading overhead,
and the load balancing that can be achieved. Getting the right amount of work per thread may need
some experimentation before the best results are achieved.

Synchronization Overhead

Synchronization overhead comes from using too many locks, barriers, mutexes, or other synchro-
nization primitives. If you are not careful, you can inadvertently use too many primitives by using
them in oft-repeated code, such as loops or recursive code. In this case, you should try to use less
expensive synchronization constructs or restructure the code so that the constructs are used fewer
times. Some programmers try to avoid using locks altogether by designing their software to use
just atomic operations. Most lock-free programming relies on atomic operations that compare-and-
swap, or read-modify-write using atomic instructions provided by the CPU.

The easiest way to detect synchronization overhead is to use a synchronization-aware profiling tool.
For example, Intel Parallel Amplifier XE is capable of profiling locks and waits.

Memory Errors

When a serial program is made parallel, any memory allocation errors that already exist could result
in a program that no longer works. Parallel programming also brings two new types of memory
errors: false sharing and real sharing.

Memory Allocation Errors

A memory leak — that is, the dynamic allocation of memory without returning the memory to the
memory manager — can result in excessive consumption of memory. Symptoms will include out-
of-memory messages and excessive disk-thrashing as virtual memory is swapped in and out by the
memory manager.

Memory managers that rely on the C runtime library to allocate memory from the heap are poor
parallel performers. An example is the function malloc, which uses a single block of memory

18 | CHAPTER1 PARALLELISM TODAY

known as the heap. To make sure that threaded calls to malloc do not corrupt the heap pointers,
malloc uses a lock. This lock has the effect of serializing any parallel use of malloc, making the
parallel program run slow.

Scalable and lockless allocation functions are available to overcome this problem — for example,
scalable_malloc provided with TBB.

Some memory allocation problems can be detected by static analysis of the code, whereas others can
be detected only at run time.

False Sharing

False sharing is quite a low-level concept, but it is worth being aware of because it can seriously
impact a running program.

Reading and writing from memory is slow, so CPUs have local on-chip memory called caches that
are used to store copies of code and data from external memory. Each cache is organized into cache
lines of contiguous memory.

Most CPUs have two or three cache levels. For example, my laptop (Intel Mobile Core 2 Duo) has
an L1 and an L2 cache, with the L2 cache being shared between the CPU cores. The L2 cache is
nearest the external memory; the L1 cache is nearest the CPU. The cache nearest external memory is
referred to as the last level cache. Sharing the last level cache can introduce false sharing.

Figure 1-6 shows an example of false sharing. S .
Variables var a and var B have already been Two-core CPU with shared L2 cache ;
loaded from external memory into the L2 cache
line; in turn, each core also holds its own copy
in its L1 cache.

. : Reading data from
The variables are not shared between the two ' \ cache is fast /

Core 1 Core 2

cores; var A is only ever accessed by Core 1, External Var A VarB
Memory

and var B by Core 2. Because of the close [Level2 cache

proximity in memory of the two variables, they

end up sitting in the same cache line.

When Core 2 changes the value of var B, the
processor will see that Core 1 also has a copy

of the cache line and mark Core 1’s cache line Applica- Copying data from external
tion memory into cache is slow

as invalid.

. FIGURE 1-6: A 2-core CPU with shared caches
When Core 1 then modifies the value of

var A, the CPU will first flush its invalid L1 cache line and then reload the cache line from L2. If
Core 1 alters var a and then Core 2 alters var B in a repeated sequence, this will result in the cache
lines being continually flushed and updated. The flushing and updating of the cache line adds extra
cycles to the time it takes to read the variables.

Although the variables are not logically shared between the two cores, because the two variables sit
on the same cache line, they are effectively being shared by the mechanism the CPU employs to keep
the cache line values correct.

Parallelism and the Programmer | 19

Detecting false sharing is difficult, but it can be made easier with a tool such as VTune Amplifier
XE, which enables you to carry out an architectural analysis of the running program. Chapter 12,
“Event-Based Analysis with VTune Amplifier XE,” describes how to do this.

Real Sharing

Real sharing is a variation on false sharing. The difference is that two threads share the same vari-
able. Two cores that are constantly reading and writing to the same memory location will result in a
similar cache-thrashing and will hurt performance.

Speedup and Scalability

One of the challenges of parallel programming is to write programs that perform better as you run
them on processors with an additional number of cores. Well-written parallel software should dis-
play improved performance as you increase the number of cores, and should be agnostic as to how
many cores are available.

Calculating Speedup

It is useful to be able to work out how fast a program will speed up if made parallel. The process is
not difficult to understand but still worth spelling out.

Speedup

The following code snippet contains three calls to the function work (). At run time the function
will be called six times, four of the calls coming from within the for loop. If the for loop is made
parallel — for example, by using Cilk Plus or OpenMP — the projected speedup and scalability can
be worked out.

1: work(l);

2: for(int 1 = 0; 1 < 4; 1++)

3:

4: work (1+2) ;

5: }

6: work(6);

Figure 1-7 shows the parallelism that might be achieved on a different number of cores.

If each call to work () consumes 500 steps, the serial execution of the code would take 3,000
steps — see row (p), column (a).

Column (b) of Figure 1-7 shows what would happen if the for loop were parallelized and run on a
2-core machine. The speedup would be 1.5, which is calculated by dividing the original number of
steps by the new number.

Speedup = Original number of steps / new number of steps
3000/2000=1.5

In column (c), the number of cores is increased to 4, so the new speedup is 2.

20 | CHAPTER1 PARALLELISM TODAY

OBEINO o0 ©

Start
fcl’fh node e parallel
akes
(p) 500 steps

?qr)105teps e o o o
O010X0
®» ©& G (®)

End

e parallel
(Y
(®) (®) (&) %

Each parallel overhead takes 50 steps

(p) Total 3000 2000 1500 2100
Speedup 1 15 2 143
(q) Total 60 40 30 140
Speedup 1 15 2 0.43
(@ (b) (c) (d)

FIGURE 1-7: Calculating speedup

Parallel Overhead

In practice, an overhead is associated with implementing parallelism. The two squares in column
(d) of Figure 1-7 represent this overhead. If we assume that the overhead in this example introduces
50 extra steps at the start and end of the parallel code, the total number of steps executed is 2,100,
with the speedup becoming 1.43. In this example the overhead has had a slight negative impact on
the speedup.

When making code parallel, it is important that there is sufficient work done in the parallel part of
the code; otherwise, the overhead of the threading would dominate the performance. In row (q) of
Figure 1-7, the same calculations are performed as in row (p), but the function work () now changes
to consume only 10 steps. In this situation the speedup of the code, including the threading over-
head, is only 0.43 — that is, the code will run at half the speed of the original serial code.

Amdahl’s Law and Gustafson’s Observation

Two laws are often cited when working out an expected speedup: Amdahl’s Law and Gustafson’s
comments on Amdahl’s Law (see Figure 1-8).

Amdahl says “...the effort on achieving high parallel processing rates is wasted unless it is accompa-
nied by achievements in sequential processing rates of very nearly the main magnitude.” [Amdahl,
Gene M., “Validity of the single processor approach to achieving large scale computing capabili-
ties.” AFIPS Spring Joint Computer Conference, 1967

Parallelism and the Programmer | 21

1

S= ——————
(1-P)+P/N SP)=P-oa.p—-1)

S is the speedup S is the speedup

P is the fraction of code that P is the number of processors

will be made parallel o is the non-parallelized

N is the number of processors part of the program

Amdahl’s Law Gustafson’s Law

FIGURE 1-8: Two laws for calculating speedup

Gustafson says “...speedup should be measured by scaling the problem to the number of pro-
cessors not by fixing the problem size.” [Gustafson, John L., “Reevaluating Amdahl’s Law.”
Communications of the ACM; Volume 31, 1988]

Amdahl focused on the best speedup that could be obtained on a given problem size. Gustafson, on
the other hand, contended that the problem size grows to match the resources available.

Amdahl’s Law is sometimes used to paint a pessimistic picture of parallelism. Gustafson is far more
optimistic, recognizing that programs grow to take up all resources available to them. Whether you
use Gustafson’s or Amdahl’s Law, two things are true:

> The more code you remove from the serial part and make parallel, the better speedup you
will achieve when executing code on modern multi-core architecture.

> The best parallel methods scale by solving bigger problems.

Predicting Scalability

Scalability is an observation of the speedup of a program as the number of cores is increased.

A scalable program is one that responds well to an increased number of cores. A perfectly scalable
program runs twice as fast on a 4-core machine than on a 2-core machine, and runs four times
faster on an 8-core machine. In practice, it is rare to achieve perfect scalability.

You can forecast the scalability of the code by increasing the number of cores in the speedup cal-
culation and plotting the trend. Figure 1-9 shows the same code as in the previous section, with
calculations for 1 to 6 cores. The reading at zero cores represents the original serial code.

The Work with no overbead line represents the speedup values without the overhead element being
added to the equation.

The Large work with overbead and the Small work with overhead lines represent the speedup val-
ues taking into account the synchronization overhead.

As shown in the Work with no overbead line, the speedup flattens when there are four or more
cores. The reason for this is that when the for loop is parallelized, the number of loops is shared
among the available cores. Because the code has only four loops, a maximum of four work () func-
tions can be called in parallel.

22 | CHAPTER1 PARALLELISM TODAY

25

- Work with no overhead
o 1.5
2 —#— Large work with
Q overhead
%) .

1r —f
Small work with
overhead
0.5
0
0 1 2 3 4 5 6

Number of Cores

FIGURE 1-9: Calculating speedup

The key point to note here is that the design of the parallel code has introduced an upper bound into
the parallelism that can be achieved.

When the parallel overhead is added to the graph, you can see that with a large amount of work, the
speedup is only slightly impacted.

When the work () consumes only ten steps, two things happen: the parallel version of the code runs
slower than the original serial code, and the speedup does not improve as additional cores are added.

Using language models such as Cilk Plus or TBB, you should be able to write programs that scale
well as silicon moves from multi-core to many-core. The work-stealing schedulers in these models
will help you produce software that is automatically load-balanced, with the correct ratio of work-
load-to-overhead software that can be regarded as “future-proof.”

Parallelism and Real-Time Systems

Parallelism introduces some exciting opportunities for those working with real-time or embed-
ded systems. One of the challenges is keeping as much of the program as possible at a high level
of abstraction without losing the determinacy your program requires. Partitioning your real-time
requirements between hard and soft real-time may help you.

Hard and Soft Real-Time
Timing requirements for real-time systems can be divided between soft real-time and hard real-time.
In hard real-time, response rates to some events, such as external interrupts and timer events, need
to happen within a guaranteed time, usually in the order of microseconds or within in a certain
number of CPU clock cycles. In soft real-time, the requirements are less deterministic, with response
rates being measured in the order of milliseconds.

Parallelism and the Programmer | 23

The higher-level parallel implementations described in this book are not validated in a hard real-time
environment. Some of the requirements of hard real-time, such as deterministic behavior, preemptive
scheduling, and guaranteed execution times, are not designed into the underlying runtime libraries.

A Hard Real-Time Example using RTX

IntervalZeros’s RTX is one example of how to use the higher-level parallel models in a real-time
system. RTX is a runtime extension to Windows that provides the missing hard real-time behavior.
As shown in Figure 1-10, the number of cores available on a system is divided between the Win32 side
(which is running Windows) and the RTX side (the real-time extension). Any parallelism on the RTX
side is programmed using low-level threading constructs provided by the Windows API. The paral-
lelism on the Win32 side is programmed using higher-level constructs, such as Cilk Plus or OpenMP.
Any threaded code that requires a hard real-time response is run in the RTX space. Communication
between the two domains is via interprocess communication (IPC) or using shared memory.

WIN32
Soft real-time

RTX
Hard real-time

Threading Threading

via high- via low-
level level
constructs primitives

t)

Communication via IPC or shared memory

Core Core Core : Core Core Core
1 2 3 || 4 5 6
Six-core CPU

FIGURE 1-10: A model of achieving hard real-time

Advice for Real-Time Programmers

Everything in this chapter about parallelism is just as relevant to real-time programming as it is to
non-real-time programming.

If your programs have a real-time aspect, you should:

> Keep to a higher level of abstraction as much as possible. This will help you produce scalable,
well-balanced applications.

> Look out for data races. Use static and dynamic analysis to detect them.

24 | CHAPTER1 PARALLELISM TODAY

> Not be afraid to “borrow” bits from different parallel models.

> Be very conservative with hard real-time requirements. Most general-purpose parallelism
libraries are not validated for real-time.

SUMMARY

Multiple cores available on the latest generation of CPUs bring new opportunities for programmers
to optimize their code. You can use a variety of different parallel programming models to add paral-
lelism to your programs.

When writing your code, take special care to avoid introducing parallel programming errors into
your newly parallelized programs. Aim to write parallel programs that exhibit good speedup, have
good load balancing, and are scalable.

The next two chapters introduce Intel Parallel Studio XE, which is designed to help in all stages of
the development of parallel code. Chapter 2, “An Overview of Parallel Studio XE,” gives an over-
view of Parallel Studio; Chapter 3, “Parallel Studio XE for the Impatient,” is a hands-on session to
familiarize you with the different tools.

An Overview of Parallel
Studio XE

WHAT’S IN THIS CHAPTER?

An overview of Parallel Studio XE
An overview of Advisor XE
An overview of Composer XE

An overview of Amplifier XE

Y Y Y Y Y

An overview of Inspector XE

This chapter gives an overview of Intel Parallel Studio XE, highlighting the main features of
each tool.

Parallel Studio XE enables you to develop, debug, optimize, and tune both threaded and non-
threaded applications on Linux and Windows. On Windows, Parallel Studio XE plugs into
Visual Studio; on Linux, it works alongside the GNU Compiler Collection (GCC).

Developers use Parallel Studio XE in a number of different ways. The chapter concludes with a
discussion on three different ways that you might want to use Parallel Studio XE.

WHY PARALLEL STUDIO XE?

In Chapter 1, “Parallelism Today,” high on the list of the top six challenges was tools.
Programmers need tools that work well together and help productivity. Intel Parallel Studio
XE is a comprehensive tool suite that is designed to help you develop parallel applications.

26 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

Programmers and developers like to follow their own way of doing things. Not everyone follows the
same methodology — some like top-down, others like bottom-up, and others mix and match method-
ologies. Some developers prefer to use tools with a graphical user interface, whereas others find using
the command line much more productive. Some experienced programmers dive straight into adding
parallelism to their code with a minimum of guidance, whereas others look for as much help as pos-
sible. Parallel Studio XE is designed to help developers add parallelism to their existing code and to
develop completely fresh code, regardless of their approach and experience.

WHAT'’S IN PARALLEL STUDIO XE?

Parallel Studio is available in two versions:
> Intel Parallel Studio XE — Available on both Windows and Linux

> Intel Parallel Studio — A Windows-only product

This book is based on Parallel Studio XE, although you can use most of the concepts in the non-XE
version, as well.

INTEL PARALLEL STUDIO XE

Parallel Studio XE is a suite of software tools that contains the following:

> Intel Parallel Advisor — Parallel Advisor gives advice on how to add parallelism to a pro-
gram. Advisor enables you to model the effect of parallelism before committing to the final
implementation.

> Intel Parallel Composer XE — Composer XE contains a compiler and libraries used to create
optimized and parallel code. Within Composer there is also the Parallel Debugger Extension
(PDE), which is used to debug threaded code. A standalone debugger — the Intel Debugger
(IDB) — is available with the Linux version of the tools.

> Intel Parallel Inspector XE — Inspector XE is used to check a running program for common
parallel-type errors, such as deadlocks and data races, and memory errors, such as memory
and resource leaks in both parallel and serial programs.

> Intel VTune Amplifier XE — Amplifier XE is used to profile an application to identify pro-
gram hotspots and bottlenecks. It also analyzes parallel programs to show how parallel and
how efficient they are. You can also use Amplifier XE to show how well the CPU is being
used in an application, helping you identify any underlying problems.

On Windows, Parallel Studio XE is installed alongside Microsoft Visual Studio and is compatible
with the Microsoft tools. The C/C++ compiler in Composer XE is a plug-and-play replacement for
the Microsoft compiler.

On Linux, Parallel Studio XE is installed alongside the GNU software development tools and is
compatible with GCC. The C/C++ compiler in Composer XE is a plug-and-play replacement for
GCC on Linux.

Intel Parallel Studio XE | 27

Parallel Studio XE supports program development in C/C++ and Fortran. Table 2-1 lists the features
that are in Parallel Studio XE along with the non-XE version.

TABLE 2-1: Key Features of Parallel Studio XE

COMPOSER NON-XE XE
C/C++ compiler X X
Fortran compiler X
Profile-guided optimization X
Parallel Debugger Extension X X
Intel Debugger (Linux only) X
Threaded performance libraries X X
Threaded math library X

INSPECTOR

Memory and Thread analyses

Advanced Memory and Thread analyses

Static Security analysis

AMPLIFIER

Hotspot, Concurrency, and Locks and Waits analyses X
Timeline

Frame analysis

Event-based sampling

Source view X

X X X X X X

Assembly view

ADVISOR
Threading advice for serial applications X X

USER INTERFACE
Visual Studio integration X X
Standalone graphical interface X

Command line Basic Advanced

OPERATING SYSTEM
Windows X

Linux

28 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

INTEL PARALLEL ADVISOR

Intel Parallel Advisor provides a methodology for modeling parallelism in code. The five-step model
provides an implementation-neutral means of modeling parallelism in an application under develop-
ment. Advisor guides the programmer through each step of the model without the need to commit
to a particular parallel program implementation until the last step of the modeling.

The Advisor Workflow

Intel Parallel Advisor guides you through a series of steps to help you experiment with adding paral-
lelism to your code (see Figure 2-1). In practice, programmers usually step back and forth between
some of the steps until they have achieved good results. You can launch each step from the Advisor
Workflow tab (in the Solution Explorer) or from the Advisor toolbar/menus.

—>» Start

Replace Annotations
Annotate Code
Check Correctness N
Check Suitability
Y

FIGURE 2-1: The five-step Advisor workflow

Survey Site

Surveying the Site

The first step in the Advisor workflow is surveying the site to find any hotspots — that is, code
with significant CPU activity within the application. Once the survey is run, Advisor reports on
screen how much time has been spent executing each part of the program. The amount of time of
each function call and loop is displayed in the Survey Report. In Figure 2-2 the recursive call to
setQueen is identified as the main hotspot.

"1 _nqueens_serial - My Advisor Result - %

B Where shouldIadd parallelism?

&P Summary E 4l Suitability Report || @ Correctness Report

Function Call Sites and Loops Total Time % TotalTime Self Time Source Location =
SO setQueen [loop] 100.0% O 306855 o5 nqueens_serial.cppifs
510 setQueen [loop] 100.0% O 30685 o nqueens_serial.cpp:#s
ElsetQueen 100.0%; CE— 306855 0s nquesns_serial.cpp:a8

=10 setQueen [loop]

2O setQueen [loop]

ElsetQueen

B0 setqueen [loap]
B setQueen [loop]

ety

Leen

510 setQueen [loop]

B0 setQueen [loop]

ElsetQueen 92.5% EEN 257855 005005 ngueens_serial.cppid
2O setQueen [loap] 05,67 ENNE 2.7105; o

2 setQueen [loap] 7647 O 2.3449; [ngueens_serial.cppdd
EsetQueen T4 I 234485 005885 ngueens_serial.cppid £

2 setQueen [loap] Trev I 213485 [ngueens_serial.cppis

=0 setQueen [loop] 55.2% I 169415 0s nqueens_serial.cpp:85

EsetQueen 55.2% I 169415 0.07005 nqueens_serial.cpp:as

B setQueen [loop] 4439 CE— 151435 s nqueens_setial.cppes

@O setQueen [loop] | 26.3% @D 0.86805 03 nqueens_setial.cpp:ds
0 setQueen [loop] | 20.7% @ 063535 s [l nqueens_serial.epp:i]

lsetQueen 0.3%! 0.0101s 001015 nqueens_serial.cppi6s

3 setQueen 3.6%0 0.10985 0.1085 ngueens_serial.cppidl

0 setQueen [loop] 17.6% @ 054075 0s ngueens_serial.cppi?

105025

[setQueen

100.0% CENS— 3.06855
99.7% NN 305855
99.7%, (I 3.0585 5
99.3%, (I 304555

: 04.7% (I 302845

93.7%; I 3028 45

: 08,47, (I 3.0184s

| ’

2.8785s

0.05025

0s
[
s
s
s
s
s
s

nqueens_serial.cpp:65
nqueens_serial.cpp:ss
nqueens_serial.cpp:d
rqueens_serial.cppis
rqueens_serial.cppids
nqueens_serial.cppidd
ngueens_serial.cppiis
ngueens_serial.cpp:$s

nqueens_serial.cppifs

ngqueens_serial.cpp:dl

FIGURE 2-2: A Survey Reportin Advisor

Intel Parallel Advisor | 29

Annotating Code

After identifying hotspots in the code, the next step is to add annotations to mark areas of parallel-
ism. You can insert the annotations into the code by hand, or you can insert them via the context-
sensitive menu. The Advisor modeling engine uses these markers to predict the effect of adding
parallelism. Following is an example of code annotation:

#include <advisor-annotate.h>
void solve()

{

int * gqueens = new int[size];

ANNOTATE_SITE_ BEGIN(solve)
for (int 1=0; i<size; 1i++) {
// try all positions in first row
ANNOTATE_TASK BEGIN(setQueen)
setQueen (queens, 0, 1i);
ANNOTATE_TASK_ END (setQueen)
}
ANNOTATE_SITE_END(solve)
}

You need to include the header file advisor-annotate.h before using the annotation macros.

The macros ANNOTATE_SITE_BEGIN and ANNOTATE_SITE_END mark the area of code that will con-
tain one or more tasks. The task itself — that is, the block of code that will be run in parallel — is
marked with the macros ANNOTATE_TASK_BEGIN and ANNOTATE_TASK_END.

Note that the code has one error purposefully included. Each task accesses the dynamically allo-
cated array queens. This will cause a data race, but it will be detected when Advisor does the
correctness modeling.

The annotations do not actually implement parallelism; rather, they help you answer the ques-
tion, “What would happen if I inserted parallelism here?” When Advisor runs the code, the code

is still run in serial, with Advisor using the annotations to predict what the parallel behavior
will be.

The annotations ANNOTATE_LOCK_ACQUIRE and ANNOTATE_LOCK_RELEASE are used to protect a
shared variable. Manipulation of the shared variable is performed within these two annotations:

ANNOTATE_LOCK_ACQUIRE(O) ;
shared_variable ++;
ANNOTATE_LOCK_RELEASE (0) ;

Typically, you should add the lock annotations only after you have run the correctness tool and have
found cases of unprotected data sharing.

Checking Suitability

After adding the annotations to the code, you can use Advisor to generate a Suitability Report. The
Suitability Report shows the effect of parallelism and the likely scaling that will be achieved.

The All Sites pane of the Suitability Report displays the speedup of each site in a table (see
Figure 2-3). You can model the number of CPUs to see how each site responds to different
CPU counts.

30 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

2 nqueens_annota..My Advisor Result - x

B What are the performance implications of the annotated sites? Intel Parallel Advisor 2011

‘Q Summary ‘ ‘M Survey Report ‘ H[[ita ‘ ‘ﬁ Correctness Report ‘

Target CPU Number: Threading Model: | Intel TEB -

Annotation Label Source Location Maximum Site Gain - Maximum Total Gain -~ A

Maximum Program
Gain For All Sites:

elnstance Time Total Time

4.16x

Scalability of Maximum Site Gain Changes I will make to this site to improve performance
1T6e Type of Change Benefit if Checked Loss if Unchecked Recommended
Reduce Site Overhead Mo
Reduce Task Ovethead No
? Reduce Lock Overhead Mo
E Reduce Lock Cantention Mo
;: Enable Task Chunking Mo
g
s
2 4 8 1B 3
Target CPU Number
Annotation Annotation Label Source Location Mumnber of Instances Maxitum Instance Time Average Instance Time Minimurn Instance Time Total Time
Selected Site solve ngueens_annotated.cppi113 1 3.06995 3.0699s 3.06995 3.0699s
Task setQueen nqueens_annotated.cpp:117 13 0.26345 0.2361s 0.18825 3.06905

FIGURE 2-3: Modeling speedup in the Suitability Report

The Selected Site pane shows a graphical summary of the speedup. Advisor knows the impact the
parallelism overhead has on the running program. You can use this pane to speculate on the benefit
of reducing the overhead.

Checking Correctness

After creating the Suitability Report, you can use Advisor to check for any potential data-sharing
problems. You can launch correctness checking by selecting the Correction analysis button on the
Advisor toolbar. Advisor lists all detected errors in the Correctness Report (see Figure 2-4).

2_nqueens_annota..My Advisor Result | -~ X
& Didthe annotated tasks expose data sharing problems? Intel Parallel Advisor 2011
4 Summary || 8 Survey Report | | ¥] suitability Report | |3
Problems and Messages

Severity
< Error 2iterns

] @ Data communication ngueens_annotated.cpp 2_nqueens_annotated.exe P Mot fixed Remark Litem

P3| @ Parallelsite ngueens_annotated.cpp 2_nqueens_annotated Problem
Dats communication Litem
Memory reuse Litem
Parallel site infarmation Litem
Source
ngueens_annotsted.c... 3 iterns
Module
2_nqueens_annotated ... 3 iterns
State
Infarmation Litem

D Description Source Function Madule State | | LMot fixed ke

X3 Parallelsite [l nqueens_annotated.cppil13 sakve 2_nqueens_annotated.exe Information
111 int * queens = new int[size]; //arrey representing queens placed on a chess board, Index is row position, value is column
11z E
113 ANNOTATE_SITE BEGIN(solwe);
114 for(int i=0: i<size: i++) {
115 // try all positions in first row
EXd it Bl nqueens annotated.cppidl setQueen 2_ngueens_annotated.exe e Not fixed
79 #/ column is ok, set the queen
80 //ADVISOR COMMENT: See comment at top of function
81 fqueens[row]=col:
82
83 if{rows==size-1) { .|| |7 SortByltem Name

FIGURE 2-4: A Correctness Report in Advisor

Intel Parallel Composer XE | 31

Replacing Annotations

Once you are satisfied with the results of the Suitability and Correctness Reports, the final step is to
change the annotations in the source code to real parallel programming constructs. You can choose
these from the family of parallel models that are supported by Parallel Composer, as discussed in
Chapter 7, “Implementing Parallelism.” The process is not automatic; you are responsible for mak-
ing the changes by hand and fixing the potential correctness issues identified in the report.

You can find more details about Advisor in Chapter 10, “Parallel Advisor-Driven
Design.”

INTEL PARALLEL COMPOSER XE

Intel Parallel Composer XE contains the following;:

> An optimizing C/C++ and Fortran compiler

> A collection of threading and optimization libraries
> Threading Building Blocks (TBB)
> Integrated Performance Primitives (IPP)
> Math Kernel Library (MKL)

> Debugging tools
> Parallel Debugger Extension (PDE) for Windows
> Intel Debugger (IDB) for Linux

Intel C/C++ Optimizing Compiler

The compiler is a direct replacement for the Microsoft compiler and the GNU GCC compiler, and is
used to create optimized code. Together, the compiler and libraries support Intel’s family of parallel
models, as mentioned in Chapter 1.

Table 2-2 lists some of the key features of the compiler (discussed in more detail in Chapter 4, “Producing
Optimized Code,” Chapter 5, “Writing Secure Code,” and Chapter 7, “Implementing Parallelism”).

TABLE 2-2: Key Features of Intel C/C++ Compiler

OPTIMIZATION DESCRIPTION

Automatic optimization Optimizes an application for speed or size. Use the /O1 option to optimize
for size, /02 to optimize for speed, and /O3 for a more aggressive speed
optimization.

Interprocedural optimi- Performs cross-file optimization (sometimes referred to as global

zation (IPO) optimization).

continues

32

| CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

TABLE 2-2 (continued)

OPTIMIZATION

Profile-guided optimi-
zation (PGO)

Automatic vectorization

Floating-point
performance

Intrinsic functions
PARALLELIZATION
Cilk Plus
OpenMP

Automatic
parallelization

TOOLS AND REPORTING

Guided auto-
parallelizaton (GAP)

Optimization reports

Static Security analysis
(SSA)

DESCRIPTION

Initial run of the application drives compiler options.

Converts calculations within loops to use SSE instructions. You often can
achieve significant performance improvements with this option.

Controls the precision and speed of floating-point operations. For some
applications, you can reduce the accuracy of the floating-point calcula-
tions (with compiler switches) to get faster results.

Inserts SSE, data pre-fetching, and other optimized routines.

Provides the easiest way to parallelize a program.
Provides support for OpenMP 3.0.

Provides loop-centric automatic parallelism.

Advises on code changes required to satisfy auto-parallelization and
auto-vectorization.

Provides detailed reports on all stages of optimization.

Checks for security issues that could compromise the application being
developed.

Profile-Guided Optimization

In PGO, you create a set of statistics, or profiles, by running the actual application being devel-
oped, and then feeding this information back into the compilation stage of the program, using the
profile to automatically influence the behavior of the compiler. You conduct PGO in three stages
(see Figure 2-5):

1. Use the compiler option /Qprof-gen to build an instrumented version of an application. You
use the instrumentation to capture runtime information about your application’s behavior.

2. Execute the instrumented application my . exe. As the program runs, the instrumentation pro-
duces a . dyn file that contains information on how the program executes.

It is important to use appropriate test data in stage 2. If the application behaves quite differ-
ently with different types of test data, it may be worth doing multiple runs of stage 2.

3. Use the compiler option /Qprof-use, which causes the compiler to use the .dyn file(s) to
produce an optimized application.

Intel Parallel Composer XE | 33

prof
lib LeTT
Stage 1. An instrumented version of the / My \‘.
application is built. " exe /,'
.C
/Qprof-gen

dyn Stage 2. The instrumented application is run.
Test This step can be repeated with different test data,
data producing multiple .dyn files.

Stage 3. An optimized version of the
applicationis built. ~— _____.

.exe

/Qprof-use

FIGURE 2-5: The three stages of PGO

PGO improves application performance by:

> Reorganizing code layout

> Reducing instruction-cache problems

\/

Shrinking code size

> Reducing branch mispredictions

Cilk Plus

Cilk Plus is an extension to C/C++ to support parallelism. Using just three new keywords, Cilk
Plus is one of the easiest ways to add parallelism to a program. With Cilk Plus you express parallel
intent, rather than parallel control.

Cilk Plus has the following key features:
> Keywords
> Reducers
> Array notations
> Elemental functions

> SIMD pragma

34 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

The Cilk Plus scheduler decides at run time whether to run the code in parallel. The scheduler auto-
matically takes care of load balancing. You can influence the Cilk Plus program with the following
keywords, environmental variable, and APIs:

> Keywords
> cilk_spawn
> cilk_sync
> cilk_for

> Environment variable

» CILK_NWORKERS

> APIs
» _ cilkrts_set_param("nworkers","4")
> __cilk_get_nworkers()
> __cilkrts_get_total_workers()
>

___cilkrts_getworker_number ()

When you run a Cilk Plus program, a number of workers are created — usually the same number
as the number of cores on the host system. You can override the default number of workers by
using the Cilk Plus API. You can also set the number of workers by using the environment variable
CILK_NWORKERS.

Listing 2-1 shows an example of using cilk_spawn and cilk_sync. The program calculates the
40th value of the Fibonacci series.

‘) LISTING 2-1: A simple Cilk program

Available for #include <stdio.h>

download on 41 hclude <cilk/cilk.h>

long fibonacci(long n)

{
long x, vy;
if (n < 2) return n;

// find the n-1 number
x = cilk_spawn fibonacci(n-1);

// find the n-2 number
y = fibonacci (n-2);

// workers wait here until all have finished
cilk_sync;

Intel Parallel Composer XE | 35

return (x+y);

}

int main()
{
// work out the 40th value in fibonacci series
long fib = fibonacci (40);
// display the results
printf ("Fibonacci 50: %d\n", fib);

code snippet Chapter2\2-1.cpp

The lines following the cilk_spawn statement (that is, starting with y = ...) up to the cilk_sync
statement are known as the continuation. The cilk_spawn keyword gives permission to the run
time to run fibonacci (n-1) in parallel with the continuation code. At run time, if a spare worker
is available, the scheduler steals the continuation code from the first worker and assigns it to a sec-
ond worker. At the same time, the first worker continues executing the call to fibonacci (n-2).

Cilk Plus reducers are used to prevent data races by using them in place of nonlocal variables, In
Listing 2-2, the variable j, which was originally an integer, has been changed into a reducer. This
change prevents a data race from occurring. At run time, each worker is given its own view of
the reducer.

‘) LISTING 2-2: An example of using a Cilk Plus reducer

Availablefor #include <cilk/cilk.h>
dow‘"m:g:gl:" #include <cilk/reducer_opadd.h>
#include <stdio.h>

int main()
{
cilk::reducer_opadd<int> j;

cilk_for(int 1 = 0; 1 < 100; i++)
{
jo+=1;
}
printf("J is %d",j.get_value());

code snippet Chapter2\2-2.cpp

The values of the individual views are combined back together when the parallel strands come back
together. You retrieve the combined value in the printf statement by calling the reducer function
get_value (). The operation used to combine the values is specific to the type of reducer that is being
used. In this example the reducer type is a reducer_opadd, so the views are combined by adding the
values together. Table 2-3 lists other available Cilk Plus reducers. You can also write your own reducers.

36 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

TABLE 2-3: Cilk Plus Reducers

REDUCER DESCRIPTION

reducer_list_append Adds items to the end of a list
reducer_list_prepend Adds items to the beginning of a list

reducer_max Finds the maximum value from a set of values
reducer_max_index Finds the index of maximum values from a set of values
reducer_min Finds the minimum value from a set of values
reducer_min_index Finds the index of minimum values from a set of values
reducer_opadd Performs a sum

reducer_ostream Provides an output stream that can be written in parallel
reducer_basic_string Creates a string using append or += operations

Cilk Plus is one of the easiest ways to add parallelism to a program.

Array notations provide data parallelism for arrays. Elemental functions are functions that can be
applied to arrays and scalars to enable data parallelism. The SIMD pragma is used to enforce vec-
torization. The compiler issues a warning if it fails to vectorize the code.

Listing 2-3 is an example of using array notation and elemental functions. Each array element in
al] and b[] is added together, putting the results in ¢/ J. The following lines perform the same

calculations:
int sum = __sec_reduce_add(c[:1])
for (int 1=0; i<4; i++){c[i] = ali] + b[il;}.

The call to __sec_reduce_add adds together all the elements of the array c. You can perform the
addition in parallel if you have sufficient CPU resources available at runtime.

‘) LISTING 2-3: A simple array notation example

Available for int main()
download on {

Wrox.com
int al[] = {1,2,3,4};
int b[] = {2,4,6,8};
int c[] = {0,0,0,0};

Intel Parallel Composer XE | 37

cl[:]=al0:4] + b[0:41; // 3,6,9,12
int sum = __sec_reduce_add(c[:]1); // 30

return sum;

code snippet Chapter2\2-3.cpp

OpenMP

OpenMP is a well-established standard for parallel programming. Intel Parallel Composer
supports OpenMP version 3.0. OpenMP consists of pragmas, APIs, and environment variables
that you can use to add parallelism to code incrementally.

The OpenMP task example in Listing 2-4 shows how tasks are used. To successfully build the code
with the Intel compiler, you must use the /Qopenmp option.

\) LISTING 2-4: A simple OpenMP task example

Available for #include <stdio.h>

dowvm:gggnt:n #include <omp.h>
int main()
{
int j = 0;

// create a parallel region
#pragma omp parallel
{
// this task will run on just one thread
#pragma omp single nowait
{
for (int 1 = 0; 1 < 10; 1i++)
{
// every time loop iteration hits this next line
// an omp task will be created and will
// be run the moment a thread is available
#pragma omp task firstprivate (i)
{
#pragma omp atomic
J++;
printf("i: %d thread:%d\n",1i,omp_get_thread_num());
} // end #pragma omp task
} // end for ..
} //end #pragma omp single nowait
} // end #pragma omp parallel
return 0;

code snippet Chapter2\2-4.cpp

38 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

At the start of the #pragma omp parallel, a pool of threads is made available. The #pragma omp
single statement ensures that the following block of code is run by only one thread.

Within the single running thread is a loop that causes the #pragma omp task statement to create
ten tasks. Once a task is created, it is free to be executed by the first available free thread.

Once the single thread has created all the tasks, the thread on which it was running becomes avail-
able to the OpenMP runtime — the nowait clause makes sure the thread is released immediately.

There is an implicit barrier at the end of the #pragma omp parallel block: no thread can go
beyond this point until all threads have completed their work.

The variable 7 has the potential to cause a data race, so it is incremented in an atomic operation.

Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) is a C++ template library for parallelizing C++ programs.
Using TBB to add parallelism to your program makes sense only if you wrote your program in C++
and you are comfortable with such concepts as templates, overloading, and inheritance.

TBB has had wide adoption, with a number of commercial software products having their parallel-
ism provided under the hood by TBB.

The library is available under the GNU Public License (GPL) and non-GPL development. The ver-
sion shipped with Parallel Studio is the non-GPL version.

TBB consists of the following components:
> Parallel algorithms

Task scheduler

Concurrent containers

Thread local storage and scalable memory allocators

Y Y VY VY

Low-level synchronization primitives

The main unit of work is the zask, which is scheduled by a work-stealing scheduler. Tasks are allo-
cated to threads by the scheduler and are held in queues. When a thread’s task queue is empty, the
scheduler will steal a task from another thread’s queue, thereby keeping all the threads busy.

You can mix TBB with other parallel language constructs. For example, you can write a parallel
program using Cilk Plus and use TBB to supply memory allocation and synchronization. Table 2-4
lists some of the templates that are available in TBB.

TABLE 2-4: Some TBB Templates

ALGORITHMS DESCRIPTION
parallel_ for Performs parallel iteration over a range of values
parallel_reduce Computes reduction over a range

parallel scan Computes parallel prefix

Intel Parallel Composer XE | 39

parallel_do
parallel_for_each
parallel_pipeline
parallel_sort
parallel_invoke
CONTAINERS
concurrent_hash_map
concurrent_gueue
concurrent_bounded_gueue

concurrent_vector

concurrent_unordered_map

PRIMITIVES

mutex

atomic

ALLOCATORS
tbb_allocator
scalable_allocator
zero_allocator

aligned_space

Processes work items in parallel

Provides parallel variant of std: : for_each
Performs pipelined execution

Sorts a sequence

Evaluates several functions in parallel

Provides associative container with concurrent access
Provides queue with concurrent operations
Provides bounded dual queue with concurrent operations

Provides class for vectors that can be concurrently grown
and accessed

Provides container that supports concurrent insertion and
traversal

Provides mutual exclusion of threads from sections of code

Used for atomic operations

Allocates memory (may not be scalable)
Provides scalable memory allocation
Allocates zeroed memory space

Allocates uninitialized memory space

Listing 2-5 shows an example of using the parallel for algorithm to print the value of a
loop variable.

‘) LISTING 2-5: A simple example of the TBB parallel_for algorithm

Available for
download on
Wrox.com

#include "tbb/tbb.h"
#include <stdio.h>
using namespace tbb;

int main()

1
2
3:
4:
5
6: {
7

parallel for(size_t(0),size_t(20),size_t(1),

continues

40 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

LISTING 2-5 (continued)

8: [=] (size_t n) {

9: std::printf("%d ",n);
10: }

11:) ;

12: return 0;

13:}

code snippet Chapter2\2-5.cpp

The first three parameters of parallel_for are the loop start, loop end, and loop increment values.

Lines 8 to 10 define a lambda function, which is supported by the C++0x standard. You have to use
the option /Qstd=c++0x with the Intel compiler to successfully build the code shown in Listing 2-5.
This parameter does not need to be a lambda function; you could use a normal C function instead.

Parameter n in line 8 is the current loop counter. The scheduler passes in the current loop count via
this variable.

Lines 9 to 10 are the body of the lambda function, which gets executed once every iteration.

The TBB scheduler load-balances the loop iterations between separate TBB tasks, the order of exe-
cution being indeterminate.

Intel Integrated Performance Primitives

The Intel Integrated Performance Primitives (IPP) library is a vast collection of functions covering
audio, video, speech, data compression, signal processing, and cryptography (see Table 2-5). Before
writing your own libraries and algorithms, you should consider using IPP instead. This library
might stop you from “reinventing the wheel” and significantly shorten your development time.

TABLE 2-5: IPP Libraries and Domains

LIBRARY DOMAIN

ippAC Audio coding
ippCC Color conversion
ippCH String operations
ippCP Cryptography
ippCV Computer vision
ippDC Data compression
ippDI Data integrity

ippGEN Generated functions

Intel Parallel Composer XE | 41

ippIP
ippdP
1ppMX
ippRR
ippSC
ippSP
ippSR
ippVvC

1ippVM

Image processing
Image compression
Small matrix operations
Rendering and 3D
Speech coding

Signal processing
Speech recognition
Video coding

Vector math

The functions in IPP are optimized for different architectures. A top-level, architectural-neutral func-
tion determines at runtime which instruction set the host supports, and then calls the appropriate
architectural-specific, low-level function. This technique, known as software dispatching, is done auto-
matically at run time. Where dispatching is not required, it is possible to link directly to the lower-level
optimized libraries. You can link applications with the IPP library either statically or dynamically.

An Application Example

Figure 2-6 gives an example of where the Fast Fourier Transform (FFT) functions of the IPP library
are the real-time manipulation of a sound stream.

Wave __ |
File in

E Streaming Window ~ -----

v

Block Stream

¢ Notifications

' l X FFT
- >
g wiq Manipulate
o : m* -
Write | ..
R“lV¢VJ4F4j Inverse FFT
Circular Buffer
Direct
Sound

FIGURE 2-6: Real-time sound manipulation

Audio
out

The design was part of a program that changes the characteristics of a wave file as it is being played. The
reading and playing of the sound uses Windows DirectSound, with an FFT being applied in real time.

42 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

A block of data Block Stream is read from a wave file. As each block is read, the play and write
pointers are maintained as a circular buffer.

The address of the circular buffer is passed to the FFT function, after which the sound is modified
using the manipulate block; finally, the modified sound data is inverse FFT°d and written back to the
circular buffer.

Listing 2-6 shows how the IPP FFT function is called. The code is not complete, but it shows how
FFT is achieved using IPP. The FFT function ippsFFTFwd_RToPerm_32f does the actual FFT.
Initialization is performed with the ippsFFTInitAlloc_R_32f and ippszero_32fc functions.

‘) LISTING 2-6: Using the IPP FFT functions

Available for // Function that will call IPP FFT
daﬂ:yg&g" int FFT(float in[], const float out[], int len)
{
int power = 12;
Ipp32fc* pFilterCCS;
IppsFFTSpec_R_32f *pFFTSpec;

// allocate space for FFT
pFilterCCS = (Ipp32fc*)ippsMalloc_32f (len+2);

// FFT configure
Ipp32fc one = {1.0, 0.0};

// zero initialize the FFT space
ippsZero_32fc(pFilterCCS, len/2+1);

//initialize the FFT
ippsFFTInitAlloc_R_32f(&pFFTSpec,
power, IPP_FFT_DIV_BY_ SQRTN, ippAlgHintFast);

// do the FFT
ippsFFTFwd_RToPerm 32f (in, (Ipp32f*)out, pFFTSpec, 0);

// free up the FFT space
ippsFree (pFFTSpec) ;

return 0;

code snippet Chapter2\2-6.cpp

IPP and Threading

Some library functions are already parallelized. A nonparallelized version of the library is also pro-
vided. You can find the list of threaded functions by looking at the file ThreadedFunctionsLists
.txt in the documentation directory of your IPP installation.

All the functions in IPP are thread-safe, which means you can safely use them in your parallel code,
knowing that the functions will be race-free.

Intel Parallel Composer XE | 43

The IPP library provides a series of performance tests for each application domain.

When using any library in a threaded or parallel application, it is important that
you use thread-safe libraries. All IPP libraries are thread-safe.

Intel Parallel Debugger Extension
The Intel Parallel Debugger Extension (PDE) provides:
» Thread Data-Sharing analysis
> Cilk Plus and OpenMP awareness
> SSE register viewing/debugging

The PDE works alongside the standard Visual Studio debugger and provides additional functionality
to help debug parallel applications. Figure 2-7 shows an example of some of the PDE windows.

Wectar Registers =
int3z 0 1 z 3
KMMO 00000000 00000000 00000000 00000000
WML
smz Intel Cilk Plus Call Stack B
W3 CH14-5LM.exel0402f1a0() Line 2c1
e CH14-SLM.exe! 14022540 Line 305
Thread Data Sharing Events =)
‘ Analysis active, Filterset: Supress, Active Filters: 0
L Qé_k—\ Analysis run frorm 2/26/20) Teams]rj
O B*"&E MumCalcs - BA0641F0(| 10 Parent | # Threads | Created At
‘5‘}/@ hash.cpp(705) upd E] 1
‘5‘5 hash.cpp(703) updj g 1 5 C:\Documents and Settings'sblair
(< m | [l]

FIGURE 2-7: Some of the windows in the Parallel Debugger Extension

You can find more details about PDE in Chapter 11, “Debugging Parallel
Applications.”

Intel Debugger

The Intel Debugger (IDB) is a standalone debugger available on the Linux platform. It has all the
features you would expect of a debugger, including breakpoints, watchpoints, single-stepping,
source code, and disassembler views.

IDB has its own graphical user interface as well as a command-line interface. All the parallel debug-
ging features mentioned in the previous section are available in IDB.

44 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

Math Kernel Library

The Math Kernel Library (MKL) is a collection of math routines for use in science, engineering,
and financial applications. The library is well optimized and often gives superior results over hand-
crafted code or other comparable libraries. The libraries and functions in MKL are well known in
the HPC community, so they are not described further here.

MKL offers the following functionality:
> Dense linear algebra
> Basic Linear Algebra Subprograms (BLAS)
> Linear Algebra PACKage (LAPACK)
> Trust Region Solver
> Sparse linear algebra
> Sparse BLAS
> Sparse format converters
> Sparse solvers
> PARDISO direct sparse solver
> Iterative sparse solvers
> Preconditioners
Fast Fourier transforms
Optimized LINPACK benchmark
Vector math library

Vector random number generators

Y Y Y VY Y

Cluster support
> Scalable LAPACK (ScaLAPACK)
> Cluster FFT

You can use the library functions in either Fortran or C/C++ code. Some of the functions have vari-
ants that have parallelism implemented internally. All the functions are thread-safe.

Listing 2-7 shows how to perform a matrix multiplication using the MKL. Two matrices, A and B,
and are filled with random numbers. The function cblas_sgemm is used to multiply A and B and
write the results in C.

‘) LISTING 2-7: Using the MKL to perform a matrix multiplication
Availablefor ~ #include <stdlib.h>

dm:;?ggr:n #include <time.h>
#include "mkl_cblas.h"

VTune Amplifier XE | 45

#define MATRIX_SIZE 100
#define BUFFER_SIZE MATRIX_ SIZE * MATRIX_SIZE
int main(void)
{
float A[BUFFER_SIZE];
float B[BUFFER_SIZE];
float C[BUFFER_SIZE];

// seed the random number generator
srand((unsigned)time(NULL));

// initialize the matrices with random values
for (int 1 = 0; 1 < BUFFER_SIZE; 1++)

A[i] = rand();
B[i] = rand();
C[i] = 0;

// matrix multiply using MKL
cblas_sgemm (
CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
MATRIX_SIZE, MATRIX_SIZE, MATRIX SIZE, 1.0,
A, MATRIX_SIZE,
B, MATRIX_SIZE, 0.0,
C, MATRIX_SIZE

code snippet Chapter2\2-7.cpp

Because the MKL is designed to work with a number of different combinations of compilers and
operating systems, several variants of the libraries ship with Parallel Studio XE. You can use the
online wizard at http://software.intel.com/en-us/articles/intel-mkl-1link-line-
advisor/ to help decide which MLK library to use.

VTUNE AMPLIFIER XE

VTune Amplifier XE is a profiling tool to find bottlenecks in your application. You can conduct the
analysis at the algorithm level, where the focus is on the code, or at a more advanced level, where
the performance of code on the processor microarchitecture is considered:
> Algorithm analysis
> Hotspots

> Concurrency

» Locks and Waits

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/to
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/to
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/to

46 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

> Advanced analysis

> General Exploration
Memory Access
Bandwidth
Cycles and uOps

Y VYV VY

Front-End Investigation

The profiling results are displayed graphically. A comparison of several results can be displayed
side by side.

Advanced-level analysis relies on event-based sampling, which uses counters in the processor to
measure how well your code performs. Read more in Chapter 12, “Event-Based Analysis with
VTune Amplifier XE.”

The first stage of the four-step tuning methodology (see Chapter 3) uses Amplifier to find code hot-
spots. In the final tuning step, Amplifier detects any parallel overhead and determines how parallel
the code is.

All analyses should be carried out on the optimized version of your application.

@ Use Amplifier on the optimized version of your application.

Hotspot Analysis

Hotspot analysis is used to find parts of the code that consume the most CPU activity. Hotspots are
prime candidates for running in parallel (see Figure 2-8). The top part of the window gives a sum-
mary of the hotspots, the biggest being at the top of the list. To the far right is the call stack of the
highlighted hotspot. The bottom of the window is a timeline view.

Concurrency Analysis

The Concurrency analysis gives a summary of how parallel an application runs. Concurrency is a
measure of how many threads were running in parallel. The colored bars are a summary of how
much time each function took, and the color of the bars indicates how much concurrency there
is. You can filter the information in the graph by module, thread, processor, and utilization (see
Figure 2-9).

Locks and Waits Analysis

The Locks and Waits analysis shows where a program is waiting for synchronization. Two groups
of synchronization objects are supported: objects used for synchronization between threads, and
objects used with waits on I/O operations.

VTune Amplifier XE |

Intel VTune Amplifier XE 2011

Grouping: |Function Call Stack

Function 7 Call Stack CPU Time v Module Function (Full
itialize_20_buffer 23.328; [find_hotspots.exe initialize_2D_buffer{unsigned int * const,unsigned int *)
rid_intersect 7.301; [find_hotspots.exe grid_intersect

phere_intersect 5.561; (I find_hotspots.exe sphere_intersect

diplus::Graphics:Drawlmage 05155) find_hotspots.exe Gdiplus:iGraphics:Drawlmageiclass Geiplus:Image *int,intir

& Ma stack information

rid_bounds_intersect 04585) find_hotspots.exe grid_bounds_intersect
temalindProc 0815 find_hotspots.exe InternalindPrac(struct HWND_ * unsigned int,unsigned int
ostThreadhessageW’ 01505 USER3Z.dll PastThreadMessage'

EWinnit 01435 find_hotspots.exe Winlnit(struct HINSTANMCE_ * int, struct tagWNDCLASSEXA *

[FIRmmnt. nAnmns find _hotsnats eve Rawnnt(staict rae® dooklel
Selected 0 rowls):

[#¥inhainCRT Startup (3]
Thread (Dxf50)
thread_video (L2148)

CPU Usage

L 1o filters are applied. [Ro%

FIGURE 2-8: Hotspot analysis using Amplifier

T000cc - x

B Concurrency - He y Intel VTune Amplifier XE 2011

Grouping: [Function] Call Stack ~| | [weiting -
CPU Time by Utilizationw Ove... Wit Time by Uitilization 3 llececsclcalcted e L

Function / Call Stack Module

Current stack is 100,0% of selection

[100.0% (6.4785 of 6.4783) |

Didle @Pooe D0k Blesl @Over ™ @idle §Posr DOk Bldeal B Duer
0s 0s

£ grid_in

phere_intersect 4,993 [s s build_with_cilk.exe sphere_inte [Unknown]

build_with_cilk.exe | g

tlntegerTaUnicodeString 0.563s [l 0s 0s ntdll.dll RtllntegerT
rid_baunds_intersect 0.413: 0 03 [build_with_cilk.zxe | grid_boune
aypnt 0.070s 0 03 [build_with_cilkexe | Raypntistn.
tDelayExecution | o64s) 03 03 ntdll.dll NtDelayExe
deaimain_loop | oazss 0.000; 1117 (DI build_with_cilk.exe videaumair
diplus:Graphics:Drawlmage | nass) 00165 s build_with_cilk.exe | Gdiplus:Gr
nternalVWndProc | 0.103s 0.018s 0.000s build_with_cilk.exe Internal\Vn

Selected 1 row(s): | 6.474; 03 03 -
< v i] v

Threads .
@ Running

[#] T waits

ik CPU Time

Transitions |~

s AT | |
ks CPU Time
Thread Concurrency : Thread Concurr... ||

T M o iuk Concurre... ~

QIQHG-Qe
[#inhlainCRT Startup (0]
Thread (0x2Ze0)

thread_video (0090) |
Cilk Worker (lxeat)
A dary i

=

>

Threads

FIGURE 2-9: Concurrency analysis using Amplifier

In Figure 2-10, the longest red bars indicate the synchronization objects that are causing the longest
wait time. You should try to fix these first.

You can also launch Amplifier XE from the command line. When you perform the profiling from
the command line, the results are displayed as text. You can also view the results generated from the
command line in the graphical version of Amplifier XE.

48 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

~r000hw ‘

8 Locks and Waits - Lo

/A Q Intel VTune Amplifier XE 2011

\G: Analysis Iarget\ | 7 Analysis Typ CollectionLog | | Kl Summary | BR:SITERET

Grouping: [Functien { Call Stack - | [wating -

T Wait Time by Utilizations Wait Spin s 2| 2sEiietn VQ‘EW‘”Q 4 e b
Qidle @ Poor 00k @Ideal @ Over Count Time «Current stack is 99.6% of selection
5 draw_taskiioperstor) | 140.304; (N 511 0.1065 snalyzz locks.exe draw task: [99,62 {0,135 of 0.1125) J
@tbbzintemnal:thread_sleep v3 55, 304; () 1 s thbdl bt e R P
Gelip CreateSalidFill | 18395000 1 05 geiplus.dll GdipCreatq | analyze_locks.exelloop_once - winvideah: 224
@ videozmain_loop 17,6255 [0 1,181 s analyze locksexe videosmai| |l analyze_locks.exekideosmain_loop(void) - w ..
@it sleep 2670501 301 0.0165 analyze locks.exe | rt sl 1\l analyze_lacks.exelmain - videa.cppi205

parallel_thread 04415 analyze_lacks. exeWinhain - videa hil4
n ndProc [e analyze_locks.exel_tmainCRTStartup - crtexe. .
@ RellntegerToUnicode String 0.017s # 0z ntdll.dil RtllntegerT analyze_|ocks.exelpre_c_init - criexe.c:203
Evideonterminate | o.onfs 1 s analyze locksexe videontern

) 60 <

Selected 1 row(s): 01125
v [|

—
Threads

ForinbAainCRT Startup G B Running
Thread (IxLadt) Cwaits
[Thresd_wideo (DxlclE) iy
£ TBE Warker Thread (1] ! L i : : :
¥ [TB8 Warker Thread (0] i [Ihiesdoncupency
[TB8 Warker Thread (0 1 : »y i luk Concurrency
Thread Concurrency

Bl 1o filters are applied. [REGUASKTS [41) B4 hread: [T ~ %

FIGURE 2-10: Locks and Waits analysis using Amplifier

Dissassembly Source View

You can drill down to the disassembly view of your code with Amplifier XE. You can choose to dis-
play assembler, source, or interleaved assembler and source.

PARALLEL INSPECTOR XE

Intel Parallel Inspector XE checks for threading and memory allocation errors. Inspector XE detects
these errors at run time, usually working on an unoptimized version of the program under test. Data
races and deadlocks are detected and their location pinpointed.

Predefined Analysis Types

Inspector XE is a dynamic analysis tool that observes the application under test while it is running.
When Inspector XE launches an application, it first instruments the binary and then begins to cap-
ture runtime information. Several predefined analysis types are available (see Figure 2-11).

When Inspector XE executes code, it flags errors even if they did not actually cause a problem at run
time. For example, if you run code that has a potential deadlock but the deadlock did not actually
happen, Inspector XE still recognizes the potential problem and reports it.

Parallel Inspector XE | 49

ﬂlew Inspector XE Result] - X

Intel Inspector X& 2011

fﬁ_ Configure Analysis Type
A Analysis Type
é” "b Detect Deadlocks and Data Races

=k Memary Errar Analysis
- Detect Leaks

Medium scope threading error analysis type, Increases the load on the system. Increases the time
required to perform the analysis. Increases the chances the analysis will fail because the system may

A Detect Memory Problems tun out of resources, Press F1far more details.
- Locate Mermany Problemns
=k Threading Errar Analysis [C] Terminate on deadlack
A Detect Deadlocks
Stack fi depth: |1
A Detect Deadlocks and Data Races S
- Locate Deadlocks and Data Races & Details

~{F Custorn Analysis Types

Project Properties

Showy Cormmand Line

FIGURE 2-11: Controlling the analysis depth

Errors and Warnings

Inspector XE reports for the following types of errors and warnings:

> Threading errors
> Data races
Deadlocks
Lock hierarchy violations

Potential privacy infringements

Y V VYV VY

Other threading information
> Memory errors
» GDI resource leaks
» Incorrect memcpy calls
» Invalid deallocations
>

Invalid memory access

50 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

Invalid partial memory access
Kernel resource leaks

Memory leaks

Y Y VY

Uninitialized memory access
> Uninitialized partial memory access

Figures 2-12 and 2-13 show how the results are displayed.

-~ rO00ti2

(ﬁ Detect Deadlocks and Data Races

Intel Inspector XE 2011

& Target Analysis Type || Bo Collection Log

Modules

State

Problem Sources Severity

Error 2 iternis)

Datarace find_and_fix_threading_errors.cpp find_and_fix_threading_errors.exe Mew

P2 @ Datarace winvideoh find_and_fix_threading errors.exe New

Problem
Data race 2 itermnis)

Source

1 Descript.. & Source Function Module find_and_fix_threading_errors.cpp Titernis)
EIX2 Read find_and_fix_threading_errors.c..‘ render_one_p ... find_and_fix_threading_erra .. wirwideo.h Liternis)

138 Module

139 A% Handle overexposure and underexposure here... */ find_and_fix_threading_errats,exe 2 itemn(s)

140 R={int] (col.r*255);:; //Threading Error: see comments near line 1

141 if (R > 255) R = 255; State _

142 else if (R < 0) R = 0: Mew 2 itern(s)
%3 Read find_and_fix_threading_errors.c..‘ render_one_p ... find_and_fix_threading_erro .., Suppressed

14z else if (R < 0) R = 0; Not suppressed 2 item(s)

s Investigated

=11 * . i . i £ B 2

144 G (int) (col.g*255):; //Threading Error: see comments near line 1 Mot investigated 7 iternis)

145 if (G » 255) G = &55;

146 elze if (G < 0) G = 0;

FIGURE 2-12: A threading error reportin Inspector XE

Some errors that Inspector XE reports may be false positives — that is, they are not really errors but
the tool thinks they are. Such errors can be added to a suppression file, and these errors are ignored
in subsequent runs.

In addition to the GUI version of Inspector XE, a command-line version of Inspector is available,
with the results displayed as text. You can also view the results generated from the command line in
the graphical version of the tool.

You can read more about Inspector XE in Chapter 8, “Checking for Errors.”

Static Security Analysis | 51

Detect Memory Problems

Analysis Type || B Collection Log

@ Target

@ Problem Sources Modules Object ... 5t
P1I @ Mismatched allocatio.. find_and_fix_memar.. find_and_fix_memory_er.. M
P2 @ Irvalid memary access find_and_fix_memaor.. find_and_fix_memaory_er .. ¥l
PR @ Irevalid partial mermaory... [Unknown]; task_sch .. find_and_fix_memary_er .. M
P4 @ Uninitialized memaory ... task_scheduler_inith find_and_fix_memony_er.. M.
P @ Memory leak find_and_fi_memaor,. find_and_fix_memony_er.., 240288 N
] Mermary leak find_and_fix_rnemor.. find_and_fix_memory_er.., 330396 N
<] Memary leak find_and_fix_memony_er.. 240288 N

find_and_fix_memor..
——

Module Offset

find_and_fix_memor...

I Description & Source Functi..,

=¥ Allocation site

Object ..,

find_and_fix_memory_... operat..,

163 for (int ¥ = r.begin(); ¥ !'= r.endi}); +¥) {

169 i

170 drawing area * drawing = new drawing area(startx, tot
171 for (int x = startx ; x < stopx; x++) |

e color_t ¢ = render one_pixel (X, ¥, local mbox, 3

=¥ Mismatched deall.. find_and_fix_rmemary_... operat.., find_and_fi_memor..
= i e

m

Severity
Errar

Problem

Source

State
e

Inwvalid memaory access 1iternis)
Inwvalid partial mermory access Literni(s)
Memary leak 12 itern(s)
Mismatched allocation/dealloc.. litern{s) |
Uninitialized mermory access 1iternis) 3

[Unknown]
find_and_fix_rnemary_errors.cpp
task_scheduler_init.h

Module
find_and_fix_memory_errors.exe 16 itemi{(s)
thhb.dll 1iternis)

16 itern(s)

1iternis)
14 itern(s)
2 iternis)

16 itern(s) —

FIGURE 2-13: A memory error report in Inspector XE

STATIC SECURITY ANALYSIS

The primary goal of SSA is to harden applications against security attacks; it is also useful as a way

to detect some programming errors. SSA relies on Composer XE and Inspector XE. The compiler

performs the analysis, and Inspector XE displays the results.
The analysis checks for the following:

> Buffer overflows

Misuse of pointers and heap storage

Unsafe or incorrect use of C/C++ language and libraries

Misuse of OpenMP
Misuse of Cilk Plus

Y Y Y Y Y

Unsafe or incorrect use of Fortran language and libraries

When the compiler performs an SSA, it does not produce a working executable; however, it
does produce intermediate object files, which contain extra information that is analyzed at the

link stage.

52 | CHAPTER2 AN OVERVIEW OF PARALLEL STUDIO XE

Various scripts are available to help in preparing an analysis. For a more detailed
description, see Chapter 5, “Writing Secure Code.”

DIFFERENT APPROACHES TO USING PARALLEL STUDIO XE

Parallel Studio XE contains many different components to help you write parallel code and supports
more than one model of use. Not all developers stick to one particular way of doing things. When
using Parallel Studio XE, take a moment to consider which approach to using Parallel Studio might
suit you. Here are some suggestions that might help:

> If you are looking for as much guidance as possible — Use Parallel Advisor, which offers a
high-level methodology of developing parallelism. Advisor uses the technology of the under-
lying tools but does not rely on you firing up individual tools. This methodology doesn’t suit
everyone. If you are looking for a technique that helps model parallelism before implement-
ing it, and keeps an overarching view of what you are doing, this might be for you.

Chapters 10 and 18 are dedicated to developing code using the Advisor-driven methodology.

> If you prefer to control individual analysis and development steps — Use the individual tools
from Parallel Studio XE, launching the tools directly from the toolbars (rather than relying
on Advisor). You can use the tools in Parallel Studio XE (Amplifier XE, Composer XE, and
Inspector XE) as part of the popular four-step development cycle.

Chapter 3 introduces the four-step development cycle: analysis, implementation, error
checking, and tuning.

> 1If you hate graphical user interfaces or prefer script-driven development — Use a compiler-
centric focus, with all development work being carried out from the heart of your code using
just command-line tools. You can drive the compiler, libraries, Amplifier XE, and Inspector
XE from the command line.

SUMMARY

Parallel Studio XE includes most of the tools you need to write and debug simple and complex par-
allel applications.

Composer XE, which includes a C/C++ and Fortran compiler along with a set of optimized thread-
safe libraries, can be used to write optimized/parallelized code. Amplifier XE and Inspector XE are
used to profile and error-check your applications. Parallel Advisor enables you to model the effect of
introducing parallelism into your code before committing to a particular implementation.

The next chapter gives you the chance to try Parallel Studio by following hands-on examples.

Parallel Studio XE for the
Impatient

WHAT’S IN THIS CHAPTER?

> An overview of the four-step methodology for adding parallelism
» Using Cilk Plus to add parallelism

» Using OpenMP to add parallelism

The previous chapter introduced three ways of using Intel Parallel Studio XE: Advisor-driven
design, compiler-centric development, and a four-step methodology.

This chapter describes the four-step methodology for transforming a serial program into a
parallel program. The chapter’s hands-on content guides you through the steps to create
a completely parallelized program.

In the examples in this chapter, you use two parallel models, Intel Cilk Plus and OpenMP, to
add parallelism to the serial code. Cilk Plus is regarded as one of the easiest ways to add paral-
lelism to a program. OpenMP is a well-established standard that many parallel programmers
have traditionally used.

You use various key components of Intel Parallel Studio XE to achieve the parallelization. This
chapter describes how to use Intel VTune Amplifier XE 2011, an easy-to-use yet powerful pro-
filing tool, to identify hotspots in the serial application, as well as analyze the parallel program
for synchronicity, efficiency, and load balancing.

You use Composer XE to build the newly parallelized application, and then use Intel Inspector
XE 2011 to reveal threading and memory errors. Finally, you return to Amplifier XE to check
for thread concurrency and fine-tuning.

54 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

THE FOUR-STEP METHODOLOGY

Initially, parallelizing a serial program may seem fairly simple, with the user following a set of
simple rules and applying common sense. But this may not always achieve the most efficient parallel
program running at the expected speeds. Indeed, it is possible that faulty attempts at parallelization
will actually make a program run more slowly than the original serial version, even though all par-
allel cores are running.

The four-step methodology, as shown in Figure 3-1, is a tried and tested method of adding parallel-

ism to a program.

Analyze

!

Implement

!

Debug

!

Tune

Step 1: Look for hotspots in
application. These are best
candidates to make parallel.

Step 2: Add parallel constructs
into source code.

Step 3: Check if any parallel-
type errors have been
introduced.

Step 4: Tune the parallel
application.

FIGURE 3-1: The four-step methodology

1. Analyze the serial program for opportunities to parallelize. This is probably the most impor-
tant step; decisions made here will affect the final parallelized program.

2. Implement the parallelism using constructs from the parallel model you have chosen to use.

3. Debug or check if any parallel-type errors have been introduced. Is the program running cor-

rectly? Does it have threading or memory errors?

4. Tune the parallel application. Are all the threads doing equal amounts of work? Has an
excessive overhead been introduced into the program as a result of adding parallelism?

With the exception of the debug step, you should carry out the steps on an optimized version of

the application.

EXAMPLE 1: WORKING WITH CILK PLUS

In this example, you add parallelism to a serial program using Cilk Plus. Later, you parallelize the
same serial code using OpenMP.

Example 1: Working with Cilk Plus | 55

Obtaining a Suitable Serial Program

Not all serial programs are suitable for making parallel. Parallelization itself carries an overhead,
which you must take into account when considering whether a program would benefit from being
parallelized. You must test parallel programs extensively both by running them and by using ana-
lytical tools to ensure their results are the same as their serial versions.

Listing 3-1 shows the simple serial program that you’ll make parallel using the four-step methodol-
ogy. This is a contrived program, put together to show parallelization problems.

The program incorporates two loops: an outer loop and an inner work loop. The outer loop is
designed to run the timed inner work loop several times; this reveals variations in timings caused by
other background tasks being carried out by the computer. The time taken for the work loop to run
is captured and reported back. The work loop itself iterates many times, with each iteration contain-
ing two further nested loops that calculate the sums of arithmetic series. The number of terms in
the two series is determined by the loop count of the work loop. That is, as the work loop iteration
count increases, the number of terms in the series increases, meaning that more work is required to
calculate each series.

Then the inverse of the square root of each series is added to a running total; this is output at the
end of the work loop. This stops the compiler from optimizing all the calculated values out of exis-
tence. Also, the output after each work loop has finished reveals the number of times the work loop
has iterated, and the time taken for it to run.

\) LISTING 3-1: The starting serial program

Available for // Example Chapter 3 Serial Program
download on #include <stdio.h>
Wrox.com include <stdio.

#include <windows.h>

#include <mmsystem.h>

#include <math.h>

const long int VERYBIG = 100000;
// IR RS RS SRS S EEEEE SRR EEREEE ST
int main(void)
{
int 1i;
long int j, k, sum;
double sumx, sumy, total;
DWORD starttime, elapsedtime;
/] mm e e oo
// Output a start message
printf("None Parallel Timings for %d iterations\n\n", VERYBIG);

// repeat experiment several times
for(i=0; i<6; i++)
{

// get starting time

56 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

}

starttime = timeGetTime() ;

// reset check sum & running total

sum = 0;

total = 0.0;

// Work Loop, do some work by looping VERYBIG times
for(j=0; J<VERYBIG; Jj++)

{
// increment check sum
sum += 1;
// Calculate first arithmetic series
sumx = 0.0;
for(k=0; k<j; k++)
sumx = sumx + (double)k;
// Calculate second arithmetic series
sumy = 0.0;
for(k=j; k>0; k--)
sumy = sumy + (double)k;
if(sumx > 0.0)total = total + 1.0 / sqgrt(sumx);
if(sumy > 0.0)total = total + 1.0 / sqgrt(sumy);
}

// get ending time and use it to determine elapsed time
elapsedtime = timeGetTime() - starttime;

// report elapsed time
printf ("Time Elapsed %$10d mSecs Total=%1f Check Sum = %$1d\n",
(int)elapsedtime, total, sum);

// return integer as required by function header
return 0;

}
/7

R I R R R R S R I I R I R R R R R R R I I R I

code snippet Chapter3\3-1.cpp

Even novice C programmers should have no problem understanding most of this program; however,

it does ¢

ontain a few lines of code that merit explanation. The program uses calls to the Windows

API function timeGetTime (), which returns the current system time in milliseconds. By calling this
function before and after the main work loop, you can determine the time involved in executing the
loop. The time is returned by the function in a DWORD type variable. Looking at the start of the pro-

gram co

>

>

de, you can see that a number of declarations are made:

#include <stdio.h>, to enable input and output to and from the program in the usual
manner.

#include <windows.h>, to enable DWORD variable types to be declared.

Example 1: Working with Cilk Plus | 57

> #include <mmsystem.h>, because it holds the prototype of the library function

timeGetTime ().

> const long int VERYBIG 100000, which sets a constant that is used to control the number
of times the main work loop will repeat. This is the controlling variable, which you can alter
to vary the amount of work to be carried out, and therefore the length of time taken. This is
shown as 100000.

Running the Serial Example Program

Before you undertake any parallelism, it is a good idea to build and run the existing serial version
of the program. This gives a benchmark for the application and also shows what the output should
look like. After parallelization, you should always check that the output of the program remains the
same as for the serial version.

Creating the Project
To create a new project in Microsoft Visual Studio, perform the following steps:
1. Create a new project in Microsoft Visual Studio; it should be an empty console applica-

tion project with no precompiled headers. Add a new C++ code file and paste the code from
Listing 3-1.

2. Select the Release version of the project in the drop-down box at the top of the screen
(Figure 3-2).

3. Add an additional library so that timeGetTime () can be used. Select Project = Properties
and add the library name winmm.1ib to the Additional Dependencies fields of the Linker
Input category (Figure 3-3).

4. Select Project = Properties and make sure Optimization is set to Maximum Speed (Figure 3-4).

To avoid compilation errors from being produced when Cilk Plus reducers are
used later in this chapter, it is important that the file extension is . cpp, not .c.

B ———————————

Cilk7 - Microsoft Visual Studio
File Edit View Project Build Debug Tools Test Window Community Help

F-a-gdd $RA 90 - @-0 P recse w2
@[> e . @ ol] Eﬂ

' Solution Explorer - Sol.. « 3 X Cilk7.cpp | Start Page Configuration Manager...

! & E (Global Scope)
: '_ESNUt_iOﬂ "Cilk?" (1 project) 149 // Example Chapter 3 Serial Program
' =2 Cilk? 21 #include <stdio.n

FIGURE 3-2: Selecting the Release configuration

58 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

Cilk7 Property Pages - .- 7| =
|
Configuration: [Ad:i\re(Release} T | Platform: |Active(Win32} '] [Configuration Manager...
[=- Configuration Properties Additional Dependencies winmm.lib
General Ignore All Default Libraries No
Debugging Ignore Specific Library
Intel bebuguing Module Definition File
f::'wck:: Force Symbol References
Gaiial Delay Loaded DLLs
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
FIGURE 3-3: Adding winmm.lib to the linker options
Cilk7 Property Pages 7l =
Configuration: [At‘ti\re(Release} *| Platform: |Active(Win32) '] [Configuration Manager...]
= Configuration Properties = General
General F Optimization Maximize Speed [/02)
Debugging Inline Function Expansion Default
Intel Debugoing Enable Intrinsic Functions No
g QC;:neral Favor Size or Speed Meither
Debug Omit Frame Pointers Mo
Enable Fiber-safe Optimizations Mo
Preprocessor Intel Specific
Code Generation = Global Optimizations Mo
Language Interprocedural Optimization Multi-file [/Qipo)
Precompiled Header Optimize For Windows Application No
Dutput Files X Flush Denormal Results to Zero Mo
I;B)::;\r:::;::rmatlon Floating-Point Speculation Fast [/Qfp-speculation:fast)
Aibranced Enable Matrix Multiply Library Call Default
Command Line Loop Unralling
=- Linker Parallelization Mo

FIGURE 3-4: Optimizing for speed

Running the Serial Version of the Code

You will be building two serial versions of the application; the first version uses the Microsoft com-
piler, and then the second version uses the Intel compiler.

Using the Microsoft Compiler

You are now ready to build and run the serial example. The example program can be built using the
Microsoft compiler in the usual manner. You can launch the program from within Visual Studio by
pressing Ctrl+F5. Figure 3-5 shows the output, using the initial controlling constant VERYBIG set as
100000. Your output timings may be different due to differences between computer systems.

Example 1: Working with Cilk Plus | 59

B C:\Windows\system32icmd.exe (| =) S

Hone Parallel Timings for 1BBBBB iter:

188888
18868688
1886888
1868888
188888
188888

FIGURE 3-5: Serial timings for 100,000 iterations using the Microsoft compiler

Using the Intel Compiler

The first version of the program was built using the Microsoft compiler. To change to use the Intel
compiler, follow these steps within the Microsoft Visual Studio environment:

1. Select Project = Intel C++ Composer XE = Use Intel C++.

A pop-up box asks if you want your project to be reconfigured for using the Intel C++ com-
piler. Click OK. It is prudent to just check that the project properties remain the same.

2. Build and run the program and compare the results. Remember to use Ctrl+F5 to run.

You should find that the executable runs a lot faster, as shown in Figure 3-6. This is because
the Intel compiler optimizer is smarter about removing and refactoring redundant or expensive
computations.

B C:\ProjectiExample Chapter 3\Release\Example Chapter J.exe E=ENCN X

Mone Parallel Timings for 1BBBBH iterations

3885 : E 2.6 ck S 188888
[32.61° C 18868688

1868888

1868888

1888688

188888

FIGURE 3-6: Serial timings for 100,000 iterations built with Intel compiler

The check sum value is a consistent 100000, which is the same as the number of iterations of the
inner or working loop. The Total value is the result of the arithmetic calculations involved within
the inner loop. If you want to reduce the time taken to run the program, make the value of VERYBIG
smaller. Figure 3-7 shows the output run for a value of 10000.

[E¥ C:\ProjectiExample Chapter J\Release\Example Chapter J.exe L | ()

18888
186888
18888
18888

1184456 ¢ 18688
-184456 2 u 186888

FIGURE 3-7: Serial timings for 10,000 iterations

60 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

Step 1: Analyze the Serial Program

The purpose of this step is to find the best place to add parallelism to the program. In simple pro-
grams you should be able to spot obvious places where parallelization might be applied. However,
for any program of even just moderate complexity, it is essential that you use an analysis tool, such
as Intel Parallel Amplifier XE. Although this is a rather trivial programming example, you can use
the steps on more complex programs.

Using Intel Parallel Amplifier XE for Hotspot Analysis

When Intel Parallel Studio XE was installed into Microsoft Visual Studio, it set up a number of
additional toolbars, one of which is for Intel Parallel Amplifier XE (introduced in Chapter 2).
Amplifier is a profiling tool that collects and analyzes data as the program runs.

This example uses Amplifier XE to look for parts of the code that are using the most CPU time;
referred to as hotspots, they are prime candidates for parallelization.

Because Amplifier XE does slow down the execution of the program considerably, it is recom-
mended that you run an application with reduced data. Provide data input and reduce loop
iterations, where possible, to reduce the run time.

For this example, the outer loop is reduced to 1. This will not prevent Amplifier from finding the
hotspots, because the outer loop merely runs through the same work loop several times. Hotspots
found in the first iteration of the work loop will be the same in any further iterations of it. Also,
leave VERYBIG set as 10000. You will need to rebuild with these new settings before using Amplifier.

@ Amplifier XE is described in more detail in Chapter 6, “Where to Parallelize.”

Starting the Analysis

To start the analysis, follow these steps:

1. Select New Analysis from the Amplifier XE part of the toolbar, as shown in Figure 3-8. This
brings up the start-up page.

0 Cilk7 - Microsoft Visual Studio

File Edit View Project Build Debug Tools Test Window Communily Help
H-E-sH S ¥ G € - &~ b Release + Win32
BpHoz. @3> o EEs (w3 B W

SolutionfMorer - Sol.. » & X Cilk7.cpp | Start Page

L= [Global Scope) b
[5A Selution "Cilk?" (1 project) 1§97 // Example Chapter 3 Serial Program
=] Cill(? 24| #include <stdio.h>
B 33 C‘_!k? 3| #include <windows.h>
‘—4 Header Files 4]| #include <mmsy=stem.h>
B Resoume Hles 54| #include <math.h>
B~ l5r Source Files 6

& Cilk7.cpp

74| const long int VERYBIG = 100000

FIGURE 3-8: Selecting a new Amplifier analysis

Example 1: Working with Cilk Plus | 61

2. Select the analysis type Hotspots, as shown in Figure 3-9. Hotspot analysis looks for code
that is consuming the most CPU activity.
i Choose Analysis Type Intel VTune Amplifier X€ 2011
= [y Aigorithm Analysis + || Hotspots
A Lightweight Hotspots Identify your most time-consuming source code. Unlike
A- Lightweight Hotspots, Hotspots collects stack and call tree
A Concurrency information. This analysis type cannot be used to profile the
A Locks and Waits system but must either launich an application/process or
B attach to one. This analysis type uses user-mode sampling
= [Advanced Intel(R) Core(Th and tracing collection. Press F1 for more details,
A General Exploration
A Memory Access = Collect highly accurate CPU time
A Bandwidth @ Detaits
A Banduidth Breakdown To modify collector options for 8 predefined anslysis type,
A Cydes and ubps right-chick the analysis type in the tree, select Copy from
= | Advanced Intel(R) Microar Current entry in the pop-up menu, and edit the copy of
A General Exploration the selected analysis type configuration.
A Memory Access CPU sampling interval, ms: 10
A Cyoles and uOps Dietect context switches: Mo
A Front End Investigatior Collect CPU sampling data: With stacks
= 7 Adwanced Intel(R) Microar Collect signalling AP data: No
g ::'“Hcﬂﬁm;:“" Collect synchronization AP data: No
- ess Lontention
R = Collect 'O API data: Na
4 'f," i . Stack unwinding mode: After collection
Collect timeline data: Yes
FIGURE 3-9: Start-up page of the Amplifier XE
3. Click the Start button. Amplifier runs a hotspot analysis on your program. Because there is

no pause at the end of your program, Amplifier will both start and finish your program itself.

Figure 3-10 shows the results.

A0

A Hotspots - |

@ Analysis Target

SFuncti
- Cal

CPU Time~

Analysis Type

B8 Collection Log

E Summary

Function (Full)

Gmain | 6579ms | bomple Chapter dexelmain |

Intel VTune Amplifier XE 2011

"e Top-down Tree

B 1stack(s) selected. Viewing 1 1of1 [
Fr Current stack is 100.0% of selaction
[100.0% (0.0155 of 0.015s) |

Example Chapter 3.::;el=.maln - Example Chapt...
Example Chapter 3.exe!_tmainCRTStartup - art..

Sebected 1 rowl.. 14.979ms
i * 4
G L Ods 035 05 O3 08 Lls 13 Lss T |CITheeads
& = [#] B running
g — ik CPU Time
£ [[reead (120 [#] cPu Usage
[hread (0x12a0) - ik CPU Time

CPU Usage

Sl o filters are applicd. [22

FIGURE 3-10: Hotspot analysis using Amplifier XE

62 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

Drilling Down into the Source Code

Figure 3-10 shows how much CPU time was spent in each function. In this example, because there
is only a single function, main, only this one entry is present. To examine the source code of the
hotspot, double-click the entry for function main. This reveals the program code, with the hotspots
shown as bars to their right with lengths proportional to CPU time spent on each line (Figure 3-11).
Note that the code pane has been expanded within the Amplifier window, and that line numbers
within Parallel Studio have been turned on.

In the code shown, Amplifier automatically centers on the line of code that consumes the most CPU
time — in this case, line 43. Two groups of three lines are using most of the CPU time; these involve
the loops calculating the two arithmetic series. The remaining code lines consume little CPU time
in comparison and so show nothing. These arithmetic loops are the hotspots within your program.
Your own computer system may give different times, but it should follow a similar pattern.

You should also note that the Amplifier results for this run are placed in the Amplifier XE folder
under the project solution. You can see this to the left of the screen.

M Hotspots - Hotspots Intel VTune Amplifier X 2011
@ Analysis Target Anatysis Type | |28 Collection Log| | Bl Summary | | & Bottom-up ||+ Top-down Tree r
D5 @ "

Line Source CPU Time L = 1 stack(s) selacted.
az // increment check sum Curment stack is 100,
a3 aum += 1;

2
35 /7 Caleulate first Arithmetic series Example Chapler 3.ex..
as sumx = 0.0; 0.855s I Example Chapter 3.ex..
37 for(R=0: k<3 k++) 0.453 IR
38 sumx = sumx + (doubleik; o.779s I
39
40 // Calculate second Arithmetic series -n
41 sumy = 0.0; 0.546: IS i "
42 for{ k=3; ¥>0; ¥--) 0.187s
[l 43l sumy = sumy + (doublerk: |
a4
45 Af(sumx > 0.0 jtotal = total = 1.0 /
Selected 1 rov(s) 10615 =
‘ m 13 ‘)
i
O : n-.ls; IIs 1.I5s. ZI:. 1..51 .‘:l 3.IEs T+ | [Theeads =
< ¢ & = & . [+] B Running
| S
4 bose | [ik CPUTime .

FIGURE 3-11: Hotspot analysis using Amplifier XE, showing hotspots

Parallelization aims to place hotspots within a parallel region. You could just attempt a parallelism
of each of the arithmetic loops. However, parallelization works best if the largest amount of code
can be within a parallel region. Parallelizing the work loop places both sets of hotspots within the
same loop.

Step 2: Implement Parallelism using Cilk Plus

After identifying the hotspots in the code, your next step is to parallelize the code in such a way as
to include the hotspots within a parallel region.

Example 1: Working with Cilk Plus | 63

To make the code parallel, follow these steps:

1. Add the following include to the top of the program:
#include <cilk/cilk.h>

2. Adda cilk_for loop by changing the C++ for loop to a cilk_for loop. Notice that you
must declare the loop counter within the loop control bracket:

// Work Loop, do some work by looping VERYBIG times
cilk_for(int j=0; J<VERYBIG; j++)

3. Change the output start message, for completeness:

// Output a start message
printf("Cilk Plus Parallel Timings for %d iterations \n\n",VERYBIG);

And that’s it! Simple, isn’t it?

Well, not quite. You have a few problems to overcome. You should rebuild a Release version of your
program with VERYBIG set as 10000, but change your outer loop count back to the original 6.

When your program now runs, it creates a pool of threads, where the number of threads is usually
the same as the number of cores. These threads are made ready to be available within the parallel
regions. When a parallel region is reached, such as the cilk_for loop, the threads distribute the
work of executing the loop among themselves dynamically. This should, in theory, speed up the
execution time.

In fact, when you now run your program, you will find that instead of reducing the execution time,
it has actually increased it enormously. Figure 3-12 shows the new timings, using a 4-core installa-
tion. Compare these timings with the serial version shown in Figure 3-7; the parallelized version is
much slower. And remember that all 4 cores were running, so it is actually four times slower than
the numbers suggest. Also, notice the values of Total and Check Sum are incorrect.

[[|

B C:\ProjectiExample Chapter 3\Release\Example Chapter J.exe

FIGURE 3-12: Timings for the initial Cilk Plus parallelized program

Obviously, something is wrong. The problem is, by introducing parallelism, you also introduced
problems caused by concurrent execution. In the next few steps you investigate how to fix
these problems by enhancing both the speed and performance of the application.

Step 3: Debug and Check for Errors

With the introduction of parallelism into the program, the program no longer runs correctly. This
step checks the program to see if any parallel-type errors exist, such as deadlocks and data races,

64 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

which are responsible for slowing down the program. These errors are caused by multiple threads
reading and writing the same data variables simultaneously — always a potential cause of trouble.

Checking for Errors

You can find data races and deadlocks by using Intel Parallel Inspector XE. It is recommended

that you perform any error checking on the debug version of the program, not the Release version.
Building in the Release version will carry out optimizations, including in-lining, which may acciden-
tally hide an error. Using the debug build also means that the information reported by Inspector is
more precise and more aligned with the actual code written.

Running an Inspector analysis is a lot slower than just running the program normally. As with
Amplifier, you should reduce the running time by reducing loop counts and using small data sets.

To check for errors, follow these steps:
1. Change the solution configuration to be a debug version, but don’t rebuild just yet.

2. Because Inspector is slow, reset VERYBIG to just 1000, and reduce the outer loop to be just 1:

// repeat experiment several times
for(1=0; i<1l; i++)

Errors found in the first iteration of the loop will just be repeated in further loops, so there
is no point in having more loops.

3. Add the dependency winmm.1ib to the linker, as in the Release version, and set it for no
optimization. Of course, for a debug build any optimizations will be ignored, even if their
options are set.

4. Rebuild the application.
5. Launch Inspector XE from the toolbar, and select New Analysis (Figure 3-13).

0 Cilk7 - Microsoft Visual Studio
File Edit View Project Build Debug Tools Test Window Communily Help

- a- s d@[EE]
@pHo 2. @

Solution Explorer - Sol.. = 1 X 4

4 - &- b Release - Win32 -

[o] 2], » 2 (2% mx|@-LIE R

ilk7.cpp | Start Page

= & =@ New Analysis il
;Solution'cilk?' (1 project} 1{9 // Example Chapter 3 Serial Program
B A7 #include <stdio.h>

= 3 ana #include <windows.h>

[Header Files

[d Resource Files
=~ | Source Files
¢ Cilk7.cpp

#include <mmsystem.h>

#include <math.h>

0 s Lo P

=]

const long int VERYBIG = 100000;

FIGURE 3-13: Selecting a new Inspector analysis

6. In Inspector’s configuration window, select the analysis type Locate Deadlocks and Data
Races (Figure 3-14).

Example 1: Working with Cilk Plus | 65

it Configure Analysis Type

¥ Memory Error Analysis
A Detect Leaks
A Detect Memory Problems
A Locate Memory Problems
|y Threading Error Analysis
A Detect Deadlocks
A Detect Deadlocks and Data Ra
A

¥ Custom Analysis Types

Intel Inspector XE 2011

Locate Deadlodcks and Data Races

Widest scope threading enmor analysis type. Madmizes the
Ioad on the system. Maximizes the time required to perform
the analysis. Maximizes the chances the analysis will fail
because the system may run out of resources, Press F1 for
more details,

Terminate on deadiock

Stack frame depth: (16 =)

Scope: | Normal bt
/| Remaove duplicates

@ Details

To madify collector options for a predefined analysis

ttype, right-dick the analysis type in the tree, sslact Copy

from Current entry in the pop-up menu, snd edit the

opy of the selected analysis type configuration.,

Detect lock hierarchy and deadlocks: Yes =

Terminate on deadlock: No
Detect cross-thiead stack accesses: Yes
Stack frame depth: 16

Detect data races: Yes

Memory acoess byte granularity: 2 bytes
Detect data races on stack accesses: Mo

Remove duplicates: Yes
Defer memory check Yes
Save stack on first access: Yes
Save stack on allocation: Yes

FIGURE 3-14: Selecting for locating deadlocks and data races

Click the Start button. Inspector runs your program, carrying out an analysis as it does so.
Inspector targets the analysis to find deadlocks and data races, with the results as shown in

Figure 3-15.

The top-left pane of the Inspector window summarizes the problems. The bottom-left
pane shows the events associated with any selected problem. Try clicking on the various
problems. In Figure 3-15 problem P3, a data race, is selected; its associated events are
listed in the lower pane. Altogether, five problems, P2 to P6, are shown as data races.
These are marked with an x in a red circle. The other problem, “Cross-thread stack
access,” is actually just information, as indicated by its associated yellow triangle, and

can be ignored.

Double-click the P3 problem to reveal the code associated with it (Figure 3-16).

Two code snippets are shown, with the location of one of the events in each. The top code
pane, Focus Code Location, shows where the data race was detected during a write event.
The lower of the two code snippets, Related Code Location, shows the read event that was

involved in the data race.

66 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

% Locate Deadlocks and Data Races Intel Inspector X& 2011

@ Target Analysis Type || IB Col

Problem Sources Modules
Cross-thread stack access Example Chapter 3.cpp Example Chapler 3.exe Effor 5
Data race Example Chapter 3.cpp Example Chapler 3.exe Warmning 1
Example Chapter 3.cpp Example Chapler 3.exe Problem
Example Chapter 3.cpp Example Chapter 3.exe Crogs-thread stack access 1
Ps Data race Example Chapter 3.cpp Example Chapler 3.exe Data race 5
Example Chapter 3.cpp Example Chapter 3.exe Source
Example Chapter 3.cpp 6
Module
= Example Chapter J.exe &
- | State
State | Mew &
£ X27 HINT: Synchronization all... [l Example Chapter 3.cpp... mai . MNew Suppressed
EXNT Read 1] Example Chapter 3.cpp... operator) New Mot suppressed [
[X14 Read Example Chapter 3.cpp.. operator() Example Chapter 3.... New Investigated
%16 Read Example Chapter 3.00p... operator) Example Chapter 3.... New Notinvestigated 6
HIM5 Write Example Chapter 3.cpp... operator{) Example Chapter 3... New
GIME Write Example Chapter 3.cpp... operator] Example Chapter 3.... New
FX15 Write Example Chapter 3.cpp... operator) Example Chapter 3... New
H 17 Write Example Chapter 3.cpp... operator) Example Chapter 3.... New
[#1M20 Write Example Chapter 3.cpp... operator) Example Chapler 3.... New
HX21 Write Example Chapter 3.cpp... operator) Example Chapter 3.... New
[M24 Write Example Chapter 3.cpp... operator) Example Chapler 3.... New
X5 Write ") Example Chapter 3.cop... operator() Example Chapter 3.... New

FIGURE 3-15: Summary of threading errors detected by the Inspector XE analysis

Locate Deadlocks and Data Races Intel Inspector XE 2011

sum 4= 17 mple Chapter 3.exeloperatol

as

36 /¢ Calculate first Arithmetic series

a7 sume = 0.0;

38 For(keD: k<j: kes)

as umx = gumyx ¢+ (doubla)k;

40

41 // Caleulate second Arithmetic series -

/ Calculate first Arithmetic series Example Chapber 3.exeloperator

a7 sumx = 0.0;

38 for(k=0: R<j; R++)

39 sunie = sumx + [doublelk;

40

41 £/ Caleulate second Arithmatic serias
42 sumy = 0.0

43 for{ kej: k>0; k==) -
1 m] 0

Description « Source Function Module
HINT: Synchronization allocation site " Example Chapter 3.cpp:32 main Example Chapter 3.exe New
prj Read Example Chapler 3.cpp:39 operator]) Example Chapler 3.exe New
Exampie Chapter 3..pp:46 operator) Example Chapter 3.exe Mew
| Example Chapter 3.cpp:47 operator) Example Chapter S.exe New
Example Chapter 3.cpp:37 operatori) Example Chapter 3.exe NMew
~| Example Chapter 3.cpp:39 operator) Example Chapter 3.exe New
| Examiple Chapter 3.cpp:46 operator) Example Chapter 3.exe New -

FIGURE 3-16: A data race exposed in the source code

Example 1: Working with Cilk Plus | 67

From these two code snippets you can determine that variable sumx is the problem. The Focus Code
Location pane shows the variable being changed (write), at line 37 of the code. The Related

Code Location pane shows the variable being read, at line 39 of the code. When multiple threads

are running there arises the danger of one thread changing the value of sumx (resetting to 0), while a
second concurrently running thread is still using it, thereby making the second thread have an incor-
rect value. This is referred to as a data race.

Examining the other data race problems, you should be able to determine which variables they involve.
The full list of variables causing data races is sum, total, sumx, sumy, and k. All five of these variables
were created at the start of the function, and their scope is that of the function. However, the argu-
ments that follow would be the same regardless of whether these variables are global or static. During
parallel execution all the threads are competing to read from and write to these function-scoped vari-
ables. These are referred to as shared variables, and they are all shared by the concurrently executing
threads. For future reference, they will be referred to as nonlocal variables.

@ Inspector XE is described in more detail in Chapter 8, “Checking for Errors.”

Narrowing the Scope of the Shared Variables

Looking at the variables k, sumx, and sumy, you can see that they are set and used wholly within the
parallel region; they are not used outside it. One solution for this is to declare them within the paral-
lel region. As each thread independently runs through the code of the parallel region, it creates its
own private versions of these variables. They will be local variables to each thread.

Indeed, this is exactly what happened when the Cilk Plus version of the for loop was declared: its
loop variable § was declared within the loop control bracket. It is a local variable that will be pri-
vate for each thread.

You can modify the first few lines of the work loop, as shown in Listing 3-2. You can remove the
original declarations of these variables from the top of the program if you wish. Removing them
cleans up the program and makes it easier for other programmers to understand; however, if you
don’t remove the variables from the top of the program, the compiler simply creates locally scoped
variables that overlay the variables at the top of the program. This also applies to loop counter 7,
which was redeclared within the loop control bracket.

\) LISTING 3-2: Amendments to beginning of the work loop for Cilk Plus implementation

Availablefor ~ // Work loop, do some work by looping VERYBIG times
dmg&“ggn‘:“ cilk _for(int 3=0; Jj<VERYBIG; J++)
long int k;
double sumx, sumy;

// increment check sum
sum += 1;

code snippet Chapter3\3-2.cpp

68

CHAPTER 3 PARALLEL STUDIO XE FOR THE IMPATIENT

Set the work loop controlling variable vERYBTG to 100000, and the outer loop iteration value back
to 6. Then rebuild a Release version of the application and rerun. Figure 3-17 shows the timings
for this new run on a 4-core machine. Remember, your actual values may be different for your
computer.

@ C:\ProjectiExample Chapter 3\Release\Example Chapter 3.exe (= [E]
ICilk Parallel Timings for 1OBBBE iterations

FIGURE 3-17: Timings for the Cilk Plus parallelized program using loop local variables

Notice that the Total and Check sum values are incorrect and inconsistent between the runs. These
errors are also caused by data races, but making thread-private copies of the offending variables
total and sum locally within the loop will not help in this case, because these variables must be
shared between all the threads.

Figure 3-18 illustrates what happens when more than one thread attempts to increment the check
sum in the code line:

sum += 1;

As you can see from Figure 3-18, if sum starts with a value of 12, after both threads have incre-
mented the result is 13, instead of the expected 14.

Thread 1 Thread 2
sum Register Register
12 read sum 12
12 increment 12 read sum 12
13 write sum 13 increment 13
13 write sum 13

FIGURE 3-18: Problematic access to global variables

One solution for a variable of this type is to use a synchronization object or primitive, such as a
lock. This ensures that only a single thread at a time has access to it. Other threads requiring access
at the same time must wait for the variable to become free. However, this solution has the drawback
of slowing down the execution time. Alternatively, Cilk Plus offers a special variable form called a
reduction variable, which is discussed in the next section.

Adding Cilk Plus Reducers

Cilk Plus reducers are objects that address the need to use shared variables in parallel code.
Conceptually, a reducer can be considered to be a shared variable. However, during run time each

Example 1: Working with Cilk Plus | 69

thread has access to its own private copy, or view, of the variable, and works on this copy only. As
the parallel strands finish, the results of their views of the variable are combined asynchronously
into the single shared variable. This eliminates the possibility of data races without requiring time-
consuming locks.

A Cilk Plus reducer is defined in place of the normal nonlocal shared variable definition. Remember
that here, nonlocal refers to automatic and static function variables as well as program global vari-
ables. The Cilk Plus reducer has to be defined outside the scope of the parallel section of code in
which it is to be used.

To add Cilk Plus reducers to the code, follow these steps:

1. Add an extra header declaration:

#include <cilk/reducer_opadd.h>

2. Delete the declaration for sum and total at the top of the program.

3. Redeclare the variables sum and total to be Cilk Plus reducers. The reducer implicitly resets
the variable to 0, but it is always a good idea to explicitly say what you want. This gives you
more control.

cilk::reducer_opadd<long int> sum(0) ;
cilk: :reducer_opadd<double> total(0.0);

Place these within the outer loop, in place of the statements:

sum = 0;

total 0.0;

This ensures that for every iteration of the outer loop, sum and total will be reset to zero.

4. Change the printf statement to use the reducer function get_value (), which gives the
combined value of a reducer variable:

printf ("Time Elapsed %$10d mSecs Total=%1f Check Sum = %$1d\n",
(int)elapsedtime, total.get_value(), sum.get_value());

5. Build and rerun the program to make sure the results are correct.

Listing 3-3 gives the final Cilk Plus program.

‘) LISTING 3-3: The final version of the Cilk Plus parallelized program

Available for // Example Chapter 3 Cilk Plus Program
download on #include <stdio.h>
Wrox.com }nc uae S. 10.

#include <windows.h>

#include <mmsystem.h>

#include <math.h>

#include <cilk/cilk.h>

#include <cilk/reducer_opadd.h>

70 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

const long int VERYBIG = 100000;

// LEE S SR EEEEE S SRR EEEE SRR EEEE SRR EEEEEEEEEEEEEEEEEERESEEEEEEEEEEEEEEEEES]

int main(void)
{
int 1i;
DWORD starttime, elapsedtime;
//
// Output a start message

printf("Cilk Plus Parallel Timings \n\n");

// repeat experiment several times
for(1=0; 1<6; 1++)
{

// get starting time

starttime = timeGetTime();

// define check sum and total as reduction variables

cilk::reducer_opadd<long int> sum(0);
cilk::reducer_opadd<double> total(0.0);

// Work Loop,

cilk_for(int j=0; J<VERYBIG; j++)
{
// define loop local variables
long int k;

double sumx, sumy;

// increment check sum
sum += 1;

sumx = 0.0;
for(k=0; k<j; k++)

do some work by looping VERYBIG times

sumx = sumx + (double)k;
sumy = 0.0;
for(k=3j; k>0; k--)
sumy = sumy + (double)k;
if(sumx > 0.0)total = total + 1.0 / sqgrt(sumx);
if(sumy > 0.0)total = total + 1.0 / sqgrt(sumy);

// get ending time and use it to determine
elapsedtime = timeGetTime() - starttime;

// report elapsed time
printf ("Time Elapsed %10d mSecs Total=%1f
(int)elapsedtime, total.get_value(),

elapsed time

Check Sum = %$1d\n",
sum.get_value());

// return integer as required by function header

return 0;

}

// IEEE S SR EEEEE S SR EEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEREEEEEEEEERESEEEEEEESS

code snippet Chapter3\3-3.cpp

Example 1: Working with Cilk Plus | 71

Running the Corrected Application

Figure 3-19 shows the application’s new timings on a 4-core machine after you have fixed all the
errors and rebuilt a new Release version. Again, these timings were generated on a 4-core computer
system and may differ from your timings, depending on what system you are running.

]

1
v = 1888
188888

FIGURE 3-19: Timings for the Cilk Plus parallelized program with reducers added

A speedup ratio of about 3.74 was achieved compared to the speeds shown in Figure 3-6. The
Check Sum and Total values are now correct, being the same as in the serial version of the program.
Running the Intel Parallel Inspector again shows that the data race problems have been resolved.

It is important to note that using the Intel C++ compiler with Cilk Plus parallelization has sped up
the process approximately 13 times over the timings obtained using the default Microsoft C++ com-
piler shown in Figure 3-5.

Step 4: Tune the Cilk Plus Program

Cilk Plus works by allowing the various parallel threads to distribute work among themselves
dynamically. In most cases this leads to a well-balanced solution; that is, each thread is doing an
equal amount of work overall. To use Intel Parallel Amplifier XE to check for this concurrency and
efficiency, follow these steps:

1. Start a new analysis from the Parallel Studio menu bar, as before.
2. Select Concurrency from the list of analysis types.

3. Run Amplifier for concurrency analysis by clicking its Start button. Amplifier will now run
your program and generate a new output of results.

4. Click the drop-down button (Figure 3-20) to obtain a list of alternative ways to display the
information, and select /Thread/Function/Call Stack. Figure 3-21 shows the result. Your
actual results may look different to that shown, depending on the number of cores your
machine has.

The top pane of Figure 3-21 shows the threads and their utilization, in order of usage.
The highlighted thread, mainCRTStartup, is the management thread, which executes the
serial part of the program and creates the four Cilk Plus worker threads (for a 4-core
machine). These threads are run on the 4 cores concurrently during parallel execu-

tion. The two other threads were created by the operating system and are not Cilk Plus
worker threads; they do no work and can be ignored.

The CPU Time by Utilization column shows how well each thread was used by means of a
bar. The bars are color-coded to indicate how efficiently their time was utilized; the aim is
to get as large a portion showing Ideal as possible. All the threads are shown as being ide-
ally utilized for most of their time. Also note that the lengths of the bars indicate how much

72

CHAPTER 3 PARALLEL STUDIO XE FOR THE IMPATIENT

time each thread was used; they are nearly the same, showing a well-balanced execution. As

before, note that the times shown may be different on your computer system.

[+ Cilk7 - Microsoft Visual Studio =
File Edit View Project Build Debug Tools Test Window Community Help
@ Eda b Release - Win32 - | @ compute_rhs BE-N- R R =R
Bb- 3Bk 5= ["= nex | @ - - = @@
Solution Explorer -Am... = I X | 000cc| Cilk7.cpp| Start Page: - X

" Concurrency - H C enc Intel VTune Amplifier XE 2011
[5A Solution "Cilk" i1 project}
- @ Amplifier XE Results | @ Analysis Target Analysis Type 0 0 i % Top-down Tree
(3 cikr
Cilk7 Grouping: [Thread / Function / Call Stack
=- 3 s Function / Cal Stack
[Header Files Thread / Fumodule / Function / Call Stack "
(L4 Resource Files S1Source File [Function / Call Stack ¥r Current stack is 100.0%
= Source il e
- & cf“;‘_;ﬂ' s \kw < Function [Trvead / Cal Stack
] Cilk7.cpp ik Work opentp Regions / Function / Call Stack off [Unknown]
ilk Work Task Type / Function / Call Stack
ik Work Class / Function / Call Stack
mainCRTsSource File { Class / Function / Call Stack
read (o -T2 Domain / Frames / Function / Call Stack
Frame Domain / Frame Type / Function / Call Stack
hread (0 Frame Domain | Frame Type [Frames / Function / Call Stack.
Frame Domain / Frame Type / Frames / Thread / Function / Call Stack
Frame Domain / Frame Type / Frames / Task Type / Function / Call Stack
Frame Domain / Frame Type / Frames / Task Type / Thread / Function / Call Stack
B9 5

)

[Thread aeate stack_~ |

3 1stack(s) selected. Vie:

|ecten T TOWTS)”] 6.
™ el . o] »
g ' ' -
o3 055 1s 15 25 255 35 35 4s 455 55 555 65 655+ | Threads
n n f | ! # i 2
S P e
mainCRTStartup (0x370) 1 [] = - v: n:;mg
ai

, |Cilk Worker (0xd10)
8 = Mk CPU Time
£ [citk Worker (ox528) Transiti
H ransitions
£ |cilk Worker (0x12c0) CPU Usage

[cille Worker (0xe64) hd ks CPU Time

|
cruvere | o —————————ame | | T O

Muk Concurrency

Thread Concurrency | ‘
P 1
<

Rso... [FCL. [FPr.. [FRe..

Output

[S] Output [Breakpaints

Checking up-to-date status for project

FIGURE 3-20: Selecting for viewing concurrency information

™ Concurrency - Ho v Threa A 7] Intel VTune Amplifier X 2011
@ Anatysis Target| | * Analysis Type| | 5 hon Log | | B Summary % Top-down Tree
IThtead... = CPU Time by Utilization % [overhe... Wait Time by Utilization [Thread create st |
~/CallStack " gigle @ Poor 0Ok @ideal B Over Time Qidie @ Poor @Ok M ideal @ Ov 1 stack(s) selected
Cille Worker (fx1b4) 61565 DI 41.147ms 0.505s @)
Cilk Worker (0x534) 6,062+ I 15.207ms 0.394s 0 Current stack is 1
+Cilk Worker (fTed) 5.955; DI 5.870ms 0462500
¥ Cilk Worker (0x4ac) 5,581« DTN 4.4%0ms 0.488s B e
I e T T —
¥ Thread (0xdcd) 0s oms 6.311s D
Thread (0x16b4) 0s 0ms 6.309s D
Selected 1 row(s): 0.749% 34.585ms
‘ (] m]
' Y Y y ¥ y ' . ' u T " u Tt -
Qg iy 0Ss 13 15 23 25 35 35 45 458 51 555 6 giT | Theeads
: e : : — Lot | 718 Running
mainCRTStartup toxtsc) | [T i | T T I oy) waits
5 [Ci Worker (@x524) L S e | E—]) ik CPU Time
£ |Cink Worker (0x7e4) .= [N Tt
& [Citk Worker (0x164) ——————————— O L T
Cilk Worker (Ox4ac) [I L | - kil CPU Time
B — it
Al Concurrency
Thread Concurency | S SN I, SUN B

Ll 1o filters are applied.

FIGURE 3-21: Concurrency analysis from Amplifier for Cilk Plus program

Example 2: Working with OpenMP | 73

The bottom pane of Figure 3-21 shows how these threads were used during execution. It
shows a profile analysis timeline of the threads. You may need to move the boundaries
between upper and lower panes, and move parts of your display around to get the same
view, or just use the scroll buttons to view.

The top five timelines show the activity of the main (serial) thread, mainCRTStartup,
and the four Cilk Plus worker threads. Notice the main thread does six spurts of work,
which correspond to the outer loop of the program being iterated, doing some work, and
then entering the parallel regions. Try changing the iteration count of the outer loop to 4
and see what happens.

The next timeline, CPU Usage, shows that usage was very nearly consistently 100 percent.
The final timeline, Thread Concurrency, shows a nearly 100 percent thread concurrency
usage. Indeed, when the percentage of concurrency usage dropped, it coincided with the
main thread doing its work in serial.

5. Finally, for now, select the Summary tab along the top of the Amplifier to obtain summary
information. Scroll down until you get to the view shown in Figure 3-22. This shows the time
spent when 0, 1, 2, 3, and 4 threads were running concurrently. For most of the time four
threads were running in concurrent operation, which led to an overall average of concurrency
of 3.74 — the speedup achieved by parallelizing the serial program.

& Concurrency - H ; Thread Concurrency Intel VTune Amplifier XE 2011

@ Anabysis Tasget Anabysis Ty sllection Lo v+ Bottom-up | | v Top-down Tree

(~) Thread Concurrency Histogram
This histogram represents a breakdown of the Elapsed Time. it visualizes the percentage of the wail time the specific number of threads wene
running shy. Threads are ¢ running if they are either actually nunning on a CPU or are in the runnabie state in the 05
scheduler, Thread oy s a of the numiker of theeads that were nol waiting, Theead Condurrency may be higher
han CPU usape if thieads ade in the runnable stale and not consuming CPU time.

7am

£

lapsed
=

Simultanecusly Running Threads

FIGURE 3-22: Amplifier information showing thread concurrency for the Cilk Plus program

All this Amplifier information shows that the Cilk Plus program is highly efficient and concurrent.
As such, no further tuning is required.

EXAMPLE 2: WORKING WITH OPENMP

The following sections assume that you are using the Intel C++ compiler. However, note that
Microsoft Visual C++ compiler also supports OpenMP, should you want to use it.

74 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

Step 1: Analyze the Serial Program

The analysis step is identical to the one you already did for the Cilk Plus example, so there is no
need to do anything else. If you didn’t run the first analysis, go to Example 1 and, starting from
Listing 3-1, complete the steps outlined in the following sections:

1. Obtaining a Suitable Serial Program
2. Running the Serial Example Program

3. Step 1. Analyze the Serial Program

Once you have done these you are ready to start the next section.

Step 2: Implement Parallelism using OpenMP

OpenMP uses pragma directives within existing C++ code to set up parallelism. You can modify the
directives using clauses.

To add parallelism to the original serial program of Listing 3-1, follow these steps:
1. Enable OpenMP on the project property pages (Figure 3-23).

2. Add an OpenMP directive immediately before the loop to be parallelized. Remember that
after the Amplifier analysis toward the beginning of this chapter, it was decided to apply par-
allelism to the work loop:

// Work loop, do some work by looping VERYBIG times
#pragma omp parallel for

for(int j=0; J<VERYBIG; j++)

{

3. Add an additional include file:

#include <omp.h>

4. Build and run a Release version of the program, with an outer loop count of 6 and VERYBIG
set as 100000.

When the OpenMP directive is encountered, a parallel region is entered and a pool of threads is cre-
ated. The number of threads in the pool usually matches the number of cores. Execution of the for
loop that follows is parallelized, with its execution being shared between the threads.

Figure 3-24 shows the timings for a 4-core processor. The timings are not very encouraging when
compared against the serial timings given in Figure 3-6. And, once again, the Total and Check Sum
values are incorrect. As in the Cilk Plus case, the problem is with data races. Remember, your times
may be different from those shown here.

Example 2: Working with OpenMP | 75

Cilk7 Property Pages ? =
Configuration: |Active(Release) T | Platform: |Active(Win32) '| | Configuration Manager...
[=- Configuration Properties E General
General Disable Language Extensions No
Debugging Default Char Unsigned No
: Inltel. Debugging Treat wehar_t as Built-in Type Yes
= C\fc;;neral Force Conformance In For Loop Scope Yes
Debug Enable Run-Time Type Info Yes
Optimization OpenMP Support Generate Parallel Code (fop p. equiv. to /Qop p
Preprocessor = Intel Specific
Code Generation Enable C99 Support Mo
Enable C++0x Support Mo
Precompiled Headers Retognize The Restrict Keyword Mo
Dutput Files, Disable Intel Cilk Plus Keywords For Seria No
Browselr?formatlon Disable All Intel Language Extensions Mo
Diagnostics
Advanced
Command Line
[#- Linker

FIGURE 3-23: Enabling OpenMP in the compiler

B¥ Ci\ProjectiExample Chapter 3\Release\Example Chapter 3.exe =)

5088

FIGURE 3-24: Timings for the OpenMP parallelized program, initial stage

Step 3: Debug and Check for Errors

An inspection of the threading errors using Intel Parallel Inspector shows the same data race prob-
lems occurring as revealed in the Cilk Plus example (refer to Figure 3-15). Remember to limit the
activity of the program and build a debug version. The solutions applied to eliminate the data races
revealed are similar but work subtly differently from those applied under Cilk Plus. As before, the
data races break down into two types: those that can be solved by using private variables, and those
that need to use reduction variables. OpenMP can handle both types, but it does so in a different
way from Cilk Plus, by using clauses on its directives.

Making the Shared Variables Private

You can fix the data races caused by variables sumx, sumy, and k by creating private variables for
each thread by adding a private clause to the parallel pragma directive, as follows:

#pragma omp parallel for \
private(sumx, sumy, k)

76

CHAPTER 3 PARALLEL STUDIO XE FOR THE IMPATIENT

The backslash (\) is used as a continuation marker and its use after the first line is merely to indicate
that the directive continues onto the next line. In an OpenMP parallelized for loop, its loop counter
is, by default, always made private, which is why it did not show up in the inspection as an extra
data race. The variables in the list must already exist as declared nonlocal variables — that is, as
automatic, static, or global variables.

When the worker threads are created, they automatically make private versions of all the variables
in the private list. During execution each thread uses its own private copy of variables, so no con-
flicts occur and the data races associated with these variables are resolved.

Adding a Reduction Clause

As with the Cilk Plus solution, a different approach is required for variables within the loop that
must be shared by the threads; they cannot be made private. This is handled in OpenMP by adding
a reduction clause to the OpenMP directive:

#pragma omp parallel for \
private(sumx, sumy, k) \
reduction(+: sum, total)

When the parallel section is reached, each participating thread creates and uses private copies, or
versions, of the listed reduction variables. When the parallel section ends, the private thread ver-
sions of the variables are operated on according to the operator within the reduction brackets — in
this case, they are added together. The resultant value is then merged back into the original nonlo-
cal variable for future use. Other operators, such as multiply and subtract (but not divide), are also
allowed. Note that it is up to the programmer to ensure that the operation on the variables within
the loop body matches the operator of the reduction clause. In this case, both sum and total are
added to each iteration of the work loop, which matches the reduction operator of +.

After rebuilding and running the Release version, you should see the times obtained for a 4-core
machine (Figure 3-25). This corrects the Check sSum and Total values, but with an average time
increase of only 2.28 times that of Figure 3-6. Further tuning is required. Remember, your times
may be different, depending on the system you are running.

B C:\Proj Chapter 3\R Chapter 3.exe [E=E ==

168888
= 108808
188888

188888
= 188808
18888

FIGURE 3-25: Timings for the OpenMP parallelized program, with private and reduction variables

Step 4: Tune the OpenMP Program

To use Intel Parallel Amplifier XE to check for concurrency and efficiency within the OpenMP pro-
gram, follow these steps:

1. Start a new analysis from the Parallel Studio menu bar, as before.

Example 2: Working with OpenMP | 77

2. Select Concurrency from the list of analysis types.

3. Run the Amplifier for concurrency analysis by clicking its Start button. Amplifier will now
run your program and generate a new output of results.

4. Click the drop-down button to obtain a list of alternative ways to display the information,
and select /Thread/Function/Call Stack. The result should be as shown in Figure 3-26. As
with the Cilk Plus concurrency analysis (refer to Figure 3-21), the various panes have had
their borders moved to produce the display shown. Your actual results may look different to
that shown, depending on the number of cores your machine has.

by Thread Concurrency 4 € Intel VTune Amplifier XE 2011
Anatysis Type | | B Collection Log || B Summary . Top-down Tree

™ Concurrency - Ho

@ Analysis Target

fTheead... i €PU Time by Utilization # [gverhead Wait Time by Utilization
-
il Stack " Qidie @ Poor 0Ok B ideal @ Over Time Digie B Poor DOk B ideal B Over 1 stack(s) seled
| OMP Worker Thread #3 10,2505 [N oms 0u02s
5 OMP Worker Thiead #2 | 7.845s RSN S aL310ms 295 I
+OMP Warker Thread 71 4.817s B0 72.489ms 5.928s
| RiStartup (Dxdcd)| 3.054s W | 220.043ms Tnknown]
Thread (0x1258) os oms 10,015 SR
Thiead (Dx156c) s oms 10,003 I
Selected 1 rows): 30545 220.042ms 887
1 A m »
T PP —
o is 2 3s 4 55 6s 7s 8s 95 105 T |[¥]Threads
= B running
mainCRTStartup (Oxdcd) —_——
OMP Worker Thread #1... 4 PUT
g OMP Worker Thiead #2... [¥] %% OpenMP Re._.
£ |omP Worker Thiead #3.. TR
Thiead (0x1258) I] CPU Usage
Thread (Dx156¢) | | ikl CPU Time
[¥] Theead Concurrency
e ! H—l_u-_h-l_u-_ﬁ-l_ﬂ-_l Ak Consumency
Thecesl Lonamenay

FIGURE 3-26: Concurrency information showing unbalanced loads

The results are very different from those shown for Cilk Plus. The top pane shows the mainCRT-
Startup thread, as with the Cilk Plus model, but now there are only three other OMP Worker
Threads, numbered 1 to 3 — because the main (serial) thread is also used as one of the parallel
threads. This is different from Cilk Plus. Two other threads, created by the operating system, do not
take part in the parallel operations and do no work, so you can ignore them.

The top pane, which shows CPU utilization time for each thread, clearly indicates an imbalance
between the threads, with the mainCRTStartup thread doing less than a third of the work of OMP
Worker Thread 3.

This imbalance is reflected in the lower pane, where the timelines of each of the parallel threads are
given. Brown shows when a thread is doing work, and green shows when it is idle. You can clearly
see that the mainCRTStartup thread is doing little work compared to the OMP Worker Thread 3.
Also notice the same sixfold pattern to the work caused by the outer loop running six times.

78 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

The CPU Usage and Thread Concurrency timelines both show poor performance. This is dem-
onstrated in Figure 3-27, which can be obtained by clicking the Summary button. This shows the
amount of time spent with 0, 1, 2, 3, and 4 threads running concurrently. Only a small part of the
time are four threads running together, with more than a quarter of the time spent running only a
single thread. Overall, an average of 2.26 threads were running concurrently, which agrees almost
exactly with the increase in speed.

® Concurrency - H ad Concurreng Intel VTune Amplifier XE 2011
@ Analysis Target Analysis Type Log ‘e Battom-u L 1 Tree
(#) Thread Concurrency Histogram =
This ks & of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were

Nﬂ“mﬂmmm Threads are considensd running if they are sither actually runndng on a CPU o are in the runnabile state in the 05
sehediler. Essentially, Thiesd [Di'Kul'Mﬂ(\' s & measurement of the numbed of thiesds that wede nol waiting. Thiesd Concamency may be higher
than CPU usage if threads are in the runnable state and not consuming CPU time.

Bigh

Elapsed Time
n

Simutanecusly Running Threads

FIGURE 3-27: Amplifier showing thread concurrency for the OpenMP program before tuning

The problem occurs because the arithmetic series required more terms as the iteration count of

the work loop grew larger. As the work loop counter increases, so too does the amount of work
required to calculate the arithmetic series. However, unlike Cilk Plus, the default scheduling opera-
tion of OpenMP is to simply divide the execution of the work loop between the available threads in
a straightforward fashion. Each thread is given the task of iterating the work loop a fixed number
of times, referred to as the chunk size. For example, on a 4-core machine, with an iterative count of
100,000, OpenMP simply divides the iterations of the loop by four equal ranges:

One thread is given iterations for loop counter 0 to 24,999.
The next thread is given iterations for loop counter 25,000 to 49,999.

The next thread is given iterations for loop counter 50,000 to 74,999.

Y VYV VY

The final thread is given iterations for loop counter 75,000 to 99,999.

For most purposes, this would be a balanced workload, with each thread doing an equal amount of
work. But not in this case. Threads working through higher-value iterations encounter arithmetic
series with greater numbers of terms, the number of terms being dependent on the iteration value.
This means that the threads working on the higher iterations have to do more work, creating unbal-
anced loading of the threads.

Figure 3-28 demonstrates a simplified problem with unbalanced loads. In this example a serial
program enters a loop with a count of 12, where each iteration of the loop carries out work whose
execution takes longer. This is indicated by the blocks marked 1 through 12 on the top bar, labeled

Example 2: Working with OpenMP | 79

Single Thread (78 time units). This bar represents the running of the serial program, where the
width of each block is the time taken to execute each of the 12 loops. In this example the first loop
takes 1 time unit, the second loop takes 2 time units, and so on, with the final loop taking 12 time
units — making a total time of 78 time units to run the serial program.

Single thread (78 time units)

M2[3]l4]l 5] 6 1 7 1 8 [9 | 10] 11 | 12 |
Multiple threads using default
Thread 1 [1]2] 3] idle scheduling, iterations are shared
Thread 2 | 4 | 5 | 6 idle out equally in one go.
Thread 3 7 | 8 9 [idle Thread 1 has iterations 1to 3
Thread 4 10 | 1 | 12 Thread 2 has iterations 4 to 6
Thread 3 has iterations 7 to 9
Showing Idealized conditions. Scheduling does Thread 4 has iterations 10 to 12
incur additional overheads not shown here. Unbalanced load (33 time units)

Thread 1 |1]|2 9 10 idl

Th::d 2 3| || 7] 1|1 | |12I £ Multiple threads with dynamic
Thread 3 5 | 5 | dle scheduling of 2 iterations at a time
Thread 4 7] 3 [die to each free thread (30 time units)
Thread1 |1] 5 g idl

Thi:d 2 2|| 6| [0 | Il iZIe Multiple threads with dynamic
Thread 3 |3 | 7 | T |id|e scheduling of 1iteration at a time
Thread 4 | 4 | 3 [) to each free thread (20 time units)

FIGURE 3-28: Example demonstrating unbalanced loading

Ideally, the parallelized time to run the same loop on a 4-core machine should be 78/4 = 19.5 time
units; however, this is not the full story.

The default scheduling behavior for OpenMP is to distribute the loops equally to all the available
threads — in this case, as follows:

> Thread 1 is allocated iterations 1 to 3.
» Thread 2 is allocated iterations 4 to 6.
> Thread 3 is allocated iterations 7 to 9.
» Thread 4 is allocated iterations 10 to 12.

When you run the parallel program under these default conditions, the result is shown by the second
block of Figure 3-28. Thread 4 has all the high iterations, which take more time. Thread 4’s run-
ning time is 10+11+12=33 time units, which is clearly shown in the diagram. Concurrently running
thread 3 takes only 7+8+9=24 time units to execute its allocated work. Thread 2 takes 15 time units,
and thread 1 takes only 6 time units. Since all threads must synchronize at the end of the parallel-
ized loop before continuing, it means that threads 1 to 3 must wait for thread 4 to complete. A lot of
time that could be otherwise used is wasted.

You can alter the scheduling preferences of OpenMP by using the scheduling clause. This clause
enables you to set how many iterations each thread will be allocated — referred to as the chunk size.
Each thread will execute its allocated iteration of the loop before coming back to the scheduler for more.

80 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

The third block of Figure 3-28 shows what happens when a new scheduling preference of 2 is used.
At the start of the loop each available thread receives two iterations, as follows:

» Thread 1 is allocated iterations 1 and 2.
» Thread 2 is allocated iterations 3 and 4.
» Thread 3 is allocated iterations 5 and 6.
>

Thread 4 is allocated iterations 7 and 8.

In this case thread 1 quickly executes its 2 allocated iterations, taking only 3 time units to do so.
It then returns to the scheduler for more, and is given iterations 9 and 10 to execute. Thread 2 also
finishes its allocated work, taking 7 time units, before returning back to the scheduler to be given
iterations 11 and 12 to execute.

When threads 3 and 4 finish, they also return back to the scheduler, but since there is no more itera-
tions to be executed they are given no more work. These threads must idle until the other threads
finish their work. The first thread must also idle for a time since the execution of its allocated itera-
tions finishes before the second thread. All this is clearly shown by the third block of Figure 3-28,
where the second thread dictates the overall time of execution — in this case, 30 time units.

The fourth block of Figure 3-28 demonstrates what happens if the chunk size for the scheduler is
reduced to just 1. The overall time of execution, decided by the fourth thread, reduces to just 20
time units and minimal idle time.

There is an overhead because scheduling chunks takes time; too small of a chunk size could end up
being detrimental to the operation. Only by trying various values can you find the correct chunk size
for your particular program.

Improving the Load Balancing

To obtain a balanced load, you need to override the default scheduling behavior. In this case the
loop iterates 100,000 times, so as a first attempt use a chunk size of, say, 2000. You can override the
default scheduling algorithm for a for loop by using the schedule clause on the directive:

#pragma omp parallel for \
private(sumx, sumy, k) \
reduction(+: sum, total) \

schedule(dynamic, 2000)

This causes the OpenMP directive to use the fixed chunk size given in parentheses — in this case,
2000. After each thread finishes its chunk of work (2,000 iterations), it comes back for more. This
divides the work more evenly. Adjusting the size of the chunk fine-tunes the solution further. The
problem of an unbalanced load does not arise with Cilk Plus, because its approach for dividing up
the work is different.

After rebuilding the solution with these changes, run Parallel Amplifier again to check for concur-
rency. Again, select Thread/Function/Call Stack. Figure 3-29 shows the result.

Example 2: Working with OpenMP | 81

A Concurrency - Ho

@ Analysis Target

Ny }-: 0

Intel VTune Amplifier X€ 2011

Analysis Type| B2 Collection Log | | 11 Summarny s Top-down Tree

[Thread... =l CPU Time by Utilization * B overne... Wait Time by Utilizatic *
./Call Stack Qidle @ Poor 0ok @ ideal @ Over Time g igie @ Poor DOk @ deal
+ mainCRTStartup (OxBeB) 63645 37.378ms 03445 E
+ OMP Worker Thread #1. 6.190s [oms S04
+OMP Worker Thread #2 | 6.160s I N 39.a40ms 03930
Y OMP Worker Thiead #3 | 6.110s T W 7i38ims 1532 D s
+ Thread (0x1738) (3 [T —
Selected 0 rawls): -
a4 L a4 i L]
<k 0S5 15 155 25 25 35 355 45 4S5 55 555 &5 655 + Theeass
= [~] Bl Running
. mainCRTStartup (Ixded) [waits
§ o e 1 || Y —— | e
2 [OMP Worker Thread £2 .. [E] %% OpenbdP ke
OMP Worker Thread £3 ... -] Transitions
[#] cPU Usage
b L_I Lk CPU Time
Thread Concurrency | [. S B SR c— Thesad Concumency
7 = Mk Concumrency

gl o fiters aze appiies. g

FIGURE 3-29: Concurrency showing balanced (but still not ideal) loads

The figure shows nicely balanced loads, but the load bars show mainly Ok (orange), not Ideal
(green). Figure 3-30 shows the Thread Concurrency Histogram, with the average number of threads
running concurrently still only 2.76.

™ Concurrency - | Intel VTune Amplifier XE 2011

Analysis Type | | B Collection Log O

(=) Thread Concurrency Histogram
This histogram represents a breskdown of the Elapsed Time. It visualizes the percentage of the wall time the specific numbes of threads were
running simultanegusly, Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05
schediiled. Essentially. Thread Conduffendy is a measuiement of the number of threads that were not waiting. Thread Conduitendy may Be higher
than CPU usage if thieads are in the runnable state and not consuming CPU time.

A5

@ Analysis Target om-up | | ¥ Top-down Tree

Elapsed Time
i

FIGURE 3-30: Concurrent information after first tuning attempt

You can try tuning further by changing the chunk size to 1000. Figure 3-31 shows the results

of the concurrency; clearly, all four threads are running in an Ideal state (green). This is verified in

the Thread Concurrency Histogram (Figure 3-32), which shows an average thread concurrency of
3.75 — in line with the speedup shown in Figure 3-33 compared to the serial times given in Figure 3-6.

82 | CHAPTER3 PARALLEL STUDIO XE FOR THE IMPATIENT

i Concurrency - Ho y Thread Concurrency Intel VTune Amplifier XE 2011
@ Analysis Target Analysis Type | | B Collection Log | | B Summary o Top-down Tree
[Thread... El CPU Time by Utilization * B over... Wait Time by Utilization ~ Thmamsm 'v'_
Ay ~ Didle IPWI DOk @ ideal B Over Time g idie @ Poor 00k B ideal BC 1 stack{s) selected. Viewd
1 OMP Worker Thead #2 | 6.328s DI Ous 0.210s0 i
| | &2 mainCRTStartup (0x1724] 6.3225 ous| 01925 Current stackis 100.0%
510MP Workes Thread #3 6.1965 I Ous 0.206s0 [100.0% (63225 ot 6.3229)] |
+ OMP Worker Thread #1 1 5.745s I Dus 015850 e
KW
I Thread (0xBa0) os ous 6321 DENE—
+ Thread (Gx368) 0s Ous 6376« I
Selected 1 row(sk 63135 Dus -
Fl (] m »
—_———————————————
Ci-Ce 08 I 1S 25 25 35 355 45 45 55 5% 6 655 +

imainCRTStarhup (0xl7ed)
(OMP Worker Thread #1 ...
OMP Worker Thread £2 ... =% OpenMP Re...
OMP Worker Thread £3 ... Transitions

oo | —————————
ik CPU Time
M”‘““m%’ O

bl Concurrency

[20 waits
lial CPU Time

Thaeads

™ Concurrency - -

S Analysis Target Analysis Type | | B Con
2 ysis Typ

@ Thread Concurrency Histogram

This histagram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of thresds were

Tunning sly. Threads ase running if they are either actually running on a CPU or are in the runnable state in the 05
scheduler, Essentially, Thiead Conqurrency is a measurement of the number of threads that were not waiting. Thread Concurrendy may be higher
than CPU usasge if threads are in the runnable state and not consuming CPU time.

Loy

Elapsed Time

Simultaneousty Running Threads

FIGURE 3-32: Concurrent thread information after final tuning

[C:\ProjectiExample Chapter J\Release\Example Chapler J.exe [E=gEEy====
nMP Parallel Timi for 1808088 iterations

FIGURE 3-33: Final timings for the OpenMP parallelization

Example 2: Working with OpenMP | 83

Listing 3-4 gives the final OpenMP program. Its performance compares very well with that achieved
using the Cilk Plus method of parallelization.

‘) LISTING 3-4: The final version of the OpenMP program

Available for
download on
Wrox.com

// Example Chapter 3 OpenMP Program
#include <stdio.h>

#include <windows.h>

#include <mmsystem.h>

#include <math.h>

#include <omp.h>

const long int VERYBIG = 100000;

// LR R R RS SRR RS SRR SRS E R RS R R R R R R EREEE R R R EEEE R R R R R R R R R R

int main(void)

{

int 1i;

long int j, k, sum;

double sumx, sumy, total, z;

DWORD starttime, elapsedtime;

/] s
// Output a start message

printf("OpenMP Parallel Timings for %d iterations \n\n", VERYBIG);

// repeat experiment several times
for(1=0; i<6; i++)
{

// get starting time

starttime = timeGetTime();

// reset check sum and total
sum = 0;

total = 0.0;

// Work loop, do some work by looping VERYBIG times

#pragma omp parallel for \
private(sumx, sumy, k) \
reduction(+: sum, total) \

schedule(dynamic, 1000)
for(int j=0; Jj<VERYBIG; Jj++)
{

// increment check sum

sum += 1;

// Calculate first arithmetic series
sumx = 0.0;
for(k=0; k<j; k++)

sumx = sumx + (double)k;

// Calculate second arithmetic series
sumy = 0.0;
for(k=j; k>0; k--)

sumy = sumy + (double)k;

84 |

CHAPTER 3 PARALLEL STUDIO XE FOR THE IMPATIENT

if(sumx > 0.0)total
if(sumy > 0.0)total
}

total + 1.0 / sgrt(sumx);
total + 1.0 / sqgrt(sumy);

// get ending time and use it to determine elapsed time
elapsedtime = timeGetTime() - starttime;

// report elapsed time
printf("Time Elapsed %$10d mSecs Total=%1f Check Sum = %$1d\n",
(int)elapsedtime, total, sum);
}

// return integer as required by function header
return 0;

}

// IEEE S EEEEEE S SRR EEEEEEEEEEEEEREEEEEREEEEEEEESEEEEEEEREEEEEEEEEEESEEEEEEESS

code snippet Chapter3\3-4.cpp

SUMMARY

The four-step method (analyze, implement, debug, and tune) is used to transform a serial program
into a parallel program using the tools of Intel Parallel Studio XE. The technique can be used for
small or large programs.

This chapter described using both Intel Cilk Plus and OpenMP to make a serial program parallel.
The use of Intel Parallel Studio XE makes the transformation from serial to parallel efficient and
effective. The tools also detect both threading and memory errors, and enable you to check a pro-
gram’s concurrency.

Other parallel programming techniques are available and are introduced in subsequent chapters of
the book. Which parallelizing methodology is best to use remains the choice of the programmer.
That decision can be influenced by many things, including the type of problem being solved, the
software tools available, or just what the programmer feels comfortable with.

Part II, “Using Parallel Studio XE,” takes a more detailed look at the four steps. A greater under-
standing of the pitfalls that can occur when parallelizing will give you much more confidence to
tackle large and complex programs, where you can reap the full benefit of using parallel computing.
Part II covers each step in turn, revealing the detailed nuances that enable you to undertake efficient
and, more important, safe parallelism.

PART Il
Using Parallel Studio XE

» CHAPTER 4: Producing Optimized Code

» CHAPTER 5: Writing Secure Code

» CHAPTER 6: Where to Parallelize

» CHAPTER 7: Implementing Parallelism

» CHAPTER 8: Checking for Errors

» CHAPTER 9: Tuning Parallel Applications

» CHAPTER 10: Parallel Advisor-Driven Design
» CHAPTER 11: Debugging Parallel Applications

» CHAPTER 12: Event-Based Analysis with VTune Amplifier XE

Producing Optimized Code

WHAT’S IN THIS CHAPTER?

> A seven-step optimization process
Using different compiler options to optimize your code
» Using auto-vectorization to tune your application to different CPUs
This chapter discusses how to use the Intel C/C++ compiler to produce optimized code. You

start by building an application using the /02 compiler option (optimized for speed) and then
add additional compiler flags, resulting in a speedup of more than 300 percent.

The different compiler options you use are the course-grained general options, followed by
auto-vectorization, interprocedural optimization (IPO), and profile-guided optimization
(PGO). The chapter concludes with a brief look at how you can use the guided auto-
parallelization (GAP) feature to get additional advice on tuning auto-vectorization.

The steps in this chapter will help you to maximize the performance you get from the Intel compiler.

y Most of the text of this chapter uses the Windows version of the compiler
options. You can use the option-mapping tool to find the equivalent Linux
option. The following example is used to find the Linux equivalent of /oy-:

map_opts -tl -lc -opts /Oy-
Intel (R) Compiler option mapping tool

mapping Windows options to Linux for C++

'-Oy-' Windows option maps to
--> '-fomit-frame-pointer-' option on Linux
--> '-fno-omit-frame-pointer' option on Linux
--> '-fp' option on Linux

continues

CHAPTER 4 PRODUCING OPTIMIZED CODE

(continued)

The -t option is used to set the target OS, which can be 1 (or 1inux) and w (or
windows).

The -1 option sets the language, and can be either ¢ or £ (or fortran). All text
after the -opts option is treated as options that should be converted. The option-
mapping tool does not compile any code; it only prints out the mapped options.

To use the option-mapping tool, make sure that the Intel compiler is in your path.

INTRODUCTION

When buying a new product — a must-have kitchen gadget, a new PC, or the latest-and-greatest
release of your favorite software — it’s likely that you will not look at the user manual. Most of
us just power up the new gizmo to see what it can do, referring to the manual only when the thing
doesn’t work.

Product manufacturers spend huge amounts of effort in making sure this first out-of-the-box experi-
ence is a good one. Software developers, and in particular compiler vendors, are no different; they,
too, want their customers to have a good first experience.

When you first try out the Intel compiler, it should seamlessly integrate into your current develop-
ment environment and produce code that has impressive performance. Many developers, however,
simply use the compiler out of the box, without considering other compiler options. The following
story illustrates the point.

A company that specializes in providing analysis software to the oil exploration industry is an
enthusiastic user of the Intel compiler. Just before it was about to release a new version of its soft-
ware, the developers decided to experiment with a new version of the Intel compiler. To their
amazement, the new compiler gave a 40 percent speedup of its application. Normally, they would
not consider swapping compilers so close to the software release dates, but with such a significant
speedup, they thought the upgrade was worth doing. So, what was the reason for the speedup? The
answer was the auto-vectorizer in the compiler.

In earlier versions of the Intel compiler, users had to turn on auto-vectorization explicitly; it was not
enabled by default. As a result, many developers failed to reap the benefits of this great feature. A
newer version of the compiler changed that behavior so that auto-vectorization was enabled out of
the box. When the company built its code with the newer compiler, the code was auto-vectorized by
default, resulting in the 40 percent speedup.

Once the developers realized that the performance improvements delivered by the new compiler
were also available in the old compiler, they added the extra options to the current build environ-
ment and got the speedup. They also scheduled an upgrade of the compiler once the current soft-
ware release had been completed.

The moral of the story is this: Don’t rely on the compiler’s default options, because you may inadver-
tently miss out on a performance benefit.

The Example Application | 89

THE EXAMPLE APPLICATION

This chapter’s example application reuses some of the code from Chapter 2, but it also includes an
additional matrix multiplication. The full source code, which is divided into several smaller files, is
in Listing 4-5 at the end of this chapter. Table 4-1 lists the files involved.

TABLE 4-1: The Example Application Files

FILE DESCRIPTION

chapter4d.c Dynamically creates three matrices, and then initializes two of them with a
numeric series and multiplies them together. This is done six times, with the
timing printed to screen each time.

work.c Contains the work () function that is used to initialize one of the matrices.
Called from main (), it contains a large loop that calls seriesl () and
series2 ().

series.c Contains the functions seriesl () and series2 (), which calculate two

numeric series.

addy.c Contains AAdY (), which is called from Series2 () and adds two values.
wtime.c Contains code to measure how long the parts of the program run.
chapterd.h Has the function prototypes and defines.

Makefile This is the makefile used to build the application.

The example application is quite contrived and doesn’t solve any particular problem. Its only pur-
pose is to provide some code that you can optimize and see an improvement in performance as you
perform each optimization step. Figure 4-1 shows the output of the program. As you can see, the
output is very similar to the application used in Chapter 3 — the main difference being that the
Total and Check sum displayed are different values from that chapter.

&M Intel(R) Composer XE 2011 Intel(R) 64 Visual Studio 2008 ol & |

Elapsed B.58271% Total=6798 680541 Check 168160080
Elapsed 8.479788 Total=6798 680541 Check 168160000
Elapsed B.544186 Total=6798 680541 Check 168168008
Elapsed 8.495235 Tota 798 6808541 Check 168160000

Elapsed B8.4%185% Total=6798.680541 Check 1681686880
Elapsed B8.483297 Total=6728.680541 Check 168168008

FIGURE 4-1: Output of the example application

In addition to using the code example in Listing 4-5, you might like to try applying the seven opti-
mization steps to your own code or from code in one of the case studies (Chapters 13 through 18).
You may find that some optimization steps deliver significant performance improvements, whereas
other steps may actually slow down your application.

90 | CHAPTER4 PRODUCING OPTIMIZED CODE

The results shown in this chapter were from three different machines:
> Core 2 laptop — Lenovo T66, Intel Core 2 Duo CPU, T7300 @ 2.00 GHz, 2GB RAM.

> Sandy Bridge laptop — Lenovo W 520, Intel Core i7-2820QM @ 2.30 GHz, 8GB RAM.
This machine is used to give two sets of results, one with Intel Turbo Boost Technology 2.0
enabled, and one without.

> Xeon workstation — OEM, Intel Xeon CPU, X5680 @ 3.33 GHz (2 processors, 12GB RAM).

“Intel Turbo Boost Technology 2.0 automatically allows processor cores to run
faster than the base operating frequency if it’s operating below power, current
and temperature specification limits.”

—www.intel.com/content/www/us/en/architecture-and-technology/
turbo-boost/turbo-boost-technology.html

OPTIMIZING CODE IN SEVEN STEPS

Figure 4-2 shows the steps followed in this chapter, which are based on the Quick-Reference Guide
to Optimization (which you can find at http: //software.intel.com/sites/products/
collateral/hpc/compilers/compiler_qrgl2.pdf).

Start

Example options

Step 1 l Windows (Linux)
Build with

optimization disabled /od (-00)
Step 2 l

Use general /01/02,03 (-01,-02,-03)
optimizations
Step 3 l

Use processor-specific <--- /QxSSE4.2 (-xsse4.2)
options ? /QxHOST (-xhost)
Step 4 l :

Add interprocedural L. ;) r
optimization > /Qipo (-ipo)
Step 5 l

Use profile-guided /Qprof-gen (-prof-gen)
optimization /Qprof-use (-prof-use)
Step 6 l

Tune automatic . .
vectorization /Qguide (-guide)
Step 7 l

Implement pargllelism Use Intel family of parallel models
or use automatic /Qparallel (-parallel)
parallelism P P

FIGURE 4-2: The seven optimization steps

http://www.intel.com/content/www/us/en/architecture-and-technology
http://software.intel.com/sites/products

Optimizing Code in Seven Steps | 91

In the first step you build the application with no optimization. You do this to make sure that your
program works as expected. Sometimes an optimization step can break the application, so it’s pru-
dent to start with an unoptimized application. Once you are confident that no errors exist in your
program, it’s okay to go to the next step.

Figure 4-2 shows the Windows and Linux versions of the options used in this chapter. In most of the
text of this chapter the Windows version of the options is used, but they can be substituted with the
Linux options.

This chapter doesn’t cover step 7, implementing parallelism; that’s covered by
Chapters 6-9.

Using the Compiler’s Reporting Features

For each optimization step, the Intel compiler can generate a report that is useful for gleaning what
optimizations the compiler has carried out:

> Optimization report — Use the /Qopt-report option, as described in the section “Step 2:
Use General Optimizations.”

> Auto-Vectorization report — Use the /Qvec-report option, as described in the section
“Step 3: Use Processor-Specific Optimizations.”

> Auto-Parallelism report — Use the /gpar-report option, as described in Chapter 6, “Where
to Parallelize.”

> Guided Auto-Parallelism report — Use the /Qguide option, as described in the section
“Step 6: Tune Auto-Vectorization.”

Step 1: Build with Optimizations Disabled

Before doing any optimization you should ensure that the unoptimized version of your code works.
On very rare occasions optimizing can change the intended behavior of your applications, so it is
always best to start from a program you know builds and works correctly.

The /0d (-00) option actively stops any optimizations from taking place. It generally is used while
the application is being developed and inspected for errors. Single-stepping through code with a
debugger is much easier with programs built at /0d. If you ever end up having to look at the assem-
bler code the compiler generates, it is much easier to understand the output from /0d than from
some of the other options.

Table 4-2 shows the results of building the application with optimizations disabled using the /0d
option as well as the default build (/02). The program has a loop that executes six times, printing
the time each iteration took. The table records the lowest value.

92 | CHAPTER4 PRODUCING OPTIMIZED CODE

TABLE 4-2: Results of Running the /Od and /O2 Builds

BUILD MACHINE /0D /02
Core 2 laptop 3.041 0.474
Sandy Bridge 2.164 0.293
Sandy Bridge (with Turbo Boost) 1.588 0.211
Xeon workstation 1.325 0.238

If you are benchmarking on a machine that supports Turbo Boost Technology, it is better that you
disable it in the computer’s BIOS before proceeding. When Turbo Boost Technology is turned on,
the clock speed of the CPU can dynamically change, depending on how busy the CPU is, which can
distort the results. Of course, you should turn it back on again at the end.

Another technology that can lead to an inconsistent set of benchmarks is Intel Hyper-Threading
Technology. When hyper-threading is enabled, the processor looks as though it has twice as many
cores as it really has. This is done by sharing the execution units and using extra electronics that
save the state of the various CPU registers. One side effect of using hyper-threading is that the
results of your benchmarks can be distorted as the different hyper-threads contend for resources
from the execution units.

Many optimization practitioners choose to turn off both Turbo Boost Technology and Hyper-
Threading Technology so that they get more consistent results in the different stages of tuning. You
should be able to disable both technologies in the BIOS of your PC. See your PC’s handbook for
instructions.

The Intel compiler assumes that you are building code for a computer that can support SSE2
instructions. If you are building for a very old PC (for example, a Pentium 3), you will need
to add the option /arch32 (Windows) or -mia32 (Linux) for your code to run successfully.
Architecture-specific options are discussed more in the section “Step 3: Use Processor-Specific
Optimizations.”

You can try out this first step for yourself in Activity 4-1.

ACTIVITY 4-1: BUILDING AN UNOPTIMIZED VERSION OF THE EXAMPLE
APPLICATION

In this activity you build an unoptimized version of the example application.

Setting Up the Build Environment
1. Copy the contents of Listing 4-5 into the separate source files.
2. Copy the Makefile from Listing 4-6. If you are using Linux, you will need to

comment out the Windows-specific variables at the beginning of the Makefile
and uncomment the Linux variables.

Optimizing Code in Seven Steps | 93

3. Open a command prompt or shell:

> On Windows, open an Intel compiler command prompt. The path to the
command prompt will be similar to the following. (The exact names and
menu items will vary, depending on which version of Parallel Studio and
Visual Studio you have installed.)

Start =& All Programs = Intel Parallel Studio XE 2011 = Command
Prompt = Intel64 Visual Studio Mode

> On Linux, make sure the compiler variables have been sourced:

S source /opt/intel/bin/compilervars.sh intel64

If you are running a 32-bit operating system, the parameter passed to
the compilervars. sh file should be ia32.

Building and Running the Program
4. Build the application intel.noopt . exe using the Intel compiler:
> Linux

make clean
make TARGET=intel.noopt CFLAGS= -00 (Note : this is a capital 'O’
followed by zero)

> Windows

nmake clean
nmake TARGET=intel.noopt CFLAGS=/0d

5. Run the program intel.noopt.exe and record the results. Use the lowest
time as the benchmark figure.

Note that if your CPU supports Turbo Boost Technology Mode, you may want to
disable it in the BIOS. See your PC’s handbook for instructions.

Step 2: Use General Optimizations

Table 4-3 describes four course-grained optimization switches: /01, /02, /03, and /0x. These
switches are a good starting point for optimizing your code. Each option is progressively more
aggressive at the optimizations it applies. The option /01 generates smaller code than the other
options. When you call the compiler without any switches, the compiler defaults to using /02.

It’s always worth trying all the general options. Sometimes /02 produces faster
code than /03, and occasionally even /01 produces the fastest code.

94 | CHAPTER4 PRODUCING OPTIMIZED CODE

TABLE 4-3: The General Optimization Switches

OPTION

/01

/02

/03

(-01)

(-02)

(-03)

/0% (Windows

only)

DESCRIPTION

Optimizes for speed and size. This option is very similar to /02 except that it
omits optimizations that tend to increase object code size, such as the inlining of
functions. The option is generally useful where memory paging due to large code
size is a problem, such as server and database applications.

Note that auto-vectorization is not turned on at /01, even if it is invoked individu-
ally by its fine-grained switch /Qvec. However, at /01 the vectorization associ-
ated with array notations is enabled.

Optimizes for maximum speed. This option creates faster code in most cases.
Optimizations include scalar optimizations; inlining and some other interproce-
dural optimizations between functions/subroutines in the same source file; vec-
torization; and limited versions of a few other loop optimizations, such as loop
versioning and unrolling that facilitate vectorization.

Optimizes for further speed increases. This includes all the /02 optimizations, as
well as other high-level optimizations, including more aggressive strategies such
as scalar replacement, data pre-fetching, and loop optimization, among others.

Full optimization. This option generates fast code without some of the fine-
grained option strategies adopted by /02.

Using the General Options on the Example Application

Figure 4-3 shows the results of running the example application on the four target platforms.

>

The option /01, an option designed to produce smaller code, runs slower than the other

options.

There is no difference between the performance of the /02 option and the more aggressive
/03 or /0x options.

There is no guarantee that the more aggressive optimization options will result in your application
running faster. In the case of the example application, /02 seems the best choice.

Time (Seconds)

0.8 1
0.7
0.6 A
0.5 A
0.4
0.3 A
0.2 A1
0.1

0

—o— Core 2 laptop
-#- Xeon server
SNB no Turbo Boost

% =& SNB with Turbo Boost

o1 02

03 Ox

General Options

FIGURE 4-3: The results of running the example application

Optimizing Code in Seven Steps | 95

Generating Optimization Reports Using /Qopt-report

The compiler can produce reports on what optimizations were carried out. By default, these reports
are disabled. Enabling the reports can sometimes help you identify whether a piece of code has been
optimized. Note that the coarse- and fine-grained options you use determine which optimizations
are applied, including auto-vectorization. If auto-parallelization is also turned on by /Qparallel,
messages about auto-parallelizing of loops are also included. You can read more about auto-
parallelism and the /gparallel option in Chapter 6, “Where to Parallelize.”

Reducing the Size of the Report

Using /Qopt-report on its own can result in a fairly large report. To reduce the size of the report,
you can:

> Control the level of detail by using /Qopt-report: n, where n is a number between 0 and 3.
> 0 — No reports.
> 1 —Tells the compiler to generate reports with minimum level of detail.

> 2 — Tells the compiler to generate reports with medium level of detail. This is the
default level of reporting when this option is not included on the command line.

> 3 — Tells the compiler to generate reports with maximum level of detail.
Select which phases to have a report on by using the /Qopt-report-phase option.
> Limit the report to specific functions by using the /Qopt-report-routine:<string>

option.

Table 4-4 shows the different phases used with the /Qopt-report-phase option.

TABLE 4-4: Phase Names Used in Report Generation

PHASE DESCRIPTION

ipo_inl Gives an inlining report from the interprocedural optimizer

hlo Reports on high-level optimization (HLO), including loop and memory optimizations
hpo Reports on high-performance optimization (HPO), including auto-vectorization and

auto-parallelization optimizations

pgo Reports on profile-guided optimizations

Creating Focused Reports

Each phase in Table 4-4 is a collection of even smaller reports — too many to describe here. If you
are interested in just one specific phase, you can generate one of these smaller reports using the
option /Qopt-report-phase. Running the option /Qopt-report-help as follows brings up a list of
all the phases available:

icl /Qopt-report-help
Intel (R) C++ Intel(R) 64 Compiler XE for applications running on Intel (R) 64,

96 | CHAPTER4 PRODUCING OPTIMIZED CODE

Version 12.0.3.175 Build 20110309
Copyright (C) 1985-2011 Intel Corporation. All rights reserved.

Intel(R) Compiler Optimization Report Phases
usage: -Qopt_report_phase <phase>

ipo, ipo_inl, ipo_cp, ipo_align, ipo_modref, ipo_lpt, ipo_subst, ipo_ratt, ipo_vaddr,
ipo_pdce, ipo_dp, ipo_gprel, ipo_pmerge, ipo_dstat, ipo_fps, ipo_ppi, ipo_unref, ipo_wp,
ipo_dl, ipo_psplit, ilo, ilo_arg prefetching, ilo_lowering, ilo_strength_reduction,
ilo_reassociation, ilo_copy_propagation, ilo_convert_insertion, ilo_convert_removal,
ilo_tail_recursion, hlo, hlo_fusion, hlo_distribution, hlo_scalar_replacement,
hlo_unroll, hlo_prefetch, hlo_loadpair, hlo_linear_trans, hlo_opt_pred, hlo_data_trans,
hlo_string_shift_replace, hlo_ftae, hlo_reroll, hlo_array_contraction,
hlo_scalar_expansion, hlo_gen_matmul, hlo_loop_collapsing, hpo, hpo_analysis,
hpo_openmp, hpo_threadization, hpo_vectorization, pgo, tcollect, offload, all

After using the general optimizations, the next step is to experiment with processor-specific optimi-
zation. Before doing that, however, try out the general optimizations by completing Activity 4-2.

ACTIVITY 4-2: BUILDING THE EXAMPLE APPLICATION USING THE
GENERAL OPTIMIZATION OPTIONS

In this activity you use the general optimization options to build the code from
Listing 4-5.

1. Build the application from Activity 4-1 using the Intel compiler:
> Linux

make clean
make CFLAGS="-01" TARGET="intel.Ol"

> Windows

nmake clean
nmake CFLAGS="/01" TARGET="intel.Ol"

2. Run the program intel.01.exe and record the results.
3. Repeat steps 1 and 2 using the options 02, 03, and 0x (Windows only).

To spot which optimizations have been carried out, turn on the optimization
reports using the /Qopt-report (Windows) or -opt-report (Linux) option.

Step 3: Use Processor-Specific Optimizations

Auto-vectorization is one of the most significant contributions the Intel compiler makes to getting
really fast code. Four points need to be made straight away:

> When you use the compiler out of the box (that is, the default behavior), auto-vectorization
is enabled, supporting SSE2 instructions. This is safe to use on all but the very oldest Intel
and non-Intel devices.

Optimizing Code in Seven Steps | 97

> You can enhance the optimization of auto-vectorization beyond the default behavior by
explicitly using some additional options. In the following example, the example application is
rebuilt to support AVX instructions, leading to a 10 percent improvement when the applica-
tion is run on the Sandy Bridge laptop.

> If you run an application on a CPU that does not support the level of auto-vectorization you
chose when it was built, the program will fail to start. The following error message will be
displayed: This program was not built to run on the processor in your system.

> You can get the compiler to add multiple paths in your code so that your code can run on
both lower- and higher-spec CPUs, thus avoiding the risk of getting an error message or pro-
gram abort. This topic is covered later in this chapter in “Building Applications to Run on
More Than One Type of CPU.”

What Is Auto-Vectorization?

Auto-vectorization makes use of the SIMD (Single Instruction Multiple Data) instructions within
the processor to speed up execution times. The original SIMD instructions, MMX (MultiMedia
eXtensions), were written for special 64-bit registers resident within the processor. This has been
superseded by the SSE (Streaming SIMD Extension), which was first introduced in 1999 and oper-
ated on 128-bit floating-point registers. Figure 4-4 shows the innovations in SIMD from then until
the present date.

1999 2000 2004 2006 2007 2008 2009 2010/11
SSE SSE2 SSES SSSES SSE4.1 SSE4.2 AES-NI AVX
70 instructions | | 144 instructions| |13 instructions 32 instructions | |47 instructions | |8 instructions 7 instructions ~100 new
Single- Double- Complex Decode Video String/XML Encryption instructions
precision precision data Graphics processing and ~300 legacy
vectors vectors building POP-count decryption SSE
: instructions
Streamlng 8/16/32 blocks CRC Key) updated
operations 64/128-bit Advanced generation)
vector vector 256-bit
integer instructions vector
3-and 4-
operand
instructions

FIGURE 4-4: The SIMD timeline

SIMD instructions operate on multiple data elements in one instruction using the extrawide SIMD
registers. The Intel compiler uses these SIMD instructions to apply auto-vectorization to loopy code.
Consider the following code snippet:

#define MAX 1024

98 | CHAPTER4 PRODUCING OPTIMIZED CODE

Without auto-vectorization, the compiler produces a separate set of instructions that does the fol-
lowing for each iteration of the loop:

» Reads x[i] and y[i] for the current loop iteration

> Adds them together

> Writes the results in z[i] for the current loop iteration
Array z would be updated 1,024 times. The compiler might even use SSE scalar instructions — that
is, instructions that operate on one data item at a time.

If auto-vectorization is enabled, the compiler will use SSE packed instructions rather than scalar
instructions. Figure 4-5 shows a scalar and a packed instruction. The first instruction, addss, is a
scalar instruction that adds x1 to y1. One calculation is performed on one data item.

addSS Scalar Single-FP Add | x4 | X3 | X2 1 X1 t
Lo | e [2] » |
Single-precision FP data | » | - | - l oy I
Scalar execution mode BT
addps Packed Single-FP Add ’1 x4 | 3 | x2 | X \1\
| | y4 | y3 | y2 | y1 | !
Single-precision FP data 1\3<4~t\y4 | x3+y3 | x2 +y2 I 2(14,91' |

packed execution mode -
FIGURE 4-5: An example of scalar and packed SSE instructions

The second instruction, addps, is a packed (or vector) instruction that adds x1, x2, x3, and x4 to y1,
v2,v3, and y4. One calculation is performed simultaneously on four data items.

By applying the auto-vectorizer to the preceding code snippet, the compiler can reduce the loop
count MaX by a factor of four, so only 256 iterations of the loop need be performed, rather than the
original 1,024.

Auto-Vectorization Guidelines

To be amenable to auto-vectorization, any loops must follow the following guidelines:

> The loop trip count must be known runtime at loop entry and remain the same for the dura-
tion of the loop.

> The loop counter may be a variable as long as that variable is set before the loop starts and
remains unchanged during the loop run.

> The loop cannot be terminated within itself or by some data dependency within the loop,
because this would imply an inconstant loop count. By the same considerations, the loop
must be a single entry-and-exit loop.

Optimizing Code in Seven Steps | 99

> There must be no backward dependencies between iterations of the loop. If the compiler can-
not determine that there are no dependencies, it will assume there are and subsequently not
vectorize the loop.

> Loops involving overlapping arrays cannot be vectorized because loop dependencies may
occur. Usually the compiler can easily determine if declared arrays overlap, because their
addresses are constants. The compiler will assume overlapping arrays have loop dependencies
unless told otherwise by the programmer. In simple cases, the compiler can test for overlap-
ping arrays at run time.

> There must be no function calls in a loop. However, inlined functions and elemental func-
tions (as used in array notation) will not cause a problem.

Turning On Auto-Vectorization

Auto-vectorization is included implicitly within some of the general optimization options, and
implicitly switched off by others. It can be further controlled by the auto-vectorization option
/ovec. Normally, the only reason you would use the /gvec option would be to disable auto-
vectorization (that is, /Qvec-) for the purposes of testing.

Here’s the default behavior of the general options:

> The general options /02, /03, and /0x turn on auto-vectorization. You can override these
options by placing the negative option /Qvec- directly on the compiler’s command line.

> The general options /0d and /01 turn off auto-vectorization, even if it is specifically set on
the compiler’s command line by using the /Qvec option.

Enhancing Auto-Vectorization

When auto-vectorization is enabled, the compiler uses the SSE2 instructions, which were introduced
in 2000. If your target CPU is more recent, you can get better performance by using the
/Qx<architecture> option, where <architecture> can be one of SSE2, SSE3, SSSE3, SSE4. 1,
SSE4.2, or AVX.

Table 4-5 shows the speed of the example application on the Sandy Bridge laptop with Turbo Boost
Technology disabled. Turning on AVX gives a performance boost of a further 9 percent, compared
to using the default auto-vectorization.

TABLE 4-5: Auto-Vectorization Speedup

SETTING TIME SPEEDUP
SSE2 0.293 1
AVX 0.270 1.09

Using the /0x option to enhance auto-vectorization causes two potential problems. The moment
you build an application using the /0x option, it will not run on a non-Intel CPU. For example, any
application built with /0x will not run on an AMD device. To solve this, you should use the /arch
options rather than the /0x options, described in the following section.

100 | CHAPTER4 PRODUCING OPTIMIZED CODE

If you run the optimized application on a generation of Intel CPU that does not support the option
you used, the application will fail to run. For example, an application built with /oxavx will not run
on a first-generation Intel Core 2 CPU.

Figure 4-6 shows an example of a message you will get if you run an application on hardware that
does not support the level of auto-vectorization you have chosen.

» 1
BN Intel(R) Composer XE 2011 Intel(R) 64 Visual Studio 2008 =0

am was not built te run on the processor in your

: Intel<R> pro ors with $5E4.2 and POPCNT in

FIGURE 4-6: Running a mismatched application

Building for Non-Intel CPUs

If you intend to run code on Intel and non-Intel devices, you should use the /arch:<architecture>
option, where architecture can be 1a32, SSE2, SSE3, SSSE3, or SSE4. 1.

For example, using the option /arch:SsE4.1 produces an application that will run on any CPU that
supports SSE4.1, whether it is an Intel CPU or not.

If you intend your code to run on a non-Intel processor, do not use the /Qx
option; instead, use the /arch: option.

Determining That Auto-Vectorization Has Happened

You can get a detailed report from the vectorizer by using the /Qvec-report option. The
/Qvec-report n option reports on auto-vectorization, where n can be set from 0 to 5 to specify the
level of detail required in the report, as follows:

> n=0— No diagnostic information (default if n omitted).

n=1— Reports only loops successfully vectorized.

n =2 — Reports which loops were vectorized and which were not (and why not).

n =3 — Same as 2 but adds the dependency information that caused the failure to vectorize.

n =4 — Reports only loops not vectorized.

Y VYV VY Y Y

n =5 — Reports only loops not vectorized and adds dependency information.
When you build the example application with the /Qvec-report1 option, the compiler reports the
following:

chapterd.c(64): (col. 5) remark: PERMUTED LOOP WAS VECTORIZED.
series.c(7): (col. 5) remark: LOOP WAS VECTORIZED.

Optimizing Code in Seven Steps | 101

Building with the /Qvec-report4 option gives a list of loops that are not vectorized. Here’s a
cut-down version of the output:

chapterd.c(54): (col. 5) remark: loop was not vectorized: not inner loop.
lots more like this

chapterd.c(45): (col. 3) remark: loop was not vectorized: nonstandard loop is not a
vectorization candidate.

chapterd.c(11): (col. 7) remark: loop was not vectorized: existence of
vector dependence.

For a further discussion on these types of failures to vectorize, see the next section, “When Auto-
Vectorization Fails.” There’s a further development of the auto-vectorized code after IPO has been
applied — see the section “The Impact of Interprocedural Optimization on Auto-Vectorization.”

When Auto-Vectorization Fails

The auto-vectorizer has a number of rules that must be fulfilled before vectorization can happen.
When the compiler is unable to vectorize a piece of code, the vectorization report will tell you which
rules were broken (provided you have turned on the right level of reporting detail — refer to the
section “Determining That Auto-Vectorization Has Happened” earlier in this chapter).

Error Messages

Following are some of the main report messages associated with non-vectorization of a loop:

> Low trip count — The loop does not have sufficient iterations for vectorization to be
worthwhile.

> Not an inner loop — Only the inner loop of a nested loop may be vectorized, unless some
previous optimization has produced a reduced nest level. On some occasions the compiler
can vectorize an outer loop, but obviously this message will not then be generated.

> Nonstandard loop is not a vectorization candidate — The loop has an incorrect structure.
For example, it may have a trip count that is modified within the loop, or it may contain one
or more breakouts.

> Vector dependency — The compiler discovers, or suspects, a dependency between
successive iterations of the loop. You can invite the compiler to ignore its suspicions by
using the #pragma ivdep directive, provided you know that any vectorization would be
safe.

> Vectorization possible but seems inefficient — The compiler has concluded that vectorizing
the loop would not improve performance. You can override this by placing #pragma vector
always before the loop in question.

> Statement cannot be vectorized — Certain statements, such as those involving switch and
printf, cannot be vectorized.

> Subscript too complex — An array subscript may be too complicated for the compiler to
handle. You should always try to use simplified subscript expressions.

102

| CHAPTER4 PRODUCING OPTIMIZED CODE

Organizing Data to Aid Auto-Vectorization

Sometimes auto-vectorization will fail because access to data is not performed consecutively within
the vectorizable loop.

You can load four consecutive 32-bit data items directly from memory in a single 128-bit SSE
instruction. If access is not consecutive, you need to reorder the code to achieve auto-vectorization.

When working on legacy code that has a lot of nonsequential data items, some programmers write
wrapper functions and use intermediate data structures to make auto-vectorization possible.
Non-Unit Strides

Consider the following matrix multiplication example. The nested loop results in access to array c
being nonconsecutive (that is, a non-unit stride):

double al4]1[4]1, bl4]1[4], cl[4][4];
for (int j = 0; J < 4; J++)
for (int i = 0; i <= j; i++)
cl[il (3] = alil[j1+bl[i][3];

The example loops through the rows, which means that the data items in a vector instruction will
not be adjacent. The compiler reports the following:
elem2.cpp(15): (col. 3) remark: loop was not vectorized: not inner loop.

elem2.cpp(16): (col. 4) remark: loop was not vectorized: vectorization possible but
seems inefficient.

However, the code can be made to be vectorizable by changing the order in which the data is stored
and, therefore, changing the order of the loop:

double af4][4], bl4]1[4], cl[4]1[4];

for (int j = 0; J < 4; j++)

for (int i = 0; i <= j; i++)
cl[jl[i] = alil[J1+b[i]1[]];

The compiler will now report success:

elem2.cpp(15): (col. 1) remark: loop was not vectorized: not inner loop.
elem2.cpp(16): (col. 2) remark: LOOP WAS VECTORIZED.

Notice that arrays a and b are still accessed by row, and hence non-unit strides.

Figure 4-7 shows how a two-dimensional array has its columns stored consecutively in memory, but
its row elements are stored in memory with a gap (or stride) between each. By iterating through such
an array by columns, rather than by rows, vectorization becomes possible.

Structure of Arrays vs. Arrays of Structures

The simplest data structure in use is the array, which contains a contiguous collection of data items
that can be accessed by an ordinal index, making it ideal for vectorizing. Data organized as a struc-
ture of arrays (SOA) are also ideal candidates for vectorizing because it is still being done at the
array level. However, data organized as an array of structures (AOS), although an excellent format
for encapsulating data, is a poor candidate for vector programming.

Optimizing Code in Seven Steps | 103

Programming conceptual Physical storage
model in memory
0 1 2 3 0
1 4 1
8 10 i 2
Rows
12 13 14 15 —> 3
m— Columns 4
5
6
Consecutive row elements ® > 7
"stride" distance is 4
8
9
10
*—> 1
12
Consecutive column elements 13
"stride" distance is 1
14
—> 15

FIGURE 4-7: Stride values when accessing a two-dimensional array

Helping the Compiler to Vectorize

To ensure correct code generation, the compiler treats any assumed dependencies as though they
were proven dependencies, which prevents vectorization. The compiler always assumes a dependency
where it cannot prove that it is not a dependency. However, if you are certain that a loop can be
safely vectorized and any dependencies ignored, the compiler can be informed in the following ways.

Using #pragma ivdep

One way of informing the compiler that there are no dependencies within a loop is to place #pragma
ivdep just before the loop. The pragma applies only to the single following loop, not all the follow-
ing loops. Note that the compiler will ignore only assumed dependencies; it won’t ignore any that it
can prove. Use #pragma ivdep only when you know that the assumed loop dependencies are safe to
ignore.

The following example will not vectorize without the ivdep keyword if the value of k is unknown,
because it may well be negative:

#pragma ivdep
for(int i = 0;1 < m; 1i++)
ali] = ali + k] * c;

Using the restrict Keyword

Another way to override assumptions concerning overlapping arrays is to use the restrict keyword
on pointers when declaring them. The use of the restrict keyword in pointer declarations informs

104 | CHAPTER4 PRODUCING OPTIMIZED CODE

the compiler that it can assume that during the lifetime of the pointer only this single pointer has
access to the data addressed by it — that is, no other pointers or arrays will use the same data space.
Normally, it is adequate to just restrict pointers associated with the left-hand side of any assignment
statement, as in the following code example. Without the restrict keyword, the code will not
vectorize.

void f(int n, float *x, float *y, float *restrict z, float *dl, float *d2)
{
for (int 1 = 0; 1 < n; i++)
z[1i] = x[i] + y[i]l-(dl[i]*d2[i]);

The restrict keyword is part of the C99 standard, so you will have to either enable C99 in the
compiler (using /Qstd:c99) or use the /Qrestrict option to force the compiler to recognize the
restrict keyword.

Using #pragma vector always
The compiler will not vectorize if it thinks there is no advantage in doing so, issuing the message:

C:\Multiplicity.CPP(11): (col. 5) remark: loop was not vectorized: vectorization
possible but seems inefficient

If you want to force the compiler to vectorize a loop, place #pragma vector always immediately
before the subsequent loop in the program, as in the following code:

void vec_always (int *a, int *b, int m)
{
#pragma vector always
for(int 1 = 0; 1 <= m; 1++)
al[32*1i] b[99*i];

Again, it applies only to the loop that follows; its use instructs the compiler to vectorize the fol-
lowing loop, provided it is safe to do so. You can use #pragma vector always to override any
efficiency heuristics during the decision to vectorize or not, and to vectorize non-unit strides or
unaligned memory accesses. The loop will be vectorized only if it is safe to do so. The outer loop of
a nest of loops will not be vectorized, even if #pragma vector always is placed before it.

Using #pragma simd

You can use #pragma simd to tell the compiler to vectorize the single loop that follows. This option
is more dangerous than the other vectorization pragmas because it forces the compiler to vectorize a
loop, even when it is not safe to do so. This complements, but does not replace, the fully automatic
approach. You can use #pragma simd with a selection of clauses, including:

> vectorlength (nl[,n2]..), wheren is a vector length, which must be an integer of value
2,4, 8, or 16. If more than one integer is specified, the compiler will choose from them.

> private (varl[,var2]..), where var must be a scalar variable. Private copies of each
variable are used within each iteration of the loop. Each copy takes on any initial value the
variable might have before entry to the loop. The value of the copy of the variable used in

Optimizing Code in Seven Steps | 105

the last iteration of the loop gets copied back into the original variable. Multiple clauses get
merged as a union.

> linear (varl:stepl[,var2:step2] ..),w&wrevarisascdarvaﬂabk:andstepisa
compile-time positive integer constant expression. For each iteration of a scalar loop, var1 is
incremented by step1, var2 is incremented by step2, and so on. Multiple clauses get merged
as a union.

> reduction (oper:varl[,var2] ..), where oper is a reduction operator, such as +, -, or
*, and var is a scalar variable. The compiler applies the vector reduction indicated by oper
to the variables listed in a similar manner to that of the OpenMP reduction clause.

> [nolassert, which directs the compiler to assert (or not to assert) when the vectorization
fails. The default is noassert. Note that using assert turns failure to vectorize from being a
warning to an error.

@ See Chapter 8 for more information on OpenMP.

Following is an example using #pragma simd:
#pragma simd private(b)

for(i=0; i<MAXIMUS; 1i++)

if(afi] > 0)

The compiler will report success with the following message:

C:\Multiplicity.cpp(42): (col. 4) remark: SIMD LOOP WAS VECTORIZED.

Placing the negative option /Qsimd- on the compiler command line disables any #pragma simd
statements in the code.

Using #pragma vector [un]aligned

The compiler can also write more efficient code if aligned data is used, starting either on 32-bit
boundaries in the case of IA-32 processors, or 64-bit boundaries for 64-bit processors. If the com-
piler cannot decide if a data object is aligned, it will always assume it is unaligned. Coding for
unaligned data is less efficient than coding for aligned data. You can always override the failsafe ten-
dencies of the compiler by using the following two pragmas:

> ¢pragma vector aligned— Instructs the compiler to use aligned data movement instruc-
tions for all array references when vectorizing.

> #pragma vector unaligned — Instructs the compiler to use unaligned data movement
instructions for all array references when vectorizing.

106 | CHAPTER4 PRODUCING OPTIMIZED CODE

All code following the use of #pragma vector aligned is assumed to be aligned; likewise, all code
following the use of #pragma vector unaligned is assumed to be unaligned. By using these prag-
mas, you can tell the compiler that different parts of your code can be assumed to use aligned or
unaligned data. If you use the aligned pragma on an unaligned SSE data access, it is likely to result
in failure. This is not the case for AVX.

You can align data by using __declespec(align) or the mm _malloc () SSE-intrinsic function, as
follows:

// align data to 32-byte address
_ declepec(align(32)) double datal[l5];

// Allocate 100 bytes of memory; the start address is aligned to 16 bytes
double *pData = (double *)_mm_malloc(100,16);

// free the memory
_mm_free (pdata) ;

The call to _mm_malloc() results in the allocation of 100 bytes of memory that is aligned to a
16-byte address, which is later deallocated using the function _mm_free ().

ACTIVITY 4-3: BUILDING THE EXAMPLE APPLICATION USING AUTO-
VECTORIZATION OPTIONS

In this activity you build the example application from Listing 4-5 using the auto-
vectorization options.

Controlling the Default Auto-Vectorization Options

1. Build and run the application from Listing 4-5 with no options, apart from the
TARGET name:

> Linux

make clean
make TARGET=default
.\default.exe

> Windows

nmake clean
nmake TARGET=default
default.exe

2. Repeat step 1, adding the cFLAG option /Qvec- (Windows) or -vec- (Linux)
to disable the auto-vectorization (notice the minus sign at the end of the
option).

» Linux

make clean
make CFLAGS="-vec-" TARGET=novec
.\novec.exe

Optimizing Code in Seven Steps | 107

> Windows

nmake clean
nmake CFLAGS="/Qvec-""TARGET=novec
novec.exe

The two executables from steps 1 and 2 should run at different

speeds.

3. Investigate how vectorization differed by generating a vectorization report for
both builds. To do this, add the option /Qvec-report2 (Linux:

—vec—reportZ)tOtheCFLAG&

Enhancing the Auto-Vectorization Options

4. Build and run the application several times using the different /0x (Linux: -x)
options (SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX). For example:

> Linux

make clean
make CFLAGS="-xSSE2" TARGET=intel.SSE2
.\intel.SSE2.exe

> Windows

nmake clean
nmake CFLAGS="-/QxSSE2" TARGET=intel.SSE2
intel.SSE2.exe

Note that if you don’t have an Intel processor, use the /arch: (Linux: -m) options

instead.

Creating a Portable Application
5. Rebuild using the /0axavx (Linux: -xAvx) option:
> Linux

make clean
make CFLAGS="-axAVX" TARGET=intel.axAVX
.\intel.axAVX.exe

> Windows

nmake clean
nmake CFLAGS="-/QaxAVX" TARGET=intel.axAVX
intel.axAVX.exe

6. Run the program. The program should run fine, even if your CPU does not

support AVX.

108 | CHAPTER4 PRODUCING OPTIMIZED CODE

Step 4: Add Interprocedural Optimization

Interprocedural optimization (IPO) performs a static, topological analysis of an application. With
the option /Qip the analysis is limited to occur within each source file. With the option /Qipo the
analysis spans across all the source files listed on the command line. IPO analyzes the entire pro-
gram and is particularly successful for programs that contain many frequently used functions of
small and medium length. IPO reduces or eliminates duplicate calculations and inefficient use of
memory, and simplifies loops.

Other optimizations carried out include alias analysis, dead function elimination, unreferenced
variable removal, and function inlining to be carried out across source files. IPO can reorder the
functions for better memory layout and locality. In some cases, using IPO can significantly increase
compile time and code size.

Figure 4-8 shows how the compiler performs IPO. First, each individual source file is compiled, and
an object file is produced. The object files hold extra information that is used in a second compila-
tion of the files. In this second compilation, all the objects are read together, and a cross-file opti-
mization is performed. The output from this second pass is one or more regular objects. The linker
is then used to combine the regular objects with any libraries that are needed, producing the final
optimized application.

H IP | .

1 . Compile [)
[SEP Cano- Intermediate
language
(mock) objects

Executable

FIGURE 4-8: Interprocedural optimization

During build time you can control the number of object files created from the multiple source files
by using the option /Qipo<n>, where n is the number of object files to be created. If n is zero or is
omitted (the default), the compiler is left to decide how many objects are created. For large programs
several object files may be created; otherwise, just one. The maximum number of object files that
can be created is one for each source file.

Adding Interprocedural Optimization to the Example Application

The fourth column of Table 4-6 gives the results of using IPO on the example application. As you
can see, there is more than a 60 percent speedup on three of the platforms when comparing an /02
build with a /9ipo build.

Optimizing Code in Seven Steps | 109

TABLE 4-6: The Results of Using IPO with /02 and /QhHost

PLATFORM 02 IPO Qx SPEEDUP SPEEDUP
02 TO IPO 02 TO QX

Core 2 laptop 0.474 0.272 0.266 1.74 178

SNB without Turbo Boost 0.293 0.181 0171 1.62 1.7

SNB with Turbo Boost 0.211 0.132 0.124 1.60 1.70

Xeon workstation 0.239 0.21 0.209 113 1.14

If you are using Microsoft Visual Studio, rather than the command line, you will find that /Qipo is
already enabled in the release build of your project.

The Impact of Interprocedural Optimization on Auto-Vectorization

The Quick-Reference Guide to Optimization recommends that you carry out IPO after using any
processor-specific options. The truth is that in many cases auto-vectorization will bring better
results after IPO has been applied. However, experience shows that using IPO is sometimes diffi-
cult to achieve, so for pragmatic reasons IPO has been placed later in the optimization cycle. In this
book we have the luxury of being able to spend a few more words explaining the issues — hence, the
extra feedback arrow that was introduced in Figure 4-2.

IPO introduces extra time and complexity into the build process. Occasionally the compiler can run
out of memory or slow down to such a pedestrian pace that the developer gets impatient and aban-
dons TPO. On some large projects, it is impossible to successfully complete an IPO session. Because
of these potential difficulties, IPO has been placed after some of the easier-to-handle optimizations
in the optimization steps. One downside of doing this is that code presented to the auto-vectorizer
will not have had the benefit of IPO, especially the cross-file function inlining.

If it’s not practical to use the /Qipo option in your build environment, try using /0ip, which does
IPO just within the single files.

IPO Improves Auto-Vectorization Results of the Example Application

If you find that your project will run IPO successfully, it is worthwhile to apply the auto-
vectorization options again, especially if you have already ruled out one of the higher specification
options because you saw no difference in performance. The sixth column of Table 4-6 shows the
impact of using IPO on the example application when enhanced auto-vectorization has been used.
For each build, the highest SIMD instruction set that the CPU could support was used.

IPO Brings New Auto-Vectorization Opportunities

It is also worth getting a fresh vectorization report to see what new things turn up. In the previ-
ous step, when the vectorization reports were generated, they were generated for each individual file
at compilation time. Once /Qipo is used, the report generation is delayed until the final cross-file
compilation.

10 | CHAPTER4 PRODUCING OPTIMIZED CODE

Building with the /Qvec-report3 option gives a list of loops that were not vectorized. What is
interesting is that both new failures and new successes are reported for line 51:

chapterd.c(51): (col. 11) remark: LOOP WAS VECTORIZED.

chapterd.c(51): (col. 11) remark: loop was not vectorized: not inner loop.

chapterd.c(51): (col. 11) remark: loop was not vectorized: not inner loop.
chapterd.c(51): (col. 11) remark: loop was not vectorized: existence of vector
dependence.

The reason for more than one vectorization activity being reported on a single line is that the use of
/Qipo has resulted in several of the functions being inlined. You effectively have a triple-nested loop
at line 51. This line has a call to the work () function. The following code snippet shows the nested
loop within the work () function that calls the Series1 () and series2 () functions:

for (i=0;i<N;i++){
for (3=0;3j<N;j++) {
sum += 1;
// Calculate first Arithmetic series
sumx= Seriesl(j);

// Calculate second Arithmetic series
sumy= Series2(j);

// initialize the array

if(sumx > 0.0)*total = *total + 1.0 / sqgrt(sumx);
if(sumy > 0.0)*total = *total + 1.0 / sqgrt(sumy);
a[N*i+j] = *total;

The effect of /Qipo inlining means that the most deeply nested loops associated with line 51 come
from Seriesl ()and Series2 ():

double Seriesl(int j)
{
int k;
double sumx = 0.0;
for(k=0; k<j; k++)
sumx = sumx + (double)k;
return sumx;

}

double Series2(int j)
{
int k;
double sumy = 0.0;
for(k=j; k>0; k--,sumy++)
sumy = AddY(sumy, k);
return sumy;

The two messages about the loop not being an inner loop refer to the two loops in work.c, which
have become outer loops as a result of the inlining. The question is, what is the loop-dependency

Optimizing Code in Seven Steps | 111

message referring to? One way to find out which message refers to which loop is to comment out the
call to seriesl () and series2 () in turn and see which messages disappear from the vectorization
report. After experimenting, it is clear that the call to series2 () is the cause of the vector-
dependency message. By commenting out the sumy++ in the loop and the sumy-- in the aday () func-
tion, the dependency is removed, as shown in Listing 4-1.

‘) LISTING 4-1: Modifications to the AddY function

Available for 5
download on series.c
Wrox.com
double Series2(int j)

{
int k;
double sumy = 0.0;
for(k=3j; k>0; k--)
{
// sumy++;
sumy = AddY (sumy, k);
}
return sumy;

}
addy.c

double AddY(double sumy, int k)
{
// sumy--;
sumy = sumy + (double)k;
return sumy;

}

code snippet Chapter4\4-1\series.c and addy.c

Making the preceding changes has a positive impact on performance, improving it by an additional
20 percent.

You can try out IPO for yourself in Activity 4-4.

ACTIVITY 4-4: BUILDING THE EXAMPLE APPLICATION USING
INTERPROCEDURAL OPTIMIZATION OPTIONS

In this activity you use the IPO options to build the code from Listing 4-5.
1. Build and run the application using the /Qipo option:
> Linux

make clean
make CFLAGS="-ipo" TARGET="intel.ipo.exe"
.\intel.ipo.exe

continues

12 | CHAPTER4 PRODUCING OPTIMIZED CODE

continued

> Windows

nmake clean
nmake CFLAGS="/Qipo" TARGET="intel.ipo.exe"
intel.ipo.exe

2. Repeat step 1, adding the highest auto-vectorization that works on your plat-
form (SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX). For example, a Sandy bridge
would use the following options:

> Linux

make clean
make CFLAGS="-ipo -xXAXV" TARGET="intel.ipo.xavx.exe"
.\intel.ipo.xavx.exe

> Windows

nmake clean
nmake CFLAGS="/Qipo /QxAVX" TARGET="intel.ipo.xavx.exe"
intel.ipo.xavx.exe

Step 5: Use Profile-Guided Optimization

So far, all the optimization methods described have been static — that is, they analyze the code
without running it. Static analysis is good, but it leaves many questions open, including:

> How often is variable x greater than variable y?
> How many times does a loop iterate?
> Which part of the code is run, and how often?

Benefits of Profile-Guided Optimization

PGO uses a dynamic approach. One or more runs are made on unoptimized code with typical data,
collecting profile information each time. This profile information is then used with optimizations set
to create a final executable.

Some of the benefits of PGO include:
> More accurate branch prediction
Basic code block movements to improve instruction cache behavior
Better decision of functions to inline
Can optimize function ordering

Switch-statement optimizer

Y Y VY VY Y

Better vectorization decisions

Optimizing Code in Seven Steps | 113

The Profile-Guided Optimization Steps

Carrying out PGO involves three steps, as shown in Figure 4-9.

Step 1

Compile + link to add Instrumented

instrumentation: > executable:

icc -prof-gen prog.c prog.exe

Step 2 v

Execute instrumented program: | Dynamic profile:

prog.exe (on a typical dataset) " 12345678 .dyn

rofmerge

v p 9

Step 3 v Merged .dyn files:

pgopti.dpi

Compile + link using feedback:

icc -prof-use prog.c
Optimized executable:

prog.exe

FIGURE 4-9: The three steps to using PGO
1. Compile your unoptimized code with PGO:
> Windows — icl /Qprof-gen prog.c
> Linux — icc -prof-gen prog.c

This instruments the code to collect profile information when run. This step automatically
disables some optimizations if they are inadvertently left on.

2. Make multiple runs with different sets of typical data input; each run automatically produces
a dynamic information (.dyn) file.

Each .dyn file is given a different name and resides by default in the release directory of the
project.

The test data in the example runs must be representative of typical usage scenarios; otherwise,
profile-guided feedback has the potential of harming the overall performance of the final
executable. It is important that you directly remove unwanted files before the final build; oth-
erwise, runs representing wrong data sets will be averaged and incorporated into the final feed-
back information used by the optimizations. For example, if you change your code during test
runs, you need to remove any existing .dyn files before creating others with the new code.

3. Finally, switch on all your desired optimizations and do a feedback compile with PGO to
produce a final PGO executable:

> Windows — icl /Qprof-use prog.c
» Linux — icc -prof-use prog.c

PGO uses the results of the test runs of the instrumented program to help apply the final optimiza-
tions when building the executable. For example, the compiler can decide whether a function is
worth inlining by using the profile feedback information to establish how often the function is called.

14 | CHAPTER4 PRODUCING OPTIMIZED CODE

The various .dyn files are averaged to produce a single version, which is then used. After step 3 has
completed, the files are deleted.

Table 4-7 shows the different options that you can use in PGO.
TABLE 4-7: PGO Compiler Options

LINUX WINDOWS DESCRIPTION

-prof-gen /Qprof-gen Adds PGO instrumentation, which cre-
ates a new .dyn file every time the
instrumented application is run

-prof-use /Qprof-use Uses collected feedback from all the
.dyn files to create the final opti-
mized application

-prof-gen=srcpos /Qprof-gen:srcpos Creates extra information for use with
the Intel code coverage tool

-opt-report-phase=pgo /Qopt-report-phase:pgo Creates a PGO report

Table 4-8 shows the results of using PGO on four different platforms.

TABLE 4-8: The Results of Using PGO

PLATFORM IPO PGO SPEEDUP
Core 2 laptop 0.370 0.261 142
SNB without Turbo Boost 0.264 0.198 1.33
SNB with Turbo Boost 0.189 0.141 1.34
Xeon workstation 0.211 0.131 1.61

ACTIVITY 4-5: BUILDING THE EXAMPLE APPLICATION USING PROFILE-
GUIDED OPTIMIZATION OPTIONS

In this activity you use the general optimization options to build the code from
Listing 4-5.

1. Build the application from Listing 4-5, enabling PGO generation:
> Linux

make reallyclean
make CFLAGS="-prof-gen" TARGET="intel.pgo.gen.exe"

Optimizing Code in Seven Steps | 115

> Windows

nmake reallyclean
nmake CFLAGS="/Qprof-gen" TARGET="intel.pgo.gen.exe"

Notice the reallyclean target, which deletes any intermediate PGO
files that might be lying around.

2. Run the program intel.pgo.gen.exe.

Look in the directory where you ran the program. A .dyn file should
have been created.

3. Rebuild the application, telling the compiler to use the dynamic information
you just generated:

> Linux

make clean
make CFLAGS="-prof-use" TARGET="intel.pgo.exe"

> Windows

nmake clean
nmake CFLAGS="/Qprof-use" TARGET="intel.pgo.exe"

4. Run the program intel.pgo.exe. You should see a significant improvement
in performance.

One of the main optimizations the PGO does on the example code is to change the
instructions generated for the initialization of matrix b, especially where the vari-
able denominator is used:
// initialize matrix b;
for (1 = 0; 1 < N; i++) {
for (j=0; j<N; j++) {
for (k=0;k<DENOM_LOOP;k++) {
sum += m/denominator;
}
b[N*i + j] = sum;

}

Try to confirm that this is the case. Hint: generate an optimization report using /
Qopt-report-phase:pgo (Linux: —opt—report—phase:pgo). Also, generate an
assembler file using the /s (Linux: -S) option to see which different instructions are
generated by the compiler. Be sure to delete or rename the assembler file afterward,
because make’s default rules will try to build them into your application the next
time you do a build.

116 | CHAPTER4 PRODUCING OPTIMIZED CODE

The Results

Figure 4-10 shows the results from the various steps applied to

0.3 7
the example application in Listing 4-5. The application was run
on the Sandy Bridge laptop. In each step, new optimizations were 0 0257
incrementally added using the compiler options. The result labeled § 024
“Fix” is where the code in Series2.c was modified. § 0.15 1
If the application had been built with just the default options, the g 011
application would have run at the /02 setting, giving a run time of " 0.05 -
0.211 seconds. At the PGO step, the final speed was 0.064 seconds, 0 -
giving an impressive speedup of 3.3. 0&0 3 5\- L& <2OO
<
Step 6: Tune Auto-Vectorization Optimization Steps

Th . in the Intel o . FIGURE 4-10: Applying all the
e auto-vectorizer 1n the Intel compiler expects a certain stan- optimization steps results in

dard of code. You can use the compiler’s reporting features to tell a speedup of more than 300
you when the compiler was unable to auto-vectorize. The section percent

“When Auto-Vectorization Fails” covers many of the rules and

error messages that can help you understand what the compiler is doing. In addition to the compil-
er’s reporting features, you can also use the GAP option to give you additional advice. Table 4-9 lists
some of the differences between the GAP and vectorizer reports.

TABLE 4-9: Differences Between GAP and Vectorizer Reports

FEATURE VECTORIZER GAP
REPORTS
Executable or usable object produced Y N
Performs application-wide analysis N Y
Detects breaking of vectorization rules Y Y
Gives advice on what to do N Y

It is best that you do not use both /Qguide and /Qvec-report at the same time, because this can
lead to confusion; rather, use them sequentially after each other. Don’t be tempted to skip one of
these reports, because experience shows that there will be occasions when the vectorizer will emit a
message but the GAP option will not give any specific advice.

GAP gives advice on auto-vectorization and auto-parallelization. This section considers only tuning
auto-vectorization; Chapter 6, “Where to Parallelize,” discusses using GAP for auto-parallelism.

Activating Guided Auto-Parallelization
You can activate GAP by using the following option switch:

/Qguide=n

Optimizing Code in Seven Steps | 117

where n can be set from 1 to 4, as follows:

n =1— Simple diagnostics are generated.

n =2 — Moderate diagnostics are generated.

n =3 — Maximum diagnostics are generated.

n = 4 — Extreme diagnostics are generated (the default if n is not set).
The higher the value of n, the deeper the analysis and the longer it takes.

While the GAP option is set, the compiler will not build an executable; it runs in advisor mode
only, generating diagnostic messages telling you how you can improve the code. After making any
changes you feel happy with, you need to recompile the application without the /Qguide option to
produce an executable file.

GAP requires a general optimization level of /02 or higher; otherwise, the com-
piler will simply ignore the /Qguide option.

An Example Session

Listing 4-2 is an example session that uses both /Qguide and /Qvec-report options.

‘) LISTING 4-2: Sample code suitable for vectorization

Available for void f(int n, float *x, float *y, float *z, float *dl, float *d2)
download on {
Wrox.com

for (int 1 = 0; 1 < n; 1i++)

z[i] = x[i] + y[i] - (dl[i]*d2[i]);

code snippet Chapterd\4-2.cpp

The following steps show what output the auto-vectorizer and GAP produces when you compile
Listing 4-2:

1. Compile the code, asking for a report from the auto-vectorizer:

icl /c test.cpp /Qvec-report2 /c

C:\dv\guide\test.cpp(3): (col. 3) remark: loop was not vectorized: existence of
vector dependence.

Notice from the generated message that the loop was not vectorized, but no real hint is
given about what to do next.

2. Use GAP to see if it can provide any other useful advice:

icl /c test.cpp /Qguide /c

test.cpp

118 | CHAPTER4 PRODUCING OPTIMIZED CODE

GAP REPORT LOG OPENED ON Thu Aug 25 18:33:06 2011

remark #30761: Add -Qparallel option if you want the compiler to generate
recommendations for improving auto-parallelization.

C:\dv\guide\test.cpp(3): remark #30536: (LOOP) Add -Qno-alias-args option for better
type-based disambiguation analysis by the compiler, if appropriate (the option will
apply for the entire compilation). This will improve optimizations such as vectorization
for the loop at line 3. [VERIFY] Make sure that the semantics of this option is obeyed
for the entire compilation. [ALTERNATIVE] Another way to get the same effect is to add
the "restrict" keyword to each pointer-typed formal parameter of the routine "f".

This allows optimizations such as vectorization to be applied to the loop at line 3.
[VERIFY] Make sure that semantics of the "restrict" pointer qualifier is satisfied:

in the routine, all data accessed through the pointer must not be accessed through
any other pointer. Number of advice-messages emitted for this compilation session: 1.
END OF GAP REPORT LOG

The compiler does not know if any of the pointers overlap and advises you to use either
-Qno-alias-args or the restrict keyword.

Help the compiler to successfully vectorize the code by using the command-line option /Qno-
alias-args, per the advice from GAP:

icl /c test.cpp /Qguide /Qno-alias-args

test.cpp
GAP REPORT LOG OPENED ON Thu Aug 25 19:01:29 2011

remark #30761: Add -Qparallel option if you want the compiler to generate
recommendations for improving auto-parallelization.

Number of advice-messages emitted for this compilation session: 0.
END OF GAP REPORT LOG

Now the advice message has gone.

Compile the code, asking for a report:

icl /c test.cpp /Quec-report2 /Qno-alias-args
test.cpp
C:\dv\guide\test.cpp(3): (col. 3) remark: LOOP WAS VECTORIZED.

Presto, you have a vectorized loop!

MORE ON AUTO-VECTORIZATION

Two additional vectorization-related topics are worth examining:

>

>

Building applications that will safely run on different CPUs

Other ways of inserting vectorization into your code

Building Applications to Run on More Than One Type of CPU

First,

a gentle reminder: If you build an application and use just the general options, or no options at

all, then any vectorized code will run on all CPUs that support SSE2. Default builds are safe!

More on Auto-Vectorization | 119

Once you start enhancing auto-vectorization, the compiler adds CPU-specific code into your appli-
cation — that is, code that will not run on every CPU.

CPU dispatch (sometimes called multipath auto-vectorization) is a means whereby you can add
several coexisting specialized paths to your code. Figure 4-11 illustrates the concept. The compiler
generates the specialized paths when you use the /Qax option, rather than the /0x option. (Notice
the extra a.)

Specialized TriaaTtriaa
| 1a32 || ssE42 [«— pathsetby ! AVX ! SSE3 |
/Qax option ST e
,—-,‘_'-'::"—_—‘ .)

Default path e - Y
set by options Additional paths can be
/arch or /Qx added by extending the

/Qax option
(e.g., /QaxSSE4.2,AVX,SSE3)

FIGURE 4-11: Multipath auto-vectorization

When the code is run, the CPU is first identified using the cPUID instruction. The most appropriate
code path is then selected based on the instruction set your CPU can support. When you use the
/Qax option, the compiler generates a default path and one or more specialized paths.

You can set the specification of the default path with either the /arch option or the /0x option. If
you think your code will ever be run on a non-Intel CPU, you must not use the /Qx option to create
the default path, but rather use the /arch option. For non-Intel devices, the default path is always
taken.

Table 4-10 gives some examples of how to use the /Qax option.

TABLE 4-10: Multipath Vectorization Example

EXAMPLE DEFAULT SPECIALIZED
Intel Non-Intel Intel Non-Intel
1 /QaxSSE2 SSE2 SSE2 SSE2 N/A
2 /QaxSSE3 SSE2 SSE2 SSE3 N/A
3 /QaxAVX /arch:SSE3 SSE3 SSE3 AVX N/A
4 /QaxAVX, SSE4 .1 SSE2 SSE2 AVX and SSE4.1 N/A

5 /QaxAVX /QxSSE3 SSE3 Error AVX Error

120 | CHAPTER4 PRODUCING OPTIMIZED CODE

Examples 1 to 4 will run on Intel and non-Intel devices. Example 5 will run only on an Intel device,
because the default path has been set up using the /0x option.

Example 3 is a little more complicated. If the code runs on:
> An Intel device that supports AVX, it will use the AVX specialized path.

> An older Intel device that does not support AVX but still supports SSE3, it will use the
default path.

> An older Intel device that supports only SSE2 (or lower), the program will fail to run.

> A non-Intel device that is capable of supporting SSE3 (or higher), it will run on the default
path.

> An older non-Intel device that supports only SSE2 (or lower), the program will fail to run.

For best portability and superior optimization, use the -/Qax (-ax) option or
one of its variants.

Additional Ways to Insert Vectorization

In addition to using auto-vectorization, you can insert vectorization in your code by other means.
The ways mentioned in Figure 4-12 range from the fully automatic vectorization to low-level assem-
bler writing. The lower in the diagram, the more difficult it is to do.

| Compiler: Fully automatic vectorization | | Ease of use |

| Cilk Plus array notation | /\

User-mandated vectorization
(SIMD directive)

Compiler: Auto-vectorization hints
(#pragma ivdep, ...)

Manual CPU dispatch
(__declspec(cpu_dispatch...))

SIMD-intrinsic class (F32vec4 add) |

Vector-intrinsic class (mm_add_ps()) | \/

|Assemb|er code (addps) | | Programmer control |

FIGURE 4-12: Other ways of inserting vectorized code

More on Auto-Vectorization | 121

Note the following:
> The vector-intrinsic functions are supported by other compilers as well as the Intel compiler.

> The SIMD-intrinsic classes are C++ classes provided by the Intel compiler. You can see an
example of SIMD-intrinsic classes in Chapter 13, “The World’s First Sudoku ‘Thirty-Niner.””

» User-mandated vectorization and auto-vectorization hints are discussed in the section “When
Auto-Vectorization Fails.”

> Cilk Plus array notation and manual CPU dispatching are discussed in the following sections,
respectively.

Using Cilk Plus Array Notation

Array extensions are a very convenient way of adding vectorized code to your application. When you
build an application at optimization level /01 or higher, the compiler replaces the array notation with
vectorized code. If you build with no optimization (/0d), the compiler generates nonvectorized code.

The compiler uses exactly the same rules as for auto-vectorization with respect to which instruction
set is used. By default, the compiler uses SSE2 instructions. You can override this behavior by using
the /arch, /0x, or /Qax options.

The Section Operator

Cilk Plus array notation is an extension to the normal C/C++ array notation and is supported by
the Intel compiler. A section operator (:) is provided that enables you to express data-parallel opera-
tions over multiple elements in an array. The section operator has the format Array[lower bound :
length : stride]. Here are some examples:

Al:]1 // All of array A

B[4:7] // Elements 4 to 10 of array B
C[:]1[3] // Column 3 of matrix C
D[0:3:2] // Elements 0,2,4 of array D

The first example accesses all the elements of array a[]1. The other three examples access arrays
B[], C[],and D[] portions as a range, a column, and a stride, respectively.

C/C++ Operators

Most C/C++ operators are available for use on array sections. Each operation is mapped implicitly
to each element of the array. Here are two examples of using operators:
z[:] = x[:] * y[:] // element-wise multiplication

c[3:2][3:2] = al3:2]1[3:2] + b[5:2][5:2] // 2x2 matrix addition

In the first example, each element of x[] is multiplied by its corresponding element in y [1, and the
results are written to the corresponding element in z[].

The second example shows that two submatrices are accessed and added and the results placed in
another submatrix. The code is equivalent to the following:

c[3][3] = al3][3] + b[5]1[5];
c[3]04] = al3][4] + b[5][6];

122 | CHAPTER4 PRODUCING OPTIMIZED CODE

The Assignment Operator

The assignment operator (=) applies in parallel every element of the right-hand side to every element
of the left-hand side. For example:

al:1[:1 =Dbl:1[2][:] + c;

The equivalent code for the first example is as follows (assuming array declarations of a[3]1[3] and
b[31[311[3]):

NN NRFR PP O oo
NP ONRE ONRE O
I
oo oooocooo
O R R e N = I =
DN DD DD DNDDNDDNDDNDDND
NP ONRE ONRE O
+ o+ + o+ A+ o+ o+ o+
Q

Q0 0 0 9 QY

In the second example, the value of d is assigned to every element of array e[].

Reducers

Reducers accumulate all the values in an array using one of nine reducer functions, or alternatively
using your own user-defined function. The nine provided reducers are as follows:

> __sec_reduce_add — Adds values

__sec_reduce_mul — Multiplies values
__sec_reduce_all_zero— Tests that all elements are zero
__sec_reduce_all_nonzero— Tests that all elements are nonzero
__sec_reduce_any_nonzero — Tests that any element is nonzero
__sec_reduce_max — Determines the maximum value
__sec_reduce_min — Determines the minimum value

__sec_reduce_max_ind — Determines index of element with maximum value

Y Y Y VY Y VY Y'Y

__sec_reduce_min_ind — Determines index of element with minimum value

Here’s an example of using the __sec_reduce_add reducer:

// add all elements using a reducer
int sum = _ sec_reduce_add(c[:])

// add all elements using a loop
int sum = 0; for(int i = 0;1 < sizeof(c);i++){sum += c[i]);

More on Auto-Vectorization | 123

In the first line of code, every element of c[] is added together using the reducer __sec_reduce_
add. In the second line, the same operation is performed using a loop.

Elemental Functions

Elemental functions are user-defined functions that can be used to operate on each element of an
array. The three steps to writing a function are as follows:

1. Write the function using normal scalar operations. Restrictions exist on what kind of code
can be included. Specifically, you must not include loops, switch statements, goto, setjmp,
longjmp, function calls (except to other elemental functions or math library intrinsics), oper-
ations on a struct (other than selection), cilk_spawn, array notations, or C++ exceptions.

2. Decorate the function name with __declspec (vector). As an interesting aside, you can
make the function CPU-specific by using the processor (cpuid) clause.

3. Call the function with vector arguments.

In the following code snippet, the multwo function is applied to each element of array a. At optimi-
zation levels /01 and above, the compiler generates vectorized code for the example.

int __ declspec(vector) multwo(int i) {return i * 2;}

int main()

{
int A[100];
Al:] = 1;

for (int 1 = 0 ; 1 < 100; 1i++)
multwo (A[1])

’

Using Array Notations in the Example Application

The most obvious place to use the array notation is in the multiplication of the matrix in
chapter4.c. Listing 4-3 first shows the original code and then the new version.

‘) LISTING 4-3: Using array notation in the matrix multiplication

Available for
download on ORIGINAL VERSION
Wrox.com
void MatrixMul (double a[N] [N], double b[N][N], double c[N][N])
{
int i,3,k;

for (i=0; i<N; i++) {
for (3=0; J<N; J++) {
for (k=0; k<N; k++) {
clil[j] += alillk] * blk]l[3];
}

continues

124 |

CHAPTER 4 PRODUCING OPTIMIZED CODE

LISTING 4-3 (continued)

VERSION USING ARRAY NOTATION

void MatrixMul (double a[N][N], double b[N][N], double c[N][N])
{
int i,3;
for (i1=0; 1i<N; i++) {
for (j=0; j<N; Jj++) {
clil[j] += aljll:] * bl:1[3];
}

code snippet Chapter4\4-3.c

By building the application with the /s option, you can examine the assembler code and confirm
that the code has been vectorized. The highlighted lines in the following code snippet use a packed
multiply double and a packed add double instruction (indicated by the p and d in the instruction’s
name). Remember that a packed instruction is performing a SIMD operation.

movsd xmml, QWORD PTR [rl4+rl13*8] ;14.31
movsd xmm0, QWORD PTR [r8] ;14.10
movhpd xmm0, QWORD PTR [8+r8] 714.10
unpcklpd xmml, xmml ;14.31
mulpd xmml, xmmO0 $14.31
movsd xmm2, QWORD PTR [rdi+r9*8] ;14.10
movhpd xmm2, QWORD PTR [8+rdi+r9*8] 14.10
addpd xmm2, xmml $14.10

Manual CPU Dispatch: Rolling Your Own CPU-Specific Code

Occasionally, developers want to write their own CPU-specific code that they can dispatch manu-
ally. The Intel compiler provides two functions to achieve this:

> __declspec (cpu_dispatch(cpuid, cpuid...))

> __declspec (cpu_specific(cpuid))

Listing 4-4 gives an example. First, you should declare an empty function (lines 3 and 4) that must list
all the different CPUIDs to be used in the _ declspec statement. Table 4-11 shows the valid CPUIDs.

TABLE 4-11: CPUID Parameters for Manual Dispatching

PARAMETER ARCHITECTURE
core_2nd_gen_avx Intel AVX
core_aes_pclmulgdg AES

core_i7_ssed_2 SSE4.2

Source Code | 125

PARAMETER ARCHITECTURE

atom Intel Atom processors

core_2_duo_ssed_1 SSE41

core_2_duo_ssse3 SSSE3

pentium_4_sse3 SSE3

pentium_4 Pentium 4

pentium_m Pentium M

pentium_iii Pentium Il

generic Other IA-32 or Intel 64 (Intel and
non-Intel)

Each CPUID declared in the empty function list then needs to have its own CPU-specific function,
as shown at lines 7 and 10. The code will also work if the functions have return types rather than
void functions. Note that all the CPUIDs, except the generic one, are Intel-specific.

‘) LISTING 4-4: Example of manual dispatching

Available for #include <stdio.h>
download on P . .
Wrox.com // need to create specific function versions

1

2

3: _ declspec(cpu_dispatch(generic, future_cpu_16))
4: wvoid dispatch_func() {};
5
6
7
8

__declspec (cpu_specific(generic))
void dispatch_func() { printf("Generic \n");}

9: _ declspec(cpu_specific(future_cpu_16))
10: void dispatch_func(){ printf ("AvVvX!\n");}
11:

12: int main()

13: {

14: dispatch_func() ;

15: return 0;

16: }

code snippet Chapter4\4-4.c

SOURCE CODE

Listing 4-5 contains the source coded for the example application used in this chapter. The code is
written in such a way that the different compiler optimizations used in the chapter “make a differ-
ence.” As mentioned previously, the code is not an example of writing good optimized code; in fact,
some of the code is quite contrived and artificial.

126 | CHAPTER4 PRODUCING OPTIMIZED CODE

‘) LISTING 4-5: The example application

Available for
download on chapter4.c
Wrox.com
// Example Chapter 4 example program

#include <stdio.h>
#include <stdlib.h>
#include "chapter4.h"

void MatrixMul (double a[N] [N], double b[N][N], double c[N][N])
{
int i,3,k;
for (i=0; i<N; i++) {
for (3=0; j<N; j++) {
for (k=0; k<N; k++) {
clil[j] += alillk] * blk][jl;
}

// R R R I S R I S I R R I S R R R S S R R I SR R R I S S

int main(int argc, char * argv[])
{

int i,3,k,1,m;

long int sum;

double ret, total;

int denominator = 2;

double starttime, elapsedtime;

double *a, *b, *c;

if (argc == 2)
denominator = atoi(argv[1l]);

// allocate memory for the matrices
a = (double *)malloc(sizeof (double) * N * N);
if(!a) {printf("malloc a failed!\n");exit(999);}

b = (double *)malloc(sizeof (double) * N * N);
if(!b) {printf("malloc b failed!\n");exit(999);}

c = (double *)malloc(sizeof (double) * N * N);
if(!c) {printf("malloc ¢ failed!\n");exit(999);}

// repeat experiment six times
for(1=0; 1<6; 1++)
{
// get starting time
starttime = wtime();

// initialize matrix a

Source Code | 127

sum = Work (&total,a);

// initialize matrix b;
for (1 = 0; 1 < N; 1i++) {
for (3=0; j<N; j++) {
for (k=0;k<DENOM_LOOP;k++) {
sum += m/denominator;
}
bIN*i + j] = sum;

}

// do the matrix multiply

MatrixMul ((double (*)([N])a, (double (*)[N])b, (double (*)[N])c);

// get ending time and use it to determine elapsed time
elapsedtime = wtime() - starttime;

// report elapsed time
printf ("Time Elapsed %03f Secs Total=%1f Check Sum = %1d\n",
elapsedtime, total, sum);
}
// return a value from matrix c
// just here to make sure matrix calc doesn't get optimized away.
return (int)c[100];
}

// hhkkhkhkhkdrkhkhkhhhkhkhkhkhkhkhkhkhhkhkhk ko hkhkhkhkhkkdhkhkhkhkhkhkhkhkdkhkhkhkhhkdkhkhkhkhkhkhkdkdkdkrrhkhkhrdkdkrxxxxk

work.c

#include "chapterd.h"
#include <math.h>

long int Work(double *total,double al])
{

long int i,3j,sum;

double sumx, sumy;

sum = 0;

*total = 0.0;

for (1=0;1<N;i++){
for (3=0;3<N;j++) {
sum += 1;
// Calculate first Arithmetic series
sumx= Seriesl(j);

// Calculate second Arithmetic series
sumy= Series2(j);

// initialize the array

if(sumx > 0.0)*total = *total + 1.0 / sqgrt(sumx);
if(sumy > 0.0)*total = *total + 1.0 / sqgrt(sumy);
a[N*i+j] = *total;

continues

128 | CHAPTER4 PRODUCING OPTIMIZED CODE

LISTING 4-5 (continued)

}

return sum;

series.c

extern double AddY(double sumy, int k);

double Seriesl(int j)
{
int k;
double sumx = 0.0;
for(k=0; k<j; k++)
sumx = sumx + (double)k;
return sumx;

double Series2(int j)
{
int k;
double sumy = 0.0;
for(k=j; k>0; k--,sumy++)
sumy = AddY (sumy, k);
return sumy;

}

addy.c

double AddY(double sumy, int k)
{
sumy = sumy + (double)k -1;
return sumy;

}

wtime.c

#ifdef _WIN32

#include <windows.h>

double wtime ()

{
LARGE_INTEGER ticks;
LARGE_INTEGER frequency;
QueryPerformanceCounter (&ticks) ;
QueryPerformanceFrequency (&frequency) ;
return (double) (ticks.QuadPart/ (double) frequency.QuadPart) ;

}

#else

#include <sys/time.h>

#include <sys/resource.h>

double wtime ()

Source Code | 129

struct timeval time;

struct timezone zone;

gettimeofday (&time, &zone) ;

return time.tv_sec + time.tv_usec*le-6;
}
#endif

chapter4.h

#pragma once

#define N 400

#define DENOM_LOOP 1000

// prototypes

double wtime();

long int Work(double *total,double al]);
double Seriesl (int Jj);

double Series2 (int j);

double AddX(double sumx, int k);
double AddY(double sumy, int k);

code snippet Chapter4\4-5\chapterd.c, work.c, series.c, addy.c, wtime.c, and chapterd.h

Listing 4-6 is the makefile used to build the application. If you are using Linux, then you will need
to comment out the first three lines of the file (where cc, DEL and 0BJ are set), and uncomment their
equivalent lines that are just below.

\) LISTING 4-6: The makefile

Available for ~ ## TODO: EDIT next set of lines according to 0S

download on
Wrox.com L
WINDOWS OS specific vars.
CC=icl
DEL=del
OBJ=0bj

LINUX SPECIFIC, uncomment these for LINUX
CC=icc

DEL=rm -Rf

OBJ=0

oo DO NOT EDIT BELOW THIS LINE -------------
LD=$ (CC)

CFLAGS
LFLAGS

OBJS = addy.$(0BJ) chapter4d.$(OBJ) series.$(OBJ) work.$ (OBJ) wtime.$ (OBJ)
TARGET = main
.c.$(0OBJ) :

$(CC) -c $(CFLAGS) $<

continues

130

| CHAPTER4 PRODUCING OPTIMIZED CODE

LISTING 4-6 (continued)

$ (TARGET) .exe:$ (OBJS) chapterd.h Makefile
$(LD) S$(LFLAGS) $(OBJS) $(LIBS) -o s@

clean:
$ (DEL) $(OBJS)
S (DEL) $(TARGET) .exe

reallyclean:

S (DEL) $(OBJS)
$(DEL) *.exe
$ (DEL) *.pdb
$(DEL) *.dyn
$(DEL) *.dpi
$(DEL) *.lock
$(DEL) *.asm
$(DEL) *.s

code snippet Chapter4\4-6\Makefile

SUMMARY

You should use the seven optimization steps in this chapter as a starting point for all your optimiza-
tion work. Most of the optimizations can be enabled by just adding an additional compiler option.
Although the optimization switches seem to make no difference, you can use the reporting features
of the compiler to help you understand what might be stopping the compiler from doing a better job.

Of all the optimization options available, auto-vectorization stands out as one of the great favorites
among developers. When you combine this feature with some of the hand-tuning of the code that
can be done, you can potentially get some astounding results.

Using the different optimization options of the Intel compiler can result in some great performance
improvements. This chapter demonstrated that it is important not to just accept the out-of-the-box
settings. The steps taken in this chapter are the foundation for further optimization work.

The next chapter looks at how to write safe code — code that is less vulnerable to hacking and mali-
cious attacks.

Writing Secure Code

WHAT’S IN THIS CHAPTER?

> Running a Static Security analysis

> Tracking the status of security problems throughout the life of a
project

» Understanding the programming practices that can leave your code
vulnerable to attack

Many security threats take advantage of weaknesses introduced in programs written in C or
C++. The weak type checking and the ability to write programs that directly access memory
and hardware make it easy to write insecure programs. Most attacks fall into one of two
categories:

> Threats that crash or overwhelm an application
> Threats that hijack the code path by inserting foreign code
The Intel compiler’s Static Security analysis detects many of these code weaknesses, displaying

the results in Intel Inspector XE. More than 250 different errors are detected in the following
categories:

> Buffer overflows and boundary violations

Uninitialized variables and objects

Memory leaks

Incorrect usage of pointers and dynamically allocated memory

Dangerous use of unchecked input

Y Y Y VY Y

Arithmetic overflow and divide by zero

132 | CHAPTERS5 WRITING SECURE CODE

Dead or redundant code
Misuse of string, memory, and formatting library routines
Inconsistent object declarations in different program units

Incorrect use of OpenMP and Intel Cilk Plus

Y Y Y VY Y

Error-prone C++ and Fortran language usage

This chapter discusses how to use Intel Parallel Studio XE to perform Static Security analysis on
your code. The primary goal of Static Security analysis is to harden applications against security
attacks, but it is also useful for detecting some programming errors.

A SIMPLE SECURITY FLAW EXAMPLE

Listing 5-1 has security errors that could be used in an attack. An attacker could use the unchecked
user input to create a buffer overflow.

‘) LISTING 5-1: A program with several security errors

Available for #include <stdio.h>
dmgtgg"‘:" #include <stdlib.h>
#include <string.h>
// user functions
int NotePad() {printf (" USER: here we launch notepad\n\n"); return 0;}
int Exit(){ exit(0);}

// system functions

int Dir() {printf (" SYSTEM: here we launch dir\n\n"); return 0;}

int Delete() {printf (" SYSTEM: here we launch Del\n\n"); return 0;}
int ReturnToMain () {return -1;}

int SystemMenu() ;
int MainMenu () ;

int (*user_table[]) (void) = {NotePad, SystemMenu, Exit};
int (*system_table[]) (void) = {Dir, Delete, ReturnToMain};

int SystemMenu ()
{
char password[20];
int id;
int ret = 0;
printf ("System Menu\n") ;

printf ("Enter the Password before continuing!...\n");
scanf ("%$s",password) ;
if (strcmp (password, "PASSWORD") == 0)

{
while (ret != -1)
{

A Simple Security Flaw Example | 133

printf ("Enter a number:\n");
printf("l: dir\n");

printf("2: delete everything\n");
printf("3: back to main menu\n");

scanf ("%d", &id) ;
ret = system_table[id-1]();

}

else

{
printf ("Invalid Password!\n");
return 0;

}

return 0;

}

int MainMenu ()
{
int id;

printf ("What would you like to do?\n");

printf ("Enter a number:\n");

printf ("
(
(

1: run Notepad\n");
printf("2: go to system menu\n");
printf("3: quit\n");

scanf ("%d", &id) ;
return user_table[id-1]();
}

int main ()
{
int ret = 0;
while(ret != -1)
ret = MainMenu() ;
return ret;

code snippet Chapter5\5-1.c

The program consists of two menus: a user menu and a system menu. When the program first starts,
the MainMenu () function gives the user three choices:

What would you like to do?
Enter a number:

1: run Notepad

2: go to system menu

3: quit

The user input is captured using scanf (), which stores the result in id. The value in id (minus 1) is
used as an index into the array user_table, which is an array of function pointers.

Choosing 1 calls the NotePad function; choosing 2 causes the SystemMenu () function to display the
system menu; choosing 3 exits the program via the Exit () function.

134 | CHAPTERS5 WRITING SECURE CODE

The systemMenu () function works in a similar way to MainMenu (), using the array system_table
to jump to the pir (), Delete(), and ReturnToMain () functions. Before the system menu is
launched, the user is prompted for a password (Passworp). If the password is wrong, a message is
displayed and control is returned to the MainMenu () calling function, which, in turn, returns zero to
the while loop in main ().

Choosing 2 from the user menu displays the password-controlled system menu. The following shows
the menu after the correct password has been entered:

System Menu

Enter the password before continuing!...
PASSWORD

Enter a number:

1: dir

2: delete everything

3: back to main menu

UNDERSTANDING STATIC SECURITY ANALYSIS

It is difficult to anticipate how an attacker will attack a program. Attackers are cunning and devi-
ous, taking advantage of any weakness in your code. Writing a series of runtime tests or debugging
an application will not help find many weaknesses. At best, using such methods, you can test only
what is actually executed, with some kinds of threats being impossible to test for.

Static Security analysis differs from standard debugging in that it analyzes the code without execut-
ing it. Every possible code path is examined, even those that are never executed by any of your tests.

Running a Static Security analysis on Listing 5-1 reports the following error messages. The prob-
lems could be used as a vehicle for a security attack.

> main.c(28): error #12329— specify field width in format specifier to avoid buffer over-
flow on argument 2 in call to scanf.

> main.c(38): error #12305— unvalidated value is received from call to an external func-
tion at (file:main.c line:37), which can be used in index expression of system_table.

> main.c(59): error #12305— unvalidated value is received from call to an external func-
tion at (file:main.c line:58), which can be used in index expression of user_table.

Someone could attack the code as follows:

> By using invalid user input to bypass the system menu password — If you enter a number
higher than 3 in the user menu, the functions from the system menu are executed. A pass-
word is not even requested!

What would you like to do?
Enter a number:
1: run Notepad
2: go to system menu
3: quit
5

SYSTEM: here we would launch Del

Understanding Static Security Analysis | 135

This happens because the arrays user_table and system_table are next to each other in
memory. The user_table array has three entries. Using an index of 4 means that a function
pointer gets constructed from memory that is beyond the end of the array, reading the first
entry in the system_table array.

> By using invalid user or system input to cause the program to crash or to execute random
code — If you enter a very high number for the menu choice, the program will start execut-
ing code at an address not taken from either of the arrays. If you are lucky, the code will be
harmless or will simply crash. In the worst case, you could start executing some valid and
dangerous code.

> By passing in a very long password to cause the application to crash — The variable
password can hold 20 characters. The following example uses a password that is much
longer. When scanf is called, the extra characters corrupt the stack, causing the program
to crash.

What would you like to do?
Enter a number:
1: run Notepad
2: go to system menu
3: quit
2
System Menu
Enter the Password before continuing!...
A_VERY_VERY_LONG_PASSWORD
Invalid Password!
(program crashes after this)

False Positives

Not all the threats that Static Security analysis reports will be real problems — these are called false
positives.

In the following code, the Static Security analyzer is not smart enough to know that the false part of
the first i f statement and the true part of the second if statement will never be executed together:

int vy;
if ((x & 1) == 0) {
y = 0;

if (x == ((x >> 1) << 1)) {
z =vy; // is y always zero here, or can it be uninitialized?

The first i f statement checks if bit 0 in variable x is set to 1. If it is not, v gets initialized to zero.

The second if statement compares the variable x to the value of y, which has been shifted right by
one and then shifted left by one. This shifting has the effect of clearing the lowest bit.

So, if x holds the value 0, the first test will evaluate to true and y will get initialized to 0; the second
test will also evaluate to true, and the line z = y will be executed.

136 | CHAPTERS5 WRITING SECURE CODE

If x holds the value 1, both the first and second tests will evaluate to false, so the code y=0 and z=0
will not be executed.

Despite this, the analysis will report a “possible uninitialized variable,” which is a false positive.

Static Security Analysis Workflow

The central activity when working with the results of Static Security analysis is to investigate the
potential security problems that were reported and decide whether they need to be fixed. You record
the results of your investigation as state information attached to the diagnostic. Typically, you
would mark genuine errors as “Confirmed” and false positives as “Not a problem.” You should log
confirmed issues in whatever bug-tracking system you normally use for later correction.

Static Security analysis works on the whole program. This means that every file in the program is
analyzed together. Because of the time it takes to run a whole program analysis, running the analy-
sis each time you fix a problem is not a practical way forward, unless the program is small. Rather,
it is better to run the Static Security analysis periodically.

Conducting a Static Security Analysis

The Intel compiler runs in a special mode to perform a Static Security analysis. In this mode, the
compiler skips generating any instructions (see Figure 5-1). The compiler first processes the source
files, generating a collection of pseudo-object files that contain analysis information. At link time
these pseudo-object modules are combined and analysis is done. During this final analysis step,
errors that span function and file boundaries are detected. The results are stored in XML format,
which can be viewed and manipulated by Inspector XE. When the results are viewed in Inspector
XE, its engine (represented by inspxe in the diagram) updates the states of the new results.

Source Files Pseudo objects Libraries
.h \\ 5 . lib
. a
.C .obj
. icc lib
.h C —> .obj link b
c —> .obj Results

inspxe = & -----------si--imoos
Update State

[j h View/manage

C— with Inspector XE

FIGURE 5-1: How Static Security analysis works

Understanding Static Security Analysis | 137

If you want the sources of a library to be part of the analysis, you must first perform the analysis on
the library sources and build the library from the resulting pseudo-object modules. For example, in
Figure 5-1, the contents of 1ib-a will participate fully in the error analysis, but 1ib-b, which might be
a third-party library or some other library whose sources have not been analyzed, will not participate.

You can use either the GUI or the command-line version of Inspector XE to view or manage the results.

As you investigate the results using Inspector XE, record your conclusions by assigning state infor-
mation to diagnostics. You can mark a problem as Confirmed, meaning it is a real issue that needs
to be fixed, or as Not a problem, meaning the issue described in the diagnostic does not require
fixing. This state information is carried forward from the previous result automatically when a new
result is first loaded into Inspector XE.

When new results are loaded, Inspector XE constructs a problem-by-problem correspondence
between the old and the new results. The correspondence engine is quite intelligent and is able to
match problems between the old and new results, even if the sources have been moved around.
Thanks to the correspondence engine, you should not have to reinvestigate old problems as your
code grows and changes.

The steps for conducting a Static Security analysis are as follows:
> If you are building inside Visual Studio
1. Select the projects or solution that you want to analyze.

2. Invoke the menu item in the Build menu named Build Solution for Intel Static Security
Analysis.

The first time you do this, a new build configuration, Intel_ssa, is created. The analysis
session then commences by building this configuration.

> If you are not using Visual Studio

1. Create a new build configuration specifically for the analysis. This should be based on a

debug build.

2. Adjust the settings for the new configuration, adding the compiler and linker options
that enable Static Security analysis (see Table 5-1).

TABLE 5-1: Options to Enable Static Security Analysis

OPTION DESCRIPTION

/Qdiag-enable:sc{[1]2]|3]} Enables Static Security analysis. The number specifies the

(linux -diag-enable:sc ..) severity level of diagnostics reported, as follows:
1— Only critical errors
2 — All errors

3 — All errors and warnings

/Qdiag-enable:sc-include Analyzes include files as well as source files. By default,
(1linux apparent errors in include files are not reported.

-diag-enable:sc-include)

138 | CHAPTER5 WRITING SECURE CODE

3. Build the Intel_ssa configuration of the project. This causes the analysis to run.

You can view the results with the GUI version of Inspector XE with the command inspxe-
gui <directory where result is>.If the analysis is run from Visual Studio, Inspector
XE launches automatically. Figure 5-2 shows the summary screen.

Each problem is given a weight, a state, and a category, with the problems initially sorted in
weight order. The errors with the highest weight are considered to be the most dangerous.

[F N . N
| Static Security Analysis Result

& Problem Sources State Weightv Category Severity s
P @ Double free main.c ews an Memory Errar 5 iterngs)
jmam‘c(ll): error #12294: memory pointed by "pBuff" was already deallocated at (file:main.c line:11) | Problem
Pl @ Arg count mismatch main.c; test.c Mews 65 Call Arg countmismatch Litern(s)
main,c(l): eror #12020: number of actual arguments (3) in callto "test” doesn't match the number of formal arguments Dapleiftee Litem(s)
7(1}; “test” is defined at ifileitest.c line:6) ‘ Implicit function declaration Liternis)

Inconsistent pointer declaration 1 itemis)

P Mull ter deref bl .coteste M 11} Foint
@ ull pointer dereference (possible) main.c; test.c Mew ointer Null pointer dereference (possi.. 1 item(s)
ﬁtest.c(?): error #12172: dereference of pointer "pBuff” which is possibly set to null at ifile:main.c line:9) |
Source =
PI @ Inconsistent pointer declaration rnain.c test.c Mew Iz Declaration FrRinE 5 itermiis)
jtest.c(}): error #12005: inconsistent declaration of variable "pBuff* fwrang pointer type). See (file:rain.c line:4) | test.c 3 itemis)
P4 @ Implicit function declaration rnain.c Mewy 1 Declaration State
|rrain.c(10): error #12142: function "test” is implicitly declared as returning an "int" value | Mew 5 itemis)
Category
Call 1 itemiis)
Declaration 2 itemis)
o] Description = Source Function Wariable Memary {iternis) | I
%3 Deallocation site main.cill rain Pairter 1 itermis)
[#¥4 Deallocation site main.c:l? main pBuff
Suppressed
Lot ed 5 iterars =

FIGURE 5-2: The summary screen

Investigating the Results of the Analysis

Once you have the list of problems, the next step is to investigate each issue and assign a state:

1.

Choose a problem and investigate it. Examine the source locations associated with the prob-
lem. When you have understood the implications of the problem, change its state accord-
ingly. You should handle confirmed problems using your normal bug-tracking process. You
can manipulate the states via a context menu (see Figure 5-3). To display the menu, highlight
a message and click the right mouse button.

The next section describes the significance of each state in more detail.
Keep working on the problems (that is, repeat step 1).

You can use filters to reduce the number of errors that are displayed or to focus in on a
particular kind of problem. The problems can be filtered in or out, based on the Severity,
Problem, Source, State, Category, and so on (see Figure 5-4). One particularly useful choice
is to filter to “Not investigated” problems, which causes problems to disappear after you
have investigated them.

The left-hand portion of Figure 5-4 shows the view without any filters applied, and the
right-hand portion shows the content being filtered by source file. The set of problems
shown in the summary window are reduced accordingly.

Understanding Static Security Analysis

| 139

Y Problem Sources State Weightw Category
Pz @ Double free main.c MNew a0 Memery
Wmam‘c(ll): error #12294: memory pointed by "pBuff" was already deallocated at (file:main.c lined1) |

PL@ Arg count mismatch main.c; test.c Mew 65 Call

main.c(10): error #.2020: number of actual arguments (0) in call to "test” doesn't match the number of formal arguments
(1); "test” is defined at (filetest.c line:6)

Ps @ Mull pointer dereference (possible) main.c; test.c MNew B0 Pointer
jtest.c(?]: error #12172: dereference of pointer "pBuff” which is pessibly set to null at (file:main.c line:9) |

Inconsistent pointer declaration main. < New Declaration

test.c(3): error #12095: inc Y T, = Buff" (wrong pointer type). See (fileimain.c line:d)
View Source

] Implicit functior Edit Source MNew 1 Declaration

imam‘c(lﬂ): error #F12142: f| 25 Copy to Clipboard d as returning an "int" value

Explain Problem

Not fixed

D Description & Source Confirmed
X5 Definition main.c:d main pBuff Eneed

" s n y

#1X6 Definition test.c:3 R Not a problem

FIGURE 5-3: Changing the state of a problem

Severity Severity

Errar 5 itern(s) Errar 3 itern(s)

Problem Problem

Arg count mismatch 1itern(s) Lrg count mismatch 1itern(s)

Double free 1itern(s) Inconsistent pointer declaration 1itern(s)

Implicit function declaration 1 itemi(s) Mull pointer dereference {possible) 1item(s)

Ihconsistent pointer declaration 1itern(s) Friian m

Mull pointer dereference (possible) 1 itemnis) test.c 3 temis)

Source State

main.c 5 itern(s) ey I itemis)
| teste 3 itern(s) i category

State Call 1item(s)

Mewy 5 iternis) Declaration 1itern(s)

Category Painter 1item(s)

Call Litern(s) Suppressed

Declaration 2 itern(s) Mot suppressed 3 iternis)

hernory; Liternis) Investigated

Painter Litem(s) Mot investigated 3 itern(s)

Suppressed

Mot suppressed 5 itern(s)

Investigated

Mot investigated 5 iternis)

FIGURE 5-4: The one-click filters

If you don’t understand the meaning of a problem, use the context menu to read an explana-

tion (see Figures 5-5 and 5-6).

At some point you will want to stop analyzing the results and start modifying the application
sources to fix the problems that were found (or to analyze a newer source version). Go back

to step 3 and analyze the updated sources.

Repeat all the steps you have just done, starting at step 3 from the previous section,
“Conducting a Static Security Analysis,” until no problems remain to be investigated.

140 | CHAPTER5 WRITING SECURE CODE

() & Problem Sources State Weight+= Category
main.c(10): errol Wiew

(1): "test” is defi Edit Source

P5 @ Null p 53 Copy to Clipboard

- .c; test.c Mew 60 Pointer
lain Problem
test.c(7): error #] e |

" which is possibly set to null at (fileimain.c line:9)

nts (0) in call to "test" doesn't match the number of formal arguments

PR @ Incon Ehangetiaie 2 ||.c,' test.c New 1 Declaration
\test.cB]: error #12095: incensistent declaration of variable "pBuff” (wrong pointer type). See (filemain.c line:d) |

FIGURE 5-5: Choosing Explain Problem from the context menu

Argument count mismatch

The number of actual arguments does not match the number of formal parameters at a call.

This error can result in stack corruption when the run time conventions dictate that the callee pop arguments onto the
stack, as is usually the case.

Mote that this same kind of error can also happen when 3 FORTRAN durmy argument of type subroutine is invoked, That
is, the subroutine that is invoked through a durmmy argument might exhibit the same problem as can occur in a direct call,
In this case the problem may or may not happen depending on what subroutine was passed to the dummy argument of
subrouting type, There will be an additional observation in such cases that identifies the call site where the subroutine
argument was passed in.

- Observa

Description

1 Call site The actual arguments that were passed
2 Definition The definition of the function
Example

filel.c:

extern int £(int &, int b); // incorrect declaration

int wainiint argco, char *farov)
i

recurn (f(l, arge)): // bad: call site passes two actual arguments
+

file2.c:

f# definition shows one formal paramster
int f£(int a)
{
recurn (&) :
¥

Copyright @ 2011, Intel Corporation, All rights reserved,

FIGURE 5-6: An example explanation

You can try these steps for yourself in Activity 5-1.

Working with Problem States

Problems will be in one of six states (see Figure 5-7).
A typical workflow would be as follows:
> The tool sets initial state = New

> You decide: does it need fixing?

Understanding Static Security Analysis | 141

> No: set state = Not a problem
> Yes: set state = Confirmed
> When you fix a Confirmed issue, set state = Fixed
> If the tool sees a New issue again, state = Not fixed
This means it’s still uninvestigated, just not new.
> 1If the tool sees a Fixed issue again, state = Regression
This means your fix didn’t work.

> Each problem is either Investigated or Not investigated.

> You will never come to a point where no problems exist. For example, there will

always be false positives that you mark as Not a problem.

> The goal is to have all problems Investigated.

> When viewing the results in Inspector XE, it is good practice to filter the results so
that only the Not investigated problems are displayed.

N RRLEIS

Not a]
Problem] [Confirmed]

Key
===+ State changed by user
— State changed by tool
---- Not Investigated

— Investigated

Investigated

FIGURE 5-7: Tracking the investigation status

Table 5-2 describes each state.

TABLE 5-2: Problem States

STATE DESCRIPTION

New A new problem. This state is set by the analysis tool and not
the user.

Not fixed A problem from a previous analysis, either New or Not fixed.

This state is set by the analysis tool, not the user.

CLASSIFICATION

Not investigated

Not investigated

continues

142 | CHAPTERS5 WRITING SECURE CODE

TABLE 5-2 (continued)

STATE DESCRIPTION

Not a problem A problem is not really a problem (for example, it might be a
false positive). This state is set by the user.

Fixed The problem has been fixed. This state is set by the user.

Confirmed A problem is confirmed to be a problem. This state is set by
the user.

Regression A problem previously marked as being Fixed still exists. This

state is set by the analysis tool, not the user.

ACTIVITY 5-1: RUNNING A STATIC SECURITY ANALYSIS

CLASSIFICATION

Investigated

Investigated

Investigated

Not investigated

In this activity you run a Static Security analysis session either from within Visual

Studio or from the command line. The command-line version can be run on

Windows or Linux.

Choose which environment you want to use, and then jump to the appropriate

section:
> For Visual Studio IDE, start at step 1.

> For the command prompt, start at step 9.

Creating a Project (Visual Studio)
Begin by performing the following steps:

1. Open Visual Studio.

2. Create a new console application.

3. Ensure the project is empty and does not use precompiled headers (just a per-

sonal preference of the author).

4. Add two new files, main.c and test.c, to the project.

5. Copy the source code from Listings 5-2 and 5-3 (at the end of the chapter) into

the two empty files.

Creating a Dedicated Build and Running the Analysis (Visual Studio)

When performing Static Security analysis, you should always create a specific build
configuration dedicated to the analysis activity. This will keep the pseudo-objects

separate from your regular build objects.

6. Highlight the project and select Build = Build Solution for Intel Static Security

Analysis.

Understanding Static Security Analysis

| 143

The resulting dialog asks permission to prepare the project so that the
Intel compiler can build a configuration. Note that this dialog will not
appear if you are using Visual Studio 2010.

7. Click the Prepare project(s) and Continue button.

The resulting dialog shows the settings that will be used for Static
Security analysis and offers to create a build configuration. Accept the
default settings.

8. Select the Create Configuration and Build for SSA button.

A configuration file named Intel_Ssa is created and built. When the
analysis is complete, Inspector XE automatically opens the results of
analysis.

Visual Studio users should now jump to step 14 to continue the activity.

Creating a Project (Command Prompt)
Begin by performing the following steps:

9. Copy the contents of Listing 5-2 and Listing 5-3 into the separate source files.

10. Copy the Makefile from Listing 5-4. If you are using Linux, you will need to
comment out the Windows-specific variables at the beginning of the Makefile
and uncomment the Linux variables.

11. Open a command prompt or shell:

> On Windows, open an Intel compiler command prompt. The
path to the command prompt will be similar to the following.
(The exact names and menu items will vary, depending on which
version of Parallel Studio and Visual Studio you have installed.)

Start @ All Programs = Intel Parallel Studio XE
2011 = Command Prompt = Intel64 Visual Studio Mode

> On Linux, make sure the compiler variables have been sourced:

$ source /opt/intel/bin/compilervars.sh intel64

If you are running a 32-bit operating system, the parameter passed to the
compilervars. sh file should be ia32.

Creating a Dedicated Build and Running the Analysis (Command
Prompt)
When performing Static Security analysis, you should always create a specific build

configuration dedicated to the analysis activity. This will keep the pseudo-objects
separate from your regular build objects.

continues

144 | CHAPTER5 WRITING SECURE CODE

continued

12. Build the application enabling Static Security analysis:
> Linux

make clean
make CFLAGS="-diag-enable sc3" LFLAGS="-diag-enable sc3"

> Windows

nmake clean
nmake CFLAGS= /Qdiag-enable:sc3 LFLAGS=/Qdiag-enable:sc3

The results will be placed in a folder called r000sc in the current working directory.

13. Start the GUI version of inspector to view the results:

inspxe-gui r000sc

Remember that each time you run an analysis session, the compiler generates a
folder named rxxxsc for the results, incrementing the xxx part of the name on
each analysis. If you have run the analysis more than once, the folder name you use
will be different.

Fixing the Errors
14. For each problem reported:
a. Decide if the errors are genuine and not false positives.
b. Mark any false positives as Not a problem.
C. Mark those that are errors as Confirmed.
15. Set the filter to show only problems in the Confirmed state.
16. TFor each Confirmed problem:
a. Implement a solution in the source.
b. Mark each diagnostic as Fixed.

17. Run the analysis again using step 6 (Visual Studio) or step 12 (command
prompt).
18. View the new results as before. This time the results folder will be r0001sc:

inspxe-gui r000sc

This time the problems you fixed should not appear. If any of your
fixes failed to repair the problem, those diagnostics will appear in a
Regression state.

The Build Specification | 145

Activity 5-1 Summary

In this activity you ran a Static Security analysis twice — the first time to find

any problems, and the second time to confirm that the problems had been fixed.
Between the two runs you modified the state of each problem as it was being inves-
tigated and fixed.

You could have run the analysis after every fix, but the better way is to first investi-
gate a number of problems, fix the problems, and then rerun the analysis.

Although the programming errors in the sample code are rather trivial and obvi-
ous, in a real program these kinds of errors could be easily missed and become a
security risk.

Some errors are genuine programming errors, whereas others, from a programming
point of view, are correct. Both kinds of errors pose a security risk.

Note for Visual Studio Users

You can also change the options for Static Security analysis by modifying the prop-
erties for the Tntel ssa configuration. To do this, you can use the following prop-
erty pages:

C/C++ = Diagnostics ™ Level of Static Security Analysis
C/C++ = Diagnostics &> Analyze Include Files

C/C++ = Diagnostics & Analysis results container (The default location is My
Inspector XE Results-<product name>directory in the project root directory.)

THE BUILD SPECIFICATION

The recommended first step in doing Static Security analysis is to create a new build configuration
that is dedicated just to the analysis. If you do not build under Visual Studio and your build environ-
ment makes it difficult to create a new build configuration, you can create a build specification file.

A build specification file holds all the commands necessary for performing a Static Security analysis
build, and can be launched from a command-line utility.

You can create a build specification file in two ways: by injection and by wrapping. Both methods
are supported by utilities that come with the Intel compiler.

When using injection, the utility inspxe-inject launches your normal build and captures a history
of the compilation, librarian, or linker steps. This information is stored in a build specification file.

Wrapping involves manually inserting a call to the utility inpsxe-wrap around every compilation,
librarian, or linker step in your build scripts. When you run the instrumented build script, the wrap
utility executes the wrapped commands and then adds them to the build specification file.

146 | CHAPTER5 WRITING SECURE CODE

Creating a Build Specification File by Injection

The inspxe-inject utility automatically . h Build
recognizes the Intel C++ compiler, Intel @ aunch Bui
Fortran compiler, Microsoft C compiler, and d

the GNU GCC compiler. Figure 5-8 shows Capture build @ @ @ @
commands to

how the injection works. et
specification file

The inspxe-inject utility launches a build. l l l l
Each invocation of the compiler, linker, or Specification

librarian is recorded in a build specification file. %
After creating the build specification file, you

Run analysis

can use it to run an analysis. Start the analy- Results

sis by calling the utility inpxe-runsc. This

replays every action in the build specification View/manage A
3 with Inspector /“ingpxe- "\ Update State
file, but uses the Intel compiler and adds the qui/ci
options to enable Static Security analysis. =
This has the benefit that your main build FIGURE 5-8: Command injection

could use another compiler, for example GCC, but the Intel compiler would still be used to per-
form the Static Security analysis. The results are placed in the folder specified on the command line
(testl in this example).

You can either view the results from the GUI version of Inspector XE or query them from the
command-line version of Inspector XE. When the results are first loaded into Inspector XE, each
problem found is given a state.

Following is an example call to the inspxe-inject utility All the options after the -- are the build
commands. In this example, make is called to perform a build:

inspxe-inject -save-spec myfile.spec -- make

After creating the specification file, use inpxe-runsc to launch an analysis:

inspxe-runsc -spec-file myfile.spec -r testl

Utility Options

Table 5-3 shows the command-line options available with the inspxe-inject utility.

TABLE 5-3: Injection and Wrapping Tool Options

OPTION DESCRIPTION

-2, -h, -help Displays brief tool description and usage

-V, -version Displays version information
-option-file=<string> Specifies the file that contains a list of tool options

-tmp-dir=<string> Uses the specified directory to store temporary files

The Build Specification | 147

OPTION DESCRIPTION

-log-dir=<string> Uses the specified directory to store log files

-v, -verbose Prints additional information

-q, —quiet Suppresses nonessential messages
-save-spec=<string> Specifies the file for storing the build specification

The Directory Structure of the Results

Figure 5-9 shows how the results are stored. Each time you run an analysis session, the compiler
generates a folder named rxxx sc for the results, incrementing the xxx part of the name on each

analysis.
User defined — 4 D] test3
Definedby 4 DJ My Inspector XE Results - main.exe
inspxe-runsc
D D] r000sc
Last part of
Defined by > E r001sc name based on

compiler target being

> D] r002sc built
FIGURE 5-9: The directory structure of the results

The folder structure is the same whether you are running on Windows or Linux so that results gen-
erated on a Linux machine can be read on a Windows platform and vice versa.

As you load a new set of results into Inspector XE, Inspector looks at the previous set of results and
assigns a state to all the problems found in the current set. The highest-level directory (test3) is user
defined; the My Tnspector XE Results folder is defined by the inspxe-runsc utility, which adds
the name of the executable (main.exe) to the folder name.

ACTIVITY 5-2: USING BUILD CONFIGURATIONS

In this activity you use the inspxe-inject utility to create a build configuration
file. The activity is intended to be run from the command prompt or shell.

Building the Program
To start:
1. Copy Listings 5-2 to 5-4 (from the end of the chapter) into a new directory.
2. Call make to ensure the program builds
> Linux
make clean

make .
continues

148 | CHAPTER5 WRITING SECURE CODE

continued

> Windows

nmake clean
nmake

Run the program. Even though the code built okay, it’s quite likely that the
program will abort at run time due to the programming errors.

On Linux, your run time errors message may look like this:

[sblairch@localhost ssal$./main

Start of application

%* glibc detected * ./main: double free or corruption (top):
0x0000000007078010 ***

On Windows, the application will just run for an unduly long time.

Creating a Build Specification Using Injection

Do the following:

4.

Clean the build and call the make file using the inspxe-inject utility:
» Linux

make clean
inspxe-inject -save-spec myspecOl.spec -v -- make

> Windows

nmake clean
inspxe-inject -save-spec myspec0l.spec -v -- nmake

You add the -v (verbose) option so that you can see which actions are
being carried out.

Open the specification file myspec01 . spec with a text editor and see if you
can understand the contents.

Use the specification file to run the Static Security analysis:

inspxe-runsc -spec-file myspecOl.spec -r testl

The utility will report where the results have been stored. You should
copy this for use in the next step.

Open the results in the GUI version of Inspector XE:

inspxe-gui "<path to the results folder from step 7>"

Explore the results, and then close Inspector XE.

Using Static Security Analysis in a QA Environment | 149

Other Activities
If you want:
9. Correct all the errors reported.

10. Rerun the analysis.

Activity 5-2 Summary

You created a build specification file using injection. The injection method is fairly
automatic, requiring few or no changes to the build environment. However, you
do need to regenerate the build specification file each time the project changes (for
example, if a new source file is added).

Occasionally, the injection method may capture commands that are not required
to perform the analysis. When first running a Static Security analysis session, it
is prudent to examine the contents of the specification file to make sure it has the
expected contents. You can delete unwanted commands in the file using a text
editor.

USING STATIC SECURITY ANALYSIS IN A QA ENVIRONMENT

Some developers and managers use Static Security analysis for regression testing and metrics track-
ing, often in an automatic or a scripted environment.

Regression Testing

The main goal of regression testing is to track the status of a project to ensure that no new problems
are introduced when adding code changes to an application. The steps might be as follows:

1. Analyze the application (the base line).

2. Make some source changes/updates.

3. Reanalyze the application. This could be part of a nightly build.

4. Look for new problems that appear.
Steps 1 and 2 are carried out by the developer as part of his or her usual schedule; steps 3 and 4 are
for regression testing using the command-line version of Inspector XE, and could be carried out

by the developer or a quality assurance engineer. The output from step 3 (reanalyze, etc.) will look
similar to this when new errors have been found:

inspxe-cl -user-data-dir "QAl/My Inspector XE Results - main" -report problems \
-filter-include state=New

150 | CHAPTER5 WRITING SECURE CODE

The sample output:

Problem Pl: New Error: Double free

main.cpp(14): error #12294: memory pointed by "pGlobal" was already deallocated at
(file:main.cpp line:13)

X1: Deallocation site: main.cpp(13): Function main

X2: Deallocation site: main.cpp(1l4): Function main: Variable Name pGlobal

The command assumes that a set of results is already available from a previous analysis. The loca-
tion of the results will change with each analysis, and take the form rxxxsc, where xxx is a number
that is incremented each time the analysis is run. The —user-data-dir switch selects as input the
highest-numbered (latest) result.

You can detect new problems by filtering the report so that only problems in a “new” state are
reported. The results can then easily be mailed to the author of the most recent change.

Metrics Tracking

Project managers can use metrics to track a team’s progress in investigating the results of analysis.
For example, you can track the percentage of problems that have been investigated or fixed over a
period of time.

1. Developer analyzes code using the GUI, changing the states of the problems detected as he
investigates them (similar to Activity 5-1).

2. Developer makes source changes.
3. Developer repeats steps 1 and 2.

4. Ona less frequent basis than the developer, the project manager runs the command-line ver-
sion of Inspector XE to capture the status.

5. Over a period of time, the manager repeats step 4 and records the status. He might use the
ratio of problems investigated versus problems not investigated as a “% investigated” metric.

You can find the status of each problem with the following command:

inspxe-cl -r "DEV1/My Inspector XE Results - main/r00lsc" -report status

The results might look like this:

196 problem(s) found
2 Investigated

194 Not investigated
Breakdown by state:
1 Confirmed

1 Fixed

194 New

You can parse the results using either a Perl script or a shell script.

Activity 5-3 gives an example of how to use Static Security analysis in regression testing and metric
tracking.

Using Static Security Analysis in a QA Environment | 151

ACTIVITY 5-3: REGRESSION TESTING

In this activity you run a Static Security analysis session from the command line
and track the results. This activity will be of special interest to those who want to
incorporate Static Security analysis in their QA or regressions testing, where
semiautomatic, batch-driven testing is the norm.

Building the Program and Running an Analysis

If you haven’t already done so:

1. Do Activity 5-2.

2. Run the command-line version of Inspector, asking for a report on errors:
> Linux

inspxe-cl -r "testl/My Inspector/ XE/ Results/ - main/r000sc"
-report problems -filter-include state=New

> Windows

inspxe-cl -r "testl\My Inspector XE Results - main\r000sc"
-report problems -filter-include state=New

Changing the State Implicitly
3. Rerun the specification file:

inspxe-runsc -spec-file myspec03.spec -r test3

This should result in all the new files becoming “Not fixed.”
4. Look at the results again:
> Linux

inspxe-cl -r "testl/My Inspector/ XE/ Results/ - main/r00lsc"
-report problems -filter-include state=New

> Windows

inspxe-cl -r "testl\My Inspector XE Results - main\r00lsc"
-report problems -filter-include state=New

No new problems should be reported.

Adding a New Error
5. Edit the test.c file to introduce a new error:

void test (int num)
{

int 1i;

pBuff[0] = num/i;

} continues

152 | CHAPTERS5 WRITING SECURE CODE

continued

6. Clean the application and then run the specification file (Windows users use
nmake):

make clean
inspxe-runsc -spec-file myspec03.spec -r test3

7. Run the command-line version of Inspector, asking for a report on the prob-
lems detected:

inspxe-cl -r "testl/My Inspector XE Results - main/r002sc" \
-report problems -filter-include state=New

You will now see that there is a mixture of “new” problems and “Not
fixed” problems.

Activity 5-3 Summary

The analysis carried out was run from the command line, with the results being
filtered so that just new problems were reported. Each time a set of results is
loaded into Inspector XE, the problems are assigned a state. In the first analy-
sis, all the problems were reported as new. When the analysis was rerun and
reloaded into Inspector XE, the previously found problems had their state
changed to “Not fixed.” In regression testing, it is the “new” problems that are
of interest.

SOURCE CODE

Two files, main.c and test.c, are used in the hands-on activities. Each of the source files has
some silly and obvious mistakes. The Makefile in Listing 5-4 is used for Activity 5-2 and
Activity 5-3.

‘) LISTING 5-2: main.c

Available for #include <stdio.h>
dm:;‘?ggl:" #include <stdlib.h>
extern test();
char *pBuff;
int main()
{
int not_used;
printf ("Start of application\n");
pBuff = malloc(100);
test();
free (pBuff);
free (pBuff);

Source Code | 153

return (int)pBuff;

\) LISTING 5-3: test.c

Available for #include <stdlib.h>
dmggggrgn void test (int num);
extern int *pBuff;

void test (int num)

{
pBuff[0] = num;

\) LISTING 5-4: Makefile

Available for ## TODO: EDIT next set of lines according to 0OS

download on
Wrox.com L
WINDOWS OS specific vars.
CC=icl
DEL=del
0OBJ=0bj

LINUX SPECIFIC, uncomment these for LINUX

CC=icc
DEL=rm -Rf
OBJ=0

- DO NOT EDIT BELOW THIS LINE

CFLAGS =
LFLAGS =

OBJS = main.$(OBJ) test.$(OBJ)
TARGET = main
.c.$(OBJ) :

$(CC) -c $(CFLAGS) $<

S (TARGET) .exe:$ (0OBJS) Makefile

$(LD) $(LFLAGS) $(OBJS) $(LIBS)

clean:
(DEL) $(OBJS)
(DEL) $ (TARGET) .exe

Ur

code snippet ChapterS\main.c

code snippet ChapterS\test.c

code snippet Chapter5S\Makefile

154 | CHAPTER5 WRITING SECURE CODE

SUMMARY

Writing code that is secure and not vulnerable to attack is important. By performing a Static Security
analysis on your source code, you can identify and fix many of the potential problems. Many of the
vulnerabilities are caused by common programming errors or misuse of standard libraries. Using the
Intel compiler and Inspector XE together is an effective method of identifying these vulnerabilities.

Chapter 6, “Where to Parallelize,” introduces the first of a four-step process for making code
parallel. The chapter shows how to spot regions of your code that are suitable for making parallel.

Where to Parallelize

WHAT'’S IN THIS CHAPTER?

» Hotspot analysis using the Intel compiler
» Hotspot analysis using the auto-parallelizer

» Hotspot analysis using Amplifier XE

The purpose of parallelization is to improve the performance of an application. Performance
can be measured either by how much time a program takes to run or by how much work a
program can do per second. Within a program, it is the busy sections, or hotspots, that should
be made parallel. The more the hotspots contribute to the overall run time of the program, the
better the performance improvement you will obtain by parallelizing them.

Hotspot analysis is an important first step in the parallelism process. This chapter shows three
different ways to identify hotspots in your code using Parallel Studio XE. Without carrying
out Hotspot analysis, there is a danger that you will end up making little or no difference to
your program’s performance. The section “Hotspot Analysis Using the Auto-Parallelizer”
includes some tips on how to help the auto-parallelizer do its job better.

A NOTE FOR LINUX USERS

Most of the text of this chapter uses the Windows version of the compiler options.
You can use the option-mapping tool to find the equivalent Linux option. The fol-
lowing example finds the Linux equivalent of /0y-:

map_opts -tl -lc -opts /Oy-
Intel (R) Compiler option mapping tool

mapping Windows options to Linux for C++

-Oy-' Windows option maps to S

156 | CHAPTER6 WHERE TO PARALLELIZE

continued

--> '-fomit-frame-pointer-' option on Linux
--> '-fno-omit-frame-pointer' option on Linux
--> '-fp' option on Linux

The -t option sets the target OS and can be either 1 (or 1inux) or w (or windows).

The -1 option sets the language and can be either c or £ (or fortran). All the text
after the -opts option is treated as options that should be converted. The option-
mapping tool does not compile any code; it only prints the mapped options.

To use the option-mapping tool, make sure that the Intel compiler is in your path.

DIFFERENT WAYS OF PROFILING

You are already familiar with the four steps to parallelization (described in Chapter 3, “Parallel
Studio XE for the Impatient”): analyze, implement, debug, and tune. It’s now time to carry out the
first of those steps, analyzing the hotspots in your code.

This book describes four ways of conducting a Hotspot analysis, the first three of which are covered
in this chapter:

> Using the Intel compiler’s loop profiler and associated profile viewer

> Letting the Intel compiler’s auto-parallelizer help you find the hotspots

> Using Amplifier XE

> Performing a survey using Advisor (covered in Chapter 10, “Parallel Advisor Driven

Design”)

Each approach has its merits, and you will probably grow to like a particular one. What you
shouldn’t do is guess where the hotspots are! If you do, you could end up spending wasted effort
making code parallel with little or no return on your invested time.

LOOPS ARE NOT THE ONLY PLACE TO PARALLELIZE

All the hotspot examples in this chapter use loop parallelism. Most of the time,
you will find that you implement your parallelism effort at the loop level. However,
other programming constructs also lend themselves to being made parallel, such as
sequential code sections, recursive code, linked lists, and pipelines. These kinds of
examples are explored in Chapter 7, “Implementing Parallelism.”

In this chapter the focus is on loop parallelism, but the Hotspot analysis techniques
can be used for other programming patterns, as well.

The Example Application

| 157

THE EXAMPLE APPLICATION

The code in Listing 6-1 (at the end of this chapter) produces a black-and-white picture of a
Mandelbrot fractal. The picture is stored as a PPM file and can be viewed with any PPM viewer. If
you don’t have a viewer, try [rfanView (www.irfanview.com).

Listing 6-1 is split into the following files:

> main.cpp — The entry point to the program
» mandelbrot.cpp — Calculates the fractal
> mandelbrot.h— Contains a number of defines and prototypes
> ppm.cpp — Prints the fractal to a PPM file
> wtime.c — A utility for measuring the T =
T
application run time ESER X| X VOARQE=sEE v XA

When you run the example application, it displays
the following simple text on the screen:

calculating...
printing...

Time to calc :...3.707
Time to print :...7.548
Time (Total) :...11.25

Figure 6-1 shows the default.ppm file gener-

ated by running the application and viewed using
IrfanView.

Table 6-1 shows the results of running the pro-
gram built with the Intel compiler, using the
options /02 (optimize for speed) and

/Qipo (enable interprocedural optimization). The
results are the best of five runs, on an Intel Xeon
Workstation with an Intel Xeon CPU, X5680 @
3.33 GHz (two processors, supporting a total of
24 hardware threads).

TABLE 6-1: Time Taken to Run the Example Application

FUNCTION TIME

Calculating 3.433
Printing 2.206
Total 5.638

4096x4096x 24 BPP 1/1 15% 48.00 MB /48.00 MB 10/6/2011 / 17:48:10

FIGURE 6-1: The output of the Mandelbrot
application

http://www.irfanview.com

158 | CHAPTER6 WHERE TO PARALLELIZE

ACTIVITY 6-1: BUILDING THE EXAMPLE APPLICATION

In this activity you build and run the Mandelbrot program.
1. Copy the source code in Listing 6-1 and place each script in a separate file.
2. Open an Intel Parallel Studio XE command prompt.
3. Build the program with the following command:
icl /02 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 6-1.exe
4. Run the program you have just created and record the time taken.

6-1.exe

5. Examine the generated default.ppm file with a PPM viewer.

Instructions for Linux Users

All the activities in this chapter can be carried out on a Linux platform, but you’ll
need to use the Linux compiler icc instead of ic1. You will also need to find the
equivalent Linux compiler options by following the instructions in the section “A
Note for Linux Users.”

SOURCING THE COMPILER AND AMPLIFIER XE

To make the Parallel Studio XE tools available from a shell, source the following
scripts (or add the commands to your . /bash_profile):

source /opt/intel/composerxe/bin/compilervars.sh intel64
source /opt/intel/vtune_amplifier xe/amplxe-vars.sh
source /opt/intel/inspector_xe/inspxe-vars.sh

This assumes you’ve installed Parallel Studio XE in the default location.

VIEWING THE PPM FILE

Your Linux systems should have a default PPM viewer installed, such as gthumb,
eog, Or gwenview.

HOTSPOT ANALYSIS USING THE INTEL COMPILER

A well-kept secret is that the Intel compiler has its own profiler and viewer. These are different prod-
ucts from Amplifier XE and rely on the compiler instrumenting your code.

Hotspot Analysis Using the Intel Compiler | 159

With the profiler and viewer you can:
> Profile functions
> Profile loops
> View the output in a standalone viewer
>

Read the results from a text file

Profiling Steps
Figure 6-2 shows the steps for profiling an application:

1. Compile the source code using the /gprofile-functions and /Qprofile-loops options.
The compiler instruments each loop and each function with extra code that will track each
time they are used.

2. Run the program. This produces a text file for each profile (having the .dump extension) and
an XML file.

3. View the results with the command 1oopprofileviewer, passing it the name of the XML
file that has just been generated.

@ Compile to add instrumentation

. . . Run the
icl /Qprofile-functions @ program
/Qprofile-loops:all prog.c Tl
‘~~-.*’,’ S
Loexe
Function JUPPELAAENG
profile —I PP o
PP Prog.exe
Loop P
profile

BRREPNS @ View the
results

Loopprofileviewer <filename>

FIGURE 6-2: Using the Intel compiler to find the hotspots

If you do not want to use the profile viewer or the XML, you can read the results from the . dump
file. You can disable the generating of an XML file by setting the INTEL_LOOP_PROF_XMIL_DUMP
environment variable to zero. Table 6-2 lists the options for controlling the profiling.

160 | CHAPTER6 WHERE TO PARALLELIZE

TABLE 6-2: Profiling Options and Their Arguments

OPTION ARGUMENTS
/Qprofile-functions None
/Qprofile-loops:<arg> Inner, outer, all
/Qprofile-loops-report:<arg> 1or 2 (times, or times and counts)

INLINING: WHERE ARE MY SYMBOLS?

When doing a Hotspot analysis with interprocedural optimization (IPO) or inlin-
ing enabled, some functions end up being inlined and are not visible in the Hotspot
analysis. Here are three different strategies you can use to get better visibility:

> Don’t use IPO. You can disable it with the compiler option /Qipo-.
> Disable inlining using the /0b0 or /0b1 option.

> Use the /Qopt-report-phase ipo_inl option to get a list of inlined func-
tions so that you can manually reconstruct the call tree.

Note that the first two options improve visibility but may have a detrimental effect
on performance.

An Example Session
Taking the Mandelbrot program, which by now you should be familiar with, here is a description of
the profiling steps and the output generated. You can try this for yourself in Activity 6-2.
1. The program is compiled with optimization level /02:

icl /zi /02 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 ml.exe \
/Qprofile-functions /Qprofile-loops:all /Qprofile-loops-report:2

The /gprofile-functions option tells the compiler to profile the functions. The
/Qprofile-loops:all option tells the compiler to profile both inner and outer loops.
The /gprofile-loops-report option selects the level of detail the report should contain;
specifying 2 tells the compiler to report loop times and iteration counts.

2. Running the program gives the usual output:

C:\>ml.exe

calculating...
printing...

Time to calc :...3.707
Time to print :...7.548
Time (Total) :...11.25

When the program has finished running, the directory will contain the following files:

C:\dv\CH6>dir /b
default.ppm

Hotspot Analysis Using the Intel Compiler | 161

loop_prof_1317923290.xml
loop_prof_funcs_1317923290.dump
loop_prof_loops_1317923290.dump
ml.exe

ml.ilk

ml.pdb

main.cpp

main.obj

mandelbrot.cpp

mandelbrot.h

mandelbrot.obj

ppm. cpp

ppm. obj

vc90.pdb

The names of the XML and dump files are augmented with a time stamp.

3. To call the viewer, the name of the XML file is passed in:

loopprofileviewer loop_prof_1317923290.xml

(Linux users: loopprofileviewer.sh or loopprofileviewer.csh)

Figure 6-3 shows the results displayed in the viewer. The top set of results is the function
profile, and the bottom set is the loop profile. You can sort the results by clicking at the
tops of the columns. There is also a facility for filtering what is displayed by threshold. For
example, you can choose to display only the top 10 percent of hotspots.

= Loop Profile Viewer: loop_prof_1317923290 xml To e e
File View Filter Help
Function Profile
Function Function file:line Time % Time Sefftme % Self time Call count %Time in loops

void Mandelbrot{void) pp:29 11,035,283,527) 53.25 11,035,283,527 53.26 1 53.25| »
s std::basic_ostream<char. .. |:\Program Files (x38) Micrasa... 5,682,011,978 4150 7,938,323,3%4 aa.ﬁ 50,331,s4§| 1747
wirtual int std::basic_flebuf<c... |c:\Program Files (x38) Micraso.... 704,400,611 340 704,400,611 3.40 12,319 0.00]
dlass std::basic_ostream <char. .. |c:\Program Files (<88) Microso... 9,285,380,874 44,82 603,368,596 2.91] 50,331,648 0.00
void WriteMandlebrot(void) ppm.cop:& 9,672,101,218 46.68| 385,330,135 1.86 1] 179
virtual int std: basic_flebuf<c... |c:\Program Files (35)V 169,775 0.00 169,704 0.00 3 0.00] &
dass std: basic_ostream <char. . |c:\Program Fies (x85)\ 157,718 0.00 71,262 0.00 2| 0.00
virtual class std::ostreambuf_i... |c:\Program Files (x85) 86,456 0.00 50,989 0.00 2| 0.00
static unsigned _i ...[c:VProgram Files (x86)V 49,630 0.00 4,630 0.00 1 0.00
static unsigned __int64 stdz:ct... |c:\Program Files (x38) Micraso... 45,588 0.00 45,588 0.00 1 0.00
main main. cpp:3 20,715,568,315 100.00! 2,175, 0.00 1 000
dass std::basic_ostream <char... |c:\Program Files (x38) Micraso.... 8,922,530 0.04 25,260, 0.00 5 0.00
staticunsigned __int64 stdz:n... |c:\Program Files (x88) Micraso.... 24,552 0.00 24,552 0.00 1 0.00
dass std: basic_ostream <char. . |c:\Program Files (x85) Microso.... 2,510,019 0.01] 13,781 0.00 3 0.00
void std:zios_base::d ... [c:\Program Files (x8E)V 13,253| 0.00 13,253 0.00 2| 0.00
virtual __int64 std::basic_stre... |c:\Program Files (x85) 1 8,897,270 0.04 7,882 0.00 5 0.00
void * std::locale:: "scalar dele. . [C:\DVICHG\PPM.CPP:0 3,774 0.00 3,774 0.00 1 0.00
dass std::hasic_ostream<char. .. |c:\Program Files (x85) Microso.... 2,326,463 0.01] 3,395 0.00 3 0.00 ~
Loop Profie
Function Function file:line Loop filezine Time %Tme Selftme %Selftme Loopentries Mniterations Avgiterations Max iterations
void Mandelbrot{veid) [mandelbrot.cpp:29 [mandelbrot.cpp:20 10,724,132,671| 51.80| 10,724,132,671] 5L80] 16,777,216 3 53 501 &
void WriteMandlebroty... [ppm.cpp:6 lppm.cpp: 12 9,655,840,482) 46.60] 370,459,608 1.80) 4,006 4,098 4,098 4,088 |
void Mandelbrot{veid) _|mandebrot.cop:23 Imandelbrot.cpp:33 11,035,255,083 53.30] 311,122,312 150 4,09 4,098 4,098 4,098
dass std::basic_ostre... |c:\Program Files (x86)... |c:\Program Files (x86)... | 220,658,531 110 220,658,531 1.10 50.331,ﬁ4§‘ 1 1 1
dass std:tbasic_ostre... |c:\Program Files (x86)... |c:\Program Files (x85). 139,179,263 0.70] 139,179,263 0.70] 50,331,649 1 1 1
void VWriteMandlebrot... jppm.cpp:6 lppm.cop: 11 9,656,149,816| 46.60) 309,334 0.00 1] 4,09 4,09 4,09
void Mandelbrot{void) .pp:29 ppi32 11,035,283,090 53.30 28,007 0.00 1] 4,09 4,09 4,09
virtual __int64 stdz:ba... |c:\Program Files - |c:\Program Files (x86)... 8,896,085 0.00 5,698 0.00 5 1 5 14
virtual class std:zostre... |c:\Program Files \Program Files (x86)... 883 0.00 472 0.00 2 1 1 il
virtual ciass std:zostre. . |c:\Program Files :\Program Files (x36)... 417 0.00 417, 0.00 F] 4 4 4
static unsigned _int5... |c:\Program Files :\Program Files (x35)... 8 0.00 £ 0.00 1] 1 1 1
static unsigned __int6... [c:\Program Files :\Program Files (x86)... 78 0.00 7_§| 0.00 1] [[6
static unsigned __int6.... [c:\Program Files \Program Files (x86)... 63 0.00 63 0.00 1] 5 5 5
virtual dass std::ostre... |c:\Program Files rogram Files (x86). 0 0.00 0 0.00 0 0 0 0
virtual dass std:zostre... |c:\Program Files :\Program Files (x86)... 0 0.00 0 0.00 0 0 0 o|
wirtual dass std::ostre... c:Program Files (x85)... |c:\Program Files (x86)... 0 0.00 0 0.00 0 0 0 0
virtual class std::ostre... |c:\Program Files - |c:\Program Fies (x86)... 0 0.00 0 0.00 0 0 0 0
irtual class std:zostre... |c:\Program Files .. lc:\Program Files (x36)... 0 0.00 0 0.00 0 0 0 o~

FIGURE 6-3: The standalone loop-profiling viewer

960Y

960t

10S

SNOILVy3alLI
WNNIXVIN

960%

960°%
10S

SNOILVy3Ll
WNWIXVIN

960°%

960°'%

€9

SNOILVy3Ll
AOVIIAV

960'%

960°'%
(S

SNOILVyALl
I9VIIAV

960Y

960t

SNOILVy3aLl
WNWININ

9607
l
9607
€

SNOILVy3all
WNWININ

8¥9°LEE0S

9607

960t

oLz’ LLL 9L

S3IMLN3 dOO1
40 438NN

960°%
8¥9°1EE0S
960%
olZ'LLLOL

S3IILNI dOO1
40 43gANNN

0L0 090 0T8:ueaI3so
z¢:ddo
060 0L 0€ *joxqTopuURw
ocl 0oL'69 7T :ddo - qudd
6T :ddo
08'8¢ 0€'8¢C s joaqreopuew
JNIL 473S 4O JNIL 40
39OVIN3IDd3d 39VIN3Dd3d d0O01

00l

or'L

09¢

08'tS

JNIL 473S 40
3I9V.IN3Dd3d

>>103e19d0: :pP3s

JOoIqTopPURKH

10IqTOPURKSI TIM

J0IqToPUBKATRD

NOILONNAH

pajqesiq buiulju] yum Bulyoid doo 8y jo synsey -9 31avVL

oLl

0E’€ES

08'EV

08179

JNIL 40
I9VIN3Dd3d

z¢€:ddo - joxgropueu
0T8:Wweax3so
ZT1:ddo * qudd

6T :ddo - joxgropueu

d0o01

utew

>>J103eI9d0: :p3s

J0IqTOPUBKOI TAM

uteu

NOILONNH

pajqeu3 Buiulu) yum Buljyold doo sy Jo synsay :€-9 318Vl

Hotspot Analysis Using the Intel Compiler | 163

Table 6-3 shows the results of profiling the Mandelbrot program u1 . exe with inlining
enabled. The biggest hotspots are the three loops at the top of the table. Time refers to the
time the loop takes including any function calls. Self time refers to the time the loop takes
without including any called functions.

The first loop at mandelbrot.cpp:19 is reported as being in the main function, but this
is not true. The cause of the apparent error is that the function in which the loop resides
hasbeeninhned.Lkhugtheopdons/Qopt—report—phase ipo_inlznui/Qopt—report—
routine:main shows that the nested function calls to calcMandelbrot (), SetZ (), and
Mandelbrot () have all been inlined:

INLINE: ?Mandelbrot@@YAXXZ(2905) (isz = 71) (sz = 74 (31+43))

-> INLINE: ?SetZ@@YAXHHMME@Z (2906) (isz = 51) (sz = 62 (19+43))
-> INLINE: ?CalcMandelbrot@@YAMMM@Z (2907) (isz = 26) (sz = 36 (17+19))

Rebuilding the application with inlining disabled (using the /0b0 option) improves visibility
but has a huge impact on the writeMandelBrot () function. Instead of taking fewer than 4

seconds to complete, it now takes more than 40 seconds. Table 6-4 shows the loop analysis
with inlining disabled.

The next thing to decide is which loop should be made parallel. Two criteria are important:
» There should be a decent number of iterations of the loop.
> The individual loops should do a reasonable amount of work.

As shown in Table 6-4, two loops have a large number of iterations, ppmt . cpp:12 and
mandelbrot.cpp:32. Both have a self time of around 1 percent, which translates to about
a third of a second — this is plenty of work to consider making parallel. You can view the
exact value in the loopprofileviewer.

There are other considerations, such as loop dependencies, to take into account when it comes
to implementing the parallelism. At this stage, however, the only task is to identify the hotspots.

Overhead Introduced by Profiling

Using the profiling option of the compiler adds an overhead to the run time. Table 6-5 records the
time taken for each type of profiling. On the Mandelbrot program, with all the profiling options
enabled, the program runs twice as slow as when no profiling is carried out.

TABLE 6-5: Time Taken to Run the Example Application

TYPE OF PROFILING TIME SPEEDUP
No profiling 5.638 1
Functions 7.953 0.7
Functions and outer loops (time) 10.68 0.53
Functions and outer loops (time and count) 10.86 0.52
Functions and all loops (time) 10.98 0.51
Functions and all loops (time and count) 1.25 0.50

164 | CHAPTER6 WHERE TO PARALLELIZE

PROS AND CONS OF PROFILING WITH THE INTEL COMPILER

>

>

Pros
> Easy to use
Everything you need is available with the compiler, including a
standalone viewer
> Profiles loops as well as functions
Cons

Very basic functionality

Requires code to be instrumented, introducing a compile-time
and a runtime overhead, which can be significant

> No call tree, so you have to construct the call stack manually

No comparison facility

ACTIVITY 6-2: USING THE COMPILER’S LOOP PROFILER

In this activity you use the Intel compiler to instrument the Mandelbrot program
and then find the busiest hotspots using the 1oopprofileviewer.

1.
2.

3.

4.

Make sure you have carried out Activity 6-1.

Rebuild the application, adding the /zi option to generate debug information,
and the /Qprofile options so that the compiler instruments the code:

icl /Zi /02 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 6-2.exe \
/Qprofile-functions /Qprofile-loops:all /Qprofile-loops-report:?2

Run the program you have just created and record the time taken:
6-2.exe

Start the loopprofileviewer from the command line, and browse to the
XML file that has just been generated.

Dealing with the Lack of Symbol Visibility

One of the difficulties of profiling an optimized application is that the compiler will
inline some function calls.

5.
6.

Repeat steps 2 to 4, adding the option /0b0 to the end of the build options.
Repeat steps 2 to 4 again, but this time use the following options:

icl /Zi /02 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 6-2.exe \

/Qprofile-functions /Qprofile-loops:all \
/Qprofile-loops-report:2 /Qopt-report-phase ipo_inl \
/Qopt-report-routine:main

Hotspot Analysis Using the Auto-Parallelizer | 165

7. Look at the report the compiler prints to the screen. This should help you to
identify which functions have been inlined.

Instructions for Linux Users

Refer to the “Instructions for Linux Users” section in Activity 6-1 before carrying
out this activity.

HOTSPOT ANALYSIS USING THE AUTO-PARALLELIZER

The Intel compiler has an auto-parallelizer that can automatically add parallelism to loops. By
default, the auto-parallelizer is disabled, but you can enable it with the /gparallel option. Some
developers use this feature to give hints on where best to parallelize their code.

The auto-parallelizer does four things:

>

>
>
>

Finds loops that could be candidates for making parallel
Decides if there is a sufficient amount of work done to justify parallelization
Checks that no loop dependencies exist

Appropriately partitions any data between the parallelized code

Profiling Steps

Figure 6-4 shows the steps for profiling with the help of the auto-parallelizer:

1.

3.
4.

Compile the sources with the /gparallel option. To get superior results, it’s always best to
enable interprocedural optimization (/Qipo). The option /Qpar-report2 instructs the com-
piler to generate a parallelization report, listing which loops were made parallel.

Look at the results from the compiler and make a note of any lines that were successfully
parallelized.

Add your own parallel constructs to the identified loops.

Rebuild the application without the /gparallel option.

You might ask, “Why not just accept the results of the parallelizer?” The following are two of the
common reasons:

>

The auto-parallelizer (at the time of writing) uses OpenMP. Many developers prefer to use
a more composable parallelism, such as that provided with Cilk Plus or Threading Building
Blocks. In this context, “composability” refers to how well a parallel model can be mixed
with other models.

Some developers don’t like relying on automatic features. They prefer to have more control
over where and when threading is implemented.

166 | CHAPTER6 WHERE TO PARALLELIZE

Compile, enabling auto-
parallelism and reports

icl /02 /Qipo /Qparallel

/Qpar-report2 prog.c ...
Ttea
Results
Look at (20) remark: loop was auto-parallelized
the results (67) remark: loop was not parallelized:
existence of parallel dependence*
@ Add your own parallel code «~" * You can also look at the
where auto-vectorizer was loops that could not be
successful parallelized. It might be worth
fixing the problem reported.
20: cilk_for{int=0;i<100;i++} Adding the option/Qguide may
21:{ give you extra information.
22: / etc
45:} T

“A
@ Rebuild without auto-parallelism
icl /02 /Qipo /prog.c

FIGURE 6-4: Using the auto-parallelizer to find hotspots

An Example Session

Here’s an example session of finding hotspots with the auto-parallelizer. You can try this out for
yourself in Activity 6-3.

1.

2.

The serial version of the code is run so that you have some results to compare against:

C:\ >serial.exe

calculating...
printing...

Time to calc :...3.667
Time to print :...2.311
Time (Total) :...5.978

The Mandelbrot application is then built with auto-parallelism enabled (/gparaliel). The
optimization level must be at least /01 to engage the auto-parallelizer:

icl /zi /02 wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 ml.exe \
/Qparallel /Qipo /Qpar-report2

The compiler will report on every loop it finds, including the header files, so the screen will
get filled with messages. Here are the ones related to the source code:

main.cpp(14): (col.3) remark: LOOP WAS AUTO-PARALLELIZED
main.cpp(14): (col.3) remark: loop was not parallelized: insufficient inner loop
main.cpp(14):(col.3) remark: loop was not parallelized: existence of parallel dependence

ppm.cpp(11) : (col.3) remark: loop was not parallelized: existence of parallel dependence
ppm.cpp (12) : (col.5) remark: loop was not parallelized: existence of parallel dependence

Hotspot Analysis Using the Auto-Parallelizer | 167

As an experiment, running the parallelized code shows that the time taken to do the cal-
culations is much better than the 3.667 seconds that was previously achieved without
parallelism:

C:\>parallel.exe

calculating...
printing...
Time to calc :...0.596
Time to print :...2.272
Time (Total) :...2.868
The parallelized loop reported at line 14 of main.cpp is examined. The first thing you will

discover is that there is no loop, but rather a call to Mandelbrot ()!

main.cpp 12: std::cout << "calculating..." << std::endl;
main.cpp 13: double start = wtime();

main.cpp 14: Mandelbrot () ;

main.cpp 15: double mid = wtime();

The loop in question is in the Mandelbrot () function in Mandelbrot .cpp, but it has been
inlined by the use of the option /Qipo:

mandelbrot.cpp 27: void Mandelbrot ()
mandelbrot.cpp 28: {

mandelbrot.cpp 29: float xinc = (float)deltaX/ (maxI-1);
mandelbrot.cpp 30: float yinc = (float)deltaY/ (maxJ-1);
mandelbrot.cpp 31: for (int i=0; i<maxI; i++) {
mandelbrot.cpp 32: for (int j=0; j<maxJ; Jj++) {
mandelbrot.cpp 33: SetZ (i, j, xinc, yinc);
mandelbrot.cpp 34: }

mandelbrot.cpp 35: }

mandelbrot.cpp 36: }
To make the code parallel using the Cilk Plus method, replace the outer for (..) with
cilk_for ()and add the Cilk include file to the top of the Mandelbrot . cpp file:

mandelbrot.cpp 0: #include "mandelbrot.h"
mandelbrot.cpp 1l: #include <cilk/cilk.h>

mandelbrot.cpp 30: float yinc = (float)deltaY/ (maxJ-1);
mandelbrot.cpp 31: cilk for (int i=0; i<maxI; i++) {
mandelbrot.cpp 32: for (int j=0; j<maxJ; Jj++) {
Building and running the program gives a better performance improvement than with the

auto-parallelism:

icl /Zi /02 wtime.c main.cpp mandelbrot.cpp ppm.cpp -o myparallel.exe /Qipo

C:\>myparallel.exe

calculating...
printing...

Time to calc :...0.2475
Time to print :...2.178

Time (Total) :...2.426

168 | CHAPTER6 WHERE TO PARALLELIZE

Programming Guidelines for Auto-Parallelism

Although this chapter is about using the auto-parallelizer to find hotspots, this is a good time to
mention how you can help the auto-parallelizer to do its job better. For auto-parallelism to succeed,
you must follow certain guidelines:

> The loop must be countable at compile time. Try to use constants where possible.
There must be no data dependencies between loop iterations.

> Avoid placing structures in loop bodies (for example, function calls, pointers with ambiguous
indirection to globals, and so on).

> Don’t use the option /0d (or /Zi) on its own. Auto-parallelism will work only at optimiza-
tion levels /01 or greater.

> Use IPO (/gipo). IPO gets applied before auto-parallelism and can improve the chance of the
code being made parallel.

> Try to help the compiler by using the #pragma parallel option. (See the section “Using
#pragma parallel.”)

Additional Options

Table 6-6 lists other options that you can use. Refer to the compiler help for more information.

TABLE 6-6: Some Auto-Parallelizer Options

OPTION DESCRIPTION

Qpar-affinity Specifies thread affinity

Opar-num-threads Specifies the number of threads to use in a parallel region
Qpar-report Controls the diagnostic information reported by the auto-parallelizer
Qpar-runtime-control Generates code to perform runtime checks for loops that have sym-

bolic loop bounds

QOpar-schedule Specifies a scheduling algorithm or a tuning method for loop iterations
Qpar-threshold Sets a threshold for the auto-parallelization of loops
Qparallel Tells the auto-parallelizer to generate multithreaded code for loops

that can be safely executed in parallel

Qparallel-source-info Enables or disables source location emission when OpenMP or auto-
parallelization code is generated

Opar-adjust-stack Tells the compiler to generate code to adjust the stack size for a fiber-
based main thread

Hotspot Analysis Using the Auto-Parallelizer | 169

Helping the Compiler to Auto-Parallelize

To ensure correct code generation, the compiler treats any assumed dependencies as if they were
proven dependencies, which prevents any auto-parallelization. The compiler will always assume a
dependency where it cannot prove that it is not a dependency. However, if the programmer is certain
that a loop can be safely auto-parallelized and any dependencies can be ignored, the compiler can be
informed of this in several ways.

Using #pragma parallel

Used immediately before a loop, the #pragma parallel option instructs the compiler to ignore any
assumed loop dependencies that would prevent correct auto-parallelization. It complements, but
does not replace, the fully automatic approach; the loop will still not be parallelized if the compiler
can prove that any dependencies exist.

Any loop being parallelized must conform to the for-loop style of an OpenMP work-sharing con-
struct. The pragma can be used by itself or in conjunction with a selection of clauses, such as pri-
vate, which acts in a similar way to the clauses used in the OpenMP method.

Currently, the clauses include the following:

>

always [assert], which overrides the compiler heuristics that determine whether parallel-
izing a loop would increase performance. Using this clause forces the compiler to parallelize
if it can, even if it considers that doing so might not improve performance. Adding assert
causes the compiler to generate an error if it considers that the loop cannot be vectorized.

private(varl[:exprl][, var2[:expr2]] ..), where var is a scalar or array vari-
able. When parallelizing a loop, private copies of each variable are created for each thread.
expr is an optional expression used for array or pointer variables, which evaluates to an
integer number giving the number of array elements. If expr is absent, the rules are the same
as those used in the OpenMP method, and all the array elements are privatized. If expr is
present, only that number of elements of the array are privatized. Multiple private clauses
are merged as a union.

lastprivate(varl[:exprl][, var2[:expr2] 1 ..),“&wrevarznuiexprarethe
same as for private. Private copies of each variable are used within each thread created by
the parallelization, as in the private clause; however, the values of the copies within the
final iteration of the loop are copied back into the variables when the parallel region is left.

Following is an example of using #pragma parallel:

[el

1) #pragma parallel private(b)
2) for(i=0; 1<MAXIMUS; i++)
3) {

4) if(ali] > 0)

5) {

6) b =alil;

7) ali] = 1.0/ali];
8)

9)

0)

170 | CHAPTER6 WHERE TO PARALLELIZE

This results in the loop being both vectorized and parallelized, with the following messages:

C:\Test.cpp(42): (col. 4) remark: LOOP WAS AUTO-PARALLELIZED.
C:\Test.cpp(42): (col. 4) remark: LOOP WAS VECTORIZED.

Using #pragma noparallel

You can use the #pragma noparallel option immediately before a loop to stop it from being
auto-parallelized.

Note that both #pragma parallel and #pragma noparallel are ignored unless the /Qparallel
option is set.

PROS AND CONS OF PROFILING WITH THE AUTO-PARALLELIZER

> Pros
Easy to carry out
Quickly helps you spot the right places to parallelize
Auto-parallelized loop can be compared with your own manu-
ally implemented parallelism

> Cons

> (Can easily be confounded by nontrivial code

Difficult to identify loops when IPO is enabled

ACTIVITY 6-3: USING THE AUTO-PARALLELIZER TO HELP FIND HOTSPOTS

In this activity you enable the Intel compiler’s auto-parallelizer and use the location
of the successfully parallelized loops to add your own parallel code.

1. Make sure you have carried out Activity 6-1. You will need the results of
running the application to compare with the results in this activity.

2. Rebuild the application, adding the /gparallel option to enable auto-
parallelism, and the /gpar-report2 option to tell the compiler to generate a
report:

icl /Zi /02 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -o 6-3.exe \
/Qparallel /Qpar-report2

3. Examine the messages from the compiler. You should find that one of the
loops has been auto-parallelized.

4. Run 6-3.exe. Calculate the speedup compared to 6-1 .exe, which you created
in Activity 6-1. The application should be faster.

Hotspot Analysis with Amplifier XE | 171

You can calculate the speedup using the following formula. New time is
the time taken by 6-3.exe, and original time is the time taken by
6-1.exe.

speedup = new time / original time

5. Addacilk_for and an include to the loop that the auto-parallelizer has
identified:

#include <cilk/cilk.h>

cilk_for (...etc) {

6. Rebuild the application using the following options. Note that auto-parallelism
is no longer enabled.

icl /zi /02 /Qipo wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 6-3b.exe

7. Run the program and calculate the speedup.

Instructions for Linux Users

Refer to the “Instructions for Linux Users” section in Activity 6-1 before carrying
out this activity.

HOTSPOT ANALYSIS WITH AMPLIFIER XE

The Hotspot analysis used in Amplifier XE helps you to identify the most time-consuming source
code. Hotspot analysis also collects stack and call tree information. The analysis can be used to
launch an application/process or attach to a running program/process.

Conducting a Default Analysis
The steps for conducting a Hotspot analysis with Amplifier XE were described in Chapter 3.

To get the best view of the application in Amplifier XE, it is best to disable inlining by using the
/0b0 or /0bl compiler options. The /0b0 option disables all inlining, whereas the/ob1 inlines only
code that has been marked with the keywords inline, __inline_ ,__ forceinline, _inline, or
with a member function defined within a class declaration. (See online help for more information
on these keywords.) Figure 6-5 shows the summary page of two Hotspot analysis sessions: one
with inlining enabled (a) and one without (b). You can see that when inlining is disabled, the symbol
names of the different functions become available.

172 | CHAPTER6 WHERE TO PARALLELIZE

() Elapsed Time: 5.762s () Elapsed Time: 5.703s
Total Thread Count: 1 Total Thread Count: 1
CPU Time: 5.5455 CPU Time: 5.5245
Paused Time: Os Paused Time: Os
(#) Top Hotspots (#) Top Hotspots
This section lists the mest active functions in your This section lists the most active functions in your
application performance. application performance.
Function CPU Time Function CPU Time
main 3334s CalcMandelbrot 3.014s
‘WriteMandlebrot 12355 WriteMandlebrot 1334s
write_nolock 0.588s getptd_noexit 0.416s
getptd_noexit 0.208s SetZ 0.356s
getptd 0.083s write_nolock 0.295s
(a) With inlining (b) Without inlining

FIGURE 6-5: Analysis summary with and without inlining

Finding the Right Loop to Parallelize

At the time of writing, Amplifier XE does not have a loop profiler, so you have to manually traverse
up the call stack of a hotspot to find the best place to add parallelism. Figures 6-6 through 6-9 show
screenshots of doing such a traversal. Clicking on the hotspot in Figure 6-6 displays the source view
of the hotspot (Figure 6-7).

Grouping: [Funcﬁen { Call Stack v] CPU time
Function £ Cat-Steck— TPU Time~ TGt waction (Full) 1stack(s) selected. Viewing | 1of1 [
Iq 7 CalcMandelbrot 30145 -4b.exe | CalcMandelbrot B AR IR e T
ebanglebrot ‘ exe WiiteMandicbro T 100.0% (3.0145 of 20145)
[getptd_noexit getptd_noexit 6-4b.exe!CalcMandelbrot - mandelbrot.cpp
[#5etZ Gdbexe SetZ 6-db.exelSet? - mandelbrot.cpp:42
#write_nolock 6-4b.exe write_nolock 6-4b.exe!Mandelbrot - mandelbrot.cpp:33
[getptd | 6-db.exe getptd 6-4b.exe!main - main.cpp:15
[#_uncaught_exception | 0.031s 6-4b.exe | _uncaught_exception(fJ 6-4b.exe!_tmainCRTStartup - crt.c:266
[Mtxunlock | 00165 6-4b.exe Mbwnlock kernel32.dll!BaseThreadInitThunk+0:xdf56¢ - ..,
[# close_nolock 0.014s 6-4b.exe | close_nolock ntdildll!RtlUserThreadStart+0:33280 - [Unkn ...
Selected 1 row(s):| 30145
™ AN n | r
FIGURE 6-6: Bottom-up view of the hotspots
@ | CPU time
Line Source I CPU Time = 1 stack(s) selected. Viewing <1 1of1 [»
12 float temp = zr * zi; | 558.941ms [- Current stack is 100.0% of selection
13 float zr2 = zr * zr: EST.SZﬁms. | 100.0% (3.014s of 3.014s)
14 float zi2 = zi * zi; | —M
= = z; z; =2 t 5-4b.exelCalcMandelbrot - mandelbrot.cpp
ZLiC ZEL L LELE ha s 5-th.exelSetZ - mandelbrot.cpp:42
16 ot como s como s 6-4b.exe!Mandelbrot - mandelbrot.cpp:33
17 if ({zi2 + zr2 > maxThreshold) | dﬁS.dSSms- 6-4b.exelmain - main.cpp:15
18 return (float)256*itercount/maxit: | 6-4b.exe! tmainCRTStartup - crtd.c:266
19| if (itercount > maxIteration) | 33479ms [l kerneB32.dll!BaseThreadinitThunkc+ 0xd f56c - ..
20 return (float)l.0; ntdIldllI!RtlUserThreadStart+0:33280 - [Unkn ..,

Selected 1 row(: | 681938ms -
o [v« ’

FIGURE 6-7: Source code view of the hotspots

Hotspot Analysis with Amplifier XE | 173

By double-clicking the stack pane on the right (see Figures 6-7 and 6-8), it is possible to traverse up
the call stack until an appropriate place to add the parallelism is found, as in Figure 6-9.

[LSource][Assembly || I \ » 4D 9| B CPU time
Line Source CPU Time s 1 stack(s) selected. Viewing <1 1of1 [+
5 Current stack is 100.0% of selection

36 [100.0% (3.014s of 3.0145) |

39 { T I oretMendsll delk "

40 zr[i] [j] = (float) -1.0*deltaX/2.0 + xin 61.602ms| 6-4b.exelmain - main.cpp:5

41 zi[i] []] = (float) 1.0*delta¥/2.0 - ying ?8.2?9ms| 6-4b.exe!_tmainCRTStartup - crtd.c:266
_ kernel32.dll!BaseThreadInit Thunk+ 0 f56c - ...
| ‘l ntdll.dIl'RtlUserThreadStart+0:33280 - [Unkn ...

Selected 1 row(s): 216520ms -
| |4 b

FIGURE 6-8: Source code view, one stack up

30

float xinc = (float)deltaX/(maxI-1);
i float)delta¥/ (maxd-1) ;
iH) |

m. |

[Souce.][Assembly || I | @Dl B CPU time
Line Source CPU Time S 1 stack(s) selected. Viewing 4 1of1 [+
29 Current stack is 100.0% of selection

[100.0% (3.0145 of 3.0145) |

e
6-4b.exe! CalcMandelbrot - mandelbrot.cpp
6-4b, pesid
6-4b.exe!Mandelbrot - mandelbrot.cpp:33

1Sk,

6-4b.exe!_tmainCRTStartup - crt.c:.266
kernel32.dll!BaseThreadlnitThunk+0:d f36¢ - ...

ntdll.dIl!RtIUserThreadStart+033280 - [Unkn ...

Selected i-row(sj: 1 —
] m_| v« b

FIGURE 6-9: Source code view, two stacks up

ACTIVITY 6-4: CONDUCTING A HOTSPOT ANALYSIS WITH AMPLIFIER XE

In this activity you carry out a Hotspot analysis on the Mandelbrot program with
Amplifier XE.

1.
2.

Make sure you have carried out Activity 6-1.

Rebuild the application, adding the /zi flag to generate debug information:

icl /02 /Qipo /Zi wtime.c main.cpp mandelbrot.cpp ppm.cpp -0 6-4.exe

3.

Start an Amplifier XE GUI from the command line:

amplxe-gui continues

174 | CHAPTER6 WHERE TO PARALLELIZE

continued

4. Create a new project named Chapter 6.
a. Select File & New = Project.

b. In the Project Properties dialog, make sure the Application Field
points to your Mandelbrot application.

5. Carry out a Hotspot analysis by selecting File & New = Hotspot Analysis.

Dealing with the Lack of Symbol Visibility

You’ve already seen in the previous activities that functions disappear because of
compiler inlining. Adding the /0b1 option to the build improves visibility.

6. Repeat steps 2 to 5, using the following compiler options. You should notice
an improvement in what you see.

icl /02 /Qipo /Zi /Obl wtime.c main.cpp mandelbrot.cpp ppm.cpp \
-0 6-4.exe

Traversing Up the Call Stack

7. From the bottom-up view, double-click the largest hotspot. The source view

should be displayed.

8. In the stack pane (on the right of the source view), manually trace back up the
call stack (by double-clicking the call stack entries) until you find code that has
a loop in it.

You should be able to find the best place to add parallelism by doing
this manual stack traversal.

Instructions for Linux Users

Refer to the section “Instructions for Linux Users” in Activity 6-1.

Large or Long-Running Applications

In very large or long-running projects, the amount of data collected may grow to an unmanageable
size. The postprocessing of the collected data (finalization) and opening and viewing very large data
sets can become very sluggish and almost impractical to use.

Reducing the Size of Data Collected
Some strategies for reducing the amount of data collected include:
> Adjust the duration time estimate. Amplifier XE reduces the amount of samples it collects on

very long runs. You can change the duration time estimate from “under 1 minute” to “over 3
hours,” with some intermediate values, as well.

Hotspot Analysis with Amplifier XE | 175

> Automatically stop collection after a short period of time (for example, 30 seconds).

> Modify the data-collection limit. The default is 100MB.
» Use the Pause and Resume APIs to limit when data is collected.

The first three items in the list are all configurable from the Project Properties dialog
(see Figure 6-10), which you can access from the Amplifier XE menu File &> Properties.

msve - Project Properties @

Target | Search Directories
Targettype |Launch Application -

Launch Application

Specify and configure application you want to analyze. Press F1 for more details,

Auto

[Automatically stop collection after (sec): 10
(@) Store result in the project directory: ChdviCHB\msvc\ My Amplifier XE Results - msvc

() Store result in (and create link file to) another directory
CAd\CHB\msvc\My Amplifier XE Results - msve Browse...
Result location:

CAdh\CHEVmswvc\My Amplifier XE Results - msvc\r@ @ @{at}

#) Advanced
Analyze child processes

Per-process configuration

Duration time estimate: Between 1 and 15 minutes -

[] Allow multiple runs

m

[T Analyze system-wide

Collection data limit, MB: 100 =
Slow frames threshold, frames/s: 40
Fast frames threshold, frames/s: 100
CPU mask:

FIGURE 6-10: The Project Properties page

Using the Pause and Resume APlIs

You can insert calls to the Pause and Resume APIs in your application to pause and resume data col-
lection, respectively. By doing this you can reduce the amount of data that is collected. These APIs
have to be used with caution, especially when analyzing threaded code, because important events
may be missed, leading to a meaningless analysis.

The following code snippet shows how to use __itt_pause() and __itt_resume() functions in the
Mandelbrot program:

#include "ittnotify.h"

176 | CHAPTER6 WHERE TO PARALLELIZE

int main()

std::cout << "calculating..." << std::endl;
double start = wtime();
__itt_resume();
Mandelbrot () ;
double mid = wtime();

std::cout << "printing..." << std::endl;
WriteMandlebrot () ;

__itt_pause():;

double end = wtime();

}

Once this code is inserted, any Hotspot analysis should be started by clicking the Start Paused but-
ton rather than the Start button.

To use the APIs, include the ittnotify.h header file. If you get an unresolved symbol at link time,
you may have to add the 1ibittnotify.1ib library, which you can find in the Amplifier XE\1ib32
or Amplifier XE\1libé64 folders. Use the lib64 version if you are building a 64-bit application; other-
wise, use the lib32 version.

Table 6-7 shows the difference in the size of data that is collected when doing a normal Hotspot
analysis versus doing one with pauses and waits. As you can see, there is a significant saving in the
amount of data collected.

TABLE 6-7: Amount of Data Collected when Profiling with and without
the Pause and Resume APIs

METHOD DATA SIZE
Without pause/resume 253.9k
With pause/resume 172.0k

PROS AND CONS OF PROFILING WITH AMPLIFIER XE

> Pros

Very small profiling overhead

Easy to traverse the call stack

No special build needed, other than providing debug symbols

Multiple options for collection and viewing

Y VYV VY Y Y

Results can be compared

Source Code | 177

> Cons

> No loop profiler

> No call graph (but see the comments on manual call stack tra-
versing in the section “Finding the Right Loop to Parallelize”)

SOURCE CODE

The source code in Listing 6-1 consists of several files and is used in the hands-on activities.

J

Available for
download on
Wrox.com

LISTING 6-1: main.cpp

main.cpp

#include <fstream>
#include <iostream>
#include <iomanip>
#include "mandelbrot.h"
float zr[maxI] [maxJ],zi[maxI] [maxJ];
float zcolor[maxI] [maxJ];

extern "C" double wtime();

int main()

{
std::cout << "calculating..
double start = wtime();
Mandelbrot () ;
double mid = wtime() ;

" << std::endl;

std::cout << "printing..." << std::endl;
WriteMandlebrot () ;

double end = wtime();

std::cout << "Time to calc
<< mid-start <<std::endl;

std::cout << "Time to print

std::cout << "Time (Total)

.."<< std::setprecision(4)

mandelbrot.cpp

#include "mandelbrot.h"
float CalcMandelbrot (float r,float i)
{
float zi
float zr

I
o o
o o

." << end-mid <<std::endl;
." << end-start <<std::endl;

code snippet Chapter6\main.cpp

continues

178 | CHAPTER6 WHERE TO PARALLELIZE

LISTING 6-1 (continued)

int itercount = 0;

float maxit = (float)maxIteration;

while (1) {

itercount++;

float temp = zr * zi;

float zr2 = zr * zr;

float zi2 = zi * zi;

zr = zr2 - z1i2 + r;

zi = temp + temp + 1i;

if (zi2 + zr2 > maxThreshold)

return (float)256*itercount/maxit;
if (itercount > maxIteration)
return (float)l1l.0;

}

return 1;
}
void SetZ(int i, int j, float xinc, float yinc)
{

zr[i][Jj] = (float) -1.0*deltaX/2.0 + xinc * 1i;

zi[i]1[J] = (float) 1.0*deltaY/2.0 - yinc * j;

zcolor[i] [j] = CalcMandelbrot(zr[i]l[j], zi[i]1[3j]
}

void Mandelbrot ()

{
flo
flo
for
£

at xinc = (float)deltaX/ (maxI-1);

at yinc = (float)deltaY/ (maxJ-1);
(int 1=0; i<maxI; 1++) {

or (int j=0; j<maxJ; j++) {

SetZ (i, j, xinc, yinc);

mandelbrot.h

#ifndef _ MANDLE H

#defi
const
const
const
const
const
const
const

ne _ MANDLE H__
int factor = 8;
int maxThreshold = 96;
int maxIteration = 500;
int maxI = 1024 * factor;
int maxJ = 1024 * factor;
float deltaX = 4.0;
float deltay = 4.0;

)

/1.0001;

code snippet Chapter6\mandelbrot.cpp

Source Code | 179

extern float zr[maxI][maxJ],zi[maxI] [maxJ];
extern float zcolor[maxI][maxJ];

void Mandelbrot ();
void WriteMandlebrot () ;
#endif

code snippet Chapter6\mandelbrot.h

ppm.cpp

#include <fstream>
#include "mandelbrot.h"

// write to a PPM file.
void WriteMandlebrot ()
{
std::ofstream ppm_file("default.ppm") ;
ppm_file << "P6 " << maxI << " " << maxJ << " 255" << std::endl;

unsigned char red, green, blue; // BLUE - did minimal work
for (int 1=0; i<maxI; i++) {
for (int j=0; j<maxJ; j++) {
float color = (float)zcolor[i][j] ;
float temp = color;
if (color >= .99999)

{
red = 255 ; green = 255; blue = 255;
}
else
{
red = 0 ; green = 0; blue = 0;
}

// write to PPM file
ppm_file << red << green << blue;

code snippet Chapter6\ppm.cpp

wtime.c

#ifdef _WIN32
#include <windows.h>
double wtime()
{
LARGE_INTEGER ticks;
LARGE_INTEGER frequency;
QueryPerformanceCounter (&ticks) ;
QueryPerformanceFrequency (&frequency) ;
return (double) (ticks.QuadPart/ (double)frequency.QuadPart) ;

continues

180 | CHAPTER6 WHERE TO PARALLELIZE

LISTING 6-1 (continued)

#else
#include <sys/time.h>
#include <sys/resource.h>
double wtime ()
{
struct timeval time;
struct timezone zone;
gettimeofday (&time, &zone) ;
return time.tv_sec + time.tv_usec*le-6;
}
#endif

code snippet Chapter6\wtime.c

SUMMARY

This chapter described several methods of finding hotspots within an application. In practice you
would probably want to use a combination of the methods to get best results. The identification of
the hotspots is essential if you want to avoid wasted effort in attempting parallelism of any existing
code.

It is very easy to apply parallelism at every opportunity you see within the code — for example, at
every loop. However, many of these loops may not be invoked often enough nor do enough work, to
make the effort of their parallelism worthwhile. Some loops that are tempting to parallelize may not
really contribute much to the overall run time.

Finding the parallelization opportunities within your code is the goal of Hotspot analysis. It is an
essential first step in adding parallelism to your code. Without this knowledge of your program, you
are in danger of making code parallel without seeing any improvement in performance.

Having found the hotspots, the next steps are to implement the parallelism, check for errors, and,
finally, tune the threaded application. The next chapter shows how to use different programming
models to implement parallelism.

Implementing Parallelism

WHAT’S IN THIS CHAPTER?

Y Y VY Y

>

Parallelizing loops

Parallelizing sections and functions
Parallelizing recursive functions
Parallelizing pipelined applications

Parallelizing linked lists

There are a number of different ways to add parallelism to a program. Figure 7-1 shows how
you can use Intel Parallel Studio XE to make your code parallel by using:

>

Libraries, such as the Math Kernel Library
(MKL) and the Integrated Performance
Primitives (IPP) library.

Automatic parallelism, asking the com-
piler to automatically parallelize your
code using the /Qparallel option; you
can also use the guided auto-paralleliza-
tion of the compiler (enabled with the
/Qguide option) to help tune the
auto-parallelism. You can find more
about auto-parallelism in Chapter 6,
“Where to Parallelize.”

Programmatic parallelism, adding paral-

lel constructs to your code using Cilk Plus,
OpenMP, Threading Building Blocks (TBB),
or native threads (POSIX or WIN32).

MKL

Libraries

Use/Qparallel
and/Qguide
options

Automatically

’

! OpenMP :
Programmatically '
Native threads

Covered in this chapter

7

FIGURE 7-1: Adding parallelism using
Intel Parallel Studio XE

182 | CHAPTER7 IMPLEMENTING PARALLELISM

This chapter shows how to add parallelism to five of the more common serial code patterns: loops,
sequential code, recursive functions, pipelined applications, and linked lists. For each pattern, exam-
ples are shown using Cilk Plus, OpenMP, and TBB. The MKL, IPP, and native threading examples
are not discussed.

Note that the chapter is not a full treatise for each of these parallel languages. The focus here is on is
how you can quickly and easily introduce parallelism into your code.

You already know from reading Chapter 1, “Parallelism Today,” that adding
parallelism to legacy or preexisting code is one of the biggest challenges that the
software industry faces. In line with this challenge, the examples in this chapter
assume you have already written some code and want to make it parallel. What
isn’t covered is how to design a new parallel program from scratch.

C OR C++, THAT IS THE QUESTION

One implementation detail can have a big impact on which parallel construct you decide to use—C
or C++.

Cilk Plus and TBB are very C++ friendly, whereas OpenMP is not. Table 7-1 gives some suggestions
on which parallel models to use depending on how C++-like your code is.

TABLE 7-1: Parallel Model Suggestions

SOURCE CHARACTERISTIC CILK PLUS TBB OPENMP
0@ Y N Y
. cpp, but code is really C Y Y Y
. cpp files, using C++ features Y Y N

Other factors that might influence which mode you choose include:

> When using Cilk Plus in .c files, Cilk reducers are awkward to use, requiring use of many
C macros.

> Multiple OpenMP programs running on the same system do not always share the threading
resources very well, and can lead to oversubscription.

> TBB is heavily C++ oriented. Use TBB only if you are comfortable with concepts such as
classes and templates and operator overloading. Having said that, you will easily understand
most of the TBB examples in this chapter even if you are uncomfortable with C++.

The Beauty of Lambda Functions | 183

TAKING A SIMPLE APPROACH

All three of the programming models used in this chapter — Cilk Plus, OpenMP, and TBB — support
different levels of complexity and abstraction. The intention of this chapter is to keep to a higher
level of abstraction as possible by:

> Thinking in terms of tasks, not threads. All the programming examples concentrate on what
work needs to be done without being concerned about threads. Emphasis is on work-sharing
and relying on automatic scheduling. The question “How many threads do I have?” is not asked.

> Using lambda functions rather than body objects (TBB specific). When TBB was first
released, the snippets of parallel code had to be embedded within new C++ classes, which in
turn were used to create body objects. Since the introduction of the C++11 standard, you can
now use lambda functions instead for many of the TBB templates. This reduces the amount
of boilerplate code you have to write, leading to much simpler code.

> Keeping it simple. There is no attempt made to describe solutions that are complex. All the exam-
ples use high-level abstractions, avoiding anything that is intricate. If your parallel programming
requires that you have a fine level of control, or if you need to use a different kind of scheduling,
the higher-level parallel abstractions used in the examples may not suit your requirements.

> The code examples are ANSI C-like rather than fully blown C++. If you are passionate about
writing good C++ programs, this will no doubt annoy you. The reason for doing this is so
that the code can be accessible to non-C++ programmers. The code examples here are fairly
easy to classify (as in writing C++).

This chapter is not intended to teach you everything about Cilk Plus, OpenMP, or TBB. You can
read more on how to deal with data races in Chapter 8, “Checking for Errors,” and more on sched-
uling and tuning in Chapter 9, “Tuning Parallel Applications.”

THE BEAUTY OF LAMBDA FUNCTIONS

Lambda functions are included in the C++11 standard (formerly known as C++0x) and provide a
means of declaring the body of a function in-place. They are sometimes referred to as anonymous
functions or functors.

Figure 7-2 shows the syntax of a lambda function. Within the body of the function you can refer to
external variables; the capture_mode options define how these variables get their values.

[capture_mode] (formal_parameters) -> return_type {body}

N J\. J\. J
Y Y Y

Can omit if there are
no parameters and
return type is implicit

[=] = by value
[] = no capture

type is void or code

[&] = by reference
is “return expr;”

‘ Can omit if return

SOURCE: INTEL

FIGURE 7-2: The syntax of the lambda functions

184 | CHAPTER7 IMPLEMENTING PARALLELISM

Listing 7-1 shows an example of using a lambda function with the Standard Template Library (STL)
for_each method. The program examines each character of the Message string and counts how
many spaces there are.

\) LISTING 7-1: Using a lambda function

Available for 1: #include <iostream>
dm:kgglﬁ" 2: #include <algorithm>
3: using namespace std;
4: int main()
5: {
6: int Spaces = 0;
7 char Message[]="The Beauty of Lambda!";
8:
9: for_each(// use STL for_each
10: Message, // beginning of string
11: Message + sizeof (Message), // end of string
12:
13: // The lambda function
14: [&Spaces] (char c) { if (¢ == ' ') Spaces++;}
15:) // end of for_each
16:
17: cout "'"<< Message << "'"<< " has " << Spaces <<" spaces <<endl;
18: }

code snippet Chapter7\7-1.cpp

Line 14 contains the lambda function, which takes the ¢ parameter and checks to see if it is a
space. If so, the function increments the spaces variable, which has been explicitly captured in the
lambda function by reference. You don’t have to capture variables explicitly; you can rely on the
compiler to capture them for you automatically. For example, you could use the following code in
place of line 14:

[&] (char c) { if (c == ' ') Spaces++;}

The beauty of lambda function in the context of parallelism is that you can wrap existing code
in a lambda function and then use the wrapped function in your parallelism strategy. This leads
to fewer code changes when parallelizing your code and can simplify the use of some parallel
constructs.

Be sure to enable the lambda support in the compiler! In the Intel compiler, use
the /Qstd=c++0x option.

Parallelizing Loops | 185

PARALLELIZING LOOPS

Loops provide one of the most natural places to add parallelism. The following two requirements
need to be satisfied before a loop can be usefully parallelized:

> There must be a sufficient amount of work being done in each loop. Any loop being paral-
lelized should be a hotspot. See Chapter 6, “Where to Parallelize,” to find out more about
hotspots in your code.

> Each loop iteration must be independent of any other. For example, iteration n must not

depend on iteration n-1 to be able to perform correctly.

The order in which the loops are executed is not important.

This chapter considers two loop constructs, the for loop and the while loop, along with two vari-
ants, the nested for loop and the reduction for loop.

The for Loop

You can use the Cilk Plus cilk_for, the OpenMP #pragma omp for, and the TBB parallel for
to parallelize a C/C++ for loop.

The Cilk Plus cilk_for Loop

Cilk Plus has its own equivalent of the serial for loop. By replacing a standard for loop with the
cilk_for loop, the iterations within the loop are shared between the available workers. The follow-
ing code shows a simple cilk_for loop:

#include <cilk/cilk.h>
cilk_for (int 1=0; 1 < 100;i++)
{

work (1) ;
}

Here’s an example of a cilk_for loop that uses STL vectors and iterators:

cilk_for (T::iterator i(vec.begin()); i != vec.end(); ++1)
{

Work (1) ;
}

A cilk_for loop must follow these guidelines:
> The loop variable can be declared in advance in C, but not in C++.
> There must be only one loop control variable.

> The loop control must not be modified in the body of the loop.

186

CHAPTER 7 IMPLEMENTING PARALLELISM

Termination conditions should not be changed once the loop has started.
No break or return statement is allowed in the loop body.
You can use a goto as long as the target is within the loop body.

Loops cannot wrap around.

Y Y Y VY Y

Infinite loops are not allowed.

Load balancing is carried out automatically by the Cilk Plus run time. The cilk_for loop uses a
divide-and-conquer strategy. The loops are repeatedly divided into chunks, until a minimum size,
known as the grain size, is reached. Each chunk is then shared among the available workers.

You can influence the performance of the loop by changing the grain size and the number of

workers.

Grain Size

The grain size is used to control the maximum number of loops each chunk can contain. Normally,
you do not need to be concerned about setting a value for the grain size; the Cilk Plus run time sets
the value automatically. You can specify the grain size using the cilk_grainsize pragma:

#pragma cilk_grainsize = 1
Increasing the grain size reduces the overhead of parallelization, but can lead to poorer

parallelism.

The default grain size will have a value between 8 and 512, and is calculated using the following
formula:

Grain size = min (512, number-of-loops /(8 * number-of-workers))

Number of Workers

You can set the number of workers using the environment variable CILK_NWORKERS or by using the
Cilk Plus API command __cilkrts (). This command sets the number of workers to 20:

__cilkrts("nworkers", "20");

Loop Control Variable

You can use different types, including your own custom types, for the loop control variable.
Whatever type you use, it must have:

> A means of determining the loop range size
> An operator to work out the difference between two such variables

> An operator to increment or decrement the variable

For more information on this topic, refer to the Intel Composer XE online help.

Parallelizing Loops | 187

The OpenMP for Loop

The #pragma omp for statement is a work-sharing construct that causes the loops to be executed
in parallel by a pool of threads. In the following code example, a pool of threads is created by the
#pragma omp parallel statement. The loops of the for statement are then executed in parallel by
the different threads.

#pragma omp parallel
{
#pragma omp for
for (int 1=0; 1 < 100;i++)
{
work (1) ;
}

} // end of parallel region
The two pragmas in this code can be concatenated into a single pragma, #pragma omp parallel for.

At the end of the loop, there is an implicit barrier where all the threads wait until the last thread has
completed. If you add a nowait clause to the #pragma omp for statement, there will be no barrier
and the threads will be free to continue on to the next section of code.

Influencing the Scheduling

You can modify the runtime behavior of the for loop with the schedule clause. The following are
the three most common clauses used:

> #pragma omp for schedule (static, chunk_size) — The number of threads is divided into
chunk_size and scheduled in a round-robin fashion among the pool of threads. When no
chunk_size is specified, the number of chunks is the same as the number of threads.

> #pragma omp for schedule (dynanﬁc,chunk_size)——3rhechunksarerequemfd bythe
threads. When a thread becomes free, it requests a new chunk. When no chunk_size is
specified, the chunk_size is 1.

> #pragma omp for schedule (guided, chunk_size) —Each thread is assigned a chunk of
work that is greater than the chunk_size. As each thread requests new chunks, the size of
the chunk is decreased until it becomes chunk_size. When no chunk_size is specified, the

chunk_sizeis 1.

Number of Threads

You can set the number of threads by using the environment variable oMp_NUM_THREADS or the API
call omp_set_num_threads (num). If you build an application that includes the following code,
and then set the environment variable to be two (set OMP_NUM_THREADS=2), the first loop will be
shared between two threads, and the second loop will be shared between five threads.

void do_work()
{
#pragma omp parallel for
for (int 1=0; 1 < 100;1i++)
{
work (1) ;

}

188 | CHAPTER7 IMPLEMENTING PARALLELISM

omp_set_num_threads (5)
#pragma omp parallel for
for (int j=0; j < 100;j++)
{
work (J) ;
}
} // end of parallel region

Loop Control Variable

The loop control variable can be a signed/unsigned integer, a C++ iterator, or a pointer type. For
example, the following code uses a pointer as the control variable:

#include <stdio.h>

int main()

{
char mem[10] = {'a','b','c','d','e',"£','g"','h',"1",'J"'};
#pragma omp parallel for

for (char *p = &mem[0]; p < &mem[10]; p++)
{

printf ("0x%p:%c\n",p, *p) ;
}

return 0;

The TBB for Loop

The following example uses a compact version of the parallel for construct that can iterate over a
range of integers. The code being executed is wrapped in a lambda function.

#include <tbb.h>

parallel_for (size_t(0), 100, [=](size_t 1) {
work (1) ;
} // end of lambda code
); // end of parallel _for

Nested for Loops

When you parallelize a nested loop, it is usually to parallelize just the outer loop. However, on some

occasions you should consider parallelizing the inner loop as well as, or instead of, the outer loop.
Consider, for example, the following code:

for(int i = 0; i<5;1i++)
for(int j = 0; J < 100; Jj++)
{
Work (1*100 + J);
}

You can see that

> The outer loop has a low trip count, much lower than the inner loop.

> The outer loop trip count could well be less than the number of hardware threads that can be

supported.

Parallelizing Loops | 189

If you were to run the code on a 24-core PC, the maximum speedup you could obtain by paral-
lelizing the outer loop would only be 5, even though the hardware can support a speedup of
up to 24.

A variation on this example might be if the inner and outer loops both have a low trip count:

for(int i =
for(int j
{
Work ((1*5) + J);
}

0; i<5;1i++)
=0; j < 5; j++)

To achieve a better parallelization of these kinds of nested loops, you should do one of the
following:

> Parallelize the inner loop instead of the outer loop.
> Parallelize both inner and outer loops.

> Rewrite the loops so the inner and outer loops are swapped, and then parallelize the new
outer loop.

In OpenMP, you can collapse loops together using the cOLLAPSE clause. In the following code exam-
ple, the outer two for statements are collapsed together:
#pragma omp parallel for collapse(2)
for (int 1=0; 1 < 2;i++)
for (int j=0; j < 10;3j++)
for (int k=0; k < 100;k++)
{
Work (k) ;
}

Using nested parallelism in Cilk Plus and TBB should not cause a problem as long as the inner loop
does a sufficient amount of work. The act of work-stealing performed by their respective schedulers
will automatically load-balance the work.

In OpenMP, the situation is slightly more complicated. If nested parallelism is enabled, a fresh pool
of threads is created for each parallel region. Nested parallelism can lead to oversubscription, where
the number of threads running exceeds the number the hardware can support.

By default, nested parallelism is disabled. If you want, you can enable nested parallelism by using the
omp_set_nested (expression) API command or the environment variable oMp_NESTED. Likewise,
you can check if nested parallelism is enabled using the omp_get_nested() API command.

For more information on this and other OpenMP features, look at the OpenMP standard, which
you can download from www.openmp . org.

The for Loop with Reduction

On some occasions you will want to combine the results of several parallel computations—a tech-
nique known as reduction. In loop reduction, each parallel strand manipulates its own reduction
variable(s), which are combined at the end of the parallel region.

http://www.openmp.org

190 | CHAPTER7 IMPLEMENTING PARALLELISM

Take, for example, the loop in Figure 7-3. Here the loops are split into three chunks and executed
in parallel. When each parallel strand has completed, the value of each r is combined together using
the addition operator. You can perform reduction using different operators as well as the addition
operator. Cilk Plus, OpenMP, and TBB all support reduction.

ris O intr=0:;

for(i = 0; i < 30; i++) {r++;}

A
. :
: 0-9 1019 | 2029 | |
=] : 1
5 A i :
S :
5 < !
++ ,
r :
@ :
S '
© i :
© H . .
a ris 10 ris 10 ris 10 !
L » . J :
Reduce :
Y. _Replace with + -~~
\ operator

ris 30 End

FIGURE 7-3: A for loop with reduction

Cilk Plus Reduction

Cilk Plus provides special objects known as reducers to support reduction. You can find a list of
reducers in Chapter 2 (Table 2-3), along with a code example in Listing 2-2, “An example of using a
Cilk Plus reducer.”

OpenMP Reduction
The following code gives an example of reduction:

int r = 0;

#pragma omp parallel for reduction(+:r)
for (i=0; 1 < 29; i++)

{

Ir++;

}

The reduction clause causes each thread to have its own private copy of the r variable. The val-
ues of each private copy are combined back together using the + operator at the end of the for
loop. You can use the following operators with the reduction clause: +, *, -, &, |, ", &&, ||, max,
and min.

Parallelizing Loops | 191

TBB Reduction

TBB provides the parallel reduce template to support reduction. Listing 7-2 shows how to use
it with lambda functions. You must provide two lambda functions: one for the code you want to
execute in the loop, and a second one that provides the reduction operator.

‘) LISTING 7-2: Parallel reduction using TBB

Available for #include "tbb/parallel_reduce.h"
dmg?gglﬁn #include "tbb/blocked_range.h"
using namespace tbb;
float ParallelSum(float array[], size_t n)
{
return parallel_ reduce(
// range
blocked_range<float*>(array, array+n),
// identity
0.f,
// lambda function
[1(const blocked_range<float*>& r, float init)->float
{
for(float* a=r.begin(); al!=r.end(); ++a)
init += *a;
return init;
}
//lambda function providing the reduction operator
[1(float x, float y)->float
{
return x+y;
}
);

code snippet Chapter7\7-2.cpp

The while Loop

You can use the Cilk Plus cilk_spawn, the OpenMP #pragma omp task, and the TBB parallel_
do to parallelize a C/C++ while loop.

Cilk Plus

The simplest way to make a while loop parallel is to use the cilk_spawn keyword in each iteration.
However, if the amount of work done in a loop is low, you may find that the program runs slower
than the original serial version. In the following code, the Prime function is cilk_spawned 100 times:

int j = 0;

while (j < 100)

{

cilk_spawn Prime (Pri);
J++;

192 | CHAPTER7 IMPLEMENTING PARALLELISM

If your while loop has a precomputable trip count, as in the preceding example, you could
consider converting it to a cilk_for loop, which employs a divide-and-conquer work-stealing
algorithm.

In some circumstances part of the while loop will need to stay sequential because of some loop
dependency, with only part of the while loop being able to run in parallel. In the following exam-
ple, the traversal through the linked list has to be sequential, but as each link is traversed, the call to
Work () can be parallelized by using ci1k_spawn:

#include <cilk/cilk.h>
// linked list iteration
void RunThoughLinkedList ()
{
node *pHead = Head;
while (pHead != NULL)
{
cilk_spawn Work (pHead) ;
pHead = pHead->next;
}
}

OpenMP

Prior to OpenMP 3.0, while loops were difficult to make parallel, requiring the programmer either
to convert the loops to a standard for loop or to write some handcrafted code. The following code
uses OpenMP tasks that were introduced in OpenMP 3.0. The bold lines show where extra code has
been added to make the while loop parallel.

> The #pragma omp parallel forms a team of threads and starts parallel execution.

> Within the parallel region, the code marked with #pragma omp single runs only on one

thread.

> On each iteration of the while loop (that is running on one thread), the #pragma omp task
statement causes an OpenMP task to be created. The moment a task is created it is free to
start executing. Each task has its own initialized copy of the counter variable.

> When the single thread has completed creating all the tasks, the thread becomes available for
use by the OpenMP run time. This only happens because of the nowait clause.

> There is an implicit barrier at the end of the parallel region. Once all the threads have com-
pleted, code execution can continue beyond the end of the parallel region.

#pragma omp parallel
{
#pragma omp single nowait
{
int counter = 0;
while (counter < 10)
{
counter++;
#pragma omp task firstprivate(counter)

Parallelizing Sections and Functions | 193

{
work (counter) ;
}
}
}

} // implicit barrier
A do-while loop can also be made parallel using the same technique.

TBB

You can use the parallel_do template to perform, as the TBB manual describes it, a “cook until
done” algorithm. You can use this when you don’t know how much data has to be processed. A
parallel_do creates TBB tasks from a list, finishing when the list is empty and all tasks have com-
pleted their execution.

Listing 7-3 shows parallel_do iterating through the items in vector s and calling the work ()
function. The first two parameters of parallel_do are STL iterators describing the beginning and
end of the vector. The third parameter is the code that is executed within the loop—in this case, a
lambda function.

‘) LISTING 7-3: TBB parallel_do

Available for #include <tbb.h>
dowm:gtgglgn #include <vector>

void Work(int Val){ // do some work here}

Func ()

{
std::vector<int> s;
s.push_back(0) ;
s.push_back (1) ;
s.push_back(2) ;
s.push_back(3)

7

tbb::parallel_do(s.begin(), s.end(),
[&] (int Val) { Work(val);});

code snippet Chapter7\7-3.cpp

PARALLELIZING SECTIONS AND FUNCTIONS

You can parallelize sections of code or a series of function calls using Cilk Plus, OpenMP, or TBB.
A sequence of code can be made parallel as long as each block:

> Is independent of any other block

> Performs enough work

194 | CHAPTER7 IMPLEMENTING PARALLELISM

This kind of parallelism is not scalable—that is, the program’s performance will not keep increas-
ing once you have matched the number of cores with the number of parallel strands. It is still worth
considering, especially if you have two or more blocks of code that consume a significant amount of
time. In this section, a short series of function calls are parallelized in two different ways, as shown
in Figure 7-4.

Figure 7-4 (a) shows the layout of the serial program, alongside two parallel patterns. In Figure

7-4 (b) all three functions are run in parallel. Figure 7-4 (c) assumes work1 () and work2 () have a
dependency, and so their order of execution must be maintained by running them in the same paral-
lel strand.

The potential speedup for each solution is limited by the number of parallel strands in the pro-
gram. Figure 7-4 (c), for example, has only two parallel strands, with its maximum

potential speedup being achieved on a 2-core CPU. If you ran same the code on a 3-core CPU,
it wouldn’t run any faster. Similarly, Figure 7-4 (b)’s maximum speedup will be achieved on a
3-core CPU.

At the end of the parallelized sections, there is a barrier that can be crossed only after all the threads
have completed executing the individual strands.

Work1() Work1() Work?2() Work3() Work1() Work3()

v v

Work2() Work2()
¢ Barrier

Barrier

Work3()

End
(@) (b) (©

FIGURE 7-4: Functional parallelism

The Serial Version

Listing 7-4 holds the serial version of the code and has three functions: work1 (), work2 (), and
wWork3 (). Each function prints a message at its entry and exit. The Delay () function slows down the
execution time by iterating through a large loop.

If you decide to build any of the examples in this section, build them unoptimized using the /0d
(Windows) or -00 (Linux) compiler flag; otherwise, the compiler will “optimize-away” most of
the code.

Parallelizing Sections and Functions | 195

J

Available for
download on
Wrox.com

LISTING 7-4: Serial version of code

#include <stdio.h>
void Delay () {for (int i=0; i < 1000000000; i++);}
void Workl () {printf ("Start 1\n");Delay();printf("End 1\n");}
void Work2 () {printf ("Start 2\n");Delay();printf("End 2\n");}
void Work3 () {printf ("Start 3\n");Delay();printf("End 3\n");}
int main()
{

Workl () ;

Work2 () ;

Work3 () ;

code snippet Chapter7\7-4.cpp

Cilk Plus

You can use the cilk_spawn keyword to parallelize sections of code. Listings 7-5 and 7-6 show
the two versions (b) and (c), respectively. At the end of both examples, the cilk_sync keyword is
used to place a barrier, as shown in Figure 7-4. In this particular example, cilk_sync is not really
needed, because the compiler automatically inserts an implicit cilk_sync at the end of every func-
tion that contains a cilk_spawn.

In the first example, all three functions execute in parallel, subject to there being sufficient workers
available.

In the second example, you can see how useful lambda functions are in wrapping together work1 ()
and work2 () so they execute serially within the same strand, which, in turn, executes in parallel
with work3 ().

LISTING 7-5: Cilk Plus functional parallelism version (b)

#include <cilk/cilk.h>

int main()
{
cilk_spawn Workl();
cilk_spawn Work2 () ;
Work3 () ;
cilk_sync;// not really needed, because there is an implicit sync here

code snippet Chapter7\7-S.cpp

196 | CHAPTER7 IMPLEMENTING PARALLELISM

‘) LISTING 7-6: Cilk Plus functional parallelism version (c)

Available for #include <cilk/cilk.h>
download on
Wrox.com

int main()
{
cilk_spawn []{
Workl () ;
Work2 () ;
}

Work3 () ;
cilk_sync;// not really needed, because there is an implicit sync here

}
code snippet Chapter7\7-6.cpp

OpenMP

In OpenMP, you can use the sections construct to divide and execute blocks of code, as shown
in Listings 7-7 and 7-8. The sections construct has to reside in a parallel region. In the following
examples, the parallel and section constructs are concatenated together into a single statement.

In the first example, work1 (), Work2 (), and Wwork3 () execute in parallel. In the second example, the
first block of code containing work1 () and work2 () runs in parallel with work3 ().

LISTING 7-7: OpenMP functional parallelism version (b)

int main()
{
#pragma omp parallel sections
{
#pragma omp section
Workl () ;
#pragma omp section
Work2 () ;
#pragma omp section
Work3 () ;

}
code snippet Chapter7\7-7.cpp

LISTING 7-8: OpenMP functional parallelism version (c)

int main()
{

#pragma omp parallel sections

{

#pragma omp section

Parallelizing Sections and Functions | 197

Workl () ;
Work2 () ;
#pragma omp section
Work3 () ;

code snippet Chapter7\7-8.cpp

TBB

Listings 7-9 and 7-10 show how to use the TBB parallel_invoke template to run the three func-
tions in parallel. At the time of writing, the maximum number of parameters you can pass to
parallel_invoke is ten.

\) LISTING 7-9: TBB functional parallelism version (b)

Available for #include <tbb/tbb.h>
download on
Wrox.com

int main()
{
tbb: :parallel_invoke (

[1{Workl();},
[1{Work2();},
[1{Work3();}

)

code snippet Chapter7\7-9.cpp

LISTING 7-10: TBB functional parallelism version (c)

#include <tbb/tbb.h>

int main()
{
tbb: :parallel_invoke (
[1{
Workl () ;
Work2 () ;
I
[1{work3();}
)i

code snippet Chapter7\7-10.cpp

Again, you can see how useful the lambda functions are in simplifying the calls to
parallel_invoke.

198 | CHAPTER7 IMPLEMENTING PARALLELISM

PARALLELIZING RECURSIVE FUNCTIONS

Recursion is a very common pattern found in many programs and is relatively easy to parallelize.
Figure 7-5 shows a recursive function, Work ().

Y ‘ Exit?

Work() N
{ | -

if(some-condition) Work() e --

Work();
}
A4
—>(End

FIGURE 7-5: The recursive construct

A recursive function has three features:
» The function calls itself.
> There is an exit condition that is eventually reached.

> Asin any C function, each called function has its own stack, holding its own variables and
parameters.

Like any body of code that is to be threaded, the body of your recursive function should perform
a decent amount of work; otherwise, you may end up just slowing down the code. If the body of
your recursive function does not do much work, you might find it better to convert your recursive
code to be loop-oriented, and then use one of the parallel loop structures that have already been
discussed.

The Serial Version

Listing 7-11 shows a recursive function, work (). When the function is first called, it is passed the i
parameter, which has been initialized to zero. Each time work () makes a call to itself, it passes in
the value i + 1.

On entry to the function, the exit condition if (i>4) is queried. If the test is satisfied, the function
returns; otherwise, it proceeds with the recursive call. work () prints a message before and after the
recursive call.

In this example the recursion will nest four levels deep before returning, unrolling its stack as it
returns through the recursive calls.

Parallelizing Recursive Functions | 199

J

Available for
download on
Wrox.com

LISTING 7-11: A serial recursive function

#include <stdio.h>
void Delay () {for (int i=0; i < 1000000000; i++);}
void Work (int 1)
{
1f(1 > 4)
return;
printf("s%d\n",1i);
Work (i + 1);
Delay () ;
printf ("E %d\n",1i);
}

int main()

{
int 1 = 0;
Work (1) ;

}

code snippet Chapter7\7-11.cpp

Cilk Plus

You can use the cilk_spawn keyword to parallelize a recursive function. In Listing 7-12, the only

modification to the serial version is the addition of cilk_spawn in front of the recursive call to work ().

LISTING 7-12: A Cilk Plus recursive function

#include <cilk/cilk.h>
void Delay () {for (int i=0; 1 < 1000000000; i++);}

void Work (int 1)
{
1f(1 > 4)
return;
printf ("s%d\n",1);
cilk_spawn Work(i + 1);
Delay () ;
printf ("E %d\n",1i);
}

int main()

{
int 1 = 0;
Work (1) ;

}

code snippet Chapter7\7-12.cpp

200 | CHAPTER7 IMPLEMENTING PARALLELISM

OpenMP

The recursive OpenMP example in Listing 7-13 uses tasks. In the main () function, a parallel region
is declared containing a single threaded brace. Within the brace is a call to the work () function.

The recursive call within work () is encapsulated in an OpenMP task. The moment the task is cre-
ated, it is free to start execution. Each recursive call results in a new task being created, which is
then free to be run in parallel with any existing tasks.

\) LISTING 7-13: An OpenMP recursive function

Available for void Work (int 1)
download on {
Wrox.com
1f(i > 4)
return;
#pragma omp task firstprivate(i)
{
printf ("S%d\n",1);
Work (i + 1);
Delay () ;
printf ("E %d\n",1i);

}

int main()
{

int 1 = 0;
#pragma omp parallel
#pragma omp single

{

Work (1) ;
}

code snippet Chapter7\7-13.cpp

TBB

The recursive program in Listing 7-14 uses TBB tasks. The code is parallelized in three steps:
> By declaring of the task_group variable g.

> By wrapping the body of the work () function in a lambda function, which is then spawned
as a new task using the g.run () method.

> By adding a g,wait () barrier in main (), after the call to work ().

LISTING 7-14: A TBB recursive function

#include <stdio.h>

#include <tbb/tbb.h>

void Delay () {for (int i=0; i < 1000000000; i++);}
tbb: :task_group g;

Parallelizing Pipelined Applications | 201

void Work (int i)
{
if(1i > 4)
return;
g.run(
[=1{ // spawn a task
printf ("s%d\n",1);
Work (i + 1);
Delay () ;
printf ("E %d\n",1i);

); // wait for tasks to complete

code snippet Chapter7\7-14.cpp

PARALLELIZING PIPELINED APPLICATIONS

The software pipeline pattern mimics a common assembly line in a factory. During the manufactur-
ing process, the object being made is passed from one station to the next, with each station being
responsible for carrying out a specific task.

Figure 7-6 (a) shows a pipelined application. The complete pipeline reads a set of numbers from the file
Test .data, calculates the square root of the numbers, and then stores the results in a second file, Root . data.

The pipeline consists of three phases, or steps, as shown in Figure 7-6 (b). In the first phase,
GetLine reads a line of numbers from the input file. In the second step, sqRoot calculates the square
root for all the numbers in the line. Finally, PutLine writes the results into an output file.

Z> EREEEEEN EEREEEEE
int Lineln[]; float LineOut([];

Test.data
@ Getline @ SqRoot

(@)

Gettine (DLine1 | | Line2 | | Line3 | oot @
utLine

SqRoot \>@ Linet | | Line2 || Line3 |

Root.data

PutLine K@Line1 | | Line2 || Line3 |

>

time
(b)

FIGURE 7-6: The recursive construct

202

| CHAPTER7 IMPLEMENTING PARALLELISM

The relation between each pipeline stage is that of producer/consumer. The first stage, GetLine,
produces data that is consumed by the second stage, sqroot. This second stage then becomes the
producer for data that will be consumed by the last stage, PutLine.

Parallel Pipelined Patterns

To make a pipeline parallel, you allocate each pipeline station to a separate thread. You should only
consider parallelizing course-grained pipeline applications, where each pipeline stage is doing a rea-
sonable amount of work.

Within a particular pipeline stage you may also be able to introduce parallelism. In the example
used in this chapter, stages 1 and 3 use file I/O and are therefore kept serial. The middle stage, how-
ever, performs calculations that are independent of each other, so parallelism can be added here.
Figures 7-7 and 7-8 show two different approaches you can take to parallelizing the middle stage:

> In Figure 7-7, a single consumer/producer is threaded, so the contents of the current line are
manipulated in parallel.

> In Figure 7-8, multiple consumer/producers are spawned, and so can manipulate multiple
lines at the same time.

The thread IDs in the two diagrams are not significant; they merely indicate that the different pipe-
line stages are running on different threads or parallel strands.

When parallelizing a pipelined application, you have to take care how you pass the data between the
different stages. In the serial version (see Listing 7-15), a single array is used to hold the current line.
Once the pipeline is made parallel, several lines may need to be queued or stored, so they can be
manipulated in parallel without causing data races.

b Producer
©
. N\
- Line 3 / \

X / i
(Spmmer
° consumer/
g \ producer
= -Line2

Line 3
c
'_

FIGURE 7-7: Using a single consumer/producer

Parallelizing Pipelined Applications | 203

Producer Multiple

Thread 1

Consumer/
Producer

)
I

Consumer/
Producer

Consumer/
Producer

Thread 3

Thread 4

Thread 5

FIGURE 7-8: Using multiple consumer/producers

The parallel examples in this chapter simply make the LineIn and Lineout arrays
two-dimensional so that each line has its own storage area. Another approach to storing the data
that is passed along the pipeline is to dynamically allocate separate variables for each line as they
are read in. Once the data has been consumed, the variable can then either be freed or passed back
to the first pipeline for reuse.

The two parallel examples are based on OpenMP and TBB. There is no Cilk Plus example, but
you can find an example of a pipelined application at http://software.intel.com/en-us/
articles/a-parallel-bzip2/.

The Serial Version

Listing 7-15 shows the serial version of the pipelined application. The outer for loop in main ()
applies the three pipeline stages, one line at a time.

> In the first stage, a line of the file Test .data is read, and the data is placed in the array

LinelIn.

> The second stage of the pipeline calculates the square root of all the integers stored in
LineTn. Rather than using a library call to calculate the square root, a slower, hand-rolled
sqroot () function is used. Using this slower function helps to give the pipeline sufficient
work to do, which is helpful for demonstration purposes. The results of the square root oper-
ation are stored as floats in LineoOut.

> The last stage of the pipeline writes the results held in Lineout to the file Root .data.

http://software.intel.com/en-us

204 | CHAPTER7 IMPLEMENTING PARALLELISM

‘) LISTING 7-15: A serial pipelined application

Available for
download on
Wrox.com

#include <stdio.h>
#include <stdlib.h>

#define LINE_LENGTH 8000
#define NUM_LINES 100
#define NUM_ENTRIES LINE_LENGTH * NUM_LINES

int LineIn[LINE_LENGTH] ;
float LineOut [LINE_LENGTH] ;

float sqgroot(int n)

{

}

float 1 = 0;
float x1, x2;
while(i*i<= n)

i+=0.1;
xl = 1;
for (int j=0; j<10; Jj++)
{

X2 = n;

x2 = x2/x1;

x2 = x2+x1;

x2 = x2/2;

x1 = x2;

}

return x2;

int main()

{

FILE *pFile = fopen(".\\Test.Data","r");
if (!pFile){ printf("Couldn't open Test.Data");exit(999);}

FILE *pOutputFile = fopen("Squared.Data","w");
if (!'pOutputFile) { printf("Couldn't open Squared.Data");exit(999);}

// for every line in file
for (int 1 = 0; i < NUM_LINES; i++)
{
// Pipeline STAGE 1
for (int j = 0; j < LINE_LENGTH; j++)
fscanf(pFile,"%d ",&LineIn([]j]);

// Pipeline STAGE 2
for (int j = 0; j < LINE_LENGTH; j++)
LineOut[j]=sqgroot((float)LineIn[j]);

// Pipeline STAGE 3

for (int j = 0; j < LINE_LENGTH; Jj++)
fprintf (pOutputFile, "$f ",LineOut[j]);

fprintf (pOutputFile, "\n") ;

Parallelizing Pipelined Applications | 205

fclose(pFile);
fclose (pOutputFile) ;
return 0;

code snippet Chapter7\7-15.cpp

OpenMP

Listing 7-16 implements a pipeline using OpenMP. You will see that

> The first and third stages of the pipeline need to run on single threads because of the file /O
operations that are serial in nature.

> The second stage of the pipeline uses a single consumer/producer. The processing of the
individual numbers in the LineIn array is performed in parallel using the #pragma omp for
construct.

> The nowait clauses in the first and third stages are added to improve performance.

> The arrays LineIn and Lineout that are used to pass data from the different pipeline stages
are converted to a two-dimensional array so that each line can be manipulated without caus-
ing a data race.

> The first line from the file is read before the start of the parallel region and the subsequent
reads fetch the line number 1 + 1.

‘) LISTING 7-16: An OpenMP pipelined application

Available for int main()
download on (
Wrox.com)
FILE *pFile = fopen(".\\Test.Data","r");

if(!pFile){ printf("Couldn't open Test.Data");exit(999);}

FILE *pOutputFile = fopen ("OpenMP_Squared.Data", "w");
if (!pOutputFile){ printf ("Couldn't open OpenMP_Squared.Data");exit (999);}

// preload line 0
for (int j = 0; j < LINE_LENGTH; j++)
fscanf(pFile,"%d ",&LineIn[0][j]);

#pragma omp parallel
{
for (int 1 = 0; i < NUM_LINES; 1i++)
{
// Pipeline STAGE 1
#pragma omp single nowait
{
// start reading the next line
// Don't read beyond end

continues

206 | CHAPTER7 IMPLEMENTING PARALLELISM

LISTING 7-16 (continued)

if(i < NUM_LINES-1);
{
for (int j = 0; j < LINE_LENGTH; j++)
fscanf (pFile,"%d ",&LineIn[i+11[3J1);
}
}

// Pipeline STAGE 2
#pragma omp for schedule(dynamic)
for (int j = 0; j < LINE_LENGTH; j++)
LineOut[i] [j]=sqroot ((float)LineIn[i][]j]);

// Pipeline STAGE 3
#pragma omp single nowait
{
for (int j = 0; j < LINE_LENGTH; j++)
fprintf (pOutputFile, "$f ",LineOut[i][3j]);
fprintf (pOutputFile, "\n") ;
}
}
}
fclose(pFile) ;
fclose (pOutputFile) ;
return 0;

code snippet Chapter7\7-16.cpp

The OpenMP version of the pipeline is based on an idea from T. G. Mattson
and B. Chapman’s tutorial from the ACM/IEEE Conference on Supercomputing
(2005), titled “OpenMP in Action.” You can get a copy of the slides from
http://openmp.org/wp/presos/omp-in-action-SC05.pdf.

TBB

You can use the TBB parallel_pipeline template to parallelize the pipeline code, as shown in
Listing 7-17. The different pipeline stages are handled by filters, which can operate either in serial or
in parallel.

To construct a pipeline using TBB, you should

1. Instantiate the pipeline class. This is done in the example using the parallel_pipeline
template.

2. Add filters. Listing 7-17 uses lambda functions to provide the filter code.

3. Run the pipeline. This is done automatically when using the parallel_pipeline template.

http://openmp.org/wp/presos/omp-in-action-SC05.pdf

Parallelizing Pipelined Applications | 207

Notice that the outer loop from the original serial code no longer exists. Iteration through the Test
.data file is controlled by incrementing variable i in the first stage of the pipeline.

You can pass tokens between the filters. In the example here, the value of the variable i is passed in
and out of the different filters.

The ntoken parameter controls the level of parallelism. In Listing 7-17, all the filters are of type
filter::serial_in_order,SOthevahk:Ofntok@nhasnoeﬂfct

Listing 7-18 shows an alternate middle filter, which is of type filter: :parallel. By doing this you
will be changing the design so that the middle pipeline stage is using multiple consumer/producers,
as shown in Figure 7-8. When this filter is used, multiple tokens can be processed by the filter. In this
situation the parameter ntokens limits the number of tokens that can be in flight at any one time.

The flow_control fc object is used to control the pipeline and indicates to the scheduler when the
pipeline should stop.

As in the OpenMP version, the LineTn and Lineout arrays are promoted to be two-dimensional arrays.

‘) LISTING 7-17: A pipelined application using TBB

Available for using namespace tbb;
download on
Wrox.com) .

int main()

{
int 1 = 0;
int ntokens 24 ;
FILE *pFile = fopen(".\\Test.Data","r");
if(!pFile){ printf("Couldn't open Test.Data");exit(999);}

FILE *pOutputFile = fopen("TBB_Squared.Data","w");
if (!pOutputFile){ printf ("Couldn't open OpenMP_Squared.Data");exit (999);}

parallel _pipeline(
ntokens,
tbb: :make_filter<void, int>(
filter::serial_in_order, [&i,&pFile] (flow_control& fc)->int {
if (i < NUM_LINES)
{
for (int j = 0; j < LINE_LENGTH; Jj++)
fscanf (pFile,"%d ",&LineIn[i]1[J]);
return i++;
}
else
fc.stop();

return -1;
}) &

tbb: :make_filter<int,int>(
filter::serial_in_order, [](int i)->int {

parallel_ for (size_t(0), (size_t)LINE_LENGTH, [&] (size_t 3J){

continues

208 | CHAPTER7 IMPLEMENTING PARALLELISM

LISTING 7-17 (continued)

LineOut[i] [j]l=sqgroot((float)LineIn[i]l[j]);
)
return 1i;

}) &

tbb: :make_filter<int,void> (
filter::serial_in_order, [&pOutputFile] (int i) {
for (int j = 0; j < LINE_LENGTH; j++)
fprintf (pOutputFile, "$f ",LineOut[i][3j]);
fprintf (pOutputFile, "\n") ;
1)

code snippet Chapter7\7-17.cpp

‘) LISTING 7-18: Using an alternate TBB filter

Available for
download on
Wrox.com
tbb: :make_filter<int, int>(

filter::parallel, [](int 1)->int {
{
for (int j = 0; j < LINE_LENGTH; j++)
LineOut[i] [j]=sqgroot((float)LineIn[i][j]);
return 1i;

code snippet Chapter7\7-18.cpp

PARALLELIZING LINKED LISTS

A linked list consists of a number of data nodes that are daisy-chained together via a pointer, as shown
in Figure 7-9. The end of the iteration space is not known in advance, and has to be detected by look-
ing for a NULL value in the Next pointer. Linked lists can have nodes inserted or deleted dynamically.

pCurr = pHd; el
while(pCurr = NULL) ;
{ '

Work(pCurr); -
pCurr = pCurr->Next; Data

} i

FIGURE 7-9: The linked list construct

Parallelizing Linked Lists | 209

Listing 7-19, which is taken from Listings 7-23, 7-24, and 7-25 at the end of the chapter,
traverses through the linked list until the pointer pHead has the value NULL.

The parallel versions use techniques that have been described earlier in this chapter.

Serial Iteration of the Linked List

Listing 7-19 shows the serial code to iterate through the linked list. You can find the complete ver-
sion in the source code at the end of this chapter.

‘) LISTING 7-19: Serial iteration of linked list

Available for // linked list iteration

dmg?ggn(:n void RunThoughLinkedList ()

node *pHead = Head;
while (pHead != NULL)
{

Work (pHead) ;

pHead = pHead->next;

code snippet Chapter7\7-19.cpp

Parallel Iteration of the Linked List

Listings 7-20, 7-21, and 7-22 show how to parallelize the linked list iteration using Cilk Plus,
OpenMP, and TBB, respectively. All three listings follow the same strategy:

» The iteration of the linked list is done in serial.
> As each node is visited, a task that runs the function work () is launched.

> The tasks can run in parallel.

LISTING 7-20: Linked list iteration using Cilk Plus

#include <cilk/cilk.h>
// linked list iteration
void RunThoughLinkedList ()
{
node *pHead = Head;
while (pHead != NULL)
{
cilk_spawn Work (pHead) ;
pHead = pHead->next;
}

code snippet Chapter7\7-20.cpp

210 | CHAPTER7 IMPLEMENTING PARALLELISM

‘) LISTING 7-21: Linked list iteration using OpenMP

Available for // linked list iteration
dm:;‘?gg;" void RunThoughLinkedList ()
{
#pragma omp parallel
{
#pragma omp single
{
node *pHead = Head;
while (pHead != NULL)
{
#pragma omp task firstprivate (pHead)
{
Work (pHead) ;
}
pHead = pHead->next;

code snippet Chapter7\7-21.cpp

Listing 7-22: Linked list iteration using TBB

void RunThoughLinkedList ()
{
tbb::task_group g;
node *pHead = Head;
printf ("Starting Linked List\n");
while (pHead != NULL)
{
g.run([=]{Work (pHead) ;}) ;
pHead = pHead->next;
}
g.wait();

code snippet Chapter7\7-22.cpp

ACTIVITY 7-1: PARALLELIZING THE SAMPLE APPLICATION

In this activity you parallelize the source code in Listings 7-23, 7-24, and 7-25
using some of the techniques described in this chapter.

Building the Program

If you haven’t already done so:

1. Copy the three files from the end of the chapter into a directory.

2. Check that the program builds:

icl /02 main.cpp prime.cpp wtime.c
(LINUX: icc -02 main.cpp prime.cpp wtime.c)

Source Code

| 211

3. Run the program and record the time taken between each phase of the
program:

[sblairch@localhost ssal$./main

Start of application

***% glibc detected *** ./main: double free or corruption
(top): 0x0000000007078010 ***

Implementing Parallelism

4. Choose one programming model, either Cilk Plus, OpenMP, or TBB.

5. Identify the loops in the program and implement a parallel solution for
each one.

Hint: You may want to run Amplifier XE to do a Hotspot analysis to find the busi-
est parts of the program.

Moving on to the Next Model

6. Work your way through the other programming models, repeating the paral-
lelization steps.

SOURCE CODE

Using the techniques highlighted in this chapter, you should be able to speed up the source code in

Listings 7-23, 7-24, and 7-25. The source code is split into three files: main.cpp, wt ime.cpp, and

prime.c.

The code is somewhat artificial, in that it doesn’t do anything particularly useful. Its sole purpose is
to provide a “playgound” for you to experiment with parallelization.

With the source code you will find loops and linked lists that you can make parallel using Cilk Plus,
OpenMP, and TBB. Activity 7-1 gives some suggestions for you to try out.

O

Available for
download on
Wrox.com

LISTING 7-23: Serial version of the example application

#include <stdio.h>

#include <memory.h>

extern int Prime(int end);

extern int PrimeRecursive(int end);
extern "C" double wtime();

#define PRIME_NUMS 1000000
#define PRIME_NUMS_RECURSE 20000
#define NUM_NODES 5

enum Op { OpPrime,OpPrimeRecursive};

continues

212 | CHAPTER7 IMPLEMENTING PARALLELISM

LISTING 7-23 (continued)

struct node

{
int ValuelIn;
Op Operation;
int NumPrimes;

double Start; // time
double End; // time
node *next; // the reference to the next node

void Init(int v,0p o,node* n){ValueIn = v;Operation=o;next=n;}
node () {Start=0;End=0;next=NULL; };
}i

node List [NUM_NODES] ;
node * Head;

void Init()

{
memset (List, '\0',sizeof (List));
// set up the link

List[0].Init (PRIME_NUMS, OpPrime, &List[4]);
List[1].Init (PRIME_NUMS_RECURSE, OpPrimeRecursive, &List[2]);
List[2].Init (PRIME_NUMS, OpPrime, NULL) ;
List[3].Init (PRIME_NUMS_RECURSE, OpPrimeRecursive, &List[1]);
List[4].Init (PRIME_NUMS, OpPrime, &List[3]);

[

Head = &List[0];

void Work(node * pHead)
{
pHead->Start = wtime();
switch (pHead->Operation)
{
case OpPrime:
pHead->NumPrimes=Prime (pHead->Valueln) ;
break;
case OpPrimeRecursive:
pHead->NumPrimes=PrimeRecursive (pHead->Valueln) ;
break;
Y
pHead->End = wtime () ;
printf ("Work Time %7.2f\n",pHead->End-pHead->Start);

// linked list iteration
void RunThoughLinkedList ()
{
node *pHead = Head;
while (pHead != NULL)
{
Work (pHead) ;
pHead = pHead->next;
}

Source Code | 213

// manual iterations
void RunExplicit()
{
Work (&List[0]) ;
Work (&List[1]);
Work (&List[2]);
([31)
([4]1)

i

i

Work (&List
Work (&List

7

int main()

{
Init();
double start = wtime();
double start_linked_list = wtime();
RunThoughLinkedList () ;
double end_linked_list = wtime();
double start_explicit = wtime();
RunExplicit();
double end_explicit = wtime();
double end = wtime();

printf ("Time through Linked List %7.2f\n"
"Time through explicit %7.2f\n"
"Total Time taken %7.2f\n",
end_linked_list-start_linked_list,
end_explicit-start_explicit,
end-start

)

J LISTING 7-24: A utility to measure time taken

Available for
download on
Wrox.com

#ifdef _WIN32
#include <windows.h>
double wtime ()
{
LARGE_INTEGER ticks;
LARGE_INTEGER frequency;
QueryPerformanceCounter (&ticks) ;
QueryPerformanceFrequency (&frequency) ;
return (double) (ticks.QuadPart/ (double)frequency.QuadPart) ;
}
#else
#include <sys/time.h>
#include <sys/resource.h>
double wtime()
{
struct timeval time;
struct timezone zone;
gettimeofday (&time, &zone) ;
return time.tv_sec + time.tv_usec*le-6;
}
#endif

Chapter7\\main.cpp

Chapter7\ wtime.c

214 | CHAPTER7 IMPLEMENTING PARALLELISM

‘) LISTING 7-25: Code to check if a number is prime

Available for #include <math.h>

download on) o5 gPrimes[1000000];

bool isPrimeRecurse(int p, int i=2)

{
if (i==p) return 1;//or better if (i*i>p) return 1;
if (p%i == || p == 1) return 0;
return isPrimeRecurse (p, 1i+1);

bool isPrime(int wval)
{
int limit, factor = 3;
limit = (long) (sqgrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))
factor ++;
return (factor > limit);

}

int Prime(int Num)

{
int NumPrimes = 0;
for(int 1 = 3; 1

{

<= Num; 1 += 2)

if(isPrime(i))
gPrimes [NumPrimes++] = 1;
}
return NumPrimes;

}

int PrimeRecursive (int Num)
{
int NumPrimes = 0;
for(int 1 = 3; i <= Num; 1 += 2)
{
if(isPrimeRecurse(i))
gPrimes [NumPrimes++] = 1i;
}

return NumPrimes;

Chapter7\prime.cpp

Summary | 215

SUMMARY

This chapter demonstrated that making code parallel is not as difficult as it initially may seem. Cilk
Plus, OpenMP, and TBB all offer ways of parallelizing loops, recursive calls, blocks of code, and
pipelined applications.

Note that this chapter has not addressed the thorny problem of data races and how to deal with
shared variables.

In earlier chapters you saw how reducers in Cilk Plus and private and shared variables in OpenMP
can be used to prevent data races. The next chapter shows how to detect memory and threading
errors using Intel Parallel Inspector XE, and how you can fix such errors in Cilk Plus, OpenMP, and
TBB.

Checking for Errors

WHAT’S IN THIS CHAPTER?

Y Y VY Y

>

Detecting threading errors

Fixing data races

Detecting memory errors
Controlling the right level of detail

Creating a custom analysis

Using multiple threads with common memory can easily lead to parallel-type errors, such as
data races and deadlocks. Resolving these errors can often be frustrating and time-consuming,
so it is vital that you detect them at an early stage of development.

You can use several different tools from Parallel Studio XE to help debug your parallel
programs:

>

Parallel Advisor — Advisor guides developers to add parallelism within their existing
C/C++ programs. However, you need to add Advisor notations to identify the possible
parallel regions. For more details, see Chapter 10, “Parallel Advisor-Driven Design.”

Parallel Debugger Extension — This extension pairs the parallel tools provided for
developing multithreaded applications with the debug extensions, to allow for parallel
features within the debugger. See Chapter 11, “Debugging Parallel Applications,” for
more details.

Static Security analysis — Static Security analysis is carried out by the compiler and
identifies both coding errors and security vulnerabilities through deep analysis of the
source code. However, no final execution file is produced. For more details, see
Chapter 5, “Writing Secure Code.”

218 | CHAPTER8 CHECKING FOR ERRORS

This chapter describes the operation of Intel Parallel Inspector XE, which you can use to find
threading and memory errors after you have attempted parallelization. Creating parallel programs
introduces the prospect of new types of errors involved with concurrent threading. These errors
can have serious consequences on the efficiency and correctness of your parallel programs. Without
tools such as Inspector XE, these threading errors can be notoriously difficult to find. You can also
use Inspector XE to find many types of memory errors.

You have already used Inspector XE in Chapter 3, “Parallel Studio XE for the Impatient.” If you
haven’t read that chapter or tried its hands-on activities, now would be a good time to do so.

PARALLEL INSPECTOR XE ANALYSIS TYPES

Chapter 3 describes the four steps you can use to make your code parallel: analyze, implement,
debug, and tune. In the debug step you must check to see if you have introduced any parallel-type
errors into your program. This is where you can use Inspector XE.

Inspector XE has predefined analysis types to help you (see Figure 8-1). These are split into three
categories:

> Memory Error analysis — Detects and locates memory leaks, and finds other memory
problems

> Threading Error analysis — Detects and locates data races and deadlocks

> Custom analysis types — Stores your own analysis types

| Configure Analysis Type Intel Inspector XE 2011

A Analysis Type
ék '% Locate Deadlocks and Data Races

e Memony Erer Jnalvsis ‘Widest scope threading error analysis type. Maximizes the
A, Detect Leaks load on the system. Maximizes the time required to perform
A. Detect Memory Problem: the analysis. Maximizes the chances the analysis will fail
A Locate Memory Problem because the system may run out of resources. Press F1 for
[=I-[Z Threading Error Analysis meore details.
. Detect Deadlocks
A Detect Deadlocks and Da [7] Terminate on deadlock

.8 L ocate Deadlocks and D" depth:
i Custom Analysis Types
scope:

[¥] Remove duplicates

@) Details
Detect lock hierarchy violations and deadlocks: Yes
Terminate on deadlock: No
Cross-thread stack access detection: Hide prot
Stack frame depth: 16
Detect data races: Yes
Memory access byte granularity: 2 bytes
Detect data races on stack accesses: No
Remove duplicates: Yes
Defer memory check: Yes
Save stack on first access: Yes
Save stack on allocation: Yes

1 I, » ’ Show Command Line

FIGURE 8-1: Inspector XE’s Configure Analysis Type window

Each analysis type performs analysis to a different scope; the wider the scope, the more impact
the analysis has on the time taken to run the program under test. Table 8-1 describes the likely

Detecting Threading Errors | 219

impact of each scope. The descriptions are taken directly from the Configure Analysis Type
window.

TABLE 8-1: The Scope of Each Analysis Type

SCOPE ANALYSIS TYPES IMPACT ON PROGRAM UNDER TEST
Narrowest Detect Leaks Minimizes the load on the system. Minimizes the time
Detect Deadlocks required to perform the analysis. Increases the chances

the analysis will complete successfully, particularly on
large applications/large data sets.

Medium Detect Memory Increases the load on the system. Increases the time
Problems required to perform the analysis. Increases the chances
Detect Deadlocks and the analysis will fail because the system may run out of
Data Races resources.
Widest Locate Memory Maximizes the load on the system. Maximizes the time
Problems required to perform the analysis. Maximizes the chances
Locate Deadlocks and the analysis will fail because the system may run out of
Data Races resources.

You can find more details on exactly what options each analysis type uses in the section “Creating a
Custom Analysis” later in this chapter.

If you are working on very large applications, it is best that you perform your first analysis using the nar-
rowest scope level, and then when you have fixed all the problems at one scope level, move on to the next.

DETECTING THREADING ERRORS

You already know how to run a threading analysis session; you did this back in Chapter 3. Using
Listing 8-4 (at the end of the chapter), this section reminds you how to look for threading errors.
You can try this analysis out for yourself in Activity 8-1 and Activity 8-2.

Types of Threading Problems

Inspector XE can report the following types of problems:

» Thread information

> Potential privacy infringement
> Data races

> Deadlocks

Thread Information

Inspector XE provides information about the location and number of threads created during the exe-
cution of the program; it does not mean that there is a problem. Typically in a parallel program, a pool

220

| CHAPTER8 CHECKING FOR ERRORS

of threads is created, with the number of threads based on the number of cores in the machine or a
user-specified number. If Inspector XE reports only a single thread being created, you may be running
a serial program or be executing on a single-core machine. For some parallel models, for example,
OpenMP, you also need to specifically enable the right compiler options to enable the parallelism.

Potential Privacy Infringement

Privacy infringement can occur when one thread accesses the stack memory of another thread.
Inspector XE reports a potential problem when it detects variables of one thread being accessed by
another thread. This is actually a remark only, giving an advisory message that there may poten-
tially be some problem; in many cases it may not matter. Accessing cross-stack data can cause unex-
pected behavior, including a crash, if no protocols are in place to ensure safe accesses.

Variables involved in data races can be the cause of privacy infringements. Where possible, it is bet-
ter not to allow threads to share variables on the stack.

Data Races

A data race occurs when multiple threads are trying to access the same memory location without
proper synchronization — for example, when one or more threads is reading a variable while another
thread is concurrently writing to it. Threads that read the variable before the writing thread updates
the variable will obtain a different value from any threads reading the variable after the update.

Deadlocks

A deadlock is a situation where one thread is waiting for another thread to finish with a mutually
exclusive resource, while at the same time that thread is waiting for the first thread to finish with its
mutually exclusive resource. Neither thread can finish; therefore, a deadlock ensues.

Deadlocks are a common problem in multiprocessing, and are particularly troublesome because
there is no general solution to avoid them.

An Example Application Involving Deadlocks

The code in Listing 8-4 uses approximate integration to calculate the values of pi. Figure 8-2 shows the
principle used. By adding up the area of each bar under the curve, an approximation of pi is calculated.

The code is parallelized using the OpenMP sections directive, but it has errors. The code is not
intended to be an example of how to write good threaded code; rather, it is written to help dem-
onstrate the different threading errors that you can detect in Inspector XE. The following lines in
Listing 8-4 provide the parallelism:

> Line 32 — The for loop is responsible for iterating over every bar. On each iteration of the
loop, the area of four bars is calculated.

> Lines 35-63 — The OpenMP sections directive contains two section directives. Each
section runs in parallel and calculates the area of two bars. The results of the calculations
from each section are stored by calling the safeadd () function.

> Lines 10-18 — The safeadd () function adds the values held in the parameters sum1 and
sum? into the global variables gsum1 and gsum2, respectively. Two OpenMP locks, 1ock1
and lock2, are used to protect access to the two global variables.

Detecting Deadlocks | 221

4.0 T~
We know that: N

1

j 40 ™
(1+x?) = XY

0

4.0/(1+x?)
P

We can approximate the integral as a 204
sum of rectangles: ’
I
=
g
N
2 F(x)Ax = 1
i=0
Where each rectangle has width Ax and
height F(x;) at the middle of interval i. 0.0 X 1.0
Parallel Sections: 1 2 1 2
_Y_J _Y_J
Loop lterations: (0] 1

FIGURE 8-2: Calculating pi

Because of the programming errors in the code, the program will not run correctly. Figure 8-3
shows the output from the program once you have corrected all the errors.

&3 Intel Parallel Studio XE [E=REEE

Calculating Pi ...
i: 3.141592653641859900000

L

FIGURE 8-3: The output window of the application

DETECTING DEADLOCKS

Detecting deadlocks using Inspector XE is straightforward. Even if a deadlock does not actually
happen, you should be able to detect it — that is, as long as you have executed the code path on

which the deadlock resides.

When you run the pi program from Listing 8-4, you will see that the log reports a deadlock, as
shown in Figure 8-4.

The Summary window shows the results of running a Detect Deadlocks analysis on the

code from Listing 8-4 in more detail (see Figure 8-5). The two reported problems, P1 and P2,
are related. P2 is a deadlock and is caused by the lock hierarchy violation, as reported in
problem P1. The snippets of code in the Code Locations pane show the source of the p2
deadlock problem. In total, six observations associated with the deadlock are detected,

and are labeled x7 to x12.

222 | CHAPTER8 CHECKING FOR ERRORS

Sometimes you will find it useful to look at the Timeline view (see Figure 8-6). You can access the
Timeline view by clicking the Timeline tab at the top right of the Code Locations pane.

& Warning occurred during analysis

Deadlock was detected. Analysis terminated.

@ Error detected during analysis

Analysis terminated abnormally.

v Target finished running

FIGURE 8-4: The log report from Inspector XE

o g

™ Detect Deadlocks Intel Inspector XE 2011
& Target Analysis Type B Collection Log m
Da @ Problem Sources Modules State Severity
PL & Lock hierarchy violation pi.cpp CHB.exe New Error 1item(s)
P2 dlock CHE8.exe New | Warning 1 item(s)
Problem
B Lock hierarchy violation 1 item(s)
ID Description .« Source Function ~ Module Deadlock 1item(s)
|EX9 Alloationsite & picpp:28 main Source
geum2=0.0; pi.cpp 2 item(s)
it lock (klockl); Rlodule
ey sk (el CHB.exe 2item(s)
29 omp init lock (klock2) ;
30 printf("Caleulating Pi ...\n"); State
— > . New 2item(s)
EIX10 Allocation site B pi.cpp:29 main CHB.exe
27 | Suppressed
28 omp_init lock (&lockl); 3 ‘ Not suppressed 2item(s)
29 omp init lock(&lock2); Investigated
30 printf{("Calculating Pi ...\n"); Not investigated 2item(s)
31 step = 1.0/ (double) num steps;
EIXT Lotk owned pi.cpp:ll SafeAdd CHB.exe
9 {
10 // lock gsuml and update
ahil omp_set lock(&lockl };
12 gauml += suml;
13 // lock gsum? and update
EIX11 Lock owned pi.cpp:ll SafeAdd CHB.exe
9 {
10 // lock gsuml and update
11 omp set lock(&lockl);
12 gauml += suml;
13 [/ lock gsum2 and opdate
EIX8 Lock wanted picppil4 SafeAdd CHB.exe =

FIGURE 8-5: Code snippets related to the P2 deadlock

Detecting Deadlocks | 223

Timeline “ Code Locations / [Timeing] 7
QOO ?5‘% I I I I B80% I I I I 85‘% I I I I 90% I I I I 95% I I I I
main (8152)

(OMP Worke...

X9:Allocatiion Sitee
X1@AlpeatieinSitee

XX7lodk Owned XN Lodk Owned
XX2 Lock Wanted X 8licodk Wanted

l [1] ¢

FIGURE 8-6: The Timeline view

The two horizontal bars are the two threads that were running. The four diamond markers show
the time where the six events (x7 to x12) happened. Events x9 and x10 are located at the first dia-
mond. If you hover the mouse over the diamond markers, the names of the events are displayed. If
you then examine the locks associated with these six events, by looking at the code displayed in the
Code Locations pane (as in Figure 8-5), the sequence of events looks like this:

First event, X9, Thread 0: Allocation Site - 1ockl

Second event, x10, Thread 0: Allocation Site - 1ock2

Third event, x7, Thread 0: Lock Owned - 1ock1

Fourth event, X11, Thread 1: Lock Owned - lockl

Fifth event, x12, Thread 0: Lock Wanted - 1ock2

Sixth event, X8, Thread 1: Lock Wanted - 1ock2
You immediately should be suspicious of what you see:

> Apparently both threads own 1lock1 (at events x7 and x11). This is impossible; two threads
cannot own the same lock at the same time.

> No thread owns 1ock2, yet the lock is wanted at x12 and x8.

Something must be really wrong with the program. With a bit more investigation you will real-
ize that the cause of the problem is the order in which the locks are being used when calling the
Safeadd () function. The order of the locks has been accidently swapped in Lines 48 and 61 of
Listing 8-4:

48: SafeAdd (suml, sum2, lockl, lock2) ;
61: SafeAdd (suml, sum2, lock2, lockl) ;

You can resolve the deadlock problem relatively easily. If both threads use the same locks in the
same order, no deadlock will result. By changing the order of the parameters 1ock1 and 1ock2 so
that both calls to safeadd () use them in the same sequence, you can fix the deadlock:

48: SafeAdd (suml, sum2, lockl, lock2) ;
61: SafeAdd (suml, sum2,lockl, lock2) ;

This was a relatively simple case. However, deadlocks can be very difficult to detect without the
right tools, which is where the use of Inspector XE comes into its own.

224 | CHAPTER8 CHECKING FOR ERRORS

ACTIVITY 8-1: DETECTING AND FIXING A DEADLOCK

In this activity you use Inspector XE to detect and fix a deadlock. You can run this
activity on Linux or Windows.

Building and Running the Program

1. Copy the source code in Listing 8-4 into a file named pi . cpp.

2. Open an Intel Parallel Studio XE command prompt.

3. Build the program with the following command:

WINDOWS
icl /0d /Qopenmp /Zi pi.cpp -o 8-1l.exe

LINUX

icc -00 -openmp -g pi.cpp -o 8-1.exe
4. Run the program:

8-1.exe

You should see that the program will hang.

Detecting and Fixing the Deadlock
5. Start the Inspector XE GUI from the command line:
inspxe-gui
6. Create a new project named Chapter 8:
> Select File & New = Project.
> In the Project Properties dialog, fill in the application details.
7. Carry out a Detect Deadlocks analysis:
> Select File & New = Analysis.
> Highlight the Detect Deadlocks analysis.
> Make sure the Terminate on Deadlock box is selected.
> Click the Start button.

8. After the analysis is displayed, look at the problem(s) reported to ensure you
understand the issue.

9. Fix the deadlock issue by editing lines 48 and 61 of pi . cpp to look like this:
48: SafeAdd (suml, sum2, lockl, lock2) ;
61: SafeAdd (suml, sum2, lockl, lock2) ;

10. Rebuild the application (see step 3 and step 4) and then run the program. The
program should run to completion without hanging.

11. Rerun the deadlock analysis (see step 7). No errors should be reported.

In this activity you used Detect Deadlocks analysis to find the deadlock. The
program also has a data race, but it was not detected. In Activity 8-2, you use
Inspector XE to detect and fix the data race.

Detecting Data Races | 225

DETECTING DATA RACES

Once the deadlock from Listing 8-4 has been fixed, it’s time to look for any data races by running
the Detect Deadlocks and Data Races analysis. The steps are identical to what you did when you ran
a Detect Deadlocks analysis, except you choose a different prebuilt analysis type.

Running the Threaded Program

Before running the analysis you should run the program several times to see if the results are
deterministic. Table 8-2 shows the value of pi for ten runs of the program. In the first five runs, the
program ran in parallel; in the last five runs, only one thread was made available by setting the
OMP_NUM_THREAD=1 environment variable. You can see that when the program runs with more than
one thread, the value of pi varies.

TABLE 8-2: The Value of pi

ATTEMPT # VALUE OMP_NUM_THREADS
1 3.145416887792414700000 Not Set
2 3.141616771104690700000 Not Set
3 3.141592656670666500000 Not Set
4 3.142346075956167900000 Not Set
5 3.142247551357102900000 Not Set
6 3.141592653641859900000 1

7 3.141592653641859900000 1

8 3.141592653641859900000 1

9 3.141592653641859900000 1

10 3.141592653641859900000 1

First Results of the Analysis

When you run a Detect Deadlocks and Data Races analysis, you should get results similar to Figure 8-7.
Three data races, P1, P2, and P3, are detected. With the P1 error highlighted, you can see that the prob-
lem is related to simultaneously reading from and writing to the variable x1. Similarly, P2 and P3 relate
to variables x2, sum1, and sum2.

You can fix these data races by modifying line 35 so that each thread has its own private copy of x1,

x2,suml,and sum2:

35: #pragma omp parallel sections private(xl,x2,suml, sum2)
With the problem fixed, when you rerun the program you will see that:
> The value of pi stays the same value when you run the program several times.

> Running a fresh Inspector XE analysis gives the result “No Problems Found.”

226 | CHAPTER8 CHECKING FOR ERRORS

IDa an Problem Sources Modules State

P2 @ Data race pi.cpp CH8.exe New
P3 @ Data race pi.cpp CH8.exe New

S

[Codeliocations)/ Timeline ¥

ID Description 4 Source Function Module =

26 gaum2=0_0;

27

23 omp_init lock (&lockl) ;

23 omp_init lock (&lock2) ;

30 printE{"Calculating Pi _..\n"}; =
[=1X2 Read pi.cp.. L__main_35__par_secti.. CH3.exe i

29 [/ calculate firat bar

40 x1 = (i+ 0.5)*atep;

41 x1*=xl;

42 suml = 4.0/(1.0+x1);

43 |
=19 Read pi.cp.. L__main_35__par_secti... CHB8.exe

52 f{ calculate third bar

53 x1 = (i+ 2_.5)*atep;

54 ®1*=xl1;

L1 suml = 4_0/(1.0+x1);

5&
EIX1 Write pi.cp... L__main_35__par_secti... CH8.exe

38 | 3

ek} PP Wt I SO N o e N e

FIGURE 8-7: Three data race problems are revealed after the resolving deadlock

You can try out these steps for yourself in Activity 8-2.

ACTIVITY 8-2: DETECTING AND FIXING DATA RACES

In this activity you use Inspector XE to help detect and fix a data race. You can run
this activity on Linux or Windows.

Building and Running the Program

1. Continue to work with the modified version of Listing 8-4. This step assumes
you have fixed the deadlock identified in Activity 8-1.

2. Build the program 8-2.exe with the following command:

8-2.exe

WINDOWS

icl /0d /Qopenmp /Zi pi.cpp -0
LINUX

icc -00 -openmp -g pi.cpp -0 8-2.exe

3. Run the program several times to make sure it works:

8-2.exe

4. Set the number of threads to be 1 using the OMP_NUM_THREADS environment
variable, and then run the program several times and note its behavior:

Detecting Data Races | 227

WINDOWS

set OMP_NUM_THREADS=1
8-2.exe

LINUX

export OMP_NUM_THREADS=1
./8-2.exe

Detecting and Fixing the Data Race

5. Carry out a Detect Deadlocks and Data Races analysis in Inspector XE (in the
Inspector project you created in Activity 8-1):

> Select File & New > Analysis.
> Highlight the Detect Deadlocks and Data Races analysis.
> Click the Start button.

6. After the analysis is displayed, look at the problem(s) reported. Make sure you
understand the issues.

7. Fix the data races by editing line 35 of pi . cpp to look like this:
BEE #pragma omp parallel sections private(xl,x2,suml, sum2)

8. Repeat steps 2 to S to confirm that you have fixed the data races.

Controlling the Right Level of Detail

The pi program is very small and has only a few data races. You may have many more errors in your
programs. You need to avoid two extremes when analyzing your code:

>

>

Failing to test all the code paths

Collecting and/or displaying too much information

Testing All the Code Paths

When you perform an analysis, it’s important that you choose the right test data so that all your code
paths are executed. You might find it quite hard to test some of your code, especially if it is in a path
that is not normally executed (for example, error handling code). To help overcome this, you can:

>

Build your program in debug mode with optimization disabled — This ensures that none of
your code paths are optimized away, and all the functions and symbols will be available in
your results. For example, no inlining of functions will occur.

Write test cases that exercise the less obvious paths through your code — That is, manipulate
the data to force the program to run down the obscure pathways through your code. Don’t
assume a pathway will never occur in general operation; they always will.

Do a Static Security analysis — As described in Chapter 5, “Writing Secure Code,” this kind
of analysis tests all the paths in the code, although it cannot detect every kind of threading
problem. Some problems can be detected only when you actually run your program.

228 | CHAPTER8 CHECKING FOR ERRORS

Avoiding Being Overwhelmed by the Amount of Data

The more information you collect, the slower your analysis session will take to run. The analysis
might even fail to complete if you generate too much data. Strategies you can use for reducing the
amount of data include:

> Use a minimum test set. For example, where a loop is involved, reduce the loop count to a
minimum.

> Don’t use a higher depth of analysis than you need. Deeper depth investigations take longer
and generate more data. In the predefined analysis pane, the first items in the list are the ones
that have the lowest overhead. See the “Creating a Custom Analysis” section for more infor-
mation on what each analysis type contains.

> Use the one-click filters to display a subset of the results. You can filter the results based on
severity, problem type, source file, module, state, and suppression mode. You can read more
about the one-click filters in the “Investigating the Results of the Analysis” section in
Chapter 5.

> Use suppression files where large numbers of problems exist to help reduce the information
to manageable chunks.

Using Suppression Files

The threading example used in this chapter is fairly simple and creates only a few errors that can be
easily managed. In other, more complex and extensive situations, the sheer quantity of problems and
observations may well overwhelm and confuse you. You may also know that some errors are false
positives and can be ignored.

Creating Suppression Files

You can suppress problems and observations in Inspector XE using suppression rules. In effect,
these rules declutter the overview of problems and their observational events, making it easier for
you to focus on a subset of the problems reported. You can experiment with suppression rules by
using the output from Activity 8-1 (refer to Figure 8-7).

Assume that you want to suppress the results of the first data race, P1. To do this, perform the fol-
lowing steps:

1. Click the data race p1 within the Problems pane.

2. Right-click the first observation event (x15) within the Code Locations pane, and select
Suppress from the drop-down menu.

In the Create Private Suppression window (Figure 8-8), three related observations are
checked. The rule will take effect only when all the selected observations are present. You
can selectively choose whether to have all entries or just one entry checked.

3. Note the default file being used, default.sup. You can change this to one of your own, if
required.

4. Click the Create button.

Upon creating this new suppression rule, the summary display will be changed, as shown in
Figure 8-9. Notice that P1 and its associated observations have been crossed through.

Detecting Data Races | 229

-
Create Private Suppression _I_ - l [T [

MName: Private Suppression

Check the observation(s) that compose the rule; click a cell to change to/from * (any).

Problem Description Module Function Source Line

|1 | Data race| HINT: Synchronization.. 8-Lexe_main _________|picpp |28 |
Data race Write 8-l.exe L_main_35 par secti.. picpp 53 I
Data race Write B8-lexe L__main_35__par_secti.. picpp 40

All checked observations must be true for the rule to take effect. i

(|
|| Suppressing a module [all cells show * (any) except Module] may reduce collection time
during the next analysis run.

Savein: defaultsup -

!
—

FIGURE 8-8: The pop-up window for creating private suppressions

&, Problem Sources Modules State
£ ® Pataface phepp SLexe Hew
P2 @ Data race pi.cpp B-l.exe New
@ Data race pi.cpp B-l.exe New

Function

Source

gaum2=0.0;
27
28 omp init lock (&lockl) ;
23 omp_init lock (klock?2) ;
30 printf{"Calculating Pi ...\n"};
X2 Read pi.cp ... L_main_35_par_secti.. 8-Lexe |-
39 /!t calculate first bar
40 x1 = {i+ 0.5)*atep;
41 x1*=x1;
42 suml = 4._0/(1.0+x1);
43
EIX9 Read pi.cp.... L__main_35__par_secti... 8-Lexe
52 /f calculate third bar L4
53 x1 = {i+ 2_5)*atep;
54 x1*=xl;
55 suml = 4.0/(1.0+x1) ;
56

FIGURE 8-9: Simple suppression of the first data race

Deleting Suppression Files

To remove the private suppression rule you just made:
1. Right-click, as before, on an observation.

2. In the drop-down menu, select Do Not Suppress.

3. In the pop-up window, check the box next to the filename and click the Remove button.

After you have removed this suppression rule, notice that problem p1 and its associated observations

are no longer crossed through.

230 | CHAPTER8 CHECKING FOR ERRORS

Suppressing by Type Rather Than by Instance
You can also choose to suppress not just a single occurrence of a type of problem, but all occur-
rences of the type:

1. Click the first data race (p1) within the Problems pane.

2. Right-click the first observation event (x15) within the Code Locations pane, and select
Suppress from the drop-down menu.

3. In the Create Private Suppression window, click the line numbers and select * (any) (see
Figure 8-10).

4. Click the Create button.

-
Create Private Suppression — - _I (Bt

Mame: Private Suppression

Check the observation(s) that compose the rule; click a cell to change to/from * (any).

Problem Description Module Function Source Line
I Data race HINT: Synchr... 8-Lexe main pi.cpp * {any)
Data race Write 8-Lexe L__main_35__par_s.. pLcpp * (any) I
El |osacacdwote —[texe |1_main 35 par=_ prcpp |~ rv B
All checked observations must be true for the rule to take effect. i

|| Suppressing a module [all cells show * {any) except Module] may reduce collection time
during the next analysis run.

Savein: defaultsup

-

h -

FIGURE 8-10: Suppressing all data races

A new suppression rule is created suppressing all data races. You should notice that all three data
race problems have now been crossed through. Once you have created the suppression rules, the
next time you run an analysis all the suppressed problems will be ignored.

Changing the Suppression Mode
You can use the Project Properties window to change how the suppression rules are used (see
Figure 8-11). Three options are available from the Suppression mode drop-down menu:

> Do not use suppressions — Use this if you want to ignore all suppressions.

> Mark problems — Displays the problems and associated events with each item being written
through.

> Delete problems — This is the default behavior. Any events that match the suppression rules
will not be displayed. There will be no hint that they have been supressed!

When a suppression file is being used, and you use Delete problems suppression
mode, it is almost impossible to tell from the results of any analysis that some
errors have been deleted. It is strongly recommended that as a sanity check, you
should always run a final analysis with the suppression mode being either Do not
use suppressions or Mark problems.

Detecting Data Races | 231

8-1 - Project Properties EETETFY BT 5 B - P 5

Target Suppressions Search Directories

Launch Application
Specify and configure application you want to analyze. Press F1 for more details.

[¥] Inherit settings from Visual Studio® project: 8-1
Application: ‘C\Users\sblairch\Documents__Articles\Books\Intel Parallel Studio 2011\Book Chapters\12_Chapter 8 - Checking fo
Application parameters:

‘Working directory: C:\Users\sblairch\Documents__Articles\Books\Intel Parallel Studio 2011\Book Chapters\12_Chapter 8 - Checking fo

Inherit system environment variables

m

(@ Store result in the project directory: ~ C:\Users\sblairch\Documents__Artides\Books\Intel Parallel Studio 2011\Book Chapters\12_Chapter |

() Store result in (and create link file to) another directory

Result location:
‘CAUsers\sblairch\Documents__Articles\Books\Intel Parallel Studio 2011\Book Chapters\12_Chapter 8 - Checking for Errors\projects\CHE\8-1\N

) Advanced

Microsoft* runtime environment: | Native only b

Child application:

Suppression mode:
Do not use suppressions e
Mark problems ——————
b o
= -

FIGURE 8-11: Changing how suppression filters are used

Suppressing known problems can aid with development. If you are already aware of certain prob-
lems, you can suppress them, which enables you to focus on and fix those problems of which you
were not aware. At the end of this chapter is a discussion on different ways of fixing data races in
Cilk Plus, OpenMP, and TBB.

The next section of this chapter shows how to detect memory errors. Before you read that, however,
you can use Activity 8-3 to experiment with suppression files.

ACTIVITY 8-3: USING THE SUPPRESSION FILTERS

Creating a Suppression Rule
1. Repeat Activity 8-1.
2. Suppress the data race problem p1:
> Right-click one of its observations in the Code Locations pane.
> Select the Suppress option from the drop-down menu.
> In the Create Private Suppression window, click the Create button.

The first data race problem (P1) and its observations should now be crossed
through.

continues

232 | CHAPTER8 CHECKING FOR ERRORS

continued

3.

Run a new analysis:

>
>

>

Select File &> New = Analysis.
Highlight the Detect Deadlocks and Data Races analysis.
Click the Start button.

You should notice that all the previous errors are no longer displayed.

Deleting a Suppression Rule

4.

6.

Start a new analysis, but before clicking the Start button, modify the suppres-
sion mode in the Project Properties window:

>
>
>
>

>

Select File &> New ©> Analysis.
Highlight the Detect Deadlocks and Data Races analysis.
Click the Project Properties button.

In the Advanced section of the Project Properties dialog, set the suppres-
sion mode to Mark problems, and then click OK.

Click the Start button.

In the new analysis:

>

>

Right-click one of its observations within the Code
Locations pane.

Select the Do Not Suppress option from the drop-down menu.

In the Delete Private Suppressions window, check the box for the name of
the file (in the top half of the window).

Click the Remove button.

The first data race problem (P1) and its observations are no longer crossed
through.

Run a new analysis.

You should see that the P1 problem is now displayed.

Suppressing by Type

7.
8.

Delete all the suppression rules (as in steps 4 to 6).

Run a new analysis, but before you click Start, make sure that Delete problems
is selected in the Project Properties window.

Suppress all data races:

>

>

Select the p1 data race problem.

Right-click one of its observations within the Code
Locations pane.

Fixing Data Races | 233

Select the Suppress option from the drop-down menu.

> In the Create Private Suppression window, click in the line number col-
umn of the first entry. This enables you to access a drop-down menu,
where you should select * (any) .

> Repeat this for the remaining lines.
> Click the Create button.

All data race problems are now shown as crossed through. Notice that the Read
observation of P1 problem that is not crossed through. This is because when you
created the suppression rule, the lines all had the write description.

10. 1If you like, you can re-create the suppression rule and change the write entries
to * (any), as in step 9. Now all observations will be suppressed.

FIXING DATA RACES

After detecting deadlocks or data races in your program, you need to fix them. Cilk Plus, OpenMP,
and TBB each have their own constructs that will help. Don’t forget that you can borrow constructs
from one parallel model and use them in another (see the section “Choosing the Right Parallel
Constructs” in Chapter 1).

You can use the following strategies to deal with data races:
> Use local variables rather than shared variables.
Restructure your code or change your algorithm.
Use objects that are designed to be safely shared across threads.

Use atomic operations.

Y Y VY

Use locks or other synchronization constructs to enforce mutual exclusion.

Before deciding to use a construct, you should see if you can fix your data race problem by using
local variables or restructuring your code.

Using Cilk Plus
You can use three different kinds of Cilk Plus objects to handle shared data:
> Reducers
> Holders
> Home-grown reducers

Home-grown reducers are not covered in the book. You can find more information about them in
the online help that is distributed with the Intel compiler.

Cilk Plus does not have any locks available, but you can use synchronization objects from TBB or
system locks provided by the OS.

234

| CHAPTER8 CHECKING FOR ERRORS

Cilk Plus Reducers

Cilk Plus reducers are objects that address the need to use shared variables in parallel code.
Conceptually, a reducer can be considered to be a shared variable. However, during run time each
thread has access to its own private copy, or view, of the variable, and works on this copy only. As
the parallel strands finish, the results of their views of the variable are combined asynchronously
into the single shared variable. This eliminates the possibility of data races without requiring
time-consuming locks.

Listing 3-3 in Chapter 3 uses a cilk: :reducer_opadd to overcome the data races caused by the
sum and total shared variables. Each type of reducer has its own default initialization value, but
you can initialize them yourself when they are declared. In Listing 3-3 the values are explicitly set to
zero (which also happens to be the default value for the reducer_opadd):

// define check sum and total as reduction variables

cilk::reducer_opadd<long int> sum(0);
cilk::reducer_opadd<double> total(0.0);

Each type of Cilk Plus reducer has its own header file that should be included. For the
reducer_opadd this is:

#include <cilk/reducer_opadd.h>

To obtain the final merged values of the reduction variables, use the get_value () method:

printf ("Time Elapsed %$10d mSecs Total=%1f Check Sum = %$1d\n",
(int)elapsedtime, total.get_value(), sum.get_value());

If none of the reducers available in the Cilk Plus reducer library fit your need, you can write your
own. You can find an example of writing your own reducer in the online help that is distributed
with the Intel compiler.

Cilk Plus Holders

Holders are similar to Cilk Plus reducers in that you can use them to provide variables that can
be used in parallel code. However, Cilk Plus holders do not preserve all the views beyond the
parallel strands. One view will be maintained, based on the holder policy, which can be one
Ofholderfkeepfindeterminate,include holder_keep_last, holder_keep_last_copy,
holder_keep_last_swap, and holder_keep_last_move. For more information on these poli-
cies, refer to the Intel compiler online help. The default policy in the template definition is
holder_keep_indeterminate

template <typename Type,
holder_policy Policy = holder_keep_indeterminate,
typename Allocator = std::allocator<Type> >
class holder

{
//etc.

Y

You can use holders to provide the equivalent of thread-local storage. You can even wrap hold-
ers with your own class to reduce the amount of code edits you have to make. Chapter 16,
“Parallelizing Legacy Code,” contains an example of defining your own wrappers.

Fixing Data Races | 235

Listing 8-1 gives an example of using Cilk Plus holders and how you can create your own wrapper.

\) LISTING 8-1: Using Cilk Plus holders

Available for
download on
Wrox.com

#include <cilk/holder.h>

cilk::holder<int> g;

// code that uses Cilk Plus holder

void testl()
{
int 1i;
g() = 8;
cilk_spawn|]
{
g()=100;
i=g0;
YO) s
g()= 37;

cilk_sync;

// template for wrapper
template <typename T>
class myholder

{
private:
cilk::holder<T> m_holder;
public:
myholder<T> & operator=(const T &rhs)
{
m_holder () = rhs;return *this;
}
operator T &(){return m_holder();}
Y

// code that uses the wrapper

: myholder<int> h;
: void test2()

{
int 1i;
h = 8;
cilk_spawn]]

cilk_sync;

code snippet Chapter8\8-1.cpp

236 | CHAPTER8 CHECKING FOR ERRORS

Line 3 declares a cilk: :holder, which is used in the cilk_spawn/cilk_sync parallel code
(lines 10-16). Notice that to access the values of the g variable, the function operator has to be used:

12: g()=100;
13: i=g0);

At line 34, the n variable uses a wrapper template, the wrapper being defined in lines 20-31. You
will immediately notice that the access to the h variable does 7ot need to use a function operator:
41: h=100;
42 i = h;

Both the cilk: :holder and the myholder templates provide variables that are safe to use in
parallel code. Each parallel strand treats the variables as its own private variable without any data
races occurring.

Using OpenMP

OpenMP provides a number of constructs that you can use to implement mutual exclusion,
including locks, critical sections, atomic operations, and reduction clauses.

Using Locks

You’ve already seen how you can use OpenMP locks to enforce mutual exclusion earlier in the
chapter. Be careful when you use locks; it is very easy to forget to release a lock. Many programmers
prefer not to use any locks in their code. If you can, avoid locks.

Using Critical Sections

The following code shows how you can protect a shared variable with a #pragma omp critical
construct. You could use this code in place of the existing code in lines 10-17 of Listing 8-3. In this
example, the critical constructs have been given a name (you can use any name).

#pragma omp critical (gsuml)
gsuml += suml;

#pragma omp critical (gsum2)
gsum2 += sum2;

Any #pragma omp critical statements that do not have a name are all given the same
anonymous name.

Using Atomic Operations

The following code shows how you can use an atomic operation to enforce mutual exclusion. You
can use atomic operations to protect a memory update. For example, placing the #pragma omp
atomic directive before the variable gsuml ensures that there is no data race:

#pragma omp atomic
gsuml += suml;

#pragma omp critical
gsum2 += sum2;

Fixing Data Races | 237

Atomic operations are much more efficient than using locks or critical sections.

Using a reduction Clause

For an example of using an OpenMP reduction clause, see the section “Parallelizing Loops” in
Chapter 7, “Implementing Parallelism.”

Using TBB

By using the algorithms in TBB, you should be able to avoid concurrent access. TBB also provides a
number of concurrent containers that you can use to avoid data races. The containers are very
similar to the STL containers.

Listing 8-2 is an example of using the tbb: : concurrent_gueue. The queue is first filled with values
from 0 to 99 using queue.push (). Two while loops, each embedded in its own lambda function,
are then executed in parallel using parallel_invoke. Each parallel strand pops values off the queue
until the queue is empty. The try pop () function returns true if an item has been returned from
the queue; otherwise, it returns false.

‘) LISTING 8-2: Using a TBB container

Available for 1: #include <tbb/tbb.h>
dmg?gg,ﬁ" 2: #include <stdio.h>
3: int main()
4. {
5: int a,b;
6: tbb: :concurrent_queue<int> queue;
7: for(int 1 =0; i< 100; 1i++)
8: queue.push (i) ;
9:
10: tbb::parallel_invoke (
11: [&]{
12: while (queue.try_ pop(a)) {
13: printf("a%d ",a);
14: }
15: }
16: [&]{
17: while (queue.try_pop (b)) {
18: printf ("b%d ",b);
19: }
20: }
21:);
22: '}

code snippet Chapter8\Memory8-2.cpp

On rare occasions, you may want to introduce mutual exclusion into your code to prevent some race
condition or enforce some deterministic behavior into your code. You can use TBB mutexes and
atomic operations to enforce mutual exclusion.

238 | CHAPTER8 CHECKING FOR ERRORS

Vaﬂantsofthennnexindudespin_mutex,queueing_mutex,spin_rw_mutex,andqueueing_rw_
mutex. Like all C++ variables, mutexes work within the scope they are declared. Once a mutex goes
out of scope, its destructor is called, which releases the lock.

The atomic<T> template class provides a single atomic operation on a single variable. Methods
induderead,write,fetch—and—add,fetch—and—store,andcompare—and—swap.

Listing 8-3 shows the use of a tbb: :mutex and a tbb: :atomic. Within the ci1k_for loop, three
variables (a, b, and c) are incremented. Variable a is protected by the TBB mutex m. lock () and
m.unlock () methods; variable b is declared to be a tbb: :atomic operation; and variable ¢ has no
protection against data races. When the code is built and run, the values of the incremented vari-
ables are printed to the screen. All the values are incremented 1,000 times, but the value of ¢ will
almost certainly be wrong due to a data race.

‘) LISTING 8-3: Using TBB locks

Available for #include <cilk/cilk.h>
dm’.};‘?ﬂﬂ,ﬁ" #include <tbb/mutex.h>

1

2

3: #include <stdio.h>

4: int main()

5: {

6 int a = 0;

7 tbb::atomic<int> b;
8

b = 0;
9: int ¢ = 0;
10: tbb::mutex m;
11:
12: cilk_for(int i =0; i< 10000; i++)
13: {
14: m.lock();
15: a++;
16: m.unlock () ;
17: b++;
18: Cc++;
19: 1}
20: printf("a:%d, b:%d, c:%d\n",a,b,c);
21:}

code snippet Chapter8\8-3.cpp

DETECTING MEMORY ERRORS

Inspector XE has three predefined analysis types dedicated to finding memory errors (refer to Figure 8-1):

> Detect Leaks — Use this to detect where memory or resources are allocated but never
released. This is the narrowest scope of analysis and will have the least impact on your code.
For large applications, it is best to start an analysis with this type.

> Detect Memory Problems — Use this to detect memory leaks (as in the previous bullet) and
invalid or uninitialized access to memory.

Detecting Memory Errors | 239

Locate Memory Problems — Use this to perform the most detailed analysis. In addition

to detecting memory problems, the analysis has enhanced checks for dangling pointers (a
pointer that has been used after it has been freed) and enables guard zones. Inspector XE
adds guard zones to the end of allocated memory to test for any memory access that strays
beyond the end of a memory block. Of the three analysis types, this analysis will have the
most impact on your application. On large applications, the analysis may fail due to
insufficient resources.

Types of Memory Errors

You can use Inspector XE to detect memory errors in both parallel and nonparallel code. Parallel
programs can be much more sensitive to memory errors than serial programs. A memory error
often can introduce unpredictable behavior; when you run a program with a memory error, it’s
not always obvious that there is a problem. It is important that you don’t forget to run a memory
analysis on your code.

You can detect several types of memory errors, including the following:

>

GDI resource leak — This occurs when a Graphics Device Interface (GDI) object is created
but never deleted.

Incorrect memcpy call — This occurs if you use the memcpy function with two pointers that
overlap. This error is checked only on Linux systems; on Windows, the overlapping of
memcpy pointers is considered safe.

Invalid deallocation — This happens when you try to call a deallocation function with an
address pointing to memory that has not been allocated dynamically.

Invalid memory access — This occurs when a read or write instruction references invalid
memory. This can happen, for example, when you use stale or dangling pointers. A dangling
pointer is one that has been freed but has not been set to the value NULL.

Invalid partial memory access — This occurs when a block of memory is accessed that is
partially invalid. Often the cause of such errors is the miscalculation of the size of an object
before dynamically allocating it.

Kernel resource leak — This happens when a kernel object handle is created but never
closed.

Memory growth — This happens when memory is allocated but not deallocated during
application execution. For example, the continual allocation of memory in a loop without the
memory being deallocated will lead to memory growth.

Memory leak — This occurs when a block of memory is allocated but never released.

Mismatched allocation/deallocation — This happens, for example, when you attempt to
deallocate memory with the delete function that was allocated with the mal1loc function.

Missing allocation — This occurs when you attempt to free a previously freed block of
memory, or free a memory block that was never allocated.

240 | CHAPTER8 CHECKING FOR ERRORS

Uninitialized memory access — This occurs when you read memory that has not been initial-
ized (for example, when you dynamically create a block of memory and start reading from it
without first initializing its values).

Uninitialized partial memory access — This occurs when you read memory that has been
only partially initialized (for example, if you dynamically create a struct but initialize only
some of the members, and start reading from one of the uninitialized members).

An Example Application for Memory Analysis

Listing 8-5 (at the end of the chapter) shows an example program that reveals several types of

memory errors. Each potential memory error has been explicitly commented on within the example
program. The program has an outer loop within which the following actions take place:

>

Line 23 — A drawing object is created, but never deleted. This creates a GDI resource leak,
where each iteration of the outer loop uses up more resources allocated for graphical pur-
poses. Eventually, the limits of these resources will be used up and the program will stop.
These types of memory errors are notoriously difficult to detect because they do not affect the
correct operation of the program; only after the program has been running for some time will
graphical allocation limits be reached and the program stop running. This code is included
only if you are building under Windows.

Line 26 — A region of memory in heap space is reserved by the dynamic allocation call

to calloc and used as a temporary array to hold data for some calculations that follow.
However, the space is never freed. Each iteration of the outer loop will reserve a new region
of heap without freeing the previous ones. This is a memory leak. Unless corrected, eventu-
ally all the heap space will be used up. Again, this sort of error does not affect the immediate
running of the program; only later, when all the heap space has been consumed, will the pro-
gram fail to carry on running.

Line 35 — A second region of heap space is reserved and used as another temporary array.
However, the program accesses the array with an index beyond its limits (lines 40-43). This
is an invalid memory access error. Pointer operations of this type would not be picked up by
the compiler.

Lines 42 and 45 — This second reserved space is then released; however, the released pointer
is then used to access memory. This is another invalid memory access error.

Line 47 — An attempt is then made to free the second reserved space again, which creates a
missing allocation error. Although this will not affect the outcome of the program or stop its
operation, it does use up valuable executing time.

Line 48 — An uninitialized pointer is then used to allocate memory. This is another invalid
MEMmOry access error.

Because these activities lie within a loop, any activities not tightly controlled will be found by the
inspection — for example, allocation of heap space without associated release of this space.

As before, with the threading errors example, it is advisable to use a small representative data set when
inspecting. To this end, the example program has been altered to run only once through its outer loop.

Run a new inspection of the example program using Inspector XE’s Locate Memory Problems anal-
ysis, the fullest and most comprehensive analysis possible for memory errors (see Activity 8-4).

Detecting Memory Errors | 241

After a successful analysis, the output shown in Figure 8-12 will result. All six possible memory
errors are accounted for, marked as problems P1 to p6 in the Problems pane of the Inspector XE’s
output. Clicking each problem results in the corresponding associated observations event data for
that problem being shown in the Code Locations pane (the lower-left pane).

Locate Memory Problems

@ Target

Analysis Type|| . Collection Log | [e]

IDa @ Problem Sources Modules Object Size State | Severity
PIL @ Missing allocation MemoryError... 8-4.exe New f§ Error 6 item(s)
P2 @ GDlresourceleak MemoryError... B-d.exe New [Problem
P3 @ Invalid memory ... MemoryError... 8-4.exe New GDI resource leak 1 item(s)
P4 @ Invalidmemory ... MemoryError... 8-d.exe New [Invalid memory access Titem(s)
P5 @ Invalid memory ... MemoryError... 8-4.exe New Memory leak 1 item(s)
6 @ Memoryleak MemoryError... 8-d.exe 4000 New Wl Missing allocation 1 item(s)
Source
MemeryErrors.cpp 6 item(s)
Module
8-d.exe 6 item(s)
State
== == New 6 item(s)
Suppressed
ID Descriptiona Source Functi.. Module Object ... Offset gl
= Not suppressed 6 item(s)
EIX Deallocation site [MemoryError... main ~ 8-d.exe)
43 1
% } Not investigated 6 item(s)
45 free(ptr_another_space);
46 *ptr_another space = 7;
47 free(ptr_another_space);:
EIX Invalid dealloca... [F] MemoryError... main 8-d.exe
45 free(ptr_another_space);
46 *ptr_another space = 7;
47 free(ptr_another_space);
48 *ptr = 5;
49 i

FIGURE 8-12: Inspector XE output from the memory errors example

The Filters pane shows a summary of problems, including how many of each. To filter the problems
by type, you can just select (by clicking) one of the problem types. For example, clicking on Invalid
memory access results in Figure 8-13, which shows only invalid memory access errors. Filtering like
this concentrates the mind onto a particular error type, before moving onto the rest. Clicking the
All button brings all the memory problems back.

Intel Inspector X€ 2011

Locate Memory Problems

Analysis Type || 2 Collection Log m

7| Filters

@ Target

D~ @ Problem Sources Modul... Object S... St.. l Severity
P2 @ Invalid memor.. MemoryErr... 8-d.exe Ne. | Error 3 item(s)
P4 @ Invalid memor.. MemoryErr... 8-4.exe Ne. | T Al
5 @ Invalid memor... MemoryErr... 8-4.exe Ne. Invalid memory access 3 item(s)
Source
MemoryErors.cpp 3 item(s)
HModule
8-d.exe 3 item(s)
D Descrip.. Source Functi... Mod... Object.. Offset * [l St
= - R New 3 item(s)
EIX Allocation ... [F| Memor... main 8-d.exe
33 1 3
= Mot suppressed 3 item(s)
35 ptr_another space = (int *)callec(STOR Investigated
38 if(ptr_begin space == NULL | Not investigated 3 item(s)
ar printf("Unable to allocate space on
X Write Memor... main 8-4.exe 4000 -

FIGURE 8-13: Filtered memory errors observations

242 | CHAPTER8 CHECKING FOR ERRORS

Clicking one of the squares to the left of any event in the Code Locations pane brings up a snippet
of code that is responsible for that observation. This is demonstrated for problem p4 in Figure 8-14,
where events x4, X6, and x7 have been selected. The summary information to the right has been
closed to give a better view of the code.

Problems 7
Da @& Problem Sources Modules Object Size State
Pl @ Missing allocation MemoryErrors.cpp 8-4.exe New
P2 %] GDI resource leak MemaryErrors.cpp 8-4.exe New
P3 %] Invalid memory access MemaoryErrors.cpp 8-4.exe New
P4 @ Invalid memory access MemoryErrors.cpp 8-4.exe Mew
P5 @ Invalid memory access MemoryErrors.cpp 8-d.exe Mew
Po @ Memory leak MemeryErrors.cpp 8-4.exe 4000 New
=

Code Locations |Code Locations|/ Timeline %
ID Description & Source Function Module ObjectSize Offset
EIX4 Allocation site MemoryErrors.cpp:35 main 8-d.exe

33 1

34

35 ptr_another space = (int *)calloc(STORESIZE, sizeof({int)):

36 n_space == NULL)

n prin nable to allocate space on iteration %d\n", i);
[=/%6 Deallocation site MemoryErrors.cpp:45 main 8-d.exe

43 1

44 i

45 free{ ptr_another space):

48 *ptr_another space = 7;

47 free(ptr_another space);
EX7 Write [l MemonyErrors.cppidé main 8-d.exe

14 1

45 free{ ptr another space);

46 *ptr another spac

47 fre ptr_another space);

48 *ptr = 5;

FIGURE 8-14: Code snippets associated with events of problem P5

Alternatively, you can reveal these same code snippets by double-clicking the problems themselves
within the Problems pane, as shown in Figure 8-15, where problem 1 has been selected. In this
example, the problem x2 occurs when a deallocation was attempted.Also shown is the associated
event x1 where the original deallocation was carried out. Obviously, you cannot deallocate a mem-
ory address that has already been deallocated. You can solve the 1 problem simply by removing the
second deallocation.

The p2 problem is a GDI resource leak, caused by hpefpen (see line 23 of Listing 8-5) being repeat-
edly created but never deleted. As new pens are continually created for each loop iteration, the
graphical resources may eventually be used up, causing the program to fail. Problems of this sort are
notoriously hard to predict.

In this example, although there is only a single outer loop for testing purposes, and therefore the
leak cannot cause a program failure because the closing of the application will automatically release
any resources it uses, Inspector XE will still flag it as a potential problem.

Figure 8-16 shows the code snippet associated with the P2 problem, clearly indicating that there is a
problem with pen creation. You can solve this by deleting the pen at the end of each loop iteration.

Detecting Memory Errors | 243

M Locate Memeory Problems

& Target Analysis Type || . Collection Log ¢ Summary

free(ptr_another space
*ptr_another space = 7:
free(ptr another_ space
*ptr = 5;

free(ptr_another space }:

*ptr_another space = 7;

<] - - o

Intel Inspector XE 2011

&9 Sources

B 2-4.exelmain - Memor,
8-4.exe!_tmainCRTStart
kernel32.d1l!BaseThreac 3
ntdll.dll!RtlnitializeExce
ntdll.dll!RtlnitializeExce ~

B 2-4.exe!main - MemoryErr
8-4.exe!_tmainCRTStartup
kernel32.d1l!BaseThreadni
ntdll.dll!RtlnitializeExcepti
ntdll.dIl!RtlnitializeExcepti

1D Description « Source Function Module Object Size Offset
X1 Deallocation site B MemoryErrors.cpp:45 main 8-4.exe
X2 Invalid deallocation site B MemoryErrors.cpp:47 main 8-4.exe

FIGURE 8-15: Revealing the offending code responsible for the P1 problem

W Locate Memory Problems

& Target Analysis Type|| B Collection Log ¢ Summary | ELREES

i Focus Code Location: MemoryErrors.cpp:23 - Drawing object handle creatio.
printf{ "Detecting Memory Errors >\n\n"):
for{ i=0; i<l; i++)
{

$ifdef _ WINDOWS

nDefpen = CreatePen(PS SOLID, 1, RGB(255, 255, 255)

#endif

ptr begin space = (int *)calloc(STORESIZE, sizeof(int)
if (ptr_begin space == NULL)

28 printf({ "Unable to allocate space on iteration %d\n",
29 elas

4 T L

Description Source Function

B

Medule
X3 Drawing object handle creation s... Bl MemoryErrors.cpp:23 main 8-4.exe

Intel Inspector XE 2011

B 8-4.exelmain - Memory
8-4,exel_tmainCRT5tart
kernel32.dIllBaseThreac
ntdll.dil'RtnitializeExce
ntdll.dll'RtnitializeExce

Object Size Offset

FIGURE 8-16: Revealing the offending code responsible for the P2 problem

The memory leak problems are similarly caused by continuously reserving space within the heap
space without freeing up any of it. Again, eventually all the heap space will be used up and the
application will fail. This is clearly shown for problem p6 by the code snippet shown in Figure 8-17.

244

CHAPTER 8 CHECKING FOR ERRORS

ocate Memory Problems Intel Inspector X€ 2011

@& Target Analysis Type || . Collection Log “ Summary

Focus Code Location: MemoryErrors.cpp:26 - Allocation site W [Call Stack
#ifdef _ WINDOWS__

hDefpen = CreatePen{ PS_SOLID, 1, RGB(255, 255, 255)
#endif

[

7
[8-4.exelmain - MemoryEr|
8-4.exe!_tmainCRTStartup
kernel32.dIl!BaseThreadinify
nitdll.dll!RtlInitializeExceptif
ntdll.dll!RtlInitializeExcepti

G R

[T

o

[
o

ptr begin space = (int *)calloc(STORESIZE, sizeof(int)
if(ptr begin space == NULL)

printf("Unable to allocate space on iteration %d\n"™,
else
{
31 for{ j=0; J<SICRESIZE; j++)
32 *({ptr_begin space+j) = jr =

< m *

Code Locations [Code Locations |/ Timeline ¥
ID Description a Source Function Module Object Size Offset
X11 Allocation site B MemoryErrors.cpp:26 main 8-4.exe 4000

D)
R}
m

oo

FIGURE 8-17: Revealing the offending code responsible for the P12 problem

ACTIVITY 8-4: DETECTING MEMORY ERRORS

In this activity you use Inspector XE to detect and analyze some memory errors.
Building and Running the Program

1. Copy the source code in Listing 8-$ into a file named MemoryErrors. cpp.
2. Open an Intel Parallel Studio XE command prompt.

3. Build the program with the following command:

WINDOWS
icl /0d /Zi MemoryErrors.cpp -D_ WINDOWS__ gdi32.lib -o 8-4.exe

LINUX
icc -00 -g MemoryErrors.cpp -o 8-4.exe

4. Run the program to make sure it works:

8-4.exe

Detecting Memory Problems

5. Start the Inspector XE GUI from the command line:
inspxe-gui

6. Create a new project named Chapter 8-memory:
> Select File & New = Project.

> In the Project Properties dialog, fill in the application details.

Creating a Custom Analysis | 245

7. Carry out a Detect Memory Problems analysis:
> Select File & New = Analysis.
> Highlight the Detect Memory Problems analysis.
> Click the Start button.
The results are shown in Figure 8-12.

8. After the analysis is displayed, look at the problem(s) reported. Make sure you
understand the issues.

9. Work through each problem and fix them in the code. As you fix a problem,
change its state on the Summary page:

> Highlight the problem you have fixed.
> Right-click and select Change State from the context menu.
> Change the state to Fixed.

10. After fixing all the problems, rebuild the application (see step 3), and run a
fresh analysis (see step 7).

CREATING A CUSTOM ANALYSIS

When you select a new analysis for Inspector XE, the Configure Analysis Type window
appears. This window enables you to select the analysis type and to configure it to your own
requirements. Six analysis types are offered; however, you can also create a customized analysis
of your own.

To create a custom analysis type, right-click on the Custom Analysis Type in the Configure Analysis
Type window (see Figure 8-18).

i Detect Deadlocks and D:
i Locate Deadlocks and Di

MNew Memory Errors Analysis

Mew Threading Errors Analysis

FIGURE 8-18: Creating a custom analysis type

You can select a new Memory Errors analysis or a new Threading Errors analysis, or you can copy
the analysis you have currently selected. When creating a new analysis, you can configure a number
of options. The following descriptions are taken directly from the tooltips in Inspector XE’s Custom
Analysis dialog box:

246 | CHAPTER8 CHECKING FOR ERRORS

> Memory Errors analysis options

>

Detect memory leaks — Detect problems where a block of memory is allocated but
never released. Extremely low cost, especially if used only with “Remove duplicates”
selected.

Detect resource leaks — Detect problems where a kernel object handle is created but
never closed, or where a GDI object is created but never deleted. Useful when
analyzing Windows GUI applications. Low cost.

Detect invalid/uninitialized accesses — Detect problems where a read or a write
instruction references memory that is logically or physically invalid, or a read
instruction accesses an uninitialized memory location. Medium cost.

Analyze stack access — Analyze invalid and uninitialized accesses to thread stacks.
High cost.

Enable enhanced dangling pointer check — Detect if an application is trying to access
memory after it was logically freed. Medium to high cost.

Byte limit before reallocation — Set the amount of memory Inspector XE defers
returning to the pool of available memory.

Enable guard zones — Show offset information if Inspector XE detects memory use
beyond the end of an allocated block. Useful when an application exhibits unex-
pected behavior or when you need more context about heap allocations to interpret
invalid memory access problems. Low cost.

Stack frame depth — A high setting is useful when analyzing highly object-oriented
applications. A higher number does not significantly cost.

Remove duplicates — When deselected, reports all instances of detected errors on the
timeline. Low cost.

> Threading Errors analysis options

>

Detect lock hierarchy violations and deadlocks — Useful when an application has
complicated synchronization and it is hard to verify correctness, or when you suspect
deadlock problems that are not yet evident. Low cost unless an application has a sig-
nificant number of locks.

Terminate on deadlock — Stop analysis and application execution if Inspector XE
detects a deadlock. Low cost.

Cross-thread stack access detection — Set alert mechanism for when a thread
accesses stack memory of another thread. Low cost.

Stack frame depth — A high setting is useful when analyzing highly object-oriented
applications. The higher the number, the higher the cost.

Detect data races — Detect problems where multiple threads access the same memory
location without proper synchronization and at least one access is a write. High cost.

Memory access byte granularity — Set the byte size of the smallest memory block on
which Inspector XE should detect data races.

The Source Code | 247

Detect data races on stack accesses — Detect data races for variables on the stack.

Remove duplicates — When deselected, reports all instances of detected errors on the
timeline. Low cost.

> Defer memory check — Do not allocate shadow memory for given block until second
thread access.

> Save stack on first access — Report as much information as possible on all threads
involved in a data race. High cost.

> Save stack on allocation — Identify the allocation site of dynamically allocated mem-
ory objects involved in a data race. Medium cost.

THE SOURCE CODE

Listing 8-4 contains a program with threading errors and is used in Activities 8-1, 8-2, and
8-3. Listing 8-5 contains a program with memory errors and is used in Activity 8-4.

‘) LISTING 8-4: A program with threading errors

Available for #include <stdio.h>
dow“m!gggl:n #include <omp.h>

1

2

3: static long num_steps = 10000 * 4;
4: double step;

5: double gsuml;

6: double gsum?2;

7

8

: void SafeAdd(double suml, double sum2, omp_lock_t &lockl,omp_lock_t &lock2)
9: {
10: // lock gsuml and update
11: omp_set_lock(&lockl);
12: gsuml += suml;
13: // lock gsum2 and update
14: omp_set_lock(&lock2);
15: gsum2 += sum2;
16: omp_unset_lock(&lock2);
17: omp_unset_lock(&lockl);
18:}

20:1int main()

22: 1int 1i;

23: double x1,x2;

24: omp_lock_t lockl, lock2;
25: gsuml=0.0;

26: gsum2=0.0;

28: omp_init_lock(&lockl) ;
29: omp_init_lock(&lock2);
30: printf("Calculating Pi ...\n");
31: step = 1.0/ (double) num_steps;
32: for (i=0;i< num_steps; i+=4)
continues

248 | CHAPTER8 CHECKING FORERRORS

LISTING 8-4 (continued)

33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:
44
45:
46:
47
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:

double suml, sum2;
#pragma omp parallel sections
{
#pragma omp section
{
// calculate first bar
x1 = (i+ 0.5)*step;
x1*=x1;
suml = 4.0/ (1.0+x1);

// calculate second bar
x2 = (i+ 1.5)*step;
X2*=xX2;

sum2 = 4.0/ (1.0+x2);

SafeAdd (suml, sum2, lockl, lock2) ;

}

#pragma omp section

{
// calculate third bar
x1 = (i+ 2.5)*step;
x1*=x1;
suml = 4.0/ (1.0+x1);

// calculate fourth bar
x2 = (i+ 3.5)*step;
X2*=x2;

sum2 = 4.0/ (1.0+x2);

SafeAdd (suml, sum2, lock2, lockl) ;

// calc value of pi

double pi = step * (gsuml+gsum?2);

printf("pi: %2.21f\n",pi);

omp_destroy_lock(&lockl);

omp_destroy_lock(&lock2)
}

’

LISTING 8-5: A program with memory errors

0 ~J o Ul i W N

#include <stdio.h>
#include <stdlib.h>
#ifdef _ WINDOWS_
#include <windows.h>
#endif

#include <omp.h>

#define STORESIZE 1000

code snippet Chapter8\pi.cpp

Summary | 249

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:
44 .
45:
46:
47 :
48:
49:
50:
51:

SUMMARY

int main(void)

j;

int * ptr_begin_space;
int * ptr_another_space;
int * ptr = NULL;
#ifdef _ WINDOWS_
HGDIOBJ hbDefpen;

printf("Detecting Memory Errors >\n\n");
for(i=0; i<1; i++)

#ifdef _ WINDOWS_ _
hDefpen = CreatePen(PS_SOLID, 1, RGB(255, 255, 255));
#endif

ptr_begin_space = (int *)calloc(STORESIZE, sizeof (int));
if(ptr_begin_space == NULL)

printf("Unable to allocate space on iteration %d\n", i);
else

{
for(j=0; j<STORESIZE; j++)
* (ptr_begin_space+j) = 3j;
}
ptr_another_space = (int *)calloc(STORESIZE, sizeof (int));

if(ptr_begin_space == NULL)

printf("Unable to allocate space on iteration %d\n", i);
else
{

for(j=0; j<STORESIZE+1l; j++)

{

ptr_another_space[j] = Jj;

}

free(ptr_another_space);
*ptr_another_space = 7;
free(ptr_another_space);
*ptr = 5;

return 0;

code snippet Chapter8\MemoryErrors.cpp

Eliminating parallel-type errors such as deadlocks and data races from programs has always been
a major problem. As programs become increasingly complex, the ability to find and eliminate such
problems becomes more difficult. In addition, you have to overcome all the extra problems that
can be created when running parallel concurrent code. The greatest obstacle to solving these prob-
lems is finding them in the first place. Many problems can be subtle in their operation, showing

250 | CHAPTER8 CHECKING FORERRORS

up only under ideal circumstances. Software tools that can find all these types of errors become
invaluable.

Intel Parallel Inspector XE is a sophisticated and versatile tool capable of finding a wide range of
potential problems within both parallel and serial programs. Its flexibility and the presentation of its
results make it a powerful tool for developers. This chapter has demonstrated just some of Inspector
XE’s capabilities. The case studies in Part IT1I will amplify these capabilities even further.

The next chapter shows how to use Amplifier XE to tune the parallelism in your programs.

Tuning Parallel Applications

WHAT’S IN THIS CHAPTER?

> Using Amplifier XE to profile a parallel program
The five tuning steps
» Using the Intel Software Autotuning Tool
Chapters 6-8 described the first three steps to make your code parallel — analyze, implement,

and debug. This chapter discusses the final challenge — tuning your parallel application so
that it is load-balanced and runs efficiently.

The chapter begins by describing how to use Amplifier XE to check the concurrency of your
parallel program, and then shows how to detect and tune any synchronization problems. The
chapter concludes by describing the experimental Intel Software Autotuning Tool (ISAT).

Note that all the screenshots and instructions in this chapter are based on Windows XE;
however, you can run the hands-on activities on Linux, as well.

INTRODUCTION

Amplifier XE provides two predefined analysis types to help tune your parallel application:

> Concurrency analysis — Use this to find out which logical CPUs are being used, to
discover where parallelism is incurring synchronization overhead, and to identify
potential candidates for further parallelization.

> Locks and Waits analysis — Use this to identify where your application is waiting on
synchronization objects or I/O operations, and to discover how these waits affect your
program performance.

252 | CHAPTER9 TUNING PARALLEL APPLICATIONS

In this chapter, you use the Concurrency analysis as the main vehicle for parallel tuning. If your
program has a lot of synchronization events, you may find the Locks and Waits analysis useful.
Because both of these analysis types run in user mode, you can use them on both Intel and non-Intel
processors.

Figure 9-1 shows the different tuning steps carried out in this chapter. You should have already fixed
any data races and deadlocks (refer to Chapter 8, “Checking for Errors”) before starting to tune
your parallel application.

‘ Baseline ’ Activity 9-3
ivi 4. Analyzing an
Activity 9-1 ‘ Algo{ithr?q ’
2. Identifying

Activity 9-4

Concurrency Hotspots

Activity 9-2

3. Analyzing the
Timeline

I

FIGURE 9-1: The five steps for tuning parallel applications

5. Conducting Further
Analysis and Tuning

Activity 9-5

i

DEFINING A BASELINE

The first step to undertake for any performance tuning is to create a baseline to compare against.
Ideally, the baseline test should give the same results each time you run it; otherwise, it would be
very difficult to be certain that an improvement in performance is not just due to some random
behavior of your program or system.

Ensuring Consistency
If the program you are testing gives wildly different results, try the following;:

> Turn off Turbo Boost, speed-step, and hyper-threading in the BIOS of your computer (but
do not turn off multi-core support). These options can cause huge variations from one run
to the next of your program. For more discussion on this point, see Chapter 4, “Producing
Optimized Code.” Once you have finished performance tuning, you should remember to turn
these features back on.

> If possible, disable any antivirus software. If this is not possible, run your program twice
after each rebuild. Often the antivirus software will kick in only on the first run of a
program.

> Run the program more than once, and take an average result of any timing values.

Defining a Baseline | 253

Measuring the Performance Improvements
When tuning parallel programs you need to keep an eye on two things:

> The total time the program runs (assuming time taken is the key performance measure).

> Performance improvements of the parallel part of the program within your code.

In the prime numbers example used in this chapter (ParallelPrime.cpp, from Listing 9-4 at the
end of the chapter), three different timing values are available:

> The time it takes to calculate the prime numbers, as printed out in the program.
> The elapsed time, as recorded by Amplifier XE.
> The time taken to execute the parallel region, as recorded by Amplifier XE.

Most of the time you should concentrate on performance improvements of the parallel region, but
remember to keep an eye on the other figures as well.

Measuring the Baseline Using the Amplifier XE Command Line

You can use the command-line version of Amplifier XE to profile your code and produce a report. If
you like, you can then look at the results generated from the command line with the GUI version of
Amplifier XE.

In Activity 9-1 you build and test a program that calculates prime numbers. The program has been
parallelized using the OpenMP method. Once the test program has been built, the following com-
mand produces a concurrency report, which in this case is the result of running the application on a
12-core machine. Your report may be different.

amplxe-cl -collect concurrency ./9-1.exe
100%

Found 13851 primes in 7.7281 secs
Using result path 'C:\CH9\r000cc'
Executing actions 75 % Generating a report
summary

Average Concurrency: 0.975

Elapsed Time: 8.028
CPU Time: 55.051
Wait Time: 85.423

Executing actions 100 % done

You can see that:

> The average Concurrency — the measure of how many threads were running in
parallel — is very poor. In fact, the program has effectively been serialized.

> The Elapsed Time — the total time for the program to run — was just over eight seconds.
This includes a slight overhead introduced by the act of profiling.

254 | CHAPTER9 TUNING PARALLEL APPLICATIONS

> The program has more Wait Time than CPU Time.Wait Time is the amount of time the
threads are waiting for a resource. CPU Time is the sum of the time each core has spent
executing code.

You can use the Amplifier XE command-line interface to generate a hotspot report. The example
shown in Figure 9-2 generates a hotspot report, with the results grouped by openmp-task. This is a
convenient way of seeing how much time the parallel for loop (in lines 51-60 of ParallelPrime
.cpp) took.

amplxe-cl -report hotspots —-group-by openmp-task
Using result path “C:\CH9\r000cc'

Executing actions 75 % Generating a report

OpenMP Regions CPU Time Idle:CPU Time Poor:CPU Time Ok:CPU Time Ideal:CPU Time Over:CPU Time
GetPrimes:51-60 54.901 15, 739 39.162 0 0 0

[Outside] 0.150 0 0.150 0 0 0

o

Executing actions 100 % done

FIGURE 9-2: A command line hotspot report

Notice that no results folder is passed to Amplifier XE, which causes Amplifier XE to use the most
recently generated results.

From the results, you can see the following:

> The parallel region consumes most of the execution time of the program. This is good; it
means that any improvement you make in the parallel section of the code will positively
impact the performance of the whole program.

> The concurrency rate of the parallel region is Poor. A well-tuned parallel program should
have a concurrency of at least Ox.

> For 20 percent of the time, the parallel region is Tdle. A well-tuned parallel program ideally
should have no 1dle time.

ACTIVITY 9-1: DEFINING A BASELINE

In this activity you build the code from Listings 9-4 and 9-5 and use Amplifier XE
to look at how parallel the resulting program is. You can run this activity on Linux
or Windows.

Building and Running the Program

1. Copy the source code in Listing 9-4 into a file named parallelPrime.cpp,
and the source code in Listing 9-5 into a file named wtime. c.

2. Build the program with the following command:

WINDOWS
icl /02 /Zi /Qopenmp /Obl ParallelPrime.cpp wtime.c -o 9-1.exe

Identifying Concurrency Hotspots | 255

LINUX

icc -02 -g -openmp -inline-level=1 ParallelPrime.cpp wtime.c -o 9-1.exe
The option /Zi (-inline-level=1)

3. Run the program and record the time taken:
9-1.exe
4. If the program does not run for about two to three seconds, edit the value in

the #define LAST statement in ParallelPrime.cpp and rebuild and run the
program until it runs for about two seconds.

#define LAST 300000

Using the Command-Line Version of Amplifier XE to Get a Timestamp

5. Start the command-line version of Amplifier XE, and record the elapsed time
and average concurrency:

amplxe-cl -collect concurrency ./9-1.exe
Make a note of the results directory (for example, r000cc). You will need this
for Activity 9-2.

6. Generate a report and record the amount of time that is spent in the OpenMP
parallel region:

amplxe-cl -report hotspots -group-by openmp-task

IDENTIFYING CONCURRENCY HOTSPOTS

Having created a baseline of your parallel application, you can start looking at the performance in
more detail by examining how well the program is using the CPU cores. You can try this out for
yourself in Activity 9-2.

Thread Concurrency and CPU Usage

Thread concurrency and CPU usage will help you get a good feel for how parallel your
program is.

> Thread concurrency is a measure of how many threads are running in parallel. Ideally, the
number of threads running in parallel should be the same as the number of logical cores your
Processor can support.

> CPU usage measures how many logical cores are running simultaneously.

Figure 9-3 shows the thread concurrency of the application when it is run on a 12-core Windows-
based workstation. As you can see, it runs with a low concurrency, with most of the time no threads
running concurrently. The concurrency information is split into four regions — Poor, OK, Ideal, and
Over — and are colored red, orange, green, and blue, respectively (albeit not shown in the figure).

256 | CHAPTER9 TUNING PARALLEL APPLICATIONS

You can change the crossover point between each region by highlighting and dragging the triangu-
lar shaped cursors that are positioned just below the horizontal bar.

(#) Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were
running simultanecusly. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 0%
scheduler. Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Cencurrency may be
higher than CPU usage if threads are in the runnable state and not consuming CPU time.

= T

Elapsed Time

7
| B e |

13 14 15 16 17 18+

iy 2
Simultaneously Running Threads

FIGURE 9-3: Concurrency of the Windows application

Figure 9-4 shows the CPU usage of the baseline program on Windows. It shows the length of time
when various numbers of CPUs were running concurrently. For example, for almost a second no
CPUs were running, and for approximately 1.3 seconds two CPUs were running concurrently.
Ideally, there would be a single entry showing 12 CPUs running all the time. In this case you can see
that not all the CPUs were in use all the time. The dotted vertical line indicates that the average
concurrent CPU usage is almost 7.

() CPU Usage Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes what percentage of the wall time the specific number of CPUs were
running simultanecusly. CPU Usage may be higher than the thread concurrency if a thread is executing code on a CPU while it is logically...
4s ; T

=i

L] 1 2 3 4 & 6 T
Cae T eeer Ok | ldeal |

Simultaneously Utilized Logical CPUs

Elapsed Time

FIGURE 9-4: CPU usage of the Windows application

Identifying Hotspots in the Code
The Bottom-up view of the analysis shows the main hotspots in the system (see Figure 9-5).

The largest hotspot is the PrintProgress function, with most of the bar colored red. When you
tune any parallel code, your goal is to get the colored bar to be green, indicating that the concur-
rency is ideal.

Identifying Concurrency Hotspots | 257

Double-clicking the hotspot brings up the Source view of the hotspot (see Figure 9-6).

Grouping: [Funch'on / call Stack V]

Function / Call Stack CPU Time by Utilizationw C_}r\..re... Wait Time by Utilization Module bl

|@1dle @Poor [Ok Mideal @ Over '™ [Midle @ Poor [0 Ok [Ideal [Over
[# PrintProgress '| 52887; D 1.050s 869225 [NN Crriginal.exe
GetPrimesSompSparallel_for@s1 | 52495 () 0.080s 4391s0 Original.exe
SleepEx | 0189s 0s 0s KERMELBASE.dII
RtllntegerToUnicodeString | 0160s 0s Os ntdlldll | 4
[#__kmp x86_pause | 0.050s Os 153 libiomp5md.dll
[Unknown stack frame(s)] | 0031s 0s 0s [Unknown]
RtlTryEnterCriticalSection | 0.010s 0.010s Os ntdil.dll
[+ TIsGetValue | 0.010s Os Os kemel32.dIl
NtCreateEvent | 0.010s Os Os ntdil.dll
Selected 0 row(s): | =

A gl 3 | T 3

FIGURE 9-5: Source code view of CPU usage

e ey W15 B 2 ® 9| 8
[: T & 5 stack(s) selected.
Line Source CiltjuiTz';:i: ! Seimims le‘ttd?;a: z: # Current(s}md< is 80.2)
] |
15 int Percent = 07 !‘ Origina\-:g(-;!lprintpro...
18 #pragma omp critical :! Original.exe! GetPrim...
17 | | | libiompSmd.dil_k..
18 gProgresst+; A855 842.435ms libiompSmd.dill_k ...
19 Percent = (int) {{flnathPrngrE:isf(flnat.JRangt:j 3.9485' 20.000ms libiompSmd.dill_k...
20 1} | libiomp5md.dil_k ..
21 if(Percent % 10 = 0) ‘ kernel32.dIl'BaseThr ...
22 printf("$s%3d%%", CursorBack,Percent);: 24545 187.200ms 401495 [N ntdil.dilRtilnitializeE ...
Selected 1 row(s): | o ntdll.dli!RtlInitializeE ...
<[b ” 4 b tpsstool.dillmain+0x...

FIGURE 9-6: The biggest hotspot in the code

Notice the following:

> The printProgress function has three hotspots, at lines 18, 19, and 22. Line 18 is the big-
gest hotspot, with a CPU Time of just over 46 seconds.

> Lines 18 and 22 have significant amounts of Wait Time by Utilization. This is discussed more
in the section “Analyzing the Timeline.”

> The stack pane (on the right) reports five stacks, and that the current stack contributes
to 80.2% of the hotspot. If you toggle through the five stacks, by clicking the arrow (next to
“1 of 5”), the other stacks are reported as contributing 10.1%, 7.6%, 2.0%, and 0.1%. In
this program, the call stack information is not needed for tuning purposes, but you may find
it useful when you analyze other programs.

258 | CHAPTER9 TUNING PARALLEL APPLICATIONS

ACTIVITY 9-2: IDENTIFYING THE CONCURRENCY HOTSPOTS

In this activity you use the GUI version of Amplifier XE to examine the results
from Activity 9-1. You can run this activity on Linux or Windows.

1. Open the GUI version of Amplifier XE, using the results directory that you
noted in step 5 of Activity 9-1:

amplxe-gui r000cc

2. Look at the Thread Concurrency Histogram and the CPU Usage Histogram in
the Summary page. (This page will have automatically been displayed in step 1
of this activity.)

3. Display the Bottom-up page by clicking the Bottom-up button, and make note
of the biggest hotspot. You will see that most of the time, the hotspot is identi-
fied as being Poor. (The horizontal bar will be red.)

4. Look at the timeline view. Notice that there are many transition lines.
> Highlight a small part of the timeline.
> Right-click and select Zoom in on Selection.
> Repeat these steps until you can see about a dozen or so transitions.
>

Hover the mouse over some of the transition lines and identify which
type of transition is occurring.

5. Double-click the main hotspot (in the top pane), and find out which line of
code is responsible for the hotspot.

6. Toggle through the different stacks by clicking the arrow and see what per-
centage the other stacks contribute to the hotspot.

ANALYZING THE TIMELINE

You can use the timeline of an analysis to better understand how your program is behaving.
Figure 9-7 shows the timeline of the baseline application. You can glean further information about
the program from four distinct areas of the display:

>

In the list of threads (the left-hand side) are twelve OpenMP worker threads plus one master
thread. Not all the worker threads are displayed, but you can see them by either scrolling
down or resizing the timeline pane.

Each horizontal bar gives more information about the runtime bebhavior of each thread. You
can see when a thread is running or waiting. A running thread is colored dark green, and a
waiting thread is colored light green. You can also see the transitions between threads. There
are so many transitions that the whole of the timeline appears as a solid block of yellow. You
can always turn the transitions off by unchecking its box on the right.

Analyzing the Timeline | 259

> The CPU Usage chart shows that most of the CPUs are used all the time, but nine rather
interesting dips where the CPU usage drops dramatically.

» The Thread Concurrency bar is empty (that is, no concurrency). It seems that for most of
the time, the program is running serially — a fact you already know from the summary

analysis.
QF I 0.‘55 lls l.l55 2‘5 2.‘55 3‘5 3.‘5; 4‘5 4.‘55 Sls 5.‘55 E:s 6.‘55 ?Is ?.ISS 8‘5 8.‘55 I% Threads *
" mainCRTStartup ((:330 ; = . ; . 2 : ! = - (| Running
T [OMP Worker Thread 3 [Waits
e ik U Time
¥ OpenMP...|

| [¥] CPU Usage
ik CPU Time

[4] Theaod €

Thread Concurrency |

4 b

FIGURE 9-7: The application timeline

Questions to Answer
From the information in the timeline, you need to answer three questions:
> Why are there so many transition lines?
> Why is the concurrency so poor?

> What is the cause of the dips in the CPU usage?

The last question is answered in the section, “Analyzing an Algorithm.”

When you analyze your own programs, you may see other patterns that need more exploration. The
important thing is that you make sure you understand all the patterns you see.

The poor concurrency and the reason for the many transition lines can be deduced from a zoomed-
in view of the timeline (see Figure 9-8). There is only ever one thread running at any time; the other
threads are waiting. Between each thread is a transition line. If you hover your mouse over a transi-
tion line, details about that transition are displayed (as in the figure), which show that a critical
section is involved.

T T T o e e e S T T B T =
QA Q-O# 09{0.06067636sis 0.96075s 09608s 096085s 09609s 096095s 0861s 0961055 09611s = =
L L L L n I L =
mainCRTStarup (0530 |« -R””_”'”g
= [OMP Worker Thread #3 ¢ 7| B waits
EOMPWorkerThread#l |41 B] ks CPU Time |
OMP Worker Thread 2 Sov— | [*®0openMP..|
T mainCRTStartup(GxBBG]tc OMP Worker Thread 24 (0x1424) (960.674ms to 960.682ms) 1 Tt
s S};n(Object: OMP Critical GetPrimes:56 0x72¢675dd
Source File: main.cpp . 4| CPU Usage
Thread Concurrency Source Line: 18 Wk CPU Time
4 Signal Source File: main.cpp b 2 | [Thread Cor -

Signal Source Line: 19

Ll Filter: 0.1% is shown IS ST

FIGURE 9-8: Zooming in on the transitions

260

| CHAPTER9 TUNING PARALLEL APPLICATIONS

Fixing the Critical Section Hotspot

If you double-click the transition line, the source code of the object is displayed (the same source
code that you have already seen in Figure 9-6).

The #pragma omp critical construct is used to protect the reading and writing of the gProgress
shared variable that is being incremented. Without the critical section, there would be a data race.
A variable can be incremented much more efficiently by using an atomic operation.

The following code shows how you can use the #pragma omp atomic construct to protect the incre-
menting of gprogress. The reading of gProgress at line 19 does not need protecting, because a
data race occurs only when there are unsynchronized reads and writes. Reading shared variables
will not cause data races.

// old code

16: #pragma omp critical

17: |

18: gProgress++;

19: Percent = (int) ((float)gProgress/ (float)Range *200.0f + 0.5f);
20: 1}

// new code

16: #pragma omp atomic

17: gProgress++;

18:

19: Percent = (int) ((float)gProgress/(float)Range *200.0f + 0.5f);
20:

With the fix in place, running a new analysis shows an improvement, as shown in Table 9-1. The
program now has a much shorter elapsed time, and the CPU time used in the parallel part of the
code has reduced by a factor of almost eight. You can try out Activity 9-3 to see these results for
yourself. Often solving simple problems involving just a few of the many lines of program’s code can
result in large improvements in its operation.

TABLE 9-1: The Results of Replacing the Critical Section with an Atomic Operation

METRIC ORIGINAL WITH ATOMIC
Average Concurrency 0.975 0.715
Elapsed Time 8.028 2.777

CPU Time 55.051 7.441

Wait Time 85.423 28.418
Parallel Region CPU Time 54.901 7.090

Parallel Region Idle Time 15.739 3.432

Analyzing an Algorithm | 261

ACTIVITY 9-3: ANALYZING THE TIMELINE

In this activity you use the GUI version of Amplifier XE to examine the timeline
from Activity 9-1, and fix a synchronization problem identified. You can run this
activity on Linux or Windows.

1. If the GUI version of Amplifier XE is not already open, open it using the
results directory that you noted in step 5 of Activity 9-1:

amplxe-gui r000cc
2. Display the Bottom-up page by clicking the Bottom-up button.

3. In the timeline pane, keep expanding the view until you can clearly see the
individual transition lines. You should see that only one thread is ever running
at any one time.

4. Hover your mouse over a transition line and read the information displayed.
5. Double-click the transition line, which should take you to the source lines.

6. InparallelPrime.cpp, edit lines 16 to 20 so that they look the same as the
following:
16: #pragma omp atomic
17: gProgress++;
18:

19: Percent = (int) ((float)gProgress/(float)Range *200.0f + 0.5f);
20:

7. Rebuild and run the modified program (see steps 2—6 of Activity 9-1). Record
the name of the results directory; you will need it in Activity 9-4.

8. Compare the results from Activity 9-1 with your new results. Your results
should be similar to Table 9-1.

In the next step, you explore the dips in the CPU usage, which look like they might be caused by a
flaw in the algorithm of the program.

ANALYZING AN ALGORITHM

In Figure 9-7 you saw nine distinct dips in the CPU usage. Once you have fixed the data race by
adding the #pragma omp atomic, the dips are less pronounced but are still clearly visible (see
Figure 9-9).

To see what is causing the dips, zoom in and filter on the timeline (see Figure 9-10). Notice that the
call stack mode on the bottom right has been set to user + 1 so that the function calling the hotspot
is also displayed. You can see that the hotspot is the print £ function, which has a high Wait Time

by Utilization. Notice that all the threads are mostly light green, indicating that they are in a wait-

ing state, with just OMP Worker Thread #4 showing some activity in the middle of the timeline.

262 CHAPTER 9 TUNING PARALLEL APPLICATIONS

ety 3:5;% [v] Threads -~
R
mainCRTStartup (0136 === .| @B Running
S [OMP Worker Thread #1 T | M waits
EOMPWorkerThread #2 e ; e | [¥] diuk CPU Time |~
#: i =
OMP Worker Thread #3 H A T TR L, 1 ma [¥] ¥% OpenMP...
CPU Usage 4 i ; i i b i Transitions%
[¥] CPU Usage £
Thread Concurrency | | ik CPU Time
4 I3 3 -
7] Tk, A,
FIGURE 9-9: The timeline after the atomic operation has been introduced
Grouping: [FuncﬁonICaII Stack v] [Wamng v]
CPU Time by Utilizationv T il ead e

Function / Call Stack Current stack is 72.7% of selection

il | 72.1% (01255 of 0.1725) |

Dldle @ Poor [Ok @Ideal @ Over Time o e

[Unknown]
Selected 1 row(s): 01725 Os

QoCrCQ-C» 209s 241s 213s 2155 217s & |¥| Threads
! ! ! n f :
rainCRTStartup (15136 . | [v] [Running
OMP Worker Thread #1 [Waits
OMP Worker Thread #2 | | Uk CPU Time
OMP Worker Thread #3
—_— v| ¥=% OpenMP Re...
12 [OMP Waorker Thread 24 Fy | sl
|OMP Worker Thread 5 3 Transitions
= [OMP Worker Thread #6 [[] CPU Usage
OMP Worker Thread #7 Thread Concurrency
OMP Worker Thread #8 Lk coneneney
OMP Worker Thread #9 bl
OMP Worker Thread #1 -
Thread Concurrency
L] [o2

FIGURE 9-10: Examining the CPU usage dips
Looking at the code that calls printf in the function PrintProgress, you can see that whenever
the percent value is a multiple of 10, printf is called:

21: if (Percent % 10 == 0)

22: printf ("%$s%3d%%", CursorBack, Percent) ;

The intention is to display the progress on the screen after each 10 percent increment of work.

Looking at the length of the timeline, you can see that it has a length of approximately 0.13
seconds — an awfully long time to do one printf! You should suspect that something is wrong with
this code and is causing the nine dips in CPU usage.

When you find a section of code that may be causing a problem, one quick test you can try is to
comment out the code and see what difference it makes. Figure 9-11 shows the timeline of the

Analyzing an Algorithm | 263

application with lines 21 and 22 commented out. You can see that the dips in CPU usage have disap-
peared, confirming that lines 21 and 22 were the cause.

Ot Threads B
rainCRTStartup (0x1b2 [] B Running
S [OMP Worker Thread 25] Waits
'E OMP Worker Thread #2 Wk CPU Time |~
= =
OMP Worker Thread #3 v OpenlP...|
CPU Usage Transitions |
CPU Usage —
Thread Concurrency | | ik CPU Time
i L |l vhecaar =

FIGURE 9-11: The application timeline with the printf removed
Amplifier XE will not tell you how to fix problems with your program algorithms, but it will let you
observe any odd behavior.

In lines 21 and 22, the problem is caused because the printf is not only called when you first reach
a percent value that is divisible by ten, but that it is then repeatedly called until Percent % 10 ==
evaluates to false.

By modifying the code to look like Listing 9-1 (as you’ll do in Activity 9-4), printf should be called
only once on each 10 percent increment; the changes to the code are highlighted:

‘) LISTING 9-1: The modified PrintProgress function

Available for 12: // Display progress
download on . \ . .
13: void PrintProgress(int Range)

Wrox.com
14: {
15: int Percent = 0;
16: static int lastPercentile = 0;
17: #pragma omp atomic
18: gProgress++;
19: Percent = (int) ((float)gProgress/ (float)Range *200.0f + 0.5f);
20: if(Percent % 10 == 0)
21: {
22: // we should only call this if the value is new!
23: if (lastPercentile < Percent / 10)
24 : {
25: printf ("%$s%3d%%", CursorBack, Percent) ;
26: lastPercentile++;
27: }
28: }
29: 1}

code snippet Chapter9\9-1.cpp

264 | CHAPTER9 TUNING PARALLEL APPLICATIONS

ACTIVITY 9-4: ANALYZING AN ALGORITHM

In this activity you use the GUI version of Amplifier XE to examine the timeline
from Activity 9-1, and fix a synchronization problem identified. You can run this
activity on Linux or Windows.

Examining the CPU Utilization Dip

1.

Open the GUI version of Amplifier XE, using the results directory that you
noted in step 8 of Activity 9-3. (You should replace r000cc with your results
directory name.)

amplxe-gui r000cc

Display the Bottom-up page by clicking the Bottom-up button.
In the Timeline pane:

> Select one of the dips in the CPU utilization.

> Right-click and select Zoom in and Filter by Selection.

> Change the call stack mode (see bottom right of screen) to user
“functions + 1.”

You should find that the function involved in the selected timeline is printf,
with most threads in a waiting state.

(Optional) If you like, prove that the printf function is the problem by
commenting out lines 21 and 22 of ParallelPrime.cpp, and then rebuild and
rerun the analysis.

Correcting the Problem

5.

6.

In ParallelPrime.cpp edit the PrintProgress function so that it looks the
same as Listing 9-1.

Rebuild and run the modified program (see steps 2—6 of Activity 9-1).

Open the GUI version of Amplifier XE, using the results directory that you
noted in step 6. (You should replace r000cc with your results directory name.)

amplxe-gui r000cc

Display the Bottom-up page by clicking the Bottom-up button. Look at the
timeline. The dips in the CPU usage should have disappeared.

CONDUCTING FURTHER ANALYSIS AND TUNING

You’ve already carried out some analysis of the code and fixed two programming problems. With
the two problems in PrintProgress fixed, a new Concurrency analysis will reveal a different part
of the code GetPrimessomp$parallel_for@s7 as the biggest concurrency hotspot (see Figure 9-12).

Conducting Further Analysis and Tuning | 265

Grouping: [Funcﬁon | Call Stack ']

e [CPU Time by Utilization- (_}rve Wait Time by Utilization 5.

|@1dle @ Poor [Ok [Ideal [Over 'ME Didle @ Poor [Ok M@ Ideal @ Over
GetPrimes$ompSparallel_for@57 | 4477 N 0.048s 4.210s
RtlintegerTeUnicodeString 0.040s Os Os
SleepEx 0.010s Os Os =
#__kmp_fork_barrier 0.010s 0= 0=
[# [Unknown] 0s 0s 0349500
GetPrimes 0s 0s 0.000s
PrintProgress 0s 0s 0.009s | &
main Oz 0=z 0.000s
#__kmp_suspend Os 0s 0.001s
Selected 0 row(s):| =

L™ B 1] b

FIGURE 9-12: The new concurrency hotspot

Double-clicking the hotspot GetPrimesompparallel for@s7 in the Bottom-up page reveals that
the hotspot is in a critical section in the function GetPrimes, as shown in Figure 9-13. Notice that
the line numbers in the figure no longer match those of Listing 9-4 due to the changes made in pre-
vious sections. The GetPrimes function increments through every even number between a start
value and an End value, and tests to see if each number is a prime number by calling the IsPrime
function.

(Csouee) posently)| B = [@ 2 9| @
PuTimety B et | WokTimety B & | seedtben
O |

60 if(IsErime(i)) | e eGet]

61 { ! libiormp5md.dil!l__..

62 #pragma omp critical libiomp5md.dill__..

gPrimes[gurPrimes++] = i; : fibiompSmd.dil_.
64 1 | libiormp5md.dill__..
65 PrintProgress (End-Start) ; — kernel32.dll!BaseT ..

[
TF

ntdILdll!Rtlnitializ ..
&7 ntdll.dll!Rtnitializ ..
Selected 1 row(s): e tpsstool.dll!main...

< [] ¥ [« z

FIGURE 9-13: Source code of the new concurrency hotspot

The critical section is applied to line 57, where the global variable gNumPrimes is incremented, and
then used as an index so that the current prime (held in the variable 1) can be stored into the global
array gPrimes.

By now you should know what you can do to fix this — use an atomic instruction instead of the
#pragma omp critical. By splitting the line into two lines, you can apply a #pragma omp
critical to the incrementing of gNumPrimes:

// old code
56: #pragma omp critical
57: gPrimes [gNumPrimes++] = 1i;

// new code
56: #pragma omp atomic

266 | CHAPTER9 TUNING PARALLEL APPLICATIONS

57: gNumPrimes++;
58: gPrimes[gNumPrimes] = 1i;

After you implement this code, a new analysis shows a further improvement in performance.
Table 9-2 shows the performance improvement of the parallel region over the last three code
changes that have been made.

TABLE 9-2: Performance Improvements

VERSION TIME IN PARALLEL REGION COMMENTS
(SECONDS)
Original 8.308
#1 2.847 Replaced critical with atomic in PrintProgress
#2 0.403 Rewrote PrintProgress
#3 0.015 Replaced critical with atomic in GetPrimes

Figure 9-14 shows the timeline of the parallel region. The darker part of the horizontal bars
represents the time that the threads are running. Each of the start and end points of the thread are
staggered; when you see such a pattern, it probably means there is scope for further tuning.

QT 755 0.685 0.685s 0635 06955 "2 |[] Threads
rainCRTStartup (1xd9c . | ¥ Running
OMP Worker Thread #1 mw b 1 Waits
OMP Waorker Thread #2 | §E | b [] duk CPU Time
OMP Worker Thread #3 _ i

v |
OMP Worker Thread #4 = ¥ Dpenhib ke
2 [OMP Worker Thread 5 B T Y E Transitions
2 [OMP Worker Thread 26 I) A [] CPU Usage
= [OMP Worker Thread #7 T 2N Thread Concurrency
OMP Worker Thread #8 [414 o
ik Concurrency
OMP Worker Thread #9 I " |
OMP Worker Thread 21 [o
OMP Worker Thread #1 | |
Thread Concurrency

] [m] » »

FIGURE 9-14: Timeline of the parallel region before tuning

You can use a schedule clause with the #pragma parallel for to try to improve the load balanc-
ing. (The schedule clause was discussed in Chapter 7, “Implementing Parallelism.”)

Most developers experiment with the different schedule clauses, keeping the one that produces the
best results. Listing 9-2 shows a new listing of the GetPrimes function with the previous changes
and the schedule clause added. The ISAT tool was used to find the best combination of schedule
type and chunk size. You’ll read more about ISAT later in this chapter.

Conducting Further Analysis and Tuning | 267

J LISTING 9-2: The GetPrimes function with the schedule clause

Available for void GetPrimes (int Start, int End)
download on {
Wrox.com
// Make Start to always be an even number

Start += Start %2;

// If Start is 2 or less, then just record it
if (Start<=2) gPrimes[gNumPrimes++]=2;

#pragma omp parallel for schedule(guided,512) num_threads(12)
for(int 1 = Start; i <= End; 1 += 2)
{
1f(IsPrime(i))
{
#pragma omp atomic
gNumPrimes++;
gPrimes [gNumPrimes] = i;
}
PrintProgress (End-Start) ;
}

code snippet Chapter9\9-2.cpp

Figure 9-15 shows the results of the schedule clause. Note the following:
> All the threads stop running at about the same time.

> The length of the parallel region is now shorter (0.010 seconds compared with 0.015
seconds).

> The start of the threads is still staggered. Between each thread starting there is about a 1ms
delay (0.001 seconds). This is probably a feature of the OpenMP run time that cannot be

changed.
T T T T T
Qo Ok e G 06755 068s 0.6855 0695 2 | 4] Threads

e CRTStartap (0107 | N T TS). | 788 Ruming

OMP Waorker Thread #1 NI T [Waits

OMP Worker Thread #8 -_L-::_L—: ¥ OpenMP Re...

OMP Worker Thread £2 | gawen | EEEe || . T it

OMP Worker Thread #3 i O mEmr | 2000
£ [OMP Worker Thread #4 i Bl | Thread Concurrency
2 [OMP Worker Thread #5 | | 1 by Concurrency
F [OMP Worker Thread £6 . C

OMP Worker Thread #7 A

OMP Worker Thread #3 [.

OMP Worker Thread #1 |

OMP Worker Thread #1 | i

Thread Concurrency l-
€ E| Fon

FIGURE 9-15: Timeline of the parallel region after tuning

268 | CHAPTER9 TUNING PARALLEL APPLICATIONS

Using Other Viewpoints

The only analysis type you have used so far is the Concurrency analysis. Within this analysis you
can change the viewpoint to see the information captured with differing emphasis.

Figure 9-16 shows the viewpoints available:
> Hotspots
> Hotspots by CPU Usage
> Hotspots by Threading Concurrency
> Locks and Waits

You can access this menu by clicking on the spanner icon. In your version of Amplifier XE, addi-
tional viewpoints may be available.

~ rD00cc - X

P Concurrency - H

otspots by Thread ¢

Analysis Type

& Analysis Targetl |

(A) Elapsed Time: 8.979s SpOts by CEU e

Total Thread Count: 17 Hotspots by Thread Concurrency

Overhead Time: 1.150s Locks and Waits
CPU Time: 58.625s
Paused Time: 0s Hotspots with experimental Call Stacks

View CPU time hotspots, counters, and stacks

@ Top Hotspots Locks and Waits with Counters
This section lists the most active functions in your applicat
application performance.

Function CPU Time

Esults in improving overall

Task Analysis

PrintProgress 52.887s
GetPrimesSompSparallel_for@51 5.249s
SleepEx 0.189s
RtllntegerTolnicodeString 0.160s
__kmp_x86_pause 0.050=

FIGURE 9-16: The menu to switch viewpoints

Using Locks and Waits Analysis

In addition to changing viewpoints, you can use other analysis types. Using the Locks and Waits
analysis will give you slightly more information than a locks and waits viewpoint available from the
Concurrency analysis.

Here’s an example of running the Locks and Waits analysis from the command line:

amplxe-cl -collect locksandwaits ./9-1.exe
100%

Conducting Further Analysis and Tuning | 269

Found 13851 primes in 7.6617 secs
Using result path "C:\dv\CH9\Release\r001llw'
Executing actions 0 % Finalizing results
Executing actions 75 % Generating a report
Summary

Average Concurrency: 0.912

Elapsed Time: 7.940
CPU Time: 53.586
Wait Time: 85.153

Executing actions 100 % done

Once you have run the Locks and Waits analysis, you can view the results using the GUI version of

Amplifier XE:

amplxe-gui r001llw

Figure 9-17 shows the analysis of the application in Listing 9-4 (without all the corrections you
made earlier) using the Locks and Waits analysis. One of the differences between this analysis and a
Concurrency analysis is that the hotspots are presented using synchronization objects. The first two
synchronization objects listed are both critical sections. Notice that the Spin Times of the first four

objects are shaded. A spinning thread is one that is execut

ing code in a tight loop, waiting for some

resource to become available. While the thread is spinning it is consuming CPU time, but it is not doing
any useful work. Amplifier XE shades the values to warn you that the values are unacceptably high.

Grouping: [Sync Object / Function / Call Stack

)

Wait

Sync Object / Function / Call Stack it by iiabor S N il | NObict dype
| @1dle @ Poor [Ok @ideal @ Over Count Time
B OMP Critical GetPrimes:56 (7 2¢675dd 511 16700[GRENY |OMP Critical]
i Critical Section 0x6956214a | 39.278s [T N 13,089 0257s Critical Section
OMP Join Barrier GetPrimes51 (heBfl19a 1 U.9115| 11 0.490s OMP Join Barrier
[# Stream 0xd8b87d 8 I 0.871s| 14,789 0.852s Stream
Manual Reset Event 0x71705b85 | 0.002s 2 0s Manual Reset Event
Sleep | 0.001s T 0s Constant
[Stream C:\Windows\Globalization'\Sorting'\sortde 0.000s 1 Os Stream
Selected 1 row(s): [51.164= 146,709 51.130s

™ | m

| 2

FIGURE 9-17: The hotspots of a Locks and Waits analysis

Other Analysis Types

You can also use other analysis types to help tune your application. Apart from the user analysis
types mentioned in this chapter, you can also use Hotspot analysis (described in Chapter 6, “Where
to Parallelize”) and event-based sampling (described in Chapter 12, “Event-Based Analysis with

VTune Amplifier XE”).

270 | CHAPTER9 TUNING PARALLEL APPLICATIONS

ACTIVITY 9-5: FURTHER ANALYSIS AND TUNING

In this activity you fix a synchronization overhead in the code, and then tune the
OpenMP parallel loop.

Analyzing the New Hotspot

1.

2.

Using the Amplifier XE Concurrency analysis that you already have open
(from Activity 9-4), click the Bottom-up button and examine the hotspots.

Double-click the biggest hotspot and confirm that it is in the GetPrimes
function.

In ParallelPrime.cpp, edit the GetPrimes function so that it looks like this.
(Your line numbers may be different.)

// old code
56: #pragma omp critical
57: gPrimes [gNumPrimes++] = 1i;

// new code

56: #pragma omp atomic
57: gNumPrimes++;
58: gPrimes [gNumPrimes] = i;

Rebuild and run the modified program (see steps 2—6 of Activity 9-1).
Amplifier XE will automatically create a new results folder — make a note of
its name.

Open the GUI version of Amplifier XE, using the results directory that you
noted in step 4. (You should replace r000cc with your results directory name.)

amplxe-gui r00lcc

Display the Bottom-up page by clicking the Bottom-up button. Look at the
time taken in the parallel region. It should be about 20 times shorter than the
results from Activity 9-4.

Tuning the OpenMP Parallel Loop

7.

8.

10.

Expand the timeline so just the parallel region is displayed. Notice that the
start and end positions of the threads are staggered.

In ParallelPrime.cpp, edit the GetPrimes function to add the schedule
clause to the #pragma omp parallel for loop (so that it looks the same as
Listing 9-2).

Rebuild and run the modified program. (See steps 2—6 of Activity 9-1.)

Open the GUI version of Amplifier XE, using the results directory that you
noted in step 9. (You should replace r000cc with your results directory name.)

amplxe-gui r002cc

Using the Intel Software Autotuning Tool | 271

11. Display the Bottom-up page by clicking the Bottom-up button. Expand
the timeline so just the parallel region is displayed. You should notice the
following:

> The running threads finish at about the same time.

> The execution time of the parallel section is shorter than you saw in step 7.

USING THE INTEL SOFTWARE AUTOTUNING TOOL

The Intel Software Autotuning Tool (ISAT) is an experimental tool that you can use to automati-
cally tune Cilk, OpenMP, and TBB parallel code. You can download the tool from http://
software.intel.com/en-us/articles/intel-software-autotuning-tool. At the time of this
writing, ISAT is available only for use in a Linux environment, although it may eventually be avail-
able for Windows as well.

ISAT works by automatically searching for the optimal values of program parameters that have a
significant impact on parallel performance. Parameters include scheduling policy and granularity
within the OpenMP method, task granularity within the TBB method, and cache blocking factors in
matrix-intensive applications.

You control which code should be tuned by inserting directives in the form of pragmas within your
existing code.

ISAT produces two outputs:
> Source code with the best scheduling parameters automatically added

> A graph of all the results (see Figure 9-18)

Tuned region=trO

e(sec)

600
550
500

450
200 550 y_blksize
300 359 0
400

SOURCE: INTEL
FIGURE 9-18: Visualization of ISAT results

http://software.intel.com/en-us/articles/intel-software-autotuning-tool
http://software.intel.com/en-us/articles/intel-software-autotuning-tool

272 | CHAPTER9 TUNING PARALLEL APPLICATIONS

Listing 9-3 shows the ISAT profiling pragmas added to the ParallelPrime.cpp code. The first
pragma, #pragma isat tuning scope. .., tells ISAT the names of the start and end of the code to
be tuned (M_begin and M_end, respectively). The three variables in the pragma set the range of val-
ues to use for the schedule type, chunk size, and number of threads. For more information, refer to
the help that is distributed with ISAT.

‘) LISTING 9-3: The code with ISAT macros added

Available for // NOTE: this pragma is written on ONE line
daﬂ:ys&g" #ipragma isat tuning scope(M begin, M_end) measure(M begin, M_end)
variable (@omp_schedule_type, [static,dynamic,guided])
variable (@omp_schedule_chunk, range(5, 10, 1, pow2))
variable (@omp_num_threads, range(l, $NUM CPU_THREADS, 1)) search(dependent)

// go through all numbers in range and see which are primes
void GetPrimes (int Start, int End)
{

// Make Start to always be an even number

Start += Start %2;

int Range = End - Start;
// if start is 2 or less, then just record it
if (Start<=2) gPrimes[gNumPrimes++]=2;

#pragma isat marker M_begin
#pragma omp parallel for
for(int 1 = Start; i1 <= End; i += 2)
{
if(IsPrime(i))
{
#pragma omp atomic
gNumPrimes++;

gPrimes[gNumPrimes] = 1i;
}
PrintProgress (Range) ;

}
#pragma isat marker M_end

code snippet Chapter9\9-3.cpp

SOURCE CODE

Listing 9-4 is a badly tuned implementation of a parallel program that calculates the number of
primes between two values, FTRST and LAST. As the values are calculated, the program prints a
status message. The message is updated in 10 percent intervals. Listing 9-5 is a timing utility used to
measure how long the program takes.

Source Code | 273

\) LISTING 9-4: A parallel program to calculate prime numbers

Available for
download on
Wrox.com

#include <stdio.h>

#include <math.h>

extern "C" double wtime();
#define FIRST 1

#define LAST 300000

#define CursorBack "\b\b\b\b"
// globals

int gProgress 0;

int gNumPrimes = 0;

int gPrimes[10000000];

// Display progress

: void PrintProgress(int Range)

{
int Percent = 0;
#pragma omp critical

{

gProgress++;

Percent = (int) ((float)gProgress/ (float)Range *200.0f + 0.5f);
}
if(Percent % 10 == 0)

printf ("$s%3d%%", CursorBack, Percent) ;

}

// Test to see if a number is a prime

: bool IsPrime(int CurrentValue)

{
int Limit, Factor = 3;
if(CurrentValue == 1)
return false;
else if(CurrentValue == 2)

return true;

Limit = (long) (sqgrtf((float)CurrentvValue)+0.5f);

)

while((Factor <= Limit) && (CurrentValue % Factor))

Factor ++;

return (Factor > Limit);

}

// Go through all numbers in range and see which are primes
: void GetPrimes (int Start, int End)

{
// Make Start to always be an even number
Start += Start %2;

// If start is 2 or less, then just record it
if (Start<=2) gPrimes[gNumPrimes++]=2;

continues

274 | CHAPTER9 TUNING PARALLEL APPLICATIONS

LISTING 9-4 (continued)

51: #pragma omp parallel for

52: for(int 1 = Start; 1 <= End; 1 += 2)
53: {

54: 1f(IsPrime(i))

55: {

56: #pragma omp critical

57: gPrimes [gNumPrimes++] = 1i;

58: }

59: PrintProgress (End-Start) ;

60: }

61: }

62:

63: int main()

64: {

65: double StartTime = wtime();

66: GetPrimes (FIRST, LAST);

67: double EndTime = wtime();

68:

69: printf ("\nFound $%8d primes in %7.41f secs\n",
70: gNumPrimes, EndTime - StartTime) ;
71: }

code snippet Chapter9\ParallelPrime.cpp

LISTING 9-5: A function to find the current time

#ifdef _WIN32
#include <windows.h>
double wtime ()
{
LARGE_INTEGER ticks;
LARGE_INTEGER frequency;
QueryPerformanceCounter (&ticks) ;
QueryPerformanceFrequency (&frequency) ;
return (double) (ticks.QuadPart/ (double) frequency.QuadPart) ;
}
#else
#include <sys/time.h>
#include <sys/resource.h>
double wtime ()
{
struct timeval time;
struct timezone zone;
gettimeofday (&time, &zone) ;
return time.tv_sec + time.tv_usec*le-6;
}
#endif

code snippet Chapter9\wtime.c

Summary | 275

SUMMARY

This chapter showed how you can use Amplifier XE to help tune a parallel program. Using
Amplifier XE’s predefined analysis types, you can quickly find out how much concurrency your
program exhibits and observe how well any synchronization objects are performing.

The examples in the chapter used OpenMP, but you can use Amplifier XE to profile Cilk Plus, TBB,
and native threading code as well.

The next chapter shows how to model parallelism in your code using Intel Parallel Advisor.

10

Parallel Advisor—Driven Design

WHAT’S IN THIS CHAPTER?

Using Parallel Advisor
Surveying the application
Adding annotations
Assessing suitability

Checking for correctness

Y Y Y VY VY Y

Moving from annotations to parallel implementations

This chapter introduces a parallel development cycle that uses Intel Parallel Advisor. Advisor
helps programmers become more productive, because it reveals the potential costs and benefits
of parallelism by modeling (simulating) this behavior before programmers actually implement
the parallelism in their code.

USING PARALLEL ADVISOR

The problem that Advisor helps you solve is to parallelize existing C/C++ programs to obtain
parallel speedup. Advisor’s value is increased productivity; it enables you to quickly and easily
experiment with where to add parallelism so that the resulting program is both correct and
demonstrates effective performance improvement. The experiments are performed by model-
ing the effect of the parallelism, without adding actual parallel constructs.

Advisor is a time-tested methodology for successfully parallelizing code, along with a set of
tools to provide information about the program. Advisor has several related personas:

> A design tool that assists you in making good decisions to transform a serial algorithm
to use multi-core hardware

278

| CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

> A parallel modeling tool that uses Advisor annotations in the serial code to calculate what
might happen if that code were to execute in parallel as specified by the annotations inserted
by the user

> A methodology and workflow to educate users on an effective method of using parallel
programming

The objective of parallelization is to find the parallel program lurking within your serial pro-
gram. The parallelism may be hiding due to the serial program being over-constrained — for
example, having read-write global variables that cause no problems for serial code but inhibit
parallelism.

Advisor is not an automatic parallelization tool. It is aimed at code that is larger and messier than
simple loop nests. Instead, it guides you through the set of decisions you must make, and provides
data about your program at each step. In summary, Advisor provides a lightweight methodology
that allows you to easily experiment with parallelism in different places.

Your parallel experiments with Advisor may all fail, which can be a blessing in disguise — you can
avoid wasting time trying to parallelize an inherently serial algorithm. You may need to investigate
alternative algorithms that can be parallelized, or just leave your program serial and investigate
serial optimizations.

Who can use Advisor?

> Architects — To design where introducing parallelism will provide the best return on invest-
ment (ROI): improved performance for a reasonable development cost.

> Developers — To discover opportunities for parallelization and modify the program to make
it parallel-ready. A program is parallel-ready when there is a predicted parallel speedup and
no predicted data-sharing (correctness) issues exist.

The key technology in Advisor is the use of parallel modeling of the serial program. You don’t
actually add parallelism to your code — you just indicate where you want to add it and the Advisor
tools model how that parallel code would behave. This is a huge advantage over having to imme-
diately add parallel constructs. Your still-serial program doesn’t crash or produce incorrect results
because of incorrect and likely nondeterministic parallel execution (such as unprotected data sharing
among tasks). Test suites generate identical results, because your serial program will not show the
nondeterminism caused by parts of the program running in different orders due to parallelism. This
also enables you to refactor your program to remove data-sharing errors and make it parallel-ready,
while it is still serial.

Advisor does have some disadvantages, compared with plunging ahead and immediately adding par-
allel constructs:

> You have to add annotations to describe where you want to experiment with parallelism.
Later, you convert them to parallel constructs.

> Analyzing (modeling) the correctness of the pretend tasks’ use of shared memory can be
significantly slower than the program’s normal execution time. Not only do you use a
Debug build, but the Correctness tool also must instrument and track every load and store

Using Parallel Advisor | 279

as the program runs to detect these kinds of errors. But it has the advantage of relatively
quickly finding problems that are otherwise difficult to uncover using traditional debugging
techniques.

> The tools analyze your running program, so they tell you only about parts of the program
that are actually executed. However, you would encounter this same limitation by attempting
to introduce parallelism immediately.

Understanding the Advisor Workflow

Intel Parallel Advisor guides you through a series of steps (see Figure 10-1). In practice, program-
mers usually move back and forth between some of the steps until they achieve good results.

—>» Start

Replace Annotations Survey Site
Annotate Code
Check C t
\‘wness Check Suitability
-

FIGURE 10-1: The five-step Advisor workflow

The Advisor Workflow tab guides you through these steps, Advisor Workflow B
highlighting the current step in blue (see Figure 10-2). The Start e
buttons are used to launch each analysis, and the Update buttons e Pt e sae

spends its time, and functions that call them.

% Collect Survey Data

View Survey Result

are used to re-run an analysis tool. You can view the results by
pressing the blue right arrow button.

The following five basic steps help you find hidden parallel rpy——

programs: Add Advisor annotations to identify possible
parallel tasks and their enclosing parallel sites.

* Steps to annotate

1. Use the Survey tool to determine where your program

spends most of its time. iew Anatztons

. . . . 3. Check Suitability
2. Insert Advisor annotations into your source code, which ¥l R T
. dicted llel perf b
indicate to the Advisor tools where you might like to use R

W Collect Suitability Data

parallelism. o
View Suitability Result

3. Use the Suitability tool to determine whether these loca-

4. Check Correctness

tions will provide suitable parallel speedups. Predict parallel data sharing problems for the
annotated tasks. Fix the reported sharing problems.
4. Use the Correctness tool to discover which data depen- Collect Correctness Data
dencies and shared data problems will occur with this View Correctness Resut
parallelism, and then fix them. Can you correctly tease 5. Add Parallel Fromemork
a parallel program out of the serial one? If you modify % Steps to replace annotatations
the annotations or source code, you need to run the —— |

Suitability and Correctness tools again.

Current Project: 2_nqueens_annotated

5. Convert your serial program to a parallel program by
replacing annotations with parallel constructs. FIGURE 10-2: The Advisor
Workflow tab

Now that you have a parallel program, you can apply the rest of
Parallel Studio.

280 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

You can follow several strategies for investigating multiple parallel region (site) opportunities:

> Depth-first — Take a region through all steps before picking another region; you can focus
on the behavior of one region of code.

> Breadth-first — Take all regions through the steps together; you can focus on the purpose
and information provided by each tool.

> Modified depth-first — Take each region through the final correctness checking step, and
then convert all regions to parallel constructs together; your program remains serial for as
long as possible, preserving the benefit of identical test suite results.

Finding Documentation
Advisor provides copious documentation, which you can access in one of the following ways:
> Help = Intel Parallel Studio 2011 = Parallel Studio Help => Advisor Help
Help = Intel Parallel Studio 2011 => Getting Started &> Advisor Tutorial
The Workflow tab and its hot links into Advisor help

Visual Studio context-sensitive F1 help

Y Y Y VY

Right click in any Advisor report, and choose “What should I do next?”

Getting Started with the NQueens Example Program

This chapter uses the NQueens example program that ships with Advisor to demonstrate how
Advisor works. Listing 10-1 shows the two functions, setQueen () and solve (), that are the focus
of the analysis.

LISTING 10-1: The setQueen() and solve() functions

void setQueen(int queens[], int row, int col)
{
int 1 = 0;
for (i=0; i<row; i++) {
// vertical attacks
if (queens[i]==col)

return;

// diagonal attacks

if (abs(queens[i]-col) == (row-i))
return;

}

// column is ok, set the queen
queens [row]=col;

if (row==g_nsize-1)

{

Using Parallel Advisor | 281

nrOfSolutions ++;
}
else {
// try to fill next row
for (i=0; i<g_nsize; i++)
setQueen (queens, row+l, 1);

}

void solve(int size)
{

g_nsize = size;

for (int i=0; i<g_nsize; i++)

{
// create separate array for each recursion
int* pNQ = new int[g_nsizel;

// try all positions in first row
setQueen (pNQ, 0, 1i);

delete pNQ;

The NQueens program computes the number of ways you can place # queens on an nxn chess-
board with none being attacked. It prints the result and the elapsed time. The program’s default
value for 7 is 13. The NQueens algorithm proceeds in the following way. The loop in the

solve () function places a queen in each of the size columns of the first row, and then calls the
setQueen () function to place queens in the remaining rows. The setQueen () function tries a
queen in each column of the next row. If it doesn’t “fit,” setQueen () goes to the next column. If
more rows exist, it calls itself recursively on the next row; otherwise, a solution has been found
and the nrofsolutions global variable is incremented — and in these cases setQueen () also
goes on to the next column.

You can find the nqueens_advisor.zip file that ships with Advisor in the samples\<locale>
folder in the Parallel Studio 2011 install folder, usually c:\Program Files\Intel\Parallel
Studio 2011. Unzip the file into a writable folder. Start Visual Studio 2005, 2008, or 2010, and
open the solution file nqueens_Advisor\nqueens_advisor.sln in that folder; for VS 2008 or
2010, the .s1n file will be converted — follow the wizard’s directions.

Figure 10-3 shows the Advisor toolbar, which appears in
the Visual Studio toolbar area. It provides one of the several
ways of invoking Advisor and the Advisor tools.

TR R AR

Open the Intel Parallel Advisor 2011 Getting Started Tutorial
COpen Advisor Workflow

You should start by opening the Workflow tab. In addition to
using the toolbar, you can start the three analysis tools from
the Workflow tab either by clicking the corresponding button
or by selecting VS Tools = Intel Parallel Advisor 2011.

Start Survey Analysis
Start Suitability Analysis

Start Correctness Analysis

$9ER0B B

Open Advisor Summary Report

FIGURE 10-3: The Advisor toolbar

282 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

SURVEYING THE SITE

Recall the discussion of Amdahl’s Law in Chapter 1, “Parallelism Today,” which says that paral-

lel speedup is limited by the execution time of the portion of the program that remains serial. The
obvious conclusion is that you need to discover where your serial program spends the most time and
focus there in order to find the most effective parallel speedup.

This is what the Survey tool helps you do: it runs and profiles the program to show where the pro-
gram spends its time.

Your goal in this step is to find candidate parallel regions. You make the decisions — the Survey tool
provides timing information and helps you navigate your program. You may already have candidate
regions in mind, but run a Survey analysis anyway so that you have quantitative data about how
much time is spent in each portion of the program.

If you were doing serial optimization, you would find hotspots that have the highest Self Time and
reduce the time there (that is, by reducing the number of executed instructions). Looking elsewhere
will not help serial execution time!

In contrast, with parallel optimization you don’t need to focus just on a hotspot — you can also look
along the chain of loops and function calls from the application’s entry point to the hotspot for can-
didate parallel regions that have high Total Time — time spent there and in called functions (includ-
ing the hotspot). This is because the objective of parallel optimization is to distribute the execution
time (the executed instructions) over as many tasks/cores as possible. The parallel program typically
executes more instructions than the serial program (due to task overhead), but it consumes less
elapsed time because the work is spread among multiple tasks at the same time on multiple cores.

Running a Survey Analysis

To run a Survey analysis, begin by building a release configuration of your program. For best
results, turn on debug information so that the Survey tool can access symbols, and turn off inlining
so that all functions in the source-level call chain appear in the Survey Report. Survey analysis has
low overhead — it allows the program to execute at nearly full speed — so employ a data set that
exercises the program the way it is normally used. Start the Survey analysis using the Advisor tool-
bar, Workflow tab, or the Tools =& Intel Parallel Advisor 2011 menu.

The Survey Report

The Survey Report for NQueens has several columns (see Figure 10-4):

> Function Call Sites and Loops — Call/loop chains starting from the main entry point (upper
left). All distinct chains appear, sorted by highest Total Time toward the top. You can use the
[+] or [-] to open/close a call chain, respectively.

> Total Time % (and Total Time) — The percentage of and actual elapsed time, respectively,
spent in a function or loop and all functions called from this location (used to estimate the
time that could be covered by a parallel region).

Self Time — Elapsed time spent in only the function or loop (used to find hotspots).

Source Location — The file name and line number of the function or loop.

Surveying the Site | 283

_1_nqueens_ses ult| =4

[Where should I add parallelism?

P summary ‘ﬁi{l Suitability Report | {3 Correctness Report

|| Function Cal Sites and Loops Total Time % Total Tme | Self Tme | Source Location |
| Emain 10 1.23445 0s nqueens_serial.cpp: 147
" soive fioop]. B! 1,5344 s nqueens. serial, cpp: 106
SO solve [loop] || 100.0% SH— 12344 0s nquesns_serial.cop: 103
Ssolve || 100.0% S 1.2345 0s nqueens_serial.cop: 109
=5 setQueen loop] || 100.0% EE— 1.2345 0s nqueens_serial.cop:65
51O setqueen loop] 100.0% SN 1.2344 os nqueens_serial.cpp:88
SsetQueen 100.0% SN 1.2344s os nqueens_serial.cpp:88
2O setqueen loop] || 100.0% Som— 12344 0s nquesns_serial.cop:65
5 setQueen loop] || 100.0% S 1.2345 0s nqueens_serial.cop:88

=setQueen 100.0% I 1.23445 0s [E1 nqueens_serial.cpp:88
setQueen [loop] 100.0% I 12344 0s nqueens_serial.cop:65
setQueen [loop] 100.0% I 12344 0s nqueens_serial.cop:88

tQuesn || 100.0% EH—1.23445 0s [El nqueens_serial.cop:88 |
= setQueen [loop] | 100.0% EEEEE. 1.2344 0s [# nqueens_serial.cpp:65 1
=15 setQueen [loop] 100.0% I 1.2344 0s nqueens_serial.cpp:88
SisetQuesn 100.0% I 1.2344 0s nqueens_serial.cop:a8
=0 setQueen [loop] 55.1% SN 1.22355 0s nqueens_serial.cop:65
= & setQueen [loop] | 96.5% S 1.1914% 0s [E1 nqueens_serial.cop:88
SlsetQueen | 96.5% SE—1.1914 0s nqueens_serial.cop:88
=0 setQueen [loop] 94.5% IS 1.1556s Os nqueens_serial.cpp:65
O setQueen loop] 53.9% EEEEENN 115335 0s [l nqueens_serial.cop:33
[#setQueen | os%l 0.01075 0.0107s nquesns_serial. cpp:67
FsetQueen | 1a%) 0.0218s 0.0218s nqueens_serial.cop:88
#setQueen | 17%) 0.0215s 0.0215s nqueens_serial.cpp:67
(setQueen [looy 0.9%1 0.0107s 0s] nqueens_serial.cpp:63
: e | B . = u——nt
& | m I [»

FIGURE 10-4: The Survey Report for NQueens

Finding Candidate Parallel Regions

The basic strategy is to look along hot call/loop chains in the Function Call Sites and Loops column
from the upper left toward the lower right for candidate parallel regions:

> Data parallelism — Loops can be promising parallel regions because if each instance of the
loop body can be a task, then you naturally create numerous tasks (one per iteration) over
which to distribute the execution. This is why the Survey Report displays loops as well as calls.

> Task parallelism — Alternatively (or in addition on the same call/loop chain as a candidate
loop), look for a high Total Time function F that makes direct calls to several functions G
and H that also have high Total Times — for example, F: 60%, G: 40%, H: 20%. The calls
to G and H could be put in two different tasks that can execute in parallel, assuming G and
H are “independent.” This can provide scaling that seems to be limited to 2 cores (but see the
following “nested parallelism” bullet).

> Nested parallelism — Several candidate regions along the same call chain; inner parallel
regions are “nested” within outer parallel regions. For example:

> Several directly nested loops. If you select the 72 outer iterations and the 7 inner itera-
tions as tasks, there will be #*n parallel tasks executing the body of the inner loop.

> Task parallelism in a recursive function. For example:

Qsort (array) {
Partition array into [less_eq array, "center" element, greater_array];
Qsort(less_eq array) ;
Qsort (greater_array) ;

}

With task parallelism the two recursive gsort calls occur in different tasks. At each
level of the recursion you get 2, 4, 8, 16, ... parallel tasks. So, with this recursive

284 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

decomposition you are not limited to a fixed number of tasks, even though you see
only two tasks in the source code.

> Easy and hard cases — If you can find a candidate parallel region that covers 90 percent of
the total time you may be in good shape. In contrast, if you have ten candidates each cover-
ing 10 percent of the time, you may have to work harder to get the full parallel speedup.

The Survey Source Window

Double-clicking a loop or function call in the Survey Report takes you to the Survey Source win-
dow, which shows the source code to help you determine if this is a good parallel site (see Figure
10-5). The information displayed includes:

> Total Time — Shows the total time spent in a function. Values appear only on some
statements.

> Loop Time — Represents the total time over all of the statements in a loop. The value
appears on some statement in the loop, often the loop header.

> Call Stack with Loops — Shows the chain of calls used. You can navigate to the source for
different locations in the stack by clicking the corresponding stack entry.

1 _nqueens_sefial...y Advisor Result * X

||| & Where should I add parallelism? (Source)

’ Summary 5 Survey Report '*El Suitability Report 9 Correctness Report

Line Source I I L | @ setqueen - nqueens serial.cpp:65
56 solve - nqueens_serial.cpp:109
57 i (O solve - nqueens_serial.cpp:106

main - nqueens_serial.cpp:118

58 Recursive function to find all solutions on a board = g
_tmainCRTStartup - crtexe.c:586

59 represented the argument “"gqueens”, placing the ne: -

& :’1 af l:y = T = 9 £ BaseThreadnitThunk
Encoeatien lroMy oo £ RillnitializeExceptionChain

et = RtlinitializeExceptionChain

62 On Return: nrOfSolutions has been increased to add s

63
64 =)

[

void setQueen{int gquesns[], int row, int col) {
66 //check all previously placed rows for attacks
67 for(int i=0; idrow; i++) { 0.384s | 21455 0
68 // vwertical attacks
69 if {gueens[i]l=—ceol) { 0.421s |
70 return; 0.069s |
i 1
72 // diagonal attacka
3 if (abs{queens[i]-col) = (row-i}) { 1282510
74 return; 0.040s |
s ¥
B i Selected (Total Time): 6.6;65 o

4 | I (3B s

FIGURE 10-5: The Survey Source window

Double-click in the Survey Source window to enter the Visual Studio editor on the correspond-
ing file. Return to the Survey Report from the editor by selecting the My Advisor Results tab for
the current Visual Studio project, or click the arrow icon in the “1. Survey Target” section of the
Workflow tab. To return from Survey Source to the Survey Report, click the Survey Report button
or the arrow icon.

Surveying the Site | 285

How Survey Analysis Works

When you start a Survey analysis, it runs the current program. Occasionally it takes a sample of
where the program is executing, computing the call chain and also noting locations along the chain
that are in a loop. When the program completes, the analysis scales the samples to determine the
Self Time and the Total Time, sorts the call/loop chains by highest Total Time, and displays the
Survey Report. Because the Survey Report employs coarse sampling, there is usually minimal slow-
down of the program. The coarse sampling is sufficient because the Survey Report is trying to iden-
tify high-frequency events: hotspots and hot call chains.

ACTIVITY 10-1: SURVEYING THE NQUEENS APPLICATION

In this activity you will run a Survey analysis on the serial version of the NQueens
application, and examine the resulting report.

1. Unzip and open a copy of the NQueens example shipped with Parallel Studio
2011. You should find the project in

C:\Program Files (x86)\Intel\Parallel Studio 2011\Samples\en_US
\ngueens_Advisor.zip

or

C:\Program Files\Intel\Parallel Studio 2011\Samples\en_US
\nqueens_Advisor.zip

Notice that the solution has three projects, 1_nqueens_serial,
2_nqueens_annotated,and.3_nqueens_cilk.

2. Set the 1_nqueens_serial project to be the startup project, and build its
release configuration.

3. Run the project without debugging; the window shows the results for 13
queens and tells the elapsed execution time.

4. Run a Survey analysis on the program.
5. Explore the Survey Report.
a. Open and close call/loop chains.
b. Go to the Survey Source window and back.
C. Go to the Survey Source window and to the editor, and back.

6. Pick some candidate parallel regions in the nqueens_serial.cpp file and
roughly estimate the parallel speedup on 4 cores. For example, if you pick a
loop with 40% total time, it will take 10% on 4 cores, assuming perfect scal-
ing, plus 60% for the remaining serial portion, or (100%)/(10%+60%)
=1L4XX

7. Extra credit: Look for a case of potential (recursive) nested parallelism.

286

| CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

ANNOTATING YOUR CODE

You communicate to Advisor where you want to try candidate parallel regions by adding annota-
tions to your program. This section describes the parallel model that annotations simulate, the com-
mon annotations and parallel constructs they can represent, and how to add them to your program.
Recall that Advisor is an inexpensive way to try parallelism in different places. Annotations are
cheap — feel free to experiment!

Advisor’s Suitability and Correctness tools run your serial program and model how it would
behave if it were parallel as specified by the annotations — that is, they pretend it is running in
parallel.

Site Annotations

Advisor tools model fork-join parallelism as expressed by the following Advisor annotations:

> ANNOTATE_SITE_BEGIN (<site name>); — After you execute this annotation, subsequently
created tasks belong to this site and pretend to run in parallel with other tasks of this
site. This is sort of a pretend “fork” point, except tasks are not created until you execute
ANNOTATE_TASK_BEGIN.

> ANNOTATE_SITE_END (<same site name>); — Execution of SITE_END is a “join” point for
all tasks created in this site; execution pretends to wait here until all owned tasks have com-
pleted — that is, the tasks do 7ot run in parallel with code at the same syntactic level following
the sTTE_END. Note that if the site is (dynamically) nested within another site, tasks of the nested
site may run in parallel with other tasks belonging to the parent site.

> ANNOTATE_TASK_BEGIN (<task name>); — Execution of TASK_BEGIN pretends that the code
from here to the execution of the matching ANNOTATE_TASK_END (<same task name>) ;
executes in parallel with other “tasks” belonging to the owning site.

> ANNOTATE_TASK_END (<same task name>); — Execution of TASK_END simulates the com-

pletion of the execution of the corresponding named task.

Fork-join parallelism is sufficient to model Intel Cilk Plus, OpenMP, and most of the parallel algo-
rithms in Intel Threading Building Blocks (TBB). Following are some examples of Advisor annota-
tions for parallel regions:

> Loop parallelism — To model that the bodies of all iterations of the loop may execute in par-
allel (also referred to as data parallelism):

ANNOTATE_SITE_BEGIN (big_loop) ;

for (1 = 0; i < n; i++) {
ANNOTATE_TASK_BEGIN (loop) ;

Statementl;

Statementk;

ANNOTATE_TASK_END (loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

Annotating Your Code | 287

> Task parallelism — To model that the two gsort calls may execute in parallel. Notice that
this example also uses recursion:

// Qsort sorts the array a in place, and uses modeled recursive parallelism
void Qsort (array a){
// If a is small enough, sort it directly and return.
// Otherwise, pick an element e from array a.
// Rearrange the elements within a so that it is partitioned in 3 parts
// a == [elements <= e; e; elements > el
// Let array less_eq gsort be a reference to the first partition of a
// Let array greater_gsort be a reference to the last partition of a
// Recursively apply Qsort to each of these array references, in parallel.
ANNOTATE_SITE_BEGIN(gsort) ;

ANNOTATE_TASK_BEGIN (gsort_low) ;

Qsort(less_eq array) ;
ANNOTATE_TASK_END (gsort_low) ;

ANNOTATE_TASK_BEGIN (gsort_high) ;
Qsort (greater_array) ;
ANNOTATE_TASK_END (gsort_high) ;
ANNOTATE_SITE_END (gsort) ;
}

> Nested parallelism — This example is an extract from the Tachyon ray tracing example that
ships with Advisor:

// Inner loop nest (simplified) from Ray Tracing sample program tachyon_Advisor.
// Two nested loops on y and x, each inner iteration renders
// one pixel in a rectangular grid.
// Processing one pixel is independent of every other pixel, so they
// can all be done in parallel. This is modeled using nested parallelism.
ANNOTATE_SITE_BEGIN (allRows) ;
for (int y = starty; y < stopy; y++){
ANNOTATE_TASK_BEGIN (eachRow) ;

ANNOTATE_SITE_BEGIN(allColumns) ;
for (int x = startx; x < stopx; x++) {
ANNOTATE_TASK_BEGIN (eachColumn) ;
color_t ¢ = render_one_pixel (X, y, ..);
put_pixel(c);
ANNOTATE_TASK_END (eachColumn) ;
}
ANNOTATE_SITE_END(allColumns) ;

ANNOTATE_TASK_END (eachRow) ;
}
ANNOTATE_SITE_END (allRows) ;

Lock Annotations

Lock annotations can be used to pretend to protect access to shared data by multiple tasks. Note
that you usually add lock annotations only after you have run the Correctness tool and have found
cases of unprotected data sharing that need to be fixed.

288 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

> ANNOTATE_LOCK_ACQUIRE (<address>) ; — After a task executes this annotation, model-
ing pretends that no other task may enter a region protected by LOCK_ACQUIRE of the same
address — that is, only one task at a time can execute any protected region.

> ANNOTATE_LOCK_RELEASE (<address>) ; — Execution of this annotation ends the locked
region corresponding to <address> — that is, modeling can pretend that another “waiting”
task can enter the protected region.

The following example shows how to protect the incrementing of a shared variable inside a task
using lock annotations:

ANNOTATE_LOCK_ACQUIRE(0); // zero is a convenient address
shared_variable ++;
ANNOTATE_LOCK_RELEASE(0) ;

Although the preceding examples show paired site and task annotations that match statically in the
source code, the paired annotations actually must match at execution time, because they have their
parallel modeling effect at run time. So, if multiple execution paths are exiting such a region, it is
necessary to have multiple “closing” annotations (two lock-releases in this case):

static int my_lock;

ANNOTATE_LOCK_ACQUIRE (&my_lock) ;

if (shared_variable == 0) {
ANNOTATE_LOCK_RELEASE (&my_lock) ;
return; }

shared_variable ++;

ANNOTATE_LOCK_RELEASE (&my_lock) ;

Some other special-purpose annotations are explained in the Advisor documentation.

Adding Annotations

Advisor has some features to simplify adding annotations to your code in the editor. Note that you
make the decisions about parallel regions; Advisor helps you generate the correct syntax. To add
annotations, follow these steps:

1. Navigate to the location in the source file where SR :

you want to insert annotations: for example, - [
double-click a line in the call/loop chain in the -
Survey Report to see the Survey Source window, | -
and double-click again to reach the editor.

Call Browser 3

nition

Go To Header File

2. Use the mouse (left-click and drag) to select a Intel Parallel Adisor 2011 » | | Anmotation wizara..
code region to be surrounded by an annota- Breakpoint ’ Annotate Site
tion pair. +E | RunTo Cursor Annotate Task
& | Cut Annotate Lock
3. Right-click and select Intel Parallel Advisor ol cai T T
201 1 . | Paste

Qutlining 3

4. You can select one of the annotation types
displayed in Figure 10-6. This will cause the FIGURE 10-6: The Annotation menu in the
editor

Annotating Your Code | 289

annotation pair to be entered into the source around the selected code, with a unique name
chosen as the argument.

Alternatively, select Annotation Wizard, which guides you through several steps for select-
ing annotation kinds and argument names. It also explains the semantics of the selected
annotation kind. Figure 10-7 shows the Annotation Wizard, where Annotate Task has been
selected as the annotation type from the pull-down menu. The two panes show what the
code will look like near the ANNOTATE_TASK_BEGIN and ANNOTATE_TASK_END annotations.

Annotation Wizard [t

Choose the annotation type: lAﬂnciabe Task vI

Example:

&4 wvoid setQueen(int queens[], int row, int col) {

&5 Jfcheck all previously placed rows for attacks
* ANNOTATE_TASK_BEGIN(MyTask2);

a6 for(inti=0; i<row; i++) {

&7 [vertical attacks

&85 [fcheck all previously placed rows for attacks
&6 for(inti=0; i<row; i++) {
2] ANNOTATE_TASK_END{MyTask2);
&7 [vertical attacks
68 if (queens[i] ==cal) {

A task annotation encloses a block of code. The block of code will be executed
normally, but will be modeled as if it executes in parallel with the site block and with
any other tasks within the same site. A task is modeled as if it starts when it is
encountered by the site. All tasks for a site are modeled as completing before the site
can exit

Back Next ‘Cancel

FIGURE 10-7: The Annotation Wizard window

Recall that if the flow of control can leave a region by different paths (for example, a return), it
may be necessary to have multiple ending annotations. The Annotation Wizard does not handle
this case, so you will need to recognize this situation and insert the additional *END annotation

by hand.

Annotations are actually C/C++ macros that expand into calls to null functions with special names;
the Advisor tools recognize the names and model the corresponding behavior. And because annota-
tions are just macros, you can employ any C/C++ compiler to build your annotated program.

Every source file using annotations needs to include the file advisor-annotate.h, which defines the
annotation macros:

#include "advisor-annotate.h"

The Annotation Wizard in the editor can help with this step. This include file is located in the
directory $ (ADVISOR_2011_DIR) /include, so you also need to add this include path to the
Additional Include Directories in Build Configurations under Properties & C/C++ = General for all
projects and configurations using annotations.

290 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

ACTIVITY 10-2: ADDING ANNOTATIONS TO NQUEENS

In this activity you add annotations to the NQueens application.

1. Inthe 1_nqueens_serial project, enter the VS editor on a source file and use
the Annotation Wizard to add several annotation kinds. Use the editor’s Undo
command to remove them.

2. In the same project, add site and task annotations for all the candidate parallel
regions you selected in Activity 10-1. Add the include file to the source file(s).
Also add the include path to the build configurations. Build the program and
correct any compilation errors.

3. One way of parallelizing NQueens is to select the loop in the solve () function
as a parallel site. It covers 100 percent of the Total Time, so it has the poten-
tial for being a good site. The source file nqueens_serial.cpp in project
1_nqueens_serial contains commented-out annotations at this loop, as well
as a commented out #include of advisor-annotate.h. Uncomment this code,
add the include path to the build configurations, and then rebuild the project.

4. Alternatively, move to the 2_nqueens_annotated project, which already has
annotations added at this site (see the nqueens_annotated. cpp file). Set this
as the startup project and build it. This project is used in the next two sections.

CHECKING SUITABILITY

Suitability analysis provides coarse-grained speedup estimates for the annotated code. The purpose
of the performance information is to guide your decisions about these sites:

> If the estimate is good, keep going with this site.

> If the estimate is bad, either adjust the site or abandon the experiment.
In either case, you have made progress with a small expenditure of effort because you are using
modeling.

You can answer other questions. Does the performance match your expectations from the Survey
Report? Are there parallelization-related performance issues (for example, overhead items)?

If you have fixed correctness issues by adding locks or restructuring the code (on the previous itera-
tion through the Advisor workflow), the projected parallel performance may have changed since the
last time you ran the Suitability analysis. So, you need to run it again after modifying your annota-
tions or your code.

Running a Suitability Analysis

To run a Suitability analysis, begin by building a release configuration of your program (similar
to a Survey analysis, but the program now has annotations) and use the same data set. Start the
Suitability analysis from the Advisor toolbar, Workflow tab, or from the Tools menu. The Suitability

Checking Suitability | 291

tool runs the program, analyzing what its performance characteristics might be. There is typically
less than a 10 percent slowdown compared to normal program execution. However, if many task
instances have a small number of executed instructions, the modeling overhead could be higher

and the accuracy of the estimates may suffer. For example, if the average time for tasks is less than
0.0001 seconds (displayed in the Selected Site pane), the instrumentation overhead in the Suitability
tool may cause the predicted speedups to be too small.

The Suitability Report

The Suitability Report for NQueens appears in Figure 10-8. It displays the following panes of infor-
mation. All performance data consists of modeled estimates about how the program might behave if
it were parallel.

> All Sites — Summarizes performance information about parallel sites and the whole program
and contains:

> Maximum Program Gain For All Sites — The speedup of the whole program due to
all sites, for the current Target CPU Number.

> A list of each site with their individual Maximum Site Gain (speedup), contribution
to Maximum Total Gain of the program, Average Instance Time, and Total Time.

> Model parameters — Drop-down lists for changing the Target CPU Number and
Threading Model. You can select different values to see how the results behave.

> Selected Site — Shows details about the currently selected site in the All Sites pane. The infor-
mation includes:

> Scalability of Maximum Site Gain graph — A log-log graph of the site’s maximum
gain versus the number of CPUs. Each vertical bar shows the range of values for that
number of cores, and the ball on the bar shows the estimate with the current set of
model parameters and parallel choices.

> Green area — Good speedup (linear, or close to linear scaling)!

> Yellow area — Some speedup but there may be opportunities for
improvement.

> Red area — No (or negative) speedup; may need significant effort to improve,
or perhaps this site should be abandoned.

> A list of tasks and locks associated with the current site along with performance
information such as maximum, average, and minimum times.

> Changes I will make to this site to improve performance — Lists five parallel choices
you make about sites, tasks, and locks. This area of the pane indicates if any of these
items impact performance, and if so, Advisor may recommend how to reduce the
impact and what speedup might be achieved. You can change a choice by clicking in
the corresponding box. (Click the underlined name for additional documentation.)

> Reduce Site Overhead — The time to create and complete a parallel site.
> Reduce Task Overhead — The time to start and stop a task.

> Reduce Lock Overbead — The time to acquire and release a lock.

292 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

> Reduce Lock Contention — The time spent in one task waiting for another
task to release a lock.

> Enable Task Chunking — Combining multiple tasks into a single task to
reduce the task overhead (for example, in a parallelized loop, performing
numerous consecutive iterations in one task). Several parallel frameworks,
such as Intel Cilk Plus, Intel TBB, and OpenMP, perform task chunking by

default.
2_ngueens_anno... Advisor Iiesull] - X
||| @ What are the performance implications of the annotated sites?
, Summary E Survey Report @ Cormrectness Report
Maximum Program Tapet CRA thnber: e Modct
Gain For All Sites: Annotation La... Source Location Maximum Site G... Maximum Total G... Average Instance Ti... Total Time
sove | B ngueensannot..[188x ______[i7x ________[25706s 2.57065
Scalability of Maximum Site Gain Changes I will make to this site to improve performance -
16x Type of Change Benefit if Checked Lass if Unchecked Recommended
& s [] Reduce Site Overhead No
Bx [7] Reduce Task Overhead No
¢ [] Reduce Lock Overhead No
4x o || Reduce Lock Contention No E
[] Enable Task Chunking No

UED BJIS WNW XEY

Click here to display annotation data.

FIGURE 10-8: The Suitability Report for NQueens

Double-clicking a site or task name displays the corresponding source code in the Suitability Source
window. Return to the Suitability Report by clicking the Suitability Report.

A summary of all your annotations is provided in the Summary Report. This is described in the
later section “Replacing Annotations.” An example appears in Figure 10-13.

Parallel Choices

This section describes the meaning and effect of the parallel choice boxes in the Selected Site pane of
the Suitability Report.

Figure 10-9 shows the Selected Site pane for a program with lock annotations. In the scalability
graph, the balls indicating current estimated gain are in the red, meaning no speedup. However, the
bars reach into the green and indicate that there is a range of performance depending on the parallel
choices listed to the right. In particular, Advisor shows that a 5.35x speedup can be achieved if you
select Reduce Lock Contention, and also recommends that you do so.

Figure 10-10 shows the result of clicking the Reduce Lock Contention box. The balls in the graph
are now in the green, representing very good speedup. By clicking the box, you have agreed to take
some action(s) to reduce lock contention when you convert to actual parallel constructs. Note that

Checking Suitability | 293

Advisor only predicts the effect of reducing lock contention — you have the responsibility of imple-
menting that decision later when you add parallel code!

Selected Site
Scalability of Maximum Site Gain

UIES) 8715 WNWXEL

Target CPU Number

Changes I will make to this site to improve performance

[] Reduce site Overhead
[] Reduce Task Overhead

5.35x

[[] Enable Task Chunking

FIGURE 10-9: The Selected Site pane before making a parallel choice

Selected Site

16x

8x

n

UIES) 8115 WNWIKE |y

Scalability of Maximum Site Gain

s

4

Target CPU Number

8

15

Changes I will make to this site to improve performance

[[] Reduce Task Overhead

[[] Reduce Lock Overhead

Reduce Lock Contention ¢ 5.35%
[] Enable Task Chunking

FIGURE 10-10: The Selected Site pane after making a parallel choice

Using the Suitability Report

wpe of Change Benefit f Checked oss F Unchecked

ecommended

No
No

No

You have multiple ways to use the Suitability Report to determine what parallel performance

your program might have, and what you might change to achieve improvements. First look at the
Maximum Program Gain, and then for each site examine the scalability graph and the parallel
choices. Is the program gain what you expected? Change the number of CPUs to check the scalabil-
ity or to match the number of CPUs on your target platform. Answer the same questions about the
gain for each site, and study the scalability graph for each site.

If a site’s speedup is low, click it and examine its Selected Site pane:

>

>

In which region of the scalability graph (green, yellow, red) is the result?

Are there recommended changes to the parallel implementation choices? If so, try clicking the

corresponding box.

How many task instances are there for each site instance? Too few may limit scalability.

If there are numerous tasks with very small average time, you probably already have recom-
mendations to Reduce Task Overhead and/or to Enable Task Chunking. Task times less than
0.0001 second can cause the instrumentation overhead of the Suitability tool to degrade the
accuracy of the speedup estimates.

294 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

> Compare Total Time for the tasks with that of the site. Recall that if the tasks cover only 50
percent of the site’s time, then Amdahl’s Law says the speedup limit is 2x.

> If you have a small number of tasks and a large time deviation, there may be a problem with
load balancing (see Chapter 9, “Tuning Parallel Applications”). The large tasks continue run-
ning while some tasks finish early and there are no other tasks to run, so some CPUs will be
idle. Try to make the amount of work in each task similar, or at least cause the large tasks to
start executing first.

> Is the number of locking instances large? This will probably also show up in Reduce Lock
Overhead.

> Is the Total Time in locks similar to that for tasks? This may also show up as a Reduce Lock
Contention recommendation.

You can also experiment with the sensitivity of the performance by varying the model parameters
and the parallel choices, looking for significant changes in the results. This Sensitivity analysis is fast
because all the results have been precomputed — Suitability analysis is not run again.

How Suitability Analysis Works

When you start a Suitability analysis, it runs the current program, keeping track of site, task, and
lock annotations, and the time spent in each. It then models what the performance of the program
would be if it were run in parallel as specified by the annotations, and for all combinations of mod-
eling parameters and parallel choices. It then displays the coarse-grained estimates in the Suitability
Report.

Here is a more detailed description of the Suitability analysis:

> Data collection — While the program runs, the Suitability tool collects timestamps for the
beginning and end of each site, task, and lock region, and computes the elapsed times. (Recall
that annotation macros expand into calls to specially named null functions; the tool identi-
fies the kind of annotation by the name of the function.) Data collection generates a program
trace as a stream of ordered times and information about the regions. It also compresses the
data. For example, if 100 consecutive instances of task(foo) are similar, each with about the
same elapsed time of 3 seconds, then this could be represented as “100 * task(foo) total 300
seconds.”

> Construct task execution tree — The next step is to build an ordered tree representing the
sites and their contained tasks (and nested sites and their tasks) from the ordered stream
coming from data collection. Under each tree node for a task are also the instances of locked
regions that were executed in the task. The ordering in the tree represents the serial execution
order of the regions. To keep the amount of memory consumed by the tree reasonable, the
tree is limited to a fixed number of nodes. This is accomplished by employing another kind of
compression: if the size limit is reached and more data is still arriving, the tree-building pro-
cess aggregates the effects of the leaves of a node into the node, and then deletes the leaves.
For example, the times for the tasks belonging to a site can be summed and stored in the
site’s tree node before the tasks’ nodes are removed.

Checking for Correctness | 295

> Modeling — The purpose of creating the tree is to provide a structure for modeling the
performance characteristics of parallel executions of the program as represented by the anno-
tations. The modeling is performed by simulating the execution of the program in parallel on
a fixed number of simulated cores, where the only operations simulated are the beginnings
and ends of sites and tasks, and the acquiring and releasing of locks. Time is estimated by
using simulated clocks for each core. When a task “runs” on a core, the core’s clock is incre-
mented by the time the task took during the data collection run (as stored in the tree).

A key component of parallel modeling is the task scheduler. It has a queue of tasks that are ready
to “execute.” The scheduler assigns tasks to cores as the cores complete other tasks. The simulator
keeps track of the simulated elapsed time for the sites, tasks, and locks. Note that the simulation
does not take into account cache or memory effects from tasks running on different cores. The only
inter-task performance impacts are from locks.

The simulation is run for every combination of number of CPUs, threading model, and the five par-
allel choices, and then the results are saved. When you change one of the values in the Suitability
Report, the new result is displayed immediately because it has been precomputed. The reason for
building the execution tree is that it is used multiple times for the simulations.

The Target CPU Number affects how many cores are available for the scheduler to allocate to tasks.
The Threading Model affects the overheads of individual site, task, and lock operations. The paral-
lel choices have different impacts. For example, the option “fix task overhead” is modeled by having
the simulator use zero for task overhead. For the option “fix lock contention,” the simulator never
makes a task wait for a lock. (Normally, the simulator causes a task to wait for the lock to be free
and records the additional simulated elapsed time for that task.)

ACTIVITY 10-3: RUNNING THE SUITABILITY ANALYSIS ON NQUEENS

In this activity you run a Suitability analysis on the annotated NQueens application
and explore the effect choosing different modeling parameters.

1. Run the Suitability analysis on the program with your annotations from
Activity 10-2, or use the 2_nqueens_annotated project.

2. Examine the different sections of the Suitability Report.

3. Change the number of CPUs and the threading model parameters. Are there
any parallel choice recommendations to select?

CHECKING FOR CORRECTNESS

You have run the Suitability analysis and are feeling good because you have found some sites that
are projected to provide parallel speedups. Now it’s time for a reality check; if you parallelize your
program in these locations, will there be data-sharing problems or deadlocks that will cause the par-
allel program to be incorrect? The purpose of checking correctness is to predict if these issues will
occur.

296

| CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

Not only does correctness modeling tell you if errors exist, but it also helps you navigate to all of the
source locations participating in a data-sharing error or a deadlock. You need this in order to fix the
problem.

Or, you may decide that the correctness errors are too difficult to fix or will take too much develop-
ment time relative to the projected speedup for a parallel site. So, if the return on investment (ROI)
is too small, abandon this site and remove its annotations. You have been able to quickly experiment
with this site, and now you can go on to other sites.

Running a Correctness Analysis

To run a Correctness analysis, begin by building a debug configuration on your program, making
sure that the build configuration uses the dynamic runtime library (Configuration Properties &> C/
C++ = Code Generation & Runtime Library is /MD or /MDd). Correctness needs optimization

off so that all memory references are retained in the generated code, and retained in their original
program order, because the modeling tracks all the loads and stores. Correctness modeling causes

a significant slowdown of the program, such as 100 times slower. Thus, you should use a reduced
input data set to minimize the run time. However, the reduced data set should cause the program to
traverse all the paths within the sites. For example, if the Survey or Suitability input data set causes
a “parallel” loop to execute one million iterations, it is probably sufficient for correctness modeling
if the reduced data set causes the loop to execute only a few iterations. Start the Correctness analysis
using the Advisor toolbar, Workflow tab, or Tools = Intel Parallel Advisor 2011 menu.

As mentioned, performing a Correctness analysis can cause a significant expansion of execution
time. So when the Correctness tool is running your program, it displays each “observation” as the
program runs. If enough error observations have occurred, you can stop the program by clicking the
red Stop button on the Advisor toolbar, or by closing your program’s window. A Correctness Report
will be created for these observations, even though the program has not run to completion.

The Correctness Report

The Correctness Report for NQueens displays several panes of information (see Figure 10-11):

> Problems and Messages — Correctness combines multiple “observations” into a single
“problem”; for example, if an error occurs on the currently indexed element of an array on
every iteration of a one-million-iteration loop, you will see one problem instead of having to
sift through a million observations on the individual elements of the array.

> Memory reuse: Observations — For the currently selected problem (for example, P1 in
Figure 10-11), this section displays a highlighted source line and a surrounding source code
“snippet” for the distinct observations (for example, X4, X5) associated with the problem.
Clicking the [-] for an observation eliminates the source code lines and shrinks it to a single
line describing the observation; clicking the [+] redisplays the source snippet.

> Filter — Lists a number of problems and messages by different categories. Click a line to
display only problems and messages in the upper-left pane satisfying that filter category. For
example, you can display only problems in a particular file, or only errors (omitting warnings
and remarks).

Checking for Correctness | 297

| “2_nqueens_ann__Advisor Result | - x|

[& Did the annotated tasks expose data sharing problems?

, Summary a Survey Report %‘EI Suitability Report

Problems and Messages

D @ | Problem Sources Modules State Severity
[@ Memory reuse nEWE0R:£RR; NAussns amnetatedicn. 2 nqusens annotated.exe B Mot fixed sk 2 o
P2 @ Data communication ngueens_annotated.cpp 2_nqueens_annotated.exe | e Mot fixed Remark 1item
P3 @ |Parallel site information | nqueens_annotated.cpp 2_nqueens_annotated.exe | Information Problem
Data communication 1item
Memory reuse litem
D Description Source Function Module State " Parallel site information L
=Ix4 Parallel site ngueens_annotated.cpp: 113 solve 2_ngueens_annotated.exe Information Source
gD o x S == ErE ST newaop.cpp litem
int * gueens = new el; 7/ Index is ¢
1| ngueens_annotated.cpp 3items
=|| Module
k 2_ngueens_annotated.exe 3items
it State
=IX5 Write Information litem
79 Not fixed 2items
82
23 if (row=—saize-1) { = 7 Sort By Item Name *

FIGURE 10-11: The Correctness Report for NQueens

The Correctness Source Window

You can navigate to the Correctness Source window by double-clicking the corresponding line in the
Correctness Report. Figure 10-12 shows the Correctness Source window for the P1 memory reuse.
The following panes of information appear:

>

Source code snippets for two observations for the problem (upper-left panes) — Shows more

lines of code than in the Correctness Report window. Double-clicking a line navigates to the
VS editor.

Call Stacks for the two source snippets (upper-right panes) — Shows the call stack to get to
the displayed source observation. Clicking a function in the stack displays the corresponding
source code for that level in the stack.

Memory reuse: Observations (lower-left pane) — Shows one line for each of the observations
for the problem. Double-clicking an observation opens the corresponding source view in the
upper pane.

Relationship Diagram (lower-right pane) — Shows dependencies among the critical observa-
tions of the problem. This identifies the important observations and how they relate to each
other, which can help you understand the problem.

Double-click a snippet in the Correctness Source window to enter the Visual Studio editor on the
corresponding file. Return to the Correctness Report from the editor by selecting the My Advisor
Results tab for the current VS project, or click the arrow in the “4. Check Correctness” section of
the Workflow tab. To return from the Correctness Source window to the Correctness Report, click
either the Correctness Report button or the arrow.

298 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

72 e onn_Advisor Rl | =

& Did the annotated tasks expose data sharing problems? (Source)

Q Summary E Survey Report '*‘El Suitability Report 9 Correctness Report

9 /f column is ok, set the gueen A B setQueen - ngueens_annotated.cpp:81
80 //ADVISOR COMMENT: See comment at top of function solve - ngueens_annotated.cpp: 120
main - nqueens_annotated.cpp: 157
82
83 if (row—size-1) {
84
85 |l
a . D
B
(] for (int i=0; i<row; i++) { -~ B setQueen - ngueens_annotated.cpp:71
70 // wertical attacks | setQueen - ngueens_annotated. cpp:%6
3 solve - ngueens_annotated.cpp: 120
72 return; 1 main - nqueens_annotated.cpp: 157
73 1
74 // diagonal attacks |
75 if (abs{gueenslil-col) = ({row-i)) { . (e
[l Jif | 2]
Memory reuse: Observations
D Description Source Function Module State
%3 Allocation site | &= newaop.cpp:7 new(] 2_ngueens_annotated.exe Information
X4 Paralel site ngueens_annotated.cpp: 113 | solve 2_ngueens_annotated.exe Information
%5 Write Bl nqueens_annotated.cop:81 setQueen | 2_nqueens_annotated.exe | P Not fixed - Allocation site H. Read
X6 Write ngueens_annotated.cpp:81 setQueen 2 ngueens_annotated.exe P Mot fixed 2 newaop.cop:7 nqueens_annotated.cpp:

_Read B nqueens amnotated .sefQueen 2 nqueens annotated.exe R Not fixed

FIGURE 10-12: The Correctness Source window for NQueens

Understanding Common Problems

Correctness analysis discovers the following four problem categories that you need to understand
and fix (or abandon the site). The components of the Correctness Report attempt to assist you in
deciphering the cause of the problem.

> Memory reuse — A shared object is referenced by multiple tasks, and in the serial program
some tasks that write to the object do so before reading from it. Because multiple tasks are
reading and writing the object, this would cause data-sharing problems if the program were
actually parallel. However, no values flow from one task to another — they are just “reusing”
the same memory. This is called incidental sharing. The tasks are sharing an object but do not
need the sharing; instead, each task could use its own copy of the object. Privatizing — pro-
viding a private object for each task — is exactly the way to fix this problem.

Refer to problem P1 in Figure 10-11, which is an instance of memory reuse. The following
program fragment shows another instance, where the temp variable declared outside of the
parallel site is used to temporarily hold the value of an array element:

static int temp;

ANNOTATE_SITE_BEGIN (big_loop) ;
for (1 = 0; 1 < n; i++) {
ANNOTATE_TASK_BEGIN (loop) ;
temp = alil;
b[i] = .. temp ..;
ANNOTATE_TASK_END (1loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

Checking for Correctness | 299

When the loop body becomes a task, all the task instances will (potentially) be using the sin-
gle temp at the same time. Changing the program, as follows, to declare a temp automatic
variable inside the loop causes each task to have its own copy of temp — problem solved!

ANNOTATE_SITE_BEGIN (big_loop) ;

for (1 = 0; 1 < n; 1i++) {
ANNOTATE_TASK_BEGIN (loop) ;
int temp;
temp = alil;
b[i] = .. temp ..;

ANNOTATE_TASK_END (1loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

> Data communication — A shared object is referenced by multiple tasks, at least one of which
performs a write. In the serial program, values flow from a write in one task to a read in
another. This is another instance of a data-sharing problem, but it may be more difficult to
resolve than memory reuse. In solving this kind of problem you have to work out whether
the data values are independent of each other:

> Independent updates — This is a case where the tasks are updating an object and the
final result does not depend on the order in which the tasks update the object. For
example, each task is adding a value to a counter; it does not matter in what order
the updates are done, as long as multiple tasks do not access the object at the same
time. You can solve this problem by using a lock, which will enforce that only one
task at a time is allowed to update the object.

Problem P2 in Figure 10-10 is a data communication error, which is actually a case
of independent updates of the nrofsolutions variable. (You will investigate and
fix this error in Activity 10-4.) Another instance is shown in the following program
fragment, which shows a counter that every task (iteration) increments:

static int counter = 0;

ANNOTATE_SITE_BEGIN (big_loop) ;
for (1 = 0; i < n; i++) {
ANNOTATE_TASK_BEGIN (loop) ;

counter++ ;

ANNOTATE_TASK_END (loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

It does not matter in what order the increments occur — they just must occur one at
a time. The following fragment shows the corrected example with lock annotations

added:

static int counter = 0;
static int my_lock;

ANNOTATE_SITE_BEGIN (big_loop) ;
for (1 = 0; 1 < n; i++) {
ANNOTATE_TASK_BEGIN (loop) ;

300 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

ANNOTATE_LOCK_ACQUIRE (&my_lock) ;
counter++ ;
ANNOTATE_LOCK_RELEASE (&my_lock) ;

ANNOTATE_TASK_END (loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

> True dependence — If the serial order of access to the object must be retained so
that the correct answer is achieved, then the problem is more difficult to fix. It may
be necessary to move task boundaries or to combine multiple tasks into a single task
(for example, so that multiple references are in a single task), or it may be necessary
to abandon this site altogether.

> Inconsistent lock use — A shared object is protected by one lock at one location in the code
and by a different lock (or is unprotected) when referenced at another location in the code.
Your goal is to protect the object from a data communication error since a lock is used in at
least one place. However, because the same lock is not used every time, there might still be a
sharing problem. The usual fix is to consistently employ the same lock at all points of refer-
ence. The following example demonstrates inconsistent lock use:
ANNOTATE_LOCK_ACQUIRE (&lockl) ;

counter++;
ANNOTATE_LOCK_RELEASE (&lockl) ;

ANNOTATE_LOCK_ACQUIRE (&lock2) ;
// protected by different lock
counter++;
ANNOTATE_LOCK_RELEASE (&lock2) ;

// not protected by any lock
counter++;

In the preceding code, the counter variable is inconsistently protected by 1ock1 in the first
use, by lock2 in the second use, and is unprotected in the third use.

> Lock hierarchy violations — This is a case where two tasks have nested locked regions, and
the locks are acquired in different orders in the two regions. This can cause a deadlock, as
described in Chapter 8, “Checking for Errors.” The following example demonstrates a lock
hierarchy violation:
//Region 1

ANNOTATE_LOCK_ACQUIRE (&lockl) ;
ANNOTATE_LOCK_ACQUIRE (&lock2) ;

ANNOTATE_LOCK_RELEASE (&lock2) ;
ANNOTATE_LOCK_RELEASE (&lockl) ;

//Region 2
ANNOTATE_LOCK_ACQUIRE (&lock2) ;
ANNOTATE_LOCK_ACQUIRE (&lockl) ;

Checking for Correctness | 301

ANNOTATE_LOCK_RELEASE (&lockl) ;
ANNOTATE_LOCK_RELEASE (&lock2) ;

Imagine that two tasks execute the code snippet above. Suppose that task 1 is about to exe-
cute Region 1, and task 2 is about to execute Region 2 at the same time. Task 1 acquires
lockl and task 2 acquires lock2. In order for task 1 to acquire lock2, it has to wait for
task 2 to complete Region 2 and release 1ock2. But in order for task 2 to acquire lockl,

it has to wait for task 1 to complete Region 1 and release 1ock1. Both tasks will wait for-
ever — this is a deadlock.

The fix is to have all tasks that acquire multiple locks acquire them in the identical order. In
other words, they must use the same hierarchy of locks.

Using the Correctness Report

There are several approaches to using the Correctness Report and Correctness Source window to
find, understand, and fix sharing problems that would occur if your program were parallel.

Diagnose in detail what is causing each problem by exploring the corresponding source locations
and call stacks. The problem statement and observation code snippets in the Correctness Report

may be sufficient for discovering the error. For example, if you are incrementing a global counter,
you need a lock.

In other cases, the Correctness Source window provides more details about what leads to the occur-
rence of the problem. One complication is that you have to comprehend the distinct code that two
tasks might be executing at the same time, which can cause the interference. Another is that the
object being shared might be a parameter, so it may have different names in the two tasks. This is
where the call stack is handy; it enables you to examine the source code at different levels of the
stack so that you can track how an object is passed through multiple function calls.

Decide if there are too many hard problems to fix for this site, in which case you can either change
the location of the site and tasks or abandon the site altogether. Otherwise, fix the problems by
employing your understanding of each problem, picking a strategy to fix it, and using the source
locations to enter the editor at the appropriate places to make the required source changes.

Rebuild the modified program and run a fresh Correctness analysis to verify that your changes do
in fact fix the identified problems and do not introduce new problems. (And after converting your
program to parallel constructs, use Intel Parallel Inspector XE to determine if any other classes of
memory-sharing problems exist.) Now return to the Suitability analysis step to see what impact
these changes may have on performance.

Correctness Analysis Limitation

There is a case of a potential data-sharing problem that Correctness analysis cannot distinguish
from the safe usage of a local variable. The potential error is not reported because it would also
report errors on the safe case, thus causing false positives. This is one reason you should always run
Intel Parallel Inspector XE after adding parallel constructs — Inspector can distinguish these two
cases.

302

| CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

The following code fragment demonstrates both a data-sharing issue and a safe usage:

void foo(..) {
int relatively_global = 0;

ANNOTATE_SITE_BEGIN (big_loop) ;
for (1 = 0; 1 < n; 1i++) {
ANNOTATE_TASK_BEGIN (loop) ;
int relatively_local = 0;

relatively_local++ ; //safe
relatively_global++ ; //unprotected sharing!

ANNOTATE_TASK_END (loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

The relatively global variable is local to the foo function but global relative to the tasks in the
loop. All the tasks share the object, so when it is incremented in the tasks in the parallel program,
there is a data-communication error. In contrast, the relatively_local variable is declared within
the tasks, and when the program is parallel, each task will have its own copy. So, incrementing
relatively local will not cause a sharing problem.

The issue is that in the serial program, the compiler creates both variables as local stack variables

of the foo function. Therefore, the Correctness tool cannot distinguish the two different cases. The
design choice was to report either both as errors or neither as errors. The decision was made to avoid
annoying false positives and rely on Inspector to catch any true sharing errors. Note that

this situation arises only when the task is in a function and the variable declaration (for example,
relatively global) occurs in the same function or the calling function.

How Correctness Analysis Works

When you start a Correctness analysis, it runs the current program, tracking all memory references
and annotations that occur. It models which references to the same object could occur in different
tasks at the same time if the program were run in parallel, taking into consideration the constraints
of which tasks can run at the same time, and lock regions. It then combines related observations
into problems and displays them in the Correctness Report.

Here is a more detailed description of Correctness analysis:

> Data collection — While the program runs, Correctness data collection captures the loads and
stores them for every object, and also tracks the start and end of each site, task, and lock region.

> Construct task execution tree — The Correctness tool builds an ordered tree representing the
sites and their contained tasks (and nested sites and their tasks). The tree is used to answer
the question: if two tasks reference the same object, can they be executing at the same time
in a parallel program? This is one condition necessary for a data-sharing issue to occur. For
efficiency, the tree is constructed and destroyed on-the-fly. For example, if a parallel site is
not nested in any other sites, when it finishes executing, it and its tasks can be removed from
the tree because they will never be able to execute in parallel with subsequent tasks. So, the
answer to the question will be no if one of the tasks is not in the tree.

Checking for Correctness | 303

Locksets — The set of locks (lockset) that is held by a task at an instant of execution is all
the locks that have been acquired without yet being released. If two tasks reference the same
object, the tasks can execute in parallel (answer from the tree), and one of the references is

a write, then there may be a data-sharing error. If at the time of the two references the tasks
hold a lock in common (lockset (taskl) & lockset (task2) != NULL), then that lock will
prevent them from executing the references at the same instant — thus, no error. However, if
the intersection of the locksets is NULL (that is, the locksets are disjoint), a data-sharing prob-
lem could occur in a parallel execution.

Modeling — As the serial program runs, for each load or store, the Correctness tool stores
the following information into the model’s database associated with the object’s address:
The object’s address and size

Whether it is a read or write

Yy Y VY

The current task identity
» The task’s lockset

The Correctness modeler then examines other references to this same object in the database,
looking for other tasks that:

» (Can execute at the same time as the current task.
> Has a disjoint lockset.
> Has at least one reference that is a write.

If these conditions hold, then this data-sharing error observation is passed to the
Correctness Report. Actually, only a small number of entries need to be kept in the data-
base for each object; data-sharing errors will still be found. In spite of this optimization, the
sheer number of loads and stores to be processed can cause Correctness modeling to take up
to 100 times longer than the original program.

Correctness Report — Correctness Report processing combines similar observations into
single problems that are displayed. For example, there may be multiple observations with dif-
ferent object addresses and task instances, but the referencing instructions have the same line
number. This is probably a case of a “parallel” loop iterating through a data structure — you
want this reported as only a single problem to be fixed.

References — The first paper describes the Intel Thread Checker, a tool similar to Advisor’s
Correctness analysis that models parallelism while executing a serial program. It uses the
compiler to insert instrumentation code, whereas Correctness instruments the program as it
runs. The second paper describes the use of locksets for finding race conditions.

> P. Petersen and S. Shah. OpenMP Support in the Intel Thread Checker. Proceedings
of WOMPAT 2003, LNCS Springer Lecture Notes in Computer Science, 2716:1-12,
2003.

> S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Race Detector for Multithreaded Programs. ACM Transactions on
Computer Systems (TOCS), 15(4): 391-411, November 1997.

304 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

ACTIVITY 10-4: RUNNING A CORRECTNESS ANALYSIS ON NQUEENS

In this activity you run a Correctness analysis on the annotated NQueens applica-
tion, and then fix the errors that are detected.

1. Build a debug configuration of the 2_nqueens_annotated project, and run a
Correctness analysis. The debug configuration solves a smaller problem to reduce
the execution time: 7 is 8, not 13 (as is used for the release configuration).

2. In the Correctness Report, click each problem and scroll through the corre-
sponding observations.

3. Explore the Filter pane. Click different items to see what problems are dis-
played, and return to all problems by clicking All.

4. From the Correctness Report, navigate to the Correctness Source window by
clicking on a problem or an observation. Click different levels of the call stack
to see the corresponding source code, and then return to the Correctness Report.

5. From the Correctness Report, navigate to the VS editor on the source corre-
sponding to a problem or an observation, and then return to the Correctness
Report.

6. Fix each problem, and then rebuild and rerun the Correctness analysis. Are all
the problems gone?

7. Make a release build and run a Suitability analysis. Is the projected perfor-
mance still good?

In the nqueens_annotated.cpp source file in the 2_nqueens_annotated project,
comments and commented-out code in the solve () and setQueen () functions
describe how to fix the memory reuse and data communication errors, respectively.
Uncomment the code and rebuild. Run the Correctness tool again to make sure the
problems were fixed.

REPLACING ANNOTATIONS

When you have a site or sites with good predicted performance and the correctness issues have been
resolved, you can convert your parallel-ready program to a true parallel program. First, choose

a parallel programming model, such as one of the Intel Parallel Building Blocks, or some other
approach. (See Chapter 7, “Implementing Parallelism,” for descriptions of parallel models and how
to use them.) Then replace each Advisor annotation with the corresponding parallel construct. This
section shows some of these mappings; Advisor documentation contains a more complete set of
mappings for Intel Threading Building Blocks and Intel Cilk Plus.

The Summary Report

Figure 10-13 shows the Summary Report, which you can display either by clicking the Summary
button at the top of the Advisor window or by clicking the arrow icon for the “5. Add Parallel
Framework” step in the Workflow tab.

Replacing Annotations | 305

, ;i.__-nqueens_ann.._j:.i;;i.sor_ﬁ_és-u_ﬁ:-i - ¥
&} Summary of predicted parallel behavior

| M Survey Report **ﬂ Suitability Report 3 Correctness Report

|| Annotation Source Location Annotation Label Self Time Maximum Self Gain Maximum Total Gain Correciness Problems
{+/5ite ngueens_annotated,cpp: 113 solve 12093 [Ha.41x 6,09 J errors. 0 warnings
ngueens_annotated.cpp: 123 solve - - - - -
| | EiTask ngueens_annotated.cpp: 117 setQueen 1.2093s - -
| | @ Task End ngueens_annotated.cpp: 121 setQueen - - -

| | ® Advisor header file nqueens_annotated.q:p:4? advisor-annotate.h | - - -

| Modeling Assumptions: Target CPU Number: 8; Threading Model: Intel TBB

FIGURE 10-13: The Summary Report for NQueens

The Summary Report provides a high-level overview of the progress on sites, suitability, and cor-
rectness in the program. It shows the kind and location of every annotation in the program. For
each site, the report displays the estimated speedup of the site and the entire program (if Suitability
analysis has been run) and the number of correctness problems (if Correctness analysis has been
run). Figure 10-13 shows the Summary Report for NQueens before the data-sharing problems have
been fixed (there are still two errors). The bottom of the report shows the modeling assumptions
used (for example, eight CPUs), which you compare against the speedups.

An ROI comparison can be performed from the Summary Report. For a program with numer-

ous parallel sites, you can use the Summary Report to balance the amount of speedup against the
amount of development work needed to fix the correctness problems for a site, and then compare the
sites to each other to prioritize sites where you can expect the best ROI.

The Summary Report is also the natural place to start when you are moving to parallel constructs,
because all the annotations in the program are listed here. Navigate to each annotation so that it can
be replaced by a parallel construct, double-click a line for an annotation in the Summary Report

to take you into the Visual Studio editor on the file at the line containing that annotation, and then
insert the corresponding parallel construct.

Common Mappings

This section shows simple mappings from annotations representing loop parallelism and task paral-

lelism to Intel Threading Building Blocks (Intel TBB) and Intel Cilk Plus. It also demonstrates how

to replace lock annotations with the Intel TBB spin_mutex for both Intel TBB and Intel Cilk Plus.
> Loop parallelism

ANNOTATE_SITE_BEGIN (big_loop) ;

for (1 = 0; i < n; i++) {
ANNOTATE_TASK_BEGIN(loop) ;
Statement;

ANNOTATE_TASK_END (loop) ;
}
ANNOTATE_SITE_END (big_loop) ;

> Intel TBB (using lambda expression)
#include <tbb/tbb.h>

306 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

tbb: :parallel_for (0, n,
[&] (int 1) {statement;}
)

> Intel Cilk Plus
#include <cilk/cilk.h>

cilk_for (1 = 0; 1 < n; i++) {
Statement;

> Task parallelism

ANNOTATE_SITE_BEGIN (gsort) ;
ANNOTATE_TASK_BEGIN (gsort_low) ;
Qsort(less_eq array);
ANNOTATE_TASK_END (gsort_low) ;

ANNOTATE_TASK_BEGIN (gsort_high) ;
Qsort (greater_array) ;
ANNOTATE_TASK_END (gsort_high) ;
ANNOTATE_SITE_END (gsort) ;

> Intel TBB (using lambda expressions)
#include <tbb/tbb.h>

tbb: :parallel_invoke (
[&] { Qsort(less_eq array);},
[&] { Qsort(greater_array);}

)

> Intel Cilk Plus
#include <cilk/cilk.h>

// version 1 for function calls
cilk_spawn Qsort(less_eq array);
Qsort (greater_array) ;

cilk_sync;

// version 2 for general statements wrapped in lambda expressions
cilk_spawn [&] {statement-1}();

statement-2

cilk_sync;

The first version is simple because the two statements are function calls. Note that cilk_spawn
is not needed on the last task before the cilk_sync. The second version assumes arbitrary
statements, so lambda expressions are used to create functions for all but the last statement.

» Locks for Intel TBB and Intel Cilk Plus

static int my_lock;

Replacing Annotations | 307

ANNOTATE_LOCK_ACQUIRE (&my_lock) ;
shared_variable ++;
ANNOTATE_LOCK_RELEASE (&my_lock) ;

The following Intel TBB spin_mutex has low overhead for a low-contention lock, and can
be used for both Intel TBB and Intel Cilk Plus. Intel TBB’s other mutex types would be used
in the same manner.

#include "tbb/spin_mutex.h"

static tbb::spin_mutex my_mutex;

{ // Declare my_lock in its own scope; on scope exit
// the destructor will unlock it.

tbb::spin_mutex: :scoped_lock my_lock (my_mutex) ;

shared_variable ++;

}

You could avoid using locks altogether by declaring shared_variable to be a Cilk Plus reducer. If
you look at the 3_nqueens_cilk project, you will see how to do this.

ACTIVITY 10-5: IMPLEMENTING PARALLELISM IN NQUEENS

In this activity you convert the annotated NQueens application to a parallel pro-
gram, first using TBB and then Cilk Plus.

1. Explore the Summary Report for the 2_nqueens_annotated project. Navigate
to the editor for each annotation.

2. Convert the annotations in nqueens_annotated.cpp to Intel TBB. Set the
current project to 3_nqueens_tbb and examine the nqueens_tbb. cpp file,
comparing it to the changes you made in nqueens_annotated.cpp. Change
the configuration to Release_TBB, which has directory paths for the include
files, the library files, and the shared library files. Build and run the Intel
TBB version on a multi-core machine. Is it faster than the original serial
version?

3. Convert the annotations in nqueens_annotated.cpp to Intel Cilk Plus. Set
the current project to 3_nqueens_cilk and examine the nqueens_cilk.cpp
file, comparing it to the changes you made in nqueens_annotated. cpp. (Note
that this project uses the Intel Parallel Composer compiler, which supports
the Intel Cilk Plus extensions. You could use Intel Composer XE, which also
supports Intel Cilk Plus.) Change the configuration to Release Cilk, which
has directory paths for the include files, the library files, and the shared library
files. Build and run this version on a multi-core machine. Is it faster than the
original serial version?

308 | CHAPTER10 PARALLEL ADVISOR-DRIVEN DESIGN

SUMMARY

Intel Parallel Advisor is a unique tool that helps you add parallelism to your programs. This chapter
has demonstrated how to use Advisor effectively:

> The modeling provides information about your parallel experiments.

> Advisor’s methodology takes you through the necessary steps, but you remain in control;
Advisor does not automatically change your program.

> You progressively refactor your serial program into a parallel solution.

You should now understand the value of parallel modeling:
> The modeling maintains your original application’s semantics and behavior.

> You can quickly experiment with parallelism in different regions and transform the predicted
most promising regions to be parallel-ready.

11

Debugging Parallel Applications

WHAT’S IN THIS CHAPTER

> Introducing the Intel Debugger and its workflow
» Detecting data races

» Observing the runtime behavior of a threaded program

This chapter shows how to use the parallel debugging features of the Intel Debugger on your
parallel or threaded application. One of the biggest challenges in parallel programming is track-
ing down data races. In this chapter you use the debugger to detect data races as you debug.

Unlike the error-finding techniques presented in other chapters, with a debugger you can
single-step into your code and examine your parallel applications to confirm that the program
is running as you expect. You can, as it were, sit inside your program and observe what is hap-
pening around you.

INTRODUCTION TO THE INTEL DEBUGGER

You are probably reading this chapter because you are developing or debugging a parallel pro-
gram. Compared to pure serial software, parallel programs introduce additional issues that
can produce problems that are difficult to track down and debug. The most common error
is a data race, where one thread tries to read data that is being written by another thread.
Programmers solve data races by inserting synchronization primitives in the code so that only
one thread at a time can access shared data. Adding these primitives may solve the data race
issue, but could inadvertently introduce a deadlock, with both threads waiting for each other
to release the shared resource.

In addition to the risk of introducing data races and deadlocks, making a program parallel
could break its integrity, with the program no longer working as intended. The newly parallel-
ized program needs to be correct, free from programming and algorithmic errors.

310 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

Debuggers help developers to solve such software issues in real time by following, examining, and
modifying a program’s runtime execution. Intel Parallel Studio XE has a debugger dedicated to
debugging the parallel features of your program. The debugger has two variants:

> Intel Parallel Debugger Extension (PDE) — A Windows plug-in to Visual Studio
> Intel Debugger (IDB) — A Linux Eclipse-based standalone debugger

This chapter uses the term Intel Debugger (or simply debugger) to refer to both
the Windows version and the Linux version. Where comments refer to a particu-
lar version, the chapter uses the terms PDE-Windows and IDB-Linux.

The debugger enables you to:
> Identify data races in Cilk, OpenMP, and native (WIN32 and POSIX) threaded programs.

> Investigate a program’s parallel behavior, by checking that the parallelized version runs the
same way as the serial version.

Filter out data race events that are of no interest.

Detect events from a defined “focus” region.

Serialize a threaded region to compare serial and parallel execution.
Display OpenMP tasks, locks and barriers, call stack, and task hierarchy.
Display Cilk Plus call stacks (PDE-Windows only).

Y VYV VY Y Y

In addition, the IDB-Linux version, which is a fully featured symbolic debugger, helps programmers to:
> Debug programs.
> Disassemble and examine machine code and examine machine register values.
> Debug programs with shared libraries.
> Debug multithreaded applications.

This chapter concentrates on the parallel debugging features that are common to both PDE-
Windows and IDB-Linux.

To use the Intel parallel debugging features, your code must be built with the
Intel compiler.

The Parallel Debugger Workflow
You can use the debugger in two ways:
> Curative — To fix errors and problems

> Preventative — To ensure a program runs as you expect

Using the Intel Debugger to Detect Data Races | 311

Figure 11-1 shows a suggested workflow for both -

. . Start

approaches. You should fix parallel issues during

run time, using a short, repetitive debug cycle,

where very little time is spent between identifying Serialize <----

and fixing problems.
Yes

The starting point assumes you have seen some
strange behavior in the parallel program you are
developing, so you run the Intel Debugger to try to
find the problem.

Turn off
Usually, it is best to identify and fix one problem at seril;Iiz;)tion
a time before moving on to the next problem. (This v
is the approach taken in this chapter.) However, Build with <
some developers prefer to identify a whole series of -debug parallel

problems before fixing them. Y

Debug
The first step is to serialize the code by turning Problem? (problem is
off the threading. Serialization is available only nonparallel)
for Cilk and OpenMP code. If rerunning the Yes

program shows the problem still exists,
you should debug the program in serial mode

and fix it.
If serialization makes the problem disappear, the

problem is caused by the parallelism in the code. FIGURE 11-1: Parallel Debugger workflow
You should turn off serialization, thus reenabling
the parallelism, before continuing.

Fix problem [_____ \

To use the data race detection feature in the Intel Debugger, you need to rebuild
the application with the Intel compiler with the added -debug parallel option.

For each problem, use the debugger to pinpoint the source of the error, looking for data races or unex-
pected behavior. Each time you fix a problem, you should rebuild and test. If you prefer, after each error
has been fixed, you can go back to the serialization stage (refer to the dotted line in Figure 11-1).

USING THE INTEL DEBUGGER TO DETECT DATA RACES

Most of the activities in this chapter use the Tachyon ray-tracing application that ships with
Composer XE. The Tachyon example is quite large — much bigger than a simple “hello world” pro-
gram and more like a real-world example.

In ray tracing, the paths of light in an image are simulated, displaying the shadows and reflections
that will occur. The example program draws a set of colored balls along with shadows. In the paral-
lel version of the program, the picture has some blemishes caused by data races.

312 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

The program consists of a ray tracer in which a very busy loop calculates the value of each pixel. For
the sake of simplicity, the main focus is on the parallelization of this loop, without discussing the
rest of the program. The purpose is to improve execution performance.

You perform the following steps to detect the data races in the program:
1. Build and run the serial program.

Add parallelism.

Observe the results by looking at the picture.

Use the debugger to discover any faults, especially data races.

o R W N

D)

Fix the data races.

Building the Serial Program
The Tachyon example consists of several projects:
> Build_serial — Nonparallel version of program
> Build_with_cilk — Uses Cilk Plus
> Build_with_openmp — OpenMP version
> Build_with_tbb— Uses Threading Building Blocks
» Tachyon.common — Shared between all other projects

You can build the serial version of the Tachyon program by completing Activity 11-1.

ACTIVITY 11-1: BUILDING AND RUNNING THE SERIAL VERSION

In this activity you build and run the serial version of the Tachyon ray-tracing
program. Use steps 1-5 if you are using Windows, and steps 610 if you are using
Linux.

PDE-Windows

1. Unzip the Tachyon example to a directory for which you have read/
write access (usually located at <Parallel Studio XE Installation
directory>\Samples\en_US\C++\tachyon_compiler.zip).

2. Open the tachyon_compiler.sln project, which you can find in the vcs
folder. (Visual Studio conversion will take place.)

3. Make sure build_serial is set as the start-up project by selecting it in the
Solution Explorer and then selecting Project = Set as StartUp Project.

4. Build the program by selecting Build = Build build_serial.

5. Press Ctrl+FS to run the program.

Using the Intel Debugger to Detect Data Races | 313

IDB-Linux
6. Untar the Tachyon example to a directory for which you have read\write
access:

tar xvfz /opt/intel/composerxe/Samples/en US/C++/tachyon.tar.gz ./
7. Build the build_serial (Debug) solution:

make build_serial_debug

8. Run the program:

./tachyon.serial dat/balls.dat &

Adding Parallelism

The sample code uses OpenMP to add parallelism. The solution is purposefully naive; the intention
is to show how to use the debugger, not how to write perfect parallel code.

Listing 11-1 is a modified version of the draw_task function from build_with_openmp.cpp. (You’ll
be using this listing in Activity 11-1.) The function draws the ray-traced picture on the screen. The
#pragma omp parallel for statement causes the loop iterations to be shared among the available
threads.

‘) LISTING 11-1: The imperfectly parallelized code

Available for
download on
Wrox.com

static void draw_task (void)

{
unsigned int serial = 1;
int ison=1;
unsigned int mboxsize = sizeof (unsigned int)* (max_objectid() + 20);
unsigned int * local_mbox = (unsigned int *) alloca(mboxsize) ;
memset (local_mbox, 0,mboxsize) ;

// Add parallelism - NOTE THIS WILL INTRODUCE DATA RACES!
#pragma omp parallel for

// each iteration will draw a raster
for(int y = starty; y < stopy; vyv++) {
if (ison) {
drawing_area drawing(startx, totaly-y, stopx-startx, 1);

// draw the individual line
for (int x = startx; x < stopx; x++) {
// work out the right color
color_t ¢ = render_one_pixel (x, y, local_mbox, serial,
startx, stopx, starty, stopy);
// draw the pixel
drawing.put_pixel (c);
}

continues

314 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

LISTING 111 (continued)

ison = video->next_frame();
}
}
}

code snippet Chapter11\11-1.cpp

As the parallel program runs, each thread writes a series of rasters to the screen. The left-hand
picture in Figure 11-2 shows the program running on a machine that has two 6-core CPUs with
Simultaneous Multi Threading, giving support for 24 hardware threads. The snapshot was taken
part way through the picture being drawn.

FIGURE 11-2: Noisy image generated by the parallel program

The middle picture in Figure 11-2 is complete. Although it looks almost right, a closer look shows
that there is some “noise” in the resulting image. The right-hand picture enlarges the top corner of
the middle picture. You can clearly see that the background is not very clean.

ACTIVITY 11-2: BUILDING THE OPENMP VERSION

In this activity you make the ray-tracing program parallel using OpenMP. When
you run the parallelized program, the displayed image will be imperfect. Use steps
1-9 if you are using Windows, and steps 10-14 if you are using Linux.

PDE-Windows
1. If not already open, open the tachyon_compiler.sln project.
2. Make sure the build_with_openmp is the start-up project:

a. Highlight the build with_openmp project.

b. Right-click and select Set as StartUp Project from the drop-down
menu.

3. Open the build_with_openmp.cpp file.

4. Replace the draw_task function with the code in Listing 11-1.

Using the Intel Debugger to Detect Data Races | 315

5. Make sure the debug version is selected from the solution configuration.

6. Make sure that OpenMP has been enabled in the project properties by select-
ing Project @ Properties &> C/C++ = Language => OpenMP support.

7. Build the debug version from the menu Build & Build build_with_openmp.
8. Press Ctrl+FS5 to run the program.

9. Compare the picture with the one in Activity 11-1. You should notice a degra-
dation in quality.

IDB-Linux

10. Open the src/build_with_openmp/build_with_openmp.cpp file.
11. Replace the draw_task function with the code in Listing 11-1.

12. Build the debug version:

make build_openmp_debug

13. Run the program:

./tachyon.serial dat/balls.dat &

14. Compare the picture with the one in Activity 11-1. You should notice a
degradation in quality.

Using the preceding hypothetical case as a real-life debugger issue, you should next investigate the
issue using the debugger. It is intuitive that many errors are introduced with the very rough parallel-
ization code. Looking more closely at the picture, you can see that the differences with the neighbor
pixels are really high. It’s time to start a data-race analysis.

Observing the Results

Imagine that you have just received from your quality assurance team a defect report pointing out
the noisy image and you are not sure what is causing the problem. It could be an incorrect imple-
mentation of the algorithm or a mistake in the parallelization of the algorithm. If the underlying
algorithm is wrong, the defect should be observable, whether the code is running parallel or not.
The first step is to run the code with parallelism turned off — that is, to serialize the application.

Serializing the Parallel Code

With the debugger you can serialize a parallel application at the click of the Serialize button. When
working on Cilk code, the debugger stops the Cilk scheduler from stealing work; for OpenMP code,
the debugger sets the number of threads available in a parallel region to one.

You can serialize a parallel application three different ways:

> By clicking the Serialize button on the debugger toolbar

316 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

> By selecting Debug = Intel Parallel Debugger Extension = Serialize Execution

> By using the commands (IDB-Linux only) idb set openmp-serialization on and idb
set cilk-serialization on in the control window

Figure 11-3 shows the PDE-Windows toolbar with the sixth button from the left (the serialization
button) pressed. The dark line around the icon indicates the serialization is active. The IDB-Linux
also has a similar looking toolbar.

10 {01 =
B[75 2 4 | 3k [E-
FIGURE 11-3: Parallel Debug Extension toolbar with the serialization button pressed

In the case of the Tachyon program, when you click the serialization button and the program is
executed, the image is completely clean. This means two things: the program algorithm is okay, and
problems exist with the parallel part of the code. Try out the serialization for yourself in Activity 11-3.

ACTIVITY 11-3: TURNING ON SERIALIZATION

In this activity you use the PDE serialization button to serialize the parallel pro-
gram to confirm that it runs okay when just one thread is used. Use steps 1-4 if you
are using Windows, and steps 5-7 if you are using Linux.

PDE-Windows

1. Modify the tachyon_compiler solution to use the Intel compiler solution. Be
sure to convert the whole solution, which contains five projects:

a. Highlight the tachyon compiler solution in the Solution Explorer.

b. Right-click and select Intel C++ Composer XE 2011 => Use Intel C++
from the drop-down menu.

2. Build the debug version of the build_with_openmp project by selecting
Build = Build build_with_openmp.

3. Click the serialization button on the toolbar. This sets the number of OpenMP
threads to one.

4. Press FS to start debugging the program. (Notice that you do not press Ctrl.)
Compare the picture with the one from Activity 11-1. The picture quality
should be the same.

IDB-Linux
5. Start the debugger:

idb -args tachyon.with_openmp dat/balls.dat
6. Select Parallel = Serialize Execution to enable serialization.

7. Press FS to start debugging. Compare the picture with the one from Activity
11-1. The picture quality should be the same.

Using the Intel Debugger to Detect Data Races | 317

Detecting Data Races

Once you suspect that your code contains data races, whether by seeing inconsistent results or any
other reason, it is time to start a data sharing analysis.

Before conducting a data sharing analysis, you need to enable two features:

>

Enable Parallel Debug Checks (in the compiler) — This option adds extra helper or instru-
mentation code to the application so that the debugger can handle the parallel code appro-
priately. It is important to apply this option to all code you are interested in. In the Tachyon
example, the option should be applied to all the code; otherwise, there is a danger of missing
some data races. Figure 11-4 shows enabling parallel debug checks in the compiler tab of the
project properties page. This is equivalent to using the compiler option /debug: :parallel
(in Linux, use -debug parallel).

Parallel Debug Environment (required only in PDE-Windows) — Figure 11-5 shows enabling
the parallel debug environment in the project properties page.

build_with_openmp Property Pages

Configuration: | Active(Debug)

Configuration Properties

General

Debugging

Intel Debugging

C/C++
General
Debug
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Diagnostics
Advanced
Command Line

Linker

Manifest Tool

Browse Information

Build Events

Custom Build Step

v‘ Platform: ’Active(WinBZ} " [Configuration Manager...]
=] :
BT S Y Vdebugparale B

Enable Expanded Line Number Informa Mo

Enable Parallel Debug Checks

Enables parallel debug code instrumentations needed for the thread data sharing and reentrant
call detection of the Intel(R) Parallel Debugger BExtension. (/debug:parallel]

I 0K II Cancel H Apply

FIGURE 11-4: Enabling parallel debug checks in the compiler

To start a data sharing analysis, follow these steps:

1.

Click the data sharing analysis button — the second from the left in the toolbar (see Figure 11-6).
In IDB-Linux you can also use the idb sharing on command in the console window.

You can also enable data sharing analysis through the menu Debug = PDE = Thread Data
Sharing Detection => Enable Detection.

318 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

build_with_openmp Property Pages @

Configuration: | Active(Debug) v] Platform: [Acti\.re(Wm_’»Z} '] ’ Configuration Manager...]

Configuration Properties B Ge 3
[Parle Debug Envronment_——— LS008 B
Debugging Number of Intel Cilk Plus Threads
Intel Debugging
C/C++
Linker
Manifest Tool
Browse Information
Build Events
Custom Build Step

| Parallel Debug Environment
Set the environment for Parallel Debug Checks. This is needed for thread data sharing and
reentrant call detection of the Intel(R) Parallel Debugger Extension.

I QK I[Cancel H Apply]

FIGURE 11-5: Enabling the parallel debug environment in Visual Studio
2. Start debugging your code by either single-stepping though it or by running the program with
the debugger. You can use these function keys:
> PDE-Windows
> Single step: <F10>
> Run with debugging: <F5>
> IDB-Linux
> Single step: <F11>
> Run with debugging: <F5>

ﬁ :ﬁ‘ﬁ ﬂ‘ii §H]° E'

FIGURE 11-6: The toolbar’s data sharing analysis button
in the state of performing an analysis

When you execute code that involved a data race, the debugger presents a list of events, showing the
operation (read/write), the code location or data involved, and the thread performing that operation
(see Figure 11-7).

After detecting an event, you need to examine the code to determine whether the problem is genuine
or just a false positive. You may see that there is a data race but decide it is harmless. If you want to
ignore an event, you can apply a filter to stop the event from appearing in the events list.

Using the Intel Debugger to Detect Data Races | 319

Thread Data Sharing Events &l
‘ Analysis active, Filterset: Supress, Active Filters: 0

E|---._I_F\ Analysis run from 2/28/2012 9:38:20 AM (1 event)

E!o n’E 777 - 0x02abf0c0 4 Bytes, 4 accesses from 2 threads

‘5?/9 build_with_openmp.cpp(101) update, Thread=5324 (OpenMP task=47)
5% build_with_openmp.cpp(101) update, Thread=6752 (OpenMP task=41)
#* build_with_openmp.cpp(108) write, Thread=6752 (OpenMP task=41)
----- Foll build_with_openmp.cpp(102) read, Thread=6752 (OpenMP task=41)

FIGURE 11-7: A list of data sharing events

Using Filters

Filtering events is a very important step of the data sharing analysis. Filters enable you to find the
source of the current issue and reduce the performance penalty caused by the analysis itself.

Filtering operates in two different modes:
> Suppression
> Suppression filters discard events.
> Suppression filters work by exclusion.
> Focus
> Focus filters home in on code or data ranges that you specify.
> Focus filters work by inclusion.

It’s quite normal to use both kinds of filters in the same analysis session, swapping between filter
sets as you narrow down a problem. The following examples use two different approaches to using
the filters. In the first example, when an error is detected, you apply a suppression filter and then
search for the next data race. The second example assumes that you have a good idea which part of
the code is causing a problem. You then set up focus filters to home in on this area.

Using Suppression Filters to Discard Unwanted Events

The build_with_openmp program has several data races that have already been identified. Clicking
the data sharing analysis button and starting a debug session results in the debugger stopping at the
first data race event. The debugger displays the region of the code where the data race is located.

There is no guarantee in which order the data races occur, so the events pre-
sented here may appear in a different location for every run.

The debugger stops at the source location where a data sharing issue occurs (see Figure 11-8). The
serial variable seems to be the source of the problem.

Three events are captured, as shown in Figure 11-9. Three threads are accessing the same serial
variable. Two of them are trying to read from and write into the serial variable, and one is reading
from it. Two threads are incrementing the serial variable at line 101, and one thread is reading
serial at line 102 (primary.serial = serial).

320 | CHAPTERM

DEBUGGING PARALLEL APPLICATIONS

buildiwilhiopenmp.q)pl - X
E camray - H @ ray camray(scenedef *, int, int) v|
(Global Scope) - % render_cne_pixel(int ¥, int y, unsigned int * local_mbox, ur ~

es5iL
86; static color t render one pixel (int x, int ¥y, unsigned int *local mbox, une *
BT7E int startx, int stopx, int starty, int stop
BBi| {
B9 /* private vars moved inside loop */
90; ray primary, sample;
91! color col, avcol;
92 int R,G,B;
93 intersectstruct local_ intersections;
94 int alias;
95 /* end private */
96 F
97 primaryv=camray (&scene, X, V)’ =
98! primary.intstruct = &local_intersections;
99! primary.flags = RT_RAY REGULAR; 5
100
5» 101 serial++;
102 primary.serial = serial;
103 primary.mbox = local mbox;
104 primary.maxdist = FHUGE;
105! primary.scene = &3acene;
106: cal=trace (¢primary) s
107
108 serial = primary.serial;
108
110 /* perform antialiasing if enabled.. */
111 if (scene.antialiasing > 0) {
112 for (alias=0; alias < scene.antialiasing; alias++} { -
4 m] r

FIGURE 11-8: The source location where a data-sharing issue was detected

After detecting an issue, you should investigate the
origin of the variable and which other functions
are using it. Looking at the call stack will help. The
serial variable is instantiated in the draw_task
function and is passed by reference to the render_
one_pixel function.

The render_one_pixel routine is not a thread-safe
routine because it alters the parameters passed to it.
The serial variable is shared between all the threads and needs to be made thread safe (which you
will do in Activity 11-5).

Creating the Filters

At this point you can use the debugger to:

Thread Data Sharing Events
@ Analysis active, Filterset: Supress, Active Filters: 0

is run from 2/28/2012 9:38:20 AM (1 event)
02abf0c0 4 Bytes, 4 accesses from 2 threads|
2 build_with_openmp.cpp(101) update, Thread=5324 (OpenP task=47)
% build_with_openmp.cpp(101) update, Thread=6752 (OpenMP task=41)
build_with_openmp.cpp(108) write, Thread=6752 (OpenMP task=41)
5" build_with_openmp.cpp(L02) read, Thread=6752 (OpenMP task=41)

FIGURE 11-9: The Thread Data Sharing
Events window, displaying and logging the
events that have been detected

> Try to solve the problem, recompile the program, and run the analysis again.

> Single-step a little further in the code to help your investigations. Here you are “stepping

through” code causing the date race condition.

Using the Intel Debugger to Detect Data Races | 321

> Suppress this detection and look for the next error.

You might find it more interesting to take the second approach — that is, continue the investigation
to get a more comprehensive overview of the damage caused by sharing variables.

To filter out issues coming from the serial variable, right-click one of the events in the Thread
Data Sharing Events window and select Add Filter. The option Add Filter & To This Data Object
suppresses all the events coming from the serial variable (see Figure 11-10). Once a filter has been
created, it is listed in the Thread Data Sharing Filters window (see Figure 11-11).

Thread Data Sharing Events =]
@ Analysis active, Filterset: Supress, Active Filters: 0

542 Analysis run from 2/29/2012 6:3203 AM (1 event)
15T 777 - 0303b0f0 0 4 Bytes, 3 accesses from 2 threads
5% build_with_openmp.cpp(101) update, Thread=6368 (OpenMP task=40)
%% build_with_openmp.cpp(101) update, Thread=1040 (OpenMP task=41)
F¥ build_with_openmp.cpp(102) read, Thread=1040 (OpenP task=41)
| AddFiter > From this Access
Ignore Atomic Accesses From this Function
Ignore Read Accesses From this Source File
Use Filter Set (Suppress) » From this Source Line
Reset Current Detection To this Data Object
Export Events...
Delete
Delete All
GoTo >
[¥] Enable Detection
[¥] BreakonEvent
[] Show Events Window Automatically

FIGURE 11-10: Inserting a filter from the Thread Data Sharing Events window

Thread Data Sharing Filters =

Filter Set: Suppress

¥} Code Range: 0x0041825d - 0:1041825¢, State: active

T(x Function: {,C:\dv\CH11\tachyon_compilerisrc\build_with_openmp\build_w...
? Source File: {,, build_with_openmp.exe}C:Advi CH11\tachyon_compiler\src\b...
{T} Code Range: {, C\Adv\CHI1\tachyon_compiler\src\build_with_openmpbuil...
i Data Object: 0036000 - 4 Bytes, State: active

FIGURE 11-11: The suppression filters

Once you have inserted the filter for serial, you can continue the debugging. You will see that most
data races involve data passed by parameter from draw_task to each thread.

You will find that one of the data races deserves special mention. The mbox variable is an array (see
Figure 11-12). After creating a filter for an array, you can adjust the range of the filter so that it
spans the address space of the array. This means that any data race on any element of the mbox vari-

able will be filtered.

322 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

@ tachyon_compiler (Debugging) - Microsoft Visual Studio

File Edit View VAssist{ Project Build Debug Tools
- E-65 bl | % S (3 - (- 2~ | b [Debug
FIETER R IE S - 1A
Process: [5436] build_with_openrr ~ Thread: [6852] _PDBX Duplicatet ~ ¥

. Disassembl mﬁ:uild_wllh_openmp.cpm

= grid_intersectwhileifwhile » 5| | 5 while (cur = NULL)

Test Window Help
-||'.“."m32 -| £ &

fl
2]
fl
B
.
&
f
o |
fl

s

(Global Scope) ~ % grid_intersect(grid * g, ray * ry)

sl <

nXp.z += pdeltaX.z;
H
else if (tmax.z < tmax.y) {
cur = g->cells[voxindex];
while (cur != NULL) {
if (ry->mbox[cur->obj->id] '= ry->aserial) {
ry-»mbox [cur->obj-»id] = ry-»serial;
cur->obj->methods->intersect (cur->obj, ry):
) (|

cur = cur->next;

}
. »

4|

Thread Data Sharing Fifters

Filter Set: Suppress
?ﬁi Data Object: 0x03e0050 - 4 Bytes, State: active

Thread Data Sharing Events
e Analysis active, Filterset: Supress, Active Filters: 1
[Analysis run from 3/3/2012 10:25:54 AM (2 events)
- ﬁ 777 - 0:03e0f050 4 Bytes, 3 accesses from 2 threads
= éﬁ 777 - 03 e07afc 4 Bytes, 2 accesses from 2 threads
i grid.cpp(577) read, Thread=6852 (OpenMP task=39)
i % grid.cpp(578) write, Thread=4830 (OpenMP task=42)

Ln 577 Coll Chl INS

Ready

FIGURE 11-12: A data race derived from the mbox variable

ACTIVITY 11-4: DETECTING AND FILTERING DATA RACES

In this activity you build the code with the Intel compiler, adding special options to
support parallel debugging. A data race is detected, and you create a filter so that
the data race events are ignored. Use steps 1-7 if you are using Windows, and steps

8-14 if you are using Linux.

PDE-Windows
1. Highlight the two projects, build_with_openmp and tachyon.common.
Open the project properties page by pressing Alt+F7 and ensure the following

options are set:
Intel Debugging = Parallel Debug Environment: Auto

C/C++ > Debug = Enable Parallel Debug Checks: Yes
2. Rebuild the debug version using the menu Build => Build build_with_openmp.

Using the Intel Debugger to Detect Data Races | 323

3. Make sure the serialization button is not selected!
4. Click the data sharing analysis button.

5. Press FS to start debugging the program. The program should stop at a data
race (probably in the render one pixel at serial++ function). Press F5
again.

6. In the Thread Data Sharing Events window, highlight the event and from the
context menu select Add Filter &> To This Data Object.

7. Press FS. The program will ignore all events associated with the object identi-
fied in step 6, and will stop at the next data race.

IDB-Linux

8. Rebuild the debug version (note the extra command):
export CXXFLAGS="-debug parallel"
make clean
make build_openmp_debug

9. Launch the debugger:

idb -args tachyon.with_openmp dat/balls.dat &

10. Make sure the serialization button is not selected.
11. Choose Parallel = Enable Detection to enable data race detection.

12. Press F5 to start debugging the program. The program should stop at a data
race (probably in the render one pixel at serial++ function). Press FS
again.

13. In the Thread Data Sharing Events window, highlight the event and from the
context menu select Add Filter &> To This Data Object.

14. Press F5. The program will ignore all events associated with the object identi-
fied in step 6, and will stop at the next data race.

Fixing the Data Races

Having identified the data races, you now need to come up with a solution. Listing 11-2 gives one
possibility. If you place the start of the parallel region using the #pragma omp parallel construct
before the declaration of ison, serial, mboxsize, and local_mbox, each variable will become
thread-local.

324 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

‘) LISTING 11-2: Fixing data races by moving the parallel region

Available for static void draw_task (void)
download on {
Wrox.com .

// Start a parallel region

#pragma omp parallel

{
// each thread will have its own copy of these variables

int ison = 1;

unsigned int serial =1;

unsigned int mboxsize = sizeof (unsigned int)* (max_objectid() + 20);
unsigned int * local_mbox = (unsigned int *) alloca (mboxsize) ;

memset (local_mbox, 0, mboxsize);
// workshare the loops between the threads
#pragma omp for
for(int y = starty; vy < stopy; vyv++) {
if (ison) {
drawing_area drawing (startx, totaly-y, stopx-startx, 1);
for (int x = startx; x < stopx; x++) {
color_t ¢ = render_one_pixel (x, y, local_mbox, serial, startx,
stopx, starty, stopy);
drawing.put_pixel (c);
}

ison = (video->next_frame()? 1 : 0);

}

return;

code snippet Chapter11\11-2.cpp

After you recompile and rerun the application, the image should be completely clean. If you run a
data sharing analysis again, you will still detect some issues. Those are mainly related to image dis-
play, and in practice are not relevant for the image generation, so they will not be resolved here.

ACTIVITY 11-5: FIXING THE OPENMP DATA RACE

In this activity you fix the data races. On closer examination, however, the picture
still has imperfections. Use steps 1-5 if you are using Windows, and steps 6-10 if
you are using Linux.

PDE-Windows

1. Open the build_with_openmp.cpp file and replace the draw_task function
with the code in Listing 11-2.

2. Build the debug version from the menu Build = Build build_with_openmp.

Using the Intel Debugger to Detect Data Races | 325

3. Press Ctrl+FS5 to run the program.

4. Compare the picture with the one in Activity 11-1. You should notice degrada-
tion in quality.

5. Use the PDE to see if any data races still exist. (See steps 2-5 of Activity 11-4.)

IDB-Linux

6. Open the build_with_openmp.cpp file and replace the draw_task function
with the code in Listing 11-2.

7. Build the debug version:

export CXXFLAGS="-debug parallel"
make build_openmp_debug

8. Run the program:
./tachyon.with_openmp dat/balls.dat

9. Compare the picture with the one in Activity 11-1. You should notice degrada-
tion in quality.

10. Use the Debugger to see if any data races still exist. (See steps 2—5 of Activity 11-4.)

Using the suppress filters presents a straightforward model of detecting and finding data races in
the code. However, this mode has as a side effect: there will be a high performance penalty because
every file is taking part in the data sharing detection. A more efficient way is to use focus filters.

Using Focus Filters to Examine a Selected Portion of Code

When working with more complex examples, focusing on a specific region may be a more efficient
way of working. In the suppression mode, data race detection is applied to every file that has been
instrumented with the Intel compiler. This can lead to a large number of events being generated that
have to be examined. If you are working on a large project written by several developers, you may
want to focus on just the code that you have written. You can do this in the debugger by setting it to
focus mode.

To enable focus mode, choose Use Filter Set (Focus) = Focus in the Thread Data Sharing Events
window (see Figure 11-13).

Before adding and creating any filters, you could modify the code example to fix some of the data
races you are already aware of. In Listing 11-3, the serial and ison stack variables are declared to
be firstprivate in the #pragma omp statement. By doing this, each thread gets its own initialized
copy of those variables.

326 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

Thread Data Sharing Events B
@ Analysis active, Filterset: Focus, Active Filters: 0
=42 Analysis run from 2/28/2012 8:38:20 AM (1 event)

o

=4 27 - 0:02abf0c0 4 Bytes, 4 accesses from 2 threads

build. Ignore Atomic Accesses P task=d1)
6" build_ Ignore Read Accesses P task=41)
| UseFilter Set (Focus) v Suppress
Export Events...
Delete
Delete All
GoTo 3
[] Enable Detection
[¥] BreakonEvent
Z‘ Show Events Window Automatically

FIGURE 11-13: Setting the filter mode to focus

J LISTING 11-3: Image generated by the Tachyon example

Available for // This code fixes some of the data races but not all of them!

d"’,","::;"gg,:" // WARNING: THERE ARE STILL SOME DATARACES IN HERE
static void draw_task (void)
{
unsigned int serial = 1;
int ison=1;
unsigned int mboxsize = sizeof (unsigned int) * (max_objectid() + 20);
unsigned int * local_mbox = (unsigned int *) alloca (mboxsize) ;
memset (local_mbox, 0, mboxsize) ;
// Each thread has its own initialized copy of serial and ison
#pragma omp parallel for firstprivate(serial, ison)
for (int y = starty; y < stopy; vy++) {
if (ison) {
drawing_area drawing(startx, totaly-y, stopx-startx, 1);
for (int x = startx; x < stopx; x++) {
color_t ¢ = render_one_pixel (x, y, local_mbox, serial,
startx, stopx, starty, stopy);
drawing.put_pixel (c) ;
}
ison = video->next_frame();
}
}
return;
}

code snippet Chapter11\11-3.cpp

Note that running the program now produces a near perfect image. However, if you enlarge the
image, you will see that some pixels still have the wrong color, as shown in Figure 11-14.

Using the Intel Debugger to Detect Data Races | 327

= build_with_openmp exe (DEBUG BUILD) CPU Time: 5195 seconds. e @ =)

FIGURE 11-14: A close examination shows some pixels are wrong

Creating the Filters

Before running the data sharing analysis, you have to define the region that you are inter-
ested in. For the purpose of this exercise, the 1ocal_mbox stack variable was not declared to be
firstprivate, so all the threads are still sharing it. Any half-decent programmer would have
already fixed this by now, but it was ignored; so, a data sharing error still exists.

Before inserting any kind of filter, you should identify the chain of functions that make use of
local_mbox. The variable is first used in the render one_pixel function, which, in turn, passes a
reference to the trace, intersect_object, and grid_intersect functions.

To insert a filter:
1. Right-click the Thread Data Sharing Filters window and select New Code Range Filter.

2. Specify the function {, ,build_with_openmp.exe}function_name.

After doing this for each of the trace, intersect_object, grid_intersect, and render_one_
pixel functions, the window will look similar to Figure 11-15.

Thread Data Sharing Filters =)

Filter Set: Focus

f * Data Object: 0:02abf0c0 - 4 Bytes, State: pending

“iseFunction: {,,build_with_openmp.exelrender_one_pixel, State: pending

“iprFunction: {,,build_with_openmp.exeltrace, State: pending
‘reFunction: {,,build_with_openmp.exelintersect_objects, State: pending
“reFunction: {,,build_with_openmp.exelgrid_intersect, State: pending

FIGURE 11-15: The Thread Data Sharing Filters window

When the filters are first created, their state will be marked as pending. Once you start a debug ses-
sion, the state of the filters will change to active.

After enabling the data-race analysis and debugging, the first problem detected is in the grid_
intersect function in grid.cpp. The variable ry->mbox is originally derived from the previously
mentioned local_box stack variable:

328 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

static void grid_intersect(grid * g, ray * ry)

{

//

// code omitted
//

while (1) {

if (tmax.x < tmax.y && tmax.x < tmax.z) {
cur = g->cells([voxindex];
// iterate through a linked list
while (cur != NULL) {
if (ry->mbox[cur->obj->id] != ry->serial) {
// THIS CODE CAUSES A DATA RACE!
ry->mbox[cur->obj->id] = ry->serial;
cur->obj->methods->intersect (cur->obj, ry);
}
// go to next link in the list
cur = cur->next;
}
/] .
// code omitted
//
}

ACTIVITY 11-6: USING A FOCUS FILTER

In this activity you fix some of the data races. You create a filter to focus on captur-
ing data races in four functions. Use steps 1-6 if you are using Windows, and steps
7-12 if you are using Linux.

PDE-Windows

1. Open the build_with_openmp.cpp file and replace the draw_task function
with the code in Listing 11-3.

2. Build the debug version from the menu Build & Build build_with_openmp.

3. Right-click the Thread Data Sharing Events window and select Use Filter Set
(Focus) = Focus.

4. Right-click the Thread Data Sharing Filters window and select New Code
Range Filter. In the Entire Function field, add the text {,,build_with_openmp.
exejrender_one_pixel, and then click OK.

5. Repeat step 4 using the following function names:

{, ,build_with_openmp.exe}trace
{, ,build_with_openmp.exe}intersect_objects
{, ,build_with_openmp.exe}grid_intersect

6. Press FS to debug the program.

Using the Intel Debugger to Detect Data Races | 329

IDB-Linux

7. Open the build_with_openmp.cpp file and replace the draw_task function
with the code in Listing 11-3.

8. Build the debug version:

export CXXFLAGS="-debug parallel"
make build_openmp_debug

9. Right-click the Thread Data Sharing Events window and select Use Filter Set
(Suppress) = Focus.

10. Right-click the Thread Data Sharing Filters window and select New Code
Range Filter. In the Entire Function field, add the text {,,build_with_openmp.
exejrender_one_pixel.

11. Repeat step 4 using the following function names:

{, ,build_with_openmp.exe}trace
{,,build_with_openmp.exe}intersect_objects
{,,build_with_openmp.exe}grid_intersect

12. Press F5 to debug the program.

Correcting the mbox Data Race

At this point you must decide where to perform the fix — either on the parallelized loop or in the
function where the problem was detected.

One way to fix the error would be to insert a #pragma critical statement immediately before the
data race. The shared variable is used twice, so adding a local variable called 10cal1D will work:
#pragma critical
int localID = cur->obj->id;
if (ry->mbox[localID] != ry->serial) {
ry->mbox[localID] = ry->serial;

The code is now thread safe, but inserting the critical section in the code introduces a performance
penalty because only one thread can access this code at any time; all the other threads have to wait. A
much better solution is to create an independent buffer for every thread. Listing 11-4 does exactly this.

The code in Listing 11-4 defines a new ParameterForRendering class, with member
items _ison, _serial, _mboxsize, and _local_mbox being used to replace the original stack
variables. The initialization code for _local_mbox is moved from its original place into the

constructor ParameterForRendering (unsigned int box_size).

The ParameterForRendering (const ParameterForRendering &input) copy constructor is also
implemented because the compiler will implicitly call it in the firstprivate clause.

The original stack variables are replaced with an instantiation of the ParameterForRendering
pars (mboxsize) Object. In turn, this is declared to be firstprivate in the #pragma omp for lOOp,
creating an object for every thread.

330 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

A schedule (dynamic) scheduling clause is added to the OpenMP loop. When you run the code
with this scheduling loop, you will see that each raster is drawn in equal time. In the original pro-

gram some rasters were completed much earlier than others.

‘) LISTING 11-4: Using an object to pass the parameters

Available for // A new class used to hold the former stack variables
dm:;‘?ggr:" class ParameterForRendering {
public:
int _ison;
unsigned int _serial;
unsigned int _mboxsize;
unsigned int *_local_mbox;
public:
// constructor
ParameterForRendering (unsigned int box_size)
_ison(1l),
_serial(1l),
_mboxsize (box_size),
_local_mbox (NULL) {
_local_mbox = (unsigned int *) malloc (_mboxsize);
memset (_local_mbox, 0, _mboxsize);

// copy constructor
ParameterForRendering (const ParameterForRendering &input)
_ison(input._ison),
_serial (input._serial),
_mboxsize (input._mboxsize),
_local_mbox (NULL) {
_local_mbox = (unsigned int *) malloc (_mboxsize) ;
memset (_local mbox, 0, _mboxsize);
}
// destructor
~ParameterForRendering () {
free (_local_mbox) ;
}
I

static void draw_task (void)

{

unsigned int mboxsize = sizeof (unsigned int) * (max_objectid() + 20);

// instantiate class object
ParameterForRendering pars (mboxsize) ;

// share loop iterations between threads

// each thread gets its own initialized copy of 'pars'

#pragma omp parallel for firstprivate (pars) schedule (dynamic)
for(int y = starty; y < stopy; v++) {

Using the Intel Debugger to Detect Data Races | 331

if (pars._ison) {
drawing_area drawing (startx, totaly-y, stopx-startx, 1);
for (int x = startx; x < stopx; x++) {
color_t ¢ = render_one_pixel (x, y, pars._local_mbox, pars._serial,
startx, stopx, starty, stopy);
drawing.put_pixel (c);
}
pars._ison = (video->next_frame()? 1 : 0);
}
}

return;

code snippet Chapter11\11-4.cpp

After you implement the preceding modifications, the image is generated without any defect. You
can try this for yourself in Activity 11-7. An interesting task is to compare the performance of this
solution against a version that uses a critical section.

Data race issues still exist in the display routines, but they are not addressed here.

ACTIVITY 11-7: FIXING THE DATA RACE

In this activity you fix the remaining data races. Use steps 1-3 if you are using
Windows, and steps 4—6 if you are using Linux.

PDE-Windows

1. Open the build_with_openmp.cpp file and replace the draw_task func-
tion with the code in Listing 11-4. Notice the listing also adds a new
ParameterForRendering class that will be used to pass parameters.

2. Build the debug version from the menu Build & Build build_with_openmp.

3. Press FS to debug the program. There should be no data races detected in the
four functions that are being monitored.

IDB-Linux

4. Open the build_with_openmp.cpp file and replace the draw_task func-
tion with the code in Listing 11-4. Notice the listing also adds a new
ParameterForRendering class that will be used to pass parameters.

5. Build the debug version.

6. Press FS to debug the program. There should be no data races detected in the
four functions being monitored.

332 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

MORE ABOUT FILTERS

Filters are an important part of the debugger. They help you to determine where and what to investi-
gate when analyzing data races in your code. As you have already seen, two different kinds of filters
exist: suppress filters and the focus filters. You don’t have to apply the filters to all your code; you
can instead apply the filters to a specific range within your code. Table 11-1 shows how to apply the
filters to different ranges.

TABLE 11-1: Specifying the Filter Range

RANGE PURPOSE INPUT

Entire function Used when you are not interested/ {function,[source],[module] }
interested in the detections coming
from a specific function.

Entire source Used when you are not interested/ {,source,[module] }
file interested in the detections coming
from a specific source file.

Address range Used to filter (out/in) the complete {,source,[module] J@line
address range of a translation unit. It
can be set by line range or address

range.
Data range/ Used to filter (out/in) events coming Symbol name or address. If you refer-
Filter from any specific data. ence arrays, you must also state their

size.

You can insert filters in two ways: either straight from an event in the Thread Data Sharing Events
window or by right-clicking the Thread Data Sharing Filters window. After inserting a filter, you
can modify its properties in a dialog box (see Figures 11-16 and 11-17), which you can reach by
right-clicking the filter name in the Thread Sharing Filters Window.

Modify Data Range Filter [=

lgnore further data sharing events for this datz tem.

Enter an expression that evalustes to a data item or an address value.
Bxamples are "x" or "IABCD".

Data tem: O 023bfOch)|
Byte Court: 4 [7] Use sizeof() on Data tem
Language |C+" - |

Cancs

FIGURE 11-16: The Modify Data Range Filter dialog

Runtime Investigation: Viewing the State of Your Application | 333

Modify Code Range Filter [~ =)

Ignore further data sharing everts for this code region

Enter a function name, a source file name or an address range.

An address range can describe a memory range or a range of source lines from the same file.
Examples are addresses like "BeABCD", function names like “main" or source lines like

"{ <sourcefile>,}@dine>"

Code Range

‘@ Entire Function: {. build_with_openmp exejrender_one_pixel
Entire Source File
Address Range From

To:

Language C++ - |

FIGURE 11-17: The Modify Code Range Filter dialog

RUNTIME INVESTIGATION: VIEWING THE STATE
OF YOUR APPLICATION

As shown in Table 11-2, the debugger offers several specialized windows to help you investigate the
current state of your application and its threads.

TABLE 11-2: Intel Debugger Windows

WINDOW DESCRIPTION MODEL

Tasks Displays the state of a task, the parent task, and the number of OpenMP
spawned tasks.

Spawn Tree Displays a tree of spawned tasks; tasks that have not spawned OpenMP
anything are shown as leaf nodes.

Locks Displays the state a lock, the type of lock, the number of threads OpenMP
holding the lock, and references to the lock.

Barriers Displays the state of a barrier, the number of threads that have OpenMP
reached the barrier, and the location of the barrier.

Teams Displays the team of threads that supports a parallel region. OpenMP

Taskwaits Displays the state of a taskwait, the number of tasks the taskwait OpenMP
is waiting for, and the location of the taskwait.

Cilk Thread Displays a call stack of worker threads. Cilk Plus
Stack

334 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

The OpenMP windows give information about the team hierarchy and the relationship between
tasks and source code. This will help you to identify what code the thread is executing.

You can access the OpenMP windows either by clicking the corresponding but-
tons on the toolbar (see Figure 11-18) or by selecting Debug = Intel Parallel Debugger
Extension & Windows & OpenMP = [window] (see Figure 11-19).

S Eame D
OpenMP Tasks 4 |— OpenMP Taskwaits
OpenMP Spawn Tree ——— -———— OpenMP Teams
OpenMP Locks OpenMP Barriers

FIGURE 11-18: The OpenMP windows toolbar

%] tachyon_compiler (Debugging) - Microsoft Visual Studio o o
File Edit View VAssistX Project Build Tools Test Window Help
J-m-25 Hal | % B3R - Windows » ~|| % primary.serial - | R R o
EEYa . @ id) continue Blr@eEaBe @ -lee @ Ciaiial
Process: [5980] build_with_openr - Thread: [5(Continue With Intel Inspector XE Analysis ith_openmp . exelmai - |_
Solution Explorer - Solutio.. v & X | /videog ! | BreakAl Sl - x
=) A @ | Stop Debuggin Shift+F5
BlaB4a > rmaim Dl Frargo) - [esd)
[Solution 'tachyon_compiler (5 pt ZE | Detach Al = =
2B build sera (Global Sq Terminate Al ~ 9 main(int arge, char ** argy) ;
i 2 193
& G buid seral ou @ | Restart Ctrls Shift+F5 R A
£ B build_with_cilk 194 - tle;
- [0 build with ik 195| 5| Apply Code Changes Alt+FI0 bphics:
- [build_with_openmp 196 5k | Attach to Process. global USEEFARHICH)
£ (EA build_with_openmp Exceptions... Ctrl+ Alt+E T, ST RS
¢4 build_with_openmp.c| i 4 — :
- B build_with_thb 2 i (Al
A build_with_thh N Step Over F10
- (@ tachyon.common 2 Step Out Shift+ FI1
- (= tach: X Py
B Q. ochyorscoeneir 2 QuickWatch.. Ctrl+Alt+Q @
204 E
9 205 Intel Parallel Debugger Extension r Thread Data Sharing Detection » -
I Teggle Breakpoint F | 4| Bresk on Re-entrant Call.. | L
Thread Dat New Breakpoint » | E=| serialize Execution “E X
Filter Set: f 2 | Delete All Breakpoints Ctrl+ Shift+F9 Windows + | #&] Thread Data Sharing Events
;\Unm Ol (| Disable All Breakpoints Ja| Thread Data Sharing Fiters
I:Functic Save Dump As... e
Fr. 2| Tasks OpenhP 17
Thread Data Sharing Events T | SpawnTree i} | VvectorRegisters
@ Analysis active, Filterset: Focus, Active Filters: 5 & Loas Tntel Cilk Plus Call Stack
i Analysis run from 3/3/2012 11:17:48 AM (0 events) =
77 | Barriers
& | Teams
| Taskwaits
<[I v
Ready Ln202 Col22 ch22 NS
= el =7 5 134am | |
&h [Iﬂ & o e
@]][]]m] "0l S

FIGURE 11-19: Accessing the OpenMP window from the menu

Using the OpenMP Tasks Window to Investigate Variables
Within a Parallel Region
Using the Tachyon solution in Listing 11-3, you can use the OpenMP windows to investigate what

happened to the variables created inside of the #pragma omp parallel region. However, at first, it
doesn’t appear obvious how to find out what code (and thread) a particular OpenMP task has used.

Runtime Investigation: Viewing the State of Your Application

| 335

You can use the information from the Tasks window and the Spawn Tree window to associate
a parallel task to a specific thread. You can then examine the call stack for that thread (and
the local variables) all the way back to the point where the thread was first created within the
parallel region.

Figure 11-20 shows the windows needed to map the OpenMP task to the correct call stack. You can

examine the contents of an OpenMP task’s call stack as follows:

1. Get the thread ID of a task in OpenMP’s Tasks window. In the example, task 47 has a thread

ID of 3400.
2. Double-click thread 3400 in the Threads window.

3. Examine the Locals window to see the stack variables. These are thread-specific in the
example.

4. Examine the Call Stack window to see the function hierarchy.

[¥] tachyon_compiler (Debugging) - Micrasoft Visual Studio — = =R
File Edit View VAssistX Project Build Debug Tools Test Window Help
P - % G- -|[winz2 -]/ @# primary.serial - | REFEEE RO
‘@RYYs *.@ EEemes Ba.>: 0 FAE @ 038 2ialin
iPmcessu [5980] build_with_openn » Thread: [3400] _kmp_launch_wor » ¥ Stack Frame: build_with_openmp.exelgric ~ =
grid.cpp | video.cpp| Disassembly | 5 x | CallStack - 3 x|[Tasks - @x
= | Name | Lang -
% grid_intersectwhileifwhile * =] |3 i +|[@Go| | |h e —— r:t(lc c~|| D State Type Team Parent #Spawned Thread Created A
b4 b“‘ldf““mf"pe"mp'a“e‘gLf"‘ct’seb ‘CH 4 Suspended Implicit, tied 1 0 12 936
- % = . ? ++
{Glot) e b el U h::m_::m_:;::z; :;:‘CEG:;BY{;:: i 39 Running Implicit, tied 15 4 0 936 unknown
572 nXp.z += pdeltaX.z; e ! 3 E &
. R = Tkl vally e el b 40 Runn!ng Impl!c\t, t!ed 15 4 0 6004 unknown
B Biss v (EEE. 5 build_with_openmp.exeldraw_task() Li C++ 41 Running Implicit, tied 15 4 0 1620 unknown
s e AR A libiomp5md.dlll___kmp_invoke_microtas 42 Running Implicit, tied 15 4 0 3084 unknown
576 while (cur !'= NULL} libiompSmd.dil!___kmp_invoke_task_fur 43 Running Implicit, tied 15 4 0 2180 unknown
577 1f Pre-diihixtoue libiompSmd.dll!__kmp_launch_thread() 44 Running Implicit, tied 15 4 0 4352 unknown
o s78 ry—3mbox [cur—>ot lbiompSmd.dil!__kmp _launch_worker() 45 Running Implicit, tied 15 4 0 4300 unknown
57% cur-»obj->methac kerneIEZijdll‘!?-lcﬁuk?j?Q T 46 Running Implicit, tied 15 4 0 4852 unknown
580 1 [:;”“jif_;ulg‘d"_‘zo oS © 47 Running Implicit, tied 15 4 0 3400 unknown
ntdl.dlli 77 7
5B1 cur = cur->next;
is i ntdl.dii77019d450 48 Running Implicit, tied 15 4 0 6040 unknown
:“ 49 Running Implicit, tied 15 4 1] 3548 unknown
282 i i il 50 Running Implicit, tied 15 4 0 3132 unknown
584 if (ry->maxdist < tr
585 break; E
5E6 voxindex += step.z#*(
&7 tmax.z += tdelta.z;
SE8 curpos = nZp; i
< | . | G ~| [. I 3
Locals ~ 7% [Threads -1 x
_ Name | Value - | Type %] _|ID | Ca’(agud Name | Location \ Priority | Suspenc =~
#q 2180 |_| Worke __kmp_launch_worker arid_intersect Normal ©
@y 0x051bb7a0 {intstruct=0x051bb8b8 depth="5 flags=1 ray * =i - 4352 | | Worke __kmp_launch_worker arid_intersect Mormal 0
@ tnear 2.0654573525988851 double 4300 || Worke _kmp_launch_worker arid_intersect Normal ©
@ tfar 5.22640056572024512 double A 4852 | | Worke __kmp_launch_worker arid_intersect Normal 0 —
@ offset 2.0654573525988851 double 3400 || Worke _kmp_launch_worker grid_intersect Normal 0
@ curpos {x=-0.58600507250987144 y=0.7914198616876250: vectar 6040 || worke __kmp_launch_worker arid_intersect MNormal 0 =
@ tmax [=3.253846030 1466965 y=7.7035305560717422 2= vector 3548 || Worke _kmp_launch_worker grid_intersect Normal 0
@ tdelta {x=0.89761272748978538 y=4.7406343622372757 z vector 3132 || worke __kmp_launch_worker arid_intersect MNormal 0 L.
| 5@ ndelax fx=-0.80000000000000004 v=-. 151475536 7563492 vector M 34
Ready

FIGURE 11-20: Examining the OpenMP task states

336 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

Using the OpenMP Spawn Tree Window to View the Behavior

of Parallel Code

You can use the OpenMP Spawn Tree window to confirm that your OpenMP parallelism is working
as intended. For example, consider the Fibonacci number calculator. Fibonacci numbers are integer
numbers that follow the sequence 0, 1, 1, 2, 3, 5, 8, 13, and so on. Each Fibonacci number is the
sum of the previous two numbers in the sequence. The first two numbers in the sequence are always
0 and 1. Listing 11-5 contains a parallel version. The bolded code makes the program parallel. If

you delete that code, you will end up with the original serial version.

‘) LISTING 11-5: Simple implementation of a Fibonacci calculator

Available for // This code has an ERROR in it which will cause a SEGMENTATION fault!
#include <stdio.h>

download on
Wrox.com

long long int fibonacci(int n) {

(n>1) {
long long int r_1, r_2;
// create a task to calculate the n-1 number
#ipragma omp task default(none) shared(r_1,n)
{

// recursive call

r_ 1 = fibonacci(n - 1);
}
// create a task to calculate the n-2 number
#ipragma omp task default(none) shared(r_2,n)
{

// recursive call

r_2 = fibonacci(n - 2);
}
return r_1 + r_2;
else {
// exit point for the recursion
// this seeds the first two numbers in the sequence
// ie 0 and 1

if (n==0) return 0;
return 1;
}
int main()
{
int 1 = 50;

long long int t =0 ;
// create a parallel region
#pragma omp parallel

Runtime Investigation: Viewing the State of Your Application | 337

// run as a single thread

#pragma omp single

// calculate the 50th number in the fibonacci sequence
t = fibonacci(i);

}
printf ("%d\n",t);
return 0;

code snippet Chapter11\11-5.cpp

Two independent OpenMP tasks are used to add parallelism to the fibonacci function. The first
task calculates fibonacci (n-1), and the second calculates £ibonacci (n-2). This should generate a
tree of spawned tasks, branching twice for every execution of the fibonacci function.

If you compile and execute the code, a segmentation fault occurs. Figure 11-21 shows the OpenMP
spawn tree at the point the fault happens. Although you can see that two tasks are spawned from
task 55, a strange pattern is displayed that does not match the expected behavior for the task
hierarchy.

Task Spawn Tree =
thread 6384, created at -

p
Task 39, Running,Implicit, tied, thread 6384, created at unknown:34
Task 40, Running,Implicit, tied, thread 2612, created at unknown:34
Task 41, Running,Implicit, tied, thread 4780, created at unknown:34
Task 42, Running,Implicit, tied, thread 4552, created at unknown:34
Task 43, Running,Implicit, tied, thread 5400, created at unknown:34
Task 44, Running Implicit, tied, thread 1852, created at unknown:34
Task 45, Running Implicit, tied, thread 2192, created at unknown:34
Task 46, Running,Implicit, tied, thread 5044, created at unknown:34
Task 47, Running,Implicit, tied, thread 6684, created at unknown:34
Task 48, Running Implicit, tied, thread 7092, created at unknown:34
Task 49, Running,Implicit, tied, thread 6084, created at unknown:34
Task 50, Running Implicit, tied, thread 1932, created at unknown:34

(e

FIGURE 11-21: The spawning tree for the wrong parallelization suggested for the
Fibonacci example

The cause of the problem is a missing taskwait clause (see the bold code in Listing 11-6). This miss-
ing statement causes each task to overlap, corrupting the stack and causing a segmentation fault and
chaos on the spawned tree. Inserting a #pragma omp taskwait statement before the return state-
ment in the fibonacci function should eliminate this effect. With this addition, both tasks run to
completion.

Listing 11-6 shows the modified code with the taskwait clause, and Figure 11-22 shows the spawn
tree of the corrected code.

338 | CHAPTER11 DEBUGGING PARALLEL APPLICATIONS

‘) LISTING 11-6: Right parallelization for the Fibonacci example

Available for #include <stdio.h>

download on
Wrox.com

}

long long int fibonacci(int n) {

if (n > 1) {
long long int r_1, r_2;

// create a task to calculate the n-1 number
#pragma omp task default(none) shared(r_1,n)
{

r_1 = fibonacci(n - 1);

// create a task to calculate the n-2 number
#pragma omp task default(none) shared(r_2,n)
{
r_2 = fibonacci(n - 2);
}
// wait here until both tasks have finished running.
#pragma omp taskwait

return r 1 + r_2;
} else {
// exit point for the recursion
// this seeds the first two numbers in the sequence
if (n==0) return 0;
return 1;

int main()

{

int i = 50;

long long int t =0 ;

// create a parallel region

#pragma omp parallel

{
// run as a single thread
#pragma omp single
// calculate the 50th number in the fibonacci sequence
t = fibonacci(i);

}

printf ("$d\n",t);

return 0;

code snippet Chapter11\11-6.c

Summary | 339

Task Spawn Tree
=~ Task 4, Suspended Implicit, tied, thread 6484, created at -
Task 39, Suspended,Implicit, tied, thread 6484, created at unknown:34
Task 40, Suspended,Implicit, tied, thread 6316, created at unknown:34
Task 51, Suspended, Explicit, tied, thread 6316, created at unknown:7 | &)
Task 57, Suspended,Explicit, tied, thread 7140, created at unknown:7
=~ Task 136, Suspended,Explicit, tied, thread 7140, created at unknown:13

E| Task 141, Suspended,Explicit, tied, thread 7140, created at unknown:7
: Task 1078746, Suspended,Explicit, tied, thread 7140, created at unknown:7

Task 1489687, Suspended, Explicit, tied, thread 7140, created at unknown:7
Task 2067713, Created, Explicit, tied, thread 18446744073709551615, created at unki
Task 2067714, Suspended,Explicit, tied, thread 7140, created at unknown:13
[~ Task 2067715, Suspended,Explicit, tied, thread 7140, created at unknown:7
E! Task 62, Suspended,Explicit, tied, thread 6316, created at unknown:13

=~ Task 67, Suspended,Explicit, tied, thread 6316, created at unknown:7

E| Task 240, Suspended, Explicit, tied, thread 6316, created at unknown:7
B Task 2122397, Suspended,Explicit, tied, thread 6952, created at unknown:7

=~ Task 2122573, Suspended, Explicit, tied, thread 6952, created at unknown:7
= Task 2154908, Suspended, Explicit, tied, thread 6952, created at unknown:7
| Task 2157407, Created, Explicit, tied, thread 18446744073709551615, created at
=~ Task 2157408, Suspended,Explicit, tied, thread 6952, created at unknown:13

E Task 2157409, Suspended,Explicit, tied, thread 6952, created at unknown:7
Task 2253875, Created,Explicit, tied, thread 18446744073709551615, cree

»

——

=

Task 2253 Suspended, Explicit, tied, thread 6952, created at unknow)
Task 2154910, Suspended,Explicit, tied, thread 932, created at unknown:13

Task 2154913, Suspended,Explicit, tied, thread 3144, created at unknown:7
Task 2204875, Created, Explicit, tied, thread 18446744073709551615, created
B- Task 2204876, Suspended,Explicit, tied, thread 3144, created at unknown:12

=) Tack 24870 Sucnended Funlicit tiad thraad 44 created at onbnos
4| 1 | r

FIGURE 11-22: The spawn tree after the correction of the parallel Fibonacci example

SUMMARY

Viewing a parallel program while it is running is a very different experience from error-detection
techniques described in other chapters. Finding data races and observing program behavior becomes
a dynamic process rather than a batch-driven process.

Using the Intel Debugger to detect data races brings a new level of visibility and confidence when
debugging. In this chapter you used the debugger to fix data races in the Tachyon ray-tracing pro-
gram, and corrected the execution order in a Fibonacci calculator. You can see another example of
using the debugger in Chapter 14, “Nine Tips to Parallel-Programming Heaven,” where you use it to

detect data races in a Cilk Plus program.

Chapter 12, “Event-Based Analysis with VTune Amplifier XE,” shows how to use Amplifier XE to
see how well your program is using the CPU architecture.

12

Event-Based Analysis with
VTune Amplifier XE

WHAT’S IN THIS CHAPTER?

> Using the cycles per instruction retired (CPI) metric to spot potentially
unhealthy programs

> Using Amplifier XE’s General Exploration analysis to identify perfor-
mance issues in your program

> Drilling down into architectural hotspots

> Using Amplifier XE’s APIs to control data collection

When we are ill, most of us know how to check the obvious. Do we have a fever? Are we
aching anywhere? Is our pulse rate normal? Wouldn’t it be great if there were an easy way
of measuring the health of a program? The good news is that some equivalent indicators can
be used to monitor the health of an application, and Amplifier XE can be used to get those
measurements.

This chapter shows how to check the health of an application using Amplifier XE’s archi-
tectural analysis types. Starting with a system-wide view of your system, you learn how to
observe how well different programs are performing.

TARGET ARCHITECTURE

The principles described in this chapter can be applied to any CPU architecture.
However, Amplifier XE’s architectural analysis features are specifically targeted
at Intel devices. You will not be able to carry out the activities in this chapter on a
non-Intel device.

342 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

TESTING THE HEALTH OF AN APPLICATION

When looking at the health of an application, several facts need to be ascertained. Like people, each
piece of software has its own unique traits. Even if two programs do the same thing — for example,
predicting the weather — they may work quite differently internally. These internal differences
often have a direct impact on how quickly a program runs and how well the software makes use

of the CPU. A well-written “healthy” program will run efficiently, whereas a poorly written “sick”
program may run slowly and waste CPU resources.

The following are basic questions to ask when optimizing software:

> How long does the program run?

> How much work does the program do?

> Does the program have any inefficiencies?
Fortunately, all Intel CPUs have hardwired into them electronics that can measure myriad
parameters and statistics. Two fundamental parameters (clock ticks and instructions retired),

and an associated ratio (cycles per instruction retired), can be used to quickly spot unhealthy
software.

> Clock ticks show how many CPU cycles a program consumed. They are a measure of time.
Depending on the processor you are running on, clock ticks might be measured per logical
core or per CPU.

> Instructions retired measure the number of instructions that have progressed all the way
through the CPU pipeline and have not been abandoned along the way. The retired
instructions represent the real work being done by the program.

> Cycles per instruction retired (CPI) gives an average figure of how much time each executed
instruction took in cycles. The formula is as follows:

CPI = clock ticks / instructions retired

You can use this ratio to measure a program’s efficiency. The lower the CPI value, the more
efficient the program is. Low is good, high is bad.

What Causes a High CPI?

In modern CPUs, it is theoretically possible to have four instructions retired on each cycle, giving a
CPI of 0.25; however, this low of a figure is rarely achieved. If your application has a CPI of below 1,
you are doing pretty well. In the hands-on activities you will see CPI values varying from 26, which
is terrible, down to about 0.4, which is excellent.

If you take every cycle of a program, you will find that each cycle can be classed in one of three
ways (see Figure 12-1).

Testing the Health of an Application | 343

> Cycles where instructions are executed and usefully employed (A)
> Cycles where the CPU is doing nothing (B)

> Cycles where instructions are read and possibly executed but are then abandoned or “thrown

away” (C)
~
C A
Abandoned Executed
before and used Total
completion \ number
of CPU
cycles
B
None executed
J

Total cycles consumed =A+B+C

FIGURE 12-1: Every cycle the CPU consumes can be categorized based on how they use
instructions

A healthy program will have very few of categories B and C, with most of the cycles being executed
and used. An unhealthy program will have a lot of cycles that are not doing anything useful. The
more B or C type cycles, the worse the CPI. (Note that the terms A, B, and C have no special
significance; they are used merely to help identify the segments in Figure 12-1.)

You will probably find that your application is dominated by one of the segments. You can use
Amplifier XE to detect these different cycles by looking for the hotpots in your code.

Is CPI on Its Own a Good Enough Measure of Health?

Although CPI can be used to indicate that some programs have wasted cycles and hence present
optimization opprtunities, using just CPI can occasionally be misleading.

In Activities 12-3 and 12-4 later in the chapter, you will see that the speed of the matrix
multiplication program improves but the CPI gets worse.

When doing any optimization work, always keep an eye on the most fundamental
measurement — that is, how long a program took to run; otherwise, you may spend a lot of
unfruitful time improving the CPI but ending up with a slower program.

Conducting a System-Wide Analysis

It’s sometimes educational to do a system-wide analysis on a PC with Amplifier XE to see which
programs have the best CPI and which have the worst. To perform a system-wide analysis, you first

344 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

set the project properties to Profile System, as shown in Figure 12-2, and then launch a Lightweight
Hotspots analysis. This kind of hotspot uses the performance monitoring capabilities of the CPU,
has a very low impact on the running programs, and is capable of sampling everything that running
on your PC.

ch12 - matrix - Project Properties =2

Target | Search Directories
Target type | Profile System bt

Profile System

Configure settings for system-wide analysis. Select this analysis type if you do not want to analyze particular
applications/processes but interested in system performance as a whole. Press F1 for more details.

["] Automatically stop collection after (sec): 10
(@ Store result in the project directory: C\Users\sblairch\Documents\Becks\Intel Parallel Studie 2011'Beck Chapters\.

(") Store result in (and create link file to) another directory

C\Users\sblairch\Documents\Books\Intel Parallel Studio 2011\Book Chapters\16_Chapter12 - Event Ba:| | Browse...

Result location:
ChUsers\sblairch\Documents\Books\Intel Parallel Studic 2011\Book Chapters\16_Chapter 12 - Event Based Analysis\linux

) Advanced

Duration time estimate: Between 1 and 15 minutes -

[T Allow multiple runs

Collection data limit, MB: 100 =
Slow frames threshold, frames/s: 40
Fast frames threshold, frames/s: 100
CPU mask:

FIGURE 12-2: Editing the project properties to enable system-wide profiling

Once you’ve run a profiling session, you’ll probably be fascinated by the results. Figure 12-3 shows
the results of doing an analysis on a dual core laptop (the one that was used to write this chapter).
Notice that autocheck. exe has a huge CPI of nearly 36. As it happens, this value is expected.
Autocheck.exe is part of Windows and is designed to be non-CPU-intensive, running in the
background doing some maintenance activities. Amplifier XE highlights the CPIs to alert you to
values that need further investigation.

B Lightweight Hotspots - Hotspots /# @ Intel VTune Amplifier XE 2011

S —
‘ Analysis Type B Collection log! | i Summary Q Bottom-up

Grouping: [Prooess f Module f Function / Thread v]
Process / Module / Function / Thread CPU Timev Instructions Retired CPIRate = =
autochk.exe 8.914s 636,000,000 35.865 |
winword.exe 2.084s 6,176,000,000 1.143 |=
amplxe-gui.exe 0.570s 1,872,000,000 1.036 |k
Explorer.exe 0.271s 562,000,000 1.534 |
salserver.exe 0.195s 492,000,000 1.358
amplxe-runsa.exe 0.105s 338,000,000 1.107 | -
™| N i | v

FIGURE 12-3: A system-wide analysis reveals the CPI rate of every program

Conducting a Hotspot Analysis | 345

Looking at CPI of different programs is entertaining, but there is a serious part to exercise as
well. Apart from CPI spotting, you can use the same system-wide analysis to see if one particular
program is hogging all the CPU time, as the following story illustrates.

In a recent code-optimization training session at a university, a student complained that his
“optimized” applications ran unexpectedly slow. By running a system-wide analysis with Amplifier
XE, the reason for the slowdown became obvious. Another user was logged on to the same node
and running an MP3 player; the player had been running for the last five days! After a little further
exploration, the user of the MP3 software was identified as being someone from the university’s I'T
department. Once the MP3 player was killed, the application ran as expected.

When installing Amplifier XE on a cluster or other high-performance comput-
ing (HPC) environment, make sure your administrator knows Amplifier XE’s
capabilities.

ACTIVITY 12-1: CONDUCTING A SYSTEM-WIDE ANALYSIS

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

1. Start Amplifier XE GUI from the command line:
amplxe-gui

2. Create a new Chapter 12 project by selecting File ©» New = Project. In the
Project Properties dialog, select Profile System from the Target tab.

3. Carry out a Hotspot Analysis by selecting File => New > Analysis...
Algorithm Analysis = Lightweight Hotspots.

4. Stop the data collector after about ten seconds or so.
5. Explore the results and find the following:

> The application with the largest CPI

> Any fields highlighted in pink

CONDUCTING A HOTSPOT ANALYSIS

Once it is established that someone is not well, a more detailed diagnosis is needed, with the
doctor prodding, poking, and asking appropriate questions. The doctor will need to work out
what the problem is in order to decide on the best treatment. Someone complaining of feeling hot

346 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

and having stomach pain should be dealt with quite differently from someone with a suspected
broken leg. Knowing the location and nature of any discomfort or pain is essential for a correct
diagnosis.

In the same way, once you’ve identified that your program is running poorly by looking at the CPI
and the time the program took to run, you should conduct a hotspot analysis to find out where the
bottlenecks are in your code. After identifying the hotspots, you then need to find the cause of the
hotspots and apply suitable remedies.

Hotspot Analysis Types
Amplifier XE has two hotspot analysis types:

> Lightweight Hotspots analysis — This uses hardware event-based sampling and samples all the
processes running on a system. The overhead of this type of collection is very low. No stack
information is collected in this analysis type. The lightweight hotspot analysis can be applied
either to a single application or to the whole system, depending on whether you choose Profile
System or Launch Application in the project properties. If you choose Launch Application,
only information about the application will be displayed; the rest will be filtered out.

> Hotspots analysis — This employs user-mode sampling and, unlike lightweight hotspots,
will collect stack and call tree information. You cannot use this kind of analysis to do a
system-wide analysis; it is used to analyze a single application or process. You can find
more information on this kind of analysis in Chapter 6, “Where to Parallelize.”

To reduce confusion about the terms “Lightweight Hotspots analysis” and
“Hotspots analysis,” the rest of this chapter refers to the latter as User Mode
Hotspots analysis.

User Mode Hotspots Versus Lightweight Hotspots

It’s worth spending a few minutes looking at the difference between the two types of analysis. The
screenshots in this section use the code from matrix.cpp in Listing 12-3 (at the end of the chapter).
The machine used has a second-generation Intel Core Architecture (aka Intel Sandy Bridge) 3.0 GHz
processor, 8GB of memory running Centos 5 (64-bit 2.6.18 Kernel). The CPU has 4 cores and
supports hyper threading, giving a total availability of 8 logical CPUs.

The Results Tabs

Amplifier XE displays the data collected from a hotspot analysis in different tabs (see Figure 12-4).
Notice that the User Mode Hotspots analysis has five tabs, whereas the Lightweight Hotspots
analysis has only four tabs. The extra tab, Top-down Tree, is available only in the User Mode
Hotspots analysis because only this analysis collects stack and call graph information.

Conducting a Hotspot Analysis | 347

r000lh < | r001hs i

(a) Lightweight Hotspot

r0ooth r001hs > b

Intel VTune Amplifier X€ 2011

(b) User Mode Hotspot

FIGURE 12-4: The results tabs

The Summary Tab

When you select the Summary tab, the Lightweight Hotspots analysis gives two extra pieces of
information: Instructions Retired and CPI Rate (see Figure 12-5). Notice that the Lightweight
Hotspots analysis lists what seems to be two OS-related functions: vmlinux and _dl_relocate_
object. The Paused Time records the amount of time the analysis ran with the collector paused.

(#) Elapsed Time: 7.814s

CPU Time: 7.641s
Instructions Retired: 11,076,000,000
CPI Rate: izl
The CPI may be too high. This could be ca (®) Elapsed Time: 7.737s
instructions. Explore the other hardware-re Total Thread Count: 1
Paused Time: 0s CPU Time: 77365
Paused Time: 0s
(#) Top Hotspots
This.sec.tion lists the most active functions in @ Top HO‘SPDB
;ﬁ:l;ia;::]on performag;el‘.l Time This section lists the most active functions in
these hotspot functions typically results in in
b, 75495 performance.
[wmlinux] 0.089< M
init_arr 0.003s main 7.705s
_dl_relocate_object 0s init_arr 0.031s
(a) Lightweight (b) User Mode

FIGURE 12-5: A summary page showing the two types of hotspot analysis

The Bottom-up Tab

You can group and display the results in the Bottom-up tab according to different objects, such as
Process, Module, Thread, and so on. Table 12-1 lists the different objects used in the two types of
hotspot analysis. Most terms will be familiar to you or will be explained later; however, the follow-
ing two terms need a quick explanation now:

> Package refers to the physical CPUs. A dual-CPU system has two packages.

> H/W context refers to logical CPUs.

348 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

TABLE 12-1: Objects Used in the Bottom-up Results Grouping

OBJECT LIGHTWEIGHT USER MODE
Process
Module
Thread
Source file
Function
Basic nlock
Code location
Class

H/W context
Package
Frames

Call stack

OpenMP regions

zZ z zZ < < < < < < < < < =< <

< < < < z zZ < zZ zZ < < < < zZ

Task type

Figure 12-6 shows an example of lightweight hotspots grouped by module/function.

Grouping: [Module / Function -
Medule / Function CPU Timew Instructions Ret... CPIRate Function (Full) Module Path
/home/sblairch ..
main 75485 11,022,000,000 2.293 main /home/sblairch ...
init_arr 1 0.003s 40,000,000 0.450 init_arr{double”) /home/sblairch ...
Evmlinux 0.089s 12,000,000 27.000 wvmlinux
[vmlinux] 0.089< 12,000,000 27.000 [vmlinux] vmlinux
Eld-2.5.50 1 0s 2,000,000 0.000 Slib64/1d-2.5.50
_dl_relocate_chject 1 0s 2,000,000 0.000 _dI_relocate_obj... /lib64/1d-2.5.50
Selected 1 row(s):| 7.5525) 11,062,000,000
™ Pl I it

FIGURE 12-6: Lightweight hotspots grouped by module/function

The Top-down Tree Tab

Only the User Mode Hotspots analysis has a top-down view. This view displays the call stack and
timeline view as shown in Figure 12-7.

Conducting a Hotspot Analysis | 349

B cawe
File View Help

‘B | S o

h'Doc! k

I Parallel Studio 2011\Book Chapters\16_Chapter 12 - Event Based Analysis\linux files\ch12 - matrix - Intel VTune Am... | = | (=1 |[=5]

r000h r001hs x ¥
[Hotspots - H » 0 Intel VTune Amplifier XE 2011
[@ Analysis Target| [Analysis Type| [1 Summary| [% Bottom-up)|
Call Stack CPU Timew CPU Time:Total Module Function (Full CPU time
Ei 100 () 3 stack(s) selected, Viewing 1 10f3 b
E_start 0s 100.0 (N ik.gcc.exe _start Current stack is 99.6% of selection
Fimsin 7.705- IR 100.0 N ik.gcc.exe main ‘ T ‘
init_arr 0.031s 04% jk.gccexe init ar) 20 ol)
jl.gec.exelmain - main.cpp
fjl.gec exel_start+0x6¢8 - [Unknown]
Selected 0 row(s):
™| v« L
T y T T T T u T T T T T T T P ——
ek 055 1s 155 2s 255 35 355 ds 455 55 555 6s 655 Ts 755 2 |[¥]Threads
Thiead (0x149) i I Running
¥ Lk CPU Time
£ CPU Usage
- luk CPU Time
CPU Usage

» (T % oo T - Y -

ENE - -

FIGURE 12-7: The Top-down Tree tab of the User Mode Hotspots analysis

Viewpoints

All analysis types have a default view. You can change the view by clicking the spanner next to the

analysis title (see Figure 12-8). The Lightweight Hotspots analysis has four views, whereas the User
Mode Hotspots analysis has only two views. Viewpoints are simply different ways of presenting the
collected data. Because the User Mode Hotspots analysis does not collect any hardware events, only

two viewpoints are available.

r000lh < | r001hs

Hardware Event Sample Counts

Hardware Issues

View a call tree with PMU events

(a) Lightweight Hotspot

ro0dh | rod1hs

5 Hotspots - Hot:

7 Select viewpoint:

Eﬁr;y;?‘liargetl ‘ I

Hotspots by CPU Usage
View CPU time hotspots, counters, and stacks

Task Analysis

(b) User Mode Hotspot

FIGURE 12-8: Different viewpoints for the two types of analysis

350 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

To summarize, the major differences between the two types of hotspot analysis are as follows:

> Lightweight Hotspots analysis is system wide but does not collect call stack information. It
collects CPU events, and therefore can display metrics such as CPIL.

> User Mode Hotspots analysis is not system wide but does provide call stack information.
This type of analysis is primarily concerned with the amount of time each part of a program
takes. It cannot display events or CPI.

Finding Hotspots in Code

Back to the task at hand. The purpose of doing a hotspot analysis is to determine the health of your
code and to understand the nature of any bottlenecks. For this type of analysis you need to use a
Lightweight Hotspots analysis rather than a User Mode Hotspots analysis.

As shown in Figure 12-6, the biggest lightweight hotspot in ijk.gcc.exe is the main () function,
which is using just over 7.5 seconds of CPU time. This is the sum of how much time each individual
hardware thread used. The CPI is 2.293, indicating that there may be a problem. By clicking on the
hotspot, you can drill down to the source code (see Figure 12-9).

Source Assembly | Eer) &
Line Source CPU Time® Instructions [+] Address Line Assembly CPU Time* | Instructions E
37 init_arr(a); 0x40094b 41 lea (,%rax,8), %rsi
38 init_arr(b); 0x400953 41 addg 0x2005de(%rip),
39 0x40095a 41| nopw %ax, (%rax,%rax, 0.006s 6,000,000
40 start = clock(); Block 16:
41| for (1 =8; 1 < N; i++) { 0.006s 6,000,000 0x400960 44 lea (%r9,%rdi, 1), %eax
42 for (j=0; j<N; j++) { 0x400964 44 movsxd %ecx, %rdx
43 for (k=0; k<N; k++) { 0.594s 618,000,000 0x400967 43 add $0x1, %edi 2,000.000 | |
44 C[N*i+j] += a[N*i+k] 6.949s 10,398,000, 0x40096a 43| add %r8d, %ecx 0.296s 262,000,000 ==
45 1 | | = ox40096d 43 cmp %edi, %red 4i
46 i == 0x400970 44 cdge
47} B oxa00072 44 movsdg (%rll,%rax,8), 0.002s 4,000,000
48 stop = clock(); (. 0x400978 44 mulsdg (%rl0,%rdx,8), 0.309s 248,000,000
49 printf("%-6g ", ((double)(s 0x40097e 44 addsdg (%rsi), %xmmd 5.314s 8,474,000,000
50 free(a); 0x400982 44 movsdg %xmm0, (%rsi) 1.323s 1,672,000,000
51 free(b); 0x400986 43 jnle 0x400960 <Block 1 0.298s 354,000,000
52 free(c); Block 17:
53 0x400988 42| add $0x1, %ebx
Selected 1 row(s) 6.9495 [+] Highlighted 7 row(s) 6.949s =
0 [T I €1 T Dl D

FIGURE 12-9: The Source view

Looking at the C code of the hotspot, you can see that three arrays (a, b, and c) are accessed:

for (1 = 0; i < N; i++) {
for (3=0; J<N; j++) {
for (k=0; k<N; k++) {
c[N*i+j] += a[N*i+k] * b[N*k+3j];

Conducting a Hotspot Analysis | 351

// printf ("%p,%p,%p\n", &c[N*i+j],&al[N*i+k],&b[N*k+j]);
}

}

The right side of the Source view in Figure 12-9 shows the disassembly window (duplicated in
Table 12-2). The instructions that take the most time are addsdg and movsda.

TABLE 12-2: The Assembly Lines

ADDRESS LINE ASSEMBLY CPU TIME
0x400970 44 cdge

0x400972 44 movsdg (%rll,%rax,8), %xmm0 0.002s
0x400978 44 mulsdg (%rl0,%rdx,8), %xmm0 0.309s
0x40097e 44 addsdg (%rsi), %xmm0 5.314s
0x400982 44 movsdg %$xmm0O, (%rsi) 1.323s
0x400986 43 jnle 0x400960 <Block 16> 0.298s

Both of the addsdg and movsdg instructions access memory, so the underlying problem might be
related to memory. If you are not an expert on assembler instructions, you can use the online
context-sensitive help to display the instruction description, as shown in Figure 12-10.

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode Instruction Op/ 64bit Compat/ Description
En Mode Leg Mode
F2 OF 58 /r ADDSD xmm 1, A Valid Valid Add the low double-
xmm2imbd precision floating-point

value from xmm2/m6&4 to
xmmT.

FIGURE 12-10: Online instruction help

The code was built as a 64-bit application using GNU GCC version 4.1.2. If you have built a
32-bit application or used a different compiler, you may get different assembler instructions.
The events that have been captured do not yet tell exactly what is happening in the CPU,
although depending on your profiling experience you might be able to guess as to what the
underlying cause is.

Try out a Lightweight Hotspots analysis for yourself using the instructions in Activity 12-2.

352 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

ACTIVITY 12-2: CONDUCTING A LIGHTWEIGHT HOTSPOTS ANALYSIS

In this activity you look for the hotspots in the application memory . exe. You can
run this activity on Linux or Windows.

1. Build the matrix.cpp application from Listing 12-3 (at the end of the
chapter):

LINUX

g++ matrix.cpp -g -02 -o matrix.exe

WINDOWS

cl matrix.cpp /Zi /02 -o matrix.exe

2. In the Amplifier Project you already have open (from Activity 12-1), start
a new Amplifier analysis and choose Lightweight Hotspots (File &> New >
Analysis... @ Algorithm Analysis & Lightweight Hotspots).

In the Project Properties Target tab, select Launch Application.
Start the analysis by pressing the Start button.

When the analysis is complete, find the biggest hotspot in from the Bottom-up tab.

o ok W

Double-click the hotspot and find the following in the source code:
> The C line taking up the most time
» The assembler instruction taking up the most time
> The CPI rate of the bottleneck

7. Look in the Summary window and confirm that the hotspot you discovered is
the same as the one mentioned on the summary page. (Figure 12-4 shows the
summary button that you can use to display the summary page.)

CONDUCTING A GENERAL EXPLORATION ANALYSIS

A good doctor will find the underlying cause of an illness. Sometimes the reason will be obvious,
and sometimes finding the exact cause will be difficult. You have the same set of challenges when
examining your software.

You already know where the bottleneck is, so now you need to dig a little deeper to find out what

is causing the hotspot. Amplifier XE’s General Exploration analysis is designed to help you do this.
The General Exploration analysis looks for hardware issues that can cause problems. Amplifier XE
has multiple versions of this analysis type that are dedicated to different CPUs. This chapter uses the
version for Intel Microarchitecture Code Name Sandy Bridge. If you use a different version (because
your system is from a different CPU family), the results may be categorized differently.

When an analysis has completed, the Bottom-up window is displayed, as shown in Figure 12-11.
Several fields are highlighted to draw your attention to potential problems.

Conducting a General Exploration Analysis | 353

/home/sblairch/intel/ampixe/projects/chl2 - matrix - Intel VTune Amplifier XE 2011

Fle Help
‘@ & BPoE a0
ro02ge [id

@ General Exploration - General Exploration A~ @

[© anstyse arger] [Anaysis e & pottom-up

Grouping IFunctiom | ¥]
Hardware Event Count by Hard .. Filled Pipeline Slots Unfilled Pipeline Slots (Stalls)
* 5 Back-end B Front-end
Function Retired Cancelled Module
CPU_CLK ... | INST_RETIRED. | Rate |pmnaiine siots e Bound Bound
THREAD ANY g e ;ots Pipeline Pipeline
b Slots Slots
main 25,184,000,000 11,016,000,000 2286 0121 0.001 0.839 0.039 ijk.gcc.exe
[vmlinux] 316,000,000 28,000,000 11.286 0.000 0.000 0.899 0.101 wvmilinux
init_arr 8,000,000 32,000,000 0.250 0.000 0.000 1.000 0.000 ijkgcc.exe
_dl_lookup_symbol_x 2,000,000 0 0.000 0.000 0.000 1.000 0.000 1d-2.5.50

Selected 1 row(s):| 25.184,000,000 11,016.000,000
T | | — D,

2o Threads

(o} 0.5s 1s 15s 2s 25s 3s 35s 45 45s 55 5.55 Bs 6.55 7s 155
o [LULEEL O [+] @ Running
= ik Hardwa

Hardware ...

Timeline Hardware Event: (SRR R ~

Hardware E..

Ee] No filters are applied -‘¢ Module: JisUN} n

FIGURE 12-11: The Bottom-up window with each issue highlighted

As shown in Figure 12-12, the summary page identifies four hardware issues: CPI Rate, Back-end
Bound Pipeline Slots, LL.C Miss, and DTLB Overbead. Figure 12-12 shows only the top part
of the summary page; more entries are available further down the list, but none of them are

highlighted.

® Elapsed Time:” 7.801s

CPI Rate: @ 2.303
The CPI may be too high. This could be caused by
issues such as memory stalls, instruction starvation, ...

Back-end Bound Pipeline Slots: @ 0.840
A significant proportion of pipeline slots are remaining
empty. When operations take too long in the back-end,...

LLC Miss:@ 0.687
A high number of CPU cycles is being spent waiting for
LLC load misses to be serviced. Possible optimizations...

LLC Hit:® 0.024

DTLE Overhead: @ 0.625
A significant proportion of cycles is being spent
handling first-level data TLE misses. As with ordinary...

FIGURE 12-12: A summary of the General Exploration analysis

If you hover the mouse over each highlighted field, a description of the problem
and the threshold value formula are displayed. When a ratio exceeds the thresh-
old value, Amplifier highlights the field in pink.

354 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

Every ratio, apart from CPI, has a value between 0 and 1. The nearer the value is to 0, the better the
performance. Before exploring further what these entries mean, try out Activity 12-3.

ACTIVITY 12-3: CONDUCTING A GENERAL EXPLORATION ANALYSIS

In this activity you run a General Exploration analysis on matrix.cpp and discover
the underlying hardware issue. You can run this activity on Linux or Windows.

1. If you haven’t already done so, build the matrix.cpp application from
Listing 12-3:

LINUX

g++ matrix.cpp -g -02 -o matrix.exe

WINDOWS

cl matrix.cpp /Zi /02 -o matrix.exe
2. Start new Amplifier analysis and choose General Exploration.
File & New = Analysis...

3. In the Project Properties Target tab, select Launch Application and make sure
the application to launch is matrix.exe.

4. In the list of prebuilt analysis types, chose < CPU architecture > = General
Exploration, where CPU architecture will be one of the following:

> Advanced Intel Core 2 Processor Family Analysis
> Advanced Intel Microarchitecture Code Name Nehalem Analysis

> Advanced Intel Microarchitecture Code Name Sandy Bridge
Analysis

> Advanced Intel Atom Processor Analysis

Amplifier XE will only let you choose the analysis type that fits your
CPU. If you choose an invalid option, the message This analysis
type is only defined for processors based on... will be dis-
played, and the Start button will be disabled.

5. Start the analysis by selecting the Start button.

6. When the analysis is complete, look at the summary page. You should see
some fields highlighted in pink.

7. Browse the Bottom-up view and find the biggest hotspot.

8. Navigate to the source code by double-clicking the hotspot and identify which
source line is causing the problem.

Conducting a General Exploration Analysis | 355

A Quick Anatomy Class

One of the most daunting aspects of optimizing code is coming to grips with the internals of the
CPU. Fortunately, Amplifier XE helps out by providing predefined analysis types along with helpful
on-screen explanatory notes. Here’s an example of the explanatory note attached to the CPI ratio:

"Cycles per instruction retired, or CPI, is a fundamental performance metric
indicating approximately how much time each executed instruction took, in units of
cycles. Modern superscalar processors issue up to four instructions per cycle,
suggesting a theoretical best CPI of .25. But various effects (long latency memory,
floating-point, or SIMD operations; nonretired instructions due to branch
mispredictions; instruction starvation in the front-end) tend to pull the observed
CPI up. A CPI of 1 is generally considered acceptable for HPC applications but
different application domains will have very different expected values. Nonetheless,
CPI is an excellent metric for judging an overall potential for application
performance tuning"

CPU Internals

Just as knowing what to call different parts of your anatomy is helpful when describing your aches
and pains to the doctor, it is helpful to know a few terms to help describe bottlenecks.

Figure 12-13 shows a high-level view of a typical processor, split into two halves: the front-end and
the back-end.

CPU
: ?l 2 Fetch Reorder
: % :_ 9 Decode Buffers Execute [& >
= O Branch Predict Retire
N Y, N 5
v e
Front-End Back-End

FIGURE 12-13: The basic blocks of a CPU
The front-end is responsible for the following;:
> Fetching instructions from memory.
> Decoding instructions into micro-operations, a format the CPU understands.

> Predicting the direction branch instructions will take and prefetching those instructions ahead
of when they are actually needed.

The back-end is responsible for the following:

> Executing the micro-operations. Several execution engines can run in parallel, thus providing
instruction-level parallelism. Some engines are dedicated to specific types of instructions.

Retiring the instructions.

> Preserving the order layout of retired instructions. Some of the micro-operations will be
executed out of order. The reorder mechanism makes sure that all retired instructions will be
retired in the same order they appeared in the original source code.

356 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

The buffers between the front-end and back-end help to mitigate against delays known as stalls. As
long as micro-operations are stored in the buffer, even if there is a stall in the front-end, the back-end
can still be fed micro-operations from the buffer. This reduces the chance of a front-end stall causing a
back-end stall. In fact, many buffers throughout the CPU are not shown in Figure 12-13.

Categories of Execution Behavior

As mentioned previously (in the section “What Causes a High CPI?”), a program’s cycles can be
split between cycles where something useful is done and cycles where nothing useful is done. The
different cycle categories are caused by how the code is executing on the CPU. The categories of
execution can be split into the following four types, all of which can indicate that there are tuning
optimizations to be had:

» Retirement-dominated execution

> Front-end-bound execution

» Back-end-bound execution

> Cancellation-dominated execution
In each of the following diagrams (Figures 12-14 to 12-17), the flow of instructions through the
CPU is shown by the arrow. The thickness of the arrow represents the volume of throughput. Some

of the blocks within the diagrams are shaded, which represents a lot of activity (or bottlenecks),
whereas others have no shading, which indicates that the blocks are doing very little.

Your program could display all these characteristics in different parts of the program, or it could be
dominated by one particular type of behavior.

Retirement-Dominated Execution

In retirement-dominated execution, all the different stages of the CPU are working efficiently with
no significant stalls (see Figure 12-14). Typically, the CPI will be low (less than, say, 0.4), and the
percentage of CPU utilization will be approaching 100 percent. The main opportunity for optimiza-
tion is in reducing the amount of code that needs to be executed.

Front-End Back-End
- All stages of CPU being used effectively
Fetch 7| Reorder [

emory
Cache

Decode Buffers Execute &
L Branch Predict ‘l/ ‘l/ Retire |+

FIGURE 12-14: Retirement-dominated execution

Front-End-Bound Execution

As shown in Figure 12-15, front-end-bound code does not provide enough micro-operations to the
back-end. Front-end problems are usually caused by:

> Delays in fetching code — for example, due to instruction cache misses

> Time taken to decode instructions

Conducting a General Exploration Analysis | 357

Front-End Back-End

Delays in front-end slowing down throughput

Fetch Reorder

Decode =) Buffers) Execute [& [Emm)

Branch Predict Retire

Memory
Cache

FIGURE 12-15: Front-end-bound execution

Back-End-Bound Execution

Back-end-bound code is not able to accept micro-operations from the front-end. The front-end
supplies more micro-operations than the back-end can handle, leading to the back-end’s inter-
nal queues being full. This usually is caused by the back-end’s data structures being taken up by
micro-operations that are waiting for data in the caches.

The hollow arrows in Figure 12-16 are intended to show that the front-end is capable of providing
many instructions but cannot because of a busy back-end.

Front-End Back-End

Front-end supplying more than back-end can handle ' Back-end busy

Fetch Reorder

Decode \l/ Buffers]:C:> Execute [& :::>

Memory
Cache

Branch Predict Retire

FIGURE 12-16: Back-end-bound execution

Cancellation-Dominated Execution

In cancellation-dominated execution, many micro-operations are cancelled or “thrown away” (see
Figure 12-17). The most common reason for this type of behavior is the front-end mispredicting
branch instructions. You often see this kind of behavior in database applications or in code that is
doing a lot of pointer chasing, such as in linked lists.

Front-End Back-End

- Many mispredictions

T A

1 g Fetch J\ J& 7| Reorder

E £ Decode Buffers [& Execute & :::>
= Branch Predict ‘l/ ~V - Retire

I 4 4

Cache

FIGURE 12-17: Cancellation-dominated execution

358 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

FIXING HARDWARE ISSUES

An experienced doctor will consider the facts he knows, filter out the unimportant data, and make
a diagnosis based on his knowledge and experience. Ideally, after making the right diagnosis, the
doctor will procure the correct remedy.

You’ve seen that Amplifier XE does a great job of collecting the facts and filtering out the
unimportant data, eventually coming up with a list of four problems. You probably didn’t notice it,
but the General Exploration analysis you carried out captured more than 33 different types of events
and checked every hotspot against at least 26 different rules.

The next step in the process is to fix the problems identified. It sounds so simple, doesn’t it? The
question is, which problem should be fixed first? Here are some guidelines that will help you:

> Always fix one problem at a time. Even if you know how to fix more than one problem at once,
always focus on just one. Quite often fixing one problem will have a radical effect on other
problems; therefore, it’s best to go one step at a time, doing a fresh analysis between each fix.

> You can choose in which order to fix the problems either by fixing the problem with the

highest ratio or by using Table 12-3, which lists the most common issues in their rough order
of likelihood.

TABLE 12-3: Suggested Order of Fixing Problems

PRIORITY PROBLEM CHARACTERISTIC

1 Cache misses Back-end-bound

2 Contested access Back-end-bound

3 Other data-access issues Back-end-bound

4 Allocation stalls Back-end-bound

S Micro assists Retirement-dominated
6 Branch mispredictions and machine clears Cancellation-dominated
7 Front-end stalls Front-end-bound

As shown previously in Figure 12-12, the four problems identified by Amplifier XE are as follows:

> CPI Rate — The high CPI rate is a result of the other hardware issues. Once the issues are
fixed, the CPI will drop.

> Back-end-Bound Pipeline Slots — On the machine these tests were run on (a Sandy Bridge),
the front-end could provide up to 4 micro-operations per cycle to the back-end. Back-end-
bound means the back-end was not able to accept enough operations to match the rate at
which the front-end was supplying them.

> LLC Miss — An LLC miss is one of the most common causes of poor performance.

Fixing Hardware Issues | 359

> DTLB overhead — The Data Translation Look-aside Buffer is used to support memory
access. Partial copies of this table are normally held in cache. If a program accesses a memory
address that is not referenced by the DTLB in cache, the new DTLB entries have to be loaded
from external memory, causing a high overhead.

Using Table 12-3 as a guide, the LLC miss is tackled first.

Reducing Cache Misses

The code used for the matrix multiplication, matrix.cpp, is accessing memory in a cache-inefficient
way. Figure 12-18 shows two 4x4 matrices, a and b being multiplied together, with the results in
matrix c. In Figure 12-18(a) the nested loop uses the variables i, , and k, with the outermost loop
using i, and the innermost loop using k. The diagram shows each of the matrices sitting in the L1
cache and taking up two cache lines.

c = a * b
for (i=0;i<4;i++){ for (i=0;i < 4; i+4) {
for (j=0; j< 4; j++) { for (k=0; k<4; k++) {
for (k=0; k<4; k++) { for (j=0; j< 4; j+1) {
c[4°i+]] += a[4"i+k] * b[4"k+]; c[4°i+]] += a[4"F+k] * b4"k+];
11} 11}
MSB LSB MSB LSB
L1.6
a { L1.6 a {
7|6|5|4 o] L15 7 0 KRS
L1.4 L1.4
< { c{
4 L1.3 7(6|5(4 o] L1.3
b { 7 6 L1.2 b { L1.2
5 4408 L11 716|514 o L1.1
(a) Cache-inefficient (b) Cache-friendly

FIGURE 12-18: Cache-inefficient and cache-friendly access
The numbers inside the cells are to show which cell is accessed in each iteration of the nested loop.
The underlined numbers represent a sequence of four accesses on the same cell.
In Figure 12-18(a) you can see the following:
> Matrix a is accessed sequentially on each iteration.
> The first cell of matrix c is accessed on loops 0 to 3, and the second cell is accessed on loops 4 to 7.

> The access to the cells of matrix b is not sequential, with the cache line boundary being tra-
versed between alternate loops.

360 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

Although this diagram shows only a 4 X 4 matrix, you can imagine that in very large matrices the
code in Figure 12-18(a) would result in huge gaps in the address accessed between each read of
matrix b, along with cache misses as far back as the Last Level Cache.

You can solve the cache misses by changing the loop sequence so that i and j are swapped. This
results in the access to each cell becoming sequential, as shown in Figure 12-18(b).

Rerunning the code with this modification results in the application running much quicker.
Table 12-4 shows the results of a General Exploration analysis on the modified application. You can
see the following;:

> The application runs more than five times faster.

The CPI rate is much improved.

The cache misses (LLC) have reduced by a factor of 10.

The DTLB Overhead likewise is substantially reduced.

The back-end-bound pipeline slot is reduced by a factor of 5.

Y Y Y VY Y

The front-end-bound pipeline slots have increased.

TABLE 12-4: Comparison of the Original and Loop-swapped Code

ISSUE ORIGINAL SWAPPED
Elapsed Time 7.801 1535
CPI Rate 2.303 0.410
Back-end-Bound Pipeline Slots 0.84 0.159
LLC Miss 0.687 0.073
DTLB Overhead 0.625 0.010
Front-end-Bound Pipeline Slots 0.040 0.163

Having fixed the first problem, it’s time to move onto the next issue. Although the back-end-bound
pipeline slots are much reduced, they are still present and need to be addressed further.

Using More Efficient Instructions

In the assembler view of the application, you may have already noticed that the multiplication is car-
ried out using the mulsd instruction. This instruction is a scalar SSE instruction — that is, it oper-
ates only on one value at a time. One way of improving the performance would be to use a packed
SSE instruction instead. You can tell whether an instruction is scalar or packed by the presence of
the letter s and p in the instruction name. The following code snippet shows packed SSE instruc-
tions being used in the inner loop:

for (j=0; J<N; Jj++) {

res = _mm_mul_pd(*pA,pB[j]);

Fixing Hardware Issues | 361

res = _mm_hadd_pd (res , res);
_mm_store_sd(&c[N*i+j],res);
}

By using the packed instruction, there should be a speedup of about two, because packed SSE
instructions can calculate two double-precision floating-point values in one instruction.

Listing 12-4 (at the end of the chapter) has a new version of the main () function in which packed
SSE instructions have been inserted into the code. Three major changes are made to the code:

> The dynamic allocated memory is aligned to a 16-byte boundary using the _mm malloc
function; it is then freed using the _mm_free function.

> Two pointers, pa and pB (of type __m128d), are used to point to the matrices a and b,
respectively.

» The calculations are carried out using SSE instructions. The _mm_hadd function performs a
horizontal add to add together the results of the vectorized multiplication.

Table 12-5 gives the new results, comparing them to the version that already has its loops swapped.
The elapsed time has reduced, but note again that the CPI has increased. The two items in bold are
highlighted in pink in Amplifier XE, suggesting that they need further investigation.

TABLE 12-5: A Comparison of the Loop-swapped and SSE Code

ISSUE LOOP-SWAPPED SSE
Elapsed Time 1.535 0.960
CPI Rate 0.410 0.591
Back-end-Bound-Pipeline Slots 0.159 0.233
LLC Miss 0.073 0.178
DTLB Overhead 0.010 0.016
Front-end-Bound Pipeline Slots 0.163 0.144
Machine Clears 0 0.027

Obviously, you still have more opportunities to optimize the code, but rather than using SSE intrin-
sic functions in your code, it’s time to try a different strategy by using the Intel compiler to auto-
matically do the optimizations.

Using the Intel Compiler

Up until now in this chapter, the code has been built with GNU GCC. If you use the Intel compiler,
you will find that it automatically does both loop swapping and uses SSE instructions. Figure 12-19
shows the results of building Listing 12-3 with the Intel compiler. The first thing to notice is that the
speed has improved yet again, even though the CPI got worse.

362

CHAPTER 12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

@ Elapsed Time:" 0.678s
CPI Rate: @ 0.864
Back-end Bound PFipeline Slots: @ 0.488

LLC Miss: @ 0.912
LLC Hit:@ 0.722

DTLB Overhead: 0.036
Contested Accesses: 0.000

A significant proportion of pipeline slots are remaining
empty. When operations take too long in the back-end,

A high number of CPU cycles is being spent waiting for
LLC load misses to be serviced. Possible optimizations...

A significant proportion of cycles is being spent on data
fetches which miss in the L2 but hit in the LLC. This...

FIGURE 12-19: The results using the Intel compiler

Amplifier XE has identified that there is still more optimization work that could be explored.
Because this chapter is mainly about using Amplifier XE, the optimization effort will not be pur-
sued anymore here. If you want to consider some more optimization techniques, refer to Chapter 4,
“Producing Optimized Code.”

ACTIVITY 12-4: OPTIMIZING THE APPLICATION

In this activity you fix the hardware issue identified in Activity 12-3. In the first
two parts, optimization is achieved by modifying the code. In the last part, the
optimizations are achieved automatically by using the Intel compiler. You can run
this activity on Linux or Windows.

Implementing Loop Swapping
1. Copy the contents of Listing 12-3 into a file named swapped. cpp.

2. Swap the three nested loops so that the sequence is as follows:

// do the matrix calculation ¢ = a * b
for (1 = 0; 1 < N; 1i++) {
for (k=0; k<N; k++) {
for (j=0; j<N; j++) {
c[N*i+j] += a[N*i+k] * b[N*k+3j];
}

}

3. Build swapped. cpp:

LINUX
g++ swapped.cpp -g -02 -o swapped.exe

Fixing Hardware Issues | 363

WINDOWS

cl swapped.cpp /Zi /02 -o swapped.exe
4. Make sure the Project Properties page points to swapped. exe.

5. Start a new Amplifier analysis and choose General Exploration (following the
same instructions as Step 4 of Activity 12-3).

6. Start the analysis by pressing the Start button.

7. When the analysis is complete, look in the summary window. There should be
fields highlighted in pink. (The results may vary, depending on what PC you
are running on. You may even find that there are no highlighted fields in your
results.)

8. Browse to the Bottom-up view and find the biggest hotspot.

9. Navigate to the source code by double-clicking the hotspot and confirm that
the hardware issues from the summary page are associated with that line.

Using SSE Instructions to Speed Up the Code

10. Copy the contents of Listing 12-3 into a file named sse. cpp.
11. Replace the main function with the code in Listing 12-4.

12. Build sse. cpp:

LINUX

g++ sse.cpp -msse3 -g -02 -0 sse.exe

WINDOWS

cl sse.cpp /Zi /02 -0 sse.exe

13. Repeat steps 4 to 9, looking at sse. exe.

Using the Intel compiler

14. Rebuild the original matrix.cpp (which you created in step 1 of this activity)
with the Intel compiler:

LINUX

icc matrix.cpp -g -02 -o intel.exe

WINDOWS

icl matrix.cpp /Zi /02 -o intel.exe

15. Repeat steps 4 to 9, looking at intel . exe.

364 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

USING AMPLIFIER XE’S OTHER TOOLS

Like all good doctors, you will want to use a choice of instruments to help diagnose an unhealthy
application. Amplifier XE’s bag of instruments includes:

> Predefined analysis types

Viewpoints

APIs

>
>
> Command-line interface
>

Context-sensitive help and Internet-based resources

Using Predefined Analysis Types

You’ve already seen how the clock ticks, the number of instructions retired, and the CPI can be
gathered from a Lightweight Hotspots analysis. You’ve also used the General Exploration analysis
to spot issues in your code. To do a yet more detailed examination of your program, you can use
one of the other predefined analysis types.

A CPU can generate hundreds of different types of events. Using Amplifier XE’s predefined analysis
types takes the pain out of choosing the right events. Table 12-6 shows the analysis types available.

TABLE 12-6: Predefined Analysis Types for CPU Architecture-level Analysis

ANALYSIS

General Exploration

Memory Access
Cycles and uOps
Bandwidth

Bandwidth
Breakdown

Front End
Investigation

Custom designed

Using Viewpoints

DESCRIPTION

As the starting point for advanced analysis, identifies and locates the most sig-
nificant hardware issues that affect performance

Identifies where memory access issues affect performance
Identifies where micro-operation flow issues affect performance
Identifies where memory bandwidth issues affect performance

Identifies where memory bandwidth issues affect performance; transactions
are broken down into reads and write backs

Identifies where front-end issues affect performance

Enables you to create your own analysis type based on any of the predefined
types

Amplifier XE has a number of different viewpoints that represent the results of an analysis. The name
of the current viewpoint is displayed in the results tabs, just after the name of the analysis type.
Figure 12-20 shows the viewpoint menu, which you can access by clicking on the spanner icon.

Using Amplifier XE’s Other Tools | 365

Ho

General Exploration - General Exploration

5? Analysis Ta(get: | " Analysis Type | | E2 Collection

Elapsed Time: 0.595s Hardware Event Sample Counts
Paused Time: Os Hardware Issues
Unfilled Pipeline Slots (Stalls) Hotspots

General Exploration I
@ Front-end Bound Pipeline Slots: 0.0

Witk Missas s View a call tree with PMU events

ITLE Overhead: 0Os
DSB to MITE Switch Cost: Os

{(®) Collection and Platform Info

This section provides information about this collection, including result set size and colle|
Command Line: Jhome/sblairch/dv/CH12/intel.exe

Frequency: 3. GHz
Logical CPU Count: 8

User Name: sblairch
Operating System: Linux

Computer Name: localhost.lecaldomain

Result Size: 1MB

4 |

1 2

FIG

URE 12-20: Changing the viewpoint

Sometimes it is worth switching between the different viewpoints. For example, while in the General
Exploration viewpoint, you might want to see the actual event counts by flipping to the Hardware
Event Counts viewpoint. Figure 12-21 shows the summary page of such a viewpoint. In the different
viewpoints Amplifier XE uses the existing data but presents it in a different layout. No data is lost
or has to be resampled as you swap between viewpoints.

r000ge X

(#) Hardware Events

Hardware Event Type Hardware Event Count

CPU_CLK_UNHALTED.REF_TSC 1,722,000,000
CPU_CLK_UNHALTED.THREAD 2,022,000,000
DTLB_LOAD_MISSES.STLE_HIT 500,000
IDQ_UOPS_NOT_DELIVERED.CORE 240,000,000
INST_RETIRED.ANY 2,464,000,000
L1D.REPLACEMENT 144,000,000
L2_LINES_IN.ALL 97,600,000
LD_BLOCKS_PARTIAL ADDRESS_ALIAS 26,400,000
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS 11,280,000
MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS 56,000,000
MEM_UOPS_RETIRED.ALL_STORES_PS 400,000,000
OFFCORE_RESPONSE.ANY_REQUEST.LLC_MISS_LOCAL.DRAM_0 126,400,000
OFFCORE_RESPONSE.ANY_REQUEST.LLC_MISS_LOCALDRAM_1 122,400,000
OFFCORE_RESPONSE.DATA_IN_SOCKET.LLC_MISS_LOCALDRAM_0 122,400,000
UOPS,_ ISSUED.ANY 3,984,000,000
UOPS_RETIRED.RETIRE SLOTS 3,984,000,000

< |

. |

m

FIG

URE 12-21: The Hardware Event Counts viewpoint

366 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

Using APIs

Amplifier XE has a number of APIs that you can insert into a program to control an analysis.
Table 12-7 lists some of the commonly used APIs when doing an event-based analysis. Some addi-
tional user-mode APIs are also available, which have already been described in earlier chapters.

TABLE 12-7: Supported APIs

PAUSE/RESUME API DESCRIPTION

__itt_pause Inserts a pause command so that application continues to run but
no profiling information is being collected.

__itt_resume Inserts a resume command so that the application continues to run
and profiling information is collected.

FRAME APIS

__itt_domain_create Creates a domain to hold frame data. You can create multiple
domains to help you separate the data into distinct groupings in
the GUL.

__itt_frame begin_v3 Marks the start of a frame.

__itt_frame_end v3 Marks the end of a frame.

At the time of this writing, some API names were going through a name change.
If you have unresolved externals when using the API examples, look in the
header file <amplifier XE install dir>/include/ittnotify.h or check the
online documentation.

You can use the Pause and Resume API to turn data collection off and on, respectively, from within
the application under test. The Frame API is used to measure the time between two markers, or
frames. Use the Frame API when you want to get accurate timing information between two posi-
tions in your source code.

The Pause and Resume API

Listing 12-1 uses the __itt_pause() and __itt_resume () functions to pause and resume the data
collection, respectively. The code consists of two functions, LoopoOne () and LoopTwo (). The content
of these functions is not important; they are added simply to make the example run long enough
when profiling. The ITT_paAUSE and ITT_RESUME user-defined macros are used to include and
exclude the API from the code, depending on whether or not the USE_API macro is defined.

Using Amplifier XE’s Other Tools | 367

\) LISTING 12-1: An example of using the Pause and Resume API

Available for #include <stdio.h>
dﬂ‘,’f&“ggn‘:“ #define USE_API
#ifdef USE_API
#include "ittnotify.h"
#define ITT_PAUSE _ _itt_pause()
#define ITT_RESUME _ itt_resume()
#else
#define ITT_PAUSE
#define ITT_RESUME
#endif

int LoopTwo () {int i;for (i = 0 ; i < 100000000; i++);return i;}

int LoopOne (int i)
{
i++;
if (i > 50)
return 1i;
for (int j = 0 ; J < 10000000; j++);
return LoopOne (i) ;
}

int main(int argc, char * argvl[])
{
int a,b;
ITT_PAUSE; // start paused

a = LoopOne(0) ;
printf ("LoopOne Returns %d\n",a);

ITT_RESUME; // collect data
b = LoopTwo () ;
printf ("LoopTwo Returns %d\n",6b);

ITT_PAUSE; // pause data collection

return a + b;

code snippet Chapter12\12-1.cpp

If you try to build this code, you must add 1ibittnotify.1lib, which you can find in the
Amplifier\1ib32 or Amplifier\1ib64 folders. Use the lib64 version if you are building a 64-bit
application; otherwise, use the 1ib32 version.

You can use the Pause and Resume API to reduce the amount of data you collect. Table 12-8 shows
the total size of the data collected with and without the pause/resume.

368 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

TABLE 12-8: Amount of Data Collected when Profiling Listing 12-1

METHOD DATA SIZE
No pauses 92.2k
With pauses/resumes 42.0k

The Frame API

Frame rate analysis was added to Amplifier XE to help game programmers analyze how many
frames or pictures are being displayed per second. Although developed with game programmers in
mind, the Frame API can be applied to any piece of code. Listing 12-2 shows a loop that iterates
100,000 times — this is the frame in this example. Within the loop, two delays are inserted to
simulate frames with different amounts of time.

‘) LISTING 12-2: An example of using the Frame API

svmeﬁim #include <ittnotify.h>
RO i masn)
{
__itt_domain* pD = __itt_domain_create("Time");
pD->flags = 1; // enable domain

for(int 1 = 0; 1 < 100000; i++)

{
// mark the beginning of the frame
__itt_frame_begin_v3(pD,NULL) ;

// simulate frames with different timings
if (1%3)
for(int j = 0; j < 30000; j++); // a delay
else
for(int j = 0; Jj < 11200; j++); // another delay

// mark the end of the frame
_ itt_frame_end _v3(pD,NULL) ;
}
return 0;

}

code snippet Chapter12\12-2.cpp

On Windows the program can be built using the following command:

cl /0d /Zi main.cpp -I"$VTUNE_AMPLIFIER_XE_2011_DIR%include"
"$VTUNE_AMPLIFIER_XE_2011_DIR%/1ib64/libittnotify.lib"

Using Amplifier XE’s Other Tools | 369

Figure 12-22 shows a zoomed-in view of the analysis. In the timeline view there is an extra bar

that displays the frame rate. At the top of the timeline, each frame is marked with a blue line. The
Bottom-up pane is organized by Frame Domain/Frame Type/Frame Function. Notice that Amplifier
XE splits the frames into fast and slow frames.

{2 C\Users\sblairch\Doc Books\Intel Parallel Studio 2011\Book Chapters\16_Chapter12 - Event Based Analy... [= || & |[=3s]
File View Help

Grouping: [Frame Domain { Frame Type [Frame / Function | Call Stack ']
Frame Domain / Frame Type / Frame / Function / Call Stack CPIS ! E 4. B
|G eenre e —————— e | I I
= Fast 10522s [l |
E26M6 z | 0deb & No stack information
Elmain | 0.060s
. _tmainCRTStartup « BaseThreadInitThunk < RtlUse| 0.060s
#8571 0.060s
[#119843 0.050s
Selected 1 row(s): -
< [(3K i_ii r
e -
) G LD_BLOCKS_PARTIALADDRESS_ALIAS —
E MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS
WIEMI_LUAL_UUES_KE IRELLLLL HEL_FS £
CPU Usage MEN_UOPS_RETIRED.ALL_STORES_PS
OFFCORE_RESPOMSE.ANY_REQUEST.LLC_MISS_LOCAL.DRA =
biame Fate OFFCORE_RESPONSE.ANY_REQUEST.LLC_MISS_LOCAL.DRA

i

FIGURE 12-22: An example frame analysis

Chapter 15, “Parallel Track Fitting in the CERN Collider,” includes another
example of using the Frame API.

Using Amplifier XE from the Command Line

You can use the command-line interface (CLI) to Amplifier to collect, compare, and view profil-
ing data. The tool uses the same data collector as the GUI version, so the data collected has the
same level of detail as if the profiling were launched from the GUI. The CLI was designed so that
Amplifier could be used in scripted and automated test environments.

You can generate a command line from an existing project by clicking the Get Command Line but-
ton in the Analysis Type window (see Figure 12-23).

370 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

2] C\Users\sblairch\Documents\Books\Intel Parallel Studio 2011\Book Chapters\16 _C... EI@
File View Help

B kB b W®

rd00hs <
8 Hotspots - Hots P] Intel VTune Amplifier XE 2011
[Cotecion o . Summary [Bortom] [

4

Hotspots

Identify your most time-consuming seurce code. Unlike
Lightweight Hotspots, Hotspots collects stack and call tree
information. This analysis type cannot be used to profile the
system but must either launch an application/process or attach
to one. This analysis type uses user-mode sampling and traci...

Collect highly accurate CPU time
) Details

FIGURE 12-23: An Analysis Type window with the Get Command Line button
Here’s the command-line syntax:
ampl-cl <action-option> [modifier-options] [[--] <target> [target-options]]

> <action-option> is the action Amplifier XE performs — for example, collecting data or
generating a performance report.

[modifier-options] are various command-line options defining the action.

A\

<target> is the application to analyze.

[target options] are the options of the analyzed application.

So, for example:
$ ampl-cl -collect hotspots -r r00lhs -- C:\test\example.exe
-collect is an action.
hotspots is an argument of the action option.
-r is a modifier option.
r001hs is an argument of modifier option.

C:\test\example.exe is the target.

Y Y Y VY VYY

If you have correctly installed Parallel Studio XE, the command amp1-xe should be available
from the Parallel Studio XE command prompt (Windows) and the command shell (Linux).

Finding More Information
Here are some resources that you might find helpful:
> The online help that comes with Amplifier XE

> Intel 64 and IA-32 Architectures Software Developers Manuals (www.intel.com/products/
processor/manuals)

http://www.intel.com/products/processor/manuals
http://www.intel.com/products/processor/manuals

The Example Application | 371

> The Software Optimization Cookbook, Second Edition: High-Performance Recipes for [A-32
Platforms, by Richard Gerber et al. (www.intel.com/intelpress)

» VTune Performance Analyzer Essentials: Measurement and Tuning Techniques for Software
Developers, by James Reinders (www.intel.com/intelpress)

» User forums, such as at http://software.intel.com/en-us/forums/intel-

vtune-performance-analyzer

THE EXAMPLE APPLICATION

J LISTING 12-3: matrix.cpp

Available for //Naive matrix multiply

dowvm;lfggl:n //Warning, this implementation is SLOW!
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

#define DEFAULT_SIZE 1000

// pointers for matrices
double *a, *b, *c;
int N; // stores width of matrix(if N = 2, then matrix will be 2 * 2)

// function prototypes
void init_arr (double all);
void print_arr(char* name, double arrayl[]);
void zero_arr(double all);
int main(int argc, char* argvl[])
{
clock_t start, stop;
int 1i,3,k;

// if user does not input matrix size, DEFAULT SIZE is used
if (argc == 2)
{
N = atoi(argvI[l]);
}
else
N = DEFAULT_SIZE;

// allocate memory for the matrices
a = (double *)malloc(sizeof (double) * N * N);
if(!a) {printf("malloc a failed!\n");exit(999);}

b = (double *)malloc(sizeof (double) * N * N);
if(!b) {printf("malloc b failed!\n");exit(999);}

c = (double *)malloc(sizeof (double) * N * N);
continues

http://www.intel.com/intelpress
http://www.intel.com/intelpress
http://software.intel.com/en-us/forums/intel-vtune-performance-analyzer
http://software.intel.com/en-us/forums/intel-vtune-performance-analyzer
http://software.intel.com/en-us/forums/intel-vtune-performance-analyzer

372 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

LISTING 12-3 (continued)
if(!c) {printf("malloc ¢ failed!\n");exit(999);}

init_arr(a);
init_arr(b);
zero_arr(c);

start = clock();

// do the matrix calculation ¢ = a * b
for (1 = 0; 1 < N; 1++) {
for (3=0; j<N; j++) {
for (k=0; k<N; k++) {
c[N*i+j] += a[N*i+k] * b[N*k+3j];
}

}
stop = clock();

// print how long program took.
printf("%-6g ", ((double) (stop - start)) / CLOCKS_PER_SEC) ;

// free dynamically allocated memory
free(a);
free(b);
free(c);

}

// print out a matrix
void print_arr(char * name, double arrayl[])
{
int 1,3;
printf ("\n%s\n",name) ;
for (1=0;1i<N;i++){
for (3=0;j<N;j++) {
printf ("$g\t",array [N*i+j]);
}
printf ("\n");
}
}

// initialize array to values between 0 and 9
// this is just to make the printout look better
void init_arr (double al])
{
int i,9;
for (i=0; i< N;i++) {
for (3=0; J<N;j++) {
ali*N+j] = (i+j+1)%10;
}
}
}

// initialize array entries to zero

The Example Application | 373

void zero_arr (double all)
{
int 1,3;
for (i=0; i< N;i++) {
for (Jj=0; J<N;j++) {
al[i*N+j] = 0;
}

code snippet Chapterl2\matrix.cpp

\) LISTING 12-4: Using SSE instructions to optimize calculations

?m"?mihr // This code should be used to replace the function main()
ownload on s
Wrox.com // from LlsFlng 12-3. ‘ .
// NOTE: this is not the BEST solution! The best solution is
// simply to build the original code with the Intel Compiler.

// We need some additional headers
#ifdef _WIN32
#include <intrin.h>
#else
#ifndef _ INTEL_COMPILER
#include <pmmintrin.h>
#else
#include <xmmintrin.h>
#endif
#endif

int main(int argc, char* argvl[])

{

clock_t start, stop;
int 1, j,k;

if (argc == 2)

{

N = atoi(argv([1l]);
}
else

N = DEFAULT_ SIZE;

// printf ("Using Size %d\n", N);
a = (double *)_mm malloc(sizeof (double) * N * N,16);
if(la) {printf("malloc a failed!\n");exit(999);}

b = (double *) mm malloc(sizeof (double) * N * N,16);
if(!b) {printf("malloc b failed!\n");exit(999);}

c = (double *)_mm malloc(sizeof (double) * N * N,16);
if(!c) {printf("malloc c failed!\n");exit(999);}

init_arr(a);
continues

374 | CHAPTER12 EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE

LISTING 12-4 (continued)

init_arr(b);
zero_arr(c);

_ ml28d *pA;
_ ml28d *pB;
start = clock();

for (1 = 0; i < N; 1i++) {
for (k=0; k<N; k+=2) {

pPA=(_ ml28d *)&a[N*i+k];
pB =(__ml128d *)&b[N*k];
_ ml28d res = _mm_setzero_pd();

for (3=0; J<N; J++) {
res = _mm_mul_pd(*pA,pB[j]);
res = _mm_hadd_pd (res , res);
_mm_store_sd(&c[N*i+j],res);
}
}
}
stop = clock();
printf ("%-6g ", ((double) (stop - start)) / CLOCKS_PER_SEC) ;

_mm_free(a);
_mm_free(b);
_mm_free(c);

}

code snippet Chapter12\12-4.cpp

SUMMARY

Detecting the health of a program is not easy. Amplifier XE is a very powerful tool, which you can
use to find out how well your program is using the CPU.

By first running a system-wide analysis on your PC, you can see how well your program inter-
acts with its environment. You can use the CPI rate as a first indicator of your program’s health.
Programs with a poor CPI rate are likely to be good candidates for optimization.

Performing a hotspot analysis will show you where the bottlenecks are. You can then use some of

the Amplifier XE’s predefined analysis types to get more detailed information about the bottlenecks
you have discovered.

Amplifier XE’s predefined analysis types helps you spot unhealthy code. By becoming aware of the
underlying hardware issues in the various bottlenecks of your code, you can begin to address the
problems.

Chapter 13, “The World’s First Sudoku ‘Thirty Niner,”” is the first of five case studies that show
examples of how Intel Parallel Studio XE has been used in different projects.

PART Il
Case Studies

» CHAPTER 13: The World’s First Sudoku “Thirty-Niner”
» CHAPTER 14: Nine Tips to Parallel-Programming Heaven
» CHAPTER 15: Parallel Track Fitting in the CERN Collider

» CHAPTER 16: Parallelizing Legacy Code

13

The World’s First Sudoku
“Thirty-Niner”

WHAT’S IN THIS CHAPTER?

> Lars Peters Endresen and Havard Graff, two talented engineers from
Oslo, share how they created what may be the world’s first Sudoku
puzzle that has 39 clues

> A hands-on exercise that mimics some of the programming
techniques they used

This case study solves an intriguing problem: finding a Sudoku puzzle with 39 clues using the
latest hardware advances. Multiple execution units, together with multiple cores, enable the
modern programmer to tackle engineering problems that in the past would have been doable
only on a supercomputer.

This case study uses the Streaming SIMD Extensions (SSE) registers and instructions in an
ingenious way. The tricks used here can easily be used in other projects. The code is first
optimized to run on one core, and then parallelism is introduced so that the code runs on
several cores.

THE SUDOKU OPTIMIZATION CHALLENGE

Sudoku is a number-placement puzzle that uses a 9 X 9 grid of squares into which the numbers 1
through 9 are placed. The grid is further subdivided into 3 x 3 boxes, within each of which are
3 x 3 cells. The puzzle starts with an almost empty grid with some of the cells already filled.
The aim of the puzzle is to fill the grid so that every row, every column, and every 3 x 3 box
contains the numbers 1 through 9. This implicitly means that no row, column, or box can have
duplicated numbers within it (see Figure 13-1).

378

| CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

8 115123694 |7|8

9 8|7 |3|4|5|2|9|1]6

4|9 117 419(6|8[1|7|3|2]|5
9 3|2 6|8 |7|5[9|4|1[3]2

2 6 5(12|917|3|1]6|8|4

1 8 9 3|11(4|6[(2|8|7|5]|°9

9 713 1 914|527 |3|8|6]1
8 5 7 2|13(8|1[4|6|5[9]7
7161119851243

FIGURE 13-1: Starting and solved grids for a typical Sudoku puzzle

The challenge Endresen and Graff faced was how to generate a puzzle with 39 clues — one with
38 clues having already been produced by others. Generating Sudoku puzzles using software may
seem like an easy exercise, requiring the following steps:

1. Write a solver using some sort of nested loop to traverse the puzzle’s grid, writing logic to
test that they comply with certain rules.

2. Write a generator that populates the puzzle with clues, using the solver to validate the puzzles
being generated.

However, if you were to follow this approach, you would soon discover that the total number of
puzzles that have to be processed makes the task almost impossible to achieve because of the length
of time it would take to iterate through every possible solution.

The Nature of the Challenge

More than 6 x 10?! different valid Sudoku boards exist. If a developer were to use brute force to

try all the combinations of numbers, the programming exercise would be quite easy. However, the
algorithm would require the lifetime of the programmer to complete the calculations. It has been
estimated that a brute-force approach to producing a valid “thirty-niner” would take approximately
150 years to complete. This time can be reduced to something approaching a month by applying a
number of strategies to produce an optimized version of the generator.

Four strategies are used to slim down the execution time:

> Use an algorithm that finds shortcuts through the brute-force approach by starting with a
partially constructed board.

> Modify the code to take advantage of the enhanced execution units available in most of
today’s CPUs.

> Add parallelism to the code.
Enable the generator to be dispatched across a cluster of machines.
The following sections go deeply into the first strategy. Although applied to Sudoku, these

same strategies can be applied to a programmer’s own complex algorithms in a similar fashion.
Techniques learned here will enable programmers to produce fast, optimized code.

The Sudoku Optimization Challenge | 379

A number of other programming and algorithm “tricks” were used 3

under the hood — such as checking for redundant clues — but they

are not explained here because they are not important for our 6 / !
actual goals. The development of the code took place over a 6 4 o113 ’
two-year period, much of it done in the developers’ spare time. 5 3 2|4
Figure 13-2 shows one of the first 39-clue puzzles to be discovered 714 6|25 3
and is an example of a difficult Sudoku puzzle. 5 57

A puzzle is valid only if it has one unique solution. If more than 2 517|1]|6]|4

one solution exists, it cannot be classed as a Sudoku puzzle. A 4 6 21911715
minimal solution is one where every clue is integral to the solu-

tion — that is, the puzzle has no redundant clues. In such a
puzzle, removing any one of the clues would result in a puzzle that ~FIGURE 13-2: One of the first
has more than one solution. Today, the smallest Sudoku puzzle in ~ 39-clue puzzles

the world has 17 clues, and the largest puzzle has 39 clues. The race

is on to find a puzzle with 40 clues.

The High-Level Design

The Sudoku program design that was used is made up of two components: the generator and the
solver. To reduce the number of calculations required and increase the chance of success, the genera-
tor starts with an existing puzzle. One or two clues are then removed from the puzzle. New clues are
then added and a brute-force iterative process is used to call the solver to determine if any valid solu-
tions exist for the new puzzle. This process is repeated for every clue in the original puzzle.

Figure 13-3 shows how to create a new 17-clue puzzle. The generator strips two clues from an
18-clue puzzle, adds a new clue, and then uses the solver to search for any valid solutions.

Generator

: B o S Sl Solver

FIGURE 13-3: The generator and solver

As shown in Figure 13-4, clues 3 and 9 in the left-hand puzzle are first removed from the first
column. The generator then populates each unsolved cell with a list of valid options (see the middle
puzzle). The gray values are values where the cell can hold only one value. The solver then recur-
sively prunes down the options to find a valid puzzle, taking care that no redundant clues exist (see
the right-hand puzzle). The gray number 6 is the new clue that has been added.

380 | CHAPTER13 THE WORLD'S FIRST SUDOKU “THIRTY-NINER”

; || e S HNE
1 ST 1 e e e 1
2 6 | e 2 [6 2 6
2 8 2 2 8
1 B 8 1
4 7105 4 715
2 NOOEED 2
0 6 6
4 3|9 (= 4 4 39

FIGURE 13-4: Creating a 17-clue Sudoku puzzle

This method of creating a new puzzle is known as the minus-two-plus-one algorithm. A similar
technique is used to find the “thirty-niner.” Taking an existing “thirty-eighter,” one clue is removed
and two new clues are added — in other words, a minus-one-plus-two algorithm.

Optimizing the Solver Using SSE Intrinsics

Modern CPUs have instructions that can work on more than one data item at the same time — that
is, Single Instruction Multiple Data (SIMD) instructions. Examples of such instructions include
MMX and the various Streaming SIMD Extensions (SSE, SSE2, and so forth). Because these
instructions work on more than one element of data at a time, the resulting code is referred to as
vectorized code. Vectorization is covered in detail in Chapter 4, “Producing Optimized Code.”
Vectorized code runs much faster than code that has not been vectorized.

SSE intrinsics are compiler-generated assembler-coded functions that can be called from C/C++ code
and that provide low-level access to SIMD functionality without the need to use an inline assembler.
Compared to using an inline assembler, intrinsics can improve code readability, assist instruction
scheduling, and help reduce the debugging effort. Intrinsics provide access to instructions that can-
not be generated using the standard constructs of the C and C++ languages.

The Intel compiler supports a wide range of architectural extensions, from the early MMX instruc-
tions to the latest generation of SSE instructions. By using these SIMD instructions, it is possible to
do some quite creative manipulation of the puzzle data. SSE2 (and later) supports 128-bit registers,
and the individual bits of these can be used to hold all the data in a Sudoku puzzle. Note that only
the first 81 bits need be used to represent all the cells on a Sudoku board. Each bit in the 128-bit
array values corresponds to a cell location. The 128-bit value at BinNum[0] records any cell contain-
inga 1. BinNum[1] records any cell that contains a 2, and so on. Figure 13-5 gives an example of
how this happens.

The following code shows how the values in Figure 13-5 would be stored in the BinNum array:

_ ml28i BinNum[9]; // Declare array of 128-bit values

BinNum[0] 0x400100; // 1's in cells 9 and 23
BinNum[1l] = 0x800000000; // 2's in cell 36

BinNum[8] = 0x80088000; // 9's in cells 16, 20 and 32

The Sudoku Optimization Challenge | 381

FIGURE 13-5: A typical Sudoku puzzle that stores its numbers into 128-bit variables

To find out if a puzzle holds a particular value, predefined masks are used. The masks are again held
in an array of 128-bit SSE variables:

_ ml28i BinBox[9]; // holds binary mask of all boxes
_ ml28i BinRow[9]; // holds binary mask of all rows
_ ml28i BinColumn[9]; // holds binary mask of all columns

These masks hold binary bitmaps representing a whole row, column, or box, as shown in
Figure 13-6. BinRow[0] represents the first row; BinRow[1] represents the second row; and so on.
For example:

BinRow([1]
BinBox[0]

0x3FE00; // mask for row 2
0x1COEQ7; // mask for box 1

To check if row 2 contains a 3 now only requires the mask of row 2 to be ANDed with the variable
for number 3, as follows:

Result = BinRow[l] & BinNum[2];

The result will be nonzero if row 1 does contain a 3; otherwise, the result will be zero.

The first version of the Sudoku generator

did not use SSE instructions or intrinsics. \-[3 D<—— BinRow[0]
Reworking the first version of the code to use 3 e 7 1
SSE2 registers took a significant amount of 6 N Tol11l3 7 BinBox[0]
time. Using SSE2 registers and adding SSE o] 3 512
intrinsics resulted in a speedup of several hun-

. . 7|4 625 3
dred times using the same hardware.

2 517 1|1

Using SSE intrinsics does have drawbacks, S R
because it is possible to end up locking your BinColumn(0]
. . . . 4 6 2191117
implementation to a particular generation of
architecture. Also, the long names of the SSE 2
functions can make your C++ code almost
unreadable, and there is a significant learn- FIGURE 13-6: The rows, columns, and boxes of the
ing curve for the programmer to climb. Only Sudoku grid are represented by an array of registers

experience can determine when it is advantageous to use intrinsics. However, in the case of the
Sudoku generator, the performance improvement far outweighed the extra effort required.

382 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

If you want to examine the code in more detail, download the code that is used in the hands-on
section.

Adding Parallelism to the Generator

Intel VTune Performance Analyzer was applied to the Sudoku generator, allowing hotspots to be
identified within code. The biggest hotspot, which was found to be in the top hierarchy of the
generator, was then parallelized using OpenMP tasks.

OpenMP tasks, introduced in OpenMP 3.0, can be used to add parallelism to loops, linked lists,
and recursive calls. OpenMP tasks are good at producing balanced loads, especially when

the amount of work between each loop may be uneven; the same is true for linked lists and
recursive calls.

OpenMP tasks and load balancing are described in Chapter 7, “Implementing
Parallelism,” and Chapter 9, “Tuning Parallel Applications.”

Listing 13-1 shows how a number of tasks were created in a single-threaded loop. Each task was
then scheduled and run by the OpenMP run time. As a thread completes the execution of one task,
it is given another task to execute.

‘) LISTING 13-1: Using OpenMP tasks to add parallelism to the generator

Available for 1: int node;
d"m:!ggglg" 2: #pragma omp parallel shared(omp_log, node)
3: {
4: #pragma omp single nowait
5: {
6 for (node = 0; node < Num_SudokuNode ; node++)
7 {
8 #pragma omp task firstprivate(omp_log, node)
9: {
10: int result = AddClues (SudokuNode[node], omp_log) ;
11: }
12: }
13: 1}
14: }

code snippet Chapter13\13-1.cpp

The code is part of the minus-one-plus-two algorithm. The sudokuNode[] array holds a number
of Sudoku puzzles that have already had one clue removed. For example, when looking for a

new “thirty-niner,” this array would hold 38 copies of a “thirty-eighter,” with one clue having
already been removed sequentially from each puzzle. Each puzzle is then filled with an additional

The Sudoku Optimization Challenge | 383

two clues by a call to addclues (), with the number of successfully generated puzzles being
returned. The omp_log variable points to a file that is used to store each new “thirty-niner” that
is generated.

At line 2, the OpenMP run time creates a pool of threads (as explained in Chapter 7). By default,
the number of threads is the same number as the number of hardware threads the environment can
support, although the programmer can override this.

The code between lines 4 and 13 will run on just one thread. The enclosed loop is responsible

for creating a number of tasks that will be run in parallel, with each thread running one task at
a time. At line 8, an OpenMP task is created on each iteration of the loop. The tasks are free to
start execution straight away. Variables outside the parallel region, which is defined by the first
pair of braces, are visible to all threads by default. To make a thread have a private instance of
such a variable, you use the private or firstprivate keyword. In line 2, the shared keyword
is redundant, because the default behavior of OpenMP is that all data is shared. The shared key-
word is added here as a reminder to the programmer that the variables omp_log and node can be
accessed by all the threads.

Adding firstprivate at line 8 causes the OpenMP run time to create private copies of the vari-
ables omp_1log and node for each created task. A firstprivate variable differs from a private
variable in that a firstprivate variable is automatically initialized with the values from the shared
variable, whereas a private variable is uninitialized.

There is an implicit barrier at line 13: the end of the omp single thread. To allow the single thread
to be made available to execute some of the newly created OpenMP tasks, the nowait keyword

has been added at line 4. Without this keyword, once the single thread had completed creating the
OpenMP tasks, it would simply sit at line 13 until all the other threads have completed their execu-
tion. By adding nowait, the efficiency of the threaded execution is improved by making the single
thread available for joining in executing the tasks.

The Results

Once the parallel code was added to the project, it was rewarding to see that on a quad-cored
machine running hyper-threading, which can support 12 hardware threads, all 12 hardware threads
were kept busy. Figure 13-7 shows that with the parallelism implemented in the code, each hardware
thread ran at 100 percent. However, it should be emphasized here that the goal is to reduce overall
time, not just to increase CPU utilization.

One of the most difficult aspects of adding OpenMP was grasping how variables were treated.
Much of the time taken was used in reworking the code so that there was less need to share data
between the different running tasks. Some effort was also spent on reducing the number of depen-
dencies between loops so that they could be easily parallelized. Adding the parallelism took about
two weeks of work, which felt like a lot of effort at the time, but in relation to the length of the proj-
ect, the time was fairly short.

As a result of the work done, three new “thirty-niners” were discovered, as shown in
Figure 13-8.

384 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

|
"™ Windows Task Manager ===

File Options View Help

| Applications | Processes I Services ‘ Performance | Netwarking l Users

CPU Usage History

CPU Usage

Memoary Physical Memery Usage History

Physical Memory (MEB) System

Total 12224 Handles 30507

Cached 6973 Threads 1262

Available 9172 Processes 75

Free 2235 Up Time 2:04:49:42
Commit (GB) 2123

Kernel Memory (MB)

Paged 433 _

Nonpaged 07 | 45| Resource Monitar. .. l

Processes: 75 CPU Usage: 100% Physical Memory: 24%

FIGURE 13-7: A fully utilized CPU

3 3 1 3|7]|6|4
6 7 1 6 7 1
4 91113 7 91113 7 6 91113
3 214 5 3 2|4 6 3
7|4 6|25 3 114 62|65 3 114 213 6
517 |1 2 51117 3 1151412
711|164 1 6 2 5 9 4
4 6 219111715 4 6 2|1917(1]5 411 7|2 5
2 2 7 5 2|6

FIGURE 13-8: The three 39-clue minimal solutions found using the minus-one-plus-two search

HANDS-ON EXAMPLE: OPTIMIZING THE SUDOKU GENERATOR

The code used for this hands-on section shows how to optimize a Sudoku generator by using the
same techniques as those used in the project that led to the first “thirty-niner.” The sample code
does not check for redundant clues or log the results correctly. Some error checking has also been
ignored. This was done to make the example simpler and easier to understand and to reduce the
required computation time.

The code consists of a solver and a generator. The solver uses a brute-force recursive algorithm to
solve a partially populated puzzle. The generator creates a stack of partially populated puzzles that
are passed on to the solver. The algorithm used in the generator is the minus-two-plus-one search.

Hands-On Example: Optimizing the Sudoku Generator | 385

About the Code

The code for the hands-on activities is available for download as a Visual Studio project
(Chapterl3\sudoku.zip). As you work your way through the activities, you will be asked to switch
to different configurations, with names such as STEP_1, STEP_2, and so forth (using the drop-down
configuration menu in Visual Studio). As you swap configurations, different preprocessor macros
will be automatically added to the build parameters of the project.

A number of header files are associated with the project. Of particular note is config.h, which
contains macros to control inclusion of different optimization features. The various source files are
as follows:

> File.cpp contains fairly rudimentary code that reads a single-line text file containing a
partially completed Sudoku puzzle.

5- :‘H Sudoku_c
Generator.cpp holds the code for the minus-two-plus-one code. S B Header Files
. . .h] config.h
Main.cpp holds the main body of the code for the solver.) Fie.h
)) n] Sudokuh
> :
Print.cpp contains code to print the clues and puzzles to B Resource Fles
the screen. = [Source Files
€] File.cpp
Figure 13-9 gives the project structure as seen within Visual Studio. € Generator.cpp
Cj main.cpp
In this hands-on section there is no need to change any code. All the €4 Print.cpp

required changes are added automatically when you choose the correct
build configuration. Figure 13-10 shows the seven activities in this hands-
on section. Activity 13-1 uses the Microsoft compiler, and then switches

FIGURE 13-9: The code
consists of a number of
source files and a user-

to the Intel compiler. editable Config.h
~
Find hotspot Activity 13-1
> Solver
Ad(.j S.SE Activity 13-2
intrinsics
Y
N
Find hotspot Activity 13-3
Add OpenMP Activity 13-4
code
Check -
correctness Activity 13-5 > Generator
Fix Activity 13-6
correctness
Tung Activity 13-7
parallelism
Y Y

FIGURE 13-10: The solver is first optimized and then parallelism is added to the generator

386 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

The reasons for using the Microsoft compiler and then switching to the Intel compiler are as follows:
> The original Sudoku project started with the Microsoft compiler.

> To show that Intel VTune Amplifier XE can be used with the Microsoft compiler. (This is
also true of Inspector and Advisor.)

> To show how to swap to the Intel compiler.
> To take advantage of the optimized code that the Intel compiler produces.
> The Intel compiler supports Open MP tasks, which is not currently the case with the

Microsoft compiler.

The running program accepts a single-line file as input, where each cell is represented by a digit.
Where there is no clue, a zero is placed instead. The test.txt file is used in the hands-on exercise
and contains the following:

000704005020010070000080002090006250600070008053200010400090000030060090200407000

The code used here is not the same code as that used in the “thirty-niner” proj-
ect. To be able to produce a “thirty-niner,” some important features would need
to be added to the code, such as the filtering out of nonredundant clues and
certain “under-the-hood” algorithmic tricks.

The Solver
Figure 13-11 illustrates the solver’s recursive backtracking algorithm.

The solver first is passed a partially completed puzzle (Table A). For simplicity, only the top-left cor-
ner of the puzzle is shown. The solver starts at the first empty cell, Idx1 (row 1, column 2), which
could be assigned the values 4, 7, or 9 (determined by the clues in the same row, column, and box).
The solver is called recursively two more times, taking the cells Idx2 (row 1, column 3) and Idx 20
(row 3, column 3). The table now looks like Table B. Because Idx 20 cannot legitimately be filled
with any value, the solver returns, removing the cell content of the cells along the way. The solver
returns back to Idx 1 and places the next available clue (7) and in Idx1 and does a fresh recursive
call. The solver then fills the next empty cell (Idx 2) with the lowest potential clue (4). This is
followed by another recursive call, in which Idx 20 is filled with the value 9. The puzzle now looks
like Table C. This recursive procedure is continued until the puzzle is solved.

Listing 13-2 shows the structures used in the solver. The SUDOKU structure contains an array of 81
NODE structs.

‘) LISTING 13-2: Structures used in the solver

Available for 1: typedef struct NODE
download on .
Wrox.com

int cell;

Hands-On Example: Optimizing the Sudoku Generator | 387

4: int number;

5: int TempCellsLeft;

6: }_NODE;

7:

8: typedef struct SUDOKU

9: {

10 NODE Nodes [NUM_NODES] ;
11: }_SUDOKU;

code snippet Chapter13\13-2.cpp

3 1
5(2(6]3
1 2
2 7|9
Table A
EEIE
5|2 3
1 2
|2 7|9
1 Table B
3 AE
5 6|3
11892
2 7|9
Table C

N
N

{0} ! Lastidx

The Solver

FIGURE 13-11: The solver uses a recursive backtracking algorithm to solve the puzzle

Listing 13-3 shows the solver’s recursive algorithm. When the solver is first called, it is passed
pPuzzle, which is a pointer to the current puzzle, and NodeIdx, which is an index to the current cell
that is being considered.

388 | CHAPTER13 THE WORLD'S FIRST SUDOKU “THIRTY-NINER”

‘) LISTING 13-3: The solver’s recursive code

?mn?mzmr : bool Solve(SUDOKU *pPuzzle,int PuzzlelIdx,int NodeIdx, int &NumRecursions)
ownload on
Wrox.com {

1
2
3: NumRecursions ++;

4: if (NodeIdx >= NUM_NODES)
5: return true;

6
7
8

if(!FillPossibilities (pPuzzle,NodeIdx))
: return false;
9:

10: NODE BackupNode;

11: for (int i=1; i<=MAX_NUM; i++)

12: {

13: if (Allowed (pPuzzle,NodeIdx,1i))

14: {

15: StoreNumber (pPuzzle,NodeIdx, BackupNode, NumRecursions, i) ;
16: int NewIdx = GetNextIdx(pPuzzle, Nodeldx) ;

17:

18: if (!Solve(pPuzzle, Puzzleldx,NewIdx, NumRecursions))
19: ClearNumber (pPuzzle,NodeIdx, BackupNode, i) ;

20: }

21: }

22: return false;

23: }

code snippet Chapter13\13-3.cpp

In line 7, the solver first populates the partially populated puzzle’s empty cells with a list of all valid
possibilities. The loop at line 11, which iterates from 1 to 9, along with the call to A11owed, is used
to drive the next recursive call to solve at line 18.

If solve fails, it returns false; otherwise, it returns true — once it has visited all the nodes in the
puzzle (line 8). Each time solve is called, the NewIdx (line 16) is incremented to point to the next
empty cell in the puzzle.

Finding Hotspots in the Solver

The details of using Intel Parallel Amplifier are presented in Chapter 6, “Where to Parallelize,”

and need not be repeated here. However, Activity 13-1 lists the steps for using Amplifier to find the
hotspots within the code. As mentioned in Chapter 6, it is good practice to optimize the serial code
first, before making any code parallel. Code that consumes significant amounts of the total run time
of the program is the ideal candidate for optimization. After running Amplifier, you can see that
the biggest consumer of CPU time is the NumInRow function, closely followed by NumInColumn (see
Figure 13-12).

Examining the code of the first hotspot within Parallel Amplifier shows that the majority of the time
consumed is due to two things: the iteration of the array of nodes and the divide calculation (see
Figure 13-13).

Hands-On Example: Optimizing the Sudoku Generator | 389

Grouping: [Funcﬁon J Call Stack V]
Function / Call 5tack CPU Timew Module |+
= MumlnRow 872.649ms _ Sudoku_c.exe
=% NumbernRow < DoWork < Fi 872.649m [ENNNNN Sudoku_c.exe
EIT Solve ¢ Solve« Solve | 857.034ms (MM Sudoku_c.exe
EI™ Solve | 841.446ms (NN Sudoku_c.exe
Solve 1
F. main ¢ _trnainCRT!’;_ GZ.B?ms. Sudoku_c.exe 1
F main < _tmainCRTStari_ 15.588ms Sudoku_c.exe
F. main < ,tmainCRTStartupg: 15.615ms Sudoku_c.exe
MNumInColumn | 514.797ms _ Sudoku_c.exe
MNumlnSquare 136.109ms . Sudoku_c.exe
FHMNumbernColumn I 15.620ms Sudoku_c.exe
Selected 1 row(s): | 779.148ms E
< [P e v

FIGURE 13-12: Intel Parallel Amplifier shows the hotspots in the solver code

Line Source . CPU Time -
310 I
311 // don't test self with self!
312 if (Idx == i)
313 continue;

int Row = i /MRX NUM;

if (Row == IdxRow s: pPu B-3 389.201ms
316 return true; |
317 1 | 46.871ms|
318 return false; |
319 }
Selected 1 row(s): | 380.201ms -
e K '

FIGURE 13-13: The code of the solver hotspot

ACTIVITY 13-1: FINDING HOTSPOTS

In this activity you build the serial version of the solver with the Microsoft compiler
and then the Intel compiler. You analyze the code for hotspots using Amplifier XE.

-

Open the suduko_c.s1n project.
Build the STEP_1 configuration.

Run the program by pressing Ctrl+F5, and record the time taken.

Switch to the Intel compiler.

Repeat steps 2 and 3.

O U A WN

Check for hotspots using Parallel Amplifier.

.

390 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

Optimizing the Code Using SSE Intrinsics

The code in the STEP_2 version of the project has been changed to use SSE intrinsics, as described
in the first part of this case study. The following ssEHasNumber function is used for checking the
existence of a number in a row column or box:

1: bool SSEHasNumber (SUDOKU *pPuzzle,_ ml28i BinArray[], int i, int 3J)

2: {

3 _ ml128i Tmpl = (_mm_and_sil28(pPuzzle->BinNum|[j-1], BinArrayl[il]));
4: _ ml28i Tmp2 = _mm_setzero_sil28();

5.

6 Tmp2 = _mm_cmpedq epi32 (Tmp2, Tmpl);

7

Once the new code is included in the build (by choosing the STEP_2 build configuration in Visual
Studio), the total execution reduces significantly, giving a speed up of 12 when using the same hard-
ware as the serial version (see Table 13-1).

TABLE 13-1: Speedup with and without SSE Intrinsics

TIME (SECONDS) SPEEDUP
Without SSE 1.78 1
With SSE 0.14 12

ACTIVITY 13-2: ADDING SSE INTRINSICS

In this activity you build the version of the code that has SSE intrinsics.
1. Build the STEP_2 configuration.

2. Run the program by pressing Ctrl+F5, and record the time taken.

The Generator

The generator uses a minus-two-plus-one search algorithm to remove two clues from an existing
puzzle, and then traverses the puzzle, filling in each empty square with a new clue before passing the
partially completed puzzle on to the solver.

The code consists of four nested loops:
> The outermost loop removes the first clue and creates a copy of the puzzle.
> The second nested loop is responsible for removing the second clue.

> The third nested loop traverses through each empty cell, using the innermost loop (the fourth
loop) to try out all the new potential clues in the current cell.

Hands-On Example: Optimizing the Sudoku Generator | 391

To summarize, the outermost loop and the second nested loop are responsible for the minus-two
part of the search, and the other two loops are responsible for the plus-one part.

Finding the Hotspots in the Generator

When parallelizing a hotspot, the usual rule
of thumb is that it is not the hotspot itself
that is parallelized, but rather the parallelism
is added higher up in the calling sequence.
Activity 13-3 shows the steps involved with
running Intel Parallel Amplifier on the genera-
tor code to reveal hotspots.

Activity 13-3 reveals that the main hotspot

IS SSEHasNumber, which is called by Solve,
which, in turn, is called by Genpowork. The
GenDoWork function is called from the outer-
most loop in the generator code. Figure 13-14
shows these relationships.

Grouping: IFuncﬁcn J Call Stack 'I
Function / Call Stack CPU Timew
[E155EHasMumber 118.714s [
B~ Solve 1128.714< NG
@ . Solve 118.605 NN
F. GenDoWork < main < _tmainCRTStar 0.109=
ElSolve &1.553< (N
I Solve 81.795 (NN
. GenDeWork < main < _tmainCRTStartup 0.0835
[+ 5SESetValue 0140
[#55EClearValue 0.093s
Selected 0 row(s):
] b4 I v

FIGURE 13-14: Using Amplifier to find the gen-
erator hotspots and calling sequence

ACTIVITY 13-3: FINDING THE HOTSPOT IN THE GENERATOR

In this activity you build the serial version of the generator and analyze it for hotspots.

1. Build the STEP_3 configuration.

2. Run the program by pressing Ctrl+FS, and record the time taken.

3. Check for hotspots using Parallel Amplifier.

Adding Parallelism to the Generator Using OpenMP

After using intrinsics and vectorization (SSE instructions), further enhancements in speed are
obtained by adding parallelism. This is accomplished by adding OpenMP tasks to the code high up
in the calling hierarchy of the generator. In Listing 13-4, OpenMP-specific code is added to lines 3, 8,
and 14. This code works in a similar manner to Listing 13-1.

\) LISTING 13-4: Adding OpenMP tasks to the generator

Available for
download on
Wrox.com

1
2
3
4
5:
6:
7
8
9
1
1

: SUDOKU Puzzles [NUM_NODES] ;

: int Generate (SUDOKU *pPuzzle)

{
#pragma omp parallel
for(int 1 = 0 ; 1 < NUM_NODES -1; i++)
{
#pragma omp single nowait
{
: NODE Nodel = pPuzzle->Nodes[i];
: if (Nodel.number > 0)

continues

392 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

LISTING 13-4 (continued)

12: {

13: memcpy (&Puzzles[i],pPuzzle, sizeof (SUDOKU)) ;

14: #pragma omp task firstprivate (i)

15: GenDoWork (&Puzzles[1],1);

16: }

17: }

18: }

19: return gNumCalls; //global incremented on each call to solver
20: }

code snippet Chapter13\13-4.cpp

Using the same architecture as the nonparallelized code, the application ran nearly 7 times faster on
a machine that had 12 threads (see Table 13-2).

TABLE 13-2: Speedup with and without OpenMP

TIME (SECONDS) SPEEDUP
Without OpenMP 213 1
With OpenMP 32 6.7

ACTIVITY 13-4: ADDING OPENMP CODE

In this activity you build and run the parallel version of the generator.
1. Build the STEP_4 configuration.
2. Run the program by pressing Ctrl+F5, and record the time taken.

3. Calculate the speedup (and compare with Activity 13-3).

Checking Correctness in the Generator

It is essential when introducing parallelism into code to check for data races and other similar problems.
Activity 13-5 involves running the Intel Parallel Inspector to search for problems that may occur when
parallelizing code. The results show several data races that need to be resolved (see Figure 13-15).

ACTIVITY 13-5: CHECKING FOR PARALLELIZATION PROBLEMS

In this activity you check the newly parallelized code to see if any errors exist.
1. Build the STEP_S configuration.

2. Check for data races using Parallel Inspector.

Hands-On Example: Optimizing the Sudoku Generator | 393

Problems 7
IDa @ Problem Sources Modules State

P1 & Unhandled application exception xutility Sudoku_c.exe New

P2 @ Data race Generator.cpp Sudoku_c.exe New

P32 @ Data race main.cpp Sudoku_c.exe Mew

P4 @ Data race xtree Sudoku_c.exe Mew

P5 @ Data race xmemory; xtree Sudoku_c.exe New

P& @ Data race xmemory: xtree Sudoku_c.exe New

P7 @ Data race xmemory; xtree Sudoku_c.exe New I
P8 @ Data race xmemory; xtree Sudoku_c.exe New

2] @ Data race xmemory: xtree Sudoku_c.exe New

P10 @ Data race xmemory; xtree Sudoku_c.exe New

FIGURE 13-15: The Inspector reveals several data races

Fixing Correctness in the Generator
The data races are caused by the following three things:
> Reading/writing the global variable gNumSolutions without appropriate synchronization
> Reading/writing the global variable gNumcalls, again without appropriate synchronization

> Calling the std: :map functions

To solve the data races, you need to protect the access to the global variables by adding a synchroni-
zation directive. Various OpenMP directives were covered in Chapters 8 and 9. To fix the
gNumSolutions and gNumCalls data races, you can use the atomic directive, as follows:

#pragma omp atomic
gNumSolutions++;

#pragma omp atomic
gNumCalls++;

To fix the data race caused by calls to std: :map functions, wrap the call to Storesolution within
a critical section using the #pragma omp critical directive:

// StoreSolution returns true if solution is unique

#pragma omp critical

{

res = StoreSolution(pPuzzle,Puzzleldx) ;

ACTIVITY 13-6: FIXING CORRECTNESS

In this activity, the data races identified in Activity 13-5 have been corrected.
1. Build the STEP_6 configuration.
2. Check for data races using Inspector XE.

394 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

Tuning Performance

After correcting errors in the parallel code, the next step is to tune the application with respect to
parallelism. Typically, you need to address the following issues:

> Parallel overhead
> Load balancing
> Scalability

In Activity 13-7, you solve the load-balancing problem using Intel Parallel Amplifier XE (refer to
Chapter 9 for more details). Using Amplifier to analyze the code shows the newly parallel code
apparently performing well. Amplifier reports that all 12 logical CPUs are fully utilized (see
Figure 13-16). The color of the scale indicates how good the concurrency is. The color of the scale
indicates how good the concurrency is. In this case, the large histogram block in the Ideal section
(colored green on your PC) shows excellent CPU usage.

CPU Usage Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes what percentage of the wall time the specific number of CPUs were
running simultaneously. CPU Usage may be higher than the thread concurrency if a thread is executing code on a CPU while it is logically...
9ls

Elapsed Time

Simultaneously Utilized Logical CPUs

FIGURE 13-16: Apparently all the cores are being used, which hides an underlying problem

On closer examination, you can see that although the CPU usage is high, the number of simultane-
ous running threads is poor (see Figure 13-17).

Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were

running simultanecusly. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05

scheduler. Essentially, Thread Cencurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be

higher than CPU usage if threads are in the runnable state and not consuming CPU time.
s

Elapsed Time

Simultaneously Running Threads

FIGURE 13-17: The program is running with very poor concurrency

Looking at the time line, you can see a lot of vertical transition lines (see Figure 13-18). A healthy
program should not be dominated by these transitions.

Hands-On Example: Optimizing the Sudoku Generator | 395

Grouping: [Funnmn / call Stack

~| | [hread aeate stack

Function / Call Stack [

o 1stack(s) selected. Viewing <1 1of1 [

Current stack is 100.0% of selection

I CPU Time by Utilizationw

| @1dle @ Poor [Ok [Ideal [Over

100.0% (1114.879s of 1114.879s) |

¥155ESetWalue | 10029465 ET I : |
[*ISSEHasNumber | 11580s| [Unknown]
Selected 0 row| -
™ S ER n | 3
— . - T —— PR RO AT R TR oA R
2Ok i 55 10s 155 20s 255 30s 355 40s 455 50s 555 60s 655 705 755 80s &5 90s < |[¥] Threads
i | | | i I i | 1
mainCRTStartup (0 6f T . B Running
% OMP Worker Thread #6 no : ; [N \;\‘ " ;\ " \:|Wa|ts
g OMP Worker Thread #1 AR e s ik CPU Time
OMP Waorker Thread #2 i g i
7] 14 Transit
OMP Worker Thread #3 g by IRERIOne
CPU Usage
iud CPU Time
CPU Usage Thread Concurrency
ik Concurrency
Thread Concurrency
4 L3

FIGURE 13-18: The timeline is dominated by vertical transition lines

Looking at the source view

of the bottleneck, it is clear that an ill-placed #pragma omp critical

directive is the cause of the problem (see Figure 13-19).

[source [sssenby ||

R - |

Line

Source

| CPUTime by

S -
Overhead Time st linety

Utilization Utilization =
64 #pragma omp critical \ 0.047=
65 #endif |
(13 { ‘

1014.179s

Selected 1 row(s):
A Kl »

FIGURE 13-19: The reason for the poor concurrency is the critical section

Removing the #pragma omp critical directive leads to a better concurrency (see Figure 13-20).

Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were
running simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05
scheduler. Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be
higher than CPU usage if threads are in the runnable state and not consuming CPU time.

13s

Elapsed Time

Simultaneously Runnina Threads

FIGURE 13-20: Removing the critical section leads to a better concurrency

396 | CHAPTER13 THE WORLD’S FIRST SUDOKU “THIRTY-NINER”

ACTIVITY 13-7: TUNING PARALLELISM

In this activity you analyze the concurrency of the generator.
1. Build the STEP_7 configuration.

2. Check for concurrency using Amplifier XE.

3. Build the STEP_S8 configuration. (This removes the critical section.)
4. Check the concurrency to see how it has improved.

Even though the program has a reasonable concurrency level, not all threads are doing the same
amount of work. As shown in Figure 13-21, some threads finish their work much earlier than oth-
ers. Although some further work could be carried out to try to improve the balance, the perfor-
mance is quite adequate.

—— —— ——
[oL-leLIeTIeoNs 5s 10s

e Threads
mainCRTStartup (0x16f0) 4 @8 Running

OMP Worker Thread #1 (0 || N | 0 waits

OMP Worker Thread #2 (0x | | - I S] [tuk CPU Tirme

OMP Worker Thread #3 (0x | | - [H I | "

v

OMP Worker Thread #4 (0x | | - I I | Ststucns
2 [OMP Worker Thread 5 (0x | | - [I [
£ [OMP Worker Thread #6 (0x | | N Thread Concurrency
= [OMP Worker Thread 27 (0x || I S luk Concurrency

OMP Worker Thread #8 (0x
OMP Worker Thread #9 (0x
OMP Worker Thread #10 (0
OMP Worker Thread #11 (0

e ——
|

FIGURE 13-21: Not all threads are doing an equal amount of work

SUMMARY

The Sudoku puzzle case study gives a fascinating insight into how carefully crafted code using SSE
intrinsics can lead to dramatic performance improvements over non-SSE code. Parallelizing using
OpenMP tasks can produce well-balanced parallel applications.

The skills used to produce solutions for Sudoku puzzles in this chapter can readily be used in many
applications to produce efficient and optimized code.

Chapter 14, “Nine Tips to Parallel-Programming Heaven,” explores an alternative way of paral-
lelizing using Intel Cilk Plus. The techniques learned there can likewise be applied to this Sudoku
problem.

14

Nine Tips to Parallel-Programming
Heaven

WHAT’S IN THIS CHAPTER?

> Improving the application heuristics
> Doing an architectural analysis

> Adding parallelism

This chapter is like a TV program with three interweaving plots running in parallel.
It includes the following:

> A set of tips on how to write successful parallel programs, based on an interview with
Dr. Yann Golanski of York.

> A description of Dr. Golanski’s n-bodies research project looking at star formation.

A set of hands-on exercises. Note that the code is not the same code that Dr. Golanski
used, but is it written to show some of the key elements of his work.

THE CHALLENGE: SIMULATING STAR FORMATION

The original research project investigated how adding coolants to the interstellar medium
(ISM) could induce the medium to collapse and thus increase the likelihood of star formation.
The problem is a classic n-bodies simulation problem, where calculations are made on how
particles interact with each other. As new particles are added to the model, the number of
calculations required increases by N2, where N is the number of particles in the model.
Because of this N? relationship, the number of calculations that have to be performed on any
decent-size model expands to an almost unmanageable figure.

398 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

Using brute force to calculate how the particles interact with each other is practical for small num-
bers of particles, but for a large collection of particles the time needed to perform all the calcula-
tions becomes too long to be useful. Dr. Golanski puts it like this:

The simulation works fine for 12 particles; it even works fine for 100 particles.
If you try to use 1,000 particles, it takes ages; if you try to use 10,000 particles,
forget it! If you try to use 100K or one million particles, then that’s just a joke.

You can employ the following strategies to overcome the “order-of-magnitude” problem:

1. Modify the algorithm of the n-bodies calculation so that the number of calculations required
becomes an N-log-N relationship rather than N2.

2. Use VTune Amplifier XE to analyze the code for bottlenecks.

3. Use VTune Amplifier XE to find hotspots in the code, and then parallelize them to take
advantage of multi-core workstations.

The simulation code was written in C and based on the Barnes-Hut force calculation, where the
whole environment to be simulated is split into a hierarchical set of boxes or cubes.

In the original research project, the development of the code was initially done on a single-core
machine, the program being written in a single thread. After the model was sufficiently developed,
the code was migrated to an 8-core workstation and the code was parallelized. The final step in
the development was to enable the application to work on a cluster of machines. Synchronous pro-
cess communication between the different nodes on the cluster handled the Message Passing
Interface APIs.

The Formation of Stars

It is thought that stars are formed from the interstellar medium (ISM),
an area that is populated with particles of predominantly hydro-

gen and helium. Within the ISM are dense clouds. These clouds are
normally in equilibrium, but can be triggered by various events to
collapse.

In the research work done by Dr. Golanski, the model simulates

the collapse of the ISM by seeding it with coolants from a super-
nova — the coolants being atoms and molecules other than hydrogen
(H) and helium (He), notably gaseous water (H,0), carbon monoxide
(CO), molecular oxygen (O,), and atomic carbon (C).

FIGURE 14-1: A cloud of cold
interstellar gas
PHoTo CREDIT: NASA, ESA, AND

M. Livio AND THE HUBBLE 20TH

The collapsing cloud, known as a protostellar cloud, continues to col-
lapse until equilibrium is reached. Further contraction and fusion of
the protostellar cloud takes place, resulting in the eventual formation
of a star. Figure 14-1 shows a picture of an interstellar cloud taken

ANNIVERSARY TEAM (STScI)
from the Hubble telescope.

The Hands-On Activities | 399

THE HANDS-ON ACTIVITIES

The n-bodies project contains the following files:

>

>

>

main.cpp and main.h — Contain the top-level function main () that drives the simulation.
hash.cpp and hash.h — Contain the hashed octree simulation code.

n-bodies.cpp and n-bodies.h — Contain the code to initialize the array of body particles
and to perform a serial simulation.

octree.cpp and octree.h — Contain the octree simulation code.

Makefile — Used to build the application. There are seven targets, 14-1 to 14-7, which
correspond to the seven hands-on activities.

print.cpp and print.h — Used to print position of bodies (only for debugging purposes).

The Makefile is used to build the n-bodies project, which you can use in either Windows or Linux.
Following are the different targets that are used for each of the hands-on activities. Notice that Step
6 uses the Debug build — to give maximum amount of information when tracking down data races.
In each of the steps, all the required code changes are already included in the sources and are
controlled by a series of #defines.

>

Y VY VY VY

\

>

>

14-1 — Serial version of n-bodies application, built with optimization enabled. Use it to
perform a Hotspot analysis with Amplifier XE.

14-2 — Uses octree heuristic.
14-3 — Uses hashed octree heuristic
14-4 — Same as 14-3 but with optimized division code.

14-5 — Same as 14-5 with Cilk Plus parallelism. You must use the Intel compiler for this and
the following targets. This version contains data races.

14-6a — A debug version of 14-5 but with a smaller data set. Use this version to perform a
Data Race analysis with Inspector XE.

14-6b — Same as 14-6a but with data races fixed with a cilk::reducer_opadd reducer.

14-7 — Same as 14-6b but with a full-size data set. This is the final version of the n-bodies.

To use the Cilk Plus part of the hands-on (Activities 14-5 to 14-7), you must build the project using
the Intel compiler, because the Microsoft compiler does not support Cilk Plus at this time. You can
build all the other steps with either the Intel or the Microsoft compiler (GCC on Linux).

All the screenshots and source code in this case study are taken from the
hands-on activities, not the original research project.

400 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

Performance Tuning

The original project used Intel VTune Performance Analyzer to profile the application. The
XE version of Intel Parallel Studio includes the latest version of VTune, referred to as Amplifier XE.

Amplifier XE works by “listening” to various performance counters while the application runs. The
workflow involves the following steps:

1. Build the release version of the application.
2. Run a Hotspot analysis using Amplifier XE.

3. Examine the results, and then apply changes to the code or environment to improve the per-
formance of the code.

4. Keep repeating steps 1-3, fixing one performance issue on each iteration.

Using the preceding steps to optimize an application, it is good practice to perform the tuning at
three different scopes, or levels:

> System-wide — First, look at how the application is interacting with the system.

> Application-level — Once you have corrected any system-wide problems, try to improve any
application heuristics.

> Architectural-level — Finally, having completed system-wide and application-level tuning,
focus on any architectural bottlenecks.

This case study concentrates on the application heuristics and architectural bottlenecks. Once these
two areas are improved, the program is then parallelized.

APPLICATION HEURISTICS

Intuitive judgment can often be used to reduce the computational effort needed to solve a problem.
The brute-force approach using Newton’s law of universal gravitation to calculate the forces on each
particle leads to an unacceptable solution. The time needed to calculate such a solution on a reason-
able number of particles may be longer than the lifetime of the programmer. Other, more experiential,
methods must be applied. Many cosmologists have tried a variety of ways of reducing the computa-
tional effort, most using some sort of averaging function. This case study uses a variation on this.

Finding the Hotspots

Any optimization effort should focus on parts of the code with the most intense CPU activity.
Figure 14-2 shows the results of an Amplifier XE Hotspot analysis session. The main hotspot
consuming most of the CPU activity is the addacc () function. You can try this out for yourself in
Activity 14-1.

The fundamental problem of an n-bodies simulation is the number of calculations that need to be
performed.

You can easily see how the number of calculations needed rapidly grows by looking at the serial ver-
sion of the n-bodies code. All the bodies in the simulation are held in the array body. The size of the

Application Heuristics | 401

array BODYMAX is the same as the number of bodies you are simulating. Each element of the array body
holds a BopYTYPE structure, which stores the position, velocity, acceleration, and mass of the body:

struct BODYTYPE {

double pos[NUMDIMENSIONS] ;
double vel [NUMDIMENSIONS] ;
double acc[NUMDIMENSIONS] ;
double mass;

//

Y

BODYTYPE body [BODYMAX] ;

101610 | canfig.h) 1153 —
M Lightweight Hotspots - He P - Intel VTune Amplifier XE 2011

&
i&!‘. Analysis Talgal| \ Analysis Typz| \B.! Collection Lng| & Bottom-up
—

= tions ... CPI Maodule &

JFunction

addAcc
_math_exit

Hotspots summary window srrryrya

2.543s 20,308,000,000

FET] 00 n-bodies-serial.exe |addAccint,intfiS]

“wanf ontevt Patch¥Rshor

sqrt L087s 3,922,000,000
_CIsqrt 0.683s 3.074,000,000
_theckTOS_withFB 0.675s 18,000,000
runSerialBodies 0.4205 66,000,000
[Emport thunk _CIsqrt] 0.212s 664,000,000

0.341 mswcrdo.dil _math_exit
0.811 msvcrdo.dil sqrt
0.634 msvcrd0.dil _CIsqrt

108.556 msward0.dil
20.152 00 n-bodi

_checkTOS _witl

1.021 00 n-bodies-serial.exe [Import thunk
0N nkocknl eve

Swanfontext 1

N ANSc n
Selected 1 rowis):| 22.277s 50,874,000,000

4 11 | re [

—_———
o 5s 10s 155 205 + | ¥ Threads

| ! 1 = =

ﬁ Thread (0x1... & CFU Time

12 CPU Time

=

= Mk CPU Time

4 L

Ll Mo filters are applied. ¥ Module: [al] ~ RICERR [All]

FIGURE 14-2: The Hotspot analysis shown in Amplifier XE

To perform a brute-force simulation, the interaction between every body is calculated in a triple-nested
loop within the function runserialBodies. At the innermost level of the loop, the function addacc
combines the acceleration of the two bodies. Once all the accelerations have been calculated, the function
ApplyAccelerationsAndAdvanceBodies applies the new accelerations to each body in the simulation:

void runSerialBodies (int n)
{
// Run the simulation over a fixed range of time steps
for (double s = 0.; s < STEPLIMIT; s += TIMESTEP)
{
int i, 3j;
// Compute the accelerations of the bodies

for (1 = 0; 1 <n - 1; ++1)
for (j =1+ 1; J < n; ++3)
addAcc (i, jJ);

// apply new accelerations
ApplyAccelerationsAndAdvanceBodies (n) ;
}

402 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

In Dr. Golanski’s work, the simulation time was reduced by using a hashed tree-based n-bodies
simulation using a modified Barnes-Hut algorithm.!

ACTIVITY 14-1: CONDUCTING A HOTSPOTS ANALYSIS

In this activity you look for the hotspots in the n-bodies application. You can run
this activity on Linux or Windows.

Setting Up the Build Environment

1. Download the source files from the Wrox website.

2. Edit the Makefile. If you are using Linux, you will need to comment out the
include windows.inc at the beginning of the Makefile and uncomment
the include linux.inc

TODO: EDIT next set of lines according to 0S

#include windows.inc
include linux.inc

3. Open a command prompt or shell as follows:

WINDOWS

Open an Intel compiler command prompt. The path to the command prompt
will be similar to the following. (The exact names and menu items will vary,
depending on which version of Parallel Studio and Visual Studio you have
installed.)

Start & All Programs = Intel Parallel Studio XE 2011 = Command Prompt =
Intel64 Visual Studio Mode

LINUX
Make sure the compiler variables have been sourced:

$ source /opt/intel/bin/compilervars.sh intel64

If you are running a 32-bit operating system, the parameter passed to the
compilervars. sh file should be ia32.

Building and Running the Program
4. Build the application 12-1.exe by calling make:

LINUX

make clean
make 14-1

1]. E. Barnes and P. Hut. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature. 324, 446

Application Heuristics | 403

WINDOWS

nmake clean
nmake 14-1

5. Run the program 14-1.exe and record the results.

Notice the message on the screen tells you that you are running a Release
build of the serial version with 1024 bodies. When the program runs, it first
initializes the bodies with a random value and then runs the simulation. In
the serial version no significant time is spent on initializing the bodies.
Running with 1024 bodies

Running Serial Release version

Body initialization took 0.0000 seconds

Simulation took 19.218 seconds
Number of Calculations: 524299776

Performing a Hotspot Analysis

6. Start an Amplifier XE GUI from the command line:
amplxe-gui

7. Create a new project named Chapter 14.
> Select File & New = Project.

> In the Project Properties dialog, make sure the Application field points to
your 14-1.exe application.

8. Carry out a Hotspots analysis by selecting File ©> New = Hotspots Analysis.
You should find that the main hotspot is a call to addacc ().

Using a Tree-Based N-Bodies Simulation

The trick in the Barnes-Hut algorithm is to group together clusters of particles and treat them as

a single body. When calculating the effect of such a group on a nearby particle, the distance of the
particle to the group is first examined. If a group is greater than a certain distance away, the com-
bined mass of the group is used rather than the mass of the individual particles within the group.
Because of this grouping, the time taken to calculate the effect of particles on each other is reduced
significantly.

The first stage in building up the simulation model is to create a single cube that represents the
entire space of the environment. As the model is populated, this cube is partitioned into smaller
cubes. Each cube can contain at most only one particle, so when two particles would occupy the
same cube, the cube is split into sub-cubes so that each particle can be in its own cube. Figure 14-3
shows how this cube division takes place:

> The first particle is placed into the single cube. This is represented by the head node in the
octree.

404 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

> Introducing a second particle causes the head 1)
cell to be split into eight, the two particles now
being stored in the second- level of the tree. o

> Additional particles are placed in the new
leaf(s). When two particles end up being in the
same cube, the cube is split into a further eight
cuboids. (@) |

> A fully constructed tree consists of nodes and o |
leaf(s). Only a leaf can contain a particle.

The collection of nested cubes is stored in an octree.

An octree works the same way as a binary tree, except © o I:/
that each node has eight children rather than the usual
two. The octree is traversed recursively using standard © |-

linked-list techniques. The mass and center of mass is
calculated for every node in the tree.

Simulation space The octree

FIGURE 14-3: The entire environment to be
The following code snippet shows the three structures simulated is represented as a set of cubes,
that are used to store the octree — NODE, NODES, and which is stored as an octree
TREE. The width of the octree is determined by
TREE_WIDTH, which is defined to have the value 8.

struct NODE
{
int Id;
BODYTYPE * pCell;
NODES * pNodes;
MINMAX MinMax;
NODE * pNext; // used in linked list to all siblings
NODE * pChild; // used in linked list to all children
double CentreOfMass [NUMDIMENSIONS] ;
double Mass;
}i

struct NODES

{
NODE Nodes [TREE_WIDTH] ;

Y
struct TREE
int NumNodes; // this includes number of leafs

int NumLeafs;
NODE Head;

Application Heuristics | 405

ACTIVITY 14-2: BUILDING THE OCTREE SOLUTION

In this activity you build and run the octree version of the n-bodies simulation. You
can run this activity on Linux or Windows.

1. Repeat steps 4 to 6 of Activity 14-1 but use the target 14-2 for the Makefile.
The main difference between this target and the previous target is the option
-DOCTREE, which is equivalent to using a #define OCTREE in the source code.

2. Run the new executable 14-2 . exe. It should run much quicker than the serial
version.

3. Carry out a Hotspots analysis and confirm the name of the hotspot (by repeat-
ing step 8 of Activity 14-1, but don’t forget to change the name of the applica-
tion to 14-2 . exe in the project properties window).

4. Browse into the source code by double-clicking on the hotspot in the
Bottom-up window. Find out which lines take up the most time.

5. Optional. Search for all occurrences of the preprocessor macro OCTREE in the
source files and see which new sources are included in the build when this
macro is defined.

Using a Hashed Octree

One way to implement the octree is to use linked lists, where each node of the linked list points to
eight sub-children. Tree traversal using linked lists is expensive. Algorithms that use pointer-chasing
techniques often suffer from poor performance due to inefficient use of memory. By using a hash-
based algorithm rather than a linked list to store the tree, the traversal and manipulation of the tree
is significantly reduced.

Dr. Golanski used a hash-based algorithm in which the xyz coordinates of the particle are used to

construct a hash key, as described by Warren and Salmon.? Where the hash key is calculated to be

the same for two different particles, the values are chained together under the same key. For exam-
ple, in Figure 14-4(a) the bottom hash table entry has two additional entries (Bin 1 and Bin 2) that
are daisy-chained to the #2249 hash.

In the n-bodies simulation code, the HASHTABLE structure is used to hold the hash table. Each entry of
the hash table is stored in the Data array, with the size of the array being controlled by the MaAXkEYS:

struct HASHTABLE
{

unsigned int NumNodes;

M. Warren and J. Salmon. 1993. A parallel hashed oct-tree N-body algorithm. Supercomputing '93
Proceedings. 12-21

406 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

unsigned int NumLeafs;
unsigned int NumChainedLeafs;
QUEUE SortedList;

NODE Data [MAXKEYS] ;

Y
Hash Table
[. XYZ Coordinates as Bits
10011001 | | om01001| | 1101100
R X Y z
|z T

(C
)
(C
)

Bit-Interleaved Hash Key
| 1101 011 011100 111 001 000 110

#2249 > Bin1 }

| 1 XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ

(b)

FIGURE 14-4: Tree traversal and hash generation

Implementing the simulation using a hashed octree resulted in a further improvement on the time
taken for each simulation when using the same hardware. Figure 14-5 shows how the changes in the
n-bodies algorithm affect the simulation time. In the traditional n-bodies solution, the time taken in
the simulation rises very sharply as new bodies are introduced. The most favorable algorithm is the
hashed octree, which produces a very manageable rate of rise.

70 7

(o]
o
1

g1
o
1

D
o
1

— N-bodies

w
o
1

=== Octree

Hashed Octree

Time for Simulation (Seconds)
N
o
1

128 256 512 1024
Number of Bodies

FIGURE 14-5: Significant performance improvements can be made by changing the heuristics
of the application

Architectural Tuning | 407

ACTIVITY 14-3: BUILDING THE HASHED OCTREE SOLUTION

In this activity you build and run the hashed octree version of the n-bodies simula-
tion. You can run this activity on Linux or Windows.

1. Build the application using the target 14-3 for the Makefile. The main differ-
ence between this target and the previous target is the option ~-DHASHTREE.

2. Run the new executable 14-3 . exe. It should run quicker than the octree ver-
sion you ran in Activity 14-2.

3. Carry out a Hotspots analysis and confirm the name of the hotspot (by repeat-
ing step 8 of Activity 14-1, but don’t forget to change the name of the applica-
tion to 14-3.exe in the project properties window).

4. Optional. Search for all occurrences of the preprocessor macro HASHTREE in
the source files, and see which new sources are included in the build when this
macro is defined.

ARCHITECTURAL TUNING

Once you have suitably tuned the heuristics of the application, it’s time to turn your attention to the
architectural bottlenecks. Amplifier XE is used to perform the architectural analysis. A number of
predefined analysis types are available for architectural analysis, including the following event-based
types, which are targeted for Intel micro-architecture (see Chapter 12, “Event-Based Analysis with
VTune Amplifier XE,” for more details):

> Lightweight Hotspots — Event-based sampling that captures the amount of time you spend
in different parts of your code. This is different from the Hotspots analysis you have already
used in Activities 14-1, 14-2, and 14-3 in that it does not collect any stack information.

> General Exploration — Event-based sampling collection that provides a wide spectrum of
hardware-related performance metrics

> Memory Access — Event-based analysis that helps you understand where the memory access
issues affect the performance of your application

> Bandwidth — Event-based analysis that helps you understand where the bandwidth issues
affect the performance of your application

> Cycles and uOps — Event-based analysis that helps you understand where the uOp flow
issues affect the performance of your application

As you become more experienced in architectural analysis, it is sometimes possible to guess what the
likely bottlenecks will be. In the n-bodies code, the efficiency of the arithmetic operations, such as
division, and how memory is used are at the top of the list of suspects you should investigate.

Within the identified hotspot function, there is code that contains several divisions:

// compute the unit vector from j to i
double ud[3];

408 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

ud[0] = dx/dist;
ud[1] dy/dist;
ud[2] dz/dist;

This code can be rewritten to use a reciprocal, resulting in the compiler generating much faster code:

// compute the unit vector from j to i

double ud[3];
double dd=1.0/dist;
ud[0] = dx * dd;

ud[1l] = dy * dd;
ud[2] = dz * dd;

Table 14-1 shows the result of making such code changes on the different heuristics using the same
hardware. The code was built using the Microsoft compiler. The number of particles used was 1024.
Remember that it is better to look at the architectural bottlenecks after completing any heuristic
optimization, not before. In the hashed tree solution — the code that has the most optimized
heuristic — the speedup is 13 percent on a set of 1K particles and 11 percent on a set of 10K
particles.

TABLE 14-1: Results of Optimizing Several Divisions

TIME (SECONDS)

HEURISTIC DIVIDE RECIPROCAL SPEEDUP
Serial 22.56 17.28 30%
Tree 19.64 19.58 0.3%
Hashed tree (1K nodes) 2.23 1.97 13%
Hashed tree (10K nodes) 638 570 1%

You often can make code, especially mathematical number-crunching code, more efficient by look-
ing at how the calculations are done. By simply rearranging equations you can reduce the compu-
tational effort. The preceding divisional example is one such way of reducing the effort. In this
example, a temporary variable was calculated and used three times. This idea can be further devel-
oped by precalculating parts of equations and carrying the results forward. Where several equations
occur, make sure you are not calculating some part of the various equations more than once; again,
use temporary variables. Often, array calculations can be broken down into several parts; this also
increases the chances of their successful vectorization. All these approaches can reduce time even
before other methods are considered.

Architectural Tuning | 409

ACTIVITY 14-4: OPTIMIZING THE DIVISION

In this activity you build and run a version of the n-bodies simulation that has opti-
mized division code and compare its CPI rate with and without this optimization.
You can run this activity on Linux or Windows.

1. Carry out a Lightweight Hotspot analysis on the application you built in
Activity 14-3:

> Select File & New = Lightweight Hotspots Analysis. Notice that we are
using lightweight hotspots!

> In the Project Properties dialog, make sure the Application field points to
your 14-3.exe application.

> Start the analysis.
2. Examine the results and make a note of the following:
> The elapsed time of the program
» The function name and CPU time of the biggest hotspot

> The CPI of the biggest hotspot (for a refresher on CPL see Chapter 12,
“Event-Based Analysis with VTune Amplifier XE”)

You should see that one hotspot has a terrible CPI (a good CPI value should
be less than 1).

3. Build the new application using the target 14-4. The main difference between
this target and the previous target is the option -DUSE_RECIPROCAL_DIVIDE.

4. Run a new Lightweight Hotspot analysis using 14-4.exe for the Makefile.

5. The new executable, 14-4 . exe, should have a shorter elapsed time than that
of 14-3 . exe. Calculate the speedup using the following formula:

speedup = new time \ old time

6. Compare the CPI rate and CPU time of the hotspot in 14-3 . exe with the same
source line in 14-4 . exe. In the new executable the CPI should be lower, and
the elapsed time shorter.

7. Optional. Search for all occurrences of the preprocessor macro
USE_RECIPROCAL_DIVIDE in the source files, and see which new sources are
included in the build when this macro is defined.

410 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

ADDING PARALLELISM

Once the serial version of the code is sufficiently well optimized, it’s time to move on to making the
code parallel. In the original research, the parallel algorithms were based on the suggestions made
by Warren and Salmon. By splitting the sorted list of particles into groups, these groups can be
simulated in parallel. Once the sorted particles are split into groups, a tree is created for each dis-
joint group — called local trees. Using a sorted list means that each group of particles is in spatially
distinct parts of the cube. Where there is the possibility that a particle could sit in the node of an
adjacent local tree, a copy of the node is held in both trees.

Identifying the Hotspot and Discovering the Calling Sequence

In the simulation, the same calculation is repeated thousands of times on the particles in the envi-
ronment. Using Amplifier XE to identify the hotspots in the code shows that most of the time is
spent adding the acceleration to the moving particles (refer to Figure 14-2).

Although the original research used MPI to implement parallelism, the steps that were undertaken
to add parallelism are common to whatever language implementation is used.

The steps undertaken were as follows:

1. Identify the hotspot.
Discover the calling sequence and number of function calls.
Identify any dependencies.

Implement the parallelism.

o wWwN

Check for any errors introduced by parallelization, such as data races, and correct them.
6. Tune the parallel application.

The most significant hotspot in the code is in the HashAdvance function. Normally, when applying
parallelism, it is usual to add the parallel construct to one of the parent functions of the hotspot. As
shown in Figure 14-6, the step function looks like an ideal candidate. The function controls 99.5
percent of the CPU time.

Implementing Parallelism

As previously mentioned, the original implementation was done using MPI. Intel Parallel Composer
provides a number of different ways of implementing parallelism, including OpenMP, Cilk Plus, and
Threading Building Blocks. Cilk Plus is ideal for this kind of problem where load balancing is of
upmost importance. Cilk Plus’s task-stealing scheduler does a great job at load balancing and has an
intuitive programming approach. Listing 14-1 shows how Cilk Plus can be applied to the problem.

Listing 14-1 shows how a for loop can be easily parallelized by using the cilk_for keyword at
line 7. The code snippet is based on the step () function found in Hash.cpp. The only other addi-
tion to the code was to include the statement #include <cilk/cilk.h> at the top of the file.

Adding Parallelism | 411

r000hs < ¥

B Hotspots - Intel VTune Amplifier XE 2011

e s [R ey Fya=om—]
!_ﬂ Analysis Target | |_ Analysis Im ‘ i Summary |

Bnltnmfup‘ &3 Top-down Tree

CPU Time =

Call Stack CPU Time:Total haodule

al 100.0

| al
EIRtIUserThreadStart 0z 100.0 [1. dll RtlUserThreadStart

= BaseThreadlnitThunk 0s 100.0 (I erriel22.dll BaseThreadlnitThunk
[=_trnainCRT Startup 0z 1n0.0 — 14-4,exe _trnainCRT Startup
= main 05 100.0 [14-4.cxe rmain
ElrunHashBadies s 1n0.0 _ 14-4.exe runHashBodies{int)
=l Step 0.0105 100,0 [14-4.cxe Stepivoid)
ElHashidvance 0.070s 1) 99,5% I 14-4.ex¢ Hashdvan ce(struct NODE *3
ElHashidvance 0.130s [l 94, 7% (D 14-4.ex2 Hash&dvance(struct MODE * 5
[# Hashisdhvance 0.360 [79,4% [14-4.exe Hashédvance(struct NODE %5
[Gethode 0.080s 5.0 0 14-4.exe Gethade(unsigned int)
ComputeDistance D.DSDsl 25%' 14-dexe ComputeDistancedstruct MOD
CaomputeDistance 0.010s 0.5%% 14-d.exe ComputeDistance(struct NOD
[# GetMode 0s 0.5% 14-d.exe GetMode{unsigned int)
Selected 1 row(s); 0s 0.0%:
4[] rf o] mm
QFO-Ce 00 035 03s 0ds 05 0fs 005 085 085 s Ll L Lds 1ds 185 Lfs 175 1ds 19 | Threads
£ - B Runining
E = duk CPU Tirme
CPU Usage | [¥] CPU Usage

ik CPU Time

A Only user Functions ~ =3

FIGURE 14-6: Identifying the hotspot and call stack

J

Available for
download on

Wrox.com

LISTING 14-1: Introducing parallelism by replacing the for loop at line 7 with a cilk_for

1: // This code has known data race bugs and is used as an example
2: // to explain how to detect parallelization problems.

3: unsigned int stepcount;

4: void Step()
5

6

7

8

{

// parallelize following loop using cilk_for in place of C for
cilk_for(int 1 = 0; 1 < theTable.SortedList.Cursor; i++)
{

9: // declare and set hash table value

10: unsigned int Hash = theTable.SortedList.List[i];

11: if (Hash != 0)

12: {

13: // declare pointers to first & next nodes

14: NODE *pNode = GetNode (Hash) ;

15: NODE *pChain = pNode->pNext;

16: // advance to next node and increment stepcount

17: HashAdvance (pNode, GetNode (0)) ;

18: stepcount++;

19: // while not end of list

continues

412 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

LISTING 14-1 (continued)

20:
21:
22
23:
24:
25:
26:
27:
28:
29:

while (pChain)

{
// advance to next node
HashAdvance (pChain, GetNode(0));
pChain = pChain->pNext;
stepcount++;

code snippet chapter14\14-1.cpp

ACTIVITY 14-5: PARALLELIZING THE CODE WITH CILK PLUS

In this activity you make the n-bodies program parallel using Cilk Plus. You can
run this activity on Linux or Windows.

1.

2.

Build the application using the target 14-5 for the Makefile. The main differ-
ence between this target and the previous target is the option ~-DUSE_CTLK.

Run the new executable 14-5. exe, and compare the output messages with the
ones that you get from running 14-4 . exe.

You should notice that the program runs faster (because it is running in par-
allel) but that the number of calculations reported in 14-5. exe is different
from 14-4.exe.The differences are almost certainly caused by a data race,
which you will detect and fix in Activity 14-6.

Optional. Search for all occurrences of the preprocessor macro USE_CILK in
the source files, and see which new sources are included in the build when this
macro is defined.

Detecting Data Races and Other Potential Errors

Once parallelism has been introduced, there is always the risk that data races or other parallel-type
errors have been accidentally introduced. Access within the threaded code to any global variable
will cause problems. These problems can be detected using such tools as Intel Parallel Inspector (see
Chapter 8, “Checking for Errors”).

A visual inspection of Listing 14-1 shows that the incrementing of the stepcount variable at line 18
and line 235 is likely to cause a data race. The variable is not declared with the scope of the paral-
lelized loop, and can thus be accessed simultaneously by two or more worker threads. Using Intel
Parallel Inspector XE will also show any problems.

The Intel Parallel Debug Extension (PDE) is another great way to detect data races. Figure 14-7
shows PDE detecting the data race. See Chapter 11, “Debugging Parallel Applications,” for more
information on how to use PDE to detect data races.

Adding Parallelism | 413

&) CH14-5LM (Debugging) - Microsoft Visual Studia [=@][=]
File Edit View VAssisf(Project Build Debug Tools Test Window Help
-5 1 d| % 8|9 - 0 - L | P [Debug <J[winzz <@ cile_for SRy e B
BB e e mes BB b v aa|psE ! 15 |8 Pl |20 i@ b -DieT T
Process; [6272] CH14-SlMexe ~ Thread: [4468] Worker 1 « W [[stock Frame: CH4-SLM exeltppiyiccel(t = |
Y0363 | Disassernbly | hash.cppl Makefile hash.cpp | r02ti3 | ro01tiz | - X
‘-‘9 Bpplydceel -2 | &G0
(Global Scope) v % ApplyAccel(NODE * pirsthlode, NODE * pSecondhode, double dx double dy, double +
—
<
NumCalcsReducer++; -
4 1 - »
Threads + B x| [Thread Data Sharing Events > 1 x

D Catega Marme Lacation Priotity Suspen = (@ Analysis active, Filterset: Supress, Active Filters:

6704 [[] Main Main Thread T74EFaT2 Mormal O * Bnalysis run from 2/26/2012 11:27:42 AM {0 events, completed)
4488 || Work worker 1 Applydccel Hormal 0 Analysis run fram 2/26/2012 11:36:45 AM (1 event, completed)

S e Apl e LR Bnalysis run from 2/26/2012 11:42:31 AM (0 events, completed)

3632 | Worl) Worker 3 ApplyAceel Narmel |0 2 falysis run from 2/26/2012 11:45:15 AM (1 event)

i;i: sz: m:::; gs:ﬁ:;‘:‘ zz:::: s £ S ‘?@ﬁl:l(umCalcs - BIL0b1F00 4 Bytes, 2 accesses from 2 threads

2420 || Work worker 6 004231ca hormal O w7 ha’h‘ch(m)”pdate‘Th'“di“EB

4828 || Work wiorker 7 0042953 Hormal 0 g i e b

892 | | Work worker 8 00429653 normal 0

7532 || Work warker 9 004231ca Hormal O

7144) Wark wiorker 10 004Z31ca Mormal O -

e Locals | Autos | g} Threads |

Ready

2 Call Stack | Breakpoints |35 Thread Data Sharing Events I@Intel Cilk Plus Call Stack |

FIGURE 14-7: Using Parallel Debugging Extension to detect data races

Correcting the Data Race

Cilk Plus provides a number of different ways to fix data races. The most obvious way is to restruc-

ture the code so that global variables are not needed. If you cannot restructure the code, protect

access to the variable so that only one thread can modify it at any one time. By declaring the

stepcount variable to be a cilk: :reducer_opadd<unsigned int>, the Cilk Plus run time auto-

matically ensures that no data race occurs. The Cilk Plus reducer does this by creating private

copies or views of the variable within the parallel region, and then adding the private copies together

(reducing the result) when leaving the parallel region.

ACTIVITY 14-6: DETECTING AND FIXING DATA RACES

In this activity you use Inspector XE to look for and fix any data races in the appli-
cation you built in Activity 14-5. You can run this activity on Linux or Windows.

Performing a Data Race Analysis

1.

Build the application using the target 14-6a for the Makefile. The main

differences between this target and the previous target are the option
-DUSE_256_WORLD, which reduces the number of bodies to 256, and the inclu-
sion of flags to build a debug version.

inspxe-gui

Start an Inspector XE GUI from the command line:

continues

414 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

continued

3. Create a new project named Chapter 14.
> Select File & New = Project.

> In the Project Properties dialog, make sure the Application Field points to
14-6a.debug.exe application.

4. Carry out a Data Race analysis by selecting File © New = Find Deadlocks and
Data Races. You should find that there are two data races.

Fixing the Data Race

5. Build the application using the target 14-6b for the Makefile. The main dif-
ference between this target and 14-6a is the option ~-DUSE_CILK_REDUCER,
which introduces two cilk: : reducer_opadd reducers to the code.

6. Carry out a Data Race analysis, making sure that the Application field in the

Project Properties dialog points to 14-6b.debug . exe. The two data races
should now be fixed.

7. Optional. Search for all occurrences of the preprocessor macro USE_CILK_
REDUCER in the source files, and see which new sources are included in the
build when this macro is defined.

Load Balancing

Once the n-bodies program is correctly running, verify that all the threads are employed usefully.
The concurrency level is a measure of how parallel the program was running over its life.

Figure 14-8 shows the concurrency view displayed in Parallel Amplifier XE. The application spends
most of its time running all eight available cores.

(») Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were
running simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05
scheduler. Essentially, Thread Cencurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be
higher than CPU usage if threads are in the runnable state and not consuming CPU time.
1=

Elapsed Time

[Idie | [Ok | Idez| | Over

oy i iy

Simultanecusly Running Threads

FIGURE 14-8: Parallel Amplifier XE shows that the application has ideal thread
concurrency

Adding Parallelism | 415

ACTIVITY 14-7: CHECKING THE LOAD BALANCING

In this activity you run a Concurrency analysis to see if the program is load bal-
anced. You can run this activity on Linux or Windows.

1. Build the application using the target 14-7 for the Makefile.

2. Run the new executable 14-7.exe. It should run almost as quickly as
14-5.exe and have the same output messages as 14-4 . exe.

3. Use Amplifier XE to carry out a Concurrency analysis. (Don’t forget to change
the Application field to 14-7.exe.)

4. Look at the results and confirm that each thread is doing the same amount
of work by observing their start and end times in the timeline view of the
Bottom-up window.

The Results

The original research work showed that adding coolant to the interstellar medium could result in a
medium that was good enough to begin star formation. You can find a more detailed description of
the results in the paper by Golanski and Woolfson. Figure 14-9 is a snapshot of the original simula-
tion showing how introducing a coolant leads to the formation of two protostellar clouds, which
eventually form dense cold clouds — the precursor to the formation of a star. The contours represent
density; the shading, temperature; and the arrows, velocity and direction.

FIGURE 14-9: A snapshot of the original simulation

416 | CHAPTER14 NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN

NINE TIPS TO PARALLEL HEAVEN

The following tips were recorded over a pleasant Thai meal in the city of York.
Between the distractions of the different dishes, Dr. Golanski spoke about what
advice he’d give to someone starting to parallelize an application. At the end of
the meal the restaurant owner asked if the restaurant could be mentioned. Well,
here goes: If you are ever in the center of York, look for the Siam House, on
Goodramgate.

> Buy a faster machine — First, look at how much it will cost to make your
program parallel. If it will take, say, two months of coding, consider a
faster machine that will give you the speedup you want. Of course, once
you reach the limits of a machine’s speed, you are going to have to do some
parallelization.

> Start small — Don’t try to make everything parallel at once; just work on small
bits of code.

> Use someone else’s wheel — If you are starting from scratch, see what other
people have done first. Learn from others. Don’t reinvent the wheel.

> Find a way of logging and/or debugging your application — Make sure you
have a way of tracing what your application is doing. If necessary, buy some
software tools that will do the trick. Using printfs on their own will probably
not help.

> Look at where the code is struggling — Examine the runtime behavior of your
application. Profile the code with Intel VTune Performance Analyzer. The hot-
spots you find should be the ones to make parallel.

> Write a parallel version of the algorithm — Try rewriting the algorithm to be
parallel-friendly.

> Stop when it’s good enough — When you think it’s good enough, stop! Step
back and go for a pint. Have set goals — when you have achieved them, you
are done.

> Tread carefully — Take care with the parallel code. Some innocent errors
could blow up your program. Use a good tool to check for any data races and
other parallel errors.

> Get the load balancing right — Once you’ve made your code parallel, make
sure all the threads are doing equal amounts of work.

SUMMARY

This chapter showed how you can look at the heuristics of a program to improve its
efficiency — that is, reduce time. Simply changing the code can, in many instances, bring an
instant speedup.

Summary | 417

The performance was improved further by removing, where possible, architectural bottlenecks.
The Intel VTune Amplifier XE was used to help in identifying and understanding the low-level
bottlenecks.

The Intel Cilk Plus method of parallelization was then used in this case study to introduce parallel
execution of the application, Cilk being ideal in this case due to its ease of use and ability to produce
load-balanced code.

Chapter 15, “Parallel Track Fitting in the CERN Collider,” includes an example that shows how to
use Intel Array Building Blocks (ArBB) to achieve parallelism on a collection of workstations. ArBB
brings a flexible approach to parallelism, in which the runtime engine works alongside a just-in-time
(JIT) compiler to produce optimized code, leading to software that can adapt itself to new genera-
tions of silicon as they become available.

15

Parallel Track Fitting in the
CERN Collider

WHAT’S IN THIS CHAPTER?

> Introducing particle track fitting
> Introducing Intel Array Building Blocks
> Parallelizing programs using Intel Array Building Blocks

This chapter looks at parallelizing code that determines particle tracks within high-energy
physics experiments. This represents some of the work done at the CERN GSI establishment
in Darmstadt, Germany. The group is well known for its discovery of the elements bohrium,
hassium, meitnerium, darmstadtium, roentgenium, and copernicium.

Intel Array Building Blocks (ArBB) is a research project, and consists of a C++ template library
that provides a high-level data parallel programming solution. By using ArBB to parallelize
software, you can produce thread-safe, future-proofed applications. The six hands-on
activities let you try out parallelizing a serial track-fitting program using ArBB.

THE CASE STUDY

The Compressed Baryonic Matter (CBM) project is designed to explore the properties of
super-dense nuclear matter by using a particle accelerator to collide charged particles against a
fixed target.

The word baryonic in the project title refers to baryons, large particles made up of three
quarks — a quark being an elementary particle from which all matter is made. Quarks are
found neither on their own nor in isolation.

420 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

One of the aims of the CBM experiment is to search for the transition of baryons to quarks and
gluons (the particles that hold together the quarks). The CBM project is carried out at GSI (center
for heavy ion research) and its adjacent facility FAIR (Facility for Antiproton and Ion Research) in
Darmstadt, Germany. Researchers from around the world use this facility for experiments using the
unique, large-scale accelerator for heavy ions. You can find more information about CBM at
www.gsi.de/forschung/fair_ experiments/CBM/index_e.html.

INTERVIEW QUESTIONS

Dispersed through this chapter are several questions that the program developers
were asked. Their answers are intended to tease out their experiences using ArBB.

THE STAGES OF A HIGH-ENERGY PHYSICS EXPERIMENT

Generally, a high-energy physics experiment goes through eight stages, as shown in Figure 15-1.

1. Acceleration

8. Offline
Data Analysis

2. Collisions

7. Vertexing Stages of Experiment 3. Detection

" The software

. in this 6. Track 4. Data
\ case study is Fitting Acquisition
“. used here

5. Track
Finding

FIGURE 15-1: The stages of a high-energy physics experiment

http://www.gsi.de/forschung/fair_experiments/CBM/index_e.html

The Stages of a High-Energy Physics Experiment | 421

> In the first two steps, acceleration and collision, particles are accelerated to almost the speed
of light and then collided against a fixed target or against other accelerated particles.

> In the next two steps, detection and data acquisition, particles are detected as they pass
through detector planes. In the case of the CBM experiment, there are seven such planes,
referred to as stations. Each station records the position of particles passing through
them — these are the particle hits. The collected data is then used to determine what
actually happened.

> The track-finding and the track-fitting stages are used to reconstruct the path that the par-
ticles took. Track finding determines which hits in the various stations belong to which track.
Track fitting is used to take into account the inaccuracies of the detection system. The station
data and its extraction are noisy, resulting in inaccurate hit coordinates. An attempt is made
to eliminate these inaccuracies and refine the particle tracks. The method involves the use of a
Kalman filter and is the subject of this case study.

> At the vertexing stage, various constraints to the tracks are applied. For example, a particular
particle may decay along its track and produce a number of other tracks, all of which must
originate from the same point. This is an attempt to find correlation between tracks.

> Finally, the captured data is used for offline data analysis and the physical interpretation
of events.

The Track Reconstruction Stages

The CBM experiment looks at hadrons, electrons, and photons emitted in heavy-ion collisions.
Once each particle is detected, the correct path or track has to be calculated, the data then being
used to help interpret what has happened.

Each event (collision) results in many thousands of potential tracks passing through the detectors.
These events can be repeated many thousands of times per second, requiring extremely high data-
processing rates. Modern high-energy physics experiments typically have to process terabytes of
input data per second. The track-reconstruction stages are the most time-consuming parts of the
analysis; therefore, the speed of any track-determination algorithms becomes very important in the
total processing time.

Track determination would be trivial were it not for complications arising because of inaccuracies
due to detector noise and scattering due to electric charge, energy loss, nonuniform magnetic fields,
and so on.

Figure 15-2 shows a typical problem, with multiple planes positioned at different z positions across
the trajectories of the particles. Each plane registers the x and y positions of the particles as they
pass through (referred to as hits). The problem then becomes to reconstruct the paths of the various
particles by using their positions on each detector.

Listing 15-1 shows the structure used to store the station information. The code is much reduced;
if you want to see the original code, look in the class.h file from the hands-on project (see
Activity 15-1). Notice that the class contains 15 different pointers (for example, *z). Each pointer

422 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

gets allocated dynamic memory within the init method, which is called by the stations
constructor.

Notice, too, that when malloc is used in the init () function, it creates enough space for all the
stations. This is true for all 15 pointers that you can see.

Collision
point

Y
/ X
Stations Z

FIGURE 15-2: Typical hits at stations along trajectory

\) LISTING 15-1: The Stations class in the serial version of the code

Availablefor ~ // NOTE: See class.h for complete listing.
daﬂg?g&:n // The listing here is not intended to be compiled.
class Stations({
public:
int nStations;

ftype *z, *thick, *zhit, *RL, *RadThick, *logRadThick, *Sigma, *Sigma2, *Sy;
ftype (**mapX), (**mapY), (**mapZ); // polinom coeff.

void initMap(int i, ftype *x, ftype *y, ftype *z){// init code }

Stations(int ns) {init(ns);}
void init(int ns)
{

// allocate memory all 7 stations are together
nStations = ns;
z = (ftype*)malloc (ns*sizeof (ftype));
// ... repeat for thick zhit RL RadThick logRadThick Sigma
// Sigma2 Sy mapX mapY mapZ mapXPool mapYPool mapZPool
}

~Stations () {// free dynamically allocated memory}

private:

// pointers to private pool

ftype *mapXPool, *mapYPool, *mapZPool;
Y

code snippet Chapter15\15-1.h

The Stages of a High-Energy Physics Experiment | 423

Track Finding

Track finding involves determining which hits on each of the planes were made by the same particle,
therefore indicating its path through the detector. This is time-consuming and involves using the
properties of a particle (spatial, velocity, mass, charge) at one plane to predict its hit position on the

next plane. Once the prediction has been made, a search is made for the closest hit.

To make matters more interesting, the whole detector is embedded within a magnetic field, so any
charged particles will respond accordingly (see Figure 15-3). The direction and radius of any trajec-

tory curvature depend on the strength and polarity of the charged particle.

Magnetic
Coil

FIGURE 15-3: Detector stations embedded within a magnetic field

A lot of track finding can be related to pattern recognition, which is something humans are particu-
larly good at, and which computers are not. Figure 15-4 shows a predicted hit on the last plane after
using the two previous hits to fit a predicted curved arc. The nearest measured hit is then taken.

Take nearest hit

o

b\
/go

N\

Predicted curved arc Predicted hit on plane, and
trajectory (3D) search area

FIGURE 15-4: Using prediction to determine the next hit

424 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

Listing 15-2 shows the Tracks class that is used to hold all the track information. At run time more
than 20,000 track details are held in the instantiation of this class. Notice, again, like the stations
class previously discussed, a number of pointers are used to hold dynamically allocated memory.
When ArBB is added to the code, one of the first things to address is to replace the dynamically
allocated structures with ArBB containers.

‘) LISTING 15-2: The Tracks class in the serial version of the code

Available for // NOTE: See class.h for complete listing.
daﬂ:ys&g" // The listing here is not intended to be compiled.
class Tracks
{
public:
unsigned int nStations;
unsigned int nTracks;

ftype *MC_x, *MC_y, *MC_z, *MC_px, *MC_py, *MC_pz, *MC_g;
int *nHits, *NDF;

ftype **hitsX, **hitsY;

ftype *hitsX2, *hitsY2;

int **hitsIsta;

void init(int ns, int nt)
{
nTracks = nt;
MC_x = (ftype*) malloc(sizeof(ftype) * nt);

// repeat for : MC_y MC_z MC_px MC_py MC_pz MC_g nHits
// NDF hitsX hitsY hitsIsta

memXPool = (ftype*) malloc(sizeof(ftype) * nt * nStations);
// repeat for : memYPool memIstaPool hitsX2 hitsY2

~Tracks () {}

void setHits(int i, int *iSta, ftype *hx, ftype *hy)
{

// record hits

private:
ftype *memXPool, *memYPool;
int *memIstaPool;

}i

code snippet Chapter15\15-2.h

The Stages of a High-Energy Physics Experiment | 425

INTERVIEW Q1: WHAT WAS THE HARDEST PART OF USING ARBB IN THE
TRACK-FITTING CODE?

The original code was developed without “parallel programming” in mind, and it
didn’t follow a particular programming model. We had various contributors along
the road. When focusing on “minimal changes,” the programming model of choice
is obviously to augment code with pragmas or directives, to aim for SIMD vector-
ization, and to harvest parallelism across cores using multithreading. Using ArBB
caused us to think about parallel operators and “what to do” rather than “how

to do it.” Instead of employing (nested) loops, we had to collect data in “dense
containers” (arrays) and modify our data model. On the other hand, this helped
us understand our own code better. To summarize, we had to think through the
workload instead of applying hints to our existing code. We’re looking forward to
a more math-style formulation in order to stick with an algorithmic description of
our work, and to have more descriptive/expressive code in the future because of
using Intel ArBB.

Track Fitting

After determining the track by successive plane hits, track-fitting algorithms are then applied to
smooth out any track irregularities due to inaccuracies along the paths. This forms the bulk of the
work in this case study.

Successive station hits of a particular track may not follow a highly accurately determined track, due
to noise and other inaccuracies. Track fitting is used to minimize how close the measured hits are to
what they are assumed to be for a particular fit hypothesis. By using a particle’s location at one sta-
tion, the environment between it and the next station, together with the physical properties of the
particle, a prediction can be made as to where the particle will hit the following station. A weighted
average is then taken between the recorded hit position and the predicted hit position to determine
the actual particle position.

Kalman Filter Overview

The Kalman filter is a mathematical method designed to filter out noise and other inaccuracies in
measurements observed over time. It is used in almost all high-energy physics experiments to carry
out track fitting. The Kalman filter calculates estimates of the true values of measurements recur-
sively over time using incoming measurements and a mathematical process model.

Determining a track requires two things:
> A model that approximates the track’s trajectory

> An understanding of the physical properties of the detector

426 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

The Kalman filter is very good at this because it can determine the presumed path and take all the
complications of an irregular topology (both of the physical detector and nonlinear magnetic field)
in its stride.

Figure 15-5 shows a Kalman filter-based track fitting. As more track hits are corrected, the con-
fidence about the track is increased and the predicted precision becomes higher. This is shown in
the illustration by the decreasing thicknesses of the prediction arrows. Various filtering effects are
applied to arrive at the final track’s trajectory positions.

Actual
\x/ track
AN =
\ Shk /A REEDPR
) ST e /
/x\x
JAS)

Prediction position. .

Thickness indicates Me‘??“'ed hit A
- position

precision

Corrected position
after filtering

FIGURE 15-5: Using a Kalman filter to obtain an accurate path

Kalman Filter Steps

Figure 15-6 shows the steps of a Kalman filter. The symbol r is the state vector of the particle at
each plane (position and velocity), and c is the covariance (confidence) matrix. The other symbols
represent the magnetic field and various states of the system:

> The initial approximation step sets an approximate value of the vector r0 and the covariance
matrix CO.

> The prediction step describes the deterministic changes of the vector over time to
an adjacent station.

> The process noise step describes probabilistic deviations of the vector due to noise (Qk),
and so on.

> The final step filters the actual values Mk, Hk, and Vk, taking into account the previous
three steps.

The CBM team at GSI has implemented a fast Kalman filter for use in the track-fitting stage of their
high-energy particle analysis. For each track, two arrays are maintained — one for particle state
(position, velocity, and momentum), and another for the covariance values used for determining
trajectory confidence. The filter is applied to each track in turn at each station along its trajectory to
smooth out inaccuracies and errors, and used to derive a corrected track position.

What Is Array Building Blocks? | 427

Initial approximation ro, Co Kalman filter
lL block diagram

Prediction rk” = Ak-1 rk-1
Ck’ = Ak-1 Ck-1 Ak—1

l

Process noise Ck” = Ck” + Qk (:: Noise Qk

L

Filtering Kk=Ck” Hk/ (Vk + Hk Ck’ Hk) (————
rk=rk’ + Kk(mk - Hk r«”)
Ck=(I- Kk Hk) CK’

ll (finish)

FIGURE 15-6: The Kalman filter operation

]}

Measurement
mk, Hk, Vk

The filter has been implemented using single-precision floating-point calculations. (Traditional
Kalman filters use double precision.) Additional research has been applied to ensure that working
with single precision gives an accurate enough result. Using single precision over double reduces the
space needed to store the data by half and results in faster calculations.

INTERVIEW Q2: WHAT WAS THE EASIEST PART OF USING ARBB?

Once we had stepped back from our original data design and looked at the big
picture, we found that the vector-processing style of the original code and the loop-
oriented code was easily modified to use the map-operator and elemental functions
of ArBB. It seemed a very natural fit.

WHAT IS ARRAY BUILDING BLOCKS?

ArBB is C++ template library that provides a high-level data parallel programming solution
intended to free developers from dependencies on low-level parallelism mechanisms and hardware
architectures.

ArBB is designed to take advantage of multi-core processors, many-core processors, and GPUs.
Under normal use, ArBB applications are automatically free of data races and deadlocks. Its main
features are as follows:

> Has its own embedded language

> Uses dynamic compilation with just-in-time (JIT) compiler

> Provides implicit parallelism for computationally intensive maths
>

Works across multiple cores and varying SIMD widths

428 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

> Provides structured data parallelism (patterns) with no data races
> Uses separate memory space with no pointers

> Does not require synchronization primitives

The essence of ArBB is collections (containers) and their associated operators. Collections are
designed to work on arrays. The arrays can be any size and dimension, regularly or irregularly
shaped. Containers either are bound to existing C/C++ data and take on the size and shape of the
bound data, or they can be constructed independently without any binding. An ArBB range is used
to transfer data from the ArBB code to the C/C++ code.

Once a set of containers is bound to existing data entities, you can work on them as though they
were single variables. For example, if containers 2, B, and ¢ have been declared and bound to three
separate C/C++ arrays (of any dimension), they may be processed as if normal single variables:

A += (B * C);

ArBB will produce executable code that fully utilizes any SIMD instructions and multiple
cores available to carry out the operation. This is done without any further intervention by the
programmer.

In general, when a container appears on both the left and right side of an expression, ArBB gener-
ates a result as if all the inputs were read before any outputs are written. In practice, you must put
this expression within a function and invoke that function with a call operation.

ArBB is delivered as a library that provides data collections, operators for data processing, and an
associated syntax.

As shown in Figure 15-7, the application code is written in C/C++ and looks like fairly standard
nonthreaded code. You add ArBB code using a C++ APIL.

Program C++ AP
Interface
Virtual Machine
Virtual
Machine Virtual Debug Memory JIT Threading
ISA Services Manager || Compiler || Run Time

LU
oooooo
0ooooo
Hardware oooooo EEEDDD
oooooo ooo
CPU

TTTTTTTIT
GPU Many Core

FIGURE 15-7: The ArBB platform

What Is Array Building Blocks? | 429

The ArBB runtime uses a virtual machine (VM) and employs a just-in-time (JIT) compiler. The VM
works out at run time the best performance paths based on its knowledge of the hardware platform.
By deferring the final compilation of the ArBB code until it resides on the target platform, the JIT
compiler can produce architecture-specific optimized code.

Listing 15-3 is a program that shows a simple ArBB program. The sum_of_differences function
will be compiled and executed at run time; the main function is a normal C++ function and is com-
piled in the usual way.

The main function has two dense containers, a and b, similar to the STL’s std: : vector, whose size
is set to 1024.

The first time you run the application, the ArBB call operator causes the JIT compiler to compile
sum_of_differences. The ArBB code is then executed. If there were further calls to the function
sum_of_differences, it would not need to be recompiled.

‘) LISTING 15-3: An ArBB program skeleton

Available for #include <arbb.hpp>
d&lwrg;l?gglgn #include <cstdlib>
void sum_of_differences(dense<f32> a, dense<f32> b, f64& result)
{
result = add_reduce((a - b) * (a - b));
}

int main()
{
std::size_t size = 1024;
dense<f32> a(size), b(size);
f64 result;
range<f32> data_a = a.read_write_range();
range<f32> data_b = a.read_write_range();

for (std::size_t 1 = 0; i != size; ++1i) {
data_al[i] = static_cast<float>(1);
data_bl[i] = static_cast<float>(i + 1);
call (&sum_of_differences) (a, b, result);
std::cout << "Result: " << value(result) << '\n';
}

return 0;

code snippet Chapter15\15-3.cpp

The big advantage of ArBB is the optimization performed by the JIT compiler. Because the ArBB
code is compiled at run time, you can optimize the code to take advantage of the hardware it is run-
ning on. When you introduce the same code to a newer-generation CPU, the code will be optimized
to match the new features available in the CPU.

430 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

PARALLELIZING THE TRACK-FITTING CODE

In the case study, a serial version of a track-fitting benchmark was parallelized using ArBB.

Adding Array Building Blocks to Existing Code
Figure 15-8 shows the steps to convert a serial program into a parallel ArBB program:

1. The kernel signature (that is, function prototype) of the entry point to the ArBB code is estab-
lished. The code in the diagram is cut down, but you can see that the parameters to the func-
tion have new types.

2. ArBB containers and variables are defined. Some of these will need to be associated with
variables and structures that exist in the coexisting C++ code. The association is done either
with arbb: :bind (..) or by employing an ArBB range.

3. A call to the kernel signature that was constructed in step 1 is inserted in the appropriate
place in the source code. The kernel is called using arbb: : call(..).

4. The contents of the kernel are converted to ArBB.

M .

fitTracksArBBEntry(i32 vSize,
dense<FTYPE>MC_X,
dense<FTYPE>MC_y,
etc...);

| | b e m e — e o 4

Step 2 : dense<FTYPE>MC_x; !
Allocate size and i bind(MC_x, vTracks.MC_x, vTracks.nTracks); !
bind containers : etc ...; |

Step 1 :
Figure out the 1
kernel signature ,

Invosktg'f(:rnel E call(fitTracksArBBEntry)(vSize, E
through call] structTracks.MC_x, :
_for(j = (usize)0, j < Ntimes, j ++){
Step 4

Implement kernel magFieldArBB, vtT, vtC);

A\

FIGURE 15-8: Converting a serial program to a parallel ArBB program

fitArBB(vTracksArBB, vStationsArBB, :

In the “Hands-On Project” section later in this chapter, you apply these steps to the filter
driver code.

Parallelizing the Track-Fitting Code | 431

INTERVIEW Q3: WERE THERE ANY SPECIAL TRICKS IN THE CODE THAT
YOU CONSIDER CLEVER OR WORTH EXPOUNDING?

No tricks! We learned to stick with the most natural formulation. We’re looking
forward to seeing robust performance independent of tricky variations.

Code Refactoring

Some of the original code required more reworking before the preceding four steps were carried out:

>

Any references to global variables were removed so that access was by parameters passed in
via the function call.

A wrapper function was inserted in the call stack to help marshal the parameters and data
structures.

The code that was to be made parallel was changed to an inline function. This was done so
that it would be easy to change the size of the data types within the code.

Some local variables were moved into a higher-level function with the address being
passed in.

Each array of structures (AoS) was changed to a structure of arrays (SoA).

An Example of Class Change

Listing 15-4 shows a cut-down version of the stationsarBs class. This is the ArBB replacement for
the stations class shown in Listing 15-1. Note that all the variables are now dense containers and
that there is no dynamic memory allocation.

‘) LISTING 15-4: The ArBB version of the Stations class

Available for
download on
Wrox.com

/! define stations (SOA)
// NOTE: See arbb_classes.h for complete listing.
// The listing here is not intended to be compiled.

template<typename U>
class StationsArBB
{
public:
dense<U> z, thick, zhit, RL, RadThick, logRadThick, Sigma, Sigma2, Sy;
dense<U, 2> mapX, mapY, mapZ; // polynomial coeff.
public:
StationsArBB(){};
void field(const usize &i, const dense<U> &x,
const dense<U> &y, dense<U> H[3])
{
continues

432 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

LISTING 15-4 (continued)

dense<U> x2 = X*X;
// etc

An Example of Kernel Code Change

code snippet Chapter15\15-4.h

Listing 15-5 shows the changes that were done to the main loop in the Kalman filter. You can see

how the structure of the ArBB code is similar to the original serial code:
> The C for loop is replaced by an ArBB _for loop.
> The order and names of functions called are the same.

> Some new ArBB types are used in place of the C types.

If you want to compare the changes for yourself, you can find the original source code for the
Kalman filter in the file serial_XF.cpp, with the converted code being in parallel XF.cpp.

\) LISTING 15-5: Example of loop in Kalman filter (ArBB and serial code)

Availablefor // NOTE THIS CODE IS INCOMPLETE AND WILL NOT COMPILE!

d&‘,":g!?ggm"" // IT IS INCLUDED HERE FOR COMPARISON PURPOSES ONLY

SERIAL VERSION

for(--i; i>=0; i--){
// h = &t.vHits[i];
z0 = vStations.z[i];
dz = (z1-z0);
vStations.field (i, T[0]-T[2]*dz,T[1]-T[3]*dz,HO);

vStations.field(i,vTracks.hitsX[iTrack] [i],vTracks.hitsY[iTrack][i], HH);

combine(HH, h_w, HO);
f.set(HO, zO, H1, zl, H2, z2);

extrapolateALight (T, C, vStations.zhit[i], gp0O, f);

addMaterial (iTrack, i, gp0, T, C);

filter(iTrack, xInfo, vTracks.hitsX[iTrack][i], h.w, T, C);

filter(iTrack, yInfo, vTracks.hitsY[iTrack][i], h.w, T, C

memcpy (H2, H1, sizeof (ftype) * 3);
memcpy (H1, HO, sizeof(ftype) * 3);
z2 = z1;
z1l = z0;

Parallelizing the Track-Fitting Code | 433

ARBB VERSION

// Note 'U' is a template parameter and becomes an ArBB floating point type
_for(1 -=1, i >=0, 1--){
U z0 = ss.z[i];
dz = z1 - z0;
ss.field(i, T[0] - T[2] * dz, T[1] - T[3] * dz, HO);
ss.field(i, ts.hitsX2.row(i), ts.hitsY2.row(i), HH);
combineArBB<U>(HH, w, HO);

//! note: FieldRegionArBB f sets values here, needn't pass parameters
f.set(HO, z0, H1, zl, H2, z2);

extrapolateALightArBB2<U>(T, C, ss.zhit([i], gp0, f);
addMaterialArBB(ts, ss, 1, gp0, T, C);
filterArBB(ts, ss, xInfo, ts.hitsX2.row(
filterArBB(ts, ss, yInfo, ts.hitsY2.row(
for(int j = 0; J < 3; J ++){

), w, T, C);

i
i), w, T, C);

H2([j] = H1([]];
H1[j] = HO[J]:
}
z2 = z1;
z1l = z0;

}_end_for;

code snippet Chapter15\15-5.h

Changing to Structure of Arrays

One of the changes made in the project was how data structures are used. In the original project
there were a number of places where a data structure was held as an array of structures (AoS); these
were changed to structures of arrays (SoA). Actually, ArBB automatically transforms each AoS to an
SoA, but relying on the automatic transformation has some associated penalties:

> Host pointers cannot be aliased in a relaxed safety model.
> De-interleaving/interleaving needs to happen (“copy-in,” “copy-out”) explicitly/implicitly.

> Explicit control for transfer and control of memory “mirror space” is often a must.

Figure 15-9 shows that by using an SoA rather than an AoS, the layout in memory of the data
elements is contiguous. The user-defined type whatever_udt has two member items, m_index
and m_value. If the ArBB dense container is declared using the class whatever_udt, it looks
like an AoS — the dense container data being equivalent to an array, and the class
whatever_udt being the structure. If you look at the layout in memory, you will see that to
access a series of, say, three m_index values, the address locations are not next to each other.

To get optimal performance, it is much better to restructure the class to be like a structure
of arrays.

434 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

In object-oriented programming, some programmers will naturally write their code like the
first example (SoA), but the better way from a performance point of view would be to write
code like the second example (AoS). The first example is not incorrect; it just carries a higher
overhead.

Array of Structures (AoS)

// class definition m_index
class whatever_udt { data [0]
public: m_value
private: m_index
usize m_index; data [1]
£32 m_value; m_value
} .
// object instantiation - AOS m_index
dense<whatever_udt> data; data [2]
m_value
Structure of Arrays (SoA) m_indices[0]
;iiiicwhatever ¢ m_indices{1] data.m_indices
private: m_indices[2]
dense<usize> m_indices; m_values[0]
dense<£f32> m_values; —
}i
// object instantiation - SOA m_valuesT] data.m_values
whatever data;
m_values[2]

FIGURE 15-9: Using SoA helps to keep memory access contiguous

INTERVIEW Q4: WHAT WOULD YOU SAY IS THE BIGGEST ADVANTAGE TO
USING ARBB IN THE PROJECT (AS OPPOSED TO, SAY, OPENMP)?

Using ArBB in the project is just a first try to evaluate a more operator-style
(functional) formulation. Our main focus is to apply algorithmic improvements
resulting from our research in the physics domain. Using ArBB gives us a more
portable and forward-scaling programming language, which should protect the
value of our work.

The Results

For the results of the parallel version of the track-fitting software to be of any use, the program must
produce correct results and produce them fast. Let’s consider the following aspects:

Parallelizing the Track-Fitting Code | 435

> Correctness
Speedup and scalability

> Parallelism and concurrency

Correctness

A special version of the track-fitting software was written that compared the serial and parallel
versions. This version first runs the serial code, obtaining the minimum time over five attempts, as
before. Then the parallel version is run, again obtaining the minimum time over five attempts. The
results of the parallel run are compared against the serial run to make sure that no errors exist.

Figure 15-10 shows the results of running the special version, showing no errors and a speedup
factor of more than 43. The machine used has a two-socket motherboard containing two Intel Xeon
X 5680 (3.33GHz) processors, 12 GB of memory running Microsoft Windows 7 (64-bit). Each

CPU has 6 cores and supports hyper-threading, giving a total availability of 24 hardware threads.
Remember, your timings may differ.

BN Intel Composer XE 2011 Intel(R) 64 Visual Studio 2008 =] =3

Input Magnetic field:B8 B.88773535 -5.57273 B.136833
Input Magnetic field:2.5 A.PA664491 -5.97596 B.131289
Input Magnetic field:5 B.88555447 —6.37217 B8.12574%
Input ? Stations:

1A #.@15% 2.34953, 18 field coeff.

2@ B.815 9.34953, 1@ field coeff.

38 .84 2.34953. 10 field coeff.

48 B.84 9.34953,. 108 field coeff.

68 B.84 ?.34953,. 10 field coeff.

80 B.84 9.34953, 10 field coeff.

188 B.84 9.34953. 1@ field coeff.
stations

Minimum Time<{s>
2.714246
ArBB parallel B.862397

Test finished

FIGURE 15-10: The results show a huge speedup with no errors

Figure 15-11 shows graphs of the residuals and pulls. Residuals show the deviation between simu-
lated and estimated values. Pulls are a measure of the correctness of the error propagation. The reco
and mc labels in the graphs refer to reconstructed values and true Monte-Carlo values, respectively.

These results are identical to the serial version (not shown), proving that the ArBB version and the
original version have the same track quality.

Speedup and Scalability

Figure 15-12 shows how well the parallel program responds to different numbers of hardware
threads. As you can see, there is a respectable speedup factor of almost 11 when using all 24 hard-
ware threads available. The baseline for the speedup is the time the program takes when running
one thread (not to be confused with the serial version). The speedup is calculated as follows:

speedup = parallel speed / speed with one thread

436 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

. Constant 673 800 E Constant 799.6
700 Mean 0.1971 s Mean 0.003161
o Sigma 45.75 700 F Sigma 1.185
600 [s
s 600 [
500 [o
s 500 £
400 E
s 400 £
300 £ 300
200 | 200 F
100 £ 100 f
ok N S N R i, ok A R B R -
-200 -150 -100 -50 0 50 100 150 200 -6 -4 -2 0 2 4
Residual (X" —=X™) [um] Pull x
1200 F F
C Constant 887.2 1200 | Constant 753.1
C Mean 0.00901 F Mean 0.03133
1000 |- Sigma 0.3227|| 1000 Sigma 1249
C 1000 £
800 |- :
- 1000 |
600 |- 800 [
400 [600 |-
C 400
200 [E
- 200 F
O: L Tl v by by i IS 0: (AT AN S T T S T S S Y S L
-2 -15 -1 -0.5 0 0.5 1 1.5 2 —6 -4 -2 0 2 4
Residual (t,"*“° —t,™) [mrad] Pull tx
: 800
900 ¢ Constant 831.6 F Constant 697.2
800 £ Mean -0.02871 700 ¢ Mean 0.01415
E Sigma 0.9375 o Sigma 1325
700 600 |
600 [500 |-
500 £ 400 |-
400 E
3 300
300 | s
F 200 |
200 e E
100 E 100 :—
0 Bt 2L e L S ok AT T .. -
5 4 -3 -2 1 o0 1 2 3 4 5 ~6 —4 = 0 2 4
Resolution (P"<° —P™M<)/ PM[%] Pull a/p

FIGURE 15-11: The parallel results showing residuals and pulls of the estimated track parameters

Parallelizing the Track-Fitting Code | 437

Application Scalability

12 s | : 100
I —
10 - i
/ , - 80
|
g 87 N 60
=1 (S
D 6 :@ \H\» 5
;).’- %IQ él _40 'g
at—4——=E £z o
815 8|8 20
- ‘_I hl_ 2 B
2 E:E %‘:; § —— Speedup
0 Zp — 21 . 0 —=— Efficiency
0 10 20 30 40

Number of Threads

FIGURE 15-12: The scalability and efficiency of the ArBB version

Using the lower number of threads, the parallel program runs at its most efficient; as the number
of threads increases, the efficiency deteriorates. The two dotted lines in the graph mark the point
where the number of ArBB threads is equal to the number of physical and logical cores (that is,
hardware threads), respectively. Each of the 12 physical cores supports hyper-threading, giving a
total of 24 logical cores.

Once the number of ArBB threads exceeds the number of hardware threads that the test machine
can support, the speedup begins to drop — this is most likely due to the extra context switching the

operating system has to perform.

The efficiency figure in Figure 15-12 is a measure of how well the CPU resources are being used. If
a program uses all the CPU cycles available, it is said to be 100 percent efficient. The efficiency is

calculated as follows:

efficiency = (total CPU time / (duration * num cores)) * 100

The number of cycles used was measured using Amplifier XE’s Lightweight Hotspots analysis. To
measure the scalability and efficiency of the program, two program modifications are made:

> Amplifier XE’s Frame API is used to insert markers at the beginning and end of the measure-
ment points in the code:

#include "ittnotify.h" // to use Amplifier XE API
__itt_domain* pD = _ itt_domain_create("TrackFitter");
pD->flags = 1; // enable domain
for (1=0; 1<NUM_RUNS;i++)
{

// create time variable

double time;

{

// start ArBB scoped timer which will measure
// time within its scoped lifetime

// start a frame for vtune

_ itt_frame_begin_v3 (pD, NULL) ;

438 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

const arbb::scoped_timer timer (time);
// call main parallel track-fitting function
fitTracksArBB(T1, Cl, nT, nS);
}
// scoped time ends here, var time holds its value
// reset Timing to minimum time so far
Timing = std::min(Timing, time);
__itt_frame_end_ v3(pD, NULL);

}
» The ArBB API is used to control the maximum number of ArBB threads the ArBB kernel
can use:
#include "arbb.hpp" // to access the ArBB libraries

int main(int argc, char* argv[])

{

int num_threads = 0;
if (argc==2)
{
num_threads=atoi(argv[l]);
arbb: :num_threads (num_threads);
printf ("WARNING: Max threads set to: %d\n",num threads);

}

Parallelism and Concurrency

Figure 15-13 shows the screenshot of an Amplifier XE Concurrency analysis. The timeline view at
the bottom half of the screen displays two of the threads, a CPU Usage line, a Thread Concurrency
line, and a Frame Rate line.

{2 C\Users\sblairch!\Documents\ Amplifier XE\Projects\ chapter 15 - Intel VTune Amplifier XE 2011 =N o |
File View Help

Bk B b
r031cc X -

read Concurrency 4 @ Intel VTune Amplifier XE 2011
BN . A A A A A
[@ Analysis Target] | * Analysis Type| [B Collection Log| [Ht Summary | [EYERIAERY | <+ Top-down Tree|

Grouping: ~Function / CallStack - [waitng -]

3 4stack(s) sele
¥ Current stack it

81.5%

[Unknown]

P Concurrency - Hotspots by Th

CPU Time by Utilization~ Ove... Wit Time by Utilization

Function / Call Stack S
@idie @ Poor [Ok [1deal [Over [@idie B Poor [Ok [Ideal [Over

H cviVSinF3

emCounterDumpUnmaske

305850 1.0465 0s arb

& [parallel-intelbd.exe] 2012¢ 18875 0065 pat
£ arbb_free_binding 05155 0031s| 0.000s arb
Selected 1 row(s): 57405 00625 009ts -
<[Plla] .] b
L L L L L L L L L
foTs 055 1s 155 25 255 35 355 45 455 55 555 65 655 75 755 < |RulerArea &
W T| Evrame ‘
£ Thread (0:@bcq) i ~ |[# Threads
CPU Usage m @ Running |
] Waits
Thread Concurrency “J Uk CPUTime |
Transitions
Frame Rate i CPU Usage
< Lo Mk CPUTime ~

[l o fitters are applied. [RAGNEEENCH (Al Tnine Mode: (SR - Only user functions ~ [l

FIGURE 15-13: The ArBB version of the application is highly parallel

Parallelizing the Track-Fitting Code | 439

Notice the following:

> For most of the program, only one thread appears to be running. This is because the early

part of the program was taken up with reading the data files and doing the JIT compilation.

There is a blip of activity at the end of the program. Both the Thread Concurrency bar and
the CPU Usage bar show that there is significant parallel activity. This is when the main track
fitting is done.

Zooming in on a dense area of activity gives a better view of what is happening (see Figure 15-14).
The timeline shows five distinct periods of activity — hence, the bumps in the CPU Usage bar.

() CUsers\sblairch\Documents\Amplifier XE\Projects\chapter 15 - Intel VTune Amplifier XE 2011][] (3]
File View Help

B B e b

r03lcc X

] Concurrency - Hotspots by Thread Concurrency P 2] Intel VTune Ampiiﬁer XE 2011

B A
[Analysis Target| [~ Analysis Type| |22 Collection Log| | 1t summary | [Nt |+ Top-down Tree|

Grouping: ~|Function / Call Stack

v] [Wamng v]
] -~ | @ 4stackis) sele
T CPU Time by Utilizationw ?f\:;a A B
@ Idie @ Poor [J Ok [Ideal [Over 0 Idle \| =
B cviVSinF3 397 — 0.047<| 0.091: k2
[arbb_free_binding | 00475 0s 0s| (M [Unknown]
& [Unknown] 0s 0s 02025
 [parallel-intelfd.exe] 0s 0s| 0.000s
Selected 1 row(s): 5397s| 0.047s =
gl re] n] v
" " " y ' y ' y R
QRO Q-C# 5s 7.5 165 7655 17s 7755 78s 7855 79s & |Ruler Area &
:| Thread 0:2930) + | Evwframe
E[Thread (02bcg || - hreads
CPU Usage [] @8 Running | =
[0 Waits
Tz e 4—-‘_.__J ETMLECPUTime 8

Transitions

< [y » » Mk CPUTime ~

Bl Filier: 47.9% is shown JRSSEENETEY [Al]

FIGURE 15-14: The CPU Usage bar confirms that all 24 hardware threads are being used

At the beginning of each area period of activity is a vertical bar. This bar is a thread transition/
synchronization point. When you hover your mouse over one of the transition lines, the gray box
pops up and displays information about the synchronization object. It is a critical section in the
Threading Building Blocks (TBB) scheduler. ArBB relies on its implementation of parallelism by
using TBB under the hood.

In the top half of the screenshot is a bar that indicates how parallel this part of the program
is — that is, the concurrency:

> The first tenth of the bar is colored red. (Sorry, you won’t see the color in the printed version
of the figure.) This means for 10 percent of the time the concurrency was poor.

> The next seven-tenths of the bar is colored orange, meaning that for 70 percent of the time
the amount of parallelism is okay.

>

The last two-tenths of the bar is colored green, meaning that for 20 percent of the time the
concurrency level was perfect, with the number of the threads running being equal to the
number of hardware threads the system can support.

440 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

INTERVIEW Q5: IF YOU WERE DOING THE PROJECT AGAIN, IS THERE
ANYTHING YOU WOULD DO DIFFERENTLY?

I would have a look at the data model first (in terms of a natural/appropriate rep-
resentation), and express the algorithm starting from there. The original serial
code was completely decomposed in an object-oriented manner. Not that OOP is
not great with ArBB, but the original decomposed code was relatively complicated
because of the scattered storage model. It was a long path to find that this isn’t
great in terms of data parallelism (local access, alignment, and so on) in general.

THE HANDS-ON PROJECT

This section leads you through the steps to change the serial version of the track-fitting code to use
ArBB. Two modules, the driver driver.cpp and the filter serial_KF.cpp, will be converted to
using ArBB. This example takes one significant shortcut: the ArBB version of the filter is provided

“ready-made.” You still have the opportunity of going through the four steps to add ArBB, because
the filter driver code has to be “ArBB-ized.”

The Activities

Figure 15-15 shows the steps to perform. You start with a serial version of the code and progres-
sively convert the program to use ArBB. The most significant parts of the hands-on are in Activity

15-3 to Activity 15-6. The steps you take here are typical of the steps you can take when adding
ArBB to any project.

Build Serial Activity 15-1 } Serial
Version
<
Configure
ArBB Build Activity 15-2
Environment
P
'desr?t'fy Kernel Activity 15-3
ignature
Allocate & > Parallel
ocate o
The four Bind Activity 15-4
stepsto <
add ArBB
Invoke Call Activity 15-5
Implement L
Kernel Activity 15-6
Y -

FIGURE 15-15: The steps of the hands-on activities

The Hands-On Project | 441

The Projects
The following three projects are provided with this case study:

> serial_track_fit — Contains the serial version of the track-fitting software. This is the
version you will copy and modify.

> ArBB_track_fit — This is the solution. Your version should look like this once you have
completed the hands-on activities.

> combined_track_fit — This version runs both the serial and parallel versions and checks
their accuracy against each other and compares their run times. This version is not used
in the hands-on, but it is supplied in case you are interested in looking how to validate the
results. (Figure 15-10 showed an example of the output.)

Building and Running the Serial Version
Figure 15-16 shows the files included in the serial version of the track-fitting software:
> main.cpp — Contains the main function of the program.

» ReadFiles.cpp — Contains the function readInput, which reads two data files, Geo.dat
and Tracks.dat. This function creates dynamic arrays into which it places the information.
The addresses of these arrays are stored within the pointer data of the three classes defined
within the header file classes.h.

driver.cpp — Contains the driving function fitTracks of the serial Kalman filter.
serial_ KF.cpp — Contains the serial version of the Kalman filter.

> classes.h — Contains three classes, for magnetic fields, stations, and tracks. Their data
consists of pointers that are loaded with the start addresses of the dynamically allocated
arrays created and loaded within ReadFiles. cpp.

> fit_util.h — Contains a set of constant values.

The Serial Track-Fitting Code

The track-fitting code first applies the Kalman filter to all 20,000 tracks and then repeats this 100
times, obtaining a time for doing so. This is then repeated five times, with the smallest of the five
results taken as the final benchmark time.

Following is the main loop at the heart of the main function in main.cpp that calls the Kalman
filter driver fitTracks five times. The time taken for each iteration is measured and stored in the
Elapsed variable. The iteration that records the smallest time value is accepted as the benchmark
timing. On Windows, the serial version uses timeGetTime () to record the timestamps.

for (1=0; 1<NUM_RUNS;i++)
{
// set start time
StartTime = timeGetTime();
// call main serial track-fitting function
fitTracks(T1l, C1l, nT, nS);
// determine elapsed time

442 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

Elapsed = (int) (timeGetTime() - StartTime);
// get minimum time so far
Timing = std::min(Timing, Elapsed);

}
main.cpp classes.h fit_util.h
main(...) Classes: Constants
FieldRegion
ReadFiles.cpp ?tatklzns
racks
> readlnput(...)
driver.cpp
> fitTracks(...) serial KF.cpp

Y

fit(...)

Y

extrapolateALight(. . .)

) Other functions making
Serial program for benchmark test up the serial

of serial Kalman filter track fitter Kalman filter track fitter

FIGURE 15-16: Configuration of the serial benchmark program

The T1 parameter is a pointer to an array that holds the track information; the c1 parameter points
to the covariance matrix; and the nT and ns parameters are used to store the number of tracks and
stations, respectively.

Listing 15-6 shows the driver. cpp file, which contains the driver function fitTracks, which is
called from main (). The Kalman filter track fitter it (i, T[i], C[i]) is applied to each track
in turn. This is then repeated 100 times to get an overall average performance. Once this has been
carried out, the state and covariance data matrices for each track are extrapolated back to their
start. In this hands-on, the most significant code edits will be made in driver. cpp.

\) LISTING 15-6: The serial version of driver.cpp

Available for #include <math.h>

dm:;‘?gg;" #include "fit_util.h" // set of constants
#include "classes.h" // Main Kalman filter classes
typedef float ftype; // set ftype to be single precision data

using namespace std;

extern FieldRegion magField;
extern Stations vStations;
extern Tracks vTracks;

The Hands-On Project | 443

[/ === Prototypes

void fit(int iTrack, ftype T[6], ftype C[15]);

void extrapolateALight(ftype T[], ftype C[], const ftype zOut, ftype ap0,
FieldRegion &F);

// ***** Driver of Serial Version of Kalman Filter Track Fitter *****
void fitTracks(ftype (*T)[6], ftype (*C)[15], int nT, int nS)
{
// Repeat the Kalman filtering 100 times
for(int times=0; times<Ntimes; times++)
{
// take each track in turn and process
for(unsigned int 1=0; i<nT; i++)
{
// apply Kalman filter to track
fit(i, T[i], C[i], nT, nS);

}
// extrapolate all tracks back to start
for(unsigned int i=0; i<nT; i++)
{
extrapolateALight (T[i], C[i], vTracks.MC_z[i], TI[i][4], magField);

code snippet Chapter15\15-6.cpp

The Application Output

Figure 15-17 shows the output from the program. After displaying some setup information involv-
ing magnetic fields and the number of stations and tracks, the timing information is given. In this
example, the time shown is just under three seconds. You need to be patient, however, because this
is the best of five attempts; the actual run time is in excess of 15 seconds. You can build and run the
serial version of the program for yourself in Activity 15-1.

& Intel Composer XE 2011 Intel(R) 64 Visual Studio 2008 =8 ECH (===

Input Magnetic field:@ @.8@773535 -5.57273 A.136833 -
Input Magnetic field:2.5 B.8P664491 -5.97596 B.131289
Input Magnetic field:5 B.88555447 —6.37917 0.125745
Input 7 Stations:
18 B.815 9.34953, 108 field coeff.
20 B.815 9.34953, 108 field coeff.
30 B.84 2.34953, 18 field coeff.
40 B.84 2.34953, 10 field coeff.
68 B.84 2.34953, 10 field coeff.
80 .84 2.34953, 18 field coeff.

188 B.84 ?.34953, 18 field coeff.
Number of stations — 7

Test finished 2L
4 m 3

FIGURE 15-17: Results of running the serial version of track-fitting software

444 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

The machine used has a two-socket motherboard containing two Intel Xeon X5680 (3.33GHz) proces-
sors, 12 GB of memory running Microsoft Window 7 (64-bit). Each CPU has 6 cores, and supports
hyper-threading, giving a total availability of 24 hardware threads. Remember, your timings may vary.

ACTIVITY 15-1: BUILDING AND RUNNING THE SERIAL VERSION

In this activity you build and run the serial version of the track-fitting program.

Building the Program

1. Unzip the TrackFitter.zip file to a directory for which you have read/write
access.

2. Open a Parallel Studio Composer command prompt and navigate to the
serial track fit folder.

3. Clean and then build the build_serial solution using nmake:

nmake -f Makefile-WIN32 clean
nmake -f Makefile-WIN32

Running the Program

4. Run the program by calling it:

serial-intel64.exe
Note that if you are building a 32-bit application, the name will be serial-ia32
.exe. Remember that the main loop in the program runs five times, so although the
program may report minimum time taken of, say, five seconds, the time to run the
program will be at least five times that.

Other Activities

5. Examine the makefile Makefile-wIN32. Which compiler was used to build the
program? (Hint: Look at the variable cpp.)

6. Replace the CPP macro so that the Microsoft compiler is used:

CPP=cl

7. Rebuild and run the program, and then compare the time. You should find
that the program built with the Intel compiler is faster.

8. Swap back to the Intel compiler by reversing the edit you did in step 6.

Parallelizing the Track-Fitting Code

As stated earlier, the Kalman filter is already provided for you with the complete ArBB code; how-
ever, you still need to modify the driver code.

Configuring the Array Building Blocks Build Environment

Some files will need to be modified, and others replaced. (You can try this for yourself in
Activity 15-2.)

The Hands-On Project | 445

The main function should call the new parallel driver fitTracksArBB.

The ArBB-aligned functions for dynamic memory allocation and deallocation are added to
the files classes.h and ReadFiles. cpp.

When binding C structures to the ArBB containers, you will get a performance improve-
ment if the C structures are aligned. ArBB containers are aligned automatically.

In the serial code, several C constructs are dynamically allocated using malloc. By using
the arbb: :aligned_malloc ArBB function, the required alignment is achieved. The

following code snippet gives an example of dynamically allocating and then freeing an
aligned structure:

int 1INHits = 100;

int *1Ista = (int*)arbb::aligned_malloc (1NHits*sizeof (int));
// some code to use

// etc

// now free the dynamic structure

arbb::aligned_free(1lIsta);

The new parallel Kalman filter parallel_xF replaces the serial version serial XF.cpp.

The new filter is provided already built. It was developed using the same methodology

as the driver — that is, identify the kernel, bind and allocate, add the call, and implement
the kernel.

Figure 15-18 shows the new configuration for the parallel version. New files have a double line
around them; original files that need editing have a dotted box around them; original unmodified
files have a single box around them.

main.cpp classes.h fit_util.h
________ . L s L
i]
| main(...) | ! Classes: | Constants
[| FieldRegion :
ReadFiles.cpp : Stations |
! ! | Tracks | arbb_classes.h
——> readlnput(...); = === —--=
e Classes:
FieldRegionArBB
_____ drivercpp StationsArBB
: 1| TracksArBB
—> fitTracksArBB(...) :
| l !
! |
|
i |
| dAEE) e e
> fitArBB(. . .)

extrapolateALightArBB(. . .)

Y

Other functions making
up the parallel
Kalman filter track fitter

Parallel program for benchmark test
of parallel Kalman filter track fitter

FIGURE 15-18: Configuration of the parallel benchmark program

446 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

ACTIVITY 15-2: PREPARING THE ARBB ENVIRONMENT

In this activity you prepare the parallel version of the track-fitting program.

Make sure you have installed ArBB on your computer. At the time of writing, ArBB
is available as a separate product, downloadable from www. intel.com/go/arbb/.

Copying Files and Modifying the Makefile

1.
2.

3.

Copy the contents of serial_track_ fit into a new folder.

Into that new folder, copy the arbb_classes.h and parallel KF.cpp files
from the ArBB_track_fit folder.

Edit Makefile-WIN32 (in your new folder):
> Add the following lines to the top of the file, making sure that the path
ARBB_ROOT points to the place where you installed ArBB:

ARBB_ROOT = c:\PROGRA~2\Intel\arbb\Beta5~1
ARBB_INCS="$ (ARBB_ROOT) \include"
ARBB_LIBS="$ (ARBB_ROOT) \1ib\$ (TARGET_ARCH) "

> Change the following lines:
EXE=serial-$ (TARGET_ARCH) .exe

serial_build: driver.obj main.obj ReadFiles.obj serial_ KF.obj
$(CPP) /o S$(EXE) $** winmm.lib

to:
EXE=parallel-$ (TARGET_ARCH) .exe

build: driver.obj main.obj ReadFiles.obj parallel KF.obj
$(CPP) /o S$(EXE) $** /link /LIBPATH:$ (ARBB_LIBS) arbb.lib

> Save your changes.

Modifying main.cpp

The driver function name should be modified to fitTracksarBB. The scoped_
timer function is used to measure the time duration within its scope — hence, the
reason for the extra braces. This eliminates a pair of includes but requires the new
include for the ArBB libraries.

4.

Edit main. cpp:

» Add an extra include:

#include <limits> // for data limits
#include "arbb.hpp" // to access the ArBB libraries
#include "fit_util.h" // a set of constants

> Comment out the following include:

// #include <mmsystem.h> // for timeGetTime () function

http://www.intel.com/go/arbb

The Hands-On Project | 447

> Change the name of the prototype fitTracks to fitTracksArBB:

void fitTracksArBB(ftype (*T)[6], ftype (*C)[15],

int nT, int nS);

> Comment out the declaration of StartTime at the beginning of main:

int main(int /*argc*/, char* /*argv*/[])

{

int i, nT, nS; // loop counter, number of tracks & stations

DWORD StartTime; // Start time
double Timing, Elapsed; // Timing values

> Replace the loop in main so that it looks like this:

for (i=0; 1<NUM_RUNS; i++)
{
// create time variable
double time;

{

// start ArBB scoped timer which will measure

// time within its scoped lifetime
const arbb::scoped_timer timer (time) ;

// call main parallel track-fitting function

fitTracksArBB(T1l, Cl, nT, nS);
}

// scoped time ends here, var time holds its value

// reset timing to minimum time so far
Timing = std::min(Timing, time);

}

> Save your changes.

Modifying ReadFiles.cpp and classes.h

You need to modify the calls to malloc and free in ReadFiles.cpp and

classes.h to use aligned ArBB calls.

5. In ReadFiles.cpp and classes.h:

> Replace all calls to malloc with arbb: :aligned malloc.

> Replace all calls to free with arbb: :aligned free.

> Include the header arbb.hpp at the top of the file:

#include <arbb.hpp>

> Save your changes.

Editing driver.cpp

6. Indriver.cpp:

> Change the name of the fitTracks function to fitTracks ArBB:

void fitTracksArBB(ftype (*T)[6], ftype (*C)[15],

int nT, int nS)

continues

448 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

continued

> Change the name of the extrapolateaLight function to
extrapolateALightArBB:

extrapolateALightArBB

> Save your changes.

Building the Files
7. Build the new files:

nmake -f Makefile-WIN32

You will get two linker errors complaining about unresolved external symbols.
You’ll deal with these errors in Activity 15-3.

Writing the Parallel Driver

Figure 15-19 shows the calling sequence of the original code and the new parallel version. To make
the marshalling of parameters, you should add an extra £itTracksArBBEntry function to the parallel

sequence.
main() main()
y Call 5 times y Call 5 times Allocation,
) binding and
fitTracks() fitTracksArBB() } calling done
l here
r : """""""""" : N
i fitTracksArBBEntry |
Call 100 times l Call 100 times
[ttt ! Kernel
ABB < ! fitArBB 1 >~ implementation
Code | i
-------------------- done here
v l
fit
inline fitArBB
~ P
(a) Serial Version (b) Parallel Version

FIGURE 15-19: The calling sequence, before and after adding ArBB

The bottom box of the parallel version contains the Kalman filter and is supplied with ArBB code
already implemented. You will add all the preceding blocks in Activities 15-3 to 15-6.

As described in the first part of this case study (refer to Figure 15-8 and associated text), you should
apply ArBB in four steps:

1. Identify the kernel in the driver.

2. Allocate new ArBB containers and bind them to the existing data structures.

The Hands-On Project | 449

3. Invoke the kernel.

4. Implement the kernel.

If you get confused while trying out these four steps, you can always look at the
serial and parallel versions of the source code, which are in Listings 15-6 and
15-7, respectively.

Identifying the Kernel in the Driver

The kernel, which is invoked by a call operator, contains the entire contents of the serial driver.

New Prototype

The kernel prototype has five parameters, the first three being based on the original C code, the sec-
ond two being the addresses to the newly introduced ArBB containers vtT and vtc:

void fitTracksArBBEntry(132 vSize, TracksArBB<FTYPE> vTracksArBB,
StationsArBB<FTYPE> vStationsArBB,
dense< array<FTYPE, 6> > &vtT,
dense< array<FTYPE, 15> > &vtC)

New Classes

The classes for magnetic fields, stations, and tracks defined in classes.h need to be replaced

with ArBB equivalents. Two new classes, StationsArBB and TracksArBB, and one structure,
FieldRegionArBB, are provided for you in classes_arbb.h, and have the same member items as
the original classes. However, instead of being pointers, they are ArBB containers. For example, the
original class Tracks had public members:

class Tracks

{

public:
float *MC_x, *MC_y, *MC_z, *MC_px, *MC_py, *MC_pz, *MC_qg;
int *nHits, *NDF;

float **hitsX, **hitsY;
float *hitsX2, *hitsY2;
int **hitsIsta;

Tracks () {};

The new class, TracksArBB, reflects these members as containers:

class TracksArBB
{

public:
dense<f32> MC_x, MC_y, MC_z, MC_px, MC_py, MC_pz, MC_qg;
dense<i32> nHits, NDF;

dense<f32, 2> hitsX, hitsY;
dense<f32, 2> hitsX2, hitsY2;
dense<i32, 2> hitsIsta;

TracksArBB() {};

450 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

Note that within all the project files, the following type definitions have been used:

typedef float ftype; // set ftype to be single precision data
typedef f£32 FTYPE; // set FTYPE to be ArBB single precision data

ACTIVITY 15-3: IDENTIFYING THE KERNEL

In this activity you adapt the driver code to use ArBB. It is important that you have
first completed Activity 15-2.

1. Open the driver.cpp file.
2. Rename fitTracks to fitTracksArBB.

3. Disable the contents of the new fitTracksArBB function with a #if 0:

void fitTracksArBBEntry(..)

{
#if 0

#endif
}

4. Create a new fitTrackArBBEntry function:

void fitTracksArBBEntry(132 vSize, TracksArBB<FTYPE> vTracksArBB,
StationsArBB<FTYPE> vStationsArBB,
dense< array<FTYPE, 6> > &vtT,
dense< array<FTYPE, 15> > &vtC)

{

}

5. Replace the function prototypes in driver .cpp with the function prototypes
founds in lines 10-29 of Listing 15-7.

6. Move the contents of fitTracksArBB into fitTracksArBBEntry (that is,
everything you disabled in step 2, including the #if 0 ... #endif statements).

7. Add two new header files:

#include "classes.h" // Main Kalman filter classes
#include "arbb_classes.h" // Added classes for parallel driver
#include "arbb.hpp" // Added for ArBB namespace data

8. Build the project:

nmake -f Makefile-WIN32

There should be no errors. You should be able to run the executable, but it will
print out only the introductory information.

Allocating and Binding

Each of the new ArBB classes now needs to be instantiating, and the original data bound to this new
instantiation. This binding is carried out in driver.cpp, in the function fitTracksArBB. You can
try out the allocating and binding for yourself in Activity 15-4.

The Hands-On Project | 451

Binding TracksArBB and StationArBB

An instance of the old Tracks class already exists within ReadFiles.cpp, called vTracks.
The member items of this class contain all the track information loaded from the data files.
You must now bind these member items with the containers in the new class TracksarBB —
for example:

TracksArBB<FTYPE> vTracksArBB; // create new instance of new class
// bind with existing information from
// instance of old class Tracks
bind (vTracksArBB.MC_x, vTracks.MC_x, nT);
bind(vTracksArBB.MC_y, vTracks.MC_y, nT);
etc

Similarly, an instance of the new class stationsarBB must be created and bound with the existing
information from the instance of the old stations class:

StationsArBB<FTYPE> vStationsArBB; // create new instance of new class
// bind with existing information from
// instance of old class Stations
bind(vStationsArBB.z, vStations.z, nS);
bind(vStationsArBB.thick, vStations.thick, nS);
etc

Swapping the Order of the Track

The original track hit information is held in members hitsx and hitsy. These are two-dimensional
arrays with the track number first and station number last. For ArBB parallelization, which aims

to simultaneously process tracks, you should store this information in reverse order, with the track
number last. To facilitate this, create two new arrays, x2hits and Y2hits, into which the hit infor-
mation is transferred in the correct order. In the following example code, nT and ns are the number
of tracks and stations, respectively:

ARBB_CPP_ALIGN (ftype * X2hits);
ARBB_CPP_ALIGN (ftype * Y2hits);
// reserve array space
X2hits = (ftype *) arbb::aligned_malloc(sizeof(ftype) * nS * nT);
Y2hits = (ftype *) arbb::aligned_malloc(sizeof(ftype) * nS * nT);
// load hit data in reverse order
for(int ix = 0; ix < nT; ix ++)
{
for(int jx = 0; jx < nS; jx ++)
{
X2hits[jx * nT + ix] vTracks.hitsX[ix] [jx];
Y2hits[jx * nT + ix] = vTracks.hitsY[ix][jx];
}

Notice the use of ArBB alignment macros and functions. You can bind these new arrays to members
of the new TracksaArBB class instance vTrackarBB as follows:

bind (vTracksArBB.hitsX2, X2hits, nT, nS);
bind(vTracksArBB.hitsY2, Y2hits, nT, nS);

452 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

Swapping the Order of the State and Covariance Matrices

The order of the two-dimensional state and covariance matrices T and ¢ also need to be swapped.
These are empty arrays at this point, so no actual data needs to be transferred. However, you should
create new matrices of the correct order and bind them to appropriate ArBB containers. For
example, the T state matrix has a new matrix, TBuf, which is bound to the container vtT:

// define a state array of 6 pointers
ARBB_CPP_ALIGN (ftype *TBuf([6]);
// reserve array space for each, size number of tracks
for(int 1 = 0; 1 < 6; 1 ++)
{
TBuf[i] = (ftype *) arbb::aligned_malloc(sizeof(ftype) * nT);
}
// define array of 6 dense containers for state matrix
dense< array<FTYPE, 6> > vtT;
// bind to state matrix
bind(vtT, nT, TBuf[0], TBuf[l], TBuf[2], TBuf([3], TBuf[4], TBuf[5]);

You should repeat this with the 15-component covariance matrix ¢, where a new matrix, CBuf,
needs to be created and bound with a new container, vtc.

ACTIVITY 15-4: ALLOCATING AND BINDING

In this activity you adapt the driver code to use ArBB. It is important that you have
first completed Activity 15-3.

1. Inthe driver.cpp file, bind the track and station variables with their ArBB
equivalents by copying lines 91 to 126 of Listing 15-7 into the fitTracksArBB
function.

2. To swap the order of the covariance and state matrices, copy lines 62 to 90 of
Listing 15-7 into the start of fitTracksArBB function.

3. To swap the order of the track data, copy lines 40 to 61 of Listing 15-7 into
the start of £itTracksArBB function.

4. Build the project:

nmake -f Makefile-WIN32

There should be no errors. You should be able to run the executable, although it
will print out only the introductory information.

Invoking the Kernel

The kernel is invoked through a cal1 operation. This new function is passed the ArBB-style data
containers, as follows:

The Hands-On Project | 453

// set number of tracks in ArBB data type

132 vSize = nT;

// Invoke Kalman filter track fitter by call operator

call (fitTracksArBBEntry) (vSize, vTracksArBB, vStationsArBB, vtT, vtC);

At this point in the code you can now invoke the kernel function through a call operation, as shown
in step 3 of Activity 15-5.

Before returning from the fitTracksarBB function, you must store the contents of matrices TBuf
and cBuf into the originally passed matrices of T and c, and release their spaces. You also need
to release the space used for the x2hits and Y2hits matrices. The following snippet uses TBuf

as an example:

// Store TBuf data into T matrix in desired order
for(int 1 = 0; 1 < nT; 1 ++)
{

for(int j = 0; j < 6; J ++)

{

T[i][3] = TBuf(j]l[il;

}
}
// Release memory of TBuf matrix
for(int 1 = 0; 1 < 6; 1 ++)

{
arbb::aligned_free(TBuf[i]);
}

ACTIVITY 15-5: INVOKING THE CALL

In this activity you adapt the driver code to use ArBB. It is important that you have
first completed Activity 15-4.

1. Inthe driver.cpp file, invoke the call to the driver kernel by copying lines
127 to 133 of Listing 15-7 into the end of function fitTracksArBB.

2. Add the results back into the covariance and state matrices by copying lines
134 to 152 of Listing 15-7 into the end of the fitTracksArBB function.

3. Free up the dynamically allocated memory by copying lines 153 to 167 of
Listing 15-7 into the end of the fitTracksArBB function.

4. Build the project:

nmake -f Makefile-WIN32

There should be no errors. You should be able to run the executable, but it will
print out only the introductory information.

| CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

Implementing the Kernel

Your last step in converting the program to use ArBB is to implement the contents of the
fitTracksArBBEntry kernel function.

Calling the Parallel Kalman Filter

The new code has the same heuristics as the original serial code, applying the Kalman filter on the
20,000 tracks in a for loop iterating 100 times, and then extrapolating the start points of
the tracks.

An ArBB-type _for loop is used in the first part:

_for(j = (usize)0, j < Ntimes, Jj ++)
{
fitArBB(vTracksArBB, vStationsArBB, magFieldArBB, vtT, vtC);

}_end_for;

where usize is an ArBB data type used for indices.

Finally, the extrapolation of the tracks requires you to use a local state and covariance matrices
T and ¢, which you must load with the current values from the containers vtT and vtc. The follow-
ing example uses the T state matrix:

// define local matrices of dense containers
dense<FTYPE> T[6];
dense<FTYPE> C[15];

// load T with contents of vtT
T[0] = vtT.get<FTYPE, 0>();

T[1] = vtT.get<FTYPE, 1>();
T[2] = VtT.get<FTYPE, 2>();
T[3] = vtT.get<FTYPE, 3>();
T[4] = vtT.get<FTYPE, 4>();
T[5] = VvtT.get<FTYPE, 5>();

Then call the parallel version of the extrapolation function:

// Call extrapolation function
extrapolateALightArBB(T, C, vTracksArBB.MC_x, T[4], magFieldArBB);

Loading New Values Back into the C Structures
The last action is to reload the new T and ¢ values into the containers vtT and vtc, respectively:

// Reload vtT with new contents of T
vtT.set<0>(T[0]);

vtT.set<1>(T[1]);
vtT.set<2>(T[2]);
VtT.set<3>(T[3]);
vtT.set<4>(T[4]);
vtT.set<5>(T[5]);

The Hands-On Project | 455

ACTIVITY 15-6: IMPLEMENTING THE KERNEL

In this activity you adapt the driver code to use ArBB. It is important that you have
first completed Activity 15-5. Note that you are now editing the fitTracksArBB-
Entry function.

1. Inthe driver.cpp file, add the call to the Kalman filter:

> Delete the #if 0 .. #endif clause (and its contents) in the fitTracks-
ArBBEntry function.

> Copy lines 174 to 187 of Listing 15-7 into the end of the fitTracks-
ArBBEntry function.

2. Extrapolate the track starting points by copying lines 188 to 217 of Listing
15-7 into the end of the fitTracksArBBEntry function.

3. Load the new values back into the C structures by copying lines 218 to 244 of
Listing 15-7 into the end of the fitTracksArBBEntry function.

4. Build the project:

nmake

-f Makefile-WIN32

There should be no errors, and everything should run. Congratulations!

You are now ready to build and run the application, which should produce the output shown in

Figure 15-20.

Stations:

30 A.04 7.34953.
48 @.84 9.34953.
6@ B.A4 9_34953.
88 A.84 7.34953.

sion
B parallel

Test finished

B8 Intel Composer XE 2011 Intel(R} 64 Visual Studio 2008

Magnetic field:
Magnetic field:
Magnetic field:

1@ A.@15 7.34953.
20 A.@15 7.34953,

188 A.84 ?_.34953,
Number of stations — 7

B B.88773535 -5.5Y273 B.136833
2.5 B.AP6R44%1 -5.975%6 A.131289
5 B.88555447 -6.37917 B.125745

10 field coeff.
18 field coeff.
10 field coeff.
18 field coeff.
18 field coeff.
18 field coeff.
18 field coeff.

FIGURE 15-20: Results of running the ArBB version of track-fitting software

As before, after outputting some setup information involving magnetic fields and the number of sta-
tions and tracks, the timing information is given between the dashed lines. Compared to the serial
timings (refer to Figure 15-17), the ArBB version is 42 times faster.

456 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

‘) LISTING 15-7: Parallel driver for the parallel version of Kalman filter track fitter

Available for
download on
Wrox.com

1
2
3:
4:
5
6
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
:void extrapolateALightArBB(dense<FTYPE> *T, dense<FTYPE> *C,

25
26

27:
28:
29:
30:
31:

32
33
34

35:
:// *** Driving ArBB Parallel Version of Kalman Filter Track Fitter ***
37:

:void fitTracksArBB(ftype (*T)I[6], ftype (*C)[15], int nT, int nS)
39:
40:
41:
42
43:
44
45:
46:
47
48:
49:
50:
51:
52:
53:
54:

36

38

#include "fit_util.h" // a set of constants

#include "classes.h" // Main Kalman filter classes
#include "arbb_classes.h" // Added classes for parallel driver
#include "arbb.hpp" // added for arbb namespace data

typedef float ftype;
typedef £32 FTYPE; // Added for parallel driver

using namespace std;
using namespace arbb; // Access to arbb

[/ —mmmmmm e mm e mm e — o Prototypes

void fitTracksArBBEntry(132 vSize, TracksArBB<FTYPE> vTracksArBB,
StationsArBB<FTYPE> vStationsArBB,
dense< array<FTYPE, 6> > &vtT,
dense< array<FTYPE, 15> > &vtC)

void fitArBB(TracksArBB<FTYPE> &ts, StationsArBB<FTYPE> &ss,
FieldRegionArBB<FTYPE> &f,
dense< array<FTYPE, 6> > &vtT,
dense< array<FTYPE, 15> > &vtC)

:dense<FTYPE>
&zOut,dense<FTYPE>& gpO,
FieldRegionArBB<FTYPE> &F);
/] e Global data, instances of classes
:extern FieldRegion magField;
:extern Stations vStations;
:extern Tracks vTracks;

{

int ix, jx;

// Create new arrays to hold track hits and load with track hit data.
// The new data is transposed so the last index is track number,

// rather than first

// Create two pointers for track hit data

ARBB_CPP_ALIGN (ftype * X2hits);

ARBB_CPP_ALIGN (ftype * Y2hits);

// reserve array space

X2hits = (ftype *) arbb::aligned_malloc(sizeof (ftype) * nS * nT);
Y2hits = (ftype *) arbb::aligned_malloc(sizeof (ftype) * nS * nT);
// load hit data in reverse order

for(ix = 0; ix < nT; ix ++)

{

The Hands-On Project | 457

55: for(jx = 0; jx < nS; jx ++)

56: {

57: X2hits[jx * nT + ix] vTracks.hitsX[ix] [Jjx];

58: Y2hits[jx * nT + ix] = vTracks.hitsY[ix][jx];

59: }

60:)

61:

62: /) mmmm e~
63: // Create new temporary set of arrays for state

64: // and covariance matrix data.

65: // The passed T & C matricies are 2D in the wrong order,
66: // with track number as the first index.

67: // Define a state array of 6 pointers

68: ARBB_CPP_ALIGN (ftype *TBufl6]);

69: // reserve array space for each, size number of tracks

70: for(int i = 0; 1 < 6; 1 ++)

71: {

72 TBuf[i] = (ftype *) arbb::aligned_malloc(sizeof(ftype) * nT);
73: %}

74: // define a covariance array of 15 pointers
75: ARBB_CPP_ALIGN(ftype *CBuf[15]);

76: // reserve array space for each

77: for(int i = 0; i < 15; 1 ++)

78: {
79: CBuf[i] = (ftype *) arbb::aligned_malloc(sizeof(ftype) * nT);
80: }

81: // define array of 6 dense containers for state matrix

82: dense< array<FTYPE, 6> > vVtT;

83: // bind to state matrix

84: bind(vtT, nT, TBuf[0], TBuf[l], TBuf([2], TBuf[3], TBuf[4], TBuf[5]);
85: // define array of 15 dense containers for covariance matrix

86: dense< array<FTYPE, 15> > vtC;

87: // bind to covariance matrix

88: bind(vtC, nT, CBuf[0], CBuf[l], CBuf[2], CBuf[3], CBuf[4], CBuf[5],
89: CBuf[6], CBuf[7], CBuf[8], CBuf[9], CBuf[10], CBuf[11],

90: CBuf([12], CBuf[13], CBuf([14]);

91: // ———————
92: // Create and bind new instances of TrackArBB and StationArBB data
93: // create new instance of new class

94: TracksArBB<FTYPE> vTracksArBB;

95: // bind with existing information from

96: // instance of old class Tracks

97: bind(vTracksArBB.MC_x, vTracks.MC_x, nT);

98: Dbind(vTracksArBB.MC_y, vTracks.MC_y, nT);

99: bind(vTracksArBB.MC_z, vTracks.MC_z, nT);

100: bind(vTracksArBB.MC_px, vTracks.MC_px, nT);

101: bind(vTracksArBB.MC_py, vTracks.MC_py, nT);
102: bind(vTracksArBB.MC_pz, vTracks.MC_pz, nT);
103: bind(vTracksArBB.MC_g, vTracks.MC_g, nT);
104: bind(vTracksArBB.nHits, vTracks.nHits, nT);
105: bind(vTracksArBB.NDF, vTracks.NDF, nT)

106: bind(vTracksArBB.hitsX, vTracks.hitsX[0
107: bind(vTracksArBB.hitsY, vTracks.hitsY[O0
108: bind(vTracksArBB.hitsX2, X2hits, nT, nS
109: bind(vTracksArBB.hitsY2, Y2hits, nT, nS

1, nS, nT);
1, nS, nT);
)i

)

i

continues

458 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

LISTING 15-7 (continued)

110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:

bind (vTracksArBB.hitsIsta, vTracks.hitsIsta[0], nS, nT);
// create new instance of new class

StationsArBB<FTYPE> vStationsArBB;

// bind with existing information from

// instance of old class Stations

bind(vStationsArBB.z, vStations.z, nS);
bind(vStationsArBB.thick, vStations.thick, nS);
bind(vStationsArBB.zhit, vStations.zhit, nS);
bind(vStationsArBB.RL, vStations.RL, nS);
bind(vStationsArBB.RadThick, vStations.RadThick, nS);
bind(vStationsArBB.logRadThick, vStations.logRadThick, nS);
bind(vStationsArBB.Sigma, vStations.Sigma, nS);
bind(vStationsArBB.Sigma2, vStations.Sigma2, nS);
bind(vStationsArBB.Sy, vStations.Sy, nS);

(
(
(

bind(vStationsArBB.mapX, vStations.mapX[0], 10, nS);
bind(vStationsArBB.mapY, vStations.mapY([0], 10, nS);
bind(vStationsArBB.mapZ, vStations.mapZ[0], 10, nS);

/] e
// Invoke call to track fitter by a call operation

// set number of tracks in ArBB data type

132 vSize = nT;

// Invoke Kalman filter track fitter by call operator

call (fitTracksArBBEntry) (vSize, vIracksArBB,vStationsArBB,vtT,vtC) ;

// copy container to C buffers
vtT.read_only_range() ;
vtC.read_only_range() ;

s

// Pack temporary array data back into T & C arrays, transposing

// order of storage back to the original with track number being the
// first index

for(int 1 = 0; 1 < nT; 1 ++)
{
for(int §j = 0; j < 6; J ++)
{
T[i]1[J] = TBufl[jl[il;
}
for(int j = 0; j < 15; J ++)
{
C[il([j] = CcBuf[jl[i];
}
}
[mm e oo
// Release memory of TBuf and CBuf matrices
for(int 1 = 0; 1 < 6; 1 ++)
{

arbb::aligned_free(TBuf[i]);
}
for(int 1 = 0; 1 < 15; 1 ++)
{

arbb::aligned_free(CBuf[i]);

The Hands-On Project | 459

162: 1}

163:

164: arbb::aligned_free(X2hits);
165: arbb::aligned_free(Y2hits);
166:}

167:

168://*~k***~k***~k************~k***~k***************************************

169:void fitTracksArBBEntry(i32 vSize, TracksArBB<FTYPE> vTracksArBB,

170: StationsArBB<FTYPE> vStationsArBB,
171: dense< array<FTYPE, 6> > &vtT,
172 dense< array<FTYPE, 15> > &vtC)
173:¢{

174: // create a FieldRegion class instance

175: FieldRegionArBB<FTYPE> magFieldArBB(vSize);

176: // create an ArBB index type

177: usize j;

178:

179: /) mmmmm e e e
180: // Repeat 100 times the call to the

181: // Kalman filter Track fitter

182: // Using ArBB type for loop

183: _for(j = (usize)0, j < Ntimes, j ++)

184: {

185: fitArBB(vTracksArBB, vStationsArBB, magFieldArBB, vtT, vtC);
186: }_end_for;

187:

188: /) mmmmmm o

189: // Extrapolate to start of tracks as in serial version
190: // define local matrices of dense containers

191: dense<FTYPE> T[6];

192: dense<FTYPE> C[15];

193: // load T with contents of vtT

194: T[0] = vtT.get<FTYPE, 0>();

195: TI[1l] = vtT.get<FTYPE, 1>();
196: TI[2] = vtT.get<FTYPE, 2>();
197: TI[3] = vtT.get<FTYPE, 3>();
198: TI[4] = vtT.get<FTYPE, 4>();
199: TI[5] = vtT.get<FTYPE, 5>();
200:

201: // load C with contents of wvtC
202: C[0] = vtC.get<FTYPE, 0>();

203: C[1l] = vtC.get<FTYPE, 1>();
204: C[2] = vtC.get<FTYPE, 2>();
205: C[3] = vtC.get<FTYPE, 3>();
206: C[4] = vtC.get<FTYPE, 4>();
207: C[5] = vtC.get<FTYPE, 5>();
208: C[6] = vtC.get<FTYPE, 6>();
209: C[7] = vtC.get<FTYPE, 7>();
210: C[8] = vtC.get<FTYPE, 8>();
211: C[9] = vtC.get<FTYPE, 9>();
212: C[10] = vtC.get<FTYPE, 10>();
213: C[11] = vtC.get<FTYPE, 11>();
214: C[12] = vtC.get<FTYPE, 12>();
215: C[13] = vtC.get<FTYPE, 13>();
216: C[14] = vtC.get<FTYPE, 14>();

continues

460 | CHAPTER15 PARALLEL TRACK FITTING IN THE CERN COLLIDER

LISTING 15-7 (continued)

217:

218:

219:

220:

221:

222: VtT.
223: vtT
224: VtT.
225: wvtT.
226: VtT.
227: wvtT.
228:

229:

230: wvtC
231: wvtC.
232: vtC.
233: vtC.
234:. wvtC.
235: vtC.
236: vtC.
237: vtC.
238: vtC.
239: vtC.
240: wvtC.
241: vtC.
242: vtC.
243: wvtC.
244: vtC.
245:}

SUMMARY

// Call extrapolation function within the filter
extrapolateALightArBB(T, C, vTracksArBB.MC_x,

// Reload vtT with new contents of T

// Reload vtC with new contents of C
.set<0>(C

set<0>(T

.set<l>

(T
set<2>(
set<3>(
set<4d>(
set<b5>(

set<l>(
set<2>(
set<3>(
set<4d>(
set<5>(
set<6>(
set<7>(
set<8>(
set<9>(
set<10>
set<l1l>
set<12>
set<13>
set<14>

~—_— 000000000 nan

[0]);

[0]);

T[4], magFieldArBB);

code snippet Chapter15\15-7.cpp

This case study was used as an introduction to ArBB. Starting with a serial version of the
track-fitting application, the program was altered in many steps before finally producing
a parallel version.

ArBB is an excellent parallelism tool for programs that are heavily data-centric. Its
containers, pseudo data objects that can be bound to existing C/C++ data, allow calculations
through the use of simple mathematical operators between them. The ArBB libraries overlay
complex operations between arrays and matrices (even of different sizes) as if they were single

variables.

Summary | 461

As a programmer, you are not explicitly responsible for any parallelization in ArBB. This means
data races and other such problems that can occur due to parallelization are eliminated. ArBB’s
methods also ensure a balanced load between the threads of a parallel program.

Because of the JIT compiler, ArBB “future-proofs” your application against new CPU
architectures. When an ArBB function is first called, the JIT compiler generates code tuned to its
runtime environment.

Chapter 16, “Parallelizing Legacy Code,” looks at some of the issues you might face when
parallelizing old code. Using the Dhrystone benchmark, the code is made parallel using OpenMP
and Cilk Plus.

16

Parallelizing Legacy Code

WHAT’S IN THIS CHAPTER?

> Introducing the Dhrystone benchmark
> Parallelizing the C version
» Parallelizing the C++ version
One of the biggest challenges programmers face is making existing code parallel. The older

and bigger the code, the more difficult the task is. Successful parallelism should lead to
improved performance and scalability without having to make wholesale changes to the code.

Legacy code represents the huge investment of time and effort that programmers have made.
For most programmers, maintaining and modifying legacy code is a significant headache,
because it often includes the following characteristics:

> Large, monolithic code base

> Unknown or misunderstood content

> Old-style programming

> Ubiquitous use of global variables
This case study begins by introducing the Dhrystone benchmark, and then explores adding
parallelism to the code using OpenMP and Cilk Plus. The hands-on activities give you an

opportunity to try out the different approaches. You explore the following ways of adding
parallelism to the benchmark:

> Synchronizing shared variable access

> Duplicating global variables

> Wrapping the application in a C++ class
» Using Cilk Plus holders

464 | CHAPTER16 PARALLELIZING LEGACY CODE

Taking the original serial version of the Dhrystone benchmark, the first three attempts at parallel-
ization use OpenMP, and the last attempt uses Cilk Plus. In all these attempts, the following
questions are addressed:

> Will adding parallelism improve the performance of the code?

> Can the parallelism be added without too much programming effort?

INTRODUCING THE DHRYSTONE BENCHMARK

The Dhrystone benchmark is a typical example of code written in the 1980s, with versions available
in C, Pascal, and Ada. Its intention was to reflect good programming practices of the day, and was
designed to be an easy-to-use integer benchmark that could be used to compare the performance of
different CPUs and compilers.

When I first attempted to make the benchmark parallel, I spent a lot of time studying the code to
understand what it was doing. Thankfully, the intentions of the author are well documented in
several white papers. The benchmark itself also includes five pages of notes in the source code.
In this respect, the benchmark is not typical of code that you might have to work on.

The benchmark uses old-style K&R programming, with its obsolete calling convention, lack of
function prototypes, and missing return types in the function definitions. K&R C is so called after
the 1978 edition of The C Programming Language, by Brian Kernighan and Dennis Ritchie. Even
though the language has been superseded by ANSI C, many compilers, including the Intel compiler,
can still support K&R C code. Part of this case study involves using C++ files rather than C files,
which meant much of the quirkiness of the K& R-style coding had to be attended to before the code
could be compiled successfully.

The Structure of the Code

The Dhrystone benchmark code is not huge; it is split among 12 functions over two files (see Figure 16-1).
The main file, dhry_1.c, consists of a number of global variables, the main () function, and a collection
of test routines. The second file, dhry_2.c, has a number of test functions that are called from within the
test loop of main (). Each iteration of the loop is classed as one Dhrystone. Any code executed outside of
the loop does not contribute to the benchmark results.

After the benchmark runs, the results are printed to the screen. The main reason for including the
print routines is 770f to verify the results — that is a secondary requirement. The real reason for add-
ing this code is to make sure that the results of the benchmark are used. If the results were not used,
there would be a danger that the optimization phase of the compiler would see the benchmark as
being “unused” or “dead” code and proceed to optimize it away.

Global and Shared Variables

The benchmark has a mixture of global and local variables. Within the main () function there is a
central for loop that will become the target of the parallelization effort. As shown in Figure 16-1,
both global and local variables are declared outside this loop. This means that all these variables
will be shared between the parallelized loop and possibly lead to data races. These shared variables
will become the biggest problem to overcome.

Introducing the Dhrystone Benchmark | 465

Globals

main() Other test functions

| Locals

Init locals & globals

Print results

E Loop

Test functions

dhry_1.c dhry_2.c
FIGURE 16-1: The structure of the Dhrystone benchmark
The /0diag-enable: thread Intel compiler option produces threading-related diagnostic messages,
including information about global variables. The compiler reports that 12 global variables are

accessed more than 50 times (see Table 16-1). Access to these variables and the shared local vari-
ables will need to be protected so that only one thread can access them at any one time.

TABLE 16-1: Global Variables Reported by /Qdiag-enable:thread

VARIABLE NUMBER OF TIMES ACCESSED
Arr_2_Glob 2
Begin_Time 2
Bool_Glob 3
Ch_1_Glob 4
Ch_2_Glob 3
Dhrystones_Per_Second 2
End_Time 2
Int_Glob 5
Microseconds 2
Next_Ptr Glob 7
Ptr_Glob 17

User_Time 4

466 | CHAPTER16 PARALLELIZING LEGACY CODE

THE HANDS-ON PROJECTS

Six projects are associated with this case study (see Table 16-2). You can rebuild each of these
projects yourself in Activities 16-1 to 16-6. The first three activities use C, starting with the
original C code, and the last three activities use C++. Each of the following sections describes the
steps that were taken to implement the different approaches. At the end of each section, a hands-
on activity gives instructions on how to build the new version. All the code changes are already
included in the project files; all you need to do is navigate to the correct directory and follow the
build instructions.

TABLE 16-2: The Different Approaches

ACTIVITY MODEL APPROACH TYPE PROJECT NAME
16-1 Serial The original code @ 16-1-ORGFILES
16-2 OpenMP Synchronizing shared variable C 16-2-OMP-C
access
16-3 OpenMP Duplicating global variables C 16-3-OMP-DUP
16-4 Serial Converting to C++ C++ 16-4-CPPFILES
16-5 OpenMP Application wrapping G 16-5-WRAPEVERYTHING
16-6 Cilk Plus Using Cilk Plus holders G 16-6-CILKHOLDER

Building the Projects

Within each project folder is a Makefile. You need to edit this file, as follows, so that the correct
OS-specific include file is used:

TODO: EDIT next set of lines according to 0S

include ../CONFIG/windows.inc
#include ../CONFIG/linux.inc

To build a project, simply call nmake on Windows, or make on Linux.

Project Targets
The Makefile has a number of different targets that can be built (see Table 16-3).
After building any of the hotspot, concurrency, or datarace targets, you can examine the results

by using Amplifier XE (for hotspot and concurrency) or Inspector XE (for datarace) to view the
results. See the section “Viewing the Results” for more information.

The Hands-On Projects | 467

TABLE 16-3: The Targets in the Makefile

TARGET

<no target>

benchmark
hotspot
concurrency

datarace

clean

An Example Build

DESCRIPTION

Builds an executable, main.exe.

To change the name, use TARGET flag (for example, make TARGET=test pro-
duces a file test . exe).

Calls the benchmark.
Calls the command-line version of Amplifier XE to do a hotspot analysis.
Calls the command-line version of Amplifier XE to do a concurrency analysis.

Calls the command-line version of Inspector XE to look for data races and
deadlocks.

Deletes objects and the .exe.

Always call make clean (for Windows, use nmake clean) before doing any build. Here’s an
example of creating and running the benchmark on a Windows platform:

>cd 16-1-ORGFILES

>nmake clean

>nmake benchmark
<... output from compiler here ... (deleted for brevity)>
main.exe 100000000

Dhrystone Benchmark, Version 2.1 (Language: C)

Program compiled without 'register' attribute

Execution starts, 100000000 runs through Dhrystone

Execution ends

Final values of the variables used in the benchmark:

Int_Glob:

should be:

Bool Glob:

should be:

Ch_1_Glob:

should be:

Ch_2_Glob:

should be:

Arr 1 Glob[8]:

should be:

NNWwWwE PR R Ouun

Arr 2 _Glob[8][7]: 100000010

468 | CHAPTER16 PARALLELIZING LEGACY CODE

should be:
Ptr_Glob->
Ptr_Comp:
should be:
Discr:
should be:
Enum_Comp:
should be:
Int_Comp:
should be:
Str_Comp:
should be:
Next_Ptr Glob->
Ptr Comp:
should be:
Discr:
should be:
Enum_Comp:
should be:
Int_Comp:
should be:
Str_Comp:
should be:
Int_1 Loc:
should be:
Int_2_ Loc:
should be:
Int_3_Loc:
should be:
Enum_Loc:
should be:
Str_1 Loc:
should be:
Str_2_Loc:
should be:

Microseconds for one run through Dhrystone:
Dhrystones per Second:

Number_ Of Runs + 10

5991072
(implementation-dependent)

0

0

2

2

17

17

DHRYSTONE PROGRAM, SOME STRING
DHRYSTONE PROGRAM, SOME STRING

5991072
(implementation-dependent), same as above
0

0

1

1

18

18

DHRYSTONE PROGRAM, SOME STRING
DHRYSTONE PROGRAM, SOME STRING
5

5

13

13

7

7

1

1

DHRYSTONE PROGRAM, 1'ST STRING
DHRYSTONE PROGRAM, 1'ST STRING
DHRYSTONE PROGRAM, 2'ND STRING
DHRYSTONE PROGRAM, 2'ND STRING

0.040
25000000.0

The call to nmake benchmark did two things: it built the benchmark, and then it ran the
benchmark, passing in the value 100000000, which was used to control the number of iterations

the benchmark ran.

After the benchmark runs, it checks that the values held in the various variables are correct, print-
ing out messages confirming their value. The last piece of information displayed is how many
Dhrystones per second was achieved.

Adding Amplifier XE APIs to Timestamp the Dhrystone Loop

To help measure the duration of the benchmark more accurately, Amplifier XE API calls have been
added to the for loop in Activities 16-2 to 16-6. This enables Amplifier XE’s data collector to
record the time between the two points.

main ()

{

// initialize Amplifier XE frame domain

The Hands-On Projects | 469

_ itt_domain* pD = __itt_domain_create("My Domain");
pD->flags = 1; // enable domain

__itt_frame_begin_v3 (pD, NULL); // record start
for(...)
{
// body of loop
}
__itt_frame_begin_v3(pD, NULL); // record end
}

If you are using Windows, you will get more accurate timing results from Amplifier XE’s collector
if you run the application in administrator mode. To do this, open a compiler command prompt (via
Start & All Programs = Intel Parallel Studio XE = Command Prompt) in administrator mode, as
shown in Figure 16-2.

Open
Run as administrator

Open file location
#¢ TortoiseSVN »
B Scanfor threats...
@ WinZip 3
Pin to Taskbar
Pin to Start Menu
Restore previous versions
Send to 3

Cut
Copy
Command Prom|
. Parallel Studi
| Parallel Studid
B 14-32 \u’isu: Properties
B Intel 64 Visoarsrourrrooamioae—

Delete

Rename

FIGURE 16-2: Opening a command prompt as Administrator in Windows

Viewing the Results

To view the results of a hotspot or concurrency target, open the results file with the GUI versions
of Amplifier XE. To view the results of a datarace target, use Inspector XE. You can also use the
command-line version to give you a report. For example, to build the WRAPEVERYTHING projects and
run a concurrency analysis:

>cd 16-5-WRAPEVERYTHING

>nmake concurrency

<... output from compiler here ... (deleted for brevity)>

<>

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01
Copyright (C) Microsoft Corporation. All rights reserved.

amplxe-cl -collect concurrency -knob collect-signals=true -follow-child

470 | CHAPTER16 PARALLELIZING LEGACY CODE

-mrte-mode=auto -target-duration-type=short -no-allow-multiple-runs -no-analyze
-system -data-limit=100 -slow-frames-threshold=40 -fast-frames-threshold=100 --
./main.exe 100000000 SILENT
0.9300 Elapsed Secs
Using result path "C:\dv\CH16\16-5-WRAPEVERYTHING\r000cc'
Executing actions 75 % Generating a report
Summary

Average Concurrency: 12.710

Elapsed Time: 1.308
CPU Time: 15.551
Wait Time: 6.228

Executing actions 100 % done

Notice that the command-line collector reports which directory the results are stored in:
Using result path 'C:\dv\CH16\16-5-WRAPEVERYTHING\r000cc"'

You can view the results by calling the GUI version of Amplifier XE from the command line:
amplxe-gui ./r000cc

In the bottom-up view of the results, you can read the Frame Time if you group the results by
Frame Domain, Frame Type, Function, or Call Stack (which is available from the Grouping
pull-down menu), as shown in Figure 16-3.

O] f000cc - Microsoft Visual Studie &= United Kingac

File Edit View VAssist{ Debug Tools Test Window Help

IR =0 " B IR RN S R SR =R =N N | < @ primary.serial S| QAR B O
DS Yys e BN EECIQFIE @3RI RERRE W 0L S

B Concurrency - Ho [rea urrency /4 @ Intel VTune Amplifier XE 2011

r e T] b] R
[Analysis Target| | " Analysis Type| [B2 Collection Log| [&1 Summary| [EYRunamr] |+ Top-down Tree

Grouping: |Frame Domain / Frame] Function / Call Stack - Y red createsmek ~|

B Dot/ Eme f Faneriony Cal Stk ERUT B UKL Ove.. Wait Time by Utilization Fra.. 22 stack(s) 5:':“2“‘ V"EW:‘Q
i C It sta 94.1% L
Idle @ Poor [0k [@Tdeal @ Over Time o idle @ Poor @Ok @ideal MOver | ™ R e ot

£ My Domain | 25 [R 0 6@ W g | [Eaite B O
[#l[Ne frame demain - Outside any frame] X0 —] 05 5.580< (1 0s | main.exe[main.exe]+0d1 ..

main.exe![main.exe] +0x28 ...
kernel32. eThreadl:
ntdIldll!RtlUserThreadStar..,

Selected 0 row(s):

Ruler Area

Thread (0:d170)
[OMP Worker Thread #1

OMP Worker Thread #2 [] @ Running
[P Winrker Thread #2 [#] 0 Waits
CPU Usage] dluk CPU Time |
= OpenMP...
Thread Concurrency Transitions
CPU Usage
luk CPU Time
Thread Concurr...
> =

Frame Rate

Ready

FIGURE 16-3: View the timestamp for the benchmark by looking at the Frame Time

The Hands-On Projects | 471

ACTIVITY 16-1: BUILDING THE SERIAL VERSION

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

Building the Project

1. If you haven’t already done so, download a copy of the project files and navi-
gate to the 16-1-0RGFILES folder:

cd 16-1-ORGFILES

2. Edit the Makefile so that the correct include file is used.

WINDOWS
include ../CONFIG/windows.inc

LINUX

include ../CONFIG/linux.inc
3. Build the serial project:

WINDOWS

Open a Parallel Studio XE command prompt by selecting Start => All programs
Intel Parallel Studio XE 2011 = Command Prompt => Parallel Studio XE =
Command Prompt &> <command prompt>. The exact location may vary, depending
on which version of Parallel Studio XE you installed.

nmake clean
nmake

LINUX

make clean
make

If there is build error, edit the *. inc file mentioned in step 2 so that the variable
VTUNEDIR is correctly pointing to your Amplifier XE installation directory.
Measuring Performance

4. Run the program and record how many Dhrystones were achieved:

WINDOWS

nmake benchmark
LINUX
make benchmark

If you see the message Measured time too small to obtain meaning-
ful results Please increase number of runs, then edit the Makefile and
increase the value assigned to the variable LOOPCOUNT.

472

| CHAPTER16 PARALLELIZING LEGACY CODE

PARALLELIZING THE C VERSION

In this section, the original C code of the benchmark is parallelized using OpenMP. You can
build the completed versions in Activity 16-2 and 16-3. Two attempts are made at parallelizing:

> The first attempt looks at synchronizing all the access to shared variables.

> The second attempt duplicates the global variables so that each running thread has its own
thread-specific copy.

Before diving into each attempt, it’s a good idea to find out how many data races need to be fixed.
You can do this by making the for loop of the benchmark parallel using the #pragma omp
parallel for construct, and then running Inspector XE to find out how many data races exist.

Figure 16-4 shows a list of data races that are produced using this naive parallelization step. The
program has 18 data races and also an unhandled exception. It looks as though there is quite of lot
of work to be done for such a small program!

B2 <no current project> - Intel Inspector XE 2011 =US (JHelp - =H B EX
File View Help
T R=] [r = o
roo2ti2 < i
I Detect Deadlocks and Data Races
Rty Type] [- Gotlecion tog]
% || Filters Sortv ¥
Da @ Problem Sources Modules State Severity
PL & Unhandled application exception [Unknown] main.debug.exe New Critical 1item(s)
P2 @ Datarace [Unknown] main.debug.exe New Eror 17 item(s)
P2 @ Datarace [Unknown] main.debug.exe New Problem
P4 @ Data race [Unknown] main.debug.exe New Data race 17 item(s)
P5 @ Datarace [Unknown] main.debug.exe New Unhandled application exception 1 item(s)
P6 @ Datarace [Unknown] main.debug.exe New B
7 @ Datarace [Unknown] main.debug.exe New [Unknown] 18 item(s)
P8 @ Datarace [Unknown] main.debug.exe New o
] @ Datarace [Unknown] main.debug.exe New
main.debug.exe 18 item(s)
P10 Q Data race [Unknown] main.debug.exe New
PI1 @ Datarace [Unknown] main.debug.exe New SN““E s
P12 @ Datarace [Unknown] main.debug.exe New | Memls)
P13 @ Datarace [Unknown] main.debug.exe New Suppressed
P14 @ Datarace [Unknown] main.debug.exe New Net suppressed 18 itemn(s)
P15 <] Data race [Unknown] main.debug.exe New Investigated
PI6 @ Datarace [Unknown] main.debug.exe New Not investigated 18 item(s)
P17 Q Data race [Unknown] main.debug.exe New
P13 Q Data race [Unknown] main.debug.exe New
-
Code Locations [Code Locations / Timeline ©
D Descriptiona Source Function Module &
X564 Allocationsite £ main.deb 0x24ed [Unknown] main.deb
X11 Read 2 main.debug.exe:ddsc [Unknown] main.debug.exe
X20 Read = main.debug.exed:df4b [Unknown]l main.debug.exe
X27 Read = main.debug.exe:20dl [Unknown] main.debug.exe
330 Read = main.debug.exe0:2072 [Unknown] main.debug.exe -

FIGURE 16-4: Inspector XE shows the data races to fix

Attempt One: Synchronizing Shared Variable Access

In the first attempt, the benchmark was made parallel in three steps, as shown in Figure 16-5.
You can examine the results of these code changes in Activity 16-1.

1. The main loop is made parallel by adding a #pragma parallel omp for loop.

Parallelizing the C Version | 473

2. Each shared variable is either made private or, where this isn’t possible, accesses are
synchronized.

3. The result is displayed. Values of local variables in the threaded section are propagated back
into the main part of the program by adding a 1astprivate clause to the for loop.

Globals
_____________________ Synchronize access
main() / to shared variables
| Locals ¥ |

Init locals & globals

1 1
' |Loop @ L |
E \ Parallelize

Print results ' loop

Display results
from last
thread only

Test functions

dhry_1.c

FIGURE 16-5: The steps to parallelizing with OpenMP

The following code snippet shows the OpenMP constructs used to parallelize the loop. Each vari-
able marked as 1astprivate has its final value copied back to the original shared variables.
#pragma omp parallel for lastprivate(Int_1_Loc,Int_2_ Loc,Int_3_Loc, \
Enum_Loc,Str_1 Loc,Str_2_ Loc) private(Ch_Index,tmp_Glob)
for (Run_Index = 1; Run_Index <= Number_ Of_ Runs; ++Run_Index)

{

Any access to shared variables that could not be made private were declared to be a critical section.
This allows only one thread to operate on the variable at any time:

#pragma omp critical
Int_Glob = Run_Index;

It was difficult and at times tedious to add these critical sections. At one stage a deadlock was
accidentally introduced because of the function nesting in the benchmark. Luckily, Inspector XE
detected this.

The Results

The new parallel program runs very slow, with each Dhrystone taking more than 300 microseconds
to complete:

Microseconds for one run through Dhrystone: 300.0
Dhrystones per Second: 3333.3

474 | CHAPTER16 PARALLELIZING LEGACY CODE

The Amplifier XE data collector generates so much data that it issues the following warning:

Warning: The result contains a lot of raw data. Finalization may take a long
time to complete.

Changing the loop count from 1,000,000 to 1,000 reduces the amount of data generated to a
manageable size.

Figure 16-6 shows the Dhrystones per second that are achieved for different numbers of threads.
The number of threads is changed using the OMP_NUM_THREADS environment variable.

Notice that the moment more than one thread is used, the Dhrystones figures dives to well under
10,000.

90,000 ~
80,000 -
70,000
60,000
50,000
40,000 -
30,000
20,000 -
10,000

0 T T T T —

Dhrystones per Second

<

Number of Threads
FIGURE 16-6: The performance of the OpenMP version

The summary page of the Locks and Waits analysis shows what the problem is. (The summary
page opens when you first do an analysis; you can also reach it by clicking on the Summary button.)
As shown in Figure 16-7, the Spin Time is excessive. Looking at the list of top waiting objects,

you can see that the oMP critical sync object is the cause if the poor performance.

(#) Elapsed Time: 3.599s

Total Thread Count: 24
Wait Time: T0.870s
Spin Time: 62.563s

A significant portion of CPU time is spent waiting. Use this metric to ¢
wait parameters, changing the lock implementation (for example, by

Wait Count: 120,088
CPU Time: 64,4625
Paused Time: Os

(#) Top Waiting Objects
This section lists the objects that spent the most time waiting in your apj
contended synchronizations. A significant amount of Wait time associat
and, thus, reduced parallelism.

Sync Object Wait Time ~ Wait Count

OMP Critical main:159 0:3e72241d 65.923s 119,930
OMP Join Barrier main:154 0:8019%eac2a 49325 pE]
Stream 0x9c5baeba 0.009s 62
Manual Reset Event 0x4a9f7567 0.002s 2
Muttiple Objects 0.002s 2

FIGURE 16-7: Spin Time is the biggest problem

Parallelizing the C Version | 475

An expanded view of the time line shows that only one thread runs at once, and it spends more time
waiting than running (see Figure 16-8). The dark areas on the horizontal bars are when the thread is
running; the lighter areas are where the threads are waiting.

Despite having 24 threads available, this part of the code is only ever running on one thread at a
time, with all the other threads in a wait condition.

[&l <no current project> - Intel VTune Amplifier XE 2011 =
File View Help
- ==]
r000cc X v
M Concurrency - Hotspots by Thread Concurrency /& @
@ Analysis Target| | © Analysis Type | | M Summary| ECY:Ri0 @MY | o Top-down Tree
Grouping: |Frame Domain / Frame / Function / Cal Stack
_—] 4 >
Frame Domain / Frame / Function / Call Stack TPUTHE B b
@ 1dle @ Poor [Ok B Ideal @ Over ‘ ‘
Selected 1 row(s): & No stack information
< NEr n 3
T ¥ ¥ T ¥ ¥ %
QOQFQ-Q# 0811255 081135 0811355 081145 0811455 081155 081155 081165 0811655 081175 0811755 081185 0.81185<> | Ruler Area
Thread (0x148) ol - ¥ Frame
[OMP Warker Thread #1 i Y Threads
OMP Worker Thresd #2| 1 8 Running
[OMP Worker Thread #3 ||~ TBET. o i
[OMP Worker Thread #4 ||~ 1
OMP Worker Thread 5 |+l [dhuk CPUTime
[OMP Worker Thread #6 | (IET_ | omm ¥ OpenMP Re...
[OMP Worker Thread 27 ||~ WA R = Transitions
5 [OMP Worker Thread #8 < m— O chu
£ [OMP Worker Thiezd 29| Y o
= [OMP Worker Thread #1 y ol [Thread Concurrency
|OMP Worker Thread 1 | <. [[/frame Rate:
[OMP Worker Thread #1 |4}
[OMP Worker Thread #1 4|
[OMP Worker Thread 1 | J
[OMP Worker Thread #1 — BRI
[OMP Worker Thread #1]
[OMP Worker Thread 1 | 41 1
[VWAD Wewlear Thread 1 T T g

Rl Filter: 0.0% is shown RS

FIGURE 16-8: The expanded timeline view

Is It Successful?

In a word, no! Synchronizing the many shared variables does not seem to be a good solution.
The code ends up running significantly slower than the serial version.

From an editing perspective, nearly every function of the benchmark had to be modified. It would
be a painful task to replicate this effort on a larger project.

This approach does not seem too helpful. The next attempt at parallelization tries to remove the
need for synchronization by duplicating the shared variables.

ACTIVITY 16-2: USING OPENMP WITH SYNCHRONIZATION

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

1. Navigate to the 16-2-omp-c folder:
cd 16-2-OMP-C
2. Repeat steps 2 to 6 of Activity 16-1.

476 | CHAPTER16 PARALLELIZING LEGACY CODE

Attempt Two: Duplicating Global Variables

The first attempt to parallelize the code was unsuccessful, with the parallel program running much
slower than the nonthreaded version. This second attempt duplicates all the global variables, so there
is no need to protect access to them with a critical section. The steps are as follows (see Figure 16-9):

1. The main for loop is parallelized using the #pragma omp for construct. As in the previous
attempt, the local variables are declared as private or lastprivate.

2. The global variables are duplicated in an array of structures.
3. Each reference to the global variables is edited.

4. The results are displayed from only one thread.

Slahalc
Slahalc

Glohalc]

Globals

-" _____________ Duplicate shared
H i variables

Emaln()
[
le
o omal
v !
T4 Locals
Y I
Lo : I
|
1 1./ |Loop ! I 1
, h
! i ! 1
v ' .
1o ' Parallelize
" \ loop
!
|
|

Display results

Test functions
once only

dhry_1.c

FIGURE 16-9: Duplicating the shared variables

The following code shows how the global variables are changed into a structure and placed in dnry.h.
The highlighted part is an identical copy of the original global variables, copied from dhry 1.c.

// Structure to duplicate globals (declared in dhry.h)

typedef struct _globals
{

Rec_Pointer Ptr Glob, Next Ptr Glob;
int Int_Glob;

Boolean Bool_Glob;

char Ch_1 Glob, Ch_2_Glob;
int Arr_1 Glob [50];

int Arr_2_ Glob [50] [50];

} GLOB_STRUCT;

A new pointer, Ptr_Glob_Arr, is used to point to an array of the struct _globals. Memory is
dynamically allocated using the OpenMP API calls omp_get_max_threads () and omp_set_num_
thread () to make sure that the right amount of space is allocated:

Parallelizing the C Version | 477

// Allocating enough space for each thread

num_threads = omp_get_max_threads() ;

omp_set_num_threads (num_threads) ;

Ptr_Glob_Arr = malloc(sizeof (GLOB_STRUCT) * num_threads) ;

Initializing and Accessing the Global Variables

Each copy of the global variables must be initialized in every OpenMP thread (see the following
highlighted code). Wherever the global variables are referenced in the source code, a new level of
indirection is added so that each thread can access its own copy of the variables. The omp_get_
thread_num() function is used to get the index of the current thread.

#pragma omp parallel private (id)

{
// set pointer to current globals
id = omp_get_thread_num();

Ptr_Glob_Arr[id] .Next_Ptr Glob = (Rec_Pointer) malloc (sizeof (Rec_Type)):
Ptr_Glob_Arr[id] .Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));

#pragma omp barrier
#pragma omp for private(Run_Index) firstprivate(Str_1_Loc,Number_ Of_Runs)
lastprivate (Int_1_Loc,Int_2_Loc,Int_3_Loc,Ch_Index, Enum_Loc,Str_1 Loc,Str_2_Loc)

for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)

{
// other code here

} // end parallel region

The Results

The newly built application runs much better than the application from the first attempt, and has
good scalability. The big disadvantage of this approach is the time taken to modify the files.
Figure 16-10 shows the results of running the tests on a workstation that supports 24 cores.
25000000
20000000
15000000 A

10000000 A

5000000

Dhrystones per Second

O T T T T T 1
1 2 4 8 16 24

Number of Threads

FIGURE 16-10: The performance of the duplicated variables version

478 | CHAPTER16 PARALLELIZING LEGACY CODE

Figure 16-11 shows the summary page from Amplifier XE. The number of simultaneously running
threads is ideal, with between 20 and 24 threads running together most of the time, for an average
concurrency of just under 18.

{(#) Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were

running simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05

scheduler, Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be

higher than CPU usage if threads are in the runnable state and not consuming CPU time.
1s

Elapsed Time

Over

B -
%E
N
=
5
g

Simultaneously Running Threads

FIGURE 16-11: The concurrency of the duplicated variables version

Is It Successful?

Yes and no! Duplicating the shared variables works well and gives vast improvement when
compared to attempt 1. However, from an editing perspective, not only nearly every function

of the benchmark had to be modified, but also nearly every line. (A slight exaggeration, but it felt
that way.) The editing task felt significantly more onerous that in attempt 1.

This approach seems more helpful than the first attempt, but the editing effort is considerable. In
the next attempt at parallelization, the benchmark is converted to C++ and then encapsulated into a
C++ class.

ACTIVITY 16-3: USING OPENMP WITH DUPLICATED VARIABLES

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

1. Navigate to the 16-3-omp-pUP folder:

cd 16-3-OMP-DUP

2. Repeat steps 2 to 6 of Activity 16-1.

PARALLELIZING THE C++ VERSION

The original benchmark is written using C files; renaming the files to have a C++ extension will
make it easier to experiment with other threading models as well as take advantage of some C++-
specific features such as classes and automatic variables.

It would be nice when changing legacy code if you only had to change the file extension to . cpp.
With some legacy code, this is possible; unfortunately, the Dhrystone benchmark is not so straight-
forward. The benchmark uses old-style K&R programming, with its obsolete calling convention,

Parallelizing the C++ Version | 479

lack of function prototypes, and missing return types in the function definitions. All of these
problems have to be fixed before the code can be successfully compiled.

In the next two parallelization attempts, the C++ version of the benchmark is used, first using
OpenMP and then using Cilk Plus.

ACTIVITY 16-4: BUILDING THE C++ VERSION OF DHRYSTONE

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

1. Navigate to the 16-4-cPPFILES folder:

cd 16-4-CPPFILES

2. Repeat steps 2 to 6 of Activity 16-1.

Attempt Three: Wrapping the Application in a C++ Class

Moving to C++ means that it becomes relatively easy to wrap the whole Dhrystone application in
a single class and then instantiate multiple instances of the class in its own thread. By doing this,
fewer code changes should be needed. The steps are as follows (see Figure 16-12):

1. Aclassis declared in dhry_1.cpp that encapsulates the complete source code.

2. dhry_2.cpp is incorporated into dhry_1.cpp by way of an include statement.

3. Anewfile, driver.cpp, is written that pulls in dhry_1.cpp via an include statement.
4

. Within an OpenMP for loop, multiple instances of the new class are created. The loop is
designed to iterate the same amount of times as the number of threads available.

5. The dhystone: :main () method is called from each iteration of the loop.

@ Include dhry_1.cpp Wrap entire
in new driver file Dhrystone in class
#include "dhry 1.cpp" ..____| class dhrystone
------ » {
Instantiate multiple fmmm e ,
instances in a 1 int main(int num) |
parallel loop ' :
#pragma omp parallel for ') E
for (i=0;i<numCalls; i++) Z> | #include "dhry 2.cpp" !
T T 2 | e
dhrystone MyTest;
MyTest.main (num) ; |dhry_2.cpp
}i
@ Call MyTest.main()
dhry_1.cpp
: @ Include dhry_2.cpp
driver.cpp in dhry_1.cpp

FIGURE 16-12 The steps to wrap the application

480 | CHAPTER16 PARALLELIZING LEGACY CODE

Using the #include statement to pull in the different source files is quite a nice trick, but it has one
negative side effect for the benchmark. If you remember, the Dhrystone benchmark is intention-
ally split across two files so that inter-module access can be tested. The build instructions that come
with Dhrystone say that the compiler must not do any cross-file inlining. By using the #include
statements, all such inter-module access is removed, thus breaking one of the design goals of the
benchmark.

Scheduling the Parallel Runs

In good parallel programming, you should not be asking how many threads you have; good
parallel programs should be agnostic about the number of threads available. The following code
iterates through each loop, with each loop running on a separate thread. The number of iterations
can be overridden by a command-line parameter, read from argv(3]. The schedule (static, 1)
clause instructs the OpenMP run time to schedule each loop to a separate thread.

int main(int argc, char * argvl[])

{
int NumCalls = omp_get_max_threads();
int NumDhrystoneLoops = 1000001;
bool bSilent = false;

if (argc == 4)
NumCalls = atoi(argv[3]);
double start = wtime();
#pragma omp parallel for schedule(static,1)
for(int 1 = 1; 1 <= NumCalls; i++)
{
int num = NumDhrystoneLoops/NumCalls;
if (i ==NumCalls)
num += NumDhrystoneLoops % NumCalls ;
dhrystone MyTest;
printf ("running with %d\n",num) ;
MyTest.main (num,bSilent) ;
}
double stop = wtime();
printf ("%4.4f Elapsed Secs\n",stop - start);

The number of Dhrystone loops each parallel test does is calculated by dividing the number of
Dhrystone tests stored in NumDhystoneLoops by the number of iterations that will be performed.

Silencing the Output

One of the consequences of wrapping the whole of the original main () function in a new class is
that the code to print out the results is also run multiple times. To minimize the clutter on the
output, an extra Boolean flag is added to the code to control whether the results are printed to
the screen:

Parallelizing the C++ Version | 481

class

{
void main (int num,

{

itt_event & Event,bool bSilent)

// compiler will not optimize this away, because it cannot know at compiler time
// what the value of bSilent will be.
if(!'bSilent)
{
printf ("etc\n");
}

If you remember, one of the reasons for having the output printed to the screen is to stop any opti-
mizing compiler from removing what it considers to be unused code. Without the printfs, the com-
piler will see that some of the results of the benchmark are not used and optimize away most of the
code. By using a Boolean variable that is initialized at run time using a scanf, the compiler will not
strip away most of the code, because it cannot know at compile time whether or not the printfs are
being used.

The Results

Figure 16-13 shows the results running with different threads on a 24-core machine. There is still
a measure of scalability, but the performance is poorer than the previous attempt. The spike at 16
threads is probably an anomaly. Running the tests several times gave results that varied by more
than 20 percent.

18000000
16000000
14000000 A
12000000
10000000 A
8000000 A
6000000 -
4000000 A
2000000 A

O T T T T T 1
1 2 4 8 16 24

Number of Threads

Dhrystones per Second

FIGURE 16-13: The results of the wrapped application

Figure 16-14 is a timeline view of the application. If you look at the thread concurrency bar (the
one next to the bottom bar), you will notice that concurrency is not uniform. In the first and last
quarters of the time period, concurrency is low. It looks like many of the threads do not start
straight-away or finish together.

482 | CHAPTER16 PARALLELIZING LEGACY CODE

B concurrency - t ' Intel VTune Amplifier X& 2011

Thread (0x1c60) ¥ Frame

OMP Worker Thread #1 [Threads
OMP Worker Thread £2 (048 8 Running
OMP Worker Thread #3 (017

v Wait:
OMP Worker Thread 24 (020 -]
OMP Worker Thread 25 (020 [k CPU Timei

OMP Worker Thread #6 (0x18|
OMP Worker Thread 27 (0x20)
OMP Worker Thread #8 (0xla
OMP Worker Thread 29 (0x16|

¥ OpenMP Re...
Transitions
CPU Usage

Threads

OMP Worker Thread #10 {0 ik CPUTime
OMP Worker Thread #11 (0] Thread Concurrency
OMP Worker Thread 212 (0xf Uk Concurrency
OMP Worker Thread #13 (0xd| e Rate
OMP Worker Thread 214 (0:d

iuk Frame Rate

OMP Worker Thread #15 (01
OMP Worker Thread #16 (0x1
OMP Worker Thread #17 (08
OMP Worker Thread #18 (0xe

CPU Usage

Thread Concurrency

Frame Rate

1

FIGURE 16-14: The time-line view of the wrapped application

Is It Successful?

Well, sort of. The application displayed scalability, but the rate of change is much poorer than the
previous attempt. And the editing effort required was moderate and required less effort than the
previous two attempts.

Some more work needs to be done on this project. If the threading can be tuned so that it has a
much punchier start and finish, the performance would improve.

ACTIVITY 16-5: WRAPPING THE APPLICATION IN A C++ CLASS

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

1. Navigate to the 16-5-WRAPEVERYTHING folder:

cd 16-5-WRAPEVERYTHING

2. Repeat steps 2 to 6 of Activity 16-1.

Attempt Four: Using Cilk Plus Holders

One of the main concerns when adding a new feature to a piece of code is the amount of time it
takes and the extent of the code changes. The less code has to be changed, the less likely the risk of
introducing errors.

The Cilk Plus parallelization of the Dhrystone benchmark is a good example of where the simplic-
ity of Cilk Plus can be combined with the powerfulness of the C++ language (such as templates and
overloading) to add parallelism to legacy code with very few changes required in the original code.

Parallelizing the C++ Version | 483

The steps to introduce Cilk Plus holders into the benchmark are as follows (see Figure 16-15):
1. The main loop is parallelized using the keyword cilk_for.
2. A set of wrapper classes is written that act as the interface between a cilk: :holder and the

shared variables.
3. Each shared variable is declared to be one of the new myholder wrappers.

template <typename T>
class myholder
{
private:
cilk::holder<T> m_holder;
Globals public:
A //etc
'
h Y
IR T
main() Write
/
N cilk::holder
/| Locals
h wrappers

/| Init locals & globals

'
'
'
'
'
'
'
'
/ |
. i 1
! 1 I
1" : :
'
'
'
'
'
'

Parallelize
loop

v 1 [Print results
Declare all
variables to be of
class |r-------
myholder

dhry_1.cpp

FIGURE 16-15: The steps to introduce Cilk Plus holders into the application

Developing the Wrappers
In the three previous examples of parallelizing the benchmark, the shared variables were either
reduced in scope, their access locked, or the variables duplicated. For the purpose of the benchmark,
duplicating the variables is a legitimate approach and has proved to be the best performing solution.

Cilk Plus Hyperobjects

Cilk Plus’s hyperobjects are designed to help fix data race problems associated with shared variables. In
the case of the Dhrystone benchmark, the cilk: :holder objects can be used to provide local variables
for each worker (that is, each thread). Holders are discussed in Chapter 6, “Where to Parallelize.”

Listing 16-1 shows how a wrapper can be placed around a cilk::holder object to provide almost
transparent local storage. It is transparent in the sense that very little of the legacy code needs to be
changed to use the wrapper class.

Without these wrappers, every access to the global variables would have to be modified to call the
function operator. As you can see, however, the use of the function operator is hidden in the over-
loaded operators of the class myholder. For example, operator-> calls the m_holder () function

operator in the implementation code.

484 | CHAPTER16 PARALLELIZING LEGACY CODE

‘) LISTING 16-1: Wrapper code for the Cilk Plus holder

Available for #include <cilk/holder.h>
dm::ggglgn #include "dhry.h"
template <typename T>
class myholder
{
private:
cilk::holder<T> m_holder;
public:
T & operator->(){return m_holder();}

myholder<T> & operator=(const T &rhs){m_holder()=rhs;return *this;}
myholder<T> & operator +=(const T &rhs){m_holder ()+=rhs;return *this;}

T * operator &(){return &(m_holder());}
operator T () {return m_holder();}
void operator ++(){m_holder()++;}

code snippet Chapter16\16-1.cpp

In the benchmark code, the only changes that have to be made are to change the declaration of
the shared variables. For example, in the following code snippet, the original global variables are

replaced with holder wrappers of the same name:

#1f 0 // original globals
Rec_Pointer Ptr_Glob, Next_Ptr_Glob;
int Int_Glob;

Boolean Bool_Glob;

char Ch_1_Glob, Ch_2_Glob;
#else // new code
myholder<Rec_Pointer> Ptr_ Glob,Next Ptr Glob;
myholder<int> Int_Glob;
myholder<Boolean> Bool_Glob;
myholder<char> Ch 1 Glob, Ch_2 Glob;
#endif

Arrays require slightly more complicated treatment, because you cannot return an array in C/C++.
Some of the derived classes in the cilk: :holder class expect to return objects, so arrays need to be

encapsulated.

Listing 16-2 shows how single-dimensional arrays are handled. A similar holder will also need to be
constructed for two-dimensional arrays (see holder.h in the example project).

‘) LISTING 16-2: An array holder

Available for template <typename T, int SZ>

dm:;oggr:n struct CArrayOneDimension

T DatalSz];

Parallelizing the C++ Version | 485

Y

template <typename T, int SZ>
class array_holder

{

private:
cilk::holder<CArrayOneDimension<T, SZ>> m_holder;
public:
operator T* (){return m_holder () .Data;}

Y

code snippet Chapter16\16-2.cpp

Listing 16-3 shows the declaration of the original global variable Arr_1_g1ob with the new holder
version underneath:

J LISTING 16-3: A two-dimensional array holder

Available for // int Arr_1_Glob [50];
dow":gtggl:" array holder<int,50> Arr 1 Glob;

template <typename T, int SZ1, int SZ2>
struct CArrayTwoDimension
{
T Data[Sz1l][Sz2];
Y

template <typename T, int SZ1,int SZ2>
class array_2_holder
{
private:
cilk::holder<CArrayTwoDimension<T, SZ1,SZ2>> m_holder;
public:
operator Arr_2_Dim & () {return m_holder () .Data;}
T* operator[] (const T x){return m_holder () .Datalx];}
Y

code snippet Chapter16\16-3.cpp

Initializing the Global Variables

The original initialization code for the global variables sits outside the main for loop. To make the
initialization be on a per-thread basis, the code is moved to sit inside the new parallel loop (see the
following code snippet). One new holder variable, myholder<bool> bInitialized, is introduced
outside the loop. On instantiation all the different worker views of the variable will be automatically
initialized to false. As each new Cilk Plus worker enters the loop for the first time, it will see that

486 | CHAPTER16 PARALLELIZING LEGACY CODE

bInitialized is false, and therefore execute the initialization code. On subsequent iterations of the
loop by the same worker, the initialization code will not be run because its view of bInitialized
will have been set to true.

In the same code snippet, you can see that the local variables are moved from the top of the main ()
function to be within the cilk_for loop. This has the desired effect of making the variables
thread-specific.

myholder<bool> bInitialized;

cilk_for(int Run_Index = 1; Run_Index < Number_Of_Runs+l; ++Run_Index)

{

// locals moved from beginning of main

One_Fifty Int_1_Loc;
REG One_Fifty Int_2_Loc;
//... etc

// move initialization into loop
if (!bInitialized)
{

Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
// ... etc

bInitialized = true;
}
// ... rest of for loop

The Results

Figure 16-16 shows the results of the Cilk Plus version. The performance dips, because the number
of threads is the same as the number of cores available on the workstation that was used.

25000000 A
20000000 -
15000000
10000000 A

5000000 A

Dhrystones per Second

0 T T T T T 1
1 2 4 8 16 24

Number of Threads

FIGURE 16-16: The performance using Cilk Plus

Is It Successful?

In one word, yes (well, almost yes). The performance is still less than the serial version, but the pro-
gramming is scalable, with a decent rate of change; the editing effort on the original source files is
minor; and the fact that the shared variable references stay exactly as they are (you only change the
declarations of the variables) makes this solution extremely attractive.

Overview of the Results | 487

ACTIVITY 16-6: USING CILK PLUS WRAPPERS

In this activity you perform a system-wide analysis to see how well the programs
are running on your machine. You can run this activity on Linux or Windows.

1. Navigate to the 16-6-CILKHOLDER folder:

cd 16-6-CILKHOLDER

2. Repeat steps 2 to 6 of Activity 16-1.

OVERVIEW OF THE RESULTS

The main interest in the results of the different parallelization efforts is performance and editing
effort. Ideally, there should be a performance improvement without having to completely rewrite the
original source code.

Performance

You can use two metrics — speedup and scalability — to measure an application’s performance. The
speedup metric is expressed by the number of Dhrystones executed in one second. Scalability can be
observed by plotting a graph of the improved speed as the number of threads is increased.

Figure 16-17 shows how many Dhrystones per second were executed in the main for loop of the
benchmark program; the bigger the figure, the better the performance. You can see the following:

25000000 - _ n . .

©

§ 20000000 -

[0}

(7] .

5 15000000 - —= Serial

?, -8~ 17-2-OMP-C

5 10000000 - 17-3-OMP-DUP

wn

2 5000000 -3 17-5-WRAPEVERYTHING

[a) %- 17-6-CILKHOLDER
O+— + v/

1 2 4 8 16 24
Threads

FIGURE 16-17: The Dhrystone results of the parallelized benchmark

> The serial version (the top line on the graph) runs better than any of the parallel versions.
The root cause of this is the lack of sufficient work being executed in the Dhrystone tests,
combined with the excessive use of shared variables.

> The best performing parallel version is the one using Cilk Plus holders.

488 | CHAPTER16 PARALLELIZING LEGACY CODE

> The two most scalable solutions are the Cilk Plus holders and the OpenMP duplicated
variables.

> The OpenMP version using synchronization does not scale and has terrible performance.

Editing Effort

One of the goals of this exercise was to keep any code changes to a minimum. The benchmark is
quite small, so the total coding effort is quite small. Table 16-4 shows the number of words that were
changed in adding the parallelism. Because the main measure should be how much the original code
has been changed, the new files that have been added have not been included in Changes column.

TABLE 16-4: Editing Effort

BUILD WORDS CHANGES NEW FILE
ORG 4800 0 0
HOLDER* 4934 105 149
WRAPEVERYTHING* 4979 12 159
OMP 4894 14 0

CPP 4871 171 0
OMP-DUP 4938 302 0

*Compared to CPP file
You can see the following:

> The solution that required the fewest changes to the original legacy code (if you ignore the
effort of making the benchmark a C++ file) is the HOLDER project.

> The omp-DUP has the highest number of changes.

If you consider the cost of changing a project to C++, the projects needing the fewest changes
are WRAPEVERYTHING and OMP.

SUMMARY

Adding parallelism to legacy code is not easy; indeed, the examples you saw in this case study show
how hard it can be. Given a sufficient workload, it should be possible to incrementally parallelize
your old code, using tools such as Amplifier XE and Inspector XE to help verify that the parallelism
is correct and optimal. Cilk Plus holders stand out as an interesting way of dealing with global vari-
ables without demanding many changes to the original source code.

The case study in the next chapter shows you how to parallelize a program for finding duplicate
code blocks using Intel Parallel Advisor XE.

INDEX

-2, SSA injection, 146
* (asterisk), reduction (), 105
\ (backslash), continuation marker, 76
= (equals sign), assignment operator, 122
- (minus sign)
call chains, 282
reduction(), 105
+ (plus sign)
call chains, 282
reduction(), 105
2nd Generation Intel Core
architecture, 10
128-bit SSE variables, 380-381

a g,wait(), 200

abstraction, 11

acceleration, high-energy physics
experiment, 421

addacc, 400-401

addps, 98

addsdqg, 351

addss, 98

Adav (), 89, 111

addy.c, 89, 128

Advanced Vector Extensions (AVX), 10
auto-vectorization, 97
Intel, 120

Sandy Bridge laptop, 97
speedup, 99
Advisor, 27-31
annotations, 279, 286-290
replacing, 304-307
C/C++, 277
Correctness, 278-279, 295-304
design, 277-308
disadvantages, 278-279
documentation, 280
errors, 217
lock annotations, 287-288
mappings, 305-307
NQueens example program, 280-281
ROI, 278
serial code, 278
site annotations, 286—-287
Suitability, 279, 290-295
Summary Report, 304-305
Survey, 282-285
workflows, 279-280
aligned_space, 39
always[assert], 169
AMD, 99
Amdahl’s Law, 20-21, 282
Amplifier XE, 8, 19, 26, 45-48, 251-271
algorithm analysis, 261-264
analysis types, 364
APIs, 366-369
for, 468
timestamps, 468—469

489

Amplifier XE — /arch

Amplifier XE (continued)

Bandwidth, 364

Bandwidth Breakdown, 364

baselines, 252-255

cache misses, 359-360

call stacks, 174

CLI, 253-255, 369-370

compiler, 361-363, 386

Concurrency analysis, 71-73, 251-252,
414-415, 438-440

hotspots, 270

CPI, 341-345, 353-354

CPU, 355-357

CPU Usage, 255-256

Custom designed, 364

Cycles and uOps, 364

data collection, 468, 474

event-based analysis, 341-374

frame rate analysis, 368-369

Front End Investigation, 364

General Exploration analysis, 352-357,
364

hardware, 358-363

health, 342-345

hotspots, 254, 256-258

hotspot analysis, 171-177, 345-352,
400, 467

_ it_pause(), 366-368

Locks and Waits analysis, 46-48, 251,
268-269, 474-475

loops, 172-174

loop profiler, 172

Memory Access, 364

n-bodies simulation, 400

OpenMP, 76-77,270-271

order-of-magnitude problem, 398

predefined analysis types, 364

Results tab, 346-347

490

source code, 173

SSE, 360-361

Sudoku, 394-396

Thread Concurrency, 255-256

timeline, 258-261

viewpoints, 268, 349-350, 364-365
analysis types, 218-219. See also specific

analysis type

custom, 218, 245-247

predefined, Amplifier XE, 364
ANNOTATE_LOCK_ACQUIRE (), 288
ANNOTATE_LOCK_RELEASE (), 288
ANNOTATE_SITE BEGIN(), 286
ANNOTATE_SITE_END(), 286
ANNOTATE_TASK_BEGIN(), 286
ANNOTATE_TASK_END (), 286
annotations, 29

Advisor, 279, 286-290

locks, 287-288
replacing, 304-307

C/C++ compiler, 289

Composer XE, 30-31

NQueens, 290
Annotation Wizard, 289
anonymous functions. See lambda

functions
ANSI C-like code, 183
antivirus software, 252
AOS. See array of structures
APIs, Amplifier XE, 366-369

for, 468

timestamps, 468—469
ApplyAccelerationAndAdvancedBodies,

401
ArBB. See Array Building Blocks
arbb::bind(...), 430
ArBB_track_fit, 441
/arch, 99-100

/arch32 — Barnes-Hut algorithm

/arch32, 92
/arch:SSE4.1, 100
argv[3], 480
arithmetic overflow, 131
Arr_2_Glob, 465
Array Building Blocks (ArBB), 11,
427-429
for, 432
binding, 450-452
classes.h, 449-450
Concurrency analysis, 438—440
Correctness, 435
covariance matrices, 452
Kalman filter, 432
kernel, 452-460
Lightweight Hotspots analysis, 437
scalability, 435-438
serial code, 435
speedup, 435-438
TBB, 439
track-fitting, 425, 430-440,
444-460
array notations, Cilk Plus, 33, 36
elemental functions, 123
keywords, 13-15
vectorization, 121-124
array of structures (AOS), 102, 431
assignment operator, 122
atom, 125
atomic, 39
atomic operations, 236-237
auto-parallelism. See also guided
auto-parallelization
C/C++ compiler, 32
programming guidelines, 168
/Qguide, 181
/Qparallel, 181
reports, 91

auto-parallelizer
hotspots, 156
hotspot analysis, 165-171
OpenMP, 165
profiling, 165-168
auto-vectorization, 87
AVX, 97
compiler, 99, 103-107
enhancing, 99-100
error messages, 101
failure, 101-103
GAP, 116-118
guidelines, 98-99
IPO, 109-111
loopy code, 97
MMX, 97
multipath, 118-120
optimized code, 116-118
organizing data, 102-103

processor-specific optimizations, 96-107

/0%, 99
reports, 91, 100-101
SIMD, 97
speedup, 99
SSE, 32, 96, 97, 99
turning on, 99
Average Concurrency, 253
AVX. See Advanced Vector Extensions

back-end, 355-356
Back-end Bound Pipeline Slots, 358
back-end-bound execution, 357
Bandwidth, Amplifier XE, 364, 407
Bandwidth Breakdown,

Amplifier XE, 364
Barnes-Hut algorithm, 403

491

Barriers — C/C++

Barriers, IDB, 333

baryons, 419

baselines, Amplifier XE, 252-255

./bash_profile, 158

Basic Linear Algebra Subprograms
(BLAS), 44

Begin_Time, 465

benchmark, 467

benchmarking, 92

binding, ArBB, 450-452

BinNum, SSE intrinsics, 380-381

BinRow, SSE intrinsics, 381

BIOS, Turbo Boost Technology, 93

BLAS. See Basic Linear Algebra
Subprograms

body, 401

BODYMAX, 401

Bool_Glob, 465

Bottom-up tab, User Mode
Hotspots, 347-348

boundary violations, SSA, 131

buffer overflows, 51, 131

build specification, SSA, 145-149

Build_serial, 312

Build_with_cilk, 312

Build_with_openmp, 312-313

Build_with_tbb, 312

C. See also C/C++
Dhrystone benchmark, 472-478
global variables, 476-478
hotspots, 350-351
legacy code, 472-478
shared variables, 472-475
C++. See also C/C++
Cilk Plus, 482-487
class, 479-482

492

compiler, OpenMP, 73
Dhrystone benchmark, 478-487
exceptions, elemental functions, 123
legacy code, 478-487
SIMD, 121
SSA, 132
TBB, 10, 38, 182
The C Programming Language (Kernighan
and Ritchie), 464
C runtime library, 17
C99, 104
cache, 18
cache misses, 359-360
call
ArBB, 429
kernel, 449-450, 452-453
call chains, 282
call stacks, Amplifier XE, 174
Call stack with Loops, 284
Call Stacks for the two source
snippets, 297
calling sequence, n-bodies simulation, 410
cancellation-dominated execution, 357
candidate parallel regions, 283
capture_mode, 183
category, SSA, 138
CBM. See Compressed Baryonic Matter
C/C++, 182
Advisor, 277
ArBB, 428
Cilk Plus, 10, 121-122
cilk_for, 185
compiler, 31-37
annotations, 289
optimized code, 87-130
Composer XE, 26
Parallel Studio XE, 27
SSA, 51
SSE intrinsics, 380

cdge - clock speed

cdge, 351
CERN Collider. See track-fitting
Ch_1_Glob, 465
Ch_2_Glob, 465
chapter4.h, 89, 128-129
Check Sum, 68, 74, 89
check sum, 59
chunk size, 78, 79
Cilk Plus
for, 67, 185-186
reduction, 190
annotations, 305-307
array notation
elemental functions, 123
matrix multiplication, 123-124
vectorization, 121-124
assignment operator, 122
C+, 482-487
C/C++, 121-122, 182
compiler, 32, 33-37
Concurrency analysis, 71-73
data races, 233-236
Dhrystone benchmark, 482-487
elemental functions, 123
four-step methodology, 54-73
global variables, 485-486
holders, data races, 234-236
hyperobjects, 483-485
IDB, 333-334
Intel, 10
ISAT, 271
keywords, array notations, 13-15
legacy code, 482-487
linked lists, 209
n-bodies simulation, 399, 410
nested for loops, 189
PDE, 43
recursive functions, 199

reducers, 33, 35, 68-70, 122-123, 190
compilation errors, 57
data races, 234
sections, 195-196
serial programs
analysis, 60—-62
debugging, 63-71
errors, 63-71
implementation, 62-63
tuning, 71-73
shared variables, 67-68
SSA, 51, 132
Tachyon, 312
TBB, 11-12, 38
while, 191-192
wrappers, 483-486
Cilk Thread Stack, 333
cilk_for, 11, 14, 34, 185-186, 238
for, 63, 410
cilk_grainsize, 186
cilk::holder, 236
wrappers, 483
CILK_NWORKERS, 34
cilk::reducer_opadd, 234, 413-414
cilk_spawn, 34-35,236
elemental functions, 123
recursive functions, 199
sections, 195-196
while, 191-192
cilk_sync, 34, 236
class, C++, 479-482
classes.h, 441, 447
ArBB, 449-450
class.h, 421
clean, 467
CLI. See command-line interface
clock speed
CPU, 3-4, 5
Turbo Boost Technology, 92

493

clock ticks — core_2nd_gen_avx

clock ticks, 342

CnC. See Concurrent Collections
Coarray Fortran, 11

collections, ArBB, 428

collision, high-energy physics experiment,

421
combined_track_fit, 441
command-line interface (CLI)
Amplifier XE, 253-255, 369-370
baselines, 253-255
communication
data communication, Correctness,
299-300
IPC, 23
Compare Total Time, 294
compilation errors, Cilk Plus
reducers, 57
compiler, 59
Amplifier XE, 361-363, 386
auto-vectorization, 99,
103-107
C++, OpenMP, 73
C/C++, 31-37
annotations, 289
optimized code, 87-130
Dhrystone benchmark, 465
function calls, 164-165
hotspot analysis, 158-165
intel.noopt.exe, 93
JIT, 427, 429
lambda functions, 184
loop profiler, 156
n-bodies simulation, 399
PGO, 113-114
-Qno-alias-args, 118
reports, 91
restrict, 103-104, 118
SIMD, 97
SSE, 92, 380

494

Sudoku, 386
compilervars.sh, 93
Composer XE
annotations, 30-31
C/C++, 26
Compressed Baryonic Matter (CBM),
419-461
concurrency, 467, 469
Concurrency analysis

Amplifier XE, 46, 47, 71-73, 251-252,

414-415, 438-440
hotspots, 270
ArBB, 438-440
Cilk Plus, 71-73
n-bodies simulation, 415
OpenMP, 76-80
Concurrent Collections (CnC), 11
concurrent_bounded_gueue, 39
concurrent_hash_map, 39
concurrent_gueue, 39
concurrent_unordered_map, 39
concurrent_vector, 39
Configure Analysis Type, 245
Confirmed, SSA problem state, 137,
141, 142
consistency, baselines, 252

const long int VERYBIG 100000, 57

constants, auto-parallelism, 168
continuation, 35
continuation marker, 76
control, 33
Core 2 laptop, 90

1PO, 109

optimized code, general options, 94

PGO, 114

/0xAVX, 100
core_2_duo_sse4_1, 125
core_2_duo_ssse3, 125
core_2nd_gen_avx, 124

core_aes_pclmulqdq — data races

core_aes_pclmulgdg, 124
core_1i7_sse4_2,124
Correction analysis, 30
Advisor, 278-279, 295-304
ArBB, 435
data collection, 302
data communication, 299-300
deadlocks, 300
debugging, 296
limitations, 301-302
lock annotations, 287
locks, 300-301
locksets, 303
memory, 298-299
modeling, 303
NQueens, 304
problems, 298-301
references, 303
serial code, 302
Sudoku generator, 392-393
task execution tree, 302
track-fitting, 435
Correctness Report, 303
NQueens, 296-297
Correctness Source window, 297-298
covariance matrices, ArBB, 452
CPL. See cycles per instruction
CPU
addacc (), 400
Amplifier XE, 355-357
back-end, 355-356
back-end-bound execution, 357
cancellation-dominated execution, 357
clock speed, 3-4, 5
dispatch, 119
execution behavior, 356-357
front-end, 355-356
front-end-bound execution, 356-357
optimized code, 124-125

power density, 3—4
retirement-dominated execution, 356
SIMD, 380
Turbo Boost Technology, 92
CPU Time by Utilization, 71-72
CPU Time.Wait Time, 254
CPU Usage, 78
Amplifier XE, 255-256
timeline, 259
track-fitting, 439
CPUID, 124-125
critical sections
hotspots, 260-261
OpenMP, data races, 236
custom analysis types, 218, 245-247
Custom designed, Amplifier XE, 364
Cycles and uOps, Amplifier XE, 364, 407
cycles per instruction (CPI), 341
Amplifier XE, 341-345, 353-354
hardware, 358

data acquisition, high-energy physics
experiment, 421
data collection
Amplifier XE, 468, 474
Correctness, 302
limit, 175
Suitability, 294
data communication, Correctness, 299-300
data parallelism, 11, 283, 286
ArBB, 428
data races, 15
ArBB, 427
Cilk Plus, 233-236
deadlocks, 220-221
debugging, 227, 309

495

data races — dhry_l.cpp

data races (continued)
detecting, 225-233
fixing, 233-238, 323-331
DB, 311-331
fixing, 325
Inspector XE, 49, 64, 66, 67,225-233,
467
Linux, 227, 323
fixing, 325
mbox, 329-331
n-bodies simulation, 412-414
OpenMP, 236-237
fixing, 324-325
parallel regions, 324
PDE, 412-413
fixing, 324-325
#pragma omp atomic, 261
SSA, 227
suppression filters, 228-233, 319-323
TBB, 237-238
threading, 220
Windows, 227, 322-323
fixing, 324-325
Data Translation Look-aside Buffer
(DTLB), 359
data-level parallelism, 9-10
datarace, 467
dead code, SSA, 132
deadlocks, 16
ArBB, 427
Correctness, 300
data races, 220-221
debugging, 309
detecting, 221-225
Inspector XE, 49, 64, 221-225
deallocation, 239
debugging, 309-339. See also Intel
Debugger; Parallel Debugger Extension
Cilk Plus serial programs, 63-71

496

Correctness, 296
data races, 227, 309
deadlocks, 309
filters, 332-333
/04, 91
OpenMP serial programs, 75-76
Parallel Studio XE, 310
printf (), 8
runtime, 333-339
serial code, 311, 315-316
Visual Studio, PDE, 43
workflows, 310-311
__declespec(align), 106
_ declspec, 124
__declspec (vector), 13, 123
default.sup, 228
#define LAST, 255
#defines, 399
de-interleaving, 433
Delete(), 134
dependencies
auto-parallelism, 168
loop, 110-111
vector, 101
Detect Deadlocks analysis,
221-225
Detect Deadlocks and Data Races analysis,
225-233
Detect Leaks, 238
Detect Memory Problems, 238
detection, high-energy physics experiment,
421
determinacy races, 15-16
dhry_1.c, 476
dhry_1.cpp, 479
dhry_2.c, 464
dhry.h, 476
dhry_1.c, 464
dhry_1.cpp, 479

Dhrystone benchmark — filters

Dhrystone benchmark
C, 472-478
C++,478-487
Cilk Plus, 482-487
global variables, 464-465, 476—-478
legacy code, 464-465
Makefile, 466
serial code, 471-472
shared variables, 464—-465, 472-475
dhrystone: :main(), 479
Dhrystones_Per_Second, 465
Dir(), 134
disassembly source view, 48
distributed parallelism, 9
divide by zero, 131
_dl_relocate_object, 347
documentation, Advisor, 280
domain-specific libraries, 11
draw_task, 313
serial, 320
driver.cpp, 441, 447-448
dhry_1.cpp, 479
fitTracks, 442
DTLB. See Data Translation Look-aside
Buffer
duration time estimate, 174
DWORD, 56
.dyn, 114
/Qprof-use, 32
dynamically allocated memory, 131

education, 8

ef_add, 13-14

Elapsed Time, 253

elemental functions, Cilk Plus, 33, 36, 123
Enable Parallel Debug Checks, 317

Enable Task Chunking, 292
End_Time, 465
EnterCriticalSection, 16
eog, 158
errors, 15-19, 217-250
Advisor, 217
auto-vectorization, 101
Cilk Plus serial programs, 63-71
compilation errors, Cilk Plus reducers, 57
Inspector XE, 49-51
memory
Inspector XE, 49-50, 238-245
types, 239-240
Memory Error analysis, 218
custom analysis types, 246
n-bodies simulation, 412-414
PDE, 217
SSA, 134, 217
threading, Inspector XE, 49-50, 66
Threading Error analysis, 218, 219-221
custom analysis types, 246-247
event-based sampling, 46
execution behavior, 356-357
Exit (), 133

Facility for Antiproton and Ion Research
(FAIR), 420

false positives, 135-136

false sharing, 18-19

Fast Fourier Transform (FFT), 41-42
MKL, 44

File.cpp, 385

filters
Correctness Report, 296
debugging, 332-333
focus, 325-328

497

filters — GDI

filters (continued)
Kalman filter, 445
ArBB, 432
fitTracks, 441
for, 454

high-energy physics experiment,

421, 425-427

suppression filters, data races, 228-233,

319-323
filters step, Kalman filters, 426

filter::serial_in_order, ntoken, 207

firstprivate, 325
local_mbox, 327
threading, 383

fitTracks
driver.cpp, 442
Kalman filter, 441
main (), 442

fitTracksArBB, main, 445

fitTracksArBBEntry, 448

fit_util.h, 441

Fixed, SSA problem state, 141, 142

floating-point performance, 32

flow_control fc, 207

Focus Code Location, 65

focus filters, 325-328

foo, 302

for, 185-188
Amplifier XE APIs, 468
ArBB, 432
Cilk Plus, 67, 185-186
cilk_for, 63, 410
deadlocks, 220
hotspot analysis, 254
Kalman filter, 454
lastprivate, 473
main(), 464
nested loops, 188-189
OpenMP, 187-188

reduction, 190

498

#pragma omp for, 476
#pragma omp parallel, 472
reduction, 189-191
schedule, 187
speedup, 19
TBB, 188
reduction, 191
__forceinline, 171
for_each, 184
fork-join parallelism, 286
for-loop, 169
Fortran
Parallel Studio XE, 27
SSA, 51,132

frame rate analysis, Amplifier XE, 368-369

free, 13

Front End Investigation, Amplifier XE, 364

front-end, 355-356
front-end-bound execution, 356-357
functions, 193-197
elemental, Cilk Plus, 33, 36, 123
lambda, 183-184
compiler, 184
TBB, 183
recursive, 198-201
Cilk Plus, 199
OpenMP, 200
serial code, 198-199
TBB, 200-201
TBB, 197
function calls
auto-parallelism, 168
compiler, 164-165
Function Call Sites and Loops, 283
functors. See lambda functions

GAP. See guided auto-parallelization
GCC. See GNU Compiler Collection
GDI. See Graphics Device Interface

General Exploration analysis — hotspots

General Exploration analysis
Amplifier XE, 352-357, 364, 407
n-objects simulation, 407-409

general options, optimized code,
93-96

general parallelism, 11

generator
OpenMP, 382-383
Sudoku, 379-380

optimizing, 384-396

Generator.cpp, 385

generic, 125

Geo.dat, 441

GetLine, 201-202

GetPrimes, 266-267, 270

get_value(), 234
reducers, 35

global optimization, 31

global variables
C, 476-478
Cilk Plus, 485-486
Dhrystone benchmark, 464-465,

476-478
legacy code, 476-478
OpenMP, 477
wrappers, 483

GNU Compiler Collection (GCC), 25, 26,
399

GNU Public License (GPL), 38

gNumPrimes, 265

goto, 123, 186

GPL. See GNU Public License

gProgress, 260

Graphics Device Interface (GDI), 49, 239

gthum, 158

guided auto-parallelization (GAP), 32
auto-vectorization, 116-118
reports, 91

Gustavson’s observation, 20-21

gwenview, 158

hard real-time, 22-23
hardware
Amplifier XE, 358-363
CPI, 358
HashAdvance, 410
Hash.cpp, 410
hashed octree, 405-407
HASHTABLE, 405
health, Amplifier XE, 342-345
heaps, 18
high-energy physics experiment, 420-427
acceleration, 421
collision, 421
data acquisition, 421
detection, 421
Kalman filter, 421, 425-427
serial code, 422
track reconstruction stages, 421-427
track-finding, 421, 423-425
track-fitting, 421, 425-427, 430-440
vertexing, 421
high-level constructs, 11
high-level optimization (HLO), 95
high-performance computing (HPC), 11
high-performance optimization
(HPO), 95
hits, 421
hitsX, 451
hitsY, 451
HLO. See high-level optimization
hlo, 95
holders, Cilk Plus, data races, 234-236
hotspot, 467, 469
hotspots, 155. See also User Mode
Hotspots
Amplifier XE, 254, 256-258
Concurrency analysis, 270
auto-parallelizer, 156

499

hotspots — Intel

hotspots (continued)

C, 350-351

critical sections, 260-261

printf, 261

PrintProgress, 256-257

Sudoku

generator, 391
solver, 388-389

hotspot analysis. See also Lightweight

Hotspots analysis

Amplifier XE, 46, 60-61, 171177,

345-352, 400, 467

auto-parallelizer, 165-171

compiler, 158-165

inlining, 160

IPO, 160

loops, 156

octree, 405
HPC. See high-performance computing
HPO. See high-performance optimization
hpo, 95
hyperobjects, 483-485
Hyper-Threading, 5

baselines, 252

benchmarking, 92

disabling, 92
hypervisor, virtualization, 9

ia32, 93

id, 133

IDB. See Intel Debugger

idb openmp-serialization on, 316
idb set cilk-serialization on, 316
idb sharing on, 317

if, 135

*.inc, 471

incident sharing, 298

500

#include, 63, 74, 480
dhry_1.cpp, 479
Makefile, 466
SSA, 137
#include <cilk/cilk.h>, 410
#include <mmsystem.h>, 57
#include <stdio.h>, 56
#include <windows.h>, 56
independent updates, 299
init(), 422
initial approximation step,
Kalman filters, 426
injection, SSA, 146-147
inline, 171
_inline, 171
__inline_ , 171
inlining, 160, 162, 171
inpxe-runsc, 146
Inspector XE, §, 26, 48-51
Custom analysis types, 245-247
data races, 64, 66, 67,225-233, 467
deadlocks, 64, 221-225
memory errors, 238-245
SSA, 131-132
state information, 137
threading errors, 66
Threading Errors analysis, 219
XML, 136
inspxe, 136
inspxe-gui, 138
inspxe-inject, 146-149
instruction-level parallelism, 9
instructions retired, 342
Integrated Performance Primitives (IPP), 11,
31, 40-43, 181
Intel. See also specific topics
AVX, 120
Cilk Plus, 10
domain-specific libraries, 11

Intel — ittnotify.h

MIC, 6

multipath auto-vectorization, 119

Parallel Studio XE, 6

research and development, 11

standards, 11

Teraflop Research Chip, 5-6
Intel compiler. See compiler
Intel Debugger (IDB), 43, 310, 317

Barriers, 333

Cilk Plus, 333-334

data races, 311-331

fixing, 325

focus filters, 329

Linux, 26, 31, 316

Locks, 333

OpenMP, 333-339

serial code, 315-316

Spawn Tree, 333, 336-339

Tasks, 333

parallel regions, 334-335

Taskwaits, 333

Teams, 333

windows, 333-334
Intel Software Autotuning Tool (ISAT),

251,271-272
INTEL_LOOP_PROF_XMIL,_DUMP, 159
intel.noopt.exe, 93
Intel_SSA, 138
intent, 33
interleaving, 433
InterlockedIncrement, 11
interprocedural optimization (IPO), 31, 87,

108-112

auto-parallelism, 168

auto-vectorization, 109-111

hotspot analysis, 160

/Qipo-, 160
interprocess communication (IPC), 23
interstellar medium (ISM), 397, 398

IntervalZero, 23
Int_Glob, 465
intrinsics, SSE, 380-382, 390
invalid deallocation, 239
invalid memory access, 239
invalid partial memory access, 239
invalid users, SSA, 134-135
Investigated, SSA problem state, 141-142
/0
Locks and Waits analysis, 46
virtualization, 9
IPC. See interprocess communication
IPO. See interprocedural optimization
ipo_inl, 95
IPP. See Integrated Performance Primitives
ippAC, 40
ippCC, 40
ippCH, 40
ippCP, 40
ippCV, 40
ippDC, 40
ippDI, 40
ippGEN, 40
ippIP, 41
ippJdP, 41
ippMX, 41
ippRR, 41
ippsc, 41
ippSP, 41
ippSR, 41
ippve, 41
ippvM, 41
irfanview.com, 157
ISAT. See Intel Software Autotuning Tool
ISM. See interstellar medium
ison, 325
iteration, 209-211
__it_pause(), 366-368
ittnotify.h, 176

501

ITT_PAUSE - Linux

ITT PAUSE, 366
__itt_pause(), 175-176
ITT_RESUME, 366
__itt_resume(), 175-176

jnle, 351
just-in-time (JIT), 427, 429

Kalman filter, 445
for, 454
ArBB, 432
fitTracks, 441
high-energy physics experiment, 421,
425-427
__kcilkrts(), 186
kernel
ArBB, 452-460
call, 449-450, 452-453
resource leak, 239
track-fitting, 449-450
Kernighan, Brian, 464
keywords, Cilk Plus, 33-34
array notations, 13-15
K&R C code, 464

L1 cache, 18
L2 cache, 18
lambda functions, 183-184
compiler, 184
TBB, 183
LAPACK. See Linear Algebra PACKage

502

Large work with overhead, 21
last level cache, 18
lastprivate, 169, 473, 476
Launch Application, 346
LeaveCriticalSection, 16
legacy code, 7, 463-488
C, 472-478
C++,478-487
Cilk Plus, 482-487
Dhrystone benchmark, 464-487
global variables, 476-478
shared variables, 472-475
lib-a, 137
libittnotify.1lib, 176
Lightweight Hotspots analysis, 346-352
ArBB, 437
n-objects simulation, 407-409
track-fitting, 437
linear (), 105
Linear Algebra PACKage (LAPACK), 44
LineTn, 203, 205, 207
LineOut, 203, 205, 207
linked lists, 208-211
Cilk Plus, 209
OpenMP, 210
parallel iteration, 209-211
serial iteration, 209
TBB, 210
Linux
Amplifier XE baseline, 255
compiler, 363
data races, 227, 323
fixing, 325
Dhrystone benchmark, 471
focus filters, 329
GCC, 26
General Exploration analysis, 354

LLC miss — main.c

IDB, 26, 31, 310, 316
ISAT, 271
loop swapping, 362
Makefile, 92
n-bodies simulation, 399
hotspot analysis, 402-403
option-mapping, 155-156
/0y-, 155-156
PGO, 114
PPM, 158
SSE speedup, 363
Tachyon, 313, 316
LLC miss, 358
load balancing, 17
cilk_for, 186
n-bodies simulation, 414-415
OpenMP, 79-84, 382
local trees, 410
local_mbox, 327
Locate Memory Problems, 239, 240
locks
annotations, Advisor, 287-288
Correctness, 300-301
IDB, 333
OpenMP, data races, 236
Suitability Report, 292
TBB, 238
Locks and Waits analysis, 46-48, 251,
268-269, 474-475
locksets, 303
longjmp, 123
loops, 185-193. See also for; while
Amplifier XE, 172-174
auto-vectorization, 98-99
control variables
cilk_for, 186
OpenMP, 188

counter, 98, 474
elemental functions, 123
hotspot analysis, 156
OpenMP, 382, 473
swapping, 360-363
work.c, 110
loop parallelism. See data parallelism
loop profiler
Amplifier XE, 172
compiler, 156
inlining, 162
Loop Time, 284
loop trip count, 98
LOOPCOUNT, 471
loop-dependency, 110-111
LoopOne (), 366
loopprofileviewer, 159, 164
LoopTwo (), 366
loopy code, 97
Low trip count, 101
low-level constructs, 11

main, 62, 429, 445
main(), 89, 480

for, 464

fitTracks, 442

a g,wait(), 200

n-bodies simulation, 399

OpenMP, 200

packed SSE instructions, 361
main.c, 152-153
main.c(28) : error #12329,134
main.c(38) : error #12305, 134
main.c(59) : error #12305, 134

503

Main.cpp — modeling

Main.cpp, 385
main.cpp, 157, 399, 441, 446-447
mainCRTStartup, 71, 73, 77
main.h, 399
MainMenu (), 133, 134
maintainability, 8
make clean, 467,471
Makefile, 89, 129-130, 153, 399
include, 466
legacy code, 466
Linux, 92
n-bodies simulation
hashed octree, 405
octree, 405
malloc, 13
init (), 422
memory, 17-18
errors, 239
serial code, 445
mandelbrot.cpp, 157
mandelbrot.h, 157
manual CPU dispatch, 124-125
Many Integrated Core Architecture (MIC), 6
many-core computing, 4—6, 8
mappings, Advisor, 305-307
Math Kernel Library (MKL), 11, 31,
44-45, 181
matrix multiplication, 123-124
Maximum Program Gain For All Sites, 291
Maximum Site Gain, 291
MAXKEYS, 405
mbox, 329-331
memcpy, 49, 239
memory
ArBB, 428
Correctness, 298-299
errors, 17-19

504

Inspector XE, 49-50, 238-245
types, 239-240
growth, 239
leaks, 17, 238, 239
Inspector XE, 50
SSA, 131
OpenMP, 476
SoA, 433
virtualization, 9
Memory Access, Amplifier XE, 364, 407
Memory Error analysis, 218, 246
Memory reuse: Observations, 296, 297
Message Passing Interface (MPI), 9, 11, 410
metrics tracking, 145-151
m_holder (), 483
-mia32, 92
MIC. See Many Integrated Core
Architecture
Microseconds, 465
Microsoft compiler, 58-59
m_index, 433
minimal solution, 379
minus-one-plus-two algorithm, 380
minus-two-plus-one algorithm, 380,
390-391
mirror space, 433
mismatched allocation/deallocation, 239
missing allocations, 239
MKL. See Math Kernel Library
_mm_hadd, 361
_mm_malloc(), 106
MMX. See MultiMedia eXtensions
model parameters, 291
modeled estimates, Suitability Report, 291
modeling
Correctness, 303
Suitability, 295

Moore — NuminRow

Moore, Gordon E., §

Moore’s Law, 5

movsdg, 351

MPI. See Message Passing Interface

mulsd, 360

mulsdg, 351

multi-core computing, 4-6

MultiMedia eXtensions (MMX), 97

multipath auto-vectorization,
118-120

multwo, 123

mutex, 39

mutexes, 237-238

m_value, 433

myholder, 236, 483

n-bodies simulation, 399-400
calling sequence, 410
Concurrency analysis, 415
data races, 412-414
errors, 412-414
hashed octree, 405-407
hotspot analysis, 400-403
Linux, hotspot analysis,

402-403
load balancing, 414-415
octree, 403-405
PDE, 412-413
Windows, hotspot analysis, 402-403

n-bodies.cpp, 399

n-bodies.h, 399

nested loops, 188-189

nested parallelism, 283, 287

New, SSA problem state, 141

NewIdx, 388

Next_Ptr_Glob, 465

nmake benchmark, 468, 471

<no target>, 467

[no]assert, 105

NODE, 403

NodeIdx, 387

NODES, 403

non-Intel processors
AMD, 99
multipath vectorization, 119

Nonstandard loop is not a vectorization
candidate, 101

non-unit strides, 102

Not a problem, SSA problem state, 137,
141, 142

Not an inner loop, 101

Not fixed, SSA problem state, 141

Not investigated, SSA problem state,
141-142

NotePad, 133

nowait, 192, 205

NQueens
Advisor, 280-281
annotations, 290, 307
Correctness analysis, 304
Correctness Report, 296-297
Suitability analysis, 295
Suitability Report, 291-292
Summary Report, 305
Survey Report, 282-283

nrOfSolutions, 299

ntoken, 207

NULL, 239

NumInColumn, 388

NumInRow, 388

505

/01— Open Multi-Processing

/01, 93-94, 168

/02, 91-94, 108-109

/03, 93-94

/0b0, 171

/obl, 171, 174

object declarations, 132

octree, 403-405

OCTREE, 405

octree.cpp, 399

octree.h, 399

/0d, 91-92
auto-parallelism, 168
debugging, 91

offline data analysis, 421

omp single, 383

OMP Worker Thread 3, 77

omp_get_max_threads (), 476

omp_get_nested(), 189

OMP_NESTED, 189

OMP_NUM_THREAD=1, 225

OMP_NUM_THREADS, 187-188

omp_set_nested(expression), 189
omp_set_num_threads (), 187-188, 476
Open Multi-Processing (OpenMP), 11,

37-38
for, 187-188
reduction, 190

Amplifier XE, 76-77, 270271

atomic operations, data races,

236-237
auto-parallelizer, 165
C++ compiler, 73
C/C++, 182
compiler, 32
Concurrency analysis, 76—80

critical sections, data races, 236

506

data races, 236-237
fixing, 324-325
for-loop, 169
four-step methodology, 73-84
generator, 382-383
global variables, 477
IDB, 333-339
ISAT, 271
linked lists, 210
load balancing, 79-84, 382
locks, data races, 236
loops, 382, 473
loop control variables, 188
main(), 200
memory, 476
n-bodies simulation, 410
nested for loops, 189
PDE, 43
pipelines, 205-206
#pragma omp critical, 11
recursive functions, 200
reduction clause, 76, 105, 190
data races, 237
sections, 196-197
deadlocks, 220
serial programs
analysis, 74
debugging, 75-76
implementation, 74-75
tuning, 76—84
shared variables, 75-76
SSA, 51, 132
Sudoku, 382
generator, 391-392
Tachyon, 312, 314-315
tasks, 382
threading, 182
while, 192-193

oper — parallel_do

oper, 105
operator->, 483
operators
ArBB, 428
assignment, 122
optimization reports, 32, 91
/Qopt-report, 95-96
optimized code
auto-vectorization, 116-118
C/C++ compiler, 87-130
CPU, 124-125
disabling, 91-93
example application, 89-90
auto-vectorization, 106-107
Cilk Plus array notations, 123-124
general options, 94, 96
IPO, 108-109, 111-112
PGO, 114-116
unoptimized version, 92-93
general options, 93-96
IPO, 108-112
PGO, 112-116
processor-specific optimizations,
96-107
producing, 87-130
seven steps, 90-125
source code, 125-130
option-mapping, 155-156
-opt-report-phase=pgo, 114
-opts, 156
order-of-magnitude problem, 398
overclocking, 4
overflow
arithmetic, 131
buffer, 51, 131
overhead, 20, 21
profiling, 163-165
Suitability Report, 291

synchronization, 17
threading, 17

/0%, 93-94

/oy-, 155-156

packed instructions
SIMD, 124
SSE, 98, 360-361
Parallel Advisor. See Advisor
parallel choices, Suitability Report,
292-293, 295
Parallel Debug Environment, 317
Parallel Debugger Extension (PDE), 8, 26,
31, 43, 310
data races, 412-413
fixing, 324-325
errors, 217
focus filters, 328
n-bodies simulation, 412-413
Tachyon, 312, 316
Parallel Inspector XE. See Inspector XE
parallel iteration, 209-211
parallel overhead, 20
parallel regions
data races, 324
IDB Tasks, 334-335
Parallel Studio XE, 181
./bash_profile, 158
C/C++, 27
debugging, 310
errors, 217-250
Fortran, 27
n-bodies simulation, 400
unoptimized version, 92
parallel_do, 39
Work (), 193

507

parallel_for — PrintProgress

parallel_for, 38, 39-40, 188
parallel_for_each, 39
parallel_invoke, 39, 197, 237
parallel_ KF, 445
parallel_KF.cpp, 432
parallel_pipeline, 39, 206-208
ParallelPrime.cpp, 2595, 264, 270
parallel_reduce, 38, 191
parallel_scan, 38
parallel_sort, 39
PARDISO, 44
PASSWORD, 134
passwords, SSA, 134-135
Pause API, 175-176
Paused Time, 347
PDE. See Parallel Debugger Extension
pentium_4, 125
pentium_4_sse3, 125
pentium_iii, 12§
pentium_m, 125
Performance Analyzer

n-bodies simulation, 400

Sudoku, 382
PGO. See profile-guided optimization
pgo, 95
pipelines, 201-208

OpenMP, 205-206

phases, 201

serial code, 203-205

TBB, 206-208

threading, 202
pointers

ArBB, 428

auto-parallelism, 168

global variables, 476

high-energy physics experiment,

421-422
SoA, 433
SSA, 131

508

POSIX, 181
power density, 3—4
PPM, 157, 158
ppm. cpp, 157
pPuzzle, 387
pragma, OpenMP, 37
#pragma omp, 325
#pragma omp atomic, 260, 261
#pragma omp critical, 236-237
gNumPrimes, 265
gProgress, 260
OpenMP, 11
#pragma omp for, 187-188, 205, 476
#pragma omp for schedule(), 187
#pragma omp parallel, 38, 187-188,
192, 313,472
#pragma omp single, 38
#pragma omp task, 38, 192
#pragma parallel, 168, 169-170
#pragma parallel for, 266
#pragma simd, 104-105
#pragma vector aligned, 105-106
#pragma vector always, 101, 104
#pragma vector unaligned,
105-106
predefined analysis types, Amplifier XE,
364
prediction step, Kalman filters, 426
Print.cpp, 385
print.cpp, 399
printf, 8, 101, 481
hotspots, 261
PrintProgress, 262
reducers, 35
print.h, 399
PrintProgress
hotspots, 256-257
ParallelPrime.cpp, 264
printf, 262

privacy — /Qved

privacy
Inspector XE, 49
threading, 220
private, 476
shared variables, 75-76, 473
threading, 383
private()
#pragma parallel, 169
#pragma simd, 104-105
problem states, SSA, 140-142
Problems and Messages, 296
process noise step, Kalman filters, 426
processor-specific optimizations, 96-107
-prof-gen, 114
-prof-gen=srcpos, 114
Profile System, 344, 346
profile-guided optimization (PGO), 31-33,
87, 112-116
compiler, 113-114
/Qopt-report-phase, 95
profiling, 156. See also loop profiler
auto-parallelizer, 165-168
hotspot analysis with compiler, 158-165
overhead, 163-165
-prof-use, 114
Project Properties, suppression filters, 230
protostellar cloud, 398
Ptr_Glob, 465
Ptr_Glob_Arr, 476
PutLine, 201-202

QA environment, 149-151
/Qax, 119
/Qdiag-enable:thread, 464
/Qguide, 91
auto-parallelism, 181

GAP, 116-117

/Qvec-report, 116
/Qguide=n, 116
/Qipo, 109-110, 165, 168
/Qipo-, 160
/Qipo<n>, 108
-Qno-alias-args, 118
/Qopenmp, 37
/Qopt-report, 91, 95-96
/Qopt-report-phase, 95
/Qopt-report-phase:pgo, 114, 115
Qpar-adjust-stack, 168
Qpar-affinity, 168
Qparallel, 168
/Qparallel, 165, 181
Qparallel-source-info, 168
Qpar-num-threads, 168
Qpar-report, 168
/Qpar-report, 91, 165
Qpar-runtime-control, 168
Qpar-schedule, 168
Qpar-threshold, 168
/Qprof-gen, 114
/Qprof-gen:srcpos, 114
/Qprofile-functions, 159, 160
/Qprofile-loops, 159
/Qprofile-loops:<arg>, 160
/Qprofile-loops-report:<arg>, 160
/Qprof-use, 32, 114
Qsort, 287
/Qstd.c99, 104
quarks, 419
queueing_mutex, 238
queueing_rw_mutex, 238
Quick-Reference Guide to Optimization,

90, 109
/Qvec-report, 91, 100-101, 116
/Qvec-report3, 110
/Qved, 99

509

/Qx = runtime

/Qx
AMD, 99
auto-vectorization, 99
non-Intel processors, 100
/QxavX, 100

range, ArBB, 428
ray tracing. See Tachyon
ReadFiles.cpp, 441, 447
readInput, 441
real sharing, 19
real-time systems, 22-24
recursive backtracking algorithm, 386-387
recursive decomposition, 283-285
recursive functions, 198-201

Cilk Plus, 199

OpenMP, 200

serial code, 198-199

TBB, 200-201
Reduce Lock Contention, 292-293
Reduce Lock Overhead, 291
Reduce Site Overhead, 291
Reduce Task Overhead, 291
reducers

Cilk Plus, 33, 35, 68-70, 122-123, 190

compilation errors, 57
data races, 234

views, 234
reducer_basic_string, 36
reducer_list_append, 36
reducer_list_prepend, 36
reducer_max, 36
reducer_max_index, 36
reducer_min, 36
reducer_min_index, 36
reducer_opadd, 33, 36

510

reducer_ostream, 36
reduction, for, 189-191
reduction(), 105
reduction clause, OpenMP, 76, 105, 190
data races, 237
reduction variables, 68
redundant clues, 379
redundant code, SSA, 132
references, Correctness, 303
Regression, SSA problem state, 142
regression testing, 149-152
Related Code Location, 65
Relationship Diagram, 297
relatively_global, 302
render_one_pixel, 320
reports
auto-parallelism, 91
auto-vectorization, 91, 100-101
compiler, 91
GAP, 91
research and development, 11
restrict, 103-104, 118
Results tab, Amplifier XE, 346-347
__resume_ (), 366-368
Resume API, 175-176
retirement-dominated execution, 356
return on investment (ROI), 9
Advisor, 278
Summary Report, 305
ReturnToMain (), 134
Ritchie, Dennis, 464
ROL. See return on investment
RTX, 23
runSerialBodies, 401
runtime
C runtime library, 17
debugging, 333-339
threading, 258

SafeAdd — series1

Safeadd (), 220
Sandy Bridge laptop, 90

AVX, 97

/0d and /02, 92
scalability, 19-22

ArBB, 435-438

Maximum Site Gain, 291

track-fitting, 435-438
Scalable LAPACK (ScaLAPACK), 44
scalable_allocator, 39
scalable_malloc, 13, 18
ScaLAPACK. See Scalable LAPACK
scalar instructions, SSE, 98, 360
scanf (), 133
schedule, 80

for, 187

GetPrimes, 266-267, 270

#pragma parallel for, 266
schedule (static,1), 480
scoped_timer, 446
2nd Generation Intel Core

architecture, 10
__sec_reduce_add, 122
__sec_reduce_all_nonzero, 122
_ sec_reduce_all_zero, 122
__sec_reduce_any_nonzero, 122
__sec_reduce_max, 122
__sec_reduce_max_ind, 122
__sec_reduce_min, 122
__sec_reduce_min_ind, 122
__sec_reduce_mul, 122
sections, 193-197

Cilk Plus, 195-196
sections, OpenMP, 196-197, 220
security. See also Static Security analysis

threats, 131

self time, 163, 282
serial

draw_task, 320

#pragma omp, 325
serial code, 7

Advisor, 278

ArBB, 435

Correctness, 302

debugging, 311, 315-316

Dhrystone benchmark,

471-472
high-energy physics experiment,
422

IDB, 315-316

malloc, 445

pipelines, 203-205

recursive functions,

198-199

sections, 194-195

track-fitting, 435, 441-443
serial iteration, linked lists, 209
serial programs

Cilk Plus, 55-73

analysis, 60-62
debugging, 63-71
implementation, 62-63

OpenMP

analysis, 74
debugging, 75-76
implementation, 74-75
tuning, 76—84
serial_KF.cpp, 432,

441, 445
serial_track_fit, 441
Seriesl ()

loops, 111

/Qipo, 110
seriesl (), 89

51

Series2 — Statement cannot be vectorized

Series2 ()
loops, 111
/Qipo, 110

series2(), 89
series.c, 89, 128
setjmp, 123
setQueen (), 280-281
shared variables
C, 472-475
Cilk Plus, 67-68
Dhrystone benchmark, 464-4635,
472-475
legacy code, 472-475
OpenMP, 75-76
private, 75-76, 473

SIMD. See single instruction, multiple data

SIMD pragma, Cilk Plus, 33, 36
simulated cores, 295
simulation. See also n-bodies simulation
star formation, 397-398
Simultaneous Multi Threading, 314
single entry-and-exit loop, 98
single instruction, multiple data (SIMD),
9-10, 97. See also Streaming SIMD
Extensions
ArBB, 427
C++, 121
CPU, 380
packed instructions, 124
timeline, 97
vectorization, 425
single program multiple data (SPMD),
11
site annotations, Advisor, 286-287
Small work with overhead, 21
SNB
IPO, 109
optimized code, general options, 94
PGO, 114

512

SOA. See structure of arrays
soft real-time, 22-23
Solve, 388
solve (), 280-281
solver, Sudoku, 379-380,
386-390
source code, 211-214
Amplifier XE, 173
ISAT, 271
optimized code, 125-130
security threats, 131
SSA, 131-132, 152-153
writing, 131-154
Spaces, 184
Spawn Tree, 333, 336-339
speedup, 19-22, 194, 282
ArBB, 435-438
auto-vectorization, 99
SSE, 363
Suitability Report, 291
track-fitting, 435-438
Spin Time, 474-475
spin_mutex, 238, 305
spinning threads, 269
spin_rw_mutex, 238
SPMD. See single program multiple data
SqgRoot, 201-202
sqroot (), 203
SSA. See Static Security analysis
SSE. See Streaming SIMD Extensions
SSEHasNumber, 390
Standard Template Library (STL),
184, 185
standards, 11
star formation, 397-398
state, SSA, 138
state information, Inspector XE,
137

Statement cannot be vectorized, 101

Static Security analysis — Summary Report

Static Security analysis (SSA), 32, 51-52
basics, 134-145
build specification, 145-149
conducting, 136-145
data races, 227
enabling, 137
errors, 134, 217
false positives, 135-136
include, 137
injection, 146-147
Inspector XE, 131-132
invalid users, 134-135
metrics tracking, 145-151
passwords, 134-135
problem states, 140-142
QA environment, 149-151
regression testing, 149-152
results, 138-140
directory structure, 147
source code, 131-132, 152-153
Visual Studio, 142-145
workflows, 136
StationsArBB, 431, 449-450, 451
Step, 410
STL. See Standard Template Library
Streaming SIMD Extensions (SSE), 9-10, 97
Amplifier XE, 360-361
auto-vectorization, 32, 96, 99
compiler, 92
intrinsics, Sudoku, 380-382, 390
multipath auto-vectorization, 119
packed instructions, 98, 360-361
PDE, 43
scalar instructions, 98, 360
speedup, 99, 363

Sudoku, 377
stride values, 102-103
struct

elemental functions, 123
memory errors, 240

struct_globals, 476
structure of arrays (SOA), 102, 431,
433-434
Subscript too complex, 101
Sudoku, 377-396
Amplifier XE, 394-396
BinNum, 380-381
challenge of, 378-379
compiler, 386
generator, 379-380
Correctness, 392-393
hotspots, 391
minus-two-plus-one algorithm,
390-391
OpenMP, 391-392
optimizing, 384-396
high-level design, 379-380
minus-one-plus-two algorithm,
380
minus-two-plus-one algorithm,
380
OpenMP, 382
Performance Analyzer, 382
solver, 379-380, 386-390
hotspots, 388-389
SSE, 377
intrinsics, 380-382, 390
Visual Studio, 385
Suitability analysis, 279, 290-295
data collection, 294
modeling, 295
NQueens, 295
task execution tree, 294
timestamps, 294
Suitability Report, 29-30, 291-294
NQueens, 291-292
parallel choices, 292-293, 295
sum, 68
reduction clause, 76
Summary Report, Advisor, 304-305

513

sum_of_differences — threading

sum_of_differences, 429
sumx, 67
sumy++, 111
sumy--, 111
suppression filters, data races, 228-233,
319-323
Survey analysis, 282-285
Survey Report, 282-283
Survey Source window, 284
switch, 101, 123
synchronization
overhead, 17
primitives, ArBB, 428
SystemMenu (), 133, 134
system_table, 134, 135

Tachyon ray-tracing application, 311-331
Linux, 313, 316
OpenMP, 314-315
PDE, 316
Windows, 312, 316
Tachyon. common, 312
Target CPU Number, 291, 295
tasks
IDB, 333
parallel regions, 334-335
OpenMP, 382
TBB, 38
threading, 183
task chunking, 292
task execution tree
Correctness, 302
Suitability, 294
task parallelism, 9, 283
Qsort, 287

514

task scheduler, 295
task_group, 200

Taskwaits, 333

TBB. See Threading Building Blocks
tbb_allocator, 39

tbb: :atomic, 238

tbb: :concurrent_queue, 237
tbb: :mutex, 238

TBuf, 452

Teams, IDB, 333

temp, 298-299

templates
STL, 184, 185
TBB, 38-39

wrappers, 236
Teraflop Research Chip, Intel, 5-6
test.c, 152
This program was not built to

run on the processor in your

system., 97
Thread Concurrency, 78
Amplifier XE, 255-256
Histogram, 81-82
timeline, 259
track-fitting, 439
Thread Data Sharing Events,
320, 325, 327
filters, 332
threading
chunk size, 78, 79
data races, 220
errors, Inspector XE, 49-50, 66
firstprivate, 383
Hyper-Threading, 5
baselines, 252
benchmarking, 92
disabling, 92
information, 219-220

Threading Building Blocks - trees

IPP, 42-43 thread-level parallelism, 9
OpenMP, 182 thread-safe, 42
overhead, 17 MKL, 44
pipelines, 202 timeGetTime (), 56, 57, 441
privacy, 220 timeline, Amplifier XE, 258-261
runtime, 258 timestamps
Simultaneous Multi Threading, 314 Amplifier XE APIs, 468-469
spinning threads, 269 Suitability, 294
tasks, 183 tools, 7-8
views, 69 Top-down Tree tab, User Mode Hotspots,
Threading Building Blocks (TBB), 10, 31, 348-349
38-40, 181 Total, 59, 68, 74, 89
for, 188 total, 68
reduction, 191 reduction clause, 76
annotations, 305-307 Total Time, 284, 294
ArBB, 439 track-finding, 421, 423-425
C++, 182 track-fitting, 419-461
Cilk Plus, 11-12 ArBB, 430-440, 444-460
data races, 237-238 Correctness, 435
functions, 197 CPU Usage, 439
ISAT, 271 high-energy physics experiment, 421,
lambda functions, 183 425-427,430-440
linked lists, 210 kernel, 449-450
locks, 238 Lightweight Hotspots analysis,
mutexes, 237-238 437
n-bodies simulation, 410 scalability, 435-438
nested for loops, 189 serial code, 435, 441-443
parallel_invoke, 197 speedup, 435-438
parallel_pipeline, 206-208 Thread Concurrency, 439
parallel_reduce, 191 TracksArBB, 449-450
pipelines, 206-208 binding, 451
recursive functions, 200-201 Tracks.dat, 441
spin_mutex, 305 TREE, 403
Tachyon, 312 trees
templates, 38-39 hashed octree, 405-407
while, 193, 237 local, 410
Threading Error analysis, 218, 219-221 octree, n-bodies simulation,
custom analysis types, 246-247 403-405
Threading Model, 295 Spawn Tree, 333, 336-339

515

trees - -version

trees (continued)
task execution tree
Correctness, 302
Suitability, 294
Top-down Tree tab, User Mode
Hotspots, 348-349
TREE_WIDTH, 403
true dependence, 300
Trust Region Solver, 44
try_pop(), 237
Turbo Boost Technology, 90
baselines, 252
benchmarking, 92
BIOS, 93
disabling, 92
IPO, 109
optimized code, general options, 94
PGO, 114

unchecked input, SSA, 131

underclocking, 5

uninitialized memory access, 240

uninitialized partial memory
access, 240

uninitialized variables and objects, 131

USE_API, 366

USE_CTILK, 399

USE_CILK_REDUCER, 414

User Mode Hotspots, 346-350
Bottom-up tab, 347-348
Top-down Tree tab, 348-349
viewpoints, 349-350

user_table, 133
system_table, 135

User_Time, 465

usize, 454

516

var, 105
variables
global
C, 476-478
Cilk Plus, 485-486
Dhrystone benchmark, 464-465,
476-478
legacy code, 476—-478
OpenMP, 477
wrappers, 483
loop control
cilk_for, 186
OpenMP, 188
reduction, Cilk Plus, 68
shared
C, 472-475
Cilk Plus, 67-68
Dhrystone benchmark,
464-465, 472-475
legacy code, 472-475
OpenMP, 75-76
private, 75-76, 473
uninitialized, SSA, 131
vector dependency, 101
vectorization. See also
auto-vectorization
alternative means,
120-125
Cilk Plus array notation,
121-124
SIMD, 425
SSE intrinsics, 380
Vectorization possible but seems
inefficient, 101
vectorlength(), 104
-verbose, 147
-version, 146

vertexing — wtime.c

vertexing, 421
VERYBIG, 58, 63, 68
views

reducers, 35, 234

threading, 69
viewpoints

Amplifier XE, 268, 349-350,

364-365

User Mode Hotspots, 349-350
virtual machine (VM), 428-429
virtualization, 9
visibility, 174
Visual Studio, 26

compiler, 59

debugging, PDE, 43

SSA, 142-145

Sudoku, 385

unoptimized version, 92
VM. See virtual machine
vmlinux, 347
vte, 449, 454
VET, 449, 454
VTUNEDIR, 471

Wait Time, 254

Wait Time by Utilization, 261

weight, 138

whatever_udt, 433

while, 191-193
Cilk Plus, 191-192
OpenMP, 192-193
TBB, 193, 237

Win32
EnterCriticalSection, 16
InterlockedIncrement, 11
LeaveCriticalSection, 16

win32, 181
Windows
Amplifier XE baseline,
254
compiler, 363
data races, 227, 322-323
fixing, 324-325
Dhrystone benchmark,
471
focus filters, 328
General Exploration
analysis, 354
ISAT, 271
loop swapping, 363
n-bodies simulation, hotspot analysis,
402-403
PGO, 114
SSE speedup, 363
Tachyon, 312, 316
winmm.1lib, 57, 64
Work (), 198
lambda functions, 200
parallel_do, 193
work (), 19, 21-22, 89
Work with no overhead, 21
work.c, 127-128
loops, 110
workflows
Advisor, 279-280
debugging, 310-311
SSA, 136
WRAPEVERYTHING, 469-470
wrappers
Cilk Plus, 483-486
cilk::holder, 483
global variables, 483
templates, 236
wtime.c, 89, 128-129, 157

517

X2hits — /Zi

X2hits, 451 Y2hits, 451
Xeon workstations, 90 vIil, 98
IPO, 109

/0d and /02, 92
optimized code, general options, 94

PGO, 114
x[1], 98 zero_allocator, 39
XML, 136 /71, 168

518

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

3
0]
N
S
3
]
e
"
<
X
9
3
I
=
<
"
)
R

7

Safari

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

® Access to hundreds of expert-led instructional
videos on today's hottest topics.

® Sample code to help accelerate a wide variety
of software projects

¢ Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

* Mobile access using any device with a browser

® Rough Cuts pre-published manuscripts

START YOUR FREE TRIAL TODAY!

Visit www.safaribooksonline.com/wrox42 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for first 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

An Imprint of $)WILEY

Now you know.

http://www.safaribooksonline.com/wrox42

r to Programmer”

-with Wrox.

User Group Program

Become a member and take advantage of all
the benefits

H E

Wrox on Ewitter

| code

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on

Browse the vast selection ot Wrox titles, e-books,
and blogs and find exactly what you need

Contact Us.

We love feedback! Have a book idea? Need community support?

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferences
and user group events

Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional

ASPNET MVC 3

Jon Galloway, Phil Haack, Brad Wilson, K. Scott Allen

Professional
Team Foundation
Server 2010

Professional

JavaScript
for Web Developers

Nicholas C. Zakas

Professional

Android 4

Application Development

Reto Meier

More From Wrox

Professional ASP.NET MVC 3

ISBN: 978-1-118-07658-3

MVC 3.0 is the latest update to Microsoft's Model-View-Controller technology, which enables
developers to build dynamic, data-driven web sites. This in-depth book shows you step by step
how to use MVC 3.0. Written by top ASP.NET MVC experts at Microsoft, the latest edition of this
popular book covers new and updated features such as the new View engine, Razor, NuGet, and
much more. The book’s practical tutorials reinforce concepts and allow you create real-world
applications. Topics include controllers and actions, forms and HTML helpers, Ajax, unit testing,
and much more.

Professional Team Foundation Server 2010

ISBN: 978-0-470-94332-8

Microsoft Visual Studio Team Foundation Server (TFS) has evolved until it is now an essential tool
for Microsoft's Application Lifestyle Management suite of productivity tools, enabling collaboration
within and among software development teams. Professional Team Foundation Server 2010, written
by an accomplished team of Microsoft insiders and Microsoft MVPs, provides the thorough, step-
by-step instruction you need to use TFS 2010 efficiently so you can more effectively manage and
deliver software products in an enterprise.

Professional JavaScript for Web Developers, 3rd Edition

ISBN: 978-1-118-02669-4

As the key scripting language for the web, JavaScript is supported by every modern web browser
and allows developers to create client-side scripts that take advantage of features such as
animating the canvas tag and enabling client-side storage and application caches. After an
in-depth introduction to the JavaScript language, this updated edition of a bestseller progresses
to break down how JavaScript is applied for web development using the latest web development
technologies. Veteran author and JavaScript guru Nicholas Zakas shows how JavaScript works with
HTML5 as well as other significant advances in web development as it relates to JavaScript.

Professional Android 4 Application Development

ISBN: 978-1-118-10227-5

The fast-growing popularity of Android smartphones and tablets creates huge opportunities for
developers. If you're an experienced developer, you can start creating robust mobile Android apps
right away with this professional guide to Android 4 application development. Written by one

of Google's lead Android developer advocates, this practical book walks you through a series of
hands-on projects that illustrate the features of the Android SDK. That includes all the new APIs
introduced in Android 3 and 4, including building for tablets, using the Action Bar, Wi-Fi Direct,
NFC Beam, and more.

	Parallel Programming with Intel Parallel Studio XE
	Contents���������������
	Foreword
	Introduction
	Part I: An Introduction to Parallelism
	Chapter 1: Parallelism Today
	The Arrival of Parallelism���������������������������������
	The Power Density Race�����������������������������
	The Emergence of Multi-Core and Many-Core Computing��

	The Top Six Challenges�����������������������������
	Legacy Code������������������
	Tools������������
	Education����������������
	Fear of Many-Core Computing����������������������������������
	Maintainability����������������������
	Return on Investment���������������������������

	Parallelism and the Programmer�������������������������������������
	Types of Parallelism���������������������������
	Intel’s Family of Parallel Models��
	Cilk Plus and Threading Building Blocks��
	Domain-Specific Libraries��������������������������������
	Established Standards����������������������������
	Research and Development�������������������������������

	Choosing the Right Parallel Constructs���
	High-Level vs. Low-Level Constructs��
	Data Parallelism vs. General Parallelism���
	Examples of Mixing and Matching Parallel Constructs��

	Parallel Programming Errors����������������������������������
	Data Races�����������������
	Determinacy Races������������������������
	Deadlocks����������������
	Poor Load Balancing��������������������������
	Threading/Tasking Overhead���������������������������������
	Synchronization Overhead�������������������������������
	Memory Errors��������������������

	Speedup and Scalability������������������������������
	Calculating Speedup��������������������������
	Predicting Scalability�����������������������������

	Parallelism and Real-Time Systems��
	Hard and Soft Real-Time������������������������������
	A Hard Real-Time Example using RTX���
	Advice for Real-Time Programmers���������������������������������������

	Summary��������������

	Chapter 2: An Overview of Parallel Studio XE
	Why Parallel Studio XE?������������������������������
	What’s in Parallel Studio XE?������������������������������������
	Intel Parallel Studio XE�������������������������������
	Intel Parallel Advisor�����������������������������
	The Advisor Workflow���������������������������
	Surveying the Site�������������������������
	Annotating Code����������������������
	Checking Suitability���������������������������
	Checking Correctness���������������������������
	Replacing Annotations����������������������������

	Intel Parallel Composer XE���������������������������������
	Intel C/C++ Optimizing Compiler��������������������������������������
	Profile-Guided Optimization����������������������������������
	Cilk Plus����������������

	OpenMP�������������
	Intel Threading Building Blocks��������������������������������������
	Intel Integrated Performance Primitives��
	An Application Example�����������������������������
	IPP and Threading������������������������

	Intel Parallel Debugger Extension��
	Intel Debugger���������������������
	Math Kernel Library��������������������������

	VTune Amplifier XE�������������������������
	Hotspot Analysis�����������������������
	Concurrency Analysis���������������������������
	Locks and Waits Analysis�������������������������������
	Dissassembly Source View�������������������������������

	Parallel Inspector XE����������������������������
	Predefined Analysis Types��������������������������������
	Errors and Warnings��������������������������

	Static Security Analysis�������������������������������
	Different Approaches to Using Parallel Studio XE���
	Summary��������������

	Chapter 3: Parallel Studio XE for the Impatient
	The Four-Step Methodology��������������������������������
	Example 1: Working with Cilk Plus��
	Obtaining a Suitable Serial Program��
	Running the Serial Example Program���
	Creating the Project���������������������������
	Running the Serial Version of the Code���

	Step 1: Analyze the Serial Program���
	Using Intel Parallel Amplifier XE for Hotspot Analysis���

	Step 2: Implement Parallelism using Cilk Plus��
	Step 3: Debug and Check for Errors���
	Checking for Errors��������������������������
	Narrowing the Scope of the Shared Variables��
	Adding Cilk Plus Reducers��������������������������������
	Running the Corrected Application��

	Step 4: Tune the Cilk Plus Program���

	Example 2: Working with OpenMP�������������������������������������
	Step 1: Analyze the Serial Program���
	Step 2: Implement Parallelism using OpenMP���
	Step 3: Debug and Check for Errors���
	Making the Shared Variables Private��
	Adding a Reduction Clause��������������������������������

	Step 4: Tune the OpenMP Program��������������������������������������
	Improving the Load Balancing�����������������������������������

	Summary��������������

	Part II Using Parallel Studio XE
	Chapter 4: Producing Optimized Code
	Introduction�������������������
	The Example Application������������������������������
	Optimizing Code in Seven Steps�������������������������������������
	Using the Compiler’s Reporting Features��
	Step 1: Build with Optimizations Disabled��
	Step 2: Use General Optimizations��
	Using the General Options on the Example Application���
	Generating Optimization Reports Using /Qopt-report���

	Step 3: Use Processor-Specific Optimizations���
	What Is Auto-Vectorization?����������������������������������
	Auto-Vectorization Guidelines������������������������������������
	Turning On Auto-Vectorization������������������������������������
	Enhancing Auto-Vectorization�����������������������������������
	Building for Non-Intel CPUs����������������������������������
	Determining That Auto-Vectorization Has Happened���
	When Auto-Vectorization Fails������������������������������������
	Helping the Compiler to Vectorize��

	Step 4: Add Interprocedural Optimization���
	Adding Interprocedural Optimization to the Example Application���
	The Impact of Interprocedural Optimization on Auto-Vectorization���

	Step 5: Use Profile-Guided Optimization��
	Benefits of Profile-Guided Optimization��
	The Profile-Guided Optimization Steps��
	The Results������������������

	Step 6: Tune Auto-Vectorization��������������������������������������
	Activating Guided Auto-Parallelization���
	An Example Session�������������������������

	More on Auto-Vectorization���������������������������������
	Building Applications to Run on More Than One Type of CPU��
	Additional Ways to Insert Vectorization��
	Using Cilk Plus Array Notation�������������������������������������
	Manual CPU Dispatch: Rolling Your Own CPU-Specific Code��

	Source Code������������������
	Summary��������������

	Chapter 5: Writing Secure Code
	A Simple Security Flaw Example�������������������������������������
	Understanding Static Security Analysis���
	False Positives����������������������
	Static Security Analysis Workflow��
	Conducting a Static Security Analysis��
	Investigating the Results of the Analysis��
	Working with Problem States����������������������������������

	The Build Specification������������������������������
	Creating a Build Specification File by Injection���
	Utility Options����������������������
	The Directory Structure of the Results���

	Using Static Security Analysis in a QA Environment���
	Regression Testing�������������������������
	Metrics Tracking�����������������������

	Source Code������������������
	Summary��������������

	Chapter 6: Where to Parallelize
	Different Ways of Profiling����������������������������������
	The Example Application������������������������������
	Hotspot Analysis Using the Intel Compiler��
	Profiling Steps����������������������
	An Example Session�������������������������
	Overhead Introduced by Profiling���������������������������������������

	Hotspot Analysis Using the Auto-Parallelizer���
	Profiling Steps����������������������
	An Example Session�������������������������
	Programming Guidelines for Auto-Parallelism��
	Additional Options�������������������������
	Helping the Compiler to Auto-Parallelize���

	Hotspot Analysis with Amplifier XE���
	Conducting a Default Analysis������������������������������������
	Finding the Right Loop to Parallelize��
	Large or Long-Running Applications���
	Reducing the Size of Data Collected��
	Using the Pause and Resume APIs��������������������������������������

	Source Code������������������
	Summary��������������

	Chapter 7: Implementing Parallelism
	C or C++, That Is the Question�������������������������������������
	Taking a Simple Approach�������������������������������
	The Beauty of Lambda Functions�������������������������������������
	Parallelizing Loops��������������������������
	The for Loop�������������������
	The Cilk Plus cilk_for Loop����������������������������������
	The OpenMP for Loop��������������������������
	The TBB for Loop�����������������������

	Nested for Loops�����������������������
	The for Loop with Reduction����������������������������������
	Cilk Plus Reduction��������������������������
	OpenMP Reduction�����������������������
	TBB Reduction��������������������

	The while Loop���������������������
	Cilk Plus����������������
	OpenMP�������������
	TBB����������

	Parallelizing Sections and Functions���
	The Serial Version�������������������������
	Cilk Plus����������������
	OpenMP�������������
	TBB����������

	Parallelizing Recursive Functions��
	The Serial Version�������������������������
	Cilk Plus����������������
	OpenMP�������������
	TBB����������

	Parallelizing Pipelined Applications���
	Parallel Pipelined Patterns����������������������������������
	The Serial Version�������������������������
	OpenMP�������������
	TBB����������

	Parallelizing Linked Lists���������������������������������
	Serial Iteration of the Linked List��
	Parallel Iteration of the Linked List��

	Source Code������������������
	Summary��������������

	Chapter 8: Checking for Errors
	Parallel Inspector XE Analysis Types���
	Detecting Threading Errors���������������������������������
	Types of Threading Problems����������������������������������
	Thread Information�������������������������
	Potential Privacy Infringement�������������������������������������
	Data Races�����������������
	Deadlocks����������������

	An Example Application Involving Deadlocks���

	Detecting Deadlocks��������������������������
	Detecting Data Races���������������������������
	Running the Threaded Program�����������������������������������
	First Results of the Analysis������������������������������������
	Controlling the Right Level of Detail��
	Testing All the Code Paths���������������������������������
	Avoiding Being Overwhelmed by the Amount of Data���
	Using Suppression Files������������������������������

	Fixing Data Races������������������������
	Using Cilk Plus����������������������
	Cilk Plus Reducers�������������������������
	Cilk Plus Holders������������������������

	Using OpenMP�������������������
	Using Locks������������������
	Using Critical Sections������������������������������
	Using Atomic Operations������������������������������
	Using a reduction Clause�������������������������������

	Using TBB����������������

	Detecting Memory Errors������������������������������
	Types of Memory Errors�����������������������������
	An Example Application for Memory Analysis���

	Creating a Custom Analysis���������������������������������
	The Source Code����������������������
	Summary��������������

	Chapter 9: Tuning Parallel Applications
	Introduction�������������������
	Defining a Baseline��������������������������
	Ensuring Consistency���������������������������
	Measuring the Performance Improvements���
	Measuring the Baseline Using the Amplifier XE Command Line���

	Identifying Concurrency Hotspots���������������������������������������
	Thread Concurrency and CPU Usage���������������������������������������
	Identifying Hotspots in the Code���������������������������������������

	Analyzing the Timeline�����������������������������
	Questions to Answer��������������������������
	Fixing the Critical Section Hotspot��

	Analyzing an Algorithm�����������������������������
	Conducting Further Analysis and Tuning���
	Using Other Viewpoints�����������������������������
	Using Locks and Waits Analysis�������������������������������������
	Other Analysis Types���������������������������

	Using the Intel Software Autotuning Tool���
	Source Code������������������
	Summary��������������

	Chapter 10: Parallel Advisor–Driven Design
	Using Parallel Advisor�����������������������������
	Understanding the Advisor Workflow���
	Finding Documentation����������������������������
	Getting Started with the NQueens Example Program���

	Surveying the Site�������������������������
	Running a Survey Analysis��������������������������������
	The Survey Report������������������������
	Finding Candidate Parallel Regions���
	The Survey Source Window�������������������������������

	How Survey Analysis Works��������������������������������

	Annotating Your Code���������������������������
	Site Annotations�����������������������
	Lock Annotations�����������������������
	Adding Annotations�������������������������

	Checking Suitability���������������������������
	Running a Suitability Analysis�������������������������������������
	The Suitability Report�����������������������������
	Parallel Choices�����������������������
	Using the Suitability Report�����������������������������������

	How Suitability Analysis Works�������������������������������������

	Checking for Correctness�������������������������������
	Running a Correctness Analysis�������������������������������������
	The Correctness Report�����������������������������
	The Correctness Source Window������������������������������������
	Understanding Common Problems������������������������������������
	Using the Correctness Report�����������������������������������

	Correctness Analysis Limitation��������������������������������������
	How Correctness Analysis Works�������������������������������������

	Replacing Annotations����������������������������
	The Summary Report�������������������������
	Common Mappings����������������������

	Summary��������������

	Chapter 11: Debugging Parallel Applications
	Introduction to the Intel Debugger���
	The Parallel Debugger Workflow�������������������������������������

	Using the Intel Debugger to Detect Data Races��
	Building the Serial Program����������������������������������
	Adding Parallelism�������������������������
	Observing the Results����������������������������
	Serializing the Parallel Code������������������������������������

	Detecting Data Races���������������������������
	Using Filters��������������������
	Using Suppression Filters to Discard Unwanted Events���
	Creating the Filters���������������������������

	Fixing the Data Races����������������������������
	Using Focus Filters to Examine a Selected Portion of Code��
	Creating the Filters���������������������������
	Correcting the mbox Data Race������������������������������������

	More About Filters�������������������������
	Runtime Investigation: Viewing the State of Your Application���
	Using the OpenMP Tasks Window to Investigate Variables Within a Parallel Region��
	Using the OpenMP Spawn Tree Window to View the Behavior of Parallel Code���

	Summary��������������

	Chapter 12: Event-Based Analysis with VTune Amplifier XE
	Testing the Health of an Application���
	What Causes a High CPI?������������������������������
	Is CPI on Its Own a Good Enough Measure of Health?���
	Conducting a System-Wide Analysis��

	Conducting a Hotspot Analysis������������������������������������
	Hotspot Analysis Types�����������������������������
	User Mode Hotspots Versus Lightweight Hotspots���
	Finding Hotspots in Code�������������������������������

	Conducting a General Exploration Analysis��
	A Quick Anatomy Class����������������������������
	CPU Internals��������������������
	Categories of Execution Behavior���������������������������������������

	Fixing Hardware Issues�����������������������������
	Reducing Cache Misses����������������������������
	Using More Efficient Instructions��
	Using the Intel Compiler�������������������������������

	Using Amplifiers XE’s Other Tools��
	Using Predefined Analysis Types��������������������������������������
	Using Viewpoints�����������������������
	Using APIs�����������������
	The Pause and Resume API�������������������������������
	The Frame API��������������������

	Using Amplifier XE from the Command Line���
	Finding More Information�������������������������������

	The Example Application������������������������������
	Summary��������������

	Part III: Case Studies
	Chapter 13: The World’s First Sudoku “Thirty-Niner”
	The Sudoku Optimization Challenge��
	The Nature of the Challenge����������������������������������
	The High-Level Design����������������������������
	Optimizing the Solver Using SSE Intrinsics���
	Adding Parallelism to the Generator��
	The Results������������������

	Hands-On Example: Optimizing the Sudoku Generator��
	About the Code���������������������
	The Solver�����������������
	Finding Hotspots in the Solver�������������������������������������
	Optimizing the Code Using SSE Intrinsics���

	The Generator��������������������
	Finding the Hotspots in the Generator��
	Adding Parallelism to the Generator Using OpenMP���
	Checking Correctness in the Generator��
	Fixing Correctness in the Generator��
	Tuning Performance�������������������������

	Summary��������������

	Chapter 14: Nine Tips to Parallel-Programming Heaven
	The Challenge: Simulating Star Formation���
	The Formation of Stars�����������������������������

	The Hands-On Activities������������������������������
	Performance Tuning�������������������������

	Application Heuristics�����������������������������
	Finding the Hotspots���������������������������
	Using a Tree-Based N-Bodies Simulation���
	Using a Hashed Octree����������������������������

	Architectural Tuning���������������������������
	Adding Parallelism�������������������������
	Identifying the Hotspot and Discovering the Calling Sequence���
	Implementing Parallelism�������������������������������
	Detecting Data Races and Other Potential Errors��
	Correcting the Data Race�������������������������������

	Load Balancing���������������������
	The Results������������������

	Summary��������������

	Chapter 15: Parallel Track Fitting in the CERN Collider
	The Case Study���������������������
	The Stages of a High-Energy Physics Experiment���
	The Track Reconstruction Stages��������������������������������������
	Track Finding��������������������
	Track Fitting��������������������

	What Is Array Building Blocks?�������������������������������������
	Parallelizing the Track-Fitting Code���
	Adding Array Building Blocks to Existing Code��
	Code Refactoring�����������������������
	An Example of Class Change���������������������������������
	An Example of Kernel Code Change���������������������������������������
	Changing to Structure of Arrays��������������������������������������

	The Results������������������
	Correctness������������������
	Speedup and Scalability������������������������������
	Parallelism and Concurrency����������������������������������

	The Hands-On Project���������������������������
	The Activities���������������������
	The Projects�������������������
	Building and Running the Serial Version��
	The Serial Track-Fitting Code������������������������������������
	The Application Output�����������������������������

	Parallelizing the Track-Fitting Code���
	Configuring the Array Building Blocks Build Environment��
	Writing the Parallel Driver����������������������������������
	Identifying the Kernel in the Driver���
	Allocating and Binding�����������������������������
	Invoking the Kernel��������������������������
	Implementing the Kernel������������������������������

	Summary��������������

	Chapter 16: Parallelizing Legacy Code
	Introducing the Dhrystone Benchmark��
	The Structure of the Code��������������������������������
	Global and Shared Variables����������������������������������

	The Hands-On Projects����������������������������
	Building the Projects����������������������������
	Project Targets����������������������
	An Example Build�����������������������

	Adding Amplifier XE APIs to Timestamp the Dhrystone Loop���
	Viewing the Results��������������������������

	Parallelizing the C Version����������������������������������
	Attempt One: Synchronizing Shared Variable Access��
	The Results������������������
	Is It Successful?������������������������

	Attempt Two: Duplicating Global Variables��
	Initializing and Accessing the Global Variables��
	The Results������������������
	Is It Successful?������������������������

	Parallelizing the C++ Version������������������������������������
	Attempt Three: Wrapping the Application in a C++ Class���
	Scheduling the Parallel Runs�����������������������������������
	Silencing the Output���������������������������
	The Results������������������
	Is It Successful?������������������������

	Attempt Four: Using Cilk Plus Holders��
	Developing the Wrappers������������������������������
	The Results������������������
	Is It Successful?������������������������

	Overview of the Results������������������������������
	Performance������������������
	Editing Effort���������������������

	Summary��������������

	Index
	Advertisements

