

Algorithms and
Parallel Computing

Algorithms and
Parallel Computing
Fayez Gebali
University of Victoria, Victoria, BC

A John Wiley & Sons, Inc., Publication

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyaright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Gebali, Fayez.
 Algorithms and parallel computing/Fayez Gebali.
 p. cm.—(Wiley series on parallel and distributed computing ; 82)
 Includes bibliographical references and index.
 ISBN 978-0-470-90210-3 (hardback)
 1. Parallel processing (Electronic computers) 2. Computer algorithms. I. Title.
 QA76.58.G43 2011
 004′.35—dc22

2010043659

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions

 To my children: Michael Monir, Tarek Joseph,
Aleya Lee, and Manel Alia

Contents

Preface xiii

List of Acronyms xix

 1 Introduction 1

1.1 Introduction 1
1.2 Toward Automating Parallel Programming 2
1.3 Algorithms 4
1.4 Parallel Computing Design Considerations 12
1.5 Parallel Algorithms and Parallel Architectures 13
1.6 Relating Parallel Algorithm and Parallel Architecture 14
1.7 Implementation of Algorithms: A Two-Sided Problem 14
1.8 Measuring Benefi ts of Parallel Computing 15
1.9 Amdahl’s Law for Multiprocessor Systems 19
1.10 Gustafson–Barsis’s Law 21
1.11 Applications of Parallel Computing 22

 2 Enhancing Uniprocessor Performance 29

2.1 Introduction 29
2.2 Increasing Processor Clock Frequency 30
2.3 Parallelizing ALU Structure 30
2.4 Using Memory Hierarchy 33
2.5 Pipelining 39
2.6 Very Long Instruction Word (VLIW) Processors 44
2.7 Instruction-Level Parallelism (ILP) and Superscalar Processors 45
2.8 Multithreaded Processor 49

 3 Parallel Computers 53

3.1 Introduction 53
3.2 Parallel Computing 53
3.3 Shared-Memory Multiprocessors (Uniform Memory Access

[UMA]) 54
3.4 Distributed-Memory Multiprocessor (Nonuniform Memory Access

[NUMA]) 56

vii

viii Contents

3.5 SIMD Processors 57
3.6 Systolic Processors 57
3.7 Cluster Computing 60
3.8 Grid (Cloud) Computing 60
3.9 Multicore Systems 61
3.10 SM 62
3.11 Communication Between Parallel Processors 64
3.12 Summary of Parallel Architectures 67

 4 Shared-Memory Multiprocessors 69

4.1 Introduction 69
4.2 Cache Coherence and Memory Consistency 70
4.3 Synchronization and Mutual Exclusion 76

 5 Interconnection Networks 83

5.1 Introduction 83
5.2 Classifi cation of Interconnection Networks by Logical Topologies 84
5.3 Interconnection Network Switch Architecture 91

 6 Concurrency Platforms 105

6.1 Introduction 105
6.2 Concurrency Platforms 105
6.3 Cilk++ 106
6.4 OpenMP 112
6.5 Compute Unifi ed Device Architecture (CUDA) 122

 7 Ad Hoc Techniques for Parallel Algorithms 131

7.1 Introduction 131
7.2 Defi ning Algorithm Variables 133
7.3 Independent Loop Scheduling 133
7.4 Dependent Loops 134
7.5 Loop Spreading for Simple Dependent Loops 135
7.6 Loop Unrolling 135
7.7 Problem Partitioning 136
7.8 Divide-and-Conquer (Recursive Partitioning) Strategies 137
7.9 Pipelining 139

 8 Nonserial–Parallel Algorithms 143

8.1 Introduction 143
8.2 Comparing DAG and DCG Algorithms 143
8.3 Parallelizing NSPA Algorithms Represented by a DAG 145

Contents ix

8.4 Formal Technique for Analyzing NSPAs 147
8.5 Detecting Cycles in the Algorithm 150
8.6 Extracting Serial and Parallel Algorithm Performance Parameters 151
8.7 Useful Theorems 153
8.8 Performance of Serial and Parallel Algorithms

on Parallel Computers 156

 9 z-Transform Analysis 159

9.1 Introduction 159
9.2 Defi nition of z-Transform 159
9.3 The 1-D FIR Digital Filter Algorithm 160
9.4 Software and Hardware Implementations of the z-Transform 161
9.5 Design 1: Using Horner’s Rule for Broadcast Input and

Pipelined Output 162
9.6 Design 2: Pipelined Input and Broadcast Output 163
9.7 Design 3: Pipelined Input and Output 164

10 Dependence Graph Analysis 167

10.1 Introduction 167
10.2 The 1-D FIR Digital Filter Algorithm 167
10.3 The Dependence Graph of an Algorithm 168
10.4 Deriving the Dependence Graph for an Algorithm 169
10.5 The Scheduling Function for the 1-D FIR Filter 171
10.6 Node Projection Operation 177
10.7 Nonlinear Projection Operation 179
10.8 Software and Hardware Implementations of the DAG Technique 180

11 Computational Geometry Analysis 185

11.1 Introduction 185
11.2 Matrix Multiplication Algorithm 185
11.3 The 3-D Dependence Graph and Computation Domain D 186
11.4 The Facets and Vertices of D 188
11.5 The Dependence Matrices of the Algorithm Variables 188
11.6 Nullspace of Dependence Matrix: The Broadcast Subdomain B 189
11.7 Design Space Exploration: Choice of Broadcasting versus

Pipelining Variables 192
11.8 Data Scheduling 195
11.9 Projection Operation Using the Linear Projection Operator 200
11.10 Effect of Projection Operation on Data 205
11.11 The Resulting Multithreaded/Multiprocessor Architecture 206
11.12 Summary of Work Done in this Chapter 207

x Contents

12 Case Study: One-Dimensional IIR Digital Filters 209

12.1 Introduction 209
12.2 The 1-D IIR Digital Filter Algorithm 209
12.3 The IIR Filter Dependence Graph 209
12.4 z-Domain Analysis of 1-D IIR Digital Filter Algorithm 216

13 Case Study: Two- and Three-Dimensional Digital Filters 219

13.1 Introduction 219
13.2 Line and Frame Wraparound Problems 219
13.3 2-D Recursive Filters 221
13.4 3-D Digital Filters 223

14 Case Study: Multirate Decimators and Interpolators 227

14.1 Introduction 227
14.2 Decimator Structures 227
14.3 Decimator Dependence Graph 228
14.4 Decimator Scheduling 230
14.5 Decimator DAG for s1 = [1 0] 231
14.6 Decimator DAG for s2 = [1 −1] 233
14.7 Decimator DAG for s3 = [1 1] 235
14.8 Polyphase Decimator Implementations 235
14.9 Interpolator Structures 236
14.10 Interpolator Dependence Graph 237
14.11 Interpolator Scheduling 238
14.12 Interpolator DAG for s1 = [1 0] 239
14.13 Interpolator DAG for s2 = [1 −1] 241
14.14 Interpolator DAG for s3 = [1 1] 243
14.15 Polyphase Interpolator Implementations 243

15 Case Study: Pattern Matching 245

15.1 Introduction 245
15.2 Expressing the Algorithm as a Regular Iterative Algorithm (RIA) 245
15.3 Obtaining the Algorithm Dependence Graph 246
15.4 Data Scheduling 247
15.5 DAG Node Projection 248
15.6 DESIGN 1: Design Space Exploration When s = [1 1]t 249
15.7 DESIGN 2: Design Space Exploration When s = [1 −1]t 252
15.8 DESIGN 3: Design Space Exploration When s = [1 0]t 253

16 Case Study: Motion Estimation for Video Compression 255

16.1 Introduction 255
16.2 FBMAs 256

Contents xi

16.3 Data Buffering Requirements 257
16.4 Formulation of the FBMA 258
16.5 Hierarchical Formulation of Motion Estimation 259
16.6 Hardware Design of the Hierarchy Blocks 261

17 Case Study: Multiplication over GF(2m) 267

17.1 Introduction 267
17.2 The Multiplication Algorithm in GF(2m) 268
17.3 Expressing Field Multiplication as an RIA 270
17.4 Field Multiplication Dependence Graph 270
17.5 Data Scheduling 271
17.6 DAG Node Projection 273
17.7 Design 1: Using d1 = [1 0]t 275
17.8 Design 2: Using d2 = [1 1]t 275
17.9 Design 3: Using d3 = [1 −1]t 277
17.10 Applications of Finite Field Multipliers 277

18 Case Study: Polynomial Division over GF(2) 279

18.1 Introduction 279
18.2 The Polynomial Division Algorithm 279
18.3 The LFSR Dependence Graph 281
18.4 Data Scheduling 282
18.5 DAG Node Projection 283
18.6 Design 1: Design Space Exploration When s1 = [1 −1] 284
18.7 Design 2: Design Space Exploration When s2 = [1 0] 286
18.8 Design 3: Design Space Exploration When s3 = [1 −0.5] 289
18.9 Comparing the Three Designs 291

19 The Fast Fourier Transform 293

19.1 Introduction 293
19.2 Decimation-in-Time FFT 295
19.3 Pipeline Radix-2 Decimation-in-Time FFT Processor 298
19.4 Decimation-in-Frequency FFT 299
19.5 Pipeline Radix-2 Decimation-in-Frequency FFT Processor 303

20 Solving Systems of Linear Equations 305

20.1 Introduction 305
20.2 Special Matrix Structures 305
20.3 Forward Substitution (Direct Technique) 309
20.4 Back Substitution 312
20.5 Matrix Triangularization Algorithm 312
20.6 Successive over Relaxation (SOR) (Iterative Technique) 317
20.7 Problems 321

xii Contents

21 Solving Partial Differential Equations Using Finite
Difference Method 323

21.1 Introduction 323
21.2 FDM for 1-D Systems 324

References 331

Index 337

 Preface

 ABOUT THIS BOOK

 There is a software gap between hardware potential and the performance that can
be attained using today ’ s software parallel program development tools. The tools
need manual intervention by the programmer to parallelize the code. This book is
intended to give the programmer the techniques necessary to explore parallelism in
algorithms, serial as well as iterative. Parallel computing is now moving from the
realm of specialized expensive systems available to few select groups to cover
almost every computing system in use today. We can fi nd parallel computers in our
laptops, desktops, and embedded in our smart phones. The applications and algo-
rithms targeted to parallel computers were traditionally confi ned to weather predic-
tion, wind tunnel simulations, computational biology, and signal processing.
Nowadays, just about any application that runs on a computer will encounter the
parallel processors now available in almost every system.

 Parallel algorithms could now be designed to run on special - purpose parallel
processors or could run on general - purpose parallel processors using several multi-
level techniques such as parallel program development, parallelizing compilers,
multithreaded operating systems, and superscalar processors. This book covers the
fi rst option: design of special - purpose parallel processor architectures to implement
a given class of algorithms. We call such systems accelerator cores. This book forms
the basis for a course on design and analysis of parallel algorithms. The course would
cover Chapters 1 – 4 then would select several of the case study chapters that consti-
tute the remainder of the book.

 Although very large - scale integration (VLSI) technology allows us to integrate
more processors on the same chip, parallel programming is not advancing to match
these technological advances. An obvious application of parallel hardware is to
design special - purpose parallel processors primarily intended for use as accelerator
cores in multicore systems. This is motivated by two practicalities: the prevalence
of multicore systems in current computing platforms and the abundance of simple
parallel algorithms that are needed in many systems, such as in data encryption/
decryption, graphics processing, digital signal processing and fi ltering, and many
more.

 It is simpler to start by stating what this book is not about. This book does not
attempt to give a detailed coverage of computer architecture, parallel computers, or
algorithms in general. Each of these three topics deserves a large textbook to attempt
to provide a good cover. Further, there are the standard and excellent textbooks for
each, such as Computer Organization and Design by D.A. Patterson and J.L.

xiii

xiv Preface

Hennessy, Parallel Computer Architecture by D.E. Culler, J.P. Singh, and A. Gupta,
and fi nally, Introduction to Algorithms by T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. I hope many were fortunate enough to study these topics in courses that
adopted the above textbooks. My apologies if I did not include a comprehensive list
of equally good textbooks on the above subjects.

 This book, on the other hand, shows how to systematically design special -
 purpose parallel processing structures to implement algorithms. The techniques
presented here are general and can be applied to many algorithms, parallel or
otherwise.

 This book is intended for researchers and graduate students in computer engi-
neering, electrical engineering, and computer science. The prerequisites for this book
are basic knowledge of linear algebra and digital signal processing. The objectives
of this book are (1) to explain several techniques for expressing a parallel algorithm
as a dependence graph or as a set of dependence matrices; (2) to explore scheduling
schemes for the processing tasks while conforming to input and output data timing,
and to be able to pipeline some data and broadcast other data to all processors; and
(3) to explore allocation schemes for the processing tasks to processing elements.

 CHAPTER ORGANIZATION AND OVERVIEW

 Chapter 1 defi nes the two main classes of algorithms dealt with in this book: serial
algorithms, parallel algorithms, and regular iterative algorithms. Design consider-
ations for parallel computers are discussed as well as their close tie to parallel
algorithms. The benefi ts of using parallel computers are quantifi ed in terms of
speedup factor and the effect of communication overhead between the processors.
The chapter concludes by discussing two applications of parallel computers.

 Chapter 2 discusses the techniques used to enhance the performance of a single
computer such as increasing the clock frequency, parallelizing the arithmetic and
logic unit (ALU) structure, pipelining, very long instruction word (VLIW), supers-
calar computing, and multithreading.

 Chapter 3 reviews the main types of parallel computers discussed here and
includes shared memory, distributed memory, single instruction multiple data stream
(SIMD), systolic processors, and multicore systems.

 Chapter 4 reviews shared - memory multiprocessor systems and discusses
two main issues intimately related to them: cache coherence and process
synchronization.

 Chapter 5 reviews the types of interconnection networks used in parallel proces-
sors. We discuss simple networks such as buses and move on to star, ring, and mesh
topologies. More effi cient networks such as crossbar and multistage interconnection
networks are discussed.

 Chapter 6 reviews the concurrency platform software tools developed to help
the programmer parallelize the application. Tools reviewed include Cilk + + , OpenMP,
and compute unifi ed device architecture (CUDA). It is stressed, however, that these
tools deal with simple data dependencies. It is the responsibility of the programmer

Preface xv

to ensure data integrity and correct timing of task execution. The techniques devel-
oped in this book help the programmer toward this goal for serial algorithms and
for regular iterative algorithms.

 Chapter 7 reviews the ad hoc techniques used to implement algorithms on paral-
lel computers. These techniques include independent loop scheduling, dependent
loop spreading, dependent loop unrolling, problem partitioning, and divide - and -
 conquer strategies. Pipelining at the algorithm task level is discussed, and the
technique is illustrated using the coordinate rotation digital computer (CORDIC)
algorithm.

 Chapter 8 deals with nonserial – parallel algorithms (NSPAs) that cannot be
described as serial, parallel, or serial – parallel algorithms. NSPAs constitute the
majority of general algorithms that are not apparently parallel or show a confusing
task dependence pattern. The chapter discusses a formal, very powerful, and simple
technique for extracting parallelism from an algorithm. The main advantage of the
formal technique is that it gives us the best schedule for evaluating the algorithm
on a parallel machine. The technique also tells us how many parallel processors are
required to achieve maximum execution speedup. The technique enables us to
extract important NSPA performance parameters such as work (W), parallelism (P),
and depth (D).

 Chapter 9 introduces the z - transform technique. This technique is used for
studying the implementation of digital fi lters and multirate systems on different
parallel processing machines. These types of applications are naturally studied in
the z - domain, and it is only natural to study their software and hardware implementa-
tion using this domain.

 Chapter 10 discusses to construct the dependence graph associated with an
iterative algorithm. This technique applies, however, to iterative algorithms that have
one, two, or three indices at the most. The dependence graph will help us schedule
tasks and automatically allocate them to software threads or hardware processors.

 Chapter 11 discusses an iterative algorithm analysis technique that is based on
computation geometry and linear algebra concepts. The technique is general in the
sense that it can handle iterative algorithms with more than three indices. An
example is two - dimensional (2 - D) or three - dimensional (3 - D) digital fi lters. For such
algorithms, we represent the algorithm as a convex hull in a multidimensional space
and associate a dependence matrix with each variable of the algorithm. The null
space of these matrices will help us derive the different parallel software threads
and hardware processing elements and their proper timing.

 Chapter 12 explores different parallel processing structures for one - dimensional
(1 - D) fi nite impulse response (FIR) digital fi lters. We start by deriving possible
hardware structures using the geometric technique of Chapter 11 . Then, we explore
possible parallel processing structures using the z - transform technique of Chapter 9 .

 Chapter 13 explores different parallel processing structures for 2 - D and 3 - D
infi nite impulse response (IIR) digital fi lters. We use the z - transform technique for
this type of fi lter.

 Chapter 14 explores different parallel processing structures for multirate deci-
mators and interpolators. These algorithms are very useful in many applications,

xvi Preface

especially telecommunications. We use the dependence graph technique of Chapter
 10 to derive different parallel processing structures.

 Chapter 15 explores different parallel processing structures for the pattern
matching problem. We use the dependence graph technique of Chapter 10 to study
this problem.

 Chapter 16 explores different parallel processing structures for the motion
estimation algorithm used in video data compression. In order to delay with this
complex algorithm, we use a hierarchical technique to simplify the problem and use
the dependence graph technique of Chapter 10 to study this problem.

 Chapter 17 explores different parallel processing structures for fi nite - fi eld
multiplication over GF (2 m). The multi - plication algorithm is studied using the
dependence graph technique of Chapter 10 .

 Chapter 18 explores different parallel processing structures for fi nite - fi eld poly-
nomial division over GF (2). The division algorithm is studied using the dependence
graph technique of Chapter 10 .

 Chapter 19 explores different parallel processing structures for the fast Fourier
transform algorithm. Pipeline techniques for implementing the algorithm are
reviewed.

 Chapter 20 discusses solving systems of linear equations. These systems could
be solved using direct and indirect techniques. The chapter discusses how to paral-
lelize the forward substitution direct technique. An algorithm to convert a dense
matrix to an equivalent triangular form using Givens rotations is also studied. The
chapter also discusses how to parallelize the successive over - relaxation (SOR) indi-
rect technique.

 Chapter 21 discusses solving partial differential equations using the fi nite dif-
ference method (FDM). Such equations are very important in many engineering and
scientifi c applications and demand massive computation resources.

 ACKNOWLEDGMENTS

 I wish to express my deep gratitude and thank Dr. M.W. El - Kharashi of Ain Shams
University in Egypt for his excellent suggestions and encouragement during the
preparation of this book. I also wish to express my personal appreciation of each of
the following colleagues whose collaboration contributed to the topics covered in
this book:

 Dr. Esam Abdel - Raheem Dr. Turki Al - Somani
 University of Windsor, Canada Al - Baha University, Saudi Arabia

 Dr. Atef Ibrahim Dr. Mohamed Fayed
 Electronics Research Institute, Egypt Al - Azhar University, Egypt

 Mr. Brian McKinney Dr. Newaz Rafi q
 ICEsoft, Canada ParetoLogic, Inc., Canada

 Dr. Mohamed Rehan Dr. Ayman Tawfi k
 British University, Egypt Ajman University, United Arab Emirates

Preface xvii

 COMMENTS AND SUGGESTIONS

 This book covers a wide range of techniques and topics related to parallel comput-
ing. It is highly probable that it contains errors and omissions. Other researchers
and/or practicing engineers might have other ideas about the content and organiza-
tion of a book of this nature. We welcome receiving comments and suggestions for
consideration. If you fi nd any errors, we would appreciate hearing from you. We
also welcome ideas for examples and problems (along with their solutions if pos-
sible) to include with proper citation.

 Please send your comments and bug reports electronically to fayez@uvic.ca , or
you can fax or mail the information to

 Dr. F ayez G ebali
 Electrical and Computer Engineering Department
 University of Victoria, Victoria, B.C., Canada V8W 3P6
 Tel: 250 - 721 - 6509
 Fax: 250 - 721 - 6052

 List of Acronyms

 1 - D one - dimensional
 2 - D two - dimensional
 3 - D three - dimensional
 ALU arithmetic and logic unit
 AMP asymmetric multiprocessing system
 API application program interface
 ASA acyclic sequential algorithm
 ASIC application - specifi c integrated circuit
 ASMP asymmetric multiprocessor
 CAD computer - aided design
 CFD computational fl uid dynamics
 CMP chip multiprocessor
 CORDIC coordinate rotation digital computer
 CPI clock cycles per instruction
 CPU central processing unit
 CRC cyclic redundancy check
 CT computerized tomography
 CUDA compute unifi ed device architecture
 DAG directed acyclic graph
 DBMS database management system
 DCG directed cyclic graph
 DFT discrete Fourier transform
 DG directed graph
 DHT discrete Hilbert transform
 DRAM dynamic random access memory
 DSP digital signal processing
 FBMA full - search block matching algorithm
 FDM fi nite difference method
 FDM frequency division multiplexing
 FFT fast Fourier transform
 FIR fi nite impulse response
 FLOPS fl oating point operations per second
 FPGA fi eld - programmable gate array
 GF(2 m) Galois fi eld with 2 m elements
 GFLOPS giga fl oating point operations per second
 GPGPU general purpose graphics processor unit
 GPU graphics processing unit

xix

xx List of Acronyms

 HCORDIC high - performance coordinate rotation digital computer
 HDL hardware description language
 HDTV high - defi nition TV
 HRCT high - resolution computerized tomography
 HTM hardware - based transactional memory
 IA iterative algorithm
 IDHT inverse discrete Hilbert transform
 IEEE Institute of Electrical and Electronic Engineers
 IIR infi nite impulse response
 ILP instruction - level parallelism
 I/O input/output
 IP intellectual property modules
 IP Internet protocol
 IR instruction register
 ISA instruction set architecture
 JVM Java virtual machine
 LAN local area network
 LCA linear cellular automaton
 LFSR linear feedback shift register
 LHS left - hand side
 LSB least - signifi cant bit
 MAC medium access control
 MAC multiply/accumulate
 MCAPI Multicore Communications Management API
 MIMD multiple instruction multiple data
 MIMO multiple - input multiple - output
 MIN multistage interconnection networks
 MISD multiple instruction single data stream
 MIMD multiple instruction multiple data
 MPI message passing interface
 MRAPI Multicore Resource Management API
 MRI magnetic resonance imaging
 MSB most signifi cant bit
 MTAPI Multicore Task Management API
 NIST National Institute for Standards and Technology
 NoC network - on - chip
 NSPA nonserial – parallel algorithm
 NUMA nonuniform memory access
 NVCC NVIDIA C compiler
 OFDM orthogonal frequency division multiplexing
 OFDMA orthogonal frequency division multiple access
 OS operating system
 P2P peer - to - peer
 PA processor array
 PE processing element

List of Acronyms xxi

 PRAM parallel random access machine
 QoS quality of service
 RAID redundant array of inexpensive disks
 RAM random access memory
 RAW read after write
 RHS right - hand side
 RIA regular iterative algorithm
 RTL register transfer language
 SE switching element
 SF switch fabric
 SFG signal fl ow graph
 SIMD single instruction multiple data stream
 SIMP single instruction multiple program
 SISD single instruction single data stream
 SLA service - level agreement
 SM streaming multiprocessor
 SMP symmetric multiprocessor
 SMT simultaneous multithreading
 SoC system - on - chip
 SOR successive over - relaxation
 SP streaming processor
 SPA serial – parallel algorithm
 SPMD single program multiple data stream
 SRAM static random access memory
 STM software - based transactional memory
 TCP transfer control protocol
 TFLOPS tera fl oating point operations per second
 TLP thread - level parallelism
 TM transactional memory
 UMA uniform memory access
 VHDL very high - speed integrated circuit hardware description language
 VHSIC very high - speed integrated circuit
 VIQ virtual input queuing
 VLIW very long instruction word
 VLSI very large - scale integration
 VOQ virtual output queuing
 VRQ virtual routing/virtual queuing
 WAN wide area network
 WAR write after read
 WAW write after write
 WiFi wireless fi delity

 Chapter 1

Introduction

 1.1 INTRODUCTION

 The idea of a single - processor computer is fast becoming archaic and quaint. We
now have to adjust our strategies when it comes to computing:

 • It is impossible to improve computer performance using a single processor.
Such processor would consume unacceptable power. It is more practical to
use many simple processors to attain the desired performance using perhaps
thousands of such simple computers [1] .

 • As a result of the above observation, if an application is not running fast on
a single - processor machine, it will run even slower on new machines unless
it takes advantage of parallel processing.

 • Programming tools that can detect parallelism in a given algorithm have
to be developed. An algorithm can show regular dependence among its vari-
ables or that dependence could be irregular. In either case, there is room
for speeding up the algorithm execution provided that some subtasks can
run concurrently while maintaining the correctness of execution can be
assured.

 • Optimizing future computer performance will hinge on good parallel pro-
gramming at all levels: algorithms, program development, operating system,
compiler, and hardware.

 • The benefi ts of parallel computing need to take into consideration the number
of processors being deployed as well as the communication overhead of
processor - to - processor and processor - to - memory. Compute - bound problems
are ones wherein potential speedup depends on the speed of execution of the
algorithm by the processors. Communication - bound problems are ones
wherein potential speedup depends on the speed of supplying the data to and
extracting the data from the processors.

 • Memory systems are still much slower than processors and their bandwidth
is limited also to one word per read/write cycle.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

1

2 Chapter 1 Introduction

 • Scientists and engineers will no longer adapt their computing requirements
to the available machines. Instead, there will be the practical possibility
that they will adapt the computing hardware to solve their computing
requirements.

 This book is concerned with algorithms and the special - purpose hardware structures
that execute them since software and hardware issues impact each other. Any soft-
ware program ultimately runs and relies upon the underlying hardware support
provided by the processor and the operating system. Therefore, we start this chapter
with some defi nitions then move on to discuss some relevant design approaches and
design constraints associated with this topic.

 1.2 TOWARD AUTOMATING
PARALLEL PROGRAMMING

 We are all familiar with the process of algorithm implementation in software. When
we write a code, we do not need to know the details of the target computer system
since the compiler will take care of the details. However, we are steeped in think-
ing in terms of a single central processing unit (CPU) and sequential processing
when we start writing the code or debugging the output. On the other hand, the
processes of implementing algorithms in hardware or in software for parallel
machines are more related than we might think. Figure 1.1 shows the main phases
or layers of implementing an application in software or hardware using parallel
computers. Starting at the top, layer 5 is the application layer where the application
or problem to be implemented on a parallel computing platform is defi ned. The
specifi cations of inputs and outputs of the application being studied are also defi ned.
Some input/output (I/O) specifi cations might be concerned with where data is stored
and the desired timing relations of data. The results of this layer are fed to the lower
layer to guide the algorithm development.

 Layer 4 is algorithm development to implement the application in question. The
computations required to implement the application defi ne the tasks of the algorithm
and their interdependences. The algorithm we develop for the application might or
might not display parallelism at this state since we are traditionally used to linear
execution of tasks. At this stage, we should not be concerned with task timing or
task allocation to processors. It might be tempting to decide these issues, but this is
counterproductive since it might preclude some potential parallelism. The result of
this layer is a dependence graph, a directed graph (DG), or an adjacency matrix that
summarize the task dependences.

 Layer 3 is the parallelization layer where we attempt to extract latent parallelism
in the algorithm. This layer accepts the algorithm description from layer 4 and pro-
duces thread timing and assignment to processors for software implementation.
Alternatively, this layer produces task scheduling and assignment to processors for
custom hardware very large - scale integration (VLSI) implementation. The book
concentrates on this layer, which is shown within the gray rounded rectangle in the
fi gure.

1.2 Toward Automating Parallel Programming 3

 Layer 2 is the coding layer where the parallel algorithm is coded using a
high - level language. The language used depends on the target parallel computing
platform. The right branch in Fig. 1.1 is the case of mapping the algorithm on a
general - purpose parallel computing platform. This option is really what we mean by
 parallel programming . Programming parallel computers is facilitated by what is
called concurrency platforms , which are tools that help the programmer manage the
threads and the timing of task execution on the processors. Examples of concurrency
platforms include Cilk + + , openMP, or compute unifi ed device architecture (CUDA),
as will be discussed in Chapter 6 .

 The left branch in Fig. 1.1 is the case of mapping the algorithm on a custom
parallel computer such as systolic arrays. The programmer uses hardware description
language (HDL) such as Verilog or very high - speed integrated circuit hardware
(VHDL).

 Figure 1.1 The phases or layers of implementing an application in software or hardware using
parallel computers.

Layer 5

Parallelization and Scheduling

VLSI Tools Concurrency Platforms

Application

Algorithm DesignLayer 4

Layer 3

Layer 2

I/O Data

Task-Directed Graph (DG)

Thread Assignment
and Scheduling

Processor Assignment
and Scheduling

Hardware Design Multithreading

Custom Hardware Implementation Software Implementation

Layer 1

Processing Tasks

Task Dependence Graph

HDL Code C/FORTRAN Code

4 Chapter 1 Introduction

 Layer 1 is the realization of the algorithm or the application on a parallel com-
puter platform. The realization could be using multithreading on a parallel computer
platform or it could be on an application - specifi c parallel processor system using
application - specifi c integrated circuits (ASICs) or fi eld - programmable gate array
(FPGA).

 So what do we mean by automatic programming of parallel computers? At the
moment, we have automatic serial computer programming. The programmer writes
a code in a high - level language such as C, Java, or FORTRAN, and the code is
compiled without further input from the programmer. More signifi cantly, the pro-
grammer does not need to know the hardware details of the computing platform.
Fast code could result even if the programmer is unaware of the memory hierarchy,
CPU details, and so on.

 Does this apply to parallel computers? We have parallelizing compilers that look
for simple loops and spread them among the processors. Such compilers could easily
tackle what is termed embarrassingly parallel algorithms [2, 3] . Beyond that, the
programmer must have intimate knowledge of how the processors interact among
each and when the algorithm tasks are to be executed.

 1.3 ALGORITHMS

 The IEEE Standard Dictionary of Electrical and Electronics Terms defi nes an
algorithm as “ A prescribed set of well - defi ned rules or processes for the solution of
a problem in a fi nite number of steps ” [4] . The tasks or processes of an algorithm
are interdependent in general. Some tasks can run concurrently in parallel and some
must run serially or sequentially one after the other. According to the above defi ni-
tion, any algorithm is composed of a serial part and a parallel part. In fact, it is very
hard to say that one algorithm is serial while the other is parallel except in extreme
trivial cases. Later, we will be able to be more quantitative about this. If the number
of tasks of the algorithm is W , then we say that the work associated with the algo-
rithm is W .

 The basic components defi ning an algorithm are

 1. the different tasks,

 2. the dependencies among the tasks where a task output is used as another
task ’ s input,

 3. the set of primary inputs needed by the algorithm, and

 4. the set of primary outputs produced by the algorithm.

 1.3.1 Algorithm DG

 Usually, an algorithm is graphically represented as a DG to illustrate the data depen-
dencies among the algorithm tasks. We use the DG to describe our algorithm in
preference to the term “ dependence graph ” to highlight the fact that the algorithm

1.3 Algorithms 5

variables fl ow as data between the tasks as indicated by the arrows of the DG. On
the other hand, a dependence graph is a graph that has no arrows at its edges, and
it becomes hard to fi gure out the data dependencies.

 Defi nition 1.1 A dependence graph is a set of nodes and edges. The nodes repre-
sent the tasks to be done by the algorithm and the edges represent the data used by
the tasks. This data could be input, output, or internal results.

 Note that the edges in a dependence graph are undirected since an edge con-
necting two nodes does not indicate any input or output data dependency. An edge
merely shows all the nodes that share a certain instance of the algorithm variable.
This variable could be input, output, or I/O representing intermediate results.

 Defi nition 1.2 A DG is a set of nodes and directed edges. The nodes represent the
tasks to be done by the algorithm, and the directed edges represent the data depen-
dencies among the tasks. The start of an edge is the output of a task and the end of
an edge the input to the task.

 Defi nition 1.3 A directed acyclic graph (DAG) is a DG that has no cycles or loops.

 Figure 1.2 shows an example of representing an algorithm by a DAG. A DG
or DAG has three types of edges depending on the sources and destinations of the
edges.

 Defi nition 1.4 An input edge in a DG is one that terminates on one or more nodes
but does not start from any node. It represents one of the algorithm inputs.

 Referring to Fig. 1.2 , we note that the algorithm has three input edges that
represent the inputs in 0 , in 1 , and in 2 .

 Defi nition 1.5 An output edge in a DG is one that starts from a node but does not
terminate on any other node. It represents one of the algorithm outputs.

 Figure 1.2 Example of a directed acyclic graph (DAG) for
an algorithm.

1

0
2

4

3

65

7

8

9

in0
in1 in2

out0 out2out1

6 Chapter 1 Introduction

 Referring to Fig. 1.2 , we note that the algorithm has three output edges that
represent the outputs out 0 , out 1 , and out 2 .

 Defi nition 1.6 An internal edge in a DG is one that starts from a node and terminate
one or more nodes. It represents one of the algorithm internal variables.

 Defi nition 1.7 An input node in a DG is one whose incoming edges are all input
edges.

 Referring to Fig. 1.2 , we note that nodes 0, 1, and 2 represent input nodes. The
tasks associated with these nodes can start immediately after the inputs are
available.

 Defi nition 1.8 An output node in a DG is whose outgoing edges are all output
edges.

 Referring to Fig. 1.2 , we note that nodes 7 and 9 represent output nodes. Node
3 in the graph of Fig. 1.2 is not an output node since one of its outgoing edges is
an internal edge terminating on node 7.

 Defi nition 1.9 An internal node in a DG is one that has at least one incoming
internal edge and at least one outgoing internal edge.

 1.3.2 Algorithm Adjacency Matrix A

 An algorithm could also be represented algebraically as an adjacency matrix A .
Given W nodes/tasks, we defi ne the 0 – 1 adjacency matrix A , which is a square
 W × W matrix defi ned so that element a (i , j) = 1 indicates that node i depends on
the output from node j . The source node is j and the destination node is i . Of course,
we must have a (i , i) = 0 for all values of 0 ≤ i < W since node i does not depend on
its own output (self - loop), and we assumed that we do not have any loops. The defi -
nition of the adjacency matrix above implies that this matrix is asymmetric. This is
because if node i depends on node j , then the reverse is not true when loops are not
allowed.

 As an example, the adjacency matrix for the algorithm in Fig. 1.2 is given by

 A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0
=

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1

0 0

0 0

0 0

0 0

0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (1.1)

1.3 Algorithms 7

 Matrix A has some interesting properties related to our topic. An input node i
is associated with row i , whose elements are all zeros. An output node j is associated
with column j , whose elements are all zeros. We can write

 Input node i a i j
j

W

⇒ =
=

−

∑ (,)
0

1

0 (1.2)

 Output node j a i j
i

W

⇒ =
=

−

∑ (,) .
0

1

0 (1.3)

 All other nodes are internal nodes. Note that all the elements in rows 0, 1, and 2 are
all zeros since nodes 0, 1, and 2 are input nodes. This is indicated by the bold entries
in these three rows. Note also that all elements in columns 7 and 9 are all zeros since
nodes 7 and 9 are output nodes. This is indicated by the bold entries in these two
columns. All other rows and columns have one or more nonzero elements to indicate
internal nodes. If node i has element a (i , j) = 1, then we say that node j is a parent
of node i .

 1.3.3 Classifying Algorithms Based On
Task Dependences

 Algorithms can be broadly classifi ed based on task dependences:

 1. Serial algorithms

 2. Parallel algorithms

 3. Serial – parallel algorithms (SPAs)

 4. Nonserial – parallel algorithms (NSPAs)

 5. Regular iterative algorithms (RIAs)

 The last category could be thought of as a generalization of SPAs. It should be
mentioned that the level of data or task granularity can change the algorithm from
one class to another. For example, adding two matrices could be an example of a
serial algorithm if our basic operation is adding two matrix elements at a time.
However, if we add corresponding rows on different computers, then we have a
row - based parallel algorithm.

 We should also mention that some algorithms can contain other types of algo-
rithms within their tasks. The simple matrix addition example serves here as well.
Our parallel matrix addition algorithm adds pairs of rows at the same time on dif-
ferent processors. However, each processor might add the rows one element at a
time, and thus, the tasks of the parallel algorithm represent serial row add algorithms.
We discuss these categories in the following subsections.

 1.3.4 Serial Algorithms

 A serial algorithm is one where the tasks must be performed in series one after the
other due to their data dependencies. The DG associated with such an algorithm looks

8 Chapter 1 Introduction

like a long string or queue of dependent tasks. Figure 1.3 a shows an example of a
serial algorithm. The algorithm shown is for calculating Fibonnaci numbers. To cal-
culate Fibonacci number n 10 , task T 10 performs the following simple calculation:

 n n n10 8 9= + , (1.4)

 with n 0 = 0 and n 1 = 1 given as initial conditions. Clearly, we can fi nd a Fibonacci
number only after the preceding two Fibonacci numbers have been calculated.

 1.3.5 Parallel Algorithms

 A parallel algorithm is one where the tasks could all be performed in parallel at the
same time due to their data independence. The DG associated with such an algorithm
looks like a wide row of independent tasks. Figure 1.3 b shows an example of a
parallel algorithm. A simple example of such a purely parallel algorithm is a web
server where each incoming request can be processed independently from other
requests. Another simple example of parallel algorithms is multitasking in operating
systems where the operating system deals with several applications like a web
browser, a word processor, and so on.

 1.3.6 SPA s

 An SPA is one where tasks are grouped in stages such that the tasks in each stage
can be executed concurrently in parallel and the stages are executed sequentially.
An SPA becomes a parallel algorithm when the number of stages is one. A serial -
 parallel algorithm also becomes a serial algorithm when the number of tasks in each
stage is one. Figure 1.3 c shows an example of an SPA. An example of an SPA is the
CORDIC algorithm [5 – 8] . The algorithm requires n iterations and at iteration i , three
operations are performed:

 Figure 1.3 Example of serial, parallel, and serial – parallel algorithms. (a) Serial algorithm. (b)
Parallel algorithm. (c) Serial – parallel algorithm.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Out

In

(a)

T0 T1 T2 T3 T4 T5

(b)

in0

out0

in1

out1

in2

out2

in3

out3

in4

out4

in5

out5

In

(c)

Out

1.3 Algorithms 9

x x my

y y x

z z

i i i i

i i i i

i i i

+

+

+

= +
= −
= +

1

1

1

δ
δ

θ ,

 (1.5)

where x , y , and z are the data to be updated at each iteration. δ i and θ i are iteration
constants that are stored in lookup tables. The parameter m is a control parameter
that determines the type of calculations required. The variable θ i is determined before
the start of each iteration. The algorithm performs other operations during each
iteration, but we are not concerned about this here. More details can be found in
Chapter 7 and in the cited references.

 1.3.7 NSPA s

 An NSPA does not conform to any of the above classifi cations. The DG for such an
algorithm has no pattern. We can further classify NSPA into two main categories
based on whether their DG contains cycles or not. Therefore, we can have two types
of graphs for NSPA:

 1. DAG

 2. Directed cyclic graph (DCG)

 Figure 1.4 a is an example of a DAG algorithm and Fig. 1.4 b is an example of a
DCG algorithm. The DCG is most commonly encountered in discrete time feedback
control systems. The input is supplied to task T 0 for prefi ltering or input signal
conditioning. Task T 1 accepts the conditioned input signal and the conditioned feed-
back output signal. The output of task T 1 is usually referred to as the error signal,
and this signal is fed to task T 2 to produce the output signal.

 Figure 1.4 Example directed graphs for nonserial – parallel algorithms. (a) Directed acyclic graph
(DAG). (b) Directed cyclic graph (DCG).

T0

In

Feedback

OutError
T1 T2

T3

1

0
2

4

3

65

7

8

9

in0
in1 in2

out0 out2out1

)b()a(

10 Chapter 1 Introduction

 The NSPA graph is characterized by two types of constructs: the nodes , which
describe the tasks comprising the algorithm, and the directed edges , which describe
the direction of data fl ow among the tasks. The lines exiting a node represent an
output, and when they enter a node, they represent an input. If task T i produces an
output that is used by task T j , then we say that T j depends on T i . On the graph, we
have an arrow from node i to node j .

 The DG of an algorithm gives us three important properties:

 1. Work (W) , which describes the amount of processing work to be done to
complete the algorithm

 2. Depth (D) , which is also known as the critical path . Depth is defi ned as the
maximum path length between any input node and any output node.

 3. Parallelism (P) , which is also known as the degree of parallelism of the
algorithm. Parallelism is defi ned as the maximum number of nodes that can
be processed in parallel. The maximum number of parallel processors that
could be active at any given time will not exceed B since anymore processors
will not fi nd any tasks to execute.

 A more detailed discussion of these properties and how an algorithm can be
mapped onto a parallel computer is found in Chapter 8 .

 1.3.8 RIA s

 Karp et al. [9, 10] introduced the concept of RIA. This class of algorithms deserves
special attention because they are found in algorithms from diverse fi elds such as
signal, image and video processing, linear algebra applications, and numerical simu-
lation applications that can be implemented in grid structures. Figure 1.5 shows the
 dependence graph of a RIA. The example is for pattern matching algorithm. Notice
that for a RIA, we do not draw a DAG; instead, we use the dependence graph
concept.

 Figure 1.5 Dependence graph of a
RIA for the pattern matching algorithm.

y0 y1 y2 y3 y4 y5 y6

t0 t1 t2 t3 t4 t5 t6

t7

t8

t9

p0

p1

p2

p3

j

i

1.3 Algorithms 11

 A dependence graph is like a DAG except that the links are not directed
and the graph is obtained according to the methodology explained in Chapters 9 ,
 10 , and 11 .

 In a RIA, the dependencies among the tasks show a fi xed pattern. It is a
trivial problem to parallelize a serial algorithm, a parallel algorithm, or even an SPA.
It is not trivial to explore the possible parallelization options of a RIA. In fact,
Chapters 9 – 11 are dedicated to just exploring the parallelization of this class of
algorithms.

 A simple example of a RIA is the matrix – matrix multiplication algorithm given
by Algorithm 1.1.

 Algorithm 1.1 Matrix – matrix multiplication algorithm.

 Require: Input: matrices A and B

 1: for i = 0 : I − 1 do

 2: for j = 0 : J − 1 do

 3: temp = 0

 4: for k = 0 : K − 1 do

 5: temp = temp + A (i , k) × B (k , j)

 6: end for

 7: C (i , j) = temp

 8: end for

 9: end for

 10: RETURN C

 The variables in the RIA described by Algorithm 1.1 show regular dependence
on the algorithm indices i , j , and k . Traditionally, such algorithms are studied
using the dependence graph technique, which shows the links between the different
tasks to be performed [10 – 12] . The dependence graph is attractive when the number
of algorithm indices is 1 or 2. We have three indices in our matrix – matrix multipli-
cation algorithm. It would be hard to visualize such an algorithm using a three -
 dimensional (3 - D) graph. For higher dimensionality algorithms, we use more formal
techniques as will be discussed in this book. Chapters 9 – 11 are dedicated to studying
such algorithms.

 1.3.9 Implementing Algorithms on Parallel Computing

 The previous subsections explained different classes of algorithms based on the
dependences among the algorithm tasks. We ask in this section how to implement
these different algorithms on parallel computing platforms either in hardware or in
software. This is referred to as parallelizing an algorithm. The parallelization strat-
egy depends on the type of algorithm we are dealing with.

12 Chapter 1 Introduction

 Serial Algorithms

 Serial algorithms, as exemplifi ed by Fig. 1.3 a, cannot be parallelized since the tasks
must be executed sequentially. The only parallelization possible is when each task
is broken down into parallelizable subtasks. An example is to perform bit - parallel
add/multiply operations.

 Parallel Algorithms

 Parallel algorithms, as exemplifi ed by Fig. 1.3 b, are easily parallelized since all the
tasks can be executed in parallel, provided there are enough computing resources.

 SPA s

 SPAs, as exemplifi ed by Fig. 1.3 c, are parallelized by assigning each task in a stage
to a software thread or hardware processing element. The stages themselves cannot
be parallelized since they are serial in nature.

 NSPA s

 Techniques for parallelizing NSPAs will be discussed in Chapter 8 .

 RIA s

 Techniques for parallelizing RIAs will be discussed in Chapters 9 – 11 .

 1.4 PARALLEL COMPUTING DESIGN CONSIDERATIONS

 This section discusses some of the important aspects of the design of parallel com-
puting systems. The design of a parallel computing system requires considering
many design options. The designer must choose a basic processor architecture that
is capable of performing the contemplated tasks. The processor could be a simple
element or it could involve a superscalar processor running a multithreaded operat-
ing system.

 The processors must communicate among themselves using some form of an
 interconnection network . This network might prove to be a bottleneck if it cannot
support simultaneous communication between arbitrary pairs of processors.
Providing the links between processors is like providing physical channels in tele-
communications. How data are exchanged must be specifi ed. A bus is the simplest
form of interconnection network. Data are exchanged in the form of words, and a
system clock informs the processors when data are valid. Nowadays, buses are being
replaced by networks - on - chips (NoC) [13] . In this architecture, data are exchanged
on the chip in the form of packets and are routed among the chip modules using
 routers .

 Data and programs must be stored in some form of memory system , and the
designer will then have the option of having several memory modules shared among

1.5 Parallel Algorithms and Parallel Architectures 13

the processors or of dedicating a memory module to each processor. When proces-
sors need to share data, mechanisms have to be devised to allow reading and writing
data in the different memory modules. The order of reading and writing will be
important to ensure data integrity. When a shared data item is updated by one pro-
cessor, all other processors must be somehow informed of the change so they use
the appropriate data value.

 Implementing the tasks or programs on a parallel computer involves several
design options also. Task partitioning breaks up the original program or application
into several segments to be allocated to the processors. The level of partitioning
determines the workload allocated to each processor. Coarse grain partitioning
allocates large segments to each processor. Fine grain partitioning allocates smaller
segments to each processor. These segments could be in the form of separate soft-
ware processes or threads . The programmer or the compiler might be the two entities
that decide on this partitioning. The programmer or the operating system must ensure
proper synchronization among the executing tasks so as to ensure program correct-
ness and data integrity.

 1.5 PARALLEL ALGORITHMS AND
PARALLEL ARCHITECTURES

 Parallel algorithms and parallel architectures are closely tied together. We
cannot think of a parallel algorithm without thinking of the parallel hardware
that will support it. Conversely, we cannot think of parallel hardware without
thinking of the parallel software that will drive it. Parallelism can be imple-
mented at different levels in a computing system using hardware and software
techniques:

 1. Data - level parallelism , where we simultaneously operate on multiple bits of
a datum or on multiple data. Examples of this are bit - parallel addition mul-
tiplication and division of binary numbers, vector processor arrays and sys-
tolic arrays for dealing with several data samples. This is the subject of this
book.

 2. Instruction - level parallelism (ILP) , where we simultaneously execute more
than one instruction by the processor. An example of this is use of instruction
pipelining.

 3. Thread - level parallelism (TLP). A thread is a portion of a program that shares
processor resources with other threads. A thread is sometimes called a light-
weight process. In TLP, multiple software threads are executed simultane-
ously on one processor or on several processors.

 4. Process - level parallelism. A process is a program that is running on the
computer. A process reserves its own computer resources such as memory
space and registers. This is, of course, the classic multitasking and time -
 sharing computing where several programs are running simultaneously on
one machine or on several machines.

14 Chapter 1 Introduction

 1.6 RELATING PARALLEL ALGORITHM AND
PARALLEL ARCHITECTURE

 The IEEE Standard Dictionary of Electrical and Electronics Terms [4] defi nes “ par-
allel ” for software as “ simultaneous transfer, occurrence, or processing of the indi-
vidual parts of a whole, such as the bits of a character and the characters of a word
using separate facilities for the various parts. ” So in that sense, we say an algorithm
is parallel when two or more parts of the algorithms can be executed independently
on hardware. Thus, the defi nition of a parallel algorithm presupposes availability of
supporting hardware. This gives a hint that parallelism in software is closely tied to
the hardware that will be executing the software code. Execution of the parts can be
done using different threads or processes in the software or on different processors
in the hardware. We can quickly identify a potentially parallel algorithm when we
see the occurrence of “ FOR ” or “ WHILE ” loops in the code.

 On the other hand, the defi nition of parallel architecture, according to The IEEE
Standard Dictionary of Electrical and Electronics Terms [4] , is “ a multi - processor
architecture in which parallel processing can be performed. ” It is the job of the
programmer, compiler, or operating system to supply the multiprocessor with tasks
to keep the processors busy. We fi nd ready examples of parallel algorithms in fi elds
such as

 • scientifi c computing, such as physical simulations, differential equations
solvers, wind tunnel simulations, and weather simulation;

 • computer graphics, such as image processing, video compression; and ray
tracing; and,

 • medical imaging, such as in magnetic resonance imaging (MRI) and comput-
erized tomography (CT).

 There are, however, equally large numbers of algorithms that are not recogniz-
ably parallel especially in the area of information technology such as online medical
data, online banking, data mining, data warehousing, and database retrieval systems.
The challenge is to develop computer architectures and software to speed up the
different information technology applications.

 1.7 IMPLEMENTATION OF ALGORITHMS:
A TWO - SIDED PROBLEM

 Figure 1.6 shows the issues we would like to deal with in this book. On the left is
the space of algorithms and on the right is the space of parallel architectures that
will execute the algorithms. Route A represents the case when we are given an
algorithm and we are exploring possible parallel hardware or processor arrays
that would correctly implement the algorithm according to some performance
requirements and certain system constraints. In other words, the problem is given a
parallel algorithm, what are the possible parallel processor architectures that are
possible?

1.8 Measuring Benefi ts of Parallel Computing 15

 Route B represents the classic case when we are given a parallel architecture
or a multicore system and we explore the best way to implement a given algorithm
on the system subject again to some performance requirements and certain system
constraints. In other words, the problem is given a parallel architecture, how can we
allocate the different tasks of the parallel algorithm to the different processors? This
is the realm of parallel programming using the multithreading design technique. It
is done by the application programmer, the software compiler, and the operating
system.

 Moving along routes A or B requires dealing with

 1. mapping the tasks to different processors,

 2. scheduling the execution of the tasks to conform to algorithm data depen-
dency and data I/O requirements, and

 3. identifying the data communication between the processors and the I/O.

 1.8 MEASURING BENEFITS OF PARALLEL COMPUTING

 We review in this section some of the important results and benefi ts of using parallel
computing. But fi rst, we identify some of the key parameters that we will be study-
ing in this section.

 1.8.1 Speedup Factor

 The potential benefi t of parallel computing is typically measured by the time it takes
to complete a task on a single processor versus the time it takes to complete the
same task on N parallel processors. The speedup S (N) due to the use of N parallel
processors is defi ned by

 S N
T

T N
p

p

()
()

()
,=

1
 (1.6)

where T p (1) is the algorithm processing time on a single processor and T p (N) is
the processing time on the parallel processors. In an ideal situation, for a fully

 Figure 1.6 The two paths relating
parallel algorithms and parallel
architectures.

Algorithm
Space

Parallel Computer
Space

Route A

Route B

16 Chapter 1 Introduction

parallelizable algorithm, and when the communication time between processors and
memory is neglected , we have T p (N) = T p (1)/ N , and the above equation gives

 S N N() .= (1.7)

 It is rare indeed to get this linear increase in computation domain due to several
factors, as we shall see in the book.

 1.8.2 Communication Overhead

 For single and parallel computing systems, there is always the need to read data
from memory and to write back the results of the computations. Communication
with the memory takes time due to the speed mismatch between the processor and
the memory [14] . Moreover, for parallel computing systems, there is the need for
communication between the processors to exchange data. Such exchange of data
involves transferring data or messages across the interconnection network.

 Communication between processors is fraught with several problems:

 1. Interconnection network delay. Transmitting data across the interconnection
network suffers from bit propagation delay, message/data transmission delay,
and queuing delay within the network. These factors depend on the network
topology, the size of the data being sent, the speed of operation of the
network, and so on.

 2. Memory bandwidth. No matter how large the memory capacity is, access to
memory contents is done using a single port that moves one word in or out
of the memory at any give memory access cycle.

 3. Memory collisions , where two or more processors attempt to access the same
memory module. Arbitration must be provided to allow one processor to
access the memory at any given time.

 4. Memory wall. The speed of data transfer to and from the memory is much
slower than processing speed. This problem is being solved using memory
hierarchy such as

 register cache RAM electronic disk magnetic disk optic disk↔ ↔ ↔ ↔ ↔

 To process an algorithm on a parallel processor system, we have several delays as
explained in Table 1.1 .

 1.8.3 Estimating Speedup Factor and
Communication Overhead

 Let us assume we have a parallel algorithm consisting of N independent tasks that
can be executed either on a single processor or on N processors. Under these ideal
circumstances, data travel between the processors and the memory, and there is no

1.8 Measuring Benefi ts of Parallel Computing 17

interprocessor communication due to the task independence. We can write under
ideal circumstances

 T Np p()1 = τ (1.8)

 T Np p() .= τ (1.9)

 The time needed to read the algorithm input data by a single processor is given by

 T Nr m() ,1 = τ (1.10)

where τ m is memory access time to read one block of data. We assumed in the above
equation that each task requires one block of input data and N tasks require to read
 N blocks. The time needed by the parallel processors to read data from memory is
estimated as

 T N T Nr r m() () ,= =α α τ1 (1.11)

where α is a factor that takes into account limitations of accessing the shared
memory. α = 1/ N when each processor maintains its own copy of the required data.
 α = 1 when data are distributed to each task in order from a central memory. In the
worst case, we could have α > N when all processors request data and collide with
each other. We could write the above observations as

 T N Nr

m

m()

=
=

τ
τ

when Distributed memory

when Shared memory and no colliisions

when Shared memory with collisions>

⎧
⎨
⎪

⎩⎪ N mτ .

 (1.12)

 Writing back the results to the memory, also, might involve memory collisions when
the processor attempts to access the same memory module .

 T Nw m()1 = τ (1.13)

 T N T Nw w m() () .= =α α τ1 (1.14)

 For a single processor, the total time to complete a task, including memory access
overhead, is given by

 Table 1.1 Delays Involved in Evaluating an Algorithm on a Parallel Processor System

 Operation Symbol Comment

 Memory read T r (N) Read data from memory shared by N processors
 Memory write T w (N) Write data from memory shared by N processors
 Communicate T c (N) Communication delay between a pair of processors when

there are N processors in the system
 Process data T p (N) Delay to process the algorithm using N parallel processors

18 Chapter 1 Introduction

T T T T

N
r p w

m p

total () () () ()
.

1 1 1 1

2

= + +
= +()τ τ

 (1.15)

 Now let us consider the speedup factor when communication overhead is
considered:

T N T N T N T N

N
r p w

m p

total () () () ()
.

= + +
= +2 ατ τ

 (1.16)

 The speedup factor is given by

S N
T

T N

N N

N
m p

m p

()
()

()

.

=

=
+
+

total

total

1

2

2

α τ τ
ατ τ

 (1.17)

 Defi ne the memory mismatch ratio (R) as

 R m

p

=
τ
τ

, (1.18)

 which is the ratio of the delay for accessing one data block from the memory relative
to the delay for processing one block of data. In that sense, τ p is expected to be
orders of magnitude smaller than τ m depending on the granularity of the subtask
being processed and the speed of the memory.

 We can write Eq. 1.17 as a function of N and R in the form

 S N R
RN N

RN
(,) .=

+
+

2

2 1

α
α

 (1.19)

 Figure 1.7 shows the effect of the two parameters, N and R , on the speedup when
 α = 1. Numerical simulations indicated that changes in α are not as signifi cant as
the values of R and N . From the above equation, we get full speedup when the
product RN << 1. This speedup is similar to Eq. 1.7 where communication overhead
was neglected.

 This situation occurs in the case of trivially parallel algorithms as will be dis-
cussed in Chapter 7 .

 Notice from the fi gure that speedup quickly decreases when RN > 0.1. When
 R = 1, we get a communication - bound problem and the benefi ts of parallelism
quickly vanish. This reinforces the point that memory design and communication
between processors or threads are very important factors. We will also see that
multicore processors, discussed in Chapter 3 , contain all the processors on the same
chip. This has the advantage that communication occurs at a much higher speed
compared with multiprocessors, where communication takes place across chips.
Therefore, T m is reduced by orders of magnitude for multicore systems, and this
should give them the added advantage of small R values.

1.9 Amdahl’s Law for Multiprocessor Systems 19

 The interprocessor communication overhead involves reading and writing data
into memory:

 T N Nc m() ,= β τ (1.20)

where β ≥ 0 and depends on the algorithm and how the memory is organized. β = 0
for a single processor, where there is no data exchange or when the processors in a
multiprocessor system do not communicate while evaluating the algorithm. In other
algorithms, β could be equal to log 2 N or even N . This could be the case when the
parallel algorithm programmer or hardware designer did not consider fully the cost
of interprocessor or interthread communications.

 1.9 AMDAHL ’ S LAW FOR MULTIPROCESSOR SYSTEMS

 Assume an algorithm or a task is composed of parallizable fraction f and a serial
fraction 1 − f . Assume the time needed to process this task on one single processor
is given by

 T N f Nf Np p p p() () ,1 1= − + =τ τ τ (1.21)

where the fi rst term on the right-hand side (RHS) is the time the processor needs to
process the serial part. The second term on RHS is the time the processor needs to
process the parallel part. When this task is executed on N parallel processors, the
time taken will be given by

 T N N f fp p p() () ,= − +1 τ τ (1.22)

where the only speedup is because the parallel part now is distributed over N
processors. Amdahl ’ s law for speedup S (N), achieved by using N processors, is
given by

 Figure 1.7 Effect of the two
parameters, N and R , on the
speedup when α = 1.

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

Memory Mismatch Ratio (R)

S
pe

ed
up

N = 2

N = 64

N = 256

N = 1,024

20 Chapter 1 Introduction

S N
T

T N

N

f N f

f f N

p

p

()
()

()

()

() /
.

=

=
− +

=
− +

1

1

1

1

(1.23)

 To get any speedup, we must have

 1− <<f f N/ . (1.24)

 This inequality dictates that the parallel portion f must be very close to unity espe-
cially when N is large.

 Figure 1.8 shows the speedup versus f for different values of N . The solid line
is for f = 0.99; the dashed line is for f = 0.9; and the dotted line is for f = 0.5. We
note from the fi gure that speedup is affected by the value of f . As expected, larger
 f results in more speedup. However, note that the speedup is most pronounced when
 f > 0.5. Another observation is that speedup saturates to a given value when N
becomes large.

 For large values of N , the speedup in Eq. 1.23 is approximated by

 S N
f

N() .≈
−
1

1
1when � (1.25)

 This result indicates that if we are using a system with more than 10 processors,
then any speedup advantage is dictated mainly by how clever we are at discovering
the parallel parts of the program and how much we are able to execute those parallel
parts simultaneously. The fi gure confi rms these expectations.

 Figure 1.8 Speedup
according to Amdahl ’ s law. The
solid line is for f = 0.99; the
dashed line is for f = 0.9; and
the dotted line is for f = 0.5.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Number of Processors (N)

S
pe

ed
up

1.10 Gustafson–Barsis’s Law 21

 For extreme values of f , Eq. 1.23 becomes

 S N f() = =1 0when completely serial code (1.26)

 S N N f() .= =when completely parallel code1 (1.27)

 The above equation is obvious. When the program is fully parallel, speedup will
be equal to the number of parallel processors we use.

 What do we conclude from this? Well, we must know or estimate the value of
the fraction f for a given algorithm at the start. Knowing f will give us an idea on
what system speedup could be expected on a multiprocessor system. This alone
should enable us to judge how much effort to spend trying to improve speedup by
mapping the algorithm to a multiprocessor system.

 1.10 GUSTAFSON – BARSIS ’ S LAW

 The predictions of speedup according to Amdahl ’ s law are pessimistic. Gustafson
 [15] made the observation that parallelism increases in an application when the
problem size increases. Remember that Amdahl ’ s law assumed that the fraction of
parallelizable code is fi xed and does not depend on problem size.

 To derive Gustafson – Barsis formula for speedup, we start with the N
parallel processors fi rst. The time taken to process the task on N processors is
given by

 T N f fp p p p() () .= − + =1 τ τ τ (1.28)

 When this task is executed on a single processor, the serial part is unchanged,
but the parallel part will increase as given by

 T f Nfp p p() () .1 1= − +τ τ (1.29)

 The speedup is given now by

S N

T

T N

f Nf

N f

p

p

()
()

()

()

() .

=

= − +
= + −

1

1

1 1

(1.30)

 Figure 1.9 shows the speedup versus f for different values of N . The solid line
is for f = 0.99; the dashed line is for f = 0.9; and the dotted line is for f = 0.5. Notice
that there is speedup even for very small values of f and the situation improves as
 N gets larger.

 To get any speedup, we must have

 f N() .−1 1� (1.31)

 Notice that we can get very decent speedup even for small values of f especially
when N gets large. Compared with inequality 1.24 , we note that the speedup con-
straints are very much relaxed according to Gustafson – Barsis ’ s law.

22 Chapter 1 Introduction

 1.11 APPLICATIONS OF PARALLEL COMPUTING

 The availability of inexpensive yet really powerful parallel computers is expected
to make a hitherto unforeseeable impact on our lives. We are used now to parallel
computers helping us access any information through web search engines. In fact,
the search progresses as we are typing our search key words. However, there is room
for improvement and, more importantly, for innovation, as the following sections
illustrate.

 1.11.1 Climate Modeling

 Climate simulations are used for weather forecasting as well as for predicting global
climate changes based on different phenomena or human activities. As Reference 1
points out, the resolution of today ’ s climate models is 200 km. This is considered
low resolution given the fact that some climate systems exist completely within such
resolution scale.

 Assume a high - resolution model for climate simulation partitions the globe
using 3 - D cells 1 km in size in each direction. Assume also that the total surface of
the earth to be 510 × 10 6 km 2 and the thickness of the atmospheric layer to be
approximately 1,000 km. Then, we need to simulate approximately 5 × 10 11 weather
cells. Assume further that each cell needs to do 200 fl oating point operations for
each iteration of the simulation. Thus, we have to perform a total of 10 14 fl oating
point operations per iteration.

 Let us now assume that we need to run the simulation 10 6 times to simulate the
climate over some long duration of the weather cycle. Thus, we have the following
performance requirements for our computing system:

 Figure 1.9 Speedup
according to Gustafson – Barsis ’ s
law. The solid line is for
 f = 0.99; the dashed line is for
 f = 0.9; and the dotted line is
for f = 0.5.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Number of Processors (N)

S
pe

ed
up

 S
(N

)

1.11 Applications of Parallel Computing 23

Total number of operations operations/iteration iterat= ×10 1014 6 iions

floating point operations= 1020
.

(1.32)

 A computer operating at a rate of 10 9 fl oating point operations per second
(FLOPS) would complete the operations in 10 11 seconds, which comes to about 31
centuries. Assuming that all these simulations should be completed in one workday,
then our system should operate at a rate of approximately 2.8 × 10 15 FLOPS. It is
obvious that such performance cannot be attained by any single - processor computer.
We must divide this computational task among many processors. Modeling the
atmosphere using a mesh or a grid of nodes lends itself to computational paralleliza-
tion since calculations performed by each node depend only on its immediate six
neighboring nodes. Distributing the calculations among several processors is rela-
tively simple, but care must be given to the exchange of data among the processors.
Table 1.2 compares building a parallel processor system needed to give us a perfor-
mance of 2.8 × 10 15 FLOPS. We assume using desktop microprocessors versus using
a simple embedded microprocessor [1] .

 The power advantage of using low - power, low - performance processors is
obvious from the table. Of course, we need to fi gure out how to interconnect such
a huge system irrespective of the type of processor used. The interconnection
network becomes a major design issue here since it would be impossible to think of
a system that uses buses and single global system clock.

 1.11.2 CT

 CT and magnetic resonance imaging (MRI) are techniques to obtain a high - resolution
map of the internals of the body for medical diagnosis. Figure 1.10 shows a simpli-
fi ed view of a CT system. Figure 1.10 a shows the placement of the patient on a
gurney at the center of a very strong magnet and a strong X - ray source. The gurney
is on a movable table in a direction perpendicular to the page. The X - ray source or
emitter is placed at the top and emits a collimated beam that travels to the other side
of the circle through the patient. An X - ray detector is placed diametrically opposite
to where the X - ray source is. When the machine is in operation, the source/detector
pair is rotated as shown in Fig. 1.10 b. After completing a complete rotation and
storing the detector samples, the table is moved and the process is repeated for a
different section or slice of the body. The output of a certain detector at a given time

 Table 1.2 Parallel Multicore Computer Implementation Using Two Types of
Microprocessors Needed to Perform 2.8 × 10 15 FLOPS

 Processor Clock speed GFLOPS/core Cores needed Power (MW)

 AMD Opteron 2.8 GHz 5.6 4.9 × 10 5 52.0
 Tensilica XTensa
LX2

 500.0 MHz 1.0 2.8 × 10 6 0.8

24 Chapter 1 Introduction

is affected by all the patient tissue that a certain X - ray beam encounters in its passage
from the source to the detector. As things stand at the time of writing, the patient
needs to be in this position for several minutes if not hours (personal experience).

 Assume the image we are trying to generate is composed of N × N pixels, where
 N could be approximately equal to 4,000. Thus, we have approximately 10 7 pixels
to generate per image, or slice, of the body scan. As the table moves, more slices
should be generated. This allows for 3 - D viewing of the body area of concern. For
a system that generates S = 1,000 successive slices, SN 2 = 10 10 pixels will have to
be processed. A slice will require approximately N 2 (log 2 N) 3 calculations [16] . For
our case, we need approximately

Total number of operations operations/slice slices= ×

=
10 10

10

10 3

133 floating point operations
.

(1.33)

 Assume we need to generate these images in 1 second to allow for a real - time
examination of the patient. In that case, the system should operate at a rate of
approximately 10 13 FLOPS. For an even more accurate medical diagnosis, high -
 resolution computerized tomography (HRCT) scans are required even at the
nanoscale level where blood vessels need to be examined. Needless to say, parallel
processing of massive data will be required for a timely patient treatment.

 1.11.3 Computational Fluid Dynamics (CFD)

 CFD is a fi eld that is closely tied to parallel computers and parallel algorithms. It is
viewed as a cost - effective way to investigate and design systems that involve fl ow
of gas or fl uids. Some examples of CFD are:

 • ocean currents,

 • our atmosphere and global weather,

 Figure 1.10 Computerized tomography (CT) system. (a) Setup of X - ray sources and detectors.
(b) Schematic of the output of each sensor when a single X - ray source is active.

(a) (b)

Patient

X-Ray Sources

X-Ray Detectors

1.12 Problems 25

 • blood fl ow in the arteries,

 • heart deformation during high - G maneuvers of a fi ghter jet,

 • air fl ow in the lungs,

 • design of airplane wings and winglets,

 • seat ejection in a fi ghter jet,

 • combustion of gases inside a car cylinder,

 • jet engine air intake and combustion chamber,

 • shape of a car body to reduce air drag, and

 • spray from nozzles such as paint guns and rocket exhaust .

 Typically, the region where the fl ow of interest is being studied is divided into
a grid or mesh of points using the fi nite element method. The number of grid points
depends on the size of the region or the desired resolution. A system of linear equa-
tions or a set differential equations is solved at each grid point for the problem
unknowns. The number of unknown might be around 10 3 , and each variable might
require around 10 3 fl oating point operations at each grid point.

 The targeted region of the CFD applications ranges from 10 12 to 10 18 FLOPS
 [17] . If the computer system operates at a speed of 10 9 (giga) FLOPS, then CFD
applications would complete a simulation in the time period that ranges between 15
minutes and 30 years. On the other hand, a parallel computer system operating at
10 12 (tera) FLOPS would complete the application in a time period between 1 second
and 12 days. Currently, there are few supercomputer systems that operate at the rate
of 10 15 (peta) FLOPS. On such a system, the larger problem would take about 3
minutes to complete.

 1.12 PROBLEMS

 1.1. Assume you are given the task of adding eight numbers together. Draw the DG and the
adjacency matrix for each of the following number adding algorithms:

 (1) Add the numbers serially, which would take seven steps.

 (2) Add the numbers in a binary fashion by adding each adjacent pair of numbers
in parallel and then by adding pairs of the results in parallel, and continue this
process.

 1.2. Derive general expressions for the number of tasks required to do the number adding
algorithms in Problem 1.1 when we have N = 2 n numbers to be added. What conclusion
do you make?

 1.3. Now assume that you have a parallel computer that can add the numbers in
Problem 1.1. The time required to add a pair of numbers is assumed 1. What would be
the time required to perform the two algoritnms for the case N = 2 n ? How much is the
speedup?

 1.4. Consider Problem 1.3. Now the parallel computers require a time C to obtain data from
memory and to communicate the add results between the add stages. How much
speedup is accomplished?

26 Chapter 1 Introduction

 1.5. Which class of algorithms would the fast Fourier transform (FFT) algorithm belong to?

 1.6. Which class of algorithms would the quicksort algorithm belong to?

 1.7. The binary number multiplication problem in Chapter 2 could be considered as a RIA
algorithm. Draw the dependence graph of such an algorithm.

 1.8. The binary restoring division algorithm is based on the recurrence equation

 r r q D j nj j n j+ − −= − ≥ <1 12 ,

where r j is the partial remainder at the j th iteration; q k is the k th quotient bit; and D is
the denominator. It is assumed that the number of bits in the quotient is n and q n − 1 is
the quotient most signifi cant bit (MSB). What type of algorithm is this division
algorithm?

 1.9. A processor has clock frequency f , and it requires c clock cycles to execute a single
instruction. Assume a program contains I instructions. How long will the program take
before it completes ?

 1.10. Repeat Problem 1.9 when a new processor is introduced whose clock frequency is
 f ′ = 2 f and c ′ = 1.5 c .

 1.11. Give some examples of serial algorithms.

 1.12. Give some examples of parallel algorithms.

 1.13. Consider the speedup factor for a fully parallel algorithm when communication over-
head is assumed. Comment on speedup for possible values of α .

 1.14. Consider the speedup factor for a fully parallel algorithm when communication over-
head is assumed. Comment on speedup for possible values of R .

 1.15. Write down the speedup formula when communication overhead is included and
the algorithm requires interprocessor communications Assume that each task in the
parallel algorithm requires communication between a pair of processors. Assume that
the processors need to communicate with each other m times to complete the
algorithm.

 1.16. Consider an SPA with the following specifi cations:

 Number of serial tasks per stage N s
 Number of serial tasks per stage N p
 Number of stages n

 Now assume that we have a single processor that requires τ to complete a task and it
consumes W watts while in operation. We are also given N = N p parallel but very slow
processors. Each processor requires r τ to complete a task and consumes W / r watts while
in operation, where r > 1 is a performance derating factor.

 (1) How long will the single processor need to fi nish the algorithm?

 (2) How much energy will the single processor consume to fi nish the algorithm?

 (3) How long will the multiprocessor need to fi nish the algorithm?

 (4) How much energy will the multiprocessor system consume to fi nish the
algorithm?

 (5) Write down a formula for the speedup.

 (6) Write down a formula for the energy ratio of the multiprocessor relative to the
single processor.

1.12 Problems 27

 1.17. The algorithm for fl oating point addition can be summarized as follows:

 (1) Compare the exponents and choose the larger exponent.

 (2) Right shift the mantissa of the number with the smaller exponent by the amount of
exponent difference.

 (3) Add the mantissas.

 (4) Normalize the results.

 Draw a dependence graph of the algorithm and state what type of algorithm this is.

 1.18. The algorithm for fl oating point multiplication can be summarized as follows:

 (1) Multiply the mantissas.

 (2) Add the two exponents.

 (3) Round the multiplication result.

 (4) Normalize the result.

 Draw a dependence graph of the algorithm and state what type of algorithm this is.

 1.19. Discuss the algorithm for synthetic apperture radar (SAR).

 1.20. Discuss the Radon transform algorithm in two dimensions.

 Chapter 2

Enhancing Uniprocessor
Performance

 2.1 INTRODUCTION

 In this chapter, we review techniques used to enhance the performance of a unipro-
cessor. A multiprocessor system or a parallel computer is composed of several
uniprocessors and the performance of the entire system naturally depends, among
other things, on the performance of the constituent uniprocessors. We also aim, in
this chapter, to differentiate the techniques used to enhance uniprocessor perfor-
mance from the techniques used to enhance multiprocessor performance, which are
discussed in subsequent chapters.

 Traditionally, building a computer was an expensive proposal. For almost 50
years, all effort went into designing faster single computer systems. It typically takes
a microprocessor manufacturer 2 years to come up with the next central processing
unit (CPU) version [1] . For the sake of the following discussion, we defi ne a simple
computer or processor as consisting of the following major components:

 1. controller to coordinate the activities of the various processor components;

 2. datapath or arithmetic and logic unit (ALU) that does all the required arith-
metic and logic operations;

 3. storage registers, on - chip cache, and memory; and

 4. input/output (I/O) and networking to interface and communicate with the
outside world.

 The above components are sometimes referred to as the computer resources.
Theses resources are shared between the different programs or processes running on
the computer, and the job of the computer operating system (OS) is to organize
the proper sharing and access to these resources. Making a processor run faster
was accomplished through many techniques to enhance the datapath since it is the
heart of any processor. We discuss datapath enhancements in the following
subsections.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

29

30 Chapter 2 Enhancing Uniprocessor Performance

 2.2 INCREASING PROCESSOR CLOCK FREQUENCY

 Increasing the system clock frequency allows the computer to execute more instruc-
tions per unit time. However, logic gates need time to switch states and system buses
need time to be charged or discharged through bus drivers. These delays are closely
tied to the underlying silicon technology such as NMOS, CMOS , and bipolar. The
type of gate circuits also dictate the clock speed, such as using CMOS or domino
logic or current - mode logic. There is also a fundamental limit on how fast a chip
could run based on dynamic power dissipation. Dynamic power dissipation is given
approximately by

 p Cf Vd = 2 , (2.1)

where C is the total parasitic capacitance, f is the clock frequency, and V is the power
supply voltage. Engineers developed many techniques to reduce power consumption
of the chip while raising the clock frequency. One obvious solution was to reduce
the value of C through fi ner lithographic process resolution. A bigger impact resulted
when the chip power supply voltage was reduced from 5.0 to 2.2 V and then 1.2 V,
and the question is how much the supply voltage can keep scaling down without
affecting the gate switching noise margin.

 2.3 PARALLELIZING ALU STRUCTURE

 Parallel structure implies using several copies of the same hardware in the ALU.
An example of use of parallelism to enhance performance is the multiplication
operation. Before the days of very large - scale integration (VLSI), early computers
could not afford to multiply numbers using a dedicated multiplier. They used
the adder in the ALU to do multiplication through the add – shift technique.
Assume the two numbers to be multiplied, a and b , have the following binary
representations:

c a b

a b

a b

i
i

i

n
j

j
j

n

i j
i j

j

n

i

n

= ×

= ×

=

=

−

=

−

+

=

−

=

−

∑ ∑

∑∑

2 2

2

0

1

0

1

0

1

0

1

 (2.2)

 =
⎛
⎝⎜

⎞
⎠⎟

+

=

−

=

−

∑∑ 2
0

1

0

1
i j

i j
j

n

i

n

a b , (2.3)

where a i , b i = {0, 1}. Equation 2.2 could be thought of as the parallel implementation
of the multiplication operation. Essentially, we are forming all the partial products
 a i b j and then add them together with the proper binary weights. Equation 2.3 is the
bit - serial implementation. Here we add the partial products over two stages fi rst
along the j index then add the results over the i index. This will be explained shortly.

2.3 Parallelizing ALU Structure 31

Some authors refer to this operation as serial/parallel multiplication since 1 bit is
used to multiply the other word.

 Figure 2.1 shows the bit - serial multiplication technique for the case n = 4. The
multiplicand b is stored in a register and the multiplier a is stored in a shift register
so that at each clock cycle, 1 bit is read out starting with the least signifi cant bit
(LSB). At the fi rst clock cycle, a partial product pp 0 is formed

 pp a bi j
j

j

n

0 0
0

1

2= +

=

−

∑ . (2.4)

 The LSB of this partial product is extracted and stored in a right shift register, as
shown at the bottom right of the fi gure. The remaining bits of pp 0 are stored in an
accumulator to be added to the next partial product, pp 1 . In general, at clock cycle
 i , we generate partial product pp i

 :

 pp a bi
i j

i j
j

n

= +

=

−

∑2
0

1

, (2.5)

and the accumulator performs the operation

 Acc Acc pp ii i i= + ′ ≥−1 0, (2.6)

 where Acc i is the content of the accumulator at the end of the i th clock cycle and
 ppi′ is the i th partial product with the LSB removed. After n = 4 clock cycles, the
2 n - bit product a × b is available with the n - bit high word stored in the accumulator
and the n - bit low word stored in the right shift register. The time required to perform
the bit - serial multiplication is estimated roughly as

 T nT n Tfaserial add= = 2 , (2.7)

where T add is the n - bit carry ripple adder delay and T f a is the 1 - bit full adder delay.
 For such a processor, the clock duration is dictated by the carry ripple

adder delay, and we have T clk = T add . Simple ALUs used this iterative multiplication

 Figure 2.1 Bit - serial binary multiplication for the case n = 4.

b0b1b2b3

Right Shift RegAccumulator
LSB

a0a1a2a3

+ + + +cout

Result Low WordResult High Word

Multiplier

Multiplicand

Carry Ripple Adder

32 Chapter 2 Enhancing Uniprocessor Performance

technique to do many more operations that need several multiplication operations
such as division and elementary function evaluation (e.g., trigonometric and hyper-
bolic functions and square root). In fact, the coordinate rotation digital computer
(CORDIC) algorithm was invented in the late 1950s for elementary function evalu-
ation without the need for multipliers [7, 8] . However, this CORDIC algorithm is
inherently bit - serial and required many clock cycles to complete.

 Thanks to VLSI technology, it is now feasible to incorporate a parallel multiplier
in the ALU and thereby to speed up the processor. Figure 2.2 shows the parallel
multiplication technique for the case n = 4. Figure 2.2 a shows the parallel multiplier
structure. The multiplicand b is stored in a register at the top, and the multiplier a
is stored in a register at the left of the fi gure. Most of the parallel multiplier structure
is composed of a two - dimensional (2 - D) array of cells that generate the partial
product bits simultaneously. At the bottom of Fig. 2.2 a is a carry ripple adder. The
gray squares with the a + symbol indicate a 1 - bit full adder. The gray circles with
a + and × symbols indicate an AND gate connected to a 1 - bit full adder as shown
in more detail in Fig. 2.2 b.

 The array of AND gates is responsible for generating all the bits of the partial
products a i b j . The array of adders is responsible for adding up all these partial prod-
ucts. The diagonal lines indicated lines of equal binary weight, and the vertical lines
indicate the path for the carry out signals. The time required to perform the parallel
multiplication operation is

 T n Tfaparallel ≈ −2 1() . (2.8)

 We see that the time required for parallel multiplication is n times smaller than
the bit - serial multiplication delay. However, this comes at a cost of more hardware.

 Figure 2.2 Parallel binary multiplication for the case n = 4. (a) The multiplier structure. (b) The
details of the gray circles with + and × symbols.

R
es

ul
t L

ow
 W

or
d

Result High Word

M
ul

ti
pl

ie
r

Multiplicand

+

+

+

+

+

+

+

+

+

b0b1b2b3

a0

a1

a2

a3

+

ai

bj

sumin

sumout

carryout

carry in

(a) (b)

+++

2.4 Using Memory Hierarchy 33

The author developed a parallel CORDIC algorithm (high - performance coordinate
rotation digital computer [HCORDIC]) that is faster than the bit - serial CORDIC but
relies on the fact that modern ALUs contain a multiplier [5, 6] . Thus the presence
of a parallel multiplier speeds up not only the multiplication operation but the evalu-
ation of many elementary functions.

 2.4 USING MEMORY HIERARCHY

 An ideal memory, which is not available yet, should possess several attributes:

 1. Nonvolatile so that memory contents are not lost when power is turned off

 2. Short access time to match processor speed so that memory load and store
operations do not require several clock cycles to complete

 3. Large capacity to be able to store massive amounts of data

 4. Inexpensive both in terms of the silicon real estate area they require and in
price since many data have to be stored

 Such an ideal memory does not exist yet. Several memory technologies exist that
satisfy some of the above attributes but not all of them simultaneously. The system
designer must build the computer storage requirements using a memory hierarchy
to take advantage of each memory technology as shown in Fig. 2.3 . The types of
storage technologies used by current processors are

 • registers;

 • cache;

 • RAM; and

 • mass storage, such as magnetic, optical, and fl ash drives.

 The processor talks directly to the fastest memory module available , which is
the registers and the cache memory. The only problem is that these two memory
modules do not have a large capacity and are expensive to build.

 The interconnection pattern of the memory hierarchy is such that each memory
module shown in the fi gure communicates with the neighboring modules connected

 Figure 2.3 Memory hierarchy.

P

Cache (SRAM)

Electronic Disk
(Flash)

Magnetic Disk

Registers

Optical Disk
(DVD)

RAM (DRAM)

34 Chapter 2 Enhancing Uniprocessor Performance

to it by the shown lines. Data migrate to the processor from the bottom of the hier-
archy. Likewise, data from the processor migrates downwards down the hierarchy.
The thickness of each line symbolizes the speed of communication of the line. For
example, the processor can directly communicate with its registers and the cache at
high speed, matching the clock speed of the processor. Both of these memory com-
ponents are very fast since they are always implemented on the same chip as the
CPU. This ensures speeds that match the processor instruction execution speeds.
The goal is to make sure that the processor operates most of the time using only the
data and instructions residing in its registers and cache. Whenever the processor
needs data or instructions from the memory, things slow down considerably until
such data migrate to the cache.

 The closest memory to the CPU is the register bank memory, which is built
using the same gate technology as the rest of the processor. Hence, registers are very
fast and match the processor speed. It is not possible to satisfy all the system storage
requirements using registers since a chip has a limited silicon area. Register memory
is therefore of small capacity and most computers have a limited amount of registers.
For example, Intel ’ s Itanium processor has 96 registers.

 The cache is also very close to the CPU and can communicate with the proces-
sor. Similar to registers, the cache communicates at speed matching CPU speed. The
cache also communicates with the off - chip dynamic random access memory (DRAM)
using slower communication links. A cache is useful because most tasks or applica-
tions display temporal locality and spatial locality . Temporal locality refers to the
near future. Spatial locality refers to using data stored near the current data. For this
reason, data load/store operations between the shared memory and the caches take
place using blocks of data. Cache memory is built using static random access
memory (SRAM) technology. SRAM is both fast and nonvolatile but also has limited
capacity since the number of transistors to store a bit varies between four and six.

 DRAM, or memory, is a slower memory but with a large capacity compared
with the cache. However, DRAM is considered extremely fast compared with the
mass storage disk drives. The problem with DRAM is its volatility. It loses all its
content due to current leakage even when power is applied. The entire memory
content must be refreshed every 1 millisecond or so. DRAM is slow because it is
built on a different chip and its large capacity dictates slow data access operations.
In summary DRAM constitutes the main memory of any processor. This memory is
inexpensive, slower than cache, but much faster than mass disk storage.

 The most inexpensive memory is mass disk storage, whether it uses magnetic
storage or optical storage as in CD, DVD, Blu - ray, and so on. Disk storage is inex-
pensive and has a large capacity. However, it is slow since it is based on mechanical
devices. A recent addition to disk storage is electronic disks based on fl ash memory
cards. This is usually referred to as solid state disk or fl ash drive. Relative to mag-
netic disks, fl ash drives are high - speed devices and are starting to have a consistently
large capacity. However, their speed does not match the processor speed since they
are off - chip memory. We are already seeing advances in fl ash memory, which pos-
sesses most of the desirable features of a memory. It is nonvolatile and fast, and its
capacity is increasing with advances in technology.

2.4 Using Memory Hierarchy 35

 2.4.1 Cache Memory Operation

 Communication between the main memory and the cache occurs in chunks of words
called blocks. Figure 2.4 shows the organization in the main memory and the cache
from the point of view of communicating between the two modules. Figure 2.4 a
shows that the main memory is organized in blocks having B words each. Each block
is addressed by a b - bit address so that memory is divided into 2 b blocks as far as
memory/cache interaction is concerned. Figure 2.4 b shows that the cache is orga-
nized in lines where each line contains a block from the main memory and an associ-
ated tag . The cache capacity is much smaller than the memory and it can store only
2 c lines. The tag stores the address of the block in memory corresponding to the line
in the cache. This way, a cache line is identifi ed with the corresponding memory
block.

 When the processor requires to read the data , it issues a read instruction and
generates the memory address of the word. If the word is in the cache, then we have
a cache hit and the word is delivered to the processor at a very high rate. If, however,
the processor does not fi nd the word it needs in the cache, then we have a cache
miss , and data access halts until the contents of the cache are updated from the main
memory. The block containing the word is fetched from the memory and loaded into
the cache. The desired word is forwarded to the processor. Communication between
cache and memory is performed over blocks of data and progresses at the speed of
the DRAM memory access.

 2.4.2 Cache Design

 We saw that processing speed is high as long as memory read/write operation con-
cerns data and instructions that are located in the cache. Things slow down consider-
ably if the data are not located in the cache. The design of cache memories is beyond

 Figure 2.4 Cache and memory organization. (a) Memory organization into blocks for
communicating with cache. (b) Cache organization into lines.

... ...

BlockTag

Line 0

1

2

2c– 1

(a)

B words

Block 0

2b– 1

1

2

...

(b)

36 Chapter 2 Enhancing Uniprocessor Performance

the scope of this book, and there are several excellent textbooks dealing with such
issues as References 18 and 19 . There are several factors that increase the chances
of cache hits, which include

 • cache size (2 c);

 • mapping technique to associate the address of a block in memory with the
address of a line in the cache;

 • cache replacement or update policy; this policy is concerned with choosing
blocks of memory to load into the cache and with removing lines from the
cache; and

 • using cache hierarchy, as will be discussed in the next section.

 2.4.3 Cache Hierarchy

 Cache memory communicates directly with the processor, and there is always the
need to increase the cache capacity to prevent the penalty of cache misses. Since
the memory hierarchy model proved very useful in providing the processor with the
best of the different storage technologies, it is now common to use the memory
hierarchy to construct a parallel model for cache hierarchy. Cache could be organized
in different levels. Figure 2.5 shows the different cache levels used to construct a
cache hierarchy. Level 1 cache (L1) is an on - chip cache, which is very fast but has
a small capacity. This is indicated by the thick line connecting the CPU and the L1
cache. Level 2 (L2) cache is slower than L1 cache since it is off - chip but has a larger
capacity. Such memory is built using fast SRAM technology but has a larger capacity
compared with the smaller L1 cache.

 2.4.4 Mapping Memory Blocks into Cache Lines

 A mapping function establishes a correspondence between the main memory blocks
and the lines in the cache [19] . Assume we have a memory of size 64 K — that is,

 Figure 2.5 Cache hierarchy .

CPU

L1 Cache

Electronic Disk
(Flash)

Magnetic Disk

Registers

Optical Disk
(DVD)

RAM (DRAM)

L2 Cache

Microprocessor

2.4 Using Memory Hierarchy 37

the memory address line has 16 bits. Figure 2.6 shows how data are addressed in
memory. Figure 2.6 a is the case when the memory is organized into words and a
memory address specifi es a specifi c word in memory. Sixteen bits are required to
specify and access a specifi c word in the memory.

 Figure 2.6 b is the case when the memory is organized into blocks and a memory
address specifi es a specifi c block in memory. Assume that each block contains 16
words. The 16 address bits are now broken down into two fi elds: the most signifi cant
12 bits are required to specify and access a specifi c block in the memory. The remain-
ing least signifi cant 4 bits specify a word in a given block.

 Now assume we have a cache memory that can accommodate 128 blocks. In
that case, 7 bits are needed to specify the location of a line in the cache. Now we
need a mapping function that picks a block from the memory and places it at some
location in the cache. There are three mapping function choices:

 1. Direct mapping

 2. Associative mapping (also known as fully associative mapping)

 3. Set - associative mapping

 Direct Mapping

 In direct mapping, we take the 12 - bit address of a block in memory and store it in
the cache based on the least signifi cant 7 bits as shown in Fig. 2.7 . To associate a
line in the cache with a block in the memory, we need 12 bits composed of 7 bits
for address of the line in the cache and 5 tag bits.

 Now we see that a line in the cache corresponds to 32 blocks from the main
memory, which correspond to the 5 - bit tag address. This is because there are exactly

 Figure 2.6 Main memory. (a) Organized into words. (b) Organized into blocks.

Word 0
Word 1

Word 216– 1

...

16 bits
Word

Block 0

...

Block 1

Block 212– 1

12 bits

WordBlock

4 bits

)b()a(

38 Chapter 2 Enhancing Uniprocessor Performance

32 blocks in the main memory whose least signifi cant 7 bits are all identical out of
the 12 - bit line address.

 2.4.5 Associative Mapping

 In associative or fully associative mapping, we place the block of memory in any
available location in the cache, in this case, the tag is used to associate a block with
a line as shown in Fig. 2.8 . To associate a line in the cache with a block in the
memory, we need 12 bits composed of the 12 tag bits (Fig. 2.8) .

 2.4.6 Set - Associative Mapping

 Set - associative mapping could be thought of as a combination of direct and associa-
tive mapping. We divide the cache into 2 m sets and associate a block to a set based
on the m least signifi cant bits of the block address bits. The block is mapped to any
empty location in the set. For a cache with capacity of 128 blocks, if we divide the
cache into 32 sets, we would be able to store four blocks per set. The breakdown of
the 12 - bit block address is shown in Fig. 2.9 . To associate a line in the cache with
a block in the memory, we need 12 bits composed of 5 bits for the address of the
set in the cache and 7 tag bits.

 Figure 2.7 Direct - mapped
cache.

12 bits

Tag Word Block

4 bits7 bits5 bits

16 bits

 Figure 2.8 Associative
mapped cache.

12 bits

Tag Word

4 bits12 bits

16 bits

 Figure 2.9 Set - associative
mapped cache for the case of
dividing the cache into 32 sets.

12 bits

Tag Word Set

4 bits5 bits7 bits

16 bits

2.5 Pipelining 39

 2.4.7 Effects of Cache Size on Cache Misses

 Cache misses can be classifi ed into three categories (the three Cs) [20] :

 Compulsory misses: caused when a block is initially required but has never been
loaded into the cache. This type of cache miss is also called cold - start miss .
Cache size has no effect on compulsory misses.

 Capacity misses. Caused when the cache cannot hold the blocks needed during
the execution of a program. In that case, blocks are replaced then later loaded
back into the cache. Capacity misses are reduced by enlarging the cache size.

 Confl ict misses: Occur in set - associative or direct - mapped caches when the
cache cannot accommodate the blocks in a set. Such misses would not have
occurred in a fully associative cache. Confl ict misses are also called collision
misses . Confl ict misses are reduced by increasing the associativity or by
increasing the number of lines to map to in the cache. This can be accom-
plished either by increasing the cache size or by reducing the block size.

 2.5 PIPELINING

 Pipelining is a very effective technique for improving system throughput, which is
defi ned as the rate of task completion per unit time. This technique requires two
conditions to be effective:

 1. It is desired to implement several instances of a task

 2. Each task is divisible into several subtasks.

 An often quoted example of successful pipelining is car manufacture. We note that
this satisfi es the two requirements of pipelining: we have many cars to manufacture
and the manufacture of each car requires manufacture of several components.

 A pipeline executes a task in successive stages by breaking it up into smaller
tasks. It is safe to assume that a smaller task will be completed in a shorter time
compared to the original task. As explained above, the idea of a pipeline is to execute
a serial task using successive pipeline stages and placing registers between the stages
to store the intermediate results.

 2.5.1 Estimating Pipeline Speed

 Figure 2.10 shows a general organization of a pipeline where the C / L blocks indicate
combinational logic blocks composed of logic gates. The Reg blocks indicate edge -
 triggered registers to store intermediate results. The speed of that pipeline depends
on the largest combinational logic delay of the C / L blocks. Figure 2.11 shows how
the clock speed of the pipeline is calculated. The fi gure illustrates several delays:

 T C / L : delay through the C / L blocks

 τ setu p : setup delay for data at the input of a register

 τ d : delay of data through a register.

40 Chapter 2 Enhancing Uniprocessor Performance

 The formula for estimating the clock frequency is given by

 Clock frequency =
1

Tclk

 (2.9)

 T Tclk C L= + + +/ ,max ,2τ τ τskew d setup (2.10)

where T C / L ,max is the maximum delay of the combinational logic blocks, τ skew is the
maximum expected clock skew between adjacent registers, and τ setup is the setup
time for a register.

 A classic example of pipelining is in the way a computer executes instructions.
A computer instruction goes through four steps :

 1. Fetch the instruction from the cache and load it in the CPU instruction reg-
ister (IR).

 2. Decode the contents of the IR using decoding logic in order to control the
operations performed by the ALU or the datapath.

 3. Execute the instruction using the data supplied to the ALU/datapath inputs.

 4. Write the result produced by the ALU into the accumulator, registers, or
memory.

 Figure 2.10 General structure for pipeline processing.

C/L Reg C/L Reg C/L Reg

clk clk clk

 Figure 2.11 Estimating clock speed for a pipeline based on pipeline delays. (a) One stage of a
pipeline. (b) Signal delays due to the registers and combinational logic blocks.

D4

Clock

TC/L,max
setup

setup

Reg C/L Reg

clk clk

D3D2D1

D4

D3

D2

D

τ

τ

τ

τ

1

d

d

Tclk

(a) (b)

2.5 Pipelining 41

 The above steps are dependent and must be executed serially in the order indi-
cated above. We cannot reverse the order or even do these steps in parallel (i.e.,
simultaneously). So, without pipelining, the processor would need three clock cycles
per instruction. We can see that processing computer instructions satisfi es the pipe-
line requirements: we have several instructions and each instruction is divisible into
several serial subtasks or stages.

 A serial implementation of the above tasks is shown in Fig. 2.12 . We see
that the fetch operation of the next instruction can only start after all the opera-
tions associated with the current instruction are completed. Now we can show
a sketch of a pipeline to process computer instructions as shown in Fig. 2.13 .
Instruction processing could be looked at in more detail than implied by the
above processing stages. A nice discussion of the instruction cycle can be found in
Reference 18 .

 Now let us see how this pipeline can speed up the instruction processing. Figure
 2.14 shows the instruction pipeline during program execution. Each row in the fi gure
shows the activities of each processing stage during the successive clock cycles.
So, the fi rst row shows the contents of the IR after each fetch operation. The second
row shows the instructions being decoded at the different clock cycles. The
third row shows the instructions being executed by the ALU during each clock cycle
as well as storing the result in a register. If we trace each instruction through the
pipeline stages, we conclude that each instruction requires three clock cycles to be
processed. However, we also note that each hardware unit is active during each clock
cycle as compared to Fig. 2.12 . Therefore, the pipeline executes an instruction at
each clock cycle, which is a factor of three better than serial processing. In general,

 Figure 2.12 Time needed for the serial processing of a computer instruction.

Clock cycles

...Instruction i
Fetch, decode, execute, write

Instruction i+1
Fetch, decode, execute, write

 Figure 2.13 Instruction pipeline processing.

Instruction
Cache

IR
Instruction

Decoder
Reg

clk clk

Datapath/ALU

Fetch Decode Execute

Reg

clk

Write

42 Chapter 2 Enhancing Uniprocessor Performance

when the pipeline is running with data in every pipeline stage, we expect to process
one instruction every clock cycle. Therefore, the maximum speedup of a pipeline is
 n , where n is the number of pipeline stages.

 There is one problem associated with using pipelining for processing computer
instructions. Conditional branching alters the sequence of instructions that need to
be executed. However, it is hard to predict the branching when the instructions are
being executed in sequence by the pipeline. If the sequence of the instructions needs
to be changed, the pipeline contents must be fl ushed out and a new sequence must
be fed into the pipeline. The pipeline latency will result in the slowing down of the
instruction execution.

 Now we turn our attention to showing how pipelining can increase the through-
put of the ALU/datapath. We use this topic to distinguish between pipelining and
parallel processing. We can use the example of the inner product operation often
used in many digital signal processing applications. Inner product operation
involves multiplying several pairs of input vectors and adding the results using an
accumulator:

 d a bi i
i

N

= ×
=

−

∑
0

1

. (2.11)

 As mentioned before, the above operation is encountered in almost all digital
signal processing algorithms. For example, the fi nite impulse response (FIR) digital
fi lter algorithm given by the following equation is an example of an inner product
operation (sure, it is convolution, but we are assuming here the shifted samples are
stored as a vector!):

 y i a j x i j i
j

N

() () () .= − ≥
=

−

∑
0

1

0 (2.12)

 Figure 2.14 Pipeline processing of computer instructions during program execution.

Fetch

Decode

Execute/
Write

0 1 2 3

0 1 2

0 1

Clock Cycles

0 1 3 4 52

4 5

3 4

2 3

...

...

...

2.5 Pipelining 43

 We can iteratively express evaluation of y (i) in the form

y i

y i k y i k a k x i k k N

y i y i N

(,)

(,) (,) () ()

() (,).

− =
= − + − ≤ <
= −

1 0

1 0

1

 (2.13)

 The operation in Eq. 2.13 is often referred to as the multiply/accumulate (MAC)
operation. Again, this operation is so important in digital signal processing that there
are special MAC instructions and hardware to implement it. The FIR algorithm satis-
fi es pipelining requirements: we have several tasks to be completed, which are the
repeated MAC operations. Also, each MAC operation can be broken down into two
serial subtasks: the multiply followed by the add operations.

 Figure 2.15 shows how we can implement each MAC iterative step using paral-
lel or pipelined hardware. In this diagram, we assumed that we are using a parallel
multiplier to effect the multiplication operation. The parallel implementation of Fig.
 2.15 a shows that the multiply and add operations are done in the same clock cycle
and the adder output is used to update the contents of the accumulator. The clock
period or time delay for these two operations is given by

 T T Tmac mult addparallel() = + . (2.14)

 Assuming that the parallel multiplier delay is double the adder delay, the above
equation becomes

 T Tmac addparallel() .= 3 (2.15)

 Now consider the pipelined MAC implementation Fig. 2.15 b. The output of the
multiplier is stored in a register before it is fed to the adder. In that case, the clock
period is determined by the slowest pipeline stage. That stage is the multiplier and
our clock period would be given by

 T Tmac addpipeline() 2= . (2.16)

 In effect, the pipelined design is approximately 30% faster than the parallel
design. We should point out before we leave this section that many hardware design

 Figure 2.15 Multiply/accumulate (MAC) implementation options. (a) Parallel implementation.
(b) Pipelined implementation.

M
ul

ti
pl

ie
r

A
dd

er

A
cc

um
ul

at
or

clk

M
ul

ti
pl

ie
r

A
dd

er

A
cc

um
ul

at
or

clk

R
eg

clk

(a) (b)

44 Chapter 2 Enhancing Uniprocessor Performance

innovations are possible to obtain much better designs than those reported here. The
interested reader could refer to the literature such as References 21 – 23 .

 2.6 VERY LONG INSTRUCTION WORD
(VLIW) PROCESSORS

 This technique is considered fi ne - grain parallelism since the algorithm is now paral-
lelized at the instruction level, which is the fi nest level of detail one could hope to
divide an algorithm into. A VLIW implies that several instructions or opcodes are
sent to the CPU to be executed simultaneously. Picking the instructions to be issued
in one VLIW word is done by the compiler. The compiler must ensure that there is
no dependency between the instructions in a VLIW word and that the hardware can
support executing all the issued instructions [20] . This presents a potential advantage
over instruction pipelining since instruction scheduling is done before the code is
actually run .

 Figure 2.16 illustrates a processor that uses VLIW to control the operation of
two datapath units. Figure 2.16 a shows the schematic of the processor where the
VLIW contains two instructions. Each instruction is used to control a datapath unit.
Figure 2.16 b shows the content of the VLIW word at different processing cycles.
The fi gure is based on the ones presented in References 18 and 24 . Each row rep-
resents a VLIW word issue. The vertical axis represents the machine cycles. A gray
box indicates an instruction within the VLIW word and an empty box indicates a
no - op. A no - op instruction is used when the compiler is unable to resolve the depen-
dency among the instructions or datapath availability.

 Figure 2.16 A VLIW word containing two instructions to independently control two datapath units
in the same processor. (a) Schematic. (b) VLIW content at different processor cycles.

Instruction 1 Instruction 2

Datapath 1 Datapath 2

VLIW Instruction

Processing
Cycle

(a) (b)

2.7 Instruction-Level Parallelism (ILP) and Superscalar Processors 45

 2.7 INSTRUCTION - LEVEL PARALLELISM (ILP) AND
SUPERSCALAR PROCESSORS

 A superscalar processor is able to simultaneously execute several instructions from
independent instruction pipelines [18] . Superscalar processors have a dynamic
scheduler that examines the instructions in the instruction cache/memory and decides
which ones to be issued to each instruction pipeline. Dynamic scheduling allows
out - of - order instruction issue and execution. Figure 2.17 shows a general organiza-
tion of a three - way superscalar processor where the processor contains three instruc-
tion pipelines operating on three independent datapath units. A superscalar computer
has several instruction pipelines and datapath units that can work in parallel to
execute instructions issued to them from the CPU . Using this technique, the instruc-
tion execution rate will be greater than the clock rate. For a three - way superscalar
architecture with an instruction pipeline, up to three instructions could be executed
per clock cycle.

 The instruction pipeline for a two - way superscalar processor shown in Fig. 2.18 ,
which is a modifi cation of Fig. 2.14 , indicates the fact that we now have two instruc-
tion pipelines.

 Figure 2.17 General organization of
a three - way superscalar processor.

Datapath 1

Instruction
pipeline 1

Datapath 2

Instruction
pipeline 2

Datapath 3

Instruction
pipeline 3

 Figure 2.18 Instruction pipelines for a two - way superscalar processor.

Fetch

Decode

Execute/
Write

0 1 2 3

0 1 2

0 1

Clock Cycles

0 1 3 4 52

4 5

3 4

2 3

...

...

...

0 1 2 3 4 5

0 1 2 3 4

0 1 2 3

46 Chapter 2 Enhancing Uniprocessor Performance

 At this point, it is worthwhile to explain the difference between VLIW and
superscalar processors. Both techniques rely on the presence of several ALUs to
perform several operations in parallel. The main difference lies in how the instruc-
tions are issued. Figure 2.19 shows the fl ow of program instructions starting from
the compilation stage all the way to the instruction execution by the parallel ALUs
for VLIW and superscalar processors.

 The key idea in superscalar processors is the ability to execute multiple instruc-
tions in parallel. Compilation and hardware techniques are used to maximize the
number of instructions that can be used issued in parallel. However, there are limita-
tions to achieving this level of speedup [3, 18, 20, 25] :

 • True data dependencies

 • Procedural dependencies

 • Resource confl icts

 • Output dependencies

 • Antidependencies

 2.7.1 True Data Dependency: Read after Write (RAW)

 RAW implies that instruction i should read a new value from a register after another
instruction j has performed a write operation.

 Assume instruction I 0 produces some result and instruction I 1 uses that result.
We say that I 1 has true data dependency on I 0 and the execution of I 1 must be delayed
until I 0 is fi nished. We can represent this true data dependency or dependence as
shown in Fig. 2.20 a. The fi gure shows that I 0 reads its input arguments from registers

 Figure 2.19 Comparing program execution on VLIW and superscalar processors. (a) VLIW
processor. (b) Superscalar processor.

Compiler
Program
Memory

ALU 1

Instruction Pipeline

ALU 2

(a)

Compiler
Program
Memory

Instruction Pipeline 1

ALU 1

Instruction Pipeline 2

ALU 2

(b)

Dynamic
Scheduler

2.7 Instruction-Level Parallelism (ILP) and Superscalar Processors 47

 R 0 and R 1 and the output result is stored in R 2 . If I 0 is a load from memory instruc-
tion, then it might have a large delay or latency . In that case, the execute phase of
 I 1 would have to be delayed by more than one clock cycle.

 2.7.2 Procedural Dependencies

 A major problem with computer instructions is the presence of branch instructions.
Figure 2.21 shows the instruction pipeline has two instructions I 0 and I 1 . However,
 I 1 is a branch instruction and it is not possible to determine which instruction to
execute until I 1 produces its output. Therefore, the fetch phase of the next instruction
has to be delayed as shown in Fig. 2.21 .

 2.7.3 Resource Confl icts

 A resource confl ict arises when two or more instructions require the same processor
resource. Examples of shared processor resources are memory, cache, buses, register
fi le, and so on. A resource confl ict is resolved when the execution of the competing
instructions is delayed. Figure 2.20 can be used to visualize the effect of resource
confl ict on the instruction pipeline. One should note that, unlike true data dependen-
cies, a resource confl ict can be eliminated by duplicating the shared resource.
This might be an expensive or impractical solution. For example, eliminating

 Figure 2.20 True data dependency between two instructions. (a) Dependence graph. (b) Pipeline
processing of the two instructions.

R0

I0

I1

I0 Fetch Decode
Execute/

Write

I1

(a) (b)

R3

R2

R1

R4

Fetch Decode
Execute/

Write

 Figure 2.21 Procedural dependency.

I0

I1 Branch

I2

I3

Fetch Decode
Execute/

Write

Fetch Decode
Execute/

Write

Fetch Decode
Execute/

Write

Fetch Decode
Execute/

Write

48 Chapter 2 Enhancing Uniprocessor Performance

fl oating - point unit confl icts might involve designing two fl oating - point units associ-
ated with each ALU. This might require a small amount of silicon real estate. Cache
confl icts might be eliminated by designing a dual - ported cache or duplicating the
cache. Both these options might not be practical though.

 2.7.4 Output Dependencies: Write after Write (WAW)

 WAW implies that instruction i writes an operand after instruction j has written
another operand in the register. The sequence is important since the register
should contain the value written by instruction j after both instructions i and j have
fi nished an execution.

 An output dependency occurs when two instructions, I 0 and I 1 , store their output
result in the same register. In that case, the register content at a given time depends
on which instruction fi nished last, I 0 or I 1 . We illustrate this using the following
register transfer language (RTL) code fragment where op indicates any binary opera-
tion [18] requiring two input registers:

 I 0 : R 0 ← R 0 op R 1

 I 1 : R 2 ← R 0 op R 2

 I 2 : R 0 ← R 3 op R 4

 I 3 : R 5 ← R 0 op R 5

 Figure 2.22 shows the dependence graph of the instructions. The fi gure shows
two instances of true data dependencies : I 1 depends on I 0 and I 3 depends on I 2 .
Instructions I 0 and I 2 show output dependency since both instructions store their
results in register R 0 . The sequence of instructions as they are written in the RTL
code fragment above indicates that our intention is that I 1 uses the content of R 0 after
instruction I 0 is completed. Similarly, instruction I 3 uses the content of R 0 after I 2 is
completed. We must ensure that I 2 starts its execution phase after I 0 has fi nished its
execution phase.

 2.7.5 Antidependencies: Write after Read (WAR)

 WAR implies that instruction i writes an operand after instruction j has read the
contents of the register. Antidependency is illustrated with the help of the RTL code

 Figure 2.22 Output dependency.

R0

I0

I1

R0

R2

R1

R2

R3

I2

I3

R0

R5

R4

R5

2.8 Multithreaded Processor 49

fragment used to explain output dependencies as shown in Fig. 2.22 . We note here
that instruction I 1 uses content of register R 0 as an input operand. We must ensure
that I 1 completes its execution before I 2 begins its execution so that the content of
 R 0 is not disturbed while I 1 is using it.

 2.8 MULTITHREADED PROCESSOR

 As defi ned at the start of this chapter, a thread is a portion of a program that shares
processor resources with other threads. A multithreaded processor is a processor
capable of running several software threads simultaneously. Of course, a simple
processor has only one ALU and can manage to run one thread at a time. Ungerer
et al. [24] provide a comprehensive discussion on threads. Figure 2.23 a shows the
case of a simple processor running an OS that allows running only one thread. We
see in the fi gure the situation when the thread T 0 stalls, such as due to waiting for a
memory access or a cache miss. Of course, the program execution halts until the
memory access has been completed. Figure 2.23 b shows the case of a single proces-
sor running an OS that supports multithreading. Two threads, T 0 and T 1 , are available.
The OS schedules T 0 for execution and when T 1 stalls, thread T 1 is immediately
loaded and runs until T 0 is ready to resume. In such a case, a preemptive OS sched-
uler is assumed where the execution of T 1 is stopped when T 0 is ready to resume
operation.

 Figure 2.23 c shows the case of a two - way superscalar processor running an OS
that allows running only one thread. We see in the fi gure that thread T 0 is now
running on the two ALUs assuming data dependencies have been resolved.

 Figure 2.23 d shows the case of a two - way superscalar processor running a
multithreaded operation. We see in the fi gure that thread T 0 is now running on the
two ALUs assuming data dependencies have been resolved. When T 0 stalls, thread
 T 1 is switched and starts running until T 0 is ready to resume again.

 Figure 2.23 Multithreading in a single processor. (a) Single processor running a single thread.
(b) Single processor running several threads. (c) Superscalar processor running a single thread.
(d) Superscalar processor running multiple threads.

T0 T0 T0 T0T0
T0 T0 T0 T1 T1 T0

T0

T1
(a) (b)

T0 T0 T0T0

T0 T0 T0 T1 T1 T1
T0

T1

(c) (d)

T0 T0 T0
T0 T0 T0 T1 T1 T1

50 Chapter 2 Enhancing Uniprocessor Performance

 2.9 PROBLEMS

 2.1. Estimate how long a given program will take to be executed given the following pro-
cessor parameters:

 • Number of instructions in the program (I)

 • Number of clock cycles needed to execute an instruction (C)

 • The clock period T

 2.2. How many instructions per second are produced by the processor in Problem 2.1? This
is referred to as the instruction throughput.

 2.3. Moore ’ s law traces the number of transistors on a chip versus the year of introduc-
tion. Obtain a plot of the number of transistors in a CPU starting around 1970 – 2010.

 2.4. Repeat Problem 2.3 for CPU clock speed.

 2.5. Repeat Problem 2.3 for CPU power consumption.

 2.6. This problem is based on concepts from Patterson and Hennessy 20 . For a given pro-
cessor, there are four instruction classes where each instruction requires a different
number of clock cycles according to the following table:

 Instruction class Clock cycles per instruction (CPI)
 I 1 1
 I 2 2
 I 3 3
 I 4 4

 A program was found to contain the following proportion of instruction classes:

 Instruction class Percentage (%)
 I 1 40
 I 2 25
 I 3 20
 I 4 15

 What is the average CPI for this processor?

 2.7. The parallel implementation of the binary multiplication operation was shown as a
directed acyclic graph (DAG). Can you obtain different pipeline structures based on
that graph?

 2.8. Write down the modifi ed booth algorithm.

 2.9. Draw a block diagram for the serial modifi ed booth algorithm.

 2.10. Draw a block diagram for the parallel modifi ed booth algorithm.

 2.11. Obtain a pipelined structure for the modifi ed booth algorithm.

 2.12. It is required to design a pipeline to perform the inner product operation between two
vectors of length n . Discuss the pipeline design options and the operating speed of the
pipeline.

 2.13. Explain why multithreading improves the performance of a uniprocessor.

 2.14. What are the factors that limit the performance of a superscalar processor?

 2.15. Explain the meaning of the following acronyms:

 • RAW

 • WAW

 • WAR

2.9 Problems 51

 2.16. Explain the different types of cache misses and how each one can be reduced.

 2.17. Assume a direct - mapped cache memory where n is the number of address bits for the
memory, n 1 is the number of address bits for each block in the memory, and n 2 is the
number of address bits for each block in the cache.

 (1) What is the number of words in the memory?

 (2) What is the number of blocks in the memory?

 (3) What is the number of blocks in the cache?

 (4) What is the number of words in a block?

 (5) What is the number of words in the cache?

 2.18. A cache memory has a capacity B block but actually contains b . What is the confl ict
miss probability for the three types of block mapping strategies?

 Chapter 3

Parallel Computers

 3.1 INTRODUCTION

 Algorithms and multiprocessing architectures are closely tied together. We cannot
think of a parallel algorithm without thinking of the parallel hardware that will
support it. Conversely, we cannot think of parallel hardware without thinking of the
parallel software that will drive it. Parallelism can be implemented at different levels
in a computing system using hardware and software techniques:

 1. Data - level parallelism , where we simultaneously operate on multiple bits of
a datum or on multiple data. Examples of this are bit - parallel addition, mul-
tiplication, and division of binary numbers, vector processors, and systolic
arrays for dealing with several data samples.

 2. Instruction - level parallelism (ILP) , where we simultaneously execute more
than one instruction by the processor. An example of this is use of instruction
pipelining.

 3. Thread - level parallelism (TLP). A thread is a portion of a program that shares
processor resources with other threads. A thread is sometimes called a light-
weight process. In TLP, multiple software threads are executed simultane-
ously on one processor or on several processors.

 4. Process - level parallelism. A process is a program that is running on the
computer. A process reserves its own computer resources, such as memory
space and registers. This is, of course, the classic multitasking and time -
 sharing computing where several programs are running simultaneously on
one machine or on several machines.

 3.2 PARALLEL COMPUTING

 We attempt in this section to show the different design options available to construct
a parallel computer system. The most famous processor taxonomy was proposed by
Flynn [26] based on the data and the operations performed on this data:

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

53

54 Chapter 3 Parallel Computers

 1. Single instruction single data stream (SISD). This is the case of the single
processor.

 2. Single instruction multiple data stream (SIMD). All the processors execute
the same instruction on different data. Each processor has its own data in a
local memory, and the processors exchange data among themselves through
typically simple communication schemes. Many scientifi c and engineering
applications lend themselves to parallel processing using this scheme.
Examples of such applications include graphics processing, video compres-
sion, medical image analysis, and so on.

 3. Multiple instruction single data stream (MISD). One could argue that neural
networks and data fl ow machines are examples of this type of parallel
processors.

 4. Multiple instruction multiple data stream (MIMD). Each processor is running
its own instructions on its local data. Examples of such parallel processors are
multicore processors and multithreaded multiprocessors in general.

 Flynn ’ s classifi cation is a bit coarse, and we would like to explore more the
space of parallel computers, which comprises the SIMD and MIMD categories, in
more detail. The issue of synchronization among processors was not part of the
classifi cation criteria used by Flynn. Instead of exploring alternative classifi cation
schemes, we discuss in this chapter the different parallel computer architectures most
commonly used. We should point out that the last type of processor is the one that
is fast becoming a popular processing system:

 • Shared - memory multiprocessors

 • Distributed - memory multiprocessors

 • SIMD processors

 • Systolic processors

 • Cluster computing

 • Grid computing

 • Multicore processors

 • Streaming multiprocessor (SM)

 3.3 SHARED - MEMORY MULTIPROCESSORS (UNIFORM
MEMORY ACCESS [UMA])

 Shared - memory processors are popular due to their simple and general programming
model, which allows simple development of parallel software that supports sharing
of code and data [27] . Another name for shared memory processors is parallel
random access machine (PRAM). The shared - memory or shared - address space is
used as a means for communication between the processors. All the processors in
the shared memory architecture can access the same address space of a common
memory through an interconnection network as shown in Fig. 3.1 a. Typically, that
interconnection network is a bus, but for larger systems, a network replaces the bus

3.3 Shared-Memory Multiprocessors (Uniform Memory Access [UMA]) 55

to improve performance. The performance we are referring to is the amount of
processor/memory accesses that can be performed per unit time (throughput) and
the time delay between a processor requesting memory access and the time when
that request is granted (delay). Examples of the types of interconnection networks
and their performance analysis can be found in Reference 28 .

 We can immediately see that the memory bandwidth becomes the system
bottleneck since only one processor can access the memory at a given time. To get
around this problem, the confi guration in Fig. 3.1 b replaces the bus with an intercon-
nection network that allows more than one processor to simultaneously access the
network. The confi guration also replaces the single memory module with a bank of
memories. This allows more than one memory read/write operation to take place
simultaneously.

 Another problem common to shared memory systems, and parallel computers
in general, is cache coherence, where any information present in the shared memory
must agree with all the copies that might be present in the local caches of the dif-
ferent CPUs. Cache coherency protocols are used to ensure the cache coherence
among the processors [20] .

 In a shared - memory multiprocessor, any processor can access any memory
module. Figure 3.1b shows the shared memory multiprocessor architecture. Having
several memory modules allows several processors to access several memory
modules simultaneously. This increases the memory bandwidth subject of course to
the interconnection network limitations and memory collisions. A memory collision
occurs when more than one processor attempts to access the same memory module.
The main problem with any memory module design is that it typically has one access
port. So, no matter how large the memory module is, only one data word can be
accessed at any given time.

 In shared memory multiprocessors, each processor sees only one memory
address space and it takes the same amount of time to access any memory module.
This is referred to as UMA multiprocessor system. In many shared memory multi-
processors, the interconnection network is a simple bus. This is the case of dual and
quad Pentium processors.

 Figure 3.1 Shared - memory multiprocessor architecture (PRAM). (a) The processors are connected
to the shared memory using a single bus. (b) The processors and memory modules are connected using
an interconnection network .

M

P P P P

Memory

Processors

M M MM

P P P P

Interconnection
Network

Memory

Processors

)b()a(

System Bus

56 Chapter 3 Parallel Computers

 Developing parallel programs for shared memory multiprocessors is not too
diffi cult since all memory read operations are invisible to the programmer and could
be coded the same as in a serial program [3] . Programming write instructions are
relatively more diffi cult since this operation requires locking the data access until a
certain thread has fi nished processing the data. The programmer has to identify the
 critical sections in the program and introduce interprocess and interthread synchro-
nization to ensure data integrity. Programming libraries like POSIX and directives
like OpenMP support synchronization through barriers, locks, monitors, mutex, and
semaphores.

 A problem encountered in shared memory multiprocessor systems is cache
coherence. Typically, a processor keeps a copy of the data in a memory module in
its own cache. Now, if another processor changes the contents of the block in the
memory module, then the cache content is out of date. A cache update policy must
be implemented to ensure that all cache copies at the processors are updated.

 Synchronization issues must also be implemented to ensure that writing and
reading data by more than one processor do not confl ict. Semaphores, mutex, and
monitors are typically used to ensure data integrity. Chapter 4 discusses shared
memory processors in more detail.

 3.4 DISTRIBUTED - MEMORY MULTIPROCESSOR
(NONUNIFORM MEMORY ACCESS [NUMA])

 In a distributed - memory multiprocessor, each memory module is associated with
a processor as shown in Fig. 3.2 . Any processor can directly access its own memory.
A message passing (MP) mechanism is used in order to allow a processor to access
other memory modules associated with other processors. Message passing interface
(MPI) is a language - independent communication protocol.

 In that sense, memory access by a processor is not uniform since it depends on
which memory module the processor is trying to access. This is referred to as a
NUMA multiprocessor system.

 If the distributed - memory multiprocessor is composed of identical processors,
we say that this is a symmetric multiprocessor (SMP). If the distributed - memory
multiprocessor is composed of heterogeneous processors, we say that this is an
asymmetric multiprocessor (ASMP).

 When the interconnection network of the distributed - memory multiprocessor is
global, such as the Internet, then the distributed memory system is usually composed

 Figure 3.2 Distributed - memory multiprocessor
architecture. M M MM

P P P P

Interconnection
Network

Memory

Processors

3.6 Systolic Processors 57

of thousands of computers all collaborating to solve huge scientifi c problems, and
the system is called by different names such as massively parallel computing, dis-
tributed computing, or grid computing.

 3.5 SIMD PROCESSORS

 SIMD could be classifi ed as a special case of single program multiple data stream
(SPMD) [29] . SIMD processors could belong to the class of shared memory multi-
processing system or distributed - memory multiprocessing system. SIMD machines
built using shared memory are suited to applications that require frequent exchange
of data where one processor acts as the producer of new data and many other proces-
sors act as the consumer of this data.

 Each processor executes the same task in synchrony with the other processors.
The task being executed could be a simple instruction, a thread, or a process.
Distributing the memory among the processors reduces the memory bandwidth
problem.

 Many applications lend themselves to the SIMD processing model as long as
the application is parallelizable. Applications include bioinformatics, biomedical
diagnosis, fl uid dynamics, image processing, and video processing. SIMD provides
the ability to dramatically boost the performance of an application. Some computer
manufacturers are adding SIMD extensions to their processors and can run existing
applications without the need for recompilation. It is also easy - to - learn programming
modifi cations that utilize SIMD architectures such as the Intel C + + parallel explora-
tion compiler.

 An example of a parallel algorithm that is suited to the shared memory model
of SIMD is recursive fi lters described by the equation

 y i a j x i j b j y i j
j

N

() () () () () ,= − − −[]
=

−

∑
0

1

 (3.1)

where a (j) and b (j) are the fi lter coeffi cients and N is the fi lter order or length. Note
that b (0) = 0 in the above equation. All the processors implement the above equation
(single instruction/program) but on different input data. Processor i would be in
charge of producing fi lter output sample y (i) and N other processors would need to
read this value for their own calculations.

 When the algorithm granularity is coarse, SIMD machines would be called
SPMD machines.

 3.6 SYSTOLIC PROCESSORS

 Many authors state that systolic processors are pipeline systems. Truth of the matter
is that pipeline processing is a special case of systolic processing. As we have seen
in Chapter 2 , a pipeline is one - dimensional and data fl ow is one - directional. A typical
pipeline transmits data between adjacent stages. Systolic arrays could be one - , two - ,
or three - dimensional, or even higher if deemed necessary. Data fl ow among the

58 Chapter 3 Parallel Computers

adjacent processors along one or more directions. In a pipeline system, each pipeline
stage performs a different task. In a systolic processor, all processing elements (PEs)
usually perform the same task.

 Typically, the interconnection pattern among the PEs is neighbor to neighbor
and possibly some global interconnections. Each PE has a small memory to store
data and intermediate results. systolic architectures are suited to implement algo-
rithms that are highly regular with simple data dependencies. Examples of these
algorithms include

 1. linear algebra, for example, matrix – matrix and matrix – vector multiplication,
and solving systems of linear equations;

 2. string search and pattern matching;

 3. digital fi lters, for example, one - , two - , and three - dimensional digital fi lters;

 4. motion estimation in video data compression; and

 5. fi nite fi eld operations, such as elliptic curve operations.

 Figure 3.3 shows an example of a simple SIMD processor used to implement
a matrix – matrix multiplication algorithm. From the fi gure, we see that the matrix
coeffi cients are stored in the PEs in a distributed memory fashion. We also see that
communication between processors is neighbor to neighbor as indicated by the verti-

 Figure 3.3 Systolic processor for the matrix multiplication algorithm.

4, 0 4, 1 4, 2 4, 3

3, 0 3, 1 3, 2 3, 3

2, 0 2, 1 2, 2 2, 3

1, 0 1, 1 1, 2 1, 3

0, 0 0, 1 0, 2 0, 3

0 0 0 0

M1(i, 0) M1(i, 1) M1(i, 2) M1(i, 3)

Input Data Lines

Output Data Lines

3.6 Systolic Processors 59

cal arrows and by using global wires as indicated by the horizontal lines. Input data
must mainly be supplied to the processors on the left edge. Output data are obtained
from the processors at the top edge.

 Some design issues associated with systolic architectures are the following:

 1. A systolic processor is designed to implement a specifi c algorithm. It must
be redesigned to implement a different algorithm. Even while implementing
the same algorithm, a change in the problem size might require a major
redesign of the system.

 2. Supplying a large amount of input data to several processors is a serious
constraint on the system input/output (I/O) bandwidth. In a one - dimensional
systolic processor, inputs are usually fed to one processor then pipelined to
the other processors. At other times, inputs are fed to the PEs through a
broadcast bus or to all the PEs at one edge of the PE array. This could trans-
form the performance of the systolic processor to an I/O - bound performance.
Redundant arrays of inexpensive disks (RAIDs) can be used to provide mass
storage with a large memory bandwidth. This concept can be applied to a
bank of fl ash memory as opposed to magnetic disks.

 3. Obtaining a large amount of output data from several processors is a serious
constraint on the system I/O bandwidth The outputs could be obtained from
one processor, from a bus connected to all the processors or from one edge
of the PE array. Again, RAIDs can be used to provide mass storage with a
large memory bandwidth.

 Before we leave this section, it is worthwhile to compare systolic processors with
SIMD processors since both types run a single instruction on multiple data on the
surface. Table 3.1 compares SIMD and systolic array processors from different
perspectives related to architecture, memory, and task granularity.

 Table 3.1 Comparing SIMD and Systolic Processors

 Feature SIMD Systolic

 Interconnection network Any type Neighbor to neighbor plus some
buses

 Communication pattern Depends on algorithm Typically neighbor to neighbor
 Interprocessor
communication

 Message passing Simple clocked transmission

 Processor Could be simple or complex Typically very simple
 Algorithm implemented Any parallelizable algorithm Regular iterative algorithm (RIA)
 Integration Stand - alone Typically part of another system
 Task granularity Typically coarse: a process

or a thread
 Typically fi ne: a simple
mathematical operation or
function

 Memory Distributed Distributed and small
 Layout Not applicable One - , two - , or three - dimensional

grid

60 Chapter 3 Parallel Computers

 3.7 CLUSTER COMPUTING

 A computer cluster is a collection of two or more computers used to execute a given
problem or section. Typically, in a computing cluster, the interconnection network
tying the computers together is a local area network (LAN). Figure 3.4 shows an
architecture of a cluster computer system [30] . The computers in the cluster com-
municate among themselves and among the shared memory. Therefore, the proces-
sors in a cluster communicate mainly using packets over the LAN. The LAN is
usually implemented using a high - speed server computer capable of supporting
high - rate traffi c between the processors. The shared memory must be able to com-
municate with many processors at the same time. Depending on the size of the shared
memory, it could be implemented using RAID. The client machine distributes the
tasks among the processors of the cluster and gathers the fi nished results.

 3.8 GRID (CLOUD) COMPUTING

 Grid computing refers to providing access to computing resources distributed over
a wide area network (WAN). In that sense, a grid computer is a collection of a large
number of processors distributed over a wide geographic area. A grid computer can
handle large - scale computational problems such as N - body simulations, seismic
simulations, and atmospheric and oceanic simulations. Compared with cluster com-
puting, a grid computer is a large cluster where the LAN is now replaced with a
WAN, such as the Internet. The problems at the back of the chapter summarize the
main differences between cluster and cloud computing.

 Some of the applications implemented using cloud computing include

 • peer - to - peer (P2P) computing;

 • software as a service, like Google Apps, Google Calendar, and Google mail;

 • mass storage; and

 • web applications and social networks.

 Figure 3.4 Architecture of a cluster
computer system.

Local Area Network

Client
Machine

P P P P P P

Shared Memory
(Disk Array)

3.9 Multicore Systems 61

 3.9 MULTICORE SYSTEMS

 A multicore system usually refers to a multiprocessor system that has all its proces-
sors on the same chip. It could also refer to a system where the processors are on
different chips but use the same package (i.e., a multichip module). This close
packing allows for very fast interprocessor communication without too much power
consumption. For a dual or quad core system, the processors are connected using a
simple bus. For a larger number of cores, the processors are interconnected using a
network - on - chip (NoC) [13] . On the other hand, a multiprocessor system has its
processors residing in separate chips and processors are interconnected by a back-
plane bus. It is possible to carry this further and to have a multiprocessor system
where each chip is a multicore chip.

 Multicore systems were developed primarily to enhance the system performance
while limiting its power consumption. In other words, a multicore system has good
performance even though its constituent cores are low - performing processors. By
contrast, multiprocessor systems were developed to enhance the system performance
with little regard to power consumption. A multiprocessor system has good perfor-
mance and its constituent processors are high - performing processors. Table 3.2
summarizes the main differences between multicore systems and multiprocessor
systems.

 Figure 3.5 shows a sketch of a multicore processor. A multicore system
consists of

 1. general - purpose programmable cores,

 2. special - purpose accelerator cores,

 3. shared memory modules,

 4. NoC (interconnection network), and

 5. I/O interface.

 Why move toward multicore systems? The main reason is scalability. As we increase
the number of processors to enhance performance, multicore systems allow limiting
power consumption and interprocessor communication overhead. A multicore
system can be scaled by adding more CPU cores and adjusting the interconnection
network. More system programming work has to be done to be able to utilize the

 Table 3.2 Main Differences between Multicore Systems and Multiprocessor Systems

 Multiprocessor system Multicore system

 Integration level Each processor in a chip All processors on the same chip
 Processor performance High Low
 System performance Very high High
 Processor power consumption High Low
 Total power consumption Relatively high Relatively low

62 Chapter 3 Parallel Computers

increased resources. It is one thing to increase the number of CPU resources. It is
another to be able to schedule all of them to do useful tasks.

 Some of the possible applications that can be effi ciently implemented on mul-
ticore systems include [31]

 1. general - purpose multitasking computations,

 2. network protocol processing,

 3. encryption/decryption processing, and

 4. image processing.

 3.10 SM

 A stream multiprocessor is a type of SIMD or a MIMD machine where the constitu-
ent processors are streaming processors (SPs) or thread processors. A stream proces-
sor is defi ned as a processor that deals with data streams , and its instruction set
architecture (ISA) contains kernels to process these streams [32] . The concept of
stream processing is closely associated with the graphics processing unit (GPU)
where the GPU is thereby able to perform general compute - intensive general -
 purpose computations. The GPU thus becomes a general - purpose GPU. Examples
of data streams are vectors of fl oating point numbers or a group of frame pixels for
video data processing. This type of data shows temporal and spatial localities.
Temporal locality is when the input data stream is used only a few times to produce
the output steam. Spatial locality is when the input data stream is located in the same
memory block. A successful example of a stream multiprocessor is the new genera-
tions of GPUs like Fermi from NVIDIA [33] .

 Applications suited for SM must satisfy three characteristics [34] :

 1. Compute intensity

 2. Data parallelism

 3. Consumer – producer locality, that is, temporal and spatial locality

 Figure 3.5 A multicore microprocessor system.

Programmable
Core

...

Memory Bank Module

...

Interface Module

Interface Module

...

In
te

rc
on

ne
ct

io
n

N
et

w
or

k Memory Bank Module

R

Programmable
Core R

Accelerator
Core

...

R

Accelerator
Core R

R

R

R

R

3.10 SM 63

 Compute intensity is defi ned as the number of arithmetic operations per I/O or global
memory reference. In applications suitable for stream processing, this ratio could
reach 50:1 and above. Data parallelism is when the same operation is performed on
all data in an input stream in parallel. Producer – consumer locality is when data are
read once and are used once or for a few times to produce the output stream. GPUs
such as NVIDIA ’ s Fermi can sustain tens of thousands of parallel threads.

 Data suited for stream multiprocessing use the local caches without cache
misses since the data exhibit locality. This eliminates the problem of long memory
latency [32] . In short, an SM or a GPU is suited for applications with long sequences
of data that can be executed using thousands of threads.

 Figure 3.6 shows a block diagram of the Fermi GPU from NVIDIA. Fermi has
3 billion transistors and 512 cores or SPs. Fermi is capable of delivering up to 1.5 tera
fl oating point operations per second (TFLOPS). Figure 3.6 a is a simplifi ed view of
the Fermi GPU stream multiprocessor. It consists of 16 stream multiprocessor (SM)
blocks sharing an L2 cache. Surrounding the SMs are six 64 - bit interfaces to
dynamic random access memory (DRAM) to give a 384 bits wide path to memory.

 Figure 3.6 b is a simplifi ed expanded view of one of the 16 SM blocks of Fig.
 3.6 a. Each SM block consists of 64 stream processors or thread processors labeled
SP and arranged in groups of four representing the four columns in the fi gure.
Instructions arrive and are scheduled by the block labeled instruction at the top of

 Figure 3.6 Simplifi ed view of the Fermi GPU stream multiprocessor. (a) Block diagram of the
stream multiprocessor. (b) Block diagram of the stream processor or thread processor. (c) Block
diagram of the CUDA core processor. INT: integer unit; FP: fl oating point unit; LD: load unit; ST:
store unit; SFU: special function unit. © NVIDIA Corporation 2009 .

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

Interconnection Network

S
F

U
S

F
U

S
F

U
S

F
U

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Shared Memory/L1 Cache

Warp Sched.

Register File (4 k × 32 b)

Instruction Cache

Warp Sched.

Dispatch Unit Dispatch Unit

Uniform Cache

SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM

L2 Cache

Instruction

Operands

FP

Results

(a)
(b)

(c)

INT

64 Chapter 3 Parallel Computers

the fi gure. The interconnection network block provides communication between the
SMs and the L1 cache at the bottom of the fi gure. The block labeled SFU is a special
function unit capable of evaluating elementary functions such as square root and
trigonometric functions so common in scientifi c applications.

 Figure 3.6 c is an expanded view of one of the SP blocks in Fig. 3.6 b. These
blocks are called compute unifi ed device architecture (CUDA) cores and are capable
of doing a full integer arithmetic and logic unit (ALU) and fl oating point arithmetic
operations.

 Figure 3.7 compares the ratio of the different resources allocated to a CPU
versus a GPU. General - purpose computers have a CPU that does sophisticated
control like branch prediction. That is why the area allocated to control in a CPU is
eight times larger than in a GPU. A GPU eliminates cache misses and long memory
latency by using large cache to store data. The ALU resources in a GPU are more
since the GPU is a stream multiprocessor that dedicates more area to ALU resources.
Finally, the DRAM is almost the same size in both systems.

 3.11 COMMUNICATION BETWEEN
PARALLEL PROCESSORS

 We review in this section how parallel processors communicate and what type of
communication strategies are available. Parallel processors need to exchange data
among themselves in order to complete the tasks assigned to them.

 3.11.1 Types of Communication

 We can identify the following types of communication modes:

 1. One to one (unicast)

 2. One to many (multicast)

 Figure 3.7 Ratio of the different
resources allocated to a CPU versus a
GPU.

8

4

2

Control

6

Cache ALU DRAM

CPU GPU

3.11 Communication Between Parallel Processors 65

 3. One to all (broadcast)

 4. Gather

 5. Reduce

 Figure 3.8 shows the different types of modes of communications.

 One to One (Unicast)

 One - to - one operation involves a pair of processors: the sender and the receiver. This
mode is sometimes referred to as point - to - point communication. We encounter this
type of communication often in SIMD machines where each processor exchanges
data with its neighbor. Figure 3.8 a shows the one - to - one mode of communication
between processors. The fi gure only shows communication among a pair of proces-
sors, but typically, all processors could be performing the one - to - one communication
at the same time. This operation is typically performed in each iteration and therefore
must be done effi ciently. Most of the time, a simple exchange of data between the
source and the destination register is used, assuming clock synchronization between
the adjacent processors is accomplished. In other cases, two - way (i.e., data –
 acknowledge) or even four - way handshaking (i.e., request – grant – data – acknowledge)
might be required.

 One to Many (Multicast)

 One - to - many operation involves one sender processor and several receiver proces-
sors. Figure 3.8 b shows the one - to - many mode of communication between proces-
sors. The fi gure only shows communication of one source processor to multiple
receiving processors, but typically, all processors could be performing the one - to -
 many communication at the same time. The number of receiving processors depends

 Figure 3.8 The different types or modes of
communication among processors: (a) one to one, (b)
one to many, (c) broadcast (one to all), and (d) gather
and reduce.

P P P P P P(a)

P P P P P P(b)

P P P P P P(c)

P P P P P P(d)

66 Chapter 3 Parallel Computers

on the details of the algorithm and how the mapping of tasks to processors was
accomplished. This operation is typically performed in each iteration and therefore
must be done effi ciently. Most of the time, a simple exchange of data between the
source and the destination register is used assuming clock synchronization between
the adjacent processors is accomplished. In other cases, two - way (i.e., data –
 acknowledge) or even four - way handshaking (i.e., request – grant – data – acknowledge)
might be required.

 One to All (Broadcast)

 Broadcast operation involves sending the same data to all the processors in the
system. Figure 3.8 c shows the broadcast mode of communication between proces-
sors. This mode is useful in supplying data to all processors. It might also imply one
processor acting as the sender and the other processors receiving the data. We will
see this type of communication in systolic arrays and also in SIMD machines.

 Gather

 Gather operation involves collecting data from several or all processors of the
system. Figure 3.8 d shows the gather mode of communication between processors.
Assuming we have P processors, the time needed to gather the data could be esti-
mated as

 T P c()gather = τ , (3.2)

where τ c is the time needed to transmit – receive – process one data item.

 Reduce

 Reduce operation is similar to gather operation except that some operation is per-
formed on the gathered data. Figure 3.8 d shows the reduce mode of communication
between processors. An example of the reduce operation is when all data produced
by all the processors must be added to produce one fi nal value. This task might take
a long time when there are many data to be reduced. Assuming we have P processors
producing data to be added, the total time is estimated as

 T T P c() () () ,reduce gather= + −1 τ (3.3)

where τ c is the time needed by the processor to process a pair of received data items.
It might be worthwhile to perform the reduce operation hierarchically. In that case,
the reduce delay time might be

 T P c p() log .reduce = +()[]2 τ τ (3.4)

 3.11.2 Message Passing (MP) Communication
Mechanism

 MP is used mainly in distributed - memory machines. Passing a message between two
processes involves using send() and recv() library calls. The programmer uses

3.12 Summary of Parallel Architectures 67

the send (destination, message) library call to specify the ID of the destination
processor or process and the data to be sent. The programmer must also use the
 recv (source, message type) library call to specify the ID of the source processor
or process and the type of data to be received.

 In order for two processors to communicate using MP, two operations need to
be performed:

 1. Establish a communication link between them. Link establishment
depends on the nature of the interconnection network. We can think of
the link in terms of its physical properties (hardware) or its logical prop-
erties (addressing, unidirectional or bidirectional, capacity, message
size, etc.)

 2. Exchange messages via the send() and recv() library calls.

 The MPI is a standard developed to improve the use and portability of MP
mechanism.

 MP synchronization ensures proper communication between the processors.
Synchronization must be treated with care by the programmer since the execution
of send() and recv() library calls is under the control of the operating system
or systems running the processors. There are two types of synchronization
strategies:

 • Synchronous or blocking , where the sender halts execution after it
executes the send() library call until the message is received. Also, the
receiver halts after it executes the recv() library call until the message is
available.

 • Asynchronous or nonblocking , where the sender continues execution after it
executes the send() library call. Also, the receiver continues execution after
it executes the recv() library call.

 MPI standard supports one - to - one and broadcast modes of communication.

 3.12 SUMMARY OF PARALLEL ARCHITECTURES

 The previous sections briefl y explained fi ve parallel processor systems that are
widely used:

 • Shared memory

 • Distributed memory

 • SIMD

 • Systolic

 • Multicore

 It is hard to uniquely classify each type; for example, SIMD could be built on top
of a shared memory system. We can summarize the salient features of these multi-
processors in the following points:

68 Chapter 3 Parallel Computers

 1. All multiprocessors, except systolic processors, communicate using an inter-
connection network that can be easily identifi ed.

 2. Systolic processors have neighbor - to - neighbor connections and few global
buses.

 3. All multiprocessors, except systolic processors, are more general purpose in
nature compared with SIMD. They implement all sorts of tasks and
algorithms.

 4. Systolic processors are designed to execute a specifi c algorithm. The algo-
rithm dictates several details, such as the type of interprocessor communica-
tion, the I/O data timing, and the feeding or extraction points of the I/O data.

 5. A multicore system uses accelerator cores to implement special tasks that
need to be implemented at a high rate. For example, we could have a GPU
in a multicore system to implement intensive graphic processing tasks. Such
accelerator cores are built using systolic processors.

 3.13 PROBLEMS

 3.1. What is the main communication mechanism between processors in a shared memory
multiprocessor system?

 3.2. What are the main issues in shared memory processor systems?

 3.3. What is the main disadvantage of shared memory multiprocessors?

 3.4. What is the main communication mechanism between processors in a distributed -
 memory multiprocessor system?

 3.5. Identify the main type of interprocess communication in a distributed - memory multi-
processor system.

 3.6. Defi ne what is meant by the critical section in a distributed - memory multiprocessor
system.

 3.7. How are threads synchronized in OpenMP?

 3.8. Explain the function of #pragma reduction (operation: variable list) directive in
OpenMP.

 3.9. Give examples of SIMD machines.

 3.10. Summarize the main difference between cluster computing and grid computing.

 Chapter 4

Shared - Memory
Multiprocessors

 4.1 INTRODUCTION

 Shared - memory processors are popular due to their simple and general programming
model, which allows simple development of parallel software that supports sharing
of code and data [27] .

 Shared - memory processors provide a single physical address space for all pro-
cessors, and each processor can run its own program using its local memory and
cache. The processors also have access to shared memory arranged in separate
modules. The processors communicate using shared variables , which are stored in
the shared memory to be accessible to any processor. Memory in a shared - memory
multiprocessor system is organized in a hierarchical fashion as shown in Fig. 4.1 .
The fi gure shows a system with n processors and b shared memory modules. Each
processor has its own internal registers, cache, and local memory. The cache stores
all data currently used by the processor. The local memory stores local variables not
meant to be shared with the other processors. The shared memory stores the shared
variables that need to be exchanged between the processors. The interconnection
network allows more than one processor to simultaneously access different shared
memory modules through the network. This allows more than one memory read/
write operations to take place simultaneously.

 We explained in Chapter 2 that a processor communicates mainly with its cache
since this is the fastest memory that matches the speed of the processor. However,
these caches read or load data from the shared memory and write or store data in
this memory also. This brings up two important considerations in shared - memory
processors [27] :

 1. Cache coherence

 2. Synchronization and mutual exclusion

 We discuss these two issues in the following sections.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

69

70 Chapter 4 Shared-Memory Multiprocessors

 4.2 CACHE COHERENCE AND MEMORY CONSISTENCY

 Attaching private caches to processors speeds up program execution by making
memory latency match the processor speed. Thus, read/write operations take about
the same time as the arithmetic and logic unit (ALU) operations. Table 4.1 sum-
marizes the terminology used to describe cache coherence. A cache is useful because
most tasks or applications display temporal locality and spatial locality . Temporal
locality refers to the near future. Spatial locality refers to using data located near the
current data in the near future. For this reason, data load/store operations between
the shared memory and the caches take place using blocks . Figure 4.2 shows the
relation between the blocks stored in the shared memory and their copies in the
cache of a certain processor. The cache stores some blocks using a tag , which stores
the address of the block in the shared memory. Each block stored in the cache is
stored as a row called a line . A line contains the following components:

 1. Valid bit (V) to indicate whether the data in the line are coherent with the
block in the shared memory or not

 2. Index, which is the address of the line in the cache

 3. Tag, which refers to the address of the block in the shared memory

 4. Data, which comprise the data stored in the block

 For shared memory systems, caches also help eliminate memory contention
when two or more processors attempt to access the same memory module [27] .

 Copies of the data stored in the shared memory must match those copies stored
in the local caches. This is referred to as cache coherence . The copies of a shared
variable are coherent if they are all equal [35] . Effectively, the caches are coherent
if every read operation by a processor fi nds a value produced by a previous write
 [27] . Cache coherence is important to guarantee correct program execution and to
ensure high system performance. Assume two processors, P 1 and P 2 , use the same

 Figure 4.1 Shared - memory
processors. Each processor has
its local cache and local
memory. All processors can
access the shared memory
modules through the
interconnection network.

...

P0

C0

M0

P1

C1

Pn–1

Cn–1

...M1
Mb–1

Interconnection Network

...m0 m1 mn–1

...

Shared Memory Modules

Local Memory

Local Cache

4.2 Cache Coherence and Memory Consistency 71

shared variable stored in their two separate caches. If P 1 modifi es its local value, we
must make sure that P 2 is aware of the change.

 Consider the case of a shared memory system with four processors and one
shared memory module. Table 4.2 illustrates the problems that arise when a block
in the shared memory is loaded by the processors and then gets modifi ed by one or
more processors. A write - through policy is assumed.

 Table 4.3 illustrates the problems that arise when a block in the shared memory
is loaded by the processors and then gets modifi ed by one or more processors.
A write - back policy is assumed. The cache contents at the different time instances
according to the events of Table 4.2 are explained below.

 Table 4.1 Terminology Used to Describe Cache Coherence

 Term Meaning

 Block Group of contiguous words or data stored in shared memory
 Broadcast When information is sent to all caches
 Cache A small high - speed memory implemented on the same chip as

the processor to reduce memory access time and to reduce
shared - memory collisions between processors

 Cache coherence The contents of a block in the shared memory and the
different caches are not the same.

 Cache coherence protocol Policy implemented to maintain cache coherence
 Coherent system When every read of a block from the shared memory fi nds the

same data produced by the last previous write by any other
processor

 Global data Data stored in the shared memory
 Line A block stored in a cache along with its tag and valid bit
 Local data Data stored in the cache
 Modifi ed block Data of block in cache have not been updated in the shared

memory
 Multicast Information is sent to some, not all, caches.
 Replacement Removing a block from the cache to make room for a new

block
 Spatial locality Data in the same block will be used over a short period of

time.
 Temporal locality A data word in a block will be used over a short period of

time.
 Unicast Information is sent to only one cache.
 Valid Block contents are up to date.
 Write - back A block in the shared memory is updated when the

corresponding block in a cache is replaced.
 Write - through A block in the shared memory is updated when the

corresponding block in a cache is modifi ed.

72 Chapter 4 Shared-Memory Multiprocessors

 Table 4.2 Example of Cache Coherence Problem with Write - Through Policy

 Time
 Shared

memory

 Caches

 Comment C 0 C 1 C 2 C 3

 0 b b — — — Block b is loaded in C 0 .
 1 b b b — b Block b is loaded in C 1 and C 3 .
 2 b b b — b 3 Processor P 3 modifi es its copy of b . Now the system

is noncoherent.
 3 b 3 b b — b 3 Processor P 3 performs a write - through. The system is

noncoherent since C 0 and C 1 have different copies.
 4 b 3 b 3 b 3 — b 3 Shared memory controller updates C 0 and C 1 . Now

the system is coherent.

 Figure 4.2 Relation between
the blocks stored in the shared
memory and their copies in the
cache of a certain processor.

Word 0
Word 1

Word 216–1

...

16 bits
Word

Block 0

...

Block 1

Block 212–1

12 bits

Word Block

4 bits

Cache Memory
with 12-bit block address
and 4-bit word address

Main Memory
with 16-bit word address space

 Time 0. The cache C 0 in processor P 0 loads block b for use during its
processing.

 Time 1. Both caches C 1 and C 3 also load the same block from the shared
memory. Now we have three copies of b .

 Time 2. Processor P 3 updates its copy of b in C 3 . At this time, the data in the
shared memory and the caches are not consistent.

 Time 3. P 3 performs a write - through operation to make the data in C 3 and in the
shared memory consistent.

4.2 Cache Coherence and Memory Consistency 73

 Table 4.3 Example of Cache Coherence Problem with Write - Back Policy

 Time
 Shared

memory

 Caches

 Comment C 0 C 1 C 2 C 3

 0 b b – – – Block b is loaded in C 0 .
 1 b b b – b Block b is loaded in C 1 and C 3 .
 2 b b b – b 3 Processor P 3 modifi es its copy of b 3 . Now the

system is noncoherent.
 3 b b 0 b 1 – b 3 Processors P 0 and P 1 modify their own copies of b .
 4 b 1 b 0 b 1 – b 3 P 1 performs write - back to shared memory
 5 b 1 ? b 1 b 1 ? Which value of b should be used to update the

memory and caches?

 Time 4. Which processor should update the shared memory? With the write - back
policy, this is determined by whichever processor performs a cache replacement. In
this case, it happens to be P 1 .

 Time 5. P 2 loads block b and the central controller informs all processors of the
new value b 1 . What should P 0 and P 3 do? Replace their data or inform the shared
memory to use their own versions of b .

 It is clear from the previous two situations in Tables 4.2 and 4.3 that the cache
coherence problem is very serious especially for the case of multiprocessor systems.
The correct value of memory content should not be implied by which processor
performed the cache store (write) into memory fi rst. For example, in Table 4.2 , we
see that P 3 performed the fi rst change in block b followed by P 0 then P 1 . This might
not have been the correct sequence to update block b in the shared memory. The
reason for that is the processors are not synchronized with each other and the sched-
uling of tasks and threads in each processor is not aligned with that in the other
processors. So what is the correct sequence of updating b ? There are two ways to
arrive at this answer:

 1. Correct update of b based on sequential execution of the application

 2. Correct update of b based on data dependencies

 Sequential execution of the program means running the program on a single -
 processor sequential machine, which has no multiprocessing or multithreading capa-
bilities. The order of accessing and updating the variable is the correct order as
designed by the application developer. This sequence of variable access/update
should be the one followed when implementing the application on a multiprocessor
system. That sequence of access should be followed when determining how to
update the shared variable in memory and in all the caches. Correct cache/memory
access is correct if the results obtained by the parallel machine are always identical
to the results obtained by the sequential machine.

74 Chapter 4 Shared-Memory Multiprocessors

 Correct update of b based on data dependencies is a byproduct of implementing
a timing sequence for the application tasks. The data scheduling strategies developed
in Chapters 8 – 11 all identify the correct sequence for updating the algorithm vari-
ables. This serves as a guideline for determining the cache update sequencing.

 Updating the values of shared variables by the processors is expected in a shared
memory system. A cache coherence protocol must be used to ensure that the contents
of the cache memories are consistent with the contents of the shared memory. There
are two main cache coherence protocols:

 1. Directory protocols

 2. Snoopy protocols

 4.2.1 Cache Coherence Using Directory Protocols

 The main components for maintaining cache coherence using directory protocols
are shown in Fig. 4.3 . The local caches associated with the processors have local
cache controllers to coordinate updating the copies of the shared variables stored in
the local caches. The central controller is responsible for mainlining cache coherence
for the system. Part of the shared memory is a directory that stores entries denoting
the state of each shared block. The structure of each entry in the directory depends
on the implementation details of the directory protocol used. The central controller
handles local cache requests and is responsible for informing the local cache control-
lers of any changes in the states of the shared variables. The interconnection network
enables communication between the controllers and between the caches and the
shared memory.

 Figure 4.4 shows the details of the full - map directory protocol. Each entry
contains n + 2 bits, where n is the number of processors. We assumed in the fi gure
that n = 8. The bit labeled D indicates whether the data are valid (0) or modifi ed (1).

 Figure 4.3 System components for cache coherence using directory protocols.

Interconnection Network

...

Local Cache

Local Controller

Local Cache

Local Controller

Local Cache

Local Controller

Central Controller
Shared Memory

Directory

4.2 Cache Coherence and Memory Consistency 75

The bit labeled X indicates whether to broadcast the update information (B) to each
processor or that data is no - broadcast (NB). We see from the fi gure that if the block
corresponding to the shown entry is modifi ed, then only the caches in processors 1
and 4 will have to be informed of that change.

 Full - map directory scheme knows exactly the locations of the shared blocks.
The caches associated with these copies are involved in coherence actions associated
with a given shared block. However, the scheme is infl exible since all coherence
transactions must be routed to the central controller. This could prove to be a bottle-
neck. Also, the size of each entry is directly proportional to the number of processors
and must be changed when the number of processors changes.

 4.2.2 Cache Coherence Using Snoopy Protocols

 Figure 4.5 shows the main components for cache coherence using snoopy protocols.
Unlike directory protocols, snoopy protocols do not use a directory in the shared
memory nor a central controller. The coherence actions associated with a block are
communicated between a local cache and the shared memory. These transactions are
monitored by all other local caches. The interconnection network must be able to
support broadcast of the data transmissions such that every processor is able to
monitor all the network activities. A shared bus is suited for this broadcast mode
since each bus transaction can be easily sensed by all processors connected to the
bus. The shared bus, however, has a limited bandwidth that allows only one transac-
tion to take place at any given time.

 When a memory write operation takes place by any processor, all other proces-
sors decide if this operation is relevant to them or not. The write operation by
processor P i is relevant to processor P j if it has a copy of the block being accessed
by P i . There are two options for P j based on its cache update policy. In the case of
 invalidation - based policy, P j invalidates its own copy of b . It then copies b from the

 Figure 4.4 Full - map directory - based
scheme.

1

D

X0 0 1 0 0 0 0

Pointer to P1
Pointer to P4

0

 Figure 4.5 System components for cache coherence using snoopy protocols.

Interconnection Network

...

Local Cache

Local Controller

Local Cache

Local Controller

Local Cache

Local Controller

76 Chapter 4 Shared-Memory Multiprocessors

shared memory when it needs data from the cache. In the case of updated - based
policy, P j replaces its copy of b using the data available on the bus while the shared
memory is being updated or some other time thereafter.

 4.3 SYNCHRONIZATION AND MUTUAL EXCLUSION

 Each process or thread operating on a shared variable has a segment of code called
 critical section , where the process operates on the shared variable by changing its
value. When a process is executing its critical section, no other process on any
processor is allowed to execute its critical section. Figure 4.6 shows a segment of
code containing a critical section. When a process reaches the critical section code,
it is allowed to enter it and to execute that code section only if it can acquire a lock .
As soon as the process is done with the critical section, it releases the lock and
proceeds to execute the code after the critical section. If two or more processes reach
the critical section, only one process is allowed to acquire the lock. All other pro-
cesses wait at the start of the critical section.

 Dijkstra [36] and Knuth [132] showed that it is possible to provide synchroniza-
tion and mutual exclusion using atomic read and write operations [37] . Atomic
operations ensure that the memory read, modify, then write operation to a certain
location is done without interference from other processors. This basic capability is
provided by hardware and enables the construction of more elaborate software
algorithms. Examples of low - level hardware atomic operations include memory
load/store and test & set [38 – 40] .

 These low - level synchronization primitives can be used by software to build
high - level atomic operations such as locks, semaphore, monitors, and barriers. One
must be careful when a process or thread acquires a lock or barrier in a multiproces-
sor system. The process holding the lock must not be preempted so that other

 Figure 4.6 Segment of code showing a critical section within
a normal code.

Critical-Section
Code

Code before
Critical Section

Code after
Critical Section

While (Condition = = 0)
{

} // End of While Loop

Acquire Lock

Release Lock

4.3 Synchronization and Mutual Exclusion 77

processes waiting to acquire the lock are not delayed. One solution is to provide a
preemption - safe locking [41] .

 Synchronization processes or threads involve three events [37 – 39] :

 Acquire: where a process or thread tries to acquire the synchronization primi-
tive (e.g., a mutex or barrier)

 Wait: where the thread effi ciently waits for the synchronization primitive to
become available.

 Release: when a thread has fi nished its operation, it must inform other pro-
cesses or threads that the synchronization primitive is available. This allows
other threads to acquire the primitive or to proceed beyond past the synchro-
nization event.

 A process or thread waiting for a synchronization primitive to become available
employs a waiting algorithm. Waiting algorithm could be implemented by busy -
 waiting or blocking. The latter choice does not waste central processing unit (CPU)
resources but carries more overhead for suspending and resuming the thread. This
is the reason why busy - waiting is more appropriate when the waiting period is short
and the blocking is appropriate when the wait period is long [37] . Busy - waiting in
multiprocessor systems does not scale well. The waiting processes actually will test
the shared lock using the copies in their own caches. However, as soon as the lock
is released, all processes become aware of this new condition and will use the inter-
connection network while attempting to access the released shared lock in the shared
memory. This will lead to increased traffi c on the interconnection network and to
memory contention.

 4.3.1 Synchronization: Locks

 Any solution to the critical section problem requires a lock [40] . A lock essentially
serializes access to a shared resource so that only one process or thread reads and
modifi es the variable at any given time. As we mentioned at the start of this section,
a process must acquire the lock before it is allowed to enter the critical section as
shown in Fig. 4.6 . A lock is provided in hardware to simplify program development
and to move some of the processing load off the operating system.

 The critical section could be handled in a single processor using interrupt pre-
vention when a process is operating on the shared variable. This solution is not
practical in a multiprocessor system since all processors must be informed of the
interrupt disable. Time will be wasted while this message is being broadcast among
the processors.

 A lock is provided in hardware by a special atomic TestAndSet () instruc-
tion. That instruction returns the value of the lock (the test part) and then sets the
value of the lock to 1 upon completion.

 The lock is a value in memory where the operation read – modifi ed – write
is performed atomically using that instruction. The atomic TestAndSet ()
function is implemented in hardware but a pseudocode is illustrated as follows
 [37, 40] :

78 Chapter 4 Shared-Memory Multiprocessors

 1: boolean TestAndSet (boolean * lock)
 2: {
 3: boolean v = * lock; // Test (read) operation
 4: * lock = TRUE; // Modify (set) and Write operations
 5: return v;
 6: }

 Line 1 declares the function and defi nes its body.
 Line 3 performs the test portion of the atomic instruction by reading the value

of the lock.
 Line 4 modifi es the lock and updates the value of the lock. If the lock was

originally TRUE, no harm is done by writing TRUE again. However, if the lock was
FALSE, then the lock becomes available and the process is informed of this fact
through the variable v . The process also atomically sets the lock to TRUE to make
it unavailable to other processes.

 Line 5 returns the original value of the lock to be used by the process to decide
whether to enter the critical section or not.

 The TestAndSet () function can now be used to by a process to control
entering the critical section when the lock is available or when waiting for the lock
to become available as follows:

 1: Code before critical section
 2:
 3: // Attempt to acquire lock
 4: while (TestAndSet (& lock))
 5: ; // no action and continue testing lock
 6:
 7: // Start of critical section
 8: critical section code
 9: // End of critical section

 10: lock = FALSE; // release lock
 11:
 12: Code after critical section

 Line 1 represents the normal code just before the critical section.
 Line 4 is where the process tests the value of the lock in an infi nite WHILE

loop. The loop ends if the lock value is FALSE and the process acquires the lock
and proceeds to execute its critical section. Line 8 represents the critical section.

 Line 10 releases the lock at the end of the critical section. Line 12 is the code
after the critical section.

 The similarity of processes attempting to acquire the lock and the medium
access control (MAC) problem in computer communications or networks should be
noted here. Table 4.4 summarizes the similarities between mutual exclusion and
MAC in telecommunications.

 4.3.2 Synchronization: Mutex

 A mutex M is a binary number that can have the values 0 and 1, which proves useful
in mutual exclusion. The mutex is initially given the value 1 to allow any thread

4.3 Synchronization and Mutual Exclusion 79

that needs it to enter its critical section. When a thread acquires the mutex and enters
its critical section, it locks it by decrementing its value. When the thread is fi nished
with its critical section, it releases the mutex by incrementing its value. Any thread
arriving at the critical region while the lock is in use will wait because the mutex is
already at 0. The result is that at most, one thread can enter into the critical section
and only after it leaves can another enter. This sort of locking strategy is often used
to serialize code that accesses a shared global variable and to ensure mutual
exclusion.

 There are two basic atomic operations to apply to the mutex: wait() and
 signal() . The pseudocodes for these two operations are as follows :

 1: wait (M) 1: signal (M)
 2: while M < = 0 2: {
 3: { 3: M + + ; // increment M
 4: ; // do nothing 4: }
 5: M – – ; // decrement M if it is 1
 6: }

 wait() effectively prevents the thread from entering its critical section while the
mutex M = 0. As soon as M = 1, the thread can proceed to execute its critical section.

 In the thread library POSIX, the wait() function is implemented using the
library call pthread mutex lock(mutex * M) . The signal() function is
implemented using the library call pthread mutex unlock(mutex * M) .

 The wait() and signal() functions can now be used by a process to control
entering the critical section when the lock is available or when waiting for the lock
to become available as follows:

 1: Code before critical section
 2:
 3: // Attempt to acquire mutex
 4: wait(M);
 5: ; // no action and continue testing mutex
 6:

 Table 4.4 Similarities between Mutual Exclusion and MAC

 Mutual exclusion MAC

 Critical section Transmitted packet
 Process/thread User/node
 Lock Channel
 Lock acquired Channel acquired by node
 Lock available Channel free
 Lock unavailable Channel busy
 Release lock End of transmission
 Test lock Check channel state
 Busy - waiting User in backoff mode

80 Chapter 4 Shared-Memory Multiprocessors

 7: // Start of critical section
 8: critical section code
 9: // End of critical section

 10: signal(M); // release mutex
 11:
 12: Code after critical section

 Needless to say, the programmer must ensure that the critical section is sur-
rounded by the correct wait() and signal() function calls and in the correct
order. Failure to do so will result in wrong results that are diffi cult to track down.

 4.3.3 Synchronization: Barriers

 The examples of locks and mutexes we discussed in the previous two sections were
used when several tasks or threads operated on shared variables in their critical sec-
tions. A synchronization barrier, on the other hand, is used when several independent
tasks or threads are employed to perform several chores in parallel. There are no
shared variables between those threads. The synchronization barrier is used for event
synchronization where a specifi ed number of tasks must be completed before the
rest of the tasks are allowed to proceed. A barrier would be very useful to implement
serial – parallel algorithms (SPAs) where several parallel tasks must be completed
before moving on to the next state of algorithm execution. Figure 4.7 shows an
example of a SPA where barriers are used between the parallel tasks. In the fi gure,
we have the SPA consisting of fi ve stages and we assumed that each task is to be
executed by a thread. The number of parallel tasks executed at each stage varies
from two to four. To ensure the tasks at each stage are completed before we move
to the next task, we place barriers as shown. The command barrier(j) indicates
that j tasks/threads must reach the barrier before the next set of tasks can proceed.

 The POSIX thread library specifi es the barrier object along with functions to
create it and creates the threads that will use it for synchronization.

 Figure 4.7 Example of using synchronization barriers in serial – parallel algorithms. Each task is to
be executed by its own thread.

Out
m0,0

m1,0

m0,1

m1,1

m2,1

m0,2

m1,2

m2,2

m3,2

m0,3

m1,3

m2,3

m0,4

m1,4

In

Barrier (2)

Barrier (3) Barrier (4)

Barrier (3)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

4.4 Problems 81

 To initialize the barrier, the following routine is used [42] :

 1: #include < pthread.h >
 2: pthread barrier t barrier;
 3: pthread barrierattr t attribute;
 4: unsigned count;
 5: int return value;
 6: return value = pthread barrier init(& barrier, & attri-
bute, count);

 Line 1 adds the functions and data types associated with the pthread library.
Line 2 defi nes barrier to be of the type barrier.

 Line 3 defi nes attributes to be of type barrier attributes.
 Lines 4 and 5 defi ne other data types where count is the number of threads

that must arrive at the barrier before they can proceed any further.
 Line 6 initializes the barrier and returns the variable return value to monitor

the success of the function call. The return value is zero for successful
completion.

 The threads being synchronized by the barrier include the following code:

 1: Code before the barrier
 2:
 3: // Wait at the barrier
 4: ret = pthread barrier wait(& barrier);
 5:
 6: Code after the barrier

 where the type barrier was initialized using the pthread barrier init()
routine.

 4.3.4 Comparing the Synchronization Primitives

 The most basic synchronization primitive is the lock and is the most effi cient in its
memory use and execution time [42] . The lock is essentially used to serialize access
to a shared resource or shared variable.

 The mutex uses more memory than a lock. The mutex must be acquired before
the shared variable is modifi ed. After a thread is fi nished with its critical section, it
must release the mutex so that other threads can proceed with their critical
sections.

 The barrier is used as an event synchronization mechanism so that all threads
arrive at a certain point before the rest of the code is executed.

 4.4 PROBLEMS

 4.1. A shared - memory parallel processor system has n processors and b shared memory
modules with n ≤ b . Assume all processors need to update their caches by accessing the
memory modules. Assume a uniform probability that a processor requests to access data
from a particular memory module.

82 Chapter 4 Shared-Memory Multiprocessors

 (1) What is the value of the probability that a processor requests to access data from a
particular memory module?

 (2) What is the probability that a memory access collision takes place for a particular
memory module?

 (3) What is the probability that a memory access collision takes place for the shared
memory as a whole?

 (4) What is the probability that a memory access collision takes place for the shared
memory as a whole for the case when n > b ?

 4.2. What are the two main advantages for using the local cache in shared - memory multi-
processor systems?

 4.3. Explain the two reasons for maintaining cache coherence in shared - memory multiproces-
sor systems.

 4.4. A shared - memory system consists of n processors, one shared memory module, and a
system - wide bus connecting all the components. Assume a as the probability that a
processor requests access to the shared memory to update its cache at a given time step.
What is the probability that a bus collision takes place?

 4.5. Assume in a shared memory system that the probability that a data is not in the cache
is α . And 1 − α is the probability the data are in the cache. What is the average memory
access time?

 4.6. The three Cs for single - processor cache misses were discussed in a previous chapter.
Investigate if there are other causes for cache misses in a shared memory system.

 4.7. Cache misses in a shared memory system show a “ U ” pattern versus block size for a
fi xed cache capacity. Explain why this behavior is expected.

 Chapter 5

Interconnection Networks

 5.1 INTRODUCTION

 We saw in Chapter 3 that parallel computers require an interconnection network to
allow exchange of data between the processors and between the processors and
common shared or distributed memories. Interconnection networks connect proces-
sors in a parallel computer system. The main factors that affect the interconnection
network performance are

 1. network links, which could be wires, wireless, or even optic channels or
media;

 2. switches that connect the links together;

 3. the protocol software/fi rmware that is used to route the packets or messages
between the processors through the switches and links; and

 4. the network topology, which is the way the switches are connected
together.

 The capabilities and characteristics of the interconnection network have a direct
infl uence on the resulting performance of the multiprocessor system. The following
sections discuss the different types of networks used in multiprocessor systems. We
should mention here that multicore processors have all the cores and their intercon-
nection network on the same chip. Thus, the network is called network - on - chip
(NoC). We discuss in this chapter interconnection networks based on their topology.
Topology defi nes how the processor or nodes are connected. The topology impacts
system performance parameters such as data throughput, delay, and network power
consumption.

 We defi ne the interconnection network diameter as the longest distance between
two nodes in the graph. The diameter represents the number of switches or nodes a
message takes to travel from a source to a destination node.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

83

84 Chapter 5 Interconnection Networks

 5.2 CLASSIFICATION OF INTERCONNECTION
NETWORKS BY LOGICAL TOPOLOGIES

 The interconnection network topology is usually drawn as a graph with nodes rep-
resenting the switches or processors and the edges representing the communication
links between the switches or processors. There are major well - known network
topologies that are summarized in the following sections.

 5.2.1 Bus

 A bus is the simplest type of interconnection network as shown in Fig. 5.1 .
The shaded squares represent medium access control (MAC) controllers.
These controllers could be simple arbiters or they could be ethernet controllers if
the bus is an ethernet local area network (LAN). They could also represent wireless
devices if the bus physical medium is a wireless channel.

 All processors and memory modules are connected to the bus, and communica-
tion between any pair of processors takes the same amount of time no matter how
far apart they are. The bus, however, allows only one processor to access the shared
medium at any given time so as to prevent bus access collisions . Each module con-
nected to the bus is characterized by its own unique MAC address for identifi cation.
The source processor communicates with another processor or memory module by
specifying the destination MAC address. Some form of MAC arbitration scheme
must be enforced to prevent bus access collisions. There are many arbitration
schemes that affect the overall performance of the system [43] .

 The performance of the bus interconnection network depends very heavily on
the following factors:

 1. the number of processors connected to the bus; as the network size scales
up, performance degrades;

 2. the statistics of the network access requests issued by the processors; and

 3. the type of MAC arbitration protocol being used.

 The traffi c statistics depend on the algorithm being implemented and could
follow any type of traffi c distribution, such as constant bit rate, Poisson process,
bursty distribution, and so on .

 The arbitration protocol can be chosen to be [43] round robin, fi xed priority,
rotating priority, random access, and so on .

 Figure 5.1 A bus interconnection network.
The shaded squares represent MAC controllers.

P

Bus

P P P P P

Arbiter

5.2 Classifi cation of Interconnection Networks by Logical Topologies 85

 5.2.2 Star

 Figure 5.2 shows an example of a star interconnection network, all processors are
connected to a central hub . All network traffi c between the processors must pass
through the hub. The hub limits the communication performance of the system since
it must communicate with all the processors and must handle their requests. It is a
simple matter to add more processors, but the hub must be able to accommodate the
extra links.

 5.2.3 Ring

 Figure 5.3 shows an example of a ring interconnection network, where each proces-
sor is connected to the ring through a switch. The shaded squares represent MAC
controllers. Each switch is aware of the MAC address of the processor that is con-
nected to it. The switches allow more than one processor to transmit and receive
messages or data at the same time. The sending processor sends its data to the switch
it is connected to. The switch forwards the message to a neighboring switch and the
message travels between the switches until it reaches its destination.

 Figure 5.2 A star interconnection network.

P

P

PP

P

P

P

P

Hub

 Figure 5.3 A ring interconnection network.
The shaded squares represent MAC controllers.

PP

P P

P

P

P

P

Switch

86 Chapter 5 Interconnection Networks

 5.2.4 Mesh

 A two - dimensional mesh network is shown in Fig. 5.4 . The shaded squares represent
MAC controllers. Messages travel from source processor to destination processor
through a routing algorithm that is implemented in each switch or router. There are
several message routing algorithms such as deterministic routing, where the route
between source and destination is predetermined and fi xed. Another routing algo-
rithm is adaptive routing, where the route taken by the message is controlled by the
state of the switches in the network.

 The mesh network performance depends on the traffi c pattern in the mesh, the
buffer size in each switch, and the arbitration scheme used in the switches.

 5.2.5 Crossbar Network

 Crossbar networks have not been well represented in the literature, with the excep-
tion of Furhmann [44] , perhaps due to the original article by Clos [45] in which he
claimed that a crossbar network is very expensive to implement. With the current
state of very large - scale integration (VLSI) technology, it is possible to place several
switching elements (SEs) and their state registers on a single chip with the only
limitation being the number of input/output (I/O) pins and pad size [46] .

 An N × N crossbar network consists of N inputs and N outputs. It can connect
any input to any free output without blocking. Figure 5.5 shows a 6 × 6 crossbar
network. The network consists of an array of crosspoints (CP) connected in a grid
fashion. CP (i , j) lies at the intersection of row i with column j . Each CP operates in
one of two confi gurations as shown in Fig. 5.6 . The X confi guration is the default
confi guration where the SE allows simultaneous data fl ow in the vertical and hori-
zontal directions without interference. If CP (3, 5) was in the X confi guration, then

 Figure 5.4 A two - dimensional mesh
interconnection network. The shaded squares
represent MAC controllers.

P P P P

P P P P

P P P P

P P P P

5.2 Classifi cation of Interconnection Networks by Logical Topologies 87

data fl owing horizontally originate at input 3 and are sent to all the intersection
points at this row. Data fl owing vertically in column 5 could have originated from
any input above or below row 3.

 In the T confi guration, the CP allows data fl ow in the horizontal direction and
interrupts data fl ow in the vertical direction. Data fl owing vertically at the output
are a copy of the horizontal data. For example, if CP (3, 5) was in the T confi gura-
tion, then data fl owing horizontally originate at input 3. Data fl owing downward at
the output are a copy of the horizontal data coming from row 3. This way, output at
column 5 sees a copy of the data that were moving on row 3.

 A crossbar network supports high capacity due to the N simultaneous connec-
tions it can provide. This comes at the expense of the number of CP that grows as
 N 2 . This is one reason why a crossbar network is used mainly for demanding appli-
cations that require a relatively small value of N (about 10). However, advances in
VLSI technology and electro - optics make crossbar switches a viable switching
alternative.

 Data multicast in a crossbar network can be easily accomplished. Suppose that
input 3 requests to multicast its data to outputs 1, 2, and 5. Input 3 would then request
to confi gure CP (3, 1), (3, 2), and (3, 5) into the T confi guration and all other CP in
row 3 would remain in the default X confi guration.

 Figure 5.5 A 6 × 6 crossbar interconnection
network.

1

2

3

5

4

6

1 2 3 4 5 6
Outputs

In
pu

ts

 Figure 5.6 States of the crosspoint (CP) in a
crossbar network. X configuration T configuration

88 Chapter 5 Interconnection Networks

 5.2.6 Crossbar Network Contention and Arbitration

 Suppose that two or more inputs request access to the same output. In that case,
contention arises and some arbitration mechanism has to be provided to settle this
dispute. In fact, we have to provide N arbiters such that each one is associated with
a column in the crossbar network. For example, when input 1 requests to commu-
nicate with output 3, it requests to confi gure CP (1, 3) into the T confi guration and
must wait until the arbiter in column 3 issues a grant to that input. At the same time,
the arbiter in column 3 must inform all other inputs that they cannot access column
3 in that time step. This happens only after the arbiter checks to see if there are any
requests coming from other inputs demanding access to output 3. These arbiters slow
down the system especially for large networks where signal propagation up and
down the columns takes a substantial amount of time.

 5.2.7 Multistage Interconnection Networks (MIN s)

 Figure 5.7 shows that an N × N MIN consists of n stages with stage i connected to
stages i − 1 and i + 1 through some pattern of connection lines. Each stage has w
crossbar SEs that vary in size from 2 × 2 and up. The SEs in each stage are numbered
starting at the top as shown. For the MIN in the fi gure, we have N = 4, n = 3, and
 w = 4. The labeling of the stages and switches is also shown in the fi gure.

 Typically, the number of stages is n = lg N . The design parameters for a MIN
are the size of the network N , the number of stages n , the number of switches per
stage w , and the size of each switch. These four factors determine the MIN complex-
ity . Another important measure of the cost of a MIN is the number and length of the
wires in the connection links between the stages. This last factor determines the
required number of pins or connections at every level of integration or packaging.

 Figure 5.7 A 4 × 4 MIN with three stages
and four switches per stage. Stage: 0

Connection
Links

0

1

2

4

1 2

Switching
Element (SE)

0

1

2

4

0

1

2

4

In
pu

ts

O
ut

pu
ts

5.2 Classifi cation of Interconnection Networks by Logical Topologies 89

 5.2.8 The Banyan Network

 Figure 5.8 shows an 8 × 8 banyan network. For an N × N network, the number of
stages is n + 1, where n = lg N , and the number of SEs in each stage is N . Each SE
is a 2 × 2 crossbar switch and the number of links between the stages is 2 N .

 An N × N banyan network is built using one to two selectors in the input stage
(i = 0), 2 × 2 crossbar SEs in the n − 1 internal stages (0 < i < n), and two to one
concentrators in the output stage (i = n). However, the banyan network is a blocking
network and provides only one path from any input to any output. As such, it pos-
sesses no tolerance for faults.

 SE (i , j) at stage i and row position j is connected to SE (i + 1, k) such that k is
is given by

 k
j

C ji
= ()

⎧
⎨
⎩

Straight connection

Cube connection
 (5.1)

where 0 ≤ i < n . Thus, at stage 1, we see that SE (1, 2) is connected to switches
 SE (2, 2), the straight connection, and switch SE (2, 0), the C 1 (2) connection.

 The cube function C i complements the i th bit (a i) of the binary number, leaving
all other bits intact .

 A a a a a an i i i= − + −1 1 1 0� �

 C A a a a a ai
n i i i() = − + −1 1 1 0� �

 The banyan network provides one unique path from any input to any output
based on the input row address and the destination address. Figure 5.9 shows the
two types of connections that could be established for the two inputs of an SE at
stage i :

 Straight connection. The packet enters and exits at the same row location.

 Cube connection. The packet enters at row location R and exits at row location
 C i (R).

 Figure 5.8 An 8 × 8 banyan
network. 0 1 2 3Stage:

0

1

2

4

3

5

6

7

0

1

2

4

3

5

6

7

0

1

2

4

3

5

6

7

0

1

2

4

3

5

6

7

In
pu

ts

O
ut

pu
ts

90 Chapter 5 Interconnection Networks

 Figure 5.10 A binary tree
interconnection network.

P P P P P P P P

Root

Link

Switch

 Figure 5.9 The straight and cube connections
for each input of an SE in a banyan network.

The straight connection for
each input

The cube connection for each
input

 Straight connection. The packet enters and exits at the same row location.

 Cube connection. The packet enters at row location R and exits at row location
 C i (R).

 5.2.9 Tree Network

 Figure 5.10 shows a binary tree network. The tree supports communication among
 P processors using 2 P − 1 switches or routers. The processors are located at the
leaves of the tree and the switches have three links except for the switch at the root
of the tree and the switches at the bottom of the tree connected to the processors.
For the binary tree, the diameter is 2 log 2 P .

 5.2.10 Random Topology

 Random topology implies that the interconnection network links do not follow a
well - defi ned pattern. The Internet is an example of such a random type of network.
Figure 5.11 shows the main component of the Internet. The white circles represent
core switches, which are specialized high - speed computers capable of maintaining
traffi c in the gigabit range and higher. The gray circles represent switches at the edge

5.3 Interconnection Network Switch Architecture 91

of the Internet. These switches connect the Internet service providers (ISPs) to the
Internet cloud. In turn, the ISPs have their own network of subscribers that access
the Internet through subscription to the services provided by the ISP. The end nodes
could be thought of as LANs with many Internet users.

 The main protocol used to transmit packets across the Internet is the transfer
control protocol/Internet protocol (TCP/IP) protocol. This is a session - oriented pro-
tocol and guarantees the delivery of the transmitted packets. The average time for
delivering packets across the Internet is on the order of 10 ms [47] .

 5.3 INTERCONNECTION NETWORK
SWITCH ARCHITECTURE

 As was explained above, networks rely on switches to perform their functions.
Thus, it is worthwhile to study the construction of switches in more detail. A switch
is a hardware device that accepts messages or packets at its inputs and routes
them to its outputs according to the routing information provided in the message
header and the switch routing table. Figure 5.12 is a block diagram showing the
main components of a switch. The switch has the following main architectural
components:

 1. Controller

 2. Input ports

 3. Switch fabric (SF)

 4. Buffers

 5. Output ports

 Figure 5.11 The main components of the Internet.

End node

Edge switch/
router

Core switch/
router

Network

92 Chapter 5 Interconnection Networks

 Notice that although the switch is a part of the interconnection network, it also has
its own switching network! Typically, it is called the SF. In the following discussion,
we shall refer to the units of data communicated between processors as packets .

 Controller. The controller controls the operation of the switch and routing
packet streams through a lookup table that knows how to route a packet based
on its source and destination processor addresses.

 Buffers. The incoming packets must be stored within the processor since a
certain delay is encountered while determining the packet route. Also, due
to collisions, an incoming packet might not be able to access the desired
output port and must wait for later routing. The design of the buffer has great
infl uence on the performance of the switch and consequently on the perfor-
mance of the interconnection network.

 SF. The SF routes packets from the input ports to the output ports. The setup
of the proper packet rout is determined by the controller.

 Input ports. The input ports accept packets arriving from input links.

 Output ports. The output ports deliver packets to output links.

 There are different types of switches depending on where the buffers are located as
we discuss in the following sections.

 5.3.1 Input Queuing Switch

 Figure 5.13 shows an input queuing switch. Each input port has a dedicated fi rst - in,
fi rst - out (FIFO) buffer to store incoming packets. The arriving packets are stored at
the tail of the queue and only move up when the packet at the head of the queue is
routed through the SF to the correct output port.

 A controller at each input port classifi es each packet by examining its header to
determine the appropriate path through the SF. The controller must also perform
traffi c management functions.

 Figure 5.12 Basic components of a switch.

Switch Fabric
(SF)

Controller

Input
Ports

Output
Ports

Buffers

5.3 Interconnection Network Switch Architecture 93

 In one time step, an input queue must be able to support one write and one read
operation, which is a nice feature since the memory access time is not likely to
impose any speed bottlenecks.

 Assuming an N × N switch, the SF must connect N input ports to N output ports.
Only a space division N × N switch can provide simultaneous connectivity.

 The main advantages of input queuing are

 1. low memory speed requirement;

 2. distributed traffi c management at each input port;

 3. distributed lookup table at each input port; and

 4. support of broadcast and multicast does not require duplicating the data.

 The main disadvantages of input queuing are

 1. head of line (HOL) problem, as discussed below;

 2. diffi culty of implementing data broadcast or multicast since this will further
slow down the switch due to the multiplication of an HOL problem;

 3. diffi culty of implementing quality of service (QoS) or differentiated services
support, as discussed below; and

 4. diffi culty of implementing scheduling strategies since this involves extensive
communications between the input ports.

 An HOL problem arises when the packet at the head of the queue is blocked from
accessing the desired output port [28] . This blockage could arise because the SF
cannot provide a path (internal blocking) or if another packet is accessing the output
port (output blocking). When HOL occurs, other packets that may be queued behind
the blocked packet are consequently blocked from reaching possibly idle output
ports. Thus, HOL limits the maximum throughput of the switch [28] .

 The switch throughput can be increased if the queue service discipline examines
a window of w packets at the head of the queue instead of only the HOL packet.
The fi rst packet out of the top w packets that can be routed is selected and the queue
size decreases by one such that each queue sends only one packet to the switching
fabric. To achieve multicast in an input queuing switch, the HOL packet must remain
at the head of the queue until all the multicast ports have received their own copies
at different time steps. Needless to say, this aggravates the HOL problem since now
we must deal with multiple blocking possibilities for the HOL packet before it fi nally

 Figure 5.13 Input queuing switch. Each input has a
queue for storing incoming packets.

SF

Input
Buffers

N

1

N

1

... ...

94 Chapter 5 Interconnection Networks

leaves the queue. Alternatively, the HOL packet might make use of the multicast
capability of the switching fabric if one exists.

 Packet scheduling is diffi cult because the scheduler has to scan all the packets
in all the input ports. This requires communication between all the inputs, which
limits the speed of the switch. The scheduler will fi nd it diffi cult to maintain band-
width and buffer space fairness when all the packets from different classes are stored
at different buffers at the inputs. For example, packets belonging to a certain class
of service could be found in different input buffers. We have kept a tally of the buffer
space used up by this service class.

 In input queuing, there are three potential causes for packet loss:

 1. Input queue is full. An arriving packet has no place in the queue and is
discarded.

 2. Internal blocking. A packet being routed within the SF is blocked inside the
SF and is discarded. Of course, this type of loss occurs only if the input
queue sends the packet to the SF without waiting to verify that a path can
be provided.

 3. Output blocking. A packet that made it through the SF reaches the
desired output port, but the port ignores it since it is busy serving another
packet. Again, this type of loss occurs only if the input queue sends the
packet to the output without waiting to verify that the output link is
available.

 5.3.2 Output Queuing Switch

 To overcome the HOL limitations of input queuing, the standard approach is to
abandon input queuing and to place the buffers at the output ports as shown in Fig.
 5.14 . Notice however, that an output queuing switch must have small buffers at its
inputs to be able to temporarily hold the arriving packets while they are being clas-
sifi ed and processed for routing.

 An incoming packet is stored at the input buffer, and the input controller must
read the header information to determine which output queue is to be updated. The
packet must be routed through the SF to the correct output port. The controller must
also handle any contention issues that might arise if the packet is blocked from
leaving the buffer for any reason.

 Figure 5.14 Output queuing switch. Each
output has a queue for storing the packets
destined to that output. Each input must also
have a small FIFO buffer for storing incoming
packets for classifi cation.

SF

Small Input
Buffers

N

1

N

1

... ...

Main Output
Buffers

5.3 Interconnection Network Switch Architecture 95

 A controller at each input port classifi es each packet by examining the header
to determine the appropriate path through the SF. The controller must also perform
traffi c management functions.

 In one time step, the small input queue must be able to support one write and
one read operation, which is a nice feature since the memory access time is not likely
to impose any speed bottlenecks. However, in one time step, the main buffer at each
output port must support N write and one read operations.

 Assuming an N × N switch, the SF must connect N input ports to N output ports.
Only a space division N × N switch can provide simultaneous connectivity.

 The main advantages of output queuing are

 1. distributed traffi c management,

 2. distributed lookup table at each input port,

 3. ease of implementing QoS or differentiated services support, and

 4. ease of implementing distributed packet scheduling at each output port.

 The main disadvantages of output queuing are

 1. high memory speed requirements for the output queues;

 2. diffi culty of implementing data broadcast or multicast since this will further
slow down the switch due to the multiplication of a HOL problem;

 3. support of broadcast and multicast requires duplicating the same data at dif-
ferent buffers associated with each output port; and

 4. HOL problem is still present since the switch has input queues.

 The switch throughput can be increased if the switching fabric can deliver more than
one packet to any output queue instead of only one. This can be done by increasing
the operating speed of the SF, which is known as speedup . Alternatively, the SF
could be augmented using duplicate paths, or by choosing an SF that inherently has
more than one link to any output port. When this happens, the output queue has to
be able to handle the extra traffi c by increasing its operating speed or by providing
separate queues for each incoming link.

 As we mentioned before, output queuing requires that each output queue must
be able to support one read and N write operations in one time step. This of course
could become a speed bottleneck due to cycle time limitations of current memory
technologies.

 To achieve multicast in an output queuing switch, the packet at an input buffer
must remain in the buffer until all the multicast ports have received their own copies
at different time steps. Needless to say, this leads to increased buffer occupancy
since now we must deal with multiple blocking possibilities for the packet before it
fi nally leaves the buffer. Alternatively, the packet might make use of the multicast
capability of the switching fabric if one exists.

 In output queuing, there are four potential causes for packet loss:

 1. Input buffer is full. An arriving packet has no place in the buffer and is
discarded.

96 Chapter 5 Interconnection Networks

 2. Internal blocking. A packet being routed within the SF is blocked inside the
SF and is discarded.

 3. Output blocking. A packet that made it through the SF reaches the
desired output port, but the port ignores it since it is busy serving another
packet.

 4. Output queue is full. An arriving packet has no place in the queue and is
discarded.

 5.3.3 Shared Buffer Switch

 Figure 5.15 shows a shared buffer switch design that employs a single common
buffer in which all arriving packets are stored. This buffer queues the data in separate
queues that are located within one common memory. Each queue is associated with
an output port. Similar to input and output queuing, each input port needs a local
buffer of its own in which to store incoming packets until the controller is able to
classify them.

 A fl exible mechanism employed to construct queues using a regular random
access memory is to use the linked list data structure. Each linked list is dedicated
to an output port. In a linked list, each storage location stores a packet and a pointer
to the next packet in the queue as shown. Successive packets need not be stored in
successive memory locations. All that is required is to be able to know the address
of the next packet though the pointer associated with the packet. This pointer is
indicated by the solid circles in the fi gure. The lengths of the linked lists need not
be equal and depend only on how many packets are stored in each linked list. The
memory controller keeps track of the location of the last packet in each queue, as
shown by the empty circles. There is no need for an SF since the packets are effec-
tively “ routed ” by being stored in the proper linked list.

 When a new packet arrives at an input port, the buffer controller decides which
queue it should go to and stores the packet at any available location in the memory
then appends that packet to the linked list by updating the necessary pointers. When

 Figure 5.15 Shared buffer switch. Solid circles indicate next packet pointers. Empty circles
indicate pointers to the tail end of each linked list.

N

1

Shared Buffer

Write
Controller

2

N

1

2

Inputs Outputs

Read
Controller

N

1

2

5.3 Interconnection Network Switch Architecture 97

a packet leaves a queue, the pointer of the next packet now points to the output port
and the length of the linked list is reduced by one.

 The main advantages of shared buffering are

 1. the ability to assign a different buffer space for each output port since the
linked list size is fl exible and limited only by the amount of free space in
the shared buffer;

 2. a switching fabric is not required;

 3. distributed lookup table at each input port;

 4. there is no HOL problem in the shared buffer switch since each linked list
is dedicated to one output port;

 5. ease of implementing data broadcast or multicast;

 6. ease of implementing QoS and differentiated services support; and

 7. ease of implementing scheduling algorithms at each linked list.

 The main disadvantages of shared buffering are

 1. high memory speed requirements for the shared buffer;

 2. centralized scheduler function implementation, which might slow down the
switch;

 3. support of broadcast and multicast requires duplicating the same data at dif-
ferent linked lists associated with each output port; and

 4. the use of a single shared buffer makes the task of accessing the memory
very diffi cult for implementing scheduling algorithms, traffi c management
algorithms, and QoS support.

 The shared buffer must operate at a speed of at least 2 N since it must perform a
maximum of N write and N read operations at each time step.

 To achieve multicast in a shared buffer switch, the packet must be duplicated
in all the linked lists on the multicast list. This needlessly consumes storage area
that could otherwise be used. To support differentiated services, the switch must
maintain several queues at each input port for each service class being supported.

 In shared buffering, there are two potential causes for packet loss:

 1. Input buffer is full. An arriving packet has no place in the buffer and is
discarded.

 2. Shared buffer is full. An arriving packet has no place in the buffer and is
discarded.

 5.3.4 Multiple Input Queuing Switch

 To overcome the HOL problem in input queuing switch and still retain the advan-
tages of that switch, m input queues are assigned to each input port as shown in
Fig. 5.16 . If each input port has a queue that is dedicated to an output port (i.e.,

98 Chapter 5 Interconnection Networks

 m = N), the switch is called a virtual output queuing (VOQ) switch. In that case, the
input controller at each input port will classify an arriving packet and place it in the
FIFO buffer belonging to the destination output port. In effect, we are creating output
queues at each input and hence the name “ VOQ. ”

 This approach removes the HOL problem and the switch effi ciency starts to
approach 100% depending only on the effi ciency of the SF and the scheduling
algorithm at each output port. Multicast is also very easily supported since copies
of an arriving packet could be placed at the respective output queues. Distributed
packet classifi cation and traffi c management are easily implemented in that
switch also.

 There are, however, several residual problems with this architecture. Scheduling
packets for a certain output port becomes a major problem. Each output port must
choose a packet from N virtual queues located at N input ports. This problem is
solved in the VRQ switch, which is discussed later. Another disadvantage associated
with multiple input queues is the contention between all the queues to access the
switching fabric. Dedicating a direct connection between each queue and the SF
results in a huge SF that is of dimension N 2 × N , which is defi nitely not practical.

 In multiple input queuing, there are three potential causes for packet loss:

 1. Input buffer is full. An arriving packet has no place in the buffer and is
discarded.

 2. Internal blocking. A packet being routed within the SF is blocked inside the
SF and is discarded.

 3. Output blocking. A packet that made it through the SF reaches the desired
output port, but the port ignores it since it is busy serving another packet.

 5.3.5 Multiple Output Queuing Switch

 To support sophisticated scheduling algorithms, n output queues are assigned to each
output port as shown in Fig. 5.17 . If each output port has a queue that is dedicated
to an input port (i.e., n = N), the switch is called a virtual input queuing (VIQ)
switch. In that case, the output controller at each output port will classify an arriving

 Figure 5.16 Multiple input queue switch. Each
input port has a bank of FIFO buffers. The number of
queues per input port could represent the number of
service classes supported or it could represent the
number of output ports.

SF

Input
Queues

N

1

N

1
... ...

1: m

1: m

5.3 Interconnection Network Switch Architecture 99

packet and place it in the FIFO buffer belonging to the input port it came on. In
effect, we are creating input queues at each output and hence the name “ VIQ. ”
Another advantage of using several output queues is that the FIFO speed need not
be N times the line rate as was the case in output queuing switch with a single buffer
per port.

 Several disadvantages are not removed from output queue switch using this
approach. The HOL problem is still present and packet broadcast still aggravates the
HOL problem. Another disadvantage associated with multiple output queues is the
contention between all the queues to access the switching fabric. Dedicating a direct
connection between each queue and the SF results in a huge SF that is of dimension
 N × N 2 , which is defi nitely not practical.

 This problem is solved in the virtual routing/virtual queuing (VRQ) switch,
which is discussed later. In multiple output queuing, there are four potential causes
for packet loss:

 1. Input buffer is full. An arriving packet has no place in the buffer and is
discarded.

 2. Internal blocking. A packet being routed within the SF is blocked inside the
SF and is discarded.

 3. Output blocking. A packet that made it through the SF reaches the
desired output port, but the port ignores it since it is busy serving another
packet.

 4. Output queue is full. An arriving packet has no place in the queue and is
discarded.

 5.3.6 Multiple I / O Queuing Switch

 To retain the advantages of multiple input and multiple output queuing and to avoid
their limitations, multiple queues could be placed at each input and output port as
shown in Fig. 5.18 . An arriving packet must be classifi ed by the input controller at
each input port to be placed in its proper input queue. Packets destined to a certain
output port travel through the SF and the controller at each output port classifi es

 Figure 5.17 Multiple output queuing
switch. Each output port has a bank of
FIFO buffers. The number of queues per
output port could represent the number
of service classes supported or it could
represent the number of connections
supported.

SF

N

1

N

1

......
Output
Queues

1: n

1: n

100 Chapter 5 Interconnection Networks

them, according to their class of service, and places them in their proper
output queue.

 The advantages of multiple queues at the input and the output are removal of
HOL problem, distributed lookup table, distributed traffi c management, and ease of
implementation of differentiated services. Furthermore, the memory speed of each
queue could match the line rate.

 The disadvantage of the multiple input and output queue switch is the need to
design an SF that is able to support a maximum of N 2 × N 2 connections simultane-
ously. This problem is solved in the VRQ switch, which is discussed later.

 In multiple input and output queuing, there are four potential causes for
packet loss:

 1. Input buffer is full. An arriving packet has no place in the buffer and is
discarded.

 2. Internal blocking. A packet being routed within the SF is blocked inside the
SF and is discarded.

 3. Output blocking. A packet that made it through the SF reaches the
desired output port, but the port ignores it since it is busy serving another
packet.

 4. Output queue is full. An arriving packet has no place in the queue and is
discarded.

 5.3.7 VRQ Switch

 We saw in the previous sections the many alternatives for locating and segmenting
the buffers. Each design had its advantages and disadvantages. The VRQ switch has
been proposed by the author such that it has all the advantages of earlier switches
but none of their disadvantages. In addition, the design has extra features such as
low power, scalability, and so on [28] .

 Figure 5.18 Multiple input and output queuing switch. Each input port has a bank of FIFO buffers
and each output port has a bank of FIFO buffers.

SF

Input
Queues

N

1
...

1: m

1: m

Output
Queues

N

1

...

1: n

1: n

5.3 Interconnection Network Switch Architecture 101

 Figure 5.19 shows the main components of that switch. Each input port has N
buffers (not queues) where incoming packets are stored after being classifi ed.
Similarly, each output port has K FIFO queues, where K is determined by the number
of service classes or sessions that must be supported. The SF is an array of backplane
buses. This gives the best throughput compared with any other previously proposed
SF architecture including crossbar switches.

 The input buffers store incoming packets, which could be variable in size. The
input controller determines which output port is desired by the packet and sends a
 pointer to the destination output port. The pointer indicates to the output port the
location of the packet in the input buffer, which input port it came from, and any
other QoS requirements. The output controller queues that pointer — the packet itself
remains in the input buffer. The buffer storage requirements for the output queues
are modest since they store pointer information, which is small in size compared to
the size of the packets stored in the input buffers.

 When a pointer is selected from an output queue, the location of the correspond-
ing packet is determined and the packet is selected to access the SF. We call this
mode of operation output - driven routing , which never leads to SF contention. The
classic or usual way of accessing the SF is called input - driven routing , which is
guaranteed to lead to contention as we have seen in each switch design we have
studied so far.

 Let us see how the VRQ switch is able to overcome all the limitations of earlier
designs:

 1. Traffi c management, scheduling, and congestion control are all distributed
among the input and output ports. This allows more time for the algorithms

 Figure 5.19 The virtual routing/virtual queuing (VRQ) high - performance switch.

1

N

Dedicated
Input Buffers

1

N

1

K

1

K

Module 1

1 N
Module N

Virtual
Output Queues

Dedicated
Backplane Buses

...
...

...
...

... ...

...

102 Chapter 5 Interconnection Networks

to complete their operations and for the designer to implement more
sophisticated algorithms.

 2. The HOL problem is completely eliminated because the VRQ switch is
output driven and not input driven.

 3. The input buffers operate at the line rate, and each output queue needs to
process at most N pointers, which is much simpler than processing N
packets.

 4. Packets are stored at the inputs in regular memory, not FIFO memory, which
is much simpler to implement.

 5. There is great freedom in confi guring the output queues. The queues could
be constructed based on a per - connection basis, per - input basis, or per -
 service class basis.

 6. Data broadcast is very simple to implement and no extra copies of a packet
need to be stored.

 7. An incoming packet does not leave its location in the input buffer until it
is ready to be moved through the switch. This reduces power and storage
requirements.

 8. Internal blocking is completely removed since each input port has its own
dedicated bus.

 9. Output blocking is completely removed since each output port is able to
process all the pointers that arrive to it.

 10. The backplane buses operate at the line rate in a bit - serial fashion with no
need whatsoever for internal speedup or use of parallel data lines.

 11. The SF is contentionless since it is based on a matrix of dedicated buses
that are output driven .

 Table 5.1 summarizes the desirable features to be supported by a switch and
switch type that can support these features. From the table, we see that both the
shared buffer switch and the VRQ switch can easily implement most of the func-
tionalities of a high - speed switch.

 Table 5.1 Switch Types Capable of Supporting the Different
Switch Features

 Feature Input Output Shared VRQ

 QoS support X X X
 HOL elimination X X
 Scheduling support X X X
 Broadcast support X X
 Memory speed X X
 Scalability X X
 Contentionless SF X X

5.4 Problems 103

 5.4 PROBLEMS

 5.1. This problem is adapted from Quinn [48] . Draw hypercube networks with two, four, and
eight nodes.

 5.2. Explain how a path is established in the crossbar switch and explain why the switch is
nonblocking.

 5.3. A blocking interconnection network is one where a connection between an input and an
output is not available if another input is accessing another output. Show which of the
networks discussed in this chapter are blocking networks and which are not.

 5.4. Discuss the need for arbitration in a crossbar network and propose some techniques for
resolving output contention. Discuss the advantages and disadvantages of the arbitration
techniques you propose from the point of view of hardware complexity and speed.

 5.5. Derive the performance parameters of the bus interconnection network. Assume that
network access requests are issued randomly with probability a per time slot and that
there are P processors in the system.

 5.6. Derive the performance parameters of the star interconnection network. Assume that
network access requests are issued randomly with probability a per time slot and that
there are P processors in the system.

 Chapter 6

Concurrency Platforms

 6.1 INTRODUCTION

 There is a software gap [49] between hardware potential and the performance that
can be attained using today ’ s software tools. There are now concurrency platforms
that support multithreading, such as Cilk + + [50] and Open Multi - Processing
(OpenMP) [51] and standard libraries like POSIX threads (Pthreads) [38 – 40, 52, 53]
and WinAPI threads [40] . Using these tools, the program developer is able to control
the number of threads and the workload assigned to each thread. The program
developer can also control synchronization of the different threads to ensure proper
program execution. Using such techniques, the programmer is able to generate a
 parallel code — that is, a code that contains several threads. However, this code might
not automatically result in a concurrent code — that is, a code that runs simultane-
ously on several cores or processors. Concurrency is controlled ultimately by
the operating system [54] . The application developers cannot rely on the software
to explore algorithm speedup. Rather, the developer must use special directives
to control the progress of tasks even in the presence of operating system
uncertainties.

 The above tools rely on the application developer or the programmer being able
to identify parallelism and to ensure proper program sequencing. This might be easy
to do for the simplest cases. For other cases, the programmer needs other tools to
investigate the alternative ways to explore possible parallelism. The purpose of this
book is to provide such tools to programmers so they can intelligently control the
concurrency platforms.

 6.2 CONCURRENCY PLATFORMS

 An alternative to these low - level do - it - yourself tools is the concurrency platform —
 this is a software that allows coordination, scheduling, and management of multicore
resources. Examples of concurrency platforms include [55]

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

105

106 Chapter 6 Concurrency Platforms

• .NET ThreadingPool class [56]

 • message - passing libraries such as message passing interface (MPI) [57]

 • data - parallel programming languages such as NESL [58] , Ct from RapidMind/
Intel [59] ;

 • task parallel libraries such as Intel ’ s Threading Building Blocks (TBB) [60] ,
Microsoft ’ s Task Parallel Library (TPL) [61] , and Microsoft ’ s Concurrency
Runtime; and

 • extensions to programming languages such as OpenMP [51] , Cilk + + [50] ,
C + + [62] , and Microsoft ’ s Parallel Patterns Library (PPL) [63] .

 In the following sections, we illustrate using concurrency platforms.

 6.3 CILK + +

 Cilk + + is a language extension programming tool. Cilk + + is suited for divide - and -
 conquer problems where the problem can be divided into parallel independent tasks
and the results can be combined afterward. As such, the programmer bears the
responsibility of structuring the program to expose its inherent parallelism. Cilk ’ s
runtime system bears the responsibility of scheduling the computational tasks on the
parallel processor system. The techniques we discuss in this book give the program-
mer insight on the alternative parallelism options available for a given algorithm.
The application developer can use a few key words provided by Cilk + + to convert
a standard serial program into a parallel program. A standard C + + program can be
converted to a Cilk + + program running Intel ’ s Cilk + + system developers kit (SDK)
by doing these initial steps [64] :

 1. Ensure that the serial C + + program is bug free.

 2. Rename source fi le extension from .cpp to .cilk .

 3. Add #include < cilk.h > .
 4. Rename the main() function to cilk_main() .

 At this stage, the program is a program that has no parallelism yet. The programmer
must add a few key words to the program, such as

 • cilk , which alerts the compiler that this is a parallel program;

 • cilk_spawn , which creates a locally spawned function that can be executed
in parallel with other tasks;

 • cilk_sync , which forces the current threads to wait for all locally spawned
functions to be completed; thus, all cilk_spawn function must be com-
pleted fi rst before the cilk_sync function can continue. This is equivalent
to the join statement in the pthread library; and

 • cilk for , which is a parallel version of the serial for loop statement.

6.3 Cilk++ 107

 The Cilk + + constructs discussed above specify logical parallelism in the program.
The operating system will map the tasks into processes or threads and schedules
them for execution. Listing 6.1 is the pseudocode for the Fibonacci algorithm imple-
mented using Cilk:

 Listing 6.1 Pseudocode for the evaluation of Fibonacci numbers

 1: int fib (int n)
 2: {
 3: if n < 2 then
 4: return n ;
 5: else
 6: {
 7: int x , y ;
 8: x = cilk_spawn fib(n − 1);
 9: y = cilk_spawn fib(n − 2);

 10: cilk_sync
 11: return (x + y);
 12: }
 13: end if
 14: }

 The key words in italics in lines 8 and 9 indicate that the fib() function call can
be done in parallel. The key word in line 10 ensures that the add operation in line
11 can be performed only after two function calls in lines 8 and 9 have been
completed.

 6.3.1 Cilk + + Parallel Loop: cilk_for

 The syntax of the Cilk + + for loop is very much similar to that of the C + +
 for loop.

 cilk for (i = start_value; i < end_value; i + +){
 statement_1;
 statement_2;
 .
 .
 .
 }

 The end - of - iteration comparison could be one of the usual relational operators:

 < , < = , ! = , > = , or > .

 Cilk + + for does not have a break statement for early exit from the loop. Cilk + +
divides the iterations of the loop into chunks where each chunk consists of few itera-
tions of the loop. An implied cilk_spawn statement creates a thread or a strand
for each chunk. Thus, the loop is parallelized since chunk strands will be executed
in parallel using a work - stealing scheduler [65] . The chunk size is called the grain
size . if the grain size is large, parallelism is reduced since the number of chunks will
be small. If the grain size is small, then the overhead to deal with too many strands

108 Chapter 6 Concurrency Platforms

reduces the performance. The programmer can override the default grain size through
the compiler directive statement

 #pragma cilk_grain size = expression,

 where expression is any valid C + + expression that yields an integer value. The
pragma should immediately precede the cilk_for loop [66] .

 6.3.2 Data Races and Program Indeterminacy

 A data race occurs when two threads attempt to access the same variable in memory
and one of them performs a write operation. This is the problem of shared or nonlo-
cal variables. Nonlocal variables are variables that are declared outside the scope
where it is used. A global variable is a nonlocal variable declared in the outermost
scope of the program [49] . It is hard to rewrite a code that avoids the use of nonlocal
variables. This occurs when a function call has side effects and changes a variable
declared outside the function. The obvious solution is to use local variables by
passing the variable as a parameter of the function. Most of us know that this will
lead to functions with a long argument list. The problem is that with multicores,
nonlocal variables will lead to race bugs. Parallel processors that share variables
must guard against race bugs that compromise data integrity.

 A simple race bug is a determinacy race . A program is deterministic if the
output is the same for any multicore strand scheduling strategy. A strand is defi ned
as a sequence of executed instructions containing no parallel control [67] . On
the other hand, a program is nondeterministic if it produces different results for
every run.

 Consider the following serial code as an example of determinacy race:

 1: #include < iostream >
 2: using namespace std;
 3: void swap (int & x, int & y);
 4: int main()
 5: {
 6: int x = 1, y = 10;
 7: swap (x , y);
 8: x = 2 * x ;
 9: cout << “ x = ” << x << endl;

 10: cout << “ y = ” << y << endl;
 11: }
 12: void swap (int & x, int & y)
 13: {
 14: int temp ;
 15: temp = x ;
 16: x = y ;
 17: y = temp ;
 18: }

 The output of the serial program is x = 20 and y = 1 because x and y will get
swapped fi rst then x is doubled according to lines 7 and 8, respectively.

6.3 Cilk++ 109

 Now consider a similar code executed on a parallel computing platform with
the directive cilk_spawn :

 1: #include < iostream >
 2: using namespace std;
 3: void swap (int & x , int & y);
 4: int main()
 5: {
 6: int x = 1, y = 10;
 7: cilk_spawn swap (x , y);
 8: x = 2 * x ;
 9: cilk_sync;

 10: cout << “ x = ” << x << endl;
 11: cout << “ y = ” << y << endl;
 12: }
 13: void swap (int & x , int & y)
 14: {
 15: int temp ;
 16: temp = x ;
 17: x = y ;
 18: y = temp ;
 19: }

 The output of the parallel program has a race bug and the output might be x = 20
and y = 1 sometime and x = 10 and y = 2 at another time. Figure 6.1 shows the
breakdown of the parallel program into strands A , B , C , and D . Strand A begins at
the start of the program and ends at the cilk_spawn statement. The cilk_spawn
statement creates the strands B and C . Strand B executes the statement x = 2 * x and
strand C executes the swap (x , y); statement. Strand D begins after the cilk_sync
statement to the end of the program.

 The race condition occurs because strands B and C both involve reading and
writing the same variable x . This will most certainly lead to data inconsistency of
the types discussed in Chapter 2 , such as

 1. output dependencies: write after write (WAW),

 2. antidependencies: write after read (WAR),

 Figure 6.1 Splitting of a program into
strands using the directive cilk_spawn
and merging the strands using cilk_sync
statements.

Strand A

Strand D

Strand CStrand B

x

x x x y

y

110 Chapter 6 Concurrency Platforms

 3. true data dependency: read after write (RAW), and

 4. procedural dependencies .

 Any of the following race conditions could take place depending on the operating
system:

 • Strand B executes completely before strand C .

 • Strand C executes completely before strand B .

 • Strand B partially executes, then strand C starts.

 • Strand C partially executes, then strand B starts.

 Cilk Arts provides a tool called Cilkscreen to detect and report data races.
 To get rid of data races, traditional programming uses mutexes. These, however,

might cause locks and lose potential parallelism. Cilk + + provides hyperobjects to
eliminate data races without the use of mutex or rewriting the program. A nonlocal
variable is declared to be a hyperobject of the appropriate type to eliminate data
races on the nolocal variable [67] . Hyperobjects are not defi ned within Cilk + + .
Rather, they are specifi ed as common C + + classes.

 6.3.3 Cilk + + Components for Parallelizing a Serial Code

 Cilk + + has several components to help the programmer parallelize a serial code and
debug the resulting program:

 1. Cilk + + compiler

 2. Cilk + + libraries to be used by the Cilk + + compiler

 3. Cilkscreen the Cilk + + race detector

 4. Performance analysis tools

 5. Debugging tools

 6. Cilk + + documentation

 As mentioned before, Cilkscreen fi nds all the data races. In addition,
Cilkscreen performance profi ler measures the work , depth , and parallelism, which
is defi ned here as work divided by depth.

 We should stress that it is the programmer ’ s responsibility to strategically place
the cilk_spawn and cilk_sync statements in the program to optimize its per-
formance on a given multicore system. The algorithm analysis tools provided in this
book can help the programmer fi nd out the alternative ways to place those statements
while preserving the algorithm correctness.

 Some guidelines proposed in using Cilk + + are the following [68]

 1. Write the fastest correct serial program.

 2. Introduce Cilk + + key words to make the program parallel.

6.3 Cilk++ 111

 3. Use the Cilkscreen race detector to fi nd and correct any data races.

 4. Use the Cilkscreen performance profi ler to predict performance, looking for
ways to reduce the span to increase the parallelism.

 6.3.4 Applying Cilk + + to Matrix – Matrix Multiplication

 Listing 6.2 shows the pseudocode for the matrix – matrix multiplication algorithm.

 Listing 6.2 The pseudocode for the standard algorithm for multiplying two n × n
matrices, A and B , to produce matrix C is given by

 multiply (A , B , C , n) {
 if n = 1 then
 C = A * B
 else
 for i = 0; i < n ; i + + do
 for j = 0; j < n ; i + + do
 for k = 0; j < n ; k + + do
 C (i , j) = C (i , j) + A (i , k) * B (k , j)
 end for
 end for
 end for
 end if
 return C
 }.

 This algorithm requires n 3 multiplications and (n − 1) n 2 additions. We can partition
our input matrices and the product would be given by

C C

C C

A A

A A

B B

B B
11 12

21 22

11 12

21 22

11 12

21 22

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

× ⎡
⎣⎢

⎤
⎦⎥
. (6.1)

 The parallelized pseudocode for partitioned matrix – matrix multiplication using
Cilk + + would be given by Listing 6.3. The code requires the defi nition of two func-
tions, multiply() and add() . Notice that each of these functions calls itself
recursively.

 Listing 6.3 Pseudocode for Cilk + + parallelization of the partitioned matrix – matrix
multiplication algorithm

 1: multiply (A , B , C , n) {
 2: if n = 1 then
 3: C = A * B
 4: else
 5: define a temporary matrix T
 6: partition A , B , C and T into n /2 × n /2 submatrices
 7: cilk_spawn multiply (A 11 , B 11 , C 11 , n /2)
 8: cilk_spawn multiply (A 11 , B 12 , C 12 , n /2)

112 Chapter 6 Concurrency Platforms

 9: cilk_spawn multiply (A 21 , B 11 , C 21 , n /2)
 10: cilk_spawn multiply (A 21 , B 12 , C 22 , n /2)
 11: cilk_spawn multiply (A 11 , B 11 , C 11 , n /2)
 12: cilk_spawn multiply (A 11 , B 12 , T 12 , n /2)
 13: cilk_spawn multiply (A 21 , B 11 , T 21 , n /2)
 14: cilk_spawn multiply (A 21 , B 12 , T 22 , n /2)
 15: cilk_sync
 16: cilk_spawn add(C , T , n)
 17: cilk_sync
 18: end if
 19: return C
 20: }
 21:
 22: add(C , T , n){
 23: if n = 1 then
 24: C = C + T
 25: else
 26: partition B , and T into n /2 × n /2 submatrices
 27: cilk_spawn add (C 11 , T 11 , n /2)
 28: cilk_spawn add (C 12 , T 12 , n /2)
 29: cilk_spawn add (C 21 , T 21 , n /2)
 30: cilk_spawn add (C 22 , T 22 , n /2)
 31: cilk_sync
 32: end if
 33: }

 Line 6 will defi ne the partitioning of the matrices into submatrices. Lines 7 – 17
produce eight strands, and each strand is in charge of doing a n /2 × n /2 matrix
multiplication. Each submatrix multiplication operation produces its own strands
to multiply smaller partitioned matrices of size n /4 × n /4. And this is done
recursively.

 We do not do the fi nal add on line 16 until all the strands on lines 7 – 14 have
fi nished their operations. Similarly, the addition of the resulting partial matrices is
done in a hierarchical fashion as shown by lines 22 – 33 of the algorithm.

 6.4 O pen MP

 OpenMP is a concurrency platform for multithreaded, shared - memory parallel
processing architecture for C, C + + , and Fortran. By using OpenMP, the programmer
is able to incrementally parallelize the program with little programming effort.
The programmer manually inserts compiler directives to assist the compiler into
generating threads for the parallel processor platform. The user does not need to
create the threads nor worry about the tasks assigned to each thread. In that sense,
OpenMP is a higher - level programming model compared with pthreads in the
POSIX library.

 At the current state of the art, there is something to be gained using manual
parallelization. Automatic parallelizing compilers cannot compete with a hand -
 coded parallel program. OpenMP uses three types of constructs to control the
parallelization of a program [69] :

6.4 OpenMP 113

 1. Compiler directives

 2. Runtime library routines

 3. Environment variables

 To compile an OpenMP program, one would issue the command

 gcc - openmp file.c - o file.

 Listing 6.4 The following pseudocode is a sketch of how OpenMP parallelizes a
serial code [69] :

 1: #include < omp.h >
 2: main () {
 3: int var1, var2, var3;
 4: Serial code executed by master thread
 5: �
 6: #pragma omp parallel private(var1, var2)
shared(var3)
 7: {
 8: Parallel section executed by all threads
 9: �

 10: }
 11: Resume serial code
 12: }

 Line 1 is an include fi le that defi nes the functions used by OpenMP. Lines 2 – 5
is a serial code just like in any C or C + + program. Line 6 is an OpenMP compiler
directive instructing the compiler to parallelize the lines of code enclosed by the
curly brackets spanning lines 7 – 10. The directive fork s a team of threads
and specifi es variable scoping; some variables are private to each thread, and
some are shared between the threads . Another name for a compiler directive is
 pragma .

 Line 7 is the start of the parallel code block indicated by the left curly bracket.
The code block is duplicated and all newly forked threads execute that code in paral-
lel. Line 8 is the start of parallel section instructions. Line 10 is the end of the parallel
code block indicated by the right curly bracket. All threads join the master thread
and disband. Lines 11 – 12 are the start of another serial code block.

 Figure 6.2 shows breaking up a serial single - thread code into multithreads.
Figure 6.2 a shows the original serial code composed of several code sections as
indicated by the numbered blocks. Indicated on the fi gure also are the compiler
directives manually inserted by the programmer at the start of a group of code sec-
tions instructing the compiler to fork threads at this point. Figure 6.2 b shows how
the compiler forks as many threads as required to parallelize each code section that
follows each compiler fork directive. A join synchronization compiler directive
ensures that the program resumes after the parallel threads have fi nished executing
their tasks. There is a master thread, indicated by the solid thick line, which forks
the other threads. Each thread is identifi ed by an “ ID ” integer and the master thread
has an ID value of “ 0 ” .

114 Chapter 6 Concurrency Platforms

 OpenMP consists of the following major components:

 • Compiler directives instructing the compiler on how to parallelize the code

 • Runtime library functions to modify and check the number of threads and to
check how may processors there are in the multiprocessor system

 • Environment variables to alter the execution of OpenMP applications

 Like Cilk + + , OpenMP does not require restructuring the serial program. The
use only needs to add compiler directives to reconstruct the serial program into a
parallel one.

 6.4.1 O pen MP Compiler Directives

 The user tells the compiler to recognize OpenMP commands by adding - omp on
the cc command line. Compiler directives allow the programmer to instruct the
compiler on issues of thread creation, work load distribution, data management, and
thread synchronization. The format for an OpenMP compiler directive is

 #pragma omp directive_name [clause, · · ·]
newline_character.

 Notice that each directive could have a collection of clauses. Table 6.1 sum-
marizes some of the OpenMP pragma directives

 Listing 6.5 The following code fragment shows how #omp comp parallel
compiler directive is sued to fork additional threads to execute the tasks specifi ed
by the affected code section :

 Figure 6.2 Breaking up a serial code into parallel threads. (a) Original serial code that has one
master thread. (b) Forking parallel threads to be executed concurrently.

Compile directives
for parallelization

(a)

(b)

Master
thread

Worker
threads

Parallel
region

Parallel
region

Parallel
region

6.4 OpenMP 115

 #pragma omp parallel default(shared) private(a, b)
 {
 // The code between brackets will run in parallel
 statement 1;
 statement 2;
 statement 3;
 �
 }

 6.4.2 Compiler Directive Clauses

 Some of the compiler directives use one or more clauses. The order in which clauses
are written is not important. Most clauses accept a comma - separated list of items.
Clauses deal with different types of compiler directives: data sharing among the
threads. Other clauses deal with data copying of a private variable value from a
thread to a corresponding variable in another thread.

 The following table shows some directives and their associated clauses.

 Directive Clause
 Parallel Copying, default, private, fi rstprivate, reduction, shared
 Sections Private, fi rstprivate, lastprivate, reduction, schedule
 Section Private, fi rstprivate, lastprivate, reduction
 Critical None
 Barrier None
 Atomic None
 Flush (list) None
 Ordered None
 Threadadaptive (list) None

 Table 6.1 Some O pen MP Pragma Directives

 OpenMP pragma directive Description

 #pragma omp atomic Defi nes a memory location to be updated atomically
 #pragma omp barrier Synchronizes all the threads in a parallel region
 #pragma omp critical Defi nes the code section that follows the directive to be

executed by a single thread at a time
 #pragma omp fl ush Synchronization directive to ensure all threads in a parallel

region have the same view of specifi ed objects in
memory

 #pragma omp for Specifi es that the for loop iterations should be run in
parallel using multiple threads

 #pragma omp parallel Defi nes a parallel code region to be run by multiple
threads; the original process will be the master thread

 #pragma omp parallel do Splits up the loop iterations among threads
 #pragma omp parallel for Similar to parallel do pragma

116 Chapter 6 Concurrency Platforms

 The following table explains some of the directive clauses mentioned above. More
clauses are explained in Section 6.4.4 .

 Clause Description
 default (mode) Controls the default data sharing attributes of variables.

Mode could be private , shared , and none .
 shared (list) Lists items to be shared by threads generated by

 parallel or task compiler directives, for
example,

 #pragma omp parallel default(shared)
 copyin (list) Copies the values of the list items from the master

thread to the other parallel worker threads
 num_threads

(integer_expr)
 Requests the number of threads specifi ed by the integer

expression

 6.4.3 O pen MP Work Sharing

 The work sharing directives control which threads execute which statements.
These directives do not fork new threads. The two directives are #pragma omp
for and #pragma omp sections . We discuss these two directives in the
following sections.

 6.4.4 Loop Directive: for

 Most parallel algorithms contain FOR loops, and we dedicate this section to discuss-
ing the compiler directive related to FOR loops. The format of the for compiler
directive is

 #pragma omp for [clause · · ·] newline .

 There are several clauses associated with the for compiler directive as shown in
Table 6.2 .

 When the schedule clause is schedule(static, 3) , iterations are divided
into pieces of size 3 and are assigned to threads in a round - robin fashion ordered by
the thread number.

 When the schedule clause is schedule(dynamic, 3) , iterations are divided
into pieces of size 3 and are assigned to next available thread. When a thread com-
pletes its task, it looks for the next available chunk.

 The following is a code fragment showing a compiler directive to parallelize a
 for loop that adds two vectors, a and b , and produces the output vector c . Notice
that the iterations within the loop body are independent and can be executed
concurrently.

6.4 OpenMP 117

 Listing 6.6 The reduction and schedule clauses are used [69] :

 1: #include < omp.h >
 2: #include < stdio.h >
 3: #include < stdlib.h >
 4:
 5: int main (int argc, char * argv[]){
 6: int i, n;
 7: float a[100], b[100], sum;
 8: n = 100;
 9: for (i = 0; i < n; i + +)

 10: a[i] = b[i] = i * 1.0;
 11: sum = 0.0;
 12:
 13: #pragma omp parallel for schedule(dynamic,16)
reduction(+ :sum)
 14: for (i = 0; i < 64; i + +)
 15: sum = sum + (a(i) * b(i));
 16: printf(“ sum = %f\n ” , sum);
 17: }

 Line 13 is the compiler directive to parallelize the FOR loop that follows on
line 14. Dynamic scheduling of threads is chosen and the chunk size for each itera-
tion is set at 16 iterations of the loop. The reduction operator applies the addition
operation to the sum variable. Figure 6.3 shows how the code above is broken into
threads that execute in parallel.

 Table 6.2 Open MP Loop Compiler Directive Clauses

 #pragma omp for Clauses Description

 schedule (type [, chunk
size])

 Schedule type could be static or dynamic. It describes how the
work is divided among the threads. Number of loop
iterations done by each thread equals chunk size.

 private (list) List of variables private to each thread.
 fi rstprivate (list) Variables are initialized with the value before entering the

block or region.
 lastprivate (list) Variables are updated going out of a block or region.
 shared (list) List of variables shared among the threads.
 reduction(operator: list) Perform a reduction on the variables specifi ed by the list using

the operator . The operator could be: + , * , - , & , |, ∧ , & & , || .
 Operator works on thread outputs when all of them fi nish
execution.

 collapse (n)
 nowait Threads do not synchronize at the end of the parallel

FOR - loop.

118 Chapter 6 Concurrency Platforms

 Listing 6.7 The following example illustrates using the parallel and
 parallel for constructs to implement two fi nite impulse response (FIR) fi lters,
both of length n = 40 :

 1: #pragma omp parallel default (none) \
 2: shared (x, m, n) private (i, j, h1, h2, y1, y2)
 3: { // start of parallel region
 4: #pragma omp for nowait
 5: for (i = 0; i < m ; i + +) {
 6: for (j = 0; j < n ; j + +)
 7: y1(i) = y1(i) + h1(j) * x(i - j);
 8: }
 9: #pragma omp for nowait

 10: for (i = 0; i < m ; i + +) {
 11: for (j = 0; j < n ; j + +)
 12: y2(i) = y2(i) + h2(j) * x(i - j);
 13: }
 14: } // end of parallel region

 Notice the backslash (\) at the end of line 1. This is needed as a line continuation
character to accommodate the clauses for the parallel directive.

 Line 1 identifi es to the compiler a parallel region of code as delineated by the
curly brackets starting at line 3 and ending at line 14. The default (none) clause
defi nes the default data scope of variables in each thread. There are two options with
this clause: none and shared .

 In line 2, the shared (x, m, n) clause declares the scope of the comma -
 separated data variables in the list to be shared across all threads. The private
(i, j, h1, h2, y1, y2) clause declares the scope of the comma - separated data
variables in the list to be private to each thread.

 Line 4 is a compiler directive used to parallelize the FOR loop statement in Line
5 . Notice that each iteration of the outer FOR loop is a nested FOR loop . This means
that the outer loop will execute in parallel using several threads, and each thread
will execute the inner loop in a serial fashion. The nowait clause indicate that the
threads do not synchronize at end of the outer FOR loop. This avoids the implied
barrier at the end of the for compiler directive. Nesting parallelism might or might
not be supported. The programmer determines if nesting is supported by the omp_
get_nested() library function. Enabling of nesting, when supported, can be

 Figure 6.3 Parallelizing a FOR loop into threads that
execute in parallel.

Master
thread

Worker
threads

6.4 OpenMP 119

accomplished by omp_set nested() library routing or by setting the OMP_
NESTED environment variable to TRUE .

 Line 9 is similar to line 4.

 6.4.5 Loop Directive: sections

 Listing 6.8 Several blocks are executed in parallel using the sections
directive :

 1: #pragma omp parallel
 2: {
 3: #pragma omp sections [clause [· · ·]] newline
 4: {
 5: #pragma omp section
 6: {
 7: structured block # 1 statements
 8: }
 9: #pragma omp section

 10: {
 11: structured block # 2 statements
 12: }
 13: #pragma omp section
 14: {
 15: structured block # 3 statements
 16: }
 17: }
 18: }

 Line 1 directs the compiler to parallelize the block enclosed by the curly
brackets starting at line 2 and ending at line 18.

 Line 3 directs the compiler to execute the sections that follow in separate
threads. Line 5 defi nes the fi rst section between lines 6 and 8 to be executed by one
thread. Line 9 defi nes the fi rst section between lines 10 and 12 to be executed by
one thread. Line 13 defi nes the fi rst section between lines 14 and 16 to be executed
by one thread.

 6.4.6 Runtime Library Routines

 The header fi le < omp.h > contains the prototypes of the routines. Runtime library
routines control the parallel execution environment, control and monitor threads,
and control and monitor processors [70] .

 Execution environment routines include

 void omp_set_num_threads (int num_threads);

 which controls the number of threads used for the subsequent parallel regions that
do not have a num_threads clause.

120 Chapter 6 Concurrency Platforms

 The library has lock routines to synchronize access to data. A type omp_loc_t
is defi ned as an object type capable of representing a lock and of assigning the lock
to a thread. OpenMP runtime library functions are

 Library routine Description
 double omp_get_wtime

(void);
 Return elapsed wall clock time in seconds.

 double omp_get_wtick
(void);

 Return the precision of the time used by the
 omp_get_wtime function.

 omp_set_num_threads Set the number of threads:
 Omp_set_num_threads (4); //

fork four parallel threads
 omp_get_num_threads Get the number of threads.
 omp_get_num_procs Get the number of processors: processors

 = omp_get_num_procs();

 6.4.7 Environment Variables

 Environment variables are used to alter the execution of OpenMP applications. Some
of the functions of environment variables include

 • number of threads,

 • type of scheduling policy,

 • nested parallelism, and

 • thread limit.

 Environment variable names are upper case and the values assigned to them are case
insensitive. Some environment variables are

 #pragma omp for clauses Description
 OMP_NUM_THREADS num Specifi es the number of threads to be forked
 OMP_DYNAMIC [true — false] Dynamically adjusts the number of threads in a

parallel region
 OMP_THREAD_LIMIT limit Controls the maximum number of threads in the

OpenMP program

 To specify a certain environment variable, the user includes lines in C/C + + code:

 setenv OMP_NUM_THREADS 4.

 This instructs the compiler to generate four threads when needed.

 6.4.8 O pen MP Synchronization

 Lock control routines synchronize the execution of threads to guarantee data read/
write integrity among the parallel threads. OpenMP offers compiler directives to

6.4 OpenMP 121

control the execution of threads through synchronization. The programmer must
guard against synchronization deadlocks. OpenMP has fi ve synchronization direc-
tives: critical, ordered, atomic , flush, and barrier .

 There is an implicit barrier at the end of parallel constructs like omp for or
 omp parallel . This implicit synchronization can be removed with the nowait
clause as we saw earlier. We can explicitly specify a synchronization barrier as
explained in the following sections.

 critical Directive

 The critical directive instructs that the threads executing some parallel code halt
execution upon reaching the directive. A thread will execute the code section fol-
lowing the critical directive when no other thread is executing it.

 The code below is for the critical directive, which specifi es a region of code
that must be executed by one thread at a time. This ensures that a critical section is
executed by one thread without interruptions from the other threads.

 #pragma omp critical [name] newline
 structured block

 The name in the above code allows for multiple critical sections to exist. Listing
6.9 illustrates multiple critical sections.

 Listing 6.9 An example of use of critical section .

 1: #include < omp.h >
 2: main (){
 3: int x = 0;
 4: #pragma omp parallel
 5: {
 6: statements
 7: �
 8: #pragma omp critical
 9: x = x + 1;

 10: statements
 11: �
 12: }
 13: }

 Line 4 indicates that the following code section is to be done in parallel by all
threads. This code spans lines 6 – 11. However, line 8 indicates that the statement on
line 9 must be executed by exactly one thread at a time and all other threads that
reach that line must wait.

 barrier Directive

 The barrier directive synchronizes all the threads. When a thread reaches the
 barrier , it will wait until all the other threads have reached their barrier, after
which all threads resume executing the code following the barrier in parallel:

122 Chapter 6 Concurrency Platforms

 #pragma omp barrier newline .

 When a barrier directive is reached by a thread, it will wait until all other threads
have reached the barrier too. After that, all threads will start to process the parallel
code that follows the barrier.

 6.5 COMPUTE UNIFIED DEVICE
ARCHITECTURE (CUDA)

 CUDA is a software architecture that enables the graphics processing unit (GPU) to
be programmed using high - level programming languages such as C and C + + . The
programmer writes a C program with CUDA extensions, very much like Cilk + + and
OpenMP as previously discussed. CUDA requires an NVIDIA GPU like Fermi,
GeForce 8XXX/Tesla/Quadro, and so on. Source fi les must be compiled with the
CUDA C compiler NVCC .

 A CUDA program uses kernels to operate on the data streams . Examples of
data streams are vectors of fl oating point numbers or a group of frame pixels for
video data processing. A kernel is executed in a GPU using parallel threads. CUDA
provides three key mechanisms to parallelize programs [71] : thread group hierarchy,
shared memories, and barrier synchronization. These mechanisms provide fi ne -
 grained parallelism nested within coarse - grained task parallelism.

 The following defi nitions defi ne the terms used in CUDA parlance:

 Defi nition 6.1 The host or central processing unit (CPU) is the computer that
interfaces with the user and controls the device used to execute the data - parallel,
compute - intensive portion of an application . The host is responsible for executing
the serial portion of the application.

 Defi nition 6.2 The GPU is a general - purpose graphics processor unit capable of
implementing parallel algorithms.

 Defi nition 6.3 Device is the GPU connected to the host computer to execute the
data - parallel, compute - intensive portion of an application. The device is responsible
for executing the parallel portion of the application.

 Defi nition 6.4 Kernel is a function callable from the host computer and executed
in parallel on the CUDA device by many CUDA threads.

 The kernel is executed simultaneously by many (thousands of) threads. An
application or library function might consist of one or more kernels [72] . Fermi can
run several kernels at a time provided the kernels belong to the same application
context [73] . A kernel can be written in C language with additional key words to
express parallelism.

 The thread and memory hierarchies are shown in Fig. 6.4 .

 1. A thread at the lowest level of the hierarchy

 2. A block composed of several concurrently executing threads

6.5 Compute Unifi ed Device Architecture (CUDA) 123

 3. A grid composed of several concurrently executing thread blocks

 4. Per - thread local memory visible only to a thread

 5. Per - block shared memory visible only to threads in a given block

 6. Per - device global memory

 Notice that each thread has its own local memory as well as registers , as shown
at the top of the diagram. The registers are on - chip and have small access time. The
per - thread local memory and registers are shown by the shaded areas below each
thread. The local memory is off - chip and is a bit slower than the registers.

 A thread block in the middle of the diagram has its own off - chip shared memory
for fast and scalable interthread communication. The shared memory is private to
that block.

 A grid is a set of thread blocks as shown at the bottom of the fi gure. A grid has
its per - device global memory . This is in addition to the per - block and per - thread
shared and local memories, respectively. The device global memory communicates
with the host memory and is the means of communicating data between the host
and the general - purpose graphics processor unit (GPGPU) device.

 Figure 6.4 Thread and
memory hierarchy.
 © NVIDIA Corporation, 2008.

Thread

Per-thread local memory

Per-block
shared memory

Block

...

Grid 0 (kernel 0)

Grid 1 (kernel 1)
Per-device

global memory

...

Per-thread registers

124 Chapter 6 Concurrency Platforms

 6.5.1 Defi ning Threads, Blocks, and Grids in CUDA

 The programmer must specify the number of threads in a block and the number of
blocks in the grid. The number of blocks in the grid is specifi ed by the variable
 gridDim . We can arrange our blocks into one - dimensional array and the number
of blocks would be

 gridDim. x = k .

 For example, if k = 10, then we have 10 blocks in the grid.
 We can arrange the threads into a one - dimensional array of m threads per

block:

 blockDim. x = m .

 Each block is given a unique ID called blockIdx that spans the range
 0 ≤ blockId < gridDim .

 A picture of the thread array in each block and the block array in the grid is
shown in Fig. 6.5 .

 To allocate a thread to the i th vector component, we need to specify which block
the thread belongs to and the location of the thread within that block:

 i = blockIdx. x × blockDim + threadIdx. x .

 The variables gridDim and blockIdx are automatically defi ned and are of type
 dim3 . The blocks in the grid could be arranged in one, two, or three dimensions.
Each dimension is accessed by the constructs blockIdx.x, blockId.y, and
 blockId.z . The following CUDA command specifi es the number of blocks in the
 x , y , and z dimensions:

 dim3 dimGrid(4, 8, 1);

 Essentially, the above command defi nes 32 blocks arranged in a two - dimensional
array with four rows and eight columns.

 The number of threads in a block is specifi ed by the variable blockDim .
Each thread is given a unique ID called threadIdx that spans the range
 0 ≤ threadIdx < blockDim . The variables blockDim and threadIdx are
automatically defi ned and are of type dim3 . The threads in a block could be arranged
in one, two, or three dimensions.

 Each dimension is accessed by the constructs threadIdx. x , threadIdx. y ,
and threadIdx.z . The following CUDA command specifi es the number of threads
in the x , y , and z dimensions:

 Figure 6.5 Arranging m
threads in a block and k blocks
in the grid. © NVIDIA
Corporation, 2008.

0
1

m-1

...

Block 0

0
1

m-1

...

Block 1

...

0
1

m-1

...

Block k-1

6.5 Compute Unifi ed Device Architecture (CUDA) 125

 dim3 dimBlock(100, 1, 1);

 Essentially, the above command defi nes 100 threads arranged in an array with 100
components. Figure 6.6 shows the organization and relations between the kernel,
grid, blocks, and threads. The fi gure indicates that each kernel is associated with a
grid in the device. The choice of thread and block dimensionality is dictated by the
nature of the application and the data it is dealing with. The objective is for the
programmer to use natural means of simplifying access to data.

 6.5.2 Assigning Functions for Execution
by a Kernel in CUDA

 To defi ne a function that will be executed as a kernel, the programmer modifi es the
C code for the function prototype by placing the key word _ global_ before the
function prototype declaration :

 1: _global_ void kernel_function_name(function_
argument_list);
 2: {
 3: �
 4: }

 Note that the _ global_ function qualifi er must return void . The programmer
now needs to instruct the NVCC to launch the kernel for execution on the device.

 Figure 6.6 Relation between the kernel, grid, blocks, and threads. © NVIDIA Corporation, 2008.

Block
(0,0)

DeviceHost

KernelC code running on host
Grid

Block
(1,0)

Block
(1,1)

Block
(0,1)

(0,0,0) (1,0,0) (2,0,0) (3,0,0)

(0,1,0) (1,1,0) (2,1,0) (3,1,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Threads

126 Chapter 6 Concurrency Platforms

The programmer modifi es the C code specifying the structure of the blocks in the
grid and the structure of the threads in a block by placing the declaration
 <<< gridDim, blockDim >>> between the function name and the function
argument list as shown in line 7 of the following listing :

 1: int main()
 2: {
 3: �
 4: // Serial portion of code
 5: �
 6: // Start of parallel portion of code
 7: kernel_function_name <<< gridDim, blockDim >>>
(function_argument_list);
 8: // End of parallel portion of code
 9: �

 10: // Serial portion of code
 11: �
 12: }

 6.5.3 Communication between Host and CUDA Device

 The host computer has its own memory hierarchy and the device has its own separate
memory hierarchy also. Exchange of data between the host and the device is accom-
plished by copying data between the host dynamic random access memory (DRAM)
and the device global DRAM memory. Similar to C programming, the user must
allocate memory on the device global memory for the data in the device and free
this memory after the application is fi nished. The CUDA runtime system calls sum-
marized in Table 6.3 provide the function calls necessary to do these operations.

 Figure 6.7 shows the memory interface between the device and the host [74,
75] . The global memory at the bottom of the fi gure is the means of communicating

 Table 6.3 Some CUDA Runtime Functions

 Function Comment

 cudaThreadSynchronize() Blocks until the device has completed all preceding
requested tasks

 cudaChooseDevice() Returns device matching specifi ed properties
 cudaGetDevice() Returns which device is currently being used
 cudaGetDeviceCount() Returns number of devices with compute capability
 cudaGetDeviceProperties() Returns information about the compute device
 cudaMaloc() Allocates an object in the device global memory;

requires two parameters: address of a pointer to the
object and the size of the object

 cudaFree() Free object from device global memory
 cudaMemcpy() Copies data from host to device; requires four

parameters: destination pointer, source pointer, number
of bytes, and transfer type

6.5 Compute Unifi ed Device Architecture (CUDA) 127

data between the host and the device. The contents of the global memory are visible
to all threads, as the fi gure shows. The per - block shared memory is visible to all
threads in the block. Of course, the per - thread local memory is visible only to the
associated thread.

 The host launches a kernel function on the device as shown in Fig. 6.8 . The
kernel is executed on a grid of thread blocks. Several kernels can be processed by
the device at any given time. Each thread block is executed on a streaming multi-
processor (SM). The SM executes several thread blocks at a time. Copies of the
kernel are executed on the streaming processors (SPs) or thread processors, which
execute the threads that evaluate the function. Each thread is allocated to an SM.

 6.5.4 Synchronization and Communication for
 CUDA Threads

 When a parallel application is running in the device, synchronization and commu-
nication among the threads must be accomplished at different levels. Synchronization
and communication can be accomplished at different levels:

 Figure 6.7 Memory interface between host and device. © NVIDIA Corporation, 2008.

Global Memory

Shared Memory Shared Memory

Block 0 Block 1

Thread0,0 Thread0,1
Thread1,0 Thread1,1

Grid

Host

Host Memory

Device

L
oc

al
 M

em
or

y

R
eg

is
te

rs

L
oc

al
 M

em
or

y

R
eg

is
te

rs

L
oc

al
 M

em
or

y

R
eg

is
te

rs

L
oc

al
 M

em
or

y

R
eg

is
te

rs

Global Memory

128 Chapter 6 Concurrency Platforms

 1. Kernels and grids

 2. Blocks

 3. Threads

 6.5.5 Kernels and Grids

 At any given time, several kernels are executing on the device. The following listing
illustrates this point :

 1: void main () {
 2: �
 3: kernel_1 <<< nblocks_1, blocksize_1 >>> (function_
argument_list_1);
 4: kernel_2 <<< nblocks_2, blocksize_2 >>> (function_
argument_list_2);
 5: �

 Kernel_1 will run fi rst on the device and will defi ne a grid that contains
 dimGrid blocks, and each block will contain dimblock threads. All threads will
run the same code specifi ed by the kernel. When kernel_1 is completed, kernel_2
will be forwarded to the device for execution.

 Communication between the different grids is indirect through leaving data in
the host or device global memory to be used by the next kernel.

 Figure 6.8 Execution of a CUDA kernel function on the device using blocks and threads courtesy
of NVIDIA Corporation.

SP

SM

SM SM SM SM SM SM SM SM

Thread

Block

...Grid

Stream Processor

Stream Multiprocessor

Device

6.5 Compute Unifi ed Device Architecture (CUDA) 129

 6.5.6 Blocks

 At any given time, several blocks are executing on the device. All blocks in a grid
execute independent of each other. There is no synchronization mechanism between
blocks. When a grid is launched, the blocks are assigned to the SM in arbitrary order
and the issue order of the blocks is undefi ned.

 Communication among the threads within a block is accomplished through the
per - block shared memory. A variable is declared to be shared by threads in the same
blocks by preceding the variable declaration with the keyword _shared_ . Such
variable will be stored in the per - block shared memory. During kernel execution, a
private version of this variable is created in the per - thread local memory.

 The per - block shared memory is on the same chip as the cores executing the
thread communication is relatively fast since the static random access memory
(SRAM) is a faster than the off - chip DRAM memories. Each thread has a direct
access to its own on - chip registers and its off - chip per - thread local memory. Registers
are much faster than the local memory since they are essentially a DRAM. Each
thread can also access the per - device global memory. Communication with the off -
 chip local and global memories suffers from the usual interchip communication
penalties (e.g., delay, power, and bandwidth).

 6.5.7 Threads

 At any given time, a large number of threads are executing on the device. A block
that is assigned to an SM is divided into 32 - thread warps . Each SM can handle
several warps simultaneously, and when some of the warps stall due to memory
access, the SM schedules another warp. Threads in a block can be synchronized
using the _ synchthreads() synchronization barrier. A thread cannot proceed
beyond this barrier until all other threads in the block have reached it.

 Each thread uses its on - chip per - thread registers and on - chip per - thread local
memory. Both of these use SRAM technology, which implies small memory size
but fast, low - power communication. Each thread also uses the off - chip global
memory, which is slow since it is DRAM based.

 Table 6.4 Declaration Specifi ers

 Declaration Comment

 global void function(· · ·); Defi ne kernel function to run on device
 device int var; Store variable in device global memory
 shared int var; Store variable in per - block shared memory
 local int var; Store variable in per - block shared memory
 constant int const; Store constant in per - block constant memory

130 Chapter 6 Concurrency Platforms

 6.5.8 CUDA C Language Extensions

 A good place to explore the CUDA library is NVIDIA [76] . The following
subsections illustrate some of the useful key words with example codes.

 Declarations specify where things will live, as shown in Table 6.4 .
 The CUDA runtime application program interface (API) serves for manage-

ment of threads, device, and memory. The runtime API also controls the execu-
tion of the threads. Some of the runtime functions to control the operation of
CUDA were listed in Table 6.3 . The CUDA library documentation can be found in
NVIDIA [76] .

 Chapter 7

Ad Hoc Techniques for
Parallel Algorithms

 7.1 INTRODUCTION

 This chapter discusses several ad hoc techniques used to implement parallel algo-
rithms on parallel computers. Most of these techniques dealt with what is called
embarrassingly parallel algorithms [2] or trivially parallel algorithms [29] . Parallel
algorithms are expressed using loops. The simplest of these algorithms can be paral-
lelized by assigning different iterations to different processors or even by assigning
some of the operations in each iteration to different processors [29] .

 The techniques presented here do not deal effi ciently with data dependencies.
Unless the algorithm has no or very simple data dependence, it would be a challenge
to correctly implement the algorithm in software using multithreading or in hardware
using multiple processors. It will also be challenging to optimize interthread or
interprocessor communications. In Chapters 9 – 11 , we introduce formal techniques
to deal with such algorithms. This chapter deals with what is termed “ embarrassingly
parallel ” or “ trivially parallel ” algorithms. We should caution the reader, though,
that some of these algorithms are far from trivial or embarrassingly simple. The full
design space becomes apparent only by following the formal techniques discussed
in Chapters 9 – 11 . Take for example the algorithm for a one - dimensional (1 - D) fi nite
impulse response (FIR) digital fi lter given by the equation

 y i a j x i j
j

I

() () (),= −
=

−

∑
0

1

 (7.1)

where a (j) are the fi lter coeffi cients and I is the fi lter length. Such an equation is
described by two nested loops as shown in Algorithm 7.1.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

131

132 Chapter 7 Ad Hoc Techniques for Parallel Algorithms

 Algorithm 7.1 1 - D FIR digital fi lter algorithm

 Require: Input: fi lter coeffi cients a (n) and input samples x (n)

 1: y (n) = 0

 2: for i ≥ 0 do

 3: y (i) = 0

 4: for j = 0 : I − 1 do

 5: y (i) = y (i) + a (j) x (i − j)

 6: end for

 7: RETURN y (i)

 8: end for

 The iterations in the nested loops are independent, and it is fairly easy to apply
the techniques discussed here. However, these techniques only give one design
option compared to the techniques in Chapters 9 – 11 .

 Take another example for a 1 - D infi nite impulse response (IIR) digital fi lter
given by the equation

 y i a j x i j b j y i j
j

I

() () () () () ,= − − −[]
=

−

∑
0

1

 (7.2)

where a (j) and b (j) are the fi lter coeffi cients and I is the fi lter length. Note that
 b (0) = 0 in the above equation. Such an equation is described by two nested loops
as shown in Algorithm 7.2.

 Algorithm 7.2 1 - D IIR digital fi lter algorithm

 Require: Input: fi lter coeffi cients a (n) and b (n) and input samples x (n)

 1: y (n) = 0

 2: for i ≥ 0 do

 3: y (i) = 0

 4: for j = 0 : I − 1 do

 5: y (i) = y (i) + a (j) x (i − j) − b (j) y (i − j)

 6: end for

 7: RETURN y (i)

 8: end for

 Although this algorithm has two simple nested FOR loops, the data dependen-
cies within the loop body dictate that the evaluation of y (i) be serial. The techniques
of this chapter will not be feasible here. However, the techniques of Chapters 9 – 11

7.3 Independent Loop Scheduling 133

will allow us to explore the possible parallelization techniques for this seemingly
serial algorithm.

 7.2 DEFINING ALGORITHM VARIABLES

 We defi ne three types of variables in an algorithm:

 • Input variables

 • Output variables

 • Intermediate or input/output (I /O) variables

 An input variable is one that has its instances appearing only on the right - hand
side (RHS) of the equations of the algorithm. a (j), b (j), and x (i − j) in Eq. 7.1 are
examples of input variables. An output variable is one that has its instances appear-
ing only on the left - hand side (LHS) of the algorithm. The IIR algorithm does not
have output variables as such. An intermediate variable is one that has its instances
appearing both on the LHS and on the RHS of the equations of the algorithm.
Variable y (i) in Eq. 7.2 is an example of an intermediate I /O variable. We consider
an intermediate variable as being both an input or output variable with different
index dependencies for each side of the iteration statement. This will be discussed
in more detail in the next two sections. We will see in Chapter 12 how we are able
to extract a parallel execution for any algorithm using the formal techniques we
present in the following chapters.

 7.3 INDEPENDENT LOOP SCHEDULING

 An independent loop is one that does not contain intermediate or I /O variables. The
iterations in an independent loop can be carried out in any order and can still produce
the correct results. The FIR digital fi lter is an example of parallel algorithms that
can be described by an independent loop. The following equations describe 1 - D,
two - dimensional (2 - D), and three - dimensional (3 - D) FIR fi lters used to process
voice, image, and video data, respectively:

 y i a k x i k
k

I

() () ()= −
=

−

∑
0

1

 (7.3)

 y i j a w h x i w j h
h

H

w

W

(,) (,) (,)= − −
=

−

=

−

∑∑
0

1

0

1

 (7.4)

 y i j k a w h f x i w j h k f
f

F

h

H

w

W

(, ,) (, ,) (, ,),= − − −
=

−

=

−

=

−

∑∑∑
0

1

0

1

0

1

 (7.5)

where I is the fi lter length, W is the width of the fi lter window, H is the height of
the fi lter window, and F is the number of frames in the fi lter window. All the vari-
ables in the above equations are either an input or output type.

134 Chapter 7 Ad Hoc Techniques for Parallel Algorithms

 Another example of algorithms that result in independent loops is matrix – vector
multiplication (c = Ab) and matrix – matrix multiplication (C = AB):

 c i A i j b j i I
j

J

() (,) ()= ≤ <
=

−

∑
0

1

0 (7.6)

 C i j A i k B k j i I j J
k

K

(,) (,) (,) , .= ≤ < ≤ <
=

−

∑
0

1

0 0 (7.7)

 Consider for illustration the 1 - D FIR in Eq. 7.1 . If we had N processors and I > N ,
then we could assign ⎡ I / N ⎤ loop iterations to each processor to ensure equal processor
load balancing. Processor k is assigned to produce output variables y (i), where i and
 k are related by

 k i N i I= ⎣ ⎦ ≤ </ .0 (7.8)

The speedup of algorithm implementation on N parallel processors is
estimated as

 Speedup(,)
/

.I N
I

I N
=

⎡⎢ ⎤⎥
 (7.9)

 7.4 DEPENDENT LOOPS

 A dependent loop is one that contains intermediate or I /O variables such that the
variable has different index dependences on both sides of the iteration statements.
As an example, the loop in Listing 7.1 is a dependent loop, but the I /O variable has
the same index independence on both sides. Each iteration of the loop can be done
independently of the other iterations.

 Listing 7.1 A dependent loop where its iterations are independent

 1: for i = 1: I do
 2: a (i) = a (i) + b (i)
 3: end for

 On the other hand, the dependent loop in Listing 7.2 is a dependent loop, but
the I /O variable has different index dependencies on both sides. Each iteration of
the loop cannot be done independently of the other iterations.

 Listing 7.2 A dependent loop where its iterations are dependent

 1: for i = 1: I do
 2: a (i) = a(i - 1) + b (i)
 3: end for

 Inherently, such loops would be executed serially on uniprocessor or multiprocessor
systems. However, by using the formal techniques in Chapters 9 – 11 , we will be able
to explore a rich set of parallel implementations of such loops. There are some

7.6 Loop Unrolling 135

special and obvious cases where dependent loops can be parallelized. This is done
through a technique called loop spreading [77] as explained in the next section.

 7.5 LOOP SPREADING FOR SIMPLE
DEPENDENT LOOPS

 Consider the dependent loop shown in Listing 7.3, where s(i , j) is some statement
or task to be executed.

 Listing 7.3 1 - D IIR digital fi lter algorithm

 1: for i = 1: I do
 2: for j = 1: J do
 3: s(i , j) = f (s(i , j − 1))
 4: end for
 5: end for

 where function evaluated by statement s (i , j) depends on s (i , j − 1). One way to
distribute the tasks among the processors is to implement each iteration of the outer
loop among I processors so that processor i implements all the iterations of the inner
loop with its dependencies. We could increase the workload for each processor by
allocating more than one iteration of the outer loop for each processor using a similar
technique to the one explained in Section 7.3 .

 7.6 LOOP UNROLLING

 Loop unrolling transforms a loop into a sequence of statements. It is a parallelizing
and optimizing compiler technique [29] where loop unrolling us used to eliminate
loop overhead to test loop control fl ow such as loop index values and termination
conditions. The technique was also used to expose instruction - level parallelism [20] .
Consider the loop shown in Listing 7.4 [20] :

 Listing 7.4 Exposing potential parallelism by loop unrolling

 1: for i = 1: I do
 2: y (i) = y (i) + y (i − 5)
 3: end for

 We note that the output version of the intermediate variable y (i) depends on its
current value y (i) and a value that is distant 5, that is, y (i − 5). The loop can be
unrolled to execute fi ve statements in parallel as shown in Listing 7.5 [20] .

 Listing 7.5 Exposing potential parallelism by loop unrolling.

 1: for i = 1:5: I do
 2: y (i) = y (i) + y (i - 5)
 3: y (i + 1) = y (i + 1) + y (i - 4)
 4: y (i + 2) = y (i + 2) + y (i - 3)
 5: y (i + 3) = y (i + 3) + y (i - 2)
 6: y (i + 4) = y (i + 4) + y (i - 1)
 7: end for

136 Chapter 7 Ad Hoc Techniques for Parallel Algorithms

 Now we can execute fi ve statements of the loop at each iteration and gain a speedup
ratio of 5.

 7.7 PROBLEM PARTITIONING

 Problem partitioning breaks up the computation task into smaller parts or subtasks
that take less time to compute. Partitioning strives to generate subtasks that have the
same size. Partitioning works best, of course, for trivially parallel algorithms.
Otherwise, the subtasks will not execute in parallel. The challenge now shifts to how
to combine the results of the subtasks to obtain the fi nal result.

 Take the simple example of adding K numbers using N processors:

 b ai
i

K

=
=

−

∑
0

1

. (7.10)

 Since addition is associative and distributive, we can break up the problem into
 N tasks where each task requires adding s = | K / N | numbers on each processor:

 c a i Ni j ik
i

s

= ≤ <+
=

−

∑
0

1

0 (7.11)

 c ci
i

N

=
=

−

∑
0

1

. (7.12)

 Figure 7.1 shows a schematic representation of the partitioning technique. The
original task or problem is partitioned into small equal portions that should execute
faster. The number of partitions would typically equal the number of available
processors.

 After these additions are complete, we are faced with N partial sums that must
be combined. One processor could be used to add those N partial sums. The task
would be simple if the partial sums were stored in a shared memory. The task would
take longer if the sums were stored in a distributed memory since N messages would
have to be exchanged between the processors.

 Figure 7.1 Problem partitioning divides the
problem into N equal - sized subtasks. In this case,
 N = 8.

Original problem

Subtask or subproblem

7.8 Divide-and-Conquer (Recursive Partitioning) Strategies 137

 Let us attempt to fi nd the time required to complete the computation using the
partitioning technique. Assuming time to add two pairs of numbers is τ a , the com-
putation delay is given by

 T sc a= −() .1 τ (7.13)

 The communication delay T m is the time required to send N − 1 messages for the
partial results to one processor:

 T Nm m= −() ,1 τ (7.14)

where τ m is the time to exchange a message between two processors. The total time
to complete the task would be given by

 T N sN total m a, () () .= − + −1 1τ τ (7.15)

 Typically, τ a << τ m for multiprocessors, while τ a ≈ τ m for multicore processors
and s >> N . It would be worthwhile at this point to recall the results of Section 1.8
and, in particular, Fig. 1.7 , which discusses parallel computer speedup and how it
relates to the communication - to - computation ratio R . We saw that we reap the benefi t
of parallel computing when R < 0.01. Therefore, we must ensure the following
inequality:

 T Tc m� (7.16)

 K N m

a

� 2 τ
τ

. (7.17)

 For example, if the ratio τ m / τ a = 1,000 and N = 8, then we gain only for problem
sizes of 10 7 numbers to be added.

 7.8 DIVIDE - AND - CONQUER (RECURSIVE
PARTITIONING) STRATEGIES

 Divide - and - conquer techniques partition the problem into subtasks of the same size,
but it iteratively keeps repeating this process to obtain yet smaller problems. In that
sense, divide and conquer iteratively applies the problem partitioning technique as
shown in Fig. 7.2 . Divide and conquer is sometimes called recursive partitioning.
Typically, the problem size N is an integer power of 2 and the divide - and - conquer
technique halves the problem into two equal parts during each iteration.

 Let us apply the divide - and - conquer technique to the problem of adding K
numbers in Eq. 7.10 . Assume that we have N = 8 processors. Since N = 2 3 , the
divide - and - conquer technique progresses through three iterations and the size of the
subtask allocated to each processor is

 s
K

N
= . (7.18)

138 Chapter 7 Ad Hoc Techniques for Parallel Algorithms

 Figure 7.3 shows how adding the K numbers progresses among the processors. The
size of the smallest task allocated to each processor is s = 128/8 = 16. Thus, each
processor has to add 16 numbers. This is shown at the bottom of the diagram at level
0. At the end of processing at level 0, N = 8 temporary results are produced. At level
1, these eight results are added by selecting four processors as shown to produce
four partial results. Level 2 sums the four partial results to produce two partial
results . Level 3 produces the desired output c .

 Let us attempt to fi nd the time required to complete the computation using the
divide - and - conquer technique. Assuming the time to add two pairs of numbers is τ a ,
the computation delay is given by

 T s Nc a a= − +() log .1 2τ τ (7.19)

 The fi rst term on RHS represents delay due to adding s numbers by a processor
at level 0. The second term on RHS represents addition delay due to adding a pair
of numbers at the higher levels.

 Figure 7.3 Divide - and - conquer
technique applied to the problem of adding
 K = 128 numbers using N = 8 processors.

P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P6

P0 P4

P0

Level 0

Level 1

Level 2

Level 3

 Figure 7.2 Divide - and - conquer technique
iteratively partitions the problem into N equal - sized
subtasks. In this case, N = 8.

Original problem

Subtask or subproblem

7.9 Pipelining 139

 The communication delay T m is the time required to send messages for the
partial results between pairs of computers.

 T Nm m= τ 2log , (7.20)

where we assume that the interconnection network allows for a simultaneous
exchange of messages between processors.

 The total time to complete the task would be given by

 T T TN total m c, = + (7.21)

 = + − +τ τ τm a aN s N2 21log () log (7.22)

 ≈ + −τ τm aN s2 1log () . (7.23)

 We saw that we reap the benefi t of parallel computing when R < 0.01. Therefore,
we must ensure the following inequality:

 T Tc m� (7.24)

 K N N m

a

� 2log .
τ
τ

 (7.25)

 For example, if the ratio τ m / τ a = 1,000 and N = 8, then we gain only for problem
sizes of 10 6 numbers to be added.

 7.9 PIPELINING

 We showed in Chapter 2 how pipelining enhanced the performance of uniprocessors.
Pipelining was used in the arithmetic and logic unit (ALU) to increase the amount
of computations to be performed per clock cycle. Pipelining was also used in
the control unit to increase the number of instructions to be processed per clock
cycle.

 In general, pipelining is a very effective technique for improving system
throughput, which is defi ned as the rate of task completion per unit time. This tech-
nique requires two conditions to be effective:

 1. There should be many instances of the task and all of them must be com-
pleted at a high rate.

 2. Each task should be divisible into several serial or parallel subtasks.

 A pipeline executes a task in successive stages by breaking it up into smaller
tasks. It is safe to assume that a smaller task will complete in a shorter time compared
with the original task.

 Examples of using pipelining to speed up the high - performance coordinate rota-
tion digital computer (HCORDIC) algorithm, which is a very powerful algorithm
for evaluating elementary functions such as trigonometric, hyperbolic, logarithmic,
square root, and division operations [5 – 8] . Evaluating elementary functions is
required in many engineering applications such as adaptive fi lters, telecommunica-
tions, scientifi c computing, and so on. Figure 7.4 shows a schematic of the data and

140 Chapter 7 Ad Hoc Techniques for Parallel Algorithms

control inputs of the HCORDIC algorithm and the resulting outputs. HCORDIC
accepts four input data.

 The control inputs for HCORDIC are

 1. m , the mode (− 1, 0, or 1), and

 2. Op , the desired operation (vectoring or rotation).

 The vectoring operation changes the value of y 0 to f at the output (y 0 → f). The
rotation operation changes the value of z 0 to 0 at the output (z 0 → f).

 Table 7.1 shows the HCORDIC output for the vectoring operation. Choosing
the proper values of x 0 , y 0 , z 0 , and f , we can obtain square root, division, tan − 1 , or
 tanh − 1 functions.

 Table 7.2 shows the HCORDIC output for the rotation operation. Choosing the
proper values of x 0 , y 0 , z 0 , and f , we can obtain sin, cos, sinh, or cosh functions.

 Figure 7.4 Schematic of the data and control inputs
of the HCORDIC algorithm and the resulting outputs.
 x 0 , initial x - coordinate of a point in the plane; y 0 , initial
 y - coordinate of a point in the plane; z 0 , initial value of
an angle; f , fi nal value of x , y , or z .

x0

y0

z0

f

m Op

x

y

z

HCORDIC

 Table 7.1 HCORDIC Output in the Vectoring Operation
(y → f)

 x z

 m = 1 z 0 + tan − 1 (y 0 − f / x 0)
 m = 0 (y 0 − f)/ x 0 z 0 + (y 0 − f)/ x 0

 m = − 1 z 0 + tanh − 1 (y 0 − f / x 0)

 x 0 , y 0 , and z 0 are the initial or input values to the HCORDIC
algorithm.

K x y f1 0
2

0
2 2+ −

K f x y− − +1
2

0
2

0
2

 Table 7.2 HCORDIC Output in the Rotation Operation (z 0 → f)

 x n y n

 m = 1 K 1 (x 0 cos(f − z 0) + y 0 sin(f − z 0)) K 1 (y 0 cos(f − z 0) − x 0 sin(f − z 0))
 m = 0 x 0 y 0 − x 0 (f − z 0)
 m = − 1 K − 1 (x 0 cosh(f − z 0) − y 0 sinh(f − z 0)) K − 1 (y 0 cosh(z f − z 0) − x 0 sinh(z f − z 0))

 x 0 , y 0 , and z 0 are the initial or input values to the coordinate rotation digital computer (CORDIC)
algorithm.

7.10 Problems 141

 HCORDIC is serial and must be done through successive iterations. At iteration
 i , the values of x , y , and z are updated according to the following equations:

x x my

y y x

z z

i i i i

i i i i

i i i

+

+

+

= +
= −
= +

1

1

1

δ
δ

θ ,

 (7.26)

where δ I and θ i are iteration constants that are stored in lookup tables. The algorithm
performs other operations during each iteration, but we are not concerned about this
here.

 Now HCORDIC is amenable to pipelining since it satisfi es pipelining require-
ments: HCORDIC is composed of iterative steps, and it is required to perform many
HCORDIC operations on many input data streams. Figure 7.5 shows the pipeline
implementation of HCORDIC to ensure that one result is produced per iteration
cycle. In the fi gure, n is the number of pipeline stages, which equals the number of
iterations required by HCORDIC to complete its calculations. Input data are deliv-
ered as a series of input vectors. Each input vector sample contains its own data and
the associated control information

 Data Op= []x y z f m0 0 0 0 . (7.27)

 As each data set, x , y , z , and f travels through the pipeline stages, the associated
control information m and Op also travel to control the operation at each pipeline
stage. In this way, we could have a vectoring operation or rotation operation applied
to adjacent data and we could have different values of m also to get different output
functions for each input data sample .

 7.10 PROBLEMS

 7.1. Consider the MAX function that fi nds the maximum number from a list of n numbers
where N is assumed to be an integer power of 2; that is, n = log 2 N . Write down the serial
algorithm for the MAX function then explain a binary algorithm to perform the MAX
function in parallel.

 Figure 7.5 Pipeline implementation of HCORDIC algorithm.

x0

y0

z0

f

m, Op

x

y

z

0

m, Op

1

m, Op

n-1...δ δ δ

142 Chapter 7 Ad Hoc Techniques for Parallel Algorithms

 7.2. Study the quicksort algorithm for sorting N numbers and show how the algorithm can
be parallelized using the divide - and - conquer technique. What can you say about the
number of parallel processors that could be employed?

 7.3. One way to speed up quicksort is to use more than one pivot. Let us assume that at each
invocation of quicksort, we choose m pivots. Describe how this algorithm might work
and why it would be faster than the one pivot quicksort.

 7.4. Find expressions for the worst and best times of the sequential m - pivot quicksort
algorithm.

 7.5. Explain how the bubble sort algorithm can be parallelized.

 Chapter 8

Nonserial – Parallel Algorithms

 8.1 INTRODUCTION

 We discussed in Chapter 1 that algorithms can be classifi ed broadly as

 1. serial algorithms,

 2. parallel algorithms,

 3. serial – parallel algorithms (SPAs),

 4. nonserial – parallel algorithms (NSPAs), and

 5. regular iterative algorithms (RIAs).

 This chapter discusses how to extract parallelism from NSPAs so we can imple-
ment them on parallel computer platforms. Serial, parallel, and SPAs are all rela-
tively simple to implement on parallel computer platforms. Chapters 9 – 11 are all
dedicated to the software and hardware implementations of RIAs. That leaves NSPA
as an interesting problem that requires a formal technique to deal with them.

 Chapter 1 mentioned that an NSPA can contain cycles or can be cycle free.
NSPAs can be represented by its associated directed graph (DG) or its associated
adjacency matrix A . When the DG contains no cycles, we get what is called directed
acyclic graph (DAG). When a cycle is present or detected in the NSPA, we have a
directed cyclic graph (DCG). A DCG operates on a different principle compared to
other algorithms.

 8.2 COMPARING DAG AND DCG ALGORITHMS

 Figure 8.1 a is an example of a DAG algorithm and Fig. 8.1 b is an example of a
DCG algorithm. An algorithm represented with a DAG requires a certain time to
complete its tasks and the data fl ow is unidirectional from the inputs to the outputs.
Thus, each task in the graph is completed once for each instance of the algorithm.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

143

144 Chapter 8 Nonserial–Parallel Algorithms

 Figure 8.1 Example directed graphs for nonserial – parallel algorithms. (a) Directed acyclic graph
(DAG). (b) Directed cyclic graph (DCG).

T0

In

Feedback

OutError
T1 T2

T3

1

0
2

4

3

65

7

8

9

in0
in1 in2

out0 out2out1

)b()a(

When all tasks have been completed, the algorithm is terminated or another instance
of it is started with another set of input data.

 The DCG is most commonly encountered in discrete time feedback
control systems such as adaptive fi lters and digital controllers for plant control. An
example of a feedback control systems is a car automatic speed control and the
airplane autopilot. The input is supplied to task T 0 for prefi ltering or for input signal
conditioning. Task T 1 accepts the conditioned input signal and the conditioned feed-
back output signal. The output of task T 1 is usually referred to as the error signal,
and this signal is fed to task T 2 to produce the output signal. An algorithm represented
by a DCG usually operates on a set of input data streams and produces a
set of output data streams. The time between samples is called the sample time ,
which is equal to the maximum delay exhibited by any of the tasks shown in
Fig. 8.1 :

 τ τ τ τ τsample = ()max , , , ,0 1 2 3 (8.1)

where τ sample is the sample time and τ i is the execution time of task T i . This equation
is similar to determining the pipeline period for a pipelined system as was discussed
in Chapter 2 . During each sample time, all the tasks must be evaluated. To
shorten the sample time and to speed up the system data rate, we must shorten the
execution times of each task individually. Table 8.1 compares the two main types
of NSPAs: DAG and DCG. The techniques we use to accomplish this depend on the
nature of the algorithms or functions implemented in each task. Thus, we can use
techniques discussed in Chapters 2 , 9 – 11 , and 7 and in this chapter.

8.3 Parallelizing NSPA Algorithms Represented by a DAG 145

 8.3 PARALLELIZING NSPA ALGORITHMS
REPRESENTED BY A DAG

 This chapter discusses techniques for extracting parallelism from DAG. Each task
accepts input data and produces output results. We say a task, T i , is dependent on
task T j if the output of T j is used as its input to T i . When the number of algorithm
tasks is small, the algorithm can be described by a directed graph, which shows no
regular patterns of interconnections among the tasks. Figure 8.1 a shows an example
of representing an NSPA by a DAG. The graph is characterized by two types of
constructs: the nodes , which describe the tasks comprising the algorithm, and the
 directed edges , which describe the direction of data fl ow among the tasks. The edges
exiting a node represent an output, and when they enter a node, they represent an
input. Chapter 1 defi ned the types of nodes and edges in a DG: input node/edge,
output node/edge, and intermediate node/edge.

 Figure 8.1 shows the algorithm as drawn or sketched by the programmer or
some graphing tool. Nodes 0, 1, and 2 are the only input nodes, and nodes 7 and 9

 Table 8.1 Comparing the Two Main Types of NSPA Algorithms

 DAG DCG

 Algorithm parallelization attempts to
determine which of the algorithm tasks
can be executed at the same time.

 Algorithm parallelization attempts to
parallelize each task independently of the
other tasks.

 An algorithm instance executes once only. An algorithm instance executes one for each
sample time and repeats for as long as we
have input data or for as long as we desire
output data.

 Input data are available initially before the
algorithm is started.

 Input data are supplied in a stream or as long
as the algorithm is executing.

 Output data are obtained typically after
the algorithm has fi nished executing.

 Output data are obtained in a stream as long
as the algorithm is running.

 The characteristic time is the algorithm
execution time, which depends on the
critical path.

 The characteristic time is the sample time .

 The workload is the number of tasks to be
executed (W).

 The workload is W for each sample time; that
is, all tasks execute for each time step and
then all of them are evaluated again at the
next time step.

 The application domain is typically
abstract data fairly detached from actual
physical phenomena.

 The application domain is typically applied
to tangible physical phenomena to be
controlled, such as speed, temperature,
pressure, and fl uid fl ow.

146 Chapter 8 Nonserial–Parallel Algorithms

are the only output nodes. The algorithm has three primary inputs : in 0 , in 1 , and in 2 ,
and three primary outputs : out 0 , out 1 , and out 2 .

 Example 8.1 A very popular series in computer science is the Fibonacci sequence:

 0 1 1 2 3 5 8 13, , , , , , , , .…

 An algorithm to calculate the n th Fibonacci number is given by

 N N Nn n n= +− −1 2 ,

where N 0 = 0 and N 1 = 1. Draw a DAG to show how the task T n for calculating the
 n th Fibonacci number depends on the tasks for calculating the earlier numbers.

 From the defi nition of the n th Fibonacci number, we can write

 T T Tn n n= +− −1 2 .

 Take the case when n = 10. Figure 8.2 shows the DAG associated with this algo-
rithm. We see that the Fibonacci algorithm is a serial algorithm since no two tasks
can be executed in parallel.

 An algorithm has three important properties:

 1. Work (W) , which equals the number of tasks describing the algorithm. These
describe the amount of processing work to be done. For the algorithm in Fig.
 8.1 , we have W = 10.

 2. Depth (D) , which is also known as the critical path and span . The depth is
defi ned as the maximum path length between any input node and any output
node. For the algorithm in Fig. 8.1 , we have S = 4 since the longest path is
path 1 → 4 → 8 → 9 as indicated by the bold arrows.

 3. Parallelism (P) , which is also known as the degree of parallelism of the
algorithm. Parallelism is defi ned as the maximum number of nodes that can
be processed in parallel. The maximum number of parallel processors that
could be active at any given time will not exceed P since anymore processors
will not fi nd any tasks to execute. At this stage, it is hard to fi gure out P for
the algorithm in Fig. 8.1 .

 Figure 8.2 DAG associated with the algorithm for calculating the n th Fibonacci number when
 n = 10.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

8.4 Formal Technique for Analyzing NSPAs 147

 8.4 FORMAL TECHNIQUE FOR ANALYZING NSPAs

 In this chapter, we will show that representing an algorithm by a DG is suitable only
when the number of tasks comprising the algorithm is small. However, it is diffi cult
to extract some of the algorithm properties from an inspection of the graph.

 For example, it is simple to fi nd W by counting the number of nodes in the
graph. Estimating D is slightly more diffi cult since it involves path search, while
estimating P is even more diffi cult by inspecting the graph.

 We need to introduce a more formal technique to deal with the case when the
number of tasks is large or when we want to automate the process of extracting the
algorithm W , D , and P parameters. We will refer to the tasks of the algorithm as
nodes since that was the term we used in the DG description. The technique we
explain here converts the DAG of an NSPA into a DAG for an SPA.

 Given W nodes/tasks, we defi ne the 0 - 1 adjacency matrix A , which is a square
 W × W matrix defi ned so that element a (i , j) = 1 indicates that node i depends on
node j . The source node is j and the destination node is i . Of course, we must have
 a (i , i) = 0 for all values of 0 ≤ i < W since node i does not depend on itself (self -
 loop) and we assumed that we do not have any loops. As an example, the adjacency
matrix for the algorithm in Fig. 8.1 is given by

 A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0
=

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1

0 0

0 0

0 0

0 0

0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (8.2)

 Matrix A has some interesting properties related to our topic. An input node i is
associated with row i , whose elements are all zeros. An output node j is associated
with column j , whose elements are all zeros. We can write

 Input node i a i j
j

W

⇒ =
=

−

∑ (,)
0

1

0 (8.3)

 Output node j a i j
i

W

⇒ =
=

−

∑ (,) .
0

1

0 (8.4)

 All other nodes are interior nodes. Note that all the elements in rows 0, 1, and 2 are
all zeros since nodes 0, 1, and 2 are input nodes. This is indicated by the bold entries

148 Chapter 8 Nonserial–Parallel Algorithms

in these three rows. Note also that all elements in columns 7 and 9 are all zeros since
nodes 7 and 9 are output nodes. This is indicated by the bold entries in these two
columns. All other rows and columns have one or more nonzero elements to indicate
interior nodes. If node i has element a (i , j) = 1, then we say that node j is a parent
of node i .

 Example 8.2 Derive the adjacency matrix for the generation of the 10th Fibonacci
number based on the DAG discussed in Example 8.1.

 From the DAG, we get the following adjacency matrix:

 A()Fibonacci =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 00 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

⎡

⎣

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 8.4.1 Signifi cance of Powers of A i :
The Connectivity Matrix

 Let us see what happens if we raise the adjacency matrix in (8.2) to a higher power.
We square the matrix to get matrix A 2 defi ned as the adjacency matrix raised to the
power 2.

 A A2
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0
≡ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 2 0 1 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (8.5)

8.4 Formal Technique for Analyzing NSPAs 149

 There are few nonzero entries and some entries are not 1 anymore. Element
 a 2 (7, 0) is 1 to indicate that there is a two - hop path from node 0 to node 7. We
call A 2 the connectivity matrix of degree 2 to indicate that it shows all two - hop
connections between nodes in the graph. Specifi cally, that path is 0 → 3 → 7.
Node 7 has another two - hop path as indicated by element a 2 (7, 1), which is path
1 → 4 → 7. Element a 2 (9, 2) = 2, which indicates that there are two alternative
two - hop paths to node 9 starting at node 2. These two paths are 2 → 5 → 9 and
2 → 6 → 9.

 Now let us look at the connectivity matrix of order 3, that is, A 3 :

 A A3
3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0
≡ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (8.6)

 Now all the elements of A 3 are zero except for a 3 (9, 1). This indicates that there is
only one three - hop path between nodes 1 and 9, specifi cally, 1 → 4 → 8 → 9. Let
us now go one step further and see the value of A 4 :

 A A4
4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0
≡ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 0. (8.7)

 The fact that all elements of A 4 are zero indicates that there are no paths with
a length of four hops. Of course, this implies that all powers of A i for i > 3 will be
zero also. Thus, we can determine the critical path or paths from the highest power
of A for which the result is not the zero matrix.

150 Chapter 8 Nonserial–Parallel Algorithms

 8.5 DETECTING CYCLES IN THE ALGORITHM

 This section explains how cycles could be detected in the algorithm using the adja-
cency matrix A . Let us assume we modify the cycle - free algorithm in Fig. 8.1 to
have an algorithm with a cycle in it like the one shown in Fig. 8.3 . The dashed
arrows indicate the extra links we added. Inspecting the fi gure indicates we have a
cycle, 3 → 7 → 5 → 8 → 3.

 The corresponding adjacency matrix is given by

 B =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 00 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (8.8)

 An inspection of the matrix would not reveal the presence of any cycle. In fact,
nothing too interesting happens for powers of B 2 and B 3 . However, for B 4 , the matrix
takes on a very interesting form:

 Figure 8.3 Modifying the algorithm of Fig. 8.1 to
contain a cycle as indicated by the dashed arrows.

1

0
2

4

3

65

7

8

9

in0
in1 in2

out0 out2out1

8.6 Extracting Serial and Parallel Algorithm Performance Parameters 151

 B4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
=

1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0

1 1 0 0 1 1 0 0 1 0

1 1 0 1 1 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (8.9)

 We note that there are four nonzero diagonal elements: b 4 (3, 3), b 4 (5, 5), b 4 (7, 7),
and b 4 (8, 8). This indicates that there is a four - hop loop between nodes 3, 5, 7, and
8. The order of the loop can be determined by examining the rows associated with
these nodes. Starting with node 3, we see that it depends on node 8. So, the path of
the loop is 8 → 3. Now we look at row 8 and see that it depends on node 5. So, the
path of the loop is 5 → 8 → 3. Continuing in this fashion, we see that our loop is
3 → 7 → 5 → 8 → 3, which we have found by inspection of the graph. The advan-
tage of this technique is that it is applicable to any number of nodes and can be
automated.

 Another interesting property of cyclic algorithms and cyclic graphs is that
higher powers of the adjacency matrix will not produce a zero matrix. In fact, the
adjacency matrix will show cyclic or periodic behavior:

 A A A4 8 12= = � . (8.10)

 8.6 EXTRACTING SERIAL AND PARALLEL ALGORITHM
PERFORMANCE PARAMETERS

 In order to extract the D and P properties of an algorithm, we construct a W
component nonnegative sequence vector S , such that the component of the vector
at the i th location S (i) ≥ 0 indicates the order or priority of execution assigned to
node i . The value S (i) = k indicates that node i belongs to the execution sequence k .

 We outline some basic defi nitions that we will need in our technique.

 Defi nition 8.1 Parents of a node n : the source nodes for the directed edges termi-
nating at node n .

 Defi nition 8.2 Sequence of a node n : when a node can be executed by the
processors.

 Defi nition 8.3 Parallel set T s : the set of all nodes/tasks that can be executed at
sequence s .

152 Chapter 8 Nonserial–Parallel Algorithms

 The process of evaluating the algorithm starts with all the nodes that have sequence
value 0, then when all the processing is done, the nodes with sequence value 1 are
executed, and so on. We populate the sequence vector according to the iterative
procedure shown in Algorithm 8.1.

 Algorithm 8.1 Algorithm to assign execution sequences or levels to the nodes

 Require: Input: W × W adjacency matrix A

 1: P = ϕ // initialize parents set to empty set

 2: N = W // initialize nodes set to include all the nodes of the algorithm

 3: s = 0 // Initial sequence has zero value (0).

 4: T 0 = ϕ // initialize set of concurrent tasks at level s = 0

 5: for node ∈ N do

 6: if node is input node then

 7: S (node) = s // Components of S associated with each input node have value
 s = 0.

 8: insert node in P // start defi ning the parents node set

 9: delete node from N // leave unassigned nodes in N

 10: end if

 11: end for

 12: while N ≠ ϕ do

 13: s = s + 1 // increment sequence value to be allocated to newly assigned nodes

 14: T = ϕ // initialize temporary set to contain nodes in new level

 15: T s = ϕ // initialize set of concurrent tasks at level s

 16: for node ∈ N do

 17: if all parents of node ∈ P then

 18: insert node in T

 19: delete node from N

 20: S (node) = s

 21: end if

 22: end for

 23: append T to P // update nodes in P to include newly assigned nodes

 24: append T to T s

 25: end while

 After implementing Algorithm 8.1, all nodes will be assigned to an execution
level. Figure 8.4 shows the levels of execution of the algorithm in Fig. 8.1 and the
allocation of nodes to levels.

8.7 Useful Theorems 153

 8.7 USEFUL THEOREMS

 We show in this section some useful theorems related to the formal technique we
proposed in the previous section. The following theorem discusses how we can
check if a given algorithm is cycle free or not.

 Theorem 8.1 An algorithm with W nodes/tasks is cycle free if and only if A k has
zeros in its main diagonal elements for 1 ≤ k ≤ W.

 Proof:
 Assume the algorithm is cycle free. In that case, we do not expect any diagonal
element to be nonzero for A k with k ≥ 1. The worst case situation is when our algo-
rithm has all the nodes connected in one long string of W nodes as shown in Fig.
 8.5 a. The highest power for A k is when k = W − 1 since this is the maximum length
of the path between W nodes. A W = 0 since there is no path of length W . Thus, a
cycle - free algorithm will produce zero diagonal elements for all powers of A k with
1 ≤ k ≤ W .

 Now assume that all powers of A k for 1 ≤ k ≤ W are all zero diagonal elements.
This proves that we do not have any cycles of length 1 to W in the algorithm. This
proves that the algorithm does not have any cycles since for W nodes, we cannot
have a cycle of length greater than W . Figure 8.5 b shows the longest possible cycle
in an algorithm of W nodes/tasks.

 The following theorem gives us the performance parameter D .

 Figure 8.4 The assignment
of the nodes in Fig. 8.1
according to the procedure in
Algorithm 8.1.

10 2

43 65

7 8

9

in0
in1 in2

out0 out2out1

Sequence
S0

Sequence
S1

Sequence
S2

Sequence
S3

154 Chapter 8 Nonserial–Parallel Algorithms

 Theorem 8.2 A DAG has depth D if and only if the following two conditions are
satisfi ed :

 Ak k D≠ ≤ <0 0 (8.11)

 AD = 0, (8.12)

where 1 ≤ D ≤ W .

 Proof:
 Assume the DAG has depth D . This indicates that the maximum possible path length
is D − 1. This implies the following two equations:

 Ak k D≠ ≤ <0 1 (8.13)

 AD = 0. (8.14)

 The condition A D = 0 above implies that there are no paths of length D or less in
the algorithm and the longest path length is D − 1 according to Eq. 8.13 . This is the
length of the path that connects D nodes together. The fi rst node is the input node
and the last node is the output node.

 Now assume the two conditions in (8.13) and (8.14) are true. Thus, the maximum
path length is D for the algorithm.

 The following theorem results as a consequence of the procedure for assigning
execution order to the nodes according to Algorithm 8.1 . It assures that the execution
sequence assigned to each node is the smallest or earliest possible value.

 Theorem 8.3 A node is assigned to sequence k if and only if it depends on one or
more nodes assigned to sequence k − 1 .

 Proof:
 Assume that node i is assigned sequence k . This implies that it must be executed
after all the nodes in sequence k − 1. This implies that it depends on one or more
nodes from that sequence. If that was not the case, the procedure of Algorithm 8.1
would have assigned a smaller sequence value to node i .

 Figure 8.5 Worst case algorithm that has 10 nodes. (a) When the algorithm is cycle free. (b) The
longest possible cycle in an algorithm with 10 nodes is 10.

10 2 43 65 7 8 9
in out

10 2 43 65 7 8 9
in out

(a)

(b)

8.7 Useful Theorems 155

 Now assume that node i depends on one or more nodes that belong to sequence
 K − 1. This node can only execute after all these nodes complete their execution.
This implies that the sequence to be assigned to node i should have the value k .

 The following theorem assures us that we can execute all nodes having the
execution sequence in parallel or simultaneously.

 Theorem 8.4 Nodes belong to the same sequence if and only if they are indepen-
dent of each other and can be evaluated in parallel.

 Proof:
 Assume two nodes, i and j , have the same sequence S k . This implies that the two
nodes can be evaluated simultaneously in parallel and that they are independent of
each other.

 Now assume that two nodes, i and j , are independent and can be evaluated in
parallel at the same time. This implies that the two nodes belong to the same
sequence value. These two nodes could be moved to the earliest sequence, S k , where
both nodes depend on one or more nodes from sequence S k − 1 .

 The following theorem is unique to DAGs. It indicates that the last nodes
executed are all output nodes and their outputs are not used to supply other nodes.

 Theorem 8.5 A DAG has depth D if and only if all the nodes in sequence S D are
output nodes.

 Proof:
 When the depth of the DAG is D , then nodes in sequence S D cannot be interior
nodes. If a node were interior, then it must send its output data to a node i at sequence
 D + 1 since we do not have cycles. This would imply that node i will be evaluated
at sequence S D + 1 and the depth of the graph is at least D + 1. This contradicts the
requirement that the depth is D .

 Now assume that all nodes in sequence S D are output nodes. This implies that
there are no more nodes that depend on them. Thus, the depth of the graph is D .

 The following theorem is perhaps the most important theorem for DAGs.
Essentially, it assures us that the sequence assigned to the nodes is the fastest pos-
sible schedule.

 Theorem 8.6 The task execution schedule constructed from Algorithm 8.1 is the
optimal schedule possible for the given DAG assuming we have enough computing
resources to execute all the tasks in a given sequence level .

 Theorems 8.3 and 8.5 indicate that we cannot reduce the depth of the graph by
moving nodes from the given sequence to an earlier sequence. Hence, depth D
cannot be reduced below its value.

 Theorem 8.4 indicates that we have the maximum number of nodes in any given
sequence level. So, we have the maximum number of nodes that could be assigned
the same sequence order.

156 Chapter 8 Nonserial–Parallel Algorithms

 The above two paragraphs imply the following:

 1. We have maximum parallelism at any sequence level.

 2. We have the absolute minimum number of levels under the given
assumptions.

 Hence, the schedule obtained from Algorithm 8.1 is the optimal schedule.
 The following theorem assures us that the execution order assigned to the nodes

preserves the order dictated by the algorithm.

 Theorem 8.7 The procedure in Algorithm 8.1 for setting the execution order of
the algorithm tasks preserves the correctness of the algorithm.

 Proof:
 Two facts about the procedure assure us of the correctness of executing the
algorithm:

 1. The procedure in Algorithm 8.1 does not remove any parent from the parent
set of any node and does not disturb the links between the tasks.

 2. Theorem 8.3 assures us that any task will only be executed after all its parent
tasks have been executed.

 8.8 PERFORMANCE OF SERIAL AND PARALLEL
ALGORITHMS ON PARALLEL COMPUTERS

 The construction of Fig. 8.4 helps us identify all the algorithm parameters: W , D ,
and P .

 The work parameter W is of course determined by counting all the nodes or
tasks comprising the algorithm. From Fig. 8.4 , we conclude that W = 10.

 The parallelism of the algorithm is found by estimating the number of nodes
assigned to each execution sequence.

 P P i Di= ≤ <()max | . 0 (8.15)

 From Fig. 8.1 , we fi nd that the parallelism of the algorithm is P = 4. Dedicating
more than four processors will not result in any speedup of executing the
algorithm.

 From Fig. 8.4 , we fi nd the depth (D) as equal to the number of sequences
required to complete the algorithm. From Fig. 8.4 , we conclude that D = 4.

 Using P parallel processors, the minimum algorithm latency is defi ned as the
minimum time to execute the algorithm on P processors as given by

 T P Dp p() ,= τ (8.16)

where τ p is the processor time required to execute one task or node in the dependence
graph.

 The time its takes a single processor (uniprocessor) to complete the algorithm
would be

 T Wp p() .1 = τ (8.17)

8.9 Problems 157

 The maximum speedup due to using parallel processing is estimated as

 S P
T

T P

W

D
p

p

()
()

()
.= =

1
 (8.18)

 8.9 PROBLEMS

 8.1. Suppose that the adjacency matrix A has row i = 0 and column i = 0. What does that
say about task i ?

 8.2. Assume an ASA with W = 5 nodes or tasks and its depth is the maximum possible value.

 (1) What is the maximum value of depth D ?

 (2) What is the structure of the adjacency matrix under this condition?

 (3) What type of matrix is this adjacency matrix?

 (4) What kind of matrix results if you raise the adjacency matrix to higher powers?

 (5) Comment on the structure of A k .

 (6) What is the maximum power of the adjacency matrix at which the matrix is zero?

 8.3. Assume a cyclic sequential algorithm with W = 5 nodes or tasks and it has a maximum -
 length cycle.

 (1) What is the maximum value of depth D ?

 (2) What is the structure of the adjacency matrix under this condition?

 (3) What kind of matrix results if you raise the adjacency matrix to higher powers?

 (4) What is the maximum power of the adjacency matrix at which the matrix is zero?

 8.4. An NSPA algorithm consists of nine tasks that depend on each other as follows:

 Task Depends on tasks
 1 NA
 2 NA
 3 NA
 4 NA
 5 NA
 6 1, 2, 3, 4
 7 5
 8 1, 4
 6, 7, 8

 (1) Draw the DAG for this algorithm.

 (2) Assign tasks to the sequences.

 (3) Identify the algorithm parameters D , P , and W .

 Chapter 9

 z - Transform Analysis

 9.1 INTRODUCTION

 Many digital signal processing (DSP) algorithms are studied using the z - transform
where the signals being considered are discrete time signals. A discrete time signal
is denoted by x (n),where the variable n assumes nonnegative integer values 0, 1,
 … . The samples of a right - sided signal x are represented by the time sequence

 x n x x x() () () () .= 0 1 2 � (9.1)

 The most common examples of these algorithms are found in digital fi lters such
as one - dimensional (1 - D) and multidimensional fi nite impulse response (FIR) fi lters
and infi nite impulse response (IIR) fi lters. We see examples of such algorithms also
in multirate systems such as decimators, interpolators, and fi lter banks. z - Domain is
used here to obtain different ways to implement a given algorithm using pipelines.
The analysis in this chapter will proceed using as a working example the case of a
1 - D FIR fi lter.

 9.2 DEFINITION OF z - TRANSFORM

 The one - sided z - transform of a discrete time signal x (n) is given by the relation
 [78, 79]

 X z x n z n

n

() () ,= −

=

∞

∑
0

 (9.2)

where z is a complex number. We can write the z - transform in polynomial form:

 X z x x z x z() () () () .= + + () +− −0 1 21 1 2 � (9.3)

 We say that the signal x (n) in the time domain has an equivalent representation,
 X (z), in the z - domain.

 The z - transform X (z) of the sequence x (n) is a polynomial of the different
powers of z − 1 , such that x (i) is the coeffi cient of the i th power of z − 1 .

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

159

160 Chapter 9 z-Transform Analysis

 An important property of the z - transform is that the quantity z − 1 in the z - domain
corresponds to a time shift of 1 in the time domain. To prove this, we multiply X (z)
by z − 1 to obtain a new signal, Y (z):

Y z z X z

z x z x z x z

() ()

() () () .

=
= + + + +

−

− − −

1

0 1 2 30 0 1 2 �
 (9.4)

 The time domain representation y (n) is found by using the coeffi cients of the above
polynomial. At time i , we fi nd that

 y i x i() ().= −1 (9.5)

 In effect, the term z − 1 delayed each sample by one time step. We can write the rela-
tion between x (n) and y (n) as follows:

 n 0 1 2 3 4 …
 x (n) x (0) x (1) x (2) x (3) x (4) …
 y (n) 0 x (0) x (1) x (2) x (3) …

 Multiplication by z − 1 has the effect of delaying the signal by one time step. We
consider the term z − 1 as a unit delay operator , and the relation between the signal
 x (n) and y (n) could be graphically shown in Fig. 9.1 , where the box labeled z − 1
denotes the unit delay. In real signals, the unit delay block is implemented by an
edge - triggered D - type fl ip - fl op when signal x is single - bit data or it could be a reg-
ister if the signal x has multiple bits.

 9.3 THE 1 - D FIR DIGITAL FILTER ALGORITHM

 We are now ready to illustrate how to use the z - transform to obtain systolic struc-
tures. We use 1 - D FIR. The 1 - D FIR digital fi lter algorithm can be expressed as the
set of difference equations

 y n a k x n k
k

N

() () (),= −
=

−

∑
0

1

 (9.6)

where a (k) is the fi lter coeffi cient and N is the fi lter length, which is the number of
fi lter coeffi cients. Such an algorithm is a set of computations that is performed
on input variables to produce output variables. The variables we might encounter
are of three types: input, output, and intermediate or input/output (I/O) variables.

 Figure 9.1 Schematic for introducing unit delay to a signal. (a) z - domain notation.
(b) Time domain notation.

z–1 Y(z)X(z)

(a)

D y(n)x(n)

(b)

9.4 Software and Hardware Implementations of the z-Transform 161

An input variable is one that has its instances appearing only on the right - hand
side (RHS) of the equations of the algorithm. An output variable is one that
has its instances appearing only on the left - hand side (LHS) of the algorithm. An
intermediate variable is one that has its instances appearing on the right - hand side
and left-hand side of the equations. In Eq. 9.6 , the variable y is an output variable,
and variables x and a are input variables.

 We study this algorithm using the z - transform of each side of the above equation
to obtain

 Y a i z Xi

i

N

= −

=

−

∑ () ,
0

1

 (9.7)

where X and Y are the z - transform of the signals x (n) and y (n), respectively. We can
think of Eq. 9.7 as a polynomial expression in the different powers of z − 1 .

 9.4 SOFTWARE AND HARDWARE IMPLEMENTATIONS
OF THE z - TRANSFORM

 By using different polynomial evaluation techniques, the fi lter expression is con-
verted to a set of recursive expressions that can be evaluated using multithreads or
hardware systolic arrays. The z - domain technique is used for mapping the IIR fi lter
algorithm onto tasks. These tasks, in turn, can be implemented by concurrent threads
in software or by systolic arrays in hardware. The identifi cation of tasks is described
using the following steps:

 1. The z - domain expression for the algorithm is converted to a set of recursive
expressions. The data type in the recursive expressions determines the algo-
rithm granularity. This will ultimately determine the computation load of the
software tasks or the hardware complexity of the systolic array processing
elements (PEs).

 2. Each iteration in the recursive expression is assigned a task or a thread. In
the case of hardware implementation, each iteration is assigned a PE.

 3. The RHS of each expression defi nes the operations to be performed by each
PE on the input variables.

 4. The LHS of each expression defi nes the corresponding processor output.

 5. The delay operators attached to each variable dictate the size of the buffers
(amount of delay) within each processor.

 6. The number of tasks, threads, or PEs is determined by the number of itera-
tions required to produce the fi nal result.

 7. By ordering the shift and functional operators in the fi lter equations,
different recursive expressions and, consequently, different structures are
derived.

 In the following sections, we illustrate how different FIR structures are obtained
through the use of different techniques to evaluate the expression in Eq. 9.7 .

162 Chapter 9 z-Transform Analysis

 9.5 DESIGN 1: USING HORNER ’ S RULE FOR
BROADCAST INPUT AND PIPELINED OUTPUT

 Suppose we want to evaluate the polynomial for a certain value of x :

 p x x x x x() .= + + + +2 4 5 3 94 3 2 (9.8)

 We can rewrite the polynomial using Horner ’ s scheme as

 p x x x x x() ((())) .= + + + +2 4 5 3 9 (9.9)

 Now the polynomial is recursively evaluated through the following steps:

 1. Evaluate the innermost term y 0 = 2 x + 4.

 2. Evaluate the next innermost term y 1 = y 0 x + 5.

 3. Evaluate the term y 2 = y 1 x + 3.

 4. Evaluate the term y 3 = y 2 x + 9.

 5. Evaluate p (x) to y 3 .

 Now we apply Horner ’ s ’ scheme to Eq. 9.7 to obtain the recursive expression

 Y a X z a X z a N X= + + + −− −() [() [()]]].0 1 11 1� � (9.10)

 The above equation can be written as

 Y a i X z Y i Ni i= + < <−
+() []1

1 0 (9.11)

 Y a X z Y0
1

10= + −() (9.12)

 YN = 0 (9.13)

 Y Y= 0. (9.14)

 Based on the above iterative expression, task T (i) computes Y i in Eq. 9.11 using one
multiplication and one addition:

 Y a i X z Yi i= + −
+() .1

1 (9.15)

 The output of T (i) is saved then forwarded to T (i − 1) and the input to T (N − 1)
is initialized to 0. Figure 9.2 a shows the resulting directed acyclic graph (DAG) for
an output sample, y . The fi gure can be replicated to show the different DAGs for
other output samples. When these tasks are implemented in hardware, this DAG
becomes the systolic array structure that implements the FIR fi lter. This structure is
actually one of the classical canonic realizations of Eq. 9.7 . Figure 9.2 b shows
the details of a processor element in case of hardware implementation of the DAG.
Note that the input signal is broadcast to all tasks and the output is pipelined between
the tasks.

9.6 Design 2: Pipelined Input and Broadcast Output 163

 9.6 DESIGN 2: PIPELINED INPUT AND
BROADCAST OUTPUT

 In this design, we apply the delay operator to the input data samples to obtain delayed
input data that we use to obtain our output:

Y a X a z X a z z X

a z z X a N

= + ()[]+ ()[]+
()[]+ +

− − −

− −

() () ()

() (

0 1 2

3

1 1 1

1 2 � −− ()[]− − −1 1 2) .()z z XN (9.16)

 The above equation can be converted to the iterative expressions

Y a i X

X z X

X X

i
i

N

i i

=

=
=

=

−

−
−

∑ ()

.

0

1

1
1

0

 (9.17)

 Figure 9.3 a shows the resulting DAG for an output sample y . The fi gure can be
replicated to show the different DAGs for other output samples. When these tasks
are implemented in hardware, this DAG becomes the systolic array structure that
implements the FIR fi lter. This structure is actually one of the classical canonic
realizations of Eq. 9.7 . Figure 9.3 b shows the details of a processor element in case
of hardware implementation of the DAG. Note that only the input is pipelined
between the PE stages and the output is pipelined between the tasks. A problem with
this design is that the output is not stored in a register between the PE stages. For a
large fi lter order, the design slows down since the adders evaluating the outputs are
all working in parallel.

 Figure 9.2 FIR digital fi lter software/hardware implementation with pipelined outputs.
(a) DAG for FIR digital fi lter. (b) Processor element details.

a(N–1) a(N–2) a(1) a(0)...

X

0 Y

X

a

z–1
YoutYin

(a)

(b)

X

a

YoutYin

(c)

164 Chapter 9 z-Transform Analysis

 9.7 DESIGN 3: PIPELINED INPUT AND OUTPUT

 A possible attractive implementation would be when both the input and output of
each PE are stored in a register. This implies a fully pipelined design, which is
potentially the fastest design possible. Assume without loss of generality that N is
even. We can write Eq. 9.7 as

Y a X a z X z a z X a z X

z a NN

= +[]+ +[]+
−

− − − −

− −

() () () ()

()()

0 1 2 3

2

1 1 1 2

2 1

�
/ z X a N z X

z a i z X a i z

N N

i

N
i i

− − −

=

−
− − −

+ −[]
= + +∑

() ()

() ()

/ /

/

2 1 2

0

2 1

1

2 2 1 () .i X+[]1 (9.18)

 We perform an iteration on the inputs X in the above equation:

 X z X i Ni i= ≤ ≤−
−

1
1 1 2/ (9.19)

 X X0 = , (9.20)

and the output is given by

 Y z a i X a i Xi
i i

i

N

= + +[]−
+

=

−

∑ () () .2 2 1 1
0

2 1/

 (9.21)

 The above equation can be written as the iteration

 Y z a i X a i X Y i Ni i i i= + + +[] < <−
+ +

1
1 12 2 1 0 2() () / (9.22)

 YN/2 0= (9.23)

 Y a X a X Y0 0 1 10 1= + +() () (9.24)

 Y Y= 0. (9.25)

 Figure 9.3 FIR digital fi lter software/hardware implementation with pipelined inputs.
(a) DAG for FIR digital fi lter. (b) Processor element details.

a(1)a(0) ...
X

0
Y

a

z–1

YoutYin

(a)

(b)

a(N–2) a(N–1)

XoutXin

9.8 Problems 165

 Figure 9.4 a shows the resulting DAG for an output sample, y . The fi gure can
be replicated to show the different DAGs for other output samples. This is a new
structure that has been reported in the literature by Sunder et al. [23] . Figure 9.4 b
shows the details of a processor element. Note that both the input and output are
pipelined between the PE stages. Figure 9.4 c shows the details of the fi rst PE storing
the fi lter coeffi cient a (0) and a (1). Note that the output is not stored in a register.

 9.8 PROBLEMS

 9.1. A recursive IIR fi lter is described by the set of difference equations

 y n a k x n k b k y n k n
k

N

() () () () () ,= − − −[] ≤
=

−

∑
0

1

0

where b (0) = 0 and N is the fi lter length.

 (1) Derive the z - transform expression for the IIR fi lter.

 (2) Obtain different designs using the different methods used in this chapter.

 9.2. Apply the z - domain technique to the 1 - D correlation algorithm.

 9.3. Apply the z - domain technique to the two - dimensional correlation algorithm.

 9.4. Apply the z - domain technique to the three - dimensional correlation algorithm.

 9.5. Apply the z - domain technique to the 1 - D convolution algorithm.

 9.6. Apply the z - domain technique to the two - dimensional convolution algorithm.

 9.7. Apply the z - domain technique to the three - dimensional convolution algorithm.

 Figure 9.4 FIR digital fi lter software/hardware implementation with pipelined inputs and outputs.
(a) DAG for FIR digital fi lter. (b) Processor element details. (c) Leftmost processor element details.

a(2),
a(3)

a(0),
a(1)

...
X

0Y

a(2i)

z–1

Yout Yin

(a)

(b)

a(N–4),
a(N–3)

a(N–2),
a(N–1)

XoutXin

(c)

a(2i+1)

z–1

a(0)

z–1

Yout Yin

XoutXin

a(1)

 Chapter 10

Dependence Graph Analysis

 10.1 INTRODUCTION

 The dependence graph technique is a very simple yet powerful approach for the
design space exploration of regular iterative algorithms (RIAs). One restriction on
this approach is that the algorithm must be two - dimensional (2 - D) or three -
 dimensional (3 - D) at the most so that the designer could visualize the resulting
structures. Chapter 11 will extend this approach to algorithms having higher dimen-
sions by replacing the dependence graph with a convex hull in the integer Z n space.
Many parallel algorithms have 2 - D or 3 - D dimensions such as one - dimensional
(1 - D) digital fi lters, 1 - D decimators and interpolators, matrix – vector multiplication,
and pattern matching algorithms. Furthermore, many types of higher - dimensional
algorithms can be recursively broken down into lower - dimensional problems. For
example, we can hierarchically decompose 2 - D or 3 - D digital fi lters into modules
of 1 - D fi lters. In this chapter, we illustrate how to obtain different multithreading
and systolic structures for a given algorithm. We are going to use the 1 - D fi nite
impulse response (FIR) digital fi lter as a running example.

 10.2 THE 1 - D FIR DIGITAL FILTER ALGORITHM

 The 1 - D FIR digital fi lter algorithm is an example of a RIA that can be expressed
as the set of difference equations

 y i a j x i j i
j

N

() () () ,= − ≥
=

−

∑
0

1

0 (10.1)

where a (j) is the fi lter coeffi cient and N is the fi lter length. y (i) is our output vari-
able, which depends on the i index only. On the other hand, a (i) is an input variable
that depends on the j index only and x (i − j) is another input variable that depends
on both the i and j indices. The above equation describes two iterations. One itera-
tion is over the index i and the other iteration is over the index j , which is to be
repeated N times. The data type in the above equation determines the algorithm
granularity. This will ultimately determine the computation load of each task, which

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

167

168 Chapter 10 Dependence Graph Analysis

will translate to software threads or hardware systolic array processing elements
(PEs).

 10.3 THE DEPENDENCE GRAPH
OF AN ALGORITHM

 Traditionally, a RIA is represented as a directed acyclic graph (DAG) as was dis-
cussed in Chapters 1 and 8 . The graph is composed of a set of nodes representing
the tasks to be performed by the algorithm, and the directed edges represent the data
fl owing between the tasks from the task producing the data to the task that uses the
data. In this chapter, we start our analysis not from the DAG but by constructing a
dependence graph in an integer space Z n, where n denotes the number of indices of
the algorithm. Once we develop a dependence graph, we will derive several DAGs
based on our scheduling techniques as we shall discuss here and in Section 10.5 and
in Chapter 11 . Stated more explicitly, an RIA can be represented by one dependence
graph. The same algorithm could result in several DAGs.

 Defi nition 10.1 A dependence graph is a set of nodes and edges in the integer
domain Z n. A node is a point p ∈Z and represents the tasks to be performed at the
given values of the indices. The edges show how the algorithm variables depend on
the algorithm indices. The points lying on an edge indicate that the operations per-
formed by nodes use the data carried by the edge.

 Notice the defi nition of edges in the dependence graph. A dependence graph is
not a DAG since the edges are not directed. Further, an edge in the dependence
graph could be associated with an input, output, or input/output intermediate values
depending on the variable.

 Table 10.1 Comparing the Dependence Graph and the Directed Acyclic Graph (DAG)

 Dependence graph Directed acyclic graph (DAG)

 The graph is really a convex hull (D) in
the integer space Z n.

 The graph is a 2 - D drawing on a sheet of
paper or on the computer screen.

 Undirected edges. Directed edges.
 Edge represents how a variable depends
on the algorithm indices.

 The edge represents data fl owing from the
output of a task to the input of another task.

 An edge covers many nodes and spans the
entire computation domain D .

 An edge is confi ned between two tasks
(nodes).

 The node represents a task done by the
algorithm.

 The node represents a task done by the
algorithm.

 The node is located at a specifi c
coordinate point in Z n .

 There is no signifi cance as to where a node is
located on the graph.

 The execution sequence cannot be
determined from inspecting the
dependence graph.

 The execution sequence can be determined
by inspecting the DAG. The task producing
a datum must be executed before the task
consuming that datum.

10.4 Deriving the Dependence Graph for an Algorithm 169

 Lemma 10.1 The dependence graph of an algorithm is unique to each algorithm
since there is only one way to describe how the variables depend on the indices.

 The advantage of this approach will become apparent in the following dis-
cussion and in Chapter 11 where we will be able to study the algorithm in terms
of powerful linear algebra and computational geometry concepts. Table 10.1 com-
pares the dependence graph defi ned above and the DAG defi ned in Chapter 1 .

 10.4 DERIVING THE DEPENDENCE
GRAPH FOR AN ALGORITHM

 We use Eq. 10.1 to study the dependence of the algorithm variables. Variable y is
an output variable, and variables x and a are input variables. We note that the algo-
rithm gives rise to a 2 - D graph D since we have two indices, i and j . Since the
dimensionality of D is low, it is best to visualize D using a dependence graph since
this is easier for humans to analyze. We refer to any point in D as a vector p

 p = []i j t . (10.2)

 For given values of the indices, the vector corresponds to a point in the Z 2 space.
The graph D covers the points p (i , j) ∈ D where the range of the indices defi nes the
boundaries of D as

 0 0≤ ≤ <i j Nand . (10.3)

 Note that D extends to ∞ in the i direction, which defi nes an extremal ray .

 10.4.1 Defi ning the Algorithm Variables in D

 We study in this section how to defi ne the dependence of a variable in D . Figure
 10.1 shows the dependence graph of the 1 - D FIR fi lter for the case N = 4. Let us
consider the input variable a in Eq. 10.1 . A specifi c instance of that variable such
as a (2), for example, implies that we have set the index j equal to 2. We can formally
write this substitution as

 j = 2. (10.4)

 The above equation is a straight line equation in D where a (2) is represented by a
horizontal line. Figure 10.1 shows the dependence graph of the three variables y , a ,
and x . The horizontal straight line actually defi nes a set of points in e a ∈ D , where
all the points use the same instant of a to do their operations. Equation 10.4 can be
written in matrix form as Ap = 2 where A is the dependence matrix of variable e a
and p is any point. For our 2 - D case, A becomes a row vector given by [0 1]. We
call e a the subdomain of variable a . This subdomain e a is described by the basis
vector

 ba
t= []0 1 . (10.5)

170 Chapter 10 Dependence Graph Analysis

 Chapter 11 will explain why this vector is a basis vector of the dependence
matrix for a variable . We will need later to defi ne the nullvector b associated with
the basis vector of a variable. Variable a has the associated nullvector

 ea
t= []1 0 . (10.6)

 The two vectors e a and b a satisfy the equation:

 e ba
t

a = 0. (10.7)

 A specifi c value for variable x (3) can similarly be described by the straight line
equation

 i j− = 3. (10.8)

 The associated nullvector e x is

 ex
t= []1 1 . (10.9)

 This is represented by the diagonal lines in Fig. 10.1 . The associated basis vector b x
is given by

 bx
t= −[]1 1 . (10.10)

 For output y (5), the index dependence is given by the equation

 i = 5, (10.11)

and the nullvector e y is given by

 ey
t= []0 1 . (10.12)

 The basis vector b y encompasses all the points in D that produce results to be used
to calculate a specifi c instance of y . The associated basis vector is given by

 Figure 10.1 Dependence graph for the 1 - D FIR fi lter for the case N = 4.

j

i

y(0)

a(0)

x(0)

y(1) y(2) y(3) y(4) y(5) y(6)

...

x(1) x(2) x(3) x(4) x(5) x(6)

...

...

a(1)

a(2)

a(3)

10.5 The Scheduling Function for the 1-D FIR Filter 171

 by
t= []1 0 . (10.13)

 A node in D represents the operations to be performed by each iteration. In our
example, only one operation is to be performed by an iteration:

 y i j y i j a j x i jtemp temp(,) (,) () ().= − + −1 (10.14)

 Since the addition operation is associative, we could have written the above iterative
step as

 y i j y i j a j x i jtemp temp(,) (,) () ().= + + −1 (10.15)

 Having derived the dependence graph for the given algorithm, we now need to
synchronize the operation of each node . We need to know how to assign time values
to each node dictating when the operation in each node is to be performed. This is
called node scheduling . We also need to assign each node to a unique hardware
processor or thread in a multicore, multithreaded implementation. This is called node
projection .

 10.5 THE SCHEDULING FUNCTION
FOR THE 1 - D FIR FILTER

 This section discusses how to execute the tasks in the dependence graph in stages
of execution. At each stage, a group of the tasks gets executed followed by tasks in
the next stage and so on. We use an affi ne scheduling function such that any point
 p = [i j] t ∈ D is associated with the time value

 t s()p s p= − (10.16)

 = + −i s j s s1 2 , (10.17)

where s = [s 1 s 2] is the scheduling vector and s is a scalar constant. Typically, the
constant s = 0 since the domain D is typically in the fi rst quadrant, the point at the
origin p (0, 0) ∈ D and s usually has positive components.

 The main purpose of the scheduling function is to divide the tasks in the depen-
dence graph into stages that are executed sequentially. Several tasks will be executed
in parallel at each stage. Effectively, the scheduling function will convert the depen-
dence graph into a DAG, and more specifi cally, it will convert it into a serial – parallel
algorithm (SPA) as Theorems 11.2 and 11.3 will prove in Chapter 11 . The parallel
tasks could be implemented using concurrent threads or parallel processors for
software or hardware implementations, respectively. The different stages of the SPA
are accomplished using barriers or clocks for software or hardware implementations,
respectively.

 The scheduling function determines the computational load to be performed by
the computing system at each stage of execution. This is a subtle but very important
by - product. Also, we shall see that the linear or affi ne scheduling function affords
us little control on the amount of that work. We will introduce nonlinear scheduling
techniques that will allow us to control the total work assigned to the system during

172 Chapter 10 Dependence Graph Analysis

each time step. Another effect of the scheduling function is the fact that dependen-
cies between tasks will be created and that interthread and interprocessor commu-
nication can thus be determined.

 10.5.1 From Dependence Graph to DAG/SPA

 The scheduling function will convert the dependence graph to a DAG or SPA since
it will give an order of executing the nodes/tasks of the graph by assigning to each
node a unique time index value. Nodes with equal time index values are said to
belong to the same equitemporal zone. Figure 10.1 illustrates the dependence graph
of the 1 - D FIR fi lter. Figure 10.2 shows how this graph is transformed to a DAG
using the affi ne scheduling function.

 The scheduling function will also assign a direction to the algorithm variables,
and the graph edges will become directed edges. An edge connecting two nodes in
adjacent equitemporal zones will become directed from the zone with a lower time
index to the zone with a higher time index. In that sense, this data will become
 pipelined data.

 If the edge connects two nodes in the same equitemporal zone, then there is no
direction associated with the edge since the data are available to all nodes at the
same time. In that sense, this data will become broadcast data. Data broadcast could
be accomplished in hardware using a system - wide bus or an interconnection network
capable of broadcasting a single data item to all the PEs. In software, data broadcast
could be accomplished by using a broadcast message to all threads or by using a
shared memory.

 An affi ne scheduling function should satisfy several conditions in order to be a
valid scheduling function:

 s p p≥ ∈s D positive time values (10.18)

 s e = 0 broadcast restriction (10.19)

 Figure 10.2 DAG for the 1 - D FIR fi lter for the case N = 4.

j

i

...

...

...

0 1 2 3

4

5

6

y(0) y(1) y(2) y(3) y(4) y(5) y(6)

a(0)

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

a(1)

a(2)

a(3)

10.5 The Scheduling Function for the 1-D FIR Filter 173

 s f ≠ 0 pipelining restriction (10.20)

 s d ≠ 0 projection restriction (10.21)

 s R > 0 causality, (10.22)

where

 e broadcast nullvector
 f pipelining nullvector
 d projection direction (discussed later)
 R any extremal ray in our domain

 10.5.2 Broadcasting a Variable

 Defi nition 10.2 A variable is broadcast when all the nodes in D that belong to its
subdomain are assigned the same time value.

 Assume two points, p 1 and p 2 , lie in the subdomain of a variable. We can write

 p p e2 1= + α v , (10.23)

where α ≠ 0 is some integer constant and e v is the nullvector for the subdomain of
the variable. If the two points are to be assigned the same time value, we must have

 t t() ()p p1 2= (10.24)

 sp sp1 2− = −s s (10.25)

 s p p1 2 0−() = . (10.26)

 From Eqs. 10.23 and 10.26 , we can write

 sev = 0. (10.27)

 Thus, to broadcast a variable, we must ensure that the scheduling vector is
orthogonal to the nullvector of the variable. And we have as a condition for broad-
casting a variable

 s bt
v∝ , (10.28)

where b v is the basis vector for the broadcast subdomain of the variable. In other
words, a variable is broadcast when the scheduling vector is parallel to the basis
vector and is orthogonal to the nullvector associated with the variable in question.

 10.5.3 Pipelining a Variable

 Pipelining is the opposite of broadcasting, as can be checked out by comparing
Defi nition 10.2 with the following defi nition:

 Defi nition 10.3 A variable is pipelined when all the nodes in D that belong to its
subdomain are assigned different time values.

174 Chapter 10 Dependence Graph Analysis

 Assume two points, p 1 and p 2 , lie in the subdomain of a variable. The times
associated with each point are expressed as

 t t() ()p p1 2≠ (10.29)

 sp sp1 2− = −s s (10.30)

 s p p1 2 0−() ≠ . (10.31)

 Thus, to pipeline a variable, we must ensure that the scheduling vector is not
orthogonal to the nullvector of the variable.

 From Eqs. 10.23 and 10.31 , we can write

 sev ≠ 0, (10.32)

where e v is the nullvector for the subdomain of the variable. And we have as a
condition for broadcasting a variable

 sbv = 0, (10.33)

where b v is the basis vector for the broadcast subdomain of the variable. In other
words, a variable is pipelined when the scheduling vector is not orthogonal to the
null vector and is orthogonal to the basis vector associated with the variable in
question.

 10.5.4 Determining the Scheduling Function

 In order to determine the components of s , we turn our attention to the fi lter inputs
 x . The input data are assumed to be supplied to our array at consecutive time steps.
From the dependence graph, we see that samples x (i) and x (i + 1) could be supplied
at points p 1 = [i 0] t and p 2 = [i + 1 0] t , respectively. The time steps associated with
these two input samples are given from Eq. 10.17 by

 t i s()p1 1= (10.34)

 t i s() () .p2 11= + (10.35)

 Assuming that the consecutive inputs arrive at each time step, we have
 t (p 2) − t (p 1) = 1, and we must have

 s = [].1 2s (10.36)

 So now we know one component of the scheduling vector based on input data timing
requirements. Possible valid scheduling functions could be

 s =
[−]
[]
[]

⎧
⎨
⎪

⎩⎪

1 1

1 0

1 1 .

 (10.37)

 All the above timing schedules are valid and have different implications on the
timing of the output and partial results. The fi rst scheduling vector results in broad-

10.5 The Scheduling Function for the 1-D FIR Filter 175

cast input and pipelined output. The second scheduling vector results in the broadcast
of the output variable y and could produce design 2, which was discussed in Chapter
 9 . The third scheduling vector results in pipelined input and output and could
produce design 3, which was discussed in Chapter 9 .

 Let us investigate the scheduling vector s = [1 − 1]. This choice implies that

 s ex = 0, (10.38)

 which results in broadcast x samples. Based on our choice for this time function, we
obtain the DAG/SPA shown in Fig. 10.2 . The gray lines indicate equitemporal
planes, or they could be thought of as representing the different stages of the SPA.
All nodes lying on the same gray line execute their operations at the time indicated
beside the line. The gray numbers indicate the times associated with each stage.
Notice from the fi gure that all the input and output signals are pipelined as indicated
by the arrows connecting the graph nodes. At this stage, we know the timing of
the operations to be performed by each node. In other words, we know the total
computation load to be performed by our system at any given time step or stage of
execution. We do not know how many threads or PEs are required to do this work.
This is the subject of Section 10.6 . Of course, inspection of the DAG could give
us an idea as to how many threads/tasks should be executed at each stage or equi-
temporal plane. We could also fi gure out the input and output data required at each
stage.

 10.5.5 Limitations of Linear
Thread/Task Scheduling

 The scheduling function of the previous section is simple but not too fl exible.
We do not have control over how much calculations could be performed globally
by the parallel computing system at a given time step by the multiprocessing system.
The workload might be light or it might exceed the processing capabilities of
the system.

 Figure 10.3 shows the node scheduling based on different choices for the sched-
uling function σ . Gray lines indicate order of execution of the operations. The fi gure
only shows the calculations performed by the FIR algorithm at any given time step.
Each column in the fi gure corresponds to the nodes required to produce one output
sample.

 Figure 10.3 a shows the equitemporal planes for s = [1 0]. In that case, point
(i , j) in D will be associated with the time value i . Thus, all the calculations required
to produce an output sample are performed in the same time, which is desirable.
However, we note that the different output samples are executed serially at different
time steps. We might as well have implemented the fi lter on one processor. The
maximum workload done at each time step is equal to N = 4, the fi lter length where
the unit of workload is a simple multiply accumulate operation.

 Figure 10.3 b shows the equitemporal planes for s = [0 1]. In that case, point
(i , j) in D will be associated with the time value j . At any time step, the partial results

176 Chapter 10 Dependence Graph Analysis

of all the output samples are produced. The workload now is equal to the number
of desired output samples, which could be very large. Further, all the input samples
must be available for the calculations. This scheduling option is the least desirable
or practical.

 Figure 10.3 c shows the equitemporal planes for s = [1 1]. In that case, point
(i , j) in D will be associated with the time value i + j . At most, only N threads can
operate simultaneously, but each thread only performs a simple operation. We do
not have means to match the threads to the available cores since the function sched-
ules N threads, which depends on the parameters of the fi lter used. The maximum
workload done at each time step is equal to N = 4, the fi lter length. At any time step,
partial results of N output samples are produced and one complete output result is
produced.

 10.5.6 Nonlinear Scheduling Operation

 The scheduling vector s 1 of Fig. 10.3 a produces one output sample at a time . We
modify the scheduling function to a nonlinear schedule as follows:

 t
n

() ,p
sp= ⎛

⎝⎜
⎞
⎠⎟floor (10.39)

 Figure 10.3 Scheduling options for the 1 - D FIR fi lter for the case N = 4. Gray lines indicate order
of execution of the operations. (a) When the scheduling function is s = [1 0]. (b) When the scheduling
function is s = [0 1]. (c) When the scheduling function is s = [1 1].

0 1 2 3 4 5 6

7

8

9

0 1 2 3 4 5 6

0

1

2

3

(a)

(c)

(b)

10.6 Node Projection Operation 177

where the fl oor(.) function fi nds the largest integer smaller than the division opera-
tion and n is the level of data aggregation. When n = 2, we have two input or output
data being fed or extracted from our system at each time step.

 Now we can schedule as many nodes as we want to execute at the same time.
Figure 10.4 shows the scheduling of nodes using Eq. 10.39 with n = 2. The gray
areas indicate the different equitemporal regions and the gray numbers indicate the
order of execution of the nodes. The global computation workload w total at any time
step is given by

 w nNtotal = . (10.40)

 10.6 NODE PROJECTION OPERATION

 In Section 10.5 , we discussed how we can associate a time step value to each point
in the computation domain D . In this section, we discuss how we can assign a pro-
cessor or a thread to each point in the DAG. The combination of node scheduling
and node projection will result in determination of the work done by each task at
any given time step. The choice of the projection operation will impact the inter-
thread or interprocessor communication, which is a very crucial factor in determin-
ing the speed of the execution of the algorithm.

 The projection operation transforms our DAG in Z n to a projected DAG in an
integer space of reduced dimensionality Z k where k < n . We label the new projected
acyclic graph DAG. Central to the projection operation is the projection matrix P
and the projection direction d .

 A subtle point to be noticed in the projection operation is that it controls the
amount of workload assigned to each software thread for a multithreaded implemen-
tation or the workload assigned to each PE for a systolic array implementation. Just

 Figure 10.4 Allocation of nodes to different equitemporal domains using nonlinear scheduling. The
shaded areas indicate the different domains and the grayed numbers indicate the order of execution of
the nodes for the case N = 4 and n = 2.

j

i

...

0 1 2 3

a(0)
x(0) x(1) x(2) x(3) x(4) x(5) x(6)

a(1)

a(2)

a(3)

4

x(7) x(8) x(9)

y(0) y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9)

178 Chapter 10 Dependence Graph Analysis

like affi ne scheduling, affi ne projection affords us little control over the workload
assigned to a thread or a PE. However, nonlinear projection operations will give us
very good control over the workload assigned to each thread or PE.

 Defi nition 10.4 A projection matrix P is a k × n matrix of rank k that provides a
many - to - one projection of points in Z n to points in Z k

 p Pp= . (10.41)

 For our case, the DAG lies in the 2 - D integer space Z 2. The projection matrix
becomes a row vector

 P = []P P1 2 , (10.42)

and a point p = [i j] t will map to the point

 p iP jP= +1 2.

 Defi nition 10.5 A projection direction d is a nullvector of the projection
matrix P .

 Proof of the above defi nition is found in Chapter 11 . For our case, the nullvector
associated with the projection matrix is given by

 d = −[]P P t
2 1 . (10.43)

 Conversely, if we start by selecting a certain projection direction d = [d 1 d 2] t ,
the associated projection matrix becomes P = [d 2 – d 1].

 Points or nodes lying along the projection direction will be mapped onto the
same point in the new projected DAG (DAG). A restriction on the projection direc-
tion d is that two points that lie on an equitemporal plane should not map to the
same point in DAG. This can be expressed as

 s d ≠ 0. (10.44)

 The projection direction should not be orthogonal to the scheduling vector since
this is contradictory to the requirements of parallelism — namely, all nodes executing
simultaneously are assigned to the same thread or PE.

 As a result of the above equation, choosing a particular scheduling vector
restricts our options for valid projection directions. Let us work with our choice for
the scheduling vector of s = [1 – 1]. Therefore, we have three possible choices for
projection directions:

 d1 1 0= []t (10.45)

 d2 0 1= []t (10.46)

 d3 1 1= −[] .t (10.47)

 All these projection directions are not orthogonal to our scheduling vector.

10.7 Nonlinear Projection Operation 179

 10.7 NONLINEAR PROJECTION OPERATION

 The linear projection operation in combination with the scheduling function deter-
mines the workload assigned to each thread or PE at any given time step. The linear
projection operation is simple but not too fl exible. We do not have control over how
much calculations could be performed by each thread or PE at a given time step.

 We modify the linear projection operation as follows:

 �p
Pp= ⎛

⎝⎜
⎞
⎠⎟floor

m
, (10.48)

where m is the desired number of points in DAG that will be allocated to one thread
or PE. The fl oor(.) function fi nds the largest integer smaller than the division opera-
tion. We can therefore control the workload allocated to each thread or PE per time
step as

 w mthread = . (10.49)

 For a concrete example, assume that our scheduling vector and projection direction
are given by

 s = []1 0 (10.50)

 d = [] .1 0 t (10.51)

 We also assume that N = 1,024, n = 2, and m = 8. In that case, the global workload
per time step to be done by all threads is equal to nN = 2,048, and in that case, the
output samples will be allocated to threads according to Table 10.2 .

 10.7.1 Using Concurrency Platforms

 At this stage, the programmer is able to determine the execution order of the threads
and the timing of the algorithm variables by inspecting the DAG. With this knowl-
edge, the programmer can determine the locations of required locks and barriers in
the program. By counting the number of nodes that belong to each equitemporal
zone, the programmer can determine the required number of threads to be created.
The speedup of the algorithm, and other performance parameters can also be

 Table 10.2 Allocation of 1 - D FIR Filter Output Samples to Threads Using a Nonlinear
Projection Operation When m = 8 Output Samples Are Allocated to One Thread

 Thread ID Output samples produced
by each thread

 Input data required
by each thread

 0 y (0) … y (7) x (0) … x (8 − N)
 1 y (8) … y (15) x (8) … x (16 − N)
 3 y (16) … y (23) x (16) … x (24 − N)
 4 y (24) … y (31) x (24) … x (32 − N)

180 Chapter 10 Dependence Graph Analysis

determined. The following section illustrates how this information can be automati-
cally obtained instead of inspecting the DAG of the algorithm.

 10.8 SOFTWARE AND HARDWARE
IMPLEMENTATIONS OF THE DAG TECHNIQUE

 By using different scheduling functions and projection directions, the DAG is con-
verted to a set of tasks that can be executed concurrently in software threads or in
hardware systolic arrays. The technique maps the DAG of the algorithm to simul-
taneous multithreaded (SMT) tasks or single instruction multiple data stream
(SIMD)/systolic hardware. In the following section, we shall refer to the computa-
tions at each node as tasks , knowing that tasks translate to threads in software or
PEs in hardware. In all cases discussed in this section we choose the scheduling
function s = [1 – 1].

 10.8.1 Design 1: Projection Direction d 1 = [1 0] t

 Since the chosen projection direction is along the extremal ray direction, the number
of concurrent tasks will be fi nite. A point p = [i j] t ∈ DAG maps to the point �p = j .
The pipeline is shown in Fig. 10.5 . Task T (i) stores the fi lter coeffi cient a (i).
The fi lter output is obtained from the rightmost PE. Notice that both inputs x and y
are pipelined between the PEs. Some explanation of notation in the DAG is in
order. An arrow connecting tasks T (i) to task T (j) indicates that the output data of
 T (i) is stored in memory and is made available to T (j) at the next time step. An
arrow exiting a task indicates calculations or data to be completed by the task at

 Figure 10.5 Projected DAG (DAG) for the 1 - D FIR fi lter for the case N = 4, s = [1 – 1], and
 d 1 = [1 0] t . (a) The resulting DAG. (b) The task processing details.

y

x

0a(0)

a(i)

yin
yout

xin

D

(a)

(b)

a(1) a(2) a(3)

Task (thread or processing element)

10.8 Software and Hardware Implementations of the DAG Technique 181

the end of the time step. An arrow entering a task indicates data read at the start of
the time step.

 10.8.2 Design 2: Projection Direction d 2 = [0 − 1] t

 A point p = [i j] t ∈ D maps to the point �p = i . The pipeline is shown in Fig. 10.6 .
Each task stores all the fi lter coeffi cients locally to reduce intertask communication
requirements . T (i) accepts input samples x (i − N + 1) to x (i) from the shared memory
or input data bus at time step i . T (i) produces the output y out (i) at time step i and
stores that data in memory or sends that signal onto the output data bus. The number
of tasks is infi nite since our projection direction did not coincide with the ray direc-
tion. However, each task is active for the duration of N time steps. The task activities
at different time steps are shown in Fig. 10.7 . The timing diagram thus indicates that

 Figure 10.6 Projected DAG (DAG) for the 1 - D FIR fi lter for the case N = 4, s = [1 – 1], and
 d 2 = [0 – 1] t .

0 1 2 3 4 5 6 7 ...

y

x
From memory or from input data bus

To memory or to output data bus

Task (thread or processing element)

 Figure 10.7 Task activity for the 1 - D FIR fi lter for the case N = 4, s = [1 – 1], and d 2 = [0 – 1] t .

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

...

Time

1

0

2

3

4

5

0 1 2 3 4 5 6 7 ...6

182 Chapter 10 Dependence Graph Analysis

we could merge the tasks. Therefore, we relabel the task indices such that T (i) maps
to T (j), such that

 j i N= mod . (10.52)

 The reduced DAG is shown in Fig. 10.8 .

 10.9 PROBLEMS

 10.1. Given are two causal signals h (n) and x (n), which are N samples each. Their cross -
 correlation is given by the equation

 r n
N

h k x k nhx
k

N

() () (),= +
=

−

∑1

0

1

where n = 0, 1, … , N − 1. Assuming N = 5:

 (1) Draw the dependence graph for the algorithm where the index n is to be drawn
on the horizontal axis and the index k is to be drawn on the vertical axis.

 (2) Write down nullvectors and basis vectors for the algorithm variables.

 (3) Find possible simple scheduling functions for this algorithm and discuss the
implication of each function on the pipelining and broadcasting of the
variables.

 (4) Choose one scheduling function and draw the associated DAG for the
algorithm.

 (5) Show possible nonlinear scheduling options for the scheduling function you
chose in part 4.

 (6) Find possible projection directions corresponding to the scheduling function you
chose in part 4.

 Figure 10.8 The reduced DAG for the 1 - D FIR fi lter for N = 4, s = [1 – 1], and d 2 = [0 – 1] t .
(a) The DAG. (b) The task processing details.

y

x

0 1

yout
xin Acc.

a(3) a(2) a(1) a(0)

(a)

(b)

2 3

10.9 Problems 183

 (7) Choose one projection direction and draw the resulting DAG and the PE details
for systolic array implementation.

 (8) Show possible nonlinear projection options for the projection direction you
chose in part 7.

 10.2. The autocorrelation is obtained when, in the problem, we replace signal h (n) with x (n).
Study the problem for this situation.

 10.3. Apply the dependence graph technique to the sparse matrix – vector multiplication
algorithm.

 10.4. Apply the dependence graph technique to the sparse matrix – matrix multiplication
algorithm.

 10.5. Draw the dependence graph of the discrete Hilber transform (DHT) and design multi-
threaded and systolic processor structures.

 10.6. Draw the dependence graph of the inverse discrete Hilber transform (IDHT) and design
multithreaded and systolic processor structures.

 Chapter 11

Computational Geometry
Analysis

 11.1 INTRODUCTION

 The techniques we have discussed so far for regular iterative algorithms (RIAs) are
based on the availability of the dependence graph [80, 81] . At best, a dependence
graph can handle algorithms that can be represented by computational domains of
dimension 3 at most. In the case of attempting to implement a three - dimensional
(3 - D) fi lter on parallel hardware or using multithreading, the resulting dependence
graph would be representable in a six - dimensional space. Such a dependence graph
becomes very complex.

 In this chapter, we study the RIA by studying each variable in the algorithm
 separately using concepts in computational geometry and matrix algebra. The vari-
ables we might encounter are of three types: input, output, and intermediate or input/
output variables. An input variable is one that has its instances appearing only on
the right - hand side (RHS) of the equations of the algorithm. An output variable is
one that has its instances appearing only on the left - hand side (LHS) of the algo-
rithm. An intermediate variable is one that has its instances appearing both on the
LHS and on the RHS of the equations of the algorithm such that the variable has
different index dependences on both sides of the iteration statements. We consider
an intermediate variable as being both an input or output variable with different
index dependencies for each instance. Using this artifact, we reduce our set of vari-
ables to input and output variables only .

 The analysis in this chapter will proceed using as a working example the case
of matrix multiplication.

 11.2 MATRIX MULTIPLICATION ALGORITHM

 Assume we are given two compatible matrices M 2 and M 3 of dimensions I × K and
 K × J , respectively. Their product is matrix M 1 of dimension I × J . The matrix mul-
tiplication algorithm can be expressed as

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

185

186 Chapter 11 Computational Geometry Analysis

 M M1 2 3
0

1

(,) (,) (,) 0 < , 0 <i j i k M k j i I j J
k

K

= ≤ ≤
=

−

∑ . (11.1)

 This equation can be expressed in any serial algorithm (i.e., any computer code) as
three nested loops. An outer loop iterates over the index i ; the next inner loop iterates
over the index j . The innermost loop iterates over the index k .

 Variable M 1 in the above equation is an output variable, while variables M 2 and
 M 3 are input variables. The above matrix multiplication algorithm has three indices:
 i , j , and k , and we can think of these indices as coordinates of a point in a 3 - D
volume. We organize our indices in the form of a vector:

 p = []i j k t ; (11.2)

 for given values of the indices, the vector corresponds to a point in the Z 3 space [9] .

 11.3 THE 3 - D DEPENDENCE GRAPH AND
COMPUTATION DOMAIN D

 As we mentioned above, this chapter starts by studying a multidimensional computa-
tion domain D rather than a dependence graph. We shift our focus from graphs,
nodes, and edges to convex hulls in Z 3 as will be explained below.

 The recursive algorithm in Eq. 11.1 is an equation involving the indexed vari-
ables v i (p), where i = 1, 2, 3 to account for one output variable, M 1 , and two input
variables, M 2 and M 3 , in Eq. 11.1 . The boundaries of the Z 3 space describing our
algorithm are defi ned by the restrictions imposed on the values of the indices as will
be discussed in the following subsection. The collection of points within imposed
boundaries defi nes the computation domain D . The dimension of D is n = 3, which
is the number of indices in the algorithm.

 11.3.1 3 - D Domain Boundaries

 The 3 - D computation domain extends in the index space over a volume defi ned by
the limits imposed on the index vector p . We defi ne the computation domain D as
the set of points in the 3 - D space that satisfi es certain criteria [82] :

 D = ∈ ≤ ≥{ : , }p p pZ n
i i j jΨ Λψ λ , (11.3)

 with i = 1, 2, 3 and j = 1, 2, 3.
 The row vectors Ψ i and ψ i defi ne the upper hull of D [82 – 85] . Similarly, the

row vectors Λ j and λ j defi ne the lower hull of D . These two hulls describe the sur-
faces defi ning D . To give a tasty example, consider D as an ice cream cone. In that
case, the upper hull represents the chocolate coating on top. The lower hull repre-
sents the cone or wafer. The points of the computational domain correspond to the
ice cream.

 From Eq. 11.1 , the upper hull of our matrix algorithm is described by the equa-
tions of several planes in the 3 - D space:

11.3 The 3-D Dependence Graph and Computation Domain D 187

 1 0 0 1[] ≤ −p I (11.4)

 0 1 0 1[] ≤ −p J (11.5)

 0 0 1 1[] ≤ −p K . (11.6)

 The above three inequalities simply state that the upper bound on points in D is
described by the equations of planes defi ning the top surfaces of D :

 i I≤ −1 (11.7)

 j J≤ −1 (11.8)

 k K≤ −1. (11.9)

 The fi rst inequality describes a plane perpendicular to the i - axis and so on for
the other two equations.

 From Eq. 11.1 , the lower hull of our matrix algorithm is described by the equa-
tions of several planes in the 3 - D space:

 1 0 0 0[] ≥p (11.10)

 0 1 0 0[] ≥p (11.11)

 0 0 1 0[] ≥p . (11.12)

 The above three inequalities simply state that the lower bound on points in D is
described by the equations of planes defi ning the bottom surfaces of D :

 i ≥ 0 (11.13)

 j ≥ 0 (11.14)

 k ≥ 0. (11.15)

 Figure 11.1 shows the computation domain D for the matrix multiplication
algorithm. D is a convex hull, which is another way of saying it is a volume in the
3 - D space that has upper and lower bounds on its index values.

 Note that the limits imposed on the algorithm indices defi ne the computation
domain D in a direct and simple manner. Earlier approaches used the domain vertices
and “ extremal rays ” to defi ne D . However, in most cases, these quantities are simply
not directly available.

 Figure 11.1 The 3 - D computation domain D for
the matrix multiplication algorithm.

i

j

k

(0, J – 1,0)

(0, 0, K – 1)

(I – 1, 0,0)

188 Chapter 11 Computational Geometry Analysis

 In the design of multiprocessors or multithreaded applications, it is important
to determine the regions where and when data will be fed or extracted. This is
related to the study of the facets and vertices of D as explained in the following two
sections.

 11.4 THE FACETS AND VERTICES OF D

 A point p ∈ D lies on the k th facet (or surface) of the upper hull if it satisfi es the
equation

 Ψk kp = ψ . (11.16)

 This facet is of dimension 2 (i.e., n − 1). We can generalize by saying that multiply-
ing the point p by a matrix of rank 1 results in the set of points that lies on a facet
of dimension 1 less than n , the dimension of D . Similarly, a point p ∈ D lies on the
 k th facet of the lower hull if it satisfi es the equation

 Λk kp = λ . (11.17)

 We can extend the above argument and fi nd all the points that satisfy two
upper hull boundary conditions. Let us choose the two boundary conditions Ψ 1 and
 Ψ 2 . Point p ∈ D lies on the 1 - 2 facet of the upper hull when it satisfi es the
equation

Ψ
Ψ

1

2

1

2

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

p
ψ
ψ

. (11.18)

 This facet is of dimension 1 (i.e., n − 2) since Ψ 1 ≠ Ψ 2 by choice, which pro-
duces a matrix of rank 2. Since this facet is of dimension 1, it is actually a straight
line describing the intersection of face 1 with face 2 of D . This is an edge of the
cubic volume.

 Similarly, a domain point p ∈ D lies on the 1 - 2 facet of the lower hull satisfi es
the equation

Λ
Λ

1

2

1

2

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

p
λ
λ

. (11.19)

 This facet is of dimension 1 (i.e., n − 2) since Λ 1 ≠ Λ 2 by choice. It is also possible
to fi nd the i – j th facets of D that result due to the intersection of the upper and lower
hulls by picking a Ψ i and a Λ j in the above constructions. The above procedure could
be extended to construct 3 × 3 matrices of rank 3 to obtain the vertices of D .

 11.5 THE DEPENDENCE MATRICES OF
THE ALGORITHM VARIABLES

 Previous works on parallel algorithms and parallel processing attempted to study
data dependencies by studying how the output variables depend on the input

11.6 Nullspace of Dependence Matrix: The Broadcast Subdomain B 189

variables. We do not follow this approach here. Instead, we study how each variable
depends on the indices of the algorithm.

 Assume a variable v in the algorithm described by Eq. 11.1 depends on m out
of the n indices describing the algorithm. The index dependence of the variable v
could be written as a function of its indices in the affi ne form

 v v= −()Ap a , (11.20)

where A is the dependence matrix, which is an integer m × n matrix (m ≤ n), and a
is an integer m - vector. We call A the dependence matrix and a the dependence vector.
The dependence matrix relates the variable to the domain indices and does not
describe the dependence of the output variable on the input variables.

 Typically, indexed variables have a = 0, where 0 is an m - vector whose compo-
nents are all zeros.

 Assume we have a specifi c instance of a variable v given by v (c), where c is a
constant vector. From the defi nition of the dependence matrix in Eq. 11.20 , we can
write

 A p c a= + . (11.21)

 The above is a system of m linear equations in n unknowns. When m < n , we have
many solutions for the unknown index values. When n = m , we have one unique
solution. These concepts are elaborated upon in the next section in terms of the
nullspace and nullvector of A .

 11.6 NULLSPACE OF DEPENDENCE MATRIX: THE
BROADCAST SUBDOMAIN B

 We will see in this section that the nullvector of the dependence matrix A of some
variable v describes a subdomain B ⊂ D . We will prove that all points in B contain
the same instance of v .

 11.6.1 The Nullspace of A

 If the dependence matrix A is rank defi cient, then the number of independent null-
vectors associated with A is given by

 Number of nullvectors rank= −n ()A , (11.22)

where n is the number of indices of the algorithm. These nullvectors defi ne the
 nullspace of matrix A .

 Now assume a specifi c instance for the variable v (c). The following theorem
identifi es the points in D that use that variable.

 Theorem 11.1 Consider a particular nullvector e associated with a variable v . If
two distinct points p 1 and p 2 use the same instance v(c), then the vector connecting
the two points is a nullvector of A .

190 Chapter 11 Computational Geometry Analysis

 Proof:
 Assume the two points use the same instance v (c). Substitute the two points into Eq.
 11.21 to get

 A p c a1 = + (11.23)

 A p c a2 = + . (11.24)

 Subtracting the two equations, we get

 A p p 01 2−() = . (11.25)

 We can write above equation as

 A p p A e1 2−() = α , (11.26)

where α ≠ 0. Therefore, the vector connecting the two points is a nullvector of A .
Now assume the two points lie along the nullvector e . We can write

 p p e1 2− = α , (11.27)

where α ≠ 0 since the two points are distinct. We can write

 A p p A e1 2 0−() = =α . (11.28)

 Thus, the vector connecting the two points is a nullvector.
 Now assume that p 1 is associated with the variable instance v (c 1) and p 2 is

associated with the variable instance v (c 2), but the vector connecting the two points
is a nullvector of A . We can use Eq. 11.21 to get

 A p c1 1= + a (11.29)

 A p c2 2= + a. (11.30)

 Subtracting the above two equations, we get

 A p p c c1 2 1 2−() = − . (11.31)

 From Eqs. 11.28 and 11.31 , we have

 c c 01 2− = . (11.32)

 This implies that c 1 = c 2 . This proves the theorem.

 We conclude from the above theorem that if the rank of the dependence matrix
 A associated with variable v is less than n , then there is a set of nullvectors of A
associated with the variable v . This set defi nes a subdomain B . An instance of v is
defi ned over a subdomain B ⊂ D , which we call the broadcast subdomain . Every
point in B sees the same instance of v .

 Every variable v of the algorithm, indexed by the pair [A, a], is associated with
a broadcast subdomain B whose basis vectors are the nullspace of A . The basis
vectors will prove useful to pipeline the variable v and eliminate broadcasting.

 The dimension of the broadcast subdomain B is given by [85]

 Dimension of rankB n= − ()A , (11.33)

where n is the dimension of the computation domain D .

11.6 Nullspace of Dependence Matrix: The Broadcast Subdomain B 191

 From Eq. 11.1 , the index dependence of the input variable M 1 (i , j) is given by

 A a1 1=
1 0 0

0 1 0
0

⎡
⎣⎢

⎤
⎦⎥

=and . (11.34)

 The rank of A 1 is two. This implies that its nullspace basis vector space is only one -
 dimensional (1 - D), corresponding to one vector only. That nullspace basis vector
could be given by

 e1 [0 0 1]= t . (11.35)

 We note that the broadcast domain for M 1 (i , j) is 1 - D and coincides with the k - axis.
Figure 11.2 a shows the broadcast domain B 1 for the output variable instance
 M 1 (c 1 , c 2). This output is calculated using all the points in D whose indices are
(c 1 c 2 k), where 0 ≤ k < K .

 From Eq. 11.1 , the index dependence of the input variable M 2 (i , k) is given by

 A a2 2

1 0 0

0 0 1
0= ⎡

⎣⎢
⎤
⎦⎥

=and . (11.36)

 The rank of A 2 is two. This implies that its nullspace basis vectors space is only
1 - D, corresponding to one vector only. That basis vector of its nullspace could be
given by

 e2 [0 1 0]= t . (11.37)

 Figure 11.2 b shows the broadcast domain B 2 for the input variable instance
 M 2 (c 1 , c 2). This input is supplied to all the points in D whose indices are (c 1 j c 2),
where 0 ≤ j < J .

 From Eq. 11.1 , the index dependence of the input variables M 3 (k , j) is given by

 A a3 3

0 0 1

0 1 0
0= ⎡

⎣⎢
⎤
⎦⎥

=and . (11.38)

 Figure 11.2 The broadcast subdomain for input and output variables. (a) Subdomain B 1 for variable
 M 1 (c 1 , c 2). (b) Subdomain B 2 for variable M 2 (c 1 , c 2). (c) Subdomain B 3 for variable M 3 (c 1 , c 2).

M1(c1, c2)

c2

c1

k

j

i

M2(c1, c2)
c2

c1

k

i

M3(c1, c2)

c2

c1

k

i

)c()b()a(

j j

192 Chapter 11 Computational Geometry Analysis

 The rank of A 3 is two. This implies that its nullspace basis vectors space is only
1 - D, corresponding to one vector only. That basis vector of its nullspace could be
given by

 e3 [1 0 0]= t . (11.39)

 Figure 11.2c shows the broadcast domain B 3 for the input variable instance
 M 3 (c 1 , c 2). This input is supplied to all the points in D whose indices are (i c 2 c 1),
where 0 ≤ i < I . Note that for this variable in particular, the fi rst index c 1 maps to
the k - axis and the second index c 2 maps to the j - axis. This stems from the fact that
we indexed this input variable using the notation M 3 (k , j) in our original algorithm
in Eq. 11.1 .

 11.7 DESIGN SPACE EXPLORATION: CHOICE OF
BROADCASTING VERSUS PIPELINING VARIABLES

 At this point, we know we have three variables, M 1 , M 2 , and M 3 , for our matrix
multiplication algorithm. We have a choice whether to broadcast or to pipeline each
variable. Thus, we have eight different possible design choices for the implementa-
tion of our algorithm. Some of these choices might not be feasible though. In what
follows, we show only one of those choices, but the reader can explore the other
choices following the same techniques we provide here.

 Broadcasting an output variable means performing all the calculations necessary
to produce it at the same time. It is not recommended to broadcast output variables
since this would result in a slower system that requires gathering all the partial
outputs and somehow using them to produce the output value. To summarize, if v
is an input variable, all points in B potentially use the same value of v . If v is an
output variable, all points in B are potentially used to produce v .

 Broadcasting an input variable means making a copy available to all processors
at the same time. This usually results in the algorithm completing sooner. It is
always preferable to broadcast input variables since this only costs using buses to
distribute the variables. Data broadcast could be accomplished in hardware using
a system - wide bus or an interconnection network capable of broadcasting a single
data item to all the processing elements (PEs). In software, data broadcast could
be accomplished using a broadcast message to all threads or using a shared
memory.

 11.7.1 Feeding/Extraction Point of a Broadcast Variable

 The problem we address in this section is as follows. Assume we are given a par-
ticular instance M 2 (c 1 , c 2) of the input variable M 2 . We want to determine a point in
 D to feed this input instance. We choose this point at the boundaries of D . To fi nd
such a point, we fi nd the intersection of the broadcast subdomain of M 2 with D . The
intersection point is found by augmenting the dependence matrix A 2 to make it full
rank. We use one of the three candidate facets from the lower or upper hull. We

11.7 Design Space Exploration: Choice of Broadcasting versus Pipelining Variables 193

choose to feed the variable from the lower hull facets described by Eqs. 11.13, 11.14,
or 11.15. Only the facet described by Eq. 11.14 increases the rank of A 2 as it is
linearly independent for all its rows . Now our augmented matrix will be

 A2,

1 0 0

0 0 1

0 1 0
aug =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (11.40)

 The intersection point is specifi ed by the equation

 M p
c

2,
0

aug = ⎡
⎣⎢

⎤
⎦⎥
, (11.41)

where c is the intersection point in the domain D . Specifi cally, we can write

1 0 0

0 0 1

0 1 0 0

1

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

i

j

k

c

c . (11.42)

 Solving the above three simultaneous equations in the three unknowns i , j , and k ,
we get the intersection point for variable M 2 (c 1 , c 2) as

 p = [0]1 2c c t . (11.43)

 Thus, instance M 2 (c 1 , c 2) is fed to the system at the point with coordinates given
by the above equation. Figure 11.3 shows the feeding point for supplying variable
instance M 2 (c 1 , c 2) to the 3 - D computation domain D for the matrix multiplication
algorithm.

 Let us now fi nd the feeding point for input variable instance M 3 (c 1 , c 2). We also
choose to augment the dependence matrix A 3 from one of the facets of the lower
hull. Only the facet described by Eq. 11.13 increases the rank of M 3 as it is linearly
independent for all its rows . We should not spend too much time worrying about

 Figure 11.3 The feeding point
for supplying variable instance M 2 (c 1 ,
 c 2) to the 3 - D computation domain D
for the matrix multiplication algorithm.

M2(c1, c2)

c2

c1

k

j

i

194 Chapter 11 Computational Geometry Analysis

whether to choose the augmenting facet from the lower or upper hulls since broad-
casting does not really care where the bus is fed from as long as all processors receive
the data. Now our augmented matrix will be

 A3,

0 0 1

0 1 0

1 0 0
aug =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (11.44)

 The intersection point is specifi ed by the equation

 M p
c

3,
0

aug = ⎡
⎣⎢

⎤
⎦⎥
, (11.45)

where c is the intersection point in the domain D . Specifi cally, we can write

0 0 1

0 1 0

1 0 0 0

1

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

i

j

k

c

c . (11.46)

 Solving the above three simultaneous equations in the three unknowns we get the
intersection point for variable M 3 (c 1 , c 2) as

 p = [0]2 1c c t . (11.47)

 Thus, instance M 3 (c 1 , c 2) is fed to the system at the point with coordinates given by
the above equation. Figure 11.4 shows the feeding point for supplying variable
instance M 3 (c 1 , c 2) to the 3 - D computation domain D for the matrix multiplication
algorithm.

 11.7.2 Pipelining of a Variable

 We can introduce pipelining to the broadcast subdomain B of variable v by dedicat-
ing some of the basis vectors of B as data pipeline directions. The remaining basis
vectors will remain broadcast directions. When we assign some basis vectors to

 Figure 11.4 The feeding point for supplying
variable instance M 3 (c 1 , c 2) to the 3 - D
computation domain D for the matrix
multiplication algorithm.

M3(c1, c2)

c2

c1

k

j

i

11.8 Data Scheduling 195

describe our pipelining, the remaining basis vectors defi ne a reduced broadcast
subdomain over which variable v is still broadcast. In this way, we can mix pipelin-
ing and broadcasting strategies to propagate (or evaluate) the same input (or output)
variable.

 For our matrix multiplication algorithm, we choose to pipeline our output data
samples M 1 (c 1 , c 2). Now pipelined data travels from one point in D to another along
a given direction. We need to determine the directions of data pipelining, which are
the nullspace of the dependence matrix for M 1 , that is, along the direction given by
the vector given by e = [0 0 1] t . We need to determine two distinct intersection
points of B with D . One point is used to initialize the pipeline. The other point is
used to extract the pipeline output. To fi nd the intersection points, we augment the
dependence matrix A 1 using lower and upper hull facets. The only possible candi-
dates for augmenting A 1 are given by Eqs. 11.9 and 11.15 .

 Now our augmented matrix will be

 A1,

1 0 0

0 1 0

0 0 1
aug =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (11.48)

 We can write the two augmented matrices using the expression

 M p
c

M p
c

1, 1,
0 1

aug augand= ⎡
⎣⎢

⎤
⎦⎥

=
−

⎡
⎣⎢

⎤
⎦⎥K
. (11.49)

 We can explicitly write the above two equations as

1 0 0

0 1 0

0 0 1 0

1 0 0

0 1 0

0 0 1

1

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

p

c

c and pp =
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

c

c

K

1

2

1

. (11.50)

 The solution for the above two equations gives

 p p= [] = −[]c c c c Kt t
1 2 1 20 1and . (11.51)

 Thus, we know the possible locations of initializing or extracting the pipeline data
in the computation domain. The detailed method to obtain the extraction points and
the feeding points at the projected domain will be discussed later in this chapter.

 11.8 DATA SCHEDULING

 We discuss in this section how to divide the tasks in the algorithm into stages such
that at each stage a group of tasks gets executed in parallel while preserving the
correctness of the results. The section will also determine the stages when data are
to be fed or extracted from a processor or thread. We need to fi nd a function that
will take the coordinates of a point p in the computation domain D and to assign a
time value to it. We use an affi ne scheduling function to specify the scheduling of
the algorithm tasks. The affi ne scheduling functions are of the form [86]

196 Chapter 11 Computational Geometry Analysis

 t s()p sp= − , (11.52)

where s is a row vector of length n , which is called scheduling vector, and s is an
integer that biases the ordering to ensure non - negative stage index values.

 The main purpose of the scheduling function is to assign an execution time to
several nodes in D . Consequently, this function determines the computational load
to be performed by the computing system at each time step or execution sequence.
This is a subtle but very important by - product. As we shall see, the linear or affi ne
scheduling function affords us little control on the amount of that work. However,
we still need it to correctly perform the algorithm tasks. Nonlinear scheduling tech-
niques will allows us to control the total work assigned to the system during each
time step. Another effect of the scheduling function is the fact that dependencies
between tasks will be created, and interthread and interprocessor communication
can thus be determined.

 Assigning time values to the nodes of D transforms it to a serial – parallel
algorithm (SPA) where the parallel tasks could be implemented using a thread pool
or parallel processors for software or hardware implementations, respectively. The
different stages of the SPA are accomplished using barriers or clocks for software
or hardware implementations, respectively.

 The following theorem will prove that the scheduling function will convert the
dependence graph into a DAG.

 Theorem 11.2 The affi ne scheduling function changes a dependence graph into a
DAG even if the dependence graph contained cycles.

 Proof:
 Given a dependence graph, we defi ne a k - hop cycle as one involving k - nodes as
shown in Fig. 11.5 . We exclude one - hop loops since they represent local computa-
tions and are absorbed within a node. Without loss of generality, we assume a 1 - D
dependence graph where the nodes lie on a straight line with index i . Now assume
that there are one or more k - hops involving nodes whose indices are 0, 1, … , k − 1
where k > 1. The presence of a loop in the dependence graph implies that there are
undirected links between the following pairs of nodes:

 Figure 11.5 Illustration of the presence of
cycles in a dependence graph and a DAG.
(a) Undirected links and cycles in the
dependence graph. (b) Directed links only to
produce a DAG.

10 k – 2

(a)

(b)

... k – 1

10 k – 2... k – 1

11.8 Data Scheduling 197

 (), (), , (), ().0 1 1 2 2 1 1 0↔ ↔ − ↔ − − ↔… k k k

 For our 1 - D situation, the affi ne timing function is given by t (p) = i ; the times asso-
ciated with these points become

 0,1, 2, , 1… k − .

 The execution time associated with each point imparts an ordering on the times and
a direction to the unidirectional links. We can write

 t t t t k(0) < (1) < (2) < (1)… − .

 The above inequalities give direction to the undirected edges of the dependence
graph. We thus have the following directional links:

 (1 1), (1 2), , (2 1), (0 1)→ → − → − → −… k k k .

 The dependence graph has now become a DAG and the loopback edge between
the fi rst and last nodes 0 and k − 1 has now become directed from node 0 to node
 k − 1. Thus, our undirected dependence graph, which included cycles, is transformed
into a DAG.

 The following theorem will prove that the affi ne scheduling function will
convert the dependence graph to a SPA.

 Theorem 11.3 The affi ne scheduling function changes a dependence graph into
a SPA.

 Proof:
 Assume without loss of generality a two - dimensional (2 - D) dependence graph. A
node in the dependence graph is described by the coordinates i , j :

 p = []i j t . (11.53)

 The scheduling function assigns an order of execution to each node given by
the expression

 t s i s j s() 1 2p sp= = + + . (11.54)

 For given values of s 1 , s 2 , and s , we get

 s i s j s c1 2+ + = , (11.55)

where c is some constant.
 The algorithm computation domain D is defi ned in the integer space Z 2 by the

inequalities

 0 ≤ ≤i I (11.56)

 0 ≤ ≤j J, (11.57)

where we assumed that the indices in our 2 - D case fall in the limits indicated above.
The scheduling function imposes another restriction as given by Eq. 11.55 . All nodes

198 Chapter 11 Computational Geometry Analysis

satisfying the above two inequality and satisfying Eq. 11.55 will describe a subset
of D . All these nodes are assigned stage c .

 Changing the value of c to k identifi es a new set of nodes that will be executed
at stage k . Thus, we have divided the nodes in our computation domain D to a set
of sequential stages, and each stage executes a set of nodes in parallel. This is the
defi nition of a SPA

 The affi ne scheduling function should satisfy fi ve conditions in order to be a
valid scheduling function:

 s p p≥ ∈s D positive time values (11.58)
 s e = 0 broadcast restriction (11.59)
 s f ≠ 0 pipelining restriction (11.60)
 s d ≠ 0 projection restriction (11.61)
 s R > 0 causality (11.62)

where

 e broadcast nullvector,
 f pipelining nullvector,
 d projection direction (discussed later), and
 R any extremal ray in our domain.

 It is important to mention here that the restrictions implied by Eq. 11.59 preclude
any broadcast directions that coincide with the projection directions, defi ned in
Section 11.9 . The above conditions provide the minimum constraints that must be
satisfi ed for a possible valid scheduling function. Further restrictions are imposed
to narrow our choices as will be explained in Section 11.8.1 .

 Since the point [0 0 0] t ∈ D , we have s = 0. Thus, our scheduling function is
simply given by

 t()p sp= , (11.63)

or more explicitly, we can write above Equation as

 t s i s j s k() 1 2 3p = + + . (11.64)

 We need to come up with values for the variables s 1 , s 2 , and s 3 , which are based
on the restrictions given by Eqs. 11.58 – 11.62 .

 To start, let us assume that we want to pipeline output variable M 1 since this
leads to faster and simpler hardware. For this, we need to know the nullvector asso-
ciated with M 1 . The nullspace for output variable M 1 is given in Eq. 11.35 as

 e1 [0 0 1]= t . (11.65)

 From restriction (Eq. 11.60), we can write

 [][0 0 1] 01 2 3s s s t ≠ , (11.66)

which implies s 3 ≠ 0. Let us choose s 3 = 1. Thus, our scheduling function so far is
given by

 s = [1]1 2s s . (11.67)

11.8 Data Scheduling 199

 Next, let us assume that we want to broadcast input variable M 2 . For this, we
need to know the nullvector associated with M 2 . The nullspace for input variable
 M 2 is given in Eq. 11.37 as

 e2 [0 1 0]= t . (11.68)

 From restriction (Eq. 11.59), we can write

 [1][0 1 0] 01 2s s t = , (11.69)

which implies s 2 = 0. Thus, our scheduling function so far is given by

 s = [0 1]1s . (11.70)

 To fi nd the component s 1 , we consider the third variable, M 3 . Let us pipeline that
variable. For this, we need to know the nullvector associated with M 3 . The nullspace
for output variable M 3 is given in Eq. 11.35 as

 e3 [1 0 0]= t . (11.71)

 From restriction (Eq. 11.60), we can write

 [0 1][1 0 0] 01s
t ≠ , (11.72)

which implies s 1 ≠ 0. Let us choose s 1 = 1. Thus, our scheduling function is fi nally
given by

 s = [1 0 1]. (11.73)

 Equation 11.73 defi nes the valid scheduling function for our matrix multiplica-
tion algorithm given our choices for data broadcast and pipelining.

 11.8.1 Impact of Scheduling Function on Data Timing

 The restrictions on our choice for a valid scheduling function were developed in the
previous section.

 The timing function so far that we developed in Eq. 11.73 imposes certain
restrictions on the timing of the output variable. The output data samples are indexed
using two indices, for example,

 M i j1(,) = output matrix element (11.74)

 i = row index (11.75)

 j = column index. (11.76)

 The feeding and extraction for this variable were found in Eq. 11.51 . These two
points can be used to determine the timing of the variable. Consider the output sample
 M 1 (i , j). According to Eq. 11.51 , the extraction point for this instance is given by

 p = −[1]i j K t . (11.77)

 We can write the following time value for this element:

200 Chapter 11 Computational Geometry Analysis

 t

i

j

K

i K() 1 0 1

1

1p = []×
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= + − . (11.78)

 This Equation states that output elements in the same column of M 1 are obtained
from the processors or the threads at the same time. The fi rst row with i = 0 is
obtained in time instance K − 1; the second row is obtained at time K , and so on.

 The reader can verify that input variable sample M 2 (i , k) is supplied to the array
at time

 t i k i k[(,)]2M = + . (11.79)

 Thus, the inputs for this variable are supplied such that all elements whose row and
column index sum is equal to the same value are supplied simultaneously. Element
 M 2 (0, 0) is supplied at time 0. Elements M 2 (1, 0) and M 2 (0, 1) are supplied at time
1, and so on.

 Similarly, input variable sample M 3 (k , j) is supplied to the array at time

 t k j k[(,)]3M = . (11.80)

 All elements on the same row are supplied to the system at the same time. Element
 M 3 (0, j) is supplied at time 0. Element M 3 (1, j) is supplied at time 1, and so on.

 11.9 PROJECTION OPERATION USING THE LINEAR
PROJECTION OPERATOR

 In Section 11.8 , we discussed how we can associate a time step value to each point
in the computation domain D . In this section, we discuss how we can assign a task
to each point in the computation domain D . This task could later be assigned to a
thread for the case of multithreaded software implementation, or the task could be
assigned to a PE for the case of hardware systolic implementation. It is a waste of
resources (number of processors or number of threads) to associate a unique proces-
sor or thread to each point in the computation domain D . The main reason is that
each point is active only for one time instant and is idle the rest of the time . The
basic idea then is to allocate one processor or thread to several points of D . There
are basically three ways of doing this:

 1. Use linear projection operator matrix P to reduce the dimensions of D to
produce a new computation domain D whose dimensions k < n . Matrix P has
dimensions k × n and its rank is k . For our matrix multiplication example, D
was 3 - D. The linear projection operation would produce a computation domain
 D that is 2 - D or 1 - D.

 2. Use a nonlinear operator to reduce the size of the computation domain D ,
but keep its dimension n fi xed. For our matrix multiplication example, the
size of D is a I × J × K cube in 3 - D space. The nonlinear operator would
produce a new 3 - D cube, D, whose size is now I ′ × J ′ × K ′ , where I ′ < I , J ′ < J
and K ′ < K .

11.9 Projection Operation Using the Linear Projection Operator 201

 3. Use both linear and nonlinear operators to reduce both the size and dimension
of the computation domain.

 We explain here the fi rst approach since it is the one most used to for design
space exploration.

 A subtle point to be noticed in the projection operation is that it controls the
amount of workload assigned to each software thread for a multithreaded implemen-
tation or the workload assigned to each PE for a systolic array implementation. Just
like affi ne scheduling, affi ne projection affords us little control over the workload
assigned to a thread or a PE. However, nonlinear projection operations will give us
very good control over the workload assigned to each thread or PE.

 11.9.1 The Projection Matrix P

 We defi ne a linear projection operation for multithreading as the projection matrix
 P that maps a point in domain D (of dimension n) to point p in the k - dimensional
computational domain D according to the equation

 p P p= . (11.81)

 The following theorem places a value on the rank of the projection matrix in
relation to the dimension of the projected domain.

 Theorem 11.4 Given the dimension of D is n and the dimension of D is k and
rank(P) is r . Then we must have r = k , that is rank(P) = k , if P is to be a valid pro-
jection matrix.

 Proof:
 P has dimension k × n with k < n . The defi nition of the rank of a matrix indicates
that the rank could not exceed the smaller of n or k . Thus we conclude that r ≤ k .

 Now assume that the rank of P is smaller than k . If r < k , then we have r linearly
independent rows and k − r rows that are a linear combination of the r rows. Thus,
the linear equation given by

 p P p= × (11.82)

 is a system of linear equations in k unknowns, and the number of equations is less
than the unknowns. Thus, we have an infi nity of solutions. This contradicts our
assertion that the mapping matrix maps any point in D to a unique point in D.

 Therefore, we conclude that we must have the rank of P equal to k ; that is, r = k .

 Now the projection matrix P maps two points p 1 and p 2 in D associated with a
particular output variable instance v (c) to the point p . Thus, we can write

 P p p1 2 0−() = . (11.83)

 But from Theorem 11.1 and Eq. 11.27 , we can write the expression

 P p p P e1 2 0−() = =α , (11.84)

202 Chapter 11 Computational Geometry Analysis

where e is a nullvector associated with the output variable. We conclude therefore
that the nullvectors of the projection matrix P are also the nullvectors associated
with the output variable v . The following theorem relates the rank of the projection
matrix to

 Theorem 11.5 Assume the dimension of D is n . If output variable v has r orthogo-
nal nullvectors, then the dimension of D is k = n − r and the rank of the projection
matrix P is k.

 Proof:
 The nullvectors of P are the r nullvectors. Thus, the rank of P is given by

 Rank()P = −n r. (11.85)

 But we proved in Theorem 11.4 that the rank of P is equal to k . Thus, we must have

 k n r= − . (11.86)

 Based on this theorem, if our variable had only one nullvector, then the dimension
of D will be n − 1. If the variable had two nullvectors, then the dimension of D
would be n − 2, and so on.

 11.9.2 The Projection Direction

 A projection matrix is required to effect the projection operation described by Eq.
 11.81 . However, the projection operation is typically defi ned in terms of a projection
direction , or directions, d . Knowing the desired projection directions helps in fi nding
the corresponding projection matrix P .

 Defi nition 11.1 The projection direction is defi ned such that any two distinct
points, p 1 and p 2 , in D will be projected to the same point in D if it satisfi es the
relation

 p p d2 1− = α , (11.87)

where α ≠ 0 is some constant. In other words, the vector connecting p 1 and p 2 is
parallel to d .

 Theorem 11.6 The projection direction d is in the nullspace of the projection
matrix P .

 Proof:
 From Defi nition 11.1, we can write

 p Pp= 1 (11.88)

 p Pp= 2. (11.89)

 Subtracting the above two equations, we get

 αPd = 0. (11.90)

11.9 Projection Operation Using the Linear Projection Operator 203

 11.9.3 Choosing Projection Direction d

 One guideline for choosing a projection direction is the presence of extremal ray r
in domain D . An extremal ray is a direction vector in D where the domain extends
to infi nity or a large value of the indices. The projection matrix should have those
rays in its nullspace; that is,

 P r = 0. (11.91)

 This is just a recommendation to ensure that the dimension of the projected domain
 D is fi nite. However, the projection directions do not necessarily have to include the
extremal ray directions to ensure a valid multiprocessor. Our 3 - D matrix multiplica-
tion algorithm deals with matrices of fi nite dimensions. As such, there are no extre-
mal ray directions. However, we impose two requirements on our multiprocessor.

 A valid scheduling function cannot be orthogonal to any of the projection direc-
tions, a condition of Eq. 11.61 . Therefore, the projection directions impose restric-
tions on valid scheduling functions or vice versa. For our matrix multiplication
algorithm, we obtained a scheduling function in Eq. 11.73 as

 s = [1 0 1]. (11.92)

 Possible projection directions that are not orthogonal to s are

 d1 [1 0 0]= t (11.93)

 d2 [0 0 1]= t (11.94)

 d3 [1 0 1]= t . (11.95)

 In the next section, we will show how matrix P is determined once the projection
vectors are chosen.

 11.9.4 Finding Matrix P Given Projection Direction d

 We present here an algorithm to get the projection matrix assuming we know our
projection directions. We start fi rst with the simple case when we have chosen only
one projection direction d .

 Step 1
 Choose the projection directions. In our case, we choose only one projection direc-
tion with the value

 d = [1 0 0]t . (11.96)

 This choice will ensure that all points along the i - axis will map to one point in D.

 Step 2
 Here we determine the basis vectors for D , such that one of the basis vectors is along
 d and the other two basis vectors are orthogonal to it. In our case, we have three
basis vectors:

204 Chapter 11 Computational Geometry Analysis

 b d0 [1 0 0]= =t (11.97)

 b1 [0 1 0]= t (11.98)
 b2 [0 0 1]= t . (11.99)

 Equation 11.97 implies that the i - axis will be eliminated after the projection opera-
tion since our choice implies that Pb 0 = 0.

 Step 3
 Choose the basis vectors for D. In this case, we have two basis vectors since the
dimension of D is two. We choose the basis vectors as

 b1 [1 0]= t (11.100)
 b2 [0 1]= t . (11.101)

 The above two equations imply that the j - axis will map to b1 and the k - axis will
map to b2 . These become the j - and k - axes for D , respectively.

 Step 4
 Associate each basis vector b with a basis vector b . Based on that, we can write

 Pb bi i i= = 1, 2. (11.102)

 Step 5
 We now have a suffi cient number of equations to fi nd all the elements of the 2 × 3
projection matrix P :

 Pb 00 = (11.103)
 Pb bi i i= = 1, 2. (11.104)

 The fi rst Equation is a set of two equations. The second Equation is a set of
2 × 2 equations. In all, we have a set of 2 × 3 equations in 2 × 3 unknowns, which
are the elements of the projection matrix P .

 For our case, we can write the above equations in a compact form as

 P b b b 0 b b0 1 2 1 2[] = []. (11.105)

 Explicitly, we can write

P P P

P P P
0,0 0,1 0.2

1,0 1,1 1.2

1 0 0

0 1 0

0 0 1

0 1 0

0 0 1
⎡
⎣⎢

⎤
⎦⎥

×
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡
⎣⎣⎢

⎤
⎦⎥
. (11.106)

 The solution to the above Equation is simple and is given by

P P P

P P P
0,0 0,1 0.2

1,0 1,1 1.2

0 1 0

0 0 1
⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥
. (11.107)

 Thus, a point p = [] ∈i j k Dt maps to point p = [] ∈j k Dt .

11.10 Effect of Projection Operation on Data 205

 11.10 EFFECT OF PROJECTION OPERATION ON DATA

 Now that we know both the projection and scheduling functions, we are able to
study how the input and output variables map to the projected domain D.

 11.10.1 Output Data M 1

 The pipeline direction for the output data is mapped to the vector e1 given by

 e Pe b1 1 2= = . (11.108)

Therefore, the output data will map to pipelining arrows along the k - axis (verti-
cal lines) in the resulting multiprocessor architecture shown in Fig. 11.6 .

The initialization and extraction points for the output data are found in Eq.
 11.51 . The initialization point for input M 1 (c 1 , c 2) map in D to the point p .

 p P=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡
⎣⎢

⎤
⎦⎥

c

c
c

1

2
2

0
0

. (11.109)

Similarly, the extraction point for input M 1 (c 1 , c 2) map in D to the point p .

 Figure 11.6 The projected or
reduced computation domain D for the
matrix multiplication algorithm when
the dimensions of the matrices are I = 3,
 J = 4, and K = 5.

4,0 4,1 4,2 4,3

3,0 3,1 3,2 3,3

2,0 2,1 2,2 2,3

1,0 1,1 1,2 1,3

0,0 0,1 0,2 0,3

0 0 0 0

M2(i,0)

M2(i,1)

M2(i,2)

M2(i,3)

M2(i,4)

M1(i,0) M1(i,1) M1(i,2) M1(i,3)

206 Chapter 11 Computational Geometry Analysis

 p P=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡
⎣⎢

⎤
⎦⎥

c

c

K

c

K

1

2
2

1
1

. (11.110)

 11.10.2 Input Data M 2

 The broadcast direction for input data is mapped to the vector e2 given by

 e Pe b2 2 1= = . (11.111)

 Therefore, the input data for M 2 will map to lines along the j - axis (horizontal
lines) in the resulting multiprocessor architecture shown in Fig. 11.6 .

 The input sample M 2 (c 1 , c 2) is fed to our multiprocessor using its intersection
point from Eq. 11.43 .

 p P=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡
⎣⎢

⎤
⎦⎥

c

c
c

1

2
2

0
0

. (11.112)

 11.10.3 Input Data M 3

 The broadcast direction for the input data is mapped to the vector e3 given by

 e Pe 03 3= = . (11.113)

 This means that the input M 3 is localized and is neither pipelined nor broadcast.
 The input sample M 3 (c 1 , c 2) is fed to our multiprocessor using its intersection

point from Eq. 11.47 .

 p P=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡
⎣⎢

⎤
⎦⎥

0

2

1

2

1

c

c

c

c
. (11.114)

 11.11 THE RESULTING MULTITHREADED/
MULTIPROCESSOR ARCHITECTURE

 At this stage, we have the following:

 1. We have chosen a certain affi ne scheduling function (Eq. 11.73),

 s = [1 0 1].

 2. We have chosen a certain projection direction (Eq. 11.96),

d = [1 0 0]t ,

which produced the projection matrix (Eq. 11.107)

11.13 Problems 207

P P P

P P P
0,0 0,1 0.2

1,0 1,1 1.2

0 1 0

0 0 1
⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥
.

 From all the above results, we are able to construct our reduced or projected com-
putation domain (D) as shown in Fig. 11.6 for the case when I = 3, J = 4, and K = 5.
Each node in the D represents a task to be performed by a software thread or a PE
in a systolic array at a given time step. The input data M 2 (i , j) represent broadcast
data coming from memory. The output data M 1 (i , j) represent the output of each task
that is being used as input to adjacent tasks at the next time step.

 11.12 SUMMARY OF WORK DONE IN THIS CHAPTER

 At this stage, we were able to completely specify the reduced computation domain
 D associated with the matrix – matrix multiplication algorithm. This D could repre-
sent the required concurrent threads for a software implementation or the required
PEs needed for a systolic array hardware implementation. Below we summarize
what we have done and why:

 1. We started by expressing the matrix multiplication as an iterative Equation (Eq.
 11.1).

 2. The indices of the iterative Equation defi ned the multidimensional computation
domain D . The facets and vertices of this domain were studied in Sections 11.3
and 11.4 .

 3. We identifi ed the dependence matrix A associated with each variable of the
algorithm in Section 11.5 . Based on this matrix, we identifi ed its nullvectors,
which represent the broadcast subdomain B of the variable. We were also able
to identify the intersection points of B with D . These intersection points help
in supplying input variables or extracting output results. At this stage, we can
decide whether to broadcast or to pipeline our variables.

 4. Scheduling of data was discussed in Section 11.8 using affi ne scheduling
functions.

 5. The projection of domain D onto another domain D was discussed in Section
 11.9 . Three different projection operations were discussed, but only one was
studied in more detail.

 11.13 PROBLEMS

 To get a feel for the formal computational geometry analysis technique, it is helpful to apply
it to simple 2 - D or 3 - D algorithms. Some of the following problems are intended for that
purpose. In order to analyze the problem, the following steps are required:

208 Chapter 11 Computational Geometry Analysis

 1. Determine the computation domain D and its facets and vertices.

 2. Obtain the dependence matrix of each variable then determine the basis vectors and
nullvectors of the matrix.

 3. Obtain the feeding or extraction points of the variables, which lie on some of the f acets
of D .

 4. Determine the projection matrix.

 5. Determine the scheduling function.

 11.1. Apply the computational geometry technique to the 1 - D fi nite impulse response (FIR)
digital fi lter algorithm.

 11.2. Apply the computational geometry technique to the 2 - D FIR digital fi lter algorithm.

 11.3. Apply the computational geometry technique to the 1 - D infi nite impulse response (IIR)
digital fi lter algorithm.

 11.4. Apply the computational geometry technique to the 2 - D IIR digital fi lter algorithm.

 11.5. Apply the computational geometry technique to the matrix – vector multiplication
algorithm.

 11.6. Apply the computational geometry technique to the 1 - D convolution algorithm.

 11.7. Apply the computational geometry technique to the 2 - D convolution algorithm.

 11.8. Apply the computational geometry technique to the 1 - D autocorrelation algorithm.

 11.9. Apply the computational geometry technique to the 1 - D cross - correlation algorithm.

 11.10. Apply the computational geometry technique to the 2 - D autocorrelation algorithm.

 11.11. Apply the computational geometry technique to the 2 - D cross - correlation algorithm.

 11.12. Apply the computational geometry technique to the 3 - D autocorrelation algorithm.

 11.13. Apply the computational geometry technique to the 3 - D cross - correlation algorithm.

 Chapter 12

Case Study: One - Dimensional
 IIR Digital Filters

 12.1 INTRODUCTION

 In this chapter, we illustrate how to obtain different multithreaded or systolic array
structures for the one - dimensional (1 - D) infi nite impulse response (IIR) digital
fi lters. The IIR algorithm is an essentially a serial algorithm since each FOR loop
iteration depends on N − 1 previous iterations where N is the fi lter length. Therefore,
the programmer and the concurrency platforms would not be able to parallelize the
algorithm. The techniques discussed in this book would help the programmer extract
and explore the inherent parallelism in this seemingly serial algorithm.

 We use the dependence graph technique introduced in Chapter 10 and the com-
putational geometry technique discussed in Chapter 11 . At the end of the chapter,
we will also use the z - domain approach discussed in Chapter 9 .

 12.2 THE 1 - D IIR DIGITAL FILTER ALGORITHM

 The 1 - D IIR digital fi lter algorithm can be expressed as the set of difference
equations

 y i a j x i j b j y i j
j

N

() () () () () ,= − − −[]
=

−

∑
0

1

 (12.1)

 where a (j) and b (j) are the fi lter coeffi cients and N is the fi lter length. Note that
 b (0) = 0 in the above equation.

 12.3 THE IIR FILTER DEPENDENCE GRAPH

 We use Eq. 12.1 to study the index dependencies of the algorithm variables. Variable
 y is an input/output or intermediate variable, and variables x , a , and b are all input
variables. An input/output variable is one that is present on the right - hand side

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

209

210 Chapter 12 Case Study: One-Dimensional IIR Digital Filters

(RHS) and left - hand side (LHS) of the algorithm equations with different index
dependencies for each side.

 We note that the algorithm gives rise to a two - dimensional (2 - D) computation
domain D since we have two indices, i and j . Since the dimensionality of D is low,
it is best to visualize D using a dependence graph since this is easier for humans to
visualize and analyze.

 We organize our indices in the form of a vector:

 p = []i j t ; (12.2)

 for given values of the indices, the vector corresponds to a point in the Z 2 space.

 12.3.1 The 2 - D Dependence Graph

 The dimension of a dependence graph is two, which is the number of indices in the
algorithm. The graph covers the points p (i , j) ∈ D , where the range of the indices
defi nes the boundaries of the dependence graph as

 0 0≤ ≤ <i j Nand . (12.3)

 Note that D extends to ∞ in the i direction, which defi nes an extremal ray in that
direction.

 The dependence matrices for the variables will help us plot them in the fi lter
dependence graph. We prefer to use the concept of dependence graph here because
of the low dimensionality of a dependence graph, which facilitates visualization.

 Figure 12.1 shows the dependence graph of the 1 - D IIR fi lter for the case N = 4.
The following paragraphs describe how the dependence graph was obtained. The
missing circles near the j - axis indicate that there are no operations to be performed
at these locations since the input to our fi lter does not have negative indices.

 Figure 12.1 Dependence graph for the 1 - D IIR fi lter for the case N = 4.

j

i

y(0)

a(0), b(0)

x(0),
y(0)

y(1) y(2) y(3) y(4) y(5) y(6)

...

x(1),
y(1)

x(2),
y(2)

x(3),
y(3)

x(4),
y(4)

x(5),
y(5)

x(6),
y(6)

...

...

a(1), b(1)

a(2), b(2)

a(3), b(3)

12.3 The IIR Filter Dependence Graph 211

 The output variable y has a dependence matrix given by

 Ay, [].output = 1 0 (12.4)

 The null vector associated with this matrix is

 ey
t

, [] .output = 0 1 (12.5)

 Therefore, the broadcast domains for this variable are vertical lines in D . This is
shown in Fig. 12.1 for the case N = 4.

 The input variables a and b have a dependence matrix given by

 Aa b, [].= 0 1 (12.6)

 The null vector associated with this matrix is

 ea b
t

, [] .= 1 0 (12.7)

 Therefore, the broadcast domains for these two variables are the horizontal lines in
 D . The input variable x has a dependence matrix given by

 Ax = −[].1 1 (12.8)

 The null vector associated with this matrix is

 ex
t= [] .1 1 (12.9)

 Therefore, the broadcast domains for this variable are the diagonal lines in D .
 The input variable y has a dependence matrix given by

 Ay, [].input = −1 1 (12.10)

 The null vector associated with this matrix is

 ey
t

, [] .input = 1 1 (12.11)

 Therefore, the broadcast domains for this variable are the diagonal lines in D also.

 12.3.2 The Scheduling Function for the 1 - D IIR Filter

 We start by using an affi ne scheduling function given by

 s = −[] ,s s s1 2 (12.12)

where the constant s = 0 since the point at the origin p (0, 0) ∈ D . Any point
 p = [i j] t ∈ D is associated with the time value

 t i s j s(1 2p s p) .= = + (12.13)

 Assigning time values to the nodes of the dependence graph transforms the depen-
dence graph to a directed acyclic graph (DAG) as was discussed in Chapters 10 and
 11 . More specifi cally, the DAG can be thought of as a serial – parallel algorithm (SPA)
where the parallel tasks could be implemented using a thread pool or parallel proces-
sors for software or hardware implementations, respectively. The different stages of
the SPA are accomplished using barriers or clocks for software or hardware imple-
mentations, respectively.

212 Chapter 12 Case Study: One-Dimensional IIR Digital Filters

 In order to determine the components of s , we turn our attention to the fi lter
inputs x . The input data are assumed to be supplied to our array at consecutive time
steps. From the dependence graph, we see that samples x (i) and x (i + 1) could be
supplied at points p 1 = [i 0] t and p 2 = [i + 1 0] t , respectively. The time steps associ-
ated with these two input samples are given from Eq. 10.17 by

 t i s(1 1p) = (12.14)

 t i s(12 1p) () .= + (12.15)

 Assuming that the consecutive inputs arrive at each time step, we have t (p 2) − t (p 1) = 1,
and we must have

 s = [].1 2s (12.16)

 So now we know one component of the scheduling vector based on input data timing
requirements. Possible valid scheduling functions could be

 s =
[−]
[]
[]

⎧
⎨
⎪

⎩⎪

1 1

1 0

1 1 .

 (12.17)

 All the above timing schedules are valid and have different implications on the
timing of the output and partial results. The fi rst scheduling vector results in broad-
cast input and pipelined output. The second scheduling vector results in broadcast
of the output variable y and could produce Design 2, discussed in Chapter 9 . The
third scheduling vector results in pipelined input and output and could produce
Design 3, discussed in Chapter 9 . Let us investigate the scheduling vector
 s = [1 − 1]. This choice implies that

 s ey, ,in = 0 (12.18)

 which results in broadcast x and y in samples. Based on our choice for this time func-
tion, we obtain the DAG shown in Fig. 12.2 . The gray lines indicate equitemporal

 Figure 12.2 DAG for the 1 - D IIR fi lter for the case N = 4.

a(0)

a(1), b(1)

a(2), b(2)

a(3), b(3)

j

i

...

...

...

0 1 2 3

4

5

6

y(0) y(1) y(2) y(3) y(4) y(5) y(6)
x(0) x(1) x(2) x(3) x(4) x(5) x(6)

12.3 The IIR Filter Dependence Graph 213

planes. All nodes lying on the same gray line execute their operations at the time
indicated beside the line. The gray numbers indicate the times associated with each
equitemporal plane. Notice from the fi gure that all the input signals x and y in are
broadcast to all nodes in an equitemporal plane and output signals y out are pipelined
as indicated by the arrows connecting the graph nodes. At this stage, we know the
timing of the operations to be performed by each node. We do not know yet which
processing element each node is destined to. This is the subject of the next
subsection.

 12.3.3 Choice of Projection Direction and
Projection Matrix

 Chapters 10 and 11 explained that the projection operation assigns a node or a
group of nodes in the DAG to a thread or processor. The number of assigned nodes
determines the workload associated with each task. The operation also indicates
the input and output data involved in the calculations. The projection operation
controls the workload assigned to each thread/processor at each stage of the execu-
tion of the SPA.

 From Chapter 11 , a restriction on the projection direction d is that

 s d ≠ 0. (12.19)

 Therefore, we have three possible choices for projection directions:

 d1 1 0= []t (12.20)

 d2 0 1= []t (12.21)

 d3 1 1= −[] .t (12.22)

 The projection matrices associated with each projection direction are given by

 P1 0 1= []t (12.23)

 P2 1 0= []t (12.24)

 P3 1 1= [] .t (12.25)

 12.3.4 Design 1: Projection Direction d 1 = [1 0] t

 Since the chosen projection direction is along the extremal ray direction, the number
of tasks will be fi nite. A point p = [i j] t ∈ D maps to the point p, which is given by

 p P p= =1 j. (12.26)

 The reduced or projected DAG (DAG) is shown in Fig. 12.3 . Task T (i) stores the
two fi lter coeffi cients a (i) and b (i). The fi lter output is obtained from the top tasks
and is fed back to the fi rst task at the next time step. Notice that both inputs x and
 y are pipelined between the tasks.

214 Chapter 12 Case Study: One-Dimensional IIR Digital Filters

 12.3.5 Design 2: Projection Direction d 2 = [0 1] t

 A point p = [i j] t ∈ D maps to the point p = i . The pipeline is shown in Fig. 12.4 .
Each task stores all the fi lter coeffi cients and is responsible for producing an output
sample, which reduces intertask communication requirements . Task T (i) accepts
input samples x (i − N + 1) to x (i) from the memory or input data bus at time steps
 i − N + 1 to i . Task T (i) also reads the memory or the output data bus for samples
 y in (i − N + 1) to y in (i − 1) at time steps i − N + 1 to i − 1. Task T (i) produces the
output y out (i) at time step i and stores that signal in the shared memory or places the
signal on the output data bus for the case of hardware implementation. The number
of tasks is infi nite since our projection direction did not coincide with the ray direc-
tion. However, each task is active for the duration of N time steps. The task activities

 Figure 12.3 DAG for the 1 - D IIR fi lter for the case N = 4 and d 1 = [1 0] t . (a) The DAG for the
tasks. (b) Task processing details and array implementation .

a(i)

yout
yin

xin

Db(i)

(a)

(b)

y

x

0 1 2 3
0

 Figure 12.4 DAG for the 1 - D IIR fi lter for the case N = 4 and d 2 = [0 1] t .

0 1 2 3 4 5 6 7 ...

y

x
From memory or from input data bus

To memory or to output data bus

Task (thread or processing element)

12.3 The IIR Filter Dependence Graph 215

at different time steps are shown in Fig. 12.5 . The timing diagram thus indicates that
we could merge the tasks. Therefore, we relabel the task indices such that T (i) maps
to T (j), such that

 j i mod N= . (12.27)

 The reduced DAG is shown is in Fig. 12.6 .

 Figure 12.5 Task activities for the 1 - D FIR fi lter for the case N = 4 and d 2 = [0 1] t .

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...

0 1 2 3 4 5 6 7 ...
...

Time

1

0

2

3

4

5

0 1 2 3 4 5 6 7 ...6

 Figure 12.6 The reduced DAG for the 1 - D FIR fi lter for N = 4 and d 2 = [0 1] t . (a) The DAG
(b) Task processing details.

y

x

0 1

yout
xin Acc.

a(3) a(2) a(1) a(0)

(a)

(b)

2 3

yin

b(3) b(2) b(1) 0

To output
data busFrom output data bus

From input data bus

216 Chapter 12 Case Study: One-Dimensional IIR Digital Filters

 12.4 z - DOMAIN ANALYSIS OF 1 - D IIR DIGITAL
FILTER ALGORITHM

 The z - domain 1 - D IIR digital fi lter algorithm is obtained from Eq. 12.1 as

 Y a i z X b i z Yi

i

N
i

i

N

= −−

=

−
−

=

−

∑ ∑() () ,
0

1

0

1

 (12.28)

where X and Y are the z - transform of the signals x (n) and y (n), respectively, and
 b (0) = 0. We can think of Eq. 12.28 as a polynomial expression in the different powers
of z − 1 . By using different polynomial evaluation techniques, the fi lter expression is
converted to a set of recursive expressions that can be evaluated using a processor
array or multiple software threads.

 12.4.1 Design 3: Broadcast Inputs and
Pipelined Output

 Apply Horner ’ s ’ scheme to Eq. 12.28 to obtain the recursive expression

 Y a X z a X b Y z a N X b N Y= + − + + − − −− −() [() () [() ()]]].0 1 1 1 11 1� � (12.29)

 The above equation can be written as

 Y a i X b i Y z Y i Ni i= − + < <−
+() () []1

1 0 (12.30)

 Y a X z Y0
1

10= + −() (12.31)

 YN = 0 (12.32)

 Y Y= 0. (12.33)

 Based on the above iterative expression, task T (i) computes Y i in Eq. 12.30 using
one multiplication and one addition:

 Y a i X b i Y z Yi i= − + −
+() () .1

1 (12.34)

 The output of T (i) is buffered then forwarded to T (i − 1) and the input to T (N − 1)
is initialized to 0. The above equations produce Design 1 in Fig. 12.3 .

 12.4.2 Design 4: Pipelined Inputs and
Broadcast Output

 In this design, we apply the delay operator to the input data samples to obtain delayed
input data that we use to obtain our output. We start by applying our delay operators
to the input samples X and Y :

Y a X a z X b z Y a z z X b z z X= + () − ()[]+ () − (− − − − − −() () () () ()0 1 1 2 21 1 1 1 1 1))[]

+ + − () − − ()[]− − − − − −� a N z z X b N z z YN N() () .() ()1 11 2 1 2
(12.35)

12.4 z-Domain Analysis of 1-D IIR Digital Filter Algorithm 217

 The above equation can be converted to the iterative expressions

Y a i X b i Y

X z X Y z Y

X X

i
i

N

i
i

N

i i i i

= −

= =
=

=

−

=

−

−
−

−
−

∑ ∑() ()
0

1

0

1

1
1

1
1

0

and

andd Y Y0 = .

 (12.36)

 The resulting DAG is identical to that shown in Fig. 12.6 .

 12.4.3 Design 5: Pipelined Input and Output

 A possible attractive implementation would be when both the input and output of
each task are stored in a register. This implies a fully pipelined design, which is
potentially the fastest design possible. Assume without loss of generality that N is
even. We can write Eq. 12.28 as

Y a X a z X b z Y

z a z X b z Y a z X

= + − +
− + −

− −

− − − −

[() () ()]

() () ()

0 1 1

2 2 3

1 1

1 1 1 2 b z Y

z a N z X b N z YN N N

()

() ()() () ()

3

2 2

2

2 1 2 1 2 1

−

− − − − − −

[]+
+ − − − +[� / / /

a N z X b N z YN N() () .− − −]− −1 12 2/ / (12.37)

 We write the above expression in the succinct form

 Y z a i z X a i z X b i z Y b i z Yi i i i i= + + − − +[]− − − + − − +() () () ()() ()2 2 1 2 2 11 1

ii

N

=

−

∑
0

2 1/

, (12.38)

 We perform an iteration on the input X in the above equation:

 X z X i Ni i= ≤ ≤−
−

1
1 1 2/ (12.39)

 Y z Y i Ni i= ≤ ≤−
−

1
1 1 2/ (12.40)

 X X0 = (12.41)

 Y Y0 = , (12.42)

and the output is given by

 Y z a i X a i Xi
i i

i

N

= + +[]−
+

=

−

∑ () () .2 2 1 1
0

2 1/

 (12.43)

 The above equation can be written as the iteration

 Y z a i X a i X b i Y b i Y Y i Ni i i i i i= + + − − + +[] < <−
+ +

1
1 12 2 1 2 2 1 0 2() () () () / (12.44)

 YN/2 0= (12.45)

 Y a X a X b Y Y0 0 1 1 10 1 1= + −[]+() () () (12.46)

 Y Y= 0. (12.47)

 Figure 12.7 a shows the resulting DAG. This is a new structure that has been
reported in the literature by the author [23] . Figure 12.7 b shows the details of a

218 Chapter 12 Case Study: One-Dimensional IIR Digital Filters

processor element. Note that both the input and output are pipelined between the
task stages. Figure 12.7 c shows the details of the fi rst task storing the fi lter coeffi cient
 a (0), a (1), and b (1). Note that the output is not stored in a register.

 12.5 PROBLEMS

 12.1. Study the 1 - D digital correlation operation using the z - transform technique.

 12.2. Study the 2 - D digital correlation operation using the z - transform technique.

 12.3. Study the three - dimensional digital correlation operation using the z - transform
technique.

 12.4. Study the three - dimensional fi nite impulse response (FIR) fi lter using the z - transform
technique.

 12.5. Study the three - dimensional IIR fi lter using the z - transform technique.

 Figure 12.7 IIR digital fi lter DAG with pipelined input and output. (a) The DAG. (b) Task
processing details. (c) Leftmost task processing details.

10 ...

X

0Y

a(2i)

z–1

Yout
Yin

(a)

(b)

N/2 – 2 N/2 – 1

XoutXin

(c)

a(2i + 1)

z–1

z–1
YoutYin

b(2i) b(2i + 1)

a(0)

z–1

Yout
Yin

XoutXin

a(1)

z–1

z–1
YoutYin

b(1)

 Chapter 13

Case Study: Two - and
Three - Dimensional
Digital Filters

 13.1 INTRODUCTION

 Multidimensional digital fi lters are used in several areas of digital signal processing.
Two - dimensional (2 - D) digital fi lters are used for image processing applications
such as image enhancement and noise removal. Three - dimensional (3 - D) digital
fi lters are used to process consecutive frames of images such as video data and
medical imaging, such as computerized tomography (CT) and magnetic resonance
imaging (MRI) scans. Another interesting example of 3 - D fi lters is velocity fi lters.
Velocity fi lters can be used to detect the speed of an object in a video sequence.
Velocity fi lters are used also in the processing of seismic data sets or signal streams
from microphone arrays to separate different signal components.

 13.2 LINE AND FRAME WRAPAROUND PROBLEMS

 There is an inherent problem in processing raster - scanned images: line and frame
wraparound. Consider 2 - D fi lters for an image. Figure 13.1 shows the main system
parameters for a 2 - D fi rst - quadrant digital fi lter. The image being processed has a
width of W pixels and a height of H pixels. The 2 - D fi lter window width is w pixels
and the height is h pixels. The axes are as shown since typically, lines are numbered
starting from the top. The output sample at location (i , j) is indicated by the dark
circle and is obtained by processing all the pixels in the dark gray area shown.

 Figure 13.2 shows the different locations of the fi lter window as it scans the
image to produce the processed image as an output. Output pixel a in Fig. 13.2
shows the case when the output sample lies in the fi rst row. The window buffer of
the fi lter is mostly empty except for the input data shown as the shaded region in
the window area. Output pixel b in Fig. 13.2 shows the case when the output sample

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

219

220 Chapter 13 Case Study: Two- and Three-Dimensional Digital Filters

is the last pixel in the fi rst row. Now the fi lter moves to produce the fi rst pixel in
the second row as shown in the fi gure by point c . The valid input data are shown
by the dark shaded area. The stipple pattern shows the data remaining in the fi lter
due to scanning output b . The correct output c should have been obtained by clearing
the fi lter buffer storing that stipple region. In general, the fi rst w − 1 pixels of each
line will contain contributions from the last w − 1 pixels of the previous line. This
phenomenon is known as line wraparound. Because of this problem, early hardware
structure produced H (w − 1) erroneous pixels in each image. Measures should be
taken to clear the fi lter buffer of all extraneous data.

 For 3 - D fi lters, the fi rst h − 1 lines of each frame will contain contributions from
the last h − 1 lines of the previous frame. This phenomenon is known as frame
wraparound. Again, earlier hardware designs produced W (h − 1) incorrect pixels,
which are produced at the start of a new frame before the fi rst correct results appear.
Thus, for a continuous processing of raster - scanned images, the total number of
erroneous pixels produced per frame is equal to H (w − 1) + W (h − 1) − (w − 1)
(h − 1). In this chapter, we discuss how to eliminate both line and frame wraparound
problems in the resulting implementations.

 Figure 13.1 System parameters for a 2 - D digital fi lter.

k1

k2

(i, j)

W

w

h
H

Filter
Window

 Figure 13.2 Illustrating the line wraparound
problem in 2 - D fi lters.

a bc

13.3 2-D Recursive Filters 221

 13.3 2 - D RECURSIVE FILTERS

 A fi rst - quadrant 2 - D recursive fi lter can be represented by the equation

 Y a k k Xz z b k k Yz zk k

k

w

k

h
k k

k

= −− −

=

−

=

−
− −∑∑ (,) (,)1 2 1 2

0

1

0

1

1 2 1 2
1 2

12

1 2

112 0

1

0

1

=

−

=

−

∑∑
w

k

h

, (13.1)

 where X ≡ X (z 1 , z 2), Y ≡ Y (z 1 , z 2), and b (0, 0) = 0. The term z1
1− represents one time

step delay along a line. This delay could be implemented as memory address locators
for use by the software threads or it could be implemented as actual hardware buffer
for use by the software systolic array processing elements. The term z2

1− represents
one sample delay along a column. For progressive raster - scanned images, this is
equivalent to W time - step delays where W is the image width. The above equation
can also be written in a hierarchical way as

 Y F k z X G k z Yk k

k

h

= −⎡⎣ ⎤⎦
− −

=

−

∑ () () ,2 2 2 2
1

1
2 2

2

 (13.2)

where the terms F (k 2) and G (k 2) are two one - dimensional (1 - D) infi nite impulse
response (IIR) fi lter operators given by

 F k a k k z k

k

w

() (,)2 1 2 1
0

1
1

1

= −

=

−

∑ (13.3)

 G k b k k z k

k

w

() (,) .2 1 2 1
0

1
1

1

= −

=

−

∑ (13.4)

 From Eq. 13.2 , it can be seen that a 2 - D recursive fi lter can be treated as a
combination of 1 - D recursive fi lters. In the following sections, we derive different
hierarchical 2 - D recursive structures in terms of 1 - D recursive structures.

 13.3.1 2 - D IIR Design 1: Broadcast X and Y Inputs and
Pipelined Output

 In this design, we broadcast the X and Y inputs to each 1 - D fi lter section and pipeline
their outputs to obtain the 2 - D fi lter output. Using Horner ’ s rule on Eq. 13.2 in the
form

Y F X G Y z F X G Y z F X G Y

z F h

= − + − + − +
−

− −

−

() () [() () [() ()

[(

0 0 1 1 2 22
1

2
1

2
1

�
1 1) ()]]],X G h Y− − � (13.5)

 the above Equation can be written in iterative form as

 S F i X G i Y z S i hi i= − + ≤ <−
+() () 2

1
1 0 (13.6)

 Sh = 0 (13.7)

 Y S= 0. (13.8)

222 Chapter 13 Case Study: Two- and Three-Dimensional Digital Filters

 Using the results of Chapter 9 , we obtain the directed acyclic graph (DAG) shown
in Fig. 13.3 . This design was previously developed by the author ’ s group in
References 23 and 87 . The DAG could be implemented by multithreads in software
or by using systolic arrays in hardware.

 Line wraparound can be eliminated by clearing all the storage elements within
the 1 - D fi lters. This should be done after the reception of the last pixel of a given
line and before the reception of the fi rst pixel of the next line by any 1 - D fi lter
structure.

 Frame wraparound can be eliminated by clearing all the storage elements
within the tasks of each 1 - D fi lter as well as all the z − 1 elements between
adjacent 1 - D fi lters. This should be done after the reception of the last pixel in the
last line of a given frame and before the reception of the fi rst pixel of the following
frame.

 13.3.2 2 - D IIR Design 2: Pipelined X and Y Inputs and
Broadcast Output

 Equation 13.2 is modifi ed by associating the z − 1 delay operators with the
input samples. In effect, we are introducing the delays to the input signals X
and Y .

 Y F k z X G k z Yk k

k

h

= () − ()⎡⎣ ⎤⎦
− −

=

−

∑ () () .2 2 2 2
0

1
2 2

2

 (13.9)

 We develop the iterative equations for the input signals as

 Figure 13.3 DAG of a 2 - D recursive fi lter
using Design 1 for a fi lter window height of
 h = 4 .

+

z2
–1

1-D IIR Section
0

+

z2
–1

+

z2
–1

1-D IIR Section
1

1-D IIR Section
2

1-D IIR Section
3

X Y

13.4 3-D Digital Filters 223

 X z X i hi i= < <−
−2

1
1 0 (13.10)

 Y z Y i hi i= < <−
−2

1
1 0 (13.11)

 X X0 = (13.12)

 Y Y0 = . (13.13)

 Finally, we have the fi lter output given by

 Y Yi
i

h

=
=

−

∑
0

1

. (13.14)

 The resulting DAG is shown in Fig. 13.4 . This DAG can be implemented using
software multithreading or hardware systolic arrays. The systolic array of the 2 - D
recursive structure is similar to the one reported in References 23, 87, and 88 . Line
and frame wraparound can be eliminated by using the approach described in the
previous section.

 13.4 3 - D DIGITAL FILTERS

 A fi rst - quadrant 3 - D recursive fi lter can be represented by the equation

 Y a k k k Xz z z b kk k k

k

w

k

h

k

f

= −− − −

=

−

=

−

=

−

∑∑∑ (, ,) (1 2 3 1 2 3
0

1

0

1

0

1

1
1 2 3

123

, ,) ,k k Yz z zk k k

k

w

k

h

k

f

2 3 1 2 3
0

1

0

1

0

1
1 2 3

123

− − −

=

−

=

−

=

−

∑∑∑ (13.15)

where X ≡ X (z 1 , z 2 , z 3), Y ≡ Y (z 1 , z 2 , z 3), and b (0, 0, 0) = 0. In the above equation, h
is the height of the fi lter window, w is the width of the fi lter window, and f is the
depth of the fi lter window, which is the number of frames used to collect the fi lter
input samples.

 Figure 13.4 DAG of a 2 - D recursive fi lter
using Design 2 for a fi lter window height of
 h = 4.

+

1-D IIR Section
0

+

+

1-D IIR Section
1

1-D IIR Section
2

1-D IIR Section
3

X
Y

z2
–1

z2
–1

z2
–1

z2
–1

z2
–1

z2
–1

224 Chapter 13 Case Study: Two- and Three-Dimensional Digital Filters

 Assuming progressive raster - scanned data, the term z1
1− represents one time - step

delay through the use of a single register as a storage element. The term z2
1− repre-

sents W time - step delays where W is the frame width. The term z3
1− represents HW

time - step delays where H is the frame height. These delays could be implemented
as memory address locators for use by the software threads, or they could be imple-
mented as actual hardware buffers for use by the software systolic array processing
elements.

 The above equation can be written in a hierarchical way as

 Y F k z X G k z Yk k

k

f

= −⎡⎣ ⎤⎦
− −

=

−

∑ 2 3 3 2 3 3
1

1
3 3

3

() () , (13.16)

where the terms F 2 (k 3) and G 2 (k 3) are two 2 - D IIR fi lter operators given by

 F k a k k z zk k

k

w

k

h

2 3 1 2 1 2
0

1

0

1
1 1

12

() (,)= − −

=

−

=

−

∑∑ (13.17)

 G k b k k z zk k

k

w

k

h

2 3 1 2 1 2
0

1

0

1
1 1

12

() (,) .= − −

=

−

=

−

∑∑ (13.18)

 From Eq. 13.16 , it can be seen that a 3 - D recursive fi lter can be treated as a
combination of 2 - D recursive fi lters. In the following sections, we derive different
hierarchical 3 - D recursive DAG structures in terms of 2 - D recursive DAG
structures.

 13.4.1 3 - D IIR Design 1: Broadcast X and Y Inputs and
Pipelined Output

 In this design, we broadcast the X and Y inputs to each 2 - D fi lter section and pipeline
their outputs to obtain the 3 - D fi lter output. Using Horner ’ s rule on Eq. 13.16 in
the form

Y F X G Y z F X G Y z F X G Y

z

= − + − + − +− −

−
2 2 3

1
2 2 3

1
2 2

3

0 0 1 1 2 3() () [() () [() () �
11

2 21 1[() ()]]],F f X G f Y− − − � (13.19)

 the above Equation can be written in iterative form as

 S F i X G i Y z S i fi i= − + ≤ <−
+2 2 2

1
1 0() () (13.20)

 Sf = 0 (13.21)

 Y S= 0. (13.22)

 Using the results of Chapter 9 , we obtain the DAG shown in Fig. 13.5 . The DAG
implementations of 1 - D discussed in the previous chapters and 2 - D IIR fi lters dis-
cussed in the previous sections can be used to implement the 3 - D DAG task in the
fi gure. Frame wraparound can be eliminated by clearing all the storage elements
 within the 2 - D fi lters. This should be done after the reception of the last pixel of a
given frame and before the reception of the fi rst pixel of the next frame by any 2 - D
fi lter structure.

13.4 3-D Digital Filters 225

 13.4.2 3 - D IIR Design 2: Pipelined X and Y Inputs and
Broadcast Output

 Equation 13.16 is modifi ed by associating the z3
1− delay operators with the input

samples. In effect, we are introducing the delays to the input signals X and Y :

 Y F k z X G k z Yk k

k

h

= () − ()⎡⎣ ⎤⎦
− −

=

−

∑ 2 3 3 2 3 3
0

1
3 3

2

() () . (13.23)

 Figure 13.5 DAG of a 3 - D recursive fi lter
using Scheme 1 for a fi lter window depth of
 f = 4.

+

z3
–1

2-D IIR Section
0

+

z3
–1

+

z3
–1

2-D IIR Section
1

2-D IIR Section
2

2-D IIR Section
3

X Y

 Figure 13.6 DAG of a 3 - D recursive fi lter
using Scheme 2 for a fi lter window depth of
 f = 4.

+

2-D IIR Section
0

+

+

2-D IIR Section
1

2-D IIR Section
2

2-D IIR Section
3

X
Y

z3
–1

z3
–1

z3
–1

z3
–1

z3
–1

z3
–1

226 Chapter 13 Case Study: Two- and Three-Dimensional Digital Filters

 We develop the iterative equations for the input signals as

 X z X i hi i= < <−
−3

1
1 0 (13.24)

 Y z Y i hi i= < <−
−3

1
1 0 (13.25)

 X X0 = (13.26)

 Y Y0 = . (13.27)

 Finally, we have the fi lter output given by

 Y Yi
i

f

=
=

−

∑
0

1

. (13.28)

 The resulting DAG structure is shown in Fig. 13.6 . The different DAGs of 1 - D
discussed in the previous chapters and 2 - D IIR fi lters discussed in the previous sec-
tions can be used to implement the 2 - D tasks in the fi gure. Line and frame wrap-
around can be eliminated by using the approach described in the previous section.

 Chapter 14

Case Study: Multirate
Decimators and Interpolators

 14.1 INTRODUCTION

 Multirate digital processing systems are important due to the numerous applications
in which effi cient translations among various sampling frequencies are needed. An
important application of multirate digital fi lters is to implement the discrete wavelet
transform. Decimators and interpolators are the most basic elements of such systems.
They have also found applications in sub - band coding and analog - to - digital (A/D)
conversion [89 – 93] . Particular interest is nowadays focused on the implementation
of multirate fi lters for real - time applications.

 Multirate systems rely on the use of decimators and interpolators . A decimator
accepts a high - rate input signal and produces a low - rate output signal. An interpola-
tor accepts a low - rate input signal and produces a high - rate output signal. We discuss
in this chapter how to design multithreaded systems that implement decimators and
interpolators.

 14.2 DECIMATOR STRUCTURES

 A decimator is a device that passes a high - rate input signal through a low - pass fi lter
then picks out some of the fi lter outputs to get a low - rate output. The low - pass fi lter
is sometimes referred to as an anti - aliasing fi lter. Decimation is usually used for
signals whose Nyquist rate is much higher than the highest frequency of the signal.
In this way, computations and memory savings can result by reducing the data rate
without loss of information.

 The model of an M - to - 1 decimator is shown in Fig. 14.1 [94, 95] . The operating
frequencies of the different components are indicated above the input and output
lines. The sample periods are indicated below the input and output lines. The block
on the left is an N - tap fi nite impulse response (FIR) digital fi lter with impulse
response h (nT), where T is the high - rate sampling period, which operates at the high
sampling rate F . M − 1 out of every M output samples are discarded by the M - to - 1

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

227

228 Chapter 14 Case Study: Multirate Decimators and Interpolators

sampling rate compressor, or downsampler, shown as the block on the right in Fig.
 14.1 . The low - pass fi lter generates the signal u (nT) and the downsampler generates
the signal y (nT ′). The system in Fig. 14.1 implies a serial algorithm where input data
samples are fi rst fi ltered then downsampled. The techniques we discuss here merge
the two operations and extract different parallelization options.

 We can write the following equations for the two output signals

 u n h k x n k
k

N

() () ()= −
=

−

∑
0

1

 (14.1)

 y n u nM() = (). (14.2)

 In this chapter, we assume that the fi lter length is an integer multiple of M . If it is
not, we augment it with zero - valued coeffi cients to simplify the analysis .

 14.3 DECIMATOR DEPENDENCE GRAPH

 The author and his group provided a z - transform technique for obtaining several
decimator structures [96 – 98] . However, for the case of multirate systems, this
approach was not able to provide the rich set of design space exploration that the
dependence graph approach could provide. Figure 14.2 shows the dependence graph
of the decimator, which was obtained for the two signals in Eqs. 14.1 and 14.2 . The
horizontal axis is the n - axis and vertical axis is the k - axis. The fi gure shows the
dependence graph of the fi lter whose output samples are u (n). At the top of the fi gure,
we indicate the decimator output y (n). Note that sample y (n) corresponds to the
sample u (M n). In order to conserve space, we used subscripts in the fi gure to indi-
cate index values for the different samples.

 The thick vertical lines indicate the decimator output y (n). The solid circles in
the fi gure indicate useful fi ltering operations that result in the generation of the
output samples u (nM) and y (n), while the empty circles indicate fi ltering operations
that will result in no useful output samples. In a sense, these are wasted operations
that consume unnecessary resources. Essentially, the decimator uses a regular low -
 pass fi lter to produce some output samples at the high input data rate. Then, we
selectively pick the M th sample to represent the desired decimator outputs.

 Figure 14.3 shows the dependence graph of the decimator where only the useful
operations and outputs are indicated.

 This fi gure is a bit less cluttered compared with Fig. 14.2 . We removed the
empty circles and only retained the shaded circles that give the desired outputs.

 Figure 14.1 General M - to - 1 decimator system.

Mh(nT)x(nT) y()

F F F/M

T T TM

u(nT)

Frequency:

Sampling Period:

Anti-aliasing filter Downsampler

'

'

14.3 Decimator Dependence Graph 229

 Figure 14.2 General M - to - 1 decimator dependence graph for the case when M = 3 and N = 12.

y0 y1 y2 y3 y4 y5 y6 y7
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15u16 u17 u18u19 u20 u21 u22 u23

x0 x1 x2
x3 x4 x5

x6 x7 x8
x9 x10 x11

x12 x13 x14
x15 x16 x17

x18 x19 x20
x21 x22 x23

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

k

n

 Figure 14.3 M - to - 1 decimator dependence graph for the case when M = 3 and N = 12. Unnecessary
operations and output samples have been removed from the fi gure.

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2
x3 x4 x5

x6 x7 x8
x9 x10 x11

x12 x13 x14
x15 x16 x17

x18 x19 x20
x21 x22 x23

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

k

n

230 Chapter 14 Case Study: Multirate Decimators and Interpolators

 14.4 DECIMATOR SCHEDULING

 As usual, we employ an affi ne timing function

 t() ,p sp= (14.3)

where the row vector s = [s 1 s 2] is the scheduling vector and the column vector
 p = [n k] t is any point in the dependence graph. The fi rst component refers to the
horizontal axis and the second component refers to the vertical axis.

 Assigning time values to the nodes of the dependence graph transforms the
dependence graph to a directed acyclic graph (DAG) as discussed in Chapters 10
and 11 . More specifi cally, the DAG can be thought of as a serial – parallel algorithm
(SPA) where the parallel tasks could be implemented using a thread pool or parallel
processors for software or hardware implementations, respectively. The different
stages of the SPA are accomplished using barriers or clocks for software or hardware
implementations, respectively.

 The restrictions on our timing function were discussed in Chapters 10 and 11 .
We assume that the input data x (n) arrive at consecutive times. Let us study the times
associated with the points at the bottom of the graph, p = [n 0] t . Two input samples,
 x (n) and x (n + 1), arrive at the two points, p 1 = [n 0] t and p 2 = [n + 1 0] t , respec-
tively. Applying the scheduling function in Eq. 14.3 , we get

 t s n()p1 1= (14.4)

 t s n() ().p2 1 1= + (14.5)

 Since the difference t (p 2) − t (p 1) = 1, we must have s 1 = 1. A valid scheduling vector
that satisfi es input data timing must be specifi ed as

 s = []1 2s . (14.6)

 The value of s 2 will be determined by our choice of whether we need to pipeline or
broadcast the output sample y (n). Choosing s 2 = 0 would result in broadcast of y (n).
Choosing s 2 = ± 1 would result in pipelining y (n). We have three possible valid
scheduling functions that we can employ:

 s1 1 0= [] (14.7)

 s2 1 1= −[] (14.8)

 s3 1 1= []. (14.9)

 Scheduling vector s 1 results in pipelined input x (n) and broadcast output y (n).
Scheduling vector s 2 results in broadcast input x (n) and pipelined output
 y (n). Scheduling vector s 3 results in pipelined input x (n) and pipelined output y (n).

 In the following subsections, we explore the possible designs afforded by the
above scheduling vectors. We should point out that the advantage of using the
approach in this section is reduction in the number of processing tasks. This comes,
however, at the price of task processing speed that matches the input data rate and
increases task complexity. Later in this chapter, we will explore polyphase designs
that do not suffer from these disadvantages.

14.5 Decimator DAG for s1 = [1 0] 231

 14.5 DECIMATOR DAG FOR s 1 = [1 0]

 The DAG corresponding to s 1 is shown in Fig. 14.4 . The equitemporal planes are
indicated by the gray lines, and the time index values are indicated by the grayed
numbers associated with the equitemporal planes. We note from the fi gure that a
maximum of 12 tasks or nodes is active at any time step, which corresponds to the
anti - aliasing fi lter length N . It should also be noted that the time values are associ-
ated with the high data rate of the decimator input.

 We have three possible valid projection vectors:

 Design a:1 1 01d a
t= [] (14.10)

 Design b:1 1 11d b
t= [] (14.11)

 Design c:1 1 11d c
t= −[] . (14.12)

 These projection directions correspond to the projection matrices

 Design a:1 0 11P a
t= [] (14.13)

 Design b:1 1 11P b
t= −[] (14.14)

 Design c:1 1 11P c
t= [] . (14.15)

 Figure 14.4 M - to - 1 decimator DAG for the case when M = 3, N = 12, and s 1 = [1 0].

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2
x3 x4 x5

x6 x7 x8
x9 x10 x11

x12 x13 x14
x15 x16 x17

x18 x19 x20
x21

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

232 Chapter 14 Case Study: Multirate Decimators and Interpolators

 We consider only the design corresponding to d 1 a since the other two designs
will be more complex and will not lead to a better task workload. A point in the
DAG given by the coordinates p = [n k] t will be mapped into the point in DAG
given by

 p P p= =1a k. (14.16)

 Output sample calculations are all performed at the same time step. In that sense,
the input samples are pipelined and the output samples are broadcast. We note,
however, that each task is active once every M time steps. In order to reduce the
number of threads or processors, we modify the linear projection operation above
to employ a nonlinear projection operation

 p
P p= ⎢

⎣⎢
⎥
⎦⎥

= ⎢
⎣⎢

⎥
⎦⎥

1a

M

k

M
. (14.17)

 Figure 14.5 shows the reduced or projected DAG architecture for Design 1a. Figure
 14.5 a shows the DAG where input samples are pipelined between the tasks and the
partial results for the output samples are broadcast among the tasks. Note that the
number of tasks required is N / M . Figure 14.5 b shows the task detail. Each task has
a simple processing and control structure. Each task accepts input samples and
forwards the inputs to the next task after a delay of M time steps. During each M
time step, each task accumulates the partial results then loads the accumulated data
to the parallel adder using a software barrier or hardware tristate buffer as shown

 Figure 14.5 DAG for Design 1a for s 1 , d 1 a , N = 12, and M = 3. (a) Resulting DAG. (b) Task
processing detail.

0
Y

X
1 2 3

0

Three-stage FIFO

Acc.xin

yin

yout

xout

h(i), h(i + 1), h(i + 2)

(a)

(b)

Task (thread or processing element)

14.6 Decimator DAG for s2 = [1 −1] 233

on the left of the fi gure. All tasks pipeline the incoming data x (n) at the high data
rate T and perform the fi ltering operation at the high data rate T also. The output is
obtained from the rightmost task at time iMT .

 14.6 DECIMATOR DAG FOR s 2 = [1 − 1]

 The DAG corresponding to s 2 is shown in Fig. 14.6 . The equitemporal planes are
indicated by the gray lines and the time index values are indicated by the grayed
numbers associated with the equitemporal planes. We note from the fi gure that a
maximum of 12 tasks or nodes is active at any time step, which corresponds to the
anti - aliasing fi lter length N . It should also be noted that the time values are associ-
ated with the high data rate of the decimator input.

 Chapters 10 and 11 explained that the projection operation assigns a node or a
group of nodes in the DAG to a thread or processor. The number of assigned nodes
determines the workload associated with each task. The operation also indicates the
input and output data involved in the calculations. The projection operation controls
the workload assigned to each thread/processor at each stage of the execution of the
SPA. We have three possible valid projection vectors:

 Design a:1 1 02d a
t= [] (14.18)

 Design b:1 1 12d b
t= −[] (14.19)

 Design c:1 0 12d c
t= [] . (14.20)

 Figure 14.6 M - to - 1 decimator DAG for the case when M = 3, N = 12, and s 2 = [1 − 1].

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2
x3 x4 x5

x6 x7 x8
x9 x10 x11

x12 x13 x14
x15 x16 x17

x18 x19 x20
x21

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

0 1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

234 Chapter 14 Case Study: Multirate Decimators and Interpolators

 These projection directions correspond to the projection matrices

 Design a:1 0 12P a
t= [] (14.21)

 Design b:1 1 12P b
t= [] (14.22)

 Design c:1 1 02P c
t= [] . (14.23)

 We consider only the design corresponding to d 2a since the other two designs
will be more complex and will not lead to a better task workload. A point in the
DAG given by the coordinates p = [n k] t will be mapped into a point in DAG
given by

 p P p= =1a k. (14.24)

 Input samples are supplied to the nodes at the same time step. In that sense, the input
samples are broadcast and the output samples are pipelined. We note, however, that
each node is active once every M time steps. In order to reduce the number of nodes,
we modify the linear projection operation above to employ a nonlinear projection
operation:

 p
P p= ⎣ ⎦ = ⎣ ⎦1a

M

k

M
. (14.25)

 Figure 14.7 shows the DAG architecture for Design 2a. Figure 14.7 a shows the
 DAG where input samples are broadcast between the tasks and the partial results
for the output samples are pipelined among the tasks. Note that the number of tasks
required is N / M . Figure 14.7 b shows the task detail. The workload of each task is
simple in processing and control structures . Each task accepts input samples and

 Figure 14.7 DAG for Design 2a for s 2 , d 2 a , N = 12, and M = 3. (a) Resulting DAG. (b) Task
detail when the DAG is implemented in hardware systolic arrays.

0y

x

1 2 3 0(a)

(b)

Acc.xin

yinyout

h(i), h(i + 1), h(i + 2)

D

14.8 Polyphase Decimator Implementations 235

forwards the inputs to the next task after a delay of M time steps. During each M
time step, each task accumulates the partial results then loads the accumulated data
to the parallel adder using a software barrier or a tristate buffer as shown on the left
of the fi gure. All tasks pipeline the incoming data x (n) at the high data rate T and
perform the fi ltering operation at the high data rate T also. The output is obtained
from the rightmost task at times iMT .

 14.7 DECIMATOR DAG FOR s 3 = [1 1]

 This choice of a scheduling function would produce a decimator DAG similar to
the the decimator DAG of the previous two sections. We will leave this to the reader
to explore.

 14.8 POLYPHASE DECIMATOR IMPLEMENTATIONS

 A polyphase decimator splits the high - rate input signals into M low - rate nonover-
lapped streams such that each stream is applied to a fi lter with length N / M . Figure
 14.8 shows the splitting of the input data stream into M nonoverlapped streams, and
each stream is fed to a low - pass FIR fi lter. Each fi lter has the following
characteristics:

 1. It operates at the longer sample time T ′ = MT .

 2. The number of fi lter coeffi cients is reduced to N / M .

 3. Every M th input sample is used.

 In order to get a dependence graph for a polyphase fi lter, we break up the dependence
graph of Fig. 14.1 into M = 3 dependence graphs. Figure 14.9 shows the dependence
graph corresponding to the stream feeding the fi lter h 0 (nT ′). Each dependence graph
corresponds to one branch of the polyphase fi lter structure of Fig. 14.8 . Table 14.1
shows the fi lter coeffi cients associated with the fi lter whose impulse transfer function

 Figure 14.8 Polyphase
implementation of a decimator for the
case M = 3.

h0()

D

D

h1()

h2()

Demux
(downsampler)

xin(nT)

yout()'
'

'

'

236 Chapter 14 Case Study: Multirate Decimators and Interpolators

is h i (nT) and also shows the stream of input data samples allocated to it. In general,
polyphase fi lter h i (nT) (0 ≤ i < M) is fed the i th downsampled stream and uses the
fi lter coeffi cient h k + jM where 0 ≤ j < N / M and is given by

 k i M i M= − ≤ <() 0mod . (14.26)

 The advantages of polyphase fi lters are that each fi lter operates at the slower
rate of MT and its length is N / M . We can use the different 1 - D FIR fi lter structures
discussed previously to realize the polyphase decimator.

 14.9 INTERPOLATOR STRUCTURES

 An interpolator is a device that passes a low - rate input signal through a low - pass
fi lter then inserts the fi lter outputs to get a high - rate output. The low - pass fi lter is
sometimes referred to as an anti - imaging fi lter. The model of a 1 - to - L interpolator

 Figure 14.9 Dependence graph for polyphase fi lter h 0 (nT ′) for an M - to - 1 decimator for the case
when M = 3 and N = 12.

y0 y1 y2 y3 y4 y5 y6 y7

x0 x3 x6 x9 x12 x15 x18 x21

h0

h3

h6

h9

 Table 14.1 Filter Coeffi cients and Input Samples Associated with Each Polyphase Filter
for the Case M = 3 and N = 12

 Polyphase fi lter Filter coeffi cients Input samples

 h 0 (nT ′) h 0 h 3 h 6 h 9 x 0 x 3 x 6 x 9 …
 h 1 (nT ′) h 2 h 5 h 8 h 11 x 1 x 4 x 7 x 10 …
 h 2 (nT ′) h 1 h 4 h 7 h 10 x 2 x 5 x 8 x 11 …

14.10 Interpolator Dependence Graph 237

is shown in Fig. 14.10 [94, 95] . The operating frequencies of the different com-
ponents are indicated above the input and output lines. The sample periods are
indicated below the input and output lines. The block on the left is an N - tap FIR
digital fi lter with impulse response h (nT ′), where T is the high - rate sampling period,
and operates at the high sampling rate F . The 1 - to - M upsampler, or sample rate
expander, inserts M − 1 zeros between the input sample x (nT), shown as the block
on the left of Fig. 14.10 . The upsampler generates the signal u (nT ′) and the low - pass
fi lter generates the signal y (nT ′). The upsampler simply inserts L − 1 zeros between
the input sample x (n) to produce a signal at L times the data rate. This process is
sometimes called “ zero - stuffi ng. ” We can write the following equations for the two
output signals:

 u nL x n() = () (14.27)

 y n h k u n k
k

N

() () ().= −
=

−

∑
0

1

 (14.28)

 14.10 INTERPOLATOR DEPENDENCE GRAPH

 The author and his group provided a z - transform technique for obtaining several
decimator structures [96 – 98] . However, for the case of multirate systems, this
approach was not able to provide the rich set of design space exploration that the
dependence graph approach could provide. Fig. 14.11 shows the dependence graph
of the interpolator. The horizontal axis is the n - axis and vertical axis is the k - axis.
The fi gure shows the dependence graph of the fi lter whose input samples are u (nL).
At the top of the fi gure, we indicate the interpolator output y (n). In order to conserve
space, we used subscripts in the fi gure to indicate index values for the different
samples. The gray circles correspond to the samples x (n) and the empty circles cor-
respond to the stuffed zero - valued samples. In a sense, this is wasted operations.
Figure 14.12 shows the dependence graph of the interpolator where only the useful
operations and outputs are indicated. This fi gure is a bit less cluttered compared to
Fig. 14.11 . We removed the empty circles and only retained the shaded circles that
give the desired outputs.

 Figure 14.10 General 1 - to - L interpolator system.

L h(nT)x(nT) y()

F FL

T

u()

Frequency:

Sampling Period:

Anti-antimirroring filterUpsampler

FL

'

''

'

238 Chapter 14 Case Study: Multirate Decimators and Interpolators

 14.11 INTERPOLATOR SCHEDULING

 As usual, we employ an affi ne timing function:

 t() ,p sp= (14.29)

where the row vector s = [s 1 s 2] is the scheduling vector and the column vector
 p = [n k] t is any point in the dependence graph. The fi rst component refers to the

 Figure 14.11 General 1 - to - L interpolator dependence graph for the case when L = 3 and N = 12.

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

 Figure 14.12 1 - to - L interpolator dependence graph for the case when L = 3 and N = 12.
Unnecessary operations and output samples have been removed from the fi gure.

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

14.12 Interpolator DAG for s1 = [1 0] 239

horizontal axis and the second component refers to the vertical axis. The restrictions
on our timing function were discussed in Chapters 10 and 11 . We assume that the
input data x (n) arrive at consecutive times. Let us study the times associated with
the points at the bottom of the graph p = [n 0] t . Two input samples, x (n) and x (n + 1),
arrive at the two points, p 1 = [n 0] t and p 2 = [nL + 1 0] t , respectively. Applying the
scheduling function in Eq. 14.3 , we get

 t s n()p1 1= (14.30)

 t s n() ().p2 1 1= + (14.31)

 Since the difference t (p 2) − t (p 1) = L , we must have s 1 = 1. A valid scheduling vector
that satisfi es input data timing must be specifi ed as

 s = []1 2s . (14.32)

 The value of s 2 will be determined by our choice of whether we need to pipeline
or broadcast the output sample y (n). Choosing s 2 = 0 would result in the broadcast
of y (n). Choosing s 2 = ± 1 would result in pipelining of y (n). We have three possible
valid scheduling functions that we can employ:

 s1 1 0= [] (14.33)

 s2 1 1= −[] (14.34)

 s3 1 1= []. (14.35)

 Scheduling vector s 1 results in pipelined input x (n) and broadcast output y (n).
Scheduling vector s 2 results in broadcast input x (n) and pipelined output
 y (n). Scheduling vector s 3 results in pipelined input x (n) and pipelined output y (n).

 In the following subsections, we explore the possible designs afforded by the
above scheduling vectors. We should point out that the advantages of using the
approach in this section are reduction in the number of nodes. This comes, however,
at the price of processing speed that matches the input data rate and increased task
complexity. Later in this chapter, we will explore polyphase designs that do not
suffer from these disadvantages.

 14.12 INTERPOLATOR DAG FOR s 1 = [1 0]

 The DAG corresponding to s 1 is shown in Fig. 14.13 . The equitemporal planes are
indicated by the gray lines and the time index values are indicated by the grayed
numbers associated with the equitemporal planes. We note from the fi gure that a
maximum of four tasks or nodes is active at any time step. It should also be noted
that the time values are associated with the high data rate of the interpolator output.
We have three possible valid projection vectors:

 Design a:1 1 01d a
t= [] (14.36)

 Design b:1 1 11d b
t= [] (14.37)

 Design c:1 1 11d c
t= −[] . (14.38)

240 Chapter 14 Case Study: Multirate Decimators and Interpolators

 These projection directions correspond to the projection matrices

 Design a:1 0 11P a
t= [] (14.39)

 Design b:1 1 11P b
t= −[] (14.40)

 Design c:1 1 11P c
t= [] . (14.41)

 We consider only the design corresponding to d 1 a since the other two designs will
be more complex and will not lead to a better task workload. A point in the DAG
given by the coordinate p = [n k] t will be mapped into the point in the reduced or
projected DAG given by

 p P p= =1a k. (14.42)

 Output sample calculations are all performed at the same time step. In that sense,
the input samples are pipelined and output samples are broadcast. We note however,
that each task is active once every L time steps. In order to reduce the number of
nodes, we modify the linear projection operation above to employ a nonlinear pro-
jection operation:

 p
P p= ⎢

⎣⎢
⎥
⎦⎥

= ⎢
⎣⎢

⎥
⎦⎥

1a

L

k

L
. (14.43)

 Figure 14.14 shows the implementation of Design 1a. Figure 14.14 a shows the
 DAG, where input samples are pipelined between the tasks and the partial results

 Figure 14.13 1 - to - L interpolator DAG for the case when L = 3, N = 12, and s 1 = [1 0].

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

14.13 Interpolator DAG for s2 = [1 −1] 241

for the output samples are broadcast among the tasks. Note that the number of
tasks required is N / L . Figure 14.14 b shows the task detail. Each task is simple in
hardware and in control structure. Each task accepts an input sample every L time
steps and forwards the input to the next task after a delay of L time steps. All tasks
pipeline the incoming data x (n) at the low data rate and perform the fi ltering opera-
tion at the high data rate. The output is obtained from the rightmost task at each
time step.

 14.13 INTERPOLATOR DAG FOR s 2 = [1 − 1]

 The DAG corresponding to s 2 is shown in Fig. 14.15 . The equitemporal planes are
indicated by the gray lines and the time index values are indicated by the grayed
numbers associated with the equitemporal planes. We note from the fi gure that a
maximum of four nodes is active at any time step. It should also be noted that the
time values are associated with the high data rate of the interpolator input. We have
three possible valid projection vectors:

 Design a:1 1 02d a
t= [] (14.44)

 Design b:1 1 12d b
t= −[] (14.45)

 Design c:1 0 12d c
t= [] . (14.46)

 Figure 14.14 Interpolator Design 1a for s 1 , d 1 a , N = 12, and L = 3. (a) Resulting DAG.
(b) Task processing detail . In the fi gure FIFO is fi rst - in - fi rst - out buffer.

0
Y

X
1 2 3

0

Three-stage FIFO

xin

yin

yout

xout

h(i), h(i + 1), h(i + 2)

(a)

(b)

Task (thread or processing element)

D

242 Chapter 14 Case Study: Multirate Decimators and Interpolators

 These projection directions correspond to the projection matrices

 Design a:1 0 12P a
t= [] (14.47)

 Design b:1 1 12P b
t= [] (14.48)

 Design c:1 1 02P c
t= [] . (14.49)

 We consider only the design corresponding to d 2 a since the other two designs
will be more complex and will not lead to better processing element (task) designs.
A point in the DAG given by the coordinate p = [n k] t will be mapped into the
point

 p P p= =1a k. (14.50)

 Input samples are supplied to the array at the same time step. In that sense, the
input samples are broadcast and output samples are pipelined. We note, however,
that each task is active once every L time steps. In order to reduce the number of
nodes, we modify the linear projection operation above to employ a nonlinear pro-
jection operation:

 p
P p= ⎣ ⎦ = ⎣ ⎦1a

L

k

L
. (14.51)

 Figure 14.16 shows the hardware architecture for Design 2a. Figure 14.16 a
shows the pipeline where input samples are broadcast between the tasks and the
partial results for the output samples are pipelined among the nodes. Note that the

 Figure 14.15 1 - to - L interpolator DAG for the case when L = 3, N = 12, and s 2 = [1 − 1].

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

0 1 2 3 4 5 6 7 8 9 10 11
12
13

14

15

16

17

18

19

20

21

22

23

y11 y12 y14 y15 y16 y17 y18 y19 y20 y21 y22y13 y23

14.15 Polyphase Interpolator Implementations 243

number of tasks required is N / L . Figure 14.16 b shows the task detail. Each task is
simple in hardware and in control structure. Each task accepts an input sample every
 L time steps and forwards the input to the next task after a delay of L time steps.
All tasks pipeline the incoming data x (n) at the low data rate and perform the fi lter-
ing operation at the high data rate. The output is obtained from the leftmost task at
each time step.

 14.14 INTERPOLATOR DAG FOR s 3 = [1 1]

 This choice of a scheduling function would produce systolic decimator hardware
similar to the decimator structures of the previous two sections. We will leave this
to the reader to explore.

 14.15 POLYPHASE INTERPOLATOR IMPLEMENTATIONS

 A polyphase decimator splits the high - rate input signals into M low - rate nonstreams
such that each stream is applied to a fi lter with length N / M . Figure 14.17 shows
the splitting of the input data stream into M nonoverlapped streams. Each fi lter has
the following characteristics:

 1. It operates at the longer sample time T ′ = T / L .

 2. The number of fi lter coeffi cients is reduced to N / L .

 3. Every L th input sample is used.

 Figure 14.16 Design 2a for s 2 , d 2 a , N = 12, and L = 3. (a) DAG. (b) Task detail for hardware
systolic array implementation.

0
y

x
1 2 3

0
(a)

(b)

yinyout

h(i), h(i + 1), h(i + 2)

D

xin

xout
Three-stage FIFO

D

244 Chapter 14 Case Study: Multirate Decimators and Interpolators

 In order to get a dependence graph for a polyphase fi lter, we break up the
dependence graph of Fig. 14.1 into M = 3 DAGs as shown in Fig. 14.18 . Each
dependence graph corresponds to one branch of the polyphase fi lter structure of Fig.
 14.17 . Table 14.2 shows the fi lter coeffi cients associated with the fi lter whose
impulse transfer function is h i (nT) and also shows the stream of input data samples
allocated to it. In general, polyphase fi lter h i (nT) (0 ≤ i < L) produces the i th upsam-
pled stream and uses the fi lter coeffi cients h i + jM where 0 ≤ j < N / L . The advantages
of polyphase fi lters is that each fi lter operates at the slower rate of LT and its length
is N / L . We can use the different 1 - D FIR fi lter structures discussed previously to
realize the polyphase decimator.

 Figure 14.17 Dependence graph for
polyphase fi lter h 0 (nT ′) for a 1 - to - L
interpolator for the case when L = 3 and
 N = 12.

h0()

h1(nT)

h2(nT)

Mux
(upsampler)

xin(nT) yout()'

'

 Figure 14.18 Polyphase 1 - to - L interpolator dependence graph for the case when L = 3 and N = 12.

y0 y3 y6 y9 y12 y15 y18 y21

x0 x3 x6 x9 x12 x15 x18 x21

h0

h3

h6

h9

 Table 14.2 Filter Coeffi cients and Input Samples Associated with Each Polyphase Filter
for the Case M = 3 and N = 12

 Polyphase fi lter Filter coeffi cients Output samples

 h 0 (nT) h 0 h 3 h 6 h 9 y 0 y 3 y 6 y 9 …
 h 1 (nT) h 1 h 4 h 7 h 10 y 1 y 4 y 7 y 10 …
 h 2 (nT) h 2 h 5 h 8 h 11 y 2 y 5 y 8 y 11 …

 Chapter 15

Case Study: Pattern Matching

 15.1 INTRODUCTION

 String matching is employed in several applications, such as packet classifi cation,
computational biology, spam blocking, and information retrieval. String search oper-
ates on a given alphabet set Σ of size | Σ |, a pattern P = p 0 p 1 … p m − 1 of length m , and
a text string T = t 0 t 1 … t n − 1 of length n , with m ≤ n . The problem is to fi nd all occur-
rences of the pattern P in the text string T . The average time complexity for imple-
menting the string search problem on a single processor was proven to be O (n) [99] .
We refer the reader to Reference 100 for a comprehensive review of the different
hardware implementations of the string matching problem.

 A hardware implementation for the search engine can be assumed to have the
following characteristics:

 • The text length n is typically big and variable.

 • The pattern length m varies from a word of few characters to hundreds of
characters (e.g., a URL address).

 • The word length w is determined by the data storage organization and datapath
bus width.

 • Typically, the search engine is looking for the existence of the pattern P in
the text T ; that is, the search engine only locates the fi rst occurrence of the P
in T .

 • The text string T is supplied to the hardware in word serial format.

 15.2 EXPRESSING THE ALGORITHM AS
A REGULAR ITERATIVE ALGORITHM (RIA)

 To develop a multithreaded or systolic array implementation, we must fi rst be able
to describe the string matching algorithm using recursions that convert the algorithm
into a RIA. We can write the basic string search algorithm as in Algorithm 15.1 :

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

245

246 Chapter 15 Case Study: Pattern Matching

 Algorithm 15.1 Basic string search algorithm

 1: input T and P

 2: for i = 0:n - m do

 3: j = 0

 4: while j < m AND t i + j = p j do

 5: j = j + 1

 6: end while

 7: if j = m then

 8: mathc_fl ag = TRUE

 9: match_location = i

 10: end if

 11: end for

 This algorithm can also be expressed in the form of an iteration using two indices,
 i and j :

 y t p i n mi
j

m

i j j= ≤ ≤ −
−

+∧
=0

1

0Match(,) , (15.1)

where y i is a Boolean - type output variable. If y i = true, then there is a match at posi-
tion t i ; that is, t i : i + m + 1 = p 0: m − 1 . Match(a , b) is a function that is true when character a
matches character b . ∧ represents an m - input AND function.

 15.3 OBTAINING THE ALGORITHM
DEPENDENCE GRAPH

 The string matching algorithm of Eq. 15.1 is defi ned on a two - dimensional (2 - D)
domain since there are two indices (i , j). Therefore, a data dependence graph can be
easily drawn as shown in Fig. 15.1 . The computation domain is the convex hull in

 Figure 15.1 Dependence graph for m = 4
and n = 10.

y0 y1 y2 y3 y4 y5 y6

t0 t1 t2 t3 t4 t5 t6

t7

t8

t9

p0

p1

p2

p3

j

i

15.4 Data Scheduling 247

the 2 - D space where the algorithm operations are defi ned as indicated by the grayed
circles in the 2 - D plane [86] . The output variable y is represented by vertical lines
so that each vertical line corresponds to a particular instance of y . For instance, the
line described by the equation i = 3 represents the output variable instance y 3 . The
input variable t is represented by the slanted lines. Again, as an example, the line
represented by the equation

 i j+ = 3 (15.2)

 represents the input variable instance t 3 . Similarly, the input variable p is represented
by the horizontal lines.

 15.4 DATA SCHEDULING

 The timing function assigns a time value to each node in the dependence graph. The
algorithm dependence graph becomes transformed into a directed acyclic graph
(DAG), which will help us determine multithreaded or systolic array implementa-
tions. A simple but very useful timing function is an affi ne scheduling function of
the form [86]

 t st() ,p s p= − (15.3)

where the function t (p) associates a time value t to a point p in the dependence
graph. The column vector s = [s 1 , s 2] is the scheduling vector and s is an integer.

 A valid scheduling function uniquely maps any point p to a corresponding time
index value. Such affi ne scheduling function must satisfy several conditions in order
to be a valid scheduling function as explained below.

 Assigning time values to the nodes of the dependence graph transforms the
dependence graph to a DAG as discussed in Chapters 10 and 11 . More specifi cally,
the DAG can be thought of as a serial – parallel algorithm (SPA) where the parallel
tasks could be implemented using a thread pool or parallel processors for software
or hardware implementations, respectively. The different stages of the SPA are
accomplished using barriers or clocks for software or hardware implementations,
respectively.

 Input data timing restricts the space of valid scheduling functions. We assume
the input text T = t 0 t 1 … t n − 1 arrives in word serial format where the index of each
word corresponds to the time index. This implies that the time difference between
adjacent words is one time step. Take the text instances at the bottom row nodes in
Fig. 15.1 characterized by the line whose equation is j = 0. Two adjacent words, t i
and t i + 1 , at points p 1 = (i , 0) and p 2 = (i + 1, 0) arrive at the time index values i and
 i + 1, respectively. Applying our scheduling function in Eq. 15.3 to these two points,
we get

 t js s()p1 1= − (15.4)

 t j s s() () .p2 11= + − (15.5)

248 Chapter 15 Case Study: Pattern Matching

 Since the time difference t (p 2) − t (p 1) = 1, we must have s 1 = 1. Therefore, a sched-
uling vector that satisfi es input data timing must be specifi ed as

 s = []1 2s . (15.6)

 This leaves two unknowns in the possible timing functions, mainly the component
 s 1 and the integer s . If we decide to pipeline a certain variable whose null vector is
 e , we must satisfy the following inequality [86] :

 s et ≠ 1. (15.7)

 We have only one output variable, Y , whose null vector is e y = [0 1]. If we want
to pipeline y , then the simplest valid scheduling vectors are described by

 s1 1 1= [] (15.8)

 s2 1 1= −[]. (15.9)

 On the other hand, to broadcast a variable whose null vector is e , we must have [86]

 s et = 0. (15.10)

 If we want to broadcast Y , then from Eqs. 15.6 and 15.10 , we must have

 s3 1 0= []. (15.11)

 Broadcasting an output variable simply implies that all computations involved
in computing an instance of Y must be done in the same time step. Another restric-
tion on system timing is imposed by our choice of the projection operator as
explained in the next section.

 15.5 DAG NODE PROJECTION

 The projection operation is a many - to - one function that maps several nodes of the
DAG onto a single node in a reduced DAG, which we refer to as DAG. Thus, several
tasks in the DAG are mapped to a single task in DAG. The projection operation
allows for a better task workload and control design by multiplexing several nodes
in the DAG to a single node in the DAG. We explained in Chapters 10 and 11 how
to perform the projection operation using a projection matrix P. To obtain the projec-
tion matrix, we require to defi ne a desired projection direction d . The vector d
belongs to the null space of P. Since we are dealing with a 2 - D DAG, matrix P is a
row vector and d is a column vector.

 A valid projection direction must satisfy the inequality

 s dt ≠ 0. (15.12)

 In the following sections, we will discuss design space explorations for the three
values of s obtained in Eqs. 15.8 – 15.11 .

15.6 Design 1: Design Space Exploration When s = [1 1]t 249

 15.6 DESIGN 1: DESIGN SPACE
EXPLORATION WHEN s = [1 1] t

 The feeding point of input sample t 0 is easily determined from Fig. 15.1 to be p =
[0 0] t . The time value associated with this point is t (p) = 0. Using Eq. 15.3 , we
get s = 0. Applying the scheduling function in Eq. 15.8 to e P and e T , we get

 1 1 1[] =eP (15.13)

 1 1 2[] =eY . (15.14)

 This choice for the timing function implies that both input variables P and Y will be
pipelined. The pipeline direction for the input T fl ows in a southeast direction in Fig.
 15.1 . The pipeline for T is initialized from the top row in the fi gure defi ned by the
line j = m − 1. Thus, the feeding point of t 0 is located at the point p = [− m m] t . The
time value associated with this point is given by

 t m s() .p = − − =2 0 (15.15)

 Thus, the scalar s should be s = − 2 m . The tasks at each stage of the SPA derived in
this section will have a latency of 2 m time steps compared to Design 1.a.

 Figure 15.2 shows how the dependence graph of Fig. 15.1 is transformed to the
DAG associated with s = [1 1] t . The equitemporal planes are shown by the gray lines
and the execution order is indicated by the gray numbers. We note that the variables
 P and Y are pipelined between tasks, while variable T is broadcast among tasks lying
in the same equitemporal planes. Pipelining means that a value produced by a source
task at the end of a time step is used by a destination task at the start of the next
time step. Broadcasting means that a value is made available to all tasks at the start
of a time step.

 There are three simple projection vectors such that all of them satisfy Eq. 15.12
for the scheduling function in Eq. 15.8 .

 The three projection vectors will produce three designs:

 Design a:1 1 0. da
t= [] (15.16)

 Design b:1. 0 1db
t= [] (15.17)

 Design c:1. 1 1dc
t= [] . (15.18)

 Figure 15.2 DAG for Design 1 when n = 10
and m = 4.

y0 y1 y2 y3 y4 y5 y6

t0 t1 t2 t3 t4 t5 t6

t7

t8

t9

p0

p1

p2

p3

j

i

0

1

2

3 4 5 6 7 8 9

250 Chapter 15 Case Study: Pattern Matching

 The corresponding projection matrices could be given by

 Pa
t= []0 1 (15.19)

 Pb
t= []1 0 (15.20)

 Pc
t= 1 1−[] . (15.21)

 Our task design space now allows for three confi gurations for each projection vector
for the chosen timing function. In the following sections, we study the multithreaded
implementations associated with each design option.

 15.6.1 Design 1.a: Using s = [1 1] t and d a = [1 0] t

 A point in the DAG given by the coordinate p = [i j] t will be mapped by the projec-
tion matrix P a into the point

 p P p= =a j. (15.22)

 A DAG corresponding to Design 1.a is shown in Fig. 15.3 . Input T is broadcast to
all nodes or tasks in the graph and word p j of the pattern P is allocated to task T j .
The intermediate output of each task is pipelined to the next task with a higher index
such that the output sample y i is obtained from the rightmost task T m − 1 . DAGconsists
of m tasks and each task is active for n time steps.

 15.6.2 Design 1.b: Using s = [1 1] t and d b = [0 1] t

 A point in the DAG given by the coordinate p = [i j] t will be mapped by the projec-
tion matrix P b into the point

 p P p= =b i. (15.23)

 The projected DAG is shown in Fig. 15.4 . DAG consists of n − m + 1 tasks. Word
 p i of the pattern P is fed to task T 0 and from there, it is pipelined to the other tasks.
The text words t i are broadcast to all tasks. Output y i is obtained from task t i at time
step i and is broadcast to other tasks. Each task is active for m time steps only. Thus,

 Figure 15.3 DAG for Design 1.a when m = 4. 0 1 2 3 y

t

 Figure 15.4 DAG for Design 1.b when
 n = 10 and m = 4.

y

t

0
p

1 2 3 4 5 6

15.6 Design 1: Design Space Exploration When s = [1 1]t 251

the tasks are not well utilized as in Design 1.a. However, we note from the DAG of
Fig. 15.4 that task T 0 is active for the time step 0 to m − 1, and T m is active for the
time period m to 2 m − 1. Thus, these two tasks could be mapped to a single task
without causing any timing confl icts. In fact, all tasks whose index is expressed as

 ′ =i i mmod (15.24)

 can all be mapped to the same node without any timing confl icts. The resulting DAG
after applying the above modulo operations on the array in Fig. 15.4 is shown in
Fig. 15.5 . The DAG now consists of m tasks. The pattern P could be chosen to be
stored in each task or it could circulate among the tasks where initially T i stores the
pattern word p i . We prefer the former option since memory is cheap, while com-
munications between tasks will always be expensive in terms of area, power, and
delay. The text word t i is broadcast on the input bus to all tasks. T i produces outputs
 i , i + m , i + 2m, … at times i , i + m , i + 2m, and so on.

 15.6.3 Design 1.c: Using s = [1 1] t and d c = [1 1] t

 A point in the DAG given by the coordinate p = [i j] t will be mapped by the projec-
tion matrix P c into the point

 p P p= = −c i j. (15.25)

 The resulting tasks are shown in Fig. 15.6 for the case when n = 10 and m = 4, after
adding a fi xed increment to all task indices to ensure nonnegative task index values.
The DAG consists of n tasks where only m of the tasks are active at a given time
step as shown in Fig. 15.7 . At time step i , input text t i is broadcast to all tasks in
DAG. We notice from Fig. 15.7 that at any time step, only m out of the n tasks are
active. To improve task utilization, we need to reduce the number of tasks. An
obvious task allocation scheme could be derived from Fig. 15.7 . In that scheme,
operations involving the pattern word p i are allocated to task T i . In that case, the
DAG in Fig. 15.3 will result.

 Figure 15.5 Reduced DAG for Design 1.b when n = 10 and
 m = 4.

y

t

0
p

1 2 3

 Figure 15.6 Tasks at each SPA stage for Design 1.c.

0
Y

T

1 2 3 4 5 6 7 8 9

252 Chapter 15 Case Study: Pattern Matching

 15.7 DESIGN 2: DESIGN SPACE
EXPLORATION WHEN s = [1 − 1] t

 Figure 15.8 shows how the dependence of Fig. 15.1 is transformed to the DAG
associated with s = [1 1] t . The equitemporal planes are shown by the gray lines and
the execution order is indicated by the gray numbers. We note that the variables P ,
 T , and Y are pipelined between tasks.

 There are three simple projection vectors such that all of them satisfy Eq. 15.12
for the scheduling function. The three projection vectors are

 Design a:2. 1 0da
t= [] (15.26)

 Design b:2 0 1. db
t= [] (15.27)

 Design c:2. 1 1dc
t= −[] . (15.28)

 Our multithreading design space now allows for three confi gurations for each projec-
tion vector for the chosen timing function.

 15.7.1 Design 2.a: Using s = [1 − 1] t and d a = [1 0] t

 The resulting DAG is shown in Fig. 15.9 for the case when n = 10 and m = 4. Input
 T is pipelined between the tasks and task T i is allocated pattern p i . The partial results
for Y are pipelined such that the outputs are obtained from task T 0 .

 Figure 15.7 Task activity at the
different time steps for Design 1.c.

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

Tasks

In
pu

t T
ex

t

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

p0

p1

p2

p3

y0

y1

y2

y3

y4

y5

y6

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

15.8 Design 3: Design Space Exploration When s = [1 0]t 253

 15.7.2 Design 2.b: Using s = [1 − 1] t and d b = [0 1] t

 Using the same treatment as in Design 1.b, the resulting tasks are shown in Fig.
 15.10 for the case when n = 10 and m = 4.

 15.7.3 Design 2.c: Using s = [1 − 1] t and d c = [1 − 1] t

 The tasks are similar to Design 1.c, which, in turn, is similar to Design 1.a.

 15.8 DESIGN 3: DESIGN SPACE
EXPLORATION WHEN s = [1 0] t

 The dependence graph of Fig. 15.1 is transformed to the DAG in Fig. 15.11 , which
is associated with s = [1 0] t . The equitemporal planes are shown by the gray lines
and the execution order is indicated by the gray numbers. We note that the variables
 P and T are pipelined between tasks, while variable Y is broadcast among tasks lying
in the same equitemporal planes.

 There are three simple projection vectors such that all of them satisfy Eq. 15.12
for the scheduling function. The three projection vectors are

 Figure 15.8 DAG for Design 2 when n = 10
and m = 4. y0 y1 y2 y3 y4 y5 y6

t0

t1

t2

t3 t4 t5 t6 t7 t8 t9

p0

p1

p2

p3

j

i

0 1 2 3 4 5 6

7

8

9

J

 Figure 15.9 DAG for Design 2.a. when n = 10 and m = 4.
0y

t
1 2 3

 Figure 15.10 Tasks for Design 2.b.

0

y

t 1 2 3

254 Chapter 15 Case Study: Pattern Matching

 Design a:3. 1 0da
t= [] (15.29)

 Design b:3 1 1. db
t= [] (15.30)

 Design c:3 1 1. .dc
t= −[] (15.31)

 Our multithreading design space now allows for three confi gurations for each projec-
tion vector for the chosen timing function.

 15.8.1 Design 3.a: Using s = [1 0] t and d a = [1 0] t

 The DAG corresponding to Design 3.a is drawn in Fig. 15.12 for the case when
 n = 10 and m = 4. Task T j stores only the value p j , which can be stored in a register
similar to Design 1.a. The outputs of all the tasks must be combined using a reduce
operation.

 These two projection vectors produce the same confi guration as Design 3.a.
However, unlike Design 3.a, each task stores the entire pattern P in the on - chip
memory.

 Figure 15.11 DAG for Design 3 when
 n = 10 and m = 4. y0 y1 y2 y3 y4 y5 y6

p0

p1

p2

p3

j

i

0 1 2 3 4 5 6

t0

t1

t2

t3 t4 t5 t6 t7 t8 t9

 Figure 15.12 DAG for Design 3.a.

0

y

t
1 2 3

 Chapter 16

Case Study: Motion
Estimation for
Video Compression

 16.1 INTRODUCTION

 Motion estimation plays a key role in several applications such as video on demand,
high - defi nition TV (HDTV), and multimedia communications. Motion estimation is
used to remove temporal data redundancy between successive video frames. Video
data compression rate can be improved by estimating the offset information of
objects from one frame to another (motion estimation) and then by encoding only
frame differences with respect to that offset (motion compensation).

 There are several types of motion estimation: pixel based, block based, and
region based, where motion estimation can be done pixel by pixel, block by block,
or region by region, respectively. Block - based motion estimation is the most popular
method due to its simplicity and suitability for hardware implementation. Block -
 based motion estimation is used in MPEG, H.263, H.264/AVC, and other video
compression standards that aim at achieving high video compression ratios at real -
 time speeds, which requires a huge amount of computations. As a result, any effi cient
hardware would require the use of single instruction multiple data stream (SIMD)
processors, which are special - purpose very large - scale integration (VLSI) circuitry
employing a high degree of parallelism while requiring little input/output (I/O) com-
munications. The main design challenge focuses on how to arrive at SIMD processor
architectures that satisfy system - level requirements for a given complex algorithm
with maximum processor utilization and minimum hardware cost.

 There are several block matching algorithms that can be used for motion estima-
tion. Full - search block matching algorithms (FBMAs) are preferred due to their
relative simplicity and low - control overhead. However, the amount of calculations
to be performed per second is prohibitive unless parallel hardware is used. In this
chapter, we discuss a hierarchical design methodology for deriving hierarchical

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

255

256 Chapter 16 Case Study: Motion Estimation for Video Compression

SIMD processor architectures for FBMA, which possess adaptable sampling rates,
adaptable processor complexity, low - memory bandwidth, low I/O pin count, and
high throughput. The hierarchical design allows for trading processor complexity
for data rate and vice versa to match system - level performance requirements. Our
design methodology identifi es the impact of the algorithm parameters on the system
area and time complexities at each level of the design hierarchy. Thus, a designer is
able to judge the effect of each parameter on the area – time complexity for any
hierarchy level.

 16.2 FBMA S

 Figure 16.1 shows the main aspects of motion estimation. An intermediate image
frame is divided into B × B macroblocks. Usually, B = 8 or 16. We choose a system
of coordinates such that the i - axis points to the right and gives the pixel position in
a line, and the j - axis points downward and gives the position of the line in the video

 Figure 16.1 The reference block (gray) and the current block (white) in the current frame. The
extent of the search area and the motion vector is indicated.

H

W

Reference Block

(i, j)

i

j

Search Area

P

PP

P

Reference Frame: t = n – 1 Current Frame: t = n

(i, j)
(i + k, j + l)Current

Block

Best MatchingBlock

Motion Vector (k, l)

Current
Block

16.3 Data Buffering Requirements 257

frame. In a sequence of frames, the current frame is predicted from a previous frame,
known as the reference frame. The block to be matched in the current frame is
referred to as the current block. The current block is compared with other reference
blocks in the reference frame using a search area (window) with size
(2 P + B) × (2 P + B), where typically, P = 8 or 16 pixels. Once a good match is
found, the difference information is coded along with a motion vector that describes
the offset of the best match with respect to the block being encoded.

 The full - search algorithm is generally preferred for motion estimation since it
is simple, although it requires a prohibitive amount of computations. The required
number of operations per second can be calculated as follows: (1) the number of
blocks per frame is (W / B) × (H / B), where W and H are the frame width and height
in pixels, respectively; (2) the number of match operations to be performed for each
block is(2 P + 1) 2 ; (3) the number of point operations per match operation is B 2 ; and
(4) frame rate is f frames per second. Thus, the number of operations per second is
(W / B) × (H / B) × (2 P + 1) 2 × B 2 × f = W × H × (2 P + 1) 2 × f . For example, consider
a video transmission with parameters: W = 720 pixels, H = 576 pixels, B = 16,
 P = 8, and f = 30 frames/second. Such moderate settings require 3.6 billion opera-
tions each second.

 16.3 DATA BUFFERING REQUIREMENTS

 Due to the raster scan nature of the arriving frames, buffering will always be required
whether to store incoming lines or to store intermediate results. Thus, no matter
which approach is taken, output latency will always be encountered. We choose to
buffer incoming data since this will result in separation of major buffer and hardware
processing space. This will also limit the amount of chip I/O since all intermediate
data will be fed directly to neighboring processing elements (PEs) without having
to access distant memory modules. Figure 16.2 shows a shift - register buffer arrange-
ment to simultaneously access all the 2 P + 1 pixels of the search area that lie in one
column (fi xed i). Each shift - register buffer accepts incoming data through a tristate

 Figure 16.2 Shift - register buffer arrangement to simultaneously access all 2 P + 1 pixels of the
search area that lie on one column.

Line i – P

...

Line i

Line i – 1

Input pixel stream
from reference frame

Line i + 1

...

Line i + P - 1

Line i + P

258 Chapter 16 Case Study: Motion Estimation for Video Compression

buffer that is controlled by the select signal from the system controller. The number
of shift - register buffers required will be 2 P only. The length of each shift register is
equal to the frame width W .

 A similar arrangement could be employed for the current frame to simultane-
ously obtain all the pixels of the current block that lie on one column. The number
of shift - register buffers required in that case will be B − 1 only.

 16.4 FORMULATION OF THE FBMA

 The motion vector v associated with the current block c (i , j) is the displacement
vector v (i , j) = [k * l *] t , which minimizes the sum of absolute differences, SAD
(i , j , k , l), given by

 SAD(, , ,)
0

1

0

1

i j k l c i m j n r i k m j l n
n

B

m

B

= + + − + + + +
=

−

=

−

∑∑ (,) (,) , (16.1)

where c (i + m , j + n) is the pixel intensity (luminance value) in the current block
with coordinates (i , j); r (i + k + m , j + l + n) is the pixel intensity in the reference
block with coordinates (i + k , j + l).(k , l) is a relative displacement between the
reference block and the current block in the search area (as shown in Fig. 16.1),
and (k * , l *) is the optimum relative displacement. The ranges of the indices i , j , k ,
and l are

i B B W B B

j B B H B B

k k k

= −
= −
=

0 2 1

0 2 1

, , , , (/)

, , , , (/)

,min min

�
�

++

+=
1

1

, ,

, , , ,
max

min min max

�
�

k

l l l l

where

k i P

k i P W B

l j P

l j

min

max

min

max

max(,)

min(,)

max(,)

min(

= −
= + −
= −
= +

0

0

P H B,).−

 The expressions above ensure valid bounds near the edges of the frame. Thus, the
displacement vector v (i , j) can be expressed by

v(,) []

min[(, , ,)].

* *i j k l

i j k l

t

k l

=
=

,
SAD (16.2)

 Full - search motion estimation is a highly regular iterative algorithm with several
embedded loops to refl ect a hierarchical structure. We will make use of the embed-
ded loop structure in what follows to illustrate a SIMD processor architecture that
could be developed for each level of the hierarchy.

16.5 Hierarchical Formulation of Motion Estimation 259

 16.5 HIERARCHICAL FORMULATION OF
MOTION ESTIMATION

 There are several complications associated with motion estimation. First, the algo-
rithm operations are not homogeneous, viz, subtraction, absolute value calculation,
and minimum search. Second, a pixel is used more than once for several adjacent
reference blocks. Third, a current block requires data from adjacent blocks around it.
All these complications indicate that a hierarchical design methodology must be
employed; hardware control must be considered during the design process; and exten-
sive buffering must be used. Our strategy is to express Eq. 16.1 by a progressive set
of hierarchical descriptions of the operations to be performed. The goal is to explore
effi cient parallel hardware architectures for each description at each hierarchy level.
Figure 16.3 shows the (2 P + 1)2 SAD values associated with a particular current
block for a certain search area. Each SAD value is obtained at a different relative shift
pair (k , l) between blocks c and r . The fi gure assumes P = 3 for simplicity, and the
black circles indicate the minimum SAD value of each row. Figure 16.4 is a block
diagram for the hierarchical decomposition of the full - search motion estimation
hardware. The functions of each hierarchy level are described in the following
sections.

 Figure 16.3 Different SAD values obtained due to the
different k , l relative shifts between blocks c and r for P = 3. k

l

 Figure 16.4 A block diagram for the proposed hierarchical decomposition of the full - search motion
estimation hardware. The thick output arrows from the blocks at hierarchy level 3 indicate 2 P + 1
outputs.

SAD
i = –P

SAD
i = 0

SAD
i = P

1-D
B–1

1-D
0

H-min
l = –P

H-min
l = P

H-min
l = 0

V-min

Hierarchy
Level 3

Hierarchy
Level 2

Hierarchy
Level 1

Hierarchy
Level 0

v(i, j)

260 Chapter 16 Case Study: Motion Estimation for Video Compression

 16.5.1 Hierarchy Level 3 (Leftmost Level)

 Referring to Fig. 16.4 , blocks in hierarchy level 3 are divided into 2 P + 1 groups.
Each group contains B one - dimensional (1 - D) blocks as shown. All outputs from
one group are fed to one block of the next level in the hierarchy. Each group is
associated with a particular relative vertical shift l between blocks c and r . Each 1 - D
block of a group corresponds to one row of blocks c and r and produces 2 P + 1
SAD values (one at a time). The output of each 1 - D block is given by the
expression

 D i j k l n c i m j n r i k m j l n
m

B

(, , , ,) (,) (,) .= + + − + + + +
=

−

∑
0

1

 (16.3)

 16.5.2 Hierarchy Level 2

 Referring to Fig. 16.4 , each block at hierarchy level 2 produces 2 P + 1 SAD values
(at different time instances but on a single output line) that are associated with a
particular relative vertical shift l between blocks c and r . Each output corresponds
to a particular relative horizontal shift k between blocks c and r and is represented
by one circle in Fig. 16.3 . The output from a SAD block associated with a particular
relative shift pair (k , l) can be written as

 SAD(, , ,) (, , , ,),i j k l D i j k l n
n

B

=
=

−

∑
0

1

 (16.4)

where D (i , j , k , l , m) represents an output of a 1 - D block from hierarchy level 3.

 16.5.3 Hierarchy Level 1

 Referring to Fig. 16.4 , each block at hierarchy level 1 produces the minimum SAD
value H - min(i , j , l) for one row in Fig. 16.3 corresponding to a relative vertical shift
 l between blocks c and r . The output of each H - min block can be written as

 H i j l i j k l
k

− =min(, ,) min[(, , ,)],SAD (16.5)

where min is the function that selects the minimum of 2 P + 1 values and SAD
(i , j , k , l) represents an output of a SAD block from hierarchy level 2.

 16.5.4 Hierarchy Level 0 (Rightmost Level)

 Referring to Fig. 16.4 , level 0 of the hierarchy produces the motion vector v (i , j) by
selecting the minimum SAD value from among a set of minimum values, H - min
(i , j , l), which are indicated by the black circles in Fig. 16.3 . The output of the V - min
block corresponds to the output in Eq. 16.1 and can be written as

16.6 Hardware Design of the Hierarchy Blocks 261

 v(,) min [min(, ,)],i j V H i j ll= − − (16.6)

where V - min is the function that selects the minimum of 2 P + 1 values and H - min
(i , j , l) represents an output of an H - min block from hierarchy level 1.

 16.6 HARDWARE DESIGN OF THE HIERARCHY BLOCKS

 In this section, we derive the hardware required to implement the different functional
blocks in the hierarchical description of the algorithm shown in Fig. 16.4 . We start
with the leftmost level since the timing of the outputs of this level dictates the input
timing of the blocks at the next higher level.

 16.6.1 Hierarchy Level 3 Hardware Design

 Level 3 of the hierarchy is probably the most important one since the hardware that
implements it will have the most impact on the timing and hardware resource
requirements. The blocks at this level implement 1 - D SAD operations as described
by Eq. 16.3 . To study the data dependency in this equation, we write a 1 - D SAD
calculation equation in the general form

 D x c y r x y
y

B

() | () () |,= − +
=

−

∑
0

1

 (16.7)

where D (x) represents the absolute difference calculation when the 1 - D current block
 c is being compared to a reference 1 - D block r that is shifted by x positions. The
dependence graph of the above equation is shown in Fig. 16.5 for B = 3, P = 3, and
 W = 15.

 Output variable D (x) is represented by vertical lines so that each vertical line
corresponds to a particular instance of D . As an example, output variable instance
 D 1 is represented by the line x = 1. Similarly, input variable c (y) is represented by
horizontal lines. Again, as an example, input variable instance c 3 is represented by
the line y = 3. Also, input variable r (x , y) is represented by diagonal lines. As an
example, input variable instance r 3 is represented by the line x + y = 3.

 Data Scheduling

 Assigning time values to the nodes of the dependence graph in Fig. 16.5 transforms
the dependence graph to a directed acyclic graph (DAG) as discussed in Chapters
 10 and 11 . More specifi cally, the DAG can be thought of as a serial – parallel algo-
rithm (SPA) where the parallel tasks could be implemented using a thread pool or
parallel processors for software or hardware implementations, respectively. The dif-
ferent stages of the SPA are accomplished using barriers or clocks for software or
hardware implementations, respectively. There are several possible DAGs that could
be obtained from the same dependence graph. This carries implications as which
variables to pipeline and which to broadcast among the threads or processors. The

262 Chapter 16 Case Study: Motion Estimation for Video Compression

assignment of time values must take into consideration any input or output data
timing restrictions. A simple but very useful timing function is an affi ne scheduling
function of the form

 t s() ,p sp= − (16.8)

where the function t (p) associates a time value t to a point p in the dependence
graph. The row vector s is the scheduling vector and s is an integer. A valid schedul-
ing function assigns a time index value to a point p . Such affi ne scheduling function
must satisfy several conditions in order to be a valid scheduling function as explained
below. Since all points in the DAG must have nonnegative time index values, we
must have

 s = 0. (16.9)

 Furthermore, since the extreme point p = (− 3, 3) is in the DAG, we must have

 s s2 1≥ , (16.10)

where s 1 and s 2 are the two components of the scheduling vector s .
 If we decide to broadcast a certain variable whose nullvector in the DAG is e ,

then we must have

 se = 0. (16.11)

 Figure 16.5 Dependence
graph for the 1 - D absolute
difference calculation for B = 3,
 P = 3, and W = 15. Circles
represent operations to be
performed.

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

r0 r1 r2 r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

y

x
Current
Block 0

D–3 D–2D–1 D0 D1 D2 D3

Current
Block 1

Current
Block 2

Current
Block 3

Current
Block 4

16.6 Hardware Design of the Hierarchy Blocks 263

 On the other hand, to pipeline a certain variable whose nullvector in the DAG is e ,
we must ensure the following inequality:

 se ≠ 0. (16.12)

 It is a good idea to pipeline the algorithm ’ s output variables since this speeds up
the system timing. We have one output variable D whose nullvector is e = [0 1] t .
Equation 16.12 indicates that we must have

 s2 0≠ . (16.13)

 Input data timing impacts our choice for a valid scheduling function. We assume the
input data for blocks c and r arrive in a serial fashion; that is, c = c 0 c 1 … c W − 1 and
 r = r 0 r 1 … r W − 1 , where the index of each pixel corresponds to the time index. This
implies that the time difference between adjacent pixels is one time step. Take the
 c instances at the x - axis in Fig. 16.5 characterized by the line whose equation is
 y = 0. Two adjacent pixels, c x and c x + 1 , at points p 1 = (x , 0) and p 2 = (x + 1, 0) arrive
at the time index values x and x + 1, respectively. Applying our scheduling function
to these two points we get

 t s x()p1 1= (16.14)

 t s x() ().p2 1 1= + (16.15)

 Since the time difference t (p 2) − t (p 1) = 1, we must have s 1 = 1. Applying the same
reasoning for the input variable r results in the restriction s 2 = 1. Therefore, our
timing function is now specifi ed as

 t t() [] .p = 1 1 (16.16)

 The resulting DAG is shown in Fig. 16.6 . The arrows indicate the directions of the
fl ow of pipelined data. The equitemporal planes are shown by solid diagonal lines
and the values of the time index are shown by gray numbers. White circles represent
partial results of the SAD operations and black circles represent valid 1 - D SAD
outputs.

 Note that inputs c are pipelined horizontally between computation nodes; inputs
 r are broadcasted along the diagonal lines; and outputs D are pipelined vertically
between the computation nodes. It should be noted that in this case, for any valid
scheduling function, a maximum of three valid 1 - D SAD outputs is available at the
same time. In general, the maximum number of simultaneous valid outputs is
 j (2 P + 1)/ B k , where j . k represents the ceiling function.

 Node Projection

 The projection operation is a many - to - one function that projects several nodes of
the DAG onto a single node in a new DAG. The new DAG is actually a description
of the number of threads or PEs active at each stage of the SPA and it also gives
information as to the required inputs and the resulting outputs of the stage.

264 Chapter 16 Case Study: Motion Estimation for Video Compression

 The projection operation could be implemented using a projection matrix. The
null space of the projection matrix describes the projection vectors associated with
that matrix. We choose a projection vector,

 d = [0 1]t , (16.17)

since this choice leads to the minimum number of tasks while maintaining maximum
speed performance. The resulting tasks associated with each stage of the SPA are
shown in Fig. 16.7 , where each task calculates a 1 - D SAD operation and accumulates
the result.

 The task activities in Fig. 16.7 are shown in Table 16.1 . Notice that the 1 - D
SAD outputs associated with a given block are obtained consecutively and require
2 P + 1 time steps. We also observe that the maximum number of 1 - D SAD outputs
associated with different blocks is (2 P + 1)/ B .

 Figure 16.7 Task processing workload details at each SPA stage for implementing 1 - D SAD
calculation for B = 3, P = 3, and W = 15.

D–1

r

0 1 2 3 4 5 6

D2D–2 D1D–3 D0 D3

c

 Figure 16.6 DAG for the
1 - D SAD calculation. White
circles represent partial results of
the operations and black circles
represent valid 1 - D SAD
outputs.

y

x

D–3 D–2D–1 D0 D1 D2 D3

0

1

2

3

4

5

6

7

8

9

10

11 12 13 14

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

r0 r1 r2 r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

Current
Block 0

Current
Block 1

Current
Block 2

Current
Block 3

Current
Block 4

16.6 Hardware Design of the Hierarchy Blocks 265

 16.6.2 Hierarchy Level 2 Hardware Design

 The blocks at this level of the hierarchy implement a sum operation as described by
Eq. 16.4 . We write a SAD calculation equation in the general form

 SAD =
=

−

∑D x
x

B

(),
0

1

 (16.18)

where SAD represents the sum of B 1 - D SAD values that were obtained from the
processor hardware at hierarchy level 3. Since the inputs are obtained at consecutive
time index values, the hardware implementation of such a block is a simple accu-
mulator as shown in Fig. 16.8 ,

 Table 16.1 Task Activities for the 1 - D SAD Vector Processing for B = 3, P = 3, and
 W = 15

 Clock 0 T (0) T (1) T (2) T (3) T (4) T (5) T (6)

 1
 2 D (− 3) D (0)
 3 D (− 2) D (1)
 4 D (− 1) D (2)
 5 D (− 3) D (0) D (3)
 6 D (− 2) D (1)
 7 D (− 1) D (2)
 8 D (− 3) D (0) D(3)
 9 D (− 2) D (1)

 10 D (− 1) D (2)
 11 D (− 3) D (0) D (3)
 12 D (− 2) D (1)
 13 D (− 1) D (2)
 14 D (0) D (3)

 Figure 16.8 Task processing workload details at
each SPA stage of the SAD blocks at hierarchy level 2
in Fig. 16.4 .

SAD

D(–P)

s

Accumulator

Register
clear

clock

D(0)

s

D(P)

s

......

266 Chapter 16 Case Study: Motion Estimation for Video Compression

 16.6.3 Hierarchy Level 1 Hardware Design

 Referring to Fig. 16.4 , each block at this level of the hierarchy produces the minimum
SAD value H - min(i , j , l) corresponding to one row in Fig. 16.3 for a relative vertical
shift of value l between blocks c and r . Each row has 2 P + 1 SAD values, and the
minimum value is indicated by a black circle.

 16.6.4 Hierarchy Level 0 Hardware Design

 Referring to Fig. 16.4 , block V - min at this level of the hierarchy produces the motion
vector estimation value v (i , j), which is the minimum value of the black circles in
Fig. 16.3 . As all the H - min output values are produced at the same time, the V - min
block must select the minimum value of the 2 P + 1 results in one time step. If this
is not feasible, the outputs of the H - min blocks could be retimed using retiming
buffers.

 Chapter 17

Case Study: Multiplication
over GF (2 m)

 17.1 INTRODUCTION

 There are many excellent books on applied cryptography that explain the ideas
discussed in this chapter such as fi nite Galois fi elds and the basic mathematical
operations performed in them [101, 102] . It is assumed that the reader of this chapter
is already familiar with these concepts and wants to know how the algorithms could
be implemented in parallel hardware. A number of cryptographic algorithms (e.g.,
the Advanced Encryption Standard [AES], elliptic curve cryptography [ECC]) rely
heavily on GF(2 m) multiplication [103] . All these algorithms require fast, inexpen-
sive, and secure implementation of multiplication over GF(2 m). Therefore, the
design of effi cient high - speed algo rithms and hardware architectures for computing
GF(2 m) multiplication are highly required and considered. Hardware implementation
techniques for GF(2 m) multiplier include traditional techniques [104, 105] and pro-
cessor array (PA) techniques [106 – 108] . Traditional multipliers are not attractive
since their hardware structures are irregular and could be quite different for different
 m values. Moreover, as m gets larger, the propagation delay increases, which causes
unavoidable performance deterioration. On the contrary, PA multipliers do not
suffer from the above prob lems. They have regular structures consisting of a
number of replicated basic cells. Furthermore, since each basic cell is only connected
to its neighboring cells, signals propagate at a high clock speed [107] . In 1984, Yeh
et al. [109] proposed a parallel - in parallel - out PA architecture to calculate AB + C
in a general fi eld GF(2 m). Since then, many PA multipliers have been proposed
 [106 – 108] . The main idea of this chapter is the PA design space exploration for
GF(2 m) - based multipliers. This exploration results in different PA confi gurations.
Among these confi gura tions, we choose the fastest one to suit real - time applica-
tions. We made use of National Institute for Standards and Technology (NIST) -
 recommended irreducible polynomials, which makes our design secure and more
suitable for cryptographic applications.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

267

268 Chapter 17 Case Study: Multiplication over GF(2m)

 17.2 THE MULTIPLICATION ALGORITHM IN GF (2 m)

 Let A (x) and B (x) be two fi eld elements in the fi nite fi eld GF(2 m), where m is an
integer that typically has the values 163, 233, 283, 409, or 571. The two elements
 A (x) and B (x) can be written as the order m − 1 polynomials

 A x a i xi

i

m

() ()=
=

−

∑
0

1

 (17.1)

 B x b i xi

i

m

() () ,=
=

−

∑
0

1

 (17.2)

where a (i) and b (i) could have the values 0 or 1.
 The elements of the fi nite fi eld are generated by a primitive polynomial R (x) of

order m ,

 R x r i xi

i

m

() () ,=
=
∑

0

 (17.3)

where r (m) must have the value r (m) = 1, and we can express the above equation
as the sum

 R x x r i x x f xm i

i

m
m() () (),= + = +

=

−

∑
0

1

 (17.4)

where f (x) is a polynomial of order m − 1.
 The product of the fi eld elements A (x) and B (x) is written as

C x A x B x R x

a i b j x R xi j

j

m

i

m

() () () mod ()

() () mod ().

=

= +

=

−

=

−

∑∑
0

1

0

1 (17.5)

 We can evaluate the above double summation as

C x b m x A x b m x A x

b xA x b A x R

m m() () () () ()

() () () () mod

= − + −
+ +

− −1 2

1 0

1 2 �
()

[[[() ()] () ()]

() ()] () () mo

x

b m A x x b m A x x

b A x x b A x

= − + − +
+ +
� �1 2

1 0 d ().R x

 (17.6)

 The above equation can be evaluated using the so - called “ left - to - right shift - and - add ”
fi eld multiplication method [110] . This algorithm is shown as follows:

17.2 The Multiplication Algorithm in GF(2m) 269

 Algorithm =17.1 Left - to - right shift - and - add fi eld multiplication

 Require: Input: Binary polynomials A (x) and B (x) of degree at most m − 1 and R(x)
of degree m

 1: C (x) = 0

 2: for i = m − 1 : 0 do

 3: C (x) = xC (x) mod R (x)

 4: C (x) = C (x) + b i A (x)

 5: end for

 6: RETURN C (x) // = A (x) B (x) mod R (x)

 Few things must be noted in Algorithm 17.1:

 1. The left shift operation xC (x) in line 3 could result in a polynomial larger than
 R (x), and hence the modulo operation in that step might be necessary. Specifi cally,
if the coeffi cient c (m − 1) = 1, then we must subtract R (x) from the polynomial
 xC (x).

 2. Bitwise add or subtract in GF(2) is equivalent to a bitwise exclusive OR (XOR)
operation.

 3. The addition operation in line 4 is a bitwise XOR operation over the m terms
of the polynomials.

 4. From Eq. 17.4 , we can write line 3 as

xC x R x c m c i x R x

c m f x r i x

i

i

m

i

() mod () () () mod ()

() () ()

= − +

= − +

=

−

∑1

1

0

1

ii

m

=

−

∑
0

1

.

(17.7)

 The above equation ensures that the modulo operation, which is accomplished by
adding f (x), only takes place when c (m − 1) = 1.

 Algorithm 17.1 can be modifi ed to express it as a regular iterative algorithm
(RIA). This is done by explicitly writing the iterations required at the bit level.
Algorithm 17.2 is the bit - level implementation of Algorithm 17.1.

 Algorithm 17.2 Bit - level left - to - right shift - and - add fi eld multiplication. ∧ repre-
sents logical AND operation and ⊕ represents logical XOR operation

 Require:

 1: Binary polynomials A (x) and B (x) of degree at most m − 1 and R (x) of
degree m

 2: for j = 0 : m − 1 do

 3: c (0, j) = 0

270 Chapter 17 Case Study: Multiplication over GF(2m)

 4: end for

 5: for i = 1 : m − 1 do

 6: c (i , 0) = [a (0) ∧ b (m − i)] ⊕ c (i − 1, m − 1)

 7: for j = 1 : m − 1 do

 8: c (i , j) = [a (j) ∧ b (m − 1 − i)] ⊕ c (i − 1, j − 1) ⊕ [c (i − 1, m − 1) ∧ r (j)]

 9: end for

 10: end for

 11: RETURN C (x) // = A (x) B (x) mod R (x)

 Note that the index values of iterations in line 5 are increasing, while in Algorithm
17.1 the index in line 2 is decreasing. However, in both algorithms, the order of the
operations is still preserved.

 17.3 EXPRESSING FIELD MULTIPLICATION AS A N RIA

 The basic operation in Algorithm 17.2 is the iterative expression

 c i j a j b m i c i j c i m r j(,) [() ()] (,) [(,) ()],= ∧ − ⊕ − − ⊕ − − ∧1 1 1 1 (17.8)

with 0 ≤ i < m and 0 ≤ j < m . The initial conditions for the above iterations are

 c j j m(,)0 0 0= ≤ < (17.9)

 c i a b m i c i m(,) [() ()] (,).0 0 1 1= ∧ − ⊕ − − (17.10)

 The fi nal result is given by

 C x c m j x j

j

m

() (,) .=
=

−

∑
0

1

 (17.11)

 17.4 FIELD MULTIPLICATION DEPENDENCE GRAPH

 The iterations in Eq. 17.8 are defi ned over a two - dimensional (2 - D) computation
domain D with the two indices i and j with the boundaries defi ned in Eq. 17.8 . Since
the dimensionality of D is low, it is preferable to draw a dependence graph for the
data and use the graphic and combinational geometric analysis tools discussed in
Chapters 10 and 11 . Figure 17.1 shows the dependence graph for the left - to - right
shift - and - add fi eld multiplication algorithm for m = 5. The algorithm has three input
variables a, b and r and one output variable c .

 Input variables a (j) and r (j) will both map to horizontal lines. For example,
input sample a (3) is associated with the line whose equation is i = 3. Also, a (j) or
 r (j) are fed to the system at one of two points (0, j) or (m − 1, j). We choose to feed
the variable at the former point.

 Input variable b (m − i) maps to vertical lines such that input instance b (3) maps
to the line equation i = m − 3. Since in our case m = 5, instance b (3) maps to the

17.5 Data Scheduling 271

line whose equation is i = 2 as shown in the fi gure. Also, b (m − i) is fed to the system
at one of two points (i , 0) or (i , m − 1). We choose to feed the variable at the former
point.

 Output variable c (i , j) is represented by point p = [i j] t in D . Notice that output
instances c (i − 1, j − 1) are used as inputs to calculate outputs c (i , j). This is indicated
by the diagonal lines connecting each node to its southwest neighbor.

 17.5 DATA SCHEDULING

 Pipelining or broadcasting the variables of an algorithm is determined by the choice
of a timing function that assigns a time value to each node in the dependence graph.
A simple but useful timing function is an affi ne scheduling function of the form

 t s()p sp= − , (17.12)

where the function t (p) associates a time value t to a point p in the dependence
graph. The row vector s = [s 1 s 2] is the scheduling vector and s is an integer. Since
all points in D have nonnegative indices, the value of scalar s must be 0.

 Figure 17.1 Dependence graph for the left - to - right shift - and - add fi eld multiplication algorithm for
 m = 5.

a(0), r(0)

a(1), r(1)

a(2), r(2)

a(3), r(3)

a(4), r(4)

0

0

0

0

0

0 0 0 0

c(4,4)c(3,4)c(2,4)c(1,4)c(0,4)

c(4,3)c(3,3)c(2,3)c(1,3)c(0,3)

c(4,2)c(3,2)c(2,2)c(1,2)c(0,2)

c(4,1)c(3,1)c(2,1)c(1,1)c(0,1)

c(4,0)c(3,0)c(2,0)c(1,0)c(0,0)

b(0)b(4) b(3) b(1)b(2)

i

j

c(3,4)c(2,4)c(1,4)c(0,4)

272 Chapter 17 Case Study: Multiplication over GF(2m)

 Assigning time values to the nodes of the dependence graph in transforms the
dependence graph to a directed acyclic graph (DAG) as was discussed in Chapters
 10 and 11 . More specifi cally, the DAG can be thought of as a serial – parallel algo-
rithm (SPA) where the parallel tasks could be implemented using a thread pool or
parallel processors for software or hardware implementations, respectively. The dif-
ferent stages of the SPA are accomplished using barriers or clocks for software or
hardware implementations, respectively.

 Input data timing restricts the space of valid scheduling functions. Let us assume
that input variable b (i) arrives at different adjacent time steps. Referring to Eq. 17.8 ,
if b (m − i) arrives at iteration i corresponding to time t , then b (m − i − 1) arrives at
iteration i + 1 corresponding to time t + 1. The bits b (m − i) and b (m − i − 1) arrive
at points p 1 = (i , 0) and p 2 = (i + 1, 0) at the time steps t (p 1) and t (p 2) , respectively.
By applying our scheduling function in Eq. 17.12 to these two points, we get

 t s s
i

is()p1 1 2 1
0

= []⎡
⎣⎢

⎤
⎦⎥

= (17.13)

 t s s
i

i s() () .p2 1 2 1

1

0
1= [] +⎡

⎣⎢
⎤
⎦⎥

= + (17.14)

 As the time difference t (p 2) − t (p 2) = 1 , we must have s 1 = 1. Thus, our timing func-
tion is given by

 s = []1 2s . (17.15)

 This leaves s 2 unknown and we need another restriction or specifi cation for the
timing function.

 Equation 17.8 indicates that the output c (i , j) depends on the previous output
value c (i − 1, j − 1). These two output samples are associated with points p 2 = (i , j)
and p 1 = (i − 1, j − 1). Thus, our timing function must ensure the following
inequality

 t t() ().p p1 2< (17.16)

 Thus, we get the following inequality:

 s2 1> − . (17.17)

 Similarly from Eq. 17.8 , we observe that the output c (i , j) depends on the previous
output value c (i − 1, m − 1). That previous value is obtained at from the point
 p = (i − 1, m − 1). Thus, we can write the following inequality:

 t i m t i j[(,)] [(,)].p p− − <1 1 (17.18)

 The above inequality becomes

 () .m j s− − <1 12 (17.19)

 Hence, Eqs. 17.17 and 17.19 could be merged as

 − < <
− −

≤ <1
1

1
02s

m j
j m. (17.20)

17.6 DAG Node Projection 273

 The worst case in the above inequality is when j = 0; thus, we can write

 − < <
−

1
1

1
2s

m
. (17.21)

 The above inequality can be written as

 − ≤ ≤
α
β

s
m

2
1

, (17.22)

where α and β are positive integers and α < β .
 From the above inequality, we have three reasonable solutions to s :

 s1 1 0= [] (17.23)

 s2
11= []m (17.24)

 s3 1= −[].α
β (17.25)

 Timing function s 1 implies that all inputs a (j) and r (j) must be supplied
simultaneously.

 The timing functions s 2 and s 3 result in only one thread operating at a given
time. To prove this, suppose that we have two points (i , j) and (i ′ , j ′) mapped to the
same time value. Using the scheduling function in Eq. 17.24 , we can write

 i
j

m
i

j

m
j m+ = ′ + ′ ≤ <0 . (17.26)

 The only solution to for arbitrary values of i , j and i ′ , j ′ is when i = i ′ and j = j ′ ,
which proves that only one node is active at the same time step. A similar argument
is also valid for Eq. 17.25 .

 As a consequence of the above discussion, we consider only the timing function
 s 1 . Figure 17.2 is the DAG for the left - to - right shift - and - add fi eld multiplication
algorithm. The arrows indicate pipelined signals that move from the source node to
the destination node every time step. The lines without arrows indicate broadcast
signals that are distributed to all the nodes within the same time step. Note the time
step values indicated by the bold numbers at the top of the diagrams. All nodes
indexed (0, j) perform their operations at time step 0 and so on.

 17.6 DAG NODE PROJECTION

 The projection operation is a many - to - one function that maps several nodes of
the DAG onto a single node, which constitutes the resulting DAG. Thus, several
operations in the DAG are mapped to a single thread. The projection operation
allows thread or hardware economy by multiplexing several operations in the
DAG on a single node in DAG. Chapters 10 and 11 explained how to perform the
projection operation using a projection matrix P. To obtain the projection matrix,
we need to defi ne a desired projection direction d . The vector d belongs to the null -
space of P. Since we are dealing with a 2 - D DAG, matrix P is a row vector and d
is a column vector. A valid projection direction d must satisfy the inequality

274 Chapter 17 Case Study: Multiplication over GF(2m)

 sd = 0. (17.27)

 There are many projection vectors that satisfy Eq. 17.27 for the scheduling function
 s 1 . For simplicity, we choose three of them:

 d1 1 0= []t (17.28)

 d2 1 1= []t (17.29)

 d3 1 1= −[] .t (17.30)

 The corresponding projection matrices are given by

 P1 0 1= [] (17.31)

 P2 1 1= −[] (17.32)

 P3 1 1= []. (17.33)

 Our multithreading design space now allows for three confi gurations, one for each
projection vector.

a(0), r(0)

a(1), r(1)

a(2), r(2)

a(3), r(3)

a(4), r(4)

0

0

0

0

0

0 0 0 0

c(4,4)c(3,4)c(2,4)c(1,4)c(0,4)

c(4,3)c(3,3)c(2,3)c(1,3)c(0,3)

c(4,2)c(3,2)c(2,2)c(1,2)c(0,2)

c(4,1)c(3,1)c(2,1)c(1,1)c(0,1)

c(4,0)c(3,0)c(2,0)c(1,0)c(0,0)

b(0)b(4) b(3) b(1)b(2)

i

j

c(3,4)c(2,4)c(1,4)c(0,4)

0 1 2 3 4

 Figure 17.2 Directed acyclic graph (DAG) for the left - to - right shift - and - add fi eld multiplication
algorithm for m = 5 and s 1 = [1 0].

17.8 Design 2: Using d2 = [1 1]t 275

 17.7 DESIGN 1: USING d 1 = [1 0] t

 A point in the dependence graph p = [i j] t will be mapped by the projection matrix
 P 1 = [0 1] onto the point

 �p P p= =1 j. (17.34)

 The DAG corresponding to the projection matrix P 1 is shown in Fig. 17.3 . DAG
consists of m nodes or tasks, and each task is active for m time steps. The algorithm
requires m = 5 clock cycles to complete. Notice that signal b (m − 1 − i) is broadcast
to all nodes as indicated by the line to the left of the processor array. Notice also
that the output of c (i , j) associated with task T j is sent to the next task T j + 1 at the end
of time step i . At the end of time step i , all outputs c (i , 0), c (i , 1), … , c (i , m − 1)
are obtained from tasks T 0 , T 1 , … T m − 1, respectively.

 17.8 DESIGN 2: USING d 2 = [1 1] t

 A point in the DAG p = [i j] t will be mapped by the projection matrix P 2 = [1 − 1]
onto the point

 �p P p= = −2 i j. (17.35)

 To ensure that the index of the points in �D is nonnegative, we will add a fi xed value
 m − 1 to all the points. Thus, a point in the dependence graph p = [i j] t will be
mapped by the projection matrix P 2 = [1 − 1] onto the point

 �p P p= + − = − + −2 1 1m i j m . (17.36)

 Figure 17.3 Task processing workload details at
each SPA stage for the left - to - right shift - and - add fi eld
multiplication algorithm for m = 5 and d 1 = [1 0] t . The
signals c (i , 4 − i) and b (4 − i) are shown at time step i ,
where 0 ≤ i < 5.

a(0), r(0)

a(1), r(1)

a(2), r(2)

a(3), r(3)

a(4), r(4) 4

c(i,4)

b(4–i)

3

2

1

0

0

c(i,4)

c(i,3)

c(i,2)

c(i,1)

c(i,0)

276 Chapter 17 Case Study: Multiplication over GF(2m)

 The DAG corresponding to the projection matrix P 2 is shown in Fig. 17.4 . The DAG
consists of 2 m − 1 nodes.

 Although the DAG consists of 2 m − 1 nodes, most of them are not active all
the time. For example, task T 0 and T 8 are active for one time step only. T 1 and T 7
are active for two time steps only. Figure 17.5 show the node activities at the dif-
ferent time steps. In general, we note that T i and T m + i are active at nonoverlapping
time steps. Therefore, we could map tasks T i and T j to T k if the indices satisfy the
equation

 k i j m= − mod . (17.37)

 Through this artifact, we are able to reduce the number of nodes and ensure that
each task is active all the time. The reduced DAG is shown in Fig. 17.6 . Notice that
signal b (m − 1 − i) is broadcast to all tasks. Notice also that the output of c (i , j) is
obtained at the end of the i th time step and is obtained from T k , where k is given by

 k i j m m= − + −1 mod . (17.38)

 At the end of time step i , all outputs c (i , 0), c (i , 1), … c(i , m − 1) are obtained from
tasks T 0 , T 1 , … T m − 1 , respectively.

 Figure 17.4 Task processing workload details at each SPA stage for the left - to - right shift - and - add
fi eld multiplication algorithm for m = 5 and d 2 = [1 1] t .

a, r

4

c(i,m – 1)

b(4 – i)

3210 8765

a, r a, r a, r a, r a, r a, r a, r a, r

 Figure 17.5 Task activity for the left - to - right shift - and - add fi eld multiplication algorithm for m = 5
and d 2 = [1 1] t .

43210 8765
Time
Step 0

43210 8765
Time
Step 1

43210 8765
Time
Step 2

43210 8765
Time
Step 3

43210 8765
Time
Step 4

17.10 Applications of Finite Field Multipliers 277

 17.9 DESIGN 3: USING d 3 = [1 − 1] t

 A point p = [i j] t in DAG will be mapped to a point �p in DAG given by

 �p P p= = +3 i j. (17.39)

 The resulting DAG corresponding to the projection matrix P 3 will consist of 2 m − 1
nodes or tasks. Similar to design 2, each task is only active for m time steps at most.
Therefore, we could map task T i and T j to T k if the indices satisfy the equation

 k i j m= + mod . (17.40)

 Through this artifact, we are able to reduce the number of nodes and ensure that
each node is active all the time. Before we proceed further, we need to observe more
closely the diagonal lines transferring the output of T i − 1, j − 1 to T i , j . After mapping, we
see that communication is accomplished between tasks according to the relations

 T T T T T T0 2 4 1 3 0→ → → → → →�.

 17.10 APPLICATIONS OF FINITE FIELD MULTIPLIERS

 The fi nite fi eld multipliers we developed in the previous sections can be used to an
advantage in cryptography. For example, elliptic curve encryption techniques require
the following fi nite fi eld operations:

 1. Addition, which is simply performed by a bank of XOR gates;.

 2. Multiplication, which was discussed before.

 3. Squaring is a special case of multiplication.

 C x A x A x() () ()= (17.41)

 Specialized and fast hardware structures for fi eld squaring were developed by
the author ’ s research group [111] .

 4. Inversion method based on Fermat ’ s theorem requires m − 1 squaring opera-
tions and m − 2 multiplication operations [112] . Performance can be improved
by using the method proposed by Itoh and Tsujii [112] .

 Figure 17.6 Task processing
workload details at each SPA
stage for the left - to - right
shift - and - add fi eld multiplication
algorithm for m = 5 and d 2 =
[1 1] t .

43210

a, r

c(i,4)

b(4–i)

a, r a, r a, r a, r

 Chapter 18

Case Study: Polynomial
Division over GF (2)

 18.1 INTRODUCTION

 Finite fi eld polynomial division is an operation that is widely used to detect errors
and encode data in digital communication systems [113] , as well as detect errors in
integrated circuits [114, 115] . In digital communications, detecting errors is called
cyclic redundancy check (CRC), which appends bits to the message stream before
transmission. These redundant bits are obtained from the message bits using fi nite
fi eld polynomial division. In digital integrated circuits, detecting errors is known as
built - in self - test (BIST) where a generator produces a pseudorandom vector to be
applied to a circuit under test. A compactor reduces the response of the circuit to a
signature having a small number of bits. Both the generator and the compactor
employ fi nite fi eld polynomial division. The generation of pseudorandom numbers
and polynomial division is usually done using a linear feedback shift register (LSFR).
The operations performed by the LFSR can be done in software or hardware. We
shall explore the different LFSR structures in this chapter.

 Assume the information bits to be processed are represented by a dividend poly-
nomial A . A divisor polynomial B is used to effect the fi nite fi eld polynomial division.
In the following section, we study polynomial division algorithm in more detail.

 18.2 THE POLYNOMIAL DIVISION ALGORITHM

 Assume that the dividend polynomial A of degree n is given by

 A a xi
i

i

n

=
=
∑

0

. (18.1)

 The divisor polynomial of degree m is given by

 B b xi
i

i

m

=
=
∑

0

. (18.2)

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

279

280 Chapter 18 Case Study: Polynomial Division over GF(2)

 The polynomial division operation produces the quotient and remainder polynomials
 Q and R

 Q q xi
i

i

n m

=
=

−

∑
0

 (18.3)

 R r xi
i

i

m

=
=

−

∑
0

1

, (18.4)

where

 A Q B R= + . (18.5)

 The division operation is a series of multiply/subtract iterations such that after each
iteration one coeffi cient of the quotient polynomial is obtained, in descending order.
Also, a partial remainder polynomial having m terms is obtained after each iteration.
At the end of the iterations, all the coeffi cients of Q are determined as well as the
fi nal remainder polynomial R .

 The notation we use in this chapter for the partial remainder polynomials is as
follows:

 • R (i): input partial remainder polynomial at iteration i

 • R (i + 1): resulting partial remainder polynomial at iteration i

 • r j (i): j th coeffi cient of R (i), 0 ≤ j < m

 According to the above defi nitions, can express R (i) explicitly as

 R i r i x i n mj
n m i j

j

m

() () .= ≤ ≤ −− − +

=

−

∑
0

1

0 (18.6)

 We can express the long - division algorithm for polynomials as an iteration using an
LFSR as indicated in Algorithm 18.1.

 Algorithm 18.1 Linear feedback shift register (LFSR) polynomial division
algorithm

 1: // Initialization of partial remainder R and q

 2: q n − m = a n

 3: for j = 0 : m − 1 do

 4: r j (0) = a n − m + j

 5: end for

 6: // Start Iterations

 7: for i = 0 : n − m do

 8: for j = 1 : m − 1 do

 9: r j (i + 1) = r j − 1 (i) + q n − m − i b j − 1

 10: end for

 11: q n − m − i − 1 = r m − 1 (i)

18.3 The LFSR Dependence Graph 281

 12: r 0 (i + 1) = a n − m − i

 13: end for

 14: // Final remainder

 15: for j = 0 : m − 1 do

 16: r j = r j (n − m + 1)

 17: end for

 Note from the algorithm that the most signifi cant coeffi cient of the divisor polyno-
mial B is not used. Instead we use our knowledge of the r m − 1 (i) to directly estimate
the quotient coeffi cient q m − n − i for ensuring that r m (i) = 0.

 18.3 THE LFSR DEPENDENCE GRAPH

 Based on Algorithm 18.1, the dependence graph of Fig. 18.1 is obtained. The gray
circles indicate valid operations such as indicated in line 9 of Algorithm 18.1. The
white circles have zero q inputs, and hence only transfer the northeast input to the
southwest output. In that sense, we note that the inputs a 9 to a 4 become effective

 Figure 18.1 Dependence graph of the LFSR
polynomial division algorithm for the case n = 9 and
 m = 5.

b4

b3

b2

b1

b0

q4

q3

q2

q1

q0

r4

r3

r2

r1

r0

a4

a3

a2

a1

a0

a9

a8

a7

a6

a5

i

j

282 Chapter 18 Case Study: Polynomial Division over GF(2)

only when they arrive at the top line with gray circles. Likewise, the desired outputs
 r 4 to r 0 could be obtained as the outputs of the bottom row with gray circles.

 Detailed explanations of how a dependence graph could be obtained were pre-
sented in Chapters 10 and 11 and by the author elsewhere [86, 100, 116 – 118] . The
dependence graph is two - dimensional (2 - D) since we have two indices, i and j . If
we consider only the gray circles, then the bounds on the indices are 0 ≤ i ≤ n − m = 4
and 0 ≤ j < m = 5. Each node in the algorithm performs the operations indicated in
line 9 of Algorithm 18.1. If we extended the algorithm such that the inputs are fed
from the same side and the outputs are obtained from the same side, then the bounds
of the algorithm indices would be 0 ≤ i ≤ n + m and 0 ≤ j < m .

 Coeffi cient q n − m − i of Q , on line 11 of Algorithm 18.1, is obtained at iteration i .
Hence, this coeffi cient is represented by the horizontal lnes in the fi gure. For
example, the horizontal line i = 3 represents the coeffi cient q n − m − i = q 1 . Similarly, the
line at i = 0 represents q 4 .

 Coeffi cient b j of B , on line 9 of Algorithm 18.1, has an index dependency

 j c= , (18.7)

where c is a specifi c value of the index. For example, b 1 would be represented by
the vertical line j = 1 as shown in the fi gure.

 The partial remainder coeffi cient r j (i + 1), on line 9 of Algorithm 18.1, is
obtained from b j , q n − m − i and r j − 1 (i). This explains the diagonal lines representing the
inputs and outputs for each node.

 18.4 DATA SCHEDULING

 Data scheduling assigns a time index value to any point in the dependence graph of
Fig. 18.1 . We use an affi ne scheduling function to specify the scheduling of the
algorithm tasks. The affi ne scheduling functions are of the form [86]

 t s() ,p sp= − (18.8)

where s = [s 1 s 2] is the scheduling vector and s is an integer.
 Assigning time values to the nodes of the dependence graph transforms the

dependence graph to a directed acyclic graph (DAG) as was discussed in Chapters
 10 and 11 . More specifi cally, the DAG can be thought of as a serial – parallel algo-
rithm (SPA) where the parallel tasks could be implemented using a thread pool or
parallel processors for software or hardware implementations, respectively. The dif-
ferent stages of the SPA are accomplished using barriers or clocks for software or
hardware implementations, respectively.

 Our choice for the scheduling vector is determined by any data input/output
(I/O) requirements. Since the divisor polynomial is typically of low order, we can
store its coeffi cients in memory and only treat A as an input polynomial supplied by
the system generating the data to be compressed. From the fi gure, it appears that
coeffi cient a i of A is supplied to the dependence graph at the rightmost edge at point

 pai n i= −[].0 (18.9)

18.5 DAG Node Projection 283

 From Eqs. 18.8 and 18.9 , the time index value associated with such point is given
by

 t a n i s s i ni() () .= − + ≤ ≤1 0 (18.10)

 Since the time of arrival difference between a i − 1 and a i is 1, we can write

t a t a

s
i i() ()

.
− − =

=
1

1

1

 (18.11)

 Thus, we must have s 1 = 1 in our scheduling function.
 We can explore the possible values of s 2 by observing that the q input, shown

by horizontal lines, is obtained at the left and is used by all the points on the hori-
zontal line. Therefore, time associated with point (i , j) must be larger than or equal
to the time value associated with point (i , j + 1). We can write this as

 1 1
1

2 2s
i

j
s

i

j
[]⎡

⎣⎢
⎤
⎦⎥

≥ []
+

⎡
⎣⎢

⎤
⎦⎥
. (18.12)

 The above equation yields the inequality

 s2 0≤ . (18.13)

 We have another restriction on the value of s 2 . The source of data for points on any
diagonal lines is the a coeffi cients that are supplied at the right. Therefore, time
associated with point (i , j) must be smaller than or equal to the time value associated
with point (i + 1, j + 1). We can write this as

 1 1
1

2 2s
i

j
s

i

j
[]⎡

⎣⎢
⎤
⎦⎥

≤ []
+

⎡
⎣⎢

⎤
⎦⎥
. (18.14)

 The above equation yields the inequality

 s2 1≥ − . (18.15)

 From the above two inequalities, we deduce that the range for s 2 is

 − ≤ ≤1 02s . (18.16)

 There are three possible choices for our scheduling function:

 s1 1 1= −[] (18.17)

 s2 1 0= [] (18.18)

 s3 1 0 5= −[.]. (18.19)

 18.5 DAG NODE PROJECTION

 The projection operation is a many - to - one function that maps several nodes of the
DAG onto a single node. Thus, several operations in the DAG are mapped to a single
node or task. The projection operation allows for software thread economy or

284 Chapter 18 Case Study: Polynomial Division over GF(2)

hardware economy by multiplexing several operations in the DAG on a single thread
or processing element, respectively. For a 2 - D DAG we are able to achieve node
projection by choosing proper projection direction d. The author provided an exten-
sive treatment of the projection operation in [86] and in Chapters 10 and 11 .

 The projection direction d projects a point p in the 2 - D DAG to a point p on a
line such that

 p Pp= , (18.20)

where P is a the projection matrix of dimension 1 × 2, which is in our case a vector
normal to d . A valid projection direction must satisfy the inequality [86, 100,
116 – 118]

 sd ≠ 0. (18.21)

 In the following three sections, we will discuss design space explorations for the
three values of s obtained in Eqs. 18.17 – 18.19 .

 18.6 DESIGN 1: DESIGN SPACE EXPLORATION
WHEN s 1 = [1 − 1]

 Figure 18.2 shows the DAG for the polynomial division algorithm based on our
timing function choice s 1 . The equitemporal planes are the diagonal lines shown as
gray lines on the right of the diagram. The associated time index values are shown
at the right of the diagram. We note from the fi gure that the signals corresponding
to the coeffi cients of B and the estimated q output are all pipelined, as indicated by
the arrows connecting the nodes. However, the estimated partial results for Q and
 R are broadcast, as indicated by the diagonal lines without arrows. There are three
simple projection vectors such that all of them satisfy Eq. 18.21 for the scheduling
function in Eq. 18.17 . The three projection vectors will produce three designs:

 Design a1 1 01: : []d a
t= (18.22)

 Design b1 1 11: : []d b
t= − (18.23)

 Design 1 0 11: : [] .c c
td = − (18.24)

 The corresponding projection matrices are

 Design a1 0 11: : []P a = (18.25)

 Design b1: : 1 11P b = [] (18.26)

 Design c1 1 01: : [].P c = (18.27)

 Our design space now allows for three confi gurations for each projection vector for
the chosen timing function. As it turns out, the choice of d 1 b or d 1 c would produce
 n nodes or tasks but only m of them are active at any time step. Through proper
relabeling of the tasks, we would obtain the design corresponding to d 1 a . Therefore,
we consider only the case when s 1 and d 1 a . There will be m tasks that are all active
at each time step. The design will result in the well - known Fibonacci (Type 1) LFSR.
A point in the DAG given by the coordinates p = [i j] t will be mapped by the projec-
tion matrix P 1 a into the point p = P 1 a p . The DAG corresponding to design 1 is shown

18.6 Design 1: Design Space Exploration When s1 = [1 −1] 285

in Fig. 18.3 . There will be m tasks where input coeffi cients of A are fed from the
right and the partial remainders are pipelined among the processors. Coeffi cient b j
of divisor polynomial B is stored in task T j . The task processing details are shown
in Fig. 18.3 b for hardware systolic implementation where D denotes a 1 - bit register
to store the partial output. The input to the LFSR is obtained from a multiplexer
(MUX) so that in the fi rst m time steps the q inputs are all zero.

 Let q i , 0 ≤ i < m , be the present output of task T i . The next state output qi
+ is

given by

 q q i mi i
+

+= ≤ <1 0 . (18.28)

 The above expression is represented by the angled arrows at the top left of Fig. 18.2 .
And we identify the two outputs Q and R and inputs q of the Fibonacci (Type 1)
LFSR as

 Q R a b q b qm m, = ⊕ () ⊕ ⊕ ()− −0 0 1 1� (18.29)

 q
Q R select

select
m =

=
=

⎧
⎨
⎩

,

.

when

when

1

0 0
 (18.30)

 Figure 18.2 Directed acyclic graph (DAG)
for polynomial division algorithm when s 1 =
[1 − 1], n = 9, and m = 5.

b4

b3

b2

b1

b0

q4

q3

q2

q1

q0

r4

r3

r2

r1

r0

a4

a3

a2

a1

a0

a9

a8

a7

a6

a5

i

j

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

Time

286 Chapter 18 Case Study: Polynomial Division over GF(2)

 The above equations determine the operation of the Fibonacci (Type 1) LFSR as
follows:

 1. Clear all the registers.

 2. At time step 0, coeffi cient q 4 is calculated, which is simply a copy of a 9 ,
which is the fi rst bit of the input divisor polynomial.

 3. At time step 1, only one node is active which calculates q 3 .

 4. At time step 2, two nodes are active which calculate q 2 .

 5. This sequence of operations is continued up to time step 5.

 6. At time step 5, coeffi cient r 4 of the remainder polynomial R is obtained.

 7. At time step 6, the select signal is set to 0 to ensure that register D 4 is cleared.
In effect, r 3 is obtained and feedback path from coeffi cient b 4 in node T 4 is
broken.

 8. At time step 7, r 2 is obtained and feedback paths from coeffi cients b 3 and b 4
are broken.

 9. This pattern continues till the end of iterations at time step 9.

 18.7 DESIGN 2: DESIGN SPACE EXPLORATION WHEN
 s 2 = [1 0]

 Figure 18.4 shows the DAG for the polynomial division algorithm based on our
timing function choice s 2 . We note from the fi gure that the signals corresponding to
the coeffi cients of B and the intermediate partial remainders corresponding to R and
 Q are all pipelined, as indicated by the arrows connecting the nodes. However, the
estimated q output is broadcast among the nodes, as indicated by the horizontal lines

 Figure 18.3 Task processing workload details at each SPA stage for Fibonacci (Type 1) LFSR
when s 1 = [1 − 1], d 1 a = [1 0] t , n = 9, and m = 5. (a) The resulting tasks at each SPA stage. (b) The task
workload details.

bi

D qout
qin

(b)

0

(a)

b0b1b2b3b4

0
0
1

select

Q, R

a

rout
rin

18.7 Design 2: Design Space Exploration When s2 = [1 0] 287

without arrows. There are three simple projection vectors such that all of them satisfy
Eq. 18.21 for the scheduling function in Eq. 18.18 . The three projection vectors will
produce three designs:

 Design a2 1 02: : []d a
t= (18.31)

 Design b2 1 12: : []d b
t= (18.32)

 Design c2 1 12: : [] .d c
t= − (18.33)

 The corresponding projection matrices are

 Design a2 0 12: : []P a = (18.34)

 Design b2: 1 12: []P b = − (18.35)

 Design c2 1 12: : [].P c = (18.36)

 Our multithreaded design space now allows for three confi gurations for each projec-
tion vector for the chosen timing function.

 The different projection directions will produce identical designs through proper

relabeling of the nodes. The resulting DAG will consist of m tasks that are all active

 Figure 18.4 DAG for polynomial
division algorithm when s 2 = [1 0],
 n = 9, and m = 5.

b4

b3

b2

b1

b0

q4

q3

q2

q1

q0

r4

r3

r2

r1

r0

a4

a3

a2

a1

a0

a9

a8

a7

a6

a5

i

j
0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

Time

288 Chapter 18 Case Study: Polynomial Division over GF(2)

at each time step. The design will result in the well - known Galois (Type 2) LFSR.
A point in the DAG given by the coordinates p = [i j] t will be mapped by the

projection matrix P 2 a into the point p = P 2 a p . The DAG corresponding to design 2

is shown in Fig. 18.5 . The DAG consists of m − 1 nodes. Input coeffi cients of A
are fed from the right and the partial remainders are pipelined to all nodes. Coeffi cient
 b j of B is stored in node T j . The task details for hardware systolic implementation
are shown in Fig. 18.5 b, where D denotes a 1 - bit register to store the partial output.

 Let r i, 0 ≤ i < m , be the present output of task T i . The next state output ri
+ is

given by

 r r b r i mi i i m
+

− −= ⊕ () ≤ <1 1 0 . (18.37)

 And we identify the output and input of the Galois LFSR as

 Q R rm, = −1 (18.38)

 r a− =1 . (18.39)

 The above equations determine the operation of the Galois (Type 2) LFSR as
follows:

 1. Clear all the registers.

 2. For time steps 0 – 4, the LFSR is working as a simple shift register moving
the coeffi cients a 9 to a 5 between the stages.

 3. At time step 4, the fi rst quotient coeffi cient q 4 is obtained and is available at
the next time step to the leftmost node.

 4. The coeffi cients of Q are obtained from the leftmost node at time steps 4 – 9.

 5. At the end of time step 9, all the remainder polynomial R coeffi cients are
stored in the shift register stages. They could be read off the LFSR in parallel
if desired.

 6. If it is desired to shift the R coeffi cients out, then the feedback path must be
broken to selectively disable the LFSR action.

 Figure 18.5 DAG for Galois (Type 2) LFSR when s 1 = [1 0], d 2 a = [1 0] t , n = 9, and m = 5. (a) The
resulting tasks at each SPA stage. (b) The task workload details.

bi

Drout rin

(b)

Q, R

a

(a)

b0b1b2b3b4

qout

qin

18.8 Design 3: Design Space Exploration When s3 = [1 −0.5] 289

 18.8 DESIGN 3: DESIGN SPACE EXPLORATION WHEN
 s 3 = [1 − 0.5]

 Figure 18.6 shows the DAG for the polynomial division algorithm based on our
timing function choice s 3 . We note from the fi gure that all signals are now pipelined,
as indicated by the arrows connecting the nodes. However, we note that there are
nodes that do not lie on any equitemporal planes. We have several choices for the
timing of nodes that lie between two temporal planes. Alternatively, we could assign
a time value equal to either of the temporal planes surrounding the node. In addition,
we could assign this node to operate on the negative edge of the clock. The former
choice leads to nodes that do not have registers. The latter choice leads to nodes that
have registers triggered by the negative edge of the clock. This is the option we
follow here.

 Similar to the two previous designs, we choose a projection vector given by

 Design 3 1 03: [] .d = t (18.40)

 The corresponding projection matrix P 3 is given by

 P3 0 1= [] (18.41)

 A point in the DAG given by the coordinates p = [i j] t will be mapped by the

projection matrix P 3 into the point p = P 3 p . The DAG corresponding to Design 3 is

 Figure 18.6 DAG for polynomial
division algorithm when s 3 =
[1 − 0.5], n = 9, and m = 5.

b4

b3

b2

b1

b0

q4

q3

q2

q1

q0

r4

r3

r2

r1

r0

a4

a3

a2

a1

a0

a9

a8

a7

a6

a5

i

j

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

Time

290 Chapter 18 Case Study: Polynomial Division over GF(2)

shown in Fig. 18.7 . The DAG consists of m − 1 tasks. Input coeffi cients of A are
fed from the right and the partial remainders are pipelined to all nodes. Coeffi cient
 b j of B is stored in task T j . The task details for hardware systolic array implementa-
tion are shown in Fig. 18.7 b, where D denotes a 1 - bit register to store the intermedi-
ate results. The even - numbered tasks contain two positive edge - triggered fl ip - fl ops.
On the other hand, the odd - numbered tasks contain two negative edge - triggered
fl ip - fl ops.

 This design is usually called a linear cellular automaton (LCA) [119] . The
design shown here differs from LCAs discussed in the literature in several aspects:

 1. Even tasks are clocked using the clock rising - edge.

 2. Odd tasks are clocked using the clock rising - edge.

 3. One of the inputs is fed from a MUX.

 Let q i and r i , 0 ≤ i < m , be the present outputs of task T i . The next state outputs
 qi

+ and ri
+ are given by

 q q i mi i
+

+= ≤ <1 0 (18.42)

 r r b q i mi i i i
+

− += ⊕ () ≤ <1 1 0 . (18.43)

 And we identify the output and input of the LCA as

 Q R rm, = −1 (18.44)

 q
r select

select
m

m=
=
=

⎧
⎨
⎩

−1 1

0 0

when

when
 (18.45)

 r a− =1 . (18.46)

 Figure 18.7 DAG or linear cellular automaton (LCA) processor array when s 3 = [1 − 0.5], d 3 = [1
0] t , n = 9, and m = 5. (a) The resulting tasks at each SPA stage. (b) The task workload details.

a

(a)

(b)

b0b1b2b3b4

rout rin

bi

D

0
0
1

select

Q, R

D
qoutqin

18.9 Comparing the Three Designs 291

 The above equations determine the operation of the LCA as follows:

 1. Clear all the registers.

 2. For time steps 0 and 2, the LFSR is working as a simple shift register moving
the coeffi cients a 9 to a 5 between the stages.

 3. At time step 4, the fi rst quotient coeffi cient q 4 is obtained and is available at
the next time step to the leftmost node.

 4. The coeffi cients of Q are obtained from the leftmost node at time steps 4 – 9.

 5. At the end of time step 9, all the remainder polynomial R coeffi cients are
stored in the shift register stages.

 6. If it is desired to shift the R coeffi cients out, then the feedback path must be
broken to selectively disable the feedback action.

 18.9 COMPARING THE THREE DESIGNS

 The hardware structure for all three types of design above show similarities and
differences. All designs have tasks that contain storage registers and have two inputs
and two outputs. Designs 1 and 2 contain one register in each task, while design 3
contains three tasks. All the registers in designs 1 and 2 are clocked on the same
edge of the clock, while design 3 has the even tasks clocked on the rising edge and
the odd tasks clocked on the falling edge.

 The click period of design 1 could be the longest since the input to the mux
when select = 1 will propagate through m XOR gates in each clock cycle. The
architectures of the three designs dictate respective clock periods given by

 T mD1 = + + +τ τ τ τXOR mux setup (18.47)

 T D p2 = + + + +τ τ τ τ τXOR AND setup (18.48)

 T D3 2 2= + + +τ τ τ τXOR mux setup , (18.49)

where τ setup is the setup time for the registers, τ D is the register delay, τ XOR is the
XOR gate delay, τ AND is the AND gate delay, and τ p is the propagation time
for a signal through all the tasks. This last delay component is due to the top
signal in design 2, which is merely passed between the tasks perhaps through
a long bus. More accurate predictions of system speeds are obtained for actual
implementations.

 Chapter 19

The Fast Fourier Transform

 19.1 INTRODUCTION

 The discrete Fourier transform (DFT) is a very important algorithm that fi nds use
in many applications such as telecommunications, speech processing, image pro-
cessing, medical imaging such as in computer assisted tomography (CAT), radar
(synthetic aperture radar), sonar, and antenna array (phased arrays) [120, 121] . A
very important application nowadays is the use of DFT techniques in orthogonal
frequency division multiplexing (OFDM) as an effi cient data modulation scheme.
This technique is also extended for use in multiple - input multiple - output (MIMO)
systems where each transmitter/receiver has multiple antennas to simultaneously
transmit/receive multiple data streams in what is known as OFDM - MIMO systems
 [122] . This is not the forum to discuss what is OFDM and how it differs from the
classic frequency division multiplexing (FDM). Excellent textbooks on digital com-
munication cover such topics [113]

 The DFT algorithm fi nds the spectrum of a periodic discrete - time signal with
period N . The spectral component X (k) is obtained by the equation

 X k x n W k NN
nk

n

N

() 0
0

1

= ≤ <
=

−

∑ () , (19.1)

where W N is the twiddle factor, which equals the N th root of unity and is given by

 W e jN
j N= = −−2 1π / . (19.2)

 The dependence graph of the eight - point DFT algorithm is shown in Fig. 19.1 . Input
samples x (n) are represented by the vertical lines and output samples X (k) are rep-
resented by the horizontal lines. Input sample WN

nk is represented by the point at
location (n , k). The DFT algorithm is essentially a matrix – vector multiplication
problem. For the case N = 8 we have

 X Wx= , (19.3)

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

293

294 Chapter 19 The Fast Fourier Transform

where

 X = []X X X X X X X X t() () () () () () () ()0 1 2 3 4 5 6 7 (19.4)

 x = []x x x x x x x x t() () () () () () () ()0 1 2 3 4 5 6 7 (19.5)

 W =

1 1 1 1 1 1 1 1

1

1 1

1

1 1

2 3 4 5 6 7

2 4 6 2 4 6

3 6 4 7 2 5

4 4

W W W W W W W

W W W W W W

W W W W W W W

W W 1 1

1

1 1

1

4 4

5 2 7 4 6 3

6 4 2 6 4 2

7 6 5 4 3 2

W W

W W W W W W W

W W W W W W

W W W W W W W

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (19.6)

 We removed the subscript from the twiddle factor to reduce clutter . We note that the
powers of W are between 0 and 7.

 Figure 19.2 shows the values of the different powers of W i when 0 ≤ i < 8. We
see that the twiddle factor powers are uniformly distributed around the unit circle.
The angle between successive values is 2 π / N = 45 ° for the case N = 8. Notice that
the complex number W i has simple values when its angle is 0 ° , 90 ° , 180 ° , and 270 ° .
Multiplying x (n) by these values in Eq. 19.1 becomes a trivial operation. Direct
evaluation of Eq. 19.1 requires (N − 1) 2 complex number multiplications and
 N (N − 1) complex number additions. When N = 1,024, the number of operations
becomes large. Very effi cient techniques have been proposed for evaluating the DFT
using much fewer operations than would be required by the original algorithm.

 Fast Fourier transform (FFT) was developed to reduce the number of operations
required to obtain the DFT. The main concept in FFT is to break the original DFT

 Figure 19.1 Dependence
graph of an eight - point DFT
algorithm.

X(0)

X(7)

X(6)

X(5)

X(4)

X(3)

X(2)

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

k

n

X(1)

W8
2

19.2 Decimation-in-Time FFT 295

sequence into two shorter sequences. The DFT of the shortened sequences are then
recombined to give the DFT of the original sequence [123] . Assuming N is even,
each of the N /2 - point DFTs would require (N /2) 2 complex multiplications. A total
of N 2 /2 complex multiplication would be required. Assuming N to be an integer
power of two, the splitting process can be repeated until a series of simple two - point
DFTs are required.

 19.2 DECIMATION - IN - TIME FFT

 In the decimation - in - time FFT, the splitting algorithm breaks up the sum in Eq. 19.1
into even - and odd - numbered parts. The even and odd sequences x 0 and x 1 are given
by McKinney [124]

 x n x n n N0 2 0 1 2 1() () , , /= = −� (19.7)

 x n x n n N1 2 1 0 1 2 1() () , , /= + = −� (19.8)

 The original sum in Eq. 19.1 is now split as

 X k x n W x n W k NN
nk

n

N

N
n k

n

N

() () () .
/

()
/

= + + ≤ <
=

−
+

=

−

∑ ∑2 2 1 02

0

2 1
2 1

0

2 1

 (19.9)

 We notice that WN
2 can be written as

 W e e WN
j N j N

N
2 2 2 2 2

2= () = =− −π π/ /(/)
/ . (19.10)

 We can write Eq. 19.9 as

 X k x n W W x n WN
nk

n

N

N
k

N
nk

n

N

() () ()/

/

/

/

= +
=

−

=

−

∑ ∑0 2
0

2 1

1 2
0

2 1

 (19.11)

 = + ≤ <X k W X k k NN
k

0 1 0 2() () / , (19.12)

where X 0 (k) and X 1 (k) are the N /2 - point DFTs of x 0 (n) and x 1 (n), respectively. Notice,
however, that X (k) is defi ned for 0 ≤ k < N , while X 0 (k) and X 1 (k) are defi ned for

 Figure 19.2 The values of twiddle powers W i
when 0 ≤ i < 8.

x

y

(1,0)

(0, j)

(–1,0)

(0, –j)

296 Chapter 19 The Fast Fourier Transform

0 ≤ k < N /2. A way must be determined then to evaluate Eq. 19.12 for values of
 k > N /2. Since X 0 (k) and X 1 (k) are each periodic with a period N /2, we can express
Eq. 19.12 as

 X k N X k W X k k NN
k(/) () () / .+ = − ≤ <2 0 20 1 (19.13)

 Equations 19.12 and 19.13 are referred to as the butterfl y operations. Figure 19.3
shows the fl ow graph of the basic decimation - in - time butterfl y operation. The results
of the butterfl y operation are indicated on right - hand side of the fi gure. We used
the symbol k inside the gray box to indicate that the lower input is to be multiplied
by W k . Based on Eqs. 19.12 and 19.13, we can schematically show the evaluation
of a decimation - in - time eight - point DFT in terms of two four - point DFTs as in
Fig. 19.4 .

 We indicated in the previous section that when N is an integer power of two,
then the FFT can be evaluated by successively splitting the input data sequence in
even and odd parts. Table 19.1 shows the successive splitting of a 16 - point input
data sequence. Each splitting divides the input into even and odd parts. The fi rst
column of the table shows the binary address or order of the input data samples. The

 Figure 19.3 The butterfl y signal
fl ow graph for a decimation - in - time
FFT algorithm.

X0(k)

X1(k)

X(k) = X0(k) +Wk
N X1(k)

X(k+N/2) = X0(k) –Wk
N X1(k)

k

 Figure 19.4 Evaluation of a decimation - in - time eight - point DFT based on two four - point DFTs.

x0(0) = x(0)

x0(1) = x(2)

x0(2) = x(4)

x0(3) = x(6)

X0(0)

X0(1)

X0(2)

X0(3)

Four-point
DFT

x1(0) = x(1)

x1(1) = x(3)

x1(2) = x(5)

x1(3) = x(7)

X1(0)

X1(1)

X1(2)

X1(3)

Four-point
DFT

X(0)

X(2)

X(1)

X(3)

X(4)

X(6)

X(5)

X(7)

0

1

2

3

19.2 Decimation-in-Time FFT 297

second column shows the data assuming it arrives, or stored, in the natural order in
sequence. The third column is the data after the fi rst splitting into even and odd data
of length N /2 = 4. The fourth column shows the data after the second splitting. Note
that at this stage, each sequence contains only two data samples where we can simply
do a two - point DFT using additions and subtractions since W2

0 1= and W2
1 1= − . The

fi fth column shows the binary representation of the data index. This could be con-
sidered as their memory location, for example.

 Compare the fi rst and the last columns of the table. It shows what is known
as bit reversal. The two - point DFTs need input data that is the bit reverse of the
natural order; therefore, location 1, which is 001 in binary, will be bit reversed to
100, which corresponds to input sample x (4). The eight - point FFT will use the
information in Table 19.1 for its operation. We start with the two - point DFTs, whose
input data correspond to the data in the fourth column (second splitting). The
outputs will be fed to four - point DFTs, whose input data correspond to the data in
the third column (fi rst splitting). The reader can try constructing a similar table for
a 16 - point DFT.

 Now we are ready to construct the DG for the eight - point decimation - in - time
FFT algorithm, which is shown in Fig. 19.5 . The eight - point FFT consists of three
stages since log 2 8 = 3. Each stage contains N /2 = 4 butterfl y operations. Stage 2
performs two - point DFT processes and the butterfl ies at that stage operate on data
whose indices are 2 2 apart. Stage 1 performs two - point DFT processes and the but-
terfl ies at that stage operate on data whose indices are 2 1 apart. Stage 0 performs
two - point DFT processes and the butterfl ies at that stage operate on data whose
indices are 2 0 apart. The sequence of operations is from left to right; therefore, all
operations in stage 2 must be completed before operations in stage 1 can start.

 The FFT algorithm we described here applied to the case when N is an integer
power of two, that is, N = 2 r . This is called radix - 2 FFT algorithm because the input
samples are divided into two parts and the butterfl y operations involve two inputs
and produce two outputs. Higher radix FFTs are possible. For example, radix - 4 FFT
assumes N = 4 r and divides the input data into four parts and the butterfl ies operate

 Table 19.1 Successive Splitting of Input Data in Even and Odd Parts

 Binary
representation

 Input sample
natural order

 First splitting
length 4 DFT

 Second splitting
length 2 DFT

 Binary
representation

 000 x (0) x (0) x (0) 000
 001 x (1) x (2) x (4) 100
 010 x (2) x (4) x (2) 010
 011 x (3) x (6) x (6) 110
 100 x (4) x (1) x (1) 001
 101 x (5) x (3) x (5) 101
 110 x (6) x (5) x (3) 011
 111 x (7) x (7) x (7) 111

298 Chapter 19 The Fast Fourier Transform

on four input samples and produce four output samples. The outputs of the butterfl y
would be related to the inputs according to the expressions

 X x x x x0 0 1 2 3= + + + (19.14)

 X x jx x jx1 0 1 2 3= − − + (19.15)

 X x x x x2 0 1 2 3= − + − (19.16)

 X x jx x jx3 0 1 2 3= + − − . (19.17)

 19.3 PIPELINE RADIX - 2 DECIMATION - IN - TIME
 FFT PROCESSOR

 Wold and Despain [121] proposed a pipeline FFT processor that is based on
decimation - in - time FFT DG of Fig. 19.6 . Their design is usually referred to as a
radix - 2 single - path delay feedback (R2SDF) processor. The structure assumes that
input data x (n) are available in word - serial format in natural order. This is why the
processor at stage 2 delays the input sample by the four - word shift register (SR)
buffer. For the fi rst N /2 = 4 data words, the processor in stage 2 simply accepts the
data words and moves them into the shift register buffer. After N /2 = 4 data samples
have been shifted, the processor starts performing the butterfl y operations on the
input data and the data coming from the shift register buffer. The processor in stage
1 repeats the same actions for a period of N /4 = 2 delay and so on. A pipeline design
for the radix - 4 decimation - in - time FFT processor has been proposed by Despain
 [125] . The design is usually called a radix - 4 single - path delay feedback (R4SDF)
processor and is shown in Fig. 19.7 for a 64 - point FFT. Other effi cient designs are
possible such as the ones given in References [126 – 128] .

 Figure 19.5 DG for an
eight - point decimation - in - time
FFT algorithm.

x(0)

x(2)

x(1)

x(3)

x(4)

x(6)

x(5)

x(7)

X(0)

X(2)

X(1)

X(3)

X(4)

X(6)

X(5)

X(7)

0

1

2

3

0

2

2

0

0

0

0

0

Stage 2
n, n+22

Stage 1
n, n+21

Stage 0
n, n+20

19.4 Decimation-in-Frequency FFT 299

 19.4 DECIMATION - IN - FREQUENCY FFT

 In the decimation - in - frequency FFT, the splitting algorithm breaks up the sum in
Eq. 19.1 into the fi rst N /2 points and the last N /2 points. This is equivalent to con-
sidering the even and odd parts of X (k). By contrast, in decimation - in - time, we
considered the even and odd parts of x (n). The fi rst and second part sequences x 0
and x 1 of x (n) are given by McKinney [124]

 x n x n n N0 0 1 2 1() () , , /= = −� (19.18)

 x n x n N n N1 2 0 1 2 1() (/) , , / .= + = −� (19.19)

 The original sum in Eq. 19.1 is now split as

 X k x n W x n W k NN
nk

n

N

N
nk

n N

N

() () () .
/

/

= + ≤ <
=

−

=

−

∑ ∑
0

2 1

2

1

0 (19.20)

 We can express the above equation in terms of x 0 (n) and x 1 (n) as

 Figure 19.6 Cascade pipeline architecture for an eight - point decimation - in - time FFT algorithm
using a R2SDF processor.

Four-word SR

Butterfly
W0

Stage 2

Two-word SR

Butterfly
W0 ,W2

Stage 1

One-word SR

Butterfly
W0 ,W1 ,W2 ,W3

Stage 0

x(n) X(k)

 Figure 19.7 Cascade pipeline architecture for a 64 - point FFT algorithm using an R4SDF processor.

16-word SR

Radix-4
butterfly

Stage 2 0 egatS1 egatS
x(n) X(k)

16-word SR

16-word SR

Four-word SR

Four-word SR

Four-word SR

One-word SR

One-word SR

One-word SR

Radix-4
butterfly

Radix-4
butterfly

300 Chapter 19 The Fast Fourier Transform

X k x n W x n W k N

x n

N
nk

n

N

N
n N k

n

N

() () ()

(

/
(/)

/

= + ≤ <

=

=

−
+

=

−

∑ ∑0
0

2 1

1
2

0

2 1

0

0

) () .
/

+⎡⎣ ⎤⎦ ≤ <−

=

−

∑ e x n W k Nj k
N
nk

n

N
π

1
0

2 1

0 (19.21)

 Consider the even samples of X (k) in the above equation:

X k x n x n W

x n x n W

N
nk

n

N

N
nk

n

N

() () ()

() ()

/

/

/

2 0 1
2

0

2 1

0 1 2
0

= +[]

= +[]

=

−

=

∑
2 1−

∑ , (19.22)

where e − j π k = 1 when k is even. On the other hand, the odd part of X (k) is given by

X k x n x n W

x n x n W W

N
n k

n

N

N
n

N

() () ()

() ()

()
/

2 1 0 1
2 1

0

2 1

0 1

+ = −[]

= −[]

+

=

−

∑

//

/

,2
0

2 1
nk

n

N

=

−

∑ (19.23)

where e − j π k = − 1 when k is odd.
 In summary, the even and the odd terms of the DFT can be obtained from the

 N /2 - DFTs:

 X k a n W k NN
nk

n

N

() () //

/

2 0 22
0

2 1

= ≤ <
=

−

∑ (19.24)

 X k b n W k NN
nk

n

N

() () / ,/

/

2 1 0 22
0

2 1

+ = ≤ <
=

−

∑ (19.25)

where the input sequences a (n) and b (n) are

 a n x n x n n N() () () /= + ≤ <0 1 0 2 (19.26)

 b n x n x n W n NN
n() () () / .= −[] ≤ <0 1 0 2 (19.27)

 The above two operations defi ne the decimation - in - frequency butterfl y operations.
Figure 19.8 shows the fl ow graph of the basic decimation - in - frequency butterfl y
operation. The results of the butterfl y operation are indicated on right - hand side of
the fi gure. We used the symbol n inside the gray box to indicate that the lower input
is to be multiplied by WN

n. Based on Eqs. 19.22 and 19.23, we can schematically
show the evaluation of a decimation - in - frequency eight - point DFT in terms of two
four - point DFTs as in Fig. 19.9 .

 We indicated in the previous section that when N is an integer power of two,
then the FFT can be evaluated by successively splitting the output data sequence in
even and odd parts. Table 19.2 shows the successive splitting of a 16 - point output
data sequence. Each splitting divides the output into even and odd parts. The column

19.4 Decimation-in-Frequency FFT 301

 Figure 19.8 The butterfl y signal fl ow graph
for a decimation - in - frequency FFT algorithm.

x0(n)

x1(n)

a(n) = x0(n) + x1(n)

b(n) = [x0(n) − x1(n)] W n
N

n

 Figure 19.9 Evaluation of a decimation - in - frequency eight - point DFT based on two four - point
DFTs.

x(0)

x(1)

x(2)

x(3)

Four-Point
DFT

x(4)

x(5)

x(6)

x(7)

Four-Point
DFT

a(0)

a(2)

a(1)

a(3)

b(0)

b(2)

b(1)

b(3)

0

1

2

3

X(0)

X(2)

X(4)

X(6)

X(1)

X(3)

X(5)

X(7)

 Table 19.2 Successive Splitting of Output Data in Even and Odd Parts

 Binary
representation

 Output sample
natural order

 First splitting
length 4 DFT

 Second splitting
length 2 DFT

 Binary
representation

 000 X (0) X (0) X (0) 000
 001 X (1) X (2) X (4) 100
 010 X (2) X (4) X (2) 010
 011 X (3) X (6) X (6) 110
 100 X (4) X (1) X (1) 001
 101 X (5) X (3) X (5) 101
 110 X (6) X (5) X (3) 011
 111 X (7) X (7) X (7) 111

302 Chapter 19 The Fast Fourier Transform

before last indicates that feeding in input samples in natural order will produce
output samples in bit - reversed order. The fi rst column of the table shows the binary
address or natural order of the output data samples. The second column shows the
output data when it is stored in the natural order in sequence. The third column is
the output data ordering after the fi rst splitting into even and odd data of length
 N /2 = 4. The fourth column shows the data after the second splitting. Note that at
this stage, each sequence contains only two data samples where we can simply do
a two - point DFT using additions and subtractions since W2

0 1= and W2
1 1= − . The

fi fth column shows the binary representation of the data index. This could be con-
sidered as their memory location, for example.

 Compare the fi rst and the last columns of the table. It shows what is known
as bit reversal. The two - point DFTs produce output data that is the bit reverse of
the natural order. Therefore, location 1, which is 001 in binary, will be bit reversed
to 100, which correspond to output sample X (4). The eight - point FFT will use
the information in Table 19.2 for its operation. We start with the two - point DFTs,
whose input data correspond to the data in the fourth column (second splitting). The
outputs will be fed to four - point DFTs, whose input data correspond to the data in
the third column (fi rst splitting). The reader can try constructing a similar table for
a 16 - point DFT.

 Now we are ready to construct the DG for the eight - point decimation - in - fre-
quency FFT algorithm, which is shown in Fig. 19.10 . The eight - point FFT consists
of three stages since log2 8 = 3. Each stage contains N /2 = 4 butterfl y operations.
 Stage 2 performs two - point DFT processes and the butterfl ies at that stage operate
on data whose indices are 2 2 apart. Stage 1 performs two - point DFT processes and
the butterfl ies at that stage operate on data whose indices are 2 1 apart. Stage 0 per-
forms two - point DFT processes and the butterfl ies at that stage operate on data

 Figure 19.10 Eight - point
decimation - in - frequency FFT
algorithm.

x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

x(7)

0

1

2

3

0

2

2

0

0

0

0

0

Stage 2
n, n+22

Stage 1
n, n+21

Stage 0
n, n+20

X(0)

X(2)

X(4)

X(6)

X(1)

X(3)

X(5)

X(7)

19.5 Pipeline Radix-2 Decimation-in-Frequency FFT Processor 303

whose indices are 2 0 apart. The sequence of operations is from left to right; therefore,
all operations in stage 2 must be completed before operations in stage 1 can start.

 The FFT algorithm we described here when N = 2 r is called radix - 2 FFT algo-
rithm because the input samples are divided into two parts and the butterfl y operations
involve two inputs and produce two outputs. Higher radix FFTs are possible. For
example, radix - 4 FFT assumes N = 4 r and divides the input data into four parts and
the butterfl ies operate on four data samples. The outputs of the butterfl y would be

 X x x x x0 0 1 2 3= + + + (19.28)

 X x jx x jx1 0 1 2 3= − − + (19.29)

 X x x x x2 0 1 2 3= − + − (19.30)

 X x jx x jx3 0 1 2 3= + − − . (19.31)

 19.5 PIPELINE RADIX - 2 DECIMATION - IN - FREQUENCY
 FFT PROCESSOR

 Wold and Despain [121] proposed a pipeline FFT processor that is based on the
decimation - in - frequency FFT DG of Fig. 19.11 . Their design is usually referred to
as an R2SDF processor. The structure assumes that input data x (n) are available in
word - serial format in natural order. This is why the processor at stage 2 delays the
input sample by the four - word shift register buffer. For the fi rst N /2 = 4 data words,
the processor in stage 2 simply accepts the data words and moves them into the shift
register buffer. After N /2 = 4 data samples have been shifted, the processor starts
performing the butterfl y operations on the input data and the data coming from the
shift register buffer. The processor in stage 1 repeats the same actions for a period
of N /4 = 2 delay and so on. A pipeline design for the radix - 4 decimation - in - fre-
quency FFT processor has been proposed by Despain [125] . The design is usually
called an R4SDF processor and is shown in Fig. 19.7 for a 64 - point FFT.

 Figure 19.11 Cascade pipeline architecture for an eight - point decimation - in - frequency FFT
algorithm using an R2SDF processor.

Four-word SR

Butterfly
W0

Stage 2

Two-word SR

Butterfly
W0 ,W2

Stage 1

One-word SR

Butterfly
W0 ,W1 ,W2 ,W3

Stage 0

x(n) X(k)

 Chapter 20

Solving Systems of
Linear Equations

 20.1 INTRODUCTION

 Solving systems of linear equations is found in almost all areas of engineering and
scientifi c applications. A system of linear equations is generally expressed in matrix
form as

 Ax b= , (20.1)

where A is the system matrix , which is an n × n matrix, x is the unknown vector of
 n components, and b is a vector of constants. Techniques for solving linear systems
could be direct or iterative. Direct techniques are appropriate for small systems
(small values of n) where computational errors will be small. Iterative techniques
are more appropriate for large systems where an assumed solution is refi ned after
each iteration while suppressing computational noise. Table 20.1 summarizes the
different direct and indirect techniques used to solve linear systems. Reference 129
explains in detail how such techniques are used.

 A comprehensive discussion on parallel matrix computations can be found in
the standard textbook of Golub and van Horn [129] . We provide here a brief intro-
duction and tie the algorithms to the techniques we discussed in Chapters 7 , 8 , 10 ,
and 11 .

 Typically, the system matrix will have some structure due to the nature of the
application. Before we start, we defi ne some of these structures in the following
section.

 20.2 SPECIAL MATRIX STRUCTURES

 The following subsections explain some of the matrices that have special structures
and are relevant to our discussion here.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

305

306 Chapter 20 Solving Systems of Linear Equations

 Table 20.1 Direct and Indirect Techniques Used to Solve Linear Systems

 Direct techniques Comment

 Forward substitution System matrix lower triangular
 Back substitution System matrix upper triangular
 LU factorization Convert system matrix to equivalent triangular

system. L is lower triangular matrix and U is upper
triangular matrix.

 Gaussian elimination Convert system matrix to equivalent triangular system
 LDM t factorization Convert system matrix to three special matrices. L is

lower triangular matrix, D is diagonal matrix, and M
is a Gaussian transformation matrix such that the
product MA produces an upper triangular matrix.

 LDL t factorization Convert system matrix to three special matrices when
system matrix is symmetric

 Positive defi nite systems System matrix is positive defi nite
 Banded systems System matrix is banded
 Symmetric indefi nite systems System matrix is symmetric
 Block tridiagonal systems System matrix has special block structure
 Vandermonde systems System matrix has 1s in its fi rst row
 Toeplitz systems System matrix is Toeplitz

 Indirect techniques Comment

 Jacobi Used when system matrix has nonzero diagonal
elements

 Gauss – Seidel Like Jacobi but uses most recently available estimates
 Successive over relaxation (SOR) Like Gauss – Seidel but could accelerate convergence
 Chebyshev semi - iterative Like Gauss - Seidel but could accelerate convergence
 Conjugate gradient Used when SOR or Chebyshev methods prove

diffi cult

 20.2.1 Plane Rotation (Givens) Matrix

 A 5 × 5 plane rotation (or Givens) matrix G pq is one that looks like the identity
matrix except for elements that lie in the locations pp , pq , qp , and qq . Such a matrix
is labeled G pq . For example, the matrix G 42 takes the form

 G42

1 0 0 0 0

0 0 0

0 0 1 0 0

0 0 0

0 0 0 0 1

=
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

c s

s c

, (20.2)

where c = cos θ and s = sin θ . The notation commonly used is that the subscript
refers to the element that has the negative sin value, which is element at row 4 and
column 2 in our example.

20.2 Special Matrix Structures 307

 Givens matrix is an orthogonal matrix and we have G G Ipq pq
t = . Premultiplying

a matrix A by G pq modifi es only rows p and q . All other rows are left unchanged.
The elements in rows p and q become

 a ca sapk pk qk= + (20.3)

 a sa caqk pk qk= + . (20.4)

 20.2.2 Banded Matrix

 A banded matrix with lower bandwidth p and upper bandwidth q implies that all its
nonzero elements lie in the main diagonal, the lower p subdiagonals and the upper
 q superdiagonals. All other elements are zero, that is, when i > j + p and j > i + q .
In that case, matrix A will have nonzero p subdiagonal elements and nonzero q
superdiagonal elements. An example of a banded matrix with lower bandwidth p = 2
and upper bandwidth q = 3 has the following structure where × denotes a nonzero
element:

× × × ×
× × × × ×
× × × × × ×

× × × × × ×
× × × × × ×

× × × × ×

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ××
× × × × × ×

× × × × ×
× × × ×

× × ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (20.5)

 20.2.3 Diagonal Matrix

 A diagonal matrix D is a special case of a banded matrix when p = q = 0 and only
the main diagonal is nonzero. A 5 × 5 diagonal matrix D is given by

 D =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

d

d

d

d

d

11

22

33

44

55

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

. (20.6)

 We can write the above diagonal matrix in a condensed form as

 D = diag(),d d d d d1 2 3 4 5 (20.7)

where d i = d ii .

308 Chapter 20 Solving Systems of Linear Equations

 20.2.4 Upper Triangular Matrix

 An upper triangular matrix U is a special case of a banded matrix when p = 0 and
only the main diagonal and the fi rst q superdiagonals are nonzero.

 20.2.5 Lower Triangular Matrix

 A lower triangular matrix L is a special case of a banded matrix when q = 0 and
only the main diagonal and the fi rst p subdiagonals are nonzero.

 20.2.6 Tridiagonal Matrix

 A tridiagonal matrix is a special case of a banded matrix when p = q = 1 and only
the main diagonal, the fi rst superdiagonal, and fi rst subdiagonal are nonzero. A 5 × 5
tridiagonal matrix A is given by

 A =

⎡

⎣

⎢
⎢
⎢

a a

a a a

a a a

a a a

a a

11 12

21 22 23

32 33 34

43 44 45

54 55

0 0 0

0 0

0 0

0 0

0 0 0

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. (20.8)

 20.2.7 Upper Hessenberg Matrix

 An n × n upper Hessenberg matrix is a special case of a banded matrix when p = 1
and q = n and the elements of the diagonal, the superdiagonals, and the fi rst subdi-
agonal are nonzero. An upper Hessenberg matrix has h ij = 0 whenever j < i − 1. A
5 × 5 upper Hessenberg matrix H is given by

 H =

h h h h h

h h h h h

h h h h

h h h

11 12 13 14 15

21 22 23 24 25

32 33 34 35

43 44 45

0

0 0

0 0 0 54 55h h

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. (20.9)

 20.2.8 Lower Hessenberg Matrix

 A lower Hessenberg matrix is the transpose of an upper Hessenberg matrix.

20.3 Forward Substitution (Direct Technique) 309

 20.3 FORWARD SUBSTITUTION (DIRECT TECHNIQUE)

 The general form for a system of linear equations was given in Eq. 20.1 . Forward
substitution technique converts the square matrix A into a lower triangular form:

 Lx b= . (20.10)

 Consider the 5 × 5 lower triangular linear system:

l

l l

l l l

l l l l

l l l

11

2 1 2 2

3 1 3 2 3 3

4 1 4 2 4 3 4 4

5 1 5 2

0 0 0 0

0 0 0

0 0

0

, ,

, , ,

, , , ,

, , 5 3 5 4 5 5

1

2

3

4

5

1

, , ,l l

x

x

x

x

x

b

b

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
22

3

4

5

b

b

b

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. (20.11)

 If all l ii ≠ 0, then we can determine the unknowns according to the equations

 x
l

b l x i j ii
ii

i i j j
j

i

= −
⎛
⎝⎜

⎞
⎠⎟

≤ ≤ <
=

−

∑1
1 5

1

1

, , , (20.12)

where x 1 must be calculated before x 2 could be evaluated and so on. Thus, it appears
that the calculations are sequential, with small opportunity for parallelization.
However, the techniques we discussed earlier will help us derive parallel multi-
threaded and systolic architectures.

 20.3.1 Forward Substitution Dependence Graph

 The iterations in Eq. 20.12 use two indices i and j and we can use the results of
Chapters 10 or 11 to study the parallelization of the forward substitution algorithm.
Figure 20.1 is the dependence graph of the iterations in Eq. 20.12 . Note that the

 Figure 20.1 The dependence graph
of the forward substitution algorithm.

j

b(1) , xout(1)

b(2) , xout(2)

b(3) , xout(3)

b(4) , xout(4)

b(5) , xout(5)

i

xin(1) xin(2) xin(3) xin(4)

310 Chapter 20 Solving Systems of Linear Equations

variable x is an input/output variable and this explains why we have two sets of x ,
one set for the output instances of x and the other set is for the input instances of x .

 Input instance x in (k) is a copy of the output instance x out (k). This is shown by
the bends in the lines that appear on the diagonal nodes.

 20.3.2 Forward Substitution Scheduling Function and
Directed Acyclic Graph (DAG)

 The choice of the scheduling function is dictated by the need to maintain the proper
sequence of evaluating x i . We know that x out (i) can be found only after x out (i − 1) has
been evaluated. We note that output instance x out (i) is obtained at the diagonal node
(i , i) and is used by all nodes whose coordinates are (i + k , i) where k > 0. Therefore,
if the scheduling vector is s = [s 1 s 2], then we must have

 t p i i t p i k i(,) (,)[] < +[] (20.13)

 is is i k s is1 2 1 2+ < + +() , (20.14)

and we can write the inequality

 s k1 0> . (20.15)

 Since k > 0, we must have s 1 > 0 too. We can choose s 1 = 1 and we have our sched-
uling vector as

 s = []1 2s . (20.16)

 We can choose three possible scheduling vectors while satisfying inequality
(Eq. 20.13):

 s1 1 1= −[] (20.17)

 s2 1 0= [] (20.18)

 s3 1 1= []. (20.19)

 The resulting DAGs for the three choices are shown in Fig. 20.2 . The scheduling
vector s 1 implies diagonal - based calculations since each iteration requires simultane-
ous access to the elements of a diagonal. The choice of s 1 will produce a DAG where
output sample x out (i) is obtained on the left edge of the diagram. However, this output
sample must be fed back to node (i , i) for use by later calculations. Depending on
the projection vector chosen, we might have to provide communication between the
left nodes and the diagonal nodes. The work W at each time step would start at N ,
then decrease by one at each time step thereafter.

 The scheduling vector s 2 implies row - based calculations since each iteration
requires simultaneous access to the elements of a row. The work W at each time step
would start at 1, then increase by one at each time step thereafter.

 The scheduling vector s 3 implies column - based calculations since each iteration
requires simultaneous access to the elements of a column. The work W at each time

20.3 Forward Substitution (Direct Technique) 311

step would start at 1 for the fi rst two operations, then increase by two at the next
two time steps. The maximum work is encountered halfway during the operation,
and then work starts to decrease by 2 after each two time steps thereafter.

 We can use nonlinear scheduling to control the total workload at each iteration.
However, the work done at each time step will not be uniform.

 20.3.3 Forward Substitution Projection Function

 Three projection directions are possible:

 d1 1 1= −[]t (20.20)

 d2 1 0= []t (20.21)

 d3 1 1= []t . (20.22)

 The simplest projection directions to use would be d 2 and d 3 .
 Let us consider the case when d 2 is used. The reduced DAG (DAG) is shown

in Fig. 20.3 . We can use nonlinear projection to control the workload of each thread
or each processing element (PE) in the systolic array.

 Figure 20.2 The DAG graphs of the forward substitution algorithm for the three possible
scheduling functions.

xout(1)

xout(2)

xout(3)

xout(4)

xout(5)

xout(1)

xout(2)

xout(3)

xout(4)

xout(5)

xout(1)

xout(2)

xout(3)

xout(4)

xout(5)

s = [1 –1] s = [1 0] s = [1 1]

 Figure 20.3 The DAG graphs of the forward substitution algorithm for the three possible
scheduling functions.

xout

s = [1 –1] s = [1 0] s = [1 1]

xout

xout

312 Chapter 20 Solving Systems of Linear Equations

 20.4 BACK SUBSTITUTION

 The general form for a system of linear equations was given in Eq. 20.1 . Back
substitution technique converts the square matrix A into an upper triangular form:

 Ux b= . (20.23)

 Consider the 5 × 5 upper triangular linear system:

u u u u u

u u u u

u u u

u

1 1 1 2 1 3 1 4 1 5

2 2 2 3 2 4 2 5

3 3 2 4 3 5

4 4

0

0 0

0 0 0

, , , , ,

, , , ,

, , ,

, uu

u

x

x

x

x

x

b

4 5

5 5

1

2

3

4

5

1

0 0 0 0
,

,

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
bb

b

b

b

2

3

4

5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. (20.24)

 If all u ii ≠ 0, then we can determine the unknowns according to the equations

 x
u

b l x i j ii
ii

i i j j
j i

= −
⎛
⎝⎜

⎞
⎠⎟

≤ ≤ >
= +
∑1

1 5
1

5

, , (20.25)

where x 5 must be calculated before x 4 could be evaluated and so on. Thus, it appears
that the calculations are sequential, with small opportunity for parallelization.
However, the techniques we discussed earlier will help us derive parallel multi-
threaded and systolic architectures. The procedure we used to derive scheduling and
projection functions for forward substitution can be used here.

 20.5 MATRIX TRIANGULARIZATION ALGORITHM

 This section shows the algorithm to convert a square matrix A to an upper triangular
matrix U . Once we obtain a triangular matrix, we can use forward or back substitu-
tion to solve the system of equations.

 Assume we are given the system of linear equations described by

 Ax b= . (20.26)

 The solution for this system will not change if we premultiply both sides by the
Givens matrix G pq :

 G Ax G bpq pq= . (20.27)

 Premultiplication with the Givens matrix transforms the linear system into an equiv-
alent system

 ′ = ′A x b (20.28)

and the solution of the equivalent system is the same as the solution to the original
system. This is due to the fact that premultiplication with the Given matrix performs
two elementary row operations :

 1. Multiply a row by a nonzero constant.

 2. Add multiple of one row to another row.

20.5 Matrix Triangularization Algorithm 313

 Let us assume we have the following system of linear equations

1 2

3 4

5

6
1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

x

x
. (20.29)

 To solve this system, we need to convert the system matrix to an upper triangular
matrix. So we need to change element a 2,1 from 3 to 0. After multiplying by the
Givens matrix G 21 , element ′a2 1, is given by the equation

 ′ = − + =a sa ca2 1 1 1 2 1 0, , , . (20.30)

 Therefore, we have

 tan .,

,

θ = =s

c

a

a
2 1

1 1

 (20.31)

 For our case we get tan θ = 3/1 and θ = 71.5651 ° . The desired Givens matrix is
given by

 G21

0 3162 0 9487

0 9487 0 3162
=

−
⎡
⎣⎢

⎤
⎦⎥

. .

. .
. (20.32)

 The transformed system becomes

3 1623 4 4272

0 0 6325

7 2732

2 8460
1

2

. .

.

.

.
.

−
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=
−

⎡
⎣⎢

⎤
⎦⎥

x

x
 (20.33)

 The solution to the system is x = [− 4 4] t .
 Givens rotations can be successively applied to the system matrix to convert it

to an upper triangular matrix as shown in the following steps.
 Assume our system matrix is 5 × 5 as shown below where the symbols × indi-

cate the elements of the matrix.

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

× × × × ×
× × × ×
× × × ×
×

0

0

0 × × ×
× × × ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

× × × × ×
× × × ×

× × ×
× × ×
× × ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢0

0

0 0

0 0

0 0

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Initial system matrix
Insert zeros in

first column

Innsert zeros in

second column

× × × × ×
× × × ×

× × ×
× ×
× ×

⎡

⎣

⎢
⎢
⎢
0

0 0

0 0 0

0 0 0

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

× × × × ×
× × × ×

× × ×
× ×

×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

0

0 0

0 0 0

0 0 0 0

Insertt zeros in

third column

Insert zeros in

fourth column.

314 Chapter 20 Solving Systems of Linear Equations

 20.5.1 Givens Rotation Algorithm

 We now show the algorithm that converts the system matrix to an upper triangular
matrix so that back substitution could be used to solve the system of linear equations.
Algorithm 20.1 illustrates the steps needed. We can see that the algorithm involves
three indices i , j , and k and the graph technique of Chapter 10 might prove diffi cult
to visualize. However, the graph technique is useful as a guideline for the more
formal computation geometry technique of Chapter 11 .

 Algorithm 20.1 Givens rotations to convert a square matrix to upper triangular

 Require: Input: N × N system matrix A

 1: for k = 1 : N − 1 do

 2: for i = k + 1 : N do

 3: θ ik = tan − 1 a ik / a kk ; // calculate rotation angle for rows k and j

 4: s = sin θ ik ; c = cos θ ik ;

 5:

 6: //Apply Givens rotation to rows k and i

 7: for j = k : N do

 8: a kj = c a kj + s a ij ;

 9: a ij = − s a kj + c a ij ;

 10: end for

 11:

 12: end for

 13: end for

 Since estimation of rotation angle θ ik is outside the innermost loop, we choose to
have it estimated separately. In the discussion below, we ignore estimation of the
rotation angle and concentrate on applying the rotations.

 Algorithm 20.1 is three - dimensional (3 - D) with indices 1 ≤ k < N , k < i ≤ N , and
 k ≤ j ≤ N . Thus, the convex hull defi ning the computation domain is pyramid - shaped
as shown in Fig. 20.4 . The fi gure shows bird ’ s eye and plan views of the pyramid
shaped or layered structure of the dependence graph for the matrix triangularization
algorithm when system matrix has dimensions 5 × 5.

 Figure 20.5 shows the details of the dependence graph on a layer - by - layer basis
when system matrix has dimensions 5 × 5. This way we can think of the dependence
graph in terms of multiple two - dimensional (2 - D) dependence graphs that are easier
to visualize. We see that variable θ ik is propagated along the j direction. Variable a kj
is propagated along the i direction . This variable represents an element of the
top row in each iteration, which is used by the lower rows to apply the Givens
rotations.

20.5 Matrix Triangularization Algorithm 315

 20.5.2 Matrix Triangularization Scheduling Function

 The scheduling vector s assigns a time index value to each point in our computation
domain as

 t is js ks() .p sp= = + +1 2 3 (20.34)

 The reader will agree that a 3 - D computation domain is diffi cult to visualize and to
investigate the different timing strategies. However, there are few observations we
can make about the components s 1, s 2 , and s 3 .

 At iteration k , a node at row i + 1, for example, a node at location (i + 1, j , k),
is proceed after node (i , j , k) has been evaluated. Thus, we have

 t i j k t i j k(, ,) (, ,)+ >1 (20.35)
 s1 0> . (20.36)

 Figure 20.4 Bird ’ s eye and plan views of the pyramid - shaped or layered structure of the
dependence graph for the matrix triangularization algorithm when system matrix has dimensions 5 × 5.

j

i

k

k = 1
k = 2

k = 3

k = 4

j

i

k
k = 1

k = 2

k = 3

k = 4

 Figure 20.5 Dependence graph for the matrix triangularization algorithm when system matrix has
dimensions 5 × 5.

j

i

k = 1 k = 2 k = 3 k = 4

rows 1, 2

rows 1, 3

rows 1, 4

rows 1, 5

2,3

2,4

2,5

3,4

3,5 4,5

2,1

3,1

4,1

5,1

3,2

4,2

5,2

4,3

5,3 5,4

θ

θ

θ

θ θ

θ

θ θ

θ θ

316 Chapter 20 Solving Systems of Linear Equations

 At iteration k , once the rotation angle has been evaluated, all the matrix elements in
the same row can be processed in any order. Thus, we have

t i j k t i j k t i j k t i j k

t i j k t

(, ,) (, ,) (, ,) (, ,)

(, ,)

− > − − = −
− <

1 2 1 2

1

or

or (, ,)i j k− 2 (20.37)

 s2 0 1= ±, . (20.38)

 The rotation angle at iteration k + 1 uses the node at location (k + 2, k + 1, k). This
angle estimation can proceed after node at location (k + 2, k + 1, k) has been pro-
cessed. Thus, we have

 t k k k t k k k(, ,) (, ,)+ + + > + +2 1 1 2 1 (20.39)

 s3 0> . (20.40)

 We can choose three possible scheduling vectors while satisfying the above
observations:

 s1 1 1 1= +[] (20.41)

 s2 1 0 1= [] (20.42)

 s3 1 1 1= −[]. (20.43)

 Perhaps the simplest scheduling function to visualize is s 2 . The DAG for this func-
tion for the case of a 5 × 5 system is shown in Fig. 20.6 . The fi gure shows the
different layers separately for clarity.

 We can see from the fi gure that the work done at each time step starts at a value
 N for the fi rst two time steps then increases to 1.5 N for time steps 2 and 3 and so on.

 20.5.3 Matrix Triangularization Projection Direction

 Based on the three possible scheduling functions discussed in the previous section,
we are able to choose appropriate projection directions. Possible simple projection
vectors are

 d1 1 0 0= []t (20.44)

 d2 0 1 1= []t (20.45)

 d3 0 0 1= []t . (20.46)

 Figure 20.6 DAG diagram for a 5 × 5 system for s 2 scheduling function.

k = 1 k = 2 k = 3 k = 4

2,1

3,1

4,1

5,1

3,2

4,2

5,2

4,3

5,3 5,4

0

1

2

3

2

3

4

4

5 6
θ

θ

θ

θ

θ

θ

θ θ

θ

θ

20.6 Successive over Relaxation (SOR) (Iterative Technique) 317

 For illustration, let us choose s 2 and d 1 . The reduced DAG (DAG) is shown in Fig.
 20.7 . This choice of projection direction produces a column - based implementation
since each thread or PE operates on a column of the system matrix. The rotation
angle θ ik is broadcast to all the threads or PEs. At iteration k thread T k or PE k is
responsible for generating N − k rotation angles and propagating these angles to all
the threads or PEs to its right side.

 20.6 SUCCESSIVE OVER RELAXATION (SOR)
(ITERATIVE TECHNIQUE)

 Iterative techniques are suited for large matrices. A simple iterative technique for
solving linear equations is the Jacobi iteration, which is suited for matrices that have
nonzero diagonal elements. Assume we are given the system of linear equations

 Ax b= , (20.47)

 we can express the i th row of the above system explicitly:

 a x a x a x bij j
j

i

ii i ij j
j i

N

i
=

−

= +
∑ ∑+ + =

1

1

1

, (20.48)

 where we have isolated the term involving x i . We can “ solve ” for x i from the above
equation as

 x
a

b a x a xi
ii

i ij j
j

i

ij j
j i

N

= − −
⎛

⎝
⎜

⎞

⎠
⎟

=

−

= +
∑ ∑1

1

1

1

. (20.49)

 Of course, we need to iterate several times before we converge to the correct solu-
tion. At iteration k , we can estimate xi

k+1 as

 x
a

b a x a xi
k

ii
i ij j

k

j

i

ij j
k

j i

N
+

=

−

= +
= − −

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑1

1

1

1

1
. (20.50)

 Gauss – Seidel iteration differs from the Jacobi iteration in that it uses the most
recently found values of xij

k+1 in the iterations:

 x
a

b a x a xi
k

ii
i ij j

k

j

i

ij j
k

j i

N
+ +

=

−

= +
= − −

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑1 1

1

1

1

1
. (20.51)

 Figure 20.7 Reduced DAG diagram for a 5 × 5 system for
 s 2 scheduling function and d 1 projection direction. i k

1 2 3 4 5

θ

318 Chapter 20 Solving Systems of Linear Equations

 The order of evaluation of the algorithm is to fi nd xk
1

1+ , xk
2

1+ , … , xN
k+1. Note that in

the Gauss – Seidel iteration, we use the most recent information for the fi rst sum on
the right - hand side (RHS).

 Jacobi and Gauss – Seidel iterations might be very slow and SOR is meant to
speed up the convergence. SOR iterations are described by the equation:

 x
a

b a x a x xi
k

ii
i ij j

k

j

i

ij j
k

j i

N

i
k+

=

−

= +
= − −

⎛

⎝
⎜

⎞

⎠
⎟ + −∑ ∑1

1

1

1

1
ω ω() , (20.52)

where 0 < ω < 1 is a relaxation parameter chosen to speed the algorithm. The order
of evaluation of the algorithm is to fi nd xk

1
1+ , xk

2
1+ , … , xN

k+1.

 20.6.1 SOR Algorithm

 Algorithm 20.2 shows the SOR in algorithmic form.

 Algorithm 20.2 SOR algorithm

 Require: Input: N × N system matrix A, ω , k _ max

 1: for k = 1 : k _ max do

 2: for i = 1 : N do
 3: sum i k sum_ (,) _1 2 0= = ;
 4: for j = 1 : i − 1 do

 5: sum _1(i , j + 1, k) = sum _1(i , j , k) + a(i , j) x (j , k);

 6: end for

 7: for j = N : i + 1 do

 8: sum _2(i , j − 1, k) = sum _2(i , j , k) + a(i , j) x (j , k);

 9: end for
 10: x i k i sum i i k sum i i k x i k(,) (() _ (, ,) (, ,)) () (,)+ = ∗ − − + −1 1 12omega b ω ;
 11: end for

 12: end for

 The SOR algorithm is 3 - D, with indices 1 ≤ i ≤ N , 1 ≤ j ≤ N , and 1 ≤ k ≤ k _ max .
The convex hull describing the computation domain is a rectangular prism. We show
in Fig. 20.8 only one layer for a given value of k .

 Figure 20.5 shows the details of the dependence graph at a certain iteration when
system matrix has dimensions 5 × 5. This way we can think of the dependence graph
in terms of multiple 2 - D dependence graphs, which are easier to visualize. We see
from the algorithm that matrix element a ij is represented by vertical lines along the
 k - axis and intersects the computation domain at points (i , j , 1) and (i , j , N). Element

20.6 Successive over Relaxation (SOR) (Iterative Technique) 319

 b i is represented by a plane whose normal is along the i - axis. The horizontal lines
represent information fl ow for the sum _1, sum _2, and input variable xi

k. The output
variable xi

k+1 is shown by the vertical lines.

 20.6.2 SOR Algorithm Scheduling Algorithm

 A 3 - D scheduling function has the form

 t is js ks() .p sp= = + +1 2 3 (20.53)

 There are several restrictions on the values of the scheduling vector based on the
nature of the SOR algorithm. Node (i , j , k) is used to calculate the product a xi j j

k
, .

The valuation of variable xi
k+1 is performed at location (i , i , k + 1) because it requires

the all the product terms at the following locations:

 • (, ,)i j k i j Nfor < ≤

 • (, ,)i j k j i+ ≤ <1 1for

 This translates to the following restrictions on the scheduling vector components

 t i i k t i i n k n sum(, ,) (, ,) _+ > − + >1 1 0 1for (20.54)

 t i i k t i i n k n sum(, ,) (, ,) _ .+ > + >1 0 2for (20.55)

 The above two inequalities produce

 s sum2 0 1> for _ (20.56)

 s ns sum3 2 2> for _ . (20.57)

 The largest value for n is when n = N . Therefore, we can write the inequality as

 s sum2 0 1> for _ (20.58)

 s Ns sum3 2 2> for _ . (20.59)

 Let us choose to have a scheduling function of the form

 s = [] − −1 0 1N N . (20.60)

 Figure 20.8 Dependence graph for the SOR algorithm for
a given iteration when system matrix has dimensions 5 × 5.

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

320 Chapter 20 Solving Systems of Linear Equations

 The − N − 1 term on the RHS is meant to ensure that time starts with value 0 when
 i = k = 1 initially. Figure 20.9 shows the DAG for the SOR algorithm at the fi rst two
iterations when system matrix has dimensions 5 × 5. The time needed to complete
the iterations would be equal to N 2 .

 20.6.3 SOR Algorithm Projection Direction

 The work done at each time step is N and the work done at each iteration is N 2 .
Therefore, it makes sense to obtain a reduced DAG (DAG) that is one - dimensional
and contains only N nodes. We can accomplish this using two projection
directions

 d1 1 0 0= []t (20.61)

 d2 0 0 1= []t . (20.62)

 The corresponding projection matrix can be obtained using the Chapters 10 or
11 as

 P = []0 1 0 . (20.63)

 A point (i , j , k) in DAG will map to point j in DAG. The resulting reduced DAG

(DAG) is shown in Fig. 20.10 .

 Figure 20.9 DAG for the SOR algorithm at the fi rst two iterations when system matrix has
dimensions 5 × 5.

k = 1

x1
1

x2
1

x3
1

x4
1

x5
1

k = 2

x1
2

x3
2

x4
2

x5
2

...

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0

1

2

3

4

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

6

7

8

9

10

x2
2

 Figure 20.10 Reduced DAG for the SOR
algorithm.

ai1 ai2 ai3 ai4 ai5

20.7 Problems 321

 20.7 PROBLEMS

 20.1. Study the parallelization of the back substitution algorithm.

 20.2. Study the parallelization of the Gaussian elimination algorithm.

 20.3. Explain how the LDM t algorithm in Table 20.1 can be used to solve for the unknown
vector x . Study the parallelization of this algorithm and relate it to the forward and back
substitution algorithms.

 20.4. Study the parallelization of the banded matrix – vector multiplication algorithm.

 20.5. Study the parallelization of the banded matrix – matrix multiplication algorithm.

 20.6. Study the parallelization of the Gauss – Seidel algorithm.

 Chapter 21

Solving Partial Differential
Equations Using Finite
Difference Method

 21.1 INTRODUCTION

 Finite difference methods (FDMs) are used for numerical simulation of many impor-
tant applications in science and engineering. Examples of such applications include

 • Air fl ow in the lungs

 • Blood fl ow in the body

 • Air fl ow over aircraft wings

 • Water fl ow around ship and submarine hulls

 • Ocean current fl ow around the globe

 • Propagation of sound or light waves in complex media

 FDMs replace the differential equations describing a physical phenomenon with
fi nite difference equations. The solution to the phenomenon under consideration is
obtained by evaluating the variable or variables over a grid covering the region of
interest. The grid could be one - , two - , or three - dimensional (1 - D, 2 - D, and 3 - D,
respectively) depending on the application. An example of 1 - D applications is vibra-
tion of a beam or string; 2 - D applications include defl ection of a plate under stress,
while 3 - D applications include propagation of sound underwater .

 There are several types of differential equations that are encountered in physical
systems [48, 130, 131] :

 Boundary value problem:

 v f x v v xxx x= ≤ ≤(, ,) ,0 1 (21.1)

where v x = dv / dx , v xx = d 2 v / dx 2 , and f is a given function in three variables and v is
unknown and depends on x . The associated boundary conditions are given by

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

323

324 Chapter 21 Solving Partial Differential Equations Using Finite Difference Method

 v v()0 0= (21.2)

 v v() ,1 1= (21.3)

where v 0 is the value of variable v at the boundary x = 0 and v 1 is the value of vari-
able v at the boundary x = 1.

 Elliptic partial differential equation (Poisson equation):

 v f xxx -D case= () 1 (21.4)

 v v f x yyyxx -D case+ = (,) .2 (21.5)

 These equations describe the electrical potential and heat distribution at steady state.
For the 1 - D case, when f (x) = 0, the above equation is called the Laplace equation.
For the 2 - D, Laplace equation results when f (x , y) = 0.

 Parabolic partial differential equation (diffusion equation):

 av vxx t= , (21.6)

where a is a constant and v xx = ∂ 2 v / ∂ x 2 and v t = ∂ v/ ∂ t . This equation describes gas
diffusion and heat conduction in solids in 1 - D cases such as rods.

 Hyperbolic partial differential equation (wave equation):

 av vxx tt= , (21.7)

where v tt = ∂ 2 v / ∂ t 2 . This equation describes the propagation of waves in media such
as sound, mechanical vibrations, electromagnetic radiation, and transmission of
electricity in long transmission lines.

 In the following section, we will study the wave equation as an example. The
analysis can be easily applied to the other types of differential equations.

 21.2 FDM FOR 1 - D SYSTEMS

 We start by explaining how FDM is applied to a 1 - D system for simplicity. Assume
the differential equation describing our system is second order of the form

 av v x txx tt= ≤ ≤ >0 1 0and . (21.8)

 Note that we normalized the length such that the maximum value of x is 1. The
associated boundary conditions are given by

 v t v t(,)0 00= ≥ (21.9)

 v t v t(,)1 01= ≥ (21.10)

 v x f x x(,) () ,0 0 1= ≤ ≤ (21.11)

where v 0 describes the value of the variable at x = 0, v 1 describes the value of the
variable at x = 1, and f (x) describes the initial values of the variable. Note that the
boundary conditions at x = 0 and x = 1 might, in the general case, depend on time

21.2 FDM for 1-D Systems 325

as v 0 (t) and v 1 (t). Usually, a is a simple constant. In the general case, a might depend
both on time and space as a (x , t).

 It might prove diffi cult to solve the system described by Eq. 21.8 when the
boundary conditions are time dependent or the medium is inhomogeneous and/or
time dependent. To convert the system equation to partial difference equation, we
need to approximate the derivatives v x and v xx . Using Taylor series, we can describe
the fi rst derivative as

 v x t
v x x t v x t

x
x (,)

(,) (,)= + −Δ
Δ

forward difference formula (21.12)

 v x t
v x t v x x t

x
x (,)

(,) (,)
,= − − Δ

Δ
backward difference formula (21.13)

where Δ x is the grid size. The value of Δ x is determined by the number of grid
points I :

 Δx I= 1/ . (21.14)

 From these two expressions, we can express v x in the central difference formula :

 v x t
v x x t v x x t

x
x (,)

(,) (,)
.= + − −Δ Δ

Δ2
central difference formula (21.15)

 Likewise, we can obtain v xx and v tt using the formulas

 v x t
v x x t v x t v x x t

x
xx (,)

(,) (,) (,)= + − + −Δ Δ
Δ

2
2

 (21.16)

 v x t
v x t t v x t v x t t

t
tt (,)

(,) (,) (,)
.= + − + −Δ Δ

Δ
2

2
 (21.17)

 The value of Δ t is determined by the number of time iterations K and assuming that
the total simulation time is 1:

 Δt K= 1/ . (21.18)

 Our choice of Δ x and Δ t divides the x - t plane into rectangles of sides Δ x and Δ t .
A point (x , t) in the x - t plane can be expressed in terms of two indices i and k :

 x i x i I= ≤ ≤Δ 0 (21.19)

 t k t k K= ≤ ≤Δ 0 . (21.20)

 Using the indices i and k , we can rewrite Eqs. 21.16 and 21.17 in the simpler
form:

 v i k
v i k v i k v i k

x
xx (,)

(,) (,) (,)= + − + −1 2 1
2Δ

 (21.21)

 v i k
v i k v i k v i k

t
tt (,)

(,) (,) (,)
.= + − + −1 2 1

2Δ
 (21.22)

326 Chapter 21 Solving Partial Differential Equations Using Finite Difference Method

 Combining Eqs. 21.8 , 21.21 , and 21.22 , we fi nally can write

 v i k rv i k r v i k rv i k v i k(,) (,) () (,) (,) (,)+ = + + − + − − −1 1 2 1 1 1 (21.23)

 with

 r
a t

x
= Δ

Δ

2

2
. (21.24)

 Thus, we are able to compute v (i , k + 1) at time k + 1 knowing the values of v
at times k and k − 1.

 Equation 21.23 describes a 2 - D regular iterative algorithm (RIA) in the indices
 i and k . Figure 21.1 shows the dependence graph for the 1 - D fi nite difference algo-
rithm for the case I = 10 and K = 15. Figure 21.1 a shows how node at position (4,8)
depends on the data from nodes at points (3,7), (4,7), (4,6), and (5,7). Figure 21.1 b
shows the complete dependence graph.

 21.2.1 The Scheduling Function for 1 - D FDM

 Since the dependence graph of Fig. 21.1 b is 2 - D, we can simply use the results of
Chapter 10 . Our scheduling function is specifi ed as

 Figure 21.1 Dependence graph for the 1 - D fi nite difference algorithm for the case I = 10 and
 K = 15. (a) Showing the dependence of the node at the black circle on the data from the gray circles.
(b) The complete dependence graph.

k

i
0

5

15

010

10

5

k

i
0

5

15

010

10

5

(a) (b)

21.2 FDM for 1-D Systems 327

 t s()p sp= − (21.25)

 = + −is js s1 2 . (21.26)

 Assigning time values to the nodes of the dependence graph transforms the depen-
dence graph to a directed acyclic graph (DAG) as was discussed in Chapters 10 and
 11 . More specifi cally, the DAG can be thought of as a serial – parallel algorithm (SPA)
where the parallel tasks could be implemented using a thread pool or parallel proces-
sors for software or hardware implementations, respectively. The different stages of
the SPA are accomplished using barriers or clocks for software or hardware imple-
mentations, respectively.

 We have several restrictions on t (p) according to the data dependences depicted
in Fig. 21.1 :

is j s is js s

is j s i s js s s

is

1 2 1 2 2

1 2 1 2 1 2

1

1 0

1 1 0

+ + > + ⇒ >
+ + > − + ⇒ + >

()

() ()

+ + > + + ⇒ >
+ + > + − ⇒ >

() ()

() () .

j s i s js s s

is j s is j s s

1 1

1 1 2 0
2 1 2 2 1

1 2 1 2 2

 (21.27)

 From the above restrictions, we can have three possible simple timing functions that
satisfy the restrictions:

 s1 0 1= [] (21.28)

 s2 1 2= [] (21.29)

 s3 1 2= −[]. (21.30)

 Figure 21.2 shows the DAG for the three possible scheduling functions for the 1 - D
FDM algorithm when I = 5 and K = 9. For s 1 , the work (W) to be done by the parallel
computing system is equal to I + 1 calculations per iteration. The time required to
complete the problem is K + 1.

 Figure 21.2 Directed acyclic graphs (DAG) for the three possible scheduling functions for the 1 - D
FDM algorithm when I = 5 and K = 9.

k

i
0

1

2

3

4

5

6

7

8

9
k

i

0

2

4

6

8

10

12

14

16

18
k

i

0

2

4

6

8

10

12

14

16

18

s1 = [0 1] s2 = [1 2] s3 = [–1 2]

328 Chapter 21 Solving Partial Differential Equations Using Finite Difference Method

 For s 2 and s 3 , the work (W) to be done by the parallel computing system is equal
to [I /2] calculations per iteration. The time required to complete the problem is given
by I + 2 K .

 Linear scheduling does not give us much control over how much work is to be
done at each time step. As before, we are able to control the work W by using non-
linear scheduling functions of the form given by

 t
n

() ,p
sp= ⎢

⎣⎢
⎥
⎦⎥

 (21.31)

where n is the level of data aggregation.
 Figure 21.3 shows the DAG for the three possible nonlinear scheduling func-

tions for the 1 - D FDM algorithm when I = 5, K = 9, and n = 3. For nonlinear
scheduling based on s 1 , the work (W) to be done by the parallel computing system
is equal to n (I + 1) calculations per iteration. The time required to complete the
problem is | K / n |. For nonlinear scheduling based on s 2 and s 3 , the work (W) to be
done by the parallel computing system is equal to K calculations per iteration. The
time required to complete the problem is given by |(I + 2 K)/ n |.

 21.2.2 Projection Directions

 The combination of node scheduling and node projection will result in determination
of the work done by each task at any given time step. The natural projection direc-
tion associated with s 1 is given by

 d s1 1= . (21.32)

 Figure 21.3 Directed acyclic graphs (DAG) for the three possible nonlinear scheduling functions
for the 1 - D FDM algorithm when I = 5, K = 9, and n = 3.

k

i

0

1

2

3

t1 = ceil(s1 / 2)

k

i

0

1

2

3

4

5

6 7

t2 = ceil(s2 / 2)

k

i

t3 = ceil(s3 / 2)

0

1

2

3

4

5

67

21.2 FDM for 1-D Systems 329

 In that case, we will have I + 1 tasks. At time step k + 1, task T i is required to perform
the operations in Eq. 21.23 . Therefore, there is necessary communication between
tasks T i , T i − 1 , and T i − 1 . The number of messages that need to be exchanged between
the tasks per time step is 2 I .

 We will pick projection direction associated with s 2 or s 3 as

 d s2 3 1, .= (21.33)

 In that case, we will have I + 1 tasks. However, the even tasks operate on the even
time steps and the odd tasks operate on the odd time steps. We can merge the adjacent
even and odd tasks and we would have a total of [(I + 1)/2] tasks operating every
clock cycle. There is necessary communication between tasks T i , T i − 1 , and T i − 1 . The
number of messages that need to be exchanged between the tasks per time step is
3[(I − 2)/2] + 4.

 Linear projection does not give us much control over how much work is
assigned to each task per time step or how many messages are exchanged between
the tasks. We are able to control the work per task and the total number of messages
exchanged by using nonlinear projection operation of the form

 p
Pp= ⎛

⎝⎜
⎞
⎠⎟floor

m
, (21.34)

where P is the projection matrix associated with the projection direction and m is
the number of nodes in the DAG that will be allocated to a single task. The total
number of task depends on I and m and is given approximately by 3[I / m].

 References

 [1] M. Wehner , L. Oliker , and J. Shalf . A real cloud computer . IEEE Spectrum , 46 (10): 24 – 29 ,
 2009 .

 [2] B. Wilkinson and M. Allen . Parallel Programming Techniques & Applications Using Networked
Workstations & Parallel Computers , 2nd ed . Toronto, Canada : Pearson , 2004 .

 [3] A. Grama , A. Gupta , G. Karypis , and V. Kumar . Introduction to Parallel Computing , 2nd ed .
 Reading, MA : Addison Wesley , 2003 .

 [4] Standards Coordinating Committee 10, Terms and Defi nitions . The IEEE Standard Dictionary of
Electrical and Electronics Terms , J. Radatz , Ed. IEEE , 1996 .

 [5] F. Elguibaly (Gebali) . α - CORDIC: An adaptive CORDIC algorithm . Canadian Journal on
Electrical and Computer Engineering , 23 : 133 – 138 , 1998 .

 [6] F. Elguibaly (Gebali) , HCORDIC: A high - radix adaptive CORDIC algorithm . Canadian Journal
on Electrical and Computer Engineering , 25 (4): 149 – 154 , 2000 .

 [7] J.S. Walther . A unifi ed algorithm for elementary functions . In Proceedings of the 1971 Spring
Joint Computer Conference , N. Macon , Ed. American Federation of Information Processing
Society, Montvale, NJ, May 18 – 20 , 1971 , pp. 379 – 385 .

 [8] J.E. Volder . The CORDIC Trigonometric Computing Technique . IRE Transactions on Electronic
Computers , EC - 8 (3): 330 – 334 , 1959 .

 [9] R.M. Karp , R.E. Miller , and S. Winograd . The organization of computations for uniform recur-
rence equations . Journal of the Association of Computing Machinery , 14 : 563 – 590 , 1967 .

 [10] V.P. Roychowdhury and T. Kailath . Study of parallelism in regular iterative algorithms . In
 Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and Architecture ,
Crete, Greece, F. T. Leighton , Ed. Association of Computing Machinery , 1990 , pp. 367 – 376 .

 [11] H.V. Jagadish , S.K. Rao , and T. Kailath . Multiprocessor architectures for iterative algorithms .
 Proceedings of the IEEE , 75 (9): 1304 – 1321 , 1987 .

 [12] D.I. Moldovan . On the design of algorithms for VLSI systohc arrays . Proceedings of the IEEE ,
 81 : 113 – 120 , 1983 .

 [13] F. Gebali , H. Elmiligi , and M.W. El - Kharashi . Networks on Chips: Theory and Practice . Boca
Raton, FL : CRC Press , 2008 .

 [14] B. Prince . Speeding up system memory . IEEE Spectrum , 2 : 38 – 41 , 1994 .
 [15] J.L. Gustafson . Reevaluating Amdahl ’ s law . Communications of the ACM, pp. 532 – 533 ,

1988 .
 [16] W.H. Press . Discrete radon transform has an exact, fast inverse and generalizes to operations other

than sums along lines . Proceedings of the National Academy of Sciences , 103 (51): 19249 – 19254 ,
 2006 .

 [17] F. Pappetti and S. Succi . Introduction to Parallel Computational Fluid Dynamics . New York :
 Nova Science Publishers , 1996 .

 [18] W. Stallings . Computer Organization and Architecture . Upper Saddle River, NJ : Pearson/
Prentice Hall , 2007 .

 [19] C. Hamacher , Z. Vranesic , and S. Zaky . Computer Organization , 5th ed. New York : McGraw -
 Hill , 2002 .

 [20] D.A. Patterson and J.L. Hennessy . Computer Organization and Design: The Hardware/Software
Interface . San Francisco, CA : Morgan Kaufman , 2008 .

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

331

332 References

 [21] F. Elguibaly (Gebali) . A fast parallel multiplier - accumulator using the modifi ed booth algorithm .
 IEEE Transaction Circuits and Systems II: Analog and Digital Signal Processing , 47 : 902 – 908 ,
 2000 .

 [22] F. Elguibaly (Gebali) . Merged inner - prodcut processor using the modifi ed booth algorithm .
 Canadian Journal on Electrical and Computer Engineering , 25 (4): 133 – 139 , 2000 .

 [23] S. Sunder , F. Elguibaly (Gebali) , and A. Antoniou . Systolic implementation of digital fi lters .
 Multidimensional Systems and Signal Processing , 3 : 63 – 78 , 1992 .

 [24] T. Ungerer , B. Rubic , and J. Slic . Multithreaded processors . Computer Journal , 45 (3): 320 – 348 ,
 2002 .

 [25] M. Johnson . Superscalar Microprocessor Design . Englewood Cliffs, NJ : Prentice Hall ,
1990 .

 [26] M.J. Flynn . Very high - speed computing systmes . Proceedings of the IEEE , 54 (12): 1901 – 1909 ,
 1966 .

 [27] M. Tomasevic and V. Milutinovic . Hardware approaches to cache coherence in shared - memory
multiprocessors: Part 1 . IEEE Micro , 14 (5): 52 – 59 , 1994 .

 [28] F. Gebali . Analysis of Computer and Communication Networks . New York : Springer , 2008 .
 [29] T.G. Lewis and H. El - Rewini . Introduction to Parallel Computing . Englewood Cliffs, NJ :

 Prentice Hall , 1992 .
 [30] J. Zhang , T. Ke , and M. Sun . The parallel computing based on cluster computer in the processing

of mass aerial digital images . In International Symposium on Information Processing , F. Yu and
 Q. Lou , Eds. IEEE Computer Society, Moscow, May 23 – 25 , 2008 , pp. 398 – 393 .

 [31] AMD . Computing: The road ahead . http://hpcrd.lbl.gov/SciDAC08/fi les/presentations/SciDAC_
Reed.pdf , 2008 .

 [32] B.K. Khailany , T. Williams , J. Lin , E.P. Long , M. Rygh , D.W. Tovey , and W.J. Dally . A
programmable 512 GOPS stream processor for signa, image, and video processing . IEEE Journal
of Solid - State Circuits , 43 (1): 202 – 213 , 2008 .

 [33] B. Burke . NVIDIA CUDA technology dramatically advances the pace of scientifi c research . http://
www.nvidia.com/object/io_1229516081227.html?_templated=320 , 2009 .

 [34] S. Rixner , W.J. Dally , U.J. Kapasi , B. Khailany , A. Lopez - Lagunas , P. Mattson , and J.D.
 Ownes . A bandwidth - effi cient architecture for media processing . In Proceedings of the 31st Annual
International Symposium on Microarchitecture . Los Alamitos, CA : IEEE Computer Society Press ,
 1998 , pp. 3 – 13 .

 [35] H. El - Rewini and T.G. Lewis . Distributed and Parallel Computing . Greenwich, CT : Manning
Publications , 1998 .

 [36] E.W. Dijkstra . Solution of a problem in concurrent programming control . Communications of the
ACM , 8 (9): 569 , 1965 .

 [37] D.E. Culler , J.P. Singh , and A. Gupta . Parallel Computer Architecture . San Francisco, CA :
 Morgan Kaufmann , 1999 .

 [38] A.S. Tanenbaum and A.S. Woodhull . Operating Systems : Design and Implementation .
 Englewood Cliffs, NJ : Prentice Hall , 1997 .

 [39] W. Stallings . Operating Systems: Internals and Design Principles . Upper Saddle River, NJ :
 Prentice Hall , 2005 .

 [40] A. Silberschatz , P.B. Galviin , and G. Gagne . Operating System Concepts . New York : John
Wiley , 2009 .

 [41] M.J. Young . Recent developments in mutual exclusion for multiprocessor systems . http://www.
mjyonline.com/MutualExclusion.htm , 2010 .

 [42] Sun Micorsystems . Multithreading Programming Guide . Santa Clara, CA : Sun Microsystems ,
 2008 .

 [43] F. Gebali . Design and analysis of arbitration protocols . IEEE Transaction on Computers ,
 38 (2): 161171 , 1989 .

 [44] S.W. Furhmann . Performance of a packet switch with crossbar architecture . IEEE Transaction
Communications , 41 : 486 – 491 , 1993 .

 [45] C. Clos . A study of non - blocking switching networks . Bell System Technology Journal , 32 : 406 –
 424 , 1953 .

References 333

 [46] R.J. Simcoe and T. - B. Pei . Perspectives on ATM switch architecture and the infl uence of traffi c
pattern assumptions on switch design . Computer Communication Review , 25 : 93 – 105 , 1995 .

 [47] K. Wang , J. Huang , Z. Li , X. Wang , F. Yang , and J. Bi . Scaling behavior of internet packet
delay dynamics based on small - interval measurements . In The IEEE Conference on Local Computer
Networks , H. Hassanein and M. Waldvogel , Eds. IEEE Computer Society, Sydney, Australia,
November 15 – 17 , 2005 , pp. 140 – 147 .

 [48] M.J. Quinn . Parallel Programming . New York : McGraw - Hill , 2004 .
 [49] C.E. Leiserson and I.B. Mirman . How to Survive the Multicore Software Revolution . Lexington,

MA : Cilk Arts , 2009 .
 [50] Cilk Arts . Smooth path to multicores . http://www.cilk.com/ , 2009 .
 [51] OpenMP . OpenMP: The OpenMP API specifi cation for parallel programming . http://openmp.org/

wp/ , 2009 .
 [52] G. Ippolito . YoLinux tutorial index . http://www.yolinux.com/TUTORIALS/LinuxTutorialPosix

Threads.html , 2004 .
 [53] M. Soltys . Operating systems concepts . http://www.cas.mcmaster.ca/ ~ soltys/cs3sh3 - w03/ ,

 2003 .
 [54] G. Hillar . Visualizing parallelism and concurrency in Visual Studio 2010 Beta 2 . http://www.

drdobbs.com/windows/220900288 , 2009 .
 [55] C.E. Leiserson . The Cilk + + Concurrency Platform . Journal of Supercomputing , 51 (3), 244 – 257 ,

 2009 .
 [56] C. Carmona . Programming the thread pool in the .net framework . http://msdn.microsoft.com/

en - us/library/ms973903.aspx , 2002 .
 [57] MIP Forum . Message passing interface forum . http://www.mpi - forum.org/ , 2008 .
 [58] G.E. Blelloch . NESL: A parallel programming language . http://www.cs.cmu.edu/ ~ scandal/nesl.

html , 2009 .
 [59] S. Amanda . Intel ’ s Ct Technology Code Samples , April 6, 2010 , http://software.intel.com/en - us/

articles/intels - ct - technology - code - samples/ .
 [60] Threading Building Blocks . Intel Threading Building Blocks 2.2 for open source . http://www.

threadingbuildingblocks.org/ , 2009 .
 [61] S. Patuel . Design: Task parallel library explored . http://blogs.msdn.com/salvapatuel/

archive/2007/11/11/task - parallel - library - explored.aspx , 2007 .
 [62] N. Furmento , Y. Roudier , and G. Siegel . Survey on C + + parallel extensions . http://www - sop.

inria. fr/sloop/SCP/ , 2009 .
 [63] D. McCrady . Avoiding contention using combinable objects . http://blogs.msdn.com/b/nativecon-

currency/archive/2008/09/25/avoiding - contention - usingcombinable - objects.aspx , 2008 .
 [64] Intel . Intel Cilk + + SDK programmer ’ s guide . http://software.intel.com/en - us/articles/intel - cilk/ ,

 2009 .
 [65] R.D. Blumofe and C.E. Leiserson . Scheduling multithreaded computations by work stealing .

 Journal of theACM (JACM) , 46 (5), 1999 .
 [66] J. Mellor - Crummey . Comp 422 parallel computing lecture notes and handouts . http://www.clear.

rice.edu/comp422/lecture - notes/ , 2009 .
 [67] M. Frigo , P. Halpern , C.E. Leiserson and S. Lewin - Berlin . Reducers and other Cilk + + hyper-

objects, ACM Symposium on Parallel Algorithms and Architectures, Calgary, Alberta, Canada,
pp. 79 – 90 , August 11 – 13, 2009 .

 [68] B.C. Kuszmaul . Rabin – Karp string matching using Cilk + + , 2009 . http://software.intel.com/
fi le/21631 .

 [69] B. Barney . OpenMP . http://computing.llnl.gov/tutorials/openMP/ , 2009 .
 [70] OpenMP . Summary of OpenMP 3.0 c/c + + syntax . http://openmp.org/mp - documents/OpenMP3.0 -

 SummarySpec.pdf , 2009 .
 [71] J. Nickolls , I. Buck , M. Garland , and K. Skadron . Scalable parallel programming with CUDA .

 ACM Queue , 6 (2): 40 – 53 , 2008 .
 [72] P.N. Gloaskowsky . NVIDIA ’ s Fermi: The fi rst complete GPU computing architecture ,

2009 . http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA ’ s_Fermi -
 The_First_Complete_GPU_Architecture.pdf .

334 References

 [73] NVIDIA . NVIDIA ’ s next generation CUDA computer architecture: Fermi , 2009 . http://www.
nvidia.com/object/fermi_architecture.html .

 [74] X. Li . CUDA programming . http://dynopt.ece.udel.edu/cpeg455655/lec8_cudaprogramming.pdf .
 [75] D. Kirk and W. - M. Hwu . ECE 498 AL: Programming massively processors . http://courses.ece.

illinois.edu/ece498/al/ , 2009 .
 [76] NVIDIA . NVIDIA CUDA Library Documentation 2.3 . http://developer.download.nvidia.com/

compute/cuda/2_3/toolkit/docs/online/index.html , 2010 .
 [77] Y. Wu . Parallel decomposed simplex algorithms and loop spreading . PhD thesis, Oregon State

University, 1988 .
 [78] J.H. McClelan , R.W. Schafer , and M.A. Yoder . Signal Processing First . Upper Saddle River,

NJ : Pearson/Prentice Hall , 2003 .
 [79] V.K. Ingle and J.G. Proakis . Digital Signal Processing Using MATLAB . Pacifi c Grove, CA :

 Brooks/Cole Thompson Learning , 2000 .
 [80] H.T. Kung . Why systolic architectures . IEEE Computer Magazine , 15 : 37 – 46 , 1982 .
 [81] H.T. Kung . VLSI Array Processors . Englewood Cliffs, NJ : Prentice Hall , 1988 .
 [82] G.L. Nemhauser and L.A. Wolsey . Integrand Combinatorial Optimization . New York : John

Wiley , 1988 .
 [83] F.P. Preparata and M.I. Shamos . Computational Geometry . New York : Springer - Verlag ,

1985 .
 [84] A. Schrijver . Theory of Linear and Integer Programming . New York : John Wiley , 1986 .
 [85] D.S. Watkins . Fundamentals of Matrix Computations . New York : John Wiley , 1991 .
 [86] F. El - Guibaly (Gebali) and A. Tawfi k . Mapping 3D IIR digital fi lter onto systolic arrays .

 Multidimensional Systems and Signal Processing , 7 (1): 7 – 26 , 1996 .
 [87] S. Sunder , F. Elguibaly (Gebali) , and A. Antoniou . Systolic implementation of two -

dimensional recursive digital fi lters . In Proceedings of the IEEE Symposium on Circuits and
Systems , New Orleans, LA, May 1 – 3, 1990, H. Gharavi , Ed. IEEE Circuits and Systems Society ,
pp. 1034 – 1037 .

 [88] M.A. Sid - Ahmed . A systolic realization of 2 - D fi lters . In IEEE Transactions on Acoustics, Speech,
and Signal Processing , Vol. ASSP - 37 , IEEE Acoustics, Speech and Signal Processing Society ,
 1989 , pp. 560 – 565 .

 [89] D. Esteban and C. Galland . Application of quadrature mirror fi lters to split band voice coding
systems . In Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing , Hartford, CT, May 9 – 11, 1977, F. F. Tsui , Ed. IEEE Acoustics, Speech and Signal
Processing Society , pp. 191 – 195 .

 [90] J.W. Woods and S.D. ONeil . Sub - band coding of images . In IEEE Transactions on Acoustics,
Speech, and Signal Processing , Vol. ASSP - 34 , IEEE Acoustics, Speech and Signal Processing
Society , 1986 , pp. 1278 – 1288 .

 [91] H. Gharavi and A. Tabatabai . Sub - band coding of monochrome and color images . In IEEE
Transactions on Circuits and Systems , Vol. CAS - 35 , IEEE Circuits and Systems Society , 1988 , pp.
 207 – 214 .

 [92] R. Ramachandran and P. Kabal . Bandwidth effi cient transmultiplexers. Part 1: Synthesis . IEEE
Transaction Signal Process , 40 : 70 – 84 , 1992 .

 [93] G. Jovanovic - Dolece . Multirate Systems: Design and Applications . Hershey, PA : Idea Group
Publishing , 2002 .

 [94] R.E. Crochiere and L.R. Rabiner . Multirate Signal Processing . Englewood Cliffs, NJ : Prentice
Hall , 1983 .

 [95] R.E. Crochiere and L.R. Rabiner . Interpolation and decimation of digital signals — A tutorial
review . Proceedings of the IEEE , 69 (3): 300 – 331 , 1981 .

 [96] E. Abdel - Raheem . Design and VLSI implementation of multirate fi lter banks . PhD thesis,
University of Victoria, 1995 .

 [97] E. Abdel - Raheem , F. Elguibaly (Gebali) , and A. Antoniou . Design of low - delay FIR QMF
banks using the lagrange - multiplier approach . In IEEE 37th Midwest Symposium on Circuits and
Systems , Lafayette, LA, M. A. Bayoumi and W. K. Jenkins , Eds. Lafayette, LA, August 3 – 5, IEEE
Circuits and Systems Society , 1994 , pp. 1057 – 1060 .

References 335

 [98] E. Abdel - Raheem , F. Elguibaly (Gebali) , and A. Antoniou . Systolic implementations of
polyphase decimators and interpolators . In IEEE 37th Midwest Symposium on Circuits and
Systems , Lafayette, LA, M. A. Bayoumi and W. K. Jenkins , Eds. Lafayette, LA, August 3 – 5, IEEE
Circuits and Systems Society , 1994 , pp. 749 – 752 .

 [99] A. Rafi q , M.W. El - Kharashi , and F. Gebali . A fast string search algorithm for deep packet
classifi cation . Computer Communications , 27 (15): 1524 – 1538 , 2004 .

 [100] F. Gebali and A. Rafi q . Processor array architectures for deep packet classifi cation . IEEE
Transactions on Parallel and Distributed Computing , 17 (3): 241 – 252 , 2006 .

 [101] A. Menezes , P. van Oorschot , and S. Vanstone . Handbook of Applied Cryptography . Boca
Raton, FL : CRC Press , 1997 .

 [102] B. Scheneier . Applied Cryptography . New York : John Wiley , 1996 .
 [103] W. Stallings . Cryptography and Network Security: Principles and Practice . Englewood Cliffs,

NJ : Prentice Hall , 2005 .
 [104] A. Reyhani - Masoleh and M.A. Hasan . Low complexity bit parallel architectures for polynomial

basis multiplication over GF(2 m) . IEEE Transactions on Computers , 53 (8): 945 – 959 , 2004 .
 [105] T. Zhang and K.K. Parhi . Systematic design of original and modifi ed mastrovito multipliers

for general irreducible polynomials . IEEE Transactions on Computers , 50 (7): 734 – 749 ,
 2001 .

 [106] C. - L. Wang and J. - H. Guo . New systolic arrays for c + ab 2 , inversion, and division in GF(2 m) .
 IEEE Transactions on Computers , 49 (10): 1120 – 1125 , 2000 .

 [107] C. - Y. Lee , C.W. Chiou , A. - W. Deng , and J. - M. Lin . Low - complexity bit - parallel systolic archi-
tectures for computing a (x) b 2 (x) over GF(2 m) . IEE Proceedings on Circuits, Devices & Systems ,
 153 (4): 399 – 406 , 2006 .

 [108] N. - Y. Kim , H. - S. Kim , and K. - Y. Yoo . Computation of a (x) b 2 (x) multiplication in GF(2 m) using
low - complexity systolic architecture . IEE Proceedings Circuits, Devices & Systems , 150 (2): 119 –
 123 , 2003 .

 [109] C. Yeh , I.S. Reed , and T.K. Truong . Systolic multipliers for fi nite fi elds GF(2 m) . IEEE Transactions
on Computers , C - 33 (4): 357 – 360 , 1984 .

 [110] D. Hankerson , A. Menezes , and S. Vanstone . Guide to Elliptic Curve Cryptography . New
York : Springer - Verlag , 2004 .

 [111] M. Fayed . A security coprocessor for next generation IP telephony architecture, abstraction, and
strategies . PhD thesis, University of Victoria, ECE Department, University of Victoria, Victoria,
BC, 2007 .

 [112] T. Itoh and S. Tsujii . A fast algorithm for computing multiplicative inverses in GF(2 m) using
normal bases . Information and Computing , 78 (3): 171 – 177 , 1998 .

 [113] A. Goldsmith . Wireless Communications . New York : Cambridge University Press , 2005 .
 [114] M. Abramovici , M.A. Breuer , and A.D. Friedman . Digital Systems Testing and Testable Design .

 New York : Computer Science Press , 1990 .
 [115] M.J.S. Smith . Application - Specifi c Integrated Circuits . New York : Addison Wesley , 1997 .
 [116] M. Fayed , M.W. El - Kharashi , and F. Gebali . A high - speed, low - area processor array architec-

ture for multipli - cation and squaring over GF(2 m) . In Proceedings of the Second IEEE International
Design and Test Workshop (IDT 2007) , 2007 , Y. Zorian , H. ElTahawy , A. Ivanov , and A. Salem ,
Eds. Cairo, Egypt : IEEE , pp. 226 – 231 .

 [117] M. Fayed , M.W. El - Kharashi , and F. Gebali . A high - speed, high - radix, processor array archi-
tecture for real - time elliptic curve cryptography over GF(2 m) . In Proceedings of the 7th IEEE
International Symposium on Signal Processing and Information Technology (ISSPIT 2007) , Cairo,
Egypt, E. Abdel - Raheem and A. El - Desouky , Eds. December 15 – 18, IEEE Signal Processing
Society and IEEE Computer Society , 2007 , pp. 57 – 62 .

 [118] F. Gebali , M. Rehan , and M.W. El - Kharashi . A hierarchical design methodology for full - search
block matching motion estimation . Multidimensional Systems and Signal Processing , 17 : 327 – 341 ,
 2006 .

 [119] M. Serra , T. Slater , J.C. Muzio , and D.M. Miller . The analysis of one - dimensional linear
cellular automata and their aliasing properties . IEEE Transactions on Computer - Aided Design of
Integrated Circuits and Systems , 9 (7): 767 – 778 , 1990 .

336 References

 [120] L.R. Rabiner and B. Gold . Theory and Application of Digital Signal Processing . Upper Saddle
River, NJ : Prentice Hall , 1975 .

 [121] E.H. Wold and A.M. Despain . Pipeline and parallel - pipeline FFT processors for VLSI implemen-
tation . IEEE Transactions on Computers , 33 (5): 414 – 426 , 1984 .

 [122] G.L. Stuber , J.R. Barry , S.W. McLaughlin , Y. Li , M.A. Ingram , and T.H. Pratt . Broadband
MIMO - OFDM wireless systems . Proceedings of the IEEE , 92 (2): 271 – 294 , 2004 .

 [123] J.W. Cooley and J.W. Tukey . An algorithm for the machine calculation of complex Fourier series .
 Mathematics of Computation , 19 : 297 – 301 , 1965 .

 [124] B. McKinney . The VLSI design of a general purpose FFT processing node , MASc thesis,
University of Victoria, 1986 .

 [125] A.M. Despain . Fouier transform computer using CORDIC iterations . IEEE Transactions on
Computers , C - 23 (10): 993 – 1001 , 1974 .

 [126] J.G. Nash . An FFT for wireless protocols . In 40th Annual Hawaii International Conference on
System Sciences: Mobile Computing Hardware Architectures , R. H. Sprague , Ed. January 3 – 6 ,
 2007 .

 [127] C. - P. Fan , M. - S. Lee , and G. - A. Su . A low multiplier and multiplication costs 256 - point FFT
implementa - tion with simplifi ed radix - 24 SDF architecture . In IEEE Asia Pacifi c Conference on
Circuits and Systems APCCAS , December 4 – 7, Singapore : IEEE , 2006 , pp. 1935 – 1938 .

 [128] S. He and M. Torkelson . A new approach to pipeline FFT processor . In Proceedings of IPPS
 ’ 96: The 10th International Parallel Processing Symposium , Honolulu, Hawaii, April 15 – 19, IEEE
Computer Society, K. Hwang, Ed. , 1996 , pp. 766 – 770 .

 [129] G.H. Golub and C.F. van Horn . Matrix Computations , 2nd ed . Blatimore, MD : The Johns
Hopkins University Press , 1989 .

 [130] I. Jacques and C. Judd . Numerical Analysis . New York : Chapman and Hall , 1987 .
 [131] R.L. Burden , J.D. Faires , and A.C. Reynolds . Numerical Analysis . Boston : Prindle, Weber &

Schmidt , 1978 .
 [132] D.E. Knuth . The Art of Computer Programming, vol. 3: Sorting and Searching . New York :

 Addison - Wesley , 1973 .

Index

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

337

1-D FIR fi lter, 160, 167, 175
z-transform implementation, 160

ad hoc techniques, 131
adjacency matrix, 2, 6, 147

input node, 6
internal node, 6
output node, 6
properties, 7

algorithm
1-D FIR fi lter, 160, 167, 175
1-D IIR fi lter, 209
2-D IIR fi lter, 221
adjacency matrix, 2, 6, 147
analysis, 147
classifi cation, 7
components, 4
critical path, 146
cycles, 150
decimation-in-frequency FFT, 299
decimation-in-time FFT, 295
decimator, 227
defi nition, 4
degree of parallelism, 146
depth, 146
directed graph, 4
discrete Fourier transform (DFT), 293
fast Fourier transform (FFT), 295
fi nite-fi eld polynomial division, 279
full search block matching, 256
GF(2m) multiplication, 268
hardware implementation, 2
implementation phases, 2
interpolator, 236
matrix multiplication, 185
non serial-parallel, 9, 143

parallel, 8
parallelism, 10, 146
parallelization, 11
performance, 156
primary inputs, 5
primary outputs, 5
regular iterative, 10
sequence vector, 151
serial, 7
serial-parallel, 8
software implementation, 2
string matching, 245
video compression, 255
work, 146

anti-dependencies, 48
asymmetric multiprocessor (ASMP), 56

banyan network, 89
binary multiplication

parallel, 30
serial, 30

bit-parallel multiplication, 30
bit-serial multiplication, 30
bus interconnection network, 84
butterfl y operation, 296, 299

decimation-in-frequency, 300
decimation-in-time, 295

cache
block, 35
block size, 39
coherence, 56
design, 36
hierarchy, 36
hit, 35

338 Index

cache (cont’d)
line, 35
miss, 35

capacity misses, 39
cold-start, 39
compulsory miss, 39
confl ict misses, 39
three C’s, 39

tag, 35
Cilk++, 106
Cilk++ chunk, 108
Cilk++ for loop, 107
Cilk++ strand, 108
cloud computing, 60
cluster computing, 60
cold start, 39
communication

-bound problems, 1
broadcast, 65
gather, 66
multicast, 65
one-to-all, 66
one-to-many, 65
one-to-one, 65
overhead, 16
reduce, 66
unicast, 65

compiler directive, 115
compulsory miss, 39
computation domain, 186
compute intensity, 62
concurrency platforms, 3, 105
confl ict misses, 39
connectivity matrix, 148
critical path, 10
critical section, 76
crossbar interconnection network, 86
crossbar network, contention, 87
cryptography, 267
cycles in directed graph, 150
cyclic algorithm, 143

period, 144

DAG. See directed acyclic graph
data parallelism, 62
data race, 108
DCG. See directed cyclic graph
decimation-in-frequency FFT, 299
decimation-in-time FFT, 295

decimator, 227
dependence graph, 228
polyphase, 235
scheduling, 230

degree of parallelism, 10, 146
dependence graph, 5, 167
dependence matrix, 169, 188

nullspace, 189
dependent loop, 134
depth, 10, 146
DFT. See discrete Fourier transform
DG. See directed graph
directed acyclic graph (DAG), 5, 9, 143

fi nite impulse response fi lter, 160
directed cyclic graph (DCG), 143
directed graph (DG), 4

cycles, 150
discrete Fourier transform (DFT), 293
distributed memory, 58
divide and conquer, 137
DRAM, 34
dynamic power consumption, 30

fast Fourier transform (FFT), 295
fi nite impulse response fi lter: DAG,

169
fi nite-fi eld polynomial division, 279
Flynn’s taxonomy, 54
four-way handshaking, 65
frame wraparound, 219

Galois fi eld, 267
GF(2m) multiplication, 267
global variable, 108
graphic processing unit (GPU), 62
grid computing, 60
Gustafson-Barsis’s law, 21

hardware-software dependence, 2
HCORDIC, 139
head of line (HOL), 93
hyperobjects, 110

independent loop, 133
inerconnection network, 55, 83
input driven routing, 101
input node, 6, 145
input queuing, 92

virtual output queuing, 100

Index 339

input variable, 185, 186
input/output (I/O), 185, 186
instruction level parallelism (ILP), 45

hazards
RAW, 46
WAR, 48
WAW, 48

interconnection network
banyan, 89
bus, 84
crossbar, 86
mesh, 86
MIN, 88
ring, 85
star, 85
switch, 91

interior node, 10, 145
intermediate variable, 133
interpolator, 236

index dependence graph, 237
polyphase, 243
scheduling, 238

L1 cache, 36
L2 cache, 36
lightweight process, 49
line wraparound, 219
linear systems, 305
load balancing, 134
loop

dependent, 134
independent, 133
spreading, 135
unrolling, 135

MAC. See multiply/accumulate
mapping, 15
massively parallel computing, 57
memory

collision, 54
features, 33
hierarchy, 33
mismatch ratio, 18

mesh interconnection network, 86
message passing, 56
message passing interface (MPI), 56, 67,

106
MIMD. See multiple instruction multiple

data stream

MISD. See multiple instruction single data
stream

monitor, 56
MPI. See message passing interface
multicore, 61
multiple input and output queuing, 99
multiple input queuing, 97
multiple instruction multiple data stream

(MIMD), 54
multiple instruction single data stream

(MISD), 54
multiple output queuing, 98
multiplication over Galois fi eld, 267
multiply/accumulate (MAC) operation, 43
multiprocessors

distributed memory, 56
memory mismatch ratio, 19
NUMA, 54
shared memory, 54
SIMD, 57
systolic processor, 57
UMA, 54

multistage interconnection network, 88
multithreaded processor, 49
multithreading, 49

POSIX, 106
Pthreads, 106
WinAPI, 106

mutex, 56
mutual exclusion, 56

network-on-chip, 12, 83
NoC: network-on-chip, 12, 83
node

input, 6, 157
internal, 6, 158
output, 6, 157

nonlocal variable, 108
nonserial-parallel algorithm: adjacency

matrix, 6
nonserial-parallel algorithm (NSPA), 9, 143
nonserial-parallel algorithm parallelization,

145
nonuniform memory access (NUMA), 54
NSPA. See nonserial-parallel algorithm
NUMA. See nonuniform memory access

OpenMP, 112
compiler directive, 114

340 Index

output dependencies, 48
output driven routing, 101
output node, 6, 157
output queuing, 94

virtual input queuing, 98
output variable, 133, 160, 185

parallel algorithm, 8, 14
defi nition, 14
examples, 14
implementation, 14

parallel architecture, 14
defi nition, 14

parallelism, 10, 146
parallelization, 30
parallelization technique

ad hoc, 131
dependent loop, 134
divide and conquer, 137
independent loop, 133
loop spreading, 135
loop unrolling, 135
partitioning, 136
pipelining, 139

parasitic capacitance, 30
partitioning, 136
performance

clock frequency, 30
parallelization techniques, 30
pipelining techniques, 39

pipeline, HCORDIC, 151
pipelining, 39, 139
polyphase, 235, 243

decimator, 235
interpolator, 243

POSIX, 56, 105
pragma, 113
procedural dependencies, 47
program indeterminacy, 108
projection

dependence graph, 177
direction, 178
matrix, 178

Pthreads, 105

queuing
virtual input queuing, 98
virtual output queuing, 98

read after write (RAW), 46
regular iterative algorithm (RIA) , 7, 167
resource confl icts, 74
resources, 29
RIA. See regular iterative algorithm
ring interconnection network, 85
routing algorithm, 86

sample time, 144
scheduling, 15
scheduling function, 174, 195
semaphore, 56
sequence vector, 151
serial algorithm, 7

parallelization, 12
serial-parallel algorithm (SPA), 7
serial-parallel algorithm parallelization,

12
serial/parallel multiplication, 30
SFG. See signal fl ow graph
shared buffer, 96
shared memory, 54, 69

multiprocessor, 69
shared variable, 69
signal fl ow graph (SFG), 174
SIMD

compared with systolic processor, 59
single instruction multiple data stream,

57
simple processor defi nition, 31
single instruction multiple data stream

(SIMD), 54, 57
single instruction single data stream (SISD),

54
SM. See stream multiprocessor
SMP. See symmetric multiprocessor
software-hardware dependence, 2
SPA. See serial-parallel algorithm
span, 146
spatial locality, 34, 70
speedup, 15, 95

acyclic algorithm, 156
Amdahl’s law, 19
communication overhead, 18
Gustafson-Barsis’s law, 21

star interconnection network, 85
strand, 108
stream multiprocessor (SM), 54, 62

Index 341

superscalar
antidependencies, 46, 48
output dependencies, 48
procedural dependencies, 47
processor, 45
resource confl icts, 47
true data dependencies, 46

supply voltage (V), 30
switch, 91

buffers, 92
components, 91
control section, 92
fabric speedup, 95
input queuing, 92
multiple input and output queuing, 105
multiple input queuing, 97
multiple output queuing, 98
output queuing, 94
shared buffer, 96
virtual routing/queuing, 100
VRQ, 100

symmetric multiprocessor (SMP), 56
synchronization, 56
system matrix, 305
systolic processor, 57

implementation issues, 59
compared with pipelining, 57
compared with SIMD, 59

temporal locality, 34, 70
thread, 49
true data dependencies, 46
twiddle factor, 293
two-way handshaking, 66

uniform memory access (UMA), 54
uniprocessor performance, 29

variable
input, 133, 160, 185
output, 133, 160, 185
intermediate, 133, 160, 185

very long instruction word (VLIW),
44

virtual input queue, 98
virtual output queue, 98
virtual routing/virtual queuing, 100
VRQ, 100

WAR. See write after read
WAW. See write after write
WinAPI, 105
work, 4, 10, 146
write after read (WAR), 48
write after write (WAW), 48

z-transform, 159

	Algorithms and Parallel Computing
	Contents
	Preface
	List of Acronyms
	Chapter 1: Introduction
	1.1 INTRODUCTION
	1.2 TOWARD AUTOMATING PARALLEL PROGRAMMING
	1.3 ALGORITHMS
	1.4 PARALLEL COMPUTING DESIGN CONSIDERATIONS
	1.5 PARALLEL ALGORITHMS AND PARALLEL ARCHITECTURES
	1.6 RELATING PARALLEL ALGORITHM AND PARALLEL ARCHITECTURE
	1.7 IMPLEMENTATION OF ALGORITHMS: A TWO-SIDED PROBLEM
	1.8 MEASURING BENEFITS OF PARALLEL COMPUTING
	1.9 AMDAHL’S LAW FOR MULTIPROCESSOR SYSTEMS
	1.10 GUSTAFSON–BARSIS’S LAW
	1.11 APPLICATIONS OF PARALLEL COMPUTING

	Chapter 2: Enhancing Uniprocessor Performance
	2.1 INTRODUCTION
	2.2 INCREASING PROCESSOR CLOCK FREQUENCY
	2.3 PARALLELIZING ALU STRUCTURE
	2.4 USING MEMORY HIERARCHY
	2.5 PIPELINING
	2.6 VERY LONG INSTRUCTION WORD (VLIW) PROCESSORS
	2.7 INSTRUCTION-LEVEL PARALLELISM (ILP) AND SUPERSCALAR PROCESSORS
	2.8 MULTITHREADED PROCESSOR

	Chapter 3: Parallel Computers
	3.1 INTRODUCTION
	3.2 PARALLEL COMPUTING
	3.3 SHARED-MEMORY MULTIPROCESSORS (UNIFORM MEMORY ACCESS [UMA])
	3.4 DISTRIBUTED-MEMORY MULTIPROCESSOR (NONUNIFORM MEMORY ACCESS [NUMA])
	3.5 SIMD PROCESSORS
	3.6 SYSTOLIC PROCESSORS
	3.7 CLUSTER COMPUTING
	3.8 GRID (CLOUD) COMPUTING
	3.9 MULTICORE SYSTEMS
	3.10 SM
	3.11 COMMUNICATION BETWEEN PARALLEL PROCESSORS
	3.12 SUMMARY OF PARALLEL ARCHITECTURES

	Chapter 4: Shared-Memory Multiprocessors
	4.1 INTRODUCTION
	4.2 CACHE COHERENCE AND MEMORY CONSISTENCY
	4.3 SYNCHRONIZATION AND MUTUAL EXCLUSION

	Chapter 5: Interconnection Networks
	5.1 INTRODUCTION
	5.2 CLASSIFICATION OF INTERCONNECTION NETWORKS BY LOGICAL TOPOLOGIES
	5.3 INTERCONNECTION NETWORK SWITCH ARCHITECTURE

	Chapter 6: Concurrency Platforms
	6.1 INTRODUCTION
	6.2 CONCURRENCY PLATFORMS
	6.3 CILK++
	6.4 OpenMP
	6.5 COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

	Chapter 7: Ad Hoc Techniques for Parallel Algorithms
	7.1 INTRODUCTION
	7.2 DEFINING ALGORITHM VARIABLES
	7.3 INDEPENDENT LOOP SCHEDULING
	7.4 DEPENDENT LOOPS
	7.5 LOOP SPREADING FOR SIMPLE DEPENDENT LOOPS
	7.6 LOOP UNROLLING
	7.7 PROBLEM PARTITIONING
	7.8 DIVIDE-AND-CONQUER (RECURSIVE PARTITIONING) STRATEGIES
	7.9 PIPELINING

	Chapter 8: Nonserial–Parallel Algorithms
	8.1 INTRODUCTION
	8.2 COMPARING DAG AND DCG ALGORITHMS
	8.3 PARALLELIZING NSPA ALGORITHMS REPRESENTED BY A DAG
	8.4 FORMAL TECHNIQUE FOR ANALYZING NSPAs
	8.5 DETECTING CYCLES IN THE ALGORITHM
	8.6 EXTRACTING SERIAL AND PARALLEL ALGORITHM PERFORMANCE PARAMETERS
	8.7 USEFUL THEOREMS
	8.8 PERFORMANCE OF SERIAL AND PARALLEL ALGORITHMS ON PARALLEL COMPUTERS

	Chapter 9: z-Transform Analysis
	9.1 INTRODUCTION
	9.2 DEFINITION OF z-TRANSFORM
	9.3 THE 1-D FIR DIGITAL FILTER ALGORITHM
	9.4 SOFTWARE AND HARDWARE IMPLEMENTATIONS OF THE z-TRANSFORM
	9.5 DESIGN 1: USING HORNER’S RULE FOR BROADCAST INPUT AND PIPELINED OUTPUT
	9.6 DESIGN 2: PIPELINED INPUT AND BROADCAST OUTPUT
	9.7 DESIGN 3: PIPELINED INPUT AND OUTPUT

	Chapter 10: Dependence Graph Analysis
	10.1 INTRODUCTION
	10.2 THE 1-D FIR DIGITAL FILTER ALGORITHM
	10.3 THE DEPENDENCE GRAPH OF AN ALGORITHM
	10.4 DERIVING THE DEPENDENCE GRAPH FOR AN ALGORITHM
	10.5 THE SCHEDULING FUNCTION FOR THE 1-D FIR FILTER
	10.6 NODE PROJECTION OPERATION
	10.7 NONLINEAR PROJECTION OPERATION
	10.8 SOFTWARE AND HARDWARE IMPLEMENTATIONS OF THE DAG TECHNIQUE

	Chapter 11: Computational Geometry Analysis
	11.1 INTRODUCTION
	11.2 MATRIX MULTIPLICATION ALGORITHM
	11.3 THE 3-D DEPENDENCE GRAPH AND COMPUTATION DOMAIN D
	11.4 THE FACETS AND VERTICES OF D
	11.5 THE DEPENDENCE MATRICES OF THE ALGORITHM VARIABLES
	11.6 NULLSPACE OF DEPENDENCE MATRIX: THE BROADCAST SUBDOMAIN B
	11.7 DESIGN SPACE EXPLORATION: CHOICE OF BROADCASTING VERSUS PIPELINING VARIABLES
	11.8 DATA SCHEDULING
	11.9 PROJECTION OPERATION USING THE LINEAR PROJECTION OPERATOR
	11.10 EFFECT OF PROJECTION OPERATION ON DATA
	11.11 THE RESULTING MULTITHREADED/MULTIPROCESSOR ARCHITECTURE
	11.12 SUMMARY OF WORK DONE IN THIS CHAPTER

	Chapter 12: Case Study: One-Dimensional IIR Digital Filters
	12.1 INTRODUCTION
	12.2 THE 1-D IIR DIGITAL FILTER ALGORITHM
	12.3 THE IIR FILTER DEPENDENCE GRAPH
	12.4 z-DOMAIN ANALYSIS OF 1-D IIR DIGITAL FILTER ALGORITHM

	Chapter 13: Case Study: Two- and Three-Dimensional Digital Filters
	13.1 INTRODUCTION
	13.2 LINE AND FRAME WRAPAROUND PROBLEMS
	13.3 2-D RECURSIVE FILTERS
	13.4 3-D DIGITAL FILTERS

	Chapter 14: Case Study: Multirate Decimators and Interpolators
	14.1 INTRODUCTION
	14.2 DECIMATOR STRUCTURES
	14.3 DECIMATOR DEPENDENCE GRAPH
	14.4 DECIMATOR SCHEDULING
	14.5 DECIMATOR DAG FOR s1 = [1 0]
	14.6 DECIMATOR DAG FOR s2 = [1 −1]
	14.7 DECIMATOR DAG FOR s3 = [1 1]
	14.8 POLYPHASE DECIMATOR IMPLEMENTATIONS
	14.9 INTERPOLATOR STRUCTURES
	14.10 INTERPOLATOR DEPENDENCE GRAPH
	14.11 INTERPOLATOR SCHEDULING
	14.12 INTERPOLATOR DAG FOR s1 = [1 0]
	14.13 INTERPOLATOR DAG FOR s2 = [1 −1]
	14.14 INTERPOLATOR DAG FOR s3 = [1 1]
	14.15 POLYPHASE INTERPOLATOR IMPLEMENTATIONS

	Chapter 15: Case Study: Pattern Matching
	15.1 INTRODUCTION
	15.2 EXPRESSING THE ALGORITHM AS A REGULAR ITERATIVE ALGORITHM (RIA)
	15.3 OBTAINING THE ALGORITHM DEPENDENCE GRAPH
	15.4 DATA SCHEDULING
	15.5 DAG NODE PROJECTION
	15.6 DESIGN 1: DESIGN SPACE EXPLORATION WHEN s = [1 1]t
	15.7 DESIGN 2: DESIGN SPACE EXPLORATION WHEN s = [1 −1]t
	15.8 DESIGN 3: DESIGN SPACE EXPLORATION WHEN s = [1 0]t

	Chapter 16: Case Study: Motion Estimation for Video Compression
	16.1 INTRODUCTION
	16.2 FBMAS
	16.3 DATA BUFFERING REQUIREMENTS
	16.4 FORMULATION OF THE FBMA
	16.5 HIERARCHICAL FORMULATION OF MOTION ESTIMATION
	16.6 HARDWARE DESIGN OF THE HIERARCHY BLOCKS

	Chapter 17: Case Study: Multiplication over GF (2m)
	17.1 INTRODUCTION
	17.2 THE MULTIPLICATION ALGORITHM IN GF (2m)
	17.3 EXPRESSING FIELD MULTIPLICATION AS AN RIA
	17.4 FIELD MULTIPLICATION DEPENDENCE GRAPH
	17.5 DATA SCHEDULING
	17.6 DAG NODE PROJECTION
	17.7 DESIGN 1: USING d1 = [1 0]t
	17.8 DESIGN 2: USING d2 = [1 1]t
	17.9 DESIGN 3: USING d3 = [1 −1]t
	17.10 APPLICATIONS OF FINITE FIELD MULTIPLIERS

	Chapter 18: Case Study: Polynomial Division over GF(2)
	18.1 INTRODUCTION
	18.2 THE POLYNOMIAL DIVISION ALGORITHM
	18.3 THE LFSR DEPENDENCE GRAPH
	18.4 DATA SCHEDULING
	18.5 DAG NODE PROJECTION
	18.6 DESIGN 1: DESIGN SPACE EXPLORATION WHEN s1 = [1 −1]
	18.7 DESIGN 2: DESIGN SPACE EXPLORATION WHEN s2 = [1 0]
	18.8 DESIGN 3: DESIGN SPACE EXPLORATION WHEN s3 = [1 −0.5]
	18.9 COMPARING THE THREE DESIGNS

	Chapter 19: The Fast Fourier Transform
	19.1 INTRODUCTION
	19.2 DECIMATION-IN-TIME FFT
	19.3 PIPELINE RADIX-2 DECIMATION-IN-TIME FFT PROCESSOR
	19.4 DECIMATION-IN-FREQUENCY FFT
	19.5 PIPELINE RADIX-2 DECIMATION-IN-FREQUENCY FFT PROCESSOR

	Chapter 20: Solving Systems of Linear Equations
	20.1 INTRODUCTION
	20.2 SPECIAL MATRIX STRUCTURES
	20.3 FORWARD SUBSTITUTION (DIRECT TECHNIQUE)
	20.4 BACK SUBSTITUTION
	20.5 MATRIX TRIANGULARIZATION ALGORITHM
	20.6 SUCCESSIVE OVER RELAXATION (SOR) (ITERATIVE TECHNIQUE)
	20.7 PROBLEMS

	Chapter 21: Solving Partial Differential Equations Using Finite Difference Method
	21.1 INTRODUCTION
	21.2 FDM FOR 1-D SYSTEMS

	References
	Index

