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 Preface     

   ABOUT THIS BOOK 

 There is a  software gap  between hardware potential and the performance that can 
be attained using today ’ s software parallel program development tools. The tools 
need manual intervention by the programmer to parallelize the code. This book is 
intended to give the programmer the techniques necessary to explore parallelism in 
algorithms, serial as well as iterative. Parallel computing is now moving from the 
realm of specialized expensive systems available to few select groups to cover 
almost every computing system in use today. We can fi nd parallel computers in our 
laptops, desktops, and embedded in our smart phones. The applications and algo-
rithms targeted to parallel computers were traditionally confi ned to weather predic-
tion, wind tunnel simulations, computational biology, and signal processing. 
Nowadays, just about any application that runs on a computer will encounter the 
parallel processors now available in almost every system. 

 Parallel algorithms could now be designed to run on special - purpose parallel 
processors or could run on general - purpose parallel processors using several multi-
level techniques such as parallel program development, parallelizing compilers, 
multithreaded operating systems, and superscalar processors. This book covers the 
fi rst option: design of special - purpose parallel processor architectures to implement 
a given class of algorithms. We call such systems accelerator cores. This book forms 
the basis for a course on design and analysis of parallel algorithms. The course would 
cover Chapters  1  –  4  then would select several of the case study chapters that consti-
tute the remainder of the book. 

 Although very large - scale integration (VLSI) technology allows us to integrate 
more processors on the same chip, parallel programming is not advancing to match 
these technological advances. An obvious application of parallel hardware is to 
design special - purpose parallel processors primarily intended for use as accelerator 
cores in multicore systems. This is motivated by two practicalities: the prevalence 
of multicore systems in current computing platforms and the abundance of simple 
parallel algorithms that are needed in many systems, such as in data encryption/
decryption, graphics processing, digital signal processing and fi ltering, and many 
more. 

 It is simpler to start by stating what this book is  not  about. This book does not 
attempt to give a detailed coverage of computer architecture, parallel computers, or 
algorithms in general. Each of these three topics deserves a large textbook to attempt 
to provide a good cover. Further, there are the standard and excellent textbooks for 
each, such as  Computer Organization and Design  by D.A. Patterson and J.L. 

xiii
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Hennessy,  Parallel Computer Architecture  by D.E. Culler, J.P. Singh, and A. Gupta, 
and fi nally,  Introduction to Algorithms  by T.H. Cormen, C.E. Leiserson, and R.L. 
Rivest. I hope many were fortunate enough to study these topics in courses that 
adopted the above textbooks. My apologies if I did not include a comprehensive list 
of equally good textbooks on the above subjects. 

 This book, on the other hand, shows how to systematically design special -
 purpose parallel processing structures to implement algorithms. The techniques 
presented here are general and can be applied to many algorithms, parallel or 
otherwise. 

 This book is intended for researchers and graduate students in computer engi-
neering, electrical engineering, and computer science. The prerequisites for this book 
are basic knowledge of linear algebra and digital signal processing. The objectives 
of this book are (1) to explain several techniques for expressing a parallel algorithm 
as a dependence graph or as a set of dependence matrices; (2) to explore scheduling 
schemes for the processing tasks while conforming to input and output data timing, 
and to be able to pipeline some data and broadcast other data to all processors; and 
(3) to explore allocation schemes for the processing tasks to processing elements.  

  CHAPTER ORGANIZATION AND OVERVIEW 

  Chapter    1   defi nes the two main classes of algorithms dealt with in this book: serial 
algorithms, parallel algorithms, and regular iterative algorithms. Design consider-
ations for parallel computers are discussed as well as their close tie to parallel 
algorithms. The benefi ts of using parallel computers are quantifi ed in terms of 
speedup factor and the effect of communication overhead between the processors. 
The chapter concludes by discussing two applications of parallel computers. 

  Chapter    2   discusses the techniques used to enhance the performance of a single 
computer such as increasing the clock frequency, parallelizing the arithmetic and 
logic unit (ALU) structure, pipelining, very long instruction word (VLIW), supers-
calar computing, and multithreading. 

  Chapter    3   reviews the main types of parallel computers discussed here and 
includes shared memory, distributed memory, single instruction multiple data stream 
(SIMD), systolic processors, and multicore systems. 

  Chapter    4   reviews shared - memory multiprocessor systems and discusses 
two main issues intimately related to them: cache coherence and process 
synchronization. 

  Chapter    5   reviews the types of interconnection networks used in parallel proces-
sors. We discuss simple networks such as buses and move on to star, ring, and mesh 
topologies. More effi cient networks such as crossbar and multistage interconnection 
networks are discussed. 

  Chapter    6   reviews the concurrency platform software tools developed to help 
the programmer parallelize the application. Tools reviewed include Cilk +  + , OpenMP, 
and compute unifi ed device architecture (CUDA). It is stressed, however, that these 
tools deal with simple data dependencies. It is the responsibility of the programmer 
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to ensure data integrity and correct timing of task execution. The techniques devel-
oped in this book help the programmer toward this goal for serial algorithms and 
for regular iterative algorithms. 

  Chapter    7   reviews the ad hoc techniques used to implement algorithms on paral-
lel computers. These techniques include independent loop scheduling, dependent 
loop spreading, dependent loop unrolling, problem partitioning, and divide - and -
 conquer strategies. Pipelining at the algorithm task level is discussed, and the 
technique is illustrated using the coordinate rotation digital computer (CORDIC) 
algorithm. 

  Chapter    8   deals with nonserial – parallel algorithms (NSPAs) that cannot be 
described as serial, parallel, or serial – parallel algorithms. NSPAs constitute the 
majority of general algorithms that are not apparently parallel or show a confusing 
task dependence pattern. The chapter discusses a formal, very powerful, and simple 
technique for extracting parallelism from an algorithm. The main advantage of the 
formal technique is that it gives us the best schedule for evaluating the algorithm 
on a parallel machine. The technique also tells us how many parallel processors are 
required to achieve maximum execution speedup. The technique enables us to 
extract important NSPA performance parameters such as work ( W  ), parallelism ( P ), 
and depth ( D ). 

  Chapter    9   introduces the  z  - transform technique. This technique is used for 
studying the implementation of digital fi lters and multirate systems on different 
parallel processing machines. These types of applications are naturally studied in 
the  z  - domain, and it is only natural to study their software and hardware implementa-
tion using this domain. 

  Chapter    10   discusses to construct the dependence graph associated with an 
iterative algorithm. This technique applies, however, to iterative algorithms that have 
one, two, or three indices at the most. The dependence graph will help us schedule 
tasks and automatically allocate them to software threads or hardware processors. 

  Chapter    11   discusses an iterative algorithm analysis technique that is based on 
computation geometry and linear algebra concepts. The technique is general in the 
sense that it can handle iterative algorithms with more than three indices. An 
example is two - dimensional (2 - D) or three - dimensional (3 - D) digital fi lters. For such 
algorithms, we represent the algorithm as a convex hull in a multidimensional space 
and associate a dependence matrix with each variable of the algorithm. The null 
space of these matrices will help us derive the different parallel software threads 
and hardware processing elements and their proper timing. 

  Chapter    12   explores different parallel processing structures for one - dimensional 
(1 - D) fi nite impulse response (FIR) digital fi lters. We start by deriving possible 
hardware structures using the geometric technique of Chapter  11 . Then, we explore 
possible parallel processing structures using the  z  - transform technique of Chapter  9 . 

  Chapter    13   explores different parallel processing structures for 2 - D and 3 - D 
infi nite impulse response (IIR) digital fi lters. We use the  z  - transform technique for 
this type of fi lter. 

  Chapter    14   explores different parallel processing structures for multirate deci-
mators and interpolators. These algorithms are very useful in many applications, 
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especially telecommunications. We use the dependence graph technique of Chapter 
 10  to derive different parallel processing structures. 

  Chapter    15   explores different parallel processing structures for the pattern 
matching problem. We use the dependence graph technique of Chapter  10  to study 
this problem. 

  Chapter    16   explores different parallel processing structures for the motion 
estimation algorithm used in video data compression. In order to delay with this 
complex algorithm, we use a hierarchical technique to simplify the problem and use 
the dependence graph technique of Chapter  10  to study this problem. 

  Chapter    17   explores different parallel processing structures for fi nite - fi eld 
multiplication over  GF (2  m  ). The multi - plication algorithm is studied using the 
dependence graph technique of Chapter  10 . 

  Chapter    18   explores different parallel processing structures for fi nite - fi eld poly-
nomial division over  GF (2). The division algorithm is studied using the dependence 
graph technique of Chapter  10 . 

  Chapter    19   explores different parallel processing structures for the fast Fourier 
transform algorithm. Pipeline techniques for implementing the algorithm are 
reviewed. 

  Chapter    20   discusses solving systems of linear equations. These systems could 
be solved using direct and indirect techniques. The chapter discusses how to paral-
lelize the forward substitution direct technique. An algorithm to convert a dense 
matrix to an equivalent triangular form using Givens rotations is also studied. The 
chapter also discusses how to parallelize the successive over - relaxation (SOR) indi-
rect technique. 

  Chapter    21   discusses solving partial differential equations using the fi nite dif-
ference method (FDM). Such equations are very important in many engineering and 
scientifi c applications and demand massive computation resources.  
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  COMMENTS AND SUGGESTIONS 

 This book covers a wide range of techniques and topics related to parallel comput-
ing. It is highly probable that it contains errors and omissions. Other researchers 
and/or practicing engineers might have other ideas about the content and organiza-
tion of a book of this nature. We welcome receiving comments and suggestions for 
consideration. If you fi nd any errors, we would appreciate hearing from you. We 
also welcome ideas for examples and problems (along with their solutions if pos-
sible) to include with proper citation. 

 Please send your comments and bug reports electronically to  fayez@uvic.ca , or 
you can fax or mail the information to  

   Dr. F ayez  G ebali  
 Electrical and Computer Engineering Department 
 University of Victoria, Victoria, B.C., Canada V8W 3P6 
 Tel: 250 - 721 - 6509 
 Fax: 250 - 721 - 6052        
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  Chapter 1 

Introduction     

    1.1    INTRODUCTION 

 The idea of a single - processor computer is fast becoming archaic and quaint. We 
now have to adjust our strategies when it comes to computing: 

   •      It is impossible to improve computer performance using a single processor. 
Such processor would consume unacceptable power. It is more practical to 
use many simple processors to attain the desired performance using perhaps 
thousands of such simple computers  [1] .  

   •      As a result of the above observation, if an application is not running fast on 
a single - processor machine, it will run even slower on new machines unless 
it takes advantage of parallel processing.  

   •      Programming tools that can detect parallelism in a given algorithm have 
to be developed. An algorithm can show regular dependence among its vari-
ables or that dependence could be irregular. In either case, there is room 
for speeding up the algorithm execution provided that some subtasks can 
run concurrently while maintaining the correctness of execution can be 
assured.  

   •      Optimizing future computer performance will hinge on good parallel pro-
gramming at all levels: algorithms, program development, operating system, 
compiler, and hardware.  

   •      The benefi ts of parallel computing need to take into consideration the number 
of processors being deployed as well as the communication overhead of 
processor - to - processor and processor - to - memory. Compute - bound problems 
are ones wherein potential speedup depends on the speed of execution of the 
algorithm by the processors. Communication - bound problems are ones 
wherein potential speedup depends on the speed of supplying the data to and 
extracting the data from the processors.  

   •      Memory systems are still much slower than processors and their bandwidth 
is limited also to one word per read/write cycle.  

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.
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2 Chapter 1 Introduction

   •      Scientists and engineers will no longer adapt their computing requirements 
to the available machines. Instead, there will be the practical possibility 
that they will adapt the computing hardware to solve their computing 
requirements.    

 This book is concerned with algorithms and the special - purpose hardware structures 
that execute them since software and hardware issues impact each other. Any soft-
ware program ultimately runs and relies upon the underlying hardware support 
provided by the processor and the operating system. Therefore, we start this chapter 
with some defi nitions then move on to discuss some relevant design approaches and 
design constraints associated with this topic.  

   1.2    TOWARD AUTOMATING 
PARALLEL PROGRAMMING 

 We are all familiar with the process of algorithm implementation in software. When 
we write a code, we do not need to know the details of the target computer system 
since the compiler will take care of the details. However, we are steeped in think-
ing in terms of a single central processing unit (CPU) and sequential processing 
when we start writing the code or debugging the output. On the other hand, the 
processes of implementing algorithms in hardware or in software for parallel 
machines are more related than we might think. Figure  1.1  shows the main phases 
or layers of implementing an application in software or hardware using parallel 
computers. Starting at the top,  layer 5  is the application layer where the application 
or problem to be implemented on a parallel computing platform is defi ned. The 
specifi cations of inputs and outputs of the application being studied are also defi ned. 
Some input/output (I/O) specifi cations might be concerned with where data is stored 
and the desired timing relations of data. The results of this layer are fed to the lower 
layer to guide the algorithm development.   

  Layer 4  is algorithm development to implement the application in question. The 
computations required to implement the application defi ne the tasks of the algorithm 
and their interdependences. The algorithm we develop for the application might or 
might not display parallelism at this state since we are traditionally used to linear 
execution of tasks. At this stage, we should not be concerned with task timing or 
task allocation to processors. It might be tempting to decide these issues, but this is 
counterproductive since it might preclude some potential parallelism. The result of 
this layer is a dependence graph, a directed graph (DG), or an adjacency matrix that 
summarize the task dependences. 

  Layer 3  is the parallelization layer where we attempt to extract latent parallelism 
in the algorithm. This layer accepts the algorithm description from layer 4 and pro-
duces thread timing and assignment to processors for software implementation. 
Alternatively, this layer produces task scheduling and assignment to processors for 
custom hardware very large - scale integration (VLSI) implementation. The book 
concentrates on this layer, which is shown within the gray rounded rectangle in the 
fi gure. 
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  Layer 2  is the coding layer where the parallel algorithm is coded using a 
high - level language. The language used depends on the target parallel computing 
platform. The right branch in Fig.  1.1  is the case of mapping the algorithm on a 
general - purpose parallel computing platform. This option is really what we mean by 
 parallel programming . Programming parallel computers is facilitated by what is 
called  concurrency platforms , which are tools that help the programmer manage the 
threads and the timing of task execution on the processors. Examples of concurrency 
platforms include Cilk +  + , openMP, or compute unifi ed device architecture (CUDA), 
as will be discussed in Chapter  6 . 

 The left branch in Fig.  1.1  is the case of mapping the algorithm on a custom 
parallel computer such as systolic arrays. The programmer uses hardware description 
language (HDL) such as Verilog or very high - speed integrated circuit hardware 
(VHDL). 

     Figure 1.1     The phases or layers of implementing an application in software or hardware using 
parallel computers.  
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  Layer 1  is the realization of the algorithm or the application on a parallel com-
puter platform. The realization could be using multithreading on a parallel computer 
platform or it could be on an application - specifi c parallel processor system using 
application - specifi c integrated circuits (ASICs) or fi eld - programmable gate array 
(FPGA). 

 So what do we mean by automatic programming of parallel computers? At the 
moment, we have automatic serial computer programming. The programmer writes 
a code in a high - level language such as C, Java, or FORTRAN, and the code is 
compiled without further input from the programmer. More signifi cantly, the pro-
grammer does not need to know the hardware details of the computing platform. 
Fast code could result even if the programmer is unaware of the memory hierarchy, 
CPU details, and so on. 

 Does this apply to parallel computers? We have parallelizing compilers that look 
for simple loops and spread them among the processors. Such compilers could easily 
tackle what is termed  embarrassingly parallel algorithms   [2, 3] . Beyond that, the 
programmer must have intimate knowledge of how the processors interact among 
each and when the algorithm tasks are to be executed.  

   1.3    ALGORITHMS 

  The IEEE     Standard Dictionary of Electrical and Electronics Terms  defi nes an 
algorithm as  “ A prescribed set of well - defi ned rules or processes for the solution of 
a problem in a fi nite number of steps ”   [4] . The tasks or processes of an algorithm 
are interdependent in general. Some tasks can run concurrently in parallel and some 
must run serially or sequentially one after the other. According to the above defi ni-
tion, any algorithm is composed of a serial part and a parallel part. In fact, it is very 
hard to say that one algorithm is serial while the other is parallel except in extreme 
trivial cases. Later, we will be able to be more quantitative about this. If the number 
of tasks of the algorithm is  W , then we say that the  work  associated with the algo-
rithm is  W . 

 The basic components defi ning an algorithm are 

  1.     the different tasks,  

  2.     the dependencies among the tasks where a task output is used as another 
task ’ s input,  

  3.     the set of primary inputs needed by the algorithm, and  

  4.     the set of primary outputs produced by the algorithm.    

   1.3.1    Algorithm  DG  

 Usually, an algorithm is graphically represented as a DG to illustrate the data depen-
dencies among the algorithm tasks. We use the DG to describe our algorithm in 
preference to the term  “ dependence graph ”  to highlight the fact that the algorithm 
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variables fl ow as data between the tasks as indicated by the arrows of the DG. On 
the other hand, a dependence graph is a graph that has no arrows at its edges, and 
it becomes hard to fi gure out the data dependencies.

  Defi nition 1.1     A dependence graph is a set of nodes and edges. The nodes repre-
sent the tasks to be done by the algorithm and the edges represent the data used by 
the tasks. This data could be input, output, or internal results.   

 Note that the edges in a dependence graph are undirected since an edge con-
necting two nodes does not indicate any input or output data dependency. An edge 
merely shows all the nodes that share a certain instance of the algorithm variable. 
This variable could be input, output, or I/O representing intermediate results.

  Defi nition 1.2     A DG is a set of nodes and directed edges. The nodes represent the 
tasks to be done by the algorithm, and the directed edges represent the data depen-
dencies among the tasks. The start of an edge is the output of a task and the end of 
an edge the input to the task.  

  Defi nition 1.3     A directed acyclic graph (DAG) is a DG that has no cycles or loops.   

 Figure  1.2  shows an example of representing an algorithm by a DAG. A DG 
or DAG has three types of edges depending on the sources and destinations of the 
edges.   

   Defi nition 1.4     An input edge in a DG is one that terminates on one or more nodes 
but does not start from any node. It represents one of the algorithm inputs.   

 Referring to Fig.  1.2 , we note that the algorithm has three input edges that 
represent the inputs in 0 , in 1 , and in 2 . 

   Defi nition 1.5     An output edge in a DG is one that starts from a node but does not 
terminate on any other node. It represents one of the algorithm outputs.   

     Figure 1.2     Example of a directed acyclic graph (DAG) for 
an algorithm.  
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 Referring to Fig.  1.2 , we note that the algorithm has three output edges that 
represent the outputs out 0 , out 1 , and out 2 . 

   Defi nition 1.6     An internal edge in a DG is one that starts from a node and terminate 
one or more nodes. It represents one of the algorithm internal variables.   

   Defi nition 1.7     An input node in a DG is one whose incoming edges are all input 
edges.   

 Referring to Fig.  1.2 , we note that nodes 0, 1, and 2 represent input nodes. The 
tasks associated with these nodes can start immediately after the inputs are 
available. 

   Defi nition 1.8     An output node in a DG is whose outgoing edges are all output 
edges.   

 Referring to Fig.  1.2 , we note that nodes 7 and 9 represent output nodes. Node 
3 in the graph of Fig.  1.2  is not an output node since one of its outgoing edges is 
an internal edge terminating on node 7. 

   Defi nition 1.9     An internal node in a DG is one that has at least one incoming 
internal edge and at least one outgoing internal edge.    

   1.3.2    Algorithm Adjacency Matrix A 

 An algorithm could also be represented algebraically as an  adjacency matrix   A . 
Given  W  nodes/tasks, we defi ne the 0 – 1 adjacency matrix  A , which is a square 
 W     ×     W  matrix defi ned so that element  a ( i ,  j )    =    1 indicates that node  i  depends on 
the output from node  j . The source node is  j  and the destination node is  i . Of course, 
we must have  a ( i ,  i )    =    0 for all values of 0    ≤     i     <     W  since node  i  does not depend on 
its own output (self - loop), and we assumed that we do not have any loops. The defi -
nition of the adjacency matrix above implies that this matrix is asymmetric. This is 
because if node  i  depends on node  j , then the reverse is not true when loops are not 
allowed. 

 As an example, the adjacency matrix for the algorithm in Fig.  1.2  is given by

    A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0
=

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1

0 0

0 0

0 0

0 0

0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (1.1)   
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 Matrix  A  has some interesting properties related to our topic. An input node  i  
is associated with row  i , whose elements are all zeros. An output node  j  is associated 
with column  j , whose elements are all zeros. We can write

    Input node i a i j
j

W

⇒ =
=

−

∑ ( , )
0

1

0     (1.2)  

    Output node j a i j
i

W

⇒ =
=

−

∑ ( , ) .
0

1

0     (1.3)   

 All other nodes are internal nodes. Note that all the elements in rows 0, 1, and 2 are 
all zeros since nodes 0, 1, and 2 are input nodes. This is indicated by the bold entries 
in these three rows. Note also that all elements in columns 7 and 9   are all zeros since 
nodes 7 and 9 are output nodes. This is indicated by the bold entries in these two 
columns. All other rows and columns have one or more nonzero elements to indicate 
internal nodes. If node  i  has element  a ( i ,  j )    =    1, then we say that node  j  is a parent 
of node  i .  

   1.3.3    Classifying Algorithms Based On 
Task Dependences 

 Algorithms can be broadly classifi ed based on task dependences: 

  1.     Serial algorithms  

  2.     Parallel algorithms  

  3.     Serial – parallel algorithms (SPAs)  

  4.     Nonserial – parallel algorithms (NSPAs)  

  5.     Regular iterative algorithms (RIAs)    

 The last category could be thought of as a generalization of SPAs. It should be 
mentioned that the level of data or task granularity can change the algorithm from 
one class to another. For example, adding two matrices could be an example of a 
serial algorithm if our basic operation is adding two matrix elements at a time. 
However, if we add corresponding rows on different computers, then we have a 
row - based parallel algorithm. 

 We should also mention that some algorithms can contain other types of algo-
rithms within their tasks. The simple matrix addition example serves here as well. 
Our parallel matrix addition algorithm adds pairs of rows at the same time on dif-
ferent processors. However, each processor might add the rows one element at a 
time, and thus, the tasks of the parallel algorithm represent serial row add algorithms. 
We discuss these categories in the following subsections.  

   1.3.4    Serial Algorithms 

 A serial algorithm is one where the tasks must be performed in series one after the 
other due to their data dependencies. The DG associated with such an algorithm looks 
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like a long string or queue of dependent tasks. Figure  1.3 a shows an example of a 
serial algorithm. The algorithm shown is for calculating Fibonnaci numbers. To cal-
culate Fibonacci number  n  10 , task  T  10  performs the following simple calculation:

    n n n10 8 9= + ,     (1.4)     

 with  n  0     =    0 and  n  1     =    1 given as initial conditions. Clearly, we can fi nd a Fibonacci 
number only after the preceding two Fibonacci numbers have been calculated.  

   1.3.5    Parallel Algorithms 

 A parallel algorithm is one where the tasks could all be performed in parallel at the 
same time due to their data independence. The DG associated with such an algorithm 
looks like a wide row of independent tasks. Figure  1.3 b shows an example of a 
parallel algorithm. A simple example of such a purely parallel algorithm is a web 
server where each incoming request can be processed independently from other 
requests. Another simple example of parallel algorithms is multitasking in operating 
systems where the operating system deals with several applications like a web 
browser, a word processor, and so on.  

   1.3.6     SPA  s  

 An SPA is one where tasks are grouped in stages such that the tasks in each stage 
can be executed concurrently in parallel and the stages are executed sequentially. 
An SPA becomes a parallel algorithm when the number of stages is one. A serial -
 parallel algorithm also becomes a serial algorithm when the number of tasks in each 
stage is one. Figure  1.3 c shows an example of an SPA. An example of an SPA is the 
CORDIC algorithm  [5 – 8] . The algorithm requires  n  iterations and at iteration  i , three 
operations are performed:

     Figure 1.3     Example of serial, parallel, and serial – parallel algorithms. (a) Serial algorithm. (b) 
Parallel algorithm. (c) Serial – parallel algorithm.  
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where  x ,  y , and  z  are the data to be updated at each iteration.  δ   i   and  θ   i   are iteration 
constants that are stored in lookup tables. The parameter  m  is a control parameter 
that determines the type of calculations required. The variable  θ   i   is determined before 
the start of each iteration. The algorithm performs other operations during each 
iteration, but we are not concerned about this here. More details can be found in 
Chapter  7  and in the cited references.  

   1.3.7     NSPA  s  

 An NSPA does not conform to any of the above classifi cations. The DG for such an 
algorithm has no pattern. We can further classify NSPA into two main categories 
based on whether their DG contains cycles or not. Therefore, we can have two types 
of graphs for NSPA: 

  1.     DAG  

  2.     Directed cyclic graph (DCG)    

 Figure  1.4 a is an example of a DAG algorithm and Fig.  1.4 b is an example of a 
DCG algorithm. The DCG is most commonly encountered in discrete time feedback 
control systems. The input is supplied to task  T  0  for prefi ltering or input signal 
conditioning. Task  T  1  accepts the conditioned input signal and the conditioned feed-
back output signal. The output of task  T  1  is usually referred to as the error signal, 
and this signal is fed to task  T  2  to produce the output signal.   

     Figure 1.4     Example directed graphs for nonserial – parallel algorithms. (a) Directed acyclic graph 
(DAG). (b) Directed cyclic graph (DCG).  
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 The NSPA graph is characterized by two types of constructs: the  nodes , which 
describe the tasks comprising the algorithm, and the  directed edges , which describe 
the direction of data fl ow among the tasks. The lines exiting a node represent an 
output, and when they enter a node, they represent an input. If task  T i   produces an 
output that is used by task  T j  , then we say that  T j   depends on  T i  . On the graph, we 
have an arrow from node  i  to node  j . 

 The DG of an algorithm gives us three important properties: 

  1.      Work ( W ) , which describes the amount of processing work to be done to 
complete the algorithm  

  2.      Depth ( D ) , which is also known as the  critical path . Depth is defi ned as the 
maximum path length between any input node and any output node.  

  3.      Parallelism ( P ) , which is also known as the  degree of parallelism  of the 
algorithm. Parallelism is defi ned as the maximum number of nodes that can 
be processed in parallel. The maximum number of parallel processors that 
could be active at any given time will not exceed B since anymore processors 
will not fi nd any tasks to execute.    

 A more detailed discussion of these properties and how an algorithm can be 
mapped onto a parallel computer is found in Chapter  8 .  

   1.3.8     RIA  s  

 Karp et al.  [9, 10]  introduced the concept of RIA. This class of algorithms deserves 
special attention because they are found in algorithms from diverse fi elds such as 
signal, image and video processing, linear algebra applications, and numerical simu-
lation applications that can be implemented in grid structures. Figure  1.5  shows the 
 dependence graph  of a RIA. The example is for pattern matching algorithm. Notice 
that for a RIA, we do not draw a DAG; instead, we use the dependence graph 
concept.   

     Figure 1.5     Dependence graph of a 
RIA for the pattern matching algorithm.  

y0 y1 y2 y3 y4 y5 y6

t0 t1 t2 t3 t4 t5 t6

t7

t8

t9

p0

p1

p2

p3

j

i



1.3 Algorithms 11

 A dependence graph is like a DAG except that the links are not directed 
and the graph is obtained according to the methodology explained in Chapters  9 , 
 10 , and  11 . 

 In a RIA, the dependencies among the tasks show a fi xed pattern. It is a 
trivial problem to parallelize a serial algorithm, a parallel algorithm, or even an SPA. 
It is not trivial to explore the possible parallelization options of a RIA. In fact, 
Chapters  9  –  11  are dedicated to just exploring the parallelization of this class of 
algorithms. 

 A simple example of a RIA is the matrix – matrix multiplication algorithm given 
by Algorithm 1.1.

  Algorithm 1.1     Matrix – matrix multiplication algorithm. 

  Require:  Input: matrices  A  and  B  

  1:      for   i     =    0 :  I     −    1  do   

  2:            for   j     =    0 :  J     −    1  do   

  3:                  temp     =    0  

  4:                  for   k     =    0 :  K     −    1  do   

  5:                        temp     =    temp    +     A ( i ,  k )    ×     B ( k ,  j )  

  6:                  end for   

  7:                  C ( i ,  j )    =     temp   

  8:            end for   

  9:      end for   

  10:      RETURN   C       

 The variables in the RIA described by Algorithm 1.1 show regular dependence 
on the algorithm indices  i ,  j , and  k . Traditionally, such algorithms are studied 
using the dependence graph technique, which shows the links between the different 
tasks to be performed  [10 – 12] . The dependence graph is attractive when the number 
of algorithm indices is 1 or 2. We have three indices in our matrix – matrix multipli-
cation algorithm. It would be hard to visualize such an algorithm using a three -
 dimensional (3 - D) graph. For higher dimensionality algorithms, we use more formal 
techniques as will be discussed in this book. Chapters  9  –  11  are dedicated to studying 
such algorithms.  

   1.3.9    Implementing Algorithms on Parallel Computing 

 The previous subsections explained different classes of algorithms based on the 
dependences among the algorithm tasks. We ask in this section how to implement 
these different algorithms on parallel computing platforms either in hardware or in 
software. This is referred to as parallelizing an algorithm. The parallelization strat-
egy depends on the type of algorithm we are dealing with. 



12 Chapter 1 Introduction

  Serial Algorithms 

 Serial algorithms, as exemplifi ed by Fig.  1.3 a, cannot be parallelized since the tasks 
must be executed sequentially. The only parallelization possible is when each task 
is broken down into parallelizable subtasks. An example is to perform bit - parallel 
add/multiply operations.  

  Parallel Algorithms 

 Parallel algorithms, as exemplifi ed by Fig.  1.3 b, are easily parallelized since all the 
tasks can be executed in parallel, provided there are enough computing resources.  

   SPA  s  

 SPAs, as exemplifi ed by Fig.  1.3 c, are parallelized by assigning each task in a stage 
to a software thread or hardware processing element. The stages themselves cannot 
be parallelized since they are serial in nature.  

   NSPA  s  

 Techniques for parallelizing NSPAs will be discussed in Chapter  8 .  

   RIA  s  

 Techniques for parallelizing RIAs will be discussed in Chapters  9  –  11 .    

   1.4    PARALLEL COMPUTING DESIGN CONSIDERATIONS 

 This section discusses some of the important aspects of the design of parallel com-
puting systems. The design of a parallel computing system requires considering 
many design options. The designer must choose a basic  processor architecture  that 
is capable of performing the contemplated tasks. The processor could be a simple 
element or it could involve a superscalar processor running a multithreaded operat-
ing system. 

 The processors must communicate among themselves using some form of an 
 interconnection network . This network might prove to be a bottleneck if it cannot 
support simultaneous communication between arbitrary pairs of processors. 
Providing the links between processors is like providing physical channels in tele-
communications. How data are exchanged must be specifi ed. A bus is the simplest 
form of interconnection network. Data are exchanged in the form of words, and a 
system clock informs the processors when data are valid. Nowadays, buses are being 
replaced by  networks - on - chips  (NoC)  [13] . In this architecture, data are exchanged 
on the chip in the form of  packets  and are routed among the chip modules using 
 routers . 

 Data and programs must be stored in some form of  memory system , and the 
designer will then have the option of having several memory modules shared among 
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the processors or of dedicating a memory module to each processor. When proces-
sors need to share data, mechanisms have to be devised to allow reading and writing 
data in the different memory modules. The order of reading and writing will be 
important to ensure data integrity. When a shared data item is updated by one pro-
cessor, all other processors must be somehow informed of the change so they use 
the appropriate data value. 

 Implementing the tasks or programs on a parallel computer involves several 
design options also.  Task partitioning  breaks up the original program or application 
into several segments to be allocated to the processors. The level of partitioning 
determines the workload allocated to each processor.  Coarse grain partitioning  
allocates large segments to each processor. Fine grain partitioning allocates smaller 
segments to each processor. These segments could be in the form of separate  soft-
ware processes  or  threads . The programmer or the compiler might be the two entities 
that decide on this partitioning. The programmer or the operating system must ensure 
proper  synchronization  among the executing tasks so as to ensure program correct-
ness and data integrity.  

   1.5    PARALLEL ALGORITHMS AND 
PARALLEL ARCHITECTURES 

 Parallel algorithms and parallel architectures are closely tied together. We 
cannot think of a parallel algorithm without thinking of the parallel hardware 
that will support it. Conversely, we cannot think of parallel hardware without 
thinking of the parallel software that will drive it. Parallelism can be imple-
mented at different levels in a computing system using hardware and software 
techniques: 

  1.      Data - level parallelism , where we simultaneously operate on multiple bits of 
a datum or on multiple data. Examples of this are bit - parallel addition mul-
tiplication and division of binary numbers, vector processor arrays and sys-
tolic arrays for dealing with several data samples. This is the subject of this 
book.  

  2.      Instruction - level parallelism (ILP) , where we simultaneously execute more 
than one instruction by the processor. An example of this is use of instruction 
pipelining.  

  3.      Thread - level parallelism (TLP).  A thread is a portion of a program that shares 
processor resources with other threads. A thread is sometimes called a light-
weight process. In TLP, multiple software threads are executed simultane-
ously on one processor or on several processors.  

  4.      Process - level parallelism.  A process is a program that is running on the 
computer. A process reserves its own computer resources such as memory 
space and registers. This is, of course, the classic multitasking and time -
 sharing computing where several programs are running simultaneously on 
one machine or on several machines.     
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   1.6    RELATING PARALLEL ALGORITHM AND 
PARALLEL ARCHITECTURE 

  The IEEE Standard Dictionary of Electrical and Electronics Terms   [4]  defi nes  “ par-
allel ”  for software as  “ simultaneous transfer, occurrence, or processing of the indi-
vidual parts of a whole, such as the bits of a character and the characters of a word 
using separate facilities for the various parts. ”  So in that sense, we say an algorithm 
is parallel when two or more parts of the algorithms can be executed independently 
on hardware. Thus, the defi nition of a parallel algorithm presupposes availability of 
supporting hardware. This gives a hint that parallelism in software is closely tied to 
the hardware that will be executing the software code. Execution of the parts can be 
done using different threads or processes in the software or on different processors 
in the hardware. We can quickly identify a potentially parallel algorithm when we 
see the occurrence of  “ FOR ”  or  “ WHILE   ”  loops in the code. 

 On the other hand, the defi nition of parallel architecture, according to  The IEEE 
Standard Dictionary of Electrical and Electronics Terms   [4] , is  “ a multi - processor 
architecture in which parallel processing can be performed. ”  It is the job of the 
programmer, compiler, or operating system to supply the multiprocessor with tasks 
to keep the processors busy. We fi nd ready examples of parallel algorithms in fi elds 
such as 

   •      scientifi c computing, such as physical simulations, differential equations 
solvers, wind tunnel simulations, and weather simulation;  

   •      computer graphics, such as image processing, video compression; and ray 
tracing; and,  

   •      medical imaging, such as in magnetic resonance imaging (MRI) and comput-
erized tomography (CT).    

 There are, however, equally large numbers of algorithms that are not recogniz-
ably parallel especially in the area of information technology such as online medical 
data, online banking, data mining, data warehousing, and database retrieval systems. 
The challenge is to develop computer architectures and software to speed up the 
different information technology applications.  

   1.7    IMPLEMENTATION OF ALGORITHMS: 
A TWO - SIDED PROBLEM 

 Figure  1.6  shows the issues we would like to deal with in this book. On the left is 
the space of algorithms and on the right is the space of parallel architectures that 
will execute the algorithms. Route A represents the case when we are given an 
algorithm and we are exploring possible parallel hardware or processor arrays 
that would correctly implement the algorithm according to some performance 
requirements and certain system constraints. In other words, the problem is given a 
parallel algorithm, what are the possible parallel processor architectures that are 
possible?   
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 Route B represents the classic case when we are given a parallel architecture 
or a multicore system and we explore the best way to implement a given algorithm 
on the system subject again to some performance requirements and certain system 
constraints. In other words, the problem is given a parallel architecture, how can we 
allocate the different tasks of the parallel algorithm to the different processors? This 
is the realm of parallel programming using the multithreading design technique. It 
is done by the application programmer, the software compiler, and the operating 
system. 

 Moving along routes A or B requires dealing with 

  1.      mapping  the tasks to different processors,  

  2.      scheduling  the execution of the tasks to conform to algorithm data depen-
dency and data I/O requirements, and  

  3.      identifying  the data communication between the processors and the I/O.     

   1.8    MEASURING BENEFITS OF PARALLEL COMPUTING 

 We review in this section some of the important results and benefi ts of using parallel 
computing. But fi rst, we identify some of the key parameters that we will be study-
ing in this section. 

   1.8.1    Speedup Factor 

 The potential benefi t of parallel computing is typically measured by the time it takes 
to complete a task on a single processor versus the time it takes to complete the 
same task on  N  parallel processors. The speedup  S ( N ) due to the use of  N  parallel 
processors is defi ned by

    S N
T

T N
p

p

( )
( )

( )
,=

1
    (1.6)  

where  T   p  (1) is the algorithm processing time on a single processor and  T   p  ( N ) is 
the processing time on the parallel processors. In an ideal situation, for a fully 

     Figure 1.6     The two paths relating 
parallel algorithms and parallel 
architectures.  
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parallelizable algorithm, and when the communication time between processors and 
memory is neglected  , we have  T p   ( N )    =     T p   (1)/ N , and the above equation gives

    S N N( ) .=     (1.7)   

 It is rare indeed to get this linear increase in computation domain due to several 
factors, as we shall see in the book.  

   1.8.2    Communication Overhead 

 For single and parallel computing systems, there is always the need to read data 
from memory and to write back the results of the computations. Communication 
with the memory takes time due to the speed mismatch between the processor and 
the memory  [14] . Moreover, for parallel computing systems, there is the need for 
communication between the processors to exchange data. Such exchange of data 
involves transferring data or messages across the interconnection network. 

 Communication between processors is fraught with several problems: 

  1.      Interconnection network delay.  Transmitting data across the interconnection 
network suffers from bit propagation delay, message/data transmission delay, 
and queuing delay within the network. These factors depend on the network 
topology, the size of the data being sent, the speed of operation of the 
network, and so on.  

  2.      Memory bandwidth.  No matter how large the memory capacity is, access to 
memory contents is done using a single port that moves one word in or out 
of the memory at any give memory access cycle.  

  3.      Memory collisions , where two or more processors attempt to access the same 
memory module. Arbitration must be provided to allow one processor to 
access the memory at any given time.  

  4.      Memory wall.  The speed of data transfer to and from the memory is much 
slower than processing speed. This problem is being solved using memory 
hierarchy such as 

    register cache RAM electronic disk magnetic disk optic disk↔ ↔ ↔ ↔ ↔      

 To process an algorithm on a parallel processor system, we have several delays as 
explained in Table  1.1 .    

   1.8.3    Estimating Speedup Factor and 
Communication Overhead 

 Let us assume we have a parallel algorithm consisting of  N  independent tasks that 
can be executed either on a single processor or on  N  processors. Under these ideal 
circumstances, data travel between the processors and the memory, and there is no 
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interprocessor communication due to the task independence. We can write under 
ideal circumstances

    T Np p( )1 = τ     (1.8)  

    T Np p( ) .= τ     (1.9)   

 The time needed to read the algorithm input data by a single processor is given by

    T Nr m( ) ,1 = τ     (1.10)  

where  τ   m   is memory access time to read one block of data. We assumed in the above 
equation that each task requires one block of input data and  N  tasks require to read 
 N  blocks. The time needed by the parallel processors to read data from memory is 
estimated as

    T N T Nr r m( ) ( ) ,= =α α τ1     (1.11)  

where  α  is a factor that takes into account limitations of accessing the shared 
memory.  α     =    1/ N  when each processor maintains its own copy of the required data. 
 α     =    1 when data are distributed to each task in order from a central memory. In the 
worst case, we could have  α     >     N  when all processors request data and collide with 
each other. We could write the above observations as

    T N Nr

m

m( )

=
=

τ
τ

when Distributed memory

when Shared memory and no colliisions

when Shared memory with collisions>

⎧
⎨
⎪

⎩⎪ N mτ .

    (1.12)   

 Writing back the results to the memory, also, might involve memory collisions when 
the processor attempts to access the same memory module  .

    T Nw m( )1 = τ     (1.13)  

    T N T Nw w m( ) ( ) .= =α α τ1     (1.14)   

 For a single processor, the total time to complete a task, including memory access 
overhead, is given by

  Table 1.1    Delays Involved in Evaluating an Algorithm on a Parallel Processor System 

   Operation     Symbol     Comment  

  Memory read     T r   ( N )    Read data from memory shared by  N  processors  
  Memory write     T w   ( N )    Write data from memory shared by  N  processors  
  Communicate     T c   ( N )    Communication delay between a pair of processors when 

there are  N  processors in the system  
  Process data     T p   ( N )    Delay to process the algorithm using  N  parallel processors  
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    (1.15)   

 Now let us consider the speedup factor when communication overhead is 
considered:

    
T N T N T N T N

N
r p w

m p

total ( ) ( ) ( ) ( )
.

= + +
= +2 ατ τ

    (1.16)   

 The speedup factor is given by

    

S N
T

T N

N N

N
m p

m p

( )
( )
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=

=
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+

total

total

1

2

2

α τ τ
ατ τ

    (1.17)   

 Defi ne the  memory mismatch ratio  ( R ) as

    R m

p

=
τ
τ

,     (1.18)   

 which is the ratio of the delay for accessing one data block from the memory relative 
to the delay for processing one block of data. In that sense,  τ   p   is expected to be 
orders of magnitude smaller than  τ   m   depending on the granularity of the subtask 
being processed and the speed of the memory. 

 We can write Eq.  1.17  as a function of  N  and R in the form

    S N R
RN N

RN
( , ) .=

+
+

2

2 1

α
α

    (1.19)   

 Figure  1.7  shows the effect of the two parameters,  N  and  R , on the speedup when 
 α     =    1. Numerical simulations indicated that changes in  α  are not as signifi cant as 
the values of  R  and  N . From the above equation, we get full speedup when the 
product  RN     <<    1. This speedup is similar to Eq.  1.7  where communication overhead 
was neglected.   

 This situation occurs in the case of trivially parallel algorithms as will be dis-
cussed in Chapter  7 . 

 Notice from the fi gure that speedup quickly decreases when  RN     >    0.1. When 
 R     =    1, we get a communication - bound problem and the benefi ts of parallelism 
quickly vanish. This reinforces the point that memory design and communication 
between processors or threads are very important factors. We will also see that 
multicore processors, discussed in Chapter  3 , contain all the processors on the same 
chip. This has the advantage that communication occurs at a much higher speed 
compared with multiprocessors, where communication takes place across chips. 
Therefore,  T m   is reduced by orders of magnitude for multicore systems, and this 
should give them the added advantage of small  R  values. 
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 The interprocessor communication overhead involves reading and writing data 
into memory:

    T N Nc m( ) ,= β τ     (1.20)  

where  β     ≥    0 and depends on the algorithm and how the memory is organized.  β     =    0 
for a single processor, where there is no data exchange or when the processors in a 
multiprocessor system do not communicate while evaluating the algorithm. In other 
algorithms,  β  could be equal to log 2   N  or even  N . This could be the case when the 
parallel algorithm programmer or hardware designer did not consider fully the cost 
of interprocessor or interthread communications.   

   1.9    AMDAHL ’ S LAW FOR MULTIPROCESSOR SYSTEMS 

 Assume an algorithm or a task is composed of parallizable fraction  f  and a serial 
fraction 1    −     f . Assume the time needed to process this task on one single processor 
is given by

    T N f Nf Np p p p( ) ( ) ,1 1= − + =τ τ τ     (1.21)  

where the fi rst term on the right-hand side (RHS) is the time the processor needs to 
process the serial part. The second term on RHS is the time the processor needs to 
process the parallel part. When this task is executed on  N  parallel processors, the 
time taken will be given by

    T N N f fp p p( ) ( ) ,= − +1 τ τ     (1.22)  

where the only speedup is because the parallel part now is distributed over  N  
processors. Amdahl ’ s law for speedup  S ( N ), achieved by using  N  processors, is 
given by

     Figure 1.7     Effect of the two 
parameters,  N  and  R , on the 
speedup when  α     =    1.  
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 To get any speedup, we must have

    1− <<f f N/ .     (1.24)   

 This inequality dictates that the parallel portion  f  must be very close to unity espe-
cially when  N  is large. 

 Figure  1.8  shows the speedup versus  f  for different values of  N . The solid line 
is for  f     =    0.99; the dashed line is for  f     =    0.9; and the dotted line is for  f     =    0.5. We 
note from the fi gure that speedup is affected by the value of  f . As expected, larger 
 f  results in more speedup. However, note that the speedup is most pronounced when 
 f     >    0.5. Another observation is that speedup saturates to a given value when  N  
becomes large.   

 For large values of  N , the speedup in Eq.  1.23  is approximated by

    S N
f

N( ) .≈
−
1

1
1when �     (1.25)   

 This result indicates that if we are using a system with more than 10 processors, 
then any speedup advantage is dictated mainly by how clever we are at discovering 
the parallel parts of the program and how much we are able to execute those parallel 
parts simultaneously. The fi gure confi rms these expectations. 

     Figure 1.8     Speedup 
according to Amdahl ’ s law. The 
solid line is for  f     =    0.99; the 
dashed line is for  f     =    0.9; and 
the dotted line is for  f     =    0.5.  
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 For extreme values of  f , Eq.  1.23  becomes

    S N f( ) = =1 0when completely serial code     (1.26)  

    S N N f( ) .= =when completely parallel code1     (1.27)   

 The above equation is obvious. When the program is fully parallel, speedup will 
be equal to the number of parallel processors we use. 

 What do we conclude from this? Well, we must know or estimate the value of 
the fraction  f  for a given algorithm at the start. Knowing  f  will give us an idea on 
what system speedup could be expected on a multiprocessor system. This alone 
should enable us to judge how much effort to spend trying to improve speedup by 
mapping the algorithm to a multiprocessor system.  

   1.10    GUSTAFSON – BARSIS ’ S LAW 

 The predictions of speedup according to Amdahl ’ s law are pessimistic. Gustafson 
 [15]  made the observation that parallelism increases in an application when the 
problem size increases. Remember that Amdahl ’ s law assumed that the fraction of 
parallelizable code is fi xed and does not depend on problem size. 

 To derive Gustafson – Barsis formula   for speedup, we start with the  N  
parallel processors fi rst. The time taken to process the task on  N  processors is 
given by

    T N f fp p p p( ) ( ) .= − + =1 τ τ τ     (1.28)   

 When this task is executed on a single processor, the serial part is unchanged, 
but the parallel part will increase as given by

    T f Nfp p p( ) ( ) .1 1= − +τ τ     (1.29)   

 The speedup is given now by

    
S N

T

T N

f Nf

N f

p

p

( )
( )

( )

( )

( ) .

=

= − +
= + −

1

1

1 1

    

(1.30)

   

 Figure  1.9  shows the speedup versus  f  for different values of  N . The solid line 
is for  f     =    0.99; the dashed line is for  f     =    0.9; and the dotted line is for  f     =    0.5. Notice 
that there is speedup even for very small values of  f  and the situation improves as 
 N  gets larger.   

 To get any speedup, we must have

    f N( ) .−1 1�     (1.31)   

 Notice that we can get very decent speedup even for small values of  f  especially 
when  N  gets large. Compared with inequality  1.24 , we note that the speedup con-
straints are very much relaxed according to Gustafson – Barsis ’ s law.  
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   1.11    APPLICATIONS OF PARALLEL COMPUTING 

 The availability of inexpensive yet really powerful parallel computers is expected 
to make a hitherto unforeseeable impact on our lives. We are used now to parallel 
computers helping us access any information through web search engines. In fact, 
the search progresses as we are typing our search key words. However, there is room 
for improvement and, more importantly, for innovation, as the following sections 
illustrate. 

   1.11.1    Climate Modeling 

 Climate simulations are used for weather forecasting as well as for predicting global 
climate changes based on different phenomena or human activities. As Reference  1  
points out, the resolution of today ’ s climate models is 200   km. This is considered 
low resolution given the fact that some climate systems exist completely within such 
resolution scale. 

 Assume a high - resolution model for climate simulation partitions the globe 
using 3 - D cells 1   km in size in each direction. Assume also that the total surface of 
the earth to be 510    ×    10 6    km 2  and the thickness of the atmospheric layer to be 
approximately 1,000   km. Then, we need to simulate approximately 5    ×    10 11  weather 
cells. Assume further that each cell needs to do 200 fl oating point operations for 
each iteration of the simulation. Thus, we have to perform a total of 10 14  fl oating 
point operations per iteration. 

 Let us now assume that we need to run the simulation 10 6  times to simulate the 
climate over some long duration of the weather cycle. Thus, we have the following 
performance requirements for our computing system:

     Figure 1.9     Speedup 
according to Gustafson – Barsis ’ s 
law. The solid line is for 
 f     =    0.99; the dashed line is for 
 f     =    0.9; and the dotted line is 
for  f     =    0.5.  
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Total number of operations operations/iteration iterat= ×10 1014 6 iions

floating point operations= 1020
.     

(1.32)
   

 A computer operating at a rate of 10 9  fl oating point operations per second 
(FLOPS) would complete the operations in 10 11  seconds, which comes to about 31 
centuries. Assuming that all these simulations should be completed in one workday, 
then our system should operate at a rate of approximately 2.8    ×    10 15  FLOPS. It is 
obvious that such performance cannot be attained by any single - processor computer. 
We must divide this computational task among many processors. Modeling the 
atmosphere using a mesh or a grid of nodes lends itself to computational paralleliza-
tion since calculations performed by each node depend only on its immediate six 
neighboring nodes. Distributing the calculations among several processors is rela-
tively simple, but care must be given to the exchange of data among the processors. 
Table  1.2  compares building a parallel processor system needed to give us a perfor-
mance of 2.8    ×    10 15  FLOPS. We assume using desktop microprocessors versus using 
a simple embedded microprocessor  [1] .   

 The power advantage of using low - power, low - performance processors is 
obvious from the table. Of course, we need to fi gure out how to interconnect such 
a huge system irrespective of the type of processor used. The interconnection 
network becomes a major design issue here since it would be impossible to think of 
a system that uses buses and single global system clock.  

   1.11.2     CT  

 CT   and magnetic resonance imaging (MRI) are techniques to obtain a high - resolution 
map of the internals of the body for medical diagnosis. Figure  1.10  shows a simpli-
fi ed view of a CT system. Figure  1.10 a shows the placement of the patient on a 
gurney at the center of a very strong magnet and a strong X - ray source. The gurney 
is on a movable table in a direction perpendicular to the page. The X - ray source or 
emitter is placed at the top and emits a collimated beam that travels to the other side 
of the circle through the patient. An X - ray detector is placed diametrically opposite 
to where the X - ray source is. When the machine is in operation, the source/detector 
pair is rotated as shown in Fig.  1.10 b. After completing a complete rotation and 
storing the detector samples, the table is moved and the process is repeated for a 
different section or slice of the body. The output of a certain detector at a given time 

  Table 1.2    Parallel Multicore Computer Implementation Using Two Types of 
Microprocessors Needed to Perform 2.8    ×    10 15     FLOPS  

   Processor     Clock speed     GFLOPS/core       Cores needed     Power (MW)  

  AMD Opteron    2.8   GHz    5.6    4.9    ×    10 5     52.0  
  Tensilica XTensa 
LX2  

  500.0   MHz    1.0    2.8    ×    10 6     0.8  
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is affected by all the patient tissue that a certain X - ray beam encounters in its passage 
from the source to the detector. As things stand at the time of writing, the patient 
needs to be in this position for several minutes if not hours (personal experience).   

 Assume the image we are trying to generate is composed of  N     ×     N  pixels, where 
 N  could be approximately equal to 4,000. Thus, we have approximately 10 7  pixels 
to generate per image, or slice, of the body scan. As the table moves, more slices 
should be generated. This allows for 3 - D viewing of the body area of concern. For 
a system that generates  S     =    1,000 successive slices,  SN   2     =    10 10  pixels will have to 
be processed. A slice will require approximately  N   2  (log 2   N ) 3  calculations  [16] . For 
our case, we need approximately

    
Total number of operations operations/slice slices= ×

=
10 10

10

10 3

133 floating point operations
.     

(1.33)
   

 Assume we need to generate these images in 1 second to allow for a real - time 
examination of the patient. In that case, the system should operate at a rate of 
approximately 10 13  FLOPS. For an even more accurate medical diagnosis, high -
 resolution computerized tomography (HRCT) scans are required even at the 
nanoscale level where blood vessels need to be examined. Needless to say, parallel 
processing of massive data will be required for a timely patient treatment.  

   1.11.3    Computational Fluid Dynamics ( CFD ) 

 CFD is a fi eld that is closely tied to parallel computers and parallel algorithms. It is 
viewed as a cost - effective way to investigate and design systems that involve fl ow 
of gas or fl uids. Some examples of CFD are: 

   •      ocean currents,  

   •      our atmosphere and global weather,  

     Figure 1.10     Computerized tomography   (CT) system. (a) Setup of X - ray sources and detectors. 
(b) Schematic of the output of each sensor when a single X - ray source is active.  
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   •      blood fl ow in the arteries,  

   •      heart deformation during high - G maneuvers of a fi ghter jet,  

   •      air fl ow in the lungs,  

   •      design of airplane wings and winglets,  

   •      seat ejection in a fi ghter jet,  

   •      combustion of gases inside a car cylinder,  

   •      jet engine air intake and combustion chamber,  

   •      shape of a car body to reduce air drag, and  

   •      spray from nozzles such as paint guns and rocket exhaust  .    

 Typically, the region where the fl ow of interest is being studied is divided into 
a grid or mesh of points using the  fi nite element  method. The number of grid points 
depends on the size of the region or the desired resolution. A system of linear equa-
tions or a set differential equations is solved at each grid point for the problem 
unknowns. The number of unknown might be around 10 3 , and each variable might 
require around 10 3  fl oating point operations at each grid point. 

 The targeted region of the CFD applications ranges from 10 12  to 10 18  FLOPS 
 [17] . If the computer system operates at a speed of 10 9  (giga) FLOPS, then CFD 
applications would complete a simulation in the time period that ranges between 15 
minutes and 30 years. On the other hand, a parallel computer system operating at 
10 12  (tera) FLOPS would complete the application in a time period between 1 second 
and 12 days. Currently, there are few supercomputer systems that operate at the rate 
of 10 15  (peta) FLOPS. On such a system, the larger problem would take about 3 
minutes to complete.   

 1.12   PROBLEMS 

       1.1.    Assume you are given the task of adding eight numbers together. Draw the DG and the 
adjacency matrix for each of the following number adding algorithms: 

  (1)     Add the numbers serially, which would take seven steps.  

  (2)     Add the numbers in a binary fashion by adding each adjacent pair of numbers 
in parallel and then by adding pairs of the results in parallel, and continue this 
process.      

    1.2.    Derive general expressions for the number of tasks required to do the number adding 
algorithms in Problem 1.1 when we have  N     =    2 n  numbers to be added. What conclusion 
do you make?   

    1.3.    Now assume that you have a parallel computer that can add the numbers in 
Problem 1.1. The time required to add a pair of numbers is assumed 1. What would be 
the time required to perform the two algoritnms for the case  N     =    2  n  ? How much is the 
speedup?   

    1.4.    Consider Problem 1.3. Now the parallel computers require a time  C  to obtain data from 
memory and to communicate the add results between the add stages. How much 
speedup is accomplished?   
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    1.5.    Which class of algorithms would the fast Fourier transform (FFT) algorithm belong to?   

    1.6.    Which class of algorithms would the quicksort algorithm belong to?   

    1.7.    The binary number multiplication problem in Chapter  2  could be considered as a RIA 
algorithm. Draw the dependence graph of such an algorithm.   

    1.8.    The binary restoring division algorithm is based on the recurrence equation

   r r q D j nj j n j+ − −= − ≥ <1 12 ,  

where  r j   is the partial remainder at the  j th iteration;  q k   is the  k th quotient bit; and  D  is 
the denominator. It is assumed that the number of bits in the quotient is  n  and  q  n − 1  is 
the quotient most signifi cant bit (MSB). What type of algorithm is this division 
algorithm?   

    1.9.    A processor has clock frequency  f , and it requires  c  clock cycles to execute a single 
instruction. Assume a program contains  I  instructions. How long will the program take 
before it completes  ?   

    1.10.    Repeat Problem 1.9 when a new processor is introduced whose clock frequency is 
 f   ′     =    2 f  and  c  ′     =    1.5 c .   

    1.11.    Give some examples of serial algorithms.   

    1.12.    Give some examples of parallel algorithms.   

    1.13.    Consider the speedup factor for a fully parallel algorithm when communication over-
head is assumed. Comment on speedup for possible values of  α .   

    1.14.    Consider the speedup factor for a fully parallel algorithm when communication over-
head is assumed. Comment on speedup for possible values of  R .   

    1.15.    Write down the speedup formula when communication overhead is included and 
the algorithm requires interprocessor communications Assume that each task in the 
parallel algorithm requires communication between a pair of processors. Assume that 
the processors need to communicate with each other  m  times to complete the 
algorithm.   

    1.16.    Consider an SPA with the following specifi cations:

  Number of serial tasks per stage     N s    
  Number of serial tasks per stage     N p    
  Number of stages     n   

 Now assume that we have a single processor that requires  τ  to complete a task and it 
consumes  W  watts while in operation. We are also given  N     =     N p   parallel but very slow 
processors. Each processor requires  r  τ  to complete a task and consumes  W / r  watts while 
in operation, where  r     >    1 is a performance derating factor. 

  (1)     How long will the single processor need to fi nish the algorithm?  

  (2)     How much energy will the single processor consume to fi nish the algorithm?  

  (3)     How long will the multiprocessor need to fi nish the algorithm?  

  (4)     How much energy will the multiprocessor system consume to fi nish the 
algorithm?  

  (5)     Write down a formula for the speedup.  

  (6)     Write down a formula for the energy ratio of the multiprocessor relative to the 
single processor.      
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    1.17.    The algorithm for fl oating point addition can be summarized as follows: 

  (1)     Compare the exponents and choose the larger exponent.  

  (2)     Right shift the mantissa of the number with the smaller exponent by the amount of 
exponent difference.  

  (3)     Add the mantissas.  

  (4)     Normalize the results.    

 Draw a dependence graph of the algorithm and state what type of algorithm this is.   

    1.18.    The algorithm for fl oating point multiplication can be summarized as follows: 

  (1)     Multiply the mantissas.  

  (2)     Add the two exponents.  

  (3)     Round the multiplication result.  

  (4)     Normalize the result.    

 Draw a dependence graph of the algorithm and state what type of algorithm this is.   

    1.19.    Discuss the algorithm for synthetic apperture radar (SAR).   

    1.20.    Discuss the Radon transform algorithm in two dimensions.        

 

 

 

 





  Chapter 2 

Enhancing Uniprocessor 
Performance     

    2.1    INTRODUCTION 

 In this chapter, we review techniques used to enhance the performance of a unipro-
cessor. A multiprocessor system or a parallel computer is composed of several 
uniprocessors and the performance of the entire system naturally depends, among 
other things, on the performance of the constituent uniprocessors. We also aim, in 
this chapter, to differentiate the techniques used to enhance uniprocessor perfor-
mance from the techniques used to enhance multiprocessor performance, which are 
discussed in subsequent chapters. 

 Traditionally, building a computer was an expensive proposal. For almost 50 
years, all effort went into designing faster single computer systems. It typically takes 
a microprocessor manufacturer 2 years to come up with the next central processing 
unit (CPU) version  [1] . For the sake of the following discussion, we defi ne a simple 
computer or processor as consisting of the following major components: 

  1.     controller to coordinate the activities of the various processor components;  

  2.     datapath or arithmetic and logic unit (ALU) that does all the required arith-
metic and logic operations;  

  3.     storage registers, on - chip cache, and memory; and  

  4.     input/output (I/O) and networking to interface and communicate with the 
outside world.    

 The above components are sometimes referred to as the computer resources. 
Theses resources are shared between the different programs or processes running on 
the computer, and the job of the computer operating system (OS) is to organize 
the proper sharing and access to these resources. Making a processor run faster 
was accomplished through many techniques to enhance the datapath since it is the 
heart of any processor. We discuss datapath enhancements in the following 
subsections.  

Algorithms and Parallel Computing, by Fayez Gebali
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   2.2    INCREASING PROCESSOR CLOCK FREQUENCY 

 Increasing the system clock frequency allows the computer to execute more instruc-
tions per unit time. However, logic gates need time to switch states and system buses 
need time to be charged or discharged through bus drivers. These delays are closely 
tied to the underlying silicon technology such as NMOS, CMOS  , and bipolar. The 
type of gate circuits also dictate the clock speed, such as using CMOS or domino 
logic or current - mode logic. There is also a fundamental limit on how fast a chip 
could run based on dynamic power dissipation. Dynamic power dissipation is given 
approximately by

    p Cf Vd = 2 ,     (2.1)  

where  C  is the total parasitic capacitance,  f  is the clock frequency, and  V  is the power 
supply voltage. Engineers developed many techniques to reduce power consumption 
of the chip while raising the clock frequency. One obvious solution was to reduce 
the value of  C  through fi ner lithographic process resolution. A bigger impact resulted 
when the chip power supply voltage was reduced from 5.0 to 2.2   V and then 1.2   V, 
and the question is how much the supply voltage can keep scaling down without 
affecting the gate switching noise margin.  

   2.3    PARALLELIZING  ALU  STRUCTURE 

 Parallel structure implies using several copies of the same hardware in the ALU. 
An example of use of parallelism to enhance performance is the multiplication 
operation. Before the days of very large - scale integration (VLSI), early computers 
could not afford to multiply numbers using a dedicated multiplier. They used 
the adder in the ALU to do multiplication through the add – shift technique. 
Assume the two numbers to be multiplied,  a  and  b , have the following binary 
representations:
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where  a i  ,  b i      =    {0, 1}. Equation  2.2  could be thought of as the parallel implementation 
of the multiplication operation. Essentially, we are forming all the partial products 
 a i b j   and then add them together with the proper binary weights. Equation  2.3  is the 
bit - serial implementation. Here we add the partial products over two stages fi rst 
along the  j  index then add the results over the  i  index. This will be explained shortly. 
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Some authors refer to this operation as serial/parallel multiplication since 1   bit is 
used to multiply the other word. 

 Figure  2.1  shows the bit - serial multiplication technique for the case  n     =    4. The 
multiplicand  b  is stored in a register and the multiplier  a  is stored in a shift register 
so that at each clock cycle, 1   bit is read out starting with the least signifi cant bit 
(LSB). At the fi rst clock cycle, a partial product  pp  0  is formed  
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 The LSB of this partial product is extracted and stored in a right shift register, as 
shown at the bottom right of the fi gure. The remaining bits of  pp  0  are stored in an 
accumulator to be added to the next partial product,  pp  1 . In general, at clock cycle 
 i , we generate partial product  pp i

  :
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and the accumulator performs the operation

    Acc Acc pp ii i i= + ′ ≥−1 0,     (2.6)   

 where  Acc i   is the content of the accumulator at the end of the  i th clock cycle and 
  ppi′ is the  i th partial product with the LSB removed. After  n     =    4 clock cycles, the 
2 n  - bit product  a     ×     b  is available with the  n  - bit high word stored in the accumulator 
and the  n  - bit low word stored in the right shift register. The time required to perform 
the bit - serial multiplication is estimated roughly as 

    T nT n Tfaserial add= = 2 ,     (2.7)  

where  T  add  is the  n  - bit carry ripple adder delay and  T f  a   is the 1 - bit full adder delay. 
 For such a processor, the clock duration is dictated by the carry ripple 

adder delay, and we have  T clk      =     T  add . Simple ALUs used this iterative multiplication 

     Figure 2.1     Bit - serial binary multiplication for the case  n     =    4.  
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technique to do many more operations that need several multiplication operations 
such as division and elementary function evaluation   (e.g., trigonometric and hyper-
bolic functions and square root). In fact, the coordinate rotation digital computer 
(CORDIC) algorithm was invented in the late 1950s for elementary function evalu-
ation without the need for multipliers  [7, 8] . However, this CORDIC algorithm is 
inherently bit - serial and required many clock cycles to complete. 

 Thanks to VLSI technology, it is now feasible to incorporate a parallel multiplier 
in the ALU and thereby to speed up the processor. Figure  2.2  shows the parallel 
multiplication technique for the case  n     =    4. Figure  2.2 a shows the parallel multiplier 
structure. The multiplicand  b  is stored in a register at the top, and the multiplier  a  
is stored in a register at the left of the fi gure. Most of the parallel multiplier structure 
is composed of a two - dimensional (2 - D) array of cells that generate the partial 
product bits simultaneously. At the bottom of Fig.  2.2 a is a carry ripple adder. The 
gray squares with the  a     +    symbol indicate a 1 - bit full adder. The gray circles with 
a    +    and    ×    symbols indicate an AND gate connected to a 1 - bit full adder as shown 
in more detail in Fig.  2.2 b.   

 The array of AND gates is responsible for generating all the bits of the partial 
products  a i b j  . The array of adders is responsible for adding up all these partial prod-
ucts. The diagonal lines indicated lines of equal binary weight, and the vertical lines 
indicate the path for the carry out signals. The time required to perform the parallel 
multiplication operation is

    T n Tfaparallel ≈ −2 1( ) .     (2.8)   

 We see that the time required for parallel multiplication is  n  times smaller than 
the bit - serial multiplication delay. However, this comes at a cost of more hardware. 

     Figure 2.2     Parallel binary multiplication for the case  n     =    4. (a) The multiplier structure. (b) The 
details of the gray circles with    +    and    ×    symbols.  
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The author developed a parallel CORDIC algorithm (high - performance coordinate 
rotation digital computer [HCORDIC]) that is faster than the bit - serial CORDIC but 
relies on the fact that modern ALUs contain a multiplier  [5, 6] . Thus the presence 
of a parallel multiplier speeds up not only the multiplication operation but the evalu-
ation of many elementary functions.  

   2.4    USING MEMORY HIERARCHY 

 An ideal memory, which is not available yet, should possess several attributes: 

  1.     Nonvolatile so that memory contents are not lost when power is turned off  

  2.     Short access time to match processor speed so that memory load and store 
operations do not require several clock cycles to complete  

  3.     Large capacity to be able to store massive amounts of data  

  4.     Inexpensive both in terms of the silicon real estate area they require and in 
price since many data have to be stored    

 Such an ideal memory does not exist yet. Several memory technologies exist that 
satisfy some of the above attributes but not all of them simultaneously. The system 
designer must build the computer storage requirements using a memory hierarchy 
to take advantage of each memory technology as shown in Fig.  2.3 . The types of 
storage technologies used by current processors are 

   •      registers;  

   •      cache;  

   •      RAM; and  

   •      mass storage, such as magnetic, optical, and fl ash drives.      

 The processor talks directly to the fastest memory module available  , which is 
the registers and the cache memory. The only problem is that these two memory 
modules do not have a large capacity and are expensive to build. 

 The interconnection pattern of the memory hierarchy is such that each memory 
module shown in the fi gure communicates with the neighboring modules connected 

     Figure 2.3     Memory hierarchy.  
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to it by the shown lines. Data migrate to the processor from the bottom of the hier-
archy. Likewise, data from the processor migrates downwards down the hierarchy. 
The thickness of each line symbolizes the speed of communication of the line. For 
example, the processor can directly communicate with its registers and the cache at 
high speed, matching the clock speed of the processor. Both of these memory com-
ponents are very fast since they are always implemented on the same chip as the 
CPU. This ensures speeds that match the processor instruction execution speeds. 
The goal is to make sure that the processor operates most of the time using only the 
data and instructions residing in its registers and cache. Whenever the processor 
needs data or instructions from the memory, things slow down considerably until 
such data migrate to the cache. 

 The closest memory to the CPU is the register bank memory, which is built 
using the same gate technology as the rest of the processor. Hence, registers are very 
fast and match the processor speed. It is not possible to satisfy all the system storage 
requirements using registers since a chip has a limited silicon area. Register memory 
is therefore of small capacity and most computers have a limited amount of registers. 
For example, Intel ’ s Itanium processor has 96 registers. 

 The cache is also very close to the CPU and can communicate with the proces-
sor. Similar to registers, the cache communicates at speed matching CPU speed. The 
cache also communicates with the off - chip dynamic random access memory (DRAM) 
using slower communication links. A cache is useful because most tasks or applica-
tions display  temporal locality  and  spatial locality . Temporal locality refers to the 
near future. Spatial locality refers to using data stored near the current data. For this 
reason, data load/store operations between the shared memory and the caches take 
place using  blocks  of data. Cache memory is built using static random access 
memory (SRAM) technology. SRAM is both fast and nonvolatile but also has limited 
capacity since the number of transistors to store a bit varies between four and six. 

 DRAM, or memory, is a slower memory but with a large capacity compared 
with the cache. However, DRAM is considered extremely fast compared with the 
mass storage disk drives. The problem with DRAM is its volatility. It loses all its 
content due to current leakage even when power is applied. The entire memory 
content must be refreshed every 1 millisecond or so. DRAM is slow because it is 
built on a different chip and its large capacity dictates slow data access operations. 
In summary DRAM constitutes the main memory of any processor. This memory is 
inexpensive, slower than cache, but much faster than mass disk storage. 

 The most inexpensive memory is mass disk storage, whether it uses magnetic 
storage or optical storage as in CD, DVD, Blu - ray, and so on. Disk storage is inex-
pensive and has a large capacity. However, it is slow since it is based on mechanical 
devices. A recent addition to disk storage is electronic disks based on fl ash memory 
cards. This is usually referred to as solid state disk or fl ash drive. Relative to mag-
netic disks, fl ash drives are high - speed devices and are starting to have a consistently 
large capacity. However, their speed does not match the processor speed since they 
are off - chip memory. We are already seeing advances in fl ash memory, which pos-
sesses most of the desirable features of a memory. It is nonvolatile and fast, and its 
capacity is increasing with advances in technology. 
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   2.4.1    Cache Memory Operation 

 Communication between the main memory and the cache occurs in chunks of words 
called blocks. Figure  2.4  shows the organization in the main memory and the cache 
from the point of view of communicating between the two modules. Figure  2.4 a 
shows that the main memory is organized in blocks having  B  words each. Each block 
is addressed by a  b  - bit address so that memory is divided into 2  b   blocks as far as 
memory/cache interaction is concerned. Figure  2.4 b shows that the cache is orga-
nized in  lines  where each line contains a block from the main memory and an associ-
ated  tag . The cache capacity is much smaller than the memory and it can store only 
2  c   lines. The tag stores the address of the block in memory corresponding to the line 
in the cache. This way, a cache line is identifi ed with the corresponding memory 
block.   

 When the processor requires to read the data  , it issues a read instruction and 
generates the memory address of the word. If the word is in the cache, then we have 
a  cache hit  and the word is delivered to the processor at a very high rate. If, however, 
the processor does not fi nd the word it needs in the cache, then we have a  cache 
miss , and data access halts until the contents of the cache are updated from the main 
memory. The block containing the word is fetched from the memory and loaded into 
the cache. The desired word is forwarded to the processor. Communication between 
cache and memory is performed over blocks of data and progresses at the speed of 
the DRAM memory access.  

   2.4.2    Cache Design 

 We saw that processing speed is high as long as memory read/write operation con-
cerns data and instructions that are located in the cache. Things slow down consider-
ably if the data are not located in the cache. The design of cache memories is beyond 

     Figure 2.4     Cache and memory organization. (a) Memory organization into blocks for 
communicating with cache. (b) Cache organization into lines.  

... ...

BlockTag

Line 0

1

2

2c– 1

(a)

B words

Block 0

2b– 1

1

2

...

(b)



36 Chapter 2 Enhancing Uniprocessor Performance

the scope of this book, and there are several excellent textbooks dealing with such 
issues as References  18 and 19 . There are several factors that increase the chances 
of cache hits, which include 

   •      cache size (2  c  );  

   •      mapping technique to associate the address of a block in memory with the 
address of a line in the cache;  

   •      cache replacement or update policy; this policy is concerned with choosing 
blocks of memory to load into the cache and with removing lines from the 
cache; and  

   •      using cache hierarchy, as will be discussed in the next section.     

   2.4.3    Cache Hierarchy 

 Cache memory communicates directly with the processor, and there is always the 
need to increase the cache capacity to prevent the penalty of cache misses. Since 
the memory hierarchy model proved very useful in providing the processor with the 
best of the different storage technologies, it is now common to use the memory 
hierarchy to construct a parallel model for cache hierarchy. Cache could be organized 
in different levels. Figure  2.5  shows the different cache levels used to construct a 
cache hierarchy. Level 1 cache (L1) is an on - chip cache, which is very fast but has 
a small capacity. This is indicated by the thick line connecting the CPU and the L1 
cache. Level 2 (L2) cache is slower than L1 cache since it is off - chip but has a larger 
capacity. Such memory is built using fast SRAM technology but has a larger capacity 
compared with the smaller L1 cache.    

   2.4.4    Mapping Memory Blocks into Cache Lines 

 A mapping function establishes a correspondence between the main memory blocks 
and the lines in the cache  [19] . Assume we have a memory of size 64   K — that is, 

     Figure 2.5     Cache hierarchy  .  
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the memory address line has 16 bits. Figure  2.6  shows how data are addressed in 
memory. Figure  2.6 a is the case when the memory is organized into words and a 
memory address specifi es a specifi c word in memory. Sixteen bits are required to 
specify and access a specifi c word in the memory.   

 Figure  2.6 b is the case when the memory is organized into blocks and a memory 
address specifi es a specifi c block in memory. Assume that each block contains 16 
words. The 16 address bits are now broken down into two fi elds: the most signifi cant 
12 bits are required to specify and access a specifi c block in the memory. The remain-
ing least signifi cant 4 bits specify a word in a given block. 

 Now assume we have a cache memory that can accommodate 128 blocks. In 
that case, 7 bits are needed to specify the location of a line in the cache. Now we 
need a mapping function that picks a block from the memory and places it at some 
location in the cache. There are three mapping function choices: 

  1.     Direct mapping  

  2.     Associative mapping (also known as fully associative mapping)  

  3.     Set - associative mapping    

  Direct Mapping 

 In direct mapping, we take the 12 - bit address of a block in memory and store it in 
the cache based on the least signifi cant 7 bits as shown in Fig.  2.7 . To associate a 
line in the cache with a block in the memory, we need 12 bits composed of 7 bits 
for address of the line in the cache and 5 tag bits.   

 Now we see that a line in the cache corresponds to 32 blocks from the main 
memory, which correspond to the 5 - bit tag address. This is because there are exactly 

     Figure 2.6     Main memory. (a) Organized into words. (b) Organized into blocks.  
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32 blocks in the main memory whose least signifi cant 7 bits are all identical out of 
the 12 - bit line address.   

   2.4.5    Associative Mapping 

 In associative or fully associative mapping, we place the block of memory in any 
available location in the cache, in this case, the tag is used to associate a block with 
a line as shown in Fig.  2.8 . To associate a line in the cache with a block in the 
memory, we need 12 bits composed of the 12 tag bits (Fig.  2.8 )  .    

   2.4.6    Set - Associative Mapping 

 Set - associative mapping could be thought of as a combination of direct and associa-
tive mapping. We divide the cache into 2  m   sets and associate a block to a set based 
on the  m  least signifi cant bits of the block address bits. The block is mapped to any 
empty location in the set. For a cache with capacity of 128 blocks, if we divide the 
cache into 32 sets, we would be able to store four blocks per set. The breakdown of 
the 12 - bit block address is shown in Fig.  2.9 . To associate a line in the cache with 
a block in the memory, we need 12 bits composed of 5 bits for the address of the 
set in the cache and 7 tag bits.    

     Figure 2.7     Direct - mapped 
cache.  
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   2.4.7    Effects of Cache Size on Cache Misses 

 Cache misses can be classifi ed into three categories (the three Cs)  [20] : 

  Compulsory misses:     caused when a block is initially required but has never been 
loaded into the cache. This type of cache miss is also called  cold - start miss . 
Cache size has no effect on compulsory misses.  

  Capacity misses.     Caused when the cache cannot hold the blocks needed during 
the execution of a program. In that case, blocks are replaced then later loaded 
back into the cache. Capacity misses are reduced by enlarging the cache size.  

  Confl ict misses:     Occur in set - associative or direct - mapped caches when the 
cache cannot accommodate the blocks in a set. Such misses would not have 
occurred in a fully associative cache. Confl ict misses are also called  collision 
misses . Confl ict misses are reduced by increasing the associativity or by 
increasing the number of lines to map to in the cache. This can be accom-
plished either by increasing the cache size or by reducing the block size.      

   2.5    PIPELINING 

 Pipelining is a very effective technique for improving system throughput, which is 
defi ned as the rate of task completion per unit time. This technique requires two 
conditions to be effective: 

  1.     It is desired to implement several instances of a task  

  2.     Each task is divisible into several subtasks.    

 An often quoted example of successful pipelining is car manufacture. We note that 
this satisfi es the two requirements of pipelining: we have many cars to manufacture 
and the manufacture of each car requires manufacture of several components. 

 A pipeline executes a task in successive stages by breaking it up into smaller 
tasks. It is safe to assume that a smaller task will be completed in a shorter time 
compared to the original task. As explained above, the idea of a pipeline is to execute 
a serial task using successive pipeline stages and placing registers between the stages 
to store the intermediate results. 

   2.5.1    Estimating Pipeline Speed 

 Figure  2.10  shows a general organization of a pipeline where the  C / L  blocks indicate 
combinational logic blocks composed of logic gates. The  Reg  blocks indicate edge -
 triggered registers to store intermediate results. The speed of that pipeline depends 
on the largest combinational logic delay of the  C / L  blocks. Figure  2.11  shows how 
the clock speed of the pipeline is calculated. The fi gure illustrates several delays: 

  T C   /   L  :    delay through the  C / L  blocks  

    τ  setu   p  :    setup delay for data at the input of a register  

    τ  d :    delay of data through a register.      
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 The formula for estimating the clock frequency is given by

   Clock frequency =
1

Tclk

    (2.9)  

   T Tclk C L= + + +/ ,max ,2τ τ τskew d setup     (2.10)  

where  T C   /   L   ,max  is the maximum delay of the combinational logic blocks,  τ  skew  is the 
maximum expected clock skew between adjacent registers, and  τ  setup  is the setup 
time for a register. 

 A classic example of pipelining is in the way a computer executes instructions. 
A computer instruction goes through four steps  : 

  1.      Fetch  the instruction from the cache and load it in the CPU instruction reg-
ister (IR).  

  2.      Decode  the contents of the IR using decoding logic in order to control the 
operations performed by the ALU or the datapath.  

  3.      Execute  the instruction using the data supplied to the ALU/datapath inputs.  

  4.      Write  the result produced by the ALU into the accumulator, registers, or 
memory.    

     Figure 2.10     General structure for pipeline processing.  
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     Figure 2.11     Estimating clock speed for a pipeline based on pipeline delays. (a) One stage of a 
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 The above steps are dependent and must be executed serially in the order indi-
cated above. We cannot reverse the order or even do these steps in parallel (i.e., 
simultaneously). So, without pipelining, the processor would need three clock cycles 
per instruction. We can see that processing computer instructions satisfi es the pipe-
line requirements: we have several instructions and each instruction is divisible into 
several serial subtasks or stages. 

 A serial implementation of the above tasks is shown in Fig.  2.12 . We see 
that the fetch operation of the next instruction can only start after all the opera-
tions associated with the current instruction are completed. Now we can show 
a sketch of a pipeline to process computer instructions as shown in Fig.  2.13 . 
Instruction processing could be looked at in more detail than implied by the 
above processing stages. A nice discussion of the instruction cycle can be found in 
Reference  18 .   

 Now let us see how this pipeline can speed up the instruction processing. Figure 
 2.14  shows the instruction pipeline during program execution. Each row in the fi gure 
shows the activities of each processing stage during the successive clock cycles. 
So, the fi rst row shows the contents of the  IR  after each fetch operation. The second 
row shows the instructions being decoded at the different clock cycles. The 
third row shows the instructions being executed by the ALU during each clock cycle 
as well as storing the result in a register. If we trace each instruction through the 
pipeline stages, we conclude that each instruction requires three clock cycles to be 
processed. However, we also note that each hardware unit is active during each clock 
cycle as compared to Fig.  2.12 . Therefore, the pipeline executes an instruction at 
each clock cycle, which is a factor of three better than serial processing. In general, 

     Figure 2.12     Time needed for the serial processing of a computer instruction.  
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when the pipeline is running with data in every pipeline stage, we expect to process 
one instruction every clock cycle. Therefore, the maximum speedup of a pipeline is 
 n , where  n  is the number of pipeline stages.   

 There is one problem associated with using pipelining for processing computer 
instructions. Conditional branching alters the sequence of instructions that need to 
be executed. However, it is hard to predict the branching when the instructions are 
being executed in sequence by the pipeline. If the sequence of the instructions needs 
to be changed, the pipeline contents must be fl ushed out and a new sequence must 
be fed into the pipeline. The pipeline latency will result in the slowing down of the 
instruction execution. 

 Now we turn our attention to showing how pipelining can increase the through-
put of the ALU/datapath. We use this topic to distinguish between pipelining and 
parallel processing. We can use the example of the inner product operation often 
used in many digital signal processing applications. Inner product operation 
involves multiplying several pairs of input vectors and adding the results using an 
accumulator:

    d a bi i
i

N

= ×
=

−

∑
0

1

.     (2.11)   

 As mentioned before, the above operation is encountered in almost all digital 
signal processing algorithms. For example, the fi nite impulse response (FIR) digital 
fi lter algorithm given by the following equation is an example of an inner product 
operation (sure, it is convolution, but we are assuming here the shifted samples are 
stored as a vector!):

    y i a j x i j i
j

N

( ) ( ) ( ) .= − ≥
=

−

∑
0

1

0     (2.12)   

     Figure 2.14     Pipeline processing of computer instructions during program execution.  

Fetch

Decode

Execute/ 
Write

0 1 2 3

0 1 2

0 1

Clock Cycles

0 1 3 4 52

4 5

3 4

2 3

...

...

...



2.5 Pipelining 43

 We can iteratively express evaluation of  y ( i ) in the form

    

y i

y i k y i k a k x i k k N

y i y i N

( , )

( , ) ( , ) ( ) ( )

( ) ( , ).

− =
= − + − ≤ <
= −

1 0

1 0

1

    (2.13)   

 The operation in Eq.  2.13  is often referred to as the multiply/accumulate (MAC) 
operation. Again, this operation is so important in digital signal processing that there 
are special MAC instructions and hardware to implement it. The FIR algorithm satis-
fi es pipelining requirements: we have several tasks to be completed, which are the 
repeated MAC operations. Also, each MAC operation can be broken down into two 
serial subtasks: the multiply followed by the add operations. 

 Figure  2.15  shows how we can implement each MAC iterative step using paral-
lel or pipelined hardware. In this diagram, we assumed that we are using a parallel 
multiplier to effect the multiplication operation. The parallel implementation of Fig. 
 2.15 a shows that the multiply and add operations are done in the same clock cycle 
and the adder output is used to update the contents of the accumulator. The clock 
period or time delay for these two operations is given by  

    T T Tmac mult addparallel( ) = + .     (2.14)   

 Assuming that the parallel multiplier delay is double the adder delay, the above 
equation becomes

    T Tmac addparallel( ) .= 3     (2.15)   

 Now consider the pipelined MAC implementation Fig.  2.15 b. The output of the 
multiplier is stored in a register before it is fed to the adder. In that case, the clock 
period is determined by the slowest pipeline stage. That stage is the multiplier and 
our clock period would be given by

    T Tmac addpipeline( ) 2= .     (2.16)   

 In effect, the pipelined design is approximately 30% faster than the parallel 
design. We should point out before we leave this section that many hardware design 

     Figure 2.15     Multiply/accumulate (MAC) implementation options. (a) Parallel implementation. 
(b) Pipelined implementation.  
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innovations are possible to obtain much better designs than those reported here. The 
interested reader could refer to the literature such as References  21 – 23 .   

   2.6    VERY LONG INSTRUCTION WORD 
( VLIW ) PROCESSORS 

 This technique is considered fi ne - grain parallelism since the algorithm is now paral-
lelized at the instruction level, which is the fi nest level of detail one could hope to 
divide an algorithm into. A VLIW implies that several instructions or opcodes are 
sent to the CPU to be executed simultaneously. Picking the instructions to be issued 
in one VLIW word is done by the compiler. The compiler must ensure that there is 
no dependency between the instructions in a VLIW word and that the hardware can 
support executing all the issued instructions  [20] . This presents a potential advantage 
over instruction pipelining since instruction scheduling is done before the code is 
actually run  . 

 Figure  2.16  illustrates a processor that uses VLIW to control the operation of 
two datapath units. Figure  2.16 a shows the schematic of the processor where the 
VLIW contains two instructions. Each instruction is used to control a datapath unit. 
Figure  2.16 b shows the content of the VLIW word at different processing cycles. 
The fi gure is based on the ones presented in References  18 and 24 . Each row rep-
resents a VLIW word issue. The vertical axis represents the machine cycles. A gray 
box indicates an instruction within the VLIW word and an empty box indicates a 
no - op. A no - op instruction is used when the compiler is unable to resolve the depen-
dency among the instructions or datapath availability.    

     Figure 2.16     A VLIW word containing two instructions to independently control two datapath units 
in the same processor. (a) Schematic. (b) VLIW content at different processor cycles.  
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   2.7    INSTRUCTION - LEVEL PARALLELISM ( ILP ) AND 
SUPERSCALAR PROCESSORS 

 A superscalar processor is able to simultaneously execute several instructions from 
independent instruction pipelines  [18] . Superscalar processors have a  dynamic 
scheduler  that examines the instructions in the instruction cache/memory and decides 
which ones to be issued to each instruction pipeline. Dynamic scheduling allows 
out - of - order instruction issue and execution. Figure  2.17  shows a general organiza-
tion of a three - way superscalar processor where the processor contains three instruc-
tion pipelines operating on three independent datapath units. A superscalar computer 
has several instruction pipelines and datapath units that can work in parallel to 
execute instructions issued to them from the CPU  . Using this technique, the instruc-
tion execution rate will be greater than the clock rate. For a three - way superscalar 
architecture with an instruction pipeline, up to three instructions could be executed 
per clock cycle.   

 The instruction pipeline for a two - way superscalar processor shown in Fig.  2.18 , 
which is a modifi cation of Fig.  2.14 , indicates the fact that we now have two instruc-
tion pipelines.   

     Figure 2.17     General organization of 
a three - way superscalar processor.  
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     Figure 2.18     Instruction pipelines for a two - way superscalar processor.  
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 At this point, it is worthwhile to explain the difference between VLIW and 
superscalar processors. Both techniques rely on the presence of several ALUs to 
perform several operations in parallel. The main difference lies in how the instruc-
tions are issued. Figure  2.19  shows the fl ow of program instructions starting from 
the compilation stage all the way to the instruction execution by the parallel ALUs 
for VLIW and superscalar processors.   

 The key idea in superscalar processors is the ability to execute multiple instruc-
tions in parallel. Compilation and hardware techniques are used to maximize the 
number of instructions that can be used issued in parallel. However, there are limita-
tions to achieving this level of speedup  [3, 18, 20, 25] : 

   •      True data dependencies  

   •      Procedural dependencies  

   •      Resource confl icts  

   •      Output dependencies  

   •      Antidependencies    

   2.7.1    True Data Dependency: Read after Write ( RAW ) 

 RAW implies that instruction  i  should  read  a new value from a register  after  another 
instruction  j  has performed a  write  operation. 

 Assume instruction  I  0  produces some result and instruction  I  1  uses that result. 
We say that  I  1  has true data dependency on  I  0  and the execution of  I  1  must be delayed 
until  I  0  is fi nished. We can represent this true data dependency or dependence as 
shown in Fig.  2.20 a. The fi gure shows that  I  0  reads its input arguments from registers 

     Figure 2.19     Comparing program execution on VLIW and superscalar processors. (a) VLIW 
processor. (b) Superscalar processor.  
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 R  0  and  R  1  and the output result is stored in  R  2 . If  I  0  is a  load  from memory instruc-
tion, then it might have a large delay or  latency . In that case, the  execute  phase of 
 I  1  would have to be delayed by more than one clock cycle.    

   2.7.2    Procedural Dependencies 

 A major problem with computer instructions is the presence of branch instructions. 
Figure  2.21  shows the instruction pipeline has two instructions  I  0  and  I  1 . However, 
 I  1  is a branch instruction and it is not possible to determine which instruction to 
execute until  I  1  produces its output. Therefore, the  fetch  phase of the next instruction 
has to be delayed as shown in Fig.  2.21 .    

   2.7.3    Resource Confl icts 

 A resource confl ict arises when two or more instructions require the same processor 
resource. Examples of shared processor resources are memory, cache, buses, register 
fi le, and so on. A resource confl ict is resolved when the execution of the competing 
instructions is delayed. Figure  2.20  can be used to visualize the effect of resource 
confl ict on the instruction pipeline. One should note that, unlike true data dependen-
cies, a resource confl ict can be eliminated by duplicating the shared resource. 
This might be an expensive or impractical solution. For example, eliminating 

     Figure 2.20     True data dependency between two instructions. (a) Dependence graph. (b) Pipeline 
processing of the two instructions.  
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     Figure 2.21     Procedural dependency.  
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fl oating - point unit confl icts might involve designing two fl oating - point units associ-
ated with each ALU. This might require a small amount of silicon real estate. Cache 
confl icts might be eliminated by designing a dual - ported cache or duplicating the 
cache. Both these options might not be practical though.  

   2.7.4    Output Dependencies: Write after Write ( WAW ) 

 WAW implies that instruction  i writes  an operand after instruction  j  has written 
another operand in the register. The sequence is important since the register 
should contain the value written by instruction  j  after both instructions  i  and  j  have 
fi nished an execution. 

 An output dependency occurs when two instructions,  I  0  and  I  1 , store their output 
result in the same register. In that case, the register content at a given time depends 
on which instruction fi nished last,  I  0  or  I  1 . We illustrate this using the following 
register transfer language (RTL) code fragment where op indicates any binary opera-
tion  [18]  requiring two input registers: 

   I  0 :  R  0     ←     R  0  op  R  1   

   I  1 :  R  2     ←     R  0  op  R  2   

   I  2 :  R  0     ←     R  3  op  R  4   

   I  3 :  R  5     ←     R  0  op  R  5     

 Figure  2.22  shows the dependence graph of the instructions. The fi gure shows 
two instances of true data dependencies  :  I  1  depends on  I  0  and  I  3  depends on  I  2 . 
Instructions  I  0  and  I  2  show output dependency since both instructions store their 
results in register  R  0 . The sequence of instructions as they are written in the RTL 
code fragment above indicates that our intention is that  I  1  uses the content of  R  0  after 
instruction  I  0  is completed. Similarly, instruction  I  3  uses the content of  R  0  after  I  2  is 
completed. We must ensure that  I  2  starts its execution phase after  I  0  has fi nished its 
execution phase.    

   2.7.5    Antidependencies: Write after Read ( WAR ) 

 WAR implies that instruction  i writes  an operand after instruction  j  has read the 
contents of the register. Antidependency is illustrated with the help of the RTL code 

     Figure 2.22     Output dependency.  
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fragment used to explain output dependencies as shown in Fig.  2.22 . We note here 
that instruction  I  1  uses content of register  R  0  as an input operand. We must ensure 
that  I  1  completes its execution before  I  2  begins its execution so that the content of 
 R  0  is not disturbed while  I  1  is using it.   

   2.8    MULTITHREADED PROCESSOR 

 As defi ned at the start of this chapter, a thread is a portion of a program that shares 
processor resources with other threads. A multithreaded processor is a processor 
capable of running several software threads simultaneously. Of course, a simple 
processor has only one ALU and can manage to run one thread at a time. Ungerer 
et al.  [24]  provide a comprehensive discussion on threads. Figure  2.23 a shows the 
case of a simple processor running an OS that allows running only one thread. We 
see in the fi gure the situation when the thread  T  0  stalls, such as due to waiting for a 
memory access or a cache miss. Of course, the program execution halts until the 
memory access has been completed. Figure  2.23 b shows the case of a single proces-
sor running an OS that supports multithreading. Two threads,  T  0  and  T  1 , are available. 
The OS schedules  T  0  for execution and when  T  1  stalls, thread  T  1  is immediately 
loaded and runs until  T  0  is ready to resume. In such a case, a preemptive OS sched-
uler is assumed where the execution of  T  1  is stopped when  T  0  is ready to resume 
operation.   

 Figure  2.23 c shows the case of a two - way superscalar processor running an OS 
that allows running only one thread. We see in the fi gure that thread  T  0  is now 
running on the two ALUs assuming data dependencies have been resolved. 

 Figure  2.23 d shows the case of a two - way superscalar processor running a 
multithreaded operation. We see in the fi gure that thread  T  0  is now running on the 
two ALUs assuming data dependencies have been resolved. When  T  0  stalls, thread 
 T  1  is switched and starts running until  T  0  is ready to resume again.  

     Figure 2.23     Multithreading in a single processor. (a) Single processor running a single thread. 
(b) Single processor running several threads. (c) Superscalar processor running a single thread. 
(d) Superscalar processor running multiple threads.  

T0 T0 T0 T0T0
T0 T0 T0 T1 T1 T0

T0

T1
(a) (b)

T0 T0 T0T0

T0 T0 T0 T1 T1 T1
T0

T1

(c) (d)

T0 T0 T0
T0 T0 T0 T1 T1 T1



50 Chapter 2 Enhancing Uniprocessor Performance

 2.9   PROBLEMS 

       2.1.    Estimate how long a given program will take to be executed given the following pro-
cessor parameters: 

   •      Number of instructions in the program ( I )  

   •      Number of clock cycles needed to execute an instruction ( C )  

   •      The clock period  T       

    2.2.    How many instructions per second are produced by the processor in Problem 2.1? This 
is referred to as the instruction throughput.   

    2.3.    Moore ’ s law traces the number of transistors on a chip versus the year of introduc-
tion. Obtain a plot of the number of transistors in a CPU starting around 1970 – 2010.   

    2.4.    Repeat Problem 2.3 for CPU clock speed.   

    2.5.    Repeat Problem 2.3 for CPU power consumption.   

    2.6.    This problem is based on concepts from Patterson and Hennessy  20 . For a given pro-
cessor, there are four instruction classes where each instruction requires a different 
number of clock cycles according to the following table: 

   Instruction class     Clock cycles per instruction (CPI)  
   I  1     1  
   I  2     2  
   I  3     3  
   I  4     4  

 A program was found to contain the following proportion of instruction classes: 

   Instruction class     Percentage (%)  
   I  1     40  
   I  2     25  
   I  3     20  
   I  4     15  

 What is the average CPI for this processor?   

    2.7.    The parallel implementation of the binary multiplication operation was shown as a 
directed acyclic graph (DAG). Can you obtain different pipeline structures based on 
that graph?   

    2.8.    Write down the modifi ed booth algorithm.   

    2.9.    Draw a block diagram for the serial modifi ed booth algorithm.   

    2.10.    Draw a block diagram for the parallel modifi ed booth algorithm.   

    2.11.    Obtain a pipelined structure for the modifi ed booth algorithm.   

    2.12.    It is required to design a pipeline to perform the inner product operation between two 
vectors of length  n . Discuss the pipeline design options and the operating speed of the 
pipeline.   

    2.13.    Explain why multithreading improves the performance of a uniprocessor.   

    2.14.    What are the factors that limit the performance of a superscalar processor?   

    2.15.    Explain the meaning of the following acronyms: 

     •      RAW  

   •      WAW  

   •      WAR      
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    2.16.    Explain the different types of cache misses and how each one can be reduced.   

    2.17.    Assume a direct - mapped cache memory where  n  is the number of address bits for the 
memory,  n  1  is the number of address bits for each block in the memory, and  n  2  is the 
number of address bits for each block in the cache. 

  (1)     What is the number of words in the memory?  

  (2)     What is the number of blocks in the memory?  

  (3)     What is the number of blocks in the cache?  

  (4)     What is the number of words in a block?  

  (5)     What is the number of words in the cache?      

    2.18.    A cache memory has a capacity  B  block but actually contains  b . What is the confl ict 
miss probability for the three types of block mapping strategies?        

   

 





  Chapter 3 

Parallel Computers     

    3.1    INTRODUCTION 

 Algorithms and multiprocessing architectures are closely tied together. We cannot 
think of a parallel algorithm without thinking of the parallel hardware that will 
support it. Conversely, we cannot think of parallel hardware without thinking of the 
parallel software that will drive it. Parallelism can be implemented at different levels 
in a computing system using hardware and software techniques: 

  1.      Data - level parallelism , where we simultaneously operate on multiple bits of 
a datum or on multiple data. Examples of this are bit - parallel addition, mul-
tiplication, and division of binary numbers, vector processors, and systolic 
arrays for dealing with several data samples.  

  2.      Instruction - level parallelism (ILP) , where we simultaneously execute more 
than one instruction by the processor. An example of this is use of instruction 
pipelining.  

  3.      Thread - level parallelism (TLP).  A thread is a portion of a program that shares 
processor resources with other threads. A thread is sometimes called a light-
weight process. In TLP, multiple software threads are executed simultane-
ously on one processor or on several processors.  

  4.      Process - level parallelism.  A process is a program that is running on the 
computer. A process reserves its own computer resources, such as memory 
space and registers. This is, of course, the classic multitasking and time -
 sharing computing where several programs are running simultaneously on 
one machine or on several machines.     

   3.2    PARALLEL COMPUTING 

 We attempt in this section to show the different design options available to construct 
a parallel computer system. The most famous processor taxonomy was proposed by 
Flynn  [26]  based on the data and the operations performed on this data: 
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  1.     Single instruction single data stream (SISD).     This is the case of the single 
processor.  

  2.     Single instruction multiple data stream (SIMD).     All the processors execute 
the same instruction on different data. Each processor has its own data in a 
local memory, and the processors exchange data among themselves through 
typically simple communication schemes. Many scientifi c and engineering 
applications lend themselves to parallel processing using this scheme. 
Examples of such applications include graphics processing, video compres-
sion, medical image analysis, and so on.  

  3.     Multiple instruction single data stream (MISD).     One could argue that neural 
networks and data fl ow machines are examples of this type of parallel 
processors.  

  4.     Multiple instruction multiple data stream (MIMD).     Each processor is running 
its own instructions on its local data. Examples of such parallel processors are 
multicore processors and multithreaded multiprocessors in general.    

 Flynn ’ s classifi cation is a bit coarse, and we would like to explore more the 
space of parallel computers, which comprises the SIMD and MIMD categories, in 
more detail. The issue of synchronization among processors was not part of the 
classifi cation criteria used by Flynn. Instead of exploring alternative classifi cation 
schemes, we discuss in this chapter the different parallel computer architectures most 
commonly used. We should point out that the last type of processor is the one that 
is fast becoming a popular processing system: 

   •      Shared - memory multiprocessors  

   •      Distributed - memory multiprocessors  

   •      SIMD processors  

   •      Systolic processors  

   •      Cluster computing  

   •      Grid computing  

   •      Multicore processors  

   •      Streaming multiprocessor (SM)     

   3.3    SHARED - MEMORY MULTIPROCESSORS (UNIFORM 
MEMORY ACCESS [ UMA ]) 

 Shared - memory processors are popular due to their simple and general programming 
model, which allows simple development of parallel software that supports sharing 
of code and data  [27] . Another name for shared memory processors is parallel 
random access machine (PRAM). The shared - memory or shared - address space is 
used as a means for communication between the processors. All the processors in 
the shared memory architecture can access the same address space of a common 
memory through an interconnection network as shown in Fig.  3.1 a. Typically, that 
interconnection network is a bus, but for larger systems, a network replaces the bus 
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to improve performance. The performance we are referring to is the amount of 
processor/memory accesses that can be performed per unit time (throughput) and 
the time delay between a processor requesting memory access and the time when 
that request is granted (delay). Examples of the types of interconnection networks 
and their performance analysis can be found in Reference  28 .   

 We can immediately see that the memory bandwidth becomes the system 
bottleneck since only one processor can access the memory at a given time. To get 
around this problem, the confi guration in Fig.  3.1 b replaces the bus with an intercon-
nection network that allows more than one processor to simultaneously access the 
network. The confi guration also replaces the single memory module with a bank of 
memories. This allows more than one memory read/write operation to take place 
simultaneously. 

 Another problem common to shared memory systems, and parallel computers 
in general, is cache coherence, where any information present in the shared memory 
must agree with all the copies that might be present in the local caches of the dif-
ferent CPUs. Cache coherency protocols are used to ensure the cache coherence 
among the processors  [20] . 

 In a shared - memory multiprocessor, any processor can access any memory 
module. Figure  3.1b  shows the shared memory multiprocessor architecture. Having 
several memory modules allows several processors to access several memory 
modules simultaneously. This increases the memory bandwidth subject of course to 
the interconnection network limitations and memory collisions. A memory collision 
occurs when more than one processor attempts to access the same memory module. 
The main problem with any memory module design is that it typically has one access 
port. So, no matter how large the memory module is, only one data word can be 
accessed at any given time. 

 In shared memory multiprocessors, each processor sees only one memory 
address space and it takes the same amount of time to access any memory module. 
This is referred to as UMA multiprocessor system. In many shared memory multi-
processors, the interconnection network is a simple bus. This is the case of dual and 
quad Pentium processors. 

     Figure 3.1     Shared - memory multiprocessor architecture (PRAM). (a) The processors are connected 
to the shared memory using a single bus. (b) The processors and memory modules are connected using 
an interconnection network  .  
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 Developing parallel programs for shared memory multiprocessors is not too 
diffi cult since all memory read operations are invisible to the programmer and could 
be coded the same as in a serial program  [3] . Programming write instructions are 
relatively more diffi cult since this operation requires locking the data access until a 
certain thread has fi nished processing the data. The programmer has to identify the 
 critical sections  in the program and introduce interprocess and interthread synchro-
nization to ensure data integrity. Programming libraries like POSIX and directives 
like OpenMP support synchronization through barriers, locks, monitors, mutex, and 
semaphores. 

 A problem encountered in shared memory multiprocessor systems is cache 
coherence. Typically, a processor keeps a copy of the data in a memory module in 
its own cache. Now, if another processor changes the contents of the block in the 
memory module, then the cache content is out of date. A cache update policy must 
be implemented to ensure that all cache copies at the processors are updated. 

 Synchronization issues must also be implemented to ensure that writing and 
reading data by more than one processor do not confl ict. Semaphores, mutex, and 
monitors are typically used to ensure data integrity. Chapter  4  discusses shared 
memory processors in more detail.  

   3.4    DISTRIBUTED - MEMORY MULTIPROCESSOR 
(NONUNIFORM MEMORY ACCESS [ NUMA ]) 

 In a distributed - memory multiprocessor, each memory module is associated with 
a processor   as shown in Fig.  3.2 . Any processor can directly access its own memory. 
A  message passing (MP) mechanism  is used in order to allow a processor to access 
other memory modules associated with other processors. Message passing interface 
(MPI) is a language - independent communication protocol.   

 In that sense, memory access by a processor is not uniform since it depends on 
which memory module the processor is trying to access. This is referred to as a 
NUMA multiprocessor system. 

 If the distributed - memory multiprocessor is composed of identical processors, 
we say that this is a symmetric multiprocessor (SMP). If the distributed - memory 
multiprocessor is composed of heterogeneous processors, we say that this is an 
asymmetric multiprocessor (ASMP). 

 When the interconnection network of the distributed - memory multiprocessor is 
global, such as the Internet, then the distributed memory system is usually composed 

     Figure 3.2     Distributed - memory multiprocessor 
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of thousands of computers all collaborating to solve huge scientifi c problems, and 
the system is called by different names such as massively parallel computing, dis-
tributed computing, or grid computing.  

   3.5     SIMD  PROCESSORS 

 SIMD could be classifi ed as a special case of single program multiple data stream 
(SPMD  )  [29] . SIMD processors could belong to the class of shared memory multi-
processing system or distributed - memory multiprocessing system. SIMD machines 
built using shared memory are suited to applications that require frequent exchange 
of data where one processor acts as the producer of new data and many other proces-
sors act as the consumer of this data. 

 Each processor executes the same task in synchrony with the other processors. 
The task being executed could be a simple instruction, a thread, or a process. 
Distributing the memory among the processors reduces the memory bandwidth 
problem. 

 Many applications lend themselves to the SIMD processing model as long as 
the application is parallelizable. Applications include bioinformatics, biomedical 
diagnosis, fl uid dynamics, image processing, and video processing. SIMD provides 
the ability to dramatically boost the performance of an application. Some computer 
manufacturers are adding SIMD extensions to their processors and can run existing 
applications without the need for recompilation. It is also easy - to - learn programming 
modifi cations that utilize SIMD architectures such as the Intel C +  +  parallel explora-
tion compiler. 

 An example of a parallel algorithm that is suited to the shared memory model 
of SIMD is recursive fi lters described by the equation

    y i a j x i j b j y i j
j

N

( ) ( ) ( ) ( ) ( ) ,= − − −[ ]
=

−

∑
0

1

    (3.1)  

where  a (  j ) and  b (  j ) are the fi lter coeffi cients and  N  is the fi lter order or length. Note 
that  b (0)    =    0 in the above equation. All the processors implement the above equation 
(single instruction/program) but on different input data. Processor  i  would be in 
charge of producing fi lter output sample  y ( i ) and  N  other processors would need to 
read this value for their own calculations. 

 When the algorithm granularity is coarse, SIMD machines would be called 
SPMD machines.  

   3.6    SYSTOLIC PROCESSORS 

 Many authors state that systolic processors are pipeline systems. Truth of the matter 
is that pipeline processing is a special case of systolic processing. As we have seen 
in Chapter  2 , a pipeline is one - dimensional and data fl ow is one - directional. A typical 
pipeline transmits data between adjacent stages. Systolic arrays could be one - , two - , 
or three - dimensional, or even higher if deemed necessary. Data fl ow among the 
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adjacent processors along one or more directions. In a pipeline system, each pipeline 
stage performs a different task. In a systolic processor, all processing elements (PEs) 
usually perform the same task. 

 Typically, the interconnection pattern among the PEs is neighbor to neighbor 
and possibly some global interconnections. Each PE has a small memory to store 
data and intermediate results. systolic architectures are suited to implement algo-
rithms that are highly regular with simple data dependencies. Examples of these 
algorithms include 

  1.     linear algebra, for example, matrix – matrix and matrix – vector multiplication, 
and solving systems of linear equations;  

  2.     string search and pattern matching;  

  3.     digital fi lters, for example, one - , two - , and three - dimensional digital fi lters;  

  4.     motion estimation in video data compression; and  

  5.     fi nite fi eld operations, such as elliptic curve operations.    

 Figure  3.3  shows an example of a simple SIMD processor used to implement 
a matrix – matrix multiplication algorithm. From the fi gure, we see that the matrix 
coeffi cients are stored in the PEs in a distributed memory fashion. We also see that 
communication between processors is neighbor to neighbor as indicated by the verti-

     Figure 3.3     Systolic processor for the matrix multiplication algorithm.  
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cal arrows and by using global wires as indicated by the horizontal lines. Input data 
must mainly be supplied to the processors on the left edge. Output data are obtained 
from the processors at the top edge.   

 Some design issues associated with systolic architectures are the following: 

  1.     A systolic processor is designed to implement a specifi c algorithm. It must 
be redesigned to implement a different algorithm. Even while implementing 
the same algorithm, a change in the problem size might require a major 
redesign of the system.  

  2.     Supplying a large amount of input data to several processors is a serious 
constraint on the system input/output (I/O) bandwidth. In a one - dimensional 
systolic processor, inputs are usually fed to one processor then pipelined to 
the other processors. At other times, inputs are fed to the PEs through a 
broadcast bus or to all the PEs at one edge of the PE array. This could trans-
form the performance of the systolic processor to an I/O - bound performance. 
Redundant arrays of inexpensive disks (RAIDs) can be used to provide mass 
storage with a large memory bandwidth. This concept can be applied to a 
bank of fl ash memory as opposed to magnetic disks.  

  3.     Obtaining a large amount of output data from several processors is a serious 
constraint on the system I/O bandwidth The outputs could be obtained from 
one processor, from a bus connected to all the processors or from one edge 
of the PE array. Again, RAIDs can be used to provide mass storage with a 
large memory bandwidth.    

 Before we leave this section, it is worthwhile to compare systolic processors with 
SIMD processors since both types run a single instruction on multiple data on the 
surface. Table  3.1  compares SIMD and systolic array processors from different 
perspectives related to architecture, memory, and task granularity.    

  Table 3.1    Comparing  SIMD  and Systolic Processors 

   Feature     SIMD     Systolic  

  Interconnection network    Any type    Neighbor to neighbor plus some 
buses  

  Communication pattern    Depends on algorithm    Typically neighbor to neighbor  
  Interprocessor 
communication  

  Message passing    Simple clocked transmission  

  Processor    Could be simple or complex    Typically very simple  
  Algorithm implemented    Any parallelizable algorithm    Regular iterative algorithm (RIA)  
  Integration    Stand - alone    Typically part of another system  
  Task granularity    Typically coarse: a process 

or a thread  
  Typically fi ne: a simple 
mathematical operation or 
function  

  Memory    Distributed    Distributed and small  
  Layout    Not applicable    One - , two - , or three - dimensional 

grid  
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   3.7    CLUSTER COMPUTING 

 A computer cluster is a collection of two or more computers used to execute a given 
problem or section. Typically, in a computing cluster, the interconnection network 
tying the computers together is a local area network (LAN). Figure  3.4  shows an 
architecture of a cluster computer system  [30] . The computers in the cluster com-
municate among themselves and among the shared memory. Therefore, the proces-
sors in a cluster communicate mainly using packets over the LAN. The LAN is 
usually implemented using a high - speed server computer capable of supporting 
high - rate traffi c between the processors. The shared memory must be able to com-
municate with many processors at the same time. Depending on the size of the shared 
memory, it could be implemented using RAID. The client machine distributes the 
tasks among the processors of the cluster and gathers the fi nished results.    

   3.8    GRID (CLOUD) COMPUTING 

 Grid computing refers to providing access to computing resources distributed over 
a wide area network (WAN). In that sense, a grid computer is a collection of a large 
number of processors distributed over a wide geographic area. A grid computer can 
handle large - scale computational problems such as  N  - body simulations, seismic 
simulations, and atmospheric and oceanic simulations. Compared with cluster com-
puting, a grid computer is a large cluster where the LAN is now replaced with a 
WAN, such as the Internet. The problems at the back of the chapter summarize the 
main differences between cluster and cloud computing. 

 Some of the applications implemented using cloud computing include 

   •      peer - to - peer (P2P) computing;  

   •      software as a service, like Google Apps, Google Calendar, and Google mail;  

   •      mass storage; and  

   •      web applications and social networks.     

     Figure 3.4     Architecture of a cluster 
computer system.  
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   3.9    MULTICORE SYSTEMS 

 A multicore system usually refers to a multiprocessor system that has all its proces-
sors on the same chip. It could also refer to a system where the processors are on 
different chips but use the same package (i.e., a multichip module). This close 
packing allows for very fast interprocessor communication without too much power 
consumption. For a dual or quad core system, the processors are connected using a 
simple bus. For a larger number of cores, the processors are interconnected using a 
network - on - chip (NoC)  [13] . On the other hand, a multiprocessor system has its 
processors residing in separate chips and processors are interconnected by a back-
plane bus. It is possible to carry this further and to have a multiprocessor system 
where each chip is a multicore chip. 

 Multicore systems were developed primarily to enhance the system performance 
while limiting its power consumption. In other words, a multicore system has good 
performance even though its constituent cores are low - performing processors. By 
contrast, multiprocessor systems were developed to enhance the system performance 
with little regard to power consumption. A multiprocessor system has good perfor-
mance and its constituent processors are high - performing processors. Table  3.2  
summarizes the main differences between multicore systems and multiprocessor 
systems.   

 Figure  3.5  shows a sketch of a multicore processor. A multicore system 
consists of 

  1.     general - purpose programmable cores,  

  2.     special - purpose accelerator cores,  

  3.     shared memory modules,  

  4.     NoC (interconnection network), and  

  5.     I/O interface.      

 Why move toward multicore systems? The main reason is scalability. As we increase 
the number of processors to enhance performance, multicore systems allow limiting 
power consumption and interprocessor communication overhead. A multicore 
system can be scaled by adding more CPU cores and adjusting the interconnection 
network. More system programming work has to be done to be able to utilize the 

  Table 3.2    Main Differences between Multicore Systems and Multiprocessor Systems 

        Multiprocessor system     Multicore system  

  Integration level    Each processor in a chip    All processors on the same chip  
  Processor performance    High    Low  
  System performance    Very high    High  
  Processor power consumption    High    Low  
  Total power consumption    Relatively high    Relatively low  
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increased resources. It is one thing to increase the number of CPU resources. It is 
another to be able to schedule all of them to do useful tasks. 

 Some of the possible applications that can be effi ciently implemented on mul-
ticore systems include  [31]  

  1.     general - purpose multitasking computations,  

  2.     network protocol processing,  

  3.     encryption/decryption processing, and  

  4.     image processing.     

   3.10     SM  

 A stream multiprocessor is a type of SIMD or a MIMD machine where the constitu-
ent processors are streaming processors (SPs) or thread processors. A stream proces-
sor is defi ned as a processor that deals with data  streams , and its instruction set 
architecture (ISA) contains  kernels  to process these streams  [32] . The concept of 
stream processing is closely associated with the graphics processing unit (GPU) 
where the GPU is thereby able to perform general compute - intensive general -
 purpose computations. The GPU thus becomes a general - purpose GPU. Examples 
of data streams are vectors of fl oating point numbers or a group of frame pixels for 
video data processing. This type of data shows temporal and spatial localities. 
Temporal locality is when the input data stream is used only a few times to produce 
the output steam. Spatial locality is when the input data stream   is located in the same 
memory block. A successful example of a stream multiprocessor is the new genera-
tions of GPUs like Fermi from NVIDIA  [33] . 

 Applications suited for SM must satisfy three characteristics  [34] : 

  1.     Compute intensity  

  2.     Data parallelism  

  3.     Consumer – producer locality, that is, temporal and spatial locality    

     Figure 3.5     A multicore microprocessor system.  
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 Compute intensity is defi ned as the number of arithmetic operations per I/O or global 
memory reference. In applications suitable for stream processing, this ratio could 
reach 50:1 and above. Data parallelism is when the same operation is performed on 
all data in an input stream in parallel. Producer – consumer locality is when data are 
read once and are used once or for a few times to produce the output stream. GPUs 
such as NVIDIA ’ s Fermi can sustain tens of thousands of parallel threads. 

 Data suited for stream multiprocessing use the local caches without cache 
misses since the data exhibit locality. This eliminates the problem of long memory 
latency  [32] . In short, an SM or a GPU is suited for applications with long sequences 
of data that can be executed using thousands of threads. 

 Figure  3.6  shows a block diagram of the Fermi GPU from NVIDIA. Fermi has 
3 billion transistors and 512 cores or SPs. Fermi is capable of delivering up to 1.5   tera 
fl oating point operations per second (TFLOPS). Figure  3.6 a is a simplifi ed view of 
the Fermi GPU stream multiprocessor. It consists of 16 stream multiprocessor (SM) 
blocks sharing an L2 cache. Surrounding the SMs are six 64 - bit interfaces to 
dynamic random access memory (DRAM) to give a 384 bits wide path to memory.   

 Figure  3.6 b is a simplifi ed expanded view of one of the 16 SM blocks of Fig. 
 3.6 a. Each SM block consists of 64 stream processors or thread processors labeled 
SP and arranged in groups of four representing the four columns in the fi gure. 
Instructions arrive and are scheduled by the block labeled  instruction  at the top of 

     Figure 3.6     Simplifi ed view of the Fermi GPU stream multiprocessor. (a) Block diagram of the 
stream multiprocessor. (b) Block diagram of the stream processor or thread processor. (c) Block 
diagram of the CUDA core processor. INT: integer unit; FP: fl oating point unit; LD: load unit; ST: 
store unit; SFU: special function unit.   ©  NVIDIA Corporation 2009  .   
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the fi gure. The  interconnection network  block provides communication between the 
SMs and the L1 cache at the bottom of the fi gure. The block labeled SFU is a special 
function unit capable of evaluating elementary functions such as square root and 
trigonometric functions so common in scientifi c applications. 

 Figure  3.6 c is an expanded view of one of the SP blocks in Fig.  3.6 b. These 
blocks are called compute unifi ed device architecture (CUDA) cores and are capable 
of doing a full integer arithmetic and logic unit (ALU) and fl oating point arithmetic 
operations. 

 Figure  3.7  compares the ratio of the different resources allocated to a CPU 
versus a GPU. General - purpose computers have a CPU that does sophisticated 
control like branch prediction. That is why the area allocated to control in a CPU is 
eight times larger than in a GPU. A GPU eliminates cache misses and long memory 
latency by using large cache to store data. The ALU resources in a GPU are more 
since the GPU is a stream multiprocessor that dedicates more area to ALU resources. 
Finally, the DRAM is almost the same size in both systems.    

   3.11    COMMUNICATION BETWEEN 
PARALLEL PROCESSORS 

 We review in this section how parallel processors communicate and what type of 
communication strategies are available. Parallel processors need to exchange data 
among themselves in order to complete the tasks assigned to them. 

   3.11.1    Types of Communication 

 We can identify the following types of communication modes: 

  1.     One to one (unicast)  

  2.     One to many (multicast)  

     Figure 3.7     Ratio of the different 
resources allocated to a CPU versus a 
GPU.  
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  3.     One to all (broadcast)  

  4.     Gather  

  5.     Reduce    

 Figure  3.8  shows the different types of modes of communications.   

  One to One (Unicast) 

 One - to - one operation involves a pair of processors: the sender and the receiver. This 
mode is sometimes referred to as point - to - point communication. We encounter this 
type of communication often in SIMD machines where each processor exchanges 
data with its neighbor. Figure  3.8 a shows the one - to - one mode of communication 
between processors. The fi gure only shows communication among a pair of proces-
sors, but typically, all processors could be performing the one - to - one communication 
at the same time. This operation is typically performed in each iteration and therefore 
must be done effi ciently. Most of the time, a simple exchange of data between the 
source and the destination register is used, assuming clock synchronization between 
the adjacent processors is accomplished. In other cases, two - way (i.e., data –
 acknowledge) or even four - way handshaking (i.e., request – grant – data – acknowledge) 
might be required.  

  One to Many (Multicast) 

 One - to - many operation involves one sender processor and several receiver proces-
sors. Figure  3.8 b shows the one - to - many mode of communication between proces-
sors. The fi gure only shows communication of one source processor to multiple 
receiving processors, but typically, all processors could be performing the one - to -
 many communication at the same time. The number of receiving processors depends 

     Figure 3.8     The different types or modes of 
communication among processors: (a) one to one, (b) 
one to many, (c) broadcast (one to all), and (d) gather 
and reduce.  
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on the details of the algorithm and how the mapping of tasks to processors was 
accomplished. This operation is typically performed in each iteration and therefore 
must be done effi ciently. Most of the time, a simple exchange of data between the 
source and the destination register is used assuming clock synchronization between 
the adjacent processors is accomplished. In other cases, two - way (i.e., data –
 acknowledge) or even four - way handshaking (i.e., request – grant – data – acknowledge) 
might be required.  

  One to All (Broadcast) 

 Broadcast operation involves sending the same data to all the processors in the 
system. Figure  3.8 c shows the broadcast mode of communication between proces-
sors. This mode is useful in supplying data to all processors. It might also imply one 
processor acting as the sender and the other processors receiving the data. We will 
see this type of communication in systolic arrays and also in SIMD machines.  

  Gather 

 Gather operation involves collecting data from several or all processors of the 
system. Figure  3.8 d shows the gather mode of communication between processors. 
Assuming we have  P  processors, the time needed to gather the data could be esti-
mated as

    T P c( )gather = τ ,     (3.2)  

where  τ   c   is the time needed to transmit – receive – process one data item.  

  Reduce 

 Reduce operation is similar to gather operation except that some operation is per-
formed on the gathered data. Figure  3.8 d shows the reduce mode of communication 
between processors. An example of the reduce operation is when all data produced 
by all the processors must be added to produce one fi nal value. This task might take 
a long time when there are many data to be reduced. Assuming we have  P  processors 
producing data to be added, the total time is estimated as

    T T P c( ) ( ) ( ) ,reduce gather= + −1 τ     (3.3)  

where  τ   c   is the time needed by the processor to process a pair of received data items. 
It might be worthwhile to perform the reduce operation hierarchically. In that case, 
the reduce delay time might be

    T P c p( ) log .reduce = +( )[ ]2 τ τ     (3.4)     

   3.11.2    Message Passing ( MP ) Communication 
Mechanism 

 MP is used mainly in distributed - memory machines. Passing a message between two 
processes involves using  send()  and  recv()  library calls. The programmer uses 
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the  send ( destination, message ) library call to specify the ID of the destination 
processor or process and the data to be sent. The programmer must also use the 
 recv ( source, message type ) library call to specify the ID of the source processor 
or process and the type of data to be received. 

 In order for two processors to communicate using MP, two operations need to 
be performed: 

  1.     Establish a communication link between them. Link establishment 
depends on the nature of the interconnection network. We can think of 
the link in terms of its physical properties (hardware) or its logical prop-
erties (addressing, unidirectional or bidirectional, capacity, message 
size, etc.)  

  2.     Exchange messages via the  send()  and  recv()  library calls.    

 The MPI is a standard developed to improve the use and portability of MP 
mechanism. 

 MP synchronization ensures proper communication between the processors. 
Synchronization must be treated with care by the programmer since the execution 
of  send()  and  recv()  library calls is under the control of the operating system 
or systems running the processors. There are two types of synchronization 
strategies: 

   •       Synchronous or blocking , where the sender halts execution after it 
executes the  send()  library call until the message is received. Also, the 
receiver halts after it executes the  recv()  library call until the message is 
available.  

   •       Asynchronous or nonblocking , where the sender continues execution after it 
executes the  send()  library call. Also, the receiver continues execution after 
it executes the  recv()  library call.    

 MPI standard supports one - to - one and broadcast modes of communication.   

   3.12    SUMMARY OF PARALLEL ARCHITECTURES 

 The previous sections briefl y explained fi ve parallel processor systems that are 
widely used: 

   •      Shared memory  

   •      Distributed memory  

   •      SIMD  

   •      Systolic  

   •      Multicore    

 It is hard to uniquely classify each type; for example, SIMD could be built on top 
of a shared memory system. We can summarize the salient features of these multi-
processors in the following points: 
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  1.     All multiprocessors, except systolic processors, communicate using an inter-
connection network that can be easily identifi ed.  

  2.     Systolic processors have neighbor - to - neighbor connections and few global 
buses.  

  3.     All multiprocessors, except systolic processors, are more general purpose in 
nature compared with SIMD. They implement all sorts of tasks and 
algorithms.  

  4.     Systolic processors are designed to execute a specifi c algorithm. The algo-
rithm dictates several details, such as the type of interprocessor communica-
tion, the I/O data timing, and the feeding or extraction points of the I/O data.  

  5.     A multicore system uses accelerator cores to implement special tasks that 
need to be implemented at a high rate. For example, we could have a GPU 
in a multicore system to implement intensive graphic processing tasks. Such 
accelerator cores are built using systolic processors.     

 3.13   PROBLEMS 

       3.1.    What is the main communication mechanism between processors in a shared memory 
multiprocessor system?   

    3.2.    What are the main issues in shared memory processor systems?   

    3.3.    What is the main disadvantage of shared memory multiprocessors?   

    3.4.    What is the main communication mechanism between processors in a distributed -
 memory multiprocessor system?   

    3.5.    Identify the main type of interprocess communication in a distributed - memory multi-
processor system.   

    3.6.    Defi ne what is meant by the critical section in a distributed - memory multiprocessor 
system.   

    3.7.    How are threads synchronized in OpenMP?   

    3.8.    Explain the function of #pragma reduction (operation: variable list) directive in 
OpenMP.   

    3.9.    Give examples of SIMD machines.   

    3.10.  Summarize the main difference between cluster computing and grid computing.        

 

 

 



  Chapter 4 

Shared - Memory 
Multiprocessors     

    4.1    INTRODUCTION 

 Shared - memory processors are popular due to their simple and general programming 
model, which allows simple development of parallel software that supports sharing 
of code and data  [27] . 

 Shared - memory processors provide a single physical address space for all pro-
cessors, and each processor can run its own program using its local memory and 
cache. The processors also have access to shared memory arranged in separate 
modules. The processors communicate using  shared variables , which are stored in 
the shared memory to be accessible to any processor. Memory in a shared - memory 
multiprocessor system is organized in a hierarchical fashion as shown in Fig.  4.1 . 
The fi gure shows a system with  n  processors and  b  shared memory modules. Each 
processor has its own internal registers, cache, and local memory. The cache stores 
all data currently used by the processor. The local memory stores local variables not 
meant to be shared with the other processors. The shared memory stores the shared 
variables that need to be exchanged between the processors. The interconnection 
network allows more than one processor to simultaneously access different shared 
memory modules through the network. This allows more than one memory read/
write operations to take place simultaneously.   

 We explained in Chapter  2  that a processor communicates mainly with its cache 
since this is the fastest memory that matches the speed of the processor. However, 
these caches read or load data from the shared memory and write or store data in 
this memory also. This brings up two important considerations in shared - memory 
processors  [27] : 

  1.     Cache coherence  

  2.     Synchronization and mutual exclusion    

 We discuss these two issues in the following sections.  
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   4.2    CACHE COHERENCE AND MEMORY CONSISTENCY 

 Attaching private caches to processors speeds up program execution by making 
memory latency match the processor speed. Thus, read/write operations take about 
the same time as the arithmetic and logic unit (ALU) operations. Table  4.1  sum-
marizes the terminology used to describe cache coherence. A cache is useful because 
most tasks or applications display  temporal locality  and  spatial locality . Temporal 
locality refers to the near future. Spatial locality refers to using data located near the 
current data in the near future. For this reason, data load/store operations between 
the shared memory and the caches take place using  blocks . Figure  4.2  shows the 
relation between the blocks stored in the shared memory and their copies in the 
cache of a certain processor. The cache stores some blocks using a  tag , which stores 
the address of the block in the shared memory. Each block stored in the cache is 
stored as a row called a  line . A line contains the following components: 

  1.     Valid bit ( V  ) to indicate whether the data in the line are coherent with the 
block in the shared memory or not  

  2.     Index, which is the address of the line in the cache  

  3.     Tag, which refers to the address of the block in the shared memory  

  4.     Data, which comprise the data stored in the block        

 For shared memory systems, caches also help eliminate memory contention 
when two or more processors attempt to access the same memory module  [27] . 

 Copies of the data stored in the shared memory must match those copies stored 
in the local caches. This is referred to as  cache coherence . The copies of a shared 
variable are  coherent  if they are all equal  [35] . Effectively, the caches are coherent 
if every read operation by a processor fi nds a value produced by a previous write 
 [27] . Cache coherence is important to guarantee correct program execution and to 
ensure high system performance. Assume two processors,  P  1  and  P  2 , use the same 

     Figure 4.1     Shared - memory 
processors. Each processor has 
its local cache and local 
memory. All processors can 
access the shared memory 
modules through the 
interconnection network.  
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shared variable stored in their two separate caches. If  P  1  modifi es its local value, we 
must make sure that  P  2  is aware of the change. 

 Consider the case of a shared memory system with four processors and one 
shared memory module. Table  4.2  illustrates the problems that arise when a block 
in the shared memory is loaded by the processors and then gets modifi ed by one or 
more processors. A write - through policy is assumed.   

 Table  4.3  illustrates the problems that arise when a block in the shared memory 
is loaded by the processors and then gets modifi ed by one or more processors. 
A write - back policy is assumed. The cache contents at the different time instances 
according to the events of Table  4.2  are explained below.   

  Table 4.1    Terminology Used to Describe Cache Coherence 

   Term     Meaning  

  Block    Group of contiguous words or data stored in shared memory  
  Broadcast    When information is sent to all caches  
  Cache    A small high - speed memory implemented on the same chip as 

the processor to reduce memory access time and to reduce 
shared - memory collisions between processors  

  Cache coherence    The contents of a block in the shared memory and the 
different caches are not the same.  

  Cache coherence protocol    Policy implemented to maintain cache coherence  
  Coherent system    When every read of a block from the shared memory fi nds the 

same data produced by the last previous write by any other 
processor  

  Global data    Data stored in the shared memory  
  Line    A block stored in a cache along with its tag and valid bit  
  Local data    Data stored in the cache  
  Modifi ed block    Data of block in cache have not been updated in the shared 

memory  
  Multicast    Information is sent to some, not all, caches.  
  Replacement    Removing a block from the cache to make room for a new 

block  
  Spatial locality    Data in the same block will be used over a short period of 

time.  
  Temporal locality    A data word in a block will be used over a short period of 

time.  
  Unicast    Information is sent to only one cache.  
  Valid    Block contents are up to date.  
  Write - back    A block in the shared memory is updated when the 

corresponding block in a cache is replaced.  
  Write - through    A block in the shared memory is updated when the 

corresponding block in a cache is modifi ed.  
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  Table 4.2    Example of Cache Coherence Problem with Write - Through Policy   

   Time  
   Shared 

memory  

   Caches  

   Comment      C  0       C  1       C  2       C  3   

  0     b      b      —      —      —     Block  b  is loaded in  C  0 .  
  1     b      b      b      —      b     Block  b  is loaded in  C  1  and  C  3 .  
  2     b      b      b      —      b  3     Processor  P  3  modifi es its copy of  b . Now the system 

is noncoherent.  
  3     b  3      b      b      —      b  3     Processor  P  3  performs a write - through. The system is 

noncoherent since  C  0  and  C  1  have different copies.  
  4     b  3      b  3      b  3      —      b  3     Shared memory controller updates  C  0  and  C  1 . Now 

the system is coherent.  

     Figure 4.2     Relation between 
the blocks stored in the shared 
memory and their copies in the 
cache of a certain processor.  

Word 0
Word 1

Word 216–1

...

16 bits
Word

Block 0

...

Block 1

Block 212–1

12 bits

Word Block

4 bits

Cache Memory
with 12-bit block address
and 4-bit word address

Main Memory
with 16-bit word address space

  Time 0.  The cache  C  0  in processor  P  0  loads block  b  for use during its 
processing. 

  Time 1.  Both caches  C  1  and  C  3  also load the same block from the shared 
memory. Now we have three copies of  b . 

  Time 2.  Processor  P  3  updates its copy of  b  in  C  3 . At this time, the data in the 
shared memory and the caches are not consistent. 

  Time 3. P  3  performs a write - through operation to make the data in  C  3  and in the 
shared memory consistent. 
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  Table 4.3    Example of Cache Coherence Problem with Write - Back Policy 

   Time  
   Shared 

memory  

   Caches  

   Comment      C  0       C  1      C 2       C  3   

  0     b      b      –      –      –     Block  b  is loaded in  C  0 .  
  1     b      b      b      –      b     Block  b  is loaded in  C  1  and  C  3 .  
  2     b      b      b      –      b  3     Processor  P  3  modifi es its copy of  b  3 . Now the 

system is noncoherent.  
  3     b      b  0      b  1      –      b  3     Processors  P  0  and  P  1  modify their own copies of  b .  
  4     b  1      b  0      b  1      –      b  3      P  1  performs write - back to shared memory  
  5     b  1     ?     b  1      b  1     ?    Which value of  b  should be used to update the 

memory and caches?  

  Time 4.  Which processor should update the shared memory? With the write - back 
policy, this is determined by whichever processor performs a cache replacement. In 
this case, it happens to be  P  1 . 

  Time 5. P  2  loads block  b  and the central controller informs all processors of the 
new value  b  1 . What should  P  0  and  P  3  do? Replace their data or inform the shared 
memory to use their own versions of  b . 

 It is clear from the previous two situations in Tables  4.2  and  4.3  that the cache 
coherence problem is very serious especially for the case of multiprocessor systems. 
The correct value of memory content should not be implied by which processor 
performed the cache store (write) into memory fi rst. For example, in Table  4.2 , we 
see that  P  3  performed the fi rst change in block  b  followed by  P  0  then  P  1 . This might 
not have been the correct sequence to update block  b  in the shared memory. The 
reason for that is the processors are not synchronized with each other and the sched-
uling of tasks and threads in each processor is not aligned with that in the other 
processors. So what is the correct sequence of updating  b ? There are two ways to 
arrive at this answer: 

  1.     Correct update of  b  based on sequential execution of the application  

  2.     Correct update of  b  based on data dependencies    

 Sequential execution of the program means running the program on a single -
 processor sequential machine, which has no multiprocessing or multithreading capa-
bilities. The order of accessing and updating the variable is the correct order as 
designed by the application developer. This sequence of variable access/update 
should be the one followed when implementing the application on a multiprocessor 
system. That sequence of access should be followed when determining how to 
update the shared variable in memory and in all the caches. Correct cache/memory 
access is correct if the results obtained by the parallel machine are always identical 
to the results obtained by the sequential machine. 
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 Correct update of  b  based on data dependencies is a byproduct of implementing 
a timing sequence for the application tasks. The data scheduling strategies developed 
in Chapters  8  –  11  all identify the correct sequence for updating the algorithm vari-
ables. This serves as a guideline for determining the cache update sequencing. 

 Updating the values of shared variables by the processors is expected in a shared 
memory system. A cache coherence protocol must be used to ensure that the contents 
of the cache memories are consistent with the contents of the shared memory. There 
are two main cache coherence protocols: 

  1.     Directory protocols  

  2.     Snoopy protocols    

   4.2.1    Cache Coherence Using Directory Protocols 

 The main components for maintaining cache coherence using directory protocols 
are shown in Fig.  4.3 . The local caches associated with the processors have local 
cache controllers to coordinate updating the copies of the shared variables stored in 
the local caches. The central controller is responsible for mainlining cache coherence 
for the system. Part of the shared memory is a directory that stores entries denoting 
the state of each shared block. The structure of each entry in the directory depends 
on the implementation details of the directory protocol used. The central controller 
handles local cache requests and is responsible for informing the local cache control-
lers of any changes in the states of the shared variables. The interconnection network 
enables communication between the controllers and between the caches and the 
shared memory.   

 Figure  4.4  shows the details of the full - map directory protocol. Each entry 
contains  n     +    2 bits, where  n  is the number of processors. We assumed in the fi gure 
that  n     =    8. The bit labeled  D  indicates whether the data are valid (0) or modifi ed (1). 

     Figure 4.3     System components for cache coherence using directory protocols.  
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The bit labeled  X  indicates whether to broadcast the update information ( B ) to each 
processor or that data is no - broadcast (NB). We see from the fi gure that if the block 
corresponding to the shown entry is modifi ed, then only the caches in processors 1 
and 4 will have to be informed of that change.   

 Full - map directory scheme knows exactly the locations of the shared blocks. 
The caches associated with these copies are involved in coherence actions associated 
with a given shared block. However, the scheme is infl exible since all coherence 
transactions must be routed to the central controller. This could prove to be a bottle-
neck. Also, the size of each entry is directly proportional to the number of processors 
and must be changed when the number of processors changes.  

   4.2.2    Cache Coherence Using Snoopy Protocols 

 Figure  4.5  shows the main components for cache coherence using snoopy protocols. 
Unlike directory protocols, snoopy protocols do not use a directory in the shared 
memory nor a central controller. The coherence actions associated with a block are 
communicated between a local cache and the shared memory. These transactions are 
monitored by all other local caches. The interconnection network must be able to 
support broadcast of the data transmissions such that every processor is able to 
monitor all the network activities. A shared bus is suited for this broadcast mode 
since each bus transaction can be easily sensed by all processors connected to the 
bus. The shared bus, however, has a limited bandwidth that allows only one transac-
tion to take place at any given time.   

 When a memory write operation takes place by any processor, all other proces-
sors decide if this operation is relevant to them or not. The write operation by 
processor  P i   is relevant to processor  P j   if it has a copy of the block being accessed 
by  P i  . There are two options for  P j   based on its cache update policy. In the case of 
 invalidation - based  policy,  P j   invalidates its own copy of  b . It then copies  b  from the 

     Figure 4.4     Full - map directory - based 
scheme.  
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     Figure 4.5     System components for cache coherence using snoopy protocols.  
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shared memory when it needs data from the cache. In the case of  updated - based  
policy,  P j   replaces its copy of  b  using the data available on the bus while the shared 
memory is being updated or some other time thereafter.   

   4.3    SYNCHRONIZATION AND MUTUAL EXCLUSION 

 Each process or thread operating on a shared variable has a segment of code called 
 critical section , where the process operates on the shared variable by changing its 
value. When a process is executing its critical section, no other process on any 
processor is allowed to execute its critical section. Figure  4.6  shows a segment of 
code containing a critical section. When a process reaches the critical section code, 
it is allowed to enter it and to execute that code section only if it can acquire a  lock . 
As soon as the process is done with the critical section, it releases the lock and 
proceeds to execute the code after the critical section. If two or more processes reach 
the critical section, only one process is allowed to acquire the lock. All other pro-
cesses wait at the start of the critical section.   

 Dijkstra  [36]  and Knuth  [132]  showed that it is possible to provide synchroniza-
tion and mutual exclusion using atomic read and write operations  [37] . Atomic 
operations ensure that the memory read, modify, then write operation to a certain 
location is done without interference from other processors. This basic capability is 
provided by hardware and enables the construction of more elaborate software 
algorithms. Examples of low - level hardware atomic operations include memory 
load/store and test & set  [38 – 40] . 

 These low - level synchronization primitives can be used by software to build 
high - level atomic operations such as locks, semaphore, monitors, and barriers. One 
must be careful when a process or thread acquires a lock or barrier in a multiproces-
sor system. The process holding the lock must not be preempted so that other 

     Figure 4.6     Segment of code showing a critical section within 
a normal code.  
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processes waiting to acquire the lock are not delayed. One solution is to provide a 
preemption - safe locking  [41] . 

 Synchronization processes or threads involve three events  [37 – 39] : 

  Acquire:     where a process or thread tries to acquire the synchronization primi-
tive (e.g., a mutex or barrier)  

  Wait:     where the thread  effi ciently  waits for the synchronization primitive to 
become available.  

  Release:     when a thread has fi nished its operation, it must inform other pro-
cesses or threads that the synchronization primitive is available. This allows 
other threads to acquire the primitive or to proceed beyond past the synchro-
nization event.    

 A process or thread waiting for a synchronization primitive to become available 
employs a waiting algorithm. Waiting algorithm could be implemented by busy -
 waiting or blocking. The latter choice does not waste central processing unit (CPU) 
resources but carries more overhead for suspending and resuming the thread. This 
is the reason why busy - waiting is more appropriate when the waiting period is short 
and the blocking is appropriate when the wait period is long  [37] . Busy - waiting in 
multiprocessor systems does not scale well. The waiting processes actually will test 
the shared lock using the copies in their own caches. However, as soon as the lock 
is released, all processes become aware of this new condition and will use the inter-
connection network while attempting to access the released shared lock in the shared 
memory. This will lead to increased traffi c on the interconnection network and to 
memory contention. 

   4.3.1    Synchronization: Locks 

 Any solution to the critical section problem requires a lock  [40] . A lock essentially 
serializes access to a shared resource so that only one process or thread reads and 
modifi es the variable at any given time. As we mentioned at the start of this section, 
a process must acquire the lock before it is allowed to enter the critical section as 
shown in Fig.  4.6 . A lock is provided in hardware to simplify program development 
and to move some of the processing load off the operating system. 

 The critical section could be handled in a single processor using interrupt pre-
vention when a process is operating on the shared variable. This solution is not 
practical in a multiprocessor system since all processors must be informed of the 
interrupt disable. Time will be wasted while this message is being broadcast among 
the processors. 

 A lock is provided in hardware by a special atomic  TestAndSet ()  instruc-
tion. That instruction returns the value of the lock (the  test  part) and then sets the 
value of the lock to 1 upon completion. 

 The lock is a value in memory where the operation read – modifi ed – write 
is performed atomically using that instruction. The atomic  TestAndSet ()  
function is implemented in hardware but a pseudocode is illustrated as follows 
 [37, 40] :
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 1: boolean TestAndSet (boolean  * lock) 
 2: { 
 3:  boolean v  =   * lock; // Test (read) operation 
 4:   * lock  =  TRUE; // Modify (set) and Write operations 
 5:  return v; 
 6: }  

 Line 1 declares the function and defi nes its body. 
 Line 3 performs the test portion of the atomic instruction by reading the value 

of the lock. 
 Line 4 modifi es the lock and updates the value of the lock. If the lock was 

originally TRUE, no harm is done by writing TRUE again. However, if the lock was 
FALSE, then the lock becomes available   and the process is informed of this fact 
through the variable  v . The process also atomically sets the lock to TRUE to make 
it unavailable to other processes. 

 Line 5 returns the original value of the lock to be used by the process to decide 
whether to enter the critical section or not. 

 The  TestAndSet ()  function can now be used to by a process to control 
entering the critical section when the lock is available or when waiting for the lock 
to become available as follows:

 1: Code before critical section 
 2: 
 3: // Attempt to acquire lock 
 4: while (TestAndSet ( & lock)) 
 5: ; // no action and continue testing lock 
 6: 
 7: // Start of critical section 
 8: critical section code 
 9: // End of critical section 

 10: lock  =  FALSE; // release lock 
 11: 
 12: Code after critical section  

 Line 1 represents the normal code just before the critical section. 
 Line 4 is where the process tests the value of the lock in an infi nite WHILE 

loop. The loop ends if the lock value is FALSE and the process acquires the lock 
and proceeds to execute its critical section. Line 8 represents the critical section. 

 Line 10 releases the lock at the end of the critical section. Line 12 is the code 
after the critical section. 

 The similarity of processes attempting to acquire the lock and the medium 
access control (MAC) problem in computer communications or networks should be 
noted here. Table  4.4  summarizes the similarities between mutual exclusion and 
MAC in telecommunications.    

   4.3.2    Synchronization: Mutex 

 A mutex  M  is a binary number that can have the values 0 and 1, which proves useful 
in mutual exclusion. The mutex is initially given the value 1 to allow any thread 
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that needs it to enter its critical section. When a thread acquires the mutex and enters 
its critical section, it locks it by decrementing its value. When the thread is fi nished 
with its critical section, it releases the mutex by incrementing its value. Any thread 
arriving at the critical region while the lock is in use will wait because the mutex is 
already at 0. The result is that at most, one thread can enter into the critical section 
and only after it leaves can another enter. This sort of locking strategy is often used 
to serialize code that accesses a shared global variable and to ensure mutual 
exclusion. 

 There are two basic atomic operations to apply to the mutex:  wait()  and 
 signal() . The pseudocodes for these two operations are as follows  :

 1: wait (M)                                                1: signal (M) 
 2: while M  <  =  0                                       2: { 
 3: {                                                               3:  M +  + ; // increment M 
 4:  ; // do nothing                              4: } 
 5:  M –  – ; // decrement M if it is 1 
 6: }  

  wait()  effectively prevents the thread from entering its critical section while the 
mutex  M     =    0. As soon as  M     =    1, the thread can proceed to execute its critical section. 

 In the thread library POSIX, the  wait()  function is implemented using the 
library call  pthread mutex lock(mutex  * M) . The  signal()  function is 
implemented using the library call  pthread mutex unlock(mutex  * M) . 

 The  wait()  and  signal()  functions can now be used by a process to control 
entering the critical section when the lock is available or when waiting for the lock 
to become available as follows:

 1: Code before critical section 
 2: 
 3: // Attempt to acquire mutex 
 4: wait(M); 
 5: ; // no action and continue testing mutex 
 6: 

  Table 4.4    Similarities between Mutual Exclusion and  MAC  

   Mutual exclusion     MAC  

  Critical section    Transmitted packet  
  Process/thread    User/node  
  Lock    Channel  
  Lock acquired    Channel acquired by node  
  Lock available    Channel free  
  Lock unavailable    Channel busy  
  Release lock    End of transmission  
  Test lock    Check channel state  
  Busy - waiting    User in backoff mode  
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 7: // Start of critical section 
 8: critical section code 
 9: // End of critical section 

 10: signal(M); // release mutex 
 11: 
 12: Code after critical section  

 Needless to say, the programmer must ensure that the critical section is sur-
rounded by the correct  wait()  and  signal()  function calls and in the correct 
order. Failure to do so will result in wrong results that are diffi cult to track down.  

   4.3.3    Synchronization: Barriers 

 The examples of locks and mutexes we discussed in the previous two sections were 
used when several tasks or threads operated on shared variables in their critical sec-
tions. A synchronization barrier, on the other hand, is used when several  independent  
tasks or threads are employed to perform several chores in parallel. There are no 
shared variables between those threads. The synchronization barrier is used for event 
synchronization where a specifi ed number of tasks must be completed before the 
rest of the tasks are allowed to proceed. A barrier would be very useful to implement 
serial – parallel algorithms (SPAs) where several parallel tasks must be completed 
before moving on to the next state of algorithm execution. Figure  4.7  shows an 
example of a SPA where barriers are used between the parallel tasks. In the fi gure, 
we have the SPA consisting of fi ve stages and we assumed that each task is to be 
executed by a thread. The number of parallel tasks executed at each stage varies 
from two to four. To ensure the tasks at each stage are completed before we move 
to the next task, we place barriers as shown. The command  barrier(j)  indicates 
that  j  tasks/threads must reach the barrier before the next set of tasks can proceed.   

 The POSIX thread library specifi es the barrier object along with functions to 
create it and creates the threads that will use it for synchronization. 

     Figure 4.7     Example of using synchronization barriers in serial – parallel algorithms. Each task is to 
be executed by its own thread.  
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 To initialize the barrier, the following routine is used  [42] :

 1: #include  < pthread.h >  
 2: pthread barrier t barrier; 
 3: pthread barrierattr t attribute; 
 4: unsigned count; 
 5: int return value; 
 6: return value  =  pthread barrier init( & barrier,  & attri-
bute, count);  

 Line 1 adds the functions and data types associated with the pthread library. 
Line 2 defi nes  barrier  to be of the type barrier. 

 Line 3 defi nes  attributes  to be of type barrier attributes. 
 Lines 4 and 5 defi ne other data types where  count  is the number of threads 

that must arrive at the barrier before they can proceed any further. 
 Line 6 initializes the barrier and returns the variable  return value  to monitor 

the success of the function call. The return value is zero for successful 
completion. 

 The threads being synchronized by the barrier include the following code:

 1: Code before the barrier 
 2: 
 3: // Wait at the barrier 
 4: ret  =  pthread barrier wait( & barrier); 
 5: 
 6: Code after the barrier  

 where the type  barrier  was initialized using the  pthread barrier init()  
routine.  

   4.3.4    Comparing the Synchronization Primitives 

 The most basic synchronization primitive is the  lock  and is the most effi cient in its 
memory use and execution time  [42] . The lock is essentially used to serialize access 
to a shared resource or shared variable. 

 The  mutex  uses more memory than a lock. The mutex must be acquired before 
the shared variable is modifi ed. After a thread is fi nished with its critical section, it 
must release the mutex so that other threads can proceed with their critical 
sections. 

 The  barrier  is used as an event synchronization mechanism so that all threads 
arrive at a certain point before the rest of the code is executed.  

 4.4   PROBLEMS 

       4.1.    A shared - memory parallel processor system has  n  processors and  b  shared memory 
modules with  n     ≤     b . Assume all processors need to update their caches by accessing the 
memory modules. Assume a uniform probability that a processor requests to access data 
from a particular memory module. 
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  (1)     What is the value of the probability that a processor requests to access data from a 
particular memory module?  

  (2)     What is the probability that a memory access collision takes place for a particular 
memory module?  

  (3)     What is the probability that a memory access collision takes place for the shared 
memory as a whole?  

  (4)     What is the probability that a memory access collision takes place for the shared 
memory as a whole for the case when  n     >     b ?      

    4.2.    What are the two main advantages for using the local cache in shared - memory multi-
processor systems?   

    4.3.    Explain the two reasons for maintaining cache coherence in shared - memory multiproces-
sor systems.   

    4.4.    A shared - memory system consists of  n  processors, one shared memory module, and a 
system - wide bus connecting all the components. Assume  a  as the probability that a 
processor requests access to the shared memory to update its cache at a given time step. 
What is the probability that a bus collision takes place?   

    4.5.    Assume in a shared memory system that the probability that a data is not in the cache 
is  α . And 1    −     α  is the probability the data are in the cache. What is the average memory 
access time?   

    4.6.    The three Cs for single - processor cache misses were discussed in a previous chapter. 
Investigate if there are other causes for cache misses in a shared memory system.   

    4.7.    Cache misses in a shared memory system show a  “ U ”  pattern versus block size for a 
fi xed cache capacity. Explain why this behavior is expected.         

 
 

 



  Chapter 5 

Interconnection Networks     

    5.1    INTRODUCTION 

 We saw in Chapter  3  that parallel computers require an interconnection network to 
allow exchange of data between the processors and between the processors and 
common shared or distributed memories. Interconnection networks connect proces-
sors in a parallel computer system. The main factors that affect the interconnection 
network performance are 

  1.     network links, which could be wires, wireless, or even optic channels or 
media;  

  2.     switches that connect the links together;  

  3.     the protocol software/fi rmware that is used to route the packets or messages 
between the processors through the switches and links; and  

  4.     the network topology, which is the way the switches are connected 
together.    

 The capabilities and characteristics of the interconnection network have a direct 
infl uence on the resulting performance of the multiprocessor system. The following 
sections discuss the different types of networks used in multiprocessor systems. We 
should mention here that multicore processors have all the cores and their intercon-
nection network on the same chip. Thus, the network is called network - on - chip 
(NoC). We discuss in this chapter interconnection networks based on their topology. 
Topology defi nes how the processor or nodes are connected. The topology impacts 
system performance parameters such as data throughput, delay, and network power 
consumption. 

 We defi ne the interconnection network  diameter  as the longest distance between 
two nodes in the graph. The diameter represents the number of switches or nodes a 
message takes to travel from a source to a destination node.  

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

83



84 Chapter 5 Interconnection Networks

   5.2    CLASSIFICATION OF INTERCONNECTION 
NETWORKS BY LOGICAL TOPOLOGIES 

 The interconnection network topology is usually drawn as a graph with nodes rep-
resenting the switches or processors and the edges representing the communication 
links between the switches or processors. There are major well - known network 
topologies that are summarized in the following sections. 

   5.2.1    Bus 

 A bus is the simplest type of interconnection network as shown in Fig.  5.1 . 
The shaded squares represent medium access control (MAC) controllers. 
These controllers could be simple arbiters or they could be ethernet controllers if 
the bus is an ethernet local area network (LAN). They could also represent wireless 
devices if the bus physical medium is a wireless channel.   

 All processors and memory modules are connected to the bus, and communica-
tion between any pair of processors takes the same amount of time no matter how 
far apart they are. The bus, however, allows only one processor to access the shared 
medium at any given time so as to prevent bus access  collisions . Each module con-
nected to the bus is characterized by its own unique MAC address for identifi cation. 
The source processor communicates with another processor or memory module by 
specifying the destination MAC address. Some form of MAC arbitration scheme 
must be enforced to prevent bus access collisions. There are many arbitration 
schemes that affect the overall performance of the system  [43] . 

 The performance of the bus interconnection network depends very heavily on 
the following factors: 

  1.     the number of processors connected to the bus; as the network size scales 
up, performance degrades;  

  2.     the statistics of the network access requests issued by the processors; and  

  3.     the type of MAC arbitration protocol being used.    

 The traffi c statistics depend on the algorithm being implemented and could 
follow any type of traffi c distribution, such as constant bit rate, Poisson process, 
bursty distribution, and so on  . 

 The arbitration protocol can be chosen to be  [43]  round robin, fi xed priority, 
rotating priority, random access, and so on  .  

     Figure 5.1     A bus interconnection network. 
The shaded squares represent MAC controllers.  
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   5.2.2    Star 

 Figure  5.2  shows an example of a star interconnection network, all processors are 
connected to a central  hub . All network traffi c between the processors must pass 
through the hub. The hub limits the communication performance of the system since 
it must communicate with all the processors and must handle their requests. It is a 
simple matter to add more processors, but the hub must be able to accommodate the 
extra links.    

   5.2.3    Ring 

 Figure  5.3  shows an example of a ring interconnection network, where each proces-
sor is connected to the ring through a switch. The shaded squares represent MAC 
controllers. Each switch is aware of the MAC address of the processor that is con-
nected to it. The switches allow more than one processor to transmit and receive 
messages or data at the same time. The sending processor sends its data to the switch 
it is connected to. The switch forwards the message to a neighboring switch and the 
message travels between the switches until it reaches its destination.    

     Figure 5.2     A star interconnection network.  
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The shaded squares represent MAC controllers.  
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   5.2.4    Mesh 

 A two - dimensional mesh network is shown in Fig.  5.4 . The shaded squares represent 
MAC controllers. Messages travel from source processor to destination processor 
through a  routing algorithm  that is implemented in each switch or router. There are 
several message routing algorithms such as deterministic routing, where the route 
between source and destination is predetermined and fi xed. Another routing algo-
rithm is adaptive routing, where the route taken by the message is controlled by the 
state of the switches in the network.   

 The mesh network performance depends on the traffi c pattern in the mesh, the 
buffer size in each switch, and the arbitration scheme used in the switches.  

   5.2.5    Crossbar Network 

 Crossbar networks have not been well represented in the literature, with the excep-
tion of Furhmann  [44] , perhaps due to the original article by Clos  [45]  in which he 
claimed that a crossbar network is very expensive to implement. With the current 
state of very large - scale integration (VLSI) technology, it is possible to place several 
switching elements (SEs) and their state registers on a single chip with the only 
limitation being the number of input/output (I/O) pins and pad size  [46] . 

 An  N     ×     N  crossbar network consists of  N  inputs and  N  outputs. It can connect 
any input to any free output without blocking. Figure  5.5  shows a 6    ×    6 crossbar 
network. The network consists of an array of crosspoints ( CP ) connected in a grid 
fashion.  CP ( i ,  j ) lies at the intersection of row  i  with column  j . Each  CP  operates in 
one of two confi gurations as shown in Fig.  5.6 . The  X  confi guration is the default 
confi guration where the SE allows simultaneous data fl ow in the vertical and hori-
zontal directions without interference. If  CP (3, 5) was in the  X  confi guration, then 

     Figure 5.4     A two - dimensional mesh 
interconnection network. The shaded squares 
represent MAC controllers.  
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data fl owing horizontally originate at input 3 and are sent to all the intersection 
points at this row. Data fl owing vertically in column 5 could have originated from 
any input above or below row 3.   

 In the  T  confi guration, the  CP  allows data fl ow in the horizontal direction and 
interrupts data fl ow in the vertical direction. Data fl owing vertically at the output 
are a copy of the horizontal data. For example, if  CP (3, 5) was in the  T  confi gura-
tion, then data fl owing horizontally originate at input 3. Data fl owing downward at 
the output are a copy of the horizontal data coming from row 3. This way, output at 
column 5 sees a copy of the data that were moving on row 3. 

 A crossbar network supports high capacity due to the  N  simultaneous connec-
tions it can provide. This comes at the expense of the number of  CP  that grows as 
 N   2 . This is one reason why a crossbar network is used mainly for demanding appli-
cations that require a relatively small value of  N  (about 10). However, advances in 
VLSI technology and electro - optics make crossbar switches a viable switching 
alternative. 

 Data multicast in a crossbar network can be easily accomplished. Suppose that 
input 3 requests to multicast its data to outputs 1, 2, and 5. Input 3 would then request 
to confi gure  CP (3, 1), (3, 2), and (3, 5) into the  T  confi guration and all other  CP  in 
row 3 would remain in the default  X  confi guration.  

     Figure 5.5     A 6    ×    6 crossbar interconnection 
network.  
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   5.2.6    Crossbar Network Contention and Arbitration 

 Suppose that two or more inputs request access to the same output. In that case, 
contention arises and some arbitration mechanism has to be provided to settle this 
dispute. In fact, we have to provide  N  arbiters such that each one is associated with 
a column in the crossbar network. For example, when input 1 requests to commu-
nicate with output 3, it requests to confi gure  CP (1, 3) into the  T  confi guration and 
must wait until the arbiter in column 3 issues a grant to that input. At the same time, 
the arbiter in column 3 must inform all other inputs that they cannot access column 
3 in that time step. This happens only after the arbiter checks to see if there are any 
requests coming from other inputs demanding access to output 3. These arbiters slow 
down the system especially for large networks where signal propagation up and 
down the columns takes a substantial amount of time.  

   5.2.7    Multistage Interconnection Networks ( MIN  s ) 

 Figure  5.7  shows that an  N     ×     N  MIN consists of  n  stages with stage  i  connected to 
stages  i     −    1 and  i     +    1 through some pattern of connection lines. Each stage has  w  
crossbar SEs that vary in size from 2    ×    2 and up. The SEs in each stage are numbered 
starting at the top as shown. For the MIN in the fi gure, we have  N     =    4,  n     =    3, and 
 w     =    4. The labeling of the stages and switches is also shown in the fi gure.   

 Typically, the number of stages is  n     =    lg  N . The design parameters for a MIN 
are the size of the network  N , the number of stages  n , the number of switches per 
stage  w , and the size of each switch. These four factors determine the MIN  complex-
ity . Another important measure of the cost of a MIN is the number and length of the 
wires in the connection links between the stages. This last factor determines the 
required number of pins or connections at every level of integration or packaging.  

     Figure 5.7     A 4    ×    4 MIN with three stages 
and four switches per stage.  Stage: 0
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   5.2.8    The Banyan Network 

 Figure  5.8  shows an 8    ×    8 banyan network. For an  N     ×     N  network, the number of 
stages is  n     +    1, where  n     =    lg  N , and the number of SEs in each stage is  N . Each SE 
is a 2    ×    2 crossbar switch and the number of links between the stages is 2 N .   

 An  N     ×     N  banyan network is built using one to two selectors in the input stage 
( i     =    0), 2    ×    2 crossbar SEs in the  n     −    1 internal stages (0    <     i     <     n ), and two to one 
concentrators in the output stage ( i     =     n ). However, the banyan network is a blocking 
network and provides only one path from any input to any output. As such, it pos-
sesses no tolerance for faults. 

  SE ( i ,  j ) at stage  i  and row position  j  is connected to  SE ( i     +    1,  k ) such that  k  is 
is given by

    k
j

C ji
= ( )

⎧
⎨
⎩

Straight connection

Cube connection
    (5.1)  

where 0    ≤     i     <     n . Thus, at stage 1, we see that  SE (1, 2) is connected to switches 
 SE (2, 2), the straight connection, and switch  SE (2, 0), the  C  1  (2) connection. 

 The cube function  C i   complements the  i th bit ( a i  ) of the binary number, leaving 
all other bits intact  .

   A a a a a an i i i= − + −1 1 1 0� �  

   C A a a a a ai
n i i i( ) = − + −1 1 1 0� �   

 The banyan network provides one unique path from any input to any output 
based on the input row address and the destination address. Figure  5.9  shows the 
two types of connections that could be established for the two inputs of an  SE  at 
stage  i : 

  Straight connection.     The packet enters and exits at the same row location.  

  Cube connection.     The packet enters at row location  R  and exits at row location 
 C i   ( R ).  

     Figure 5.8     An 8    ×    8 banyan 
network.  0 1 2 3Stage:
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     Figure 5.10     A binary tree 
interconnection network.  
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     Figure 5.9     The straight and cube connections 
for each input of an  SE  in a banyan network.  

The straight connection for
each input

The cube connection for each
input

  Straight connection.     The packet enters and exits at the same row location.  

  Cube connection.     The packet enters at row location  R  and exits at row location 
 C i   ( R ).       

   5.2.9    Tree Network 

 Figure  5.10  shows a binary tree network. The tree supports communication among 
 P  processors using 2 P     −    1 switches or routers. The processors are located at the 
leaves of the tree and the switches have three links except for the switch at the root 
of the tree and the switches at the bottom of the tree connected to the processors. 
For the binary tree, the diameter is 2   log 2     P .    

   5.2.10    Random Topology 

 Random topology implies that the interconnection network links do not follow a 
well - defi ned pattern. The Internet is an example of such a random type of network. 
Figure  5.11  shows the main component of the Internet. The white circles represent 
core switches, which are specialized high - speed computers capable of maintaining 
traffi c in the gigabit range and higher. The gray circles represent switches at the edge 
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of the Internet. These switches connect the Internet service providers (ISPs) to the 
Internet cloud. In turn, the ISPs have their own network of subscribers that access 
the Internet through subscription to the services provided by the ISP. The end nodes 
could be thought of as LANs with many Internet users.   

 The main protocol used to transmit packets across the Internet is the transfer 
control protocol/Internet protocol (TCP/IP) protocol. This is a session - oriented pro-
tocol and guarantees the delivery of the transmitted packets. The average time for 
delivering packets across the Internet is on the order of 10   ms  [47] .   

   5.3    INTERCONNECTION NETWORK 
SWITCH ARCHITECTURE 

 As was explained above, networks rely on switches to perform their functions. 
Thus, it is worthwhile to study the construction of switches in more detail. A switch 
is a hardware device that accepts messages or packets at its inputs and routes 
them to its outputs according to the routing information provided in the message 
header and the switch routing table. Figure  5.12  is a block diagram showing the 
main components of a switch. The switch has the following main architectural 
components: 

  1.     Controller  

  2.     Input ports  

  3.     Switch fabric (SF  )  

  4.     Buffers  

  5.     Output ports      

     Figure 5.11     The main components of the Internet.  
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 Notice that although the switch is a part of the interconnection network, it also has 
its own switching network! Typically, it is called the SF. In the following discussion, 
we shall refer to the units of data communicated between processors as  packets . 

  Controller.     The controller controls the operation of the switch and routing 
packet streams through a  lookup table  that knows how to route a packet based 
on its source and destination processor addresses.  

  Buffers.     The incoming packets must be stored within the processor since a 
certain delay is encountered while determining the packet route. Also, due 
to collisions, an incoming packet might not be able to access the desired 
output port and must wait for later routing. The design of the buffer has great 
infl uence on the performance of the switch and consequently on the perfor-
mance of the interconnection network.  

  SF.     The SF routes packets from the input ports to the output ports. The setup 
of the proper packet rout is determined by the controller.  

  Input ports.     The input ports accept packets arriving from input links.  

  Output ports.     The output ports deliver packets to output links.    

 There are different types of switches depending on where the buffers are located as 
we discuss in the following sections. 

   5.3.1    Input Queuing Switch 

 Figure  5.13  shows an input queuing switch. Each input port has a dedicated fi rst - in, 
fi rst - out (FIFO) buffer to store incoming packets. The arriving packets are stored at 
the tail of the queue and only move up when the packet at the head of the queue is 
routed through the SF to the correct output port.   

 A controller at each input port classifi es each packet by examining its header to 
determine the appropriate path through the SF. The controller must also perform 
traffi c management functions. 

     Figure 5.12     Basic components of a switch.  
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 In one time step, an input queue must be able to support one write and one read 
operation, which is a nice feature since the memory access time is not likely to 
impose any speed bottlenecks. 

 Assuming an  N     ×     N  switch, the SF must connect  N  input ports to  N  output ports. 
Only a space division  N     ×     N  switch can provide simultaneous connectivity. 

 The main advantages of input queuing are 

  1.     low memory speed requirement;  

  2.     distributed traffi c management at each input port;  

  3.     distributed lookup table at each input port; and  

  4.     support of broadcast and multicast does not require duplicating the data.    

 The main disadvantages of input queuing are 

  1.     head of line (HOL) problem, as discussed below;  

  2.     diffi culty of implementing data broadcast or multicast since this will further 
slow down the switch due to the multiplication of an HOL problem;  

  3.     diffi culty of implementing quality of service (QoS) or differentiated services 
support, as discussed below; and  

  4.     diffi culty of implementing scheduling strategies since this involves extensive 
communications between the input ports.    

 An HOL problem arises when the packet at the head of the queue is blocked from 
accessing the desired output port  [28] . This blockage could arise because the SF 
cannot provide a path ( internal blocking ) or if another packet is accessing the output 
port ( output blocking ). When HOL occurs, other packets that may be queued behind 
the blocked packet are consequently blocked from reaching possibly idle output 
ports. Thus, HOL limits the maximum throughput of the switch  [28] . 

 The switch throughput can be increased if the queue service discipline examines 
a window of  w  packets at the head of the queue instead of only the HOL packet. 
The fi rst packet out of the top  w  packets that can be routed is selected and the queue 
size decreases by one such that each queue sends only one packet to the switching 
fabric. To achieve multicast in an input queuing switch, the HOL packet must remain 
at the head of the queue until all the multicast ports have received their own copies 
at different time steps. Needless to say, this aggravates the HOL problem since now 
we must deal with multiple blocking possibilities for the HOL packet before it fi nally 

     Figure 5.13     Input queuing switch. Each input has a 
queue for storing incoming packets.  
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leaves the queue. Alternatively, the HOL packet might make use of the multicast 
capability of the switching fabric if one exists. 

 Packet scheduling is diffi cult because the scheduler has to scan all the packets 
in all the input ports. This requires communication between all the inputs, which 
limits the speed of the switch. The scheduler will fi nd it diffi cult to maintain band-
width and buffer space fairness when all the packets from different classes are stored 
at different buffers at the inputs. For example, packets belonging to a certain class 
of service could be found in different input buffers. We have kept a tally of the buffer 
space used up by this service class. 

 In input queuing, there are three  potential  causes for packet loss: 

  1.     Input queue is full.     An arriving packet has no place in the queue and is 
discarded.  

  2.     Internal blocking.     A packet being routed within the SF is blocked inside the 
SF and is discarded. Of course, this type of loss occurs only if the input 
queue sends the packet to the SF without waiting to verify that a path can 
be provided.  

  3.     Output blocking.     A packet that made it through the SF reaches the 
desired output port, but the port ignores it since it is busy serving another 
packet. Again, this type of loss occurs only if the input queue sends the 
packet to the output without waiting to verify that the output link is 
available.     

   5.3.2    Output Queuing Switch 

 To overcome the HOL limitations of input queuing, the standard approach is to 
abandon input queuing and to place the buffers at the output ports as shown in Fig. 
 5.14 . Notice however, that an output queuing switch must have small buffers at its 
inputs to be able to temporarily hold the arriving packets while they are being clas-
sifi ed and processed for routing.   

 An incoming packet is stored at the input buffer, and the input controller must 
read the header information to determine which output queue is to be updated. The 
packet must be routed through the SF to the correct output port. The controller must 
also handle any contention issues that might arise if the packet is blocked from 
leaving the buffer for any reason. 

     Figure 5.14     Output queuing switch. Each 
output has a queue for storing the packets 
destined to that output. Each input must also 
have a small FIFO buffer for storing incoming 
packets for classifi cation.  
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 A controller at each input port classifi es each packet by examining the header 
to determine the appropriate path through the SF. The controller must also perform 
traffi c management functions. 

 In one time step, the small input queue must be able to support one write and 
one read operation, which is a nice feature since the memory access time is not likely 
to impose any speed bottlenecks. However, in one time step, the main buffer at each 
output port must support  N  write and one read operations. 

 Assuming an  N     ×     N  switch, the SF must connect  N  input ports to  N  output ports. 
Only a space division  N     ×     N  switch can provide simultaneous connectivity. 

 The main advantages of output queuing are 

  1.     distributed traffi c management,  

  2.     distributed lookup table at each input port,  

  3.     ease of implementing QoS or differentiated services support, and  

  4.     ease of implementing distributed packet scheduling at each output port.    

 The main disadvantages of output queuing are 

  1.     high memory speed requirements for the output queues;  

  2.     diffi culty of implementing data broadcast or multicast since this will further 
slow down the switch due to the multiplication of a HOL problem;  

  3.     support of broadcast and multicast requires duplicating the same data at dif-
ferent buffers associated with each output port; and  

  4.     HOL problem is still present since the switch has input queues.    

 The switch throughput can be increased if the switching fabric can deliver more than 
one packet to any output queue instead of only one. This can be done by increasing 
the operating speed of the SF, which is known as  speedup . Alternatively, the SF 
could be augmented using duplicate paths, or by choosing an SF that inherently has 
more than one link to any output port. When this happens, the output queue has to 
be able to handle the extra traffi c by increasing its operating speed or by providing 
separate queues for each incoming link. 

 As we mentioned before, output queuing requires that each output queue must 
be able to support one read and  N  write operations in one time step. This of course 
could become a speed bottleneck due to cycle time limitations of current memory 
technologies. 

 To achieve multicast in an output queuing switch, the packet at an input buffer 
must remain in the buffer until all the multicast ports have received their own copies 
at different time steps. Needless to say, this leads to increased buffer occupancy 
since now we must deal with multiple blocking possibilities for the packet before it 
fi nally leaves the buffer. Alternatively, the packet might make use of the multicast 
capability of the switching fabric if one exists. 

 In output queuing, there are four potential causes for packet loss: 

  1.     Input buffer is full.     An arriving packet has no place in the buffer and is 
discarded.  
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  2.     Internal blocking.     A packet being routed within the SF is blocked inside the 
SF and is discarded.  

  3.     Output blocking.     A packet that made it through the SF reaches the 
desired output port, but the port ignores it since it is busy serving another 
packet.  

  4.     Output queue is full.     An arriving packet has no place in the queue and is 
discarded.     

   5.3.3    Shared Buffer Switch 

 Figure  5.15  shows a shared buffer switch design that employs a single common 
buffer in which all arriving packets are stored. This buffer  queues  the data in separate 
queues that are located within one common memory. Each queue is associated with 
an output port. Similar to input and output queuing, each input port needs a local 
buffer of its own in which to store incoming packets until the controller is able to 
classify them.   

 A fl exible mechanism employed to construct queues using a regular random 
access memory is to use the  linked list  data structure. Each linked list is dedicated 
to an output port. In a linked list, each storage location stores a packet and a pointer 
to the next packet in the queue as shown. Successive packets need not be stored in 
successive memory locations. All that is required is to be able to know the address 
of the next packet though the pointer associated with the packet. This pointer is 
indicated by the solid circles in the fi gure. The lengths of the linked lists need not 
be equal and depend only on how many packets are stored in each linked list. The 
memory controller keeps track of the location of the last packet in each queue, as 
shown by the empty circles. There is no need for an SF since the packets are effec-
tively  “ routed ”  by being stored in the proper linked list. 

 When a new packet arrives at an input port, the buffer controller decides which 
queue it should go to and stores the packet at any available location in the memory 
then appends that packet to the linked list by updating the necessary pointers. When 

     Figure 5.15     Shared buffer switch. Solid circles indicate next packet pointers. Empty circles 
indicate pointers to the tail end of each linked list.  
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a packet leaves a queue, the pointer of the next packet now points to the output port 
and the length of the linked list is reduced by one. 

 The main advantages of shared buffering are 

  1.     the ability to assign a different buffer space for each output port since the 
linked list size is fl exible and limited only by the amount of free space in 
the shared buffer;  

  2.     a switching fabric is not required;  

  3.     distributed lookup table at each input port;  

  4.     there is no HOL problem in the shared buffer switch since each linked list 
is dedicated to one output port;  

  5.     ease of implementing data broadcast or multicast;  

  6.     ease of implementing QoS and differentiated services support; and  

  7.     ease of implementing scheduling algorithms at each linked list.    

 The main disadvantages of shared buffering are 

  1.     high memory speed requirements for the shared buffer;  

  2.     centralized scheduler function implementation, which might slow down the 
switch;  

  3.     support of broadcast and multicast requires duplicating the same data at dif-
ferent linked lists associated with each output port; and  

  4.     the use of a single shared buffer makes the task of accessing the memory 
very diffi cult for implementing scheduling algorithms, traffi c management 
algorithms, and QoS support.    

 The shared buffer must operate at a speed of at least 2 N  since it must perform a 
maximum of  N  write and  N  read operations at each time step. 

 To achieve multicast in a shared buffer switch, the packet must be duplicated 
in all the linked lists on the multicast list. This needlessly consumes storage area 
that could otherwise be used. To support differentiated services, the switch must 
maintain several queues at each input port for each service class being supported. 

 In shared buffering, there are two potential causes for packet loss: 

  1.     Input buffer is full.     An arriving packet has no place in the buffer and is 
discarded.  

  2.     Shared buffer is full.     An arriving packet has no place in the buffer and is 
discarded.     

   5.3.4    Multiple Input Queuing Switch 

 To overcome the HOL problem in input queuing switch and still retain the advan-
tages of that switch,  m  input queues are assigned to each input port as shown in 
Fig.  5.16 . If each input port has a queue that is dedicated to an output port (i.e., 
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 m     =     N ), the switch is called a  virtual output queuing  (VOQ) switch. In that case, the 
input controller at each input port will classify an arriving packet and place it in the 
FIFO buffer belonging to the destination output port. In effect, we are creating output 
queues at each input and hence the name  “ VOQ. ”    

 This approach removes the HOL problem and the switch effi ciency starts to 
approach 100% depending only on the effi ciency of the SF and the scheduling 
algorithm at each output port. Multicast is also very easily supported since copies 
of an arriving packet could be placed at the respective output queues. Distributed 
packet classifi cation and traffi c management are easily implemented in that 
switch also. 

 There are, however, several residual problems with this architecture. Scheduling 
packets for a certain output port becomes a major problem. Each output port must 
choose a packet from  N  virtual queues located at  N  input ports. This problem is 
solved in the VRQ switch, which is discussed later. Another disadvantage associated 
with multiple input queues is the contention between all the queues to access the 
switching fabric. Dedicating a direct connection between each queue and the SF 
results in a huge SF that is of dimension  N   2     ×     N , which is defi nitely not practical. 

 In multiple input queuing, there are three potential causes for packet loss: 

  1.     Input buffer is full.     An arriving packet has no place in the buffer and is 
discarded.  

  2.     Internal blocking.     A packet being routed within the SF is blocked inside the 
SF and is discarded.  

  3.     Output blocking.     A packet that made it through the SF reaches the desired 
output port, but the port ignores it since it is busy serving another packet.     

   5.3.5    Multiple Output Queuing Switch 

 To support sophisticated scheduling algorithms,  n  output queues are assigned to each 
output port as shown in Fig.  5.17 . If each output port has a queue that is dedicated 
to an input port (i.e.,  n     =     N ), the switch is called a  virtual input queuing  (VIQ) 
switch. In that case, the output controller at each output port will classify an arriving 

     Figure 5.16     Multiple input queue switch. Each 
input port has a bank of FIFO buffers. The number of 
queues per input port could represent the number of 
service classes supported or it could represent the 
number of output ports.  
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packet and place it in the FIFO buffer belonging to the input port it came on. In 
effect, we are creating input queues at each output and hence the name  “ VIQ. ”  
Another advantage of using several output queues is that the FIFO speed need not 
be  N  times the line rate as was the case in output queuing switch with a single buffer 
per port.   

 Several disadvantages are not removed from output queue switch using this 
approach. The HOL problem is still present and packet broadcast still aggravates the 
HOL problem. Another disadvantage associated with multiple output queues is the 
contention between all the queues to access the switching fabric. Dedicating a direct 
connection between each queue and the SF results in a huge SF that is of dimension 
 N     ×     N   2 , which is defi nitely not practical. 

 This problem is solved in the virtual routing/virtual queuing (VRQ) switch, 
which is discussed later. In multiple output queuing, there are four potential causes 
for packet loss: 

  1.     Input buffer is full.     An arriving packet has no place in the buffer and is 
discarded.  

  2.     Internal blocking.     A packet being routed within the SF is blocked inside the 
SF and is discarded.  

  3.     Output blocking.     A packet that made it through the SF reaches the 
desired output port, but the port ignores it since it is busy serving another 
packet.  

  4.     Output queue is full.     An arriving packet has no place in the queue and is 
discarded.     

   5.3.6    Multiple  I / O  Queuing Switch 

 To retain the advantages of multiple input and multiple output queuing and to avoid 
their limitations, multiple queues could be placed at each input and output port as 
shown in Fig.  5.18 . An arriving packet must be classifi ed by the input controller at 
each input port to be placed in its proper input queue. Packets destined to a certain 
output port travel through the SF and the controller at each output port classifi es 

     Figure 5.17     Multiple output queuing 
switch. Each output port has a bank of 
FIFO buffers. The number of queues per 
output port could represent the number 
of service classes supported or it could 
represent the number of connections 
supported.  
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them, according to their class of service, and places them in their proper 
output queue.   

 The advantages of multiple queues at the input and the output are removal of 
HOL problem, distributed lookup table, distributed traffi c management, and ease of 
implementation of differentiated services. Furthermore, the memory speed of each 
queue could match the line rate. 

 The disadvantage of the multiple input and output queue switch is the need to 
design an SF that is able to support a maximum of  N   2     ×     N   2  connections simultane-
ously. This problem is solved in the VRQ switch, which is discussed later. 

 In multiple input and output queuing, there are four potential causes for 
packet loss: 

  1.     Input buffer is full.     An arriving packet has no place in the buffer and is 
discarded.  

  2.     Internal blocking.     A packet being routed within the SF is blocked inside the 
SF and is discarded.  

  3.     Output blocking.     A packet that made it through the SF reaches the 
desired output port, but the port ignores it since it is busy serving another 
packet.  

  4.     Output queue is full.     An arriving packet has no place in the queue and is 
discarded.     

   5.3.7     VRQ  Switch 

 We saw in the previous sections the many alternatives for locating and segmenting 
the buffers. Each design had its advantages and disadvantages. The VRQ switch has 
been proposed by the author such that it has all the advantages of earlier switches 
but none of their disadvantages. In addition, the design has extra features such as 
low power, scalability, and so on  [28] . 

     Figure 5.18     Multiple input and output queuing switch. Each input port has a bank of FIFO buffers 
and each output port has a bank of FIFO buffers.  
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 Figure  5.19  shows the main components of that switch. Each input port has  N  
buffers (not queues) where incoming packets are stored after being classifi ed. 
Similarly, each output port has  K  FIFO queues, where  K  is determined by the number 
of service classes or sessions that must be supported. The SF is an array of backplane 
buses. This gives the best throughput compared with any other previously proposed 
SF architecture including crossbar switches.   

 The input buffers store incoming packets, which could be variable in size. The 
input controller determines which output port is desired by the packet and sends a 
 pointer  to the destination output port. The pointer indicates to the output port the 
location of the packet in the input buffer, which input port it came from, and any 
other QoS requirements. The output controller queues that pointer — the packet itself 
remains in the input buffer. The buffer storage requirements for the output queues 
are modest since they store pointer information, which is small in size compared to 
the size of the packets stored in the input buffers. 

 When a pointer is selected from an output queue, the location of the correspond-
ing packet is determined and the packet is selected to access the SF. We call this 
mode of operation  output - driven routing , which never leads to SF contention. The 
classic or usual way of accessing the SF is called  input - driven routing , which is 
guaranteed to lead to contention as we have seen in each switch design we have 
studied so far. 

 Let us see how the VRQ switch is able to overcome all the limitations of earlier 
designs: 

  1.     Traffi c management, scheduling, and congestion control are all distributed 
among the input and output ports. This allows more time for the algorithms 

     Figure 5.19     The virtual routing/virtual queuing (VRQ) high - performance switch.  
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to complete their operations and for the designer to implement more 
sophisticated algorithms.  

  2.     The HOL problem is completely eliminated because the VRQ switch is 
output driven and not input driven.  

  3.     The input buffers operate at the line rate, and each output queue needs to 
process at most  N  pointers, which is much simpler than processing  N  
packets.  

  4.     Packets are stored at the inputs in regular memory, not FIFO memory, which 
is much simpler to implement.  

  5.     There is great freedom in confi guring the output queues. The queues could 
be constructed based on a per - connection basis, per - input basis, or per -
 service class basis.  

  6.     Data broadcast is very simple to implement and no extra copies of a packet 
need to be stored.  

  7.     An incoming packet does not leave its location in the input buffer until it 
is ready to be moved through the switch. This reduces power and storage 
requirements.  

  8.     Internal blocking is completely removed since each input port has its own 
dedicated bus.  

  9.     Output blocking is completely removed since each output port is able to 
process all the pointers that arrive to it.  

  10.     The backplane buses operate at the line rate in a bit - serial fashion with no 
need whatsoever for internal speedup or use of parallel data lines.  

  11.     The SF is contentionless since it is based on a matrix of  dedicated buses  
that are  output driven .    

 Table  5.1  summarizes the desirable features to be supported by a switch and 
switch type that can support these features. From the table, we see that both the 
shared buffer switch and the VRQ switch can easily implement most of the func-
tionalities of a high - speed switch.    

  Table 5.1    Switch Types Capable of Supporting the Different 
Switch Features 

   Feature     Input     Output     Shared     VRQ  

  QoS support        X    X    X  
  HOL elimination            X    X  
  Scheduling support        X    X    X  
  Broadcast support            X    X  
  Memory speed    X            X  
  Scalability    X            X  
  Contentionless SF            X    X  



5.4 Problems 103

 5.4   PROBLEMS 

       5.1.    This problem is adapted from Quinn  [48] . Draw hypercube networks with two, four, and 
eight nodes.   

    5.2.    Explain how a path is established in the crossbar switch and explain why the switch is 
nonblocking.   

    5.3.    A blocking interconnection network is one where a connection between an input and an 
output is not available if another input is accessing another output. Show which of the 
networks discussed in this chapter are blocking networks and which are not.   

    5.4.    Discuss the need for arbitration in a crossbar network and propose some techniques for 
resolving output contention. Discuss the advantages and disadvantages of the arbitration 
techniques you propose from the point of view of hardware complexity and speed.   

    5.5.    Derive the performance parameters of the bus interconnection network. Assume that 
network access requests are issued randomly with probability  a  per time slot and that 
there are  P  processors in the system.   

    5.6.    Derive the performance parameters of the star interconnection network. Assume that 
network access requests are issued randomly with probability  a  per time slot and that 
there are  P  processors in the system.         

 
 

 





  Chapter 6 

Concurrency Platforms     

    6.1    INTRODUCTION 

 There is a  software gap   [49]  between hardware potential and the performance that 
can be attained using today ’ s software tools. There are now concurrency platforms 
that support multithreading, such as Cilk +  +   [50]  and Open Multi - Processing 
(OpenMP)  [51]  and standard libraries like POSIX threads (Pthreads)  [38 – 40, 52, 53]  
and WinAPI threads  [40] . Using these tools, the program developer is able to control 
the number of threads and the workload assigned to each thread. The program 
developer can also control synchronization of the different threads to ensure proper 
program execution. Using such techniques, the programmer is able to generate a 
 parallel code  — that is, a code that contains several threads. However, this code might 
not automatically result in a  concurrent code  — that is, a code that runs simultane-
ously on several cores or processors. Concurrency is controlled ultimately by 
the operating system  [54] . The application developers cannot rely on the software 
to explore algorithm speedup. Rather, the developer must use special directives 
to control the progress of tasks even in the presence of operating system 
uncertainties. 

 The above tools rely on the application developer or the programmer being able 
to identify parallelism and to ensure proper program sequencing. This might be easy 
to do for the simplest cases. For other cases, the programmer needs other tools to 
investigate the alternative ways to explore possible parallelism. The purpose of this 
book is to provide such tools to programmers so they can intelligently control the 
concurrency platforms.  

   6.2    CONCURRENCY PLATFORMS 

 An alternative to these low - level do - it - yourself tools is the  concurrency platform  —
 this is a software that allows coordination, scheduling, and management of multicore 
resources. Examples of concurrency platforms include  [55]     
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•      .NET ThreadingPool class  [56]   

   •      message - passing libraries such as message passing interface (MPI)  [57]   

   •      data - parallel programming languages such as NESL  [58] , Ct from RapidMind/
Intel  [59] ;  

   •      task parallel libraries such as Intel ’ s Threading Building Blocks (TBB)  [60] , 
Microsoft ’ s Task Parallel Library (TPL)  [61] , and Microsoft ’ s Concurrency 
Runtime; and  

   •      extensions to programming languages such as OpenMP  [51] , Cilk +  +   [50] , 
C +  +   [62] , and Microsoft ’ s Parallel Patterns Library (PPL)  [63] .    

 In the following sections, we illustrate using concurrency platforms.  

   6.3    CILK +  +  

  Cilk  +  +  is a language extension programming tool. Cilk +  +  is suited for divide - and -
 conquer problems where the problem can be divided into parallel independent tasks 
and the results can be combined afterward. As such, the programmer bears the 
responsibility of structuring the program to expose its inherent parallelism. Cilk ’ s 
runtime system bears the responsibility of scheduling the computational tasks on the 
parallel processor system. The techniques we discuss in this book give the program-
mer insight on the alternative parallelism options available for a given algorithm. 
The application developer can use a few key words provided by Cilk +  +  to convert 
a standard serial program into a parallel program. A standard C +  +  program can be 
converted to a Cilk +  +  program running Intel ’ s Cilk +  +  system developers kit (SDK) 
by doing these initial steps  [64] : 

  1.     Ensure that the serial C +  +  program is bug free.  

  2.     Rename source fi le extension from  .cpp  to  .cilk .  

  3.     Add  #include  < cilk.h >  .  
  4.     Rename the  main()  function to  cilk_main() .    

 At this stage, the program is a program that has no parallelism yet. The programmer 
must add a few key words to the program, such as 

   •        cilk  , which alerts the compiler that this is a parallel program;  

   •        cilk_spawn  , which creates a locally spawned function that can be executed 
in parallel with other tasks;  

   •        cilk_sync  , which forces the current threads to wait for all locally spawned 
functions to be completed; thus, all  cilk_spawn  function must be com-
pleted fi rst before the  cilk_sync  function can continue. This is equivalent 
to the  join  statement in the pthread library; and  

   •        cilk for  , which is a parallel version of the serial  for  loop statement.    
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 The Cilk +  +  constructs discussed above specify logical parallelism in the program. 
The operating system will map the tasks into processes or threads and schedules 
them for execution. Listing 6.1 is the pseudocode for the Fibonacci algorithm imple-
mented using Cilk:

  Listing 6.1   Pseudocode for the evaluation of Fibonacci numbers   

 1: int fib (int  n ) 
 2: { 
 3:  if   n     <    2  then  
 4:    return  n ; 
 5:  else  
 6:    { 
 7:       int  x ,  y ; 
 8:        x   =   cilk_spawn  fib( n     −    1); 
 9:        y   =   cilk_spawn  fib( n     −    2); 

 10:        cilk_sync  
 11:       return ( x   +   y ); 
 12:    } 
 13:  end if  
 14: }   

 The key words in italics in lines 8 and 9 indicate that the  fib()  function call can 
be done in parallel. The key word in line 10 ensures that the add operation in line 
11 can be performed only after two function calls in lines 8 and 9 have been 
completed. 

  6.3.1   Cilk +  +  Parallel Loop:  cilk_for  

 The syntax of the Cilk +  +   for  loop is very much similar to that of the C +  +  
 for  loop.

 cilk for ( i   =  start_value;  i     <    end_value;  i  +  + ){ 
    statement_1; 
    statement_2; 
    . 
    . 
    . 
  }   

 The end - of - iteration comparison could be one of the usual relational operators:

  < ,          <  = ,      ! = ,          >  = ,      or  > .  

 Cilk +  +   for  does not have a  break  statement for early exit from the loop. Cilk +  +  
divides the iterations of the loop into  chunks  where each chunk consists of few itera-
tions of the loop. An implied  cilk_spawn  statement creates a thread or a strand 
for each chunk. Thus, the loop is parallelized since chunk strands will be executed 
in parallel using a work - stealing scheduler  [65] . The chunk size is called the  grain 
size . if the grain size is large, parallelism is reduced since the number of chunks will 
be small. If the grain size is small, then the overhead to deal with too many strands 



108 Chapter 6 Concurrency Platforms

reduces the performance. The programmer can override the default grain size through 
the compiler directive statement

 #pragma cilk_grain size  =  expression,  

 where  expression  is any valid C +  +  expression that yields an integer value. The 
pragma should immediately precede the  cilk_for  loop  [66] .  

   6.3.2    Data Races and Program Indeterminacy 

 A data race occurs when two threads attempt to access the same variable in memory 
and one of them performs a write operation. This is the problem of shared or nonlo-
cal variables. Nonlocal variables are variables that are declared outside the scope 
where it is used. A global variable is a nonlocal variable declared in the outermost 
scope of the program  [49] . It is hard to rewrite a code that avoids the use of nonlocal 
variables. This occurs when a function call has side effects and changes a variable 
declared outside the function. The obvious solution is to use local variables by 
passing the variable as a parameter of the function. Most of us know that this will 
lead to functions with a long argument list. The problem is that with multicores, 
nonlocal variables will lead to race bugs. Parallel processors that share variables 
must guard against race bugs that compromise data integrity. 

 A simple race bug is a  determinacy race . A program is  deterministic  if the 
output is the same for any multicore  strand  scheduling strategy. A strand is defi ned 
as a sequence of executed instructions containing no parallel control  [67] . On 
the other hand, a program is  nondeterministic  if it produces different results for 
every run. 

 Consider the following serial code   as an example of determinacy race:

 1: #include  < iostream >  
 2: using namespace std; 
 3: void swap (int  & x, int  & y); 
 4: int main() 
 5: { 
 6:    int  x   =  1,  y   =  10; 
 7:    swap ( x ,  y ); 
 8:     x   =  2  *   x ; 
 9:    cout  <<  “ x   =  ”  <<   x   <<  endl; 

 10:    cout  <<  “ y   =  ”  <<   y   <<  endl; 
 11: } 
 12: void swap (int  & x, int  & y) 
 13: { 
 14:    int  temp ; 
 15:     temp   =   x ; 
 16:     x   =   y ; 
 17:     y   =   temp ; 
 18: }  

 The output of the serial program is  x     =    20 and  y     =    1 because  x  and  y  will get 
swapped fi rst then  x  is doubled according to lines 7 and 8, respectively. 
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 Now consider a similar code executed on a parallel computing platform with 
the directive  cilk_spawn   :

 1: #include  < iostream >  
 2: using namespace std; 
 3: void swap (int  &  x , int  &  y ); 
 4: int main() 
 5: { 
 6:    int  x   =  1,  y   =  10; 
 7:    cilk_spawn swap ( x ,  y ); 
 8:     x   =  2  *   x ; 
 9:    cilk_sync; 

 10:    cout  <<   “  x   =   ”   <<   x   <<  endl; 
 11:    cout  <<   “  y   =   ”   <<   y   <<  endl; 
 12: } 
 13: void swap (int  &  x , int  &  y ) 
 14: { 
 15:    int  temp ; 
 16:     temp   =   x ; 
 17:     x   =   y ; 
 18:     y   =   temp ; 
 19: }  

 The output of the parallel program has a race bug and the output might be  x     =    20 
and  y     =    1 sometime and  x     =    10 and  y     =    2 at another time. Figure  6.1  shows the 
breakdown of the parallel program into strands  A ,  B ,  C , and  D . Strand  A  begins at 
the start of the program and ends at the  cilk_spawn  statement. The  cilk_spawn  
statement creates the strands  B  and  C . Strand  B  executes the statement  x     =    2  *   x  and 
strand  C  executes the  swap ( x ,  y ); statement. Strand  D  begins after the  cilk_sync  
statement to the end of the program.   

 The race condition occurs because strands  B  and  C  both involve reading and 
writing the same variable  x . This will most certainly lead to data inconsistency of 
the types discussed in Chapter  2 , such as 

  1.     output dependencies:     write after write (WAW),  

  2.     antidependencies:     write after read (WAR),  

     Figure 6.1     Splitting of a program into 
strands using the directive  cilk_spawn  
and merging the strands using  cilk_sync  
statements.  
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  3.     true data dependency:     read after write (RAW), and  

  4.      procedural dependencies .    

 Any of the following race conditions could take place depending on the operating 
system: 

   •      Strand  B  executes completely before strand  C .  

   •      Strand  C  executes completely before strand  B .  

   •      Strand  B  partially executes, then strand  C  starts.  

   •      Strand  C  partially executes, then strand  B  starts.    

 Cilk Arts provides a tool called Cilkscreen to detect and report data races. 
 To get rid of data races, traditional programming uses mutexes. These, however, 

might cause locks and lose potential parallelism. Cilk +  +  provides hyperobjects to 
eliminate data races without the use of mutex or rewriting the program. A nonlocal 
variable is declared to be a hyperobject of the appropriate type to eliminate data 
races on the nolocal variable  [67] . Hyperobjects are not defi ned within Cilk +  + . 
Rather, they are specifi ed as common C +  +  classes.  

   6.3.3    Cilk +  +  Components for Parallelizing a Serial Code 

 Cilk +  +  has several components to help the programmer parallelize a serial code and 
debug the resulting program: 

  1.     Cilk +  +  compiler  

  2.     Cilk +  +  libraries to be used by the Cilk +  +  compiler  

  3.     Cilkscreen the Cilk +  +  race detector  

  4.     Performance analysis tools  

  5.     Debugging tools  

  6.     Cilk +  +  documentation    

 As mentioned before,  Cilkscreen  fi nds all the data races. In addition, 
Cilkscreen performance profi ler measures the  work ,  depth , and parallelism, which 
is defi ned here as work divided by depth. 

 We should stress that it is the programmer ’ s responsibility to strategically place 
the  cilk_spawn  and  cilk_sync  statements in the program to optimize its per-
formance on a given multicore system. The algorithm analysis tools provided in this 
book can help the programmer fi nd out the alternative ways to place those statements 
while preserving the algorithm correctness. 

 Some guidelines proposed in using Cilk +  +  are the following  [68]  

  1.     Write the fastest correct serial program.  

  2.     Introduce Cilk +  +  key words to make the program parallel.  
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  3.     Use the Cilkscreen race detector to fi nd and correct any data races.  

  4.     Use the Cilkscreen performance profi ler to predict performance, looking for 
ways to reduce the span to increase the parallelism.     

   6.3.4    Applying Cilk +  +  to Matrix – Matrix Multiplication 

 Listing 6.2 shows the pseudocode for the matrix – matrix multiplication algorithm.

  Listing 6.2   The pseudocode for the standard algorithm for multiplying two  n     ×     n  
matrices,  A  and  B , to produce matrix  C  is given by   

 multiply ( A ,  B ,  C ,  n ) { 
 if n  =  1 then 
     C   =   A   *   B  
 else 
    for  i   =  0;  i     <     n ;  i  +  +  do 
       for  j   =  0;  j     <     n ;  i  +  +  do 
          for  k   =  0;  j     <     n ;  k  +  +  do 
              C ( i ,  j )  =   C ( i ,  j )  +   A ( i ,  k )  *   B ( k ,  j ) 
          end for 
       end for 
    end for 
 end if 
 return C 
 }.   

 This algorithm requires  n  3  multiplications and ( n     −    1) n  2  additions. We can partition 
our input matrices and the product would be given by
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.     (6.1)   

 The parallelized pseudocode for partitioned matrix – matrix multiplication using 
Cilk +  +  would be given by Listing 6.3. The code requires the defi nition of two func-
tions,  multiply()  and  add() . Notice that each of these functions calls itself 
recursively.

  Listing 6.3   Pseudocode for Cilk +  +  parallelization of the partitioned matrix – matrix 
multiplication algorithm   

 1: multiply ( A ,  B ,  C ,  n ) { 
 2: if  n   =  1 then 
 3:     C   =   A   *   B  
 4: else 
 5:    define a temporary matrix  T  
 6:    partition  A ,  B ,  C  and  T  into  n /2    ×     n /2 submatrices 
 7:     cilk_spawn  multiply ( A  11 ,  B  11 ,  C  11 ,  n /2) 
 8:     cilk_spawn  multiply ( A  11 ,  B  12 ,  C  12 ,  n /2) 
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 9:     cilk_spawn  multiply ( A  21 ,  B  11 ,  C  21 ,  n /2) 
 10:     cilk_spawn  multiply ( A  21 ,  B  12 ,  C  22 ,  n /2) 
 11:     cilk_spawn  multiply ( A  11 ,  B  11 ,  C  11 ,  n /2) 
 12:     cilk_spawn  multiply ( A  11 ,  B  12 ,  T  12 ,  n /2) 
 13:     cilk_spawn  multiply ( A  21 ,  B  11 ,  T  21 ,  n /2) 
 14:     cilk_spawn  multiply ( A  21 ,  B  12 ,  T  22 ,  n /2) 
 15:     cilk_sync  
 16:     cilk_spawn  add( C ,  T ,  n ) 
 17:     cilk_sync  
 18: end if 
 19: return  C  
 20: } 
 21: 
 22: add( C ,  T ,  n ){ 
 23: if  n   = 1 then 
 24:     C   =   C   +   T  
 25: else 
 26:    partition  B , and  T  into  n /2    ×     n /2 submatrices 
 27:     cilk_spawn  add ( C  11 ,  T  11 ,  n /2) 
 28:     cilk_spawn  add ( C  12 ,  T  12 ,  n /2) 
 29:     cilk_spawn  add ( C  21 ,  T  21 ,  n /2) 
 30:     cilk_spawn  add ( C  22 ,  T  22 ,  n /2) 
 31:     cilk_sync 
  32: end if 
 33: }   

 Line 6 will defi ne the partitioning of the matrices into submatrices. Lines 7 – 17 
produce eight strands, and each strand is in charge of doing a  n /2    ×     n /2 matrix 
multiplication. Each submatrix multiplication operation produces its own strands 
to multiply smaller partitioned matrices of size  n /4    ×     n /4. And this is done 
recursively. 

 We do not do the fi nal add on line 16 until all the strands on lines 7 – 14 have 
fi nished their operations. Similarly, the addition of the resulting partial matrices is 
done in a hierarchical fashion as shown by lines 22 – 33 of the algorithm.   

   6.4     O  pen  MP  

 OpenMP   is a concurrency platform for multithreaded, shared - memory parallel 
processing architecture for C, C +  + , and Fortran. By using OpenMP, the programmer 
is able to incrementally parallelize the program with little programming effort. 
The programmer manually inserts compiler directives to assist the compiler into 
generating threads for the parallel processor platform. The user does not need to 
create the threads nor worry about the tasks assigned to each thread. In that sense, 
OpenMP is a higher - level programming model compared with  pthreads  in the 
POSIX library. 

 At the current state of the art, there is something to be gained using manual 
parallelization. Automatic parallelizing compilers cannot compete with a hand -
 coded parallel program. OpenMP uses three types of constructs to control the 
parallelization of a program  [69] : 
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  1.     Compiler directives  

  2.     Runtime library routines  

  3.     Environment variables    

 To compile an OpenMP program, one would issue the command

 gcc  - openmp file.c  - o file.  

   Listing 6.4   The following pseudocode is a sketch of how OpenMP parallelizes a 
serial code  [69]   : 

 1: #include  < omp.h >  
 2: main () { 
 3:    int var1, var2, var3; 
 4:    Serial code executed by master thread 
 5:     �  
 6:    #pragma omp parallel private(var1, var2) 
shared(var3) 
 7:    { 
 8:       Parallel section executed by all threads 
 9:        �  

 10:    } 
 11:    Resume serial code 
 12: }   

 Line 1 is an include fi le that defi nes the functions used by OpenMP. Lines 2 – 5 
is a serial code just like in any C or C +  +  program. Line 6 is an OpenMP compiler 
directive instructing the compiler to parallelize the lines of code enclosed by the 
curly brackets spanning lines 7 – 10. The directive  fork s a team of threads 
and specifi es variable scoping; some variables are private to each thread, and 
some are shared between the threads  . Another name for a compiler directive is 
 pragma . 

 Line 7 is the start of the parallel code block indicated by the left curly bracket. 
The code block is duplicated and all newly forked threads execute that code in paral-
lel. Line 8 is the start of parallel section instructions. Line 10 is the end of the parallel 
code block indicated by the right curly bracket. All threads join the master thread 
and disband. Lines 11 – 12 are the start of another serial code block. 

 Figure  6.2  shows breaking up a serial single - thread code into multithreads. 
Figure  6.2 a shows the original serial code composed of several code sections as 
indicated by the numbered blocks. Indicated on the fi gure also are the compiler 
directives manually inserted by the programmer at the start of a group of code sec-
tions instructing the compiler to fork threads at this point. Figure  6.2 b shows how 
the compiler forks as many threads as required to parallelize each code section that 
follows each compiler  fork  directive. A  join  synchronization compiler directive 
ensures that the program resumes after the parallel threads have fi nished executing 
their tasks. There is a master thread, indicated by the solid thick line, which forks 
the other threads. Each thread is identifi ed by an  “ ID ”  integer and the master thread 
has an ID value of  “ 0 ” .   
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 OpenMP consists of the following major components: 

   •      Compiler directives instructing the compiler on how to parallelize the code  

   •      Runtime library functions to modify and check the number of threads and to 
check how may processors there are in the multiprocessor system  

   •      Environment variables to alter the execution of OpenMP applications    

 Like Cilk +  + , OpenMP does not require restructuring the serial program. The 
use only needs to add compiler directives to reconstruct the serial program into a 
parallel one. 

   6.4.1     O  pen  MP  Compiler Directives 

 The user tells the compiler to recognize OpenMP commands by adding   - omp  on 
the cc command line. Compiler directives allow the programmer to instruct the 
compiler on issues of thread creation, work load distribution, data management, and 
thread synchronization. The format for an OpenMP compiler directive is

 #pragma omp directive_name [clause,  ·   ·   ·  ] 
newline_character.  

 Notice that each directive could have a collection of clauses. Table  6.1  sum-
marizes some of the OpenMP pragma directives 

   Listing 6.5   The following code fragment shows how  #omp comp parallel  
compiler directive is sued to fork additional threads to execute the tasks specifi ed 
by the affected code section  : 

     Figure 6.2     Breaking up a serial code into parallel threads. (a) Original serial code that has one 
master thread. (b) Forking parallel threads to be executed concurrently.  
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 #pragma omp parallel default(shared) private(a, b) 
 { 
    // The code between brackets will run in parallel 
    statement 1; 
    statement 2; 
    statement 3; 
        �  
    }    

   6.4.2    Compiler Directive Clauses 

 Some of the compiler directives use one or more clauses. The order in which clauses 
are written is not important. Most clauses accept a comma - separated list of items. 
Clauses deal with different types of compiler directives: data sharing among the 
threads. Other clauses deal with data copying of a private variable value from a 
thread to a corresponding variable in another thread. 

 The following table shows some directives and their associated clauses. 

  Directive    Clause  
  Parallel    Copying, default, private, fi rstprivate, reduction, shared  
  Sections    Private, fi rstprivate, lastprivate, reduction, schedule  
  Section    Private, fi rstprivate, lastprivate, reduction  
  Critical    None  
  Barrier    None  
  Atomic    None  
  Flush ( list )    None  
  Ordered    None  
  Threadadaptive ( list )    None  

  Table 6.1    Some  O  pen  MP  Pragma Directives 

   OpenMP pragma directive     Description  

  #pragma omp atomic    Defi nes a memory location to be updated atomically  
  #pragma omp barrier    Synchronizes all the threads in a parallel region  
  #pragma omp critical    Defi nes the code section that follows the directive to be 

executed by a single thread at a time  
  #pragma omp fl ush    Synchronization directive to ensure all threads in a parallel 

region have the same view of specifi ed objects in 
memory  

  #pragma omp for    Specifi es that the for loop iterations should be run in 
parallel using multiple threads  

  #pragma omp parallel    Defi nes a parallel code region to be run by multiple 
threads; the original process will be the master thread  

  #pragma omp parallel do    Splits up the loop iterations among threads  
  #pragma omp parallel for    Similar to  parallel do  pragma  



116 Chapter 6 Concurrency Platforms

 The following table explains some of the directive clauses mentioned above. More 
clauses are explained in Section  6.4.4 . 

   Clause     Description  
   default  ( mode )    Controls the default data sharing attributes of variables. 

Mode could be  private ,  shared , and  none .  
   shared  ( list )    Lists items to be shared by threads generated by 

 parallel  or  task  compiler directives, for 
example, 

  #pragma omp parallel default(shared)   
   copyin  ( list )    Copies the values of the list items from the master 

thread to the other parallel worker threads  
   num_threads  

( integer_expr )  
  Requests the number of threads specifi ed by the  integer 

expression   

   6.4.3     O  pen  MP  Work Sharing 

 The work sharing directives control which threads execute which statements. 
These directives do not fork new threads. The two directives are  #pragma omp 
for  and  #pragma omp sections . We discuss these two directives in the 
following sections.  

   6.4.4    Loop Directive:  for  

 Most parallel algorithms contain FOR loops, and we dedicate this section to discuss-
ing the compiler directive related to FOR loops. The format of the  for  compiler 
directive is 

 #pragma omp for [ clause   ·   ·   ·  ]  newline .  

 There are several  clauses  associated with the  for  compiler directive as shown in 
Table  6.2 .   

 When the schedule clause is  schedule(static, 3) , iterations are divided 
into pieces of size 3 and are assigned to threads in a round - robin fashion ordered by 
the thread number. 

 When the schedule clause is  schedule(dynamic, 3) , iterations are divided 
into pieces of size 3 and are assigned to next available thread. When a thread com-
pletes its task, it looks for the next available chunk. 

 The following is a code fragment showing a compiler directive to parallelize a 
 for  loop that adds two vectors,  a  and  b , and produces the output vector  c . Notice 
that the iterations within the loop body are independent and can be executed 
concurrently.
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  Listing 6.6   The  reduction  and  schedule  clauses are used  [69]   : 

 1: #include  < omp.h >  
 2: #include  < stdio.h >  
 3: #include  < stdlib.h >  
 4: 
 5: int main (int argc, char  * argv[]){ 
 6:    int i, n; 
 7:    float a[100], b[100], sum; 
 8:    n  =  100; 
 9:    for (i = 0; i    <    n; i +  + ) 

 10:       a[i]  =  b[i]  =  i * 1.0; 
 11:    sum  =  0.0; 
 12: 
 13:    #pragma omp parallel for schedule(dynamic,16) 
reduction( + :sum) 
 14:    for ( i   =  0;  i     <    64;  i  +  + ) 
 15:       sum  =  sum  +  (a(i) *  b(i)); 
 16:    printf(  “ sum  =  %f\n ” , sum); 
 17: }   

 Line 13 is the compiler directive to parallelize the FOR loop that follows on 
line 14. Dynamic scheduling of threads is chosen and the chunk size for each itera-
tion is set at 16 iterations of the loop. The reduction operator applies the addition 
operation to the  sum  variable. Figure  6.3  shows how the code above is broken into 
threads that execute in parallel.

  Table 6.2    Open MP  Loop Compiler Directive Clauses 

   #pragma omp for Clauses     Description  

  schedule ( type  [, chunk 
size])  

  Schedule type could be static or dynamic. It describes how the 
work is divided among the threads. Number of loop 
iterations done by each thread equals chunk size.  

  private ( list )    List of variables private to each thread.  
  fi rstprivate ( list )    Variables are initialized with the value before entering the 

block or region.  
  lastprivate ( list )    Variables are updated going out of a block or region.  
  shared ( list )    List of variables shared among the threads.  
  reduction( operator: list )     Perform a reduction on the variables specifi ed by the  list  using 

the  operator . The operator could be:  + ,  * ,  - ,  & , |,  ∧ ,  &  & ,  || . 
  Operator works on thread outputs when all of them fi nish 
execution.    

  collapse ( n )      
  nowait    Threads do not synchronize at the end of the parallel 

FOR - loop.  
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    Listing 6.7   The following example illustrates using the  parallel  and 
 parallel for  constructs to implement two fi nite impulse response (FIR) fi lters, 
both of length  n     =    40  : 

 1: #pragma omp parallel default (none) \ 
 2:    shared (x, m, n) private (i, j, h1, h2, y1, y2) 
 3: { // start of parallel region 
 4:    #pragma omp for nowait 
 5:    for ( i   =  0;  i     <     m ;  i  +  + ) { 
 6:       for ( j   =  0;  j     <     n ;  j  +  + ) 
 7:          y1(i)  =  y1(i)  +  h1(j)  * x(i - j); 
 8:    } 
 9:    #pragma omp for nowait 

 10:    for ( i   =  0;  i     <     m ;  i  +  + ) { 
 11:       for ( j   =  0;  j     <     n ;  j  +  + ) 
 12:          y2(i)  =  y2(i)  +  h2(j)  * x(i - j); 
 13:    } 
 14: } // end of parallel region   

 Notice the backslash (\) at the end of line 1. This is needed as a line continuation 
character to accommodate the clauses for the  parallel  directive. 

 Line 1 identifi es to the compiler a parallel region of code as delineated by the 
curly brackets starting at line 3 and ending at line 14. The  default (none)  clause 
defi nes the default data scope of variables in each thread. There are two options with 
this clause:  none  and  shared . 

 In line 2, the  shared (x, m, n)  clause declares the scope of the comma -
 separated data variables in the list to be shared across all threads. The  private 
(i, j, h1, h2, y1, y2)  clause declares the scope of the comma - separated data 
variables in the list to be private to each thread. 

 Line 4 is a compiler directive used to parallelize the FOR loop statement in Line 
5  . Notice that each iteration of the outer FOR loop is a nested FOR loop  . This means 
that the outer loop will execute in parallel using several threads, and each thread 
will execute the inner loop in a serial fashion. The  nowait  clause indicate that the 
threads do not synchronize at end of the outer FOR loop. This avoids the implied 
barrier at the end of the  for  compiler directive. Nesting parallelism might or might 
not be supported. The programmer determines if nesting is supported by the  omp_
get_nested()  library function. Enabling of nesting, when supported, can be 

     Figure 6.3     Parallelizing a FOR loop into threads that 
execute in parallel.  

Master  
thread
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accomplished by  omp_set nested()  library routing or by setting the  OMP_
NESTED  environment variable to  TRUE . 

 Line 9 is similar to line 4.  

   6.4.5    Loop Directive:  sections  

   Listing 6.8   Several blocks are executed in parallel using the  sections  
directive  : 

 1: #pragma omp parallel 
 2: { 
 3:    #pragma omp sections [clause [  ·  ·  · ]] newline 
 4:    { 
 5:       #pragma omp section 
 6:          { 
 7:             structured block # 1 statements 
 8:          } 
 9:       #pragma omp section 

 10:          { 
 11:             structured block # 2 statements 
 12:          } 
 13:       #pragma omp section 
 14:          { 
 15:             structured block # 3 statements 
 16:          } 
 17:       } 
 18: }   

 Line 1 directs the compiler to parallelize the block enclosed by the curly 
brackets starting at line 2 and ending at line 18. 

 Line 3 directs the compiler to execute the sections that follow in separate 
threads. Line 5 defi nes the fi rst section between lines 6 and 8 to be executed by one 
thread. Line 9 defi nes the fi rst section between lines 10 and 12 to be executed by 
one thread. Line 13 defi nes the fi rst section between lines 14 and 16 to be executed 
by one thread.  

   6.4.6    Runtime Library Routines 

 The header fi le  <  omp.h  >  contains the prototypes of the routines. Runtime library 
routines control the parallel execution environment, control and monitor threads, 
and control and monitor processors  [70] . 

 Execution environment routines include

 void omp_set_num_threads (int  num_threads );  

 which controls the number of threads used for the subsequent parallel regions that 
do not have a  num_threads  clause. 
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 The library has lock routines to synchronize access to data. A type  omp_loc_t  
is defi ned as an object type capable of representing a lock and of assigning the lock 
to a thread. OpenMP runtime library functions are 

   Library routine     Description  
   double omp_get_wtime 

(void);   
  Return elapsed wall clock time in seconds.  

   double omp_get_wtick 
(void);   

  Return the precision of the time used by the 
 omp_get_wtime  function.  

   omp_set_num_threads     Set the number of threads:  
       Omp_set_num_threads ( 4 ); // 

fork four parallel threads   
   omp_get_num_threads     Get the number of threads.  
   omp_get_num_procs     Get the number of processors:  processors 

 =    omp_get_num_procs();   

   6.4.7    Environment Variables 

 Environment variables are used to alter the execution of OpenMP applications. Some 
of the functions of environment variables include 

   •      number of threads,  

   •      type of scheduling policy,  

   •      nested parallelism, and  

   •      thread limit.    

 Environment variable names are upper case and the values assigned to them are case 
insensitive. Some environment variables are 

   #pragma omp for clauses     Description  
   OMP_NUM_THREADS   num     Specifi es the number of threads to be forked  
   OMP_DYNAMIC  [ true — false ]    Dynamically adjusts the number of threads in a 

parallel region  
   OMP_THREAD_LIMIT   limit     Controls the maximum number of threads in the 

OpenMP program  

 To specify a certain environment variable, the user includes lines in C/C +  +  code:

 setenv OMP_NUM_THREADS 4.  

 This instructs the compiler to generate four threads when needed.  

   6.4.8     O  pen  MP  Synchronization 

 Lock control routines synchronize the execution of threads to guarantee data read/
write integrity among the parallel threads. OpenMP offers compiler directives to 
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control the execution of threads through synchronization. The programmer must 
guard against synchronization deadlocks. OpenMP has fi ve synchronization direc-
tives:  critical, ordered, atomic , flush,  and  barrier . 

 There is an implicit barrier at the end of parallel constructs like  omp for  or 
 omp parallel . This implicit synchronization can be removed with the  nowait  
clause as we saw earlier. We can explicitly specify a synchronization barrier as 
explained in the following sections. 

   critical  Directive 

 The  critical  directive instructs that the threads executing some parallel code halt 
execution upon reaching the directive. A thread will execute the code section fol-
lowing the  critical  directive when no other thread is executing it. 

 The code below is for the  critical  directive, which specifi es a region of code 
that must be executed by one thread at a time. This ensures that a critical section is 
executed by one thread without interruptions from the other threads.

 #pragma omp critical [ name ]  newline  
 structured block  

 The  name  in the above code allows for multiple critical sections to exist. Listing 
6.9 illustrates multiple critical sections.

  Listing 6.9   An example of use of critical section  . 

 1: #include  < omp.h >  
 2: main (){ 
 3:    int x  =  0; 
 4:    #pragma omp parallel 
 5:    { 
 6:       statements 
 7:        �  
 8:       #pragma omp critical 
 9:       x  =  x + 1; 

 10:       statements 
 11:        �  
 12:    } 
 13: }   

 Line 4 indicates that the following code section is to be done in parallel by all 
threads. This code spans lines 6 – 11. However, line 8 indicates that the statement on 
line 9 must be executed by exactly one thread at a time and all other threads that 
reach that line must wait.  

   barrier  Directive 

 The  barrier  directive synchronizes all the threads. When a thread reaches the 
 barrier , it will wait until all the other threads have reached their barrier, after 
which all threads resume executing the code following the barrier in parallel:
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 #pragma omp barrier  newline .  

 When a barrier directive is reached by a thread, it will wait until all other threads 
have reached the barrier too. After that, all threads will start to process the parallel 
code that follows the barrier.    

   6.5    COMPUTE UNIFIED DEVICE 
ARCHITECTURE ( CUDA ) 

 CUDA is a software architecture that enables the graphics processing unit (GPU) to 
be programmed using high - level programming languages such as C and C +  + . The 
programmer writes a C program with CUDA extensions, very much like Cilk +  +  and 
OpenMP as previously discussed. CUDA requires an NVIDIA GPU like Fermi, 
GeForce 8XXX/Tesla/Quadro, and so on. Source fi les must be compiled with the 
CUDA C compiler  NVCC   . 

 A CUDA program uses  kernels  to operate on the  data streams . Examples of 
data streams are vectors of fl oating point numbers or a group of frame pixels for 
video data processing. A kernel is executed in a GPU using parallel threads. CUDA 
provides three key mechanisms to parallelize programs  [71] : thread group hierarchy, 
shared memories, and barrier synchronization. These mechanisms provide fi ne -
 grained parallelism nested within coarse - grained task parallelism. 

 The following defi nitions defi ne the terms used in CUDA parlance: 

 Defi nition 6.1     The host or central processing unit (CPU) is the computer that 
interfaces with the user and controls the device used to execute the data - parallel, 
compute - intensive portion of an application  . The host is responsible for executing 
the serial portion of the application.  

  Defi nition 6.2     The GPU is a general - purpose graphics processor unit capable of 
implementing parallel algorithms.  

  Defi nition 6.3     Device is the GPU connected to the host computer to execute the 
data - parallel, compute - intensive portion of an application. The device is responsible 
for executing the parallel portion of the application.  

  Defi nition 6.4     Kernel is a function callable from the host computer and executed 
in parallel on the CUDA device by many CUDA threads.   

 The kernel is executed simultaneously by many (thousands of) threads. An 
application or library function might consist of one or more kernels  [72] . Fermi can 
run several kernels at a time provided the kernels belong to the same application 
context  [73] . A kernel can be written in C language with additional key words to 
express parallelism. 

 The thread and memory hierarchies are shown in Fig.  6.4 . 

  1.     A thread at the lowest level of the hierarchy  

  2.     A block composed of several concurrently executing threads  
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  3.     A grid composed of several concurrently executing thread blocks  

  4.     Per - thread local memory visible only to a thread  

  5.     Per - block shared memory visible only to threads in a given block  

  6.     Per - device global memory      

 Notice that each thread has its own  local memory  as well as  registers , as shown 
at the top of the diagram. The registers are on - chip and have small access time. The 
per - thread local memory and registers are shown by the shaded areas below each 
thread. The local memory is off - chip and is a bit slower than the registers. 

 A thread block in the middle of the diagram has its own off - chip  shared memory  
for fast and scalable interthread communication. The shared memory is private to 
that block. 

 A grid is a set of thread blocks as shown at the bottom of the fi gure. A grid has 
its per - device  global memory . This is in addition to the per - block and per - thread 
shared and local memories, respectively. The device global memory communicates 
with the host memory and is the means of communicating data between the host 
and the general - purpose graphics processor unit (GPGPU) device. 

     Figure 6.4     Thread and 
memory hierarchy. 
  ©  NVIDIA Corporation, 2008.   

Thread

Per-thread local memory

Per-block 
shared memory

Block

...

Grid 0 (kernel 0)

Grid 1 (kernel 1)
Per-device 

global memory

...

Per-thread registers



124 Chapter 6 Concurrency Platforms

   6.5.1    Defi ning Threads, Blocks, and Grids in  CUDA  

 The programmer must specify the number of threads in a block and the number of 
blocks in the grid. The number of blocks in the grid is specifi ed by the variable 
 gridDim . We can arrange our blocks into one - dimensional array and the number 
of blocks would be

 gridDim. x   =   k .  

 For example, if  k     =    10, then we have 10 blocks in the grid. 
 We can arrange the threads into a one - dimensional array of  m  threads per 

block:

 blockDim. x   =   m .  

 Each block is given a unique  ID  called  blockIdx  that spans the range 
 0    ≤    blockId    <    gridDim . 

 A picture of the thread array in each block and the block array in the grid is 
shown in Fig.  6.5 .   

 To allocate a thread to the  i th vector component, we need to specify which block 
the thread belongs to and the location of the thread within that block:

  i   =  blockIdx. x     ×    blockDim  +  threadIdx. x .  

 The variables  gridDim  and  blockIdx  are automatically defi ned and are of type 
 dim3 . The blocks in the grid could be arranged in one, two, or three dimensions. 
Each dimension is accessed by the constructs  blockIdx.x, blockId.y,  and 
 blockId.z . The following CUDA command specifi es the number of blocks in the 
 x ,  y , and z dimensions:

 dim3 dimGrid(4, 8, 1);  

 Essentially, the above command defi nes 32 blocks arranged in a two - dimensional 
array with four rows and eight columns. 

 The number of threads in a block is specifi ed by the variable  blockDim . 
Each thread is given a unique  ID  called  threadIdx  that spans the range 
 0    ≤    threadIdx    <    blockDim . The variables  blockDim  and  threadIdx  are 
automatically defi ned and are of type  dim3 . The threads in a block could be arranged 
in one, two, or three dimensions. 

 Each dimension is accessed by the constructs  threadIdx. x  ,  threadIdx. y  , 
and  threadIdx.z . The following CUDA command specifi es the number of threads 
in the  x ,  y , and z dimensions:

     Figure 6.5     Arranging  m  
threads in a block and  k  blocks 
in the grid.   ©  NVIDIA 
Corporation, 2008.   
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 dim3 dimBlock(100, 1, 1);  

 Essentially, the above command defi nes 100 threads arranged in an array with 100 
components. Figure  6.6  shows the organization and relations between the kernel, 
grid, blocks, and threads. The fi gure indicates that each kernel is associated with a 
grid in the device. The choice of thread and block dimensionality is dictated by the 
nature of the application and the data it is dealing with. The objective is for the 
programmer to use natural means of simplifying access to data.    

   6.5.2    Assigning Functions for Execution 
by a Kernel in  CUDA  

 To defi ne a function that will be executed as a kernel, the programmer modifi es the 
C code for the function prototype by placing the key word _ global_  before the 
function prototype declaration  :

 1: _global_ void kernel_function_name(function_
argument_list); 
 2:    { 
 3:        �  
 4:    }  

 Note that the _ global_  function qualifi er must return  void . The programmer 
now needs to instruct the NVCC to launch the kernel for execution on the device. 

     Figure 6.6     Relation between the kernel, grid, blocks, and threads.   ©  NVIDIA Corporation, 2008.   
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The programmer modifi es the C code specifying the structure of the blocks in the 
grid and the structure of the threads in a block by placing the declaration 
  <<< gridDim, blockDim >>>   between the function name and the function 
argument list as shown in line 7 of the following listing  :

 1: int main() 
 2: { 
 3:     �  
 4:    // Serial portion of code 
 5:     �  
 6:    // Start of parallel portion of code 
 7:     kernel_function_name <<<  gridDim, blockDim  >>> 
(function_argument_list);  
 8:    // End of parallel portion of code 
 9:     �  

 10:    // Serial portion of code 
 11:     �  
 12: }   

   6.5.3    Communication between Host and  CUDA  Device 

 The host computer has its own memory hierarchy and the device has its own separate 
memory hierarchy also. Exchange of data between the host and the device is accom-
plished by copying data between the host dynamic random access memory (DRAM) 
and the device global DRAM memory. Similar to C programming, the user must 
allocate memory on the device global memory for the data in the device and free 
this memory after the application is fi nished. The CUDA runtime system calls sum-
marized in Table  6.3    provide the function calls necessary to do these operations.   

 Figure  6.7  shows the memory interface between the device and the host  [74, 
75] . The global memory at the bottom of the fi gure is the means of communicating 

  Table 6.3    Some  CUDA  Runtime Functions 

   Function     Comment  

  cudaThreadSynchronize( )    Blocks until the device has completed all preceding 
requested tasks  

  cudaChooseDevice( )    Returns device matching specifi ed properties  
  cudaGetDevice( )    Returns which device is currently being used  
  cudaGetDeviceCount( )    Returns number of devices with compute capability  
  cudaGetDeviceProperties( )    Returns information about the compute device  
  cudaMaloc( )    Allocates an object in the device global memory; 

requires two parameters: address of a pointer to the 
object and the size of the object  

  cudaFree( )    Free object from device global memory  
  cudaMemcpy( )    Copies data from host to device; requires four 

parameters: destination pointer, source pointer, number 
of bytes, and transfer type  
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data between the host and the device. The contents of the global memory are visible 
to all threads, as the fi gure shows. The per - block shared memory is visible to all 
threads in the block. Of course, the per - thread local memory is visible only to the 
associated thread.   

 The host launches a kernel function on the device as shown in Fig.  6.8 . The 
kernel is executed on a grid of thread blocks. Several kernels can be processed by 
the device at any given time. Each thread block is executed on a streaming multi-
processor (SM). The SM executes several thread blocks at a time. Copies of the 
kernel are executed on the streaming processors (SPs) or thread processors, which 
execute the threads that evaluate the function. Each thread is allocated to an SM.    

   6.5.4    Synchronization and Communication for 
 CUDA  Threads 

 When a parallel application is running in the device, synchronization and commu-
nication among the threads must be accomplished at different levels. Synchronization 
and communication can be accomplished at different levels: 

     Figure 6.7     Memory interface between host and device.   ©  NVIDIA Corporation, 2008.   
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  1.     Kernels and grids  

  2.     Blocks  

  3.     Threads     

   6.5.5    Kernels and Grids 

 At any given time, several kernels are executing on the device. The following listing 
illustrates this point  :

 1: void main () { 
 2:     �  
 3:   kernel_1 <<< nblocks_1, blocksize_1 >>> (function_
argument_list_1); 
 4:   kernel_2 <<< nblocks_2, blocksize_2 >>> (function_
argument_list_2); 
 5:     �   

 Kernel_1 will run fi rst on the device and will defi ne a grid that contains 
 dimGrid  blocks, and each block will contain  dimblock  threads. All threads will 
run the same code specifi ed by the kernel. When kernel_1 is completed, kernel_2 
will be forwarded to the device for execution. 

 Communication between the different grids is indirect through leaving data in 
the host or device global memory to be used by the next kernel.  

     Figure 6.8     Execution of a CUDA kernel function on the device using blocks and threads courtesy 
of NVIDIA Corporation.  
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   6.5.6    Blocks 

 At any given time, several blocks are executing on the device. All blocks in a grid 
execute independent of each other. There is no synchronization mechanism between 
blocks. When a grid is launched, the blocks are assigned to the SM in arbitrary order 
and the issue order of the blocks is undefi ned. 

 Communication among the threads within a block is accomplished through the 
per - block shared memory. A variable is declared to be shared by threads in the same 
blocks by preceding the variable declaration with the keyword  _shared_ . Such 
variable will be stored in the per - block shared memory. During kernel execution, a 
private version of this variable is created in the per - thread local memory. 

 The per - block shared memory is on the same chip as the cores executing the 
thread communication is relatively fast since the static random access memory 
(SRAM) is a faster than the off - chip DRAM memories. Each thread has a direct 
access to its own on - chip registers and its off - chip per - thread local memory. Registers 
are much faster than the local memory since they are essentially a DRAM. Each 
thread can also access the per - device global memory. Communication with the off -
 chip local and global memories suffers from the usual interchip communication 
penalties (e.g., delay, power, and bandwidth).  

   6.5.7    Threads 

 At any given time, a large number of threads are executing on the device. A block 
that is assigned to an SM is divided into 32 - thread  warps . Each SM can handle 
several warps simultaneously, and when some of the warps stall due to memory 
access, the SM schedules another warp. Threads in a block can be synchronized 
using the _ synchthreads()  synchronization barrier. A thread cannot proceed 
beyond this barrier until all other threads in the block have reached it. 

 Each thread uses its on - chip per - thread registers and on - chip per - thread local 
memory. Both of these use SRAM technology, which implies small memory size 
but fast, low - power communication. Each thread also uses the off - chip global 
memory, which is slow since it is DRAM based.  

  Table 6.4    Declaration Specifi ers 

   Declaration     Comment  

  global void function( ·  ·  ·  );    Defi ne kernel function to run on device  
  device int var;    Store variable in device global memory  
  shared int var;    Store variable in per - block shared memory  
  local int var;    Store variable in per - block shared memory  
  constant int const;    Store constant in per - block constant memory  



130 Chapter 6 Concurrency Platforms

   6.5.8     CUDA   C  Language Extensions 

 A good place to explore the CUDA library is NVIDIA  [76] . The following 
subsections illustrate some of the useful key words with example codes. 

 Declarations specify where things will live, as shown in Table  6.4 .   
 The CUDA runtime application program interface (API) serves for manage-

ment of threads, device, and memory. The runtime API also controls the execu-
tion of the threads. Some of the runtime functions to control the operation of 
CUDA were listed in Table  6.3 . The CUDA library documentation can be found in 
NVIDIA  [76] .       

 



  Chapter 7 

Ad Hoc Techniques for 
Parallel Algorithms     

    7.1    INTRODUCTION 

 This chapter discusses several ad hoc techniques used to implement parallel algo-
rithms on parallel computers. Most of these techniques dealt with what is called 
embarrassingly parallel algorithms  [2]  or trivially parallel algorithms  [29] . Parallel 
algorithms are expressed using loops. The simplest of these algorithms can be paral-
lelized by assigning different iterations to different processors or even by assigning 
some of the operations in each iteration to different processors  [29] . 

 The techniques presented here do not deal effi ciently with data dependencies. 
Unless the algorithm has no or very simple data dependence, it would be a challenge 
to correctly implement the algorithm in software using multithreading or in hardware 
using multiple processors. It will also be challenging to optimize interthread or 
interprocessor communications. In Chapters  9  –  11 , we introduce formal techniques 
to deal with such algorithms. This chapter deals with what is termed  “ embarrassingly 
parallel ”  or  “ trivially parallel ”  algorithms. We should caution the reader, though, 
that some of these algorithms are far from trivial or embarrassingly simple. The full 
design space becomes apparent only by following the formal techniques discussed 
in Chapters  9  –  11 . Take for example the algorithm for a one - dimensional (1 - D) fi nite 
impulse response (FIR) digital fi lter given by the equation
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=
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∑
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    (7.1)  

where  a (  j ) are the fi lter coeffi cients and  I  is the fi lter length. Such an equation is 
described by two nested loops as shown in Algorithm 7.1.
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  Algorithm 7.1     1 - D FIR digital fi lter algorithm 

  Require:  Input: fi lter coeffi cients  a ( n ) and input samples  x ( n ) 

  1:      y ( n )    =    0  

  2:      for   i     ≥    0  do   

  3:            y ( i )    =    0  

  4:            for   j     =    0 :  I     −    1  do   

  5:                  y ( i )    =     y ( i )    +     a (  j ) x ( i     −     j )  

  6:            end for   

  7:            RETURN   y ( i )  

  8:      end for       

 The iterations in the nested loops are independent, and it is fairly easy to apply 
the techniques discussed here. However, these techniques only give one design 
option compared to the techniques in Chapters  9  –  11 . 

 Take another example for a 1 - D infi nite impulse response (IIR) digital fi lter 
given by the equation

    y i a j x i j b j y i j
j

I

( ) ( ) ( ) ( ) ( ) ,= − − −[ ]
=

−

∑
0

1

    (7.2)  

where  a (  j ) and  b (  j ) are the fi lter coeffi cients and  I  is the fi lter length. Note that 
 b (0)    =    0 in the above equation. Such an equation is described by two nested loops 
as shown in Algorithm 7.2.

  Algorithm 7.2     1 - D IIR digital fi lter algorithm 

  Require:  Input: fi lter coeffi cients  a ( n ) and  b ( n ) and input samples  x ( n ) 

  1:      y ( n )    =    0  

  2:      for   i     ≥    0  do   

  3:            y ( i )    =    0  

  4:            for   j     =    0 :  I     −    1  do   

  5:                  y ( i )    =     y ( i )    +     a (  j ) x ( i     −     j )    −     b ( j ) y ( i     −     j )  

  6:            end for   

  7:            RETURN   y ( i )  

  8:      end for       

 Although this algorithm has two simple nested FOR loops, the data dependen-
cies within the loop body dictate that the evaluation of  y ( i ) be serial. The techniques 
of this chapter will not be feasible here. However, the techniques of Chapters  9  –  11  
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will allow us to explore the possible parallelization techniques for this seemingly 
serial algorithm.  

   7.2    DEFINING ALGORITHM VARIABLES 

 We defi ne three types of variables in an algorithm: 

   •      Input variables  

   •      Output variables  

   •      Intermediate or input/output ( I /O) variables    

 An input variable is one that has its instances appearing only on the right - hand 
side (RHS) of the equations of the algorithm.  a (  j ),  b (  j ), and  x ( i     −     j ) in Eq.  7.1  are 
examples of input variables. An output variable is one that has its instances appear-
ing only on the left - hand side (LHS) of the algorithm. The IIR algorithm does not 
have output variables as such. An intermediate variable is one that has its instances 
appearing both on the LHS and on the RHS of the equations of the algorithm. 
Variable  y ( i ) in Eq.  7.2  is an example of an intermediate  I /O variable. We consider 
an intermediate variable as being both an input or output variable with different 
index dependencies for each side of the iteration statement. This will be discussed 
in more detail in the next two sections. We will see in Chapter  12  how we are able 
to extract a parallel execution for any algorithm using the formal techniques we 
present in the following chapters.  

   7.3    INDEPENDENT LOOP SCHEDULING 

 An independent loop is one that does not contain intermediate or  I /O variables. The 
iterations in an independent loop can be carried out in any order and can still produce 
the correct results. The FIR digital fi lter is an example of parallel algorithms that 
can be described by an independent loop. The following equations describe 1 - D, 
two - dimensional (2 - D), and three - dimensional (3 - D) FIR fi lters used to process 
voice, image, and video data, respectively:
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where  I  is the fi lter length,  W  is the width of the fi lter window,  H  is the height of 
the fi lter window, and  F  is the number of frames in the fi lter window. All the vari-
ables in the above equations are either an input or output type. 
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 Another example of algorithms that result in independent loops is matrix – vector 
multiplication ( c     =     Ab ) and matrix – matrix multiplication ( C     =     AB ):

    c i A i j b j i I
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 Consider for illustration the 1 - D FIR in Eq.  7.1 . If we had  N  processors and  I     >     N , 
then we could assign  ⎡  I / N  ⎤  loop iterations to each processor to ensure equal processor 
load balancing. Processor  k  is assigned to produce output variables  y ( i ), where  i  and 
 k  are related by

    k i N i I= ⎣ ⎦ ≤ </ .0     (7.8)  

The speedup of algorithm implementation on  N  parallel processors is 
estimated as

    Speedup( , )
/

.I N
I

I N
=

⎡⎢ ⎤⎥
    (7.9)    

   7.4    DEPENDENT LOOPS 

 A dependent loop is one that contains intermediate or  I /O variables such that the 
variable has different index dependences on both sides of the iteration statements. 
As an example, the loop in Listing 7.1 is a dependent loop, but the  I /O variable has 
the same index independence on both sides. Each iteration of the loop can be done 
independently of the other iterations.

   Listing 7.1    A dependent loop where its iterations are independent 

 1:  for   i   =  1: I   do  
 2:     a ( i )  =   a ( i )  +   b ( i ) 
 3:  end for    

 On the other hand, the dependent loop in Listing 7.2 is a dependent loop, but 
the  I /O variable has different index dependencies on both sides. Each iteration of 
the loop cannot be done independently of the other iterations.

   Listing 7.2    A dependent loop where its iterations are dependent 

 1:  for   i   =  1: I   do  
 2:     a ( i )  =  a( i  - 1)  +   b ( i ) 
 3:  end for    

 Inherently, such loops would be executed serially on uniprocessor or multiprocessor 
systems. However, by using the formal techniques in Chapters  9  –  11 , we will be able 
to explore a rich set of parallel implementations of such loops. There are some 
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special and obvious cases where dependent loops can be parallelized. This is done 
through a technique called loop spreading  [77]  as explained in the next section.  

   7.5    LOOP SPREADING FOR SIMPLE 
DEPENDENT LOOPS 

 Consider the dependent loop shown in Listing 7.3, where s( i ,  j ) is some statement 
or task to be executed.

   Listing 7.3    1 - D IIR digital fi lter algorithm 

 1:  for   i   =  1: I   do  
 2:        for   j   =  1: J   do  
 3:               s( i ,  j )  =   f (s( i ,  j     −    1)) 
 4:        end for  
 5:  end for    

 where function evaluated by statement  s ( i ,  j ) depends on  s ( i ,  j     −    1). One way to 
distribute the tasks among the processors is to implement each iteration of the outer 
loop among  I  processors so that processor  i  implements all the iterations of the inner 
loop with its dependencies. We could increase the workload for each processor by 
allocating more than one iteration of the outer loop for each processor using a similar 
technique to the one explained in Section  7.3 .  

   7.6    LOOP UNROLLING 

 Loop unrolling transforms a loop into a sequence of statements. It is a parallelizing 
and optimizing compiler technique  [29]  where loop unrolling us used to eliminate 
loop overhead to test loop control fl ow such as loop index values and termination 
conditions. The technique was also used to expose instruction - level parallelism  [20] . 
Consider the loop shown in Listing 7.4    [20] :

   Listing 7.4    Exposing potential parallelism by loop unrolling 

 1:  for   i   =  1: I   do  
 2:        y ( i )  =   y ( i )  +   y ( i     −    5) 
 3:  end for    

 We note that the output version of the intermediate variable  y ( i ) depends on its 
current value  y ( i ) and a value that is distant 5, that is,  y ( i     −    5). The loop can be 
unrolled to execute fi ve statements in parallel as shown in Listing 7.5  [20] .

   Listing 7.5    Exposing potential parallelism by loop unrolling. 

 1:  for   i   =  1:5: I   do  
 2:        y ( i )  =   y ( i )  +   y ( i  - 5) 
 3:        y ( i   +  1)  =   y ( i   +  1)  +   y ( i  - 4) 
 4:        y ( i   +  2)  =   y ( i   +  2)  +   y ( i  - 3) 
 5:        y ( i   +  3)  =   y ( i   +  3)  +   y ( i  - 2) 
 6:        y ( i   +  4)  =   y ( i   +  4)  +   y ( i  - 1) 
 7:  end for    
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 Now we can execute fi ve statements of the loop at each iteration and gain a speedup 
ratio of 5.  

   7.7    PROBLEM PARTITIONING 

 Problem partitioning breaks up the computation task into smaller parts or subtasks 
that take less time to compute. Partitioning strives to generate subtasks that have the 
same size. Partitioning works best, of course, for trivially parallel algorithms. 
Otherwise, the subtasks will not execute in parallel. The challenge now shifts to how 
to combine the results of the subtasks to obtain the fi nal result. 

 Take the simple example of adding  K  numbers using  N  processors:
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 Since addition is associative and distributive, we can break up the problem into 
 N  tasks where each task requires adding  s     =    | K / N | numbers on each processor:
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 Figure  7.1  shows a schematic representation of the partitioning technique. The 
original task or problem is partitioned into small equal portions that should execute 
faster. The number of partitions would typically equal the number of available 
processors.   

 After these additions are complete, we are faced with  N  partial sums that must 
be combined. One processor could be used to add those  N  partial sums. The task 
would be simple if the partial sums were stored in a shared memory. The task would 
take longer if the sums were stored in a distributed memory since  N  messages would 
have to be exchanged between the processors. 

     Figure 7.1     Problem partitioning divides the 
problem into  N  equal - sized subtasks. In this case, 
 N     =    8.  

Original problem

Subtask or subproblem
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 Let us attempt to fi nd the time required to complete the computation using the 
partitioning technique. Assuming time to add two pairs of numbers is  τ   a  , the com-
putation delay is given by

    T sc a= −( ) .1 τ     (7.13)   

 The communication delay  T m   is the time required to send  N     −    1 messages for the 
partial results to one processor:

    T Nm m= −( ) ,1 τ     (7.14)  

where  τ   m   is the time to exchange a message between two processors. The total time 
to complete the task would be given by

    T N sN total m a, ( ) ( ) .= − + −1 1τ τ     (7.15)   

 Typically,  τ   a      <<     τ   m   for multiprocessors, while  τ   a      ≈     τ   m   for multicore processors 
and  s     >>     N . It would be worthwhile at this point to recall the results of Section  1.8  
and, in particular, Fig.  1.7 , which discusses parallel computer speedup and how it 
relates to the communication - to - computation ratio  R . We saw that we reap the benefi t 
of parallel computing when  R     <    0.01. Therefore, we must ensure the following 
inequality:

    T Tc m�     (7.16)  

    K N m

a

� 2 τ
τ

.     (7.17)   

 For example, if the ratio  τ   m  / τ   a      =    1,000 and  N     =    8, then we gain only for problem 
sizes of 10 7  numbers to be added.  

   7.8    DIVIDE - AND - CONQUER (RECURSIVE 
PARTITIONING) STRATEGIES 

 Divide - and - conquer techniques partition the problem into subtasks of the same size, 
but it iteratively keeps repeating this process to obtain yet smaller problems. In that 
sense, divide and conquer iteratively applies the problem partitioning technique as 
shown in Fig.  7.2 . Divide and conquer is sometimes called recursive partitioning. 
Typically, the problem size  N  is an integer power of 2 and the divide - and - conquer 
technique halves the problem into two equal parts during each iteration.   

 Let us apply the divide - and - conquer technique to the problem of adding  K  
numbers in Eq.  7.10 . Assume that we have  N     =    8 processors. Since  N     =    2 3 , the 
divide - and - conquer technique progresses through three iterations and the size of the 
subtask allocated to each processor is

    s
K

N
= .     (7.18)   
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 Figure  7.3  shows how adding the  K  numbers progresses among the processors. The 
size of the smallest task allocated to each processor is  s     =    128/8    =    16. Thus, each 
processor has to add 16 numbers. This is shown at the bottom of the diagram at level 
0. At the end of processing at level 0,  N     =    8 temporary results are produced. At level 
1, these eight results are added by selecting four processors as shown to produce 
four partial results. Level 2 sums the four partial results to produce two partial 
results  . Level 3 produces the desired output  c .   

 Let us attempt to fi nd the time required to complete the computation using the 
divide - and - conquer technique. Assuming the time to add two pairs of numbers is  τ   a  , 
the computation delay is given by

    T s Nc a a= − +( ) log .1 2τ τ     (7.19)   

 The fi rst term on RHS represents delay due to adding  s  numbers by a processor 
at level 0. The second term on RHS represents addition delay due to adding a pair 
of numbers at the higher levels. 

     Figure 7.3     Divide - and - conquer 
technique applied to the problem of adding 
 K     =    128 numbers using  N     =    8 processors.  
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     Figure 7.2     Divide - and - conquer technique 
iteratively partitions the problem into  N  equal - sized 
subtasks. In this case,  N     =    8.  

Original problem

Subtask or subproblem
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 The communication delay  T m   is the time required to send messages for the 
partial results between pairs of computers.

    T Nm m= τ 2log ,     (7.20)  

where we assume that the interconnection network allows for a simultaneous 
exchange of messages between processors. 

 The total time to complete the task would be given by

    T T TN total m c, = +     (7.21)  

    = + − +τ τ τm a aN s N2 21log ( ) log     (7.22)  

    ≈ + −τ τm aN s2 1log ( ) .     (7.23)   

 We saw that we reap the benefi t of parallel computing when  R     <    0.01. Therefore, 
we must ensure the following inequality:

    T Tc m�     (7.24)  
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    (7.25)   

 For example, if the ratio  τ   m  / τ   a      =    1,000 and  N     =    8, then we gain only for problem 
sizes of 10 6  numbers to be added.  

   7.9    PIPELINING 

 We showed in Chapter  2  how pipelining enhanced the performance of uniprocessors. 
Pipelining was used in the arithmetic and logic unit (ALU) to increase the amount 
of computations to be performed per clock cycle. Pipelining was also used in 
the control unit to increase the number of instructions to be processed per clock 
cycle. 

 In general, pipelining is a very effective technique for improving system 
throughput, which is defi ned as the rate of task completion per unit time. This tech-
nique requires two conditions to be effective: 

  1.     There should be many instances of the task and all of them must be com-
pleted at a high rate.  

  2.     Each task should be divisible into several serial or parallel subtasks.    

 A pipeline executes a task in successive stages by breaking it up into smaller 
tasks. It is safe to assume that a smaller task will complete in a shorter time compared 
with the original task. 

 Examples of using pipelining to speed up the high - performance coordinate rota-
tion digital computer (HCORDIC) algorithm, which is a very powerful algorithm 
for evaluating elementary functions such as trigonometric, hyperbolic, logarithmic, 
square root, and division operations    [5 – 8] . Evaluating elementary functions is 
required in many engineering applications such as adaptive fi lters, telecommunica-
tions, scientifi c computing, and so on. Figure  7.4  shows a schematic of the data and 
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control inputs of the HCORDIC algorithm and the resulting outputs. HCORDIC 
accepts four input data.   

 The control inputs for HCORDIC are 

  1.      m , the mode ( − 1, 0, or 1), and  

  2.      Op , the desired operation (vectoring or rotation).    

 The vectoring operation changes the value of  y  0  to  f  at the output ( y  0   →   f  ). The 
rotation operation changes the value of  z  0  to 0 at the output ( z  0   →   f  ). 

 Table  7.1  shows the HCORDIC output for the vectoring operation. Choosing 
the proper values of  x  0 ,  y  0 ,  z  0 , and  f , we can obtain square root, division,  tan   − 1 , or 
 tanh   − 1  functions.   

 Table  7.2  shows the HCORDIC output for the rotation operation. Choosing the 
proper values of  x  0 ,  y  0 ,  z  0 , and  f , we can obtain sin, cos, sinh, or cosh functions.   

     Figure 7.4     Schematic of the data and control inputs 
of the HCORDIC algorithm and the resulting outputs. 
 x  0 , initial  x  - coordinate of a point in the plane;  y  0 , initial 
 y  - coordinate of a point in the plane;  z  0 , initial value of 
an angle;  f , fi nal value of  x ,  y , or  z .  
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  Table 7.1    HCORDIC Output in the Vectoring Operation 
( y     →     f ) 

         x       z   

   m     =    1           z  0     +    tan  − 1 (  y  0     −     f / x  0 )  
   m     =    0    ( y  0     −     f  )/ x  0      z  0     +    ( y  0     −     f  )/ x  0   

   m     =     − 1           z  0     +    tanh  − 1 ( y  0     −     f / x  0 )  

    x  0 ,  y  0 , and  z  0  are the initial or input values to the HCORDIC 
algorithm.   
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  Table 7.2    HCORDIC Output in the Rotation Operation ( z  0     →     f  ) 

         x n        y n    

   m     =    1     K  1 ( x  0 cos(  f     −     z  0 )    +     y  0 sin(  f     −     z  0 ))     K  1 ( y  0 cos(  f     −     z  0 )    −     x  0 sin(  f     −     z  0 ))  
   m     =    0     x  0      y  0     −     x  0 (  f     −     z  0 )  
   m     =     − 1     K   − 1 ( x  0 cosh(  f     −     z  0 )    −     y  0 sinh(  f     −     z  0 ))     K   − 1 ( y  0 cosh( z f      −     z  0 )    −     x  0 sinh( z f      −     z  0 ))  

    x  0 ,  y  0 , and  z  0  are the initial or input values to the coordinate rotation digital computer (CORDIC) 
algorithm.   
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 HCORDIC is serial and must be done through successive iterations. At iteration 
 i , the values of  x ,  y , and  z  are updated according to the following equations:
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    (7.26)  

where  δ   I   and  θ   i   are iteration constants that are stored in lookup tables. The algorithm 
performs other operations during each iteration, but we are not concerned about this 
here. 

 Now HCORDIC is amenable to pipelining since it satisfi es pipelining require-
ments: HCORDIC is composed of iterative steps, and it is required to perform many 
HCORDIC operations on many input data streams. Figure  7.5  shows the pipeline 
implementation of HCORDIC to ensure that one result is produced per iteration 
cycle. In the fi gure,  n  is the number of pipeline stages, which equals the number of 
iterations required by HCORDIC to complete its calculations. Input data are deliv-
ered as a series of input vectors. Each input vector sample contains its own data and 
the associated control information

    Data Op= [ ]x y z f m0 0 0 0 .     (7.27)     

 As each data set,  x ,  y ,  z , and  f  travels through the pipeline stages, the associated 
control information  m  and  Op  also travel to control the operation at each pipeline 
stage. In this way, we could have a vectoring operation or rotation operation applied 
to adjacent data and we could have different values of  m  also to get different output 
functions for each input data sample  . 

     7.10   PROBLEMS 

    7.1.  Consider the MAX function that fi nds the maximum number from a list of  n  numbers 
where  N  is assumed to be an integer power of 2; that is,  n     =    log 2   N . Write down the serial 
algorithm for the MAX function then explain a binary algorithm to perform the MAX 
function in parallel.   

     Figure 7.5     Pipeline implementation of HCORDIC algorithm.  
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    7.2.  Study the quicksort algorithm for sorting  N  numbers and show how the algorithm can 
be parallelized using the divide - and - conquer technique. What can you say about the 
number of parallel processors that could be employed?   

    7.3.  One way to speed up quicksort is to use more than one pivot. Let us assume that at each 
invocation of quicksort, we choose  m  pivots. Describe how this algorithm might work 
and why it would be faster than the one pivot quicksort.   

    7.4.  Find expressions for the worst and best times of the sequential  m  - pivot quicksort 
algorithm.   

    7.5.  Explain how the bubble sort algorithm can be parallelized.        

   



  Chapter 8 

Nonserial – Parallel Algorithms     

    8.1    INTRODUCTION 

 We discussed in Chapter  1  that algorithms can be classifi ed broadly as 

  1.     serial algorithms,  

  2.     parallel algorithms,  

  3.     serial – parallel algorithms (SPAs),  

  4.     nonserial – parallel algorithms (NSPAs), and  

  5.     regular iterative algorithms (RIAs).    

 This chapter discusses how to extract parallelism from NSPAs so we can imple-
ment them on parallel computer platforms. Serial, parallel, and SPAs are all rela-
tively simple to implement on parallel computer platforms. Chapters  9  –  11  are all 
dedicated to the software and hardware implementations of RIAs. That leaves NSPA 
as an interesting problem that requires a formal technique to deal with them. 

 Chapter  1  mentioned that an NSPA can contain cycles or can be cycle free. 
NSPAs can be represented by its associated directed graph (DG) or its associated 
adjacency matrix  A . When the DG contains no cycles, we get what is called directed 
acyclic graph (DAG). When a cycle is present or detected in the NSPA, we have a 
directed cyclic graph (DCG). A DCG operates on a different principle compared to 
other algorithms.  

   8.2    COMPARING  DAG  AND  DCG  ALGORITHMS 

 Figure  8.1 a is an example of a DAG algorithm and Fig.  8.1 b is an example of a 
DCG algorithm. An algorithm represented with a DAG requires a certain time to 
complete its tasks and the data fl ow is unidirectional from the inputs to the outputs. 
Thus, each task in the graph is completed once for each instance of the algorithm. 

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

143



144 Chapter 8 Nonserial–Parallel Algorithms

     Figure 8.1     Example directed graphs for nonserial – parallel algorithms. (a) Directed acyclic graph 
(DAG). (b) Directed cyclic graph (DCG).  
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When all tasks have been completed, the algorithm is terminated or another instance 
of it is started with another set of input data.   

 The DCG is most commonly encountered in discrete time feedback 
control systems such as adaptive fi lters and digital controllers for plant control. An 
example of a feedback control systems is a car automatic speed control and the 
airplane autopilot. The input is supplied to task  T  0  for prefi ltering or for input signal 
conditioning. Task  T  1  accepts the conditioned input signal and the conditioned feed-
back output signal. The output of task  T  1  is usually referred to as the error signal, 
and this signal is fed to task  T  2  to produce the output signal. An algorithm represented 
by a DCG usually operates on a set of input data streams and produces a 
set of output data streams. The time between samples is called the  sample time , 
which is equal to the maximum delay exhibited by any of the tasks   shown in 
Fig.  8.1 :

    τ τ τ τ τsample = ( )max , , , ,0 1 2 3     (8.1)  

where  τ   sample   is the sample time and  τ   i   is the execution time of task  T i  . This equation 
is similar to determining the pipeline period for a pipelined system as was discussed 
in Chapter  2 . During each sample time,  all  the tasks must be evaluated. To 
shorten the sample time and to speed up the system data rate, we must shorten the 
execution times of each task individually. Table  8.1  compares the two main types 
of NSPAs: DAG and DCG. The techniques we use to accomplish this depend on the 
nature of the algorithms or functions implemented in each task. Thus, we can use 
techniques discussed in Chapters  2 ,  9  –  11 , and  7  and in this chapter.    
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   8.3    PARALLELIZING  NSPA  ALGORITHMS 
REPRESENTED BY A  DAG  

 This chapter discusses techniques for extracting parallelism from DAG. Each task 
accepts input data and produces output results. We say a task,  T i  , is dependent on 
task  T j   if the output of  T j   is used as its input to  T i  . When the number of algorithm 
tasks is small, the algorithm can be described by a directed graph, which shows no 
regular patterns of interconnections among the tasks. Figure  8.1 a shows an example 
of representing an NSPA by a DAG. The graph is characterized by two types of 
constructs: the  nodes , which describe the tasks comprising the algorithm, and the 
 directed edges , which describe the direction of data fl ow among the tasks. The edges 
exiting a node represent an output, and when they enter a node, they represent an 
input. Chapter 1 defi ned the types of nodes and edges in a DG: input node/edge, 
output node/edge, and intermediate node/edge. 

 Figure  8.1  shows the algorithm as drawn or sketched by the programmer or 
some graphing tool. Nodes 0, 1, and 2 are the only input nodes, and nodes 7 and 9 

  Table 8.1    Comparing the Two Main Types of NSPA Algorithms 

   DAG     DCG  

  Algorithm parallelization attempts to 
determine which of the algorithm tasks 
can be executed at the same time.  

  Algorithm parallelization attempts to 
parallelize each task  independently  of the 
other tasks.  

  An algorithm instance executes once only.    An algorithm instance executes one for each 
sample time and repeats for as long as we 
have input data or for as long as we desire 
output data.  

  Input data are available initially before the 
algorithm is started.  

  Input data are supplied in a stream or as long 
as the algorithm is executing.  

  Output data are obtained typically after 
the algorithm has fi nished executing.  

  Output data are obtained in a stream as long 
as the algorithm is running.  

  The characteristic time is the algorithm 
execution time, which depends on the 
critical path.  

  The characteristic time is the  sample time .  

  The workload is the number of tasks to be 
executed ( W ).  

  The workload is  W  for  each  sample time; that 
is, all tasks execute for each time step and 
then all of them are evaluated again at the 
next time step.  

  The application domain is typically 
abstract data fairly detached from actual 
physical phenomena.  

  The application domain is typically applied 
to tangible physical phenomena to be 
controlled, such as speed, temperature, 
pressure, and fl uid fl ow.  
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are the only output nodes. The algorithm has three  primary inputs : in 0 , in 1 , and in 2 , 
and three  primary outputs : out 0 , out 1 , and out 2 .

  Example 8.1     A very popular series in computer science is the Fibonacci sequence:

   0 1 1 2 3 5 8 13, , , , , , , , .…   

 An algorithm to calculate the  n th Fibonacci number is given by

   N N Nn n n= +− −1 2 ,  

where  N  0     =    0 and  N  1     =    1. Draw a DAG to show how the task  T n   for calculating the 
 n th Fibonacci number depends on the tasks for calculating the earlier numbers.   

 From the defi nition of the  n th Fibonacci number, we can write

   T T Tn n n= +− −1 2 .   

 Take the case when  n     =    10. Figure  8.2  shows the DAG associated with this algo-
rithm. We see that the Fibonacci algorithm is a serial algorithm since no two tasks 
can be executed in parallel.  

 An algorithm has three important properties: 

  1.      Work ( W ) , which equals the number of tasks describing the algorithm. These 
describe the amount of processing work to be done. For the algorithm in Fig. 
 8.1 , we have  W     =    10.  

  2.      Depth ( D ) , which is also known as the  critical path  and  span . The depth is 
defi ned as the maximum path length between any input node and any output 
node. For the algorithm in Fig.  8.1 , we have  S     =    4 since the longest path is 
path 1    →    4    →    8    →    9 as indicated by the bold arrows.  

  3.      Parallelism ( P ) , which is also known as the  degree of parallelism  of the 
algorithm. Parallelism is defi ned as the maximum number of nodes that can 
be processed in parallel. The maximum number of parallel processors that 
could be active at any given time will not exceed  P  since anymore processors 
will not fi nd any tasks to execute. At this stage, it is hard to fi gure out  P  for 
the algorithm in Fig.  8.1 .       

     Figure 8.2     DAG associated with the algorithm for calculating the  n th Fibonacci number when 
 n     =    10.  

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
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   8.4    FORMAL TECHNIQUE FOR ANALYZING NSPAs 

 In this chapter, we will show that representing an algorithm by a DG is suitable only 
when the number of tasks comprising the algorithm is small. However, it is diffi cult 
to extract some of the algorithm properties from an inspection of the graph. 

 For example, it is simple to fi nd  W  by counting the number of nodes in the 
graph. Estimating  D  is slightly more diffi cult since it involves path search, while 
estimating  P  is even more diffi cult by inspecting the graph. 

 We need to introduce a more formal technique to deal with the case when the 
number of tasks is large or when we want to automate the process of extracting the 
algorithm  W ,  D , and  P  parameters. We will refer to the tasks of the algorithm as 
nodes since that was the term we used in the DG description. The technique we 
explain here converts the DAG of an NSPA into a DAG for an SPA. 

 Given  W  nodes/tasks, we defi ne the 0 - 1  adjacency matrix   A , which is a square 
 W     ×     W  matrix defi ned so that element  a ( i ,  j )    =    1 indicates that node  i  depends on 
node  j . The source node is  j  and the destination node is  i . Of course, we must have 
 a ( i ,  i )    =    0 for all values of 0    ≤     i     <     W  since node  i  does not depend on itself (self -
 loop) and we assumed that we do not have any loops. As an example, the adjacency 
matrix for the algorithm in Fig.  8.1  is given by

    A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0
=

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1

0 0

0 0

0 0

0 0

0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (8.2)   

 Matrix  A  has some interesting properties related to our topic. An input node  i  is 
associated with row  i , whose elements are all zeros. An output node  j  is associated 
with column  j , whose elements are all zeros. We can write

    Input node i a i j
j

W

⇒ =
=

−

∑ ( , )
0

1

0     (8.3)  

    Output node j a i j
i

W

⇒ =
=

−

∑ ( , ) .
0

1

0     (8.4)   

 All other nodes are interior nodes. Note that all the elements in rows 0, 1, and 2 are 
all zeros since nodes 0, 1, and 2 are input nodes. This is indicated by the bold entries 
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in these three rows. Note also that all elements in columns 7 and 9 are all zeros since 
nodes 7 and 9 are output nodes. This is indicated by the bold entries in these two 
columns. All other rows and columns have one or more nonzero elements to indicate 
interior nodes. If node  i  has element  a ( i ,  j )    =    1, then we say that node  j  is a parent 
of node  i .

  Example 8.2     Derive the adjacency matrix for the generation of the 10th Fibonacci 
number based on the DAG discussed in Example 8.1.   

 From the DAG, we get the following adjacency matrix:

   A( )Fibonacci =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 00 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

⎡

⎣

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

   8.4.1    Signifi cance of Powers of A  i  : 
The Connectivity Matrix 

 Let us see what happens if we raise the adjacency matrix in ( 8.2 ) to a higher power. 
We square the matrix to get matrix  A  2  defi ned as the adjacency matrix raised to the 
power 2.

    A A2
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0
≡ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 2 0 1 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (8.5)   
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 There are few nonzero entries and some entries are not 1 anymore. Element 
 a  2  (7, 0) is 1 to indicate that there is a two - hop path from node 0 to node 7. We 
call  A  2  the connectivity matrix of degree 2 to indicate that it shows all two - hop 
connections between nodes in the graph. Specifi cally, that path is 0    →    3    →    7. 
Node 7 has another two - hop path as indicated by element  a  2  (7, 1), which is path 
1    →    4    →    7. Element  a  2  (9, 2)    =    2, which indicates that there are two alternative 
two - hop paths to node 9 starting at node 2. These two paths are 2    →    5    →    9 and 
2    →    6    →    9. 

 Now let us look at the connectivity matrix of order 3, that is,  A  3 :

    A A3
3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0
≡ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (8.6)   

 Now all the elements of  A  3  are zero except for  a  3  (9, 1). This indicates that there is 
only one three - hop path between nodes 1 and 9, specifi cally, 1    →    4    →    8    →    9. Let 
us now go one step further and see the value of  A  4 :

    A A4
4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0
≡ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 0.     (8.7)   

 The fact that all elements of  A  4  are zero indicates that there are no paths with 
a length of four hops. Of course, this implies that all powers of  A   i   for  i     >    3 will be 
zero also. Thus, we can determine the critical path or paths from the highest power 
of  A  for which the result is not the zero matrix.   
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   8.5    DETECTING CYCLES IN THE ALGORITHM 

 This section explains how cycles could be detected in the algorithm using the adja-
cency matrix  A . Let us assume we modify the cycle - free algorithm in Fig.  8.1  to 
have an algorithm with a cycle in it like the one shown in Fig.  8.3 . The dashed 
arrows indicate the extra links we added. Inspecting the fi gure indicates we have a 
cycle, 3    →    7    →    5    →    8    →    3.   

 The corresponding adjacency matrix is given by

    B =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 00 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (8.8)   

 An inspection of the matrix would not reveal the presence of any cycle. In fact, 
nothing too interesting happens for powers of  B  2  and  B  3 . However, for  B  4 , the matrix 
takes on a very interesting form:

     Figure 8.3     Modifying the algorithm of Fig.  8.1  to 
contain a cycle as indicated by the dashed arrows.  
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    B4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
=

1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0

1 1 0 0 1 1 0 0 1 0

1 1 0 1 1 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (8.9)   

 We note that there are four nonzero diagonal elements:  b  4  (3, 3),  b  4  (5, 5),  b  4  (7, 7), 
and  b  4  (8, 8). This indicates that there is a four - hop loop between nodes 3, 5, 7, and 
8. The order of the loop can be determined by examining the rows associated with 
these nodes. Starting with node 3, we see that it depends on node 8. So, the path of 
the loop is 8    →    3. Now we look at row 8 and see that it depends on node 5. So, the 
path of the loop is 5    →    8    →    3. Continuing in this fashion, we see that our loop is 
3    →    7    →    5    →    8    →    3, which we have found by inspection of the graph. The advan-
tage of this technique is that it is applicable to any number of nodes and can be 
automated. 

 Another interesting property of cyclic algorithms and cyclic graphs is that 
higher powers of the adjacency matrix will not produce a zero matrix. In fact, the 
adjacency matrix will show  cyclic  or  periodic  behavior:

    A A A4 8 12= = � .     (8.10)    

   8.6    EXTRACTING SERIAL AND PARALLEL ALGORITHM 
PERFORMANCE PARAMETERS 

 In order to extract the  D  and  P  properties of an algorithm, we construct a  W  
component nonnegative  sequence vector   S , such that the component of the vector 
at the  i th location  S ( i )    ≥    0 indicates the order or priority of execution assigned to 
node  i . The value  S ( i )    =     k  indicates that node  i  belongs to the execution sequence  k . 

 We outline some basic defi nitions that we will need in our technique.

  Defi nition 8.1     Parents of a node  n : the source nodes for the directed edges termi-
nating at node  n .  

  Defi nition 8.2     Sequence of a node  n : when a node can be executed by the 
processors.  

  Defi nition 8.3     Parallel set  T s  : the set of all nodes/tasks that can be executed at 
sequence  s .   
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 The process of evaluating the algorithm starts with all the nodes that have sequence 
value 0, then when all the processing is done, the nodes with sequence value 1 are 
executed, and so on. We populate the sequence vector according to the iterative 
procedure shown in Algorithm 8.1.

  Algorithm 8.1     Algorithm to assign execution sequences or levels to the nodes 

  Require:  Input:  W     ×     W  adjacency matrix  A 

   1:      P     =      ϕ   // initialize parents set to empty set  

  2:      N     =     W  // initialize nodes set to include all the nodes of the algorithm  

  3:      s     =    0 // Initial sequence has zero value (0).  

  4:      T   0     =      ϕ   // initialize set of concurrent tasks at level  s     =    0  

  5:      for   node     ∈     N   do   

  6:            if   node  is input node  then   

  7:                  S ( node )    =     s  // Components of  S  associated with each input node have value 
 s     =    0.  

  8:                 insert  node  in  P  // start defi ning the parents node set  

  9:                 delete  node  from  N  // leave unassigned nodes in  N   

  10:            end if   

  11:      end for   

  12:      while   N   ≠    ϕ    do   

  13:            s     =     s     +     1  // increment sequence value to be allocated to newly assigned nodes  

  14:            T     =      ϕ   // initialize temporary set to contain nodes in new level  

  15:            T   s      =      ϕ   // initialize set of concurrent tasks at level  s   

  16:            for   node     ∈     N   do   

  17:                  if  all parents of  node     ∈     P   then   

  18:                       insert  node  in  T   

  19:                       delete  node  from  N   

  20:                        S ( node )    =     s   

  21:                  end if   

  22:            end for   

  23:           append  T  to  P  // update nodes in  P  to include newly assigned nodes  

  24:           append  T  to  T   s    

  25:      end while       

 After implementing Algorithm 8.1, all nodes will be assigned to an execution 
level. Figure  8.4  shows the levels of execution of the algorithm in Fig.  8.1  and the 
allocation of nodes to levels.    
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   8.7    USEFUL THEOREMS 

 We show in this section some useful theorems related to the formal technique we 
proposed in the previous section. The following theorem discusses how we can 
check if a given algorithm is cycle free or not.

  Theorem 8.1      An algorithm with  W  nodes/tasks is cycle free if and only if   A  k   has 
zeros in its main diagonal elements for 1      ≤     k     ≤     W.  

   Proof:  
 Assume the algorithm is cycle free. In that case, we do not expect any diagonal 
element to be nonzero for  A   k   with  k     ≥    1. The worst case situation is when our algo-
rithm has all the nodes connected in one long string of  W  nodes as shown in Fig. 
 8.5 a. The highest power for  A   k   is when  k     =     W     −    1 since this is the maximum length 
of the path between  W  nodes. A W     =    0 since there is no path of length  W . Thus, a 
cycle - free algorithm will produce zero diagonal elements for all powers of  A   k   with 
1    ≤     k     ≤     W .   

 Now assume that all powers of  A   k   for 1    ≤     k     ≤     W  are all zero diagonal elements. 
This proves that we do not have any cycles of length 1 to  W  in the algorithm. This 
proves that the algorithm does not have any cycles since for  W  nodes, we cannot 
have a cycle of length greater than  W . Figure  8.5 b shows the longest possible cycle 
in an algorithm of  W  nodes/tasks.   

 The following theorem gives us the performance parameter  D .

     Figure 8.4     The assignment 
of the nodes in Fig.  8.1  
according to the procedure in 
Algorithm 8.1.  
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  Theorem 8.2      A DAG has depth  D  if and only if the following two conditions are 
satisfi ed    : 

    Ak k D≠ ≤ <0 0     (8.11)  

    AD = 0,     (8.12)  

where 1    ≤     D     ≤     W .  

   Proof:  
 Assume the DAG has depth  D . This indicates that the maximum possible path length 
is  D     −    1. This implies the following two equations:

    Ak k D≠ ≤ <0 1     (8.13)  

    AD = 0.     (8.14)   

 The condition  A   D      =    0 above implies that there are no paths of length  D  or less in 
the algorithm and the longest path length is  D     −    1 according to Eq.  8.13 . This is the 
length of the path that connects  D  nodes together. The fi rst node is the input node 
and the last node is the output node. 

 Now assume the two conditions in ( 8.13 ) and ( 8.14 ) are true. Thus, the maximum 
path length is  D  for the algorithm.   

 The following theorem results as a consequence of the procedure for assigning 
execution order to the nodes according to Algorithm 8.1  . It assures that the execution 
sequence assigned to each node is the smallest or earliest possible value.

  Theorem 8.3      A node is assigned to sequence  k  if and only if it depends on one or 
more nodes assigned to sequence  k    −     1 .  

   Proof:  
 Assume that node  i  is assigned sequence  k . This implies that it must be executed 
after all the nodes in sequence  k     −    1. This implies that it depends on one or more 
nodes from that sequence. If that was not the case, the procedure of Algorithm 8.1 
would have assigned a smaller sequence value to node  i . 

     Figure 8.5     Worst case algorithm that has 10 nodes. (a) When the algorithm is cycle free. (b) The 
longest possible cycle in an algorithm with 10 nodes is 10.  
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 Now assume that node  i  depends on one or more nodes that belong to sequence 
 K     −    1. This node can only execute after all these nodes complete their execution. 
This implies that the sequence to be assigned to node  i  should have the value  k .   

 The following theorem assures us that we can execute all nodes having the 
execution sequence in parallel or simultaneously.

  Theorem 8.4      Nodes belong to the same sequence if and only if they are indepen-
dent of each other and can be evaluated in parallel.   

   Proof:  
 Assume two nodes,  i  and  j , have the same sequence  S k  . This implies that the two 
nodes can be evaluated simultaneously in parallel and that they are independent of 
each other. 

 Now assume that two nodes,  i  and  j , are independent and can be evaluated in 
parallel at the same time. This implies that the two nodes belong to the same 
sequence value. These two nodes could be moved to the earliest sequence,  S k  , where 
both nodes depend on one or more nodes from sequence  S k    − 1 .   

 The following theorem is unique to DAGs. It indicates that the last nodes 
executed are all output nodes and their outputs are not used to supply other nodes.

  Theorem 8.5      A DAG has depth  D  if and only if all the nodes in sequence  S D   are 
output nodes.   

   Proof:  
 When the depth of the DAG is  D , then nodes in sequence  S D   cannot be interior 
nodes. If a node were interior, then it must send its output data to a node  i  at sequence 
 D     +    1 since we do not have cycles. This would imply that node  i  will be evaluated 
at sequence  S D    + 1  and the depth of the graph is at least  D     +    1. This contradicts the 
requirement that the depth is  D . 

 Now assume that all nodes in sequence  S D   are output nodes. This implies that 
there are no more nodes that depend on them. Thus, the depth of the graph is  D .   

 The following theorem is perhaps the most important theorem for DAGs. 
Essentially, it assures us that the sequence assigned to the nodes is the fastest pos-
sible schedule.

  Theorem 8.6      The task execution schedule constructed from Algorithm 8.1 is the 
optimal schedule possible for the given DAG assuming we have enough computing 
resources to execute all the tasks in a given sequence level .   

 Theorems 8.3 and 8.5 indicate that we cannot reduce the depth of the graph by 
moving nodes from the given sequence to an earlier sequence. Hence, depth  D  
cannot be reduced below its value. 

 Theorem 8.4 indicates that we have the maximum number of nodes in any given 
sequence level. So, we have the maximum number of nodes that could be assigned 
the same sequence order. 
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 The above two paragraphs imply the following: 

  1.     We have maximum parallelism at any sequence level.  

  2.     We have the absolute minimum number of levels under the given 
assumptions.    

 Hence, the schedule obtained from Algorithm 8.1 is the optimal schedule. 
 The following theorem assures us that the execution order assigned to the nodes 

preserves the order dictated by the algorithm.

  Theorem 8.7      The procedure in Algorithm 8.1 for setting the execution order of 
the algorithm tasks preserves the correctness of the algorithm.   

   Proof:  
 Two facts about the procedure assure us of the correctness of executing the 
algorithm: 

  1.     The procedure in Algorithm 8.1 does not remove any parent from the parent 
set of any node and does not disturb the links between the tasks.  

  2.     Theorem 8.3 assures us that any task will only be executed after all its parent 
tasks have been executed.       

   8.8    PERFORMANCE OF SERIAL AND PARALLEL 
ALGORITHMS ON PARALLEL COMPUTERS 

 The construction of Fig.  8.4  helps us identify all the algorithm parameters:  W ,  D , 
and  P . 

 The work parameter  W  is of course determined by counting all the nodes or 
tasks comprising the algorithm. From Fig.  8.4 , we conclude that  W     =    10. 

 The parallelism of the algorithm is found by estimating the number of nodes 
assigned to each execution sequence.

    P P i Di= ≤ <( )max | .  0     (8.15)   

 From Fig.  8.1 , we fi nd that the parallelism of the algorithm is  P     =    4. Dedicating 
more than four processors will not result in any speedup of executing the 
algorithm. 

 From Fig.  8.4 , we fi nd the depth ( D ) as equal to the number of sequences 
required to complete the algorithm. From Fig.  8.4 , we conclude that  D     =    4. 

 Using  P  parallel processors, the minimum algorithm latency is defi ned as the 
minimum time to execute the algorithm on  P  processors as given by

    T P Dp p( ) ,= τ     (8.16)  

where  τ   p   is the processor time required to execute one task or node in the dependence 
graph. 

 The time its takes a single processor (uniprocessor) to complete the algorithm 
would be

    T Wp p( ) .1 = τ     (8.17)   
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 The maximum speedup due to using parallel processing is estimated as

    S P
T

T P

W

D
p

p

( )
( )

( )
.= =

1
    (8.18)       

 8.9   PROBLEMS 

    8.1.    Suppose that the adjacency matrix  A  has row  i     =    0 and column  i     =    0. What does that 
say about task  i ?   

    8.2.    Assume an ASA with  W     =    5 nodes or tasks and its depth is the maximum possible value. 

  (1)     What is the maximum value of depth  D ?  

  (2)     What is the structure of the adjacency matrix under this condition?  

  (3)     What type of matrix is this adjacency matrix?  

  (4)     What kind of matrix results if you raise the adjacency matrix to higher powers?  

  (5)     Comment on the structure of  A   k  .  

  (6)     What is the maximum power of the adjacency matrix at which the matrix is zero?      

    8.3.    Assume a cyclic sequential algorithm with  W     =    5 nodes or tasks and it has a maximum -
 length cycle. 

  (1)     What is the maximum value of depth  D ?  

  (2)     What is the structure of the adjacency matrix under this condition?  

  (3)     What kind of matrix results if you raise the adjacency matrix to higher powers?  

  (4)     What is the maximum power of the adjacency matrix at which the matrix is zero?      

    8.4.    An NSPA algorithm consists of nine tasks that depend on each other as follows:

   Task     Depends on tasks  
  1    NA  
  2    NA  
  3    NA  
  4    NA  
  5    NA  
  6    1, 2, 3, 4  
  7    5  
  8    1, 4  
      6, 7, 8  

      (1)     Draw the DAG for this algorithm.  

  (2)     Assign tasks to the sequences.  

  (3)     Identify the algorithm parameters  D ,  P , and  W .           

 
 

 





  Chapter 9 

 z  - Transform Analysis     

    9.1    INTRODUCTION 

 Many digital signal processing (DSP) algorithms are studied using the  z -  transform 
where the signals being considered are discrete time signals. A discrete time signal 
is denoted by  x ( n ),where the variable  n  assumes nonnegative integer values 0, 1, 
 …  . The samples of a right - sided signal  x  are represented by the time sequence

    x n x x x( ) ( ) ( ) ( ) .= 0 1 2 �     (9.1)   

 The most common examples of these algorithms are found in digital fi lters such 
as one - dimensional (1 - D) and multidimensional fi nite impulse response (FIR) fi lters 
and infi nite impulse response (IIR) fi lters. We see examples of such algorithms also 
in multirate systems such as decimators, interpolators, and fi lter banks.  z -  Domain is 
used here to obtain different ways to implement a given algorithm using pipelines. 
The analysis in this chapter will proceed using as a working example the case of a 
1 - D FIR fi lter.  

   9.2    DEFINITION OF    z     -  TRANSFORM 

 The one - sided  z -  transform of a discrete time signal  x ( n ) is given by the relation 
 [78, 79] 

    X z x n z n

n

( ) ( ) ,= −

=

∞

∑
0

    (9.2)  

where  z  is a complex number. We can write the  z -  transform in polynomial form:

    X z x x z x z( ) ( ) ( ) ( ) .= + + ( ) +− −0 1 21 1 2 �     (9.3)   

 We say that the signal  x ( n ) in the time domain has an equivalent representation, 
 X  ( z ), in the  z -  domain. 

 The  z -  transform  X  ( z ) of the sequence  x ( n ) is a polynomial of the different 
powers of  z   − 1 , such that  x ( i ) is the coeffi cient of the  i th power of  z   − 1 . 
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160 Chapter 9 z-Transform Analysis

 An important property of the  z -  transform is that the quantity  z   − 1  in the  z -  domain 
corresponds to a time shift of 1 in the time domain. To prove this, we multiply  X ( z ) 
by  z   − 1  to obtain a new signal,  Y ( z ):

    
Y z z X z

z x z x z x z

( ) ( )

( ) ( ) ( ) .

=
= + + + +

−

− − −

1

0 1 2 30 0 1 2 �
    (9.4)   

 The time domain representation  y ( n ) is found by using the coeffi cients of the above 
polynomial. At time  i , we fi nd that

    y i x i( ) ( ).= −1     (9.5)   

 In effect, the term  z   − 1  delayed each sample by one time step. We can write the rela-
tion between  x ( n ) and  y ( n ) as follows:

   n     0    1    2    3    4     …   
   x ( n )     x (0)     x (1)     x (2)     x (3)     x (4)     …   
   y ( n )    0     x (0)     x (1)     x (2)     x (3)     …   

 Multiplication by  z   − 1  has the effect of delaying the signal by one time step. We 
consider the term  z   − 1  as a  unit delay operator , and the relation between the signal 
 x ( n ) and  y ( n ) could be graphically shown in Fig.  9.1 , where the box labeled  z   − 1  
denotes the unit delay. In real signals, the unit delay block is implemented by an 
edge - triggered  D  - type fl ip - fl op when signal  x  is single - bit data or it could be a reg-
ister if the signal  x  has multiple bits.    

   9.3    THE 1 - D FIR DIGITAL FILTER ALGORITHM 

 We are now ready to illustrate how to use the  z -  transform to obtain systolic struc-
tures. We use 1 - D FIR. The 1 - D FIR digital fi lter algorithm can be expressed as the 
set of difference equations

    y n a k x n k
k

N

( ) ( ) ( ),= −
=

−

∑
0

1

    (9.6)  

where  a ( k ) is the fi lter coeffi cient and  N  is the fi lter length, which is the number of 
fi lter coeffi cients. Such an algorithm is a set of computations that is performed 
on input variables to produce output variables. The variables we might encounter 
are of three types: input, output, and intermediate or input/output (I/O) variables. 

     Figure 9.1     Schematic for introducing unit delay to a signal. (a)  z -  domain notation. 
(b) Time domain notation.  

z–1 Y(z)X(z)

(a)

D y(n)x(n)

(b)
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An input variable is one that has its instances appearing only on the right - hand 
side (RHS) of the equations of the algorithm. An output variable is one that 
has its instances appearing only on the left - hand side (LHS) of the algorithm. An 
intermediate variable is one that has its instances appearing on the right - hand side 
and left-hand side of the equations. In Eq.  9.6 , the variable  y  is an output variable, 
and variables  x  and  a  are input variables. 

 We study this algorithm using the  z -  transform of each side of the above equation 
to obtain

    Y a i z Xi

i

N

= −

=

−

∑ ( ) ,
0

1

    (9.7)  

where  X  and  Y  are the  z -  transform of the signals  x ( n ) and  y ( n ), respectively. We can 
think of Eq.  9.7  as a polynomial expression in the different powers of  z   − 1 .  

   9.4    SOFTWARE AND HARDWARE IMPLEMENTATIONS 
OF THE  z -  TRANSFORM 

 By using different polynomial evaluation techniques, the fi lter expression is con-
verted to a set of recursive expressions that can be evaluated using multithreads or 
hardware systolic arrays. The  z -  domain technique is used for mapping the IIR fi lter 
algorithm onto tasks. These tasks, in turn, can be implemented by concurrent threads 
in software or by systolic arrays in hardware. The identifi cation of tasks is described 
using the following steps: 

  1.     The  z -  domain expression for the algorithm is converted to a set of recursive 
expressions. The data type in the recursive expressions determines the algo-
rithm granularity. This will ultimately determine the computation load of the 
software tasks or the hardware complexity of the systolic array processing 
elements (PEs).  

  2.     Each iteration in the recursive expression is assigned a task or a thread. In 
the case of hardware implementation, each iteration is assigned a PE.  

  3.     The RHS of each expression defi nes the operations to be performed by each 
PE on the input variables.  

  4.     The LHS of each expression defi nes the corresponding processor output.  

  5.     The delay operators attached to each variable dictate the size of the buffers 
(amount of delay) within each processor.  

  6.     The number of tasks, threads, or PEs is determined by the number of itera-
tions required to produce the fi nal result.  

  7.     By ordering the shift and functional operators in the fi lter equations, 
different recursive expressions and, consequently, different structures are 
derived.    

 In the following sections, we illustrate how different FIR structures are obtained 
through the use of different techniques to evaluate the expression in Eq.  9.7 .  
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   9.5    DESIGN 1: USING HORNER ’ S RULE FOR 
BROADCAST INPUT AND PIPELINED OUTPUT 

 Suppose we want to evaluate the polynomial for a certain value of  x :

    p x x x x x( ) .= + + + +2 4 5 3 94 3 2     (9.8)   

 We can rewrite the polynomial using Horner ’ s scheme as

    p x x x x x( ) ((( ) ) ) .= + + + +2 4 5 3 9     (9.9)   

 Now the polynomial is recursively evaluated through the following steps: 

  1.     Evaluate the innermost term  y  0     =    2 x     +    4.  

  2.     Evaluate the next innermost term  y  1     =     y  0   x     +    5.  

  3.     Evaluate the term  y  2     =     y  1  x     +    3.  

  4.     Evaluate the term  y  3     =     y  2  x     +    9.  

  5.     Evaluate  p ( x ) to  y  3 .    

 Now we apply Horner ’ s ’  scheme to Eq.  9.7  to obtain the recursive expression

    Y a X z a X z a N X= + + + −− −( ) [ ( ) [ ( ) ]] ].0 1 11 1� �     (9.10)   

 The above equation can be written as

    Y a i X z Y i Ni i= + < <−
+( ) [ ]1

1 0     (9.11)  

    Y a X z Y0
1

10= + −( )     (9.12)  

    YN = 0     (9.13)  

    Y Y= 0.     (9.14)   

 Based on the above iterative expression, task  T  ( i ) computes  Y i   in Eq.  9.11  using one 
multiplication and one addition:

    Y a i X z Yi i= + −
+( ) .1

1     (9.15)   

 The output of  T ( i ) is saved then forwarded to  T ( i     −    1) and the input to  T ( N     −    1) 
is initialized to 0. Figure  9.2 a shows the resulting directed acyclic graph (DAG) for 
an output sample,  y . The fi gure can be replicated to show the different DAGs for 
other output samples. When these tasks are implemented in hardware, this DAG 
becomes the systolic array structure that implements the FIR fi lter. This structure is 
actually one of the classical canonic realizations of Eq.  9.7 . Figure  9.2 b shows 
the details of a processor element in case of hardware implementation of the DAG. 
Note that the input signal is broadcast to all tasks and the output is pipelined between 
the tasks.    
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   9.6    DESIGN 2: PIPELINED INPUT AND 
BROADCAST OUTPUT 

 In this design, we apply the delay operator to the input data samples to obtain delayed 
input data that we use to obtain our output:

    

Y a X a z X a z z X

a z z X a N

= + ( )[ ]+ ( )[ ]+
( )[ ]+ +

− − −

− −

( ) ( ) ( )

( ) (

0 1 2

3

1 1 1

1 2 � −− ( )[ ]− − −1 1 2) .( )z z XN     (9.16)   

 The above equation can be converted to the iterative expressions

    

Y a i X

X z X

X X

i
i

N

i i

=

=
=

=

−

−
−

∑ ( )

.

0

1

1
1

0

    (9.17)   

 Figure  9.3 a shows the resulting DAG for an output sample  y . The fi gure can be 
replicated to show the different DAGs for other output samples. When these tasks 
are implemented in hardware, this DAG becomes the systolic array structure that 
implements the FIR fi lter. This structure is actually one of the classical canonic 
realizations of Eq.  9.7 . Figure  9.3 b shows the details of a processor element in case 
of hardware implementation of the DAG. Note that only the input is pipelined 
between the PE stages and the output is pipelined between the tasks. A problem with 
this design is that the output is not stored in a register between the PE stages. For a 
large fi lter order, the design slows down since the adders evaluating the outputs are 
all working in parallel.    

     Figure 9.2     FIR digital fi lter software/hardware implementation with pipelined outputs. 
(a) DAG for FIR digital fi lter. (b) Processor element details.  
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   9.7    DESIGN 3: PIPELINED INPUT AND OUTPUT 

 A possible attractive implementation would be when both the input and output of 
each PE are stored in a register. This implies a fully pipelined design, which is 
potentially the fastest design possible. Assume without loss of generality that  N  is 
even. We can write Eq.  9.7  as

    

Y a X a z X z a z X a z X

z a NN

= +[ ]+ +[ ]+
−

− − − −

− −

( ) ( ) ( ) ( )

( )( )

0 1 2 3

2

1 1 1 2

2 1

�
/ z X a N z X

z a i z X a i z

N N

i

N
i i

− − −

=

−
− − −

+ −[ ]
= + +∑

( ) ( )

( ) ( )

/ /

/

2 1 2

0

2 1

1

2 2 1 ( ) .i X+[ ]1     (9.18)   

 We perform an iteration on the inputs  X  in the above equation:

    X z X i Ni i= ≤ ≤−
−

1
1 1 2/     (9.19)  

    X X0 = ,     (9.20)  

and the output is given by

    Y z a i X a i Xi
i i

i

N

= + +[ ]−
+

=

−

∑ ( ) ( ) .2 2 1 1
0

2 1/

    (9.21)   

 The above equation can be written as the iteration

   Y z a i X a i X Y i Ni i i i= + + +[ ] < <−
+ +

1
1 12 2 1 0 2( ) ( ) /     (9.22)  

   YN/2 0=     (9.23)  

   Y a X a X Y0 0 1 10 1= + +( ) ( )     (9.24)  

   Y Y= 0.     (9.25)   

     Figure 9.3     FIR digital fi lter software/hardware implementation with pipelined inputs. 
(a) DAG for FIR digital fi lter. (b) Processor element details.  
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 Figure  9.4 a shows the resulting DAG for an output sample,  y . The fi gure can 
be replicated to show the different DAGs for other output samples. This is a new 
structure that has been reported in the literature by Sunder et al.  [23] . Figure  9.4 b 
shows the details of a processor element. Note that both the input and output are 
pipelined between the PE stages. Figure  9.4 c shows the details of the fi rst PE storing 
the fi lter coeffi cient  a (0) and  a (1). Note that the output is not stored in a register.    

 9.8   PROBLEMS 

       9.1.    A recursive IIR fi lter is described by the set of difference equations

   y n a k x n k b k y n k n
k

N

( ) ( ) ( ) ( ) ( ) ,= − − −[ ] ≤
=

−

∑
0

1

0  

where  b (0)    =    0 and  N  is the fi lter length.

   (1)     Derive the  z -  transform expression for the IIR fi lter.  

  (2)     Obtain different designs using the different methods used in this chapter.      

    9.2.    Apply the  z -  domain technique to the 1 - D correlation algorithm.   

    9.3.    Apply the  z -  domain technique to the two - dimensional correlation algorithm.   

    9.4.    Apply the  z -  domain technique to the three - dimensional correlation algorithm.   

    9.5.    Apply the  z -  domain technique to the 1 - D convolution algorithm.   

    9.6.    Apply the  z -  domain technique to the two - dimensional convolution algorithm.   

    9.7.    Apply the  z -  domain technique to the three - dimensional convolution algorithm.        

    

     Figure 9.4     FIR digital fi lter software/hardware implementation with pipelined inputs and outputs. 
(a) DAG for FIR digital fi lter. (b) Processor element details. (c) Leftmost processor element details.  
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  Chapter 10 

Dependence Graph Analysis     

    10.1    INTRODUCTION 

 The dependence graph technique is a very simple yet powerful approach for the 
design space exploration of regular iterative algorithms (RIAs). One restriction on 
this approach is that the algorithm must be two - dimensional (2 - D) or three -
 dimensional (3 - D) at the most so that the designer could visualize the resulting 
structures. Chapter  11  will extend this approach to algorithms having higher dimen-
sions by replacing the dependence graph with a  convex hull  in the integer   Z n  space. 
Many parallel algorithms have 2 - D or 3 - D dimensions such as one - dimensional 
(1 - D) digital fi lters, 1 - D decimators and interpolators, matrix – vector multiplication, 
and pattern matching algorithms. Furthermore, many types of higher - dimensional 
algorithms can be recursively broken down into lower - dimensional problems. For 
example, we can hierarchically decompose 2 - D or 3 - D digital fi lters into modules 
of 1 - D fi lters. In this chapter, we illustrate how to obtain different multithreading 
and systolic structures for a given algorithm. We are going to use the 1 - D fi nite 
impulse response (FIR) digital fi lter as a running example.  

   10.2    THE 1 - D FIR DIGITAL FILTER ALGORITHM 

 The 1 - D FIR digital fi lter algorithm is an example of a RIA that can be expressed 
as the set of difference equations

    y i a j x i j i
j

N

( ) ( ) ( ) ,= − ≥
=

−

∑
0

1

0     (10.1)  

where  a (  j ) is the fi lter coeffi cient and  N  is the fi lter length.  y ( i ) is our output vari-
able, which depends on the  i  index only. On the other hand,  a ( i ) is an input variable 
that depends on the  j  index only and  x ( i     −     j ) is another input variable that depends 
on both the  i  and  j  indices. The above equation describes two iterations. One itera-
tion is over the index  i  and the other iteration is over the index  j , which is to be 
repeated  N  times. The data type in the above equation determines the algorithm 
granularity. This will ultimately determine the computation load of each task, which 
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168 Chapter 10 Dependence Graph Analysis

will translate to software threads or hardware systolic array processing elements 
(PEs).  

   10.3    THE DEPENDENCE GRAPH 
OF AN ALGORITHM 

 Traditionally, a RIA is represented as a directed acyclic graph (DAG) as was dis-
cussed in Chapters  1  and  8 . The graph is composed of a set of nodes representing 
the tasks to be performed by the algorithm, and the directed edges represent the data 
fl owing between the tasks from the task producing the data to the task that uses the 
data. In this chapter, we start our analysis not from the DAG but by constructing a 
dependence graph in an integer space   Z n, where  n  denotes the number of indices of 
the algorithm. Once we develop a dependence graph, we will derive several DAGs 
based on our scheduling techniques as we shall discuss here and in Section  10.5  and 
in Chapter  11 . Stated more explicitly, an RIA can be represented by one dependence 
graph. The same algorithm could result in several DAGs.

  Defi nition 10.1     A dependence graph is a set of nodes and edges in the integer 
domain   Z n. A node is a point   p ∈Z and represents the tasks to be performed at the 
given values of the indices. The edges show how the algorithm variables depend on 
the algorithm indices. The points lying on an edge indicate that the operations per-
formed by nodes use the data carried by the edge. 

 Notice the defi nition of edges in the dependence graph. A dependence graph is 
not a DAG since the edges are not directed. Further, an edge in the dependence 
graph could be associated with an input, output, or input/output intermediate values 
depending on the variable.  

  Table 10.1    Comparing the Dependence Graph and the Directed Acyclic Graph (DAG) 

   Dependence graph     Directed acyclic graph (DAG)  

  The graph is really a  convex hull  ( D ) in 
the integer space   Z n.  

  The graph is a 2 - D drawing on a sheet of 
paper or on the computer screen.  

  Undirected edges.    Directed edges.  
  Edge represents how a variable depends 
on the algorithm indices.  

  The edge represents data fl owing from the 
output of a task to the input of another task.  

  An edge covers many nodes and spans the 
entire computation domain  D .  

  An edge is confi ned between two tasks 
(nodes).  

  The node represents a task done by the 
algorithm.  

  The node represents a task done by the 
algorithm.  

  The node is located at a specifi c 
coordinate point in   Z n .  

  There is no signifi cance as to where a node is 
located on the graph.  

  The execution sequence cannot be 
determined from inspecting the 
dependence graph.  

  The execution sequence can be determined 
by inspecting the DAG. The task producing 
a datum must be executed before the task 
consuming that datum.  
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  Lemma 10.1     The dependence graph of an algorithm is unique to each algorithm 
since there is only one way to describe how the variables depend on the indices. 

 The advantage of this approach will become apparent in the following dis-
cussion and in Chapter  11  where we will be able to study the algorithm in terms 
of powerful linear algebra and computational geometry concepts. Table  10.1  com-
pares the dependence graph defi ned above and the DAG defi ned in Chapter  1 .      

   10.4    DERIVING THE DEPENDENCE 
GRAPH FOR AN ALGORITHM 

 We use Eq.  10.1  to study the dependence of the algorithm variables. Variable  y  is 
an output variable, and variables  x  and  a  are input variables. We note that the algo-
rithm gives rise to a 2 - D graph  D    since we have two indices,  i  and  j . Since the 
dimensionality of  D  is low, it is best to visualize  D  using a dependence graph since 
this is easier for humans to analyze. We refer to any point in  D  as a vector  p 

    p = [ ]i j t .     (10.2)   

 For given values of the indices, the vector corresponds to a point in the   Z 2 space.
The graph  D  covers the points  p ( i ,  j )    ∈     D  where the range of the indices defi nes the 
boundaries of  D  as

    0 0≤ ≤ <i j Nand .     (10.3)   

 Note that  D  extends to  ∞  in the  i  direction, which defi nes an  extremal ray . 

   10.4.1    Defi ning the Algorithm Variables in  D  

 We study in this section how to defi ne the dependence of a variable in   D  . Figure 
 10.1  shows the dependence graph of the 1 - D FIR fi lter for the case  N     =    4. Let us 
consider the input variable  a  in Eq.  10.1 . A specifi c instance of that variable such 
as  a (2), for example, implies that we have set the index  j  equal to 2. We can formally 
write this substitution as

    j = 2.     (10.4)     

 The above equation is a straight line equation in   D   where  a (2) is represented by a 
horizontal line. Figure  10.1  shows the dependence graph of the three variables  y ,  a , 
and  x . The horizontal straight line actually defi nes a set of points in  e a      ∈     D , where 
all the points use the same instant of  a  to do their operations. Equation 10.4 can be 
written in matrix form as  Ap     =    2 where  A  is the dependence matrix of variable  e a   
and  p  is any point. For our 2 - D case,  A  becomes a row vector given by [0 1]. We 
call  e a   the  subdomain  of variable  a . This subdomain  e a   is described by the  basis 
vector 

    ba
t= [ ]0 1 .     (10.5)   
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 Chapter  11  will explain why this vector is a basis vector of the dependence 
matrix for a variable  . We will need later to defi ne the  nullvector   b  associated with 
the basis vector of a variable. Variable  a  has the associated nullvector

    ea
t= [ ]1 0 .     (10.6)   

 The two vectors  e   a   and  b   a   satisfy the equation:

    e ba
t

a = 0.     (10.7)   

 A specifi c value for variable  x (3) can similarly be described by the straight line 
equation

    i j− = 3.     (10.8)   

 The associated nullvector  e   x   is

    ex
t= [ ]1 1 .     (10.9)   

 This is represented by the diagonal lines in Fig.  10.1 . The associated basis vector  b   x   
is given by

    bx
t= −[ ]1 1 .     (10.10)   

 For output  y (5), the index dependence is given by the equation

    i = 5,     (10.11)  

and the nullvector  e   y   is given by

    ey
t= [ ]0 1 .     (10.12)   

 The basis vector  b   y   encompasses all the points in   D   that produce results to be used 
to calculate a specifi c instance of  y . The associated basis vector is given by

     Figure 10.1     Dependence graph for the 1 - D FIR fi lter for the case  N     =    4.  
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    by
t= [ ]1 0 .     (10.13)   

 A node in   D   represents the operations to be performed by each iteration. In our 
example, only one operation is to be performed by an iteration:

    y i j y i j a j x i jtemp temp( , ) ( , ) ( ) ( ).= − + −1     (10.14)   

 Since the addition operation is associative, we could have written the above iterative 
step as

    y i j y i j a j x i jtemp temp( , ) ( , ) ( ) ( ).= + + −1     (10.15)   

 Having derived the dependence graph for the given algorithm, we now need to 
synchronize the operation of each node  . We need to know how to assign time values 
to each node dictating when the operation in each node is to be performed. This is 
called  node scheduling . We also need to assign each node to a unique hardware 
processor or thread in a multicore, multithreaded implementation. This is called  node 
projection .   

   10.5    THE SCHEDULING FUNCTION 
FOR THE 1 - D FIR FILTER 

 This section discusses how to execute the tasks in the dependence graph in stages 
of execution. At each stage, a group of the tasks gets executed followed by tasks in 
the next stage and so on. We use an affi ne scheduling function such that any point 
 p     =    [ i j ]  t      ∈      D   is associated with the time value

    t s( )p s p= −     (10.16)  

    = + −i s j s s1 2 ,     (10.17)  

where  s     =    [ s  1   s  2 ] is the scheduling vector and  s  is a scalar constant. Typically, the 
constant  s     =    0 since the domain   D   is typically in the fi rst quadrant, the point at the 
origin  p (0, 0)    ∈      D   and  s  usually has positive components. 

 The main purpose of the scheduling function is to divide the tasks in the depen-
dence graph into stages that are executed sequentially. Several tasks will be executed 
in parallel at each stage. Effectively, the scheduling function will convert the depen-
dence graph into a DAG, and more specifi cally, it will convert it into a serial – parallel 
algorithm (SPA) as Theorems 11.2 and 11.3 will prove in Chapter  11 . The parallel 
tasks could be implemented using concurrent threads or parallel processors for 
software or hardware implementations, respectively. The different stages of the SPA 
are accomplished using barriers or clocks for software or hardware implementations, 
respectively. 

 The scheduling function determines the computational load to be performed by 
the computing system at each stage of execution. This is a subtle but very important 
by - product. Also, we shall see that the linear or affi ne scheduling function affords 
us little control on the amount of that work. We will introduce nonlinear scheduling 
techniques that will allow us to control the total work assigned to the system during 
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each time step. Another effect of the scheduling function is the fact that dependen-
cies between tasks will be created and that interthread and interprocessor commu-
nication can thus be determined. 

   10.5.1    From Dependence Graph to DAG/SPA 

 The scheduling function will convert the dependence graph to a DAG or SPA since 
it will give an order of executing the nodes/tasks of the graph by assigning to each 
node a unique time index value. Nodes with equal time index values are said to 
belong to the same equitemporal zone. Figure  10.1  illustrates the dependence graph 
of the 1 - D FIR fi lter. Figure  10.2  shows how this graph is transformed to a DAG 
using the affi ne scheduling function.   

 The scheduling function will also assign a direction to the algorithm variables, 
and the graph edges will become directed edges. An edge connecting two nodes in 
adjacent equitemporal zones will become directed from the zone with a lower time 
index to the zone with a higher time index. In that sense, this data will become 
 pipelined  data. 

 If the edge connects two nodes in the same equitemporal zone, then there is no 
direction associated with the edge since the data are available to all nodes at the 
same time. In that sense, this data will become  broadcast  data. Data broadcast could 
be accomplished in hardware using a system - wide bus or an interconnection network 
capable of broadcasting a single data item to all the PEs. In software, data broadcast 
could be accomplished by using a broadcast message to all threads or by using a 
shared memory. 

 An affi ne scheduling function should satisfy several conditions in order to be a 
valid scheduling function:

    s p p≥ ∈s D positive time values     (10.18)  

    s e = 0 broadcast restriction     (10.19)  

     Figure 10.2     DAG for the 1 - D FIR fi lter for the case  N     =    4.  
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    s f ≠ 0 pipelining restriction     (10.20)  

    s d ≠ 0 projection restriction     (10.21)  

    s R > 0 causality,     (10.22)  

where

   e       broadcast nullvector  
  f       pipelining nullvector  
  d       projection direction (discussed later)  
  R       any extremal ray in our domain     

   10.5.2    Broadcasting a Variable 

   Defi nition 10.2     A variable is broadcast when all the nodes in   D   that belong to its 
subdomain are assigned the same time value. 

 Assume two points,  p  1  and  p  2 , lie in the subdomain of a variable. We can write

    p p e2 1= + α v ,     (10.23)  

where  α     ≠    0 is some integer constant and  e   v   is the nullvector for the subdomain of 
the variable. If the two points are to be assigned the same time value, we must have

    t t( ) ( )p p1 2=     (10.24)  

    sp sp1 2− = −s s     (10.25)  

    s p p1 2 0−( ) = .     (10.26)   

 From Eqs.  10.23  and  10.26 , we can write

    sev = 0.     (10.27)   

 Thus, to broadcast a variable, we must ensure that the scheduling vector is 
orthogonal to the nullvector of the variable. And we have as a condition for broad-
casting a variable

    s bt
v∝ ,     (10.28)  

where  b   v   is the basis vector for the broadcast subdomain of the variable. In other 
words, a variable is broadcast when the scheduling vector is parallel to the basis 
vector and is orthogonal to the nullvector associated with the variable in question.    

   10.5.3    Pipelining a Variable 

 Pipelining is the opposite of broadcasting, as can be checked out by comparing 
Defi nition 10.2 with the following defi nition:

  Defi nition 10.3     A variable is pipelined when all the nodes in   D   that belong to its 
subdomain are assigned different time values. 
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 Assume two points,  p  1  and  p  2 , lie in the subdomain of a variable. The times 
associated with each point are expressed as

    t t( ) ( )p p1 2≠     (10.29)  

    sp sp1 2− = −s s     (10.30)  

    s p p1 2 0−( ) ≠ .     (10.31)   

 Thus, to pipeline a variable, we must ensure that the scheduling vector is not 
orthogonal to the nullvector of the variable. 

 From Eqs.  10.23  and  10.31 , we can write

    sev ≠ 0,     (10.32)  

where  e   v   is the nullvector for the subdomain of the variable. And we have as a 
condition for broadcasting a variable

    sbv = 0,     (10.33)  

where  b   v   is the basis vector for the broadcast subdomain of the variable. In other 
words, a variable is pipelined when the scheduling vector is not orthogonal to the 
null vector and is orthogonal to the basis vector associated with the variable in 
question.    

   10.5.4    Determining the Scheduling Function 

 In order to determine the components of  s , we turn our attention to the fi lter inputs 
 x . The input data are assumed to be supplied to our array at consecutive time steps. 
From the dependence graph, we see that samples  x ( i ) and  x ( i     +    1) could be supplied 
at points  p  1     =    [ i  0]  t   and  p  2     =    [ i     +    1 0]  t  , respectively. The time steps associated with 
these two input samples are given from Eq.  10.17  by

    t i s( )p1 1=     (10.34)  

    t i s( ) ( ) .p2 11= +     (10.35)   

 Assuming that the consecutive inputs arrive at each time step, we have 
 t ( p  2 )    −     t ( p  1 )    =    1, and we must have

    s = [ ].1 2s     (10.36)   

 So now we know one component of the scheduling vector based on input data timing 
requirements. Possible valid scheduling functions could be

    s =
[ − ]
[ ]
[ ]

⎧
⎨
⎪

⎩⎪

1 1

1 0

1 1 .

    (10.37)   

 All the above timing schedules are valid and have different implications on the 
timing of the output and partial results. The fi rst scheduling vector results in broad-
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cast input and pipelined output. The second scheduling vector results in the broadcast 
of the output variable  y  and could produce design 2, which was discussed in Chapter 
 9 . The third scheduling vector results in pipelined input and output and could 
produce design 3, which was discussed in Chapter  9 . 

 Let us investigate the scheduling vector  s     =    [1  − 1]. This choice implies that

    s ex = 0,     (10.38)   

 which results in broadcast  x  samples. Based on our choice for this time function, we 
obtain the DAG/SPA shown in Fig.  10.2 . The gray lines indicate  equitemporal  
planes, or they could be thought of as representing the different stages of the SPA. 
All nodes lying on the same gray line execute their operations at the time indicated 
beside the line. The gray numbers indicate the times associated with each stage. 
Notice from the fi gure that all the input and output signals are pipelined as indicated 
by the arrows connecting the graph nodes. At this stage, we know the timing of 
the operations to be performed by each node. In other words, we know the  total 
computation load  to be performed by our system at any given time step or stage of 
execution. We do not know how many threads or PEs are required to do this work. 
This is the subject of Section  10.6 . Of course, inspection of the DAG could give 
us an idea as to how many threads/tasks should be executed at each stage or equi-
temporal plane. We could also fi gure out the input and output data required at each 
stage.  

   10.5.5    Limitations of Linear 
Thread/Task Scheduling 

 The scheduling function of the previous section is simple but not too fl exible. 
We do not have control over how much calculations could be performed globally 
by the parallel computing system at a given time step by the multiprocessing system. 
The workload might be light or it might exceed the processing capabilities of 
the system. 

 Figure  10.3  shows the node scheduling based on different choices for the sched-
uling function   σ  . Gray lines indicate order of execution of the operations. The fi gure 
only shows the calculations performed by the FIR algorithm at any given time step. 
Each column in the fi gure corresponds to the nodes required to produce one output 
sample.   

 Figure  10.3 a shows the equitemporal planes for  s     =    [1 0]. In that case, point 
( i ,  j ) in   D   will be associated with the time value  i . Thus, all the calculations required 
to produce an output sample are performed in the same time, which is desirable. 
However, we note that the different output samples are executed serially at different 
time steps. We might as well have implemented the fi lter on one processor. The 
maximum workload done at each time step is equal to  N     =    4, the fi lter length where 
the unit of workload is a simple multiply accumulate operation. 

 Figure  10.3 b shows the equitemporal planes for  s     =    [0 1]. In that case, point 
( i ,  j ) in   D   will be associated with the time value  j . At any time step, the partial results 
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of all the output samples are produced. The workload now is equal to the number 
of desired output samples, which could be very large. Further, all the input samples 
must be available for the calculations. This scheduling option is the least desirable 
or practical. 

 Figure  10.3 c shows the equitemporal planes for  s     =    [1 1]. In that case, point 
( i ,  j ) in   D   will be associated with the time value  i     +     j . At most, only  N  threads can 
operate simultaneously, but each thread only performs a simple operation. We do 
not have means to match the threads to the available cores since the function sched-
ules  N  threads, which depends on the parameters of the fi lter used. The maximum 
workload done at each time step is equal to  N     =    4, the fi lter length. At any time step, 
partial results of  N  output samples are produced and one complete output result is 
produced.  

   10.5.6    Nonlinear Scheduling Operation 

 The scheduling vector  s  1  of Fig.  10.3 a produces one output sample at a time  . We 
modify the scheduling function to a nonlinear schedule as follows:

    t
n

( ) ,p
sp= ⎛

⎝⎜
⎞
⎠⎟floor     (10.39)  

     Figure 10.3     Scheduling options for the 1 - D FIR fi lter for the case  N     =    4. Gray lines indicate order 
of execution of the operations. (a) When the scheduling function is  s     =    [1 0]. (b) When the scheduling 
function is  s     =    [0 1]. (c) When the scheduling function is  s     =    [1 1].  
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where the fl oor(.) function fi nds the largest integer smaller than the division opera-
tion and  n  is the level of data aggregation. When  n     =    2, we have two input or output 
data being fed or extracted from our system at each time step. 

 Now we can schedule as many nodes as we want to execute at the same time. 
Figure  10.4  shows the scheduling of nodes using Eq.  10.39  with  n     =    2. The gray 
areas indicate the different equitemporal regions and the gray numbers indicate the 
order of execution of the nodes. The global computation workload  w  total  at any time 
step is given by

    w nNtotal = .     (10.40)       

   10.6    NODE PROJECTION OPERATION 

 In Section  10.5 , we discussed how we can associate a time step value to each point 
in the computation domain   D  . In this section, we discuss how we can assign a pro-
cessor or a thread to each point in the DAG. The combination of node scheduling 
and node projection will result in determination of the work done by each task at 
any given time step. The choice of the projection operation will impact the inter-
thread or interprocessor communication, which is a very crucial factor in determin-
ing the speed of the execution of the algorithm. 

 The projection operation transforms our DAG in   Z n  to a projected DAG in an 
integer space of reduced dimensionality   Z k  where  k     <     n . We label the new projected 
acyclic graph   DAG. Central to the projection operation is the  projection matrix   P  
and the  projection direction   d . 

 A subtle point to be noticed in the projection operation is that it controls the 
amount of workload assigned to each software thread for a multithreaded implemen-
tation or the workload assigned to each PE for a systolic array implementation. Just 

     Figure 10.4     Allocation of nodes to different equitemporal domains using nonlinear scheduling. The 
shaded areas indicate the different domains and the grayed numbers indicate the order of execution of 
the nodes for the case  N     =    4 and  n     =    2.  
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like affi ne scheduling, affi ne projection affords us little control over the workload 
assigned to a thread or a PE. However, nonlinear projection operations will give us 
very good control over the workload assigned to each thread or PE.

  Defi nition 10.4     A projection matrix  P  is a  k     ×     n  matrix of rank  k  that provides a 
many - to - one projection of points in   Z n to points in   Z k

    p Pp= .    (10.41)   

 For our case, the  DAG  lies in the 2 - D integer space   Z 2. The projection matrix 
becomes a row vector

    P = [ ]P P1 2 ,    (10.42)  

and a point  p     =    [ i j ]  t   will map to the point

   p iP jP= +1 2.    

  Defi nition 10.5     A projection direction  d  is a nullvector of the projection 
matrix  P . 

 Proof of the above defi nition is found in Chapter  11 . For our case, the nullvector 
associated with the projection matrix is given by

    d = −[ ]P P t
2 1 .     (10.43)   

 Conversely, if we start by selecting a certain projection direction  d     =    [ d  1   d  2 ]  t  , 
the associated projection matrix becomes  P     =    [ d  2   –  d  1 ]. 

 Points or nodes lying along the projection direction will be mapped onto the 
same point in the new projected DAG (  DAG). A restriction on the projection direc-
tion  d  is that two points that lie on an equitemporal plane should not map to the 
same point in   DAG. This can be expressed as

    s d ≠ 0.    (10.44)   

 The projection direction should not be orthogonal to the scheduling vector since 
this is contradictory to the requirements of parallelism — namely, all nodes executing 
simultaneously are assigned to the same thread or PE. 

 As a result of the above equation, choosing a particular scheduling vector 
restricts our options for valid projection directions. Let us work with our choice for 
the scheduling vector of  s     =    [1  – 1]. Therefore, we have three possible choices for 
projection directions:

    d1 1 0= [ ]t     (10.45)  

    d2 0 1= [ ]t     (10.46)  

    d3 1 1= −[ ] .t     (10.47)   

 All these projection directions are not orthogonal to our scheduling vector.    
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   10.7    NONLINEAR PROJECTION OPERATION 

 The linear projection operation in combination with the scheduling function deter-
mines the workload assigned to each thread or PE at any given time step. The linear 
projection operation is simple but not too fl exible. We do not have control over how 
much calculations could be performed by each thread or PE at a given time step. 

 We modify the linear projection operation as follows:

    �p
Pp= ⎛

⎝⎜
⎞
⎠⎟floor

m
,     (10.48)  

where  m  is the desired number of points in   DAG that will be allocated to one thread 
or PE. The fl oor(.) function fi nds the largest integer smaller than the division opera-
tion. We can therefore control the workload allocated to each thread or PE per time 
step as

    w mthread = .     (10.49)   

 For a concrete example, assume that our scheduling vector and projection direction 
are given by

    s = [ ]1 0     (10.50)  

    d = [ ] .1 0 t     (10.51)   

 We also assume that  N     =    1,024,  n     =    2, and  m     =    8. In that case, the global workload 
per time step to be done by all threads is equal to  nN     =    2,048, and in that case, the 
output samples will be allocated to threads according to Table  10.2 .   

   10.7.1    Using Concurrency Platforms 

 At this stage, the programmer is able to determine the execution order of the threads 
and the timing of the algorithm variables by inspecting the DAG. With this knowl-
edge, the programmer can determine the locations of required locks and barriers in 
the program. By counting the number of nodes that belong to each equitemporal 
zone, the programmer can determine the required number of threads to be created. 
The speedup of the algorithm, and other performance parameters can also be 

  Table 10.2    Allocation of 1 - D FIR Filter Output Samples to Threads Using a Nonlinear 
Projection Operation When  m     =    8 Output Samples Are Allocated to One Thread 

   Thread ID     Output samples produced 
by each thread  

   Input data required 
by each thread  

  0     y (0)    …     y (7)     x (0)    …     x (8    −     N )  
  1     y (8)    …     y (15)     x (8)    …     x (16    −     N )  
  3     y (16)    …     y (23)     x (16)    …     x (24    −     N )  
  4     y (24)    …     y (31)     x (24)    …     x (32    −     N )  
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determined. The following section illustrates how this information can be  automati-
cally  obtained instead of inspecting the DAG of the algorithm.   

   10.8    SOFTWARE AND HARDWARE 
IMPLEMENTATIONS OF THE DAG TECHNIQUE 

 By using different scheduling functions and projection directions, the DAG is con-
verted to a set of tasks that can be executed concurrently in software threads or in 
hardware systolic arrays. The technique maps the DAG of the algorithm to simul-
taneous multithreaded (SMT  ) tasks or single instruction multiple data stream 
(SIMD  )/systolic hardware. In the following section, we shall refer to the computa-
tions at each node as  tasks , knowing that tasks translate to threads in software or 
PEs in hardware. In all cases discussed in this section we choose the scheduling 
function  s     =    [1  – 1]. 

   10.8.1    Design 1: Projection Direction d 1     =    [1 0] t  

 Since the chosen projection direction is along the extremal ray direction, the number 
of concurrent tasks will be fi nite. A point  p     =    [ i j ]  t      ∈    DAG maps to the point   �p = j . 
The pipeline is shown in Fig.  10.5 . Task  T ( i ) stores the fi lter coeffi cient  a ( i ). 
The fi lter output is obtained from the rightmost PE. Notice that both inputs  x  and  y  
are pipelined between the PEs. Some explanation of notation in the   DAG is in 
order. An arrow connecting tasks  T ( i ) to task  T (  j ) indicates that the output data of 
 T ( i ) is stored in memory and is made available to  T (  j ) at the  next  time step. An 
arrow exiting a task indicates calculations or data to be completed by the task at 

     Figure 10.5     Projected DAG (  DAG) for the 1 - D FIR fi lter for the case  N     =    4,  s     =    [1  – 1], and 
 d  1     =    [1 0]  t  . (a) The resulting   DAG. (b) The task processing details.  
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the end of the time step. An arrow entering a task indicates data read at the start of 
the time step.    

   10.8.2    Design 2: Projection Direction d 2     =    [0    − 1]  t   

 A point  p     =    [ i j ]  t      ∈     D  maps to the point   �p = i . The pipeline is shown in Fig.  10.6 . 
Each task stores all the fi lter coeffi cients locally to reduce intertask communication 
requirements  .  T ( i ) accepts input samples  x ( i     −     N     +    1) to  x ( i )   from the shared memory 
or input data bus at time step  i .  T ( i ) produces the output  y  out ( i ) at time step  i  and 
stores that data in memory or sends that signal onto the output data bus. The number 
of tasks is infi nite since our projection direction did not coincide with the ray direc-
tion. However, each task is active for the duration of  N  time steps. The task activities 
at different time steps are shown in Fig.  10.7 . The timing diagram thus indicates that 

     Figure 10.6     Projected DAG (  DAG) for the 1 - D FIR fi lter for the case  N     =    4,  s     =    [1  – 1], and 
 d  2     =    [0  – 1]  t  .  
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     Figure 10.7     Task activity for the 1 - D FIR fi lter for the case  N     =    4,  s     =    [1  – 1], and  d  2     =    [0  – 1]  t  .  
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we could merge the tasks. Therefore, we relabel the task indices such that  T ( i ) maps 
to  T (  j ), such that

    j i N= mod .     (10.52)     

 The reduced   DAG is shown in Fig.  10.8 .    

 10.9   PROBLEMS 

       10.1.    Given are two causal signals  h ( n ) and  x ( n ), which are  N  samples each. Their cross -
 correlation is given by the equation

   r n
N

h k x k nhx
k

N

( ) ( ) ( ),= +
=

−

∑1

0

1

 

where  n     =    0, 1,  …  ,  N     −    1. Assuming  N     =    5: 

  (1)     Draw the dependence graph for the algorithm where the index  n  is to be drawn 
on the horizontal axis and the index  k  is to be drawn on the vertical axis.  

  (2)     Write down nullvectors and basis vectors for the algorithm variables.  

  (3)     Find possible simple scheduling functions for this algorithm and discuss the 
implication of each function on the pipelining and broadcasting of the 
variables.  

  (4)     Choose one scheduling function and draw the associated DAG for the 
algorithm.  

  (5)     Show possible nonlinear scheduling options for the scheduling function you 
chose in part 4.  

  (6)     Find possible projection directions corresponding to the scheduling function you 
chose in part 4.  

     Figure 10.8     The reduced   DAG for the 1 - D FIR fi lter for  N     =    4,  s     =    [1  – 1], and  d  2     =    [0  – 1]  t  . 
(a) The   DAG. (b) The task processing details.  
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  (7)     Choose one projection direction and draw the resulting   DAG and the PE details 
for systolic array implementation.  

  (8)     Show possible nonlinear projection options for the projection direction you 
chose in part 7.      

    10.2.    The autocorrelation is obtained when, in the problem, we replace signal  h ( n ) with  x ( n ). 
Study the problem for this situation.   

    10.3.    Apply the dependence graph technique to the sparse matrix – vector multiplication 
algorithm.   

    10.4.    Apply the dependence graph technique to the sparse matrix – matrix multiplication 
algorithm.   

    10.5.    Draw the dependence graph of the discrete Hilber transform (DHT) and design multi-
threaded and systolic processor structures.   

    10.6.    Draw the dependence graph of the inverse discrete Hilber transform (IDHT) and design 
multithreaded and systolic processor structures.         

   





  Chapter 11 

Computational Geometry 
Analysis     

    11.1    INTRODUCTION 

 The techniques we have discussed so far for regular iterative algorithms (RIAs) are 
based on the availability of the dependence graph  [80, 81] . At best, a dependence 
graph can handle algorithms that can be represented by computational domains of 
dimension 3 at most. In the case of attempting to implement a three - dimensional 
(3 - D) fi lter on parallel hardware or using multithreading, the resulting dependence 
graph would be representable in a six - dimensional space. Such a dependence graph 
becomes very complex. 

 In this chapter, we study the RIA by studying each variable in the algorithm 
 separately  using concepts in computational geometry and matrix algebra. The vari-
ables we might encounter are of three types: input, output, and intermediate or input/
output variables. An input variable is one that has its instances appearing only on 
the right - hand side (RHS) of the equations of the algorithm. An output variable is 
one that has its instances appearing only on the left - hand side (LHS) of the algo-
rithm. An intermediate variable is one that has its instances appearing both on the 
LHS and on the RHS of the equations of the algorithm such that the variable has 
different index dependences on both sides of the iteration statements. We consider 
an intermediate variable as being both an input or output variable with different 
index dependencies for each instance. Using this artifact, we reduce our set of vari-
ables to input and output variables only  . 

 The analysis in this chapter will proceed using as a working example the case 
of matrix multiplication.  

   11.2    MATRIX MULTIPLICATION ALGORITHM 

 Assume we are given two compatible matrices  M  2  and  M  3  of dimensions  I     ×     K  and 
 K     ×     J , respectively. Their product is matrix  M  1  of dimension  I     ×     J . The matrix mul-
tiplication algorithm can be expressed as
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    M M1 2 3
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= ≤ ≤
=

−

∑ .     (11.1)   

 This equation can be expressed in any  serial algorithm  (i.e., any computer code) as 
three nested loops. An outer loop iterates over the index  i ; the next inner loop iterates 
over the index  j . The innermost loop iterates over the index  k . 

 Variable  M  1  in the above equation is an output variable, while variables  M  2  and 
 M  3  are input variables. The above matrix multiplication algorithm has three indices: 
 i ,  j , and  k , and we can think of these indices as coordinates of a point in a 3 - D 
volume. We organize our indices in the form of a vector:

    p = [ ]i j k t ;     (11.2)   

 for given values of the indices, the vector corresponds to a point in the  Z  3  space  [9] .  

   11.3    THE 3 - D DEPENDENCE GRAPH AND 
COMPUTATION DOMAIN  D    

 As we mentioned above, this chapter starts by studying a multidimensional computa-
tion domain  D  rather than a dependence graph. We shift our focus from graphs, 
nodes, and edges to  convex hulls  in  Z  3  as will be explained below. 

 The recursive algorithm in Eq.  11.1  is an equation involving the indexed vari-
ables  v i  ( p ), where  i     =    1, 2, 3 to account for one output variable,  M  1 , and two input 
variables,  M  2  and  M  3 , in Eq.  11.1 . The boundaries of the  Z  3  space describing our 
algorithm are defi ned by the restrictions imposed on the values of the indices as will 
be discussed in the following subsection. The collection of points within imposed 
boundaries defi nes the  computation domain   D . The dimension of  D  is  n     =    3, which 
is the number of indices in the algorithm. 

   11.3.1    3 - D Domain Boundaries 

 The 3 - D computation domain extends in the index space over a volume defi ned by 
the limits imposed on the index vector  p . We defi ne the computation domain  D  as 
the set of points in the 3 - D space that satisfi es certain criteria  [82] :

    D = ∈ ≤ ≥{ : , }p p pZ n
i i j jΨ Λψ λ ,     (11.3)   

 with  i     =    1, 2, 3 and  j     =    1, 2, 3. 
 The row vectors  Ψ   i   and  ψ   i   defi ne the upper hull of  D   [82 – 85] . Similarly, the 

row vectors  Λ   j   and  λ   j   defi ne the lower hull of  D . These two hulls describe the  sur-
faces  defi ning  D . To give a tasty example, consider  D  as an ice cream cone. In that 
case, the upper hull represents the chocolate coating on top. The lower hull repre-
sents the cone or wafer. The points of the computational domain correspond to the 
ice cream. 

 From Eq.  11.1 , the upper hull of our matrix algorithm is described by the equa-
tions of several planes in the 3 - D space:
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    1 0 0 1[ ] ≤ −p I     (11.4)  

    0 1 0 1[ ] ≤ −p J     (11.5)  

    0 0 1 1[ ] ≤ −p K .     (11.6)   

 The above three inequalities simply state that the upper bound on points in  D  is 
described by the equations of planes defi ning the top surfaces of  D :

    i I≤ −1     (11.7)  

    j J≤ −1     (11.8)  

    k K≤ −1.     (11.9)   

 The fi rst inequality describes a plane perpendicular to the  i  - axis and so on for 
the other two equations. 

 From Eq.  11.1 , the lower hull of our matrix algorithm is described by the equa-
tions of several planes in the 3 - D space:

    1 0 0 0[ ] ≥p     (11.10)  

    0 1 0 0[ ] ≥p     (11.11)  

    0 0 1 0[ ] ≥p .    (11.12)   

 The above three inequalities simply state that the lower bound on points in  D  is 
described by the equations of planes defi ning the bottom surfaces of  D :

    i ≥ 0     (11.13)  

    j ≥ 0     (11.14)  

    k ≥ 0.     (11.15)   

 Figure  11.1  shows the computation domain  D  for the matrix multiplication 
algorithm.  D  is a convex hull, which is another way of saying it is a volume in the 
3 - D space that has upper and lower bounds on its index values.   

 Note that the limits imposed on the algorithm indices defi ne the computation 
domain  D  in a direct and simple manner. Earlier approaches used the domain vertices 
and  “ extremal rays ”  to defi ne  D . However, in most cases, these quantities are simply 
not directly available. 

     Figure 11.1     The 3 - D computation domain  D  for 
the matrix multiplication algorithm.  
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 In the design of multiprocessors or multithreaded applications, it is important 
to determine the regions where and when data will be fed or extracted. This is 
related to the study of the facets and vertices of  D  as explained in the following two 
sections.   

   11.4    THE FACETS AND VERTICES OF  D  

 A point  p     ∈     D  lies on the  k th facet (or surface) of the upper hull if it satisfi es the 
equation

    Ψk kp = ψ .     (11.16)   

 This facet is of dimension 2 (i.e.,  n     −    1). We can generalize by saying that multiply-
ing the point  p  by a matrix of rank 1 results in the set of points that lies on a facet 
of dimension 1 less than  n , the dimension of  D . Similarly, a point  p     ∈     D  lies on the 
 k th facet of the lower hull if it satisfi es the equation

    Λk kp = λ .     (11.17)   

 We can extend the above argument and fi nd all the points that satisfy two 
upper hull boundary conditions. Let us choose the two boundary conditions  Ψ  1  and 
 Ψ  2 . Point  p     ∈     D  lies on the 1 - 2 facet of the upper hull when it satisfi es the 
equation

    
Ψ
Ψ

1

2

1

2

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

p
ψ
ψ

.     (11.18)   

 This facet is of dimension 1 (i.e.,  n     −    2) since  Ψ  1     ≠     Ψ  2  by choice, which pro-
duces a matrix of rank 2. Since this facet is of dimension 1, it is actually a straight 
line describing the intersection of face 1 with face 2 of  D . This is an edge of the 
cubic volume. 

 Similarly, a domain point  p     ∈     D  lies on the 1 - 2 facet of the lower hull satisfi es 
the equation

    
Λ
Λ

1

2

1

2

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

p
λ
λ

.     (11.19)   

 This facet is of dimension 1 (i.e.,  n     −    2) since  Λ  1     ≠     Λ  2  by choice. It is also possible 
to fi nd the  i  –  j th facets of  D  that result due to the intersection of the upper and lower 
hulls by picking a  Ψ   i   and a  Λ   j   in the above constructions. The above procedure could 
be extended to construct 3    ×    3 matrices of rank 3 to obtain the vertices of  D .  

   11.5    THE DEPENDENCE MATRICES OF 
THE ALGORITHM VARIABLES 

 Previous works on parallel algorithms and parallel processing attempted to study 
data dependencies by studying how the output variables depend on the input 
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variables. We do not follow this approach here. Instead, we study how each variable 
depends on the indices of the algorithm. 

 Assume a variable  v  in the algorithm described by Eq.  11.1  depends on  m  out 
of the  n  indices describing the algorithm. The index dependence of the variable  v  
could be written as a function of its indices in the  affi ne  form

    v v= −( )Ap a ,     (11.20)  

where  A  is the dependence matrix, which is an integer  m     ×     n  matrix ( m     ≤     n ), and  a  
is an integer  m  - vector. We call  A  the dependence matrix and  a  the dependence vector. 
The dependence matrix relates the variable to the domain indices and does not 
describe the dependence of the output variable on the input variables. 

 Typically, indexed variables have  a     =    0, where 0 is an  m  - vector whose compo-
nents are all zeros. 

 Assume we have a specifi c instance of a variable  v  given by  v ( c ), where  c  is a 
constant vector. From the defi nition of the dependence matrix in Eq.  11.20 , we can 
write

    A p c a= + .     (11.21)   

 The above is a system of  m  linear equations in  n  unknowns. When  m     <     n , we have 
many solutions for the unknown index values. When  n     =     m , we have one unique 
solution. These concepts are elaborated upon in the next section in terms of the 
nullspace and nullvector of  A .  

   11.6    NULLSPACE OF DEPENDENCE MATRIX: THE 
BROADCAST SUBDOMAIN  B  

 We will see in this section that the nullvector of the dependence matrix  A  of some 
variable  v  describes a subdomain  B     ⊂     D . We will prove that all points in  B  contain 
the same instance of  v . 

   11.6.1    The Nullspace of A 

 If the dependence matrix  A  is rank defi cient, then the number of independent null-
vectors associated with  A  is given by

    Number of nullvectors rank= −n ( )A ,     (11.22)  

where  n  is the number of indices of the algorithm. These nullvectors defi ne the 
 nullspace  of matrix  A . 

 Now assume a specifi c instance for the variable  v ( c ). The following theorem 
identifi es the points in  D  that use that variable.

  Theorem 11.1      Consider a particular nullvector  e  associated with a variable  v . If 
two distinct points   p  1   and   p  2   use the same instance v(  c  ), then the vector connecting 
the two points is a nullvector of   A .  
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  Proof: 
 Assume the two points use the same instance  v ( c ). Substitute the two points into Eq. 
 11.21  to get

    A p c a1 = +     (11.23)  

    A p c a2 = + .     (11.24)   

 Subtracting the two equations, we get

    A p p 01 2−( ) = .     (11.25)   

 We can write above equation as

    A p p A e1 2−( ) = α ,     (11.26)  

where  α     ≠    0. Therefore, the vector connecting the two points is a nullvector of  A . 
Now assume the two points lie along the nullvector  e . We can write

    p p e1 2− = α ,     (11.27)  

where  α     ≠    0 since the two points are distinct. We can write

    A p p A e1 2 0−( ) = =α .     (11.28)   

 Thus, the vector connecting the two points is a nullvector. 
 Now assume that  p  1  is associated with the variable instance  v ( c  1 ) and  p  2  is 

associated with the variable instance  v ( c  2 ), but the vector connecting the two points 
is a nullvector of  A . We can use Eq.  11.21  to get

    A p c1 1= + a     (11.29)  

    A p c2 2= + a.     (11.30)   

 Subtracting the above two equations, we get

    A p p c c1 2 1 2−( ) = − .     (11.31)   

 From Eqs.  11.28  and  11.31 , we have

    c c 01 2− = .     (11.32)   

 This implies that  c  1     =    c 2 . This proves the theorem.   

 We conclude from the above theorem that if the rank of the dependence matrix 
 A  associated with variable  v  is less than  n , then there is a set of nullvectors of  A  
associated with the variable  v . This set defi nes a subdomain  B . An instance of  v  is 
defi ned over a subdomain  B     ⊂     D , which we call the  broadcast subdomain . Every 
point in  B  sees the same instance of  v . 

 Every variable  v  of the algorithm, indexed by the pair [ A, a ], is associated with 
a broadcast subdomain  B  whose basis vectors are the nullspace of  A . The basis 
vectors will prove useful to pipeline the variable  v  and eliminate broadcasting. 

 The dimension of the broadcast subdomain  B  is given by  [85] 

    Dimension of rankB n= − ( )A ,     (11.33)  

where  n  is the dimension of the computation domain  D . 
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 From Eq.  11.1 , the index dependence of the input variable  M  1 ( i ,  j ) is given by

    A a1 1=
1 0 0

0 1 0
0

⎡
⎣⎢

⎤
⎦⎥

=and .     (11.34)   

 The rank of  A  1  is two. This implies that its nullspace basis vector space is only one -
 dimensional (1 - D), corresponding to one vector only. That nullspace basis vector 
could be given by

    e1 [0 0 1]= t .     (11.35)   

 We note that the broadcast domain for  M  1 ( i ,  j ) is 1 - D and coincides with the  k  - axis. 
Figure  11.2 a shows the broadcast domain  B  1  for the output variable instance 
 M  1 ( c  1 ,  c  2 ). This output is calculated using all the points in  D  whose indices are 
( c  1   c  2   k ), where 0    ≤     k     <     K .   

 From Eq.  11.1 , the index dependence of the input variable  M  2 ( i ,  k ) is given by

    A a2 2

1 0 0

0 0 1
0= ⎡

⎣⎢
⎤
⎦⎥

=and .     (11.36)   

 The rank of  A  2  is two. This implies that its nullspace basis vectors space is only 
1 - D, corresponding to one vector only. That basis vector of its nullspace could be 
given by

    e2 [0 1 0]= t .     (11.37)   

 Figure  11.2 b shows the broadcast domain  B  2  for the input variable instance 
 M  2 ( c  1 ,  c  2 ). This input is supplied to all the points in  D  whose indices are ( c  1   j   c  2 ), 
where 0    ≤     j     <     J . 

 From Eq.  11.1 , the index dependence of the input variables  M  3 ( k ,  j ) is given by

    A a3 3

0 0 1

0 1 0
0= ⎡

⎣⎢
⎤
⎦⎥

=and .     (11.38)   

     Figure 11.2     The broadcast subdomain for input and output variables. (a) Subdomain  B  1  for variable 
 M  1 ( c  1 ,  c  2 ). (b) Subdomain  B  2  for variable  M  2 ( c  1 ,  c  2 ). (c) Subdomain  B  3  for variable  M  3 ( c  1 ,  c  2 ).  
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 The rank of  A  3  is two. This implies that its nullspace basis vectors space is only 
1 - D, corresponding to one vector only. That basis vector of its nullspace could be 
given by

    e3 [1 0 0]= t .     (11.39)   

 Figure 11.2c shows the broadcast domain  B  3  for the input variable instance 
 M  3 ( c  1 ,  c  2 ). This input is supplied to all the points in  D  whose indices are ( i   c  2   c  1 ), 
where 0    ≤     i     <     I . Note that for this variable in particular, the fi rst index  c  1  maps to 
the  k  - axis and the second index  c  2  maps to the  j  - axis. This stems from the fact that 
we indexed this input variable using the notation  M  3 ( k ,  j ) in our original algorithm 
in Eq.  11.1 .   

   11.7    DESIGN SPACE EXPLORATION: CHOICE OF 
BROADCASTING VERSUS PIPELINING VARIABLES 

 At this point, we know we have three variables,  M  1 ,  M  2 , and  M  3 , for our matrix 
multiplication algorithm. We have a choice whether to broadcast or to pipeline each 
variable. Thus, we have eight different possible design choices for the implementa-
tion of our algorithm. Some of these choices might not be feasible though. In what 
follows, we show only one of those choices, but the reader can explore the other 
choices following the same techniques we provide here. 

 Broadcasting an output variable means performing all the calculations necessary 
to produce it at the same time. It is not recommended to broadcast output variables 
since this would result in a slower system that requires gathering all the partial 
outputs and somehow using them to produce the output value. To summarize, if  v  
is an input variable, all points in  B  potentially use the same value of  v . If  v  is an 
output variable, all points in  B  are potentially used to produce  v . 

 Broadcasting an input variable means making a copy available to all processors 
at the same time. This usually results in the algorithm completing sooner. It is 
always preferable to broadcast input variables since this only costs using buses to 
distribute the variables. Data broadcast could be accomplished in hardware using 
a system - wide bus or an interconnection network capable of broadcasting a single 
data item to all the processing elements (PEs). In software, data broadcast could 
be accomplished using a broadcast message to all threads or using a shared 
memory. 

   11.7.1    Feeding/Extraction Point of a Broadcast Variable 

 The problem we address in this section is as follows. Assume we are given a par-
ticular instance  M  2 ( c  1 ,  c  2 ) of the input variable  M  2 . We want to determine a point in 
 D  to feed this input instance. We choose this point at the boundaries of  D . To fi nd 
such a point, we fi nd the intersection of the broadcast subdomain of  M  2  with  D . The 
intersection point is found by augmenting the dependence matrix  A  2  to make it full 
rank. We use one of the three candidate facets from the lower or upper hull. We 
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choose to feed the variable from the lower hull facets described by Eqs. 11.13, 11.14, 
or 11.15. Only the facet described by Eq.  11.14  increases the rank of  A  2  as it is 
linearly independent for all its rows  . Now our augmented matrix will be

    A2,

1 0 0

0 0 1

0 1 0
aug =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.     (11.40)   

 The intersection point is specifi ed by the equation

    M p
c

2,
0

aug = ⎡
⎣⎢

⎤
⎦⎥
,     (11.41)  

where  c  is the intersection point in the domain  D . Specifi cally, we can write
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c .     (11.42)   

 Solving the above three simultaneous equations in the three unknowns  i ,  j , and  k , 
we get the intersection point for variable  M  2 ( c  1 ,  c  2 ) as

    p = [ 0 ]1 2c c t .     (11.43)   

 Thus, instance  M  2 ( c  1 ,  c  2 ) is fed to the system at the point with coordinates given 
by the above equation. Figure  11.3  shows the feeding point for supplying variable 
instance  M  2 ( c  1 ,  c  2 ) to the 3 - D computation domain  D  for the matrix multiplication 
algorithm.   

 Let us now fi nd the feeding point for input variable instance  M  3 ( c  1 ,  c  2 ). We also 
choose to augment the dependence matrix  A  3  from one of the facets of the lower 
hull. Only the facet described by Eq.  11.13  increases the rank of  M  3  as it is linearly 
independent for all its rows  . We should not spend too much time worrying about 

     Figure 11.3     The feeding point 
for supplying variable instance  M  2 ( c  1 , 
 c  2 ) to the 3 - D computation domain  D  
for the matrix multiplication algorithm.  
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whether to choose the augmenting facet from the lower or upper hulls since broad-
casting does not really care where the bus is fed from as long as all processors receive 
the data. Now our augmented matrix will be

    A3,

0 0 1

0 1 0

1 0 0
aug =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.     (11.44)   

 The intersection point is specifi ed by the equation

    M p
c

3,
0
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⎤
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,     (11.45)  

where  c  is the intersection point in the domain  D . Specifi cally, we can write
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 Solving the above three simultaneous equations in the three unknowns we get the 
intersection point for variable  M  3 (c 1 , c 2 ) as

    p = [0 ]2 1c c t .     (11.47)   

 Thus, instance  M  3 ( c  1 ,  c  2 ) is fed to the system at the point with coordinates given by 
the above equation. Figure  11.4  shows the feeding point for supplying variable 
instance  M  3 ( c  1 ,  c  2 ) to the 3 - D computation domain  D  for the matrix multiplication 
algorithm.    

   11.7.2    Pipelining of a Variable 

 We can introduce pipelining to the broadcast subdomain  B  of variable  v  by dedicat-
ing some of the basis vectors of  B  as data pipeline directions. The remaining basis 
vectors will remain broadcast directions. When we assign some basis vectors to 

     Figure 11.4     The feeding point for supplying 
variable instance  M  3 ( c  1 ,  c  2 ) to the 3 - D 
computation domain  D  for the matrix 
multiplication algorithm.  
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describe our pipelining, the remaining basis vectors defi ne a reduced broadcast 
subdomain over which variable  v  is still broadcast. In this way, we can mix pipelin-
ing and broadcasting strategies to propagate (or evaluate) the same input (or output) 
variable. 

 For our matrix multiplication algorithm, we choose to pipeline our output data 
samples  M  1 ( c  1 ,  c  2 ). Now pipelined data travels from one point in  D  to another along 
a given direction. We need to determine the directions of data pipelining, which are 
the nullspace of the dependence matrix for  M  1 , that is, along the direction given by 
the vector given by  e     =    [0 0 1]  t  . We need to determine two distinct intersection 
points of  B  with  D . One point is used to initialize the pipeline. The other point is 
used to extract the pipeline output. To fi nd the intersection points, we augment the 
dependence matrix  A  1  using lower and upper hull facets. The only possible candi-
dates for augmenting  A  1  are given by Eqs.  11.9  and  11.15 . 

 Now our augmented matrix will be

    A1,
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0 0 1
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.     (11.48)   

 We can write the two augmented matrices using the expression
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 We can explicitly write the above two equations as
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 The solution for the above two equations gives

    p p= [ ] = −[ ]c c c c Kt t
1 2 1 20 1and .     (11.51)   

 Thus, we know the possible locations of initializing or extracting the pipeline data 
in the computation domain. The detailed method to obtain the extraction points and 
the feeding points at the projected domain will be discussed later in this chapter.   

   11.8    DATA SCHEDULING 

 We discuss in this section how to divide the tasks in the algorithm into stages such 
that at each stage a group of tasks gets executed in parallel while preserving the 
correctness of the results. The section will also determine the stages when data are 
to be fed or extracted from a processor or thread. We need to fi nd a function that 
will take the coordinates of a point  p  in the computation domain  D  and to assign a 
time value to it. We use an affi ne scheduling function to specify the scheduling of 
the algorithm tasks. The affi ne scheduling functions are of the form  [86] 
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    t s( )p sp= − ,     (11.52)  

where  s  is a row vector of length  n , which is called scheduling vector, and  s  is an 
integer that biases the ordering to ensure non - negative stage index values. 

 The main purpose of the scheduling function is to assign an execution time to 
several nodes in  D . Consequently, this function determines the computational load 
to be performed by the computing system at each time step or execution sequence. 
This is a subtle but very important by - product. As we shall see, the linear or affi ne 
scheduling function affords us little control on the amount of that work. However, 
we still need it to correctly perform the algorithm tasks. Nonlinear scheduling tech-
niques will allows us to control the total work assigned to the system during each 
time step. Another effect of the scheduling function is the fact that dependencies 
between tasks will be created, and interthread and interprocessor communication 
can thus be determined. 

 Assigning time values to the nodes of  D  transforms it to a serial – parallel 
algorithm (SPA) where the parallel tasks could be implemented using a thread pool 
or parallel processors for software or hardware implementations, respectively. The 
different stages of the SPA are accomplished using barriers or clocks for software 
or hardware implementations, respectively. 

 The following theorem will prove that the scheduling function will convert the 
dependence graph into a DAG.

  Theorem 11.2      The affi ne scheduling function changes a dependence graph into a 
DAG even if the dependence graph contained cycles.   

  Proof: 
 Given a dependence graph, we defi ne a  k  - hop cycle as one involving  k  - nodes as 
shown in Fig.  11.5 . We exclude one - hop loops since they represent local computa-
tions and are absorbed within a node. Without loss of generality, we assume a 1 - D 
dependence graph where the nodes lie on a straight line with index  i . Now assume 
that there are one or more  k  - hops involving nodes whose indices are 0, 1,  …  ,  k     −    1 
where  k     >    1. The presence of a loop in the dependence graph implies that there are 
undirected links between the following pairs of nodes:

     Figure 11.5     Illustration of the presence of 
cycles in a dependence graph and a DAG. 
(a) Undirected links and cycles in the 
dependence graph. (b) Directed links only to 
produce a DAG.  

10 k – 2

(a)

(b)

... k – 1

10 k – 2... k – 1
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    ( ), ( ), , ( ), ( ).0 1 1 2 2 1 1 0↔ ↔ − ↔ − − ↔… k k k   

 For our 1 - D situation, the affi ne timing function is given by  t ( p )    =     i ; the times asso-
ciated with these points become

    0,1, 2, , 1… k − .     

 The execution time associated with each point imparts an ordering on the times and 
a direction to the unidirectional links. We can write

    t t t t k(0) < (1) < (2) < ( 1)… − .   

 The above inequalities give direction to the undirected edges of the dependence 
graph. We thus have the following directional links:

    (1 1), (1 2), , ( 2 1), (0 1)→ → − → − → −… k k k .   

 The dependence graph has now become a DAG and the loopback edge between 
the fi rst and last nodes 0 and  k     −    1 has now become directed from node 0 to node 
 k     −    1. Thus, our undirected dependence graph, which included cycles, is transformed 
into a DAG. 

 The following theorem will prove that the affi ne scheduling function will 
convert the dependence graph to a SPA.  

  Theorem 11.3      The affi ne scheduling function changes a dependence graph into 
a SPA.   

  Proof: 
 Assume without loss of generality a two - dimensional (2 - D) dependence graph. A 
node in the dependence graph is described by the coordinates  i ,  j :

    p = [ ]i j t .     (11.53)   

 The scheduling function assigns an order of execution to each node given by 
the expression

    t s i s j s( ) 1 2p sp= = + + .     (11.54)   

 For given values of  s  1 ,  s  2 , and  s , we get

    s i s j s c1 2+ + = ,     (11.55)  

where  c  is some constant. 
 The algorithm computation domain  D  is defi ned in the integer space    Z   2  by the 

inequalities

    0 ≤ ≤i I     (11.56)  

    0 ≤ ≤j J,     (11.57)  

where we assumed that the indices in our 2 - D case fall in the limits indicated above. 
The scheduling function imposes another restriction as given by Eq.  11.55 . All nodes 
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satisfying the above two inequality and satisfying Eq.  11.55  will describe a subset 
of  D . All these nodes are assigned stage  c . 

 Changing the value of  c  to  k  identifi es a new set of nodes that will be executed 
at stage  k . Thus, we have divided the nodes in our computation domain  D  to a set 
of sequential stages, and each stage executes a set of nodes in parallel. This is the 
defi nition of a SPA 

 The affi ne scheduling function should satisfy fi ve conditions in order to be a 
valid scheduling function:

    s p p≥ ∈s D positive time values     (11.58)  
    s e = 0 broadcast restriction     (11.59)  
    s f ≠ 0 pipelining restriction     (11.60)  
    s d ≠ 0 projection restriction     (11.61)  
    s R > 0 causality     (11.62)  

where

   e       broadcast nullvector,  
 f      pipelining nullvector,  
 d      projection direction (discussed later), and  
 R      any extremal ray in our domain.      

 It is important to mention here that the restrictions implied by Eq.  11.59  preclude 
any broadcast directions that coincide with the projection directions, defi ned in 
Section  11.9 . The above conditions provide the minimum constraints that must be 
satisfi ed for a possible valid scheduling function. Further restrictions are imposed 
to narrow our choices as will be explained in Section  11.8.1 . 

 Since the point [0 0 0]  t      ∈     D , we have  s     =    0. Thus, our scheduling function is 
simply given by

    t( )p sp= ,     (11.63)  

or more explicitly, we can write above Equation as

    t s i s j s k( ) 1 2 3p = + + .     (11.64)   

 We need to come up with values for the variables  s  1 ,  s  2 , and  s  3 , which are based 
on the restrictions given by Eqs.  11.58 – 11.62 . 

 To start, let us assume that we want to pipeline output variable  M  1  since this 
leads to faster and simpler hardware. For this, we need to know the nullvector asso-
ciated with  M  1 . The nullspace for output variable  M  1  is given in Eq.  11.35  as

    e1 [0 0 1]= t .     (11.65)   

 From restriction (Eq.  11.60 ), we can write

    [ ][0 0 1] 01 2 3s s s t ≠ ,     (11.66)  

which implies  s  3     ≠    0. Let us choose  s  3     =    1. Thus, our scheduling function so far is 
given by

    s = [ 1]1 2s s .     (11.67)   
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 Next, let us assume that we want to broadcast input variable  M  2 . For this, we 
need to know the nullvector associated with  M  2 . The nullspace for input variable 
 M  2  is given in Eq.  11.37  as

    e2 [0 1 0]= t .     (11.68)   

 From restriction (Eq.  11.59 ), we can write

    [ 1][0 1 0] 01 2s s t = ,     (11.69)  

which implies  s  2     =    0. Thus, our scheduling function so far is given by

    s = [ 0 1]1s .     (11.70)   

 To fi nd the component  s  1 , we consider the third variable,  M  3 . Let us pipeline that 
variable. For this, we need to know the nullvector associated with  M  3 . The nullspace 
for output variable  M  3  is given in Eq.  11.35  as

    e3 [1 0 0]= t .     (11.71)   

 From restriction (Eq.  11.60 ), we can write

    [ 0 1][1 0 0] 01s
t ≠ ,     (11.72)  

which implies  s  1     ≠    0. Let us choose  s  1     =    1. Thus, our scheduling function is fi nally 
given by

    s = [1 0 1].     (11.73)   

 Equation  11.73  defi nes the valid scheduling function for our matrix multiplica-
tion algorithm given our choices for data broadcast and pipelining. 

   11.8.1    Impact of Scheduling Function on Data Timing 

 The restrictions on our choice for a valid scheduling function were developed in the 
previous section. 

 The timing function so far that we developed in Eq.  11.73  imposes certain 
restrictions on the timing of the output variable. The output data samples are indexed 
using two indices, for example,

    M i j1( , ) = output matrix element     (11.74)  

    i = row index     (11.75)  

    j = column index.     (11.76)   

 The feeding and extraction for this variable were found in Eq.  11.51 . These two 
points can be used to determine the timing of the variable. Consider the output sample 
 M  1 ( i ,  j ). According to Eq.  11.51 , the extraction point for this instance is given by

    p = −[ 1]i j K t .     (11.77)   

 We can write the following time value for this element:



200 Chapter 11 Computational Geometry Analysis

    t

i

j

K

i K( ) 1 0 1

1

1p = [ ]×
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= + − .     (11.78)   

 This Equation states that output elements in the same column of  M  1  are obtained 
from the processors or the threads at the same time. The fi rst row with  i     =    0 is 
obtained in time instance  K     −    1; the second row is obtained at time  K , and so on. 

 The reader can verify that input variable sample  M  2 ( i ,  k ) is supplied to the array 
at time

    t i k i k[ ( , )]2M = + .     (11.79)   

 Thus, the inputs for this variable are supplied such that all elements whose row and 
column index sum is equal to the same value are supplied simultaneously. Element 
 M  2 (0, 0) is supplied at time 0. Elements  M  2 (1, 0) and  M  2 (0, 1) are supplied at time 
1, and so on. 

 Similarly, input variable sample  M  3 ( k ,  j ) is supplied to the array at time

    t k j k[ ( , )]3M = .     (11.80)   

 All elements on the same row are supplied to the system at the same time. Element 
 M  3 (0,  j ) is supplied at time 0. Element  M  3 (1,  j ) is supplied at time 1, and so on.   

   11.9    PROJECTION OPERATION USING THE LINEAR 
PROJECTION OPERATOR 

 In Section  11.8 , we discussed how we can associate a time step value to each point 
in the computation domain  D . In this section, we discuss how we can assign a task 
to each point in the computation domain  D . This task could later be assigned to a 
thread for the case of multithreaded software implementation, or the task could be 
assigned to a PE for the case of hardware systolic implementation. It is a waste of 
resources (number of processors or number of threads) to associate a unique proces-
sor or thread to each point in the computation domain  D . The main reason is that 
each point is active only for  one time instant and is idle the rest of the time . The 
basic idea then is to allocate one processor or thread to several points of  D . There 
are basically three ways of doing this: 

  1.     Use linear projection operator matrix  P  to reduce the  dimensions  of  D  to 
produce a new computation domain   D    whose dimensions  k     <     n . Matrix  P  has 
dimensions  k     ×     n  and its rank is  k . For our matrix multiplication example,  D  
was 3 - D. The linear projection operation would produce a computation domain 
  D that is 2 - D or 1 - D.  

  2.     Use a nonlinear operator to reduce the  size  of the computation domain  D , 
but keep its dimension  n  fi xed. For our matrix multiplication example, the 
size of  D  is a  I     ×     J     ×     K  cube in 3 - D space. The nonlinear operator would 
produce a new 3 - D cube,   D, whose size is now  I  ′     ×     J  ′     ×     K  ′ , where  I  ′     <     I ,  J  ′     <     J  
and  K  ′     <     K .  
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  3.     Use both linear and nonlinear operators to reduce both the size and dimension 
of the computation domain.    

 We explain here the fi rst approach since it is the one most used to for design 
space exploration. 

 A subtle point to be noticed in the projection operation is that it controls the 
amount of workload assigned to each software thread for a multithreaded implemen-
tation or the workload assigned to each PE for a systolic array implementation. Just 
like affi ne scheduling, affi ne projection affords us little control over the workload 
assigned to a thread or a PE. However, nonlinear projection operations will give us 
very good control over the workload assigned to each thread or PE. 

   11.9.1    The Projection Matrix P 

 We defi ne a linear projection operation for multithreading as the projection matrix 
 P  that maps a point in domain  D  (of dimension  n ) to point   p  in the  k  - dimensional 
computational domain   D  according to the equation

    p P p= .     (11.81)   

 The following theorem places a value on the rank of the projection matrix in 
relation to the dimension of the projected domain.

  Theorem 11.4      Given the dimension of   D   is  n  and the dimension of    D  is  k  and 
rank(  P  ) is  r . Then we must have  r     =     k , that is rank(  P  )     =    k , if   P   is to be a valid pro-
jection matrix.   

  Proof: 
  P  has dimension  k     ×     n  with  k     <     n . The defi nition of the rank of a matrix indicates 
that the rank could not exceed the smaller of  n  or  k . Thus we conclude that  r     ≤     k . 

 Now assume that the rank of  P  is smaller than  k . If  r     <     k , then we have  r  linearly 
independent rows and  k     −     r  rows that are a linear combination of the  r  rows. Thus, 
the linear equation given by

    p P p= ×     (11.82)   

 is a system of linear equations in  k  unknowns, and the number of equations is less 
than the unknowns. Thus, we have an infi nity of solutions. This contradicts our 
assertion that the mapping matrix maps any point in  D  to a unique point in   D. 

 Therefore, we conclude that we must have the rank of  P  equal to  k ; that is,  r     =     k .   

 Now the projection matrix  P  maps two points  p  1  and  p  2  in  D  associated with a 
particular output variable instance  v ( c ) to the point   p . Thus, we can write

    P p p1 2 0−( ) = .     (11.83)   

 But from Theorem 11.1 and Eq.  11.27 , we can write the expression

    P p p P e1 2 0−( ) = =α ,     (11.84)  
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where  e  is a nullvector associated with the output variable. We conclude therefore 
that the nullvectors of the projection matrix  P  are also the nullvectors associated 
with the output variable  v . The following theorem relates the rank of the projection 
matrix to

  Theorem 11.5      Assume the dimension of   D   is  n . If output variable  v  has  r  orthogo-
nal nullvectors, then the dimension of    D   is  k     =     n    −    r  and the rank of the projection 
matrix   P   is  k.  

  Proof: 
 The nullvectors of  P  are the  r  nullvectors. Thus, the rank of  P  is given by

    Rank( )P = −n r.     (11.85)   

 But we proved in Theorem 11.4 that the rank of  P  is equal to  k . Thus, we must have

    k n r= − .     (11.86)     

 Based on this theorem, if our variable had only one nullvector, then the dimension 
of   D  will be  n     −    1. If the variable had two nullvectors, then the dimension of   D  
would be  n     −    2, and so on.  

   11.9.2    The Projection Direction 

 A projection matrix is required to effect the projection operation described by Eq. 
 11.81 . However, the projection operation is typically defi ned in terms of a  projection 
direction , or directions,  d . Knowing the desired projection directions helps in fi nding 
the corresponding projection matrix  P .

  Defi nition 11.1     The projection direction is defi ned such that any two distinct 
points,  p  1  and  p  2 , in  D  will be projected to the same point in   D  if it satisfi es the 
relation

    p p d2 1− = α ,     (11.87)  

where  α     ≠    0 is some constant. In other words, the vector connecting  p  1  and  p  2  is 
parallel to  d .  

  Theorem 11.6      The projection direction   d   is in the nullspace of the projection 
matrix   P .  

  Proof: 
 From Defi nition 11.1, we can write

    p Pp= 1     (11.88)  

    p Pp= 2.     (11.89)   

 Subtracting the above two equations, we get

    αPd = 0.     (11.90)      
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   11.9.3    Choosing Projection Direction  d  

 One guideline for choosing a projection direction is the presence of extremal ray r 
in domain  D . An extremal ray is a direction vector in  D  where the domain extends 
to infi nity or a large value of the indices. The projection matrix should have those 
rays in its nullspace; that is,

    P r = 0.     (11.91)   

 This is just a  recommendation  to ensure that the dimension of the projected domain 
 D  is fi nite. However, the projection directions do not necessarily have to include the 
extremal ray directions to ensure a valid multiprocessor. Our 3 - D matrix multiplica-
tion algorithm deals with matrices of fi nite dimensions. As such, there are no extre-
mal ray directions. However, we impose two requirements on our multiprocessor. 

 A valid scheduling function cannot be orthogonal to any of the projection direc-
tions, a condition of Eq.  11.61 . Therefore, the projection directions impose restric-
tions on valid scheduling functions or vice versa. For our matrix multiplication 
algorithm, we obtained a scheduling function in Eq.  11.73  as

    s = [1 0 1].     (11.92)   

 Possible projection directions that are not orthogonal to  s  are

    d1 [1 0 0]= t     (11.93)  

    d2 [0 0 1]= t     (11.94)  

    d3 [1 0 1]= t .     (11.95)   

 In the next section, we will show how matrix  P  is determined once the projection 
vectors are chosen.  

   11.9.4    Finding Matrix P Given Projection Direction d 

 We present here an algorithm to get the projection matrix assuming we know our 
projection directions. We start fi rst with the simple case when we have chosen only 
one projection direction  d . 

  Step 1  
 Choose the projection directions. In our case, we choose only one projection direc-
tion with the value

    d = [1 0 0]t .     (11.96)   

 This choice will ensure that all points along the  i  - axis will map to one point in   D. 

  Step 2  
 Here we determine the basis vectors for  D , such that one of the basis vectors is along 
 d  and the other two basis vectors are orthogonal to it. In our case, we have three 
basis vectors:
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    b d0 [1 0 0]= =t     (11.97)  

    b1 [0 1 0]= t     (11.98)  
    b2 [0 0 1]= t .     (11.99)   

 Equation  11.97  implies that the  i  - axis will be eliminated after the projection opera-
tion since our choice implies that  Pb  0     =    0. 

  Step 3  
 Choose the basis vectors for   D. In this case, we have two basis vectors since the 
dimension of   D is two. We choose the basis vectors as

    b1 [1 0]= t     (11.100)  
    b2 [0 1]= t .     (11.101)   

 The above two equations imply that the  j  - axis will map to   b1  and the  k  - axis will 
map to   b2 . These become the   j  -  and   k  - axes for   D , respectively. 

  Step 4  
 Associate each basis vector   b with a basis vector  b . Based on that, we can write

    Pb bi i i= = 1, 2.     (11.102)   

  Step 5  
 We now have a suffi cient number of equations to fi nd all the elements of the 2    ×    3 
projection matrix  P :

    Pb 00 =     (11.103)  
    Pb bi i i= = 1, 2.     (11.104)   

 The fi rst Equation is a set of two equations. The second Equation is a set of 
2    ×    2 equations. In all, we have a set of 2    ×    3 equations in 2    ×    3 unknowns, which 
are the elements of the projection matrix  P . 

 For our case, we can write the above equations in a compact form as

    P b b b 0 b b0 1 2 1 2[ ] = [ ].     (11.105)   

 Explicitly, we can write

    
P P P

P P P
0,0 0,1 0.2

1,0 1,1 1.2

1 0 0

0 1 0

0 0 1

0 1 0

0 0 1
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⎦⎥
.     (11.106)   

 The solution to the above Equation is simple and is given by

    
P P P

P P P
0,0 0,1 0.2

1,0 1,1 1.2

0 1 0

0 0 1
⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥
.     (11.107)   

 Thus, a point   p = [ ] ∈i j k Dt  maps to point   p = [ ] ∈j k Dt .   
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   11.10    EFFECT OF PROJECTION OPERATION ON DATA 

 Now that we know both the projection and scheduling functions, we are able to 
study how the input and output variables map to the projected domain   D. 

   11.10.1    Output Data M 1  

 The pipeline direction for the output data is mapped to the vector   e1  given by

    e Pe b1 1 2= = .     (11.108)  

Therefore, the output data will map to pipelining arrows along the  k  - axis (verti-
cal lines) in the resulting multiprocessor architecture shown in Fig.  11.6 .

The initialization and extraction points for the output data are found in Eq. 
 11.51 . The initialization point for input  M  1 ( c  1 ,  c  2 ) map in   D  to the point   p .
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.     (11.109)  

Similarly, the extraction point for input  M  1 ( c  1 ,  c  2 ) map in   D  to the point   p .

     Figure 11.6     The projected or 
reduced computation domain   D  for the 
matrix multiplication algorithm when 
the dimensions of the matrices are  I     =    3, 
 J     =    4, and  K     =    5.  
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   11.10.2    Input Data M 2  

 The broadcast direction for input data is mapped to the vector   e2  given by

    e Pe b2 2 1= = .     (11.111)     

 Therefore, the input data for  M  2  will map to lines along the  j  - axis (horizontal 
lines) in the resulting multiprocessor architecture shown in Fig.  11.6 . 

 The input sample  M  2 ( c  1 ,  c  2 ) is fed to our multiprocessor using its intersection 
point from Eq.  11.43 .
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   11.10.3    Input Data M 3  

 The broadcast direction for the input data is mapped to the vector   e3  given by

    e Pe 03 3= = .     (11.113)   

 This means that the input  M  3  is  localized  and is neither pipelined nor broadcast. 
 The input sample  M  3 ( c  1 ,  c  2 ) is fed to our multiprocessor using its intersection 

point from Eq.  11.47 .
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   11.11    THE RESULTING MULTITHREADED/
MULTIPROCESSOR ARCHITECTURE 

 At this stage, we have the following: 

  1.     We have chosen a certain affi ne scheduling function (Eq.  11.73 ),

    s = [1 0 1].    

  2.     We have chosen a certain projection direction (Eq.  11.96 ),

    
d = [1 0 0]t ,

 
which produced the projection matrix (Eq.  11.107   )
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 From all the above results, we are able to construct our reduced or projected com-
putation domain (  D) as shown in Fig.  11.6  for the case when  I     =    3,  J     =    4, and  K     =    5. 
Each node in the   D  represents a task to be performed by a software thread or a PE 
in a systolic array at a given time step. The input data  M  2 ( i ,  j ) represent broadcast 
data coming from memory. The output data  M  1 ( i ,  j ) represent the output of each task 
that is being used as input to adjacent tasks at the next time step.  

   11.12    SUMMARY OF WORK DONE IN THIS CHAPTER 

 At this stage, we were able to completely specify the reduced computation domain 
  D associated with the matrix – matrix multiplication algorithm. This   D could repre-
sent the required concurrent threads for a software implementation or the required 
PEs needed for a systolic array hardware implementation. Below we summarize 
what we have done and why: 

  1.     We started by expressing the matrix multiplication as an iterative Equation (Eq. 
 11.1 ).  

  2.     The indices of the iterative Equation defi ned the multidimensional computation 
domain  D . The facets and vertices of this domain were studied in Sections  11.3  
and  11.4 .  

  3.     We identifi ed the dependence matrix  A  associated with each variable of the 
algorithm in Section  11.5 . Based on this matrix, we identifi ed its nullvectors, 
which represent the broadcast subdomain  B  of the variable. We were also able 
to identify the intersection points of  B  with  D . These intersection points help 
in supplying input variables or extracting output results. At this stage, we can 
decide whether to broadcast or to pipeline our variables.  

  4.     Scheduling of data was discussed in Section  11.8  using affi ne scheduling 
functions.  

  5.     The projection of domain  D  onto another domain   D was discussed in Section 
 11.9 . Three different projection operations were discussed, but only one was 
studied in more detail.     

 11.13   PROBLEMS 

     To get a feel for the formal computational geometry analysis technique, it is helpful to apply 
it to simple 2 - D or 3 - D algorithms. Some of the following problems are intended for that 
purpose. In order to analyze the problem, the following steps are required: 
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  1.     Determine the computation domain  D  and its facets and vertices.  

  2.     Obtain the dependence matrix of each variable then determine the basis vectors and 
nullvectors of the matrix.  

  3.     Obtain the feeding or extraction points of the variables, which lie on some of the f acets 
of  D .  

  4.     Determine the projection matrix.  

  5.     Determine the scheduling function.     

    11.1.    Apply the computational geometry technique to the 1 - D fi nite impulse response (FIR) 
digital fi lter algorithm.   

    11.2.    Apply the computational geometry technique to the 2 - D FIR digital fi lter algorithm.   

    11.3.    Apply the computational geometry technique to the 1 - D infi nite impulse response (IIR) 
digital fi lter algorithm.   

    11.4.    Apply the computational geometry technique to the 2 - D IIR digital fi lter algorithm.   

    11.5.    Apply the computational geometry technique to the matrix – vector multiplication 
algorithm.   

    11.6.    Apply the computational geometry technique to the 1 - D convolution algorithm.   

    11.7.    Apply the computational geometry technique to the 2 - D convolution algorithm.   

    11.8.    Apply the computational geometry technique to the 1 - D autocorrelation algorithm.   

    11.9.    Apply the computational geometry technique to the 1 - D cross - correlation algorithm.   

    11.10.    Apply the computational geometry technique to the 2 - D autocorrelation algorithm.   

    11.11.    Apply the computational geometry technique to the 2 - D cross - correlation algorithm.   

    11.12.    Apply the computational geometry technique to the 3 - D autocorrelation algorithm.   

    11.13.    Apply the computational geometry technique to the 3 - D cross - correlation algorithm.        

    



  Chapter 12 

Case Study: One - Dimensional 
 IIR  Digital Filters     

    12.1    INTRODUCTION 

 In this chapter, we illustrate how to obtain different multithreaded or systolic array 
structures for the one - dimensional (1 - D) infi nite impulse response (IIR) digital 
fi lters. The IIR algorithm is an essentially a serial algorithm since each FOR loop 
iteration depends on  N     −    1 previous iterations where  N  is the fi lter length. Therefore, 
the programmer and the concurrency platforms would not be able to parallelize the 
algorithm. The techniques discussed in this book would help the programmer extract 
and explore the inherent parallelism in this seemingly serial algorithm. 

 We use the dependence graph technique introduced in Chapter  10  and the com-
putational geometry technique discussed in Chapter  11 . At the end of the chapter, 
we will also use the  z  - domain approach discussed in Chapter  9 .  

   12.2    THE 1 -  D   IIR  DIGITAL FILTER ALGORITHM 

 The 1 - D IIR digital fi lter algorithm can be expressed as the set of difference 
equations

    y i a j x i j b j y i j
j

N

( ) ( ) ( ) ( ) ( ) ,= − − −[ ]
=

−

∑
0

1

    (12.1)  

  where  a (  j ) and  b (  j ) are the fi lter coeffi cients and  N  is the fi lter length. Note that 
 b (0)    =    0 in the above equation.  

   12.3    THE  IIR  FILTER DEPENDENCE GRAPH 

 We use Eq.  12.1  to study the index dependencies of the algorithm variables. Variable 
 y  is an input/output or intermediate variable, and variables  x ,  a , and  b  are all input 
variables. An input/output variable is one that is present on the right - hand side 
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(RHS) and left - hand side (LHS) of the algorithm equations with different index 
dependencies for each side. 

 We note that the algorithm gives rise to a two - dimensional (2 - D) computation 
domain  D  since we have two indices,  i  and  j . Since the dimensionality of  D  is low, 
it is best to visualize  D  using a dependence graph since this is easier for humans to 
visualize and analyze. 

 We organize our indices in the form of a vector:

    p = [ ]i j t ;     (12.2)   

 for given values of the indices, the vector corresponds to a point in the  Z  2  space. 

   12.3.1    The 2 -  D  Dependence Graph 

 The dimension of a dependence graph is two, which is the number of indices in the 
algorithm. The graph covers the points  p ( i ,  j )    ∈     D , where the range of the indices 
defi nes the boundaries of the dependence graph as

    0 0≤ ≤ <i j Nand .     (12.3)   

 Note that  D  extends to  ∞  in the  i  direction, which defi nes an  extremal ray  in that 
direction. 

 The dependence matrices for the variables will help us plot them in the fi lter 
dependence graph. We prefer to use the concept of dependence graph here because 
of the low dimensionality of a dependence graph, which facilitates visualization. 

 Figure  12.1  shows the dependence graph of the 1 - D IIR fi lter for the case  N     =    4. 
The following paragraphs describe how the dependence graph was obtained. The 
missing circles near the  j  - axis indicate that there are no operations to be performed 
at these locations since the input to our fi lter does not have negative indices.   

     Figure 12.1     Dependence graph for the 1 - D IIR fi lter for the case  N     =    4.  
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 The output variable  y  has a dependence matrix given by

    Ay, [ ].output = 1 0     (12.4)   

 The null vector associated with this matrix is

    ey
t

, [ ] .output = 0 1     (12.5)   

 Therefore, the broadcast domains for this variable are vertical lines in  D . This is 
shown in Fig.  12.1  for the case  N     =    4. 

 The input variables  a  and  b  have a dependence matrix given by

    Aa b, [ ].= 0 1     (12.6)   

 The null vector associated with this matrix is

    ea b
t

, [ ] .= 1 0     (12.7)   

 Therefore, the broadcast domains for these two variables are the horizontal lines in 
 D . The input variable  x  has a dependence matrix given by

    Ax = −[ ].1 1     (12.8)   

 The null vector associated with this matrix is

    ex
t= [ ] .1 1     (12.9)   

 Therefore, the broadcast domains for this variable are the diagonal lines in  D . 
 The input variable  y  has a dependence matrix given by

    Ay, [ ].input = −1 1     (12.10)   

 The null vector associated with this matrix is

    ey
t

, [ ] .input = 1 1     (12.11)   

 Therefore, the broadcast domains for this variable are the diagonal lines in  D  also.  

   12.3.2    The Scheduling Function for the 1 -  D   IIR  Filter 

 We start by using an affi ne scheduling function given by

    s = −[ ] ,s s s1 2     (12.12)  

where the constant  s     =    0 since the point at the origin  p (0, 0)    ∈     D . Any point 
 p     =    [ i j ]  t      ∈     D  is associated with the time value

    t i s j s( 1 2p s p) .= = +     (12.13)   

 Assigning time values to the nodes of the dependence graph transforms the depen-
dence graph to a directed acyclic graph (DAG) as was discussed in Chapters  10  and 
 11 . More specifi cally, the DAG can be thought of as a serial – parallel algorithm (SPA) 
where the parallel tasks could be implemented using a thread pool or parallel proces-
sors for software or hardware implementations, respectively. The different stages of 
the SPA are accomplished using barriers or clocks for software or hardware imple-
mentations, respectively. 
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 In order to determine the components of  s , we turn our attention to the fi lter 
inputs  x . The input data are assumed to be supplied to our array at consecutive time 
steps. From the dependence graph, we see that samples  x ( i ) and  x ( i     +    1) could be 
supplied at points  p  1     =    [ i  0]  t   and  p  2     =    [ i     +    1 0]  t  , respectively. The time steps associ-
ated with these two input samples are given from Eq.  10.17  by

    t i s( 1 1p ) =     (12.14)  

    t i s( 12 1p ) ( ) .= +     (12.15)   

 Assuming that the consecutive inputs arrive at each time step, we have  t ( p  2 )    −     t ( p  1 )    =    1, 
and we must have

    s = [ ].1 2s     (12.16)   

 So now we know one component of the scheduling vector based on input data timing 
requirements. Possible valid scheduling functions could be

    s =
[ − ]
[ ]
[ ]

⎧
⎨
⎪

⎩⎪

1 1

1 0

1 1 .

    (12.17)   

 All the above timing schedules are valid and have different implications on the 
timing of the output and partial results. The fi rst scheduling vector results in broad-
cast input and pipelined output. The second scheduling vector results in broadcast 
of the output variable  y  and could produce Design 2, discussed in Chapter  9 . The 
third scheduling vector results in pipelined input and output and could produce 
Design 3, discussed in Chapter  9 . Let us investigate the scheduling vector 
 s     =    [1  − 1]. This choice implies that

    s ey, ,in = 0     (12.18)   

 which results in broadcast  x  and  y  in  samples. Based on our choice for this time func-
tion, we obtain the DAG shown in Fig.  12.2 . The gray lines indicate  equitemporal  

     Figure 12.2     DAG for the 1 - D IIR fi lter for the case  N     =    4.  
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planes. All nodes lying on the same gray line execute their operations at the time 
indicated beside the line. The gray numbers indicate the times associated with each 
equitemporal plane. Notice from the fi gure that all the input signals  x  and  y  in  are 
broadcast to all nodes in an equitemporal plane and output signals  y  out  are pipelined 
as indicated by the arrows connecting the graph nodes. At this stage, we know the 
timing of the operations to be performed by each node. We do not know yet which 
processing element each node is destined to. This is the subject of the next 
subsection.    

   12.3.3    Choice of Projection Direction and 
Projection Matrix 

 Chapters  10  and  11  explained that the projection operation assigns a node or a 
group of nodes in the DAG to a thread or processor. The number of assigned nodes 
determines the workload associated with each task. The operation also indicates 
the input and output data involved in the calculations. The projection operation 
controls the workload assigned to each thread/processor at each stage of the execu-
tion of the SPA. 

 From Chapter  11 , a restriction on the projection direction  d  is that

    s d ≠ 0.     (12.19)   

 Therefore, we have three possible choices for projection directions:

    d1 1 0= [ ]t     (12.20)  

    d2 0 1= [ ]t     (12.21)  

    d3 1 1= −[ ] .t     (12.22)   

 The projection matrices associated with each projection direction are given by

    P1 0 1= [ ]t     (12.23)  

    P2 1 0= [ ]t     (12.24)  

    P3 1 1= [ ] .t     (12.25)    

   12.3.4    Design 1: Projection Direction  d  1     =    [1 0]  t   

 Since the chosen projection direction is along the extremal ray direction, the number 
of tasks will be fi nite. A point  p     =    [ i j ]  t      ∈     D  maps to the point   p, which is given by

    p P p= =1 j.     (12.26)   

 The reduced or projected DAG (  DAG) is shown in Fig.  12.3 . Task  T ( i ) stores the 
two fi lter coeffi cients  a ( i ) and  b ( i ). The fi lter output is obtained from the top tasks 
and is fed back to the fi rst task at the next time step. Notice that both inputs  x  and 
 y  are pipelined between the tasks.    
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   12.3.5    Design 2: Projection Direction  d  2     =    [0 1]  t   

 A point  p     =    [ i j ]  t      ∈     D  maps to the point   p    =     i . The pipeline is shown in Fig.  12.4 . 
Each task stores all the fi lter coeffi cients and is responsible for producing an output 
sample, which reduces intertask communication requirements  . Task  T ( i ) accepts 
input samples  x ( i     −     N     +    1) to  x ( i )   from the memory or input data bus at time steps 
 i     −     N     +    1 to  i . Task  T ( i ) also reads the memory or the output data bus for samples 
 y  in ( i     −     N     +    1) to  y  in ( i     −    1) at time steps  i     −     N     +    1 to  i     −    1. Task  T ( i ) produces the 
output  y  out ( i ) at time step  i  and stores that signal in the shared memory or places the 
signal on the output data bus for the case of hardware implementation. The number 
of tasks is infi nite since our projection direction did not coincide with the ray direc-
tion. However, each task is active for the duration of  N  time steps. The task activities 

     Figure 12.3        DAG for the 1 - D IIR fi lter for the case  N     =    4 and  d  1     =    [1 0]  t  . (a) The   DAG for the 
tasks. (b) Task processing details and array implementation  .  
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at different time steps are shown in Fig.  12.5 . The timing diagram thus indicates that 
we could merge the tasks. Therefore, we relabel the task indices such that  T ( i ) maps 
to  T (  j ), such that  

    j i mod N= .     (12.27)   

 The reduced DAG is shown is in Fig.  12.6 .     

     Figure 12.5     Task activities for the 1 - D FIR fi lter for the case  N     =    4 and  d  2     =    [0 1]  t  .  
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     Figure 12.6     The reduced   DAG for the 1 - D FIR fi lter for  N     =    4 and  d  2     =    [0 1]  t  . (a) The   DAG 
(b) Task processing details.  
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  12.4     z   - DOMAIN ANALYSIS OF 1 -  D   IIR  DIGITAL 
FILTER ALGORITHM 

 The  z  - domain 1 - D IIR digital fi lter algorithm is obtained from Eq.  12.1  as

    Y a i z X b i z Yi

i

N
i

i

N

= −−

=

−
−

=

−

∑ ∑( ) ( ) ,
0

1

0

1

    (12.28)  

where  X  and  Y  are the  z  - transform of the signals  x ( n ) and  y ( n ), respectively, and 
 b (0)    =    0. We can think of Eq.  12.28  as a polynomial expression in the different powers 
of  z   − 1 . By using different polynomial evaluation techniques, the fi lter expression is 
converted to a set of recursive expressions that can be evaluated using a processor 
array or multiple software threads. 

   12.4.1    Design 3: Broadcast Inputs and 
Pipelined Output 

 Apply Horner ’ s ’  scheme to Eq.  12.28  to obtain the recursive expression

    Y a X z a X b Y z a N X b N Y= + − + + − − −− −( ) [ ( ) ( ) [ ( ) ( ) ]] ].0 1 1 1 11 1� �     (12.29)   

 The above equation can be written as

    Y a i X b i Y z Y i Ni i= − + < <−
+( ) ( ) [ ]1

1 0     (12.30)  

    Y a X z Y0
1

10= + −( )     (12.31)  

    YN = 0     (12.32)  

    Y Y= 0.     (12.33)   

 Based on the above iterative expression, task  T ( i ) computes  Y i   in Eq.  12.30  using 
one multiplication and one addition:

    Y a i X b i Y z Yi i= − + −
+( ) ( ) .1

1     (12.34)   

 The output of  T ( i ) is buffered then forwarded to  T ( i     −    1) and the input to  T ( N     −    1) 
is initialized to 0. The above equations produce Design 1 in Fig.  12.3 .  

   12.4.2    Design 4: Pipelined Inputs and 
Broadcast Output 

 In this design, we apply the delay operator to the input data samples to obtain delayed 
input data that we use to obtain our output. We start by applying our delay operators 
to the input samples  X  and  Y :

    
Y a X a z X b z Y a z z X b z z X= + ( ) − ( )[ ]+ ( ) − (− − − − − −( ) ( ) ( ) ( ) ( )0 1 1 2 21 1 1 1 1 1 ))[ ]

+ + − ( ) − − ( )[ ]− − − − − −� a N z z X b N z z YN N( ) ( ) .( ) ( )1 11 2 1 2     
(12.35)
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 The above equation can be converted to the iterative expressions

    
Y a i X b i Y

X z X Y z Y

X X

i
i

N

i
i

N

i i i i

= −

= =
=

=

−

=

−

−
−

−
−

∑ ∑( ) ( )
0

1

0

1

1
1

1
1

0

and

andd Y Y0 = .

    (12.36)   

 The resulting DAG is identical to that shown in Fig.  12.6 .  

   12.4.3    Design 5: Pipelined Input and Output 

 A possible attractive implementation would be when both the input and output of 
each task are stored in a register. This implies a fully pipelined design, which is 
potentially the fastest design possible. Assume without loss of generality that  N  is 
even. We can write Eq.  12.28  as

    

Y a X a z X b z Y

z a z X b z Y a z X

= + − +
− + −

− −

− − − −

[ ( ) ( ) ( ) ]

( ) ( ) ( )

0 1 1

2 2 3

1 1

1 1 1 2 b z Y

z a N z X b N z YN N N

( )

( ) ( )( ) ( ) ( )

3

2 2

2

2 1 2 1 2 1

−

− − − − − −

[ ]+
+ − − − +[� / / /

a N z X b N z YN N( ) ( ) .− − − ]− −1 12 2/ /     (12.37)   

 We write the above expression in the succinct form

    Y z a i z X a i z X b i z Y b i z Yi i i i i= + + − − +[ ]− − − + − − +( ) ( ) ( ) ( )( ) ( )2 2 1 2 2 11 1

ii

N

=

−

∑
0

2 1/

,     (12.38)   

 We perform an iteration on the input  X  in the above equation:

    X z X i Ni i= ≤ ≤−
−

1
1 1 2/     (12.39)  

    Y z Y i Ni i= ≤ ≤−
−

1
1 1 2/     (12.40)  

    X X0 =     (12.41)  

    Y Y0 = ,     (12.42)  

and the output is given by

    Y z a i X a i Xi
i i

i

N

= + +[ ]−
+

=

−

∑ ( ) ( ) .2 2 1 1
0

2 1/

    (12.43)   

 The above equation can be written as the iteration

    Y z a i X a i X b i Y b i Y Y i Ni i i i i i= + + − − + +[ ] < <−
+ +

1
1 12 2 1 2 2 1 0 2( ) ( ) ( ) ( ) /     (12.44)  

    YN/2 0=     (12.45)  

    Y a X a X b Y Y0 0 1 1 10 1 1= + −[ ]+( ) ( ) ( )     (12.46)  

    Y Y= 0.     (12.47)   

 Figure  12.7 a shows the resulting   DAG. This is a new structure that has been 
reported in the literature by the author  [23] . Figure  12.7 b shows the details of a 
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processor element. Note that both the input and output are pipelined between the 
task stages. Figure  12.7 c shows the details of the fi rst task storing the fi lter coeffi cient 
 a (0),  a (1), and  b (1). Note that the output is not stored in a register.    

 12.5   PROBLEMS 

       12.1.    Study the 1 - D digital correlation operation using the  z  - transform technique.   

    12.2.    Study the 2 - D digital correlation operation using the  z  - transform technique.   

    12.3.    Study the three - dimensional digital correlation operation using the  z  - transform 
technique.   

    12.4.    Study the three - dimensional fi nite impulse response (FIR) fi lter using the  z  - transform 
technique.   

    12.5.    Study the three - dimensional IIR fi lter using the  z  - transform technique.         

   
 

     Figure 12.7     IIR digital fi lter   DAG with pipelined input and output. (a) The   DAG. (b) Task 
processing details. (c) Leftmost task processing details.  
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  Chapter 13 

Case Study: Two -  and 
Three - Dimensional 
Digital Filters     

    13.1    INTRODUCTION 

 Multidimensional digital fi lters are used in several areas of digital signal processing. 
Two - dimensional (2 - D) digital fi lters are used for image processing applications 
such as image enhancement and noise removal. Three - dimensional (3 - D) digital 
fi lters are used to process consecutive frames of images such as video data and 
medical imaging, such as computerized tomography (CT) and magnetic resonance 
imaging (MRI) scans. Another interesting example of 3 - D fi lters is velocity fi lters. 
Velocity fi lters can be used to detect the speed of an object in a video sequence. 
Velocity fi lters are used also in the processing of seismic data sets or signal streams 
from microphone arrays to separate different signal components.  

   13.2    LINE AND FRAME WRAPAROUND PROBLEMS 

 There is an inherent problem in processing raster - scanned images: line and frame 
wraparound. Consider 2 - D fi lters for an image. Figure  13.1  shows the main system 
parameters for a 2 - D fi rst - quadrant digital fi lter. The image being processed has a 
width of  W  pixels and a height of  H  pixels. The 2 - D fi lter window width is  w  pixels 
and the height is  h  pixels. The axes are as shown since typically, lines are numbered 
starting from the top. The output sample at location ( i ,  j ) is indicated by the dark 
circle and is obtained by processing all the pixels in the dark gray area shown.   

 Figure  13.2  shows the different locations of the fi lter window as it scans the 
image to produce the processed image as an output. Output pixel  a  in Fig.  13.2  
shows the case when the output sample lies in the fi rst row. The window buffer of 
the fi lter is mostly empty except for the input data shown as the shaded region in 
the window area. Output pixel  b  in Fig.  13.2  shows the case when the output sample 
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220 Chapter 13 Case Study: Two- and Three-Dimensional Digital Filters  

is the last pixel in the fi rst row. Now the fi lter moves to produce the fi rst pixel in 
the second row as shown in the fi gure by point  c . The valid input data are shown 
by the dark shaded area. The stipple pattern shows the data remaining in the fi lter 
due to scanning output  b . The correct output  c  should have been obtained by clearing 
the fi lter buffer storing that stipple region. In general, the fi rst  w     −    1 pixels of each 
line will contain contributions from the last  w     −    1 pixels of the previous line. This 
phenomenon is known as line wraparound. Because of this problem, early hardware 
structure produced  H ( w     −    1) erroneous pixels in each image. Measures should be 
taken to clear the fi lter buffer of all extraneous data.   

 For 3 - D fi lters, the fi rst  h     −    1 lines of each frame will contain contributions from 
the last  h     −    1 lines of the previous frame. This phenomenon is known as frame 
wraparound. Again, earlier hardware designs produced  W ( h     −    1) incorrect pixels, 
which are produced at the start of a new frame   before the fi rst correct results appear. 
Thus, for a continuous processing of raster - scanned images, the total number of 
erroneous pixels produced per frame is equal to  H ( w     −    1)    +     W ( h     −    1)    −    ( w     −    1)
( h     −    1). In this chapter, we discuss how to eliminate both line and frame wraparound 
problems in the resulting implementations.  

     Figure 13.1     System parameters for a 2 - D digital fi lter.  
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   13.3    2 -  D  RECURSIVE FILTERS 

 A fi rst - quadrant 2 - D recursive fi lter can be represented by the equation

    Y a k k Xz z b k k Yz zk k

k
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h
k k
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=

−
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− −∑∑ ( , ) ( , )1 2 1 2

0

1

0

1

1 2 1 2
1 2

12

1 2

112 0

1

0

1

=

−

=

−

∑∑
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h

,     (13.1)   

 where  X     ≡     X  ( z  1 ,  z  2 ),  Y     ≡     Y  ( z  1 ,  z  2 ), and  b (0, 0)    =    0. The term   z1
1−  represents one time 

step delay along a line. This delay could be implemented as memory address locators 
for use by the software threads or it could be implemented as actual hardware buffer 
for use by the software systolic array processing elements. The term   z2

1−  represents 
one sample delay along a column. For progressive raster - scanned images, this is 
equivalent to  W  time - step delays where  W  is the image width. The above equation 
can also be written in a hierarchical way as

    Y F k z X G k z Yk k

k

h

= −⎡⎣ ⎤⎦
− −

=

−

∑ ( ) ( ) ,2 2 2 2
1

1
2 2

2

    (13.2)  

where the terms  F ( k  2 ) and  G ( k  2 ) are two one - dimensional (1 - D) infi nite impulse 
response (IIR) fi lter operators given by

    F k a k k z k
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1
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−

∑     (13.4)   

 From Eq.  13.2 , it can be seen that a 2 - D recursive fi lter can be treated as a 
combination of 1 - D recursive fi lters. In the following sections, we derive different 
hierarchical 2 - D recursive structures in terms of 1 - D recursive structures. 

   13.3.1    2 -  D   IIR  Design 1: Broadcast   X   and   Y   Inputs and 
Pipelined Output 

 In this design, we broadcast the  X  and  Y  inputs to each 1 - D fi lter section and pipeline 
their outputs to obtain the 2 - D fi lter output. Using Horner ’ s rule on Eq.  13.2  in the 
form

    

Y F X G Y z F X G Y z F X G Y

z F h

= − + − + − +
−

− −

−

( ) ( ) [ ( ) ( ) [ ( ) ( )

[ (

0 0 1 1 2 22
1

2
1

2
1

�
1 1) ( ) ]] ],X G h Y− − �     (13.5)   

 the above Equation can be written in iterative form as

    S F i X G i Y z S i hi i= − + ≤ <−
+( ) ( ) 2

1
1 0     (13.6)  

    Sh = 0     (13.7)  

    Y S= 0.     (13.8)   
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 Using the results of Chapter  9 , we obtain the directed acyclic graph (DAG) shown 
in Fig.  13.3 . This design was previously developed by the author ’ s group in 
References  23 and 87 . The DAG could be implemented by multithreads in software 
or by using systolic arrays in hardware.   

 Line wraparound can be eliminated by clearing all the storage elements  within  
the 1 - D fi lters. This should be done after the reception of the last pixel of a given 
line and before the reception of the fi rst pixel of the next line by any 1 - D fi lter 
structure. 

 Frame wraparound can be eliminated by clearing all the storage elements 
within the tasks of each 1 - D fi lter as well as all the  z   − 1  elements between 
adjacent 1 - D fi lters. This should be done after the reception of the last pixel in the 
last line of a given frame and before the reception of the fi rst pixel of the following 
frame.  

  13.3.2 2 -  D   IIR  Design 2: Pipelined   X   and   Y   Inputs and 
Broadcast Output 

 Equation  13.2  is modifi ed by associating the  z   − 1  delay operators with the 
input samples. In effect, we are introducing the delays to the input signals  X  
and  Y .

    Y F k z X G k z Yk k

k

h

= ( ) − ( )⎡⎣ ⎤⎦
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0

1
2 2

2

    (13.9)   

 We develop the iterative equations for the input signals as

     Figure 13.3     DAG of a 2 - D recursive fi lter 
using Design 1 for a fi lter window height of 
 h     =    4  .  
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    X z X i hi i= < <−
−2

1
1 0     (13.10)  

    Y z Y i hi i= < <−
−2

1
1 0     (13.11)  

    X X0 =     (13.12)  

    Y Y0 = .     (13.13)   

 Finally, we have the fi lter output given by

    Y Yi
i

h

=
=

−

∑
0

1

.     (13.14)   

 The resulting DAG is shown in Fig.  13.4 . This DAG can be implemented using 
software multithreading or hardware systolic arrays. The systolic array of the 2 - D 
recursive structure is similar to the one reported in References  23, 87, and 88 . Line 
and frame wraparound can be eliminated by using the approach described in the 
previous section.     

   13.4    3 -  D  DIGITAL FILTERS 

 A fi rst - quadrant 3 - D recursive fi lter can be represented by the equation
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where  X     ≡     X  ( z  1 ,  z  2 ,  z  3 ),  Y     ≡     Y  ( z  1 ,  z  2 ,  z  3 ), and  b (0, 0, 0)    =    0. In the above equation,  h  
is the height of the fi lter window,  w  is the width of the fi lter window, and  f  is the 
depth of the fi lter window, which is the number of frames used to collect the fi lter 
input samples. 

     Figure 13.4     DAG of a 2 - D recursive fi lter 
using Design 2 for a fi lter window height of 
 h     =    4.  
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 Assuming progressive raster - scanned data, the term   z1
1−  represents one time - step 

delay through the use of a single register as a storage element. The term   z2
1−  repre-

sents  W  time - step delays where  W  is the frame width. The term   z3
1−  represents  HW  

time - step delays where  H  is the frame height. These delays could be implemented 
as memory address locators for use by the software threads, or they could be imple-
mented as actual hardware buffers for use by the software systolic array processing 
elements. 

 The above equation can be written in a hierarchical way as

    Y F k z X G k z Yk k

k

f

= −⎡⎣ ⎤⎦
− −

=

−

∑ 2 3 3 2 3 3
1

1
3 3

3
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where the terms  F  2 ( k  3 ) and  G  2 ( k  3 ) are two 2 - D IIR fi lter operators given by
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 From Eq.  13.16 , it can be seen that a 3 - D recursive fi lter can be treated as a 
combination of 2 - D recursive fi lters. In the following sections, we derive different 
hierarchical 3 - D recursive DAG structures in terms of 2 - D recursive DAG 
structures. 

   13.4.1    3 -  D   IIR  Design 1: Broadcast   X   and   Y   Inputs and 
Pipelined Output 

 In this design, we broadcast the  X  and  Y  inputs to each 2 - D fi lter section and pipeline 
their outputs to obtain the 3 - D fi lter output. Using Horner ’ s rule on Eq.  13.16  in 
the form

    

Y F X G Y z F X G Y z F X G Y

z

= − + − + − +− −

−
2 2 3

1
2 2 3

1
2 2

3
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2 21 1[ ( ) ( ) ]] ],F f X G f Y− − − �     (13.19)   

 the above Equation can be written in iterative form as

    S F i X G i Y z S i fi i= − + ≤ <−
+2 2 2

1
1 0( ) ( )     (13.20)  

    Sf = 0     (13.21)  

    Y S= 0.     (13.22)   

 Using the results of Chapter  9 , we obtain the DAG shown in Fig.  13.5 . The DAG 
implementations of 1 - D discussed in the previous chapters and 2 - D IIR fi lters dis-
cussed in the previous sections can be used to implement the 3 - D DAG task in the 
fi gure. Frame wraparound can be eliminated by clearing all the storage elements 
 within  the 2 - D fi lters. This should be done after the reception of the last pixel of a 
given frame and before the reception of the fi rst pixel of the next frame by any 2 - D 
fi lter structure.    
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   13.4.2    3 -  D   IIR  Design 2: Pipelined   X   and   Y   Inputs and 
Broadcast Output 

 Equation  13.16  is modifi ed by associating the   z3
1−  delay operators with the input 

samples. In effect, we are introducing the delays to the input signals  X  and  Y :
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∑ 2 3 3 2 3 3
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1
3 3

2
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     Figure 13.5     DAG of a 3 - D recursive fi lter 
using Scheme 1 for a fi lter window depth of 
 f     =    4.  
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     Figure 13.6     DAG of a 3 - D recursive fi lter 
using Scheme 2 for a fi lter window depth of 
 f     =    4.  
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 We develop the iterative equations for the input signals as

    X z X i hi i= < <−
−3

1
1 0     (13.24)  

    Y z Y i hi i= < <−
−3

1
1 0     (13.25)  

    X X0 =     (13.26)  

    Y Y0 = .     (13.27)   

 Finally, we have the fi lter output given by

    Y Yi
i

f

=
=

−

∑
0

1

.     (13.28)   

 The resulting DAG structure is shown in Fig.  13.6 . The different DAGs of 1 - D 
discussed in the previous chapters and 2 - D IIR fi lters discussed in the previous sec-
tions can be used to implement the 2 - D tasks in the fi gure. Line and frame wrap-
around can be eliminated by using the approach described in the previous section.       
   
 



  Chapter 14 

Case Study: Multirate 
Decimators and Interpolators     

    14.1    INTRODUCTION 

 Multirate digital processing systems are important due to the numerous applications 
in which effi cient translations among various sampling frequencies are needed. An 
important application of multirate digital fi lters is to implement the discrete wavelet 
transform. Decimators and interpolators are the most basic elements of such systems. 
They have also found applications in sub - band coding and analog - to - digital (A/D) 
conversion  [89 – 93] . Particular interest is nowadays focused on the implementation 
of multirate fi lters for real - time applications. 

 Multirate systems rely on the use of  decimators  and  interpolators . A decimator 
accepts a high - rate input signal and produces a low - rate output signal. An interpola-
tor accepts a low - rate input signal and produces a high - rate output signal. We discuss 
in this chapter how to design multithreaded systems that implement decimators and 
interpolators.  

   14.2    DECIMATOR STRUCTURES 

 A decimator is a device that passes a high - rate input signal through a low - pass fi lter 
then picks out some of the fi lter outputs to get a low - rate output. The low - pass fi lter 
is sometimes referred to as an anti - aliasing fi lter. Decimation is usually used for 
signals whose Nyquist rate is much higher than the highest frequency of the signal. 
In this way, computations and memory savings can result by reducing the data rate 
without loss of information. 

 The model of an  M  - to - 1 decimator is shown in Fig.  14.1   [94, 95] . The operating 
frequencies of the different components are indicated above the input and output 
lines. The sample periods are indicated below the input and output lines. The block 
on the left is an  N  - tap fi nite impulse response (FIR) digital fi lter with impulse 
response  h ( nT ), where  T  is the high - rate sampling period, which operates at the high 
sampling rate  F .  M     −    1 out of every  M  output samples are discarded by the  M  - to - 1 
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228 Chapter 14 Case Study: Multirate Decimators and Interpolators

sampling rate compressor, or downsampler, shown as the block on the right in Fig. 
 14.1 . The low - pass fi lter generates the signal  u ( nT ) and the downsampler generates 
the signal  y ( nT  ′ ). The system in Fig.  14.1  implies a serial algorithm where input data 
samples are fi rst fi ltered then downsampled. The techniques we discuss here merge 
the two operations and extract different parallelization options.   

 We can write the following equations for the two output signals  

    u n h k x n k
k

N

( ) ( ) ( )= −
=

−

∑
0

1

    (14.1)  

    y n u nM( ) = ( ).     (14.2)   

 In this chapter, we assume that the fi lter length is an integer multiple of  M . If it is 
not, we augment it with zero - valued coeffi cients to simplify the analysis  .  

   14.3    DECIMATOR DEPENDENCE GRAPH 

 The author and his group provided a  z  - transform technique for obtaining several 
decimator structures  [96 – 98] . However, for the case of multirate systems, this 
approach was not able to provide the rich set of design space exploration that the 
dependence graph approach could provide. Figure  14.2  shows the dependence graph 
of the decimator, which was obtained for the two signals in Eqs.  14.1  and  14.2 . The 
horizontal axis is the  n  - axis and vertical axis is the  k  - axis. The fi gure shows the 
dependence graph of the fi lter whose output samples are  u ( n ). At the top of the fi gure, 
we indicate the decimator output  y ( n ). Note that sample  y ( n ) corresponds to the 
sample  u ( M n ). In order to conserve space, we used subscripts in the fi gure to indi-
cate index values for the different samples.   

 The thick vertical lines indicate the decimator output  y ( n ). The solid circles in 
the fi gure indicate useful fi ltering operations that result in the generation of the 
output samples  u ( nM ) and  y ( n ), while the empty circles indicate fi ltering operations 
that will result in no useful output samples. In a sense, these are wasted operations 
that consume unnecessary resources. Essentially, the decimator uses a regular low -
 pass fi lter to produce some output samples at the high input data rate. Then, we 
selectively pick the  M th sample to represent the desired decimator outputs. 

 Figure  14.3  shows the dependence graph of the decimator where only the useful 
operations and outputs are indicated.   

 This fi gure is a bit less cluttered compared with Fig.  14.2 . We removed the 
empty circles and only retained the shaded circles that give the desired outputs.  

     Figure 14.1     General  M  - to - 1 decimator system.  
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     Figure 14.2     General  M  - to - 1 decimator dependence graph for the case when  M     =    3 and  N     =    12.  
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     Figure 14.3      M  - to - 1 decimator dependence graph for the case when  M     =    3 and  N     =    12. Unnecessary 
operations and output samples have been removed from the fi gure.  
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   14.4    DECIMATOR SCHEDULING 

 As usual, we employ an affi ne timing function  

    t( ) ,p sp=     (14.3)  

where the row vector  s     =    [ s  1   s  2 ] is the scheduling vector and the column vector 
 p     =    [ n k ]  t   is any point in the dependence graph. The fi rst component refers to the 
horizontal axis and the second component refers to the vertical axis. 

 Assigning time values to the nodes of the dependence graph transforms the 
dependence graph to a directed acyclic graph (DAG) as discussed in Chapters  10  
and  11 . More specifi cally, the DAG can be thought of as a serial – parallel algorithm 
(SPA) where the parallel tasks could be implemented using a thread pool or parallel 
processors for software or hardware implementations, respectively. The different 
stages of the SPA are accomplished using barriers or clocks for software or hardware 
implementations, respectively. 

 The restrictions on our timing function were discussed in Chapters  10  and  11 . 
We assume that the input data  x ( n ) arrive at consecutive times. Let us study the times 
associated with the points at the bottom of the graph,  p     =    [ n  0]  t  . Two input samples, 
 x ( n ) and  x ( n     +    1), arrive at the two points,  p  1     =    [ n  0]  t   and  p  2     =    [ n     +    1 0]  t  , respec-
tively. Applying the scheduling function in Eq.  14.3 , we get  

    t s n( )p1 1=     (14.4)  

    t s n( ) ( ).p2 1 1= +     (14.5)   

 Since the difference  t ( p  2 )    −     t ( p  1 )    =    1, we must have  s  1     =    1. A valid scheduling vector 
that satisfi es input data timing must be specifi ed as  

    s = [ ]1 2s .     (14.6)   

 The value of  s  2  will be determined by our choice of whether we need to pipeline or 
broadcast the output sample  y ( n ). Choosing  s  2     =    0 would result in broadcast of  y ( n ). 
Choosing  s  2     =     ±    1 would result in pipelining  y ( n ). We have three possible valid 
scheduling functions that we can employ:  

    s1 1 0= [ ]     (14.7)  

    s2 1 1= −[ ]     (14.8)  

    s3 1 1= [ ].     (14.9)   

 Scheduling vector  s  1  results in pipelined input  x ( n ) and broadcast output  y ( n ). 
Scheduling vector  s  2  results in broadcast input  x ( n ) and pipelined output 
 y ( n ). Scheduling vector  s  3  results in pipelined input  x ( n ) and pipelined output  y ( n ). 

 In the following subsections, we explore the possible designs afforded by the 
above scheduling vectors. We should point out that the advantage of using the 
approach in this section is reduction in the number of processing tasks. This comes, 
however, at the price of task processing speed that matches the input data rate and 
increases task complexity. Later in this chapter, we will explore  polyphase  designs 
that do not suffer from these disadvantages.  
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   14.5    DECIMATOR  DAG  FOR s 1     =    [1 0] 

 The DAG corresponding to  s  1  is shown in Fig.  14.4 . The equitemporal planes are 
indicated by the gray lines, and the time index values are indicated by the grayed 
numbers associated with the equitemporal planes. We note from the fi gure that a 
maximum of 12 tasks or nodes is active at any time step, which corresponds to the 
anti - aliasing fi lter length  N . It should also be noted that the time values are associ-
ated with the high data rate of the decimator input.   

 We have three possible valid projection vectors:  

    Design a:1 1 01d a
t= [ ]     (14.10)  

    Design b:1 1 11d b
t= [ ]     (14.11)  

    Design c:1 1 11d c
t= −[ ] .     (14.12)   

 These projection directions correspond to the projection matrices  

    Design a:1 0 11P a
t= [ ]     (14.13)  

    Design b:1 1 11P b
t= −[ ]     (14.14)  

    Design c:1 1 11P c
t= [ ] .     (14.15)   

     Figure 14.4      M  - to - 1 decimator DAG for the case when  M     =    3,  N     =    12, and  s  1     =    [1 0].  
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 We consider only the design corresponding to  d  1   a   since the other two designs 
will be more complex and will not lead to a better task workload. A point in the 
DAG given by the coordinates  p     =    [ n k ]  t   will be mapped into the point in   DAG 
given by  

    p P p= =1a k.     (14.16)   

 Output sample calculations are all performed at the same time step. In that sense, 
the input samples are pipelined and the output samples are broadcast. We note, 
however, that each task is active once every  M  time steps. In order to reduce the 
number of threads or processors, we modify the linear projection operation above 
to employ a  nonlinear  projection operation  

    p
P p= ⎢

⎣⎢
⎥
⎦⎥

= ⎢
⎣⎢

⎥
⎦⎥

1a

M

k

M
.     (14.17)   

 Figure  14.5  shows the reduced or projected   DAG architecture for Design   1a. Figure 
 14.5 a shows the   DAG where input samples are pipelined between the tasks and the 
partial results for the output samples are broadcast among the tasks. Note that the 
number of tasks required is  N / M . Figure  14.5 b shows the task detail. Each task has 
a simple processing and control structure. Each task accepts input samples and 
forwards the inputs to the next task after a delay of  M  time steps. During each  M  
time step, each task accumulates the partial results then loads the accumulated data 
to the parallel adder using a software barrier or hardware tristate buffer as shown 

     Figure 14.5       DAG for Design   1a for  s  1 ,  d  1   a  ,  N     =    12, and  M     =    3. (a) Resulting   DAG. (b) Task 
processing detail.  
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on the left of the fi gure. All tasks pipeline the incoming data  x ( n ) at the high data 
rate  T  and perform the fi ltering operation at the high data rate  T  also. The output is 
obtained from the rightmost task at time  iMT .    

   14.6    DECIMATOR  DAG  FOR s 2     =    [1  − 1] 

 The DAG corresponding to  s  2  is shown in Fig.  14.6 . The equitemporal planes are 
indicated by the gray lines and the time index values are indicated by the grayed 
numbers associated with the equitemporal planes. We note from the fi gure that a 
maximum of 12 tasks or nodes is active at any time step, which corresponds to the 
anti - aliasing fi lter length  N . It should also be noted that the time values are associ-
ated with the high data rate of the decimator input.   

 Chapters  10  and  11  explained that the projection operation assigns a node or a 
group of nodes in the DAG to a thread or processor. The number of assigned nodes 
determines the workload associated with each task. The operation also indicates the 
input and output data involved in the calculations. The projection operation controls 
the workload assigned to each thread/processor at each stage of the execution of the 
SPA. We have three possible valid projection vectors:  

    Design a:1 1 02d a
t= [ ]     (14.18)  

    Design b:1 1 12d b
t= −[ ]     (14.19)  

    Design c:1 0 12d c
t= [ ] .     (14.20)   

     Figure 14.6      M  - to - 1 decimator DAG for the case when  M     =    3,  N     =    12, and  s  2     =    [1    −    1].  
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234 Chapter 14 Case Study: Multirate Decimators and Interpolators

 These projection directions correspond to the projection matrices  

    Design a:1 0 12P a
t= [ ]     (14.21)  

    Design b:1 1 12P b
t= [ ]     (14.22)  

    Design c:1 1 02P c
t= [ ] .     (14.23)   

 We consider only the design corresponding to  d  2a  since the other two designs 
will be more complex and will not lead to a better task workload. A point in the 
DAG given by the coordinates  p     =    [ n k ] t  will be mapped into a point in   DAG 
given by  

    p P p= =1a k.     (14.24)   

 Input samples are supplied to the nodes at the same time step. In that sense, the input 
samples are broadcast and the output samples are pipelined. We note, however, that 
each node is active once every  M  time steps. In order to reduce the number of nodes, 
we modify the linear projection operation above to employ a nonlinear projection 
operation:  

    p
P p= ⎣ ⎦ = ⎣ ⎦1a

M

k

M
.     (14.25)   

 Figure  14.7  shows the   DAG architecture for Design   2a. Figure  14.7 a shows the 
  DAG where input samples are broadcast between the tasks and the partial results 
for the output samples are pipelined among the tasks. Note that the number of tasks 
required is  N / M . Figure  14.7 b shows the task detail. The workload of each task is 
simple in processing and control structures  . Each task accepts input samples and 

     Figure 14.7       DAG  for Design   2a for  s  2 ,  d  2   a  ,  N     =    12, and  M     =    3. (a) Resulting   DAG. (b) Task 
detail when the   DAG is implemented in hardware systolic arrays.  

0y

x

1 2 3 0(a)

(b)

Acc.xin

yinyout

h(i), h(i + 1), h(i + 2)

D



14.8 Polyphase Decimator Implementations 235

forwards the inputs to the next task after a delay of  M  time steps. During each  M  
time step, each task accumulates the partial results then loads the accumulated data 
to the parallel adder using a software barrier or a tristate buffer as shown on the left 
of the fi gure. All tasks pipeline the incoming data  x ( n ) at the high data rate  T  and 
perform the fi ltering operation at the high data rate  T  also. The output is obtained 
from the rightmost task at times  iMT .    

   14.7    DECIMATOR  DAG  FOR s 3     =    [1 1] 

 This choice of a scheduling function would produce a decimator   DAG similar to 
the the decimator   DAG of the previous two sections. We will leave this to the reader 
to explore.  

   14.8    POLYPHASE DECIMATOR IMPLEMENTATIONS 

 A polyphase decimator splits the high - rate input signals into  M  low - rate nonover-
lapped streams such that each stream is applied to a fi lter with length  N / M . Figure 
 14.8  shows the splitting of the input data stream into  M  nonoverlapped streams, and 
each stream is fed to a low - pass FIR fi lter. Each fi lter has the following 
characteristics: 

  1.     It operates at the longer sample time  T  ′     =     MT .  

  2.     The number of fi lter coeffi cients is reduced to  N / M .  

  3.     Every  M th input sample is used.      

 In order to get a dependence graph for a polyphase fi lter, we break up the dependence 
graph of Fig.  14.1  into  M     =    3 dependence graphs. Figure  14.9  shows the dependence 
graph corresponding to the stream feeding the fi lter  h  0 ( nT   ′ ). Each dependence graph 
corresponds to one branch of the polyphase fi lter structure of Fig.  14.8 . Table  14.1  
shows the fi lter coeffi cients associated with the fi lter whose impulse transfer function 

     Figure 14.8     Polyphase 
implementation of a decimator for the 
case  M     =    3.  
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is  h i  ( nT ) and also shows the stream of input data samples allocated to it. In general, 
polyphase fi lter  h i  ( nT ) (0    ≤     i     <     M ) is fed the  i th downsampled stream and uses the 
fi lter coeffi cient  h k    +    jM   where 0    ≤     j     <     N / M  and is given by  

    k i M i M= − ≤ <( ) 0mod .     (14.26)       

 The advantages of polyphase fi lters are that each fi lter operates at the slower 
rate of  MT  and its length is  N / M . We can use the different 1 - D FIR fi lter structures 
discussed previously to realize the polyphase decimator.  

   14.9    INTERPOLATOR STRUCTURES 

 An interpolator is a device that passes a low - rate input signal through a low - pass 
fi lter then inserts the fi lter outputs to get a high - rate output. The low - pass fi lter is 
sometimes referred to as an anti - imaging fi lter. The model of a 1 - to -  L  interpolator 

     Figure 14.9     Dependence graph for polyphase fi lter  h  0 ( nT   ′ ) for an  M  - to - 1 decimator for the case 
when  M     =    3 and  N     =    12.  
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  Table 14.1    Filter Coeffi cients and Input Samples Associated with Each Polyphase Filter 
for the Case   M      =    3 and   N      =    12 

   Polyphase fi lter      Filter coeffi cients      Input samples  

   h  0  ( nT   ′ )     h  0      h  3      h  6      h  9      x  0      x  3      x  6      x  9      …   
   h  1  ( nT   ′ )     h  2      h  5      h  8      h  11      x  1      x  4      x  7      x  10      …   
   h  2  ( nT   ′ )     h  1      h  4      h  7      h  10      x  2      x  5      x  8      x  11      …   
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is shown in Fig.  14.10   [94, 95] . The operating frequencies of the different com-
ponents are indicated above the input and output lines. The sample periods are 
indicated below the input and output lines. The block on the left is an  N  - tap FIR 
digital fi lter with impulse response  h ( nT   ′ ), where  T  is the high - rate sampling period, 
and operates at the high sampling rate  F . The 1 - to -  M  upsampler, or sample rate 
expander, inserts  M     −    1 zeros between the input sample  x ( nT ), shown as the block 
on the left of Fig.  14.10 . The upsampler generates the signal  u ( nT   ′ ) and the low - pass 
fi lter generates the signal  y ( nT   ′ ). The upsampler simply inserts  L     −    1 zeros between 
the input sample  x ( n ) to produce a signal at  L  times the data rate. This process is 
sometimes called  “ zero - stuffi ng. ”  We can write the following equations for the two 
output signals:  

    u nL x n( ) = ( )     (14.27)  

    y n h k u n k
k

N

( ) ( ) ( ).= −
=

−

∑
0

1

    (14.28)      

   14.10    INTERPOLATOR DEPENDENCE GRAPH 

 The author and his group provided a  z  - transform technique for obtaining several 
decimator structures  [96 – 98] . However, for the case of multirate systems, this 
approach was not able to provide the rich set of design space exploration that the 
dependence graph approach could provide. Fig.  14.11  shows the dependence graph 
of the interpolator. The horizontal axis is the  n  - axis and vertical axis is the  k  - axis. 
The fi gure shows the dependence graph of the fi lter whose input samples are  u ( nL ). 
At the top of the fi gure, we indicate the interpolator output  y ( n ). In order to conserve 
space, we used subscripts in the fi gure to indicate index values for the different 
samples. The gray circles correspond to the samples  x ( n ) and the empty circles cor-
respond to the stuffed zero - valued samples. In a sense, this is wasted operations. 
Figure  14.12  shows the dependence graph of the interpolator where only the useful 
operations and outputs are indicated. This fi gure is a bit less cluttered compared to 
Fig.  14.11 . We removed the empty circles and only retained the shaded circles that 
give the desired outputs.    

     Figure 14.10     General 1 - to -  L  interpolator system.  
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   14.11    INTERPOLATOR SCHEDULING 

 As usual, we employ an affi ne timing function:  

    t( ) ,p sp=     (14.29)  

where the row vector  s     =    [ s  1   s  2 ] is the scheduling vector and the column vector 
 p     =    [ n  k]  t   is any point in the dependence graph. The fi rst component refers to the 

     Figure 14.11     General 1 - to -  L  interpolator dependence graph for the case when  L     =    3 and  N     =    12.  
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     Figure 14.12     1 - to -  L  interpolator dependence graph for the case when  L     =    3 and  N     =    12. 
Unnecessary operations and output samples have been removed from the fi gure.  
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horizontal axis and the second component refers to the vertical axis. The restrictions 
on our timing function were discussed in Chapters  10  and  11 . We assume that the 
input data  x ( n ) arrive at consecutive times. Let us study the times associated with 
the points at the bottom of the graph  p     =    [ n  0]  t  . Two input samples,  x ( n ) and  x ( n     +    1), 
arrive at the two points,  p  1     =    [ n  0]  t   and  p  2     =    [ nL     +    1 0]  t  , respectively. Applying the 
scheduling function in Eq.  14.3 , we get  

    t s n( )p1 1=     (14.30)  

    t s n( ) ( ).p2 1 1= +     (14.31)   

 Since the difference  t ( p  2 )    −     t ( p  1 )    =     L , we must have  s  1     =    1. A valid scheduling vector 
that satisfi es input data timing must be specifi ed as  

    s = [ ]1 2s .     (14.32)   

 The value of  s  2  will be determined by our choice of whether we need to pipeline 
or broadcast the output sample  y ( n ). Choosing  s  2     =    0 would result in the broadcast 
of  y ( n ). Choosing  s  2     =     ± 1 would result in pipelining of  y ( n ). We have three possible 
valid scheduling functions that we can employ:  

    s1 1 0= [ ]     (14.33)  

    s2 1 1= −[ ]     (14.34)  

    s3 1 1= [ ].     (14.35)   

 Scheduling vector  s  1  results in pipelined input  x ( n ) and broadcast output  y ( n ). 
Scheduling vector  s  2  results in broadcast input  x ( n ) and pipelined output 
 y ( n ). Scheduling vector  s  3  results in pipelined input  x ( n ) and pipelined output  y ( n ). 

 In the following subsections, we explore the possible designs afforded by the 
above scheduling vectors. We should point out that the advantages of using the 
approach in this section are reduction in the number of nodes. This comes, however, 
at the price of processing speed that matches the input data rate and increased task 
complexity. Later in this chapter, we will explore  polyphase  designs that do not 
suffer from these disadvantages.  

   14.12    INTERPOLATOR  DAG  FOR s 1     =    [1 0] 

 The DAG corresponding to  s  1  is shown in Fig.  14.13 . The equitemporal planes are 
indicated by the gray lines and the time index values are indicated by the grayed 
numbers associated with the equitemporal planes. We note from the fi gure that a 
maximum of four tasks or nodes is active at any time step. It should also be noted 
that the time values are associated with the high data rate of the interpolator output. 
We have three possible valid projection vectors:  

    Design a:1 1 01d a
t= [ ]     (14.36)  

    Design b:1 1 11d b
t= [ ]     (14.37)  

    Design c:1 1 11d c
t= −[ ] .    (14.38)     
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 These projection directions correspond to the projection matrices  

    Design a:1 0 11P a
t= [ ]     (14.39)  

    Design b:1 1 11P b
t= −[ ]     (14.40)  

    Design c:1 1 11P c
t= [ ] .     (14.41)   

 We consider only the design corresponding to  d  1   a   since the other two designs will 
be more complex and will not lead to a better task workload. A point in the DAG 
given by the coordinate  p     =    [ n k ]  t   will be mapped into the point in the reduced or 
projected   DAG given by  

    p P p= =1a k.     (14.42)   

 Output sample calculations are all performed at the same time step. In that sense, 
the input samples are pipelined and output samples are broadcast. We note however, 
that each task is active once every  L  time steps. In order to reduce the number of 
nodes, we modify the linear projection operation above to employ a nonlinear pro-
jection operation:  

    p
P p= ⎢

⎣⎢
⎥
⎦⎥

= ⎢
⎣⎢

⎥
⎦⎥

1a

L

k

L
.     (14.43)   

 Figure  14.14  shows the implementation of Design   1a. Figure  14.14 a shows the 
  DAG, where input samples are pipelined between the tasks and the partial results 

     Figure 14.13     1 - to -  L  interpolator DAG for the case when  L     =    3,  N     =    12, and  s  1     =    [1 0].  
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for the output samples are broadcast among the tasks. Note that the number of 
tasks required is  N / L . Figure  14.14 b shows the task detail. Each task is simple in 
hardware and in control structure. Each task accepts an input sample every  L  time 
steps and forwards the input to the next task after a delay of  L  time steps. All tasks 
pipeline the incoming data  x ( n ) at the low data rate and perform the fi ltering opera-
tion at the high data rate. The output is obtained from the rightmost task at each 
time step.    

   14.13    INTERPOLATOR  DAG  FOR s 2     =    [1  − 1] 

 The DAG corresponding to  s  2  is shown in Fig.  14.15 . The equitemporal planes are 
indicated by the gray lines and the time index values are indicated by the grayed 
numbers associated with the equitemporal planes. We note from the fi gure that a 
maximum of four nodes is active at any time step. It should also be noted that the 
time values are associated with the high data rate of the interpolator input. We have 
three possible valid projection vectors:  

    Design a:1 1 02d a
t= [ ]     (14.44)  

    Design b:1 1 12d b
t= −[ ]     (14.45)  

    Design c:1 0 12d c
t= [ ] .     (14.46)     

     Figure 14.14     Interpolator Design   1a for  s  1 ,  d  1   a  ,  N     =    12, and  L     =    3. (a) Resulting   DAG. 
(b) Task processing detail  . In the fi gure FIFO is fi rst - in - fi rst - out buffer.  
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 These projection directions correspond to the projection matrices  

    Design a:1 0 12P a
t= [ ]     (14.47)  

    Design b:1 1 12P b
t= [ ]     (14.48)  

    Design c:1 1 02P c
t= [ ] .     (14.49)   

 We consider only the design corresponding to  d  2   a   since the other two designs 
will be more complex and will not lead to better processing element (task) designs. 
A point in the DAG given by the coordinate  p     =    [ n k ]  t   will be mapped into the 
point  

    p P p= =1a k.     (14.50)   

 Input samples are supplied to the array at the same time step. In that sense, the 
input samples are broadcast and output samples are pipelined. We note, however, 
that each task is active once every  L  time steps. In order to reduce the number of 
nodes, we modify the linear projection operation above to employ a nonlinear pro-
jection operation:  

    p
P p= ⎣ ⎦ = ⎣ ⎦1a

L

k

L
.     (14.51)   

 Figure  14.16  shows the hardware architecture for Design   2a. Figure  14.16 a 
shows the pipeline where input samples are broadcast between the tasks and the 
partial results for the output samples are pipelined among the nodes. Note that the 

     Figure 14.15     1 - to -  L  interpolator DAG for the case when  L     =    3,  N     =    12, and  s  2     =    [1    − 1].  
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number of tasks required is  N / L . Figure  14.16 b shows the task detail. Each task is 
simple in hardware and in control structure. Each task accepts an input sample every 
 L  time steps and forwards the input to the next task after a delay of  L  time steps. 
All tasks pipeline the incoming data  x ( n ) at the low data rate and perform the fi lter-
ing operation at the high data rate. The output is obtained from the leftmost task at 
each time step.    

   14.14    INTERPOLATOR  DAG  FOR s 3     =    [1 1] 

 This choice of a scheduling function would produce systolic decimator hardware 
similar to the decimator structures of the previous two sections. We will leave this 
to the reader to explore.  

   14.15    POLYPHASE INTERPOLATOR IMPLEMENTATIONS 

 A polyphase decimator splits the high - rate input signals into  M  low - rate nonstreams 
such that each stream is applied to a fi lter with length  N / M . Figure  14.17  shows 
the splitting of the input data stream into  M  nonoverlapped streams. Each fi lter has 
the following characteristics: 

  1.     It operates at the longer sample time  T   ′     =     T / L .  

  2.     The number of fi lter coeffi cients is reduced to  N / L .  

  3.     Every  L th input sample is used.      

     Figure 14.16     Design   2a for  s  2 ,  d  2   a  ,  N     =    12, and  L     =    3. (a)   DAG. (b) Task detail for hardware 
systolic array implementation.  
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 In order to get a dependence graph for a polyphase fi lter, we break up the 
dependence graph of Fig.  14.1  into  M     =    3 DAGs as shown in Fig.  14.18 . Each 
dependence graph corresponds to one branch of the polyphase fi lter structure of Fig. 
 14.17 . Table  14.2  shows the fi lter coeffi cients associated with the fi lter whose 
impulse transfer function is  h i  ( nT ) and also shows the stream of input data samples 
allocated to it. In general, polyphase fi lter  h i  ( nT ) (0    ≤     i     <     L ) produces the  i th upsam-
pled stream and uses the fi lter coeffi cients  h i + jM   where 0    ≤     j     <     N / L . The advantages 
of polyphase fi lters is that each fi lter operates at the slower rate of  LT  and its length 
is  N / L . We can use the different 1 - D FIR fi lter structures discussed previously to 
realize the polyphase decimator.          

 

     Figure 14.17     Dependence graph for 
polyphase fi lter  h  0 ( nT   ′ ) for a 1 - to -  L  
interpolator for the case when  L     =    3 and 
 N     =    12.  
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     Figure 14.18     Polyphase 1 - to -  L  interpolator dependence graph for the case when  L     =    3 and  N     =    12.  
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  Table 14.2    Filter Coeffi cients and Input Samples Associated with Each Polyphase Filter 
for the Case   M      =    3 and   N      =    12 

   Polyphase fi lter      Filter coeffi cients      Output samples  

   h  0  ( nT )     h  0      h  3      h  6      h  9      y  0      y  3      y  6      y  9      …   
   h  1  ( nT )     h  1      h  4      h  7      h  10      y  1      y  4      y  7      y  10      …   
   h  2  ( nT )     h  2      h  5      h  8      h  11      y  2      y  5      y  8      y  11      …   



  Chapter 15 

Case Study: Pattern Matching     

   15.1    INTRODUCTION 

 String matching is employed in several applications, such as packet classifi cation, 
computational biology, spam blocking, and information retrieval. String search oper-
ates on a given alphabet set  Σ  of size | Σ |, a pattern  P     =     p  0  p  1   …   p m    − 1  of length  m , and 
a text string  T     =     t  0  t  1   …   t   n  − 1  of length  n , with  m     ≤     n . The problem is to fi nd all occur-
rences of the pattern  P  in the text string  T . The average time complexity for imple-
menting the string search problem on a single processor was proven to be  O ( n   )  [99] . 
We refer the reader to Reference  100  for a comprehensive review of the different 
hardware implementations of the string matching problem. 

 A hardware implementation for the search engine can be assumed to have the 
following characteristics: 

   •      The text length  n  is typically big and variable.  

   •      The pattern length  m  varies from a word of few characters to hundreds of 
characters (e.g., a URL address).  

   •      The word length  w  is determined by the data storage organization and datapath 
bus width.  

   •      Typically, the search engine is looking for the existence of the pattern  P  in 
the text  T ; that is, the search engine only locates the fi rst occurrence of the  P  
in  T .  

   •      The text string  T  is supplied to the hardware in word serial format.     

   15.2    EXPRESSING THE ALGORITHM AS 
A REGULAR ITERATIVE ALGORITHM ( RIA ) 

 To develop a multithreaded or systolic array implementation, we must fi rst be able 
to describe the string matching algorithm using recursions that convert the algorithm 
into a RIA. We can write the basic string search algorithm as in Algorithm 15.1  :

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.
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246 Chapter 15 Case Study: Pattern Matching

  Algorithm 15.1     Basic string search algorithm 

  1:     input  T  and  P   

  2:      for  i    =    0:n - m  do   

  3:         j     =    0  

  4:         while   j     <     m  AND  t i    +    j      =     p j    do   

  5:            j     =     j     +    1  

  6:         end while   

  7:         if   j     =     m   then   

  8:           mathc_fl ag    =    TRUE  

  9:           match_location    =     i   

  10:         end if   

  11:      end for       

 This algorithm can also be expressed in the form of an iteration using two indices, 
 i  and  j :  

    y t p i n mi
j

m

i j j= ≤ ≤ −
−

+∧
=0

1

0Match( , ) ,     (15.1)  

where  y i   is a Boolean - type output variable. If  y i      =    true, then there is a match at posi-
tion  t i  ; that is,  t i   :   i    +    m    + 1     =     p  0:   m    − 1 . Match( a ,  b ) is a function that is true when character  a  
matches character  b .  ∧    represents an  m  - input AND function.  

   15.3    OBTAINING THE ALGORITHM 
DEPENDENCE GRAPH 

 The string matching algorithm of Eq.  15.1  is defi ned on a two - dimensional (2 - D) 
domain since there are two indices ( i ,  j ). Therefore, a data dependence graph can be 
easily drawn as shown in Fig.  15.1 . The  computation domain  is the convex hull in 

     Figure 15.1     Dependence graph for  m     =    4 
and  n     =    10.  
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the 2 - D space where the algorithm operations are defi ned as indicated by the grayed 
circles in the 2 - D plane  [86] . The output variable  y  is represented by vertical lines 
so that each vertical line corresponds to a particular instance of  y . For instance, the 
line described by the equation  i     =    3 represents the output variable instance  y  3 . The 
input variable  t  is represented by the slanted lines. Again, as an example, the line 
represented by the equation  

    i j+ = 3     (15.2)     

 represents the input variable instance  t  3 . Similarly, the input variable  p  is represented 
by the horizontal lines.  

   15.4    DATA SCHEDULING 

 The timing function assigns a time value to each node in the dependence graph. The 
algorithm dependence graph becomes transformed into a directed acyclic graph 
(DAG), which will help us determine multithreaded or systolic array implementa-
tions. A simple but very useful timing function is an affi ne scheduling function of 
the form  [86]   

    t st( ) ,p s p= −     (15.3)  

where the function  t ( p ) associates a time value  t  to a point  p  in the dependence 
graph. The column vector  s     =    [ s  1 ,  s  2 ] is the scheduling vector and  s  is an integer. 

 A valid scheduling function uniquely maps any point  p  to a corresponding time 
index value. Such affi ne scheduling function must satisfy several conditions in order 
to be a valid scheduling function as explained below. 

 Assigning time values to the nodes of the dependence graph transforms the 
dependence graph to a DAG as discussed in Chapters  10  and  11 . More specifi cally, 
the DAG can be thought of as a serial – parallel algorithm (SPA) where the parallel 
tasks could be implemented using a thread pool or parallel processors for software 
or hardware implementations, respectively. The different stages of the SPA are 
accomplished using barriers or clocks for software or hardware implementations, 
respectively. 

 Input data timing restricts the space of valid scheduling functions. We assume 
the input text  T     =     t  0   t  1   …   t n    − 1  arrives in word serial format where the index of each 
word corresponds to the time index. This implies that the time difference between 
adjacent words is one time step. Take the text instances at the bottom row nodes in 
Fig.  15.1  characterized by the line whose equation is  j     =    0. Two adjacent words,  t i   
and  t i    + 1 , at points  p  1     =    ( i , 0) and  p  2     =    ( i     +    1, 0) arrive at the time index values  i  and 
 i     +    1, respectively. Applying our scheduling function in Eq.  15.3  to these two points, 
we get  

    t js s( )p1 1= −     (15.4)  

    t j s s( ) ( ) .p2 11= + −     (15.5)   
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 Since the time difference  t ( p  2 )    −     t ( p  1 )    =    1, we must have  s  1     =    1. Therefore, a sched-
uling vector that satisfi es input data timing must be specifi ed as  

    s = [ ]1 2s .     (15.6)   

 This leaves two unknowns in the possible timing functions, mainly the component 
 s  1  and the integer  s . If we decide to pipeline a certain variable whose null vector is 
 e , we must satisfy the following inequality  [86] :  

    s et ≠ 1.     (15.7)   

 We have only one output variable,  Y , whose null vector is  e   y      =    [0 1]. If we want 
to pipeline  y , then the simplest valid scheduling vectors are described by  

    s1 1 1= [ ]     (15.8)  

    s2 1 1= −[ ].     (15.9)   

 On the other hand, to broadcast a variable whose null vector is  e , we must have  [86]   

    s et = 0.     (15.10)   

 If we want to broadcast  Y , then from Eqs.  15.6  and  15.10 , we must have  

    s3 1 0= [ ].     (15.11)   

 Broadcasting an output variable simply implies that all computations involved 
in computing an instance of  Y  must be done in the same time step. Another restric-
tion on system timing is imposed by our choice of the projection operator as 
explained in the next section.  

   15.5     DAG  NODE PROJECTION 

 The projection operation is a many - to - one function that maps several nodes of the 
DAG onto a single node in a reduced DAG, which we refer to as   DAG. Thus, several 
tasks in the DAG are mapped to a single task in DAG. The projection operation 
allows for a better task workload and control design by multiplexing several nodes 
in the DAG to a single node in the   DAG. We explained in Chapters  10  and  11  how 
to perform the projection operation using a projection matrix P. To obtain the projec-
tion matrix, we require to defi ne a desired projection direction  d . The vector d 
belongs to the null space of P. Since we are dealing with a 2 - D DAG, matrix P is a 
row vector and  d  is a column vector. 

 A valid projection direction must satisfy the inequality  

    s dt ≠ 0.     (15.12)   

 In the following sections, we will discuss design space explorations for the three 
values of  s  obtained in Eqs.  15.8 – 15.11 .  
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   15.6     DESIGN  1: DESIGN SPACE 
EXPLORATION WHEN  s     =    [1 1]   t    

 The feeding point of input sample  t  0  is easily determined from Fig.  15.1  to be p    =    
[0 0]  t  . The time value associated with this point is  t ( p )    =    0. Using Eq.  15.3 , we 
get  s     =    0. Applying the scheduling function in Eq.  15.8  to  e   P   and  e   T  , we get  

    1 1 1[ ] =eP     (15.13)  

    1 1 2[ ] =eY .     (15.14)   

 This choice for the timing function implies that both input variables  P  and  Y  will be 
pipelined. The pipeline direction for the input  T  fl ows in a southeast direction in Fig. 
 15.1 . The pipeline for  T  is initialized from the top row in the fi gure defi ned by the 
line  j     =     m     −    1. Thus, the feeding point of  t  0  is located at the point  p     =    [ −  m m ]  t  . The 
time value associated with this point is given by  

    t m s( ) .p = − − =2 0     (15.15)   

 Thus, the scalar  s  should be  s     =     − 2 m . The tasks at each stage of the SPA derived in 
this section will have a latency of 2 m  time steps compared to Design   1.a. 

 Figure  15.2  shows how the dependence graph of Fig.  15.1  is transformed to the 
DAG associated with  s     =    [1 1]  t  . The equitemporal planes are shown by the gray lines 
and the execution order is indicated by the gray numbers. We note that the variables 
 P  and  Y  are pipelined between tasks, while variable  T  is broadcast among tasks lying 
in the same equitemporal planes. Pipelining means that a value produced by a source 
task at the end of a time step is used by a destination task at the start of the next 
time step. Broadcasting means that a value is made available to all tasks at the start 
of a time step.   

 There are three simple projection vectors such that all of them satisfy Eq.  15.12  
for the scheduling function in Eq.  15.8 . 

 The three projection vectors will produce three designs:  

    Design a:1 1 0. da
t= [ ]     (15.16)  

    Design b:1. 0 1db
t= [ ]     (15.17)  

    Design c:1. 1 1dc
t= [ ] .    (15.18)   

     Figure 15.2     DAG for Design   1 when  n     =    10 
and  m     =    4.  
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 The corresponding projection matrices could be given by  

    Pa
t= [ ]0 1     (15.19)  

    Pb
t= [ ]1 0     (15.20)  

    Pc
t= 1 1−[ ] .     (15.21)   

 Our task design space now allows for three confi gurations for each projection vector 
for the chosen timing function. In the following sections, we study the multithreaded 
implementations associated with each design option. 

   15.6.1    Design 1.a: Using s    =    [1 1]  t   and d  a      =    [1 0]  t   

 A point in the DAG given by the coordinate  p     =    [ i j  ]  t   will be mapped by the projec-
tion matrix P  a   into the point  

    p P p= =a j.     (15.22)   

 A   DAG corresponding to Design   1.a is shown in Fig.  15.3 . Input  T  is broadcast to 
all nodes or tasks in the graph and word  p j   of the pattern  P  is allocated to task  T j  . 
The intermediate output of each task is pipelined to the next task with a higher index 
such that the output sample  y i   is obtained from the rightmost task  T m −  1   .   DAGconsists 
of  m  tasks and each task is active for  n  time steps.    

   15.6.2    Design 1.b: Using s    =    [1 1]  t   and d  b      =    [0 1]  t   

 A point in the DAG given by the coordinate  p     =    [ i j ]  t   will be mapped by the projec-
tion matrix P  b   into the point  

    p P p= =b i.     (15.23)   

 The projected   DAG is shown in Fig.  15.4 .   DAG consists of  n     −     m     +    1 tasks. Word 
 p i   of the pattern  P  is fed to task  T  0  and from there, it is pipelined to the other tasks. 
The text words  t i   are broadcast to all tasks. Output  y i   is obtained from task  t i   at time 
step  i  and is broadcast to other tasks. Each task is active for  m  time steps only. Thus, 

     Figure 15.3       DAG for Design   1.a when  m     =    4.  0 1 2 3 y
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     Figure 15.4       DAG for Design   1.b when 
 n     =    10 and  m     =    4.  
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the tasks are not well utilized as in Design   1.a. However, we note from the DAG of 
Fig.  15.4  that task  T  0  is active for the time step   0 to  m     −    1, and  T  m  is active for the 
time period  m  to 2 m     −    1. Thus, these two tasks could be mapped to a single task 
without causing any timing confl icts. In fact, all tasks whose index is expressed as  

    ′ =i i mmod     (15.24)     

 can all be mapped to the same node without any timing confl icts. The resulting   DAG 
after applying the above modulo operations on the array in Fig.  15.4  is shown in 
Fig.  15.5 . The   DAG now consists of  m  tasks. The pattern  P  could be chosen to be 
stored in each task or it could circulate among the tasks where initially  T i   stores the 
pattern word  p i  . We prefer the former option since memory is cheap, while com-
munications between tasks will always be expensive in terms of area, power, and 
delay. The text word  t i   is broadcast on the input bus to all tasks.  T i   produces outputs 
 i ,  i     +     m ,  i     +    2m,  …  at times  i ,  i     +     m ,  i     +    2m, and so on.    

   15.6.3    Design 1.c: Using s    =    [1 1]  t   and d  c      =    [1 1]  t   

 A point in the DAG given by the coordinate  p     =    [ i j ]  t   will be mapped by the projec-
tion matrix P  c   into the point  

    p P p= = −c i j.     (15.25)   

 The resulting tasks are shown in Fig.  15.6  for the case when  n     =    10 and  m     =    4, after 
adding a fi xed increment to all task indices to ensure nonnegative task index values. 
The DAG consists of  n  tasks where only  m  of the tasks are active at a given time 
step as shown in Fig.  15.7 . At time step  i , input text  t i   is broadcast to all tasks in 
DAG. We notice from Fig.  15.7  that at any time step, only  m  out of the  n  tasks are 
active. To improve task utilization, we need to reduce the number of tasks. An 
obvious task allocation scheme could be derived from Fig.  15.7 . In that scheme, 
operations involving the pattern word  p i   are allocated to task  T i  . In that case, the 
DAG in Fig.  15.3  will result.     

     Figure 15.5     Reduced   DAG for Design   1.b when  n     =    10 and 
 m     =    4.  
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   15.7     DESIGN  2: DESIGN SPACE 
EXPLORATION WHEN s    =    [1  − 1] t  

 Figure  15.8  shows how the dependence of Fig.  15.1  is transformed to the DAG 
associated with  s     =    [1 1]  t  . The equitemporal planes are shown by the gray lines and 
the execution order is indicated by the gray numbers. We note that the variables  P , 
 T , and  Y  are pipelined between tasks.   

 There are three simple projection vectors such that all of them satisfy Eq.  15.12  
for the scheduling function. The three projection vectors are  

    Design a:2. 1 0da
t= [ ]     (15.26)  

    Design b:2 0 1. db
t= [ ]     (15.27)  

    Design c:2. 1 1dc
t= −[ ] .     (15.28)   

 Our multithreading design space now allows for three confi gurations for each projec-
tion vector for the chosen timing function. 

   15.7.1    Design 2.a: Using s    =    [1    − 1]  t   and d  a      =    [1 0]  t   

 The resulting   DAG is shown in Fig.  15.9  for the case when  n     =    10 and  m     =    4. Input 
 T  is pipelined between the tasks and task  T i   is allocated pattern  p i  . The partial results 
for  Y  are pipelined such that the outputs are obtained from task  T  0 .    

     Figure 15.7     Task activity at the 
different time steps for Design   1.c.  
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   15.7.2    Design 2.b: Using s    =    [1    − 1]  t   and d  b      =    [0 1]  t   

 Using the same treatment as in Design   1.b, the resulting tasks are shown in Fig. 
 15.10  for the case when  n     =    10 and  m     =    4.    

   15.7.3    Design 2.c: Using s    =    [1    − 1]  t   and d  c      =    [1    − 1]  t   

 The tasks are similar to Design   1.c, which, in turn, is similar to Design   1.a.   

   15.8     DESIGN  3: DESIGN SPACE 
EXPLORATION WHEN  s     =    [1 0]   t    

 The dependence graph of Fig.  15.1  is transformed to the DAG in Fig.  15.11 , which 
is associated with  s     =    [1 0]  t  . The equitemporal planes are shown by the gray lines 
and the execution order is indicated by the gray numbers. We note that the variables 
 P  and  T  are pipelined between tasks, while variable  Y  is broadcast among tasks lying 
in the same equitemporal planes.   

 There are three simple projection vectors such that all of them satisfy Eq.  15.12  
for the scheduling function. The three projection vectors are  

     Figure 15.8     DAG for Design   2 when  n     =    10 
and  m     =    4.  y0 y1 y2 y3 y4 y5 y6
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     Figure 15.9       DAG for Design   2.a. when  n     =    10 and  m     =    4.  
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    Design a:3. 1 0da
t= [ ]     (15.29)  

    Design b:3 1 1. db
t= [ ]     (15.30)  

    Design c:3 1 1. .dc
t= −[ ]     (15.31)   

 Our multithreading design space now allows for three confi gurations for each projec-
tion vector for the chosen timing function. 

   15.8.1    Design   3.a: Using s    =    [1 0]  t   and d  a      =    [1 0]  t   

 The   DAG corresponding to Design   3.a is drawn in Fig.  15.12  for the case when 
 n     =    10 and  m     =    4. Task  T j   stores only the value  p j  , which can be stored in a register 
similar to Design   1.a. The outputs of all the tasks must be combined using a reduce 
operation.   

 These two projection vectors produce the same confi guration as Design   3.a. 
However, unlike Design   3.a, each task stores the entire pattern  P  in the on - chip 
memory.     
   

     Figure 15.11     DAG for Design   3 when 
 n     =    10 and  m     =    4.  y0 y1 y2 y3 y4 y5 y6
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     Figure 15.12       DAG for Design   3.a.  
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  Chapter 16 

Case Study: Motion 
Estimation for 
Video Compression     

    16.1    INTRODUCTION 

 Motion estimation plays a key role in several applications such as video on demand, 
high - defi nition TV (HDTV), and multimedia communications. Motion estimation is 
used to remove temporal data redundancy between successive video frames. Video 
data compression rate can be improved by estimating the offset information of 
objects from one frame to another (motion estimation) and then by encoding only 
frame differences with respect to that offset (motion compensation). 

 There are several types of motion estimation: pixel based, block based, and 
region based, where motion estimation can be done pixel by pixel, block by block, 
or region by region, respectively. Block - based motion estimation is the most popular 
method due to its simplicity and suitability for hardware implementation. Block -
 based motion estimation is used in MPEG, H.263, H.264/AVC, and other video 
compression standards that aim at achieving high video compression ratios at real -
 time speeds, which requires a huge amount of computations. As a result, any effi cient 
hardware would require the use of single instruction multiple data stream (SIMD) 
processors, which are special - purpose very large - scale integration (VLSI) circuitry 
employing a high degree of parallelism while requiring little input/output (I/O) com-
munications. The main design challenge focuses on how to arrive at SIMD processor 
architectures that satisfy system - level requirements for a given complex algorithm 
with maximum processor utilization and minimum hardware cost. 

 There are several block matching algorithms that can be used for motion estima-
tion. Full - search block matching algorithms (FBMAs) are preferred due to their 
relative simplicity and low - control overhead. However, the amount of calculations 
to be performed per second is prohibitive unless parallel hardware is used. In this 
chapter, we discuss a hierarchical design methodology for deriving hierarchical 
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SIMD processor architectures for FBMA, which possess adaptable sampling rates, 
adaptable processor complexity, low - memory bandwidth, low I/O pin count, and 
high throughput. The hierarchical design allows for trading processor complexity 
for data rate and vice versa to match system - level performance requirements. Our 
design methodology identifi es the impact of the algorithm parameters on the system 
area and time complexities at each level of the design hierarchy. Thus, a designer is 
able to judge the effect of each parameter on the area – time complexity for any 
hierarchy level.  

   16.2     FBMA S   

 Figure  16.1  shows the main aspects of motion estimation. An intermediate image 
frame is divided into  B     ×     B  macroblocks. Usually,  B     =    8 or 16. We choose a system 
of coordinates such that the  i  - axis points to the right and gives the pixel position in 
a line, and the  j  - axis points downward and gives the position of the line in the video 

     Figure 16.1     The reference block (gray) and the current block (white) in the current frame. The 
extent of the search area and the motion vector is indicated.  
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frame. In a sequence of frames, the current frame is predicted from a previous frame, 
known as the reference frame. The block to be matched in the current frame is 
referred to as the current block. The current block is compared with other reference 
blocks in the reference frame using a search area (window) with size 
(2 P     +     B )    ×    (2 P     +     B ), where typically,  P     =    8 or 16 pixels. Once a good match is 
found, the difference information is coded along with a motion vector that describes 
the offset of the best match with respect to the block being encoded.   

 The full - search algorithm is generally preferred for motion estimation since it 
is simple, although it requires a prohibitive amount of computations. The required 
number of operations per second can be calculated as follows: (1) the number of 
blocks per frame is ( W / B )    ×    ( H / B ), where  W  and  H  are the frame width and height 
in pixels, respectively; (2) the number of match operations to be performed for each 
block is(2 P     +    1) 2 ; (3) the number of point operations per match operation is  B  2 ; and 
(4) frame rate is  f  frames per second. Thus, the number of operations per second is 
( W / B )    ×    ( H / B )    ×    (2 P     +    1) 2     ×     B  2     ×     f     =     W     ×     H     ×    (2 P     +    1) 2     ×     f . For example, consider 
a video transmission with parameters:  W     =    720 pixels,  H     =    576 pixels,  B     =    16, 
 P     =    8, and  f     =    30   frames/second. Such moderate settings require 3.6   billion opera-
tions each second.  

   16.3    DATA BUFFERING REQUIREMENTS 

 Due to the raster scan nature of the arriving frames, buffering will always be required 
whether to store incoming lines or to store intermediate results. Thus, no matter 
which approach is taken, output latency will always be encountered. We choose to 
buffer incoming data since this will result in separation of major buffer and hardware 
processing space. This will also limit the amount of chip I/O since all intermediate 
data will be fed directly to neighboring processing elements (PEs) without having 
to access distant memory modules. Figure  16.2  shows a shift - register buffer arrange-
ment to simultaneously access all the 2 P     +    1 pixels of the search area that lie in one 
column (fi xed  i ). Each shift - register buffer accepts incoming data through a tristate 

     Figure 16.2     Shift - register buffer arrangement to simultaneously access all 2 P     +    1 pixels of the 
search area that lie on one column.  
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buffer that is controlled by the select signal from the system controller. The number 
of shift - register buffers required will be 2 P  only. The length of each shift register is 
equal to the frame width  W .   

 A similar arrangement could be employed for the current frame to simultane-
ously obtain all the pixels of the current block that lie on one column. The number 
of shift - register buffers required in that case will be  B     −    1 only.  

   16.4    FORMULATION OF THE  FBMA  

 The motion vector  v  associated with the current block  c ( i ,  j ) is the displacement 
vector  v ( i ,  j )    =    [ k  *   l  * ]  t  , which minimizes the sum of absolute differences, SAD
( i ,  j ,  k ,  l ), given by  

    SAD( , , , )
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where  c ( i     +     m ,  j     +     n ) is the pixel intensity (luminance value) in the current block 
with coordinates ( i ,  j );  r ( i     +     k     +     m ,  j     +     l     +     n ) is the pixel intensity in the reference 
block with coordinates ( i     +     k ,  j     +     l ).( k ,  l ) is a relative displacement between the 
reference block and the current block in the search area (as shown in Fig.  16.1 ), 
and ( k  * ,  l  * ) is the optimum relative displacement. The ranges of the indices  i ,  j ,  k , 
and  l  are  
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 The expressions above ensure valid bounds near the edges of the frame. Thus, the 
displacement vector  v ( i ,  j ) can be expressed by  

    

v( , ) [ ]

min[ ( , , , )].

* *i j k l

i j k l

t

k l

=
=

,
SAD     (16.2)   

 Full - search motion estimation is a highly regular iterative algorithm with several 
embedded loops to refl ect a hierarchical structure. We will make use of the embed-
ded loop structure in what follows to illustrate a SIMD processor architecture that 
could be developed for each level of the hierarchy.  
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   16.5    HIERARCHICAL FORMULATION OF 
MOTION ESTIMATION 

 There are several complications associated with motion estimation. First, the algo-
rithm operations are not homogeneous, viz, subtraction, absolute value calculation, 
and minimum search. Second, a pixel is used more than once for several adjacent 
reference blocks. Third, a current block requires data from adjacent blocks around it. 
All these complications indicate that a hierarchical design methodology must be 
employed; hardware control must be considered during the design process; and exten-
sive buffering must be used. Our strategy is to express Eq.  16.1  by a progressive set 
of hierarchical descriptions of the operations to be performed. The goal is to explore 
effi cient parallel hardware architectures for each description at each hierarchy level. 
Figure  16.3  shows the (2 P     +    1)2 SAD values associated with a particular current 
block for a certain search area. Each SAD value is obtained at a different relative shift 
pair ( k ,  l ) between blocks  c  and  r . The fi gure assumes  P     =    3 for simplicity, and the 
black circles indicate the minimum SAD value of each row. Figure  16.4  is a block 
diagram for the hierarchical decomposition of the full - search motion estimation 
hardware. The functions of each hierarchy level are described in the following 
sections.   

     Figure 16.3     Different SAD values obtained due to the 
different  k ,  l  relative shifts between blocks  c  and  r  for  P     =    3.  k

l

     Figure 16.4     A block diagram for the proposed hierarchical decomposition of the full - search motion 
estimation hardware. The thick output arrows from the blocks at hierarchy level   3 indicate 2 P     +    1 
outputs.  
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   16.5.1    Hierarchy Level 3 (Leftmost Level) 

 Referring to Fig.  16.4 , blocks in hierarchy level   3 are divided into 2 P     +    1 groups. 
Each group contains  B  one - dimensional (1 - D) blocks as shown. All outputs from 
one group are fed to one block of the next level in the hierarchy. Each group is 
associated with a particular relative vertical shift  l  between blocks  c  and  r . Each 1 - D 
block of a group corresponds to one row of blocks  c  and  r  and produces 2 P     +    1 
SAD values (one at a time). The output of each 1 - D block is given by the 
expression  

    D i j k l n c i m j n r i k m j l n
m

B

( , , , , ) ( , ) ( , ) .= + + − + + + +
=

−

∑
0

1

    (16.3)    

   16.5.2    Hierarchy Level 2 

 Referring to Fig.  16.4 , each block at hierarchy level   2 produces 2 P     +    1 SAD values 
(at different time instances but on a single output line) that are associated with a 
particular relative vertical shift  l  between blocks  c  and  r . Each output corresponds 
to a particular relative horizontal shift  k  between blocks  c  and  r  and is represented 
by one circle in Fig.  16.3 . The output from a SAD block associated with a particular 
relative shift pair ( k ,  l ) can be written as  

    SAD( , , , ) ( , , , , ),i j k l D i j k l n
n

B

=
=

−

∑
0

1

    (16.4)  

where  D ( i ,  j ,  k ,  l ,  m ) represents an output of a 1 - D block from hierarchy level   3.  

   16.5.3    Hierarchy Level 1 

 Referring to Fig.  16.4 , each block at hierarchy level   1 produces the minimum SAD 
value  H  - min( i ,  j ,  l   ) for one row in Fig.  16.3  corresponding to a relative vertical shift 
 l  between blocks  c  and  r . The output of each  H  - min block can be written as  

    H i j l i j k l
k

− =min( , , ) min[ ( , , , )],SAD     (16.5)  

where min is the function that selects the minimum of 2 P     +    1 values and SAD
( i ,  j ,  k ,  l ) represents an output of a SAD block from hierarchy level   2.  

   16.5.4    Hierarchy Level 0 (Rightmost Level) 

 Referring to Fig.  16.4 , level   0 of the hierarchy produces the motion vector  v ( i ,  j ) by 
selecting the minimum SAD value from among a set of minimum values,  H  - min
( i ,  j ,  l ), which are indicated by the black circles in Fig.  16.3 . The output of the  V  - min 
block corresponds to the output in Eq.  16.1  and can be written as  
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    v( , ) min [ min( , , )],i j V H i j ll= − −     (16.6)  

where  V  - min is the function that selects the minimum of 2 P     +    1 values and  H  - min
( i ,  j ,  l ) represents an output of an  H  - min block from hierarchy level   1.   

   16.6    HARDWARE DESIGN OF THE HIERARCHY BLOCKS 

 In this section, we derive the hardware required to implement the different functional 
blocks in the hierarchical description of the algorithm shown in Fig.  16.4 .   We start 
with the leftmost level since the timing of the outputs of this level dictates the input 
timing of the blocks at the next higher level. 

   16.6.1    Hierarchy Level 3 Hardware Design 

 Level   3 of the hierarchy is probably the most important one since the hardware that 
implements it will have the most impact on the timing and hardware resource 
requirements. The blocks at this level implement 1 - D SAD operations as described 
by Eq.  16.3 . To study the data dependency in this equation, we write a 1 - D SAD 
calculation equation in the general form  

    D x c y r x y
y

B

( ) | ( ) ( ) |,= − +
=

−

∑
0

1

    (16.7)  

where  D ( x ) represents the absolute difference calculation when the 1 - D current block 
 c  is being compared to a reference 1 - D block  r  that is shifted by  x  positions. The 
dependence graph of the above equation is shown in Fig.  16.5  for  B     =    3,  P     =    3, and 
 W     =    15.   

 Output variable  D ( x ) is represented by vertical lines so that each vertical line 
corresponds to a particular instance of  D . As an example, output variable instance 
 D  1  is represented by the line  x     =    1. Similarly, input variable  c ( y ) is represented by 
horizontal lines. Again, as an example, input variable instance  c  3  is represented by 
the line  y     =    3. Also, input variable  r ( x ,  y ) is represented by diagonal lines. As an 
example, input variable instance  r  3  is represented by the line  x     +     y     =    3. 

  Data Scheduling 

 Assigning time values to the nodes of the dependence graph in Fig.  16.5  transforms 
the dependence graph to a directed acyclic graph (DAG) as discussed in Chapters 
 10  and  11 . More specifi cally, the DAG can be thought of as a serial – parallel algo-
rithm (SPA) where the parallel tasks could be implemented using a thread pool or 
parallel processors for software or hardware implementations, respectively. The dif-
ferent stages of the SPA are accomplished using barriers or clocks for software or 
hardware implementations, respectively. There are several possible DAGs that could 
be obtained from the same dependence graph. This carries implications as which 
variables to pipeline and which to broadcast among the threads or processors. The 
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assignment of time values must take into consideration any input or output data 
timing restrictions. A simple but very useful timing function is an affi ne scheduling 
function of the form  

    t s( ) ,p sp= −     (16.8)  

where the function  t ( p ) associates a time value  t  to a point  p  in the dependence 
graph. The row vector  s  is the scheduling vector and  s  is an integer. A valid schedul-
ing function assigns a time index value to a point  p . Such affi ne scheduling function 
must satisfy several conditions in order to be a valid scheduling function as explained 
below. Since all points in the DAG must have nonnegative time index values, we 
must have  

    s = 0.     (16.9)   

 Furthermore, since the extreme point  p     =    ( − 3, 3) is in the DAG, we must have  

    s s2 1≥ ,     (16.10)  

where  s  1  and  s  2  are the two components of the scheduling vector  s . 
 If we decide to broadcast a certain variable whose nullvector in the DAG is  e , 

then we must have  

    se = 0.     (16.11)   

     Figure 16.5     Dependence 
graph for the 1 - D absolute 
difference calculation for  B     =    3, 
 P     =    3, and  W     =    15. Circles 
represent operations to be 
performed.  
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 On the other hand, to pipeline a certain variable whose nullvector in the DAG is  e , 
we must ensure the following inequality:  

    se ≠ 0.     (16.12)   

 It is a good idea to pipeline the algorithm ’ s output variables since this speeds up 
the system timing. We have one output variable  D  whose nullvector is  e     =    [0 1]  t  . 
Equation  16.12  indicates that we must have  

    s2 0≠ .     (16.13)   

 Input data timing impacts our choice for a valid scheduling function. We assume the 
input data for blocks  c  and  r  arrive in a serial fashion; that is,  c     =     c  0  c  1   …   c W    − 1  and 
 r     =     r  0  r  1   …   r W    − 1 , where the index of each pixel corresponds to the time index. This 
implies that the time difference between adjacent pixels is one time step. Take the 
 c  instances at the  x  - axis in Fig.  16.5  characterized by the line whose equation is 
 y     =    0. Two adjacent pixels,  c x   and  c x    + 1 , at points  p  1     =    ( x , 0) and  p  2     =    ( x     +    1, 0) arrive 
at the time index values  x  and  x     +    1, respectively. Applying our scheduling function 
to these two points we get  

    t s x( )p1 1=     (16.14)  

    t s x( ) ( ).p2 1 1= +     (16.15)   

 Since the time difference  t ( p  2 )    −     t ( p  1 )    =    1, we must have  s  1     =    1. Applying the same 
reasoning for the input variable  r  results in the restriction  s  2     =    1. Therefore, our 
timing function is now specifi ed as  

    t t( ) [ ] .p = 1 1     (16.16)   

 The resulting DAG is shown in Fig.  16.6 . The arrows indicate the directions of the 
fl ow of pipelined data. The equitemporal planes are shown by solid diagonal lines 
and the values of the time index are shown by gray numbers. White circles represent 
partial results of the SAD operations and black circles represent valid 1 - D SAD 
outputs.   

 Note that inputs  c  are pipelined horizontally between computation nodes; inputs 
 r  are broadcasted along the diagonal lines; and outputs  D  are pipelined vertically 
between the computation nodes. It should be noted that in this case, for any valid 
scheduling function, a maximum of three valid 1 - D SAD outputs is available at the 
same time. In general, the maximum number of simultaneous valid outputs is 
 j (2 P     +    1)/ B  k , where  j . k  represents the ceiling function.  

  Node Projection 

 The projection operation is a many - to - one function that projects several nodes of 
the DAG onto a single node in a new DAG. The new DAG is actually a description 
of the number of threads or PEs active at each stage of the SPA and it also gives 
information as to the required inputs and the resulting outputs of the stage. 
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 The projection operation could be implemented using a projection matrix. The 
null space of the projection matrix describes the projection vectors associated with 
that matrix. We choose a projection vector,  

    d = [0 1]t ,     (16.17)  

since this choice leads to the minimum number of tasks while maintaining maximum 
speed performance. The resulting tasks associated with each stage of the SPA are 
shown in Fig.  16.7 , where each task calculates a 1 - D SAD operation and accumulates 
the result.   

 The task activities in Fig.  16.7  are shown in Table  16.1 . Notice that the 1 - D 
SAD outputs associated with a given block are obtained consecutively and require 
2 P     +    1 time steps. We also observe that the maximum number of 1 - D SAD outputs 
associated with different blocks is (2 P     +    1)/ B .     

     Figure 16.7     Task processing workload details at each SPA stage for implementing 1 - D SAD 
calculation for  B     =    3,  P     =    3, and  W     =    15.  
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   16.6.2    Hierarchy Level 2 Hardware Design 

 The blocks at this level of the hierarchy implement a sum operation as described by 
Eq.  16.4 . We write a SAD calculation equation in the general form  

    SAD =
=

−

∑D x
x

B

( ),
0

1

    (16.18)  

where SAD represents the sum of  B  1 - D SAD values that were obtained from the 
processor hardware at hierarchy level   3. Since the inputs are obtained at consecutive 
time index values, the hardware implementation of such a block is a simple accu-
mulator as shown in Fig.  16.8 ,    

  Table 16.1    Task Activities for the 1 -  D  SAD  Vector Processing for   B      =    3,   P      =    3, and 
  W      =    15   

   Clock 0      T (0)      T (1)      T (2)      T (3)      T (4)      T (5)      T (6)  

  1                              
  2     D ( − 3)             D (0)              
  3         D ( − 2)             D (1)          
  4             D ( − 1)             D (2)      
  5     D ( − 3)             D (0)             D (3)  
  6         D ( − 2)             D (1)          
  7             D ( − 1)             D (2)      
  8     D ( − 3)             D (0)            D(3)  
  9         D ( − 2)             D (1)          

  10             D ( − 1)             D (2)      
  11     D ( − 3)             D (0)             D (3)  
  12         D ( − 2)             D (1)          
  13             D ( − 1)             D (2)      
  14                 D (0)             D (3)  

     Figure 16.8     Task processing workload details at 
each SPA stage of the SAD blocks at hierarchy level   2 
in Fig.  16.4 .  
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   16.6.3    Hierarchy Level   1 Hardware Design 

 Referring to Fig.  16.4 , each block at this level of the hierarchy produces the minimum 
SAD value  H  - min( i ,  j ,  l ) corresponding to one row in Fig.  16.3  for a relative vertical 
shift of value  l  between blocks  c  and  r . Each row has 2 P     +    1 SAD values, and the 
minimum value is indicated by a black circle.  

   16.6.4    Hierarchy Level   0 Hardware Design 

 Referring to Fig.  16.4 , block  V  - min at this level of the hierarchy produces the motion 
vector estimation value  v ( i ,  j ), which is the minimum value of the black circles in 
Fig.  16.3 . As all the  H  - min output values are produced at the same time, the  V  - min 
block must select the minimum value of the 2 P     +    1 results in one time step. If this 
is not feasible, the outputs of the  H  - min blocks could be retimed using retiming 
buffers.     
 
 
 



  Chapter 17 

Case Study: Multiplication 
over  GF (2  m  )     

    17.1    INTRODUCTION 

 There are many excellent books on applied cryptography that explain the ideas 
discussed in this chapter such as fi nite Galois fi elds and the basic mathematical 
operations performed in them  [101, 102] . It is assumed that the reader of this chapter 
is already familiar with these concepts and wants to know how the algorithms could 
be implemented in parallel hardware. A number of cryptographic algorithms (e.g., 
the Advanced Encryption Standard [AES], elliptic curve cryptography [ECC]) rely 
heavily on GF(2  m  ) multiplication  [103] . All these algorithms require fast, inexpen-
sive, and secure implementation of multiplication over GF(2  m  ). Therefore, the 
design of effi cient high - speed algo rithms and hardware architectures for computing 
GF(2  m  ) multiplication are highly required and considered. Hardware implementation 
techniques for GF(2  m  ) multiplier include traditional techniques  [104, 105]  and pro-
cessor array (PA) techniques  [106 – 108] . Traditional multipliers are not attractive 
since their hardware structures are irregular and could be quite different for different 
 m  values. Moreover, as  m  gets larger, the propagation delay increases, which causes 
unavoidable performance deterioration. On the contrary, PA multipliers do not 
suffer from the above prob lems. They have regular structures consisting of a 
number of replicated basic cells. Furthermore, since each basic cell is only connected 
to its neighboring cells, signals propagate at a high clock speed  [107] . In 1984, Yeh 
et al.  [109]  proposed a parallel - in parallel - out PA architecture to calculate AB    +    C 
in a general fi eld GF(2  m  ). Since then, many PA multipliers have been proposed 
 [106 – 108] . The main idea of this chapter is the PA design space exploration for 
GF(2  m  ) - based multipliers. This exploration results in different PA confi gurations. 
Among these confi gura tions, we choose the fastest one to suit real - time applica-
tions. We made use of National Institute for Standards and Technology (NIST) -
 recommended irreducible polynomials, which makes our design secure and more 
suitable for cryptographic applications.  

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.
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   17.2    THE MULTIPLICATION ALGORITHM IN  GF (2  m  ) 

 Let  A ( x ) and  B ( x ) be two fi eld elements in the fi nite fi eld GF(2  m  ), where  m  is an 
integer that typically has the values 163, 233, 283, 409, or 571. The two elements 
 A ( x ) and  B ( x ) can be written as the order  m     −    1 polynomials

    A x a i xi

i

m

( ) ( )=
=

−

∑
0

1

    (17.1)  

    B x b i xi

i

m

( ) ( ) ,=
=

−

∑
0

1

    (17.2)  

where  a ( i ) and  b ( i ) could have the values 0 or 1. 
 The elements of the fi nite fi eld are generated by a primitive polynomial  R ( x ) of 

order  m ,

    R x r i xi

i

m

( ) ( ) ,=
=
∑

0

    (17.3)  

where  r ( m ) must have the value  r ( m )    =    1, and we can express the above equation 
as the sum

    R x x r i x x f xm i

i

m
m( ) ( ) ( ),= + = +

=

−

∑
0

1

    (17.4)  

where  f  ( x ) is a polynomial of order  m     −    1. 
 The product of the fi eld elements  A ( x ) and  B ( x ) is written as

    

C x A x B x R x

a i b j x R xi j

j

m

i

m

( ) ( ) ( ) mod ( )

( ) ( ) mod ( ).

=

= +

=

−

=

−

∑∑
0

1

0

1     (17.5)   

 We can evaluate the above double summation as

    

C x b m x A x b m x A x

b xA x b A x R

m m( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) mod

= − + −
+ +

− −1 2

1 0

1 2 �
( )

[[ [ ( ) ( )] ( ) ( )]

( ) ( )] ( ) ( ) mo

x

b m A x x b m A x x

b A x x b A x

= − + − +
+ +
� �1 2

1 0 d ( ).R x

    (17.6)   

 The above equation can be evaluated using the so - called  “ left - to - right shift - and - add ”  
fi eld multiplication method  [110] . This algorithm is shown as follows:
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  Algorithm =17.1     Left - to - right shift - and - add fi eld multiplication 

  Require:  Input: Binary polynomials  A ( x ) and  B ( x ) of degree at most  m     −    1 and R( x ) 
of degree  m  

  1:      C ( x )    =    0  

  2:      for   i     =     m     −    1 : 0  do   

  3:         C ( x )    =     xC ( x ) mod  R ( x )  

  4:         C ( x )    =     C ( x )    +     b i A ( x )  

  5:      end for   

  6:      RETURN   C ( x )   //    =     A ( x ) B ( x ) mod  R ( x )      

 Few things must be noted in Algorithm 17.1: 

  1.     The left shift operation  xC ( x ) in line 3 could result in a polynomial larger than 
 R ( x ), and hence the modulo operation in that step might be necessary. Specifi cally, 
if the coeffi cient  c ( m     −    1)    =    1, then we must subtract  R ( x ) from the polynomial 
 xC ( x ).  

  2.     Bitwise add or subtract in GF(2) is equivalent to a bitwise exclusive OR (XOR)
operation.  

  3.     The addition operation in line 4 is a bitwise XOR operation over the  m  terms 
of the polynomials.  

  4.     From Eq.  17.4 , we can write line 3 as

    

xC x R x c m c i x R x

c m f x r i x

i

i

m

i

( ) mod ( ) ( ) ( ) mod ( )

( ) ( ) ( )

= − +

= − +

=

−

∑1

1

0

1

ii

m

=

−

∑
0

1

.

    

(17.7)

   

 The above equation ensures that the modulo operation, which is accomplished by 
adding  f ( x ), only takes place when  c ( m     −    1)    =    1.    

 Algorithm 17.1 can be modifi ed to express it as a regular iterative algorithm 
(RIA). This is done by explicitly writing the iterations required at the bit level. 
Algorithm 17.2 is the bit - level implementation of Algorithm 17.1. 

   Algorithm 17.2     Bit - level left - to - right shift - and - add fi eld multiplication.  ∧  repre-
sents logical AND operation and  ⊕  represents logical XOR operation 

  Require:

    1:     Binary polynomials  A ( x ) and  B ( x ) of degree at most  m     −    1 and  R ( x ) of 
degree  m   

  2:      for   j     =    0 :  m     −    1  do   

  3:         c (0,  j )    =    0  
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  4:      end for   

  5:      for   i     =    1 :  m     −    1  do   

  6:         c ( i , 0)    =    [ a (0)  ∧   b ( m     −     i )]    ⊕     c ( i     −    1,  m     −    1)  

  7:         for   j     =    1 :  m     −    1  do   

  8:            c ( i ,  j )    =    [ a (  j )  ∧   b ( m     −    1    −     i )]    ⊕     c ( i     −    1,  j     −    1)    ⊕    [ c ( i     −    1,  m     −    1)  ∧   r (  j )]  

  9:         end for   

  10:      end for   

  11:      RETURN   C ( x )   //    =     A ( x ) B ( x ) mod  R ( x )      

 Note that the index values of iterations in line 5 are increasing, while in Algorithm 
17.1 the index in line 2 is decreasing. However, in both algorithms, the order of the 
operations is still preserved.  

   17.3    EXPRESSING FIELD MULTIPLICATION AS  A  N   RIA  

 The basic operation in Algorithm 17.2 is the iterative expression

    c i j a j b m i c i j c i m r j( , ) [ ( ) ( )] ( , ) [ ( , ) ( )],= ∧ − ⊕ − − ⊕ − − ∧1 1 1 1     (17.8)  

with 0    ≤     i     <     m  and 0    ≤     j     <     m . The initial conditions for the above iterations are

    c j j m( , )0 0 0= ≤ <     (17.9)  

    c i a b m i c i m( , ) [ ( ) ( )] ( , ).0 0 1 1= ∧ − ⊕ − −     (17.10)   

 The fi nal result is given by

    C x c m j x j

j

m

( ) ( , ) .=
=

−

∑
0

1

    (17.11)    

   17.4    FIELD MULTIPLICATION DEPENDENCE GRAPH 

 The iterations in Eq.  17.8  are defi ned over a two - dimensional (2 - D) computation 
domain  D  with the two indices  i  and  j  with the boundaries defi ned in Eq.  17.8 . Since 
the dimensionality of  D  is low, it is preferable to draw a dependence graph for the 
data and use the graphic and combinational geometric analysis tools discussed in 
Chapters  10  and  11 . Figure  17.1  shows the dependence graph for the left - to - right 
shift - and - add fi eld multiplication algorithm for  m     =    5. The algorithm has three input 
variables a,  b  and  r  and one output variable  c .   

 Input variables  a (  j ) and  r (  j ) will both map to horizontal lines. For example, 
input sample  a (3) is associated with the line whose equation is  i     =    3. Also,  a (  j ) or 
 r (  j ) are fed to the system at one of two points (0,  j ) or ( m     −    1,  j ). We choose to feed 
the variable at the former point. 

 Input variable  b ( m     −     i ) maps to vertical lines such that input instance  b (3) maps 
to the line equation  i     =     m     −    3. Since in our case  m     =    5, instance  b (3) maps to the 
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line whose equation is  i     =    2 as shown in the fi gure. Also,  b ( m     −     i ) is fed to the system 
at one of two points ( i , 0) or ( i ,  m     −    1). We choose to feed the variable at the former 
point. 

 Output variable  c ( i ,  j ) is represented by point  p     =    [ i j ]  t   in  D   . Notice that output 
instances  c ( i     −    1,  j     −    1) are used as inputs to calculate outputs  c ( i ,  j ). This is indicated 
by the diagonal lines connecting each node to its southwest neighbor.  

   17.5    DATA SCHEDULING 

 Pipelining or broadcasting the variables of an algorithm is determined by the choice 
of a timing function that assigns a time value to each node in the dependence graph. 
A simple but useful timing function is an affi ne scheduling function of the form

    t s( )p sp= − ,     (17.12)  

where the function  t ( p ) associates a time value  t  to a point  p  in the dependence 
graph. The row vector  s     =    [ s  1   s  2 ] is the scheduling vector and  s  is an integer. Since 
all points in  D    have nonnegative indices, the value of scalar  s  must be 0. 

     Figure 17.1     Dependence graph for the left - to - right shift - and - add fi eld multiplication algorithm for 
 m     =    5.  
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 Assigning time values to the nodes of the dependence graph in transforms the 
dependence graph to a directed acyclic graph (DAG) as was discussed in Chapters 
 10  and  11 . More specifi cally, the DAG can be thought of as a serial – parallel algo-
rithm (SPA) where the parallel tasks could be implemented using a thread pool or 
parallel processors for software or hardware implementations, respectively. The dif-
ferent stages of the SPA are accomplished using barriers or clocks for software or 
hardware implementations, respectively. 

 Input data timing restricts the space of valid scheduling functions. Let us assume 
that input variable  b ( i ) arrives at different adjacent time steps. Referring to Eq.  17.8 , 
if  b ( m     −     i ) arrives at iteration  i  corresponding to time  t , then  b ( m     −     i     −    1) arrives at 
iteration  i     +    1 corresponding to time  t     +    1. The bits  b ( m     −     i ) and  b ( m     −     i     −    1) arrive 
at points  p  1     =    ( i , 0) and  p  2     =    ( i     +    1, 0) at the time steps  t ( p  1 ) and  t ( p  2 )  , respectively. 
By applying our scheduling function in Eq.  17.12  to these two points, we get

    t s s
i

is( )p1 1 2 1
0

= [ ]⎡
⎣⎢

⎤
⎦⎥

=     (17.13)  

    t s s
i

i s( ) ( ) .p2 1 2 1

1

0
1= [ ] +⎡

⎣⎢
⎤
⎦⎥

= +     (17.14)   

 As the time difference  t ( p  2 )    −     t ( p  2 )    =    1  , we must have  s  1     =    1. Thus, our timing func-
tion is given by

    s = [ ]1 2s .     (17.15)   

 This leaves  s  2  unknown and we need another restriction or specifi cation for the 
timing function. 

 Equation  17.8  indicates that the output  c ( i ,  j ) depends on the previous output 
value  c ( i     −    1,  j     −    1). These two output samples are associated with points  p  2     =    ( i ,  j ) 
and  p  1     =    ( i     −    1,  j     −    1). Thus, our timing function must ensure the following 
inequality

    t t( ) ( ).p p1 2<     (17.16)   

 Thus, we get the following inequality:

    s2 1> − .     (17.17)   

 Similarly from Eq.  17.8 , we observe that the output  c ( i ,  j ) depends on the previous 
output value  c ( i     −    1,  m     −    1). That previous value is obtained at from the point 
 p     =    ( i     −    1,  m     −    1). Thus, we can write the following inequality:

    t i m t i j[ ( , )] [ ( , )].p p− − <1 1     (17.18)   

 The above inequality becomes

    ( ) .m j s− − <1 12     (17.19)   

 Hence, Eqs.  17.17  and  17.19  could be merged as

    − < <
− −

≤ <1
1

1
02s

m j
j m.     (17.20)   
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 The worst case in the above inequality is when  j     =    0; thus, we can write

    − < <
−

1
1

1
2s

m
.     (17.21)   

 The above inequality can be written as

    − ≤ ≤
α
β

s
m

2
1

,     (17.22)  

where  α  and  β  are positive integers and  α     <     β . 
 From the above inequality, we have three reasonable solutions to  s :

    s1 1 0= [ ]     (17.23)  

    s2
11= [ ]m     (17.24)  

    s3 1= −[ ].α
β     (17.25)   

 Timing function  s  1  implies that all inputs  a ( j ) and  r ( j ) must be supplied 
simultaneously. 

 The timing functions  s  2  and  s  3  result in only one thread operating at a given 
time. To prove this, suppose that we have two points ( i ,  j ) and ( i  ′ ,  j  ′ ) mapped to the 
same time value. Using the scheduling function in Eq.  17.24 , we can write

    i
j

m
i

j

m
j m+ = ′ + ′ ≤ <0 .     (17.26)   

 The only solution to for arbitrary values of  i ,  j  and  i  ′ ,  j  ′  is when  i     =     i  ′  and  j     =     j  ′ , 
which proves that only one node is active at the same time step. A similar argument 
is also valid for Eq.  17.25 . 

 As a consequence of the above discussion, we consider only the timing function 
 s  1 . Figure  17.2  is the DAG for the left - to - right shift - and - add fi eld multiplication 
algorithm. The arrows indicate pipelined signals that move from the source node to 
the destination node every time step. The lines without arrows indicate broadcast 
signals that are distributed to all the nodes within the same time step. Note the time 
step values indicated by the bold numbers at the top of the diagrams. All nodes 
indexed (0,  j ) perform their operations at time step 0 and so on.    

   17.6     DAG  NODE PROJECTION 

 The projection operation is a many - to - one function that maps several nodes of
the DAG onto a single node, which constitutes the resulting   DAG. Thus, several
operations in the DAG are mapped to a single thread. The projection operation 
allows thread or hardware economy by multiplexing several operations in the
DAG on a single node in   DAG. Chapters  10  and  11  explained how to perform the 
projection operation using a projection matrix P. To obtain the projection matrix, 
we need to defi ne a desired projection direction  d . The vector  d  belongs to the null - 
space of P. Since we are dealing with a 2 - D DAG, matrix P is a row vector and  d  
is a column vector. A valid projection direction  d  must satisfy the inequality
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    sd = 0.     (17.27)   

 There are many projection vectors that satisfy Eq.  17.27  for the scheduling function 
 s  1 . For simplicity, we choose three of them:

    d1 1 0= [ ]t     (17.28)  

    d2 1 1= [ ]t     (17.29)  

    d3 1 1= −[ ] .t     (17.30)   

 The corresponding projection matrices are given by

    P1 0 1= [ ]     (17.31)  

    P2 1 1= −[ ]     (17.32)  

    P3 1 1= [ ].     (17.33)   

 Our multithreading design space now allows for three confi gurations, one for each 
projection vector.  
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0 0 0 0
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     Figure 17.2     Directed acyclic graph (DAG) for the left - to - right shift - and - add fi eld multiplication 
algorithm for  m     =    5 and  s  1     =    [1 0].  
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   17.7    DESIGN 1: USING  d  1     =    [1 0]  t   

 A point in the dependence graph  p     =    [ i j ]  t   will be mapped by the projection matrix 
 P  1     =    [0 1] onto the point

    �p P p= =1 j.     (17.34)   

 The   DAG corresponding to the projection matrix  P  1  is shown in Fig.  17.3 . DAG 
consists of  m  nodes or tasks, and each task is active for  m  time steps. The algorithm 
requires  m     =    5 clock cycles to complete. Notice that signal  b ( m     −    1    −     i ) is broadcast 
to all nodes as indicated by the line to the left of the processor array. Notice also 
that the output of  c ( i ,  j ) associated with task  T j   is sent to the next task  T j    + 1  at the end 
of time step  i . At the end of time step  i , all outputs  c ( i , 0),  c ( i , 1),  …  ,  c ( i ,  m     −    1) 
are obtained from tasks  T  0 ,  T  1 ,  …   T   m      −    1, respectively.    

   17.8    DESIGN 2: USING  d  2     =    [1 1]  t   

 A point in the DAG  p     =    [ i j ]  t   will be mapped by the projection matrix  P  2     =    [1  − 1] 
onto the point

    �p P p= = −2 i j.     (17.35)   

 To ensure that the index of the points in   �D is nonnegative, we will add a fi xed value 
 m     −    1 to all the points. Thus, a point in the dependence graph  p     =    [ i j ]  t   will be 
mapped by the projection matrix  P  2     =    [1  − 1] onto the point  

    �p P p= + − = − + −2 1 1m i j m .     (17.36)   

     Figure 17.3     Task processing workload details at 
each SPA stage for the left - to - right shift - and - add fi eld 
multiplication algorithm for  m     =    5 and  d  1     =    [1 0]  t  . The 
signals  c ( i , 4    −     i ) and  b (4    −     i ) are shown at time step  i , 
where 0    ≤     i     <    5.  
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 The DAG corresponding to the projection matrix  P  2  is shown in Fig.  17.4 . The DAG 
consists of 2 m     −    1 nodes.   

 Although the   DAG consists of 2 m     −    1 nodes, most of them are not active all 
the time. For example, task  T  0  and  T  8  are active for one time step only.  T  1  and  T  7  
are active for two time steps only. Figure  17.5  show the node activities at the dif-
ferent time steps. In general, we note that  T i   and  T m    +    i   are active at nonoverlapping 
time steps. Therefore, we could map tasks  T i   and  T j   to  T k   if the indices satisfy the 
equation

    k i j m= − mod .     (17.37)     

 Through this artifact, we are able to reduce the number of nodes and ensure that 
each task is active all the time. The reduced   DAG is shown in Fig.  17.6 . Notice that 
signal  b ( m     −    1    −     i ) is broadcast to all tasks. Notice also that the output of  c ( i ,  j ) is 
obtained at the end of the  i th time step and is obtained from  T k  , where  k  is given by  

    k i j m m= − + −1 mod .     (17.38)     

 At the end of time step  i , all outputs  c ( i , 0),  c ( i , 1),  …  c( i ,  m     −    1) are obtained from 
tasks  T  0 ,  T  1 ,  …   T m    − 1 , respectively.  

     Figure 17.4     Task processing workload details at each SPA stage for the left - to - right shift - and - add 
fi eld multiplication algorithm for  m     =    5 and  d  2     =    [1 1]  t  .  
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     Figure 17.5     Task activity for the left - to - right shift - and - add fi eld multiplication algorithm for  m     =    5 
and  d  2     =    [1 1]  t  .  
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   17.9    DESIGN 3: USING  d  3     =    [1  − 1]  t   

 A point  p     =    [ i j ]  t   in DAG will be mapped to a point   �p in DAG given by  

    �p P p= = +3 i j.     (17.39)   

 The resulting   DAG corresponding to the projection matrix  P  3  will consist of 2 m     −    1 
nodes or tasks. Similar to design 2, each task is only active for  m  time steps at most. 
Therefore, we could map task  T i   and  T j   to  T k   if the indices satisfy the equation

    k i j m= + mod .     (17.40)   

 Through this artifact, we are able to reduce the number of nodes and ensure that 
each node is active all the time. Before we proceed further, we need to observe more 
closely the diagonal lines transferring the output of  T i    − 1,    j    − 1  to  T i   ,    j  . After mapping, we 
see that communication is accomplished between tasks according to the relations

    T T T T T T0 2 4 1 3 0→ → → → → →�.    

   17.10    APPLICATIONS OF FINITE FIELD MULTIPLIERS 

 The fi nite fi eld multipliers we developed in the previous sections can be used to an 
advantage in cryptography. For example, elliptic curve encryption techniques require 
the following fi nite fi eld operations: 

  1.     Addition, which is simply performed by a bank of XOR gates;.  

  2.     Multiplication, which was discussed before.  

  3.     Squaring is a special case of multiplication.

    C x A x A x( ) ( ) ( )=     (17.41)   

 Specialized and fast hardware structures for fi eld squaring were developed by 
the author ’ s research group  [111] .  

  4.     Inversion method based on Fermat ’ s theorem requires  m     −    1 squaring opera-
tions and  m     −    2 multiplication operations  [112] . Performance can be improved 
by using the method proposed by Itoh and Tsujii    [112] .       

    

     Figure 17.6     Task processing 
workload details at each SPA 
stage for the left - to - right 
shift - and - add fi eld multiplication 
algorithm for  m     =    5 and  d  2     =    
[1 1]  t  .  
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  Chapter 18 

Case Study: Polynomial 
Division over  GF (2)     

    18.1    INTRODUCTION 

 Finite fi eld polynomial division is an operation that is widely used to detect errors 
and encode data in digital communication systems  [113] , as well as detect errors in 
integrated circuits  [114, 115] . In digital communications, detecting errors is called 
cyclic redundancy check (CRC), which appends bits to the message stream before 
transmission. These redundant bits are obtained from the message bits using fi nite 
fi eld polynomial division. In digital integrated circuits, detecting errors is known as 
built - in self - test (BIST) where a generator produces a pseudorandom vector to be 
applied to a circuit under test. A compactor reduces the response of the circuit to a 
signature having a small number of bits. Both the generator and the compactor 
employ fi nite fi eld polynomial division. The generation of pseudorandom numbers 
and polynomial division is usually done using a linear feedback shift register (LSFR). 
The operations performed by the LFSR can be done in software or hardware. We 
shall explore the different LFSR structures in this chapter. 

 Assume the information bits to be processed are represented by a dividend poly-
nomial  A . A divisor polynomial  B  is used to effect the fi nite fi eld polynomial division. 
In the following section, we study polynomial division algorithm in more detail.  

   18.2    THE POLYNOMIAL DIVISION ALGORITHM 

 Assume that the dividend polynomial  A  of degree  n  is given by

    A a xi
i

i

n

=
=
∑

0

.     (18.1)   

 The divisor polynomial of degree  m  is given by

    B b xi
i

i

m

=
=
∑

0

.     (18.2)   

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

279



280 Chapter 18 Case Study: Polynomial Division over GF(2)

 The polynomial division operation produces the quotient and remainder polynomials 
 Q  and  R 

    Q q xi
i

i

n m

=
=

−

∑
0

    (18.3)  

    R r xi
i

i

m

=
=

−

∑
0

1

,     (18.4)  

where

    A Q B R= + .     (18.5)   

 The division operation is a series of multiply/subtract iterations such that after each 
iteration one coeffi cient of the quotient polynomial is obtained, in descending order. 
Also, a partial remainder polynomial having  m  terms is obtained after each iteration. 
At the end of the iterations, all the coeffi cients of  Q  are determined as well as the 
fi nal remainder polynomial  R . 

 The notation we use in this chapter for the partial remainder polynomials is as 
follows: 

   •       R ( i ): input partial remainder polynomial at iteration  i   

   •       R ( i     +    1): resulting partial remainder polynomial at iteration  i   

   •       r j  ( i ):  j th coeffi cient of  R ( i ), 0    ≤     j     <     m     

 According to the above defi nitions, can express  R ( i ) explicitly as

    R i r i x i n mj
n m i j

j

m

( ) ( ) .= ≤ ≤ −− − +

=

−

∑
0

1

0     (18.6)   

 We can express the long - division algorithm for polynomials as an iteration using an 
LFSR as indicated in Algorithm 18.1. 

   Algorithm 18.1     Linear feedback shift register (LFSR) polynomial division 
algorithm  

  1:     // Initialization of partial remainder  R  and  q   

  2:      q n    −    m      =     a n    

  3:      for   j     =    0 :  m     −    1  do   

  4:         r j  (0)    =     a n    −    m    +    j    

  5:      end for   

  6:     // Start Iterations  

  7:      for   i     =    0 :  n     −     m   do   

  8:         for   j     =    1 :  m     −    1  do   

  9:         r j  ( i     +    1)    =     r j    − 1 ( i )    +     q n    −    m    −    i b j    − 1   

  10:      end for   

  11:      q n    −    m    −    i    − 1     =     r m    − 1 ( i )  
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  12:      r  0 ( i     +    1)    =     a n    −    m    −    i    

  13:      end for   

  14:     // Final remainder  

  15:      for   j     =    0 :  m     −    1  do   

  16:         r j      =     r j  ( n     −     m     +    1)  

  17:      end for       

 Note from the algorithm that the most signifi cant coeffi cient of the divisor polyno-
mial  B  is not used. Instead we use our knowledge of the  r m    − 1 ( i ) to directly estimate 
the quotient coeffi cient  q m − n − i   for ensuring that  r m  ( i )    =    0.  

   18.3    THE  LFSR  DEPENDENCE GRAPH 

 Based on Algorithm 18.1, the dependence graph of Fig.  18.1  is obtained. The gray 
circles indicate valid operations such as indicated in line 9 of Algorithm 18.1. The 
white circles have zero  q  inputs, and hence only transfer the northeast input to the 
southwest output. In that sense, we note that the inputs  a  9  to  a  4  become effective 

     Figure 18.1     Dependence graph of the LFSR 
polynomial division algorithm for the case  n     =    9 and 
 m     =    5.  
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only when they arrive at the top line with gray circles. Likewise, the desired outputs 
 r  4  to  r  0  could be obtained as the outputs of the bottom row with gray circles.   

 Detailed explanations of how a dependence graph could be obtained were pre-
sented in Chapters  10  and  11  and by the author elsewhere  [86, 100, 116 – 118] . The 
dependence graph is two - dimensional (2 - D) since we have two indices,  i  and  j . If 
we consider only the gray circles, then the bounds on the indices are 0    ≤     i     ≤     n     −     m     =    4 
and 0    ≤     j     <     m     =    5. Each node in the algorithm performs the operations indicated in 
line 9 of Algorithm 18.1. If we extended the algorithm such that the inputs are fed 
from the same side and the outputs are obtained from the same side, then the bounds 
of the algorithm indices would be 0    ≤     i     ≤     n     +     m  and 0    ≤     j     <     m . 

 Coeffi cient  q n − m − i   of  Q , on line 11 of Algorithm 18.1, is obtained at iteration  i . 
Hence, this coeffi cient is represented by the horizontal lnes in the fi gure. For 
example, the horizontal line  i     =    3 represents the coeffi cient  q n − m − i      =     q  1 . Similarly, the 
line at  i     =    0 represents  q  4 . 

 Coeffi cient  b j   of  B , on line 9 of Algorithm 18.1, has an index dependency

    j c= ,     (18.7)  

where  c  is a specifi c value of the index. For example,  b  1  would be represented by 
the vertical line  j     =    1 as shown in the fi gure. 

 The partial remainder coeffi cient  r j  ( i     +    1), on line 9 of Algorithm 18.1, is 
obtained from  b j  ,  q n − m − i   and  r j −    1 ( i ). This explains the diagonal lines representing the 
inputs and outputs for each node.  

   18.4    DATA SCHEDULING 

 Data scheduling assigns a time index value to any point in the dependence graph of 
Fig.  18.1 . We use an affi ne scheduling function to specify the scheduling of the 
algorithm tasks. The affi ne scheduling functions are of the form  [86] 

    t s( ) ,p sp= −     (18.8)  

where  s     =    [ s  1   s  2 ] is the scheduling vector and  s  is an integer. 
 Assigning time values to the nodes of the dependence graph transforms the 

dependence graph to a directed acyclic graph (DAG) as was discussed in Chapters 
 10  and  11 . More specifi cally, the DAG can be thought of as a serial – parallel algo-
rithm (SPA) where the parallel tasks could be implemented using a thread pool or 
parallel processors for software or hardware implementations, respectively. The dif-
ferent stages of the SPA are accomplished using barriers or clocks for software or 
hardware implementations, respectively. 

 Our choice for the scheduling vector is determined by any data input/output 
(I/O) requirements. Since the divisor polynomial is typically of low order, we can 
store its coeffi cients in memory and only treat  A  as an input polynomial supplied by 
the system generating the data to be compressed. From the fi gure, it appears that 
coeffi cient  a i   of  A  is supplied to the dependence graph at the rightmost edge at point

    pai n i= −[ ].0     (18.9)   
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 From Eqs.  18.8  and  18.9 , the time index value associated with such point is given 
by

    t a n i s s i ni( ) ( ) .= − + ≤ ≤1 0     (18.10)   

 Since the time of arrival difference between  a i −    1  and  a i   is 1, we can write

    
t a t a

s
i i( ) ( )

.
− − =

=
1

1

1
   

 (18.11)
   

 Thus, we must have  s  1     =    1 in our scheduling function. 
 We can explore the possible values of  s  2  by observing that the  q  input, shown 

by horizontal lines, is obtained at the left and is used by all the points on the hori-
zontal line. Therefore, time associated with point ( i ,  j ) must be larger than or equal 
to the time value associated with point ( i ,  j     +    1). We can write this as

    1 1
1

2 2s
i

j
s

i

j
[ ]⎡

⎣⎢
⎤
⎦⎥

≥ [ ]
+

⎡
⎣⎢

⎤
⎦⎥
.     (18.12)   

 The above equation yields the inequality

    s2 0≤ .     (18.13)   

 We have another restriction on the value of  s  2 . The source of data for points on any 
diagonal lines is the  a  coeffi cients that are supplied at the right. Therefore, time 
associated with point ( i ,  j ) must be smaller than or equal to the time value associated 
with point ( i     +    1,  j     +    1). We can write this as

    1 1
1

2 2s
i

j
s

i

j
[ ]⎡

⎣⎢
⎤
⎦⎥

≤ [ ]
+

⎡
⎣⎢

⎤
⎦⎥
.     (18.14)   

 The above equation yields the inequality

    s2 1≥ − .     (18.15)   

 From the above two inequalities, we deduce that the range for  s  2  is

    − ≤ ≤1 02s .     (18.16)   

 There are three possible choices for our scheduling function:

    s1 1 1= −[ ]     (18.17)  

    s2 1   0= [ ]     (18.18)  

    s3 1 0 5= −[ . ].     (18.19)  

       18.5     DAG  NODE PROJECTION 

 The projection operation is a many - to - one function that maps several nodes of the 
DAG onto a single node. Thus, several operations in the DAG are mapped to a single 
node or task. The projection operation allows for software thread economy or 
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hardware economy by multiplexing several operations in the DAG on a single thread 
or processing element, respectively. For a 2 - D DAG we are able to achieve node 
projection by choosing proper projection direction d. The author provided an exten-
sive treatment of the projection operation in  [86]  and in Chapters  10  and  11 . 

 The projection direction  d  projects a point  p  in the 2 - D DAG to a point   p on a 
line such that

    p Pp= ,     (18.20)  

where  P  is a the projection matrix of dimension 1    ×    2, which is in our case a vector 
normal to  d . A valid projection direction must satisfy the inequality  [86, 100, 
116 – 118] 

    sd ≠ 0.     (18.21)   

 In the following three sections, we will discuss design space explorations for the 
three values of  s  obtained in Eqs.  18.17 – 18.19 .  

   18.6    DESIGN 1: DESIGN SPACE EXPLORATION 
WHEN  s  1     =    [1  − 1] 

 Figure  18.2  shows the DAG for the polynomial division algorithm based on our 
timing function choice  s  1 . The equitemporal planes are the diagonal lines shown as 
gray lines on the right of the diagram. The associated time index values are shown 
at the right of the diagram. We note from the fi gure that the signals corresponding 
to the coeffi cients of  B  and the estimated  q  output are all pipelined, as indicated by 
the arrows connecting the nodes. However, the estimated partial results for  Q  and 
 R  are broadcast, as indicated by the diagonal lines without arrows. There are three 
simple projection vectors such that all of them satisfy Eq.  18.21  for the scheduling 
function in Eq.  18.17 . The three projection vectors will produce three designs:

    Design a1 1   01: : [ ]d a
t=     (18.22)  

    Design b1 1 11: : [ ]d b
t= −     (18.23)  

    Design 1 0 11: : [ ] .c c
td = −     (18.24)     

 The corresponding projection matrices are

    Design a1 0 11: : [ ]P a =     (18.25)  

    Design b1: : 1 11P b = [ ]     (18.26)  

    Design c1 1 01: : [ ].P c =     (18.27)   

 Our design space now allows for three confi gurations for each projection vector for 
the chosen timing function. As it turns out, the choice of  d  1   b   or  d  1   c   would produce 
 n  nodes or tasks but only  m  of them are active at any time step. Through proper 
relabeling of the tasks, we would obtain the design corresponding to  d  1   a  . Therefore, 
we consider only the case when  s  1  and  d  1   a  . There will be  m  tasks that are all active 
at each time step. The design will result in the well - known Fibonacci (Type 1) LFSR. 
A point in the DAG given by the coordinates  p     =    [ i j ]  t   will be mapped by the projec-
tion matrix  P  1   a   into the point   p    =     P  1   a   p . The   DAG corresponding to design 1 is shown 
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in Fig.  18.3 . There will be  m  tasks where input coeffi cients of  A  are fed from the 
right and the partial remainders are pipelined among the processors. Coeffi cient  b j   
of divisor polynomial  B  is stored in task  T j  . The task processing details are shown 
in Fig.  18.3 b for hardware systolic implementation where  D  denotes a 1 - bit register 
to store the partial output. The input to the LFSR is obtained from a multiplexer 
(MUX) so that in the fi rst  m  time steps the  q  inputs are all zero.     

 Let  q i  , 0    ≤     i     <     m , be the present output of task  T i  . The next state output   qi
+ is 

given by

    q q i mi i
+

+= ≤ <1 0 .     (18.28)   

 The above expression is represented by the angled arrows at the top left of Fig.  18.2 . 
And we identify the two outputs  Q  and  R  and inputs  q  of the Fibonacci (Type 1) 
LFSR as

    Q R a b q b qm m, = ⊕ ( ) ⊕ ⊕ ( )− −0 0 1 1�     (18.29)  

    q
Q R select

select
m =

=
=

⎧
⎨
⎩

,

.

when

when

1

0 0
    (18.30)   

     Figure 18.2     Directed acyclic graph (DAG) 
for polynomial division algorithm when  s  1     =    
[1  − 1],  n     =    9, and  m     =    5.  
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 The above equations determine the operation of the Fibonacci (Type 1) LFSR as 
follows: 

  1.     Clear all the registers.  

  2.     At time step 0, coeffi cient  q  4  is calculated, which is simply a copy of  a  9 , 
which is the fi rst bit of the input divisor polynomial.  

  3.     At time step 1, only one node is active which calculates  q  3 .  

  4.     At time step 2, two nodes are active which calculate  q  2 .  

  5.     This sequence of operations is continued up to time step 5.  

  6.     At time step 5, coeffi cient  r  4  of the remainder polynomial  R  is obtained.  

  7.     At time step 6, the  select  signal is set to 0 to ensure that register  D  4  is cleared. 
In effect,  r  3  is obtained and feedback path from coeffi cient  b  4  in node  T  4  is 
broken.  

  8.     At time step 7,  r  2  is obtained and feedback paths from coeffi cients  b  3  and  b  4  
are broken.  

  9.     This pattern continues till the end of iterations at time step 9.     

   18.7    DESIGN 2: DESIGN SPACE EXPLORATION WHEN 
 s  2     =    [1 0] 

 Figure  18.4  shows the DAG for the polynomial division algorithm based on our 
timing function choice  s  2 . We note from the fi gure that the signals corresponding to 
the coeffi cients of  B  and the intermediate partial remainders corresponding to  R  and 
 Q  are all pipelined, as indicated by the arrows connecting the nodes. However, the 
estimated  q  output is broadcast among the nodes, as indicated by the horizontal lines 

     Figure 18.3     Task processing workload details at each SPA stage for Fibonacci (Type 1) LFSR 
when  s  1     =    [1  − 1],  d  1   a      =    [1 0]  t  ,  n     =    9, and  m     =    5. (a) The resulting tasks at each SPA stage. (b) The task 
workload details.  
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without arrows. There are three simple projection vectors such that all of them satisfy 
Eq.  18.21  for the scheduling function in Eq.  18.18 . The three projection vectors will 
produce three designs:

    Design a2 1 02: : [ ]d a
t=     (18.31)  

    Design b2 1 12: : [ ]d b
t=     (18.32)  

    Design c2 1 12: : [ ] .d c
t= −     (18.33)     

 The corresponding projection matrices are

    Design a2 0 12: : [ ]P a =     (18.34)  

    Design b2: 1 12: [ ]P b = −     (18.35)  

    Design c2 1 12: : [ ].P c =     (18.36)   

 Our multithreaded design space now allows for three confi gurations for each projec-
tion vector for the chosen timing function. 

 The different projection directions will produce identical designs through proper

relabeling of the nodes. The resulting   DAG will consist of  m  tasks that are all active

     Figure 18.4     DAG for polynomial 
division algorithm when  s  2     =    [1 0], 
 n     =    9, and  m     =    5.  
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at each time step. The design will result in the well - known Galois (Type 2) LFSR. 
A point in the DAG given by the coordinates  p     =    [ i j ]  t   will be mapped by the 

projection matrix P 2   a   into the point   p    =    P 2   a   p . The   DAG corresponding to design 2

is shown in Fig.  18.5 . The   DAG consists of  m     −    1 nodes. Input coeffi cients of  A 
are fed from the right and the partial remainders are pipelined to all nodes. Coeffi cient 
 b j   of  B  is stored in node  T j  . The task details for hardware systolic implementation 
are shown in Fig.  18.5 b, where  D  denotes a 1 - bit register to store the partial output.   

 Let  r  i,  0    ≤     i     <     m , be the present output of task  T i  . The next state output   ri
+  is 

given by

    r r b r i mi i i m
+

− −= ⊕ ( ) ≤ <1 1 0 .     (18.37)   

 And we identify the output and input of the Galois LFSR as

    Q R rm, = −1     (18.38)  

    r a− =1 .     (18.39)   

 The above equations determine the operation of the Galois (Type 2) LFSR as 
follows: 

  1.     Clear all the registers.  

  2.     For time steps 0 – 4, the LFSR is working as a simple shift register moving 
the coeffi cients  a  9  to  a  5  between the stages.  

  3.     At time step 4, the fi rst quotient coeffi cient  q  4  is obtained and is available at 
the next time step to the leftmost node.  

  4.     The coeffi cients of  Q  are obtained from the leftmost node at time steps 4 – 9.  

  5.     At the end of time step 9, all the remainder polynomial  R  coeffi cients are 
stored in the shift register stages. They could be read off the LFSR in parallel 
if desired.  

  6.     If it is desired to shift the  R  coeffi cients out, then the feedback path must be 
broken to selectively disable the LFSR action.     

     Figure 18.5       DAG for Galois (Type 2) LFSR when  s  1     =    [1 0],  d  2   a      =    [1 0]  t  ,  n     =    9, and  m     =    5. (a) The 
resulting tasks at each SPA stage. (b) The task workload details.  
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   18.8    DESIGN 3: DESIGN SPACE EXPLORATION WHEN 
 s  3     =    [1  − 0.5] 

 Figure  18.6  shows the DAG for the polynomial division algorithm based on our 
timing function choice  s  3 . We note from the fi gure that all signals are now pipelined, 
as indicated by the arrows connecting the nodes. However, we note that there are 
nodes that do not lie on any equitemporal planes. We have several choices for the 
timing of nodes that lie between two temporal planes. Alternatively, we could assign 
a time value equal to either of the temporal planes surrounding the node. In addition, 
we could assign this node to operate on the negative edge of the clock. The former 
choice leads to nodes that do not have registers. The latter choice leads to nodes that 
have registers triggered by the negative edge of the clock. This is the option we 
follow here.   

 Similar to the two previous designs, we choose a projection vector given by

    Design 3 1 03: [ ] .d = t     (18.40)   

 The corresponding projection matrix  P  3  is given by

    P3 0 1= [ ]     (18.41)   

 A point in the DAG given by the coordinates  p     =    [ i j ]  t   will be mapped by the 

projection matrix  P  3  into the point   p    =     P  3  p . The   DAG corresponding to Design 3 is 

     Figure 18.6     DAG for polynomial 
division algorithm when  s  3     =    
[1   −  0.5],  n     =    9, and  m     =    5.  
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shown in Fig.  18.7 . The   DAG consists of  m     −    1 tasks. Input coeffi cients of  A  are 
fed from the right and the partial remainders are pipelined to all nodes. Coeffi cient 
 b j   of  B  is stored in task  T j  . The task details for hardware systolic array implementa-
tion are shown in Fig.  18.7 b, where  D  denotes a 1 - bit register to store the intermedi-
ate results. The even - numbered tasks contain two positive edge - triggered fl ip - fl ops. 
On the other hand, the odd - numbered tasks contain two negative edge - triggered 
fl ip - fl ops.   

 This design is usually called a linear cellular automaton (LCA)  [119] . The 
design shown here differs from LCAs discussed in the literature in several aspects: 

  1.     Even tasks are clocked using the clock rising - edge.  

  2.     Odd tasks are clocked using the clock rising - edge.  

  3.     One of the inputs is fed from a MUX.    

 Let  q i   and  r i  , 0    ≤     i     <     m , be the present outputs of task  T i  . The next state outputs 
  qi

+ and   ri
+ are given by

    q q i mi i
+

+= ≤ <1 0     (18.42)  

    r r b q i mi i i i
+

− += ⊕ ( ) ≤ <1 1 0 .     (18.43)   

 And we identify the output and input of the LCA as

    Q R rm, = −1     (18.44)  

    q
r select

select
m

m=
=
=

⎧
⎨
⎩

−1 1

0 0

when

when
    (18.45)  

    r a− =1 .     (18.46)   

     Figure 18.7       DAG or linear cellular automaton (LCA) processor array when  s  3     =    [1   −  0.5],  d  3     =    [1 
0]  t  ,  n     =    9, and  m     =    5. (a) The resulting tasks at each SPA stage. (b) The task workload details.  
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 The above equations determine the operation of the LCA as follows: 

  1.     Clear all the registers.  

  2.     For time steps 0 and 2, the LFSR is working as a simple shift register moving 
the coeffi cients  a  9  to  a  5  between the stages.  

  3.     At time step 4, the fi rst quotient coeffi cient  q  4  is obtained and is available at 
the next time step to the leftmost node.  

  4.     The coeffi cients of  Q  are obtained from the leftmost node at time steps 4 – 9.  

  5.     At the end of time step 9, all the remainder polynomial  R  coeffi cients are 
stored in the shift register stages.  

  6.     If it is desired to shift the  R  coeffi cients out, then the feedback path must be 
broken to selectively disable the feedback action.     

   18.9    COMPARING THE THREE DESIGNS 

 The hardware structure for all three types of design above show similarities and 
differences. All designs have tasks that contain storage registers and have two inputs 
and two outputs. Designs 1 and 2 contain one register in each task, while design 3 
contains three tasks. All the registers in designs 1 and 2 are clocked on the same 
edge of the clock, while design 3 has the even tasks clocked on the rising edge and 
the odd tasks clocked on the falling edge. 

 The click period of design 1 could be the longest since the input to the mux 
when  select     =    1 will propagate through  m  XOR gates in each clock cycle. The 
architectures of the three designs dictate respective clock periods given by

    T mD1 = + + +τ τ τ τXOR mux setup     (18.47)  

    T D p2 = + + + +τ τ τ τ τXOR AND setup     (18.48)  

    T D3 2 2= + + +τ τ τ τXOR mux setup ,     (18.49)  

where  τ  setup  is the setup time for the registers,  τ   D   is the register delay,  τ  XOR  is the 
XOR gate delay,  τ  AND  is the AND gate delay, and  τ   p   is the propagation time 
for a signal through all the tasks. This last delay component is due to the top 
signal in design 2, which is merely passed between the tasks perhaps through 
a long bus. More accurate predictions of system speeds are obtained for actual 
implementations.    

    





  Chapter 19 

The Fast Fourier Transform     

    19.1    INTRODUCTION 

 The discrete Fourier transform (DFT) is a very important algorithm that fi nds use 
in many applications such as telecommunications, speech processing, image pro-
cessing, medical imaging such as in computer assisted tomography (CAT), radar 
(synthetic aperture radar), sonar, and antenna array (phased arrays)  [120, 121] . A 
very important application nowadays is the use of DFT techniques in orthogonal 
frequency division multiplexing (OFDM) as an effi cient data modulation scheme. 
This technique is also extended for use in multiple - input multiple - output (MIMO) 
systems where each transmitter/receiver has multiple antennas to simultaneously 
transmit/receive multiple data streams in what is known as OFDM - MIMO systems 
 [122] . This is not the forum to discuss what is OFDM and how it differs from the 
classic frequency division multiplexing (FDM). Excellent textbooks on digital com-
munication cover such topics  [113]  

 The DFT algorithm fi nds the spectrum of a periodic discrete - time signal with 
period  N . The spectral component  X ( k ) is obtained by the equation

    X k x n W k NN
nk

n

N

( ) 0
0

1

= ≤ <
=

−

∑ ( ) ,     (19.1)  

where  W N   is the twiddle factor, which equals the  N th root of unity and is given by

    W e jN
j N= = −−2 1π / .     (19.2)   

 The dependence graph of the eight - point DFT algorithm is shown in Fig.  19.1 . Input 
samples  x ( n ) are represented by the vertical lines and output samples  X ( k ) are rep-
resented by the horizontal lines. Input sample   WN

nk is represented by the point at 
location ( n ,  k ). The DFT algorithm is essentially a matrix – vector multiplication 
problem. For the case  N     =    8 we have  

    X Wx= ,     (19.3)  
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where

    X = [ ]X X X X X X X X t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6 7     (19.4)  

    x = [ ]x x x x x x x x t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6 7     (19.5)  

    W =
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.     (19.6)   

 We removed the subscript from the twiddle factor to reduce clutter  . We note that the 
powers of  W  are between 0 and 7. 

 Figure  19.2  shows the values of the different powers of  W i   when 0    ≤     i     <    8. We 
see that the twiddle factor powers are uniformly distributed around the unit circle. 
The angle between successive values is 2 π / N     =    45 °  for the case  N     =    8. Notice that 
the complex number  W i   has simple values when its angle is 0 ° , 90 ° , 180 ° , and 270 ° . 
Multiplying  x ( n ) by these values in Eq.  19.1  becomes a trivial operation. Direct 
evaluation of Eq.  19.1  requires ( N     −    1) 2  complex number multiplications and 
 N  ( N     −    1) complex number additions. When  N     =    1,024, the number of operations 
becomes large. Very effi cient techniques have been proposed for evaluating the DFT 
using much fewer operations than would be required by the original algorithm.   

 Fast Fourier transform (FFT) was developed to reduce the number of operations 
required to obtain the DFT. The main concept in FFT is to break the original DFT 

     Figure 19.1     Dependence 
graph of an eight - point DFT 
algorithm.  
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sequence into two shorter sequences. The DFT of the shortened sequences are then 
recombined to give the DFT of the original sequence  [123] . Assuming  N  is even, 
each of the  N /2 - point DFTs would require ( N /2) 2  complex multiplications. A total 
of  N  2 /2 complex multiplication would be required. Assuming  N  to be an integer 
power of two, the splitting process can be repeated until a series of simple two - point 
DFTs are required.  

   19.2    DECIMATION - IN - TIME  FFT  

 In the decimation - in - time FFT, the splitting algorithm breaks up the sum in Eq.  19.1  
into even -  and odd - numbered parts. The even and odd sequences  x  0  and  x  1  are given 
by McKinney  [124] 

    x n x n n N0 2 0  1  2 1( ) ( ) , , /= = −�     (19.7)  

    x n x n n N1 2 1 0  1  2 1( ) ( ) , , /= + = −�     (19.8)   

 The original sum in Eq.  19.1  is now split as

    X k x n W x n W k NN
nk

n

N

N
n k

n

N

( ) ( ) ( ) .
/

( )
/

= + + ≤ <
=

−
+

=

−

∑ ∑2 2 1 02

0

2 1
2 1

0

2 1

    (19.9)   

 We notice that   WN
2 can be written as

    W e e WN
j N j N

N
2 2 2 2 2

2= ( ) = =− −π π/ /( / )
/ .     (19.10)   

 We can write Eq.  19.9  as

    X k x n W W x n WN
nk

n

N

N
k

N
nk

n

N

( ) ( ) ( )/

/

/

/

= +
=

−

=

−

∑ ∑0 2
0

2 1

1 2
0

2 1

    (19.11)  

    = + ≤ <X k W X k k NN
k

0 1 0 2( ) ( ) / ,     (19.12)  

where  X  0 ( k ) and  X  1 ( k ) are the  N /2 - point DFTs of  x  0 ( n ) and  x  1 ( n ), respectively. Notice, 
however, that  X ( k ) is defi ned for 0    ≤     k     <     N , while  X  0 ( k ) and  X  1 ( k ) are defi ned for 

     Figure 19.2     The values of twiddle powers  W i   
when 0    ≤     i     <    8.  
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0    ≤     k     <     N /2. A way must be determined then to evaluate Eq.  19.12  for values of 
 k     >     N /2. Since  X  0 ( k ) and  X  1 ( k ) are each periodic with a period  N /2, we can express 
Eq.  19.12  as

    X k N X k W X k k NN
k( / ) ( ) ( ) / .+ = − ≤ <2 0 20 1     (19.13)   

 Equations  19.12  and  19.13  are referred to as the butterfl y operations. Figure  19.3  
shows the fl ow graph of the basic decimation - in - time butterfl y operation. The results 
of the butterfl y operation are indicated on right - hand side of the fi gure. We used 
the symbol  k  inside the gray box to indicate that the lower input is to be multiplied 
by  W k  . Based on Eqs.   19.12 and 19.13, we can schematically show the evaluation 
of a decimation - in - time eight - point DFT in terms of two four - point DFTs as in 
Fig.  19.4 .   

 We indicated in the previous section that when  N  is an integer power of two, 
then the FFT can be evaluated by successively splitting the input data sequence in 
even and odd parts. Table  19.1  shows the successive splitting of a 16 - point input 
data sequence. Each splitting divides the input into even and odd parts. The fi rst 
column of the table shows the binary address or order of the input data samples. The 

     Figure 19.3     The butterfl y signal 
fl ow graph for a decimation - in - time 
FFT algorithm.  

X0(k)

X1(k)

X(k) = X0(k) +Wk
N X1(k)

X(k+N/2) = X0(k) –Wk
N X1(k)

k

     Figure 19.4     Evaluation of a decimation - in - time eight - point DFT based on two four - point DFTs.  
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second column shows the data assuming it arrives, or stored, in the natural order in 
sequence. The third column is the data after the fi rst splitting into even and odd data 
of length  N /2    =    4. The fourth column shows the data after the second splitting. Note 
that at this stage, each sequence contains only two data samples where we can simply 
do a two - point DFT using additions and subtractions since   W2

0 1=  and   W2
1 1= − . The 

fi fth column shows the binary representation of the data index. This could be con-
sidered as their memory location, for example.   

 Compare the fi rst and the last columns of the table. It shows what is known 
as bit reversal. The two - point DFTs need input data that is the bit reverse of the 
natural order; therefore, location 1, which is 001 in binary, will be bit reversed to 
100, which corresponds to input sample  x (4). The eight - point FFT will use the 
information in Table  19.1  for its operation. We start with the two - point DFTs, whose 
input data correspond to the data in the fourth column (second splitting). The 
outputs will be fed to four - point DFTs, whose input data correspond to the data in 
the third column (fi rst splitting). The reader can try constructing a similar table for 
a 16 - point DFT. 

 Now we are ready to construct the DG for the eight - point decimation - in - time 
FFT algorithm, which is shown in Fig.  19.5 . The eight - point FFT consists of three 
stages since log 2  8    =    3. Each stage contains  N /2    =    4 butterfl y operations.  Stage  2 
performs two - point DFT processes and the butterfl ies at that stage operate on data 
whose indices are 2 2  apart.  Stage  1 performs two - point DFT processes and the but-
terfl ies at that stage operate on data whose indices are 2 1  apart.  Stage  0 performs 
two - point DFT processes and the butterfl ies at that stage operate on data whose 
indices are 2 0  apart. The sequence of operations is from left to right; therefore, all 
operations in  stage  2 must be completed before operations in  stage  1 can start.   

 The FFT algorithm we described here applied to the case when  N  is an integer 
power of two, that is,  N     =    2  r  . This is called radix - 2 FFT algorithm because the input 
samples are divided into two parts and the butterfl y operations involve two inputs 
and produce two outputs. Higher radix FFTs are possible. For example, radix - 4 FFT 
assumes  N     =    4  r   and divides the input data into four parts and the butterfl ies operate 

  Table 19.1    Successive Splitting of Input Data in Even and Odd Parts 

   Binary 
representation  

   Input sample 
natural order  

   First splitting 
length 4 DFT  

   Second splitting 
length 2 DFT  

   Binary 
representation  

  000     x (0)     x (0)     x (0)    000  
  001     x (1)     x (2)     x (4)    100  
  010     x (2)     x (4)     x (2)    010  
  011     x (3)     x (6)     x (6)    110  
  100     x (4)     x (1)     x (1)    001  
  101     x (5)     x (3)     x (5)    101  
  110     x (6)     x (5)     x (3)    011  
  111     x (7)     x (7)     x (7)    111  
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on four input samples and produce four output samples. The outputs of the butterfl y 
would be related to the inputs according to the expressions

    X x x x x0 0 1 2 3= + + +     (19.14)  

    X x jx x jx1 0 1 2 3= − − +     (19.15)  

    X x x x x2 0 1 2 3= − + −     (19.16)  

    X x jx x jx3 0 1 2 3= + − − .     (19.17)    

   19.3    PIPELINE RADIX - 2 DECIMATION - IN - TIME 
 FFT  PROCESSOR 

 Wold and Despain    [121]  proposed a pipeline FFT processor that is based on 
decimation - in - time FFT DG of Fig.  19.6 . Their design is usually referred to as a 
radix - 2 single - path delay feedback (R2SDF) processor. The structure assumes that 
input data  x ( n ) are available in word - serial format in natural order. This is why the 
processor at  stage  2 delays the input sample by the four - word shift register (SR) 
buffer. For the fi rst  N /2    =    4 data words, the processor in  stage  2 simply accepts the 
data words and moves them into the shift register buffer. After  N /2    =    4 data samples 
have been shifted, the processor starts performing the butterfl y operations on the 
input data and the data coming from the shift register buffer. The processor in  stage  
1 repeats the same actions for a period of  N /4    =    2 delay and so on. A pipeline design 
for the radix - 4 decimation - in - time FFT processor has been proposed by Despain 
 [125] . The design is usually called a radix - 4 single - path delay feedback (R4SDF) 
processor and is shown in Fig.  19.7  for a 64 - point FFT. Other effi cient designs are 
possible such as the ones given in References  [126 – 128] .    

     Figure 19.5     DG for an 
eight - point decimation - in - time 
FFT algorithm.  
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   19.4    DECIMATION - IN - FREQUENCY  FFT  

 In the decimation - in - frequency FFT, the splitting algorithm breaks up the sum in 
Eq.  19.1  into the fi rst  N /2 points and the last  N /2 points. This is equivalent to con-
sidering the even and odd parts of  X ( k ). By contrast, in decimation - in - time, we 
considered the even and odd parts of  x ( n ). The fi rst and second part sequences  x  0  
and  x  1  of  x ( n ) are given by McKinney  [124] 

    x n x n n N0 0  1  2 1( ) ( ) , , /= = −�     (19.18)  

    x n x n N n N1 2 0  1  2 1( ) ( / ) , , / .= + = −�     (19.19)   

 The original sum in Eq.  19.1  is now split as

    X k x n W x n W k NN
nk

n

N

N
nk

n N

N

( ) ( ) ( ) .
/

/

= + ≤ <
=

−

=

−

∑ ∑
0

2 1

2

1

0     (19.20)   

 We can express the above equation in terms of  x  0 ( n ) and  x  1 ( n ) as

     Figure 19.6     Cascade pipeline architecture for an eight - point decimation - in - time FFT algorithm 
using a R2SDF processor.  
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     Figure 19.7     Cascade pipeline architecture for a 64 - point FFT algorithm using an R4SDF processor.  
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 Consider the even samples of  X ( k ) in the above equation:
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where  e  − j π k      =    1 when  k  is even. On the other hand, the odd part of  X ( k ) is given by
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where e   − j π k      =     − 1 when  k  is odd. 
 In summary, the even and the odd terms of the DFT can be obtained from the 

 N /2 - DFTs:

    X k a n W k NN
nk
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    X k b n W k NN
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∑     (19.25)  

where the input sequences  a ( n ) and  b ( n ) are

    a n x n x n n N( ) ( ) ( ) /= + ≤ <0 1 0 2     (19.26)  

    b n x n x n W n NN
n( ) ( ) ( ) / .= −[ ] ≤ <0 1 0 2     (19.27)   

 The above two operations defi ne the decimation - in - frequency butterfl y operations. 
Figure  19.8  shows the fl ow graph of the basic decimation - in - frequency butterfl y 
operation. The results of the butterfl y operation are indicated on right - hand side of 
the fi gure. We used the symbol  n  inside the gray box to indicate that the lower input 
is to be multiplied by   WN

n. Based on Eqs.   19.22 and 19.23, we can schematically 
show the evaluation of a decimation - in - frequency eight - point DFT in terms of two 
four - point DFTs as in Fig.  19.9 .   

 We indicated in the previous section that when  N  is an integer power of two, 
then the FFT can be evaluated by successively splitting the output data sequence in 
even and odd parts. Table  19.2  shows the successive splitting of a 16 - point output 
data sequence. Each splitting divides the output into even and odd parts. The column 
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     Figure 19.8     The butterfl y signal fl ow graph 
for a decimation - in - frequency FFT algorithm.  
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     Figure 19.9     Evaluation of a decimation - in - frequency eight - point DFT based on two four - point 
DFTs.  
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  Table 19.2    Successive Splitting of Output Data in Even and Odd Parts 

   Binary 
representation  

   Output sample 
natural order  

   First splitting 
length 4 DFT  

   Second splitting 
length 2 DFT  

   Binary 
representation  

  000     X  (0)     X  (0)     X  (0)    000  
  001     X  (1)     X  (2)     X  (4)    100  
  010     X  (2)     X  (4)     X  (2)    010  
  011     X  (3)     X  (6)     X  (6)    110  
  100     X  (4)     X  (1)     X  (1)    001  
  101     X  (5)     X  (3)     X  (5)    101  
  110     X  (6)     X  (5)     X  (3)    011  
  111     X  (7)     X  (7)     X  (7)    111  
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before last indicates that feeding in input samples in natural order will produce 
output samples in bit - reversed order. The fi rst column of the table shows the binary 
address or natural order of the output data samples. The second column shows the 
output data when it is stored in the natural order in sequence. The third column is 
the output data ordering after the fi rst splitting into even and odd data of length 
 N /2    =    4. The fourth column shows the data after the second splitting. Note that at 
this stage, each sequence contains only two data samples where we can simply do 
a two - point DFT using additions and subtractions since   W2

0 1=  and   W2
1 1= − . The 

fi fth column shows the binary representation of the data index. This could be con-
sidered as their memory location, for example.   

 Compare the fi rst and the last columns of the table. It shows what is known 
as bit reversal. The two - point DFTs produce output data that is the bit reverse of 
the natural order. Therefore, location 1, which is 001 in binary, will be bit reversed 
to 100, which correspond to output sample  X (4). The eight - point FFT will use 
the information in Table  19.2  for its operation. We start with the two - point DFTs, 
whose input data correspond to the data in the fourth column (second splitting). The 
outputs will be fed to four - point DFTs, whose input data correspond to the data in 
the third column (fi rst splitting). The reader can try constructing a similar table for 
a 16 - point DFT. 

 Now we are ready to construct the DG for the eight - point decimation - in - fre-
quency FFT algorithm, which is shown in Fig.  19.10 . The eight - point FFT consists 
of three stages since log2 8    =    3. Each stage contains  N /2    =    4 butterfl y operations. 
 Stage  2 performs two - point DFT processes and the butterfl ies at that stage operate 
on data whose indices are 2 2  apart.  Stage  1 performs two - point DFT processes and 
the butterfl ies at that stage operate on data whose indices are 2 1  apart.  Stage  0 per-
forms two - point DFT processes and the butterfl ies at that stage operate on data 

     Figure 19.10     Eight - point 
decimation - in - frequency FFT 
algorithm.  
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whose indices are 2 0  apart. The sequence of operations is from left to right; therefore, 
all operations in  stage  2 must be completed before operations in  stage  1 can start.   

 The FFT algorithm we described here when  N     =    2  r   is called radix - 2 FFT algo-
rithm because the input samples are divided into two parts and the butterfl y operations 
involve two inputs and produce two outputs. Higher radix FFTs are possible. For 
example, radix - 4 FFT assumes  N     =    4  r   and divides the input data into four parts and 
the butterfl ies operate on four data samples. The outputs of the butterfl y would be

    X x x x x0 0 1 2 3= + + +     (19.28)  

    X x jx x jx1 0 1 2 3= − − +     (19.29)  

    X x x x x2 0 1 2 3= − + −     (19.30)  

    X x jx x jx3 0 1 2 3= + − − .     (19.31)    

   19.5    PIPELINE RADIX - 2 DECIMATION - IN - FREQUENCY 
 FFT  PROCESSOR 

 Wold and Despain  [121]  proposed a pipeline FFT processor that is based on the 
decimation - in - frequency FFT DG of Fig.  19.11 . Their design is usually referred to 
as an R2SDF processor. The structure assumes that input data  x ( n ) are available in 
word - serial format in natural order. This is why the processor at  stage  2 delays the 
input sample by the four - word shift register buffer. For the fi rst  N /2    =    4 data words, 
the processor in  stage  2 simply accepts the data words and moves them into the shift 
register buffer. After  N /2    =    4 data samples have been shifted, the processor starts 
performing the butterfl y operations on the input data and the data coming from the 
shift register buffer. The processor in  stage  1 repeats the same actions for a period 
of  N /4    =    2 delay and so on. A pipeline design for the radix - 4 decimation - in - fre-
quency FFT processor has been proposed by Despain  [125] . The design is usually 
called an R4SDF processor and is shown in Fig.  19.7  for a 64 - point FFT.      
 
 

 

     Figure 19.11     Cascade pipeline architecture for an eight - point decimation - in - frequency FFT 
algorithm using an R2SDF processor.  
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  Chapter 20 

Solving Systems of 
Linear Equations     

    20.1    INTRODUCTION 

 Solving systems of linear equations is found in almost all areas of engineering and 
scientifi c applications. A system of linear equations is generally expressed in matrix 
form as

    Ax b= ,     (20.1)  

where  A  is the  system matrix , which is an  n     ×     n  matrix,  x  is the unknown vector of 
 n  components, and  b  is a vector of constants. Techniques for solving linear systems 
could be direct or iterative. Direct techniques are appropriate for small systems 
(small values of  n ) where computational errors will be small. Iterative techniques 
are more appropriate for large systems where an assumed solution is refi ned after 
each iteration while suppressing computational noise. Table  20.1  summarizes the 
different direct and indirect techniques used to solve linear systems. Reference  129  
explains in detail how such techniques are used.   

 A comprehensive discussion on parallel matrix computations can be found in 
the standard textbook of Golub and van Horn    [129] . We provide here a brief intro-
duction and tie the algorithms to the techniques we discussed in Chapters  7 ,  8 ,  10 , 
and  11 . 

 Typically, the system matrix will have some structure due to the nature of the 
application. Before we start, we defi ne some of these structures in the following 
section.  

   20.2    SPECIAL MATRIX STRUCTURES 

 The following subsections explain some of the matrices that have special structures 
and are relevant to our discussion here. 

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.
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  Table 20.1    Direct and Indirect Techniques Used to Solve Linear Systems 

   Direct techniques     Comment  

  Forward substitution    System matrix lower triangular  
  Back substitution    System matrix upper triangular  
  LU   factorization    Convert system matrix to equivalent triangular 

system. L is lower triangular matrix and U is upper 
triangular matrix.  

  Gaussian elimination    Convert system matrix to equivalent triangular system  
  LDM  t   factorization    Convert system matrix to three special matrices. L is 

lower triangular matrix, D is diagonal matrix, and M 
is a Gaussian transformation matrix such that the 
product MA produces an upper triangular matrix.  

  LDL  t   factorization      Convert system matrix to three special matrices when 
system matrix is symmetric  

  Positive defi nite systems    System matrix is positive defi nite  
  Banded systems    System matrix is banded  
  Symmetric indefi nite systems    System matrix is symmetric  
  Block tridiagonal systems    System matrix has special block structure  
  Vandermonde systems    System matrix has 1s in its fi rst row  
  Toeplitz systems    System matrix is Toeplitz  

   Indirect techniques     Comment  

  Jacobi    Used when system matrix has nonzero diagonal 
elements  

  Gauss – Seidel    Like Jacobi but uses most recently available estimates  
  Successive over relaxation (SOR)    Like Gauss – Seidel but could accelerate convergence  
  Chebyshev semi - iterative    Like Gauss - Seidel but could accelerate convergence  
  Conjugate gradient    Used when SOR or Chebyshev methods prove 

diffi cult  

   20.2.1    Plane Rotation (Givens) Matrix 

 A 5    ×    5 plane rotation (or Givens) matrix  G   pq   is one that looks like the identity 
matrix except for elements that lie in the locations  pp ,  pq ,  qp , and  qq . Such a matrix 
is labeled  G   pq  . For example, the matrix  G  42  takes the form

    G42

1 0 0 0 0

0 0 0

0 0 1 0 0

0 0 0

0 0 0 0 1

=
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

c s

s c

,     (20.2)  

where  c     =    cos    θ  and  s     =    sin    θ . The notation commonly used is that the subscript 
refers to the element that has the negative  sin  value, which is element at row 4 and 
column 2 in our example. 
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 Givens matrix is an orthogonal matrix and we have   G G Ipq pq
t = . Premultiplying 

a matrix  A  by  G   pq   modifi es only rows  p  and  q . All other rows are left unchanged. 
The elements in rows  p  and  q  become

    a ca sapk pk qk= +     (20.3)  

    a sa caqk pk qk= + .     (20.4)    

   20.2.2    Banded Matrix 

 A banded matrix with lower bandwidth  p  and upper bandwidth  q  implies that all its 
nonzero elements lie in the main diagonal, the lower  p  subdiagonals and the upper 
 q  superdiagonals. All other elements are zero, that is, when  i     >     j     +     p  and  j     >     i     +     q   . 
In that case, matrix  A  will have nonzero  p  subdiagonal elements and nonzero  q  
superdiagonal elements. An example of a banded matrix with lower bandwidth  p     =    2 
and upper bandwidth  q     =    3 has the following structure where    ×    denotes a nonzero 
element:

    

× × × ×
× × × × ×
× × × × × ×

× × × × × ×
× × × × × ×

× × × × ×

0 0 0 0 0 0

0 0 0 0 0
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0 0 0 ××
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⎥
⎥
⎥
⎥

.     (20.5)    

   20.2.3    Diagonal Matrix 

 A diagonal matrix  D  is a special case of a banded matrix when  p     =     q     =    0 and only 
the main diagonal is nonzero. A 5    ×    5 diagonal matrix  D  is given by

    D =

⎡

⎣

⎢
⎢
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⎢
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d
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d
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11

22
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55

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.     (20.6)   

 We can write the above diagonal matrix in a condensed form as

    D = diag( ),d d d d d1 2 3 4 5     (20.7)  

where  d i      =     d ii  .  
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   20.2.4    Upper Triangular Matrix 

 An upper triangular matrix  U  is a special case of a banded matrix when  p     =    0 and 
only the main diagonal and the fi rst  q  superdiagonals are nonzero.  

   20.2.5    Lower Triangular Matrix 

 A lower triangular matrix  L  is a special case of a banded matrix when  q     =    0 and 
only the main diagonal and the fi rst  p  subdiagonals are nonzero.  

   20.2.6    Tridiagonal Matrix 

 A tridiagonal matrix is a special case of a banded matrix when  p     =     q     =    1 and only 
the main diagonal, the fi rst superdiagonal, and fi rst subdiagonal are nonzero. A 5    ×    5 
tridiagonal matrix  A  is given by

    A =
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⎢
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.     (20.8)    

   20.2.7    Upper Hessenberg Matrix 

 An  n     ×     n  upper Hessenberg matrix is a special case of a banded matrix when  p     =    1 
and  q     =     n  and the elements of the diagonal, the superdiagonals, and the fi rst subdi-
agonal are nonzero. An upper Hessenberg matrix has  h ij      =    0 whenever  j     <     i     −    1. A 
5    ×    5 upper Hessenberg matrix  H  is given by

    H =

h h h h h
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.     (20.9)    

   20.2.8    Lower Hessenberg Matrix 

 A lower Hessenberg matrix is the transpose of an upper Hessenberg matrix.   
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   20.3    FORWARD SUBSTITUTION (DIRECT TECHNIQUE) 

 The general form for a system of linear equations was given in Eq.  20.1 . Forward 
substitution technique converts the square matrix  A  into a lower triangular form:

    Lx b= .     (20.10)   

 Consider the 5    ×    5 lower triangular linear system:
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 If all  l ii      ≠    0, then we can determine the unknowns according to the equations

    x
l

b l x i j ii
ii

i i j j
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= −
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1 5

1
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, , ,     (20.12)  

where  x  1  must be calculated before  x  2  could be evaluated and so on. Thus, it appears 
that the calculations are sequential, with small opportunity for parallelization. 
However, the techniques we discussed earlier will help us derive parallel multi-
threaded and systolic architectures. 

   20.3.1    Forward Substitution Dependence Graph 

 The iterations in Eq.  20.12  use two indices  i  and  j  and we can use the results of 
Chapters 10 or 11 to study the parallelization of the forward substitution algorithm. 
Figure  20.1  is the dependence graph of the iterations in Eq.  20.12 . Note that the 

     Figure 20.1     The dependence graph 
of the forward substitution algorithm.  
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variable  x  is an input/output variable and this explains why we have two sets of  x , 
one set for the output instances of  x  and the other set is for the input instances of  x .   

 Input instance  x  in ( k ) is a copy of the output instance  x  out ( k ). This is shown by 
the bends in the lines that appear on the diagonal nodes.  

   20.3.2    Forward Substitution Scheduling Function and 
Directed Acyclic Graph ( DAG ) 

 The choice of the scheduling function is dictated by the need to maintain the proper 
sequence of evaluating  x i  . We know that  x  out ( i ) can be found only after  x  out  ( i     −    1) has 
been evaluated. We note that output instance  x  out ( i ) is obtained at the diagonal node 
( i ,  i ) and is used by all nodes whose coordinates are ( i     +     k ,  i ) where  k     >    0. Therefore, 
if the scheduling vector is  s     =    [ s  1   s  2 ], then we must have

    t p i i t p i k i( , ) ( , )[ ] < +[ ]     (20.13)  

    is is i k s is1 2 1 2+ < + +( ) ,     (20.14)  

and we can write the inequality

    s k1 0> .     (20.15)   

 Since  k     >    0, we must have  s  1     >    0 too. We can choose  s  1     =    1 and we have our sched-
uling vector as

    s = [ ]1 2s .     (20.16)   

 We can choose three possible scheduling vectors while satisfying inequality 
(Eq.  20.13 ):

    s1 1 1= −[ ]     (20.17)  

    s2 1 0= [ ]     (20.18)  

    s3 1 1= [ ].     (20.19)     

 The resulting DAGs for the three choices are shown in Fig.  20.2 . The scheduling 
vector  s  1  implies diagonal - based calculations since each iteration requires simultane-
ous access to the elements of a diagonal. The choice of  s  1  will produce a DAG where 
output sample  x  out ( i ) is obtained on the left edge of the diagram. However, this output 
sample must be fed back to node ( i ,  i ) for use by later calculations. Depending on 
the projection vector chosen, we might have to provide communication between the 
left nodes and the diagonal nodes. The work  W  at each time step would start at  N , 
then decrease by one at each time step thereafter.   

 The scheduling vector  s  2  implies row - based calculations since each iteration 
requires simultaneous access to the elements of a row. The work  W  at each time step 
would start at 1, then increase by one at each time step thereafter. 

 The scheduling vector  s  3  implies column - based calculations since each iteration 
requires simultaneous access to the elements of a column. The work  W  at each time 
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step would start at 1 for the fi rst two operations, then increase by two at the next 
two time steps. The maximum work is encountered halfway during the operation, 
and then work starts to decrease by 2 after each two time steps thereafter. 

 We can use nonlinear scheduling to control the total workload at each iteration. 
However, the work done at each time step will not be uniform.  

   20.3.3    Forward Substitution Projection Function 

 Three projection directions are possible:

    d1 1 1= −[ ]t     (20.20)  

    d2 1 0= [ ]t     (20.21)  

    d3 1 1= [ ]t .     (20.22)     

 The simplest projection directions to use would be  d  2  and  d  3 . 
 Let us consider the case when  d  2  is used. The reduced DAG (  DAG) is shown 

in Fig.  20.3 . We can use nonlinear projection to control the workload of each thread 
or each processing element (PE) in the systolic array.     

     Figure 20.2     The DAG graphs of the forward substitution algorithm for the three possible 
scheduling functions.  
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   20.4    BACK SUBSTITUTION 

 The general form for a system of linear equations was given in Eq.  20.1 . Back 
substitution technique converts the square matrix  A  into an upper triangular form:

    Ux b= .     (20.23)   

 Consider the 5    ×    5 upper triangular linear system:
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 If all  u ii      ≠    0, then we can determine the unknowns according to the equations

    x
u

b l x i j ii
ii

i i j j
j i
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⎛
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⎞
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= +
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1
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, ,     (20.25)  

where  x  5  must be calculated before  x  4  could be evaluated and so on. Thus, it appears 
that the calculations are sequential, with small opportunity for parallelization. 
However, the techniques we discussed earlier will help us derive parallel multi-
threaded and systolic architectures. The procedure we used to derive scheduling and 
projection functions for forward substitution can be used here.  

   20.5    MATRIX TRIANGULARIZATION ALGORITHM 

 This section shows the algorithm to convert a square matrix  A  to an upper triangular 
matrix  U . Once we obtain a triangular matrix, we can use forward or back substitu-
tion to solve the system of equations. 

 Assume we are given the system of linear equations described by

    Ax b= .     (20.26)   

 The solution for this system will not change if we premultiply both sides by the 
Givens matrix  G   pq  :

    G Ax G bpq pq= .     (20.27)   

 Premultiplication with the Givens matrix transforms the linear system into an equiv-
alent system

    ′ = ′A x b     (20.28)  

and the solution of the equivalent system is the same as the solution to the original 
system. This is due to the fact that premultiplication with the Given matrix performs 
two  elementary row operations : 

  1.     Multiply a row by a nonzero constant.  

  2.     Add multiple of one row to another row.    
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 Let us assume we have the following system of linear equations

    
1 2

3 4
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6
1

2
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x

x
.     (20.29)   

 To solve this system, we need to convert the system matrix to an upper triangular 
matrix. So we need to change element  a  2,1  from 3 to 0. After multiplying by the 
Givens matrix  G  21 , element   ′a2 1,  is given by the equation

    ′ = − + =a sa ca2 1 1 1 2 1 0, , , .     (20.30)   

 Therefore, we have

    tan .,

,

θ = =s

c

a

a
2 1

1 1

    (20.31)   

 For our case we get tan  θ     =    3/1 and  θ     =    71.5651 ° . The desired Givens matrix is 
given by
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 The transformed system becomes
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 The solution to the system is  x     =    [ − 4 4]  t  . 
 Givens rotations can be successively applied to the system matrix to convert it 

to an upper triangular matrix as shown in the following steps. 
 Assume our system matrix is 5    ×    5 as shown below where the symbols    ×    indi-

cate the elements of the matrix.
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   20.5.1    Givens Rotation Algorithm 

 We now show the algorithm that converts the system matrix to an upper triangular 
matrix so that back substitution could be used to solve the system of linear equations. 
Algorithm   20.1 illustrates the steps needed. We can see that the algorithm involves 
three indices  i ,  j , and  k  and the graph technique of Chapter  10  might prove diffi cult 
to visualize. However, the graph technique is useful as a guideline for the more 
formal computation geometry technique of Chapter  11 . 

   Algorithm 20.1     Givens rotations to convert a square matrix to upper triangular 

  Require:  Input:  N     ×     N  system matrix  A   

 1:      for   k     =    1 :  N     −    1  do   

  2:         for   i     =     k     +    1 :  N   do   

  3:            θ   ik      =    tan  − 1   a ik  / a kk  ; // calculate rotation angle for rows  k  and  j   

  4:            s     =    sin  θ   ik  ;  c     =    cos  θ   ik  ;  

  5:       

  6:     //Apply Givens rotation to rows  k  and  i   

  7:      for   j     =     k  :  N   do   

  8:            a kj      =     c a kj      +     s a ij   ;   

  9:            a ij      =     −  s a kj      +     c a ij  ;  

  10:      end for   

  11:       

  12:      end for   

  13:     end for      

 Since estimation of rotation angle  θ   ik   is outside the innermost loop, we choose to 
have it estimated separately. In the discussion below, we ignore estimation of the 
rotation angle and concentrate on applying the rotations. 

 Algorithm 20.1 is three - dimensional (3 - D) with indices 1    ≤     k     <     N ,  k     <     i     ≤     N , and 
 k     ≤     j     ≤     N . Thus, the convex hull defi ning the computation domain is pyramid - shaped 
as shown in Fig.  20.4 . The fi gure shows bird ’ s eye and plan views of the pyramid 
shaped or layered structure of the dependence graph for the matrix triangularization 
algorithm when system matrix has dimensions 5    ×    5.   

 Figure  20.5  shows the details of the dependence graph on a layer - by - layer basis 
when system matrix has dimensions 5    ×    5. This way we can think of the dependence 
graph in terms of multiple two - dimensional (2 - D) dependence graphs that are easier 
to visualize. We see that variable  θ   ik   is propagated along the  j  direction. Variable  a kj   
is propagated along the  i  direction  . This variable represents an element of the 
top row in each iteration, which is used by the lower rows to apply the Givens 
rotations.    
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   20.5.2    Matrix Triangularization Scheduling Function 

 The scheduling vector  s  assigns a time index value to each point in our computation 
domain as

    t is js ks( ) .p sp= = + +1 2 3     (20.34)   

 The reader will agree that a 3 - D computation domain is diffi cult to visualize and to 
investigate the different timing strategies. However, there are few observations we 
can make about the components  s  1,   s  2 , and  s  3 . 

 At iteration  k , a node at row  i     +    1, for example, a node at location ( i     +    1,  j ,  k ), 
is proceed after node ( i ,  j ,  k ) has been evaluated. Thus, we have

    t i j k t i j k( , , ) ( , , )+ >1     (20.35)  
    s1 0> .     (20.36)   

     Figure 20.4     Bird ’ s eye and plan views of the pyramid - shaped or layered structure of the 
dependence graph for the matrix triangularization algorithm when system matrix has dimensions 5    ×    5.  
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 At iteration  k , once the rotation angle has been evaluated, all the matrix elements   in 
the same row can be processed in any order. Thus, we have

    

t i j k t i j k t i j k t i j k

t i j k t

( , , ) ( , , ) ( , , ) ( , , )

( , , )

− > − − = −
− <

1 2 1 2

1

or

or ( , , )i j k− 2     (20.37)  

    s2 0 1= ±, .     (20.38)   

 The rotation angle at iteration  k     +    1 uses the node at location ( k     +    2,  k     +    1,  k ). This 
angle estimation can proceed after node at location ( k     +    2,  k     +    1,  k ) has been pro-
cessed. Thus, we have

    t k k k t k k k( , , ) ( , , )+ + + > + +2 1 1 2 1     (20.39)  

    s3 0> .     (20.40)   

 We can choose three possible scheduling vectors while satisfying the above 
observations:

    s1 1 1 1= +[ ]     (20.41)  

    s2 1 0 1= [ ]     (20.42)  

    s3 1 1 1= −[ ].     (20.43)     

 Perhaps the simplest scheduling function to visualize is  s  2 . The DAG for this func-
tion for the case of a 5    ×    5 system is shown in Fig.  20.6 . The fi gure shows the 
different layers separately for clarity.   

 We can see from the fi gure that the work done at each time step starts at a value 
 N  for the fi rst two time steps then increases to 1.5 N  for time steps 2 and 3 and so on.  

   20.5.3    Matrix Triangularization Projection Direction 

 Based on the three possible scheduling functions discussed in the previous section, 
we are able to choose appropriate projection directions. Possible simple projection 
vectors are

    d1 1 0 0= [ ]t     (20.44)  

    d2 0 1 1= [ ]t     (20.45)  

    d3 0 0 1= [ ]t .     (20.46)     

     Figure 20.6     DAG diagram for a 5    ×    5 system for  s  2  scheduling function.  
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 For illustration, let us choose  s  2  and  d  1 . The reduced DAG (  DAG) is shown in Fig. 
 20.7 . This choice of projection direction produces a column - based implementation 
since each thread or PE operates on a column of the system matrix. The rotation 
angle  θ   ik   is broadcast to all the threads or PEs. At iteration  k  thread  T k   or PE  k   is 
responsible for generating  N     −     k  rotation angles and propagating these angles to all 
the threads or PEs to its right side.     

   20.6    SUCCESSIVE OVER RELAXATION ( SOR ) 
(ITERATIVE TECHNIQUE) 

 Iterative techniques are suited for large matrices. A simple iterative technique for 
solving linear equations is the Jacobi iteration, which is suited for matrices that have 
nonzero diagonal elements. Assume we are given the system of linear equations

    Ax b= ,     (20.47)   

 we can express the  i th row of the above system explicitly:

    a x a x a x bij j
j
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ii i ij j
j i
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1

1

1

,     (20.48)   

 where we have isolated the term involving  x i  . We can  “ solve ”  for  x i   from the above 
equation as
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 Of course, we need to iterate several times before we converge to the correct solu-
tion. At iteration  k , we can estimate   xi

k+1 as
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 Gauss – Seidel iteration differs from the Jacobi iteration in that it uses the most 
recently found values of   xij

k+1 in the iterations:
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     Figure 20.7     Reduced DAG diagram for a 5    ×    5 system for 
 s  2  scheduling function and  d  1  projection direction.  i k
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 The order of evaluation of the algorithm is to fi nd   xk
1

1+ ,   xk
2

1+ ,  …  ,   xN
k+1. Note that in 

the Gauss – Seidel iteration, we use the most recent information for the fi rst sum on 
the right - hand side (RHS). 

 Jacobi and Gauss – Seidel iterations might be very slow and SOR is meant to 
speed up the convergence. SOR iterations are described by the equation:

    x
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b a x a x xi
k

ii
i ij j

k
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i

ij j
k

j i
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i
k+

=

−

= +
= − −

⎛

⎝
⎜

⎞

⎠
⎟ + −∑ ∑1

1

1

1

1
ω ω( ) ,     (20.52)  

where 0    <     ω     <    1 is a  relaxation parameter  chosen to speed the algorithm. The order 
of evaluation of the algorithm is to fi nd   xk

1
1+ ,   xk

2
1+ ,  …  ,   xN

k+1. 

   20.6.1     SOR  Algorithm 

 Algorithm 20.2 shows the SOR in algorithmic form. 

   Algorithm 20.2     SOR algorithm 

  Require:  Input:  N     ×     N  system matrix A,  ω ,  k _ max  

  1:      for   k     =    1 :  k _ max   do   

  2:         for   i     =    1 :  N   do   
  3:             sum i k sum_ ( , ) _1 2 0= = ;  
  4:            for   j     =    1 :  i     −    1  do   

  5:            sum _1( i ,  j     +    1,  k )    =     sum _1( i ,  j ,  k )    +    a( i ,  j ) x ( j ,  k );  

  6:         end for   

  7:         for   j     =     N  :  i     +    1  do   

  8:            sum _2( i ,  j     −    1,  k )    =     sum _2( i ,  j ,  k )    +    a( i ,  j ) x ( j ,  k );  

  9:         end for   
  10:          x i k i sum i i k sum i i k x i k( , ) ( ( ) _ ( , , ) ( , , )) ( ) ( , )+ = ∗ − − + −1 1 12omega b ω ;  
  11:      end for   

  12:     end for      

 The SOR algorithm is 3 - D, with indices 1    ≤     i     ≤     N , 1    ≤     j     ≤     N , and 1    ≤     k     ≤     k _ max . 
The convex hull describing the computation domain is a rectangular prism. We show 
in Fig.  20.8  only one layer for a given value of  k .   

 Figure 20.5 shows the details of the dependence graph at a certain iteration when 
system matrix has dimensions 5    ×    5. This way we can think of the dependence graph 
in terms of multiple 2 - D dependence graphs, which are easier to visualize. We see 
from the algorithm that matrix element  a ij   is represented by vertical lines along the 
 k  - axis and intersects the computation domain at points ( i ,  j , 1) and ( i ,  j ,  N ). Element 
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 b i   is represented by a plane whose normal is along the  i  - axis. The horizontal lines 
represent information fl ow for the  sum _1,  sum _2, and input variable   xi

k. The output 
variable   xi

k+1 is shown by the vertical lines.  

   20.6.2     SOR  Algorithm Scheduling Algorithm 

 A 3 - D scheduling function has the form

    t is js ks( ) .p sp= = + +1 2 3     (20.53)   

 There are several restrictions on the values of the scheduling vector based on the 
nature of the SOR algorithm. Node ( i ,  j ,  k ) is used to calculate the product   a xi j j

k
, . 

The valuation of variable   xi
k+1 is performed at location ( i ,  i ,  k     +    1) because it requires 

the all the product terms at the following locations: 

   •        ( , , )i j k i j Nfor < ≤   

   •        ( , , )i j k j i+ ≤ <1 1for     

 This translates to the following restrictions on the scheduling vector components

    t i i k t i i n k n sum( , , ) ( , , ) _+ > − + >1 1 0 1for     (20.54)  

    t i i k t i i n k n sum( , , ) ( , , ) _ .+ > + >1 0 2for     (20.55)   

 The above two inequalities produce

    s sum2 0 1> for _     (20.56)  

    s ns sum3 2 2> for _ .     (20.57)   

 The largest value for  n  is when  n     =     N . Therefore, we can write the inequality as

    s sum2 0 1> for _     (20.58)  

    s Ns sum3 2 2> for _ .     (20.59)   

 Let us choose to have a scheduling function of the form

    s = [ ] − −1 0 1N N .     (20.60)   

     Figure 20.8     Dependence graph for the SOR algorithm for 
a given iteration when system matrix has dimensions 5    ×    5.  
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 The  −  N     −    1 term on the RHS is meant to ensure that time starts with value 0 when 
 i     =     k     =    1 initially. Figure  20.9  shows the DAG for the SOR algorithm at the fi rst two 
iterations when system matrix has dimensions 5    ×    5. The time needed to complete 
the iterations would be equal to  N   2 .    

   20.6.3     SOR  Algorithm Projection Direction 

 The work done at each time step is  N  and the work done at each iteration is  N   2 . 
Therefore, it makes sense to obtain a reduced DAG (  DAG) that is one - dimensional 
and contains only  N  nodes. We can accomplish this using two projection 
directions

    d1 1 0 0= [ ]t     (20.61)  

    d2 0 0 1= [ ]t .     (20.62)   

 The corresponding projection matrix can be obtained using the Chapters 10 or 
11 as

    P = [ ]0 1 0 .     (20.63)   

 A point ( i ,  j ,  k ) in  DAG    will map to point  j  in   DAG. The resulting reduced DAG 

(  DAG) is shown in Fig.  20.10 .      

     Figure 20.9     DAG for the SOR algorithm at the fi rst two iterations when system matrix has 
dimensions 5    ×    5.  
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 20.7   PROBLEMS 

       20.1.    Study the parallelization of the back substitution algorithm.   

    20.2.    Study the parallelization of the Gaussian elimination algorithm.   

    20.3.    Explain how the LDM  t   algorithm in Table  20.1  can be used to solve for the unknown 
vector  x . Study the parallelization of this algorithm and relate it to the forward and back 
substitution algorithms.   

    20.4.    Study the parallelization of the banded matrix – vector multiplication algorithm.   

    20.5.    Study the parallelization of the banded matrix – matrix multiplication algorithm.   

    20.6.    Study the parallelization of the Gauss – Seidel algorithm.       

 
 

 





  Chapter 21 

Solving Partial Differential 
Equations Using Finite 
Difference Method     

    21.1    INTRODUCTION 

 Finite difference methods (FDMs) are used for numerical simulation of many impor-
tant applications in science and engineering. Examples of such applications include 

   •      Air fl ow in the lungs  

   •      Blood fl ow in the body  

   •      Air fl ow over aircraft wings  

   •      Water fl ow around ship and submarine hulls  

   •      Ocean current fl ow around the globe  

   •      Propagation of sound or light waves in complex media    

 FDMs replace the differential equations describing a physical phenomenon with 
fi nite difference equations. The solution to the phenomenon under consideration is 
obtained by evaluating the variable or variables over a grid covering the region of 
interest. The grid could be one - , two - , or three - dimensional (1 - D, 2 - D, and 3 - D, 
respectively) depending on the application. An example of 1 - D applications is vibra-
tion of a beam or string; 2 - D applications include defl ection of a plate under stress, 
while 3 - D applications include propagation of sound underwater  . 

 There are several types of differential equations that are encountered in physical 
systems  [48, 130, 131] : 

  Boundary value problem: 

    v f x v v xxx x= ≤ ≤( , , ) ,0 1     (21.1)  

where  v x      =     dv / dx ,  v xx      =     d  2  v / dx  2 , and  f  is a given function in three variables and  v  is 
unknown and depends on  x . The associated boundary conditions are given by
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324 Chapter 21 Solving Partial Differential Equations Using Finite Difference Method

    v v( )0 0=     (21.2)  

    v v( ) ,1 1=     (21.3)  

where  v  0  is the value of variable  v  at the boundary  x     =    0 and  v  1  is the value of vari-
able  v  at the boundary  x     =    1. 

  Elliptic partial differential equation (Poisson equation): 

    v f xxx -D case= ( ) 1     (21.4)  

    v v f x yyyxx -D case+ = ( , ) .2     (21.5)   

 These equations describe the electrical potential and heat distribution at steady state. 
For the 1 - D case, when  f ( x )    =    0, the above equation is called the Laplace equation. 
For the 2 - D, Laplace equation results when  f ( x ,  y )    =    0. 

  Parabolic partial differential equation (diffusion equation): 

    av vxx t= ,     (21.6)  

where  a  is a constant and  v xx      =     ∂  2  v / ∂  x  2  and  v t      =     ∂ v/ ∂  t . This equation describes gas 
diffusion and heat conduction in solids in 1 - D cases such as rods. 

  Hyperbolic partial differential equation (wave equation): 

    av vxx tt= ,     (21.7)  

where  v tt      =     ∂  2  v / ∂ t 2 . This equation describes the propagation of waves in media such 
as sound, mechanical vibrations, electromagnetic radiation, and transmission of 
electricity in long transmission lines. 

 In the following section, we will study the wave equation as an example. The 
analysis can be easily applied to the other types of differential equations.  

   21.2     FDM  FOR 1 -  D  SYSTEMS 

 We start by explaining how FDM is applied to a 1 - D system for simplicity. Assume 
the differential equation describing our system is second order of the form

    av v x txx tt= ≤ ≤ >0 1 0and .     (21.8)   

 Note that we normalized the length such that the maximum value of  x  is 1. The 
associated boundary conditions are given by

    v t v t( , )0 00= ≥     (21.9)  

    v t v t( , )1 01= ≥     (21.10)  

    v x f x x( , ) ( ) ,0 0 1= ≤ ≤     (21.11)  

where  v  0  describes the value of the variable at  x     =    0,  v  1  describes the value of the 
variable at  x     =    1, and  f ( x ) describes the initial values of the variable. Note that the 
boundary conditions at  x     =    0 and  x     =    1 might, in the general case, depend on time 
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as  v  0 ( t ) and  v  1 ( t ). Usually,  a  is a simple constant. In the general case,  a  might depend 
both on time and space as  a ( x ,  t ). 

 It might prove diffi cult to solve the system described by Eq.  21.8  when the 
boundary conditions are time dependent or the medium is inhomogeneous and/or 
time dependent. To convert the system equation to partial difference equation, we 
need to approximate the derivatives  v x   and  v xx  . Using Taylor series, we can describe 
the fi rst derivative as

    v x t
v x x t v x t

x
x ( , )

( , ) ( , )= + −Δ
Δ

forward difference formula     (21.12)  

    v x t
v x t v x x t

x
x ( , )

( , ) ( , )
,= − − Δ

Δ
backward difference formula     (21.13)  

where  Δ  x  is the grid size. The value of  Δ  x  is determined by the number of grid 
points  I :

    Δx I= 1/ .     (21.14)   

 From these two expressions, we can express  v x   in the  central difference formula :

    v x t
v x x t v x x t

x
x ( , )

( , ) ( , )
.= + − −Δ Δ

Δ2
central difference formula     (21.15)   

 Likewise, we can obtain  v xx   and  v tt   using the formulas

    v x t
v x x t v x t v x x t

x
xx ( , )

( , ) ( , ) ( , )= + − + −Δ Δ
Δ

2
2

    (21.16)  

    v x t
v x t t v x t v x t t

t
tt ( , )

( , ) ( , ) ( , )
.= + − + −Δ Δ

Δ
2

2
    (21.17)   

 The value of  Δ  t  is determined by the number of time iterations  K  and assuming that 
the total simulation time is 1:

    Δt K= 1/ .     (21.18)   

 Our choice of  Δ  x  and  Δ  t  divides the  x  -  t  plane into rectangles of sides  Δ  x  and  Δ  t . 
A point ( x ,  t ) in the  x  -  t  plane can be expressed in terms of two indices  i  and  k :

    x i x i I= ≤ ≤Δ 0     (21.19)  

    t k t k K= ≤ ≤Δ 0 .     (21.20)   

 Using the indices  i  and  k , we can rewrite Eqs.  21.16  and  21.17  in the simpler 
form:

    v i k
v i k v i k v i k

x
xx ( , )

( , ) ( , ) ( , )= + − + −1 2 1
2Δ

    (21.21)  

    v i k
v i k v i k v i k

t
tt ( , )

( , ) ( , ) ( , )
.= + − + −1 2 1

2Δ
    (21.22)   
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 Combining Eqs.  21.8 ,  21.21 , and  21.22 , we fi nally can write

    v i k rv i k r v i k rv i k v i k( , ) ( , ) ( ) ( , ) ( , ) ( , )+ = + + − + − − −1 1 2 1 1 1     (21.23)   

 with

    r
a t

x
= Δ

Δ

2

2
.     (21.24)   

 Thus, we are able to compute  v ( i ,  k     +    1) at time  k     +    1 knowing the values of  v  
at times  k  and  k     −    1. 

 Equation  21.23  describes a 2 - D regular iterative algorithm (RIA) in the indices 
 i  and  k . Figure  21.1  shows the dependence graph for the 1 - D fi nite difference algo-
rithm for the case  I     =    10   and  K     =    15. Figure  21.1 a shows how node at position (4,8) 
depends on the data from nodes at points (3,7), (4,7), (4,6), and (5,7). Figure  21.1 b 
shows the complete dependence graph.   

   21.2.1    The Scheduling Function for 1 -  D   FDM  

 Since the dependence graph of Fig.  21.1 b is 2 - D, we can simply use the results of 
Chapter  10 . Our scheduling function is specifi ed as

     Figure 21.1     Dependence graph for the 1 - D fi nite difference algorithm for the case  I     =    10 and 
 K     =    15. (a) Showing the dependence of the node at the black circle on the data from the gray circles. 
(b) The complete dependence graph.  
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   t s( )p sp= −     (21.25)  

   = + −is js s1 2 .     (21.26)   

 Assigning time values to the nodes of the dependence graph transforms the depen-
dence graph to a directed acyclic graph (DAG) as was discussed in Chapters  10  and 
 11 . More specifi cally, the DAG can be thought of as a serial – parallel algorithm (SPA) 
where the parallel tasks could be implemented using a thread pool or parallel proces-
sors for software or hardware implementations, respectively. The different stages of 
the SPA are accomplished using barriers or clocks for software or hardware imple-
mentations, respectively. 

 We have several restrictions on  t ( p ) according to the data dependences depicted 
in Fig.  21.1 :

    

is j s is js s

is j s i s js s s

is

1 2 1 2 2

1 2 1 2 1 2

1

1 0

1 1 0

+ + > + ⇒ >
+ + > − + ⇒ + >

( )

( ) ( )

+ + > + + ⇒ >
+ + > + − ⇒ >

( ) ( )

( ) ( ) .

j s i s js s s

is j s is j s s

1 1

1 1 2 0
2 1 2 2 1

1 2 1 2 2

    (21.27)   

 From the above restrictions, we can have three possible simple timing functions that 
satisfy the restrictions:

    s1 0 1= [ ]     (21.28)  

    s2 1 2= [ ]     (21.29)  

    s3 1 2= −[ ].     (21.30)   

 Figure  21.2  shows the DAG for the three possible scheduling functions for the 1 - D 
FDM algorithm when  I     =    5 and  K     =    9. For  s  1 , the work ( W ) to be done by the parallel 
computing system is equal to  I     +    1 calculations per iteration. The time required to 
complete the problem is  K     +    1.   

     Figure 21.2     Directed acyclic graphs (DAG) for the three possible scheduling functions for the 1 - D 
FDM algorithm when  I     =    5 and  K     =    9.  
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 For  s  2  and  s  3 , the work ( W ) to be done by the parallel computing system is equal 
to [ I /2] calculations per iteration. The time required to complete the problem is given 
by  I     +    2 K . 

 Linear scheduling does not give us much control over how much work is to be 
done at each time step. As before, we are able to control the work  W  by using non-
linear scheduling functions of the form given by

    t
n

( ) ,p
sp= ⎢

⎣⎢
⎥
⎦⎥

    (21.31)  

where  n  is the level of data aggregation. 
 Figure  21.3  shows the DAG for the three possible nonlinear scheduling func-

tions for the 1 - D FDM algorithm when  I     =    5,  K     =    9, and  n     =    3. For nonlinear 
scheduling based on  s  1 , the work ( W ) to be done by the parallel computing system 
is equal to  n ( I     +    1) calculations per iteration. The time required to complete the 
problem is | K / n |. For nonlinear scheduling based on  s  2  and  s  3 , the work ( W ) to be 
done by the parallel computing system is equal to  K  calculations per iteration. The 
time required to complete the problem is given by |( I     +    2 K )/ n |.    

   21.2.2    Projection Directions 

 The combination of node scheduling and node projection will result in determination 
of the work done by each task at any given time step. The natural projection direc-
tion associated with  s  1  is given by

    d s1 1= .     (21.32)   

     Figure 21.3     Directed acyclic graphs (DAG) for the three possible nonlinear scheduling functions 
for the 1 - D FDM algorithm when  I     =    5,  K     =    9, and  n     =    3.  
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 In that case, we will have  I     +    1 tasks. At time step  k     +    1, task  T i   is required to perform 
the operations in Eq.  21.23 . Therefore, there is necessary communication between 
tasks  T i  ,  T i       −    1 , and  T i       −    1 . The number of messages that need to be exchanged between 
the tasks per time step is 2 I . 

 We will pick projection direction associated with  s  2  or  s  3  as

    d s2 3 1, .=     (21.33)   

 In that case, we will have  I     +    1 tasks. However, the even tasks operate on the even 
time steps and the odd tasks operate on the odd time steps. We can merge the adjacent 
even and odd tasks and we would have a total of [( I     +    1)/2] tasks operating every 
clock cycle. There is necessary communication between tasks  T i  ,  T i    − 1 , and  T i    − 1 . The 
number of messages that need to be exchanged between the tasks per time step is 
3[( I     −    2)/2]    +    4. 

 Linear projection does not give us much control over how much work is 
assigned to each task per time step or how many messages are exchanged between 
the tasks. We are able to control the work per task and the total number of messages 
exchanged by using nonlinear projection operation of the form

    p
Pp= ⎛

⎝⎜
⎞
⎠⎟floor

m
,     (21.34)  

where  P  is the projection matrix associated with the projection direction and  m  is 
the number of nodes in the DAG that will be allocated to a single task. The total 
number of task depends on  I  and  m  and is given approximately by 3[ I / m ].     
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discrete Fourier transform (DFT), 293
fast Fourier transform (FFT), 295
fi nite-fi eld polynomial division, 279
full search block matching, 256
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hardware implementation, 2
implementation phases, 2
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non serial-parallel, 9, 143

parallel, 8
parallelism, 10, 146
parallelization, 11
performance, 156
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regular iterative, 10
sequence vector, 151
serial, 7
serial-parallel, 8
software implementation, 2
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banyan network, 89
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parallel, 30
serial, 30
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bit-serial multiplication, 30
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design, 36
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critical path, 10
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cryptography, 267
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cyclic algorithm, 143
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decimation-in-frequency FFT, 299
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decimator, 227
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scheduling, 230
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DFT. See discrete Fourier transform
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cycles, 150
discrete Fourier transform (DFT), 293
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fast Fourier transform (FFT), 295
fi nite impulse response fi lter: DAG, 
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fi nite-fi eld polynomial division, 279
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GF(2m) multiplication, 267
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graphic processing unit (GPU), 62
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hardware-software dependence, 2
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switch, 91
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loop
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memory
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message passing interface (MPI), 56, 67, 
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