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Preface

Dear Reader,

Please hold on! I know many people typically do not read the Preface of a book. But I strongly
recommend that you read this particular Preface.

It is not the main objective of this book to present you with the theorems and proofs on data
structures and algorithms. 1 have followed a pattern of improving the problem solutions with
different complexities (for each problem, you will find multiple solutions with different, and
reduced, complexities). Basically, it’s an enumeration of possible solutions. With this approach,
even if you get a new question, it will show you a way to think about the possible solutions. You
will find this book useful for interview preparation, competitive exams preparation, and campus
interview preparations.

As a job seeker, if you read the complete book, I am sure you will be able to challenge the
interviewers. If you read it as an instructor, it will help you to deliver lectures with an approach
that is easy to follow, and as a result your students will appreciate the fact that they have opted for
Computer Science / Information Technology as their degree.

This book is also useful for Engineering degree students and Masters degree students during
their academic preparations. In all the chapters you will see that there is more emphasis on
problems and their analysis rather than on theory. In each chapter, you will first read about the
basic required theory, which is then followed by a section on problem sets. In total, there are
approximately 700 algorithmic problems, all with solutions.

If you read the book as a student preparing for competitive exams for Computer Science /
Information Technology, the content covers all the required topics in full detail. While writing
this book, my main focus was to help students who are preparing for these exams.

In all the chapters you will see more emphasis on problems and analysis rather than on theory. In
each chapter, you will first see the basic required theory followed by various problems.

For many problems, multiple solutions are provided with different levels of complexity. We start
with the brute force solution and slowly move toward the best solution possible for that problem.
For each problem, we endeavor to understand how much time the algorithm takes and how much
memory the algorithm uses.



It is recommended that the reader does at least one complete reading of this book to gain a full
understanding of all the topics that are covered. Then, in subsequent readings you can skip
directly to any chapter to refer to a specific topic. Even though many readings have been done for
the purpose of correcting errors, there could still be some minor typos in the book. If any are
found, they will be updated at www.CareerMonk.com. You can monitor this site for any
corrections and also for new problems and solutions. Also, please provide your valuable
suggestions at: Info@CareerMonk.com.

I wish you all the best and I am confident that you will find this book useful.
—Narasimha Karumanchi

M-Tech, I IT Bombay
Founder, CareerMonk.com
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INTRODUCTION

The objective of this chapter is to explain the importance of the analysis of algorithms, their
notations, relationships and solving as many problems as possible. Let us first focus on
understanding the basic elements of algorithms, the importance of algorithm analysis, and then
slowly move toward the other topics as mentioned above. After completing this chapter, you
should be able to find the complexity of any given algorithm (especially recursive functions).

1.1 Variables

Before going to the definition of variables, let us relate them to old mathematical equations. All of
us have solved many mathematical equations since childhood. As an example, consider the below
equation:

4ly-2=1



We don’t have to worry about the use of this equation. The important thing that we need to
understand is that the equation has names (x and y), which hold values (data). That means the
names (x and y) are placeholders for representing data. Similarly, in computer science
programming we need something for holding data, and variables is the way to do that.

1.2 Data Types

In the above-mentioned equation, the variables x and y can take any values such as integral
numbers (10, 20), real numbers (0.23, 5.5), or just 0 and 1. To solve the equation, we need to
relate them to the kind of values they can take, and data type is the name used in computer science
programming for this purpose. A data type in a programming language is a set of data with
predefined values. Examples of data types are: integer, floating point, unit number, character,
string, etc.

Computer memory is all filled with zeros and ones. If we have a problem and we want to code it,
it’s very difficult to provide the solution in terms of zeros and ones. To help users, programming
languages and compilers provide us with data types. For example, integer takes 2 bytes (actual
value depends on compiler), float takes 4 bytes, etc. This says that in memory we are combining
2 bytes (16 bits) and calling it an integer. Similarly, combining 4 bytes (32 bits) and calling it a
float. A data type reduces the coding effort. At the top level, there are two types of data types:

. System-defined data types (also called Primitive data types)
. User-defined data types

System-defined data types (Primitive data types)

Data types that are defined by system are called primitive data types. The primitive data types
provided by many programming languages are: int, float, char, double, bool, etc. The number of
bits allocated for each primitive data type depends on the programming languages, the compiler
and the operating system. For the same primitive data type, different languages may use different
sizes. Depending on the size of the data types, the total available values (domain) will also
change.

For example, “int” may take 2 bytes or 4 bytes. If it takes 2 bytes (16 bits), then the total possible
values are minus 32,768 to plus 32,767 (-21° to 215-1). If it takes 4 bytes (32 bits), then the

possible values are between -2,147,483,648 and +2,147,483,647 (-23! to 231-1). The same is the
case with other data types.

User defined data types

If the system-defined data types are not enough, then most programming languages allow the users



to define their own data types, called user — defined data types. Good examples of user defined
data types are: structures in C/C + + and classes in Java. For example, in the snippet below, we
are combining many system-defined data types and calling the user defined data type by the name
“newType”. This gives more flexibility and comfort in dealing with computer memory.

struct newType |
int datal;
float data 2;

char data;

1.3 Data Structures

Based on the discussion above, once we have data in variables, we need some mechanism for
manipulating that data to solve problems. Data structure is a particular way of storing and
organizing data in a computer so that it can be used efficiently. A data structure is a special
format for organizing and storing data. General data structure types include arrays, files, linked
lists, stacks, queues, trees, graphs and so on.

Depending on the organization of the elements, data structures are classified into two types:

1) Linear data structures: Elements are accessed in a sequential order but it is not
compulsory to store all elements sequentially. Examples: Linked Lists, Stacks and
Queues.

2)  Non — linear data structures: Elements of this data structure are stored/accessed in a
non-linear order. Examples: Trees and graphs.

1.4 Abstract Data Types (ADT5s)

Before defining abstract data types, let us consider the different view of system-defined data
types. We all know that, by default, all primitive data types (int, float, etc.) support basic
operations such as addition and subtraction. The system provides the implementations for the
primitive data types. For user-defined data types we also need to define operations. The
implementation for these operations can be done when we want to actually use them. That means,
in general, user defined data types are defined along with their operations.

To simplify the process of solving problems, we combine the data structures with their operations
and we call this Abstract Data Types (ADTs). An ADT consists of two parts:

1. Declaration of data



2. Declaration of operations

Commonly used ADTs include: Linked Lists, Stacks, Queues, Priority Queues, Binary Trees,
Dictionaries, Disjoint Sets (Union and Find), Hash Tables, Graphs, and many others. For
example, stack uses LIFO (Last-In-First-Out) mechanism while storing the data in data structures.
The last element inserted into the stack is the first element that gets deleted. Common operations
of it are: creating the stack, pushing an element onto the stack, popping an element from stack,
finding the current top of the stack, finding number of elements in the stack, etc.

While defining the ADTs do not worry about the implementation details. They come into the
picture only when we want to use them. Different kinds of ADTs are suited to different kinds of
applications, and some are highly specialized to specific tasks. By the end of this book, we will
go through many of them and you will be in a position to relate the data structures to the kind of
problems they solve.

1.5 What is an Algorithm?

Let us consider the problem of preparing an omelette. To prepare an omelette, we follow the
steps given below:

1)  Get the frying pan.
2)  Get the oil.
a. Do we have oil?
i. If yes, put it in the pan.
ii. If no, do we want to buy oil?
1. If yes, then go out and buy.
2. If no, we can terminate.
3) Turn on the stove, etc...

What we are doing is, for a given problem (preparing an omelette), we are providing a step-by-
step procedure for solving it. The formal definition of an algorithm can be stated as:

An algorithm is the step-by-step unambiguous instructions to solve a given problem.
In the traditional study of algorithms, there are two main criteria for judging the merits of

algorithms: correctness (does the algorithm give solution to the problem in a finite number of

steps?) and efficiency (how much resources (in terms of memory and time) does it take to execute
the).

Note: We do not have to prove each step of the algorithm.

1.6 Why the Analysis of Algorithms?



To go from city “A” to city “B”, there can be many ways of accomplishing this: by flight, by bus,
by train and also by bicycle. Depending on the availability and convenience, we choose the one
that suits us. Similarly, in computer science, multiple algorithms are available for solving the
same problem (for example, a sorting problem has many algorithms, like insertion sort, selection
sort, quick sort and many more). Algorithm analysis helps us to determine which algorithm is
most efficient in terms of time and space consumed.

1.7 Goal of the Analysis of Algorithms

The goal of the analysis of algorithms is to compare algorithms (or solutions) mainly in terms of
running time but also in terms of other factors (e.g., memory, developer effort, etc.)

1.8 What is Running Time Analysis?

It is the process of determining how processing time increases as the size of the problem (input

size) increases. Input size is the number of elements in the input, and depending on the problem
type, the input may be of different types. The following are the common types of inputs.

. Size of an array
. Polynomial degree
. Number of elements in a matrix

. Number of bits in the binary representation of the input
. Vertices and edges in a graph.

1.9 How to Compare Algorithms
To compare algorithms, let us define a few objective measures:
Execution times? Not a good measure as execution times are specific to a particular computer.

Number of statements executed? Not a good measure, since the number of statements varies
with the programming language as well as the style of the individual programmer.

Ideal solution? Let us assume that we express the running time of a given algorithm as a function

of the input size n (i.e., f(n)) and compare these different functions corresponding to running
times. This kind of comparison is independent of machine time, programming style, etc.

1.10 What is Rate of Growth?

The rate at which the running time increases as a function of input is called rate of growth. Let us



assume that you go to a shop to buy a car and a bicycle. If your friend sees you there and asks
what you are buying, then in general you say buying a car. This is because the cost of the car is
high compared to the cost of the bicycle (approximating the cost of the bicycle to the cost of the
car).

Total Cost = cost_of car + cost of bicycle
Total Cost = cost_of car (approximation)

For the above-mentioned example, we can represent the cost of the car and the cost of the bicycle
in terms of function, and for a given function ignore the low order terms that are relatively

insignificant (for large value of input size, n). As an example, in the case below, n*, 2n2, 100n

and 500 are the individual costs of some function and approximate to n* since n* is the highest
rate of growth.

it 4 2nf 4 100n + 500 = nt

1.11 Commonly Used Rates of Growth

The diagram below shows the relationship between different rates of growth.
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Below is the list of growth rates you will come across in the following chapters.



Time Complexity | Name Example

1 Constant Adding an element to the front of a linked list

logn Logarithmie Finding an element 1n a sorted array
n Linear Finding an element in an unsorted array

nlogn Linear Logarithmic | Sorting n items by ‘divide-and-conquer’ - Mergesort
n’ Quadratic Shortest path between two nodes in a graph
n? Cubic Matrix Multiplication
2" Exponential The Towers of Hanoi problem

1.12 Types of Analysis

To analyze the given algorithm, we need to know with which inputs the algorithm takes less time
(performing wel1) and with which inputs the algorithm takes a long time. We have already seen
that an algorithm can be represented in the form of an expression. That means we represent the
algorithm with multiple expressions: one for the case where it takes less time and another for the
case where it takes more time.

In general, the first case is called the best case and the second case is called the worst case for
the algorithm. To analyze an algorithm we need some kind of syntax, and that forms the base for
asymptotic analysis/notation. There are three types of analysis:

. Worst case
o  Defines the input for which the algorithm takes a long time (slowest
time to complete).
O  Input is the one for which the algorithm runs the slowest.
. Best case
o0  Defines the input for which the algorithm takes the least time (fastest
time to complete).
o0  Input is the one for which the algorithm runs the fastest.
. Average case
o  Provides a prediction about the running time of the algorithm.
©  Run the algorithm many times, using many different inputs that come
from some distribution that generates these inputs, compute the total
running time (by adding the individual times), and divide by the
number of trials.
o Assumes that the input is random.

Lower Bound <= Average Time <= Upper Bound



For a given algorithm, we can represent the best, worst and average cases in the form of
expressions. As an example, let f(n) be the function which represents the given algorithm.

f(n) = n* + 500, for worst case
f(n)=n + 100n + 500, for best case

Similarly for the average case. The expression defines the inputs with which the algorithm takes
the average running time (or memory).

1.13 Asymptotic Notation

Having the expressions for the best, average and worst cases, for all three cases we need to
identify the upper and lower bounds. To represent these upper and lower bounds, we need some
kind of syntax, and that is the subject of the following discussion. Let us assume that the given
algorithm is represented in the form of function f(n).

1.14 Big-O Notation [Upper Bounding Function]

This notation gives the tight upper bound of the given function. Generally, it is represented as f(n)
= O(g(n)). That means, at larger values of n, the upper bound of f(n) is g(n). For example, if f(n)
= n* + 100n%? + 10n + 50 is the given algorithm, then n* is g(n). That means g(n) gives the
maximum rate of growth for f(n) at larger values of n.

Rate of Growth cg(n)

& f(n)

» Input Size, n



Let us see the O—notation with a little more detail. O—notation defined as O(g(n)) = {f(n): there
exist positive constants ¢ and ny such that 0 < f(n) < cg(n) for all n > ny}. g(n) is an asymptotic

tight upper bound for f(n). Our objective is to give the smallest rate of growth g(n) which is
greater than or equal to the given algorithms’ rate of growth /(n).

Generally we discard lower values of n. That means the rate of growth at lower values of n is not
important. In the figure, n is the point from which we need to consider the rate of growth for a

given algorithm. Below n,, the rate of growth could be different. n, is called threshold for the
given function.

Big-O Visualization

O(g(n)) is the set of functions with smaller or the same order of growth as g(n). For example;
O(n?) includes O(1), O(n), O(nlogn), etc.

Note: Analyze the algorithms at larger values of n only. What this means is, below ny, we do not
care about the rate of growth.

O(1): 100,1000, 200,1,20, etc. O(n):3n+ 100, 100n,2n - 1, 3, etc.

O(nlogn): 5Snlogn,3n - 100, 2n - O(n?):n?,5n - 10,100, n* = 2n + 1,
1,100,100n, etc. 2. elt.

Big-O Examples

Example-1 Find upper bound for f(n) =3n + 8

Solution: 3n +8 <4n, foralln > 8
-.3n+8=0(n) withc=4and n,=8



Example-2 Find upper bound for f(n) = n> + 1

Solution: n? + 1 <2n? foralln>1
~n?>+1=0(n?) withc =2andny=1

Example-3 Find upper bound for f(n) = n* + 100n? + 50

Solution: n* + 100n? + 50 < 2n?, for all n > 11
-.n*+100n? + 50 = O(n*) withc = 2 and n, = 11

Example-4 Find upper bound for f(n) = 2n3 - 2n?

Solution: 2n3 — 2n? < 2n3, forall n > 1
-.2n3=2n?=0(n®) withc =2 and ny =1

Example-5 Find upper bound for f(n) =n

Solution: n<n, foralln>1
-.n=0(n)withc=1andny=1

Example-6 Find upper bound for f(n) = 410

Solution: 410 < 410, foralln > 1
-.410=0(1) withc =1and ny =1

No Uniqueness?

There is no unique set of values for n, and c in proving the asymptotic bounds. Let us consider,
100n + 5 = O(n). For this function there are multiple ny and c values possible.
Solutionl: 100n +5<100n +n = 101n < 101n, forall n > 5, ny =5 and ¢ = 101 is a solution.

Solution2: 100n + 5 < 100n + 5n = 105n < 105n, for all n > 1, ny =1 and ¢ = 105 is also a
solution.

1.15 Omega-Q Notation [Lower Bounding Function]
Similar to the O discussion, this notation gives the tighter lower bound of the given algorithm and

we represent it as f(n) = Q(g(n)). That means, at larger values of n, the tighter lower bound of
f(n) is g(n). For example, if f(n) = 100n? + 10n + 50, g(n) is Q(n?).



Rate of Growth

i f) cg(n))

» Input Size, n

The Q notation can be defined as Q(g(n)) = {f(n): there exist positive constants ¢ and n, such that
0 < cg(n) < f(n) for all n> ny}. g(n) is an asymptotic tight lower bound for f(n). Our objective is

to give the largest rate of growth g(n) which is less than or equal to the given algorithm’s rate of
growth f(n).

Q2 Examples

Example-1 Find lower bound for f(n) = 5n?.

Solution: 3 ¢, ny Such that: 0 < cn?<5n? = cn*<5n*=c =5and ny =1
-.5n° =Q(n?) withc = 5and ny = 1

Example-2 Prove f(n) = 100n + 5 # Q(n?).

Solution: 3 ¢, ny Such that: 0 < cn? < 100n + 5
100n + 5<100n + 5n(Vn > 1) = 105n
cn® < 105n = n(cn - 105) <0
Since n is positive =cn - 105 <0 = n <105/c
= Contradiction: n cannot be smaller than a constant

Example-3 2n = Q(n), n® = Q(n3), = O(logn).



1.16 Theta-® Notation [Order Function]

Rate of Growth
& c;g(n)

» Input Size, n

no

This notation decides whether the upper and lower bounds of a given function (algorithm) are the
same. The average running time of an algorithm is always between the lower bound and the upper
bound. If the upper bound (O) and lower bound (£2) give the same result, then the ® notation will
also have the same rate of growth.

As an example, let us assume that f(n) = 10n + n is the expression. Then, its tight upper bound
g(n) is O(n). The rate of growth in the best case is g(n) = O(n).

In this case, the rates of growth in the best case and worst case are the same. As a result, the
average case will also be the same. For a given function (algorithm), if the rates of growth
(bounds) for O and €2 are not the same, then the rate of growth for the ® case may not be the same.
In this case, we need to consider all possible time complexities and take the average of those (for
example, for a quick sort average case, refer to the Sorting chapter).

Now consider the definition of ® notation. It is defined as ®(g(n)) = {f(n): there exist positive
constants c;,c, and ng such that 0 < c,g(n) < f(n) < c,g(n) for all n > ny}. g(n) is an asymptotic

tight bound for f(n). ®(g(n)) is the set of functions with the same order of growth as g(n).

® Examples



2
Example 1 Find © bound for f(n) = % — g

2 2
Solution: n? < n? — % < n2forall,n>2

2
”? — g = O(n?) with¢; = 1/5,c, = 1 and ny = 2

Example 2 Prove n # O(n?)

Solution: ¢, n? < n < ¢,n? = only holds for: n < 1/c,
s.n#0n?)

Example 3 Prove 6n° # 0(n?)

Solution: ¢, n’< 6n3 < ¢, n?> = only holds for: n < c, /6
. 6n% % 0(nd)

Example 4 Prove n # G(logn)

3 n .
Solution: c;logn < n < cy)logn = ¢, > Togn’ V n > ny— Impossible

1.17 Important Notes

For analysis (best case, worst case and average), we try to give the upper bound (O) and lower
bound (Q2) and average running time (®). From the above examples, it should also be clear that,
for a given function (algorithm), getting the upper bound (O) and lower bound (€2) and average
running time (®) may not always be possible. For example, if we are discussing the best case of
an algorithm, we try to give the upper bound (O) and lower bound (L) and average running time
(©).

In the remaining chapters, we generally focus on the upper bound (O) because knowing the lower
bound (2) of an algorithm is of no practical importance, and we use the ® notation if the upper
bound (O) and lower bound () are the same.

1.18 Why is it called Asymptotic Analysis?

From the discussion above (for all three notations: worst case, best case, and average case), we
can easily understand that, in every case for a given function f(n) we are trying to find another
function g(n) which approximates f(n) at higher values of n. That means g(n) is also a curve
which approximates f(n) at higher values of n.

In mathematics we call such a curve an asymptotic curve. In other terms, g(n) is the asymptotic



curve for f(n). For this reason, we call algorithm analysis asymptotic analysis.

1.19 Guidelines for Asymptotic Analysis
There are some general rules to help us determine the running time of an algorithm.

1) Loops: The running time of a loop is, at most, the running time of the statements
inside the loop (including tests) multiplied by the number of iterations.

/[ executes n times
for (1=1; 1<=n; i+4)
m=m+2; [/ constant time, ¢

Total time = a constant ¢ X n = ¢ n = O(n).

2) Nested loops: Analyze from the inside out. Total running time is the product of the
sizes of all the loops.

[ [outer loop executed n times
for [i=1; is=n; 1+4) {
/[ innet loop executes n times
for j=1; je=n; j#+]
k= kt1; //constant time

[
!

Total time = ¢ X n x n = cn? = O(n?).

3) Consecutive statements: Add the time complexities of each statement.



X =X +1; [ [constant time
/[ executes n times
for i=1; i<=n; 1+4)
m = m+ 2; [/constant time
[ [auter loop executes n times
for [i=1; 1<=n; it4) |
[ [inner loop executed n times
for [j=1; j<=n; j+4)
k =kt1; //constant time

Total time = ¢, + cyn + cyn? = O(n?).

4) If-then-else statements: Worst-case running time: the test, plus either the then part
or the else part (whichever is the larger).

[ [test: constant
ifflength( ) == 0
return false; [ /then part: constant
[
I
else |/ else part: (constant + constant) * n
for (intn = 0; n < length( ); n#4) |
/[ another 1f ; constant + constant no else part)
iflllist|n].equals(otherList.list[n]))
[ [constant
return false;

}
Total time = ¢y + ¢y + (cy + ¢3) * n = O(n).

5) Logarithmic complexity: An algorithm is O(logn) if it takes a constant time to cut
the problem size by a fraction (usually by %2). As an example let us consider the
following program:

for [i=1; i<=n;)
=%



If we observe carefully, the value of i is doubling every time. Initially i = 1, in next step i
= 2, and in subsequent steps i = 4,8 and so on. Let us assume that the loop is executing

some k times. At k' step 2k = n, and at (k + 1) step we come out of the loop. Taking
logarithm on both sides, gives

log(2¥) = logn
klog2 = logn
k = logn / /if we assume base-2

Total time = O(logn).

Note: Similarly, for the case below, the worst case rate of growth is O(logn). The same
discussion holds good for the decreasing sequence as well.

for (1=n; 1>=1;)
i=if2:

Another example: binary search (finding a word in a dictionary of n pages)

. Look at the center point in the dictionary
. Is the word towards the left or right of center?
. Repeat the process with the left or right part of the dictionary until the word is found.

1.20 Simplyfying properties of asymptotic notations

. Transitivity: f(n) = ®(g(n)) and g(n) = ®(h(n)) = f(n) = ©(h(n)). Valid for O and Q
as well.

. Reflexivity: f(n) = ©(f(n)). Valid for O and Q.

. Symmetry: f(n) = ©(g(n)) if and only if g(n) = O(f(n)).

. Transpose symmetry: f(n) = O(g(n)) if and only if g(n) = Q(f(n)).

. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).

« I fi(n) is in O(g4(n)) and f(n) is in O(gy(n)), then (f; + fr)(n) is in O(max(g,(n)),
(g1(n))).
. If f1(n) is in O(gy(n)) and f(n) is in O(g,(n)) then f;(n) f2(n) is in O(gy(n) g,(n)).

1.21 Commonly used Logarithms and Summations

Logarithms



log x¥ = ylogx logn = logl,

log xy = logx + logy logkn = (logn)¥
X
log logn = log(logn) r’og;z logx - logy
logf _ ,log§ x _ logg
a®9b = x'°9 logy = g
Arithmetic series
n
nn+1)

Dk=1424 0 4n=—

K=1

Geometric series

& xn+1_
ZXR=1+X+X2...+Xn=ﬁ(X * 1)
k=0

Harmonic series

n1—1+1+ Fia
kT2 n 09T

=

Other important formulae

n
log k = nlogn
k=1
n
kP = 1P + 2P + -4 nP =~ L
kzl 20 ol |

1.22 Master Theorem for Divide and Conquer Recurrences

All divide and conquer algorithms (also discussed in detail in the Divide and Conquer chapter)
divide the problem into sub-problems, each of which is part of the original problem, and then
perform some additional work to compute the final answer. As an example, a merge sort
algorithm [for details, refer to Sorting chapter] operates on two sub-problems, each of which is
half the size of the original, and then performs O(n) additional work for merging. This gives the



running time equation:
()= 27(3)+ O(n)

The following theorem can be used to determine the running time of divide and conquer
algorithms. For a given program (algorithm), first we try to find the recurrence relation for the
problem. If the recurrence is of the below form then we can directly give the answer without fully

solving it. If the recurrence is of the form T(n) = aT(%) + ®@(n*logPn), where a > 1,b >
1,k > 0 and p is a real number, then:

1) Ifa>bK thenT(n) = @(niogﬁ )
2) Ifa=b*
a. Ifp>-1,thenT(n) = @(nmgglogpﬂn)
b. Ifp=-1,thenT(n) = ®(nlogglogl0gn)
Ifp<-1,thenT(n) = @(nlogg)

a. Ifp>0,then T(n) = ®(n*logPn)
b. If p <0, then T(n) = O(n*)

1.23 Divide and Conquer Master Theorem: Problems & Solutions

For each of the following recurrences, give an expression for the runtime T(n) if the recurrence
can be solved with the Master Theorem. Otherwise, indicate that the Master Theorem does not

apply.

Problem-1 T(n) = 3T (n/2) + n?
Solution: T(n) = 3T (n/2) + n?> => T (n) =O(n?) (Master Theorem Case 3.a)

Problem-2 T(n) = 4T (n/2) + n?
Solution: T(n) = 4T (n/2) + n> => T (n) = ®(n*logn) (Master Theorem Case 2.a)

Problem-3 T(n) = T(n/2) + n?
Solution: T(n) = T(n/2) + n> => ®(n?) (Master Theorem Case 3.a)

Problem-4 T(n) =2"T(n/2) + n"
Solution: T(n) = 2"T(n/2) + n" => Does not apply (a is not constant)

Problem-5 T(n) =16T(n/4) + n
Solution: T(n) = 16T (n/4) + n => T(n) = ©(n?) (Master Theorem Case 1)

Problem-6 T(n) = 2T(n/2) + nlogn



Solution: T(n) = 2T(n/2) + nlogn => T(n) = ®(nlog’n) (Master Theorem Case 2.a)

Problem-7 T(n) = 2T(n/2) + n/logn
Solution: T(n) = 2T(n/2)+ n/logn =>T(n) = B(nloglogn) (Master Theorem Case 2. b)

Problem-8 T(n) = 2T (n/4) + n%!
Solution: T(n) = 2T(n/4) + n®! => T (n) = ©(n">') (Master Theorem Case 3.b)

Problem-9 T(n) = 0.5T(n/2) + 1/n
Solution: T(n) = 0.5T(n/2) + 1/n => Does not apply (a < 1)

Problem-10 T (n) = 6T(n/3)+ n? logn
Solution: T(n) = 6T(n/3) + n*logn => T(n) = ®(n*logn) (Master Theorem Case 3.a)

Problem-11 T(n) = 64T(n/8) — n*logn
Solution: T(n) = 64T(n/8) — n’logn => Does not apply (function is not positive)

Problem-12 T(n) = 7T(n/3) + n?
Solution: T(n) = 7T(n/3) + n?> => T(n) = ©(n?) (Master Theorem Case 3.as)

Problem-13 T(n) = 4T(n/2) + logn
Solution: T(n) = 4T(n/2) + logn => T(n) = ®(n®) (Master Theorem Case 1)

Problem-14 T(n) = 16T (n/4) + n!
Solution: T(n) = 16T (n/4) + n! => T(n) = ®(n!) (Master Theorem Case 3.a)

Problem-15 T(n) =+/2 T(n/2) + logn
Solution: T(n) = /2 T(n/2) + logn => T(n) = ©(,/) (Master Theorem Case 1)

Problem-16 T(n) =3T(n/2) + n
Solution: T(n) = 3T(n/2) + n =>T(n) = O(n'°93) (Master Theorem Case 1)

Problem-17 T(n) = 3T(n/3) + \/ﬁ
Solution: T(n) = 3T(n/3) + \/n => T(n) = O(n) (Master Theorem Case 1)

Problem-18 T(n) =4T(n/2) + cn
Solution: T(n) = 4T(n/2) + cn => T(n) = ®(n?) (Master Theorem Case 1)

Problem-19 T(n) = 3T(n/4) + nlogn
Solution: T(n) = 3T(n/4) + nlogn => T(n) = ®(nlogn) (Master Theorem Case 3.a)

Problem-20 T (n) =3T(n/3) + n/2
Solution: T(n) = 3T(n/3)+ n/2 => T (n) = ©(nlogn) (Master Theorem Case 2.a)

1.24 Master Theorem for Subtract and Conquer Recurrences



Let T(n) be a function defined on positive n, and having the property

, ifngl
Tiw) = [ar(n “D)4f0),  ifn>]

for some constants c,a > 0,b > 0,k > 0, and function f(n). If f(n) is in O(n*), then
0(nt), ifa<1
1) =06, ifa=1
n
U(-n“‘uﬁ), ifa>1

1.25 Variant of Subtraction and Conquer Master Theorem

The solution to the equation T(n) = T(a n) + T((1 — a)n) + fn, where 0 < a < 1 and § > 0 are
constants, is O(nlogn).

1.26 Method of Guessing and Confirming

Now, let us discuss a method which can be used to solve any recurrence. The basic idea behind
this method is:

guess the answer; and then prove it correct by induction.

In other words, it addresses the question: What if the given recurrence doesn’t seem to match with
any of these (master theorem) methods? If we guess a solution and then try to verify our guess
inductively, usually either the proof will succeed (in which case we are done), or the proof will
fail (in which case the failure will help us refine our guess).

As an example, consider the recurrence T(n) = +/n T(vn) + n. This doesn’t fit into the form
required by the Master Theorems. Carefully observing the recurrence gives us the impression that
it is similar to the divide and conquer method (dividing the problem into \/ﬁ subproblems each

with size \/ﬁ). As we can see, the size of the subproblems at the first level of recursion is n. So,
let us guess that T(n) = O(nlogn), and then try to prove that our guess is correct.

Let’s start by trying to prove an upper bound T(n) < cnlogn:



=
]
I

Vn T(Wn) + n

< VJn.cynlogyn +n
= n.clogyn +n

= n.c.%.logn+ n

< cnlogn

The last inequality assumes only that 1 < c.%.logn. This is correct if n is sufficiently large and for

any constant ¢, no matter how small. From the above proof, we can see that our guess is correct
for the upper bound. Now, let us prove the lower bound for this recurrence.

T(n) Vn T(¥n) + n

> Vn.k+nlogyn +n
= n.k log\/ﬁ +n

— n.k.%. logn+ n

> knlogn

The last inequality assumes only that 1 > k.%.logn. This is incorrect if n is sufficiently large and

for any constant k. From the above proof, we can see that our guess is incorrect for the lower
bound.

From the above discussion, we understood that ®(nlogn) is too big. How about ®(n)? The lower
bound is easy to prove directly:

Tn) = VaTWn) +n =n

Now, let us prove the upper bound for this ®(n).

Tm) = VnTHWn)+n
< Vn.c.An+n
—J ]
= @FiEyl
£ ¢n

From the above induction, we understood that ®(n) is too small and ®(nlogn) is too big. So, we
need something bigger than n and smaller than nlogn. How about n,/logn?

Proving the upper bound for n,/logn:



IA

<

Proving the lower bound for n,/logn:

T(n) =
>

£

Vvn T(Vn) + n
Vn.c.A/n_[logvyn + n

1
n.c.o logyn+ n

cnlogyn

Vvn T(Wn) +n
Vn.k.Am [logyn + n
n. k.iz log\vn+ n

=
knlogvn

The last step doesn’t work. So, ®@(n,/logn) doesn’t work. What else is between n and nlogn?
How about nloglogn? Proving upper bound for nloglogn:

T(n)

IA 1A

Proving lower bound for nloglogn:

T(n)

IV

VA1

vn T(Wn) + n
Vn.c.Amloglogyn + n

n. c.loglogn-c.n + n
cnloglogn, if c > 1

Vn TWn) + n
Vn.k.«/nloglogyn + n

n. k.loglogn-k.n + n
knloglogn, if k < 1

From the above proofs, we can see that T(n) < cnloglogn, if ¢ > 1 and T(n) > knloglogn, if k < 1.
Technically, we’re still missing the base cases in both proofs, but we can be fairly confident at

this point that T(n) = ®(nloglogn).

1.27 Amortized Analysis



Amortized analysis refers to determining the time-averaged running time for a sequence of
operations. It is different from average case analysis, because amortized analysis does not make
any assumption about the distribution of the data values, whereas average case analysis assumes
the data are not “bad” (e.g., some sorting algorithms do well on average over all input orderings
but very badly on certain input orderings). That is, amortized analysis is a worst-case analysis,
but for a sequence of operations rather than for individual operations.

The motivation for amortized analysis is to better understand the running time of certain
techniques, where standard worst case analysis provides an overly pessimistic bound. Amortized
analysis generally applies to a method that consists of a sequence of operations, where the vast
majority of the operations are cheap, but some of the operations are expensive. If we can show
that the expensive operations are particularly rare we can change them to the cheap operations,
and only bound the cheap operations.

The general approach is to assign an artificial cost to each operation in the sequence, such that the
total of the artificial costs for the sequence of operations bounds the total of the real costs for the
sequence. This artificial cost is called the amortized cost of an operation. To analyze the running
time, the amortized cost thus is a correct way of understanding the overall running time — but note
that particular operations can still take longer so it is not a way of bounding the running time of
any individual operation in the sequence.

When one event in a sequence affects the cost of later events:

. One particular task may be expensive.
. But it may leave data structure in a state that the next few operations become easier.

Example: Let us consider an array of elements from which we want to find the k™ smallest
element. We can solve this problem using sorting. After sorting the given array, we just need to

return the k™ element from it. The cost of performing the sort (assuming comparison based sorting
algorithm) is O(nlogn). If we perform n such selections then the average cost of each selection is
O(nlogn/n) = O(logn). This clearly indicates that sorting once is reducing the complexity of
subsequent operations.

1.28 Algorithms Analysis: Problems & Solutions

Note: From the following problems, try to understand the cases which have different
complexities (O(n), O(logn), O(loglogn) etc.).

Problem-21 Find the complexity of the below recurrence:

_BTm—1)yifn> 0
T(n) = {1, otherwise



Solution: Let us try solving this function with substitution.
T(n)=3T(n-1)
T(n) = 3(3T(n - 2)) = 3°T(n - 2)

T(n) = 3%(3T(n — 3))

T(n) = 3"T(n — n) = 3"T(0) = 3"
This clearly shows that the complexity of this function is O(3").

Note: We can use the Subtraction and Conquer master theorem for this problem.

Problem-22 Find the complexity of the below recurrence:

2T(n—1) —1,if n > 0,
s otherwise

T(n) = {

Solution: Let us try solving this function with substitution.
T(n)=2T(n-1)-1
T(n) =2(2T(n-2)-1)-1=2°T(n-2)-2-1
T(n) = 2°2T(n-3)-2-1)-1=23T(n - 4)-22-21-20
T(n) = 2"T(n —n) — 2"t —2n2_2n=3  22_21_20
T(n) =2"—2n-t_pn=2_pn-3  22_»p1_270
T(n) =2" — (2" — 1) [note: 2" 1 + 22 + ... + 20 =21
T(n)=1

. Time Complexity is O(1). Note that while the recurrence relation looks exponential, the
solution to the recurrence relation here gives a different result.

Problem-23 What is the running time of the following function?



void Function(int n) {
int 1=1, s=1;
while( s <=n) {
& i
s= s+1i;
printf(“*");

}

Solution: Consider the comments in the below function:

void Function (int o) |
inti=1, s=1;
/[ 18 increasing not at rate | but i
while[ s <=n] |
1t+;
§= g4,
printfl“*';

}

We can define the ‘s’ terms according to the relation s; = s;_; + i. The value oft’ increases by 1

for each iteration. The value contained in ‘s’ at the i iteration is the sum of the first ‘(‘positive

integers. If k is the total number of iterations taken by the program, then the while loop terminates
if:

k(k+1)
2

14 2F:F8 =

>n= k =0OWn).

Problem-24 Find the complexity of the function given below.

void function(int n) {
int 1, count =0;
for(i=1; i¥i<=1; 1++}
SO+



Solution:

void function(int n |
ift 1, count =0,
forfi=1; i*i<=n; it4)
counttt;

}

In the above-mentioned function the loop will end, if i* > n = T(n) = O(y/n). This is similar to
Problem-23.

Problem-25 What is the complexity of the program given below:

void function(int n) {
int 1. 3; k ; count =0;
for(i=n/2; i<=n; i++)
for(j=1; j + n/2<=n; j= j+1)
for(k=1; k<=n; k= k * 2)
count++;
}
Solution: Consider the comments in the following function.

void functionfmt n) |
mt1, ), k, count =0;
[ [outer loop execute n/2 times
for(i=n/2; 1¢=n; it4|
[ /middle loop executes n/2 times
for(j=1;  + n/2¢=n; j= j+1)
/ [inner loop execute logn times
for(k=1: kemn; k= k * 2)
Count+:

I
I

The complexity of the above function is O(n’logn).
Problem-26 What is the complexity of the program given below:



void function(int n) {

int 1, j, k , count =0;

for(i=n/2; 1<=n; 1+¥)

for(j=1; j<=n; j= 2 * )
for(k=1; k<=n; k=k * 2)
conunt+
b
Solution: Consider the comments in the following function.

void function(int n) |
int 1, j, k , count =0;
| [outer loop execute n/2 times
forfi=n/2; i<=n; it4)
{ /middle loop executes logn times
for=1; j<=n; j= 2 *§)
[ [mner loop execute logn times
for(k=1; k<=n; k= k*2)
counttt;

[
I

The complexity of the above function is O(nlog?n).
Problem-27 Find the complexity of the program below.

function(intn ) {
if(n == 1) return;
forinti=1;i<=n;1++){
for(intj=1;j<=n;j++){
printf(“*" );
break;

)
S,

1
J

Solution: Consider the comments in the function below.



function( mt n ) |
[ [constant time
if n == 1) return;
| [outer loop execute n times
forinti=1;1¢=n;1+t|{
/| inner loop executes only time due to break statement,
forfint j= 1 ;) ¢=m; )+ +)|
prind |
break;

[
|

|
The complexity of the above function is O(n). Even though the inner loop is bounded by n, due to
the break statement it is executing only once.

Problem-28 Write a recursive function for the running time T(n) of the function given below.
Prove using the iterative method that T(n) = ©(n>).

function(intn ) {
if(n == 1) return;
for(inti=1;i<=n;i+ +)
for(intj=1;j<=n;j++)
printf(“*");
function( n-3 );
b

Solution: Consider the comments in the function below:



function fint n) |
[ [constant time
iff n==1 return;
| [outer loop execute n times
forfint1=1;14=n;1t+)
[ [inner loop executes n times
forimtj=1;)4=n;)+ 4|
{ [constant time
printf|**' | ;
function| n-3 J;

The recurrence for this code is clearly T(n) = T(n — 3) + cn? for some constant ¢ > 0 since each
call prints out n? asterisks and calls itself recursively on n — 3. Using the iterative method we get:
T(n) = T(n - 3) + cn?. Using the Subtraction and Conquer master theorem, we get T(n) = ®(n?).

Problem-29  Determine ® bounds for the recurrence relation: T (n) = 2T (g) + nlogn

Solution: Using Divide and Conquer master theorem, we get O(nlog®n).

Problem-30 Determine G bounds for the recurrence:
T(n) = T(E) 5 T(f) . T(f) +n
2 4 8
Solution: Substituting in the recurrence equation, we get:

Tn) < cl *g—l- £2 *%-I— €3 *%-I— cn < k * n, where k is a constant. This clearly
says O(n).

Problem-31 Determine ® bounds for the recurrence relation: T(n) = T([n/2]) + 7.
Solution: Using Master Theorem we get: ®(logn).

Problem-32 Prove that the running time of the code below is Q(logn).

void Read(int n) {

mntk=1;
while( k < n)
k = 3*k;

j

Solution: The while loop will terminate once the value of ‘k’ is greater than or equal to the value
of ‘n’. In each iteration the value of ‘k’ is multiplied by 3. If i is the number of iterations, then ‘k’

has the value of 3! after i iterations. The loop is terminated upon reaching i iterations when 3! > n



- [ 21ogz n, which shows thati = Q(logn).

Problem-33 Solve the following recurrence.

KL ifn=1
) _{T(n—1)+n(n—1) if n>2

Solution: By iteration:

T =Tnh-2)+(n-1)(n-2)+n(n-1)

T(n) = T(1) + Z i(i — 1)

T(1)+Z Z

n((n -|— 1)(2n + 1) B nn+1)
6 2

T(n)

T(n) =1+
T(n) = O(n3)

Note: We can use the Subtraction and Conquer master theorem for this problem.

Problem-34 Consider the following program:
Fib[n]
' =0) then return O

else if(n==1) then return 1
else return Fib[n-1]+Fib[n-2]

Solution: The recurrence relation for the running time of this program is: T(n) = T(n — 1) + T(n —
2) + c. Note T(n) has two recurrence calls indicating a binary tree. Each step recursively calls the
program for n reduced by 1 and 2, so the depth of the recurrence tree is O(n). The number of

leaves at depth n is 2" since this is a full binary tree, and each leaf takes at least O(1)
computations for the constant factor. Running time is clearly exponential in n and it is O(2").

Problem-35 Running time of following program?



function(n) {
forinti=1;i<=n;i+ +)
forintj=1;j<=n;j+r=1)
printf(“ *”);
1
f

Solution: Consider the comments in the function below:

function (o} |
[ [this loop executes n times
forfinti=1; i<=n;i++)
/ /this loop executes | times with | increase by the rate of i
forfintj=1;j<=n;j+=1]
printf] ¢ )
|

In the above code, inner loop executes n/i times for each value of i. Its running time is

nx (", n/i) = O(nlogn).
Problem-36 ~ What is the complexity of 3.1, log i ?

Solution: Using the logarithmic property, logxy = logx + logy, we can see that this problem is
equivalent to

n
Z logi=logl+log2+--+logn=1log(lx2x..xn)=logn!) <log(n"™) < nlogn
i=1

This shows that the time complexity = O(nlogn).

Problem-37 What is the running time of the following recursive function (specified as a
function of the input value n)? First write the recurrence formula and then find its

complexity.

function(int n) {
if(n <= 1) return;
for (int1=1 ;1 <= 3; 1++)
n
f(F;T),
h

Solution: Consider the comments in the below function:



function (int n) |
[ [constant time
iffn <= 1) return;
/ [this loop executes with recursive loop of %vafue
for inti=1;1¢=3; 14|
=)
3
}

We can assume that for asymptotical analysis k = [k] for every integer k > 1. The recurrence for
n
this codeis T (n) = 3T(§) + @(1). Using master theorem, we get T(n) = G(n).

Problem-38 What is the running time of the following recursive function (specified as a
function of the input value n)? First write a recurrence formula, and show its solution using
induction.

function(int n) {
if(n <= 1) return;

jor g@ii=1 ;: i1<s=3 jit+)
function (n — 1).

j

Solution: Consider the comments in the function below:

function (int n) |
| [constant time
ifity <= 1) return;
/ [this loop executes 3 times with recursive call of n-1 value
for inti=] ;1¢=3;1t4)
function n - 1).

}
The if statement requires constant time [O(1)]. With the for loop, we neglect the loop overhead
and only count three times that the function is called recursively. This implies a time complexity
recurrence:

n)y = qifn =1
=g & 3n — 1)}, ifn > 1.

Using the Subtraction and Conquer master theorem, we get T(n) = ®(3").



Problem-39 Write a recursion formula for the running time T(n) of the function whose code
is below.

function (int n) {
if(n <= 1) return;
for(inti=1;i<n;1+ 4)
printf(“ *");
function ( 0.8n ) ;

j

Solution: Consider the comments in the function below:

function (int n |
ifin <= 1) return; /[constant time
/[ this loop executes n times with constant time loop
forfinti=1;1<m;i++4
printfl +)
 [recursive call with 0.8n
function ( 0.8n | ;
|

The recurrence for this piece of code is T(n) = T(.8n) + O(n) = T(4/5n) + O(n) =4/5 T(n) + O(n).
Applying master theorem, we get T(n) = O(n).

Problem-40  Find the complexity of the recurrence: T(n) = 2T(y/pp) + logn

Solution: The given recurrence is not in the master theorem format. Let us try to convert this to the

master theorem format by assuming n = 2™. Applying the logarithm on both sides gives, logn =
mlogl = m = logn. Now, the given function becomes:

T(n) = T(2™) = 2T(VZ™) + m = 2T (23) + m.

To make it simple we assume
m

S(m) =T@™) = S(Z) =T(2z) = S(m) = 25(Z) +m
Applying the master theorem format would result in S(m) = O(mlogm).

If we substitute m = logn back, T(n) = S(logn) = O((logn) loglogn).
Problem41  Find the complexity of the recurrence: T(n) = T(y/n) + 1

m
2

Solution: Applying the logic of Problem-40 gives S(m) = S ( ) + 1. Applying the master



theorem would result in S(m) = O(logm). Substituting m = logn, gives T(n) = S(logn) =
O(loglogn).

Problem-42 Find the complexity of the recurrence: T(n) = 2T(\/E) +1

Solution: Applying the logic of Problem-40 gives: S(m) = 2S (%) + 1. Using the master
theorem results S(m) = O(m!°92). Substituting m = logn gives T(n) =O(logn).

Problem-43 Find the complexity of the below function.

int Function (int n) {

if(n <= 2) return 1;

else return (Function (floor(sqrt(n))) + 1);
]
s

Solution: Consider the comments in the function below:

int Function (int n) |
ifln <= 2) return 1; [ [constant time
else /| executes yn + | times
return (Function (floar{sqrt{nff] + 1};

}

For the above code, the recurrence function can be given as: T(n) = T(\/H) + 1. This is same as
that of Problem-41.

Problem-44 Analyze the running time of the following recursive pseudo-code as a function of
n.

void function(int n) {
il fi ¥ Z ) returit;
else counter = O;
fori=1to8do
n

function (2);

fori=1 to n3 do
counter = counter + 1;

}

Solution: Consider the comments in below pseudo-code and call running time of function(n) as
T(n).



void functionfmt n} |
f{n<2)return; |//constant time
else  counter =0,
/[ this loop executes 8 times with n value half in every call
fori=1t08do
functionf3;
/| this loop executes n' times with constant time loop
fori=1ton’ do

counter = counter + 1:

T(n) can be defined as follows:
ikn) = 1ifn < 2
n
= 8T(§) + n3 + 1 otherwise.

Using the master theorem gives: T'(n) = ® (n"—Og? logn) = © (n3 logn)-
Problem-45 Find the complexity of the below pseudocode:

temp =1
repeat
fori=1ton
lemp = temp + 1;
n =

NS

untiln <=1

Solution: Consider the comments in the pseudocode below:

temp =1 [/const time
Tepeat [/ this loops executes n times
fori=1lton
temp = temp + 1;
 [recursive call with % value

e
il -2'
untiln <= 1

The recurrence for this function is T(n) = T(n/2) + n. Using master theorem, we get T(n) = O(n).



Problem-46 Running time of the following program?

function(int n) {
for(inti=1;i1<=mnjii+ t+)
loffit j= 12)3s=n;;1*=2)
printf( “*");
j

Solution: Consider the comments in the below function:

functionfint n) |
forfinti=1;i<=n;i++) [/ this loops executes n times
/[ this loops executes logn times from our logarithms guideline
forfintj=1;j<=n;j*=2)
printf{"+" )
Co}mplexity of above program is: O(nlogn).

Problem-47 Running time of the following program?

function(int n) {
forinti=1;1<=n/3;1++)
forintj=1;j<=n;j+=4)
printf( “*” );

h

Solution: Consider the comments in the below function:

functionfint | | /[ this loops executes n/J times
forfint1=1;1¢=nf3;1++)
[/ this loops executes n/4 times
forfinty=1;j<=n;jt=4
printf{*+" );
!

The time complexity of this program is: O(n?).
Problem-48 Find the complexity of the below function:



void function(int n) {
if(n <= 1) return;
ifln > 1) {
printf (" * "
function( % );

function( % );

j
j
Solution: Consider the comments in the below function:
void functionfint n| |

ifln <= 1) return; //constant time
ifln > 1)}

[ [constant time

printf " +');

[ [recursion with n/2 value
function| n/2 J;
[ [recursion with n/2 value
function| n/2 J;

I
!

The recurrence for this function is: T(n) = 2T (g) + 1. Using master theorem, we get T(n) =
O(n).

Problem-49 Find the complexity of the below function:

function(int n) {
int 1=1;
while (1 < n) {
it j=n;
while(j > 0)
1=1/2;
1=2*1;

P/



Solution:

function(int n) |
mt 1=1;
while (i < n) |
mt J=1;
while(j > 0)
1=1/2; //logn code
1=2%; [ [logn times
H

i‘
Time Complexity: O(logn * logn) = O(log?n).

Problem-50 Y.i<k<n O(n), where O(n) stands for order n is:

(A)  O(m)
(B) O(n%
(€ O’
(D) O@3n)

(E) O(1.5n?)

Solution: (B). Y.<, O(n) = O(1) Yien 1 = O(n?).

Problem-51 Which of the following three claims are correct?
I (n+k)"=0(n"), where k and m are constants
I 2"1=002"
I 2271 =0o2M
(A) TandII
(B) Tand I
(C) IIandIII
(D) I IIand I

Solution: (A). () (n + k)™ =n" + c1*nk~1 + ... k™ = ©(n") and (II) 2"*! = 2*2" = O(2")

Problem-52 Consider the following functions:
f(n) = 2"
g(n) =n!
h(n) = n'egn
Which of the following statements about the asymptotic behavior of f(n), g(n), and h(n) is
true?
(A)  f(n) = O(g(n)); g(n) = O(h(n))
(B)  f(n) =Q (gn)); gn) = O(h(n))



(C) g = O(f(n)); h(n) = O(f(n))
(D) h(n) = O(f(n)); g(n) = Q (f(n))

Solution: (D). According to the rate of growth: h(n) < f(n) < g(n) (g(n) is asymptotically greater
than f(n), and f(n) is asymptotically greater than h(n)). We can easily see the above order by
taking logarithms of the given 3 functions: lognlogn < n < log(n'!). Note that, log(n!) = O(nlogn).

Problem-53 Consider the following segment of C-code:

int j=1, n;
while (j <=n)
j=32

The number of Comparisons made in the execution of the loop for any n > 0 is:
(A) ceil(logy)+ 1

(B) n

©) ceil(logh)

(D) floor(logy) + 1

Solution: (a). Let us assume that the loop executes k times. After k' step the value of j is 2K,
Taking logarithms on both sides gives k = [0g5. Since we are doing one more comparison for
exiting from the loop, the answer is ceil(logy)+ 1.

Problem-54 Consider the following C code segment. Let T(n) denote the number of times the
for loop is executed by the program on input n. Which of the following is true?

int IsPrime(int n){
for(int 1=2;1<=sqrt(n);1++)
1f(n%i1 == 0){
printf(“Not Prime\n”);
return O;

j

return 1;

h

(A)  T(n) = O(y/n) and T(n) = Q(y/n)
(B) Tm)= O(\/ﬁ) and T(n) = Q(1)
(C) T(n)=0(n)and T(n) = Q(\/ﬁ)
(D)  None of the above

Solution: (B). Big O notation describes the tight upper bound and Big Omega notation describes
the tight lower bound for an algorithm. The for loop in the question is run maximum \/ﬁ times and



minimum 1 time. Therefore, T(n) = O(\/ﬁ) and T(n) = Q(1).

Problem-55 In the following C function, let n > m. How many recursive calls are made by
this function?
int ged(n,m){
if (n%m ==0)
return m;
n = n%rm;

return ged(m,n);

(a) O(logy)

(B) Q(n)

(C©) Of(log,logy)
(D) ©(n)

Solution: No option is correct. Big O notation describes the tight upper bound and Big Omega

notation describes the tight lower bound for an algorithm. For m = 2 and for all n = 2, the running
time is O(1) which contradicts every option.

Problem-56 Suppose T(n) = 2T(n/2) + n, T(O)=T(1)=1. Which one of the following is false?
(A)  T(n)=0(n)
(B) T(n) = ®(nlogn)

(€  T(n)=Q(n%
(D)  T(n) = 0O(nlogn)

Solution: (C). Big O notation describes the tight upper bound and Big Omega notation describes
the tight lower bound for an algorithm. Based on master theorem, we get T(n) = ®(nlogn). This
indicates that tight lower bound and tight upper bound are the same. That means, O(nlogn) and
Q(nlogn) are correct for given recurrence. So option (C) is wrong.

Problem-57 Find the complexity of the below function:



function(int n) {
for (int1 = 0; i<n; 1++)
for(int j=1; j<i*1; j++)
if (j %1 == 0){
for intk = 0; k < j; k++)
printf(" * ");

Solution:
function(int n) |
for [int 1= 0; 1<n; 1+4) | | Executes n times
forfint j=1; j<1*t; 14 /| Executes n'n times
if () %1 == 0)]
for intk=0;k<j;k++) /[ Executes | times = (n'n| times

printf(’ *");

|

Time Complexity: O(n®).

Problem-58 To calculate 9", give an algorithm and discuss its complexity.

Solution: Start with 1 and multiply by 9 until reaching 9".

Time Complexity: There are n — 1 multiplications and each takes constant time giving a ©(n)
algorithm.

Problem-59 For Problem-58, can we improve the time complexity?
Solution: Refer to the Divide and Conquer chapter.
Problem-60 Find the time complexity of recurrence T(n) = Tlgl + T(%’] + T(g) +n,

Solution: Let us solve this problem by method of guessing. The total size on each level of the
recurrance tree is less than n, so we guess that f(n) = n will dominate. Assume for all i < n that
cn < T(i) < cyn. Then,



clg+clg+c1%+kn <Tn) < Cy=+cCy—+cy=+kn
1 1.1k 1.1 .1 . k
el S B B . Wi = Al 4D e
Cln(z 4 8 cl) = T = Czn(z 4 8 cz]
7 Kk 7k
L g L g
cin(g cl) <Tn) < canlg CZ]

If ¢; > 8k and ¢, < 8k, then c;n = T(n) = c,n. So, T(n) = O(n). In general, if you have multiple
recursive calls, the sum of the arguments to those calls is less than n (in this case §+ % + '—81 <n),
and f(n) is reasonably large, a good guess is T(n) = O(f(n)).

Problem-61 Solve the following recurrence relation using the recursion tree method:

T()=T(E) +T(Z)+ n?

Solution: How much work do we do in each level of the recursion tree?

)
m :.:!i'i' 2
' T5) L
1 2 M2 A2 am !
Tt 1) (E) TE=) e (?)

In, T 121 2M gL 11 1 TRV S IEZHI g
Tes) TR i (2” = B & el AR 2_”)
22 32 (E) 213 33 ? 22 32 (2) 23 33 ;

In level 0, we take n® time. At level 1, the two subproblems take time:
) o e
=f| +{=n| ={=+=|n"=|=|n
2 3 {9 3
At level 2 the four subproblems are of size 12, Ez,lz—n and 222 respectively. These two
22" 322 23 3 3

subproblems take time:



) o e o=

k
Similarly the amount of work at level k is at most (25 ) n2.
36

25 o
Leta = Pt the total runtime is then:

Tn) < Za"nz

That is, the first level provides a constant fraction of the total runtime.

Problem-62  Rank the following functions by order of growth: (n + 1)!, n!, 4", n x 3", 3" + n?
#20m, (5)", 2 + 200, 20m + 500, 267, 125, 1,

Solution:



Function Rate of Growth
(n+1)! O(n!)
n! O(nl)
4?1 0[41‘1]
X 3" O(n3™)
3" +n” +20n 0(3")
3 3\n
(E)n O((E) ) Decreasing rate of growths
4n® O(n?)
4lan O(n?)
n* 4+ 200 O(n?)
20n 4+ 500 O(n)
P O(n)
n2f3 O[nzﬁ)
1 O(1) v
Problem-63 Find the complexity of the below function:

function(int n) {
int sum = O;

for (int 1 = O; 1<n; 1++)

if (1>7)

sum = sum +1;

else {

for int k = 0; k < n; k++)
sum = sum -1;

b
h

Solution: Consider the worst-case.




functionfint | |

int sum =
for (int 1 = 0; i<n; 144 /[ Executes n times
if (i)
sUm = sum +1; { [ Executes n times
else |
for intk =0,k <n;kt+] /[ Executes n times
sum = sum-;

[
]

E
|

Time Complexity: O(n?).
Problem-64 Can we say gn®7% — O(3n)??
Solution: Yes: because 3n°'75 < 3n'

Problem-65  Can we say 23" = O(2")?

Solution: No: because 23" = (23)" = 8" not less than 2".



(CHAPTER

RECURSION AND
BACKTRACKING

2.1 Introduction

In this chapter, we will look at one of the important topics, “recursion”, which will be used in
almost every chapter, and also its relative “backtracking”.

2.2 What is Recursion?

Any function which calls itself is called recursive. A recursive method solves a problem by
calling a copy of itself to work on a smaller problem. This is called the recursion step. The
recursion step can result in many more such recursive calls.

It is important to ensure that the recursion terminates. Each time the function calls itself with a
slightly simpler version of the original problem. The sequence of smaller problems must
eventually converge on the base case.



2.3 Why Recursion?

Recursion is a useful technique borrowed from mathematics. Recursive code is generally shorter
and easier to write than iterative code. Generally, loops are turned into recursive functions when
they are compiled or interpreted.

Recursion is most useful for tasks that can be defined in terms of similar subtasks. For example,
sort, search, and traversal problems often have simple recursive solutions.

2.4 Format of a Recursive Function

A recursive function performs a task in part by calling itself to perform the subtasks. At some
point, the function encounters a subtask that it can perform without calling itself. This case, where
the function does not recur, is called the base case. The former, where the function calls itself to
perform a subtask, is referred to as the ecursive case. We can write all recursive functions using
the format:

ifltest for the base case)
refurn some base case value
else if[test for another base case)
return some other base case value
[ | the recursive case
else
return (some work and then a recursive call)

As an example consider the factorial function: n! is the product of all integers between n and 1.
The definition of recursive factorial looks like:

=1 ifn=10
nh=ns(n-1)ifnz0

This definition can easily be converted to recursive implementation. Here the problem is
determining the value of n!, and the subproblem is determining the value of (n — I)!. In the
recursive case, when n is greater than 1, the function calls itself to determine the value of (n — I)!
and multiplies that with n.

In the base case, when n is 0 or 1, the function simply returns 1. This looks like the following:



/[ calculates factorial of a positive integer
int Fact(int n) |
ifln==1) /[ base cases: factof 0 or 1 15 |
return 1;
else ifln == ()
return 1;
else [/ recursive case: multiply n by (n = 1) factorial
return n*Fact(n-1);

2.5 Recursion and Memory (Visualization)

Each recursive call makes a new copy of that method (actually only the variables) in memory.
Once a method ends (that is, returns some data), the copy of that returning method is removed
from memory. The recursive solutions look simple but visualization and tracing takes time. For
better understanding, let us consider the following example.

[ [print numbers 1 to n backward
int Print(int ) |
iff n == 0) // this is the terminating base case
return 0;
else |
printf (*%d”,n);
return Print(n-1); /[ recursive call to itself again
}

For this example, if we call the print function with n=4, visually our memory assignments may
look like:



Print(4)
>

Print(3)
U -
Print(2)]
e
Returns 0 k_// Print(1)

—»
Returns 0 Print(0)
T K_/’/
Returns 0

Returns 0 to main function

Returns 0

Now, let us consider our factorial function. The visualization of factorial function with n=4 will
look like:

4l

>

4+ 3l

K_/—/‘ g
3#21

e a
4*6=24 1s returned k_/,, 2411
3*2=6 is returned L// 1
Returns 24 to K_//

main function 2%1=2 is returned

Returns 1

2.6 Recursion versus Iteration

While discussing recursion, the basic question that comes to mind is: which way is better? —
iteration or recursion? The answer to this question depends on what we are trying to do. A
recursive approach mirrors the problem that we are trying to solve. A recursive approach makes
it simpler to solve a problem that may not have the most obvious of answers. But, recursion adds



overhead for

Recursion

Iteration

each recursive call (needs space on the stack frame).

Terminates when a base case is reached.

Each recursive call requires extra space on the stack frame (memory).

If we get infinite recursion, the program may run out of memory and result in stack
overflow.

Solutions to some problems are easier to formulate recursively.

Terminates when a condition is proven to be false.

Each iteration does not require extra space.

An infinite loop could loop forever since there is no extra memory being created.
Iterative solutions to a problem may not always be as obvious as a recursive
solution.

2.7 Notes on Recursion

Recursive algorithms have two types of cases, recursive cases and base cases.

Every recursive function case must terminate at a base case.

Generally, iterative solutions are more efficient than recursive solutions [due to the
overhead of function calls].

A recursive algorithm can be implemented without recursive function calls using a
stack, but it’s usually more trouble than its worth. That means any problem that can
be solved recursively can also be solved iteratively.

For some problems, there are no obvious iterative algorithms.

Some problems are best suited for recursive solutions while others are not.

2.8 Example Algorithms of Recursion

Fibonacci Series, Factorial Finding

Merge Sort, Quick Sort

Binary Search

Tree Traversals and many Tree Problems: InOrder, PreOrder PostOrder
Graph Traversals: DFS [Depth First Search] and BFS [Breadth First Search]
Dynamic Programming Examples

Divide and Conquer Algorithms

Towers of Hanoi



. Backtracking Algorithms [we will discuss in next section]

2.9 Recursion: Problems & Solutions

In this chapter we cover a few problems with recursion and we will discuss the rest in other
chapters. By the time you complete reading the entire book, you will encounter many recursion
problems.

Problem-1 Discuss Towers of Hanoi puzzle.

Solution: The Towers of Hanoi is a mathematical puzzle. It consists of three rods (or pegs or
towers), and a number of disks of different sizes which can slide onto any rod. The puzzle starts
with the disks on one rod in ascending order of size, the smallest at the top, thus making a conical
shape. The objective of the puzzle is to move the entire stack to another rod, satisfying the
following rules:

. Only one disk may be moved at a time.

. Each move consists of taking the upper disk from one of the rods and sliding it onto
another rod, on top of the other disks that may already be present on that rod.

. No disk may be placed on top of a smaller disk.

Algorithm:
. Move the top n — 1 disks from Source to Auxiliary tower,
. Move the n" disk from Source to Destination tower,
. Move the n — 1 disks from Auxiliary tower to Destination tower.
. Transferring the top n — 1 disks from Source to Auxiliary tower can again be thought

of as a fresh problem and can be solved in the same manner. Once we solve Towers
of Hanoi with three disks, we can solve it with any number of disks with the above
algorithm.



void TowersOfHanoifint n, char frompeg, char topeg, char auxpeg) |
[* fonly 1 disk, make the move and return */
ifln==1] |
ntintf{ Move disk 1 from peg %c to peg %c' frompeg, topeg);
return,
}
[* Mave top n-1 disks from A to B, using C as auxiliary */
TowersOfHanoi(n-1, frompeg, auxpeg, topeg);

[* Move remaining disks from A to C ¥/
printf{"\ nMove disk %d from peg %c to peg %c’, n, frompeg, topeg);

/* Move n-1 disks from B to C using A as auxiiary */
TowersOfHanoiin-1, auxpeg, topeg, frompeg);

}

Problem-2 Given an array, check whether the array is in sorted order with recursion.

Solution:

int 1sArrayInSortedOrder{int Al int n)|
ifin == 1)
return 1;
return (An-1] < Aln-2]|20:1sArrayInSortedOrder{A,n-1);
}

Time Complexity: O(n). Space Complexity: O(n) for recursive stack space.

2.10 What is Backtracking?

Backtracking is an improvement of the brute force approach. It systematically searches for a
solution to a problem among all available options. In backtracking, we start with one possible
option out of many available options and try to solve the problem if we are able to solve the
problem with the selected move then we will print the solution else we will backtrack and select
some other option and try to solve it. If none if the options work out we will claim that there is no
solution for the problem.

Backtracking is a form of recursion. The usual scenario is that you are faced with a number of
options, and you must choose one of these. After you make your choice you will get a new set of



options; just what set of options you get depends on what choice you made. This procedure is
repeated over and over until you reach a final state. If you made a good sequence of choices, your
final state is a goal state; if you didn’t, it isn’t.

Backtracking can be thought of as a selective tree/graph traversal method. The tree is a way of
representing some initial starting position (the root node) and a final goal state (one of the
leaves). Backtracking allows us to deal with situations in which a raw brute-force approach
would explode into an impossible number of options to consider. Backtracking is a sort of refined
brute force. At each node, we eliminate choices that are obviously not possible and proceed to
recursively check only those that have potential.

What’s interesting about backtracking is that we back up only as far as needed to reach a previous
decision point with an as-yet-unexplored alternative. In general, that will be at the most recent
decision point. Eventually, more and more of these decision points will have been fully explored,
and we will have to backtrack further and further. If we backtrack all the way to our initial state
and have explored all alternatives from there, we can conclude the particular problem is
unsolvable. In such a case, we will have done all the work of the exhaustive recursion and known
that there is no viable solution possible.

. Sometimes the best algorithm for a problem is to try all possibilities.

. This is always slow, but there are standard tools that can be used to help.

. Tools: algorithms for generating basic objects, such as binary strings [2"
possibilities for n-bit string], permutations [n!], combinations [n!/r!(n — r)!],
general strings [k —ary strings of length n has k" possibilities], etc...

. Backtracking speeds the exhaustive search by pruning.

2.11 Example Algorithms of Backtracking

. Binary Strings: generating all binary strings
. Generating k — ary Strings

. N-Queens Problem
. The Knapsack Problem
. Generalized Strings

. Hamiltonian Cycles [refer to Graphs chapter]
. Graph Coloring Problem

2.12 Backtracking: Problems & Solutions

Problem-3 Generate all the strings of n bits. Assume A[0..n — 1] is an array of size n.

Solution:



void Binaryfint n) |
ifln < 1)
printf{*os”, A | [Assume array A is a global variable
else |
Aln-1]=0;
Binary(n - 1);
An-1)=1;
Binary(n - 1);

j

Let T(n) be the running time of binary(n). Assume function printf takes time O(1).

T(n)—{c’ ifn<O
~ (2T(n — 1) + d, otherwise

Using Subtraction and Conquer Master theorem we get: T(n) = O(2™"). This means the algorithm
for generating bit-strings is optimal.

Problem-4 Generate all the strings of length n drawn from O... k — 1.

Solution: Let us assume we keep current k-ary string in an array A[0.. n — 1]. Call function k-
string(n, k):

voud k-string(int n, int k] |
[ [process all k-ary strings of length m
ifin < 1)
printf“%s",A); [ [Assume array A is a global variable
else |
for (intj=0;j<k;jt |
Aln-1]=};
k-stringfn- 1, k;

Let T(n) be the running time of k — string(n). Then,



_fe; ifn<O0
i) = {kT(n — 1) + d, otherwise

Using Subtraction and Conquer Master theorem we get: T(n) = O(k").

Note: For more problems, refer to String Algorithms chapter.

Problem-5 Finding the length of connected cells of 1s (regions) in an matrix of Os and
1s: Given a matrix, each of which may be 1 or 0. The filled cells that are connected form a
region. Two cells are said to be connected if they are adjacent to each other horizontally,
vertically or diagonally. There may be several regions in the matrix. How do you find the

largest region (in terms of number of cells) in the matrix?

Sample Input: 11000 Sample Output: 5
01100
00101
10001
01011

Solution: The simplest idea is: for each location traverse in all 8 directions and in each of those
directions keep track of maximum region found.



int getvalfint (*A)[5],int 1,int j,int L, int H)|
ifi<0 [|i>=L]|j<0][j>=H)
return 0;
else
return Al1][j];

void findMaxBlock(int (*A)[5), int r, int c,int L,int H,int size, bool **cntarr,int &maxsize)|
d{r>=L||¢=H
return;
cntarrfr][c]=true;
sizet+;
if (size > maxsize)
maxsize = size;
[ [search in eight directions
int direction]|[2)={-1,0},{-1,- 1,10, 1,{1,- 1L {1,03,(1, 11,00, 1, -1, 113
forfint i=0; i<8; i+4) |
int newi =r+direction|1)[0];
int newj=c+direction]i]1];
int val=getval (A,newi,newj,L,H);
if (val>0 & (entarr|newi][newj|==false))|
findMaxBlock(A,new1,newj, L, H size cntarr,maxsize|;
}
!
cntarrt][c]=false;
!
int getMaxOnes(int (*A)[5], int rmax, int colmax]|
int maxsize=0;
mt size=0;
bool **cntarr=create2darr|rmax,colmax;
for(int 1=0; 1< rmax; 1+4)]
for(int j=0; j< colmax; j++)|
if (ATl == 1)
findMaxBlock(A,1,},rmax,colmax, 0,cntarr,maxsize);
}
|
|

refurn maxsize;

i
|



Sample Call:

int zartf][5]={1,1,0,0,0,00,1,1,0,1},0,0,0,1,1},41,0,0,1,1},10,1,0,1, 1}};
cout << "Number of maximum 1s are ' << getMaxOnes(zarr,5,5) << endl;

Problem-6 Solve the recurrence T(n) = 2T(n— 1) + 2".

Solution: At each level of the recurrence tree, the number of problems is double from the
previous level, while the amount of work being done in each problem is half from the previous

level. Formally, the i level has 2/ problems, each requiring 2" work. Thus the i level requires
exactly 2" work. The depth of this tree is n, because at the i level, the originating call will be
T(n — i). Thus the total complexity for T(n) is T(n2").



('HAPTER

LINKED LISTS

3.1 What is a Linked List?

A linked list is a data structure used for storing collections of data. A linked list has the following
properties.

. Successive elements are connected by pointers

. The last element points to NULL

. Can grow or shrink in size during execution of a program

. Can be made just as long as required (until systems memory exhausts)

. Does not waste memory space (but takes some extra memory for pointers). It

allocates memory as list grows.



4 ¥ 15 p 7 ¥ 40 » NULL

Head

3.2 Linked Lists ADT

The following operations make linked lists an ADT:

Main Linked Lists Operations

. Insert: inserts an element into the list
. Delete: removes and returns the specified position element from the list

Aucxiliary Linked Lists Operations

. Delete List: removes all elements of the list (disposes the list)
. Count: returns the number of elements in the list

. Find n" node from the end of the list

3.3 Why Linked Lists?

There are many other data structures that do the same thing as linked lists. Before discussing
linked lists it is important to understand the difference between linked lists and arrays. Both
linked lists and arrays are used to store collections of data, and since both are used for the same
purpose, we need to differentiate their usage. That means in which cases arrays are suitable and
in which cases linked lists are suitable.

3.4 Arrays Overview
One memory block is allocated for the entire array to hold the elements of the array. The array

elements can be accessed in constant time by using the index of the particular element as the
subscript.



3 2 1 2 2 3

Index—— 1 2 3 4 5

Why Constant Time for Accessing Array Elements?

To access an array element, the address of an element is computed as an offset from the base
address of the array and one multiplication is needed to compute what is supposed to be added to
the base address to get the memory address of the element. First the size of an element of that data
type is calculated and then it is multiplied with the index of the element to get the value to be
added to the base address.

This process takes one multiplication and one addition. Since these two operations take constant
time, we can say the array access can be performed in constant time.

Advantages of Arrays

. Simple and easy to use
. Faster access to the elements (constant access)

Disadvantages of Arrays

. Preallocates all needed memory up front and wastes memory space for indices in the
array that are empty.

. Fixed size: The size of the array is static (specify the array size before using it).

. One block allocation: To allocate the array itself at the beginning, sometimes it may
not be possible to get the memory for the complete array (if the array size is big).

. Complex position-based insertion: To insert an element at a given position, we may

need to shift the existing elements. This will create a position for us to insert the
new element at the desired position. If the position at which we want to add an
element is at the beginning, then the shifting operation is more expensive.

Dynamic Arrays

Dynamic array (also called as growable array, resizable array, dynamic table, or array list) is a
random access, variable-size list data structure that allows elements to be added or removed.

One simple way of implementing dynamic arrays is to initially start with some fixed size array.
As soon as that array becomes full, create the new array double the size of the original array.



Similarly, reduce the array size to half if the elements in the array are less than half.

Note: We will see the implementation for dynamic arrays in the Stacks, Queues and Hashing
chapters.

Advantages of Linked Lists

Linked lists have both advantages and disadvantages. The advantage of linked lists is that they can
be expanded in constant time. To create an array, we must allocate memory for a certain number
of elements. To add more elements to the array when full, we must create a new array and copy
the old array into the new array. This can take a lot of time.

We can prevent this by allocating lots of space initially but then we might allocate more than we
need and waste memory. With a linked list, we can start with space for just one allocated element
and add on new elements easily without the need to do any copying and reallocating.

Issues with Linked Lists (Disadvantages)

There are a number of issues with linked lists. The main disadvantage of linked lists is access
time to individual elements. Array is random-access, which means it takes O(1) to access any
element in the array. Linked lists take O(n) for access to an element in the list in the worst case.
Another advantage of arrays in access time is spacial locality in memory. Arrays are defined as
contiguous blocks of memory, and so any array element will be physically near its neighbors. This
greatly benefits from modern CPU caching methods.

Although the dynamic allocation of storage is a great advantage, the overhead with storing and
retrieving data can make a big difference. Sometimes linked lists are hard to manipulate. If the
last item is deleted, the last but one must then have its pointer changed to hold a NULL reference.
This requires that the list is traversed to find the last but one link, and its pointer set to a NULL
reference.

Finally, linked lists waste memory in terms of extra reference points.

3.5 Comparison of Linked Lists with Arrays & Dynamic Arrays



Parameter Linked List Array Dynamic Array
Indexing O(n) (1) 0(1)
lnsgmqn/dﬁletmn at o) Ofnl, if array 1s not full {for shifting ol
beginning the elements)
. i e O[1}, if array is not full
Insertion at ending Ofn) O[1, if array is not full Of), if array is fll
Deletion at ending O(n) (1) Ofn)
et mnidde | o DIn]: 1.1” array is not full (for shifting o)
the elements)

Deletisn i e ol Ofn), if array is not full (for shifting o)
the elements)

Wasted space O(n) (for pomters) [0 Ofn)

3.6 Singly Linked Lists

Generally “linked list” means a singly linked list. This list consists of a number of nodes in which
each node has a next pointer to the following element. The link of the last node in the list is
NULL, which indicates the end of the list.

4 -—» 15 -—» 7 ——» 40 —+» NULL

Head

Following is a type declaration for a linked list of integers:

struct ListNode |

int data;

struct ListNode *next;
F

Basic Operations on a List



. Traversing the list
. Inserting an item in the list
. Deleting an item from the list

Traversing the Linked List

Let us assume that the head points to the first node of the list. To traverse the list we do the
following

. Follow the pointers.

. Display the contents of the nodes (or count) as they are traversed.
. Stop when the next pointer points to NULL.

5 —— 1 ——p 17 | ——» 4 —» NULL

Head

The ListLength() function takes a linked list as input and counts the number of nodes in the list.
The function given below can be used for printing the list data with extra print function.

int ListLength(struct ListNode *head) |

struct ListNode *current = head:
int count = 0;

while (current |= NULL) |
count+;
current = current—next;

return count;

|
!

Time Complexity: O(n), for scanning the list of size n.
Space Complexity: O(1), for creating a temporary variable.

Singly Linked List Insertion

Insertion into a singly-linked list has three cases:



. Inserting a new node before the head (at the beginning)
. Inserting a new node after the tail (at the end of the list)
. Inserting a new node at the middle of the list (random location)

Note: To insert an element in the linked list at some position p, assume that after inserting the
element the position of this new node is p.

Inserting a Node in Singly Linked List at the Beginning

In this case, a new node is inserted before the current head node. Only one next pointer needs to
be modified (new node’s next pointer) and it can be done in two steps:

. Update the next pointer of new node, to point to the current head.
New node
data | -1-# 15 4 7 | —— 40 > NULL
head
. Update head pointer to point to the new node.
New node
data | -}-»| 15 4 7 | —— 40 {3 NULL

!

Head

Inserting a Node in Singly Linked List at the Ending

In this case, we need to modify two next pointers (last nodes next pointer and new nodes next
pointer).

. New nodes next pointer points to NULL.



NULL

New node
4 4 15 4— 7 data | -4» NULL
A
Head
. Last nodes next pointer points to the new node.
New node
4 —— 15 4 7 |--1-9 40 —» NULL
A
Head

Inserting a Node in Singly Linked List at the Middle

Let us assume that we are given a position where we want to insert the new node. In this case
also, we need to modify two next pointers.

. If we want to add an element at position 3 then we stop at position 2. That means we
traverse 2 nodes and insert the new node. For simplicity let us assume that the
second node is called position node. The new node points to the next node of the
position where we want to add this node.



Position node

—» 15 = 7 —— 40 - NULL
A
\

\

!

/

Head o

data 1
New node
Position node’s next pointer now points to the new node.
Position node
p 15 / 7 » 40 » NULL
/
A ok

3 \

- \
I \
/

Head \y data o

New node

Let us write the code for all three cases. We must update the first element pointer in the calling
function, not just in the called function. For this reason we need to send a double pointer. The
following code inserts a node in the singly linked list.



voud InsertInLinkedList(struct ListNode **head,int data,int position) |
int k=1;
struct ListNode *p,*q,*newNode;

newNode = {ListNode *|malloc(sizeof{struct ListNode));

ifl newNode)|
printf|'Memory Error;

return;

newNode—data=data;
p=*head;

{ [Inserting at the beginning
if(position == 1|
newNode—next=p;

*head=newNode;

else!
[ [Traverse the list until the position where we want to insert
while((p!=NULL] &6 (k<position]}{
ktt;
4=p;
p=p—next;
|

q—next=newNode; //more optimum way to do this

newNode—next=p;

|
[

|

Note: We can implement the three variations of the insert operation separately.
Time Complexity: O(n), since, in the worst case, we may need to insert the node at the end of the

list.
Space Complexity: O(1), for creating one temporary variable.

Singly Linked List Deletion



Similar to insertion, here we also have three cases.

. Deleting the first node
. Deleting the last node
. Deleting an intermediate node.

Deleting the First Node in Singly Linked List

First node (current head node) is removed from the list. It can be done in two steps:

. Create a temporary node which will point to the same node as that of head.

4 ——» 15 S S 7 —1—3p 40 —» NULL
.

\
\
A

Head  Temp

. Now, move the head nodes pointer to the next node and dispose of the temporary

node.

|>=<3_. 15 | 4+— 7 |—— 40 | —» NUL
h T
A
)
\

Temp Head

Deleting the Last Node in Singly Linked List

In this case, the last node is removed from the list. This operation is a bit trickier than removing
the first node, because the algorithm should find a node, which is previous to the tail. It can be
done in three steps:

. Traverse the list and while traversing maintain the previous node address also. By
the time we reach the end of the list, we will have two pointers, one pointing to the
tail node and the other pointing to the node before the tail node.



4 ——p 15 +— 7 —1—» 40 —» NULL
‘ T T
Node previous to tail Tail
Head
Update previous node’s next pointer with NULL.
NULL
N
y £
4 ——p 15 o 7 ‘ 40 —» NULL
‘ T T
Previous node to Tail Tail
Head
Dispose of the tail node.
NULL
N
4 ——p 15 o T Pl |><G_. NULL
‘ T T
Previous node to Tail Tail
Head

Deleting an Intermediate Node in Singly Linked List

In this case, the node to be removed is always located between two nodes. Head and tail links
are not updated in this case. Such a removal can be done in two steps:

Similar to the previous case, maintain the previous node while traversing the list.
Once we find the node to be deleted, change the previous node’s next pointer to the
next pointer of the node to be deleted.



-----

- NULL

- NULL

S
4 ——» 15 ‘ i —t+— 40
l T T
Head Previous node Node to be deleted
Dispose of the current node to be deleted.
el - .i
4 4 15 | |>-<{—r 40
| T T

Head

Previous node

Node to be deleted



voud DeleteNodeFromLinkedList struct ListNode **head, int position) |
intk=1;
struct ListNode *p, *q;
if|*head == NULL) |
printf (‘List Empty”);
refurn,

|
p = *head;
[* from the beginning */
iflposition == 1] {
*head = (*head|—next;
free [p);
return,
}

else |
| [ Traverse the list until arriving at the position from which we want to delete

while ((p |= NULL) & (k < position ) |
ktt;
=P
P = pnext;

|

if(p == NULL) [* At the end */
printf (*Position does not exist.”);

else | [* From the middle */
(—next = p—next;
free(p);

Time Complexity: O(n). In the worst case, we may need to delete the node at the end of the list.
Space Complexity: O(1), for one temporary variable.

Deleting Singly Linked List



This works by storing the current node in some temporary variable and freeing the current node.
After freeing the current node, go to the next node with a temporary variable and repeat this
process for all nodes.

void DeleteLinkedList(struct ListNode **head) |
struct ListNode *auxilaryNode, *iterator;
iterator = *head;

while [iterator] |
auxilaryNode = iterator—next;

Iree(iterator};

terator = auxilaryNode;

1
]

*head = NULL; /[ to affect the real head back i the caller,
|

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for creating one temporary variable.

3.7 Doubly Linked Lists

The advantage of a doubly linked list (also called two — way linked list) is that given a node in
the list, we can navigate in both directions. A node in a singly linked list cannot be removed
unless we have the pointer to its predecessor. But in a doubly linked list, we can delete a node
even if we don’t have the previous node’s address (since each node has a left pointer pointing to
the previous node and can move backward).

The primary disadvantages of doubly linked lists are:
. Each node requires an extra pointer, requiring more space.

. The insertion or deletion of a node takes a bit longer (more pointer operations).

Similar to a singly linked list, let us implement the operations of a doubly linked list. If you
understand the singly linked list operations, then doubly linked list operations are obvious.
Following is a type declaration for a doubly linked list of integers:



struct DLLNode |

mt data;
struet DLLNode *next:
struct DLLNode *prev;

Doubly Linked List Insertion

Insertion into a doubly-linked list has three cases (same as singly linked list):

. Inserting a new node before the head.
. Inserting a new node after the tail (at the end of the list).
. Inserting a new node at the middle of the list.

Inserting a Node in Doubly Linked List at the Beginning
In this case, new node is inserted before the head node. Previous and next pointers need to be
modified and it can be done in two steps:

. Update the right pointer of the new node to point to the current head node (dotted
link in below figure) and also make left pointer of new node as NULL.

New node Hpan
data | "7~ 15| " 7 1 40 » NULL
: | — "] 3=
’ v
4
NULL NULL
. Update head node’s left pointer to point to the new node and make new node as

head. Head



Head

-1-» S . — |
Ndata| L2 |18 | 7 —] |40 5 NULL

|
\J

NULL

Inserting a Node in Doubly Linked List at the Ending

In this case, traverse the list till the end and insert the new node.

. New node right pointer points to NULL and left pointer points to the end of the list.

Head List end node New node
4 —p— 15 —T—> 7 *---= | data
| —t 1 | .
|
v Y v
NULL NULL NULL
. Update right pointer of last node to point to new node.
Head List end node New node
—1— C —1— d---=[--
I 4 » 15 Pl 7 I Y data |
|
¥ v
NULL NULL

Inserting a Node in Doubly Linked List at the Middle

As discussed in singly linked lists, traverse the list to the position node and insert the new node.

. New node right pointer points to the next node of the position node where we want
to insert the new node. Also, new node left pointer points to the position node.
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. Position node right pointer points to the new node and the next node of position node
left pointer points to new node.
NULL Position node
| 4 I 151 , / 7 T 40| —» NULL
‘- 2l —
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P v (|
I 1 /
Head \ oy data i
New node

Now, let us write the code for all of these three cases. We must update the first element pointer in
the calling function, not just in the called function. For this reason we need to send a double
pointer. The following code inserts a node in the doubly linked list



void DLLInsert(struet DLLNode *head, int data, int position) |
intk=1;
struct DLLNode *temp, *newNode;
newNode = (struct DLLNode *) malloc(sizeof | struct DLLNode ));

if('newNode) { [ [Always check for memory errors
printf ("Memory Error”);
Teturn;

)

newNode—data = data;

if{position == 1 | [ [Inserting a node at the beginning

newNode—next = *head,
newNode—prev = NULL;

iff*head)
*head|—+prev » newNode;

*head = newNode;
return;

|
temp = *head;
while { [k < position - 1) & temp—next!=NULL) |
temp = temp—next;
ktt,
|
iffk!=position||
printf]"Desired position does not exist\n');

|

newNode—next=temp-snext;

newNode—prev=temp;

if{temp-next)
temp-snext-prev=newNode;

temp-next=newNode;
return;



Time Complexity: O(n). In the worst case, we may need to insert the node at the end of the list.
Space Complexity: O(1), for creating one temporary variable.

Doubly Linked List Deletion

Similar to singly linked list deletion, here we have three cases:

. Deleting the first node
. Deleting the last node
. Deleting an intermediate node

Deleting the First Node in Doubly Linked List

In this case, the first node (current head node) is removed from the list. It can be done in two
steps:

. Create a temporary node which will point to the same node as that of head.
NULL
| Y 1 T T 1
4 15 7 40| -y NULL
+—r b B +—
‘) \
\
5\
A
Head  Temp
. Now, move the head nodes pointer to the next node and change the heads left pointer
to NULL. Then, dispose of the temporary node.
NULL

D}{jﬂ e T |7 “:_ 40| yp NULL

S v T
‘. NULL

Temp Head




Deleting the Last Node in Doubly Linked List

This operation is a bit trickier than removing the first node, because the algorithm should find a
node, which is previous to the tail first. This can be done in three steps:

. Traverse the list and while traversing maintain the previous node address also. By
the time we reach the end of the list, we will have two pointers, one pointing to the
tail and the other pointing to the node before the tail.

40 | — NULL

*’* P

| 4 — - __'. ? -
.1_

T

Previous node to tail Tail
Head
. Update the next pointer of previous node to the tail node with NULL.
NULL NULL
A R
"] T 5] T 7|7 40| = NULL
+ 4
“ T T
Head Previous node to tail Tail

. Dispose the tail node.
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Deleting an Intermediate Node in Doubly Linked List

In this case, the node to be removed is always located between two nodes, and the head and tail
links are not updated. The removal can be done in two steps:

. Similar to the previous case, maintain the previous node while also traversing the
list. Upon locating the node to be deleted, change the previous node’s next pointer
to the next node of the node to be deleted.

f’F#F--qhﬁﬁ
- ‘H
- r e b I\
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4 15| - T | —1—P 40| —» NULL
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. Dispose of the current node to be deleted.
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# - - LY
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4| 4 |15]° D:g{ﬂ_p 40| —» NULL
A T A

Head Previous node Node to be deleted




void DLLDelete(struct DLLNode **head, nt position) |
struct DLLNode *temp, *temp2, temp = *head;
intk=1;
iff*head == NULL) |
printf{*List is empty’);
return;
}
iffposition == 1) |
*head = [*head|—next;

ifi*head |= NULL)
(*head)—prev = NULL;
free(templ;
return;

}
while{(k < position) && temp-next!l=NULL} |

temp = temp—next;
kt+;

}

iffkl=position-1){

printf| Desired position does not exist\n’);

[
|

temp2=temp—prev;
temp2-next=temp—next;

iftemp-next| // Deletion from Intermediate Node
temp-snext—prev=temp2;

free(temp);
refurn;

‘r

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for creating one temporary variable.

3.8 Circular Linked Lists



In singly linked lists and doubly linked lists, the end of lists are indicated with NULL value. But
circular linked lists do not have ends. While traversing the circular linked lists we should be
careful; otherwise we will be traversing the list infinitely. In circular linked lists, each node has a
successor. Note that unlike singly linked lists, there is no node with NULL pointer in a circularly
linked list. In some situations, circular linked lists are useful.

For example, when several processes are using the same computer resource (CPU) for the same
amount of time, we have to assure that no process accesses the resource before all other
processes do (round robin algorithm). The following is a type declaration for a circular linked
list of integers:

typedef struct CLLNode |
int data;
struct ListNode *next;

i

In a circular linked list, we access the elements using the head node (similar to head node in
singly linked list and doubly linked lists).

Counting Nodes in a Circular Linked List

Head

The circular list is accessible through the node marked head. To count the nodes, the list has to be
traversed from the node marked head, with the help of a dummy node current, and stop the
counting when current reaches the starting node head.

If the list is empty, head will be NULL, and in that case set count = 0. Otherwise, set the current
pointer to the first node, and keep on counting till the current pointer reaches the starting node.



int CircularListLength(struct CLLNode *head) |
struct CLLNode *current = head,
int count = 0;
ffhead == NULL)
return 0;

do |
current = current—next;
counttt;

| while (current != head);

return count;

}

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for creating one temporary variable.

Printing the Contents of a Circular Linked List

We assume here that the list is being accessed by its head node. Since all the nodes are arranged
in a circular fashion, the tail node of the list will be the node previous to the head node. Let us
assume we want to print the contents of the nodes starting with the head node. Print its contents,
move to the next node and continue printing till we reach the head node again.

Head



void PrintCircularListData(struct CLLNode *head) |
struct CLLNode *current = head;
iffhead == NULL)
return;

do |
printf [*%d’, current—datal;
current = current—next;
| while [current |= head);
}

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for temporary variable.

Inserting a Node at the End of a Circular Linked List

Let us add a node containing data, at the end of a list (circular list) headed by head. The new
node will be placed just after the tail node (which is the last node of the list), which means it will
have to be inserted in between the tail node and the first node.

. Create a new node and initially keep its next pointer pointing to itself.
—» 4 —+—» 15 —» T —t—» 40 p——
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New node

. Update the next pointer of the new node with the head node and also traverse the list

to the tail. That means in a circular list we should stop at the node whose next node
is head.



Previous node of head
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. Update the next pointer of the previous node to point to the new node and we get the

list as shown below.

Head



void [nsertAtEndInCLL (struct CLLNode **head, int data) |
struct CLLNode *current = *head;
struct CLLNode *newNode = (struct CLLNode ¥) [malloc{sizeof{struct CLLNode));
ifl!newNode) |
printfl‘Memory Error”)
return,
|
newNode—data = data;
while [current—next != *head)

current = current—next:
newNode—next = newNode:

iff*head ==NULL)
*head = newNode;

else |
newNode—next = *head;
current—next = newNode;

}

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for temporary variable.

Inserting a Node at the Front of a Circular Linked List

The only difference between inserting a node at the beginning and at the end is that, after inserting
the new node, we just need to update the pointer. The steps for doing this are given below:

. Create a new node and initially keep its next pointer pointing to itself.
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. Update the next pointer of the new node with the head node and also traverse the list
until the tail. That means in a circular list we should stop at the node which is its
previous node in the list.
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. Update the previous head node in the list to point to the new node.
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. Make the new node as the head.



void InsertAtBeginInCLL (struct CLLNode **head, int data) |

}

struct CLLNode *current = *head,
struct CLLNode * newNode = (struct CLLNode *| {malloc(sizeof(struct CLLNode|);
i{newNode| |
printf{*Memory Error’);
return,
|
newNode—data = data;
while (current—next != *head)
current = current-next;
newNode—next = newNode;
iff*head ==NULL)
*head = newNode;
else |
newNode—next = *head;
current-snext = newNode;

*head = newNode;

1
!

return;

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for temporary variable.

Deleting the Last Node in a Circular Linked List

The list has to be traversed to reach the last but one node. This has to be named as the tail node,
and its next field has to point to the first node. Consider the following list.

To delete the last node 40, the list has to be traversed till you reach 7. The next field of 7 has to



be changed to point to 60, and this node must be renamed pTail.

. Traverse the list and find the tail node and its previous node.

——» 7 | +» 40

A
Previous node to Node to be
deleting node deleted
Head
. Update the next pointer of tail node’s previous node to point to head.
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. Dispose of the tail node.
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void DeleteLastNodeFromCLL (struct CLLNode **head) |
struct CLLNode *temp = *head, *current = *head,;
ifl*head == NULL) |
printf] “List Empty}; return;
}
while (current—next |= *head) |
temp = current;

current = current—next;

1
!

temp-next = current-next;
free(current)
return,

‘r

Time Complexity: O(n), for scanning the complete list of size n. Space Complexity: O(1), for a
temporary variable.

Deleting the First Node in a Circular List

The first node can be deleted by simply replacing the next field of the tail node with the next field
of the first node.

. Find the tail node of the linked list by traversing the list. Tail node is the previous
node to the head node which we want to delete.

—» 60 ——» 4| +—» 15 —_ —» 40
A
Node to he Sr?'llmus nc;ldﬁ to
deleted eleting node

Head

. Create a temporary node which will point to the head. Also, update the tail nodes
next pointer to point to next node of head (as shown below).
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Now, move the head pointer to next node. Create a temporary node which will point
to head. Also, update the tail nodes next pointer to point to next node of head (as

shown below).
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void DeleteFrontNodeFromCLL (struet CLLNode **head) |
struct CLLNode *temp = *head,
struct CLLNode *current = *head;

iff*head == NULL) |
printf|‘List Empty”);

return;

|
|

while (current—next = *head)
current = current=next;

current— next = *head—next;
*head = *head—next;

free(temp);
return;
}

Time Complexity: O(n), for scanning the complete list of size n.
Space Complexity: O(1), for a temporary variable.

Applications of Circular List

Circular linked lists are used in managing the computing resources of a computer. We can use
circular lists for implementing stacks and queues.

3.9 A Memory-efficient Doubly Linked List

In conventional implementation, we need to keep a forward pointer to the next item on the list and
a backward pointer to the previous item. That means elements in doubly linked list
implementations consist of data, a pointer to the next node and a pointer to the previous node in

the list as shown below.

Conventional Node Definition



typedef struct ListNode |
int data;

struct ListNode * prev;
struet ListNode * next;
h

Recently a journal (Sinha) presented an alternative implementation of the doubly linked list ADT,
with insertion, traversal and deletion operations. This implementation is based on pointer
difference. Each node uses only one pointer field to traverse the list back and forth.

New Node Definition

typedef struet ListNode |
mnt data;
struct ListNode * ptrdiff,
|

K]

The ptrdiff pointer field contains the difference between the pointer to the next node and the
pointer to the previous node. The pointer difference is calculated by using exclusive-or (@)
operation.

ptrdiff = pointer to previous node @ pointer to next node.

The ptrdiff of the start node (head node) is the & of NULL and next node (next node to head).
Similarly, the ptrdiff of end node is the & of previous node (previous to end node) and NULL. As
an example, consider the following linked list.

- $NULL

Head

Pointer differences

In the example above,

. The next pointer of A is: NULL & B
. The next pointer of Bis: A & C
. The next pointer of Cis: B & D
. The next pointer of D is: C & NULL



Why does it work?

To find the answer to this question let us consider the properties of @:

X & X=0

X 0=X

X® Y=Y & X (symmetric)

XY Z=X& (Y ® Z) (transitive)

For the example above, let us assume that we are at C node and want to move to B. We know that

C’s ptrdiff is defined as B & D. If we want to move to B, performing & on C’s ptrdiff with D
would give B. This is due to the fact that

(B & D) & D = B(since, D & D=0)
Similarly, if we want to move to D, then we have to apply & to C’s ptrdiff with B to give D.
(B ® D) & B =D (since, B © B=0)
From the above discussion we can see that just by using a single pointer, we can move back and

forth. A memory-efficient implementation of a doubly linked list is possible with minimal
compromising of timing efficiency.

3.10 Unrolled Linked Lists
One of the biggest advantages of linked lists over arrays is that inserting an element at any
location takes only O(1) time. However, it takes O(n) to search for an element in a linked list.

There is a simple variation of the singly linked list called unrolled linked lists.

An unrolled linked list stores multiple elements in each node (let us call it a block for our
convenience). In each block, a circular linked list is used to connect all nodes.

List Head
¥
blockHead hlockHead BlockHead
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Assume that there will be no more than n elements in the unrolled linked list at any time. To
simplify this problem, all blocks, except the last one, should contain exactly [\/ﬁ] elements. Thus,



there will be no more than [\/ﬁ] blocks at any time.

Searching for an element in Unrolled Linked Lists

In unrolled linked lists, we can find the k™ element in O(,/7):

1. Traverse the list of blocks to the one that contains the ki node, i.e., the [—Xth

K
V]

block. It takes O(y/77) since we may find it by going through no more than /n

blocks.
2.

Find the (k mod [\/ﬁ])th node in the circular linked list of this block. It also takes O(

\/n) since there are no more than [\/ﬁ] nodes in a single block.

Last Head
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When inserting a node, we have to re-arrange the nodes in the unrolled linked list to maintain the
properties previously mentioned, that each block contains [\/ﬁ] nodes. Suppose that we insert a
node x after the i node, and x should be placed in the j© block. Nodes in the j block and in the
blocks after the j™ block have to be shifted toward the tail of the list so that each of them still
have [\/ﬁ] nodes. In addition, a new block needs to be added to the tail if the last block of the list

is out of space, i.e., it has more than [\/ﬁ] nodes.

Performing Shift Operation

Note that each shift operation, which includes removing a node from the tail of the circular linked
list in a block and inserting a node to the head of the circular linked list in the block after, takes
only O(1). The total time complexity of an insertion operation for unrolled linked lists is therefore
O(y/n); there are at most O(/1n) blocks and therefore at most O(y/7) shift operations.

1. Atemporary pointer is needed to store the tail of A.

lemp

2. Inblock A, move the next pointer of the head node to point to the second-to-last
node, so that the tail node of A can be removed.

temp

A B
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3. Let the next pointer of the node, which will be shifted (the tail node of A), point
to the tail node of B.




temp

4. Let the next pointer of the head node of B point to the node temp points to.
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5. Finally, set the head pointer of B to point to the node temp points to. Now the
node temp points to becomes the new head node of B.

temp

A B
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temp

6. temp pointer can be thrown away. We have completed the shift operation to
move the original tail node of A to become the new head node of B.

A B
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Performance




With unrolled linked lists, there are a couple of advantages, one in speed and one in space. First,
if the number of elements in each block is appropriately sized (e.g., at most the size of one cache
line), we get noticeably better cache performance from the improved memory locality. Second,
since we have O(n/m) links, where n is the number of elements in the unrolled linked list and m is
the number of elements we can store in any block, we can also save an appreciable amount of
space, which is particularly noticeable if each element is small.

Comparing Linked Lists and Unrolled Linked Lists

To compare the overhead for an unrolled list, elements in doubly linked list implementations
consist of data, a pointer to the next node, and a pointer to the previous node in the list, as shown
below.

struct ListNode |
int data;
struct ListNode *prev;

struct ListNode *next;

Assuming we have 4 byte pointers, each node is going to take 8 bytes. But the allocation overhead
for the node could be anywhere between 8 and 16 bytes. Let’s go with the best case and assume it
will be 8 bytes. So, if we want to store IK items in this list, we are going to have 16KB of
overhead.

Now, let’s think about an unrolled linked list node (let us call it LinkedBlock). It will look
something like this:

struct LinkedBlock!

struet LinkedBlock *next:
struct ListNode *head;

int nodeCount:

Therefore, allocating a single node (12 bytes + 8 bytes of overhead) with an array of 100
elements (400 bytes + 8 bytes of overhead) will now cost 428 bytes, or 4.28 bytes per element.
Thinking about our IK items from above, it would take about 4.2KB of overhead, which is close
to 4x better than our original list. Even if the list becomes severely fragmented and the item arrays
are only 1/2 full on average, this is still an improvement. Also, note that we can tune the array
size to whatever gets us the best overhead for our application.



Implementation




struct LinkedBlock]
struct LinkedBlock *next;
struct ListNode *head;
int nodeCount;

5

struct LinkedBlock* blockHead:

f Jereate an empty block
struct LinkedBlock* newLinkedBlock()|
struct LinkedBlock* block=(struct Linked Block*)mallocisizeof(struct LinkedBlock));
block—next=NULL;
block—head=NULL:
block—nodeCount=0;
return block;

i
i

[ fereate a node
struct ListNode* newlListNode(int value))
struct ListNode* temp=(struct ListNode*)malloe|sizeof]struct ListNode));
temp—next=NULL;
temp—value=value;
refurn temp;
|
void searchElementiint k,struct LinkedBlock **fLinkedBlock struct ListNode **fListNode)|
J/find the block
int j=(k+blockSize-1)/blockSize; [ /k-th node is in the j-th block
struct LinkedBlock* p=blockHead;
while(--j}{
p=p—mnext;
i
*fLinkedBlock=p;
J /find the node
struct LiztNode* q=p—head;
k=k%blockSize;
if{kk==0} k=blockSize;
k=p—nodeCount+1-k;
whilejk--){
g=gq—next;
i
*fListNode=q;
i

[ fstart shift operation from block *p
void shift{struet LinkedBlock *A)f

struct LinkedBlock *B;

struct ListNode* temp;

whilejA—nodeCount > blockSize}! / /if this block still have to shift

iflA—snext==NULL}{ //reach the end. A little different
A—next=newLinkedBlock]();
B=A—next;
temp=A—head—next;
A—head—next=A—head—next—next;
B—head=temp;
temp—next=temp;
A—nodeCount--;
B—nodeCount++;
1elze]

B=A—next,
temp=A—head—next;
A—head—next=A—head—next—next;
temp—next=B—head—next;
B—head—next=temp;
B—head=temp
A—nodeCount--;






I

B—nodeCount++;
i
A=B:
}

void addElement(int k,int x)/

1

struct ListNode *p.*q;
struct LinkedBlock *r;

if{lblockHead)] / /initial, first node and block
blockHead=newLinked Blocki();
blockHead —head=newListNode(x);
blockHead —+head —»next=blockHead —head;
blockHead —nodeCount++;
lelse!
iffk==0}} / /special case for k=0.
p=blockHead—head;
q=p—next;
p—next=newlListNode(x);
p—next—next=gq;
blockHead —head=p—next;
blockHead —nodeCount++,
shift(blockHead);
lelse)
searchElement(k,&r,&p);
q9=p;
while|q—next!=p| q=g—next;
g—next=newListNode(x);
g—next—next=p;
r—nodeCount++;
shift(r);
)
i

int searchElement{int k)i

i

struct ListNode *p;
struct LinkedBlock =q;
searchElement(k,f%q,%p);
return p—value;

int testUnRolledLinkedList()|

int tt=clock();

int m,ik,x;

char emd[10];

scanf|"%d",&m);
blockSize=(int)|sqrtim-0.001)j+1;

for| i=0; i<m; i++ }{
scanf{™s",cmd);
iflstremplemd,"add”)==0){
scanf(™od %d", Gk, Bex);
addElement (k,x);
jelse if{sircmpicmd, " search”)==0)|
scanf|["%d",&k);
printf{"%«d \n", searchElement k));
jelsel
fprintf{stderr,"Wrong Inputin");
]
}

return 0;



3.11 Skip Lists

Binary trees can be used for representing abstract data types such as dictionaries and ordered
lists. They work well when the elements are inserted in a random order. Some sequences of
operations, such as inserting the elements in order, produce degenerate data structures that give
very poor performance. If it were possible to randomly permute the list of items to be inserted,
trees would work well with high probability for any input sequence. In most cases queries must
be answered on-line, so randomly permuting the input is impractical. Balanced tree algorithms re-
arrange the tree as operations are performed to maintain certain balance conditions and assure
good performance.

Skip lists are a probabilistic alternative to balanced trees. Skip list is a data structure that can be
used as an alternative to balanced binary trees (refer to Trees chapter). As compared to a binary
tree, skip lists allow quick search, insertion and deletion of elements. This is achieved by using
probabilistic balancing rather than strictly enforce balancing. It is basically a linked list with
additional pointers such that intermediate nodes can be skipped. It uses a random number
generator to make some decisions.

In an ordinary sorted linked list, search, insert, and delete are in O(n) because the list must be
scanned node-by-node from the head to find the relevant node. If somehow we could scan down
the list in bigger steps (skip down, as it were), we would reduce the cost of scanning. This is the
fundamental idea behind Skip Lists.

Skip Lists with One Level
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Performance

In a simple linked list that consists of n elements, to perform a search n comparisons are required
in the worst case. If a second pointer pointing two nodes ahead is added to every node, the
number of comparisons goes down to n/2 + 1 in the worst case.

Adding one more pointer to every fourth node and making them point to the fourth node ahead
reduces the number of comparisons to [n/2] + 2. If this strategy is continued so that every node
with i pointers points to 2 * i — 1 nodes ahead, O(logn) performance is obtained and the number
of pointers has only doubled (n + n/2 + n/4 + n/8 + n/16 + .... = 2n).

The find, insert, and remove operations on ordinary binary search trees are efficient, O(logn),
when the input data is random; but less efficient, O(n), when the input data is ordered. Skip List

performance for these same operations and for any data set is about as good as that of randomly-
built binary search trees - namely O(logn).

Comparing Skip Lists and Unrolled Linked Lists

In simple terms, Skip Lists are sorted linked lists with two differences:

. The nodes in an ordinary list have one next reference. The nodes in a Skip List have
many next references (also called forward references).
. The number of forward references for a given node is determined probabilistically.

We speak of a Skip List node having levels, one level per forward reference. The number of
levels in a node is called the size of the node. In an ordinary sorted list, insert, remove, and find
operations require sequential traversal of the list. This results in O(n) performance per operation.
Skip Lists allow intermediate nodes in the list to be skipped during a traversal - resulting in an
expected performance of O(logn) per operation.

Implementation



#include <stdio.h=
#include <stdlib.h>
#define MAXSKIPLEVEL 5
struct ListNode |
int data;
struct ListNode *next|[1];
k
struct SkipList |
struct ListNode *header;
int listLevel: { feurrent level of list */
14
struct SkipList list;
struct ListNode *mnsertElementfint data) |
int i, newLevel;
struct ListNode *update[MAXSKIPLEVEL+1};
struct ListNode *temp;
temp = list.header;
for (i = list.listLevel; i >= 0; i--) {
while (temp—next]i] I=list.header && temp—next[i]—data < data)
temp = temp—next|i];
updatefi] = temp;
i
temp = temp—next|0];
if (temp 1= list.header 8 temp—data == data)
returnftemp);
[ fdetermine level
for (newLevel = 0; rand() < RAND_MAX/2 &8 newLevel < MAXSKIPLEVEL; newLevel++);
if inewLevel = list.listLevel) |
for (i = list.listLeve]l + 1;1 <= newLevel; i++)
update(i] = hist.header;
lint. istLevel = newlLevel;
i
[/ make new node
if ({temp = malloc(sizeof{Node) +
newLevel*sizeof[Node *))) == 0) |
printf ("insufficient memeory (insertElement]\n");
exit{1);
i
temp—data = data;
for (i = 0; i <= newLevel; i++) [ [/ update next links
temp—next|i] = update[i]—nextli];
update[i] —nextli] = temp;
}
return(templ;
H
// delete node containing data
void deleteElement(int data) |
mt i;
struct ListNode "update[MAXSKIPLEVEL+1], *temp;
temp = list.header;
for (1 = hst.listLevel; 1 >= 0; 1--) |
while (temp—next]i] I= list. header && temp—next|i]—data < data)
temp = temp—nextli];
updatefi] = temp;

i
i

temp = temp—next[0];
if (temp == lisL.header | | l{temp—data == data) return;
[ /adjust next pointers
for (i = 0: i == list.listLevel; 1+4) |
if (jupdatefi]—next|i] |= temp) break;
update[i]—next|[i] = temp—next[i];
i






free (temp);

[ [adjust header level
while ({list.listLevel > 0) && (list.header—next|list.listLevel| == list.header])
list.listLevel--;

|
1

/| find node containing data
struct ListNode *findElement(int data) |
int i;
struct ListNode *temp = list.header;
for (i = list.listLevel; i >= 0; i) |
while (temp—next[i] I= list.header
&8 temp—next|i]—data < data)
temp = temp—next|[i];
i
temp = temp—next|0];
if (temp != list.header && temp—data == data) return (temp);
return|0);
I
// initialize skip list
void initList() {
int i;
if ((list.header = malloc(sizeof|struct ListNode) + MAXSKIPLEVEL*sizeof|struct ListNode *))) == 0} |
printf ("Memory Error\n');
exit(1);
|
for (i = 0; i <= MAXSKIPLEVEL; i++4)
list. header—next|i] = list.header;
list.listLevel = O;
1
1
/* command-line: skipList maxnum skipList 2000: process 2000 sequential records */
int mamn(int arge, char **argvj |
int 1, *a, maxnum = atoi(argv[L]);
initList();
if ({a = malloc(maxnum * sizeof{*a))) == 0) |
fprintf (stderr, "insufficient memory (a)\n");
exit(1);
i
for (i = 0; i < maxnum; i++) afi] = rand();
printf ("Random, %d items\n", maxnum);

for i = 0; i < maxnum; i++) |
insertElementali]);

I-
for (i = maxnum-1; i >= 0; i--) |
findElement(ali]);

L
]

for (i = maxnum-1; 1 >= 0; i--) |
deleteElement(ali));

[
J

return 0;



3.12 Linked Lists: Problems & Solutions

Problem-1 Implement Stack using Linked List.

Solution: Refer to Stacks chapter.

Problem-2 Find n" node from the end of a Linked List.

Solution: Brute-Force Method: Start with the first node and count the number of nodes present
after that node. If the number of nodes is < n — 1 then return saying “fewer number of nodes in the
list”. If the number of nodes is > n — 1 then go to next node. Continue this until the numbers of
nodes after current node are n — 1.

Time Complexity: O(n?), for scanning the remaining list (from current node) for each node.
Space Complexity: O(1).

Problem-3 Can we improve the complexity of Problem-27?

Solution: Yes, using hash table. As an example consider the following list.

J ¥ | —» 17 —» 4 - NULL

Head

In this approach, create a hash table whose entries are < position of node, node address >. That
means, key is the position of the node in the list and value is the address of that node.

Position in List Address of Node
1 Address of 5 node
2 Address of 1 node
3 Address of 17 node
4 Address of 4 node

By the time we traverse the complete list (for creating the hash table), we can find the list length.
Let us say the list length is M. To find n" from the end of linked list, we can convert this to M- n
+ 1™ from the beginning. Since we already know the length of the list, it is just a matter of



returning M- n + 1% key value from the hash table.

Time Complexity: Time for creating the hash table, T(m) = O(m).
Space Complexity: Since we need to create a hash table of size m, O(m).

Problem-4 Can we use the Problem-3 approach for solving Problem-2 without creating the
hash table?

Solution: Yes. If we observe the Problem-3 solution, what we are actually doing is finding the
size of the linked list. That means we are using the hash table to find the size of the linked list. We
can find the length of the linked list just by starting at the head node and traversing the list.

So, we can find the length of the list without creating the hash table. After finding the length,

compute M — n + 1 and with one more scan we can get the M — n+ 1% node from the beginning,
This solution needs two scans: one for finding the length of the list and the other for finding M —

n+ 1" node from the beginning.

Time Complexity: Time for finding the length + Time for finding the M — n + 1% node from the
beginning. Therefore, T(n) = O(n) + O(n) ~ O(n). Space Complexity: O(1). Hence, no need to
create the hash table.

Problem-5 Can we solve Problem-2 in one scan?

Solution: Yes. Efficient Approach: Use two pointers pNthNode and pTlemp. Initially, both point
to head node of the list. pNthNode starts moving only after pTemp has made n moves.

From there both move forward until pTemp reaches the end of the list. As a result pNthNode
points to n node from the end of the linked list.

Note: At any point of time both move one node at a time.



struct ListNode *NthNodeFromEnd(struct ListNode *head, int NthNode)|
struct ListNode *pNthNode = NULL, *pTemp = head;
for(int count =1; count< NthNode;count+t) |
if(pTemp)
plemp = plemp-next;
I
while(pTemp) {
if[pNthNode == NULL)
pNthNode = head;
else
pNthNode = pNthNode—next;
pTemp = plemp—next,
I
if[pNthNode|
return pNthNode;
return NULL:;

j
Time Complexity: O(n). Space Complexity: O(1).

Problem-6 Check whether the given linked list is either NULL-terminated or ends in a cycle
(cyclic).

Solution: Brute-Force Approach. As an example, consider the following linked list which has a
loop in it. The difference between this list and the regular list is that, in this list, there are two
nodes whose next pointers are the same. In regular singly linked lists (without a loop) each node’s
next pointer is unique.

That means the repetition of next pointers indicates the existence of a loop.



@/»

b

One simple and brute force way of solving this is, start with the first node and see whether there
is any node whose next pointer is the current node’s address. If there is a node with the same

address then that indicates that some other node is pointing to the current node and we can say a
loop exists. Continue this process for all the nodes of the linked list.

Does this method work? As per the algorithm, we are checking for the next pointer addresses,
but how do we find the end of the linked list (otherwise we will end up in an infinite loop)?

Note: If we start with a node in a loop, this method may work depending on the size of the loop.

Problem-7 Can we use the hashing technique for solving Problem-6?

Solution: Yes. Using Hash Tables we can solve this problem.

Algorithm:

. Traverse the linked list nodes one by one.

. Check if the address of the node is available in the hash table or not.

. If it is already available in the hash table, that indicates that we are visiting the node
that was already visited. This is possible only if the given linked list has a loop in
it.

. If the address of the node is not available in the hash table, insert that node’s address
into the hash table.

. Continue this process until we reach the end of the linked list or we find the loop.

Time Complexity; O(n) for scanning the linked list. Note that we are doing a scan of only the
input.
Space Complexity; O(n) for hash table.

Problem-8 Can we solve Problem-6 using the sorting technique?

Solution: No. Consider the following algorithm which is based on sorting. Then we see why this



algorithm fails.

Algorithm:

. Traverse the linked list nodes one by one and take all the next pointer values into an
array.

. Sort the array that has the next node pointers.

. If there is a loop in the linked list, definitely two next node pointers will be pointing
to the same node.

. After sorting if there is a loop in the list, the nodes whose next pointers are the same
will end up adjacent in the sorted list.
. If any such pair exists in the sorted list then we say the linked list has a loop in it.

Time Complexity; O(nlogn) for sorting the next pointers array.
Space Complexity; O(n) for the next pointers array.

Problem with the above algorithm: The above algorithm works only if we can find the length of
the list. But if the list has a loop then we may end up in an infinite loop. Due to this reason the
algorithm fails.

Problem-9 Can we solve the Problem-6 in O(n)?

Solution: Yes. Efficient Approach (Memoryless Approach): This problem was solved by
Floyd. The solution is named the Floyd cycle finding algorithm. It uses two pointers moving at
different speeds to walk the linked list. Once they enter the loop they are expected to meet, which
denotes that there is a loop.

This works because the only way a faster moving pointer would point to the same location as a
slower moving pointer is if somehow the entire list or a part of it is circular. Think of a tortoise
and a hare running on a track. The faster running hare will catch up with the tortoise if they are
running in a loop. As an example, consider the following example and trace out the Floyd
algorithm. From the diagrams below we can see that after the final step they are meeting at some
point in the loop which may not be the starting point of the loop.

Note: slowPtr (tortoise) moves one pointer at a time and fastPtr (hare) moves two pointers at a
time.
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it DoesLinkedListHasLoop[struct ListNode * head) |
struct ListNode *slowPtr = head, “fastPtr = head;
while [slowPtr &b fastPtr &6 fastPtr—next) |

slowPtr = slowPtr—next:

fastPtr = fastPtr—next—next;
It (slowPtr == fastPtr)

return 1;

[
|

return 0;

}
Time Complexity: O(n). Space Complexity: O(1).

Problem-10 are given a pointer to the first element of a linked list L. There are two
possibilities for L: it either ends (snake) or its last element points back to one of the
earlier elements in the list (snail). Give an algorithm that tests whether a given list L is a
snake or a snail.

Solution: It is the same as Problem-6.

Problem-11 Check whether the given linked list is NULL-terminated or not. If there is a
cycle find the start node of the loop.

Solution: The solution is an extension to the solution in Problem-9. After finding the loop in the
linked list, we initialize the slowPtr to the head of the linked list. From that point onwards both
slowPtr and fastPtr move only one node at a time. The point at which they meet is the start of the
loop. Generally we use this method for removing the loops.



int FindBeginofLoop(struct ListNode * head) |
struct ListNode *slowPtr = head, *fastPtr = head;
int loopExsts = 0,
while (slowPtr &6 fastPtr &G fastPtr—next) |
slowPtr = elowPtr—next;
fastPtr = fastPtr—next—next;
if (slowPtr == fastPtr)]
loopExists = 1;
break:

I
if{loopEsists) |
slowPtr = head;
while(slowPtr = fastPtr) |
fastPtr = fastPtr-snext:

slowPtr = slowPtr-snext:

|
!

return slowPtr;
|

|
return NULL:
|

Time Complexity: O(n). Space Complexity: O(1).

Problem-12 From the previous discussion and problems we understand that the meeting of
tortoise and hare concludes the existence of the loop, but how does moving the tortoise to
the beginning of the linked list while keeping the hare at the meeting place, followed by
moving both one step at a time, make them meet at the starting point of the cycle?

Solution: This problem is at the heart of number theory. In the Floyd cycle finding algorithm,
notice that the tortoise and the hare will meet when they are n x L, where L is the loop length.
Furthermore, the tortoise is at the midpoint between the hare and the beginning of the sequence
because of the way they move. Therefore the tortoise is n x L away from the beginning of the
sequence as well. If we move both one step at a time, from the position of the tortoise and from
the start of the sequence, we know that they will meet as soon as both are in the loop, since they
are n x L, a multiple of the loop length, apart. One of them is already in the loop, so we just move
the other one in single step until it enters the loop, keeping the other n x L away from it at all
times.

Problem-13 In the Floyd cycle finding algorithm, does it work if we use steps 2 and 3
instead of 1 and 27?



Solution: Yes, but the complexity might be high. Trace out an example.

Problem-14 Check whether the given linked list is NULL-terminated. If there is a cycle, find
the length of the loop.

Solution: This solution is also an extension of the basic cycle detection problem. After finding the
loop in the linked list, keep the slowPtr as it is. The fastPtr keeps on moving until it again comes
back to slowPtr. While moving fastPtr, use a counter variable which increments at the rate of 1.

it FindLoopLength(struct ListNode * head) |
struct ListNode *slowPtr = head, *fastPtr = head:
it loopExists = 0, counter = 0;
while (slowPtr && fastPtr &% fastPtr—next) |
slowPtr = slowPtr—next;
fastPir = fastPtr—next—next;
if {slowPtr == fastPtr)|
loopExsts = 1;
break;

!
|

}
f{loopExusts) |
fastPtr = fastPtr—next;
while(slowPtr 1= fastPtr) |
fastPtr = fastPtr-mnext:
COUnTer++,

|
|

Fetur counter;

|

return 0; [ [1f no loops exists

Time Complexity: O(n). Space Complexity: O(1).

Problem-15 Insert a node in a sorted linked list.

Solution: Traverse the list and find a position for the element and insert it.



struct ListNode *InsertInSortedList(struct ListNode * head, struct ListNode * newNode) |
struct ListNode *current = head, temp;
if[lhead)
return newNode:
/[ traverse the list until you find item bigger the new node value
while [current |= NULL && current—data < newNode—data)|
temp = current;
current = current-next;

[ [insert the new node before the big item
newNode—next = current;

temp—+next = newlode;

return head;

|
Time Complexity: O(n). Space Complexity: O(1).
Problem-16 Reverse a singly linked list.

Solution:

/[ lterative version
struct ListNode *Reverselist(struct ListNode *head) |
struct ListNode *temp = NULL, *nextNode = NULL,
while (head) |
nextNode = head—next;
head—next = temp;
temp = head,

head = nextNode:

[
|

return temp;

i
Time Complexity: O(n). Space Complexity: O(1).

Recursive version: We will find it easier to start from the bottom up, by asking and answering
tiny questions (this is the approach in The Little Lisper):

. What is the reverse of NULL (the empty list)? NULL.
. What is the reverse of a one element list? The element itself.



. What is the reverse of an n element list? The reverse of the second element followed
by the first element.

struct ListNode * RecursiveReverse(struct ListNode *head) |
if (head == NULL|
return NULL;
if (head-next == NULL]
return list:
struct ListNode *secondElem = head—next;
/| Need to unlink list from the rest or you will get a cycle
head—next = NULL;
| [ reverse everything from the second element on
struct ListNode *reverseRest = RecursiveReverse(secondElem);
secondElem—next = head; /| then we join the two lists

return reverseRest;

i
|

Time Complexity: O(n). Space Complexity: O(n),for recursive stack.

Problem-17 Suppose there are two singly linked lists both of which intersect at some point
and become a single linked list. The head or start pointers of both the lists are known, but
the intersecting node is not known. Also, the number of nodes in each of the lists before
they intersect is unknown and may be different in each list. List1 may have n nodes before
it reaches the intersection point, and List2 might have m nodes before it reaches the
intersection point where m and n may be m = njm < n or m > n. Give an algorithm for
finding the merging point.

NULL

s !

> 4 §

Solution: Brute-Force Approach: One easy solution is to compare every node pointer in the first
list with every other node pointer in the second list by which the matching node pointers will lead
us to the intersecting node. But, the time complexity in this case will be O(mn) which will be

high.



Time Complexity: O(mn). Space Complexity: O(1).

Problem-18 Can we solve Problem-17 using the sorting technique?

Solution: No. Consider the following algorithm which is based on sorting and see why this
algorithm fails.

Algorithm:

. Take first list node pointers and keep them in some array and sort them.

. Take second list node pointers and keep them in some array and sort them.

. After sorting, use two indexes: one for the first sorted array and the other for the
second sorted array.

. Start comparing values at the indexes and increment the index according to
whichever has the lower value (increment only if the values are not equal).

. At any point, if we are able to find two indexes whose values are the same, then that
indicates that those two nodes are pointing to the same node and we return that
node.

Time Complexity: Time for sorting lists + Time for scanning (for comparing)
= O(mlogm) +0(nlogn) +O(m + n) We need to consider the one that gives the
maximum value.

Space Complexity: O(1).

Any problem with the above algorithm? Yes. In the algorithm, we are storing all the node
pointers of both the lists and sorting. But we are forgetting the fact that there can be many repeated
elements. This is because after the merging point, all node pointers are the same for both the lists.
The algorithm works fine only in one case and it is when both lists have the ending node at their
merge point.

Problem-19 Can we solve Problem-17 using hash tables?

Solution: Yes.

Algorithm:
. Select a list which has less number of nodes (If we do not know the lengths
beforehand then select one list randomly).
. Now, traverse the other list and for each node pointer of this list check whether the
same node pointer exists in the hash table.
. If there is a merge point for the given lists then we will definitely encounter the node

pointer in the hash table.

Time Complexity: Time for creating the hash table + Time for scanning the second list = O(m) +
O(n) (or O(n) + O(m), depending on which list we select for creating the hash table. But in both



cases the time complexity is the same. Space Complexity: O(n) or O(m).

Problem-20 Can we use stacks for solving the Problem-17?

Solution: Yes.

Algorithm:
. Create two stacks: one for the first list and one for the second list.
. Traverse the first list and push all the node addresses onto the first stack.
. Traverse the second list and push all the node addresses onto the second stack.
. Now both stacks contain the node address of the corresponding lists.

. Now compare the top node address of both stacks.

. If they are the same, take the top elements from both the stacks and keep them in
some temporary variable (since both node addresses are node, it is enough if we
use one temporary variable).

. Continue this process until the top node addresses of the stacks are not the same.
. This point is the one where the lists merge into a single list.
. Return the value of the temporary variable.

Time Complexity: O(m + n), for scanning both the lists.
Space Complexity: O(m + n), for creating two stacks for both the lists.

Problem-21 Is there any other way of solving Problem-177?

Solution: Yes. Using “finding the first repeating number” approach in an array (for algorithm
refer to Searching chapter).

Algorithm:
. Create an array A and keep all the next pointers of both the lists in the array.
. In the array find the first repeating element [Refer to Searching chapter for
algorithm].

. The first repeating number indicates the merging point of both the lists.

Time Complexity: O(m + n). Space Complexity: O(m + n).

Problem-22 Can we still think of finding an alternative solution for Problem-177?

Solution: Yes. By combining sorting and search techniques we can reduce the complexity.

Algorithm:
. Create an array A and keep all the next pointers of the first list in the array.
. Sort these array elements.

. Then, for each of the second list elements, search in the sorted array (let us assume



that we are using binary search which gives O(logn)).
. Since we are scanning the second list one by one, the first repeating element that
appears in the array is nothing but the merging point.

Time Complexity: Time for sorting + Time for searching = O(Max(mlogm, nlogn)).
Space Complexity: O(Max(m, n)).

Problem-23 Can we improve the complexity for Problem-17?
Solution: Yes.

Efficient Approach:

. Find lengths (L1 and L2) of both lists - O(n) + O(m) = O(max(m, n)).

. Take the difference d of the lengths -- O(1).

. Make d steps in longer list -- O(d).

. Step in both lists in parallel until links to next node match -- O(min(m, n)).
. Total time complexity = O(max(m, n)).

. Space Complexity = O(1).



struct ListNode* FindIntersectingNode(struct ListNode* list], struct ListNode* list2) |
int L1=0, L2=0, diff=0;
struct ListNode *head] = list1, *head2 = list2;
while(head1!= NULL) |
L1+t

head| = head]—next;

[
!

while(head2!= NULL) |
L2+,

head2 = head2-next;

|
!

f[L] < L2) ]

headl = list2; head2 = hist]; diff = L2 - L1;
lelse|

headl = list]: head2 = list2: diff=L1-L12;
|
forfint 1= 0; 1 < diff; 144

head] = head1-next;
while(headl = NULL && head2 |= NULL) |

if(head] == head2)

return headl—data;

head1= head]-next;

head2= head2-next;
1

I
return NULL:

1
I

Problem-24 How will you find the middle of the linked list?

Solution: Brute-Force Approach: For each of the node, count how many nodes are there in the
list, and see whether it is the middle node of the list.

Time Complexity: O(n?). Space Complexity: O(1).
Problem-25 Can we improve the complexity of Problem-24?



Solution: Yes.

Algorithm:

. Traverse the list and find the length of the list.
. After finding the length, again scan the list and locate n/2 node from the beginning.

Time Complexity: Time for finding the length of the list + Time for locating middle node = O(n) +
O(n) = O(n).
Space Complexity: O(1).

Problem-26 Can we use the hash table for solving Problem-24?
Solution: Yes. The reasoning is the same as that of Problem-3.

Time Complexity: Time for creating the hash table. Therefore, T(n) = O(n).
Space Complexity: O(n). Since we need to create a hash table of size n.

Problem-27 Can we solve Problem-24 just in one scan?

Solution: Efficient Approach: Use two pointers. Move one pointer at twice the speed of the
second. When the first pointer reaches the end of the list, the second pointer will be pointing to
the middle node.

Note: If the list has an even number of nodes, the middle node will be of [n/2].



struct ListNode * FindMiddle(struct ListNode *head) |
struct ListNode *ptrlx, *ptrlx;
ptrlx = ptr2x = head;
it 1=0;
/| keep looping until we reach the tail (next will be NULL for the last node]
while(ptrlx—next = NULL] {

{1 == 0} |
ptrlx = ptrlx—next; / /increment only the st pomnter
=1;

}

else iff 1== 1] {

ptrlx = ptrlx—next; / /increment both pointers
ptr2x = ptr2x—next;
1=0;

|

1
|

return ptr2x;  //now return the ptr2 which points to the middle node

]
Time Complexity: O(n). Space Complexity: O(1).
Problem-28 How will you display a Linked List from the end?
Solution: Traverse recursively till the end of the linked list. While coming back, start printing the

elements.

{ [This Funetion will print the linked lst from end
void ProntListFromEnd(struet ListNode *head) |
i head)
retur,

PrintListFromEnd(head—next);
printf] %d " head—data);

Time Complexity: O(n). Space Complexity: O(n) - for Stack.

Problem-29 Check whether the given Linked List length is even or odd?

Solution: Use a 2x pointer. Take a pointer that moves at 2x [two nodes at a time]. At the end, if
the length is even, then the pointer will be NULL; otherwise it will point to the last node.



int [sLinkedListLengthEven(struct ListNode * listHead) |
while(listHead && listHead—next)
ListHead = listHead—next—next;
1f{!hstHead)
return 0;
return 1;

|
Time Complexity: O(|n/2]) # O(n). Space Complexity: O(1).

Problem-30 If the head of a Linked List is pointing to kth element, then how will you get the
elements before kth element?

Solution: Use Memory Efficient Linked Lists [ XOR Linked Lists].

Problem-31 Given two sorted Linked Lists, how to merge them into the third list in sorted
order?

Solution: Assume the sizes of lists are m and n.

Recursive:

struct ListNode *MergeSortedList(struct ListNode *a, struct ListNode *b) |
struct ListNode *result = NULL;
iffa == NULL) return b;
Iffb == NULL| return a;
fla—data <= b—data) |
result =a;

result—next = MergeSortedListfa—next, b);

else |
result =h;

result—next = MergeSortedList(b—next a);

|
L

return result;

}

Time Complexity: O(n + m), where n and m are lengths of two lists.

Iterative:



struct ListNode *MergeSortedListlterative(struct ListNode *head], struct ListNode *head2)|
struct ListNode * newNode = (struct ListNode*) (mallocfsizeof[struct ListNode)));
struct ListNode *temp;
newNode = new Node;
newNode-next = NULL:
temp = newNode;

while (head1!=NULL and head2!=NULL)!
if (head]1—datas=head2—data|
temp-snext = headl;
fefmp = temp-+next;
head] = headl-next;
jelse]
temp-next = head2;
temp = temp-next;
head2 = head2-next:

if (head1!=NULL)
temp-snext = headl;
else
temp—next = head2;

temp = newNode—next;
free({newlode);
return temp;

|

Time Complexity: O(n + m), where n and m are lengths of two lists.

Problem-32 Reverse the linked list in pairs. If you have a linked list that holds 1 - 2 - 3
— 4 - X, then after the function has been called the linked list would hold2 - 1 - 4 -
3 -5 X

Solution:

Recursive:



struct ListNode *ReversePairRecursive(struct ListNode *head) |
struct ListNode *temp;

if(head ==NULL | | head—next ==NULL|
return; [ [base case for empty or 1 element lis
else |

| [Reverse first pair
temp = head-next;
head—snext = temp-next;
temp—next = head,
head = temp:;
//Call the method recursively for the rest of the List
head—next—next = ReversePairRecursivehead—next—next);
return head;

}

Iterative:

struct ListNode *ReversePairlterative(struct ListNode *head) |
struct ListNode *temp1=NULL, *temp2=NULL, *current = head,

while(current |= NULL && current—next = NULL] |
if (templ != null) {
temp 1—next—next = current—next;
}
templ = current—next;
currenf—next = current—+next—+nex;
templ.next = current;

if (temp2 == null)
temp2 = templ;

current = current—next;

1
|

return temp2;
}

Time Complexity: O(n). Space Complexity: O(1).



Problem-33 Given a binary tree convert it to doubly linked list.
Solution: Refer Trees chapter.

Problem-34 How do we sort the Linked Lists?

Solution: Refer Sorting chapter.

Problem-35 Split a Circular Linked List into two equal parts. If the number of nodes in the
list are odd then make first list one node extra than second list.

Solution:

Algorithm:

. Store the mid and last pointers of the circular linked list using Floyd cycle finding
algorithm.

. Make the second half circular.

. Make the first half circular.

. Set head pointers of the two linked lists.

As an example, consider the following circular list.

Head

After the split, the above list will look like:

Head?2
Headl



{[ structure for a node

struct ListNode |

int data;

struct ListNode *next;
b

void SplitList(struct ListNode *head, struct ListNode **head], struct ListNode **head2) |
struct ListNode *slowPtr = head;
struct ListNode *fastPtr = head,
f(head == NULL]
retur,
[* 1 there are odd nodes in the circular list then fastPir—next becomes
head and for even nodes fastPtr—next—next becomes head ¥/
while(fastPtr—next = head &b fastPtr—next—next = head) |
fastPtr = fastPtr-snext-next;
slowPtr = slowPtr—mext,
|
I
[ | 1f there are even elements in st then move fastPtr
if(fastPtr—+next-next == head)
fastPtr = fastPtr-next:
[ Set the head pointer of first half
*head] = head;
/| Set the head pointer of second half
if(head—+next |= head)
*head? = slowPtr—next;
[ | Make second half circular
fastPtr—next = slowPtr—next;
[ | Make first half circular
slowPtr—next = head;

}
Time Complexity: O(n). Space Complexity: O(1).

Problem-36 If we want to concatenate two linked lists which of the following gives O(1)
complexity?
1)  Singly linked lists
2)  Doubly linked lists
3) Circular doubly linked lists

Solution: Circular Doubly Linked Lists. This is because for singly and doubly linked lists, we



need to traverse the first list till the end and append the second list. But in the case of circular
doubly linked lists we don’t have to traverse the lists.

Problem-37 How will you check if the linked list is palindrome or not?

Solution:

Algorithm:

Get the middle of the linked list.

Reverse the second half of the linked list.

Compare the first half and second half.

Construct the original linked list by reversing the second half again and
attaching it back to the first half.

b=

Time Complexity: O(n). Space Complexity: O(1).

Problem-38 For a given K value (K > 0) reverse blocks of K nodes in a list.
Example: Input: 123456789 10. Output for different K values:
ForK=2:21436587109
ForK=3:32165498710
ForK=4:43218765910

Solution:

Algorithm: This is an extension of swapping nodes in a linked list.

1)  Check if remaining list has K nodes.
a. If yes get the pointer of K + 1 node.
b. Else return.
2)  Reverse first K nodes.
3)  Set next of last node (after reversal) to K + 1 node.
4) Move to K + 1" node.
5) Go to step 1.
6) K- 1" node of first K nodes becomes the new head if available. Otherwise, we can
return the head.



struct ListNode * GetKPlusOneThNode(int K, struct ListNode *head) |
struct ListNode *Kth;
int1=10;
ifllhead)
return head;
for (i = 0, Kth = head; Kth && (i < K); i++, Kth = Kth—next);

iffi == K && Kth |= NULL)
return Kth;
return head—next;

j

int HasKnodes(struet ListNode *head, int K) |
int 1=0;
for(i = 0; head && (i < K); it+, head = head—next);
iffi == K|
return 1;
return 0;

|
struct ListNode *ReverseBlockOfK-nodesInLinkedList(struct ListNode *head, int K] |
struct ListNode *cur = head, *temp, *next, newHead;
nt 1;
if{K==0 | | K==1)
return head,

if{HasKnodes(eur, K-1J)

newHead = GetKPlusOneThNode(K-1, cur);
else

newHead = head;

while(cur && HasKnodes|cur, K) |
temp = GetKPlusOneThNode(K, cur);
i=0;
while(i < K] {
next = cur—next;
cur—next=temp;
temp = cur,
cur = next;
e
}
|

return newHead:



Problem-39 Is it possible to get O(1) access time for Linked Lists?

Solution: Yes. Create a linked list and at the same time keep it in a hash table. For n elements we
have to keep all the elements in a hash table which gives a preprocessing time of O(n).To read
any element we require only constant time O(1) and to read n elements we require n * 1 unit of
time = n units. Hence by using amortized analysis we can say that element access can be
performed within O(1) time.

Time Complexity — O(1) [Amortized]. Space Complexity - O(n) for Hash Table.

Problem-40 Josephus Circle: N people have decided to elect a leader by arranging

themselves in a circle and eliminating every M™ person around the circle, closing ranks as
each person drops out. Find which person will be the last one remaining (with rank 1).

Solution: Assume the input is a circular linked list with N nodes and each node has a number
(range 1 to N) associated with it. The head node has number 1 as data.



struct ListNode *GetJosephusPosition()]
struct ListNode *p, *q;
printf{"Enter N {number of players): °);
scanf|od’, &N);
printf|'Enter M (every M-th payer gets ehminated): ');
scanf( %d’, &M);
[ | Create circular linked list containing all the players:
p = q = malloc(sizeof[struct node));
p—data = 1;
for (int 1= 2; <= N; +4]) |
p—next = malloc(sizeof{struct node]);
p = p=+next;
p—data = 1;
1
/| Close the circular linked st by having the last node point to the first.
p—next = q;
/| Eliminate every M-th player as long as more than one player remains:
for (inf count = N; count > 1; --count] |
for(inti=0;1<M- ;144
p = p=next;

p—next = p-next—next; // Remove the eliminated player from the circular linked list,

1
!

printf['Last player left standing [Josephus Position) is %d\n.", p—data);
}

Problem-41 Given a linked list consists of data, a next pointer and also a random pointer
which points to a random node of the list. Give an algorithm for cloning the list.

Solution: We can use a hash table to associate newly created nodes with the instances of node in
the given list.

Algorithm:

. Scan the original list and for each node X, create a new node Y with data of X, then
store the pair (X, Y) in hash table using X as a key. Note that during this scan set Y
— next and Y — random to NULL and we will fix them in the next scan.

. Now for each node X in the original list we have a copy Y stored in our hash table.
We scan the original list again and set the pointers building the new list.



struct ListNode *Clone{struct ListNode *head||
struct ListNode *X, *Y;
struct HashTable *HT = CreateHashTable();
X = head;

while (X

1= NULLJ

Y = (struct ListNode *jmalloc(sizeofjstruct ListNode *));
Y—data = X-data;

Y-next = NULL;

Y—random = NULL;

|

HT.insert(X, Y);
X = X—next;

X = head;

while (X

|
!

[/ get the node Y corresponding to X from the hash table
1 = HT.get(X);

Y—next = HT get(X—next);

Y.setRandom = HT.get[X—random);

X = X-next;

/| Return the head of the new list, that is the Node Y
return HT.get(head);

]
1

Time Complexity: O(n). Space Complexity: O(n).

Problem-42

Solution: Yes.

Can we solve Problem-41 without any extra space?



void Clone(struet ListNode *head)]
struct ListNode *temp, *temp?2;
[ [Stepl: put temp-random in temp2-next,
| [s0 that we can reuse the temp—random field to point to temp2.
temp = head;
while (temp != NULL) |
temp2 = (struct ListNode *jmalloc(sizeof[struct ListNode *));
temp2—data = temp—data;
temp2-next = temp—srandom;
temp—random = temp2;
temp = temp—next;
|
[ [Step2: Setting temp2-random. temp2-next is the old copy of the node that
/| temp2—random should point to, so temp—next—random 15 the new copy.
temp = head;
while (temp = NULL) |
temp2 = temp—random,;
temp2-random = temp-next—random;

temp = lemp—next;

1
!

[ /Step3: Repair damage to old list and fill in next pointer in new list.
temp = head;
while (temp = NULL) |
temp? = temp-random;
temp-random = temp2-next;
temp2-next = temp—next-random;
temp = temp—next;
|
|

Time Complexity: O(3n) # O(n). Space Complexity: O(1).

Problem-43 We are given a pointer to a node (not the tail node) in a singly linked list. Delete
that node from the linked list.

Solution: To delete a node, we have to adjust the next pointer of the previous node to point to the



next node instead of the current one. Since we don’t have a pointer to the previous node, we can’t
redirect its next pointer. So what do we do? We can easily get away by moving the data from the
next node into the current node and then deleting the next node.

void deleteaNodeinLinkedList( struct ListNode * node )|
struct ListNode * temp = node-»next;
node->data = node->next->data;
niode->next = temp->next;

freetemp);

|
I

Time Complexity: O(1). Space Complexity: O(1).

Problem-44 Given a linked list with even and odd numbers, create an algorithm for making
changes to the list in such a way that all even numbers appear at the beginning.

Solution: To solve this problem, we can use the splitting logic. While traversing the list, split the
linked list into two: one contains all even nodes and the other contains all odd nodes. Now, to get
the final list, we can simply append the odd node linked list after the even node linked list.

To split the linked list, traverse the original linked list and move all odd nodes to a separate
linked list of all odd nodes. At the end of the loop, the original list will have all the even nodes
and the odd node list will have all the odd nodes. To keep the ordering of all nodes the same, we
must insert all the odd nodes at the end of the odd node list.

Time Complexity: O(n). Space Complexity: O(1).

Problem-45 In a linked list with n nodes, the time taken to insert an element after an element
pointed by some pointer is
(A 0O(1)
(B) Of(logn)
(€)  O(n)
(D)  O(nlogn)

Solution: A.

Problem-46 Find modular node: Given a singly linked list, write a function to find the last
element from the beginning whose n%k == 0, where n is the number of elements in the list

and k is an integer constant. For example, if n = 19 and k = 3 then we should return 18"
node.

Solution: For this problem the value of n is not known in advance.



struct ListNode *modularNodeFromBegm|struet ListNode *head, mnt k)|

struct ListNode * modularNode;
int i=0;
iffke=0)

return NULL;
for (;head 1= NULL; head = head—next)|

iffi%k == 0);

modularNode = head:;

|
[

1,

i
b

return modularNode;
}

Time Complexity: O(n). Space Complexity: O(1).

Problem-47 Find modular node from the end: Given a singly linked list, write a function to
find the first from the end whose n%k == 0, where n is the number of elements in the list

and k is an integer constant. If n = 19 and k = 3 then we should return 16" node.

Solution: For this problem the value of n is not known in advance and it is the same as finding the
k" element from the end of the the linked list.



struct ListNode *modularNodeFromEnd|struct ListNode *head, int k)|

struct ListNode *modularNode=NULL;
int i=0;
iffk<=0)

return NULL;
for 1=0; 1 < k; i+4]]

iffhead)

head = head—next;

else
return NULL;

[
}

while(head = NULL)
modularNode = modularNode—next;
head = head-next;

}

return modularNode;

|

Time Complexity: O(n). Space Complexity: O(1).

Problem-48 Find fractional node: Given a singly linked list, write a function to find the
n
= th element, where n is the number of elements in the list.

Solution: For this problem the value of n is not known in advance.



struct ListNode *fractionalNodes|(struct ListNode *head, int k)|
struct ListNode *fractionalNode = NULL;
int {=0;
iflk<=0)
return NULL;
for [:head != NULL: head = head—next]|
iffi%k == 0)]
if{fractionalNode == NULL
fractionalNode = head,
else fractionalNode = fractionalNode—next;

}
1H;

|
I

return fractionalNode:

int i=0;
iffk<=0)
return NULL;

for ;head != NULL; head = head—next)|
if{i%k == 0);
iflfractionalNode == NULL)
fractionalNode = head:

else fractionallNode = fractionalNode—next;

1
!

144,

I
I

return fractionalNode:

j
Time Complexity: O(n). Space Complexity: O(1).

Problem-49 Find \/ch node: Given a singly linked list, write a function to find the \/ﬁ o

element, where n is the number of elements in the list. Assume the value of n is not known
in advance.

Solution: For this problem the value of n is not known in advance.



struct ListNode *sqrtNode(struct ListNode *head}|
struct ListNode *sqrtN = NULL;
inti=1, j=1;
for (;head 1= NULL; head = head—next)!
==
iflsqrN == NULL)
sqrtN = head;
else
sqrtN = sqriN-next;

j++;
}
it

t
}

return sqrtN;
|
Time Complexity: O(n). Space Complexity: O(1).

Problem-50 Given two lists List 1 = {A;, Ay, . .., A)) and List2 = {By, B,, . . ., B} with

data (both lists) in ascending order. Merge them into the third list in ascending order so
that the merged list will be:

{Alﬂ Bl,Az,Bz ..... Am,Bm,Am+1....An} Hn>=n
{A{, By, Ay, By..oo. A, By, Boor.o.. By} if m >=1

Solution:



struct ListNode*AlternateMerge(struct ListNode *List], struct ListNode *List2)]
struct ListNode *newNode = (struct ListNode*| (malloe[sizeofjstruet ListNode))):
struct ListNode *temp;
newNode—next = NULL;
temp = newNode,
while (List1=NULL and List21=NULL)|
temp—next = List];
temp = temp—next;
List] = List] =next:
temp—next = List2;
List2 = List2—next;
temp = temp—next;

I
!

if (List1I=NULL)
temp—next = List1;
else
temp-next = List2;

temp = newNode—next;

free(newNode);
return temp;

|

Time Complexity: The while loop takes O(min(n,m)) time as it will run for min(n,m) times. The
other steps run in O(1). Therefore the total time complexity is O(min(n,m)). Space Complexity:
O(1).

Problem-51 Median in an infinite series of integers

Solution: Median is the middle number in a sorted list of numbers (if we have an odd number of
elements). If we have an even number of elements, the median is the average of two middle
numbers in a sorted list of numbers. We can solve this problem with linked lists (with both sorted
and unsorted linked lists).

First, let us try with an unsorted linked list. In an unsorted linked list, we can insert the element
either at the head or at the tail. The disadvantage with this approach is that finding the median
takes O(n). Also, the insertion operation takes O(1).

Now, let us try with a sorted linked list. We can find the median in O(1) time if we keep track of



the middle elements. Insertion to a particular location is also O(1) in any linked list. But, finding
the right location to insert is not O(logn) as in a sorted arrayj, it is instead O(n) because we can’t
perform binary search in a linked list even if it is sorted. So, using a sorted linked list isn’t worth
the effort as insertion is O(n) and finding median is O(1), the same as the sorted array. In the
sorted array the insertion is linear due to shifting, but here it’s linear because we can’t do a binary
search in a linked list.

Note: For an efficient algorithm refer to the Priority Queues and Heaps chapter.

Problem-52 Given a linked list, how do you modify it such that all the even numbers appear
before all the odd numbers in the modified linked list?

Solution:



struct ListNode *exchangeEvenOddList(struct ListNode *head)|

[ initializing the odd and even list headers
struct ListNode *oddList = NULL, *evenList =NULL;

[ | creating tail variables for both the list
struct ListNode *oddListEnd = NULL, *evenListEnd = NULL;
struct ListNode *itr=head:

if( head == NULL ){
refurn;
|
else|
while( itr 1= NULL ),
if{ itr—data % 2 == 0 )
if| evenList == NULL )|
[ first even node
evenlList = evenListEnd = itr;
j
else|
/[ nserting the node at the end of linked list
evenListEnd—next = 1ir;
evenListEnd = ifr;
|

i
|
else]
ifl oddList == NULL |
/] first odd node
oddList = oddListEnd = itr;

[
|

else]
| | inserting the node at the end of linked list

oddListEnd—next = itr;
oddListEnd = itr;
}

itr = itr—next;

i
|

evenListEnd—next = oddList;

return head;

}



Time Complexity: O(n). Space Complexity: O(1).

Problem-53 Given two linked lists, each list node with one integer digit, add these two
linked lists. The result should be stored in the third linked list. Also note that the head node
contains the most significant digit of the number.

Solution: Since the integer addition starts from the least significant digit, we first need to visit the
last node of both lists and add them up, create a new node to store the result, take care of the carry
if any, and link the resulting node to the node which will be added to the second least significant
node and continue.

First of all, we need to take into account the difference in the number of digits in the two numbers.
So before starting recursion, we need to do some calculation and move the longer list pointer to
the appropriate place so that we need the last node of both lists at the same time. The other thing
we need to take care of is carry. If two digits add up to more than 10, we need to forward the
carry to the next node and add it. If the most significant digit addition results in a carry, we need
to create an extra node to store the carry.

The function below is actually a wrapper function which does all the housekeeping like
calculating lengths of lists, calling recursive implementation, creating an extra node for the carry
in the most significant digit, and adding any remaining nodes left in the longer list.



void addListNumbersWrapper(struct ListNode *list], struct ListNode *list2, int “carry, struct ListNode “‘result)|

i

int list1Length = 0, list2Length = 0, diff =0;
struct ListNode *current = listl;
while{current)|
current = currenft—next;
list1 Length++;
current = list2;
while{current)|
ourrent = current—next;
list2Length++;
i
ifflist1Length < list2Length))
current = listl;
Hstl = list2;
list2 = current;

b
diff = abs(list] Length-list2Length);
current = listl;
while(ciff--)
current = current=—snext;
addListNumberscurrent, list2, carry, result);
diff = abs(list]Length-list2Length);
addRemainingNumbers{list ], carry, result, diff);
iff*carryi|
struct ListNode * temp = [struct ListNode *)malloc(sizeollstruct ListNode ));
temp—next = (*result);
*result = temp;
i
return;

void addListNumbers(struct ListNode *listl, struct ListNode *list2, int *carry, struct ListNode **result)|

i

int sum;
ifi'hatl1)
return;
addListNumbers(list | —next, list2—next, carry, result];
/ /End of both lists, add them
struct ListNode * temp = (struct ListNode *jmalloc{sizecfistruct ListNode |j;
sum = list]l —data + list2—data + [*carmyi;

/[ Btore cany

*carry = sum, 10;

sum = sum%:10;
temp—data = sum;
temp—next = (*result);
*result = temp;

return;

void addRemamingNumbers(struct ListNode * hstl, int *carry, struct ListNode **result, int diff){

int sum =0;
if{llistl | | diff == 0)
returm;
addRemainingNumbers(list | —next, carry, result, diff-1);
struct ListNode * temp = (struct ListNode *)malloe{sizeafistruct ListNode ));
sum = list]l->data + (*carry);
*carry = sum/ 10,
sum = sum®:10;
temp—data = sum;
temp—next = [*result|;
*result = temp;

returmn;



Time Complexity: O(max(List1 length,List2 length)).
Space Complexity: O(min(List1 length, List1 length)) for recursive stack.

Note: It can also be solved using stacks.

Problem-54 Which sorting algorithm is easily adaptable to singly linked lists?

Solution: Simple Insertion sort is easily adabtable to singly linked lists. To insert an element, the
linked list is traversed until the proper position is found, or until the end of the list is reached. It
is inserted into the list by merely adjusting the pointers without shifting any elements, unlike in the
array. This reduces the time required for insertion but not the time required for searching for the
proper position.

Problem-55 Given a list, Listl = {A;, A, . . . A_;. Ay with data, reorder it to {A,
AA)A,_1} without using any extra space.

Solution: Find the middle of the linked list. We can do it by slow and fast pointer approach. After
finding the middle node, we reverse the right halfl then we do a in place merge of the two halves
of the linked list.

Problem-56 Given two sorted linked lists, given an algorithm for the printing common
elements of them.

Solution: The solution is based on merge sort logic. Assume the given two linked lists are: listl
and list2. Since the elements are in sorted order, we run a loop till we reach the end of either of
the list. We compare the values of listl and list2. If the values are equal, we add it to the common
list. We move listl/list2/both nodes ahead to the next pointer if the values pointed by listl was
less / more / equal to the value pointed by list2.

Time complexity O(m + n), where m is the lengh of listl and n is the length of list2. Space
Complexity: O(1).






('HAPTER

STACKS

4.1 What is a Stack?

A stack is a simple data structure used for storing data (similar to Linked Lists). In a stack, the
order in which the data arrives is important. A pile of plates in a cafeteria is a good example of a
stack. The plates are added to the stack as they are cleaned and they are placed on the top. When a
plate, is required it is taken from the top of the stack. The first plate placed on the stack is the last
one to be used.

Definition: A stack is an ordered list in which insertion and deletion are done at one end, called
top. The last element inserted is the first one to be deleted. Hence, it is called the Last in First out
(LIFO) or First in Last out (FILO) list.

Special names are given to the two changes that can be made to a stack. When an element is
inserted in a stack, the concept is called push, and when an element is removed from the stack, the
concept is called pop. Trying to pop out an empty stack is called underflow and trying to push an
element in a full stack is called overflow. Generally, we treat them as exceptions. As an example,



consider the snapshots of the stack.

Pushing D Popping D
top
—>
top D top
<+— —>
C C C
B B B
A A A

4.2 How Stacks are used

Consider a working day in the office. Let us assume a developer is working on a long-term
project. The manager then gives the developer a new task which is more important. The
developer puts the long-term project aside and begins work on the new task. The phone rings, and
this is the highest priority as it must be answered immediately. The developer pushes the present
task into the pending tray and answers the phone.

When the call is complete the task that was abandoned to answer the phone is retrieved from the
pending tray and work progresses. To take another call, it may have to be handled in the same
manner, but eventually the new task will be finished, and the developer can draw the long-term
project from the pending tray and continue with that.

4.3 Stack ADT

The following operations make a stack an ADT. For simplicity, assume the data is an integer type.

Main stack operations

. Push (int data): Inserts data onto stack.
. int Pop(): Removes and returns the last inserted element from the stack.



Aucxiliary stack operations

. int Top(): Returns the last inserted element without removing it.
. int Size(): Returns the number of elements stored in the stack.
. int IsEmptyStack(): Indicates whether any elements are stored in the stack or not.

. int IsFullStack(): Indicates whether the stack is full or not.

Exceptions

Attempting the execution of an operation may sometimes cause an error condition, called an
exception. Exceptions are said to be “thrown” by an operation that cannot be executed. In the
Stack ADT, operations pop and top cannot be performed if the stack is empty. Attempting the
execution of pop (top) on an empty stack throws an exception. Trying to push an element in a full
stack throws an exception.

4.4 Applications

Following are some of the applications in which stacks play an important role.

Direct applications

. Balancing of symbols

. Infix-to-postfix conversion

. Evaluation of postfix expression

. Implementing function calls (including recursion)

. Finding of spans (finding spans in stock markets, refer to Problems section)
. Page-visited history in a Web browser [Back Buttons]

. Undo sequence in a text editor

. Matching Tags in HTML and XML

Indirect applications
. Auxiliary data structure for other algorithms (Example: Tree traversal algorithms)
. Component of other data structures (Example: Simulating queues, refer Queues
chapter)

4.5 Implementation

There are many ways of implementing stack ADT; below are the commonly used methods.



. Simple array based implementation
. Dynamic array based implementation
. Linked lists implementation

Simple Array Implementation

This implementation of stack ADT uses an array. In the array, we add elements from left to right
and use a variable to keep track of the index of the top element.

*

top

The array storing the stack elements may become full. A push operation will then throw a full
stack exception. Similarly, if we try deleting an element from an empty stack it will throw stack
empty exception.



#define MAXSIZE 10
struct ArrayStack |
nt top;
it capacity;
nt *array;
1t
struct ArrayStack *CreateStack() |
struct ArrayStack *S = malloc(sizeof{struet ArrayStack));
if(!S)
return NULL;
S—capacity = MAXSIZE;
S—top =-1;
S—array= malloc(S—capacity * sizeof(int));
if{!S—array)
return NULL;

return S;

1
i

int [sEmptyStack(struct ArrayStack *3) |
return (S=top ==-1);  // if the condition is true then 1 is returned else 0 is returned

i
int [sFullStack(struct ArrayStack *S)|
/ /if the condition is true then 1 is returned else 0 is returned
return (S—top == S—capacity - 1);
i
void Push(struct ArrayStack *S, int data)|
[* S—top == capacity -1 indicates that the stack is full*/
if{lsFullStack(S))
printf{ “Stack Overflow”);
else /*Increasing the ‘top’ by 1 and storing the value at ‘top’ position*/
S~ array|++S—top|= data;
i
int Poplstruct ArrayStack *S){
/* S—top == - | indicates empty stack*/
if{lsEmptyStack(S))|
printf("Stack is Empty’);
return [NT_MIN;;

1
1

else /* Removing element from ‘top’ of the array and reducing ‘top’ by 1*/
return (S= array[S—top--|);
|
void DeleteStack(struct DynArrayStack *S)|
if(S) {
if[S—array)
free(S—array);
free(S);
i



Performance & Limitations

Performance

Let n be the number of elements in the stack. The complexities of stack operations with this
representation can be given as:

Space Complexity (for n push operations) O(n)
Time Complexity of Push() O(1)
Time Complexity of Pop() O(1)
Time Complexity of Size() O(1)
Time Complexity of IsEmptyStack() O(1)
Time Complexity of IsFullStackf) O(1)
Time Complexity of DeleteStackQ O(1)
Limitations

The maximum size of the stack must first be defined and it cannot be changed. Trying to push a
new element into a full stack causes an implementation-specific exception.

Dynamic Array Implementation

First, let’s consider how we implemented a simple array based stack. We took one index variable
top which points to the index of the most recently inserted element in the stack. To insert (or push)
an element, we increment top index and then place the new element at that index.

Similarly, to delete (or pop) an element we take the element at top index and then decrement the
top index. We represent an empty queue with top value equal to —1. The issue that still needs to
be resolved is what we do when all the slots in the fixed size array stack are occupied?

First try: What if we increment the size of the array by 1 every time the stack is full?
. Push(); increase size of S[] by 1
. Pop(): decrease size of S[] by 1

Problems with this approach?



This way of incrementing the array size is too expensive. Let us see the reason for this. For
example, at n = 1, to push an element create a new array of size 2 and copy all the old array
elements to the new array, and at the end add the new element. At n = 2, to push an element create
a new array of size 3 and copy all the old array elements to the new array, and at the end add the
new element.

Similarly, at n = n — 1, if we want to push an element create a new array of size n and copy all the
old array elements to the new array and at the end add the new element. After n push operations

the total time T(n) (number of copy operations) is proportional to 1 + 2 + ... + n & O(n?).
Alternative Approach: Repeated Doubling

Let us improve the complexity by using the array doubling technique. If the array is full, create a
new array of twice the size, and copy the items. With this approach, pushing n items takes time

proportional to n (not n?).

For simplicity, let us assume that initially we started with n = 1 and moved up to n = 32. That
means, we do the doubling at 1,2,4,8,16. The other way of analyzing the same approach is: atn =
1, if we want to add (push) an element, double the current size of the array and copy all the
elements of the old array to the new array.

Atn =1, we do 1 copy operation, at n = 2, we do 2 copy operations, and at n = 4, we do 4 copy
operations and so on. By the time we reach n = 32, the total number of copy operations is 1+2 + 4
+ 8+16 = 31 which is approximately equal to 2n value (32). If we observe carefully, we are
doing the doubling operation logn times. Now, let us generalize the discussion. For n push
operations we double the array size logn times. That means, we will have logn terms in the
expression below. The total time T(n) of a series of n push operations is proportional to

n n

1+2+4+8. +4+2+n—-n+§~+4+§ +44+2+ 1

= ]JF1+1+1 +4+2+1)
B ( 9" 278 n

= w2 ) wdn=0mn

T(n) is O(n) and the amortized time of a push operation is O(1) .



struct DynArrayStack |
nt top;
int capacity;
nt *array;
I
struct DynArrayStack *CreateStack])]
struct DynArrayStack *S = malloc(sizeof|struct DynArrayStack]);
if]!S)

return NULL:
S—capacity = 1;
s—top = -1;
S—array = malloc{S—capacity * sizeoffint)); // allocate an array of size | initially
if{!S—array]
return NULL;
return 3;

mt [sFullStack(struct DynArrayStack *S)|
return (S—top == S—capacity-1);

i

void DoubleStack(struct DynArrayStack *5)|
S—capacity *= 2;
S—array = realloc3—array, S—capacity * sizeof{int));

|

void Push(struct DynArrayStack *S, int x)|
/| No overflow in this implementation
if{leFullStack(S))

DoubleStack(S):

S—array[++S—top] = x;
)

int [sEmptyStack(struct DynArrayStack *S)]
return S—top == -1;

1
I

it Top(struct DynArrayStack *S)|
if{lsEmptyStack(S))
return INT_MIN;

return S—array[S—top|;

i
int Pop{struct DynArrayStack *S)
if{lsEmptyStack(S))
return INT_MIN:
return S—array[S—top--;
i

void DeleteStack(struct DynArrayStack *S)|
il$) |
if{S—array)
free(S—array);
free(S);
i



Performance

Let n be the number of elements in the stack. The complexities for operations with this

representation can be given as:

Space Complexity (for n push operations) O(n)
Time Complexity of CreateStack() O(1)
Time Complexity of PushQQ O(1) (Average)
Time Complexity of PopQ O(1)
Time Complexity of Top() O(1)
Time Complexity of IsEmpryStackf) 0O(1))
Time Complexity of IsFullStackf) O(1)
Time Complexity of DeleteStackQ O(1)
Note: Too many doublings may cause memory overflow exception.
Linked List Implementation
4 4 15 4o 7 | —— 40 . NULL
A
top

The other way of implementing stacks is by using Linked lists. Push operation is implemented by
inserting element at the beginning of the list. Pop operation is implemented by deleting the node

from the beginning (the header/top node).



struet ListNode|
it data;
struct ListNode *next;

h

struct Stack *CreateStack()|
return NULL;

|

void Push(struct Stack *top, int data)|
struct Stack *temp;
temp = malloc(sizeof|struct Stack]);
if{!temp]
return NULL;
temp—data = data;
temp—next = *top;
*top = temp;
|
int IsEmptyStack{struct Stack *top)|
return top == NULL;

1
1

int Pop(struct Stack **top)|

int data;

struct Stack *temp;

if{lsEmptyStack(top))
return INT_MIN;

temp = *top;

“top = "top—mnext;

data = temp—data;

free(temp);

return data;

|

int Top(struct Stack * top)|
if{IsEmptyStack({top))
return INT MIN:
return top-snext-data;

}

void DeleteStack(struct Stack **top)|
struct Stack *temp, *p;
p = “top;
while| p—next] {
temp = p—next;
p—next = temp—next;
free(temp);

)
free(p);



Performance

Let n be the number of elements in the stack. The complexities for operations with this
representation can be given as:

Space Complexity (for n push operations) O(n)
Time Complexity of CreateStack() O(1)
Time Complexity of Push() O(1) (Average)
Time Complexity of Pop() O(1)
Time Complexity of Top() O(1)
Time Complexity of IsEmptyStack() O(1)
Time Complexity of DeleteStack() O(n)

4.6 Comparison of Implementations

Comparing Incremental Strategy and Doubling Strategy

We compare the incremental strategy and doubling strategy by analyzing the total time T(n)
needed to perform a series of n push operations. We start with an empty stack represented by an

array of size 1.

We call amortized time of a push operation is the average time taken by a push over the series of
operations, that is, T(n)/n.

Incremental Strategy

The amortized time (average time per operation) of a push operation is O(n) [O(n?)/n].
Doubling Strategy

In this method, the amortized time of a push operation is O(1) [O(n)/n].

Note: For analysis, refer to the Implementation section.

Comparing Array Implementation and Linked List Implementation



Array Implementation

. Operations take constant time.
. Expensive doubling operation every once in a while.
. Any sequence of n operations (starting from empty stack) — “amortized” bound takes

time proportional to n.

Linked List Implementation

. Grows and shrinks gracefully.
. Every operation takes constant time O(1).
. Every operation uses extra space and time to deal with references.

4.7 Stacks: Problems & Solutions

Problem-1 Discuss how stacks can be used for checking balancing of symbols.

Solution: Stacks can be used to check whether the given expression has balanced symbols. This
algorithm is very useful in compilers. Each time the parser reads one character at a time. If the
character is an opening delimiter such as (, {, or [- then it is written to the stack. When a closing
delimiter is encountered like ), }, or ]-the stack is popped.

The opening and closing delimiters are then compared. If they match, the parsing of the string
continues. If they do not match, the parser indicates that there is an error on the line. A linear-time
O(n) algorithm based on stack can be given as:

Algorithm:
a) Create a stack.
b) while (end of input is not reached) {
1) If the character read is not a symbol to be balanced, ignore it.
2) If the character is an opening symbol like (, [, {, push it onto the stack
3) Ifitis a closing symbol like ),],}, then if the stack is empty report an
error. Otherwise pop the stack.
4) If the symbol popped is not the corresponding opening symbol, report an
erTor.

}

c) Atend of input, if the stack is not empty report an error

Examples:



Example Valid? | Description

\A+BJ+(C-D) | Yes | The expression has a balanced symbol

((A+B)+(C-D) | No One closing brace is missing

(A+B)+|C-D|] | Yes | Opening and immediate closing braces correspond

(A+BJ+[C-D]} | No [ The last closing brace does not correspond with the first opening parenthesis

For tracing the algorithm let us assume that the input is: () () [O)])

Input Symbol, Afi] | Operation Stack | Output
( Push | (
) Pop (
Test if (and Afi] match? YES
[ Push ( (
( Push | (l
) Pop | (
Test if ( and A[i] match? YES
| Push | (
( Push ( (I
| i (
Test if( and Afi] match?  YES
| Pop | {
Test if [ and Afi] match? YES
Pop |
) Test if( and Ali] match? YES
Test if stack is Empty? YES TRUE




Time Complexity: O(n). Since we are scanning the input only once. Space Complexity: O(n) [for
stack].

Problem-2 Discuss infix to postfix conversion algorithm using stack.

Solution: Before discussing the algorithm, first let us see the definitions of infix, prefix and
postfix expressions.

Infix: An infix expression is a single letter, or an operator, proceeded by one infix string and
followed by another Infix string.

A
A+B
(A+B)+ (C-D)

Prefix: A prefix expression is a single letter, or an operator, followed by two prefix strings.
Every prefix string longer than a single variable contains an operator, first operand and second
operand.

A
+AB
++AB-CD

Postfix: A postfix expression (also called Reverse Polish Notation) is a single letter or an
operator, preceded by two postfix strings. Every postfix string longer than a single variable
contains first and second operands followed by an operator.

A
AB+
AB+CD-+

Prefix and postfix notions are methods of writing mathematical expressions without parenthesis.
Time to evaluate a postfix and prefix expression is O(n), where n is the number of elements in the
array.

Infix Prefix Postfix
A+B +AB AB+
A+B-C -+ABC AB+C-
(A+B)*C-D | -*+ABCD | AB+C*D-

Now, let us focus on the algorithm. In infix expressions, the operator precedence is implicit



unless we use parentheses. Therefore, for the infix to postfix conversion algorithm we have to
define the operator precedence (or priority) inside the algorithm.

The table shows the precedence and their associativity (order of evaluation) among operators.

Token Operator Precedence | Associativity
() function call 17 left-to-right
(] array element
- struct or union member
- ++ increment, decrement 16 left-to-right
—— b decrement, increment 15 right-to-left
! logical not
- one’s complement
i unary minus or plus
& * address or indirection
sizeof size (in bytes)
(type) type cast 14 right-to-left
* [ % multiplicative 13 Left-to-right
= binary add or subtract | 12 left-to-right
<< >> shift 13 left-to-right
> >= relational 10 left-to-right
< <=
== |= equality 9 left-to-right
& bitwise and 8 left-to-right
A bitwise exclusive or 7 left-to-right
| bitwise or 6 left-to-right
&8s logical and 5 left-to-right
1 logical or 4 left-to-right
?: conditional 3 right-to-left
= += .= [=*=0= | gssignment 2 right-to-left
<<= o=
&: A=

comma 1 left-to-right




Important Properties

. Let us consider the infix expression 2 + 3*4 and its postfix equivalent 234*+. Notice
that between infix and postfix the order of the numbers (or operands) is unchanged.
It is 2 3 4 in both cases. But the order of the operators * and + is affected in the two
expressions.

. Only one stack is enough to convert an infix expression to postfix expression. The
stack that we use in the algorithm will be used to change the order of operators from

infix to postfix. The stack we use will only contain operators and the open
parentheses symbol “(*.

Postfix expressions do not contain parentheses. We shall not output the parentheses in the postfix
output.

Algorithm:
a) Create a stack
b)  for each character t in the input stream}
if[t 1 an operand)
output t
else iflt is a right parenthesis)|
Pop and output tokens until a left parenthesis is popped (but not output)

else // tis an operator or left parenthesis|
pop and output tokens until one of lower priority than t is encountered or a left parenthesis
is encountered or the stack is empty
Push t

c) pop and output tokens until the stack is empty

For better understanding let us trace out an example: A * B- (C+ D) + E



Input Character | Operation on Stack Stack | Postfix Expression
A Empty | A
» Push " A
B ¥ AB
- Check and Push - AB*
[ Push -( AB*
C - AB*C
+ Check and Push -+ AB*C
D AB*CD
] Pop and append to postfix till (' | - AB*CD+
+ Check and Push AB*CD+-
E AB*CD+-E
End of input | Pop till empty AB*CD+-E+
Problem-3 Discuss postfix evaluation using stacks?
Solution:
Algorithm:

1 Scan the Postfix string from left to right.

u b wnN

Initialize an empty stack.

Repeat steps 4 and 5 till all the characters are scanned.

If the scanned character is an operand, push it onto the stack.

If the scanned character is an operator, and if the operator is a unary operator, then
pop an element from the stack. If the operator is a binary operator, then pop two
elements from the stack. After popping the elements, apply the operator to those

popped elements. Let the result of this operation be retVal onto the stack.
6  After all characters are scanned, we will have only one element in the stack.
7  Return top of the stack as result.

Example: Let us see how the above-mentioned algorithm works using an example. Assume that

the postfix string is 123*+5-.

Initially the stack is empty. Now, the first three characters scanned are 1, 2 and 3, which are

operands. They will be pushed into the stack in that order.




2 Expression

Stack

sk

The next character scanned is
the stack and perform the “*”
first element that is popped.

, which is an operator. Thus, we pop the top two elements from
operation with the two operands. The second operand will be the

4=3=b

Expression

Stack

The value of the expression (2*3) that has been evaluated (6) is pushed into the stack.

6 Expression

Stack

The next character scanned is “+”, which is an operator. Thus, we pop the top two elements from



the stack and perform the “+” operation with the two operands. The second operand will be the
first element that is popped.

1+6=7

Expression

Stack

The value of the expression (1+6) that has been evaluated (7) is pushed into the stack.

Expression

Stack

The next character scanned is “5”, which is added to the stack.

5 Expression

Stack



€ »

, which is an operator. Thus, we pop the top two elements from
operation with the two operands. The second operand will be the

The next character scanned is
the stack and perform the “-”
first element that is popped.

Expression

Stack

The value of the expression(7-5) that has been evaluated(23) is pushed into the stack.

Expression

Stack

Now, since all the characters are scanned, the remaining element in the stack (there will be only
one element in the stack) will be returned. End result:

. Postfix String : 123*+5-
. Result : 2

Problem-4 Can we evaluate the infix expression with stacks in one pass?

Solution: Using 2 stacks we can evaluate an infix expression in 1 pass without converting to
postfix.

Algorithm:

1)  Create an empty operator stack
2) Create an empty operand stack



3) For each token in the input string

a. Get the next token in the infix string

b. If next token is an operand, place it on the operand stack

c. If next token is an operator

i. Evaluate the operator (next op)
4)  While operator stack is not empty, pop operator and operands (left and right),
evaluate left operator right and push result onto operand stack

5) Pop result from operator stack

Problem-5 How to design a stack such that GetMinimum( ) should be O(1)?

Solution: Take an auxiliary stack that maintains the minimum of all values in the stack. Also,
assume that each element of the stack is less than its below elements. For simplicity let us call the
auxiliary stack min stack.

When we pop the main stack, pop the min stack too. When we push the main stack, push either the
new element or the current minimum, whichever is lower. At any point, if we want to get the
minimum, then we just need to return the top element from the min stack. Let us take an example
and trace it out. Initially let us assume that we have pushed 2, 6, 4, 1 and 5. Based on the above-
mentioned algorithm the min stack will look like:

Main stack Min stack
5 — top 1 - top
1 1

4 2

6 2

2 2

After popping twice we get:

Main stack Min stack
4 - - top 2 - top
6 2

2 2

Based on the discussion above, now let us code the push, pop and GetMinimum() operations.



struct AdvancedStack|
struct Stack elementStack;
struct Stack minStack;

Is
H

void Push(struct AdvancedStack *S, int data )
Push (S—¢lementStack, data);
ifflsEmptyStack(S—minStack) | | Top(S—minStack) >= data)
Push (S—minStack, data);
else Push (S—minStack, Top[S—minStack);

}

int Pop(struct AdvancedStack *S )|
int temp;

ifllsEmptyStack(S—elementStack))

return -1;

temp = Pop (S—elementStack);
Pop (S—minStack;

return temp;

|
I

int GetMinimum(struct AdvancedStack *3)]
return Top(S—minStack);

i

struct AdvancedStack *CreateAdvancedStack()!
struct AdvancedStack *5 = (struct AdvancedStack *|malloc(sizeof{struct AdvancedStack);

if|lS)

return NULL;
S—elementStack = CreateStack();
S—minStack = CreateStack);

return S;

}

Time complexity: O(1). Space complexity: O(n) [for Min stack]. This algorithm has much better
space usage if we rarely get a “new minimum or equal”.



Problem-6 For Problem-5 is it possible to improve the space complexity?

Solution: Yes. The main problem of the previous approach is, for each push operation we are
pushing the element on to min stack also (either the new element or existing minimum element).
That means, we are pushing the duplicate minimum elements on to the stack.

Now, let us change the algorithm to improve the space complexity. We still have the min stack, but
we only pop from it when the value we pop from the main stack is equal to the one on the min
stack. We only push to the min stack when the value being pushed onto the main stack is less than
or equal to the current min value. In this modified algorithm also, if we want to get the minimum
then we just need to return the top element from the min stack. For example, taking the original
version and pushing 1 again, we’d get:

Main stack Min stack
1 - top

5

1

4 1 - top
6 1

2 2

Popping from the above pops from both stacks because 1 == 1, leaving:

Main stack Min stack
S5 — top

1

4

6 1 - top
2 2

Popping again only pops from the main stack, because 5 > 1:

Main stack Min stack

1 - top
4




1 - top

Popping again pops both stacks because 1 == 1:

Main stack Min stack
4 - top

6

2 2 - top

Note: The difference is only in push & pop operations.




struct AdvancedStack |
struct Stack elementStack:
struect Stack minStack;

i

void Push(struct AdvancedStack *S, int data)]
Push (S—elementStack, data);
if{lsEmptyStack(S—mimnStack) || Top(S—minStack) >= data)

Push (S—minStack, data);

|

mt Poplstruct AdvancedStack *S ||
int temp;

if{lsEmptyStack(S—elementStack))

return -1;
temp = Top (S—elementStack];

if{Top[S— minStack| == Pop(S—elementStack]|
Pop (S minStack]:

return temp;

I
|

mt GetMinimum(struct AdvancedStack *SJ!
return Top(S—minStack];

}

struct AdvancedStack * AdvancedStack()|
struct AdvancedStack *S = [struct AdvancedStack) malloe (sizeof [struet AdvancedStack);

i 15)
return NULL;

S—elementStack = CreateStack{);
S-minStack = CreateStack|);
return 5;

|

Time complexity: O(1). Space complexity: O(n) [for Min stack]. But this algorithm has much
better space usage if we rarely get a “new minimum or equal”.

Problem-7 For a given array with n symbols how many stack permutations are possible?



Solution: The number of stack permutations with n symbols is represented by Catalan number and
we will discuss this in the Dynamic Programming chapter.

Problem-8 Given an array of characters formed with a’s and b’s. The string is marked with
special character X which represents the middle of the list (for example:
ababa...ababXbabab baaa). Check whether the string is palindrome.

Solution: This is one of the simplest algorithms. What we do is, start two indexes, one at the
beginning of the string and the other at the end of the string. Each time compare whether the values
at both the indexes are the same or not. If the values are not the same then we say that the given
string is not a palindrome.

If the values are the same then increment the left index and decrement the right index. Continue
this process until both the indexes meet at the middle (at X) or if the string is not palindrome.

int [sPalindrome(char *A)l

int i=0, j = strlen(AJ-1;

whilefi < &b Al1] == Aj)) {
+t:
14

}

fi<])|
printf]'Not & Palindrome');
return 0

}
else |

printf|*Palindrome');
return 1;

}

Time Complexity: O(n). Space Complexity: O(1).

Problem-9 For Problem-8, if the input is in singly linked list then how do we check whether
the list elements form a palindrome (That means, moving backward is not possible).

Solution: Refer Linked Lists chapter.

Problem-10 Can we solve Problem-8 using stacks?

Solution: Yes.



Algorithm:

. Traverse the list till we encounter X as input element.

. During the traversal push all the elements (until X) on to the stack.

. For the second half of the list, compare each element’s content with top of the stack.
If they are the same then pop the stack and go to the next element in the input list.

. If they are not the same then the given string is not a palindrome.

. Continue this process until the stack is empty or the string is not a palindrome.

int IsPalindrome(char *A)!
mnt 1=0;
struct Stack 8= CreateStack():
while(Afi] 1= X)
Push(S, Al
14

3

|
!

i+
while(Al]) |
ifllsEmptyStack(S) | |Ali] 1= Pop(§)] {
printf{"Not a Palindrome’;

return 0;

|
|

IH;
}
return [sEmptyStack(S);
|

Time Complexity: O(n). Space Complexity: O(n/2) = O(n).

Problem-11 Given a stack, how to reverse the elements of the stack using only stack
operations (push & pop)?

Solution:

Algorithm:

. First pop all the elements of the stack till it becomes empty.
. For each upward step in recursion, insert the element at the bottom of the stack.



void ReverseStack{struct Stack *S)!
int data;
if{[sEmptyStack(S))
return;
data = Pop(3);
ReverseStack(S);
[nsertAtBottom(S, datal;

[
|

void InsertAtBottom|struct Stack *S, int data))]
int temp;
f{lsEmptyStack(S)) |
Push(S, data);
return;
}
temp = Pop(S);
InsertAtBottom(S, data;
Push(3, temp);
}

Time Complexity: O(n?). Space Complexity: O(n), for recursive stack.

Problem-12 Show how to implement one queue efficiently using two stacks. Analyze the
running time of the queue operations.

Solution: Refer Queues chapter.

Problem-13 Show how to implement one stack efficiently using two queues. Analyze the
running time of the stack operations.

Solution: Refer Queues chapter.

Problem-14 How do we implement two stacks using only one array? Our stack routines
should not indicate an exception unless every slot in the array is used?

Solution:



Stack-1 Stack-2

Topl Top2
Algorithm:

. Start two indexes one at the left end and the other at the right end.

. The left index simulates the first stack and the right index simulates the second stack.

. If we want to push an element into the first stack then put the element at the left
index.

. Similarly, if we want to push an element into the second stack then put the element at
the right index.

. The first stack grows towards the right, and the second stack grows towards the left.

Time Complexity of push and pop for both stacks is O(1). Space Complexity is O(1).
Problem-15 3 stacks in one array: How to implement 3 stacks in one array?

Solution: For this problem, there could be other ways of solving it. Given below is one
possibility and it works as long as there is an empty space in the array.

‘F 2 4 4 L
Stack-1 Stack-3 Stack-2
Topl Top3 Top2

To implement 3 stacks we keep the following information.

. The index of the first stack (Topi): this indicates the size of the first stack.

. The index of the second stack (Top2): this indicates the size of the second stack.
. Starting index of the third stack (base address of third stack).

. Top index of the third stack.

Now, let us define the push and pop operations for this implementation.

Pushing:

. For pushing on to the first stack, we need to see if adding a new element causes it to
bump into the third stack. If so, try to shift the third stack upwards. Insert the new



element at (startl + Top1).

. For pushing to the second stack, we need to see if adding a new element causes it to
bump into the third stack. If so, try to shift the third stack downward. Insert the new
element at (start2 - Top2).

. When pushing to the third stack, see if it bumps into the second stack. If so, try to
shift the third stack downward and try pushing again. Insert the new element at
(start3 + Top3).

Time Complexity: O(n). Since we may need to adjust the third stack. Space Complexity: O(1).
Popping: For popping, we don’t need to shift, just decrement the size of the appropriate stack.

Time Complexity: O(1). Space Complexity: O(1).

Problem-16 For Problem-15, is there any other way implementing the middle stack?

Solution: Yes. When either the left stack (which grows to the right) or the right stack (which
grows to the left) bumps into the middle stack, we need to shift the entire middle stack to make
room. The same happens if a push on the middle stack causes it to bump into the right stack.

To solve the above-mentioned problem (number of shifts) what we can do is: alternating pushes
can be added at alternating sides of the middle list (For example, even elements are pushed to the
left, odd elements are pushed to the right). This would keep the middle stack balanced in the
center of the array but it would still need to be shifted when it bumps into the left or right stack,
whether by growing on its own or by the growth of a neighboring stack. We can optimize the
initial locations of the three stacks if they grow/shrink at different rates and if they have different
average sizes. For example, suppose one stack doesn’t change much. If we put it at the left, then
the middle stack will eventually get pushed against it and leave a gap between the middle and
right stacks, which grow toward each other. If they collide, then it’s likely we’ve run out of space
in the array. There is no change in the time complexity but the average number of shifts will get
reduced.

Problem-17 Multiple (m) stacks in one array: Similar to Problem-15, what if we want to
implement m stacks in one array?

Solution: Let us assume that array indexes are from 1 to n. Similar to the discussion in Problem-
15, to implement m stacks in one array, we divide the array into m parts (as shown below). The

. . n
size of each part is —.
m



A
Base|1] Base|2] Base|3] Base/m+1|
Top[1] Top[2] Top[3] Top[m+1]

From the above representation we can see that, first stack is starting at index 1 (starting index is
n
stored in Base[l]), second stack is starting at index = (starting index is stored in Base[2]), third

stack is starting at index il (starting index is stored in Base[3]), and so on. Similar to Base array,
m

let us assume that Top array stores the top indexes for each of the stack. Consider the following
terminology for the discussion.

. Topli], for 1 <i < m will point to the topmost element of the stack i.
. If Base[i] == Topli], then we can say the stack i is empty.
. If Top[i] == Base[i+1], then we can say the stack i is full.

Initially Base[i] = Top[i] = % (i—-1),for1<i<m
. The it stack grows from Base[i]+1 to Base[i+1].

Pushing on to i stack:

1)  For pushing on to the i stack, we check whether the top of i stack is pointing to
Base[i+1] (this case defines that i" stack is full). That means, we need to see if
adding a new element causes it to bump into the i + 17 stack. If so, try to shift the
stacks from i + 1™ stack to m™" stack toward the right. Insert the new element at
(Basel[i] + Topli]).

2) Ifright shifting is not possible then try shifting the stacks from 1 to i —1? stack toward
the left.

3) If both of them are not possible then we can say that all stacks are full.



void Pushint StackID, int data) |
if{Topli] == Base[it1))
Print (™ Stack is full and does the necessary action (shifting):
Topli] = Top[i]+1;
AlTopli]| = data;
}

Time Complexity: O(n). Since we may need to adjust the stacks. Space Complexity: O(1).

Popping from i stack: For popping, we don’t need to shift, just decrement the size of the
appropriate stack. The only case to check is stack empty case.

mt Poplint Stack[D) |
ifl Top[i] == Basel1)
Print {*" Stack is empty;
return AlTop|i}--|
j

Time Complexity: O(1). Space Complexity: O(1).

Problem-18 Consider an empty stack of integers. Let the numbers 1,2,3,4,5,6 be pushed on to
this stack in the order they appear from left to right. Let 5 indicate a push and X indicate a
pop operation. Can they be permuted in to the order 325641 (output) and order 1546237

Solution: SSSXXSSXSXXX outputs 325641. 154623 cannot be output as 2 is pushed much
before 3 so can appear only after 3 is output.

Problem-19 Earlier in this chapter, we discussed that for dynamic array implementation of
stacks, the ‘repeated doubling’ approach is used. For the same problem, what is the
complexity if we create a new array whose size is n + if instead of doubling?

Solution: Let us assume that the initial stack size is 0. For simplicity let us assume that K = 10.
For inserting the element we create a new array whose size is 0 + 10 = 10. Similarly, after 10
elements we again create a new array whose size is 10 + 10 = 20 and this process continues at
values: 30,40 ... That means, for a given n value, we are creating the new arrays at:

1’1 1‘1 I'l
.. The total number of copy operations is:
10°20°30°40

n n n
_E+E+E+ml 10( + + 2 = n)—miogn O(nlogn)

If we are performing n push operations, the cost per operation is O(logn).

Problem-20 Given a string containing n S’s and n X’s where 5 indicates a push operation and



X indicates a pop operation, and with the stack initially empty, formulate a rule to check
whether a given string 5 of operations is admissible or not?

Solution: Given a string of length 2n, we wish to check whether the given string of operations is
permissible or not with respect to its functioning on a stack. The only restricted operation is pop
whose prior requirement is that the stack should not be empty. So while traversing the string from
left to right, prior to any pop the stack shouldn’t be empty, which means the number of S% is
always greater than or equal to that of X’s. Hence the condition is at any stage of processing of the
string, the number of push operations (S) should be greater than the number of pop operations (X).

Problem-21 Suppose there are two singly linked lists which intersect at some point and
become a single linked list. The head or start pointers of both the lists are known, but the
intersecting node is not known. Also, the number of nodes in each of the lists before they
intersect are unknown and both lists may have a different number. List1 may have n nodes
before it reaches the intersection point and List2 may have m nodes before it reaches the
intersection point where m and n may be m = n,m < n or m > n. Can we find the merging
point using stacks?

NULL
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Solution: Yes. For algorithm refer to Linked Lists chapter.

Problem-22 Finding Spans: Given an array A, the span S[i] of A[i] is the maximum number
of consecutive elements A[j] immediately preceding Ali] and such that A[j] < A[i]?
Other way of asking: Given an array A of integers, find the maximum of j — i subjected to
the constraint of Ali] < A[j].

Solution:
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This is a very common problem in stock markets to find the peaks. Spans are used in financial
analysis (E.g., stock at 52-week high). The span of a stock price on a certain day, i, is the
maximum number of consecutive days (up to the current day) the price of the stock has been less
than or equal to its price on i.

As an example, let us consider the table and the corresponding spans diagram. In the figure the
arrows indicate the length of the spans. Now, let us concentrate on the algorithm for finding the
spans. One simple way is, each day, check how many contiguous days have a stock price that is



less than the current price.

Algorithm: FindingSpansfint Af], int n) |
[ /Input: artay A of n integers, Output: array 5 of spans of A
int1, j, S[nj; //new array of n integers;

for (1= 0;1¢n; 1) | Executes n times
1= 1; n
while (j <= 1 && Afi] > Ali-f) 1+424.40-])
Jie 1+2+.tn-1])
sf = :
}
return 5; 1

Time Complexity: O(n?). Space Complexity: O(1).
Problem-23 Can we improve the complexity of Problem-22?

Solution: From the example above, we can see that span S[i] on day i can be easily calculated if
we know the closest day preceding i, such that the price is greater on that day than the price on
day i. Let us call such a day as P. If such a day exists then the span is now defined as S[i] =i —P.

Algorithm: FindingSpans(int Al int n) {
struct Stack *D = CreateStack();
int P;
for (int 1= 0 i< n; i+4] |
while ([IsEmptyStack(D) && Ali » ATop(D)]) |
Pop(D)};
1
|
ifllsEmptyStack(D))
P=l
else P = Top(D);
S| = i-P:
Push(D, i)
}

refurn 3;

|
b



Time Complexity: Each index of the array is pushed into the stack exactly once and also popped
from the stack at most once. The statements in the while loop are executed at most n times. Even
though the algorithm has nested loops, the complexity is O(n) as the inner loop is executing only n
times during the course of the algorithm (trace out an example and see how many times the inner
loop becomes successful). Space Complexity: O(n) [for stack].

Problem-24 Largest rectangle under histogram: A histogram is a polygon composed of a
sequence of rectangles aligned at a common base line. For simplicity, assume that the
rectangles have equal widths but may have different heights. For example, the figure on the
left shows a histogram that consists of rectangles with the heights 3,2,5,6,1,4,4, measured
in units where 1 is the width of the rectangles. Here our problem is: given an array with
heights of rectangles (assuming width is 1), we need to find the largest rectangle possible.
For the given example, the largest rectangle is the shared part.

Solution: A straightforward answer is to go to each bar in the histogram and find the maximum
possible area in the histogram for it. Finally, find the maximum of these values. This will require

o(n?).

Problem-25 For Problem-24, can we improve the time complexity?

Solution: Linear search using a stack of incomplete sub problems: There are many ways of
solving this problem. Judge has given a nice algorithm for this problem which is based on stack.
Process the elements in left-to-right order and maintain a stack of information about started but yet
unfinished sub histograms.

If the stack is empty, open a new sub problem by pushing the element onto the stack. Otherwise
compare it to the element on top of the stack. If the new one is greater we again push it. If the new
one is equal we skip it. In all these cases, we continue with the next new element. If the new one
is less, we finish the topmost sub problem by updating the maximum area with respect to the
element at the top of the stack. Then, we discard the element at the top, and repeat the procedure
keeping the current new element.

This way, all sub problems are finished when the stack becomes empty, or its top element is less
than or equal to the new element, leading to the actions described above. If all elements have
been processed, and the stack is not yet empty, we finish the remaining sub problems by updating
the maximum area with respect to the elements at the top.



struct Stackltem |
int height;

int index;
I

I

int MaxRectangleArea(int A[], int n) |

int i, maxArea=-1, top = -1, left, currentArea;

struct Stackltem *3 = (struct Stackltem *) malloc{sizeof{struct Stackltem) * n);

for(i=0; 1<=n; i+4] |

while(top >= 0 &G (i==n | | Sjtop|—height > A[i])
ifftop > 0)
left = S[top-1]|-index;

else  left=-1;
currentArea = (1 - left-1) * S[top|—height;
--top;
ifleurrentArea > maxArea

maxArea = currentArea;

[
|

ifli<n] |
+Hop;
S[top|—height = Afi];
S[top|—index = i;

[
|

return maxArea,
}

At the first impression, this solution seems to be having O(n®) complexity. But if we look
carefully, every element is pushed and popped at most once, and in every step of the function at
least one element is pushed or popped. Since the amount of work for the decisions and the update
is constant, the complexity of the algorithm is O(n) by amortized analysis. Space Complexity:
O(n) [for stack].

Problem-26 On a given machine, how do you check whether the stack grows up or down?

Solution: Try noting down the address of a local variable. Call another function with a local
variable declared in it and check the address of that local variable and compare.



int testStackGrowth|) |
int temporary;
stackGrowth(&temporary);
exit(0];

|
!

void stackGrowth(int *temp)|
int temp2;
printf("\nAddress of first local valuable: Yo', temp);
printf|"\nAddress of second local; %u’, &temp2);
iftemp < &temp2)
printf{"\n Stack is growing downwards');
else
printf("\n Stack 18 growing upwards');
}

Time Complexity: O(1). Space Complexity: O(1).

Problem-27 Given a stack of integers, how do you check whether each successive pair of
numbers in the stack is consecutive or not. The pairs can be increasing or decreasing, and
if the stack has an odd number of elements, the element at the top is left out of a pair. For
example, if the stack of elements are [4, 5, -2, -3, 11, 10, 5, 6, 20], then the output should
be true because each of the pairs (4, 5), (-2, -3), (11, 10), and (5, 6) consists of
consecutive numbers.

Solution: Refer to Queues chapter.

Problem-28 Recursively remove all adjacent duplicates: Given a string of characters,
recursively remove adjacent duplicate characters from string. The output string should not
have any adjacent duplicates.

Input: careermonk Input: mississippi
Output: camonk Output: m

Solution: This solution runs with the concept of in-place stack. When element on stack doesn’t
match the current character, we add it to stack. When it matches to stack top, we skip characters
until the element matches the top of stack and remove the element from stack.



void removeAdjacentDuplicatesichar *str)|
mt sthptr=-1;
int i=0;
Int len=strlen(str;
while (i<len)]
if (stkptr == -1 || str[stkptr|=str[i))
stkptrt;
str|stkptr|=str|i;
i+;
lelse |
while(t < len&&s str{stkptt]==stt]i])
i++:
stkptr--;

i
}

j
strlstkptr+1)='\0"
|

Time Complexity: O(n). Space Complexity: O(1) as the stack simulation is done inplace.

Problem-29 Given an array of elements, replace every element with nearest greater element
on the right of that element.

Solution: One simple approach would involve scanning the array elements and for each of the
elements, scan the remaining elements and find the nearest greater element.



void replaceWithNearestGreaterElement(int A[), int n)|
int nextNearestGreater = INT_MIN;
inti=0,j=0;
for (i=0; i<n; i+4)]
nextNearestGreater = -INT_MIN;
for (j = it1; j<n; j+1)|
i (Af] < AN
nextNearestGreater = Afj;
break;

|

i

}
printf{'For the element %d, %d is the nearest greater element\n', Ali], nextNearestGreater];

|

|

Time Complexity: O(n?). Space Complexity: O(1).
Problem-30 For Problem-29, can we improve the complexity?

Solution: The approach is pretty much similar to Problem-22. Create a stack and push the first
element. For the rest of the elements, mark the current element as nextNearestGreater. If stack is
not empty, then pop an element from stack and compare it with nextNearestGreater. If
nextNearestGreater is greater than the popped element, then nextNearestGreater is the next
greater element for the popped element. Keep popping from the stack while the popped element is
smaller than nextNearestGreater. nextNearestGreater becomes the next greater element for all
such popped elements. If nextNearestGreater is smaller than the popped element, then push the
popped element back.



void replaceWithNearestGreaterElement(int A[), int n)|
mt1=0;
struct Stack *S = CreateStack();
int element, nextNearestGreater;
Push(S, A[0]);
for (i=1; i<n; 1+4)]
nextNearestGreater = All|
if (sEmptyStack(S))|
element = Pop(5);
while (element < nextNearestGreater)!
printf[ For the element %d, %d is the nearest greater element\n", Ali}, nextNearestGreater);
ifllsEmptyStack(S))
break;
element = Pop(S);
[
if [element > nextNearestGreater)
Push(S, element):

|

}
Push(S, nextNearestGreater);

|
!

while (IsEmptyStack(S))]
element = Pop(3);
nextNearestGreater = -INT MIN;

printf]'For the element %d, %d is the nearest greater element\n", Ali], nextNearestGreater);

j
Time Complexity: O(n). Space Complexity: O(n).

Problem-31 How to implement a stack which will support following operations in O(1) time
complexity?

Push which adds an element to the top of stack.

Pop which removes an element from top of stack.

Find Middle which will return middle element of the stack.

Delete Middle which will delete the middle element.

Solution: We can use a LinkedList data structure with an extra pointer to the middle element.



Also, we need another variable to store whether the LinkedList has an even or odd number of
elements.

. Push: Add the element to the head of the LinkedList. Update the pointer to the
middle element according to variable.

. Pop: Remove the head of the LinkedList. Update the pointer to the middle element
according to variable.

. Find Middle: Find Middle which will return middle element of the stack.

. Delete Middle: Delete Middle which will delete the middle element use the logic of
Problem-43 from Linked Lists chapter.



('HAPTER

QUEUES

5.1 What is a Queue?

A queue is a data structure used for storing data (similar to Linked Lists and Stacks). In queue, the
order in which data arrives is important. In general, a queue is a line of people or things waiting
to be served in sequential order starting at the beginning of the line or sequence.

Definition: A queue is an ordered list in which insertions are done at one end (rear) and
deletions are done at other end (front). The first element to be inserted is the first one to be
deleted. Hence, it is called First in First out (FIFO) or Last in Last out (LILO) list.

Similar to Stacks, special names are given to the two changes that can be made to a queue. When
an element is inserted in a queue, the concept is called EnQueue, and when an element is
removed from the queue, the concept is called DeQueue.

DeQueueing an empty queue is called underflow and EnQueuing an element in a full queue is
called overflow. Generally, we treat them as exceptions. As an example, consider the snapshot of



the queue.

e

Elements ready f f New elements ready
to be served front rear to enter Queue
(DeQueue) (EnQueue)

5.2 How are Queues Used?

The concept of a queue can be explained by observing a line at a reservation counter. When we
enter the line we stand at the end of the line and the person who is at the front of the line is the one
who will be served next. He will exit the queue and be served.

As this happens, the next person will come at the head of the line, will exit the queue and will be
served. As each person at the head of the line keeps exiting the queue, we move towards the head
of the line. Finally we will reach the head of the line and we will exit the queue and be served.
This behavior is very useful in cases where there is a need to maintain the order of arrival.

5.3 Queue ADT

The following operations make a queue an ADT. Insertions and deletions in the queue must
follow the FIFO scheme. For simplicity we assume the elements are integers.

Main Queue Operations

. EnQueue(int data): Inserts an element at the end of the queue
. int DeQueue(): Removes and returns the element at the front of the queue

Auxiliary Queue Operations

. int Front(): Returns the element at the front without removing it
. int QueueSize(): Returns the number of elements stored in the queue
. int IsSEmptyQueueQ: Indicates whether no elements are stored in the queue or not

5.4 Exceptions



Similar to other ADTs, executing DeQueue on an empty queue throws an “Empty Queue
Exception” and executing EnQueue on a full queue throws “Full Queue Exception”.

5.5 Applications
Following are some of the applications that use queues.

Direct Applications

. Operating systems schedule jobs (with equal priority) in the order of arrival (e.g., a
print queue).

. Simulation of real-world queues such as lines at a ticket counter or any other first-
come first-served scenario requires a queue.

. Multiprogramming.

. Asynchronous data transfer (file IO, pipes, sockets).

. Waiting times of customers at call center.
. Determining number of cashiers to have at a supermarket.
Indirect Applications

. Auxiliary data structure for algorithms
. Component of other data structures

5.6 Implementation

There are many ways (similar to Stacks) of implementing queue operations and some of the
commonly used methods are listed below.

. Simple circular array based implementation
. Dynamic circular array based implementation
. Linked list implementation

Why Circular Arrays?

First, let us see whether we can use simple arrays for implementing queues as we have done for
stacks. We know that, in queues, the insertions are performed at one end and deletions are
performed at the other end. After performing some insertions and deletions the process becomes
easy to understand.

In the example shown below, it can be seen clearly that the initial slots of the array are getting
wasted. So, simple array implementation for queue is not efficient. To solve this problem we
assume the arrays as circular arrays. That means, we treat the last element and the first array



elements as contiguous. With this representation, if there are any free slots at the beginning, the

rear pointer can easily go to its next free slot.

* T New elements ready to
rear enter Queue (enQueue)

front

Note: The simple circular array and dynamic circular array implementations are very similar to
stack array implementations. Refer to Stacks chapter for analysis of these implementations.

Simple Circular Array Implementation

Fixed size array

N

front

This simple implementation of Queue ADT uses an array. In the array, we add elements circularly
and use two variables to keep track of the start element and end element. Generally, front is used
to indicate the start element and rear is used to indicate the end element in the queue. The array
storing the queue elements may become full. An EnQueue operation will then throw a full queue
exception. Similarly, if we try deleting an element from an empty queue it will throw empty
queue exception.

Note: Initially, both front and rear points to -1 which indicates that the queue is empty.



struct ArrayQueue |
int front, rear;
int capacity;
int *array;
(H
struct ArrayQueue *Queue(int size) |
struct ArrayQueue *Q = malloc(sizeofistruct ArrayQueue));
if{1Q)
return NULL;
Q—capacity = size;
Q—=front = Q—rear = -1;
Q—array= malloc{Q—capacity * sizeof{int));
if{(lQ—array)
return NULL;
return Q;
H
int [sEEmptyQueueg(struct ArrayQueue Q) |
/ [ if the condition is true then 1 is returned else O is returned
return (Q—front == -1};
i
int IsFullQueue(struct ArrayQueue *Q) |
/ fif the condition is true then 1 is returned else 0 is returned
return ((Q—rear +1) % Q—capacity == Q—front);
]
int QueueSize|) {
return (Q—capacity - Q—front + Q—rear + 1)% Q—capacity;
i
void EnQueue(struct ArrayQueue *Q, int data) {
iffls FullQueue(Q))
printf(*Queue Overflow™);
else |
Q—rear = [Q—rear+l) % Q—capacity;
Q— array|Q—rear|= data;
iflQ—front == -1)
Q—front = Q—rear;
!
!
int DeQueue(struct ArrayQueue *Q) |
int data = 0;/ for element which does not exist in Queue
ifllsEmptvOueus(Ol) {
printf{"Queue is Empty”):
return 0;
i
else |
data = Q—array[Q—front];
fiQ—front == Q—rear]
Q—front = Q—rear =-1;
else Q—iront = (Q—front+1) % Q—capacity;
i
return data;

void DeleteQueue(struct ArrayQueue *Q) |
Q) |
ifiQ—array)
free(Q—array);
free(Q);
!

o



Performance and Limitations

Performance: Let n be the number of elements in the queue:

Space Complexity (for n EnQueue operations) O(n)
Time Complexity of EnQueue() O(1)
Time Complexity of DeQueue() O(1)
Time Complexity of IsEmptyQueue() O(1)
Time Complexity of IsFullQueue() O(1)
Time Complexity of QueueSize() O(1)
Time Complexity of DeleteQueue() O(1)

Limitations: The maximum size of the queue must be defined as prior and cannot be changed.
Trying to EnQueue a new element into a full queue causes an implementation-specific exception.

Dynamic Circular Array Implementation



struct DvnArrayQuenes |
int [romnt, rear;
Nt capacity;
mnt *arvay;
-
struct DvnArrayQueue *CreateDynCusuef) |
struct DynArrayOueus "0 = mallocisizeof{struct Dy nAcrayCuaeue));
i)
return NULL;
Q—capacity = 1;
Q—front = O—rear = -1
O—array = malloc(Q—capacity * sizeoffint]);
iQ—array)
return NULL;
reiarn O);
H
int IsEmptyQueue{stract DvnArrayCueue "0 {
/i the condition is true then 1 is retumed else O is returned
return [Q—front == -1);
¥
int IsFullDucuef{struct DynArtayOueus *0) §
£ f the condition 1s true then 1 15 returned else O 1s returned
return [[Q—rear +1) % Q—capacity == (—front);
]
mnt CQueueSize() |
return [Q—capacity - Q—front + Q—rear + 1)% Q—capacity;
H

void EnQueus[struct DyvnArmayQuewns "0, int data) {
iflIsFullQueusic))
ResizeQueus(Q);
Q—recar = [Q—rear+1)% Q—capacity;
Q— array|Q—rear]= data;
QO —front == -1}
Q—front = (}—rear;
H
void ResizeOueus(struct DyvnArrayCueus *0 |
int size = (—capacity;
Q—capacity = Q—capacity*2;
Q—array = realloc (Q—-array, Q—-capacity);
ifiQ—array) |
prntiMemory Error”);

retmirn

i
ifQ—front > Q—rear ) |
forfing i=0; i = Q—fronn; i++) |
O —array|i+size| =Q—arravii|;

OQ—rear = (—rear + giae;
1
g
mnt DeCusue{struct DynArcavCuaeae *0) |
int data = i/ for element which doess not exast in Queue
iffisEmpryCueue{Q]) {
primcfi " aeue is Empty”);
return O
}
else |
data = Q—arrav|—irontl;
iff—froni== Q—rear)
O—front= Q—rear = -1;
clse
Q—front = (Q—front+1) % Q—capacity;
1

returm data;

free|Q—arTav];
free{Q—array];



Performance

Let n be the number of elements in the queue.

Space Complexity (for n EnQueue operations) O(n)
Time Complexity of EnQueue() O(1) (Average)
Time Complexity of DeQueue() O(1)
Time Complexity of QueueSize() O(1)
Time Complexity of IsEmptyQueue() O(1)
Time Complexity of IsFullQueue() O(1)
Time Complexity of QueueSize() O(1)
Time Complexity of DeleteQueue() O(1)

Linked List Implementation

Another way of implementing queues is by using Linked lists. EnQueue operation is implemented
by inserting an element at the end of the list. DeQueue operation is implemented by deleting an

element from the beginning of the list.

4 ——>

15

T

front

struct ListNode |
int data;
struet ListNode *next:

7 | — 40

!

rear

struct Queue |
struct ListNode *front;
struet ListNode *rear;



struct Queue *CreateQueue() |
struct Queue *Q;
struct ListNode *temp;
Q = malloc(sizeofstruct Queue));
if{!Q)
return NULL;
temp = malloc(sizeof(struct ListNode));
Q—front = Q—rear = NULL;
return ();

i

int IsEmptyQueue(struct Queue *Q) |
[/ if the condition is true then 1 is returned else 0 is returned
return (Q—front == NULLJ;

]

void EnQueue(struct Queue *Q, int data) {
struct ListNode *newNode;
newNode = malloc(sizeof(struct ListNode));
iflnewNode)

return NULL;

newNode—data = data;
newNode—next = NULL;
ifjQ—rear) Q—rear—next = newNode;
Q—rear = newNode;

iffQ—front == NULL)
Q—front = Q—rear;
i'
int DeQueue(struct Queue *Q) |
int data = 0;  //or element which does not exist in Queue
struct ListNode *temp;
ifflsEmptyQueue(Q)) |
printf{"Queue is empty”);
return O;
|
else |
temp = Q—front;
data = Q—{ront—data;
Q—front== Q—front—next;
free(temp);
I
return data;
i

void DeleteQueue|(struct Queue *Q) |
struct ListNode *temp;
while(Q) |
temp = Q:
Q =0Q—next;
free(temp);
}
free(Q);



Performance

Let n be the number of elements in the queue, then

Space Complexity (for n EnQueue operations) O(n)
Time Complexity of EnQueue() O(1) (Average)
Time Complexity of DeQueue() O(1)
Time Complexity of IsEmptyQueue() O(1)
Time Complexity of DeleteQueue() O(1)

Comparison of Implementations

Note: Comparison is very similar to stack implementations and Stacks chapter.

5.7 Queues: Problems & Solutions

Problem-1 Give an algorithm for reversing a queue Q. To access the queue, we are only
allowed to use the methods of queue ADT.

Solution:

void ReverseQueue(struet Queue *Q) |
struct Stack *5 = CreateStack();
while (lsEmptyQueue(Q))
Push(3, DeQueue(Q)|
while ([IsEmptyStack(S))
EnQueue(Q, Pop(S));

Time Complexity: O(n).
Problem-2 How can you implement a queue using two stacks?

Solution: Let SI and S2 be the two stacks to be used in the implementation of queue. All we have
to do is to define the EnQueue and DeQueue operations for the queue.



struct Queue |
struct Stack *S1; // for EnQueue
struct Stack *52; // for DeQueue

EnQueue Algorithm
. Just push on to stack S1

void EnQueue(struct Queue *Q, int data) |
Push(Q—51, data);

Time Complexity: O(1).

DeQueue Algorithm

. If stack S2 is not empty then pop from S2 and return that element.

. If stack is empty, then transfer all elements from SI to S2 and pop the top element
from S2 and return that popped element [we can optimize the code a little by
transferring only n — 1 elements from SI to S2 and pop the n™ element from SI and

return that popped element].
. If stack S1 is also empty then throw error.

int DeQueue(struct Queue *Q) |
ifll[sEmptyStack(Q—52))
return Pop(Q—52);
else |
while(![sEmptyStack(Q—S1))
Push(Q—52, Pop(Q-51));
return Pop(Q—S2);

Time Complexity: From the algorithm, if the stack S2 is not empty then the complexity is O(1). If
the stack S2 is empty, then we need to transfer the elements from SI to S2. But if we carefully
observe, the number of transferred elements and the number of popped elements from S2 are
equal. Due to this the average complexity of pop operation in this case is O(1).The amortized
complexity of pop operation is O(1).

Problem-3 Show how you can efficiently implement one stack using two queues. Analyze the



running time of the stack operations.

Solution: Yes, it is possible to implement the Stack ADT using 2 implementations of the Queue
ADT. One of the queues will be used to store the elements and the other to hold them temporarily
during the pop and top methods. The push method would enqueue the given element onto the
storage queue. The top method would transfer all but the last element from the storage queue onto
the temporary queue, save the front element of the storage queue to be returned, transfer the last
element to the temporary queue, then transfer all elements back to the storage queue. The pop
method would do the same as top, except instead of transferring the last element onto the
temporary queue after saving it for return, that last element would be discarded. Let Q1 and Q2 be
the two queues to be used in the implementation of stack. All we have to do is to define the push
and pop operations for the stack.

struct Stack |
struct Queue *Q1;

struct Queue *02;

In the algorithms below, we make sure that one queue is always empty.

Push Operation Algorithm: Insert the element in whichever queue is not empty.

. Check whether queue Q1 is empty or not. If Q1 is empty then Enqueue the element
into Q2.
. Otherwise EnQueue the element into Q1.

Push(struct Stack *3, int data) |
ifllsEmptyQueue(S—Q1))
EnQueue(3-(02, data);
else  EnQueue(S-01, data);

Time Complexity: O(1).

Pop Operation Algorithm: Transfer n — 1 elements to the other queue and delete last from queue
for performing pop operation.

. If queue Q1 is not empty then transfer n — 1 elements from Q1 to Q2 and then,
DeQueue the last element of Q1 and return it.

. If queue Q2 is not empty then transfer n — 1 elements from Q2 to Q1 and then,
DeQueue the last element of Q2 and return it.



int Pop(struct Stack *5) |
mt 1, sLze;
f{IsEmptyQueue(S—-02)) |
size = Size(S—01);
1=0;
while(r < size-]) |
EnQueue(5—-02, DeQueue(5-01));
1t

1
|

return DeQueue(S-=0Q1);

L

|
|

else |
size = Size(S=-02);
while(i < size-1) |
EnQuene(S—01, DeQueue(S-Q2));
jre!

return DeQueue(S-02);

Time Complexity: Running time of pop operation is O(n) as each time pop is called, we are
transferring all the elements from one queue to the other.

Problem-4 Maximum sum in sliding window: Given array A[] with sliding window of size
w which is moving from the very left of the array to the very right. Assume that we can
only see the w numbers in the window. Each time the sliding window moves rightwards by
one position. For example: The array is [1 3-1-3536 7], and w is 3.

Window position Max
[13-1]-35367
1[3-1-3]5367
13[-1-35]367
13-1[-353]67
13-1-3[536]7
13-1-35[367]

N | Y| o W W




Input: A long array A[], and a window width w. Output: An array B[], B[i] is the
maximum value from A[i] to A[i+w-1]. Requirement: Find a good optimal way to get
BIi]

Solution: This problem can be solved with doubly ended queue (which supports insertion and
deletion at both ends). Refer Priority Queues chapter for algorithms.

Problem-5 Given a queue Q containing n elements, transfer these items on to a stack S
(initially empty) so that front element of Q appears at the top of the stack and the order of
all other items is preserved. Using enqueue and dequeue operations for the queue, and push
and pop operations for the stack, outline an efficient O(n) algorithm to accomplish the
above task, using only a constant amount of additional storage.

Solution: Assume the elements of queue Q are a;a, ...a,. Dequeuing all elements and pushing
them onto the stack will result in a stack with a,, at the top and a; at the bottom. This is done in

O(n) time as dequeue and each push require constant time per operation. The queue is now empty.
By popping all elements and pushing them on the queue we will get a; at the top of the stack. This

is done again in O(n) time.

As in big-oh arithmetic we can ignore constant factors. The process is carried out in O(n) time.
The amount of additional storage needed here has to be big enough to temporarily hold one item.

Problem-6 A queue is set up in a circular array A[O..n - 1] with front and rear defined as
usual. Assume that n — 1 locations in the array are available for storing the elements (with
the other element being used to detect full/empty condition). Give a formula for the number
of elements in the queue in terms of rear, front, and n.

Solution: Consider the following figure to get a clear idea of the queue.

\ Fixed size array

rear

front




. Rear of the queue is somewhere clockwise from the front.

. To enqueue an element, we move rear one position clockwise and write the element
in that position.

. To dequeue, we simply move front one position clockwise.

. Queue migrates in a clockwise direction as we enqueue and dequeue.

. Emptiness and fullness to be checked carefully.

. Analyze the possible situations (make some drawings to see where front and rear

are when the queue is empty, and partially and totally filled). We will get this:

rear - front +1  ifrear == front

Nimber 0f Elements = .
e rear = front +n otherwise

Problem-7 What is the most appropriate data structure to print elements of queue in reverse
order?

Solution: Stack.

Problem-8 Implement doubly ended queues. A double-ended queue is an abstract data
structure that implements a queue for which elements can only be added to or removed
from the front (head) or back (tail). It is also often called a head-tail linked list.

Solution:



void pushBackDEQ(struct ListNode **head, int datal|
struct ListNode *newNode = (struct ListNode*| malloc(sizeof(struct ListNode));
newNode—data = data;

if(*head == NULL)!
*head = newNode;
[*head)—next = *head;
*head)—prev = *head;
I
I
else|
newNode—prev = (*head)—prev;
newNode—next = *head.
[*head)—prev—next = newNode;
[*head)—prev = newNode;
|
|
void pushFrontDEQ(struct ListNode **head, int data)|
pushBackDEQ(head,data);
*head = (*head|—prev,
}
int popBackDEQ(struct ListNode **head)|
int data;
if{ (*head)—prev == *head )|
data = (*head)—data;
free(*head);
*head = NULL;
|
else|
struct ListNode *newTail = (*head)—prev—sprev;
data = (*head)—prev—data;
newTail—next = *head;
free((*head)—prev);
(*head) —prev = newTail;
}

return data;

|
I

int popFront(struct ListNode **head)|
int data;
“head = (*head)—next;
data = popBackDEQ(head);
return data



Problem-9 Given a stack of integers, how do you check whether each successive pair of
numbers in the stack is consecutive or not. The pairs can be increasing or decreasing, and
if the stack has an odd number of elements, the element at the top is left out of a pair. For
example, if the stack of elements are [4, 5, -2, -3, 11, 10, 5, 6, 20], then the output should
be true because each of the pairs (4, 5), (-2, -3), (11, 10), and (5, 6) consists of
consecutive numbers.

Solution:

int checkStackPairwiseOrder(struct Stack *s) |
struct Queue *q = CreateQueue();
int pairwiseOrdered = 1;
while (lisEmptyStack(s|)
EnQueue(q, Popls));
while (IsEmptyQueue(q)|
Pushs, DeQueuelq));
while (lisEmotvStackis) |
int n = Popls);
EnQueue(q, n);
if (isEmptyStack(s)) |
int m = Popls);
EnQueue(q, m);
if (abs{n - m) = 1) {

pairwiseOrdered = 0;

1
|

while (lsEmptyQueue(q)|
Push(s, DeQueue(q));
return pairwiseOrdered;

Time Complexity: O(n). Space Complexity: O(n).

Problem-10 Given a queue of integers, rearrange the elements by interleaving the first half of
the list with the second half of the list. For example, suppose a queue stores the following
sequence of values: [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Consider the two halves of
this list: first half: [11, 12, 13, 14, 15] second half: [16, 17, 18, 19, 20]. These are



combined in an alternating fashion to form a sequence of interleave pairs: the first values
from each half (11 and 16), then the second values from each half (12 and 17), then the
third values from each half (13 and 18), and so on. In each pair, the value from the first
half appears before the value from the second half. Thus, after the call, the queue stores the
following values: [11, 16, 12, 17, 13, 18, 14, 19, 15, 20].

Solution:

void interLeavingQueue(struct Queue *q) |
if (Sizelg) % 2 1= 0)
retur,
struct Stack *s = CreateStack():
int halfSize = Size(q) / 2;
for (int 1= 0; 1 < halfSize; 1t+)
Pushis, DeQueue|q));
while (lisEmptyStack(s))
EnQueue(q, Popls));
for (int 1= 0; 1< halfSize; 1+4)
EnQueue{q, DeQueuelq]);
for [int i = 0y 1 < halfSize; it+)
Push(s, DeQueue(q));
while (isEmptyStack(s)) |
EnQueue(q, Popls));
EnQueue(g, DeQueue(q));
|
}

Time Complexity: O(n). Space Complexity: O(n).

Problem-11 Given an integer k and a queue of integers, how do you reverse the order of the
first k elements of the queue, leaving the other elements in the same relative order? For
example, if k=4 and queue has the elements [10, 20, 30, 40, 50, 60, 70, 80, 90]; the output
should be [40, 30, 20, 10, 50, 60, 70, 80, 90].

Solution:



Time Complexity: O(n). Space Complexity: O(n).



('HAPTER

TREES

6.1 What is a Tree?

A tree is a data structure similar to a linked list but instead of each node pointing simply to the
next node in a linear fashion, each node points to a number of nodes. Tree is an example of a non-
linear data structure. A tree structure is a way of representing the hierarchical nature of a structure
in a graphical form.

In trees ADT (Abstract Data Type), the order of the elements is not important. If we need ordering
information, linear data structures like linked lists, stacks, queues, etc. can be used.

6.2 Glossary



o °

The root of a tree is the node with no parents. There can be at most one root node in
a tree (node A in the above example).

An edge refers to the link from parent to child (all links in the figure).

A node with no children is called leaf node (E,J,K,H and I).

Children of same parent are called siblings (B,C,D are siblings of A, and E,F are the
siblings of B).

A node p is an ancestor of node q if there exists a path from root to g and p appears
on the path. The node q is called a descendant of p. For example, A,C and G are the
ancestors of if.

The set of all nodes at a given depth is called the level of the tree (B, C and D are
the same level). The root node is at level zero.



root
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The depth of a node is the length of the path from the root to the node (depth of G is
2,A-C-0G).

The height of a node is the length of the path from that node to the deepest node. The
height of a tree is the length of the path from the root to the deepest node in the tree.
A (rooted) tree with only one node (the root) has a height of zero. In the previous
example, the height of Bis 2 (B—F —J).

Height of the tree is the maximum height among all the nodes in the tree and depth of
the tree is the maximum depth among all the nodes in the tree. For a given tree,
depth and height returns the same value. But for individual nodes we may get
different results.

The size of a node is the number of descendants it has including itself (the size of the
subtree C is 3).

If every node in a tree has only one child (except leaf nodes) then we call such trees
skew trees. If every node has only left child then we call them left skew trees.
Similarly, if every node has only right child then we call them right skew trees.
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6.3 Binary Trees

A tree is called binary tree if each node has zero child, one child or two children. Empty tree is
also a valid binary tree. We can visualize a binary tree as consisting of a root and two disjoint
binary trees, called the left and right subtrees of the root.

Generic Binary Tree

root
root

Right
Subtree

Left
Subtree

Example o




6.4 Types of Binary Trees

Strict Binary Tree: A binary tree is called strict binary tree if each node has exactly two

children or no children.
root I °

Full Binary Tree: A binary tree is called full binary tree if each node has exactly two children
and all leaf nodes are at the same level.

root o

Complete Binary Tree: Before defining the complete binary tree, let us assume that the height of
the binary tree is h. In complete binary trees, if we give numbering for the nodes by starting at the
root (let us say the root node has 1) then we get a complete sequence from 1 to the number of
nodes in the tree. While traversing we should give numbering for NULL pointers also. A binary
tree is called complete binary tree if all leaf nodes are at height h or h — 1 and also without any
missing number in the sequence.



root > °

6.5 Properties of Binary Trees

For the following properties, let us assume that the height of the tree is h. Also, assume that root
node is at height zero.



Height Number of nodes at level h

h=0 20=1

S

root o

From the diagram we can infer the following properties:

. The number of nodes n in a full binary tree is 2"*1 — 1. Since, there are h levels we
need to add all nodes at each level [20 + 21+ 22 + ... + 2h = ph*+1_ 1],
. The number of nodes n in a complete binary tree is between 2" (minimum) and 2"*1

— 1 (maximum). For more information on this, refer to Priority Queues chapter.

. The number of leaf nodes in a full binary tree is 2.
. The number of NULL links (wasted pointers) in a complete binary tree of n nodes is
n+1.



Structure of Binary Trees

Now let us define structure of the binary tree. For simplicity, assume that the data of the nodes are
integers. One way to represent a node (which contains data) is to have two links which point to
left and right children along with data fields as shown below:

data Or
y i Na

struct BinaryTreeNode |
int data;
struct BinaryTreeNode ¥eft;
struct BinaryTreeNode *right;

h

Note: In trees, the default flow is from parent to children and it is not mandatory to show directed
branches. For our discussion, we assume both the representations shown below are the same.

Operations on Binary Trees

Basic Operations

. Inserting an element into a tree
. Deleting an element from a tree
. Searching for an element

. Traversing the tree

Auxiliary Operations

. Finding the size of the tree

. Finding the height of the tree

. Finding the level which has maximum sum

. Finding the least common ancestor (LCA) for a given pair of nodes, and many more.

Applications of Binary Trees



Following are the some of the applications where binary trees play an important role:

. Expression trees are used in compilers.

. Huffman coding trees that are used in data compression algorithms.

. Binary Search Tree (BST), which supports search, insertion and deletion on a
collection of items in O(logn) (average).

. Priority Queue (PQ), which supports search and deletion of minimum (or maximum)

on a collection of items in logarithmic time (in worst case).

6.6 Binary Tree Traversals

In order to process trees, we need a mechanism for traversing them, and that forms the subject of
this section. The process of visiting all nodes of a tree is called tree traversal. Each node is
processed only once but it may be visited more than once. As we have already seen in linear data
structures (like linked lists, stacks, queues, etc.), the elements are visited in sequential order. But,
in tree structures there are many different ways.

Tree traversal is like searching the tree, except that in traversal the goal is to move through the
tree in a particular order. In addition, all nodes are processed in the traversal but searching
stops when the required node is found.

Traversal Possibilities

Starting at the root of a binary tree, there are three main steps that can be performed and the order
in which they are performed defines the traversal type. These steps are: performing an action on
the current node (referred to as “visiting” the node and denoted with “D?), traversing to the left
child node (denoted with “L”), and traversing to the right child node (denoted with “R”). This
process can be easily described through recursion. Based on the above definition there are 6

possibilities:

1. LDR: Process left subtree, process the current node data and then process right
subtree

2. LRD: Process left subtree, process right subtree and then process the current node
data

3. DLR: Process the current node data, process left subtree and then process right
subtree

4. DRL: Process the current node data, process right subtree and then process left
subtree

5. RDL: Process right subtree, process the current node data and then process left
subtree

6. RLD: Process right subtree, process left subtree and then process the current node
data



Classifying the Traversals

The sequence in which these entities (nodes) are processed defines a particular traversal method.
The classification is based on the order in which current node is processed. That means, if we are
classifying based on current node (D) and if D comes in the middle then it does not matter
whether L is on left side of D or R is on left side of D.

Similarly, it does not matter whether L is on right side of D or R is on right side of D. Due to this,
the total 6 possibilities are reduced to 3 and these are:

. Preorder (DLR) Traversal
. Inorder (LDR) Traversal
. Postorder (LRD) Traversal

There is another traversal method which does not depend on the above orders and it is:

. Level Order Traversal: This method is inspired from Breadth First Traversal (BFS
of Graph algorithms).

Let us use the diagram below for the remaining discussion.

root

In preorder traversal, each node is processed before (pre) either of its subtrees. This is the
simplest traversal to understand. However, even though each node is processed before the
subtrees, it still requires that some information must be maintained while moving down the tree.
In the example above, 1 is processed first, then the left subtree, and this is followed by the right
subtree.

PreOrder Traversal

Therefore, processing must return to the right subtree after finishing the processing of the left
subtree. To move to the right subtree after processing the left subtree, we must maintain the root



information. The obvious ADT for such information is a stack. Because of its LIFO structure, it is
possible to get the information about the right subtrees back in the reverse order.

Preorder traversal is defined as follows:

. Visit the root.
. Traverse the left subtree in Preorder.
. Traverse the right subtree in Preorder.

The nodes of tree would be visited in the order: 1245367

void PreOrder(struct BinaryTreeNode *root)]
iflroot) |
printf{%ad" root—data);
PreOrder(root—left);
PreOrder (root—nght];

}

Time Complexity: O(n). Space Complexity: O(n).

Non-Recursive Preorder Traversal

In the recursive version, a stack is required as we need to remember the current node so that after
completing the left subtree we can go to the right subtree. To simulate the same, first we process
the current node and before going to the left subtree, we store the current node on stack. After
completing the left subtree processing, pop the element and go to its right subtree. Continue this
process until stack is nonempty.



void PreOrderNonRecursive{struct BinaryTreeNode *root)|
struct Stack *S = CreateStack();
while{1) |
while(root) |
| [Process current node

printf{*%d" root—data);

Push(8,root);
[ [1f left subtree exists, add to stack
root = root—|eft:
|
I
if{lsEmptyStack(S))
hreak;
root = Popl($S);
[ [Indicates completion of left subtree and current node, now go to right subtree

root = root—right;
!

I
DeleteStack(s);
}

Time Complexity: O(n). Space Complexity: O(n).

InOrder Traversal

In Inorder Traversal the root is visited between the subtrees. Inorder traversal is defined as
follows:

. Traverse the left subtree in Inorder.
. Visit the root.
. Traverse the right subtree in Inorder.

The nodes of tree would be visited in the order: 4251637



vold InOrder(struct BinaryTreeNode *root)|
iffroot) |
InOrder(root=left);
printf(*%d” rootdatal;
[nOrder({root—right);

[
I

[
|

Time Complexity: O(n). Space Complexity: O(n).

Non-Recursive Inorder Traversal

The Non-recursive version of Inorder traversal is similar to Preorder. The only change is, instead
of processing the node before going to left subtree, process it after popping (which is indicated
after completion of left subtree processing).

void [nOrderNonRecursive(struct BinaryTreeNode *root)]
struct Stack *S = CreateStack();
while(l) |
while{root) |
Push(S,root);
/ [Got left subtree and keep on adding to stack
root = root—left;

}
if{fsEmptyStack(S))

break:
root = Pop(S);
printf[*%d", root—data); //After popping, process the current node
[ [Indicates completion of left subtree and current node, now go to right subtree

root = root=right;
1

I
DeleteStack(S);
j

Time Complexity: O(n). Space Complexity: O(n).



PostOrder Traversal

In postorder traversal, the root is visited after both subtrees. Postorder traversal is defined as
follows:

. Traverse the left subtree in Postorder.
. Traverse the right subtree in Postorder.
. Visit the root.

The nodes of the tree would be visited in the order: 4526731

void PostOrder(struct BinaryTreeNode *root)|
ilfroot) .‘
PostOrder{root—left):

PostOrder{root—right);
printf|%d’ root—data);

|
I

Time Complexity: O(n). Space Complexity: O(n).

Non-Recursive Postorder Traversal

In preorder and inorder traversals, after popping the stack element we do not need to visit the
same vertex again. But in postorder traversal, each node is visited twice. That means, after
processing the left subtree we will visit the current node and after processing the right subtree we
will visit the same current node. But we should be processing the node during the second visit.
Here the problem is how to differentiate whether we are returning from the left subtree or the
right subtree.

We use a previous variable to keep track of the earlier traversed node. Let’s assume current is the
current node that is on top of the stack. When previous is current’s parent, we are traversing
down the tree. In this case, we try to traverse to current’s left child if available (i.e., push left
child to the stack). If it is not available, we look at current’s right child. If both left and right child
do not exist (ie, current is a leaf node), we print current’s value and pop it off the stack.

If prev is current’s left child, we are traversing up the tree from the left. We look at current’s right
child. If it is available, then traverse down the right child (i.e., push right child to the stack);
otherwise print current’s value and pop it off the stack. If previous is current’s right child, we are
traversing up the tree from the right. In this case, we print current’s value and pop it off the stack.



voud PostOrderNonRecursive(struct BinaryTreeNode *root) |
struct SimpleArrayStack *5 = CreateStack();
struct BinaryTreeNode *previous = NULL;
do|
while {root!=NULL}|
Push(s, root];
root = root->left;
|
while{root == NULL && ![sEmptyStack(S))
root = Top(S);
iffroot->right == NULL | | root->right == previous)|
printf]"%d ', root->data;
Pop(S);
previous = root;
root = NULL;
}

else
root = root->right;
|

1
iwhile(!sEmptyStack(S));

Time Complexity: O(n). Space Complexity: O(n).

Level Order Traversal

Level order traversal is defined as follows:

Visit the root.

While traversing level (, keep all the elements at level ( + 1 in queue.
Go to the next level and visit all the nodes at that level.

Repeat this until all levels are completed.

The nodes of the tree are visited in the order: 1234567



void LevelOrder(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *Q) = CreateQueuel);

if{'root|
return;
EnQueue(Q),root];
while([sEmptyQueue(Q)) |
temp = DeQueue(Q);
| [Process current node
printf{*%d", temp—datal;
ifltemp—left]
EnQueue(Q, temp—left);
if{temp—right|
EnQueue(Q, temp-nght);
}
DeleteQueue(Q);

|
|

Time Complexity: O(n). Space Complexity: O(n). Since, in the worst case, all the nodes on the
entire last level could be in the queue simultaneously.

Binary Trees: Problems & Solutions

Problem-1 Give an algorithm for finding maximum element in binary tree.

Solution: One simple way of solving this problem is: find the maximum element in left subtree,
find the maximum element in right sub tree, compare them with root data and select the one which
is giving the maximum value. This approach can be easily implemented with recursion.



int FindMax(struct BinaryTreeNode *root) |
int root_val, left, right, max = INT_MIN;
iflroot [=NULL) |
root_val = root—data;
left = FindMax({root—left);
right = FindMax(root—right);
/| Find the largest of the three values,
if{left > right)
max = left;
else max = right;
iffroot_val > max|
max = root_val;

|
!

refurn max;

|
Time Complexity: O(n). Space Complexity: O(n).

Problem-2 Give an algorithm for finding the maximum element in binary tree without
recursion.

Solution: Using level order traversal: just observe the element’s data while deleting.



int FindMaxUsinglevelOrder(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
int max = INT_MIN;
struct Queue *Q) = CreateQueue|);

EnQueue(Q,root);

while([IsEmptyQueue(Q)) |
temp = DeQueue(Q);
/[ largest of the three values
iffmax < temp-datal
max = temp—data,
ifitemp-sleft)
EnQueue (0, temp-left);
f|temp—right)
EnQueue (O, temp—right);
!
DeleteQuee(Q);
refurn max;

|
Time Complexity: O(n). Space Complexity: O(n).

Problem-3 Give an algorithm for searching an element in binary tree.

Solution: Given a binary tree, return true if a node with data is found in the tree. Recurse down
the tree, choose the left or right branch by comparing data with each node’s data.



int FindInBinaryTreeUsingRecursionstruct BinaryTreeNode *root, int data) |

int temp;
/| Base case == empty tree, in that case, the data is not found so return false
iffroot == NULL)
return 0;
else |
/ [see 1f found here
ifldata == root—datal
return 1;
else |
/[ otherwise recur down the correct subtree
temp = FindInBinaryTreeUsingRecursion (root—left, datal
ifftemp != 0]
return temp;
else return(FindInBinaryTreeUsingRecursion(root—right, datal);
j
}
return 0,

}

Time Complexity: O(n). Space Complexity: O(n).
Problem-4 Give an algorithm for searching an element in binary tree without recursion.

Solution: We can use level order traversal for solving this problem. The only change required in
level order traversal is, instead of printing the data, we just need to check whether the root data is
equal to the element we want to search.



int SearchUsinglevelOrder{struct BinaryTreeNode *root, int datal
struct BinaryTreeNode *temp;
struct Queue *(Q;
ifl!root) return -1
() = CreateQueue|);
EnQueue(Q root);
while{!lsEmptyQueue(Q)) |
temp = DeQueue(Q);
[ [see if found here
ifldata == root—data)
return 1;
ifltemp-sleft)
EnQueue (Q, temp=left);
ifltemp-+right]
EnQueue (Q, temp—right];
I
|
DeleteQueue(Q);
refurn 0

|
Time Complexity: O(n). Space Complexity: O(n).

Problem-5 Give an algorithm for inserting an element into binary tree.

Solution: Since the given tree is a binary tree, we can insert the element wherever we want. To
insert an element, we can use the level order traversal and insert the element wherever we find
the node whose left or right child is NULL.



vold InsertinBinaryTree(struct BinaryTreeNode *root, int datal|
struet Queue *0);
struct BinaryTreeNode *temp;
struct BinaryTreeNode *newNode;
newNode = (struct BinaryTreeNode *| malloc(sizeof|struct BinaryTreeNode]);
newNode—left = newNode—right = NULL;

ifl'newNode| |

printf{*Memory Error”); return;
|
if{lroot) |

root = newNode;

refurn;
|
Q = CreateQueue|);
EnQueue(0,root);

while(IsEmptyQueue(Q)) |
temp = DeQueve(Q)
iﬂ:te mp le!ft]
EnQueue(Q, temp-left)
else |
temp—left=newNode;
DeleteQueue(0);
return;

|
ifltemp-right)
EnQueue(0, temp-right);
else |
temp—right=newNode;
DeleteQueue(Q);
return;
!
!
DeleteQueue(Q);



Time Complexity: O(n). Space Complexity: O(n).
Problem-6 Give an algorithm for finding the size of binary tree.

Solution: Calculate the size of left and right subtrees recursively, add 1 (current node) and return
to its parent.

/[ Compute the number of nodes in a tree.
int SizeOfBinaryTree(struct BinaryTreeNode *roof) |
iffroot==NULL)
return 0;
else return(SizeOfBinaryTree(root—left] + 1 + SizeOfBinaryTree(root-right));

!

Time Complexity: O(n). Space Complexity: O(n).

Problem-7 Can we solve Problem-6 without recursion?

Solution: Yes, using level order traversal.

int SizeofBTUsingLevelOrder(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *Q:
int count = 0;
ifllroot) return 0;
(2 = CreateQueue);
EnQueue(Q,root);
while(!IsEmptyQueue(Q)) |
temp = DeQueue(Q);
counttt;
f{temp—+left)
EnQueue (Q, temp-—left);
ifltemp-sright]
EnQueue (0, temp—right);
|
DeleteQueue(Q);
return count,



Time Complexity: O(n). Space Complexity: O(n).

Problem-8 Give an algorithm for printing the level order data in reverse order. For example,
the output for the below tree should be: 4567231

root o

void LevelOrderTraversallnReverse(struct BinaryTreeNode *root];
struet Queue *0);
struct Stack *s = CreateStack();
struct BinaryTreeNode *temp;
if{lroot) return;
(0 = CreateQueue);
EnQueue(Q, root);
while[!lsEmptyQueue(Q)) |
temp = DeQueue(Q);
ifltemp-sright)
EnQueue(Q, temp-right);
if{temp-+left|
EnQueue (Q, temp—left);
Push(s, temp);

Solution:

|
while([TsEmptyStack(s)
printf|*%d",Pop(s|—~datal;



Time Complexity: O(n). Space Complexity: O(n).
Problem-9 Give an algorithm for deleting the tree.

root o

To delete a tree, we must traverse all the nodes of the tree and delete them one by one. So which
traversal should we use: Inorder, Preorder, Postorder or Level order Traversal?

Solution:

Before deleting the parent node we should delete its children nodes first. We can use postorder
traversal as it does the work without storing anything. We can delete tree with other traversals
also with extra space complexity. For the following, tree nodes are deleted in order — 4,5,2,3,1.

void DeleteBinaryTree(struct BinaryTreeNode *root)|
iffroot == NULL)
return;
[* first delete both subtrees */
DeleteBinaryTree(root=left);
DeleteBinaryTree[root—right);
/ [Delete current node only after deleting subtrees

free(root);

Time Complexity: O(n). Space Complexity: O(n).
Problem-10 Give an algorithm for finding the height (or depth) of the binary tree.

Solution: Recursively calculate height of left and right subtrees of a node and assign height to the
node as max of the heights of two children plus 1. This is similar to PreOrder tree traversal (and

DFS of Graph algorithms).



int HeightOfBinaryTree(struct BinaryTreeNode *root)|
int leftheight, rightheight;

iffroot == NULL)
return 0;
else |
[* compute the depth of each subtree */
leftheight = HeightOfBinaryTree(root-left);
rightheight = HeightOfBinaryTree(root—right)

iffleftheight > rightheight)
return(leftheight + 1);
else
return{rightheight + 1);
}
|

Time Complexity: O(n). Space Complexity: O(n).

Problem-11 Can we solve Problem-10 without recursion?

Solution: Yes, using level order traversal. This is similar to BFS of Graph algorithms. End of
level is identified with NULL.



int FindHeightofBinaryTree{struct BinaryTreeNode *roof)|
int level = 0;
struct Queue *();

if{lroot) return 0:
() = CreateQueue();
EnQueue(Q root);

/| End of first level
EnQueue(Q NULL);
while(!IsEmptyQueue(Q)) |
root=DeQueue(Q);
[/ Completion of current level.
iffroot==NULL) {
[ [Put another marker for next level,
if{lsEmptyQueue(Q))
EnQueue(Q NULL);

leveltt;

|
|

else | iffroot—left)
EnQueue(Q, root—left);
iflroot-right]
EnQueue(Q, root-right);

|
!

1
!

return level;
}
Time Complexity: O(n). Space Complexity: O(n).
Problem-12 Give an algorithm for finding the deepest node of the binary tree.

Solution:



struct BinaryTreeNode *DeepestNodeinBinaryTree(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *Q:
if{lroot) return NULL;
( = CreateQueue();
EnQueue|(Q,root);
while(IsEmptyQueue(Q)) |
temp = DeQueue(Q);
ifltemp—left]
EnQueue(Q, temp—left);
ifltemp—right]
EnQueue(Q), temp-right),
|
!
DeleteQueue(Q);
return temp;

}
Time Complexity: O(n). Space Complexity: O(n).

Problem-13 Give an algorithm for deleting an element (assuming data is given) from binary
tree.

Solution: The deletion of a node in binary tree can be implemented as

. Starting at root, find the node which we want to delete.

. Find the deepest node in the tree.

. Replace the deepest node’s data with node to be deleted.
. Then delete the deepest node.

Problem-14 Give an algorithm for finding the number of leaves in the binary tree without
using recursion.

Solution: The set of nodes whose both left and right children are NULL are called leaf nodes.



int NumberOfLeavesInBTusingLevelOrder{struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *Q:
int count = 0;
if(root) return 0;
Q = CreateQueue);

EnQueue(Q,root);
while{lIsEmptyQueue(Q) |
temp = DeQueue(Q);
if{ltemp-left && temp-right)
counttt;
else | ifftemp—left)
EnQueue(Q, temp—sleft);
ifltemp—ight]
EnQueue(Q, temp—right);

|
1

|
DeleteQueue(Q);

return count;

}
Time Complexity: O(n). Space Complexity: O(n).

Problem-15 Give an algorithm for finding the number of full nodes in the binary tree without
using recursion.

Solution: The set of all nodes with both left and right children are called full nodes.



int NumberOfFullNodesInBTusinglevelOrder{struct BmaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *(Q;
int count = 0;
if{lroot)
return 0;
(2 = CreateQueue();
EnQueue(Q toot):
while(lIsEmptyQueue(Q)) |
temp = DeQueue(Q);
fltemp—left &b temp—right)
countt+t,
ifltemp-sleft)
EnQueue (Q, temp—left);
ifltemp-right)
EnQueue (0, temp-right);
[
|
DeleteQueue(Q):
refurn count;

|

Time Complexity: O(n). Space Complexity: O(n).

Problem-16 Give an algorithm for finding the number of half nodes (nodes with only one
child) in the binary tree without using recursion.

Solution: The set of all nodes with either left or right child (but not both) are called half nodes.



int NumberOfHalfNodesInBTusingLevelOrder(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struet Queue *0;
int count = 0;
ifltroot) return 0;
Q = CreateQueue();
EnQueue((),root);

while(!lsEmptyQueue(Q)) |
temp = DeQueue(Q);
//we can use this condition also instead of two temp-sleft * temp-right
iflltemp-sleft && temp—sright | | temp-left && ltemp-right]
counttt;
ifltemp-sleft)
EnQueue (Q, temp-left);
ifltemp-right]
EnQueue (Q, temp—right);
|
|
DeleteQueue(Q);
return count,

|

Time Complexity: O(n). Space Complexity: O(n).
Problem-17 Given two binary trees, return true if they are structurally identical.

Solution:

Algorithm:

. If both trees are NULL then return true.
. If both trees are not NULL, then compare data and recursively check left and right
subtree structures.



[ [Return true if they are structurally identical,
int AreStructurullySameTrees(struct BinaryTreeNode *root], struct BinaryTreeNode *root2) |

{ [ both empty—1

iffroot1==NULL & root2==NULL)
return 1;

iffroot1==NULL | | root2==NULL
return 0

/| both non-empty—+compare them
return(root]—data == root2—data & AreStructurullySameTrees(root] —left, root2—left) &
AreStructurullySameTrees(root] —rght, root2-nght));

}

Time Complexity: O(n). Space Complexity: O(n), for recursive stack.

Problem-18 Give an algorithm for finding the diameter of the binary tree. The diameter of a
tree (sometimes called the width) is the number of nodes on the longest path between two
leaves in the tree.

Solution: To find the diameter of a tree, first calculate the diameter of left subtree and right
subtrees recursively. Among these two values, we need to send maximum value along with
current level (+1).



int DiameterOfTree(struct BinaryTreeNode *root, int *ptr]|
int left, right;
ifflroot)
refurn 0,

left = DiameterOfTree(root—left, ptr);
right = DiameterOfTree(root—right, ptr);

iffleft + right » *ptr)
*tr = left + right;
refurn Max(left, right)+1;

|
!

/ [Alternative Coding
static int diameter(struct BinaryTreeNode *roof| |
if (root == NULL)

return 0;
int [Height = height{root-»¢ft);
int rHeight = height{root-right);
int [Diameter = diameter(root-left];

int rDiameter = diameter(root-right);

return max(|Height + rHeight + 1, max(IDiameter, rDiameter]);

}

[* The function Compute the "height” of a tree, Height is the number of nodes along
the longest path from the root node down to the farthest leaf node.*/
static int height(Node root] |
if (root == null
return 0;
return | + max(height(root.left), height(root.right));

1
!

There is another solution and the complexity is O(n). The main idea of this approach is that the
node stores its left child’s and right child’s maximum diameter if the node’s child is the “root”,
therefore, there is no need to recursively call the height method. The drawback is we need to add
two extra variables in the node structure.



int findMaxLen(Node root) |
int nMaxLen = 0;
if [root == null)
refurn 0;

if [root.left == null]
root.nMaxLeft = 0;

if [root.right == null)
root.nMaxRight = 0;

if [root.left = null)
findMaxLen(root.left);

if (root right != null)
findMaxLen|root.right);

if (root.left |= null| |
int nTempMaxLen =0,
nTempMaxLen = (root.left. nMaxLeft > root.left.nMaxRight) ?
root.left.nMaxLeft : root left.nMaxRight;
root.nMaxLeft = nTempMaxLen + I;

|
|
if [root.right != null) |
int nTempMaxLen = 0;
nTempMaxLen = (root.right nMaxLeft > root. right.nMaxRight) ?
toot.right.nMaxLeft : root right.nMaxRight;
root nMaxRight = nTempMaxLen + 1;
|
1
if (root.nMaxLeft + root.nMaxRight > nMaxLen|
nMaxLen = root nMaxLelt + root.nMaxRight;
return nMaxLen;

|
Time Complexity: O(n). Space Complexity: O(n).

Problem-19 Give an algorithm for finding the level that has the maximum sum in the binary
tree.

Solution: The logic is very much similar to finding the number of levels. The only change is, we



need to keep track of the sums as well.



int FindLevelwithMaxSum(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
int level=0, maxLevel=0;
struct Queue *Q);
int currentSum = 0, maxSum = 0;
if{lroot)
return 0;
Q=CreateQueue();
EnQueue(Q,root);
EnQueue(Q,NULL); [ [End of first level.

while(llsEmptyQueue(Q)| |
temp =DeQueue(Q);

/[ 1f the current level is completed then compare sums
ifltemp == NULL) |
flcurrentSum> maxSum) |
maxsum = currentSum;
maxLevel = level;
|
currentSum = 0;
| [place the indicator for end of next level at the end of queue
ifl IsEmptyQueue(Q))
EnQueue(Q,NULL);
level++:

else |
currentSum += temp-data;
ifltemp—left)
EnQueue(temp, temp—sleft);
iflroot—right]
EnQueue(temp, temp—right];
}

1
!

return maxLevel;

|



Time Complexity: O(n). Space Complexity: O(n).
Problem-20 Given a binary tree, print out all its root-to-leaf paths.

Solution: Refer to comments in functions.

void PrintPathsRecur{struct BinaryTreeNode *root, nt path(], int pathLen| |
iffroot ==NULL)
refurm,
/[ append this node to the path array
path[pathLen| = root—data;
pathLent+;
/[ it's a leaf, so print the path that led to here
iffroot-sleft==NULL & root-right==NULL)
PrintArray(path, pathLen|;
else |
/| otherwise try both subtrees
PrintPathsRecur(root—eft, path, pathLen);
PrintPathsRecur(root—right, path, pathLen);

1
|

/| Function that prints out an array on a line,
void PrintArray(int ints|), nt len) |
for (int 1=0; i<len; i+4)
printf[*%d” ints[1));
i

Time Complexity: O(n). Space Complexity: O(n), for recursive stack.

Problem-21 Give an algorithm for checking the existence of path with given sum. That
means, given a sum, check whether there exists a path from root to any of the nodes.

Solution: For this problem, the strategy is: subtract the node value from the sum before calling its
children recursively, and check to see if the sum is 0 when we run out of tree.



void PrintPathsRecur(struct BinaryTreeNode *root, int path||, int pathLen| |
if[root ==NULL|
return;

/| append this node to the path array
path[pathLen| = root—data;
pathLent+;
/[ it's a leaf, so print the path that led to here
iffroot—sleft==NULL && root—right==NULL)
PrintArray(path, pathLen|;
else |
/| otherwise try both subtrees
PrintPathsRecur{root—left, path, pathLen);
PrintPathsRecur{root—right, path, pathLen);

!
|
[ Function that prints out an array on a line,
void PrintArray(int nts[], inf len) |
for (int 1=0; 1<len; 144
printf{*“%d”,ints{i])

if{[root—left &G root—right)| | ('root—left &G root—right))
return(HasPathSumiroot—left, remainingSum| | |
HasPathSum(root—right, remainingSum));
else iffroot-left)
return HasPathSum(root-+left, remainingSum|;
else return HasPathSumroot-right, remainingSum);

}
Time Complexity: O(n). Space Complexity: O(n).

Problem-22 Give an algorithm for finding the sum of all elements in binary tree.

Solution: Recursively, call left subtree sum, right subtree sum and add their values to current
nodes data.



int Add(struct BinaryTreeNode *root] |
iflroot == NULL
return 0;

else return (root—data + Add(root—left) + Add(root—right));

|
!

Time Complexity: O(n). Space Complexity: O(n).

Problem-23 Can we solve Problem-22 without recursion?

Solution: We can use level order traversal with simple change. Every time after deleting an
element from queue, add the nodes data value to sum variable.

int SumofBTusingLevelOrder(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *Q;
mnt sum = 0;
iflroot)
return 0;
( = CreateQueue();
EnQueue(() toot):
while(!IsEmptyQueue(Q)) |
temp = DeQueue(Q);
sum += temp—data;
ifltemp—eft]
EnQueue (Q, temp—left);
ifltemp=right]
EnQueue (Q, temp—nght);
[
|
DeleteQueue(Q):

refurn sum,

Time Complexity: O(n). Space Complexity: O(n).

Problem-24 Give an algorithm for converting a tree to its mirror. Mirror of a tree is another
tree with left and right children of all non-leaf nodes interchanged. The trees below are
mirrors to each other.



root —p root o

Solution:

struct BinaryTreeNode *MirrorOfBinaryTree(struct BinaryTreeNode *root]|
struct BinaryTreeNode * temp;
iffroot) |
MirrotOfBinaryTree(root—left);
MirrorOfBinaryTree(root—right);
[* swap the pointers in this node */
temp = root—eft;
root—left = root—right;
root=right = temp;

|

return root;

}

Time Complexity: O(n). Space Complexity: O(n).

Problem-25 Given two trees, give an algorithm for checking whether they are mirrors of
each other.

Solution:



int AreMirrors(struct BinaryTreeNode * rootl, struct BinaryTreeNode * root2) |
iffroot] == NULL && root2 == NULL)

return 1;

ffroot] == NULL || root2 == NULL)
return 0;

iflroot1—data |= root2—data)
returt ;

else return AreMirrors(root 1-sleft, root2—tight) &b AreMirrorsiroot1—right, root2—left);

}

Time Complexity: O(n). Space Complexity: O(n).

Problem-26 Give an algorithm for finding LCA (Least Common Ancestor) of two nodes in a
Binary Tree.

Solution:

struct BinaryTreeNode *LCA(struct BinaryTreeNode *root, struct BinaryTreeNode *a,
struct BinaryTreeNode *B)|
struct BinaryTreeNode *left, *right;
ifiroot == NULL)
return root;
iflroot == a | | oot == f)
return root;
left = LCA [root=left, a, B );
right = LCA [root—right, o, B );
flleft && right)
return root;
else return (left? left: right)

Time Complexity: O(n). Space Complexity: O(n) for recursion.

Problem-27 Give an algorithm for constructing binary tree from given Inorder and Preorder
traversals.

Solution: Let us consider the traversals below:

Inorder sequence: DBE AF C
Preorder sequence: ABDECF



DBE FC

In a Preorder sequence, leftmost element denotes the root of the tree. So we know ‘A’ is the root
for given sequences. By searching ‘A’ in Inorder sequence we can find out all elements on the left
side of ‘A’, which come under the left subtree, and elements on the right side of ‘A’, which come
under the right subtree. So we get the structure as seen below.

We recursively follow the above steps and get the following tree.

Algorithm: BuildTree()

1

w

Select an element from Preorder. Increment a Preorder index variable
(preOrderIndex in code below) to pick next element in next recursive call.

Create a new tree node (newNode) from heap with the data as selected element.

Find the selected element’s index in Inorder. Let the index be inOrderIndex.

Call BuildBinaryTree for elements before inOrderIndex and make the built tree as left
subtree of newNode.

Call BuildBinaryTree for elements after inOrderIndex and make the built tree as right
subtree of newNode.

return newNode.



struct BinaryTreeNode *BuildBinaryTree(int nOrder(], int preOrder(], int inOrderStart, int inOrderEnd)]
static int preOrderIndex = 0;
struct BinaryTreeNode *newNode;

ifjinOrderStart > inOrderEnd)
return NULL;
newNode = (struct BinaryTreeNode *) malloc (sizeof{struct BinaryTreeNode]);
ifflnewNode] |
printf|‘Memory Error”);
return NULL;
}

/[ Select current node from Preorder traversal using preOrderIndex
newNode—data = preOrder{preOrderlndex];
preOrderindex++;

ifinOrderStart == mOrderEnd)
return newNode;
/[ find the index of this node in Inorder traversal
int inOrderindex = Search(inOrder, inOrderStart, inOrderEnd, newNode—data);

/ [Fill the left and right subtrees using index in Inorder traversal
newNode—left = BuildBinaryTree(inOrder, preOrder, inOrderStart, mOrderlndex -1);

newNode—night = BuildBinaryTree(inOrder, preOrder, inOrderlndex +1, inOrderEnd);
return newNode;

!
Time Complexity: O(n). Space Complexity: O(n).

Problem-28 If we are given two traversal sequences, can we construct the binary tree
uniquely?

Solution: It depends on what traversals are given. If one of the traversal methods is Inorder then
the tree can be constructed uniquely, otherwise not.
Therefore, the following combinations can uniquely identify a tree:

Inorder and Preorder
Inorder and Postorder
Inorder and Level-order



The following combinations do not uniquely identify a tree.

. Postorder and Preorder
. Preorder and Level-order
. Postorder and Level-order

For example, Preorder, Level-order and Postorder traversals are the same for the above trees:

So, even if three of them (PreOrder, Level-Order and PostOrder) are given, the tree cannot be
constructed uniquely.

Problem-29 Give an algorithm for printing all the ancestors of a node in a Binary tree. For
the tree below, for 7 the ancestors are 1 3 7.

root

Solution: Apart from the Depth First Search of this tree, we can use the following recursive way
to print the ancestors.



int PrintAllAncestors(struct BinaryTreeNode *root, struct BinaryTreeNode *node)|
iffroot == NULL) return 0:
ifftoot-sleft == node | | root-right == node | | PrintAllAncestors(root—left, node] ||
PrintAllAncestors(root—right, node]) |
printf(*%d”, root—datal;

return 1;

1
|

return 0;

}
Time Complexity: O(n). Space Complexity: O(n) for recursion.

Problem-30 Zigzag Tree Traversal: Give an algorithm to traverse a binary tree in Zigzag
order. For example, the output for the tree below should be: 1324567

root °

Solution: This problem can be solved easily using two stacks. Assume the two stacks are:
currentLevel and nextLevel. We would also need a variable to keep track of the current level
order (whether it is left to right or right to left).

We pop from currentLevel stack and print the node’s value. Whenever the current level order is
from left to right, push the node’s left child, then its right child, to stack nextLevel. Since a stack
is a Last In First Out (LIFO) structure, the next time that nodes are popped off nextLevel, it will
be in the reverse order.

On the other hand, when the current level order is from right to left, we would push the node’s
right child first, then its left child. Finally, don’t forget to swap those two stacks at the end of each
level (i. e., when currentLevel is empty).



void ZigZagTraversal(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
int leftToRight = 1;
if{iroot]
return;

struct Stack *currentLevel = CreateStack(), *nextLevel = CreateStack();
PushlcurrentLevel, root);
while(![sEmptyStack(currentLevel]) |
temp = Pop(currentLevel)
ifltemp) |
printf(*od” temp—data);
iflleftToRight |
fltemp—left] Push(nextLevel, temp—lef;
ifltemp-right] Push(nextLevel, temp-right)

|
i

else |  ifftemp-right) Push(nextLevel, temp-right)
fitemp—left) Push{nextLevel, temp—sleft);
|
}
ifl sEmptyStack(currentLevel]| |
leftToRight = 1-leftToRight;

swaplcurrentLevel, nextLevel);

!
}

Time Complexity: O(n). Space Complexity: Space for two stacks = O(n) + O(n) = O(n).

Problem-31 Give an algorithm for finding the vertical sum of a binary tree. For example, The
tree has 5 vertical lines

Vertical-1: nodes-4 => vertical sumis 4

Vertical-2: nodes-2 => vertical sum is 2

Vertical-3: nodes-1,5,6 => vertical sumis1 +5+6 =12
Vertical-4: nodes-3 => vertical sumis 3

Vertical-5: nodes-7 => vertical sumis 7

We need to output: 42 1237



root °

Solution: We <can do an inorder traversal and hash the column. We call
VerticalSumlnBinaryTreefroot, 0) which means the root is at column 0. While doing the traversal,
hash the column and increase its value by root — data.

void VerticalSumInBinaryTree (struct BinaryTreeNode *root, int column)|
iffroot==NULL)
return,
VerticalSumInBinaryTree(root—left, column-1);

| [Refer Hashing chapter for implementation of hash table
Hash|column| += root—data;

VerticalSumInBinaryTree(root-right, columnt1);

[
|

VerticalSumInBinaryTree(root, 0);
Print Hash;

Problem-32 How many different binary trees are possible with n nodes?

Solution: For example, consider a tree with 3 nodes (n = 3). It will have the maximum
combination of 5 different (i.e., 23 -3 = 5) trees.

AV AN,



In general, if there are n nodes, there exist 2" —n different trees.

Problem-33 Given a tree with a special property where leaves are represented with ‘L’ and
internal node with ‘I’. Also, assume that each node has either 0 or 2 children. Given
preorder traversal of this tree, construct the tree.

Example: Given preorder string => ILILL

root

Solution: First, we should see how preorder traversal is arranged. Pre-order traversal means
first put root node, then pre-order traversal of left subtree and then pre-order traversal of right
subtree. In a normal scenario, it’s not possible to detect where left subtree ends and right subtree
starts using only pre-order traversal. Since every node has either 2 children or no child, we can
surely say that if a node exists then its sibling also exists. So every time when we are computing a
subtree, we need to compute its sibling subtree as well.

Secondly, whenever we get ‘L’ in the input string, that is a leaf and we can stop for a particular
subtree at that point. After this ‘L’ node (left child of its parent ‘L), its sibling starts. If ‘L’ node is
right child of its parent, then we need to go up in the hierarchy to find the next subtree to compute.

Keeping the above invariant in mind, we can easily determine when a subtree ends and the next
one starts. It means that we can give any start node to our method and it can easily complete the
subtree it generates going outside of its nodes. We just need to take care of passing the correct
start nodes to different sub-trees.



struct BinaryTreeNode *BuildTreeFromPreOrder{char* A, int *i)

|

struct BinaryTreeNode *newNode;

newNode = (struct BinaryTreeNode *| malloc(sizeof|struct BinaryTreeNode]);
newNode—data = A[*;

newNode—left = newNode-right = NULL;

if{A == NULL{ [ [Boundary Condition
free(newNode);
return NULL;

|

iflA] == L) [ /On reaching leaf node, return
return newNode;

Hutit], [ [Populate left sub tree

newNode—left = BuildTreeFromPreOrder(A, 1);

Hmtit]: [ [Populate right sub tree

newNode—right = BuildTreeFromPreOrder(A, 1);

return newNode;

Time Complexity: O(n).

Problem-34 Given a binary tree with three pointers (left, right and nextSibling), give an

algorithm for filling the nextSibling pointers assuming they are NULL initially.

Solution: We can use simple queue (similar to the solution of Problem-11). Let us assume that the
structure of binary tree is:



struct BinaryTreeNode |
struct BinaryTreeNode* left;
struct BinaryTreeNode* nght;
struct BinaryTreeNode* nextSibling;

h

int FillNextSiblings(struct BinaryTreeNode *root)|
struct BinaryTreeNode *temp;
struct Queue *Q;
iflroot)
return 0;

( = CreateQueue();

EnQueue(Q,root);
EnQueue(Q,NULL);

while(IsEmptyQueue(Q)) |
temp =DeQueue(Q);

/| Completion of current level,
ifltemp ==NULL) { / /Put another marker for next level,

iflllsEmptyQueue(Q))
EnQueue(Q NULL):

1
!

else |
temp-nextSibling = QueueFront(Q);
iffroot—left)
EnQueue(Q, temp—left];
iffroot-right)
EnQueue(Q), temp-right);

}
Time Complexity: O(n). Space Complexity: O(n).

Problem-35 Is there any other way of solving Problem-34?

Solution: The trick is to re-use the populated nextSibling pointers. As mentioned earlier, we just



need one more step for it to work. Before we pass the left and right to the recursion function
itself, we connect the right child’s nextSibling to the current node’s nextSibling left child. In order
for this to work, the current node nextSibling pointer must be populated, which is true in this
case.

void FillNextSiblings(struct BinaryTreeNode* root) |
if ('root)
return;
If [root-left)
root—Jeft—nextSibling = root—right;
if [root-right)
root—right—nextSibling = (root—nextSibling) ? root—nextSibling-left : NULL;

FillNextSiblings(root—left];
FillNextSiblings(root—right);
}

Time Complexity: O(n).

6.7 Generic Trees (N-ary Trees)

In the previous section we discussed binary trees where each node can have a maximum of two
children and these are represented easily with two pointers. But suppose if we have a tree with
many children at every node and also if we do not know how many children a node can have, how
do we represent them?

For example, consider the tree shown below.
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How do we represent the tree?

In the above tree, there are nodes with 6 children, with 3 children, with 2 children, with 1 child,
and with zero children (leaves). To present this tree we have to consider the worst case (6
children) and allocate that many child pointers for each node. Based on this, the node
representation can be given as:

struct TreeNode
int data;

struct TreeNode *firstChild;
struct TreeNode *secondChild;
struct TreeNode *thirdChild;
struct TreeNode *fourthChild;
struct TreeNode *fifthChild;
struct TreeNode *sixthChld;

1

Since we are not using all the pointers in all the cases, there is a lot of memory wastage. Another
problem is that we do not know the number of children for each node in advance. In order to



solve this problem we need a representation that minimizes the wastage and also accepts nodes
with any number of children.

Representation of Generic Trees

Since our objective is to reach all nodes of the tree, a possible solution to this is as follows:

. At each node link children of same parent (siblings) from left to right.
. Remove the links from parent to all children except the first child.

B m—{—{r—
@/ ®

What these above statements say is if we have a link between children then we do not need extra
links from parent to all children. This is because we can traverse all the elements by starting at
the first child of the parent. So if we have a link between parent and first child and also links
between all children of same parent then it solves our problem.

This representation is sometimes called first child/next sibling representation. First child/next
sibling representation of the generic tree is shown above. The actual representation for this tree
is:
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Based on this discussion, the tree node declaration for general tree can be given as:

struct TreeNode |
int data;
struct TreeNode *firstChild;
struct TreeNode *nextSibling,

it

Note: Since we are able to convert any generic tree to binary representation; in practice we use
binary trees. We can treat all generic trees with a first child/next sibling representation as binary
trees.

Generic Trees: Problems & Solutions

Problem-36 Given a tree, give an algorithm for finding the sum of all the elements of the tree.

Solution: The solution is similar to what we have done for simple binary trees. That means,
traverse the complete list and keep on adding the values. We can either use level order traversal



or simple recursion.

mnt FindSum(struct TreeNode *root)!
ifllroot) tefurn 0;

return root—data + FindSum(root—firstChild) + FindSum(root—nextSibling;

|
|

Time Complexity: O(n). Space Complexity: O(1) (if we do not consider stack space), otherwise
O(n).

Note: All problems which we have discussed for binary trees are applicable for generic trees
also. Instead of left and right pointers we just need to use firstChild and nextSibling.

Problem-37 For a 4-ary tree (each node can contain maximum of 4 children), what is the
maximum possible height with 100 nodes? Assume height of a single node is 0.

Solution: In 4-ary tree each node can contain 0 to 4 children, and to get maximum height, we need
to keep only one child for each parent. With 100 nodes, the maximum possible height we can get
is 99.

If we have a restriction that at least one node has 4 children, then we keep one node with 4
children and the remaining nodes with 1 child. In this case, the maximum possible height is 96.
Similarly, with n nodes the maximum possible height is n — 4.

Problem-38 For a 4-ary tree (each node can contain maximum of 4 children), what is the
minimum possible height with n nodes?

Solution: Similar to the above discussion, if we want to get minimum height, then we need to fill
all nodes with maximum children (in this case 4). Now let’s see the following table, which
indicates the maximum number of nodes for a given height.

Height, h | Maximum Nodes at height, h = 4" Total Nodes height h= 4h+i_g
3
0 ] 1
1 14 1+4
2 4 x4 1+ 4 x 4
3 4 x4 x4 1+4x4+4x4x4
h+1_q

For a given height h the maximum possible nodes are:
logarithm on both sides:

. To get minimum height, take



n B =4 =3n+1= (h+ Dlogd=logBn+1)=h+1=log,(3n+1) = h=log,(3n+1)-1

Problem-39 Given a parent array P, where P[i] indicates the parent of i node in the tree
(assume parent of root node is indicated with —1). Give an algorithm for finding the height
or depth of the tree.

Solution:

For example: if the P is

-1 0 1 6 6 0 0 2 o

0 1 2 2 4 b 6 Fi 8

Its corresponding tree is:

From the problem definition, the given array represents the parent array. That means, we need to
consider the tree for that array and find the depth of the tree. The depth of this given tree is 4. If
we carefully observe, we just need to start at every node and keep going to its parent until we
reach —1 and also keep track of the maximum depth among all nodes.



int FindDepthinGenericTreefint P[], int 0]
int maxDepth =-1, currentDepth =-1, ;
for (inti=0;i<n;itt) |

currentDepth = 0; = 1;

while(P[j} = -1) |
currentDepth#+; § = P[j

I'

iffcurrentDepth > maxDepth)
maxDepth = currentDepth;

[
]

return maxDepth;
}

Time Complexity: O(n?). For skew trees we will be re-calculating the same values. Space

Complexity: O(1).

Problem-40

Note: We can optimize the code by storing the previous calculated nodes’ depth in some hash
table or other array. This reduces the time complexity but uses extra space.

siblings for that node.

Solution: Since tree is represented with the first child/next sibling method, the tree structure can

be given as:

struct TreeNode]
int data;
struct TreeNode *firstChild:

struct TreeNode *nextSibling,

For a given node in the tree, we just need to traverse all its next siblings.

Given a node in the generic tree, give an algorithm for counting the number of



int SiblingsCount(struct TreeNode *eurrent)|
int count = 0;

while[current) |
counttt;
current = current—nextSibling;

i
!

reutrn count;

}
Time Complexity: O(n). Space Complexity: O(1).

Problem-41 Given a node in the generic tree, give an algorithm for counting the number of
children for that node.

Solution: Since the tree is represented as first child/next sibling method, the tree structure can be
given as:

struct TreeNode]
int data;

struct TreeNode *firstChild;
struct TreeNode *nextSibling;

f

For a given node in the tree, we just need to point to its first child and keep traversing all its next
siblings.

mt ChildCount{struct TreeNode *eurrent)|
it count = 0;
current = current—firstChild;

whilelcurrent) |
counttt;

current = current—nextSibling;

1
]

reutrn count;

}

Time Complexity: O(n). Space Complexity: O(1).



Problem-42 Given two trees how do we check whether the trees are isomorphic to each
other or not?

Solution:

root

root root
H_d Hﬁd +-~

Two binary trees root1 and root2 are isomorphic if they have the same structure. The values of
the nodes does not affect whether two trees are isomorphic or not. In the diagram below, the tree
in the middle is not isomorphic to the other trees, but the tree on the right is isomorphic to the tree
on the left.

it [slsomorphic(struct TreeNode *root], struct TreeNode *root2)|
ifllroot] && lroot2)
refurn 1;
iff['root] & root2) || froot] & Iroot2))
return 0;
return (Islsomorphic(root1—-left, root2—left) &b [slsomorphic(root1—right, root2—right));
|

Time Complexity: O(n). Space Complexity: O(n).

Problem-43 Given two trees how do we check whether they are quasi-isomorphic to each
other or not?

Solution:



root root

Two trees rootl and root2 are quasi-isomorphic if rootl can be transformed into root2 by
swapping the left and right children of some of the nodes of rootl. Data in the nodes are not
important in determining quasi-isomorphism; only the shape is important. The trees below are
quasi-isomorphic because if the children of the nodes on the left are swapped, the tree on the right
is obtained.

int Quasilsomorphic(struct TreeNode *root], struct TreeNode *root2)]
ifllroot] && lroot2 return 1;
ifl['root] && root2) | | (root] &b lroot2)|
return 0;
return (Quasilsomorphic(root]—left, root2-left) && Quasilsomorphic(root1-right, root2-right)
|| Quasilsomorphic(root1—right, root2—left) && Quastlsomorphic(root1-left, root2—right));
}

Time Complexity: O(n). Space Complexity: O(n).

Problem-44 A full k —ary tree is a tree where each node has either 0 or k children. Given an
array which contains the preorder traversal of full k —ary tree, give an algorithm for
constructing the full k —ary tree.

Solution: In k —ary tree, for a node at i position its children will be atk *i + 1to k *i + k. For
example, the example below is for full 3-ary tree.
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As we have seen, in preorder traversal first left subtree is processed then followed by root node
and right subtree. Because of this, to construct a full k-ary, we just need to keep on creating the
nodes without bothering about the previous constructed nodes. We can use this trick to build the
tree recursively by using one global index. The declaration for k-ary tree can be given as:



struct K-aryTreeNode|
char data;
struct K-aryTreeNode *child|);
"
int *Ind = 0;
struct K-aryTreeNode *BuildK-aryTree(char Af], int n, int k)}
iffns=0) return NULL;
struct K-aryTreeNode *newNode = (struct K-aryTreeNode*| malloc(sizeof(struct K-arvTreeNode]);
ifllnewNode) |
printf{*Memory Error’);

TETur;

[
!

newNode—child = (struct K-aryTreeNode*| malloc k * sizeof(struct K-aryTreeNode|);
ifllnewNode—child) |
printf“Memory Error);
refurn;
[
newNode=data = Aflnd];
for (int 1= 0; i<k 1+4) |
iflk * Ind +1<n) |
Indt+;
newNode—child|i] = BuildK-aryTree(A, n, k,Ind );

|

¥
else newNode—child[i] =NULL;
|

return newNode:

|
!

Time Complexity: O(n), where n is the size of the pre-order array. This is because we are moving
sequentially and not visiting the already constructed nodes.

6.8 Threaded Binary Tree Traversals (Stack or Queue-less Traversals)

In earlier sections we have seen that, preorder, inorder and postorder binary tree traversals used
stacks and level order traversals used queues as an auxiliary data structure. In this section we
will discuss new traversal algorithms which do not need both stacks and queues. Such traversal



algorithms are called threaded binary tree traversals or stack/queue — less traversals.

Issues with Regular Binary Tree Traversals

. The storage space required for the stack and queue is large.
. The majority of pointers in any binary tree are NULL. For example, a binary tree
with n nodes has n + 1 NULL pointers and these were wasted.

v . N
10 13
\ /
19 ; 32 20 2
11
. It is difficult to find successor node (preorder, inorder and postorder successors) for

a given node.

Motivation for Threaded Binary Trees

To solve these problems, one idea is to store some useful information in NULL pointers. If we
observe the previous traversals carefully, stack/ queue is required because we have to record the
current position in order to move to the right subtree after processing the left subtree. If we store
the useful information in NULL pointers, then we don’t have to store such information in stack/
queue.

The binary trees which store such information in NULL pointers are called threaded binary trees.
From the above discussion, let us assume that we want to store some useful information in NULL



pointers. The next question is what to store?

The common convention is to put predecessor/successor information. That means, if we are
dealing with preorder traversals, then for a given node, NULL left pointer will contain preorder
predecessor information and NULL right pointer will contain preorder successor information.
These special pointers are called threads.

Classifying Threaded Binary Trees

The classification is based on whether we are storing useful information in both NULL pointers or
only in one of them.

. If we store predecessor information in NULL left pointers only, then we can call
such binary trees left threaded binary trees.

. If we store successor information in NULL right pointers only, then we can call such
binary trees right threaded binary trees.

. If we store predecessor information in NULL left pointers and successor information

in NULL right pointers, then we can call such binary trees fully threaded binary
trees or simply threaded binary trees.

Note: For the remaining discussion we consider only (fully) threaded binary trees.

Types of Threaded Binary Trees

Based on above discussion we get three representations for threaded binary trees.

. Preorder Threaded Binary Trees: NULL left pointer will contain PreOrder
predecessor information and NULL right pointer will contain PreOrder successor
information.

. Inorder Threaded Binary Trees: NULL left pointer will contain InOrder
predecessor information and NULL right pointer will contain InOrder successor
information.

. Postorder Threaded Binary Trees: NULL left pointer will contain PostOrder
predecessor information and NULL right pointer will contain PostOrder successor
information.

Note: As the representations are similar, for the remaining discussion we will use InOrder
threaded binary trees.

Threaded Binary Tree structure

Any program examining the tree must be able to differentiate between a regular left/right pointer



and a thread. To do this, we use two additional fields in each node, giving us, for threaded trees,
nodes of the following form:

4

|_Left LTag data RTag Right\.L

struct ThreadedBinaryTreeNode|
struct ThreadedBinaryTreeNode *left;
int LTag;
int data;
int RTag;
struct ThreadedBinaryTreeNode *night;

Difference between Binary Tree and Threaded Binary Tree Structures

Regular Binary Trees Threaded Binary Trees
if LTag == 0 | NULL left points to the in-order predecessor
if LTag == 1 | left points to the left child left points to left child
if RTag == 0 | NULL right points to the in-order successor
if RTag == 1 | right points to the right child | right points to the right child

Note: Similarly, we can define preorder/postorder differences as well.

As an example, let us try representing a tree in inorder threaded binary tree form. The tree below
shows what an inorder threaded binary tree will look like. The dotted arrows indicate the
threads. If we observe, the left pointer of left most node (2) and right pointer of right most node
(31) are hanging.



A L L
KA
U
U
I
"I I
5 i i I 11
/ ! # \
A I A A
1 I f*' \
| I \
| I ;f A
I I / \
\ 2, . I 16 / 31 Lz
‘_\ -\‘#,’ !,
\ I
<& ‘A

What should leftmost and rightmost pointers point to?

In the representation of a threaded binary tree, it is convenient to use a special node Dummy
which is always present even for an empty tree. Note that right tag of Dummy node is 1 and its
right child points to itself.

For Empty Tree For Normal Tree
wl | O Sl ]. ~ T\ / 1 S 1 A7\
i : * !l / + ;'
S/ <’ To SubTree »

With this convention the above tree can be represented as:
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Finding Inorder Successor in Inorder Threaded Binary Tree

To find inorder successor of a given node without using a stack, assume that the node for which
we want to find the inorder successor is P.

Strategy: If P has a no right subtree, then return the right child of P. If P has right subtree, then
return the left of the nearest node whose left subtree contains p.

struct ThreadedBinaryTreeNode* InorderSuccessor(struct ThreadedBinaryTreeNode *P)|
struct ThreadedBinaryTreeNode *Position;

ifP—=RTag == ()
return P—right;
else |

Position = P-right;
while(Position—LTag == 1|

Position = Position—left;
return Position;



Time Complexity: O(n). Space Complexity: O(1).

Inorder Traversal in Inorder Threaded Binary Tree

We can start with dummy node and call InorderSuccessor() to visit each node until we reach
dummy node.

void [norderTraversal(struct ThreadedBinaryTreeNode *root)]
struct ThreadedBinaryTreeNode *P = InorderSuccessor(roof);
while[P != root) |
P = InorderSuccessor(P);
printfl*/ad” P-data);

Alternative coding:

void [norderTraversal(struct ThreadedBinaryTreeNode *root)|
struct ThreadedBinaryTreeNode *P = root;
while(1) |
P = [norderSuccessor(P);
[P == root) return;
printf{*%d" P-data);

}

Time Complexity: O(n). Space Complexity: O(1).

Finding PreOrder Successor in InOrder Threaded Binary Tree

Strategy: If P has a left subtree, then return the left child of P. If P has no left subtree, then return
the right child of the nearest node whose right subtree contains P.



struct ThreadedBinaryTreeNode* PreorderSuccessor{struct ThreadedBinaryTreeNode P

struct ThreadedBinaryTreeNode *Position;
f[P—L.Tag == ||

return P-left;
else |

Position = P;

while(Position—RTag == ()

Pasition = Position—right;

return Position—right;

}

Time Complexity: O(n). Space Complexity: O(1).

PreOrder Traversal of InOrder Threaded Binary Tree

As in inorder traversal, start with dummy node and call PreorderSuccessorf) to visit each node
until we get dummy node again.

void PreorderTraversal(struct ThreadedBinaryTreeNode *root)|

struct ThreadedBinaryTreeNode *P;

P = PreorderSuccessor{root);
while(P = root] |
P = PreorderSuccessor({P);

printf{‘%d",P—datal;

|

Alternative coding:



vold PreorderTraversal(struct ThreadedBinaryTreeNode *root) |
struct ThreadedBmaryTreeNode *P = roat;
while(1)]
P = PreorderSuccessor(P):
iflP == root) return;
printf{*d" P—datal;

1
|

Time Complexity: O(n). Space Complexity: O(1).

Note: From the above discussion, it should be clear that inorder and preorder successor finding
is easy with threaded binary trees. But finding postorder successor is very difficult if we do not
use stack.

Insertion of Nodes in InOrder Threaded Binary Trees

For simplicity, let us assume that there are two nodes P and Q and we want to attach Q to right of
P. For this we will have two cases.

. Node P does not have right child: In this case we just need to attach Q to P and
change its left and right pointers.

N TN
® ©

. Node P has right child (say, R): In this case we need to traverse R’ left subtree and
find the left most node and then update the left and right pointer of that node (as
shown below).



void [nsertRightlnlnorderTBT(struct ThreadedBinaryTreeNode *P, struct ThreadedBinaryTreeNode *Q)|
struct ThreadedBinaryTreeNode *Temp,
(Q—right = P-right;
(—RTag = P-RTag
Q-lkeft =P
Q—LTag=0;
P-night = Q;
P-RTag = I;
if{Q—RTag == 1) | [ [Case-2
Temp = Q—right;
while(Temp—LTag)
Temp = Temp—left;

Temp=left = Q;

1
[

}

Time Complexity: O(n). Space Complexity: O(1).



Threaded Binary Trees: Problems & Solutions

Problem-45 For a given binary tree (not threaded) how do we find the preorder successor?

Solution: For solving this problem, we need to use an auxiliary stack S. On the first call, the
parameter node is a pointer to the head of the tree, and thereafter its value is NULL. Since we are
simply asking for the successor of the node we got the last time we called the function.

It is necessary that the contents of the stack S and the pointer P to the last node “visited” are
preserved from one call of the function to the next; they are defined as static variables.

/| pre-order successor for an unthreaded binary tree
struct BinaryTreeNode *PreorderSuccessor{struct BinaryTreeNode *node)|
static struct BmaryTreeNode *P;
static Stack *S = CreateStack();
if[node != NULL)
P = node;
if(P=left != NULL) |
Push(SP);
P = P-left;
}
else |
while (P—right == NULL

P = Pop(S);
P = Psright;
}
return P;
|
Problem-46 For a given binary tree (not threaded) how do we find the inorder successor?

Solution: Similar to the above discussion, we can find the inorder successor of a node as:



/[ In-order successor for an unthreaded binary tree
struct BinaryTreeNode *InorderSuccessor(struct BinaryTreeNode *node}|
static struct BinaryTreeNode *P;
static Stack *S = CreateStack();
ifinode != NULL|
P = node;
if(P-right == NULL)
P = Pop(S);
else |
P = P-right;
while (P-left I= NULL)
Push(S, P);
P = P=eft,
}

return F;

6.9 Expression Trees

A tree representing an expression is called an expression tree. In expression trees, leaf nodes are
operands and non-leaf nodes are operators. That means, an expression tree is a binary tree where
internal nodes are operators and leaves are operands. An expression tree consists of binary
expression. But for a u-nary operator, one subtree will be empty. The figure below shows a
simple expression tree for (A + B * C) / D.
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Algorithm for Building Expression Tree from Postfix Expression



struct BinaryTreeNode *BuildExprTree(char postiixExpt]], mnt size)|
struet Stack *S = Stacksize|;
for (int1=0; i< size; i+4) |
if{postfixExprli] is an operand) |
struct BinaryTreeNode newNode = (struct BinaryTreeNode?)
malloc( sizeof (struct BinaryTreeNode));
ifflnewNode) |
printfl*Memory Error”);
return NULL;

1
|

newNode—data =posthixExpr[i;
newNode—left = newNode—right = NULL;
Push(S, newNode|;

|
else |
struct BinaryTreeNode *T2 = Pop(S), *T1 = Popl$);
struct BinaryTreeNode newNode = (struct BinaryTreeNode¥)
malloc(sizeof{struct BinaryTreeNode])
if{'newNode| {
printf{*Memory Error’);
return NULL;

[
!

newNode=data = postixExprl];
newNode—left = T1;
newNode—right = T2;

Push(S, newNode);

[
!

refurn 3;

|
I

Example: Assume that one symbol is read at a time. If the symbol is an operand, we create a tree
node and push a pointer to it onto a stack. If the symbol is an operator, pop pointers to two trees
T, and T, from the stack (T; is popped first) and form a new tree whose root is the operator and

whose left and right children point to T, and T; respectively. A pointer to this new tree is then
pushed onto the stack.



As an example, assume the input is A B C * + D /. The first three symbols are operands, so create
tree nodes and push pointers to them onto a stack as shown below.

C

I 1

A

<

Next, an operator ‘*’ is read, so two pointers to trees are popped, a new tree is formed and a
pointer to it is pushed onto the stack.

R A

Next, an operator ‘+’ is read, so two pointers to trees are popped, a new tree is formed and a
pointer to it is pushed onto the stack.

i N

C B

Next, an operand ‘D’ is read, a one-node tree is created and a pointer to the corresponding tree is
pushed onto the stack.
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Finally, the last symbol (/) is read, two trees are merged and a pointer to the final tree is left on
the stack.

6.10 XOR Trees

This concept is similar to memory efficient doubly linked lists of Linked Lists chapter. Also, like
threaded binary trees this representation does not need stacks or queues for traversing the trees.
This representation is used for traversing back (to parent) and forth (to children) using @
operation. To represent the same in XOR trees, for each node below are the rules used for
representation:

. Each nodes left will have the @ of its parent and its left children.
. Each nodes right will have the & of its parent and its right children.
. The root nodes parent is NULL and also leaf nodes children are NULL nodes.
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Based on the above rules and discussion, the tree can be represented as:
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The major objective of this presentation is the ability to move to parent as well to children. Now,




let us see how to use this representation for traversing the tree. For example, if we are at node B
and want to move to its parent node A, then we just need to perform @ on its left content with its
left child address (we can use right child also for going to parent node).

Similarly, if we want to move to its child (say, left child D) then we have to perform @ on its left
content with its parent node address. One important point that we need to understand about this
representation is: When we are at node B, how do we know the address of its children D? Since
the traversal starts at node root node, we can apply @ on root’s left content with NULL. As a
result we get its left child, B. When we are at B, we can apply & on its left content with A
address.

6.11 Binary Search Trees (BST5s)

Why Binary Search Trees?

In previous sections we have discussed different tree representations and in all of them we did
not impose any restriction on the nodes data. As a result, to search for an element we need to
check both in left subtree and in right subtree. Due to this, the worst case complexity of search
operation is O(n).

In this section, we will discuss another variant of binary trees: Binary Search Trees (BSTs). As
the name suggests, the main use of this representation is for searching. In this representation we
impose restriction on the kind of data a node can contain. As a result, it reduces the worst case
average search operation to O(logn).

Binary Search Tree Property

In binary search trees, all the left subtree elements should be less than root data and all the right
subtree elements should be greater than root data. This is called binary search tree property. Note
that, this property should be satisfied at every node in the tree.

. The left subtree of a node contains only nodes with keys less than the nodes key.
. The right subtree of a node contains only nodes with keys greater than the nodes key.
. Both the left and right subtrees must also be binary search trees.
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Example: The left tree is a binary search tree and the right tree is not a binary search tree (at
node 6 it’s not satisfying the binary search tree property).

Binary Search Tree Declaration

There is no difference between regular binary tree declaration and binary search tree declaration.
The difference is only in data but not in structure. But for our convenience we change the structure
name as:

struct BinarySearchTreeNode|
int data;
struct BinarySearchTreeNode “left;
struct BinarySearchTreeNode *right;



Operations on Binary Search Trees

Main operations: Following are the main operations that are supported by binary search trees:

Find/ Find Minimum / Find Maximum element in binary search trees
Inserting an element in binary search trees
Deleting an element from binary search trees

Auxiliary operations: Checking whether the given tree is a binary search tree or not

Finding k-smallest element in tree
Sorting the elements of binary search tree and many more

Important Notes on Binary Search Trees

Since root data is always between left subtree data and right subtree data,
performing inorder traversal on binary search tree produces a sorted list.

While solving problems on binary search trees, first we process left subtree, then
root data, and finally we process right subtree. This means, depending on the
problem, only the intermediate step (processing root data) changes and we do not
touch the first and third steps.

If we are searching for an element and if the left subtree root data is less than the
element we want to search, then skip it. The same is the case with the right subtree..
Because of this, binary search trees take less time for searching an element than
regular binary trees. In other words, the binary search trees consider either left or
right subtrees for searching an element but not both.

The basic operations that can be performed on binary search tree (BST) are
insertion of element, deletion of element, and searching for an element. While
performing these operations on BST the height of the tree gets changed each time.
Hence there exists variations in time complexities of best case, average case, and
worst case.

The basic operations on a binary search tree take time proportional to the height of
the tree. For a complete binary tree with node n, such operations runs in O(lgn)
worst-case time. If the tree is a linear chain of n nodes (skew-tree), however, the
same operations takes O(n) worst-case time.

Finding an Element in Binary Search Trees

Find operation is straightforward in a BST. Start with the root and keep moving left or right using
the BST property. If the data we are searching is same as nodes data then we return current node.

If the data we are searching is less than nodes data then search left subtree of current node;
otherwise search right subtree of current node. If the data is not present, we end up in a NULL



link.

struct BinarySearchTreeNode *Find(struct BimarySearchTreeNode *root, int data ||
iff root == NULL |
return NULL;
iff data < root—data |
return Find(root—left, datal;
else 1f] data » root—data |
return( Find| root—right, data );
refurn root;

}

Time Complexity: O(n), in worst case (when BST is a skew tree). Space Complexity: O(n), for
recursive stack.

Non recursive version of the above algorithm can be given as:

struct BinarySearchTreeNode *Find(struct BinarySearchTreeNode *root, int data |
if| root == NULL |
return NULL;
while [root) |
if{data == root—data)
return root;
else if|data > root—=data)
root = root-right;
else root = root—left;

E
return NULL;

}

Time Complexity: O(n). Space Complexity: O(1).

Finding Minimum Element in Binary Search Trees

In BSTs, the minimum element is the left-most node, which does not has left child. In the BST
below, the minimum element is 4.



struct BinarySearchTreeNode *FindMin(struct BinarySearchTreeNode *root)]
iffroot == NULL)
return NULL;
else iff root—left == NULL
return root;
else
return FindMin( root—left );

}

Time Complexity: O(n), in worst case (when BST is a left skew tree).
Space Complexity: O(n), for recursive stack.

Non recursive version of the above algorithm can be given as:

struct BinarySearchTreeNode *FindMin(struct BinarySearchTreeNode * root ) |
if root == NULL |
return NULL;
while( root—left I= NULL |
root = root—|eft;
return root;
}

Time Complexity: O(n). Space Complexity: O(1).



Finding Maximum Element in Binary Search Trees

In BSTs, the maximum element is the right-most node, which does not have right child. In the BST
below, the maximum element is 16.

struct BinarySearchTreeNode *FindMax(struct BinarySearchTreeNode *roof) |
iffroot == NULL)
return NULL;
else if| root—right == NULL |
return root;
else return FindMax( root—right );

|

Time Complexity: O(n), in worst case (when BST is a right skew tree).
Space Complexity: O(n), for recursive stack.

\
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Non recursive version of the above algorithm can be given as:



struct BinarySearchTreeNode *FindMax(struct BinarySearchTreeNode * root | |
if| root == NULL |
refurn NULL;
while[ root—right 1= NULL )
root = root—right;
refurn roof;
}

Time Complexity: O(n). Space Complexity: O(1).

Where is Inorder Predecessor and Successor?

Where is the inorder predecessor and successor of node X in a binary search tree assuming all
keys are distinct?

If X has two children then its inorder predecessor is the maximum value in its left subtree and its
inorder successor the minimum value in its right subtree.

Predecessor(X) / \

Successor(X)

If it does not have a left child, then a node’s inorder predecessor is its first left ancestor.



Predecessor(X)

Inserting an Element from Binary Search Tree

To insert data into binary search tree, first we need to find the location for that element. We can
find the location of insertion by following the same mechanism as that of find operation. While
finding the location, if the data is already there then we can simply neglect and come out.
Otherwise, insert data at the last location on the path traversed.

As an example let us consider the following tree. The dotted node indicates the element (5) to be
inserted. To insert 5, traverse the tree using find function. At node with key 4, we need to go right,
but there is no subtree, so 5 is not in the tree, and this is the correct location for insertion.



struct BinarySearchTreeNode *Insert(struct BinarySearchTreeNode *root, int data) |
iff root == NULL | {
root = (struct BinarySearchTreeNode *| malloc(sizeof[struct BinarySearchTreeNode);
iff root == NULL ) {
printf{“"Memory Error”);
refurn;
|
else |
root—data = data;
root—left = root—nght = NULL;

}
else |
iff data < root—data |
root—left = Insert{root—left, datal;
else 1f| data » root—data |
root—right = Insert{root—right, datal;

1
I

return root;

|
|

Note: In the above code, after inserting an element in subtrees, the tree is returned to its parent.
As a result, the complete tree will get updated.

Time Complexity:O(n).
Space Complexity:O(n), for recursive stack. For iterative version, space complexity is O(1).

Deleting an Element from Binary Search Tree

The delete operation is more complicated than other operations. This is because the element to be
deleted may not be the leaf node. In this operation also, first we need to find the location of the
element which we want to delete.

Once we have found the node to be deleted, consider the following cases:

. If the element to be deleted is a leaf node: return NULL to its parent. That means
make the corresponding child pointer NULL. In the tree below to delete 5, set NULL



to its parent node 2.

root

If the element to be deleted has one child: In this case we just need to send the
current node’s child to its parent. In the tree below, to delete 4, 4 left subtree is set
to its parent node 2.

/ﬁ \\
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If the element to be deleted has both children: The general strategy is to replace the

key of this node with the largest element of the left subtree and recursively delete
that node (which is now empty). The largest node in the left subtree cannot have a
right child, so the second delete is an easy one. As an example, let us consider the
following tree. In the tree below, to delete 8, it is the right child of the root. The key
value is 8. It is replaced with the largest key in its left subtree (7), and then that
node is deleted as before (second case).
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Note: We can replace with minimum element in right subtree also.



struct BinarySearchTreeNode *Delete(struct BinarySearchTreeNode *root, int data) |
struct BinarySearchTreeNode *temp;

if| root == NULL |
printf|'Element not there in tree’);
else ifldata < root—data)
root—left = Delete(root—left, data);
else ifldata > root—data |
root—right = Delete(root—-right, data);
else |
| [Found element
Iff root—left &b root—right | |
/* Replace with largest in left subtree */
temp = FindMax( root—left );
root—data = temp—data;
root—left = Delete(root—left, root—data);

|

else |
[* One child ¥/
temp = root;
if| root—left == NULL )
root = root-right;
if| root—right == NULL |
root = root—left;
free( temp |;
|
!
return root;

}

Time Complexity: O(n). Space Complexity: O(n) for recursive stack. For iterative version, space
complexity is O(1).

Binary Search Trees: Problems & Solutions

Note: For ordering related problems with binary search trees and balanced binary search trees,



Inorder traversal has advantages over others as it gives the sorted order.

Problem-47 Given pointers to two nodes in a binary search tree, find the lowest common
ancestor (LCA). Assume that both values already exist in the tree.

Solution:

LCA

30
The main idea of the solution is: while traversing BST from root to bottom, the first node we
encounter with value between a and B, i.e., « < node — data < [3, is the Least Common
Ancestor(LCA) of a and 3 (where a < [8). So just traverse the BST in pre-order, and if we find a
node with value in between a and f3, then that node is the LCA. If its value is greater than both «

and S, then the LCA lies on the left side of the node, and if its value is smaller than both « and f3,
then the LCA lies on the right side.



struct BinarySearchTreeNode *FindLCA|struct BinarySearchTreeNode *root, struct BinarySearchTreeNode *a,
struct BinarySearchTreeNode * ) |
while(1) {

iffa—data < root—data &b f—data > root—data) | |
ln—data > root—data &f B-data < ront-datall

return root;
ifla—data < root—data)
toot = root—left;
else root = root—right;

}

Time Complexity: O(n). Space Complexity: O(n), for skew trees.

Problem-48 Give an algorithm for finding the shortest path between two nodes in a BST.
Solution: It’s nothing but finding the LCA of two nodes in BST.

Problem-49 Give an algorithm for counting the number of BSTs possible with n nodes.
Solution: This is a DP problem. Refer to chapter on Dynamic Programming for the algorithm.

Problem-50 Give an algorithm to check whether the given binary tree is a BST or not.

Solution:
TN
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Consider the following simple program. For each node, check if the node on its left is smaller and
check if the node on its right is greater. This approach is wrong as this will return true for binary
tree below. Checking only at current node is not enough.



int 1sBST(struct BinaryTreeNode* root] |

iffroot == NULL|
return |;

/[ false if left is > than root

ifroot—left = NULL && root—left—data > root—data)
refurn 0;

[ [ false if right is < than root

iflroot—right != NULL && root-right—data < root—datal
return 0

/[ false if, recursively, the left or right is not a BST
f{!IsBST(root—left) | | TsBST(root—right))
return 0;
/| passing all that, it's a BST
return 1,

}

Problem-51 Can we think of getting the correct algorithm?

Solution: For each node, check if max value in left subtree is smaller than the current node data
and min value in right subtree greater than the node data. It is assumed that we have helper
functions FindMin() and FindMax() that return the min or max integer value from a non-empty
tree.



[* Returns true if a binary tree 1s a binary search tree ¥/
int IsBST(struct BinaryTreeNode* root) |
iffroot == NULL|
refurn 1;
[* false if the max of the left is > than root */
iffroot—left = NULL && FindMax(root—left] » root-data)
return 0,
/* false if the min of the right is <= than root */
iffroot—right 1= NULL && FindMin(root—right) < root—data)
return 0;
[* false if, recursively, the left or right is not a BST */
iflllsBST(root—left) | | !sBST(root—right))
return 0,
[* passing all that, it's a BST #/
return 1,

|

Time Complexity: O(n?). Space Complexity: O(n).
Problem-52 Can we improve the complexity of Problem-517

Solution: Yes. A better solution is to look at each node only once. The trick is to write a utility
helper function IsBSTUtil(struct BinaryTreeNode* root, int min, int max) that traverses down the
tree keeping track of the narrowing min and max allowed values as it goes, looking at each node
only once. The initial values for min and max should be INT_MIN and INT_MAX — they narrow
from there.

Initial call; [sBST{root, INT_MIN, INT _MAX);
int IsBST(struct BinaryTreeNode *root, int min, int max) |
1f{lroot|
return 1;
return [root—data >min && root—data < max &&
[sBSTUt{root—left, min, root—data) &b
[sBSTUL{root—right, root—data, max));

}

Time Complexity: O(n). Space Complexity: O(n), for stack space.



Problem-53 Can we further improve the complexity of Problem-517?

Solution: Yes, by using inorder traversal. The idea behind this solution is that inorder traversal of
BST produces sorted lists. While traversing the BST in inorder, at each node check the condition
that its key value should be greater than the key value of its previous visited node. Also, we need
to initialize the prev with possible minimum integer value (say, INT_MIN).

int prev = INT_MIN;
int [sBST(struct BinaryTreeNode *root, int *prev) |
ifllroot) return 1;

ifll[sBST(root—left, prev)
return 0;
f{root—data < *prev]
return 0;
"prev = root—data;
return [sBST(root—right, prev];
}

Time Complexity: O(n). Space Complexity: O(n), for stack space.

Problem-54 Give an algorithm for converting BST to circular DLL with space complexity
O(1).

Solution: Convert left and right subtrees to DLLs and maintain end of those lists. Then, adjust the
pointers.



struct BinarySearchTreeNode *BST2DLL{struct BinarySearchTreeNode *root,
struct BinarySearchTreeNode **Ltail) |
struct BinarySearchTreeNode *left, *ltail, *right, *rtail;
ifllroot) {
* Itail = NULL;
return NULL;
!

left = BST2DLL{root—left, &ltail);
right = BST2DLL{root-right, &rtail);
root=left = Itail;
root—right = right;
if{lright]
* ltail = root;
else |
right-left = root;
* ltail = rtail;
|
I
ifllleft)
return root;
else |
|tail-right = root;

return left;

i
!

[
!

Time Complexity: O(n).
Problem-55 For Problem-54, is there any other way of solving it?

Solution: Yes. There is an alternative solution based on the divide and conquer method which is
quite neat.



struct BinarySearchTreeNode *Append(struct BinarySearchTreeNode *a, struct BinarySearchTreeNode *b) |
struct BinarySearchTreeNode *alast, *bLast;
if (a==NULL|
return b;
if (b==NULL)
refurn a;
alast = a-left
bLast = b-sleft;
alast—right = b;
h-left = alast;
bLast—right = a;
a-left = blast;
return a;

struct BinarySearchTreeNode® TreeTolist[struct BinarySearchTreeNode *roof) |
struct BinarySearchTreeNode *alist, *bList;
if (root==NULL)
return NULL;
aList = TreeTolList(root—left):
bList = TreeToList(root-right];
root=left = root;
root=right = root;
aList = Append|aList, root);
aList = Append(aList, bList);
return(aList);

}
Time Complexity: O(n).

Problem-56 Given a sorted doubly linked list, give an algorithm for converting it into
balanced binary search tree.

Solution: Find the middle node and adjust the pointers.



struct DLLNode * DLLtoBalancedBST(struct DLLNode *head) |
struct DLLNode *temp, *p, *;
iff 'head | | 'head—next)
return head;
temp = FindMiddleNode(head);
p = head,
while(p—-next |= temp)
p = p—mext;
p—next = NULL;
(] = temp—next,
temp-+next = NULL;
temp—prev = DLLtoBalancedBST(head),
temp—next = DLLtoBalancedBST(q);

refurn temp,

Time Complexity: 2T(n/2) + O(n) [for finding the middle node] = O(nlogn).

Note: For FindMiddleNode function refer Linked Lists chapter.

Problem-57 Given a sorted array, give an algorithm for converting the array to BST.

Solution: If we have to choose an array element to be the root of a balanced BST, which element
should we pick? The root of a balanced BST should be the middle element from the sorted array.
We would pick the middle element from the sorted array in each iteration. We then create a node
in the tree initialized with this element. After the element is chosen, what is left? Could you
identify the sub-problems within the problem?

There are two arrays left — the one on its left and the one on its right. These two arrays are the
sub-problems of the original problem, since both of them are sorted. Furthermore, they are
subtrees of the current node’s left and right child.

The code below creates a balanced BST from the sorted array in O(n) time (n is the number of
elements in the array). Compare how similar the code is to a binary search algorithm. Both are
using the divide and conquer methodology.



struct BinaryTreeNode *BuildBST(int A[), int left, int right) |
struct BinaryTreeNode *newNode;
int mid;
iflleft > right)
return NULL:
newNode = (struct BinaryTreeNode *|malloc(sizeof|struct BinaryTreeNode]);

if{lnewNode) |
printf|*Memory Error”;
return;

!
iffleft == right)
newNode—data = Afleft);
newNode—left = newNode—right = NULL;

else| mid = left + [right-left]/ 2;
newNode—data = A|mid|;
newNode—+left = BuildBST(A, left, mid - 1);
newNode—right = BuildBST(A, mid + 1, right);

1
|

return newNode:

|
!

Time Complexity: O(n). Space Complexity: O(n), for stack space.

Problem-58 Given a singly linked list where elements are sorted in ascending order, convert
it to a height balanced BST.

Solution: A naive way is to apply the Problem-56 solution directly. In each recursive call, we
would have to traverse half of the list’s length to find the middle element. The run time complexity
is clearly O(nlogn), where n is the total number of elements in the list. This is because each level
of recursive call requires a total of n/2 traversal steps in the list, and there are a total of logn
number of levels (ie, the height of the balanced tree).

Problem-59 For Problem-58, can we improve the complexity?

Solution: Hint: How about inserting nodes following the list order? If we can achieve this, we no
longer need to find the middle element as we are able to traverse the list while inserting nodes to
the tree.



Best Solution: As usual, the best solution requires us to think from another perspective. In other
words, we no longer create nodes in the tree using the top-down approach. Create nodes bottom-
up, and assign them to their parents. The bottom-up approach enables us to access the list in its
order while creating nodes [42].

Isn’t the bottom-up approach precise? Any time we are stuck with the top-down approach, we can
give bottom-up a try. Although the bottom-up approach is not the most natural way we think, it is
helpful in some cases. However, we should prefer top-down instead of bottom-up in general,
since the latter is more difficult to verify.

Below is the code for converting a singly linked list to a balanced BST. Please note that the
algorithm requires the list length to be passed in as the function parameters. The list length can be
found in O(n) time by traversing the entire list once. The recursive calls traverse the list and
create tree nodes by the list order, which also takes O(n) time. Therefore, the overall run time
complexity is still O(n).

struct BinaryTreeNode® SortedListToBST(struct ListNode *& list, nt start, int end) |
flstart > end)
return NULL;

/| same as [start+end)/2, avoids overflow

int mid = start + (end - start) / 2;

struct BinaryTreeNode *leftChild = SortedListToBST]list, start, mid-1];
struct BinaryTreeNode * parent;

parent = (struct BinaryTreeNode *|malloc(sizeof(struct BinaryTreeNode|);

ifllparent) |
printf|“Memory Error”;

return;

|
|

parent—data=list—data;

parent—left = leftChild;

list = list—next;

parent=sright = SortedListToBST(list, mid+1, end);
return parent;

struct BinaryTreeNode * SortedListToBST(struct ListNode *head, int n |
return SortedListToBST(head, 0, n-1);

[
I



Problem-60 Give an algorithm for finding the k™ smallest element in BST.

Solution: The idea behind this solution is that, inorder traversal of BST produces sorted lists.
While traversing the BST in inorder, keep track of the number of elements visited.

struct BinarySearchTreeNode *kthSmallestinBST(struct BinarySearchTreeNode *root, it k, int *count)|
ifllroot)
refurn NULL;

struct BinarySearchTreeNode *left = kthSmallestInBST(root—left, k, count);
iff left |

return left;

if[+tcount == k|
return roof;

return kthSmallestinBST {root—right, k, count);

Time Complexity: O(n). Space Complexity: O(1).

Problem-61 Floor and ceiling: If a given key is less than the key at the root of a BST then the
floor of the key (the largest key in the BST less than or equal to the key) must be in the left
subtree. If the key is greater than the key at the root, then the floor of the key could be in the
right subtree, but only if there is a key smaller than or equal to the key in the right subtree;
if not (or if the key is equal to the the key at the root) then the key at the root is the floor of
the key. Finding the ceiling is similar, with interchanging right and left. For example, if the
sorted with input array is {1, 2, 8, 10, 10, 12, 19}, then

For x = 0: floor doesn’t exist in array, ceil = 1, For x = 1: floor = 1, ceil = 1
For x = 5: floor =2, ceil = 8, For x = 20: floor = 19, ceil doesn’t exist in array

Solution: The idea behind this solution is that, inorder traversal of BST produces sorted lists.
While traversing the BST in inorder, keep track of the values being visited. If the roots data is
greater than the given value then return the previous value which we have maintained during
traversal. If the roots data is equal to the given data then return root data.



struct BinaryTreeNode *FloorInBST(struct BinaryTreeNode *root, int data)|
struct BinaryTreeNode *prev=NULL;
return FloorlnBSTUtil{root, prev, datal;

!

struct BinaryTreeNode *FloorlnBSTUtil(struct BinaryTreeNode *root,
struct BinaryTreeNode *prev, int data)|
ifllroot]
return NULL;
if{[FloorlnBSTUtil [root—left, prev, datal]
return 0,
iflroot—data == data)
return root;
iflroot—data > data
refurn prev,

Prev = root;
refurn FlootlnBSTUtl{root—right, prev, data);

[
|

Time Complexity: O(n). Space Complexity: O(n), for stack space.

For ceiling, we just need to call the right subtree first, followed by left subtree.



struct BinaryTreeNode *CeilingInBST(struct BinaryTreeNode *root, it data)|
struct BinaryTreeNode *prev=NULL;
return CeilingInBSTUtl[root, prev, data);

[
|

struct BinaryTreeNode *CeilingInBSTUtil[struct BinaryTreeNode *root,
struct BinaryTreeNode *prev, int datal|
if{lroot)
return NULL;
if| CeilinglnBSTUtil[root—right, prev, data))
return 0
iflroot—data == data
return root;
If{root—data < data]
return prev,
prev = root;
return CeilinglnBSTUtilroot—left, prev, datal;

[
I

Time Complexity: O(n). Space Complexity: O(n), for stack space.

Problem-62 Give an algorithm for finding the union and intersection of BSTs. Assume parent
pointers are available (say threaded binary trees). Also, assume the lengths of two BSTs
are m and n respectively.

Solution: If parent pointers are available then the problem is same as merging of two sorted lists.
This is because if we call inorder successor each time we get the next highest element. It’s just a
matter of which InorderSuccessor to call.

Time Complexity: O(m + n). Space complexity: O(1).
Problem-63 For Problem-62, what if parent pointers are not available?

Solution: If parent pointers are not available, the BSTs can be converted to linked lists and then
merged.
1 Convert both the BSTs into sorted doubly linked lists in O(n + m) time. This produces
2 sorted lists.
2 Merge the two double linked lists into one and also maintain the count of total
elements in O(n + m) time.
3 Convert the sorted doubly linked list into height balanced tree in O(n + m) time.

Problem-64 For Problem-62, is there any alternative way of solving the problem?



Solution: Yes, by using inorder traversal.

. Perform inorder traversal on one of the BSTs.

. While performing the traversal store them in table (hash table).

. After completion of the traversal of first BST, start traversal of second BST and
compare them with hash table contents.

Time Complexity: O(m + n). Space Complexity: O(Max(m,n)).

Problem-65 Given a BST and two numbers K1 and K2, give an algorithm for printing all the
elements of BST in the range K1 and K2.

Solution:

void RangePrinter(struct BinarySearchTreeNode *root, int K1, int K2) |
iffroot == NULL)
return;
iffroot—data >= K1J
RangePrinter(root=left, K1, K2);

iffroot—data >= K1 && root—data <= K2
printf(*%d”, root—data);
iffroot—data <= K2)
RangePrinter(root—right, K1, K2);
}

Time Complexity: O(n). Space Complexity: O(n), for stack space.

Problem-66 For Problem-65, is there any alternative way of solving the problem?

Solution: We can use level order traversal: while adding the elements to queue check for the
range.



void RangeSeachLevelOrder(struct BinarySearchTreeNode *root, int K1, int K2)
struct BinarySearchTreeNode *temp;
struct Queue *Q = CreateQueus();
if{lroot]
return NULL;

(Q = EnQueue(Q, root);

while(IsEmptyQueue(Q)) |
temp=DeQueue(q);
ifltemp—data >= K1 && temp—data <= K2|
printf[*%6d” temp—data);
fltemp—left && temp-data >= K1)
EnQueue(Q, temp—+left);
ifltemp-sright &b temp—data <= K2)
EnQueue(Q, temp-right),
DeleteQueue(Q):
return NULL;

Time Complexity: O(n). Space Complexity: O(n), for queue.

Problem-67 For Problem-65, can we still think of an alternative way to solve the problem?

Solution: First locate K1 with normal binary search and after that use InOrder successor until we
encounter K2. For algorithm, refer to problems section of threaded binary trees.

Problem-68 Given root of a Binary Search tree, trim the tree, so that all elements returned in
the new tree are between the inputs A and B.

Solution: It’s just another way of asking Problem-65.

Problem-69 Given two BSTs, check whether the elements of them are the same or not. For
example: two BSTs with data 10 5 20 15 30 and 10 20 15 30 5 should return true and the
dataset with 10 5 20 15 30 and 10 15 30 20 5 should return false. Note: BSTs data can be
in any order.

Solution: One simple way is performing an inorder traversal on first tree and storing its data in
hash table. As a second step, perform inorder traversal on second tree and check whether that
data is already there in hash table or not (if it exists in hash table then mark it with -1 or some
unique value).



During the traversal of second tree if we find any mismatch return false. After traversal of second
tree check whether it has all -1s in the hash table or not (this ensures extra data available in
second tree).

Time Complexity: O(max(m, n)), where m and n are the number of elements in first and second
BST. Space Complexity: O(max(m,n)). This depends on the size of the first tree.

Problem-70 For Problem-69, can we reduce the time complexity?

Solution: Instead of performing the traversals one after the other, we can perform in — order
traversal of both the trees in parallel. Since the in — order traversal gives the sorted list, we can
check whether both the trees are generating the same sequence or not.

Time Complexity: O(max(m,n)). Space Complexity: O(1). This depends on the size of the first
tree.

Problem-71 For the key values 1... n, how many structurally unique BSTs are possible that
store those keys.

Solution: Strategy: consider that each value could be the root. Recursively find the size of the left
and right subtrees.

int CountTrees(int n) |
if n<=1)
réturn 1,
else |
/| there will be one value at the root, with whatever remains on the left and right
/[ each forming their own subtrees. Iterate through all the values that could be the root...
int sum = 0;
int left, right, root;
for [root=1; root<=n; roott++) |
left = CountTrees(root - 1};
right = CountTrees[numKeys - root);

{ [ number of possible trees with this root == left*right

sum += left*right;

i
!

return(sum|;

Problem-72 Given a BST of size n, in which each node r has an additional field r — size,



the number of the keys in the sub-tree rooted at r (including the root node r). Give an O(h)
algorithm GreaterthanConstant(r,k) to find the number of keys that are strictly greater than
k (h is the height of the binary search tree).

Solution:

mnt GreaterthanConstant (struct BinarySearchTreeNode *r, int k)|
keysCount = 0
while (1 != Null )|
if [k < r—data)|
keysCount = keysCount + r—right-ssize + |;

r = r=+]eft:

|
)

else if (k > r—data)
= r-ight;

elsel /[ k = r=key
keysCount = keysCount + r—tight—size;
break:

|
J

[
!

return keysCount;
}

The suggested algorithm works well if the key is a unique value for each node. Otherwise when
reaching k=r — data, we should start a process of moving to the right until reaching a node y with
a key that is bigger then k, and then we should return keysCount + y - size. Time Complexity:
O(h) where h=0(n) in the worst case and O(logn) in the average case.

6.12 Balanced Binary Search Trees
In earlier sections we have seen different trees whose worst case complexity is O(n), where n is
the number of nodes in the tree. This happens when the trees are skew trees. In this section we

will try to reduce this worst case complexity to O(logn) by imposing restrictions on the heights.

In general, the height balanced trees are represented with HB(k), where k is the difference
between left subtree height and right subtree height. Sometimes k is called balance factor.

Full Balanced Binary Search Trees



In HB(k), if k = 0 (if balance factor is zero), then we call such binary search trees as full
balanced binary search trees. That means, in HB(0) binary search tree, the difference between left
subtree height and right subtree height should be at most zero. This ensures that the tree is a full
binary tree. For example,
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Note: For constructing HB(0) tree refer to Problems section.

6.13 AVL (Adelson-Velskii and Landis) Trees

In HB(k), if k = 1 (if balance factor is one), such a binary search tree is called an AVL tree. That
means an AVL tree is a binary search tree with a balance condition: the difference between left
subtree height and right subtree height is at most 1.

Properties of AVL Trees

A binary tree is said to be an AVL tree, if:

. It is a binary search tree, and
. For any node X, the height of left subtree of X and height of right subtree of X differ
by at most 1.



As an example, among the above binary search trees, the left one is not an AVL tree, whereas the
right binary search tree is an AVL tree.

Minimum/M aximum Number of Nodes in AVL Tree

For simplicity let us assume that the height of an AVL tree is h and N(K) indicates the number of
nodes in AVL tree with height h. To get the minimum number of nodes with height h, we should

fill the tree with the minimum number of nodes possible. That means if we fill the left subtree
with height h — 1 then we should fill the right subtree with height h — 2. As a result, the minimum
number of nodes with height h is:

N(h)=Nth—1)+ N(h-2) + 1

In the above equation:

. N(h - 1) indicates the minimum number of nodes with height h — 1.
. N(h - 2) indicates the minimum number of nodes with height h — 2.
. In the above expression, “1” indicates the current node.

We can give N(h — 1) either for left subtree or right subtree. Solving the above recurrence gives:
N(h) = 0(1.618") = h = 1.44logn ~ O(logn)
Where n is the number of nodes in AVL tree. Also, the above derivation says that the maximum

height in AVL trees is O(logn). Similarly, to get maximum number of nodes, we need to fill both
left and right subtrees with height h — 1. As a result, we get:



N(h)=N(h-1)+Nh-1)+1=2Nth-1)+1
The above expression defines the case of full binary tree. Solving the recurrence we get:
N(h) = O(2") = h = logn ~ O(logn)
.. In both the cases, AVL tree property is ensuring that the height of an AVL tree with n nodes is

O(logn).

root
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; hL - N(h-2) '

l N(h-1)

AVL Tree Declaration

Since AVL tree is a BST, the declaration of AVL is similar to that of BST. But just to simplify the
operations, we also include the height as part of the declaration.

struct AVLTreeNode|
struct AVLTreeNode *left;
int data;
struct AVLTreeNode *right;
int height;

h

Finding the Height of an AVL tree



int Height(struct AVLTreeNode *root )|
iff root)
return -1,
else
return root—height;

}

Time Complexity: O(1).

Rotations

When the tree structure changes (e.g., with insertion or deletion), we need to modify the tree to
restore the AVL tree property. This can be done using single rotations or double rotations. Since
an insertion/deletion involves adding/deleting a single node, this can only increase/decrease the
height of a subtree by 1.

So, if the AVL tree property is violated at a node X, it means that the heights of left(X) and
right(X) differ by exactly 2. This is because, if we balance the AVL tree every time, then at any
point, the difference in heights of left(X) and right(X) differ by exactly 2. Rotations is the
technique used for restoring the AVL tree property. This means, we need to apply the rotations for
the node X.

Observation: One important observation is that, after an insertion, only nodes that are on the path
from the insertion point to the root might have their balances altered, because only those nodes
have their subtrees altered. To restore the AVL tree property, we start at the insertion point and
keep going to the root of the tree.

While moving to the root, we need to consider the first node that is not satisfying the AVL
property. From that node onwards, every node on the path to the root will have the issue.

Also, if we fix the issue for that first node, then all other nodes on the path to the root will
automatically satisfy the AVL tree property. That means we always need to care for the first node
that is not satisfying the AVL property on the path from the insertion point to the root and fix it.

Types of Violations

Let us assume the node that must be rebalanced is X. Since any node has at most two children, and
a height imbalance requires that X’s two subtree heights differ by two, we can observe that a
violation might occur in four cases:

1. Aninsertion into the left subtree of the left child of X.

2. Aninsertion into the right subtree of the left child of X.



3. Aninsertion into the left subtree of the right child of X.
4. Aninsertion into the right subtree of the right child of X.

Cases 1 and 4 are symmetric and easily solved with single rotations. Similarly, cases 2 and 3 are
also symmetric and can be solved with double rotations (needs two single rotations).

Single Rotations

Left Left Rotation (LL Rotation) [Case-1]: In the case below, node X is not satisfying the AVL
tree property. As discussed earlier, the rotation does not have to be done at the root of a tree. In
general, we start at the node inserted and travel up the tree, updating the balance information at
every node on the path.
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For example, in the figure above, after the insertion of 7 in the original AVL tree on the left, node
9 becomes unbalanced. So, we do a single left-left rotation at 9. As a result we get the tree on the

right.



struct AVLTreeNode *SmgleRotateLeft(struct AVLTreeNode *X )]
struct AVLTreeNode *W = X—left;
X-left = W—right;
W-right = X;
X-height = max{ Height(X-+left), Height(X-sright) ) + 1;
W—height = max( Height(W—left], X—height | + 1;
return W; /* New root */

}

Time Complexity: O(1). Space Complexity: O(1).

Right Right Rotation (RR Reotation) [Case-4]: In this case, node X is not satisfying the AVL
tree property.
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.13\ /'; /\ A
’r \f’ ) m\\ YAl ¥
.:." “' "
%) —> o ;
AP P A
.'I:: Il-ll- N J;.-';J
( \ f
/A C
B C [ A\ T

For example, in the figure, after the insertion of 29 in the original AVL tree on the left, node 15
becomes unbalanced. So, we do a single right-right rotation at 15. As a result we get the tree on
the right.



struct AVLTreeNode *SmgleRotateRight(struct AVLTreeNode *W | |
struct AVLTreeNode *X = W—right;
W—right = X—left;
X-left=W;
W—height = max( Height(W—right], Height(W—left] | + 1;
X—height = max{ Height(X—right), W—height] + 1,

return X
}
Time Complexity: O(1). Space Complexity: O(1).
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Double Rotations

Left Right Rotation (LR Rotation) [Case-2]: For case-2 and case-3 single rotation does not fix
the problem. We need to perform two rotations.
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As an example, let us consider the following tree: The insertion of 7 is creating the case-2
scenario and the right side tree is the one after the double rotation.



Code for left-right double rotation can be given as:

struct AVLTreeNode *DoubleRotatewithLeft( struct AVLTreeNode *Z )
Z~left = SingleRotateRight( Z—left ;
return SingleRotateLeft(Z);

E

Right Left Rotation (RL Rotation) [Case-3]: Similar to case-2, we need to perform two
rotations to fix this scenario.
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As an example, let us consider the following tree: The insertion of 6 is creating the case-3
scenario and the right side tree is the one after the double rotation.
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Insertion into an AVL tree

Insertion into an AVL tree is similar to a BST insertion. After inserting the element, we just need
to check whether there is any height imbalance. If there is an imbalance, call the appropriate
rotation functions.



struct AVLTreeNode *Insert| struct AVLTreeNode *root, struct AVLTreeNode *parent, int data)|
if| !root) |
root = (struct AVLTreeNode*} malloc(sizeof (struct AVLTreeNode®) |;
if{lroot) |
printf{“Memory Error’); return NULL;
|

else |
root=+data = data;

root—height = 0;
root—left = root—right = NULL;

|
!

|

else if| data < root—data | |
root—left = Insert| root—left, root, data );
if| ( Height| root—eft | - Height( root—right | ) == 2 |
if| data < root—left—data |
root = SingleRotateLeft| root );
else  root = DoubleRotateLeft| root );

|

|
|

else if| data > root—data | |
root—right = [nsert( root—right, root, data );
if| | Height| root—right | - Height( root-left | | =2 {
if| data < root—right—data |
root = SingleRotateRight| root J;
else root = DoubleRotateRight( root );

{
|

}
[* Else data 1s in the tree already. We'll do nothing ¥/

root—height = max( Height{root—left), Height[root—right] | + ;

return root;

|
|

Time Complexity: O(logn). Space Complexity: O(logn).

AVL Trees: Problems & Solutions



Problem-73 Given a height h, give an algorithm for generating the HB(0).

Solution: As we have discussed, HB(0) is nothing but generating full binary tree. In full binary
tree the number of nodes with height h is: 2" — 1 (let us assume that the height of a tree with one
node is 0). As a result the nodes can be numbered as: 1 to 21— 1.

struct BinarySearchTreeNode *BuildHBO(int h|
struct BinarySearchTreeNode *temp;
iffh == 0) return NULL;
temp = (struct BinarySearchTreeNode *) malloc (sizeof|struct BinarySearchTreeNode|);
temp—left = BuildHBO (h-1);
temp—data = countt+; [ /assume count is a global vaniable
temp-right = BuildHBO (h-1];
return temp;

|

Time Complexity: O(n).
Space Complexity: O(logn), where logn indicates the maximum stack size which is equal to
height of tree.

Problem-74 Is there any alternative way of solving Problem-73?

Solution: Yes, we can solve it following Mergesort logic. That means, instead of working with
height, we can take the range. With this approach we do not need any global counter to be
maintained.

struct Binary3earchTreeNode *BuildHBO{int 1, it r{
struct BinarySearchTreeNode *temp;
int mid =1+
iff 1 > r) return NULL;
temp = [struct EinaqfﬁﬂarchTreeNnde *) malloc [sizeof struct Einaq-ﬂearchTreeNnde]];
temp—+data = mid;
temp-+left = BuildHBO(l, mud-1);
temp-right = BuildHBO[mud+1, 1);

return temp;

i
|

The initial call to the BuildHBO function could be: BuildHBO(1, 1 << h). 1 <« h does the shift
operation for calculating the 21— 1.



Time Complexity: O(n). Space Complexity: O(login). Where logn indicates maximum stack size
which is equal to the height of the tree.

Problem-75 Construct minimal AVL trees of height 0,1,2,3,4, and 5. What is the number of
nodes in a minimal AVL tree of height 6?

Solution Let N(h) be the number of nodes in a minimal AVL tree with height h.

N(0) = 1 0

N(1l) = 2 C/O

O
N(h) = 1+ Nh—1) + N(h—-2) .f; i
O

N(2) = 14+ N(1) + N(0) D/ \O

=1+2+1=4

N3) = 1+ N@2) + N(1) \D
=1 4d LB =7 \Do/
o

O/o
AN
{)=1+?(+J4=§2] O/O/EC/O/

N(5) =1+ N#4) + N3
= =2

Problem-76 For Problem-73, how many different shapes can there be of a minimal AVL tree



of height h?
Solution: Let NS(h) be the number of different shapes of a minimal AVL tree of height h.

NS(0) = 1

0
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NS(3) = 2 + NS(2) + NS(1) C/D\J l:}/G\O
—2+4+1=28 \D O/

NS(h) = 2 » NS(h—1) * NS(h—2) A | A

Problem-77 Given a binary search tree, check whether it is an AVL tree or not?

Solution: Let us assume that ISAVL is the function which checks whether the given binary search
tree is an AVL tree or not. ISAVL returns —1 if the tree is not an AVL tree. During the checks each
node sends its height to its parent.



int [sAVL{struct BinarySearchTreeNode *root){
nt left, right;
f{lroot} return 0;
left = IsAVL{root—left];
iffleft == -1
return left;

right = [sAVL{root—right);
frght == -1}

return nght;
f{absileft-right|=1)

return -1;
return Max(left, nght|+1;

|

Time Complexity: O(n). Space Complexity: O(n).

Problem-78 Given a height h, give an algorithm to generate an AVL tree with minimum
number of nodes.

Solution: To get minimum number of nodes, fill one level with h — 1 and the other with h — 2.

struct AVLTreeNode *GenerateAVLTree(int h)|
struct AVLTreeNode *temp;
iffh == 0) return NULL;
temp = (struct AVLTreeNode *|malloc [sizeof[struct AVLTreeNode])
temp—left = GenerateAVLTree(h-1);
temp—data = count++; //assume count 13 a global variable
temp—right = GenerateAVLTree(h-2);
temp—height = temp—left—height+1; // or temp—height = h;
return temp;

|

Problem-79 Given an AVL tree with n integer items and two integers a and b, where a and b
can be any integers with a <= b. Implement an algorithm to count the number of nodes in
the range [a,b].

Solution:
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The idea is to make use of the recursive property of binary search trees. There are three cases to
consider: whether the current node is in the range [a, b], on the left side of the range [a, b], or on
the right side of the range [a,b]. Only subtrees that possibly contain the nodes will be processed
under each of the three cases.

int RangeCount(struct AVLNode *root, int a, it b) |
iffroot == NULL) return 0;
else iflroot—data = b)
return RangeCount(root—left, a, b);
else if{root—data < a
return RangeCount{root—right, a, bj;
else iffroot=data >= a &b root=data <= b|
return RangeCount(root=left, a, b] + RangeCountfroot=right, a, b) + 1;
}

The complexity is similar to in — order traversal of the tree but skipping left or right sub-trees
when they do not contain any answers. So in the worst case, if the range covers all the nodes in
the tree, we need to traverse all the n nodes to get the answer. The worst time complexity is
therefore O(n).

If the range is small, which only covers a few elements in a small subtree at the bottom of the tree,
the time complexity will be O(h) = O(logn), where h is the height of the tree. This is because only
a single path is traversed to reach the small subtree at the bottom and many higher level subtrees



have been pruned along the way.

Note: Refer similar problem in BST.

Problem-80 Given a BST (applicable to AVL trees as well) where each node contains two
data elements (its data and also the number of nodes in its subtrees) as shown below.
Convert the tree to another BST by replacing the second data element (number of nodes in
its subtrees) with previous node data in inorder traversal. Note that each node is merged
with inorder previous node data. Also make sure that conversion happens in-place.

i
] |
—
=]

Solution: The simplest way is to use level order traversal. If the number of elements in the left
subtree is greater than the number of elements in the right subtree, find the maximum element in
the left subtree and replace the current node second data element with it. Similarly, if the number
of elements in the left subtree is less than the number of elements in the right subtree, find the
minimum element in the right subtree and replace the current node second data element with it.



struct BST *TreeCompression [struct BST *root),
struct BT *temp, *temp2;
struct Queue *() = CreateQueue|);
iff!root) return;
EnQueue(Q, root);
while{!sSEmptyQueue(Q) |
temp = DeQueue(Q));
ifltemp=lefi &% temp-right && temp—lefi-+data > temp-right—data2|
temp2 = FindMax(temp);
else temp2 = FindMin(temp);
temp—data = temp2—data2; //Process current node
Remember o delete this node,
eleteNodeInBs | {iemp2);
if[temp—+left)
EnQueue(0), temp—left)
if[temp—right)
EnQueue(Q), temp—right);

i

j
DeleteQuene(Q);
I‘

Time Complexity: O(nlogn) on average since BST takes O(logn) on average to find the maximum
or minimum element. Space Complexity: O(n). Since, in the worst case, all the nodes on the entire
last level could be in the queue simultaneously.

Problem-81 Can we reduce time complexity for the previous problem?

Solution: Let us try using an approach that is similar to what we followed in Problem-60. The
idea behind this solution is that inorder traversal of BST produces sorted lists. While traversing
the BST in inorder, keep track of the elements visited and merge them.



struct BinarySearchTreeNode * TreeCompression(struct BinarySearchTreeNode 'root,

int “previousNodeData)|
ifflroot) return NULL;
TreeCompression(root=left, previousNode);
if|"previousNodeData == INT_MIN){
‘previousNodeData = root—data;
free(root);

|
" previousNodeData |= INT_MIN|{ / [ Process current node

root—+ala2 = previousNodeDala;

"previousNodeData = INT_MIN;

!
|

return TreeCompression(root—right, previousNode|;

|
Time Complexity: O(n).

Space Complexity: O(1). Note that, we are still having recursive stack space for inorder
traversal.

Problem-82 Given a BST and a key, find the element in the BST which is closest to the given
key.

Solution: As a simple solution, we can use level-order traversal and for every element compute
the difference between the given key and the element’s value. If that difference is less than the
previous maintained difference, then update the difference with this new minimum value. With
this approach, at the end of the traversal we will get the element which is closest to the given key.



mt ClosestlnBST(struct BinaryTreeNode *root, int key}|
struct BinaryTreeNode *temp, *element;
struct Queue *();
int difference = INT_MAX;
if{lroot]
return 0
( = CreateQueue();
EnQueue(0) root);
while{!lsEmptyQueue(Q)) |
temp = DeQueue(Q);
ifldifference > (abs(temp—data-key])|
difference = abs(temp—data-key);
element = temp;
if{temp—left)
EnQueue (Q, temp-left)
ifltemp-sright]
EnQueue (Q, temp-right),
}

DeleteQueue(Q):
return element—data;

}

Time Complexity: O(n). Space Complexity: O(n).
Problem-83 For Problem-82, can we solve it using the recursive approach?

Solution: The approach is similar to Problem-18. Following is a simple algorithm for finding the
closest Value in BST.
1.  If the root is NULL, then the closest value is zero (or NULL).
2. If the root’s data matches the given key, then the closest is the root.
3. Else, consider the root as the closest and do the following:
a. If the key is smaller than the root data, find the closest on the left side
tree of the root recursively and call it temp.
b. If the key is larger than the root data, find the closest on the right side
tree of the root recursively and call it temp.
4.  Return the root or temp depending on whichever is nearer to the given key.



struct BinaryTreeNode * ClosestInBST(struct BinaryTreeNode *root, mt key),
struct BinaryTreeNode *temp;
iffroot == NULL)
return root;
iflroot—data == key)
return toot;
iflkey < root—datal]
if[!root—left]
return root;
temp = ClosestinBST{root—left, key);
return abs(temp—data-key) > abs[root—data-key) ? root : temp;
lelse]
Hf{!root—right|
return roof;
temp = ClosestinBST(root-sright, keyl;
return abs|temp—data-key) > abs(root—data-key) ? root : temp;
b

}
return NULL:
i

Time Complexity: O(n) in worst case, and in average case it is O(logn).
Space Complexity: O(n) in worst case, and in average case it is O(logn).

Problem-84 Median in an infinite series of integers

Solution: Median is the middle number in a sorted list of numbers (if we have odd number of
elements). If we have even number of elements, median is the average of two middle numbers in a
sorted list of numbers.

For solving this problem we can use a binary search tree with additional information at each
node, and the number of children on the left and right subtrees. We also keep the number of total
nodes in the tree. Using this additional information we can find the median in O(logn) time, taking
the appropriate branch in the tree based on the number of children on the left and right of the
current node. But, the insertion complexity is O(n) because a standard binary search tree can
degenerate into a linked list if we happen to receive the numbers in sorted order.

So, let’s use a balanced binary search tree to avoid worst case behavior of standard binary search
trees. For this problem, the balance factor is the number of nodes in the left subtree minus the
number of nodes in the right subtree. And only the nodes with a balance factor of+ 1 or 0 are
considered to be balanced.



So, the number of nodes on the left subtree is either equal to or 1 more than the number of nodes
on the right subtree, but not less.

If we ensure this balance factor on every node in the tree, then the root of the tree is the median, if
the number of elements is odd. In the number of elements is even, the median is the average of the
root and its inorder successor, which is the leftmost descendent of its right subtree.

So, the complexity of insertion maintaining a balanced condition is O(logn) and finding a median
operation is O(1) assuming we calculate the inorder successor of the root at every insertion if the
number of nodes is even.

Insertion and balancing is very similar to AVL trees. Instead of updating the heights, we update the
number of nodes information. Balanced binary search trees seem to be the most optimal solution,
insertion is O(logn) and find median is O(1).

Note: For an efficient algorithm refer to the Priority Queues and Heaps chapter.

Problem-85 Given a binary tree, how do you remove all the half nodes (which have only one
child)? Note that we should not touch leaves.

Solution: By using post-order traversal we can solve this problem efficiently. We first process
the left children, then the right children, and finally the node itself. So we form the new tree
bottom up, starting from the leaves towards the root. By the time we process the current node,
both its left and right subtrees have already been processed.

struct BinaryTreeNode *removeHaliNodes(struct BinaryTreeNode *root)|
if (lroot]
teturn NULL;
root—left=removeHalfNodes|root—left];
root—right=removeHalfNodes(root—nght)
if [root—left == NULL && root—right == NULL)
TETUN 100T
if (root—left == NULL)
refurn root—right;
if [root=right == NULL)
return root—left;
return root;

}

Time Complexity: O(n).

Problem-86 Given a binary tree, how do you remove its leaves?



Solution: By using post-order traversal we can solve this problem (other traversals would also
work).

struct BinaryTreeNode* removeLeaves(struct BinaryTreeNode* root) |
if (root = NULL) |

if (root-sleft == NULL &é& root—right == NULL) |
free{root);
return NULL;

| else |
root—left = removeleaves|root—left);
root-right = removeLeaves(root-right];

|
!

E

refurn roof;

j
Time Complexity: O(n).

Problem-87 Given a BST and two integers (minimum and maximum integers) as parameters,
how do you remove (prune) elements that are not within that range?



49

Sample Tree

37 89
. 13 41 53
¢ 19 71

23 60 82

PruneBST(24,71); PruneBST(33,79); PruneBST(17.41);
49 53 37
7 5 £ o 41
25 41 71 60 25

60

Solution: Observation: Since we need to check each and every element in the tree, and the
subtree changes should be reflected in the parent, we can think about using post order traversal.
So we process the nodes starting from the leaves towards the root. As a result, while processing
the node itself, both its left and right subtrees are valid pruned BSTs. At each node we will return



a pointer based on its value, which will then be assigned to its parent’s left or right child pointer,
depending on whether the current node is the left or right child of the parent. If the current node’s
value is between A and B (A <= node’s data <= B) then no action needs to be taken, so we return
the reference to the node itself.

If the current node’s value is less than A, then we return the reference to its right subtree and
discard the left subtree. Because if a node’s value is less than A, then its left children are
definitely less than A since this is a binary search tree. But its right children may or may not be
less than A; we can’t be sure, so we return the reference to it. Since we’re performing bottom-up
post-order traversal, its right subtree is already a trimmed valid binary search tree (possibly
NULL), and its left subtree is definitely NULL because those nodes were surely less than A and
they were eliminated during the post-order traversal.

A similar situation occurs when the node’s value is greater than B, so we now return the reference
to its left subtree. Because if a node’s value is greater than B, then its right children are definitely
greater than B. But its left children may or may not be greater than B; So we discard the right
subtree and return the reference to the already valid left subtree.

struct BinarySearchTreeNode* PruneBST(struct BinarySearchTreeNode *root, int A, int B)|
if(lroot) return NULL:
root—left= PruneBST{root—left, A BJ;
toot—right= PruneBST(root—right A, B);
ifA<=root—data & root—data<=Bj
refurn root;
if{root—data<A)
return root—right;
if{root—data>B|
return root—left:
}

Time Complexity: O(n) in worst case and in average case it is O(logn).

Note: If the given BST is an AVL tree then O(n) is the average time complexity.

Problem-88 Given a binary tree, how do you connect all the adjacent nodes at the same
level? Assume that given binary tree has next pointer along with left and right pointers as
shown below.



struct BinaryTreeNode |
int data;
struct BinaryTreeNode *left:
struct BinaryTreeNode *right;
struct BinaryTreeNode *next;

f

Solution: One simple approach is to use level-order traversal and keep updating the next
pointers. While traversing, we will link the nodes on the next level. If the node has left and right
node, we will link left to right. If node has next node, then link rightmost child of current node to
leftmost child of next node.



void linkingNodesOfSameLevel(struct BinaryTreeNode *root)|
struct Queue *Q = CreateQueue();
struct BinaryTreeNode *prev;  // Pointer to the previous node of the current level
struct BinaryTreeNode *temp;
int currentLevelNodeCount, nextLevelNodeCount;
ifflroot)
refurn;
EnQueue(Q, toot):
currentLevelNodeCount = 1;
nextLevelNodeCount = 0;
prev = NULL;
while (IlsEmptyQueue(Q)) |
temp = DeQueue(Q);
if (temp-sleft)|
EnQueue(Q, temp-left);
nextLevelNodeCount#+;
F
if (temp—right)
EnQueue(Q, temp-sright);
nextLevelNodeCount++;
E
/[ Link the previous node of the current level to this node
if (prev)
prev-next = temp;
/[ Set the previous node to the current
prev = temp;
curtenilevelNodeCount--;
if [currentLevelNodeCount == 0) | [/ if this 1s the last node of the current level
currentLevelNodeCount = nextLevelNodeCount;
nextLevelNodeCount = 0;
prev = NULL;

}
|



Time Complexity: O(n). Space Complexity: O(n).
Problem-89 Can we improve space complexity for Problem-88?

Solution: We can process the tree level by level, but without a queue. The logical part is that
when we process the nodes of the next level, we make sure that the current level has already been
linked.

void linkingNodesOfSameLevel(struct BinaryTreeNode *root) |
if{lroot) return;
struct BinaryTreeNode *rightMostNode = NULL, *nextHead = NULL, *temp = root;
| [connect next level of current root node level
while{temp!= NULL)|
ifltemp-sleft!= NULL|
iflrightMostNode== NULL)|
tightMostNode=temp->left;
nextHead=temp—left;
|
else|
rightMostNode—next = temp—left;
rightMostNode = nghtMostNode—next;
}
ifltemp-right!= NULL)
if{rightMostNode== NULL)|
rightMostNode=temp-right;
nextHead=temp—right;
}
else|
rightMostNode—next = temp—right;
rightMostNode = rightMostNode—+next;

|
!

temp=temp—next;
|

linkingNodesOfSameLevelnextHead);

|
i

Time Complexity: O(n). Space Complexity: O(depth of tree) for stack space.



Problem-90 Assume that a set S of n numbers are stored in some form of balanced binary
search tree; i.e. the depth of the tree is O(logn). In addition to the key value and the
pointers to children, assume that every node contains the number of nodes in its subtree.
Specify a reason(s) why a balanced binary tree can be a better option than a complete
binary tree for storing the set S.

Solution: Implementation of a balanced binary tree requires less RAM space as we do not need
to keep the complete tree in RAM (since they use pointers).

Problem-91 For the Problem-90, specify a reason (s) why a complete binary tree can be a
better option than a balanced binary tree for storing the set S.

Solution: A complete binary tree is more space efficient as we do not need any extra flags. A
balanced binary tree usually takes more space since we need to store some flags. For example, in
a Red-Black tree we need to store a bit for the color. Also, a complete binary tree can be stored
in a RAM as an array without using pointers.

Problem-92 Given a binary tree, find the maximum path sum. The path may start and end at
any node in the tree.

Solution:



mnt maxPathSumistruct BinaryTreeNode *root)|
int maxValue = INT MIN;

return maxPathSumRec(root);

[
!

int max(int a, int b)|
if (a=h) return a;
else return b;

|

int maxPathSumRecstruct BinaryTreeNode *roof)|
if [root == NULL) return 0;
int leftSum = maxPathSumRec(root-left);
int rightSum = maxPathSumRec(root-right);

if (leftSum < 0 && rightSum < 0){
maxValue = max|{maxValue, root-datal;
return root-data;
|
if (leftSum>0 &G rightSum=0)
maxValue = max{maxValue, root—data + leftSum + rightSum);
maxValueUp = max(leftSum, rightSum| + root-data;
maxValue = max(maxValue, maxValueUp);
return maxValuelUp;

|

Problem-93 Let T be a proper binary tree with root r. Consider the following algorithm.

Alorithm TreeTraversallt):
if (Ir) return 1;
else |
a = TreeTraversal(r—left);
b = TreeTraversal(r—right);
returna + b;

What does the algorithm do?
A. It always returns the value 1.
B. It computes the number of nodes in the tree.



C. It computes the depth of the nodes.
D. It computes the height of the tree.
E. It computes the number of leaves in the tree.

Solution: E.

6.14 Other Variations on Trees

In this section, let us enumerate the other possible representations of trees. In the earlier sections,
we have looked at AVL trees, which is a binary search tree (BST) with balancing property. Now,
let us look at a few more balanced binary search trees: Red-black Trees and Splay Trees.

6.14.1 Red-Black Trees

In Red-black trees each node is associated with an extra attribute: the color, which is either red
or black. To get logarithmic complexity we impose the following restrictions.

Definition: A Red-black tree is a binary search tree that satisfies the following properties:

. Root Property: the root is black

. External Property: every leaf is black

. Internal Property: the children of a red node are black
. Depth Property: all the leaves have the same black

Similar to AVL trees, if the Red-black tree becomes imbalanced, then we perform rotations to
reinforce the balancing property. With Red-black trees, we can perform the following operations
in O(logn) in worst case, where n is the number of nodes in the trees.

. Insertion, Deletion
. Finding predecessor, successor
. Finding minimum, maximum

6.14.2 Splay Trees

Splay-trees are BSTs with a self-adjusting property. Another interesting property of splay-trees
is: starting with an empty tree, any sequence of K operations with maximum of n nodes takes
O(Klogn) time complexity in worst case. Splay trees are easier to program and also ensure faster
access to recently accessed items. Similar to AVL and Red-Black trees, at any point that the splay
tree becomes imbalanced, we can perform rotations to reinforce the balancing property.

Splay-trees cannot guarantee the O(logn) complexity in worst case. But it gives amortized
O(logn) complexity. Even though individual operations can be expensive, any sequence of
operations gets the complexity of logarithmic behavior. One operation may take more time (a



single operation may take O(n) time) but the subsequent operations may not take worst case
complexity and on the average per operation complexity is O{logn).

6.14.3 B-Trees

B-Tree is like other self-balancing trees such as AVL and Red-black tree such that it maintains its
balance of nodes while opertions are performed against it. B-Tree has the following properties:

. Minimum degree “£” where, except root node, all other nodes must have no less than
t — 1 keys

. Each node with n keys has n + 1 children

. Keys in each node are lined up where k; < k, <.. k,

. Each node cannot have more than 2t-1 keys, thus 2t children

. Root node at least must contain one key. There is no root node if the tree is empty.

. Tree grows in depth only when root node is split.

Unlike a binary-tree, each node of a b-tree may have a variable number of keys and children. The
keys are stored in non-decreasing order. Each key has an associated child that is the root of a
subtree containing all nodes with keys less than or equal to the key but greater than the preceeding
key. A node also has an additional rightmost child that is the root for a subtree containing all keys
greater than any keys in the node.

A b-tree has a minumum number of allowable children for each node known as the minimization
factor. If t is this minimization factor, every node must have at least t — 1 keys. Under certain
circumstances, the root node is allowed to violate this property by having fewer than t — 1 keys.
Every node may have at most 2t — 1 keys or, equivalently, 2t children.

Since each node tends to have a large branching factor (a large number of children), it is typically
neccessary to traverse relatively few nodes before locating the desired key. If access to each node
requires a disk access, then a B-tree will minimize the number of disk accesses required. The
minimzation factor is usually chosen so that the total size of each node corresponds to a multiple
of the block size of the underlying storage device. This choice simplifies and optimizes disk
access. Consequently, a B-tree is an ideal data structure for situations where all data cannot
reside in primary storage and accesses to secondary storage are comparatively expensive (or time
consuming).

To search the tree, it is similar to binary tree except that the key is compared multiple times in a
given node because the node contains more than 1 key. If the key is found in the node, the search
terminates. Otherwise, it moves down where at child pointed by ci where key k < k.

Key insertions of a B-tree happens from the bottom fasion. This means that it walk down the tree
from root to the target child node first. If the child is not full, the key is simply inserted. If it is
full, the child node is split in the middle, the median key moves up to the parent, then the new key



is inserted. When inserting and walking down the tree, if the root node is found to be full, it’s split
first and we have a new root node. Then the normal insertion operation is performed.

Key deletion is more complicated as it needs to maintain the number of keys in each node to meet
the constraint. If a key is found in leaf node and deleting it still keeps the number of keys in the
nodes not too low, it’s simply done right away. If it’s done to the inner node, the predecessor of
the key in the corresonding child node is moved to replace the key in the inner node. If moving the
predecessor will cause the child node to violate the node count constraint, the sibling child nodes
are combined and the key in the inner node is deleted.

6.14.4 Augmented Trees

In earlier sections, we have seen various problems like finding the K™ — smallest - element in the
tree and other similar ones. Of all the problems the worst complexity is O(n), where n is the
number of nodes in the tree. To perform such operations in O(logn), augmented trees are useful. In
these trees, extra information is added to each node and that extra data depends on the problem
we are trying to solve.

For example, to find the K™ element in a binary search tree, let us see how augmented trees solve
the problem. Let us assume that we are using Red-Black trees as balanced BST (or any balanced
BST) and augmenting the size information in the nodes data. For a given node X in Red-Black tree
with a field size(X) equal to the number of nodes in the subtree and can be calculated as:

size(X) = size(X — left) + size(X — right)) + 1
K™ - smallest - operation can be defined as:

struct BinarySearcTreeNode *KthSmallest (struct BinarySearcTreeNode *X, int K) |
int r = size(X—left) + 1;
ik == 1]
return X;
iffK < 1)
return KthSmallest (X—left, K);
if(K > 1]
return KthSmallest (X—right, K-1);
}

Time Complexity: O(logn). Space Complexity: O(logn).

Example: With the extra size information, the augmented tree will look like:
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6.14.5 Interval Trees [Segment Trees]

We often face questions that involve queries made in an array based on range. For example, for a
given array of integers, what is the maximum number in the range a to 5, where a and [ are of
course within array limits. To iterate over those entries with intervals containing a particular
value, we can use a simple array. But if we need more efficient access, we need a more
sophisticated data structure.

An array-based storage scheme and a brute-force search through the entire array is acceptable
only if a single search is to be performed, or if the number of elements is small. For example, if
you know all the array values of interest in advance, you need to make only one pass through the
array. However, if you can interactively specify different search operations at different times, the
brute-force search becomes impractical because every element in the array must be examined
during each search operation.

If you sort the array in ascending order of the array values, you can terminate the sequential
search when you reach the object whose low value is greater than the element we are searching.
Unfortunately, this technique becomes increasingly ineffective as the low wvalue increases,
because fewer search operations are eliminated. That means, what if we have to answer a large
number of queries like this? — is brute force still a good option?

Another example is when we need to return a sum in a given range. We can brute force this too,
but the problem for a large number of queries still remains. So, what can we do? With a bit of
thinking we can come up with an approach like maintaining a separate array of n elements, where



n is the size of the original array, where each index stores the sum of all elements from O to that
index. So essentially we have with a bit of preprocessing brought down the query time from a
worst case O(n) to O(1). Now this is great as far as static arrays are concerned, but, what if we
are required to perform updates on the array too?

The first approach gives us an O(n) query time, but an O(1) update time. The second approach, on
the other hand, gives us O(1) query time, but an O(n) update time. So, which one do we choose?

Interval trees are also binary search trees and they store interval information in the node structure.
That means, we maintain a set of n intervals [iy, i,] such that one of the intervals containing a
query point Q (if any) can be found efficiently. Interval trees are used for performing range
queries efficiently.

A segment tree is a heap-like data structure that can be used for making update/query operations
upon array intervals in logarithmical time. We define the segment tree for the interval [i,j] in the
following recursive manner:

. The root (first node in the array) node will hold the information for the interval [i,j]
. If i <y the left and right children will hold the information for the intervals [, HTJ]

and [H-Tj+ 1, j]

Segment trees (also called segtrees and interval trees) is a cool data structure, primarily used for
range queries. It is a height balanced binary tree with a static structure. The nodes of a segment
tree correspond to various intervals, and can be augmented with appropriate information
pertaining to those intervals. It is somewhat less powerful than a balanced binary tree because of
its static structure, but due to the recursive nature of operations on the segtree, it is incredibly
easy to think about and code.

We can use segment trees to solve range minimum/maximum query problems. The time complexity
is T(nlogn) where O(n) is the time required to build the tree and each query takes O(logn) time.

Example: Given a set of intervals: S= {[2-5], [6-7], [6-10], [8-9], [12-15], [15-23], [25-30]}. A
query with Q = 9 returns [6,10] or [8,9] (assume these are the intervals which contain 9 among

all the intervals). A query with Q = 23 returns [15, 23].

Query Line

Intervals



Construction of Interval Trees: Let us assume that we are given a set S of n intervals (called
segments). These n intervals will have 2n endpoints. Now, let us see how to construct the
interval tree.

Algorithm:

Recursively build tree on interval set 5 as follows:

. Sort the 2n endpoints
. Let X ;g be the median point

Time Complexity for building interval trees: O(nlogn). Since we are choosing the median,
Interval Trees will be approximately balanced. This ensures that, we split the set of end points up
in half each time. The depth of the tree is O(logn). To simplify the search process, generally X, .,

is stored with each node.

Store intervals that cross
Xpigin node n

[ntervals that are completely Intervals that are completely to
to the left of X4 in n—left the right of X;;q in n—right
6.14.6 Scapegoat Trees

Scapegoat tree is a self-balancing binary search tree, discovered by Arne Andersson. It provides
worst-case O(logn) search time, and O(logn) amortized (average) insertion and deletion time.

AVL trees rebalance whenever the height of two sibling subtrees differ by more than one;



scapegoat trees rebalance whenever the size of a child exceeds a certain ratio of its parents, a
ratio known as a. After inserting the element, we traverse back up the tree. If we find an
imbalance where a child’s size exceeds the parent’s size times alpha, we must rebuild the subtree
at the parent, the scapegoat.

There might be more than one possible scapegoat, but we only have to pick one. The most optimal
scapegoat is actually determined by height balance. When removing it, we see if the total size of
the tree is less than alpha of the largest size since the last rebuilding of the tree. If so, we rebuild
the entire tree. The alpha for a scapegoat tree can be any number between 0.5 and 1.0. The value
0.5 will force perfect balance, while 1.0 will cause rebalancing to never occur, effectively
turning it into a BST.



CHAPTER

PRIORITY QUEUES
AND HEAPS

7.1 What is a Priority Queue?

In some situations we may need to find the minimum/maximum element among a collection of
elements. We can do this with the help of Priority Queue ADT. A priority queue ADT is a data
structure that supports the operations Insert and DeleteMin (which returns and removes the
minimum element) or DeleteMax (which returns and removes the maximum element).

These operations are equivalent to EnQueue and DeQueue operations of a queue. The difference
is that, in priority queues, the order in which the elements enter the queue may not be the same in
which they were processed. An example application of a priority queue is job scheduling, which
is prioritized instead of serving in first come first serve.



Insert DeleteMax
B Priority Queue 3

A priority queue is called an ascending — priority queue, if the item with the smallest key has the
highest priority (that means, delete the smallest element always). Similarly, a priority queue is
said to be a descending —priority queue if the item with the largest key has the highest priority
(delete the maximum element always). Since these two types are symmetric we will be
concentrating on one of them: ascending-priority queue.

7.2 Priority Queue ADT

The following operations make priority queues an ADT.

Main Priority Queues Operations

A priority queue is a container of elements, each having an associated key.

. Insert (key, data): Inserts data with key to the priority queue. Elements are ordered
based on key.

. DeleteMin/DeleteMax: Remove and return the element with the smallest/largest key.

. GetMinimum/GetMaximum: Return the element with the smallest/largest key without
deleting it.

Aucxiliary Priority Queues Operations

. kh - Smallest/ki" — Largest: Returns the k™ -Smallest/k™ —Largest key in priority
queue.

. Size: Returns number of elements in priority queue.

. Heap Sort: Sorts the elements in the priority queue based on priority (key).

7.3 Priority Queue Applications

Priority queues have many applications - a few of them are listed below:

. Data compression: Huffman Coding algorithm

. Shortest path algorithms: Dijkstra’s algorithm

. Minimum spanning tree algorithms: Prim’s algorithm
. Event-driven simulation: customers in a line



. Selection problem: Finding k- smallest element

7.4 Priority Queue Implementations

Before discussing the actual implementation, let us enumerate the possible options.

Unordered Array Implementation

Elements are inserted into the array without bothering about the order. Deletions (DeleteMax) are
performed by searching the key and then deleting.

Insertions complexity: O(1). DeleteMin complexity: O(n).

Unordered List Implementation
It is very similar to array implementation, but instead of using arrays, linked lists are used.

Insertions complexity: O(1). DeleteMin complexity: O(n).

Ordered Array Implementation

Elements are inserted into the array in sorted order based on key field. Deletions are performed at
only one end.

Insertions complexity: O(n). DeleteMin complexity: O(1).

Ordered List Implementation
Elements are inserted into the list in sorted order based on key field. Deletions are performed at
only one end, hence preserving the status of the priority queue. All other functionalities associated

with a linked list ADT are performed without modification.

Insertions complexity: O(n). DeleteMin complexity: O(1).

Binary Search Trees Implementation

Both insertions and deletions take O(logn) on average if insertions are random (refer to Trees
chapter).



Balanced Binary Search Trees Implementation

Both insertions and deletion take O(logn) in the worst case (refer to Trees chapter).

Binary Heap Implementation
In subsequent sections we will discuss this in full detail. For now, assume that binary heap

implementation gives O(logn) complexity for search, insertions and deletions and O(1) for
finding the maximum or minimum element.

Comparing Implementations

Implementation Insertion Deletion (DeleteMax) | Find Min
Unordered array 1 n n
Unordered list 1 n n

| Ordered array n | 1 | 1
Ordered list n 1 1
Binary Search Trees logn (average) logn (average| logn (average) |
Balanced Binary Search Trees logn | logn logn |
Binary Heaps [ ﬂéi‘l " fﬁgn | 1

7.5 Heaps and Binary Heaps

What is a Heap?

A heap is a tree with some special properties. The basic requirement of a heap is that the value of
a node must be > (or <) than the values of its children. This is called heap property. A heap also
has the additional property that all leaves should be at h or h — 1 levels (where h is the height of
the tree) for some h > 0 (complete binary trees). That means heap should form a complete binary
tree (as shown below).



In the examples below, the left tree is a heap (each element is greater than its children) and the
right tree is not a heap (since 11 is greater than 2).

Types of Heaps?

Based on the property of a heap we can classify heaps into two types:

. Min heap: The value of a node must be less than or equal to the values of its
children
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7.6 Binary Heaps

In binary heap each node may have up to two children. In practice, binary heaps are enough and
we concentrate on binary min heaps and binary max heaps for the remaining discussion.

Representing Heaps: Before looking at heap operations, let us see how heaps can be
represented. One possibility is using arrays. Since heaps are forming complete binary trees, there
will not be any wastage of locations. For the discussion below let us assume that elements are



stored in arrays, which starts at index 0. The previous max heap can be represented as:

L# 13 6 1 4 2 S

0 1 2 3 4 3 6

Note: For the remaining discussion let us assume that we are doing manipulations in max heap.

Declaration of Heap

struct Heap |
int *array;
int count; /[ Number of elements in Heap
it capacity; /[ Size of the heap

int heap_type; /[ Min Heap or Max Heap

Creating Heap



struct Heap * CreateHeaplint capacity, nt heap_type) |
struct Heap * h = (struct Heap *jmalloc(sizeof{struct Heapl);
iffh == NULL) |
printf{ Memory Error");

return;
|

h—heap_type = heap_type;
h—count = 0;
h—capacity = capacity;
h—array = (int *) malloc(sizeoflint) * h—capacity];
iflh—array == NULL) |
printf]'Memory Error’);
return;

|

refurn h;
}

Time Complexity: O(1).

Parent of a Node

: . . i-1 : : :
For a node at i location, its parent is at IT location. In the previous example, the element 6 is at

second location and its parent is at 07 location.

int Parent (struct Heap * b, int 1) |
ifli <=0 || 1 >= h=count)
refurn -1;

returni-1/2;
}

Time Complexity: O(1).

Children of a Node

Similar to the above discussion, for a node at i location, its children are at 2 *i + 1 and 2 *i +



2 locations. For example, in the above tree the element 6 is at second location and its children 2
and Sareat5(2*i+1=2*2+1)and 6(2 *i+ 2 =2 *2) locations.

int LeftChild(struct Heap *h, int i) | int RightChild|struct Heap *h, int 1) |
infleft=2%i+1; intright =2%1+2;
iffleft »= h=count) iflright »= h=count)
return -1; return -1;
return left; return right;
| }
Time Complexty: O(1) Time Complexity: O(1),

Getting the Maximum Element

Since the maximum element in max heap is always at root, it will be stored at h - array[O].

int GetMaximum(Heap * b |
if{h—count == 0]
return -1;
return h—array|0};
}

Time Complexity: O(1).

Heapifying an Element

After inserting an element into heap, it may not satisfy the heap property. In that case we need to
adjust the locations of the heap to make it heap again. This process is called heapifying. In max-
heap, to heapify an element, we have to find the maximum of its children and swap it with the
current element and continue this process until the heap property is satisfied at every node.
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Observation: One important property of heap is that, if an element is not satisfying the heap
property, then all the elements from that element to the root will have the same problem. In the
example below, element 1 is not satisfying the heap property and its parent 31 is also having the
issue. Similarly, if we heapify an element, then all the elements from that element to the root will
also satisfy the heap property automatically. Let us go through an example. In the above heap, the
element 1 is not satisfying the heap property. Let us try heapifying this element.

To heapify 1, find the maximum of its children and swap with that.
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Now the tree is satisfying the heap property. In the above heapifying process, since we are



moving from top to bottom, this process is sometimes called percolate down. Similarly, if we
start heapifying from any other node to root, we can that process percolate up as move from
bottom to top.

| [Heapifying the element af location .
void PercolateDown(struct Heap *h, int 1) |
int I, r, max, temp;

| = LeftChuld(h, 1);

r = RightChildfh, 1);

iffl 1= -1 && h—arrayl] > h—array]1)|
max = |;

else
max = |;

iffr 1= - 186 h—array[r] > h—array|max])
max = t;

iffmax !=1) |
| [Swap h—array|i] and h—array|max|;
temp = h—array|;
h—arrayli| = h—array|max|;
h—array|/max| = temp;

i
|

PetcolateDown(h, max):

Time Complexity: O(logn). Heap is a complete binary tree and in the worst case we start at the
root and come down to the leaf. This is equal to the height of the complete binary tree. Space
Complexity: O(1).

Deleting an Element

To delete an element from heap, we just need to delete the element from the root. This is the only
operation (maximum element) supported by standard heap. After deleting the root element, copy
the last element of the heap (tree) and delete that last element.

After replacing the last element, the tree may not satisfy the heap property. To make it heap again,
call the PercolateDown function.

. Copy the first element into some variable



. Copy the last element into first element location
. PercolateDown the first element

int DeleteMax(struct Heap *h} |
it data;
iffh—count == ()
return - 1;

data = h—array|0];

h—array|0] = h—array[h—count-1];
h-count--; /[ reducing the heap size
PercolateDown(h, 0);

return data;

}

Note: Deleting an element uses PercolateDown, and inserting an element uses PercolateUp.
Time Complexity: same as Heapify function and it is O(logn).

Inserting an Flement

Insertion of an element is similar to the heapify and deletion process.

. Increase the heap size
. Keep the new element at the end of the heap (tree)
. Heapify the element from bottom to top (root)

Before going through code, let us look at an example. We have inserted the element 19 at the end
of the heap and this is not satisfying the heap property.
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In order to heapify this element (19), we need to compare it with its parent and adjust them.
Swapping 19 and 14 gives:
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Again, swap 19 andl6:

.-'f \l".
g x\\_ #// L
ot . 55
E 'H\.-:; B i "
Fd ~ %
. 18 |
/ 19 |
P A )
A% e
// %
" ! \“‘
g - .8 XN
/ ~, - . & | ¥ ™
i LY L o %
S [ 8 | 16 ”
| | 12
/ i\ ! l
\ y \
. E Fl \\___ ~ \\\H /
/ i _.."J
7
F h ) LY
"J' ',I ! '\.\‘
/‘l : , /'. \\ 7 g ™, s " \\\ = \'\
'I ll|' .lllJ i, \
J [ 1 9 ) 7 ) ( 14 )
1 ' I / / I}
3 ¥ \ ! , ; () )
- -__'/ L% 3 P M ; ‘,/ \\H A b -

Now the tree is satisfying the heap property. Since we are following the bottom-up approach we
sometimes call this process percolate up.



int Insert(struct Heap *h, int data] |

it i;
lh—count == h—capacity)
ResizeHeap(h);
h—count++; [ [increasing the heap size to hold this new item
1 = h=count-1;

while(i>=0 fe& data » h—array][(i-1)/2)) |
h—arrayi] = h—array((i-1)/2];
i=i-1/2

E

h—arrayli] = data;

|
!

void ResizeHeap(struct Heap * h) |
it *array_old = h—array;
h—array = (int *| malloc(sizeof[int) * h—capacity * 2);
iffh=array == NULL) |
printf| Memory Error];

refurm;

for int 1= 0; 1 < h—capacity; 1 +4|
h—array|i] = array_oldi)

h=capacity *= 2;

free(array _old);

|

Time Complexity: O(logn). The explanation is the same as that of the Heapify function.

Destroying Heap

void DestroyHeap [struct Heap *h) |
iffh == NULL)
return;
free(h—array);
free(h);
h = NULL;

[
I



Heapifying the Array

One simple approach for building the heap is, take n input items and place them into an empty
heap. This can be done with n successive inserts and takes O(nlogn) in the worst case. This is
due to the fact that each insert operation takes O(logn).

To finish our discussion of binary heaps, we will look at a method to build an entire heap from a
list of keys. The first method you might think of may be like the following. Given a list of keys,
you could easily build a heap by inserting each key one at a time. Since you are starting with a list
of one item, the list is sorted and you could use binary search to find the right position to insert the
next key at a cost of approximately O(logn) operations.

However, remember that inserting an item in the middle of the list may require O(n) operations to
shift the rest of the list over to make room for the new key. Therefore, to insert n keys into the
heap would require a total of O(nlogn) operations. However, if we start with an entire list then
we can build the whole heap in O(n) operations.

Observation: Leaf nodes always satisfy the heap property and do not need to care for them. The
leaf elements are always at the end and to heapify the given array it should be enough if we
heapify the non-leaf nodes. Now let us concentrate on finding the first non-leaf node. The last
element of the heap is at location h — count — 1, and to find the first non-leaf node it is enough to
find the parent of the last element.

i
[

| i
% 7/
L -

(h = count - 1)/2 is the location
° o of first non-leaf node



void BuildHeap(struct Heap *h, int Af], int n) {
iffh == NULL|
returm,
while {n > h—capacity)
ResizeHeap(h);
for finti=0;1<n;i+4)
h—array|i| = All);
h=count = n;
for (int1= [n-1)/2;12=0;1-)
PercolateDown(h, 1);
}

Time Complexity: The linear time bound of building heap can be shown by computing the sum of

the heights of all the nodes. For a complete binary tree of height h containing n = 2"*1- 1 nodes,
the sum of the heights of the nodes is n — h -1 = n — logn — 1 (for proof refer to Problems
Section). That means, building the heap operation can be done in linear time (O(n)) by applying a
PercolateDown function to the nodes in reverse level order.

7.7 Heapsort

One main application of heap ADT is sorting (heap sort). The heap sort algorithm inserts all
elements (from an unsorted array) into a heap, then removes them from the root of a heap until the
heap is empty. Note that heap sort can be done in place with the array to be sorted. Instead of
deleting an element, exchange the first element (maximum) with the last element and reduce the
heap size (array size). Then, we heapify the first element. Continue this process until the number
of remaining elements is one.



void Heapsortfint Af], in n) |

struct Heap *h = CreateHeapin);

int old_size, 1, temp;

BuildHeap(h, 4, n);

old_size = h—count;

forlt=1-1; 1% 0;1-} |
[ [h—array [0] is the largest element
temp = h—array[0]
h—array[0] = h—array[h—count-1];

h—array0)] = temp;

h—count-+
PercolateDown(h, 0)

h=count = old_size;

}

Time complexity: As we remove the elements from the heap, the values become sorted (since
maximum elements are always root only). Since the time complexity of both the insertion
algorithm and deletion algorithm is O(logn) (where n is the number of items in the heap), the time
complexity of the heap sort algorithm is O(nlogn).

7.8 Priority Queues [Heaps]: Problems & Solutions

Problem-1 What are the minimum and maximum number of elements in a heap of height h?

Solution: Since heap is a complete binary tree (all levels contain full nodes except possibly the

lowest level), it has at most 2"*1 — 1 elements (if it is complete). This is because, to get maximum
nodes, we need to fill all the h levels completely and the maximum number of nodes is nothing but
the sum of all nodes at all h levels.

To get minimum nodes, we should fill the h — 1 levels fully and the last level with only one
element. As a result, the minimum number of nodes is nothing but the sum of all nodes from h — 1

levels plus 1 (for the last level) and we get 2" — 1 + 1 = 2" elements (if the lowest level has just 1
element and all the other levels are complete).

Problem-2 Is there a min-heap with seven distinct elements so that the preorder traversal of
it gives the elements in sorted orde?

Solution: Yes. For the tree below, preorder traversal produces ascending order.
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Problem-3 Is there a max-heap with seven distinct elements so that the preorder traversal of
it gives the elements in sorted order?

Solution: Yes. For the tree below, preorder traversal produces descending order.

f B
root | 7 )

6 | 3 )
O\ / U /‘ N
Problem-4 Is there a min-heap/max-heap with seven distinct elements so that the inorder

traversal of it gives the elements in sorted order?

Solution: No. Since a heap must be either a min-heap or a max-heap, the root will hold the
smallest element or the largest. An inorder traversal will visit the root of the tree as its second
step, which is not the appropriate place if the tree’s root contains the smallest or largest element.

Problem-5 Is there a min-heap/max-heap with seven distinct elements so that the postorder
traversal of it gives the elements in sorted order?

Solution:
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Yes, if the tree is a max-heap and we want descending order (below left), or if the tree is a min-
heap and we want ascending order (below right).

Problem-6 Show that the height of a heap with n elements is logn?

Solution: A heap is a complete binary tree. All the levels, except the lowest, are completely full.

A heap has at least 2" elements and at most elements 2" < n < 2*1 _ 1, This implies, h < logn < h
+ 1. Since h is an integer, h = logn.

Problem-7 Given a min-heap, give an algorithm for finding the maximum element.

Solution: For a given min heap, the maximum element will always be at leaf only. Now, the next
question is how to find the leaf nodes in the tree.
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If we carefully observe, the next node of the last element’s parent is the first leaf node. Since the

last element is always at the h — count — 1" location, the next node of its parent (parent at

. h-count-1
location - can be calculated as:

h = count - 1 h = count + 1

e =t

e

z 2

Now, the only step remaining is scanning the leaf nodes and finding the maximum among them.

int FindMaxInMinHeapstruct Heap *h) |
int Max = -1
forfint 1= (h—count+1)/2; 1 < h—count; i+4]
ifh—array/i] > Max)
Max = h—array/l];

}
Time Complexity: O(%) ~ O(n).

Problem-8 Give an algorithm for deleting an arbitrary element from min heap.



Solution: To delete an element, first we need to search for an element. Let us assume that we are
using level order traversal for finding the element. After finding the element we need to follow
the DeleteMin process.

Time Complexity = Time for finding the element + Time for deleting an element
= O(n) + O (logn) = O(n). //Time for searching is
dominated.

Problem-9 Give an algorithm for deleting the i indexed element in a given min-heap.

Solution:

int Delete(struct Heap *h, int i) |
int key,;
iffn <1} |
printl|“Wrong position’);
return;

}

key = h—arrayli];

h—array|ij= h—array[h-count-1];
h—count--;

PercolateDownlh, 1);

return key;

}

Time Complexity = O(logn).

Problem-10 Prove that, for a complete binary tree of height h the sum of the height of all
nodes is O(n — h).

Solution: A complete binary tree has 2! nodes on level (.Also, a node on level i has depth i and
height h — i. Let us assume that S denotes the sum of the heights of all these nodes and S can be

calculated as:
h
§= Z 2i(h — i)
=0

$i= b4t 30 = Dy a3 veaeab-Yg
Multiplying with 2 on both sides gives: 2S = 2h + 4(h—1) + 8(h—2) + ---+ 21 = (1)

Now, subtract S from2S: 2S—S=—h+2 + 4+ +2"=5=2"M1_1)_(h-1)



But, we already know that the total number of nodes n in a complete binary tree with height h is n
= 2h*1_ 1. This gives us: h = log(n + 1).

Finally, replacing 2"*1 — 1 with n, gives: S =n—(h—1) = O(n — logn) = O(n - h).
Problem-11 Give an algorithm to find all elements less than some value of k in a binary heap.

Solution: Start from the root of the heap. If the value of the root is smaller than k then print its
value and call recursively once for its left child and once for its right child. If the value of a node
is greater or equal than k then the function stops without printing that value.

The complexity of this algorithm is O(n), where n is the total number of nodes in the heap. This
bound takes place in the worst case, where the value of every node in the heap will be smaller
than k, so the function has to call each node of the heap.

Problem-12 Give an algorithm for merging two binary max-heaps. Let us assume that the size
of the first heap is m + n and the size of the second heap is n.

Solution: One simple way of solving this problem is:

. Assume that the elements of the first array (with size m + n) are at the beginning.
That means, first m cells are filled and remaining n cells are empty.

. Without changing the first heap, just append the second heap and heapify the array.

. Since the total number of elements in the new array is m + n, each heapify operation
takes O(log(m + n)).

The complexity of this algorithm is : O((m + n)log(m + n)).
Problem-13 Can we improve the complexity of Problem-12?

Solution: Instead of heapifying all the elements of the m + n array, we can use the technique of
“building heap with an array of elements (heapifying array)”. We can start with non-leaf nodes
and heapify them. The algorithm can be given as:

. Assume that the elements of the first array (with size m + n) are at the beginning.
That means, the first m cells are filled and the remaining n cells are empty.

. Without changing the first heap, just append the second heap.

. Now, find the first non-leaf node and start heapifying from that element.

In the theory section, we have already seen that building a heap with n elements takes O(n)
complexity. The complexity of merging with this technique is: O(m + n).

Problem-14 Is there an efficient algorithm for merging 2 max-heaps (stored as an array)?
Assume both arrays have n elements.

Solution: The alternative solution for this problem depends on what type of heap it is. If it’s a
standard heap where every node has up to two children and which gets filled up so that the leaves
are on a maximum of two different rows, we cannot get better than O(n) for the merge.



There is an O(logm % logn) algorithm for merging two binary heaps with sizes m and n. For m =
n, this algorithm takes O(log®n) time complexity. We will be skipping it due to its difficulty and
scope.

For better merging performance, we can use another variant of binary heap like a Fibonacci-
Heap which can merge in O(1) on average (amortized).

Problem-15 Give an algorithm for finding the k™ smallest element in min-heap.

Solution: One simple solution to this problem is: perform deletion k times from min-heap.

refurn PQ.Min();
[ [Just delete first k-1 elements and return the k-th element.
forfint 1=0;1<k-1;14+4)
DeleteMimn(h);

return DeleteMin{h);

Time Complexity: O(klogn). Since we are performing deletion operation k times and each
deletion takes O(logn).

Problem-16 For Problem-15, can we improve the time complexity?

Solution: Assume that the original min-heap is called HOrig and the auxiliary min-heap is named
HAux. Initially, the element at the top of HOrig, the minimum one, is inserted into HAux. Here we
don’t do the operation of DeleteMin with HOrig.



Heap HOrg;
Heap HAux;
int FindKthLargestEle{ int k) |
int heapElement; | /Assuming heap data is of infegers
int count=1;
HAux Insert(HOrig Min));
while{ true ||
[ [return the minimum element and delete it from the HA heap
heapElement = HAux.DeleteMin|);
f{++count ==k ) !
return heapElement;
}
else | //insert the left and right children in HO into the HA
HAux.Insert(heapElement.LeftChild());

HAuzx Insert(heapElement RightChuld|));

}

Every while-loop iteration gives the k' smallest element and we need k loops to get the k"
smallest elements. Because the size of the auxiliary heap is always less than k, every while-loop
iteration the size of the auxiliary heap increases by one, and the original heap HOrig has no
operation during the finding, the running time is O(klogk).

Note: The above algorithm is useful if the k value is too small compared to n. If the k value is
approximately equal to n, then we can simply sort the array (let’s say, using couting sort or any

other linear sorting algorithm) and return k™ smallest element from the sorted array. This gives
O(n) solution.

Problem-17 Find k max elements from max heap.

Solution: One simple solution to this problem is: build max-heap and perform deletion k times.
T(n) = DeleteMin from heap k times = ©(klogn).

Problem-18 For Problem-17, is there any alternative solution?

Solution: We can use the Problem-16 solution. At the end, the auxiliary heap contains the k-
largest elements. Without deleting the elements we should keep on adding elements to HAux.

Problem-19 How do we implement stack using heap?



Solution: To implement a stack using a priority queue PQ (using min heap), let us assume that we
are using one extra integer variable c. Also, assume that c is initialized equal to any known value
(e.g., 0). The implementation of the stack ADT is given below. Here c is used as the priority
while inserting/deleting the elements from PQ.

void Push(int element) |
PQ.Insert(c, element);

¢

[
|

int Pop|) |
return PQ.DeleteMin();

int Top() |
refurn PQ.Min();

[
]

int Size() |
return PQ. Size|);

mt IsEmpty() |
return PQ.[sEmpty();
i

We could also increment ¢ back when popping.

Observation: We could use the negative of the current system time instead of ¢ (to avoid
overflow). The implementation based on this can be given as:

void Push(int element) |
PQ.nsert(-gettime() element);

}

Problem-20 How do we implement Queue using heap?

Solution: To implement a queue using a priority queue PQ (using min heap), as similar to stacks
simulation, let us assume that we are using one extra integer variable, c. Also, assume that c is
initialized equal to any known value (e.g., 0). The implementation of the queue ADT is given
below. Here the c is used as the priority while inserting/deleting the elements from PQ.



void Push(int element) |
PQ.Insert(c, element);
ot

[
|

nt Pop) |
return PQ.DeleteMin);

int Topl] |
return PQ.Minl);

1
|

int Size() |
return PQ.Size|);
}
mt [sEmpty() |
return PQ.IsEmpty();
i

Note: We could also decrement ¢ when popping.

Observation: We could use just the negative of the current system time instead of ¢ (to avoid
overflow). The implementation based on this can be given as:

void Push(int element) |

PQ.insert gettime() element);

Note: The only change is that we need to take a positive ¢ value instead of negative.

Problem-21 Given a big file containing billions of numbers, how can you find the 10
maximum numbers from that file?

Solution: Always remember that when you need to find max n elements, the best data structure to
use is priority queues.

One solution for this problem is to divide the data in sets of 1000 elements (let’s say 1000) and
make a heap of them, and then take 10 elements from each heap one by one. Finally heap sort all
the sets of 10 elements and take the top 10 among those. But the problem in this approach is
where to store 10 elements from each heap. That may require a large amount of memory as we



have billions of numbers.

Reusing the top 10 elements (from the earlier heap) in subsequent elements can solve this
problem. That means take the first block of 1000 elements and subsequent blocks of 990 elements
each. Initially, Heapsort the first set of 1000 numbers, take max 10 elements, and mix them with

990 elements of the 2"¢ set. Again, Heapsort these 1000 numbers (10 from the first set and 990

from the 29 set), take 10 max elements, and mix them with 990 elements of the 3" d get, Repeat till
the last set of 990 (or less) elements and take max 10 elements from the final heap. These 10
elements will be your answer.

Time Complexity: O(n) = n/1000 x(complexity of Heapsort 1000 elements) Since complexity of
heap sorting 1000 elements will be a constant so the O(n) = n i.e. linear complexity.

Problem-22 Merge k sorted lists with total of n elements: We are given k sorted lists with
total n inputs in all the lists. Give an algorithm to merge them into one single sorted list.

Solution: Since there are k equal size lists with a total of n elements, the size of each list is & One
simple way of solving this problem is:

. Take the first list and merge it with the second list. Since the size of each list is &,
this step produces a sorted list with size ?n This is similar to merge sort logic. The
. . . . 2 ..
time complexity of this step is: ?n This is because we need to scan all the elements

of both the lists.
. Then, merge the second list output with the third list. As a result, this step produces a

. . . 3 . . . . 3 ..
sorted list with size ?n The time complexity of this step is: f This is because we

. . . 2 . . n
need to scan all the elements of both lists (one with size ?n and the other with size £

).

. Continue this process until all the lists are merged to one list.

Total time _ complexity:
_2n _ 3n , 4n _ . n(k?)

==+t —lek— =Yie — ~O(nk)

Space Complexity: O(l)

Problem-23 For Problem-22, can we improve the time complexity?

Solution:

1 Divide the lists into pairs and merge them. That means, first take two lists at a time
and merge them so that the total elements parsed for all lists is O(n). This operation
gives k/2 lists.

2 Repeat step-1 until the number of lists becomes one.

Time complexity: Step-1 executes logk times and each operation parses all n elements in all the
lists for making k/2 lists. For example, if we have 8 lists, then the first pass would make 4 lists by



parsing all n elements. The second pass would make 2 lists by again parsing n elements and the
third pass would give 1 list by again parsing n elements. As a result the total time complexity is
O(nlogn).

Space Complexity: O(n).

Problem-24 For Problem-23, can we improve the space complexity?
Solution: Let us use heaps for reducing the space complexity.

1.  Build the max-heap with all the first elements from each list in O(k).

2. In each step, extract the maximum element of the heap and add it at the end of the
output.

3. Add the next element from the list of the one extracted. That means we need to select
the next element of the list which contains the extracted element of the previous
step.

4. Repeat step-2 and step-3 until all the elements are completed from all the lists.

Time Complexity = O(nlogk ). At a time we have k elements max-heap and for all n elements we
have to read just the heap in logk time, so total time = O(nlogk).
Space Complexity: O(k) [for Max-heap].

Problem-25 Given 2 arrays A and B each with n elements. Give an algorithm for finding
largest n pairs (Ali],B[j]).

Solution:

Algorithm:

. Heapify A and B. This step takes O(2n) = O(n).
. Then keep on deleting the elements from both the heaps. Each step takes O(2logn) ~
O(logn).

Total Time complexity: O(nlogn).

Problem-26 Min-Max heap: Give an algorithm that supports min and max in O(1) time,
insert, delete min, and delete max in O(logn) time. That means, design a data structure
which supports the following operations:

Operation Complexity
Init O(n)

Insert O(logn)
FindMin O(1)
FindMax O(1)
Delete Min O(logn)




Delete Max O(logri)

Solution: This problem can be solved using two heaps. Let us say two heaps are: Minimum-Heap

H_;, and Maximum-Heap H_,,. Also, assume that elements in both the arrays have mutual
pointers. That means, an element in H_;, will have a pointer to the same element in H_,, and an
element in H_,, will have a pointer to the same element in H ;.
Init Build H;;, in O(n) and H,,,,, in O(n)
Insert(x) Ins.ert X t(.) H ., in O(logn). Insert x to H_,,, in O(logn). Update the
pointers in O(1)
FindMin() | Return root(H,;,) in O(1)
FindMax |Returnroot(H_,,) in O(1)
Delete Delete the minimum from H_;, in O(logn). Delete the same element from
Min H, .. by using the mutual pointer in O(logn)
Delete the maximum from H,,, in O(logn). Delete the same element from
DeleteMax : : .
H,;, by using the mutual pointer in O(logn)

Problem-27 Dynamic median finding. Design a heap data structure that supports finding the
median.

Solution: In a set of n elements, median is the middle element, such that the number of elements
lesser than the median is equal to the number of elements larger than the median. If n is odd, we
can find the median by sorting the set and taking the middle element. If n is even, the median is
usually defined as the average of the two middle elements. This algorithm works even when some
of the elements in the list are equal. For example, the median of the multiset {1, 1, 2, 3, 5} is 2,
and the median of the multiset {1, 1, 2, 3, 5, 8} is 2.5.

“Median heaps” are the variant of heaps that give access to the median element. A median heap
can be implemented using two heaps, each containing half the elements. One is a max-heap,
containing the smallest elements; the other is a min-heap, containing the largest elements. The size
of the max-heap may be equal to the size of the min-heap, if the total number of elements is even.
In this case, the median is the average of the maximum element of the max-heap and the minimum
element of the min-heap. If there is an odd number of elements, the max-heap will contain one
more element than the min-heap. The median in this case is simply the maximum element of the
max-heap.

Problem-28 Maximum sum in sliding window: Given array A[] with sliding window of size
w which is moving from the very left of the array to the very right. Assume that we can
only see the w numbers in the window. Each time the sliding window moves rightwards by



one position. For example: The arrayis [13-1-3536 7], and w is 3.

Window position Max
[13-1]-35367
1[3-1-3]5367
13[-1-35]367
13-1[-353]67
13-1-3[536]7
13-1-35[367]

N | Y| o W W

Input: A long array A[], and a window width w. Output: An array B[], B[i] is the
maximum value of from A[i] to A[i+w-1]
Requirement: Find a good optimal way to get B[i]

Solution: Brute force solution is, every time the window is moved we can search for a total of w
elements in the window.

Time complexity: O(nw).

Problem-29 For Problem-28, can we reduce the complexity?

Solution: Yes, we can use heap data structure. This reduces the time complexity to O(nlogw).
Insert operation takes O(logw) time, where w is the size of the heap. However, getting the
maximum value is cheap; it merely takes constant time as the maximum value is always kept in the
root (head) of the heap. As the window slides to the right, some elements in the heap might not be
valid anymore (range is outside of the current window). How should we remove them? We would
need to be somewhat careful here. Since we only remove elements that are out of the window’s
range, we would need to keep track of the elements’ indices too.

Problem-30 For Problem-28, can we further reduce the complexity?

Solution: Yes, The double-ended queue is the perfect data structure for this problem. It supports
insertion/deletion from the front and back. The trick is to find a way such that the largest element
in the window would always appear in the front of the queue. How would you maintain this
requirement as you push and pop elements in and out of the queue?

Besides, you will notice that there are some redundant elements in the queue that we shouldn’t
even consider. For example, if the current queue has the elements: [10 5 3], and a new element in
the window has the element 11. Now, we could have emptied the queue without considering
elements 10, 5, and 3, and insert only element 11 into the queue.



Typically, most people try to maintain the queue size the same as the window’s size. Try to break
away from this thought and think out of the box. Removing redundant elements and storing only
elements that need to be considered in the queue is the key to achieving the efficient O(n) solution
below. This is because each element in the list is being inserted and removed at most once.
Therefore, the total number of insert + delete operations is 2n.

void MaxShdingWindow(int Af], int n, int w, mt B[j) |
struct DoubleEndQueue *Q = CreateDoubleEndQueuef);
for inti=0;1<w itt)]
while (IsEmptyQueue(Q) && Ali] »= A|QBack(Q)|
PopBack(Q);
PushBack(Q, 1);

|
|

for (inti=w;i<n; itt)]
Bli-w] = A[QFront(Q]]
while (sEmptyQueue(Q) & Ali] >= A[QBack(Q)]
PopBack(Q);
while [IsEmptyQueue(Q) && QFront(Q) <= i-w)
PopFront(Q);
PushBack(Q, {);

B[n-w| = A|QFront(Q));

[
|

Problem-31 A priority queue is a list of items in which each item has associated with it a
priority. Items are withdrawn from a priority queue in order of their priorities starting with
the highest priority item first. If the maximum priority item is required, then a heap is
constructed such than priority of every node is greater than the priority of its children.

Design such a heap where the item with the middle priority is withdrawn first. If there are
n items in the heap, then the number of items with the priority smaller than the middle

priority is % if nis odd, else % + 151

Explain how withdraw and insert operations work, calculate their complexity, and how the
data structure is constructed.

Solution: We can use one min heap and one max heap such that root of the min heap is larger than



the root of the max heap. The size of the min heap should be equal or one less than the size of the
max heap. So the middle element is always the root of the max heap.

For the insert operation, if the new item is less than the root of max heap, then insert it into the
max heap; else insert it into the min heap. After the withdraw or insert operation, if the size of
heaps are not as specified above than transfer the root element of the max heap to min heap or
vice-versa.

With this implementation, insert and withdraw operation will be in O(logn) time.

Problem-32 Given two heaps, how do you merge (union) them?

Solution: Binary heap supports various operations quickly: Find-min, insert, decrease-key. If we
have two min-heaps, H1 and H2, there is no efficient way to combine them into a single min-heap.

For solving this problem efficiently, we can use mergeable heaps. Mergeable heaps support
efficient union operation. It is a data structure that supports the following operations:

. Create-Heap(): creates an empty heap

. Insert(H,X,K) : insert an item x with key K into a heap H
. Find-Min(H) : return item with min key

. Delete-Min(H) : return and remove

. Union(H1, H2) : merge heaps H1 and H2

Examples of mergeable heaps are:
. Binomial Heaps
. Fibonacci Heaps
Both heaps also support:
. Decrease-Key(H,X,K): assign item Y with a smaller key K

. Delete(H,X) : remove item X

Binomial Heaps: Unlike binary heap which consists of a single tree, a binomial heap consists of
a small set of component trees and no need to rebuild everything when union is performed. Each
component tree is in a special format, called a binomial tree.

A binomial tree of order k, denoted by By, is defined recursively as follows:

. By is a tree with a single node
. For k > 1, By, is formed by joining two By_4, such that the root of one tree becomes
the leftmost child of the root of the other.

Example:



B
2 B,

Fibonacci Heaps: Fibonacci heap is another example of mergeable heap. It has no good worst-
case guarantee for any operation (except Insert/Create-Heap). Fibonacci Heaps have excellent
amortized cost to perform each operation. Like binomial heap, fibonacci heap consists of a set of
min-heap ordered component trees. However, unlike binomial heap, it has

. No limit on number of trees (up to O(n)), and
. No limit on height of a tree (up to O(n))

Also, Find-Min, Delete-Min, Union, Decrease-Key, Delete all have worst-case O(n) running
time. However, in the amortized sense, each operation performs very quickly.

Operation Binary Heap | Binomial Heap | Fibonacci Heap

| Create-Heap | O(1) O(1) O(1) |
Find-Min O(1) | ©(logn) e(1)
Delete-Min O(logn) O(logn) O(logn)
Insert O(logn) O(logn) O(1)

" Delete | O(logn) O(logn) O(logn)
Decrease-Key | O(logn) O(logn) (1)

" Union O(n) O(logn) O(1)

Problem-33 Median in an infinite series of integers

Solution: Median is the middle number in a sorted list of numbers (if we have odd number of
elements). If we have even number of elements, median is the average of two middle numbers in a
sorted list of numbers.



We can solve this problem efficiently by using 2 heaps: One MaxHeap and one MinHeap.

1. MaxHeap contains the smallest half of the received integers
2.  MinHeap contains the largest half of the received integers

The integers in MaxHeap are always less than or equal to the integers in MinHeap. Also, the
number of elements in MaxHeap is either equal to or 1 more than the number of elements in the
MinHeap.

In the stream if we get 2n elements (at any point of time), MaxHeap and MinHeap will both
contain equal number of elements (in this case, n elements in each heap). Otherwise, if we have
received 2n + 1 elements, MaxHeap will contain n + 1 and MinHeap n.

Let us find the Median: If we have 2n + 1 elements (odd), the Median of received elements will
be the largest element in the MaxHeap (nothing but the root of MaxHeap). Otherwise, the Median
of received elements will be the average of largest element in the MaxHeap (nothing but the root
of MaxHeap) and smallest element in the MinHeap (nothing but the root of MinHeap). This can be
calculated in O(1).

Inserting an element into heap can be done in O(logn). Note that, any heap containing n + 1
elements might need one delete operation (and insertion to other heap) as well.

Example:
Insert 1: Insert to MaxHeap.
MaxHeap: {1}, MinHeap:{}

Insert 9: Insert to MinHeap. Since 9 is greater than 1 and MinHeap maintains the maximum
elements.
MaxHeap: {1}, MinHeap:{9}

Insert 2: Insert MinHeap. Since 2 is less than all elements of MinHeap.
MaxHeap: {1,2}, MinHeap: {9}

Insert 0: Since MaxHeap already has more than half; we have to drop the max element
from MaxHeap and insert it to MinHeap. So, we have to remove 2 and insert into
MinHeap. With that it becomes:

MaxHeap: {1}, MinHeap:{2,9}

Now, insert 0 to MaxHeap.

Total Time Complexity: O(logn).

Problem-34 Suppose the elements 7, 2, 10 and 4 are inserted, in that order, into the valid 3-
ary max heap found in the above question, Which one of the following is the sequence of
items in the array representing the resultant heap?

A 10,7,9,8,3,1,5,2,6,4
(B) 10,9,8,7,6,5,4,3,2,1



© 10,9,4,5,7,6,8,2,1,3
Dby 10,8,6,9,7,2,3,4,1,5

Solution: The 3-ary max heap with elements 9, 5, 6, 8, 3, 1 is:

After Insertion of 7:

After Insertion of 2:
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After Insertion of 10:

After Insertion of 4:



Problem-35 A complete binary min-heap is made by including each integer in [1,1023]
exactly once. The depth of a node in the heap is the length of the path from the root of the
heap to that node. Thus, the root is at depth 0. The maximum depth at which integer 9 can
appear is.

Solution: As shown in the figure below, for a given number i, we can fix the element i at i level
and arrange the numbers 1 to i — 1 to the levels above. Since the root is at depth zero, the

maximum depth of the i element in a min-heap is i — 1. Hence, the maximum depth at which
integer 9 can appear is 8.



Problem-36 A d-ary heap is like a binary heap, but instead of 2 children, nodes have d
children. How would you represent a d-ary heap with n elements in an array? What are the

expressions for determining the parent of a given element, Parent(i), and a j™ child of a
given element, Child(i,j), where 1 <j < d?

Solution: The following expressions determine the parent and j™ child of element i (where 1 < j
<d):

Parent(i) f +d— 2‘

d
Child(i,j) = (i—1).d+j+1



(HAPTER

DISJOINT SETS
ADT

8.1 Introduction

In this chapter, we will represent an important mathematics concept: sets. This means how to
represent a group of elements which do not need any order. The disjoint sets ADT is the one used
for this purpose. It is used for solving the equivalence problem. It is very simple to implement. A
simple array can be used for the implementation and each function takes only a few lines of code.
Disjoint sets ADT acts as an auxiliary data structure for many other algorithms (for example,
Kruskal’s algorithm in graph theory). Before starting our discussion on disjoint sets ADT, let us
look at some basic properties of sets.

8.2 Equivalence Relations and Equivalence Classes

For the discussion below let us assume that 5 is a set containing the elements and a relation R is
defined on it. That means for every pair of elements ina,b € 5, a R b is either true or false. If a R



b is true, then we say a is related to b, otherwise a is not related to b. A relation R is called an
equivalence relation if it satisfies the following properties:

. Reflexive: For every element a € S.aR a is true.

. Symmetric: For any two elements a, b € S, if a R b is true then b R a is true.

. Transitive: For any three elements a, b, c € S, ifa Rb and b R c are true thena R ¢
is true.

As an example, relations < (less than or equal to) and > (greater than or equal to) on a set of
integers are not equivalence relations. They are reflexive (since a < a) and transitive (a < b and b
< c implies a < c¢) but not symmetric (a < b does not imply b < a).

Similarly, rail connectivity is an equivalence relation. This relation is reflexive because any
location is connected to itself. If there is connectivity from city a to city b, then city b also has
connectivity to city a, so the relation is symmetric. Finally, if city a is connected to city b and city
b is connected to city c, then city a is also connected to city c.

The equivalence class of an element a € S is a subset of S that contains all the elements that are
related to a. Equivalence classes create a partition of S. Every member of S appears in exactly
one equivalence class. To decide if a R b, we just need to check whether a and b are in the same
equivalence class (group) or not.

In the above example, two cities will be in same equivalence class if they have rail connectivity.
If they do not have connectivity then they will be part of different equivalence classes.

Since the intersection of any two equivalence classes is empty (@), the equivalence classes are
sometimes called disjoint sets. In the subsequent sections, we will try to see the operations that
can be performed on equivalence classes. The possible operations are:

. Creating an equivalence class (making a set)
. Finding the equivalence class name (Find)
. Combining the equivalence classes (Union)

8.3 Disjoint Sets ADT

To manipulate the set elements we need basic operations defined on sets. In this chapter, we
concentrate on the following set operations:

. MAKESET(X): Creates a new set containing a single element X.

. UNION(X, Y): Creates a new set containing the elements X and Y in their union and
deletes the sets containing the elements X and Y.

. FIND(X): Returns the name of the set containing the element X.



8.4 Applications

Disjoint sets ADT have many applications and a few of them are:

. To represent network connectivity

. Image processing

. To find least common ancestor

. To define equivalence of finite state automata

. Kruskal’s minimum spanning tree algorithm (graph theory)
. In game algorithms

8.5 Tradeoffs in Implementing Disjoint Sets ADT

Let us see the possibilities for implementing disjoint set operations. Initially, assume the input
elements are a collection of n sets, each with one element. That means, initial representation
assumes all relations (except reflexive relations) are false. Each set has a different element, so
that S; n S;= ¢. This makes the sets disjoint.

To add the relation a R b (UNION), we first need to check whether a and b are already related or
not. This can be verified by performing FINDs on both a and b and checking whether they are in
the same equivalence class (set) or not.

If they are not, then we apply UNION. This operation merges the two equivalence classes
containing a and b into a new equivalence class by creating a new set §; = S; U S; and deletes S;

and S;. Basically there are two ways to implement the above FIND/UNION operations:

. Fast FIND implementation (also called Quick FIND)
. Fast UNION operation implementation (also called Quick UNION)

8.6 Fast FIND Implementation (Quick FIND)

In this method, we use an array. As an example, in the representation below the array contains the
set name for each element. For simplicity, let us assume that all the elements are numbered
sequentially from 0 to n — 1.

In the example below, element 0 has the set name 3, element 1 has the set name 5, and so on. With
this representation FIND takes only O(1) since for any element we can find the set name by
accessing its array location in constant time.



Set Name

3 d 2‘( 3

0 2 n-2 n-1

In this representation, to perform UNION(a, b) [assuming that a is in set i and b is in set j] we
need to scan the complete array and change all i’s to j. This takes O(n).

A sequence of n — 1 unions take O(n?) time in the worst case. If there are O(n?) FIND operations,
this performance is fine, as the average time complexity is O(1) for each UNION or FIND
operation. If there are fewer FINDs, this complexity is not acceptable.

8.7 Fast UNION Implementation (Quick UNION)

In this and subsequent sections, we will discuss the faster UNION implementations and its
variants. There are different ways of implementing this approach and the following is a list of a
few of them.

. Fast UNION implementations (Slow FIND)
. Fast UNION implementations (Quick FIND)
. Fast UNION implementations with path compression

8.8 Fast UNION Implementation (Slow FIND)

As we have discussed, FIND operation returns the same answer (set name) if and only if they are
in the same set. In representing disjoint sets, our main objective is to give a different set name for
each group. In general we do not care about the name of the set. One possibility for implementing
the set is tree as each element has only one root and we can use it as the set name.

How are these represented? One possibility is using an array: for each element keep the root as
its set name. But with this representation, we will have the same problem as that of FIND array
implementation. To solve this problem, instead of storing the root we can keep the parent of the
element. Therefore, using an array which stores the parent of each element solves our problem.

To differentiate the root node, let us assume its parent is the same as that of the element in the
array. Based on this representation, MAKESET, FIND, UNION operations can be defined as:

. (X): Creates a new set containing a single element X and in the array update the
parent of X as X. That means root (set name) of X is X.



UNION(X, Y): Replaces the two sets containing X and Y by their union and in the
array updates the parent of X as Y.

. FIND(X): Returns the name of the set containing the element X. We keep on
searching for X’s set name until we come to the root of the tree.
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For the elements 0 to n — 1 the initial representation is:

---------- n-2 n-1

Parent Array

To perform a UNION on two sets, we merge the two trees by making the root of one tree point to
the root of the other.

Initial Configuration for the elements O to 6
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Parent Array
After UNION(5,6)
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After UNION( 1,2)
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Parent Array

One important thing to observe here is, UNION operation is changing the root’s parent only, but
not for all the elements in the sets. Due to this, the time complexity of UNION operation is O(1).

A FIND(X) on element X is performed by returning the root of the tree containing X. The time to
perform this operation is proportional to the depth of the node representing X.

Using this method, it is possible to create a tree of depth n - 1 (Skew Trees). The worst-case
running time of a FIND is O(n) and m consecutive FIND operations take O(mn) time in the worst
case.



MAKESET

void MAKESET( int 5], int size| |
for(int 1= size-1;1>=0; i-- )
S = i

FIND

int FIND(int S]], int size, int X) {
iff (X »= 0 &8 X < size))
return -1;
if{ S[X] = X
return X;
else return FIND(S, S[X);

UNION

void UNION| int 5[], int size, it root], int root2 ) |
if[FIND(S, size, root1] == FIND(S, size, root2))
returt;
iff!{[root] >= 0 && root] < size] && (root2 »= 0 &b root2 < size)))
return;
S[root1] = root2;

8.9 Fast UNION Implementations (Quick FIND)

The main problem with the previous approach is that, in the worst case we are getting the skew
trees and as a result the FIND operation is taking O(n) time complexity. There are two ways to
improve it:

. UNION by Size (also called UNION by Weight): Make the smaller tree a subtree of
the larger tree

. UNION by Height (also called UNION by Rank): Make the tree with less height a
subtree of the tree with more height



UNION by Size

In the earlier representation, for each element i we have stored i (in the parent array) for the root
element and for other elements we have stored the parent of i. But in this approach we store
negative of the size of the tree (that means, if the size of the tree is 3 then store —3 in the parent
array for the root element). For the previous example (after UNION(O0,2)), the new representation

00D

2 2 -3 -1 -1 6 -2
Parent Array

Assume that the size of one element set is 1 and store — 1. Other than this there is no change.

MAKESET
void MAKESET| mt 5[], mt size) {

forfint 1= size-1:1>= 0;--)
§fi| = -1:

FIND



int FIND(int §[], int size, int X |
f{1(X >= 0 && X < size)) )
refurn -1;
iff S[X] ==-1]
return X;

else return FIND(S, S[X);
}

UNION by Size

void UNIONBySize(int 3[], int size, int rootl, int root2) |
if{[FIND(S, size, root]] == FIND[S, size, root2)) && FIND(S, size, rootl) 1= -1)
return;
iff S[root2] < S[roatl]] |
Slroot1] = root2;
S[root2] += S[rootl];

|
[

else |
Sroot2] = rootl;
Slroot]] += Sfroot2];

}
}

Note: There is no change in FIND operation implementation.

UNION by Height (UNION by Rank)
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Parent Array
As in UNION by size, in this method we store negative of height of the tree (that means, if the
height of the tree is 3 then we store —3 in the parent array for the root element). We assume the

height of a tree with one element set is 1. For the previous example (after UNION(0,2)), the new
representation will look like:

O DD &

Parent Array

UNION by Height



void UNIONByHeight(int 5[], it size, it rootl, int root2) |
if|(FIND(S, size, rootl) == FIND(S, size, root2)) && FIND(S, size, root]) != -1|
return;
iff 8|root2| < §rootl] )
S[root1| = root2;
else |
if| S[root2] == Sroot1] )]
S[root1]--;
S[root2] = rootl;

Note: For FIND operation there is no change in the implementation.

Comparing UNION by Size and UNION by Height

With UNION by size, the depth of any node is never more than logn. This is because a node is
initially at depth 0. When its depth increases as a result of a UNION, it is placed in a tree that is
at least twice as large as before. That means its depth can be increased at most logn times. This
means that the running time for a FIND operation is O(logn), and a sequence of m operations
takes O(m logn).

Similarly with UNION by height, if we take the UNION of two trees of the same height, the height
of the UNION is one larger than the common height, and otherwise equal to the max of the two
heights. This will keep the height of tree of n nodes from growing past O(logn). A sequence of m
UNIONSs and FINDs can then still cost O(m logn).

Path Compression

FIND operation traverses a list of nodes on the way to the root. We can make later FIND
operations efficient by making each of these vertices point directly to the root. This process is
called path compression. For example, in the FIND(X) operation, we travel from X to the root of
the tree. The effect of path compression is that every node on the path from X to the root has its
parent changed to the root.



‘' __  After FIND[X)

Before FIND(X)

With path compression the only change to the FIND function is that S[X] is made equal to the
value returned by FIND. That means, after the root of the set is found recursively, X is made to
point directly to it. This happen recursively to every node on the path to the root.

FIND with path compression

int FIND(int 5[], int size, int X |
(X == 0 &b X < size))
return;
if(S[X] <= 0
return X;
else return{S[X] = FIND( S, SX]));
}

Note: Path compression is compatible with UNION by size but not with UNION by height as



there is no efficient way to change the height of the tree.

8.10 Summary

Performing m union-find operations on a set of n objects.

Algorithm Worst-case time
Quick-Find mn
Quick-Union mn
Quick-Union by Size/Height n + m logn
Path compression n + mlogn

Quick-Union by Size/Height + Path Compression

(m + n) logn

8.11 Disjoint Sets: Problems & Solutions

Problem-1 Consider a list of cities ¢;. ¢y,...,c,. Assume that we have a relation R such that,
for any i,j, R(Ci,Cj) is 1 if cities c¢; and c; are in the same state, and O otherwise. If R is
stored as a table, how much space does it require?

Solution: R must have an entry for every pair of cities. There are ®(n?) of these.

Problem-2 For Problem-1, using a Disjoint sets ADT, give an algorithm that puts each city in

a set such that ¢; and ¢; are in the same set if and only if they are in the same state.

Solution:

for (i=1; i<=n; 14+4) |

MAKESET(c);
for (j= 1,7 <= 1-1; j#4) |
iiR(e, )

UNION(g;, <
hreak:




Problem-3 For Problem-1, when the cities are stored in the Disjoint sets ADT, if we are
given two cities ¢; and ¢;, how do we check if they are in the same state?

Solution: Cities c; and ¢; are in the same state if and only if FIND(c;) = FIND(c)).

Problem-4 For Problem-1, if we use linked-lists with UNION by size to implement the
union-find ADT, how much space do we use to store the cities?

Solution: There is one node per city, so the space is ®(n).

Problem-5 For Problem-1, if we use trees with UNION by rank, what is the worst-case
running time of the algorithm from Problem-2?

Solution: Whenever we do a UNION in the algorithm from Problem-2, the second argument is a
tree of size 1. Therefore, all trees have height 1, so each union takes time O(1). The worst-case

running time is then ®(n?).

Problem-6 If we use trees without union-by-rank, what is the worst-case running time of the
algorithm from Problem-2? Are there more worst-case scenarios than Problem-5?

Solution: Because of the special case of the unions, union-by-rank does not make a difference for
our algorithm. Hence, everything is the same as in Problem-5.

Problem-7 With the quick-union algorithm we know that a sequence of n operations (unions
and finds) can take slightly more than linear time in the worst case. Explain why if all the
finds are done before all the unions, a sequence of n operations is guaranteed to take O(n)
time.

Solution: If the find operations are performed first, then the find operations take O(1) time each
because every item is the root of its own tree. No item has a parent, so finding the set an item is in
takes a fixed number of operations. Union operations always take O(1) time. Hence, a sequence
of n operations with all the finds before the unions takes O(n) time.

Problem-8 With reference to Problem-7, explain why if all the unions are done before all the
finds, a sequence of n operations is guaranteed to take O(n) time.

Solution: This problem requires amortized analysis. Find operations can be expensive, but this
expensive find operation is balanced out by lots of cheap union operations.

The accounting is as follows. Union operations always take O(1) time, so let’s say they have an
actual cost of V21. Assign each union operation an amortized cost of V2 2, SO every union

operation puts V21 in the account. Each union operation creates a new child. (Some node that
was not a child of any other node before is a child now.) When all the union operations are done,
there is $1 in the account for every child, or in other words, for every node with a depth of one or

greater. Let’s say that a find(u) operation costs V21 if u is a root. For any other node, the find
operation costs an additional V21 for each parent pointer the find operation traverses. So the
actual cost is V2 (1 + d), where d is the depth of u. Assign each find operation an amortized cost



of V22. This covers the case where u is a root or a child of a root. For each additional parent
pointer traversed, V21 is withdrawn from the account to pay for it.

Fortunately, path compression changes the parent pointers of all the nodes we pay V21 to
traverse, so these nodes become children of the root. All of the traversed nodes whose depths are
2 or greater move up, so their depths are now 1. We will never have to pay to traverse these
nodes again. Say that a node is a grandchild if its depth is 2 or greater.

Every time find(u) visits a grandchild, V21 is withdrawn from the account, but the grandchild is
no longer a grandchild. So the maximum number of dollars that can ever be withdrawn from the
account is the number of grandchildren. But we initially put $1 in the bank for every child, and
every grandchild is a child, so the bank balance will never drop below zero. Therefore, the

amortization works out. Union and find operations both have amortized costs of V2 2, SO any
sequence of n operations where all the unions are done first takes O(n) time.
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9.1 Introduction

In the real world, many problems are represented in terms of objects and connections between
them. For example, in an airline route map, we might be interested in questions like: “What’s the
fastest way to go from Hyderabad to New York?” or “What is the cheapest way to go from
Hyderabad to New York?” To answer these questions we need information about connections
(airline routes) between objects (towns). Graphs are data structures used for solving these kinds
of problems.

9.2 Glossary

Graph: A graph is a pair (V, E), where V is a set of nodes, called vertices, and £ is a collection
of pairs of vertices, called edges.

. Vertices and edges are positions and store elements



Definitions that we use:
o  Directed edge:
= ordered pair of vertices (u, v)
= first vertex u is the origin
= second vertex v is the destination
» Example: one-way road traffic

o Undirected edge:
= unordered pair of vertices (u, v)
= Example: railway lines

o Directed graph:
= all the edges are directed
» Example: route network

. (5

o Undirected graph:
= all the edges are undirected
» Example: flight network
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. When an edge connects two vertices, the vertices are said to be adjacent to each
other and the edge is incident on both vertices.

. A graph with no cycles is called a tree. A tree is an acyclic connected graph.

. A self loop is an edge that connects a vertex to itself.

. Two edges are parallel if they connect the same pair of vertices.

. The Degree of a vertex is the number of edges incident on it.

. A subgraph is a subset of a graph’s edges (with associated vertices) that form a
graph.

. A path in a graph is a sequence of adjacent vertices. Simple path is a path with no

repeated vertices. In the graph below, the dotted lines represent a path from G to E.



. A cycle is a path where the first and last vertices are the same. A simple cycle is a
cycle with no repeated vertices or edges (except the first and last vertices).

. We say that one vertex is connected to another if there is a path that contains both of
them.

. A graph is connected if there is a path from every vertex to every other vertex.

. If a graph is not connected then it consists of a set of connected components.

C O
@

. A directed acyclic graph [DAG] is a directed graph with no cycles.

©

O
O



A forest is a disjoint set of trees.

A spanning tree of a connected graph is a subgraph that contains all of that graph’s
vertices and is a single tree. A spanning forest of a graph is the union of spanning
trees of its connected components.

A bipartite graph is a graph whose vertices can be divided into two sets such that all
edges connect a vertex in one set with a vertex in the other set.

e

|y

n weighted graphs integers (weights) are assigned to each edge to represent
(distances or costs).
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. Graphs with all edges present are called complete graphs.

) (=)
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. Graphs with relatively few edges (generally if it edges < |V] log [V|) are called
sparse graphs.

. Graphs with relatively few of the possible edges missing are called dense.

. Directed weighted graphs are sometimes called network.

. We will denote the number of vertices in a given graph by |V/|, and the number of
edges by |E|. Note that E can range anywhere from 0 to |V|(|V| — 1)/2 (in undirected
graph). This is because each node can connect to every other node.

9.3 Applications of Graphs



. Representing relationships between components in electronic circuits

. Transportation networks: Highway network, Flight network

. Computer networks: Local area network, Internet, Web

. Databases: For representing ER (Entity Relationship) diagrams in databases, for
representing dependency of tables in databases

9.4 Graph Representation

As in other ADTs, to manipulate graphs we need to represent them in some useful form. Basically,
there are three ways of doing this:

. Adjacency Matrix
. Adjacency List
. Adjacency Set

Adjacency Matrix

Graph Declaration for Adjacency Matrix

First, let us look at the components of the graph data structure. To represent graphs, we need the
number of vertices, the number of edges and also their interconnections. So, the graph can be
declared as:

struct Graph |

int V:

int E;

int **Adj; //Since we need two dimensional matrix
f

Description

In this method, we use a matrix with size V x V. The values of matrix are boolean. Let us assume
the matrix is Adj. The value Adj[u, v] is set to 1 if there is an edge from vertex u to vertex v and 0
otherwise.

In the matrix, each edge is represented by two bits for undirected graphs. That means, an edge
fromu to v is represented by 1 value in both Adj[u,v ] and Adj[u,v]. To save time, we can process
only half of this symmetric matrix. Also, we can assume that there is an “edge” from each vertex
to itself. So, Adj[u, u] is set to 1 for all vertices.



If the graph is a directed graph then we need to mark only one entry in the adjacency matrix. As an
example, consider the directed graph below.

. €

The adjacency matrix for this graph can be given as:

AlB|C|[D
AJO|]1([O0]1
BJ|O[O]1{|O
Cl|]1[0]0[|1
D|O]J]O0O[O]O

Now, let us concentrate on the implementation. To read a graph, one way is to first read the vertex
names and then read pairs of vertex names (edges). The code below reads an undirected graph.



[ [This code creates a graph with ad) matrix representation
struct Graph *adjMatrixOfGraphi) |

The adjacency matrix representation is good if the graphs are dense. The matrix requires O(V?)
bits of storage and O(V?) time for initialization. If the number of edges is proportional to V2, then
there is no problem because V? steps are required to read the edges. If the graph is sparse, the
initialization of the matrix dominates the running time of the algorithm as it takes takes O(V?).

int 1,4, v;
struct Graph *G = (struct Graph *) malloc(sizeof(struct Graph));
(G |

printf{*Memory Error”);

return,;
}
scanf]*Number of Vertices: %d, Number of Edges:%d”, &G-V, &G-E);
G-Ad) = malloc(sizeof|G=V * G=V));
forfu = 0; u < G=V; ut+)

forlv = 0; v < G=V; v

G-Adjjv]lv| = 0;
forfi = 0; 1< G-E; it4) |
/ [Read an edge

scanf|“Reading Edge: %d %d", &u, &v);
| [For undirected graphs set both the bits

G Adifullv] = 1
G- Adj[v][u] = 1;
refurn G,

Adjacency List

Graph Declaration for Adjacency List

In this representation all the vertices connected to a vertex v are listed on an adjacency list for
that vertex v. This can be easily implemented with linked lists. That means, for each vertex v we
use a linked list and list nodes represents the connections between v and other vertices to which v

has an edge.



The total number of linked lists is equal to the number of vertices in the graph. The graph ADT
can be declared as:

struct Graph |
int V;
int E;
int *Adj; //head pointers to linked list

Description

Considering the same example as that of the adjacency matrix, the adjacency list representation

can be given as:

i

Since vertex A has an edge for B and D, we have added them in the adjacency list for A. The
same is the case with other vertices as well.




{ [ Nodes of the Linked List
struct ListNode |

int vertexNumber;
struct ListNode *next;

|

[ [ This code creates a graph with ad; list representation
struct Graph *adjListOfGraph(| |
Int1, X, v;
struct ListNode *temp;
struct Graph *G = (struct Graph *) malloc{sizeof{struct Graph));
f{lG) |
printf{*Memory Error”);
return;
j
scanf*Number of Vertices: %d, Number of Edges:%d", &GV, &G—E};
G—Ad) = malloc(G—V * sizeof{struct ListNode|};

fori = 0;1 < G=V; 144 |
G—Adjli] = (struct ListNode *| malloc(sizeof{struct ListNode));
G—Adji|-vertexNumber = i;
G»Adj[i]next = G Adj;
!
forli=0; 1< E;itt) |
/[Read an edge
scanf{‘Reading Edge: Y%d %d”, &, &y);
temp = (struct ListNode *| malloc(struct ListNode];
temp—+vertexNumber = y;
temp-next = G-Adj[x);
G— Adj[x|—next = temp;
temp = (struct ListNode *| malloc(struct ListNode);
temp—vertexNumber = y,;
temp-next = G- Adjly];
G-Adj[y]~ next= temp;
F

retutn G;
|



For this representation, the order of edges in the input is important. This is because they
determine the order of the vertices on the adjacency lists. The same graph can be represented in
many different ways in an adjacency list. The order in which edges appear on the adjacency list
affects the order in which edges are processed by algorithms.

Disadvantages of Adjacency Lists

Using adjacency list representation we cannot perform some operations efficiently. As an
example, consider the case of deleting a node. . In adjacency list representation, it is not enugh if
we simply delete a node from the list representation, if we delete a node from the adjacency list
then that is enough. For each node on the adjacency list of that node specifies another vertex. We
need to search other nodes linked list also for deleting it. This problem can be solved by linking
the two list nodes that correspond to a particular edge and making the adjacency lists doubly
linked. But all these extra links are risky to process.

Adjacency Set

It is very much similar to adjacency list but instead of using Linked lists, Disjoint Sets [Union-
Find] are used. For more details refer to the Disjoint Sets ADT chapter.

Comparison of Graph Representations

Directed and undirected graphs are represented with the same structures. For directed graphs,
everything is the same, except that each edge is represented just once. An edge from x to y is
represented by a 1 value in Agj[x][y] in the adjacency matrix, or by adding y on x’ adjacency list.
For weighted graphs, everything is the same, except fill the adjacency matrix with weights instead
of boolean values.

: Checking edge between |  lterate over edges
Representation Space L .
v and w? incident to v?
List of edges E E E
Adj Matrix Ve 1 V
Adj List E+V Degree(v) Degree(v)
Adj Set E4V log(Degree(v)) Degree(v)

9.5 Graph Traversals




To solve problems on graphs, we need a mechanism for traversing the graphs. Graph traversal
algorithms are also called graph search algorithms. Like trees traversal algorithms (Inorder,
Preorder, Postorder and Level-Order traversals), graph search algorithms can be thought of as
starting at some source vertex in a graph and “searching” the graph by going through the edges and
marking the vertices. Now, we will discuss two such algorithms for traversing the graphs.

. Depth First Search [DFS]
. Breadth First Search [BFS]

Depth First Search [DFS]

DFS algorithm works in a manner similar to preorder traversal of the trees. Like preorder
traversal, internally this algorithm also uses stack.

Let us consider the following example. Suppose a person is trapped inside a maze. To come out
from that maze, the person visits each path and each intersection (in the worst case). Let us say the
person uses two colors of paint to mark the intersections already passed. When discovering a new
intersection, it is marked grey, and he continues to go deeper.

After reaching a “dead end” the person knows that there is no more unexplored path from the grey
intersection, which now is completed, and he marks it with black. This “dead end” is either an
intersection which has already been marked grey or black, or simply a path that does not lead to
an intersection.

The intersections of the maze are the vertices and the paths between the intersections are the
edges of the graph. The process of returning from the “dead end” is called backtracking. We are
trying to go away from the starting vertex into the graph as deep as possible, until we have to
backtrack to the preceding grey vertex. In DFS algorithm, we encounter the following types of
edges.

Tree edge: encounter new vertex

Back edge: from descendent to ancestor

Forward edge: from ancestor to descendent

Cross edge: between a tree or subtrees

For most algorithms boolean classification, unvisited/visited is enough (for three color
implementation refer to problems section). That means, for some problems we need to use three
colors, but for our discussion two colors are enough.



false ———p Vertex is unvisited

true ) Vertex 1s visited

Initially all vertices are marked unvisited (false). The DFS algorithm starts at a vertex u in the
graph. By starting at vertex u it considers the edges from u to other vertices. If the edge leads to
an already visited vertex, then backtrack to current vertex u. If an edge leads to an unvisited
vertex, then go to that vertex and start processing from that vertex. That means the new vertex
becomes the current vertex. Follow this process until we reach the dead-end. At this point start
backtracking.

The process terminates when backtracking leads back to the start vertex. The algorithm based on
this mechanism is given below: assume Visited[] is a global array.

int Visited|G—V];

void DFS(struct Graph *G, int u) |
Visited[u] = 1;
for(intv =0;v < G-V; vit ) |

[* For example, if the adjacency matrix is used for representing the

graph, then the condition to be used for finding unvisited adjacent
vertex of u 1s: iff Visited|v| && G-Adj[ul[v] ) ¥/

for each unvisited adjacent node v of u |
DFS(G, v

void DFSTraversal(struct Graph *G) |
for (int 1= 0: 1< G=Vii+4)
Visited(1]=0;
[ [This loop is required if the graph has more than one component
for (int1=0; i< G-V;it4)
if{ Visited[i]
DFS(G, 1)
}

As an example, consider the following graph. We can see that sometimes an edge leads to an



already discovered vertex. These edges are called back edges, and the other edges are called tree
edges because deleting the back edges from the graph generates a tree.

The final generated tree is called the DFS tree and the order in which the vertices are processed
is called DFS numbers of the vertices. In the graph below, the gray color indicates that the vertex
is visited (there is no other significance). We need to see when the Visited table is updated.
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From the above diagrams, it can be seen that the DFS traversal creates a tree (without back
edges) and we call such tree a DFS tree. The above algorithm works even if the given graph has
connected components.

The time complexity of DFS is O(V + E), if we use adjacency lists for representing the graphs.
This is because we are starting at a vertex and processing the adjacent nodes only if they are not
visited. Similarly, if an adjacency matrix is used for a graph representation, then all edges

adjacent to a vertex can’t be found efficiently, and this gives O(V?) complexity.

Applications of DFS
. Topological sorting
. Finding connected components
. Finding articulation points (cut vertices) of the graph
. Finding strongly connected components
. Solving puzzles such as mazes

For algorithms refer to Problems Section.

Breadth First Search [BFS]

The BFS algorithm works similar to level — order traversal of the trees. Like level — order
traversal, BFS also uses queues. In fact, level — order traversal got inspired from BFS. BFS
works level by level. Initially, BFS starts at a given vertex, which is at level 0. In the first stage it
visits all vertices at level 1 (that means, vertices whose distance is 1 from the start vertex of the
graph). In the second stage, it visits all vertices at the second level. These new vertices are the
ones which are adjacent to level 1 vertices.

BFS continues this process until all the levels of the graph are completed. Generally queue data
structure is used for storing the vertices of a level.

As similar to DFS, assume that initially all vertices are marked unvisited (false). Vertices that
have been processed and removed from the queue are marked visited (true). We use a queue to
represent the visited set as it will keep the vertices in the order of when they were first visited.
The implementation for the above discussion can be given as:



void BFS(struct Graph *G, int u) |
mnt v;
struct Queue *Q = CreateQueue|);

EnQueue(Q, ul;

while(!IsEmptyQueue(Q)) |
u = DeQueue(Q);

Process u; //For example, print
Visited|s|=1;

/* For example, if the adjacency matrix is used for representing the graph,
then the condition be used for finding unvisited adjacent vertex of u 1s:

if] Visited|v] &b G-Adj[ul[v] ) */

for each unvisited adjacent node vof u |

EnQueue(Q, v);

void BFSTraversal(struct Graph *G) |
for int1=0; i< G-V:i+4)
Visited|i|=0;

[ [ This loop is required if the graph has more than one component
for (int 1= 0; i< G=V;it4)
if{[Visited[)
BFSIG. 1);

[
I

As an example, let us consider the same graph as that of the DFS example. The BFS traversal can
be shown as:
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Time complexity of BFS is O(V + E), if we use adjacency lists for representing the graphs, and
O(V?) for adjacency matrix representation.

Applications of BFS
. Finding all connected components in a graph
. Finding all nodes within one connected component

. Finding the shortest path between two nodes
. Testing a graph for bipartiteness

Comparing DFS and BFS

Comparing BFS and DFS, the big advantage of DFS is that it has much lower memory
requirements than BFS because it’s not required to store all of the child pointers at each level.
Depending on the data and what we are looking for, either DFS or BFS can be advantageous. For
example, in a family tree if we are looking for someone who’s still alive and if we assume that
person would be at the bottom of the tree, then DFS is a better choice. BFS would take a very
long time to reach that last level.

The DFS algorithm finds the goal faster. Now, if we were looking for a family member who died
a very long time ago, then that person would be closer to the top of the tree. In this case, BFS
finds faster than DFS. So, the advantages of either vary depending on the data and what we are
looking for.

DFS is related to preorder traversal of a tree. Like preorder traversal, DFS visits each node
before its children. The BFS algorithm works similar to level — order traversal of the trees.

If someone asks whether DFS is better or BFS is better, the answer depends on the type of the
problem that we are trying to solve. BFS visits each level one at a time, and if we know the
solution we are searching for is at a low depth, then BFS is good. DFS is a better choice if the
solution is at maximum depth. The below table shows the differences between DFS and BFS in
terms of their applications.

Applications DFS | BFS
Spanning forest, connected components, paths, cycles | Yes | Yes
Shortest paths Yes
Minimal use of memory space Yes

9.6 Topological Sort



Topological sort is an ordering of vertices in a directed acyclic graph [DAG] in which each node
comes before all nodes to which it has outgoing edges. As an example, consider the course
prerequisite structure at universities. A directed edge (v,w) indicates that course v must be
completed before course w. Topological ordering for this example is the sequence which does not
violate the prerequisite requirement. Every DAG may have one or more topological orderings.
Topological sort is not possible if the graph has a cycle, since for two vertices v and w on the
cycle, v precedes w and w precedes v.

Topological sort has an interesting property. All pairs of consecutive vertices in the sorted order
are connected by edges; then these edges form a directed Hamiltonian path [refer to Problems
Section] in the DAG. If a Hamiltonian path exists, the topological sort order is unique. If a
topological sort does not form a Hamiltonian path, DAG can have two or more topological
orderings. In the graph below: 7, 5, 3, 11, 8, 2, 9, 10 and 3, 5, 7, 8, 11, 2, 9, 10 are both
topological orderings.

/

Initially, indegree is computed for all vertices, starting with the vertices which are having
indegree 0. That means consider the vertices which do not have any prerequisite. To keep track of
vertices with indegree zero we can use a queue.

All vertices of indegree O are placed on queue. While the queue is not empty, a vertex v is
removed, and all edges adjacent to v have their indegrees decremented. A vertex is put on the
queue as soon as its indegree falls to 0. The topological ordering is the order in which the
vertices DeQueue.

The time complexity of this algorithm is O(|E| + |V|) if adjacency lists are used.



void TopologicalSort( struct Graph G |
struct Queue *(:
int counter;
it v, w;
() = CreateQueue|);
counter = 0;
for (v = 0; ve G=V; vi4)
if| indegree[v] == 0
EnQueue( Q, v ;
while[ IsEmptyQueue( Q) ) |
v =DeQueue| Q ;
topologicalOrder|v] = ++counter;
for each w adjacent to v
if| --indegree(w| == 0|
EnQueue (Q, w);

i
}

if| counter 1= G=V)|
printll'Graph has cycle');
DeleteQueue( Q );

Total running time of topological sort is O(V + E).

Note: The Topological sorting problem can be solved with DFS. Refer to the Problems Section
for the algorithm.

Applications of Topological Sorting

. Representing course prerequisites
. Detecting deadlocks

. Pipeline of computing jobs

. Checking for symbolic link loop

. Evaluating formulae in spreadsheet

9.7 Shortest Path Algorithms

Let us consider the other important problem of a graph. Given a graph G = (V, E) and a



distinguished vertex s, we need to find the shortest path from s to every other vertex in G. There
are variations in the shortest path algorithms which depend on the type of the input graph and are
given below.

Variations of Shortest Path Algorithms

Shortest path in unweighted graph

Shortest path in weighted graph

Shortest path in weighted graph with negative edges

Applications of Shortest Path Algorithms

. Finding fastest way to go from one place to another
. Finding cheapest way to fly/send data from one city to another

Shortest Path in Unweighted Graph

Let s be the input vertex from which we want to find the shortest path to all other vertices.
Unweighted graph is a special case of the weighted shortest-path problem, with all edges a
weight of 1. The algorithm is similar to BFS and we need to use the following data structures:

. A distance table with three columns (each row corresponds to a vertex):
o  Distance from source vertex.
o  Path - contains the name of the vertex through which we get the shortest
distance.
. A queue is used to implement breadth-first search. It contains vertices whose
distance from the source node has been computed and their adjacent vertices are to
be examined.

As an example, consider the following graph and its adjacency list representation.



0:6,

The adjacency list for this graph is:

Let s = C. The distance from C to C is 0. Initially, distances to all other nodes are not computed,
and we initialize the second column in the distance table for all vertices (except C) with -1 as
below.

Vertex | Distance[v] | Previous vertex which gave Distance|v]
A .
1 N
0 :

QMO0
I
H

Algorithm



void UnweightedShortestPath(struct Graph *G, nt 5] |
struct Queue *Q = CreateQueue);
nt v, w;
EnQueue(Q, s);
for (int 1 = 0: 1< G=Viit4)
Distance|i|=-1;
Distance(s|= 0;
while (IsEmptyQueue(Q)) |
v = DeQueue(Q);
for each w adjacent to v r,--" Each vertex examined at most once
f{Distance[w| == -1} |
Distance[w] = Distance[v] + 1;
Path[w] = v;
EnQueue(Q, w); #—— Each vertex EnQueue'd at most once

1

DeleteQueue(Q):

Running time: O(|E| + |V|), if adjacency lists are used. In for loop, we are checking the outgoing
edges for a given vertex and the sum of all examined edges in the while loop is equal to the
number of edges which gives O(|E]).

If we use matrix representation the complexity is O(|V]?), because we need to read an entire row
in the matrix of length |V| in order to find the adjacent vertices for a given vertex.

Shortest path in Weighted Graph [Dijkstra’s]

A famous solution for the shortest path problem was developed by Dijkstra. Dijkstra’s algorithm
is a generalization of the BFS algorithm. The regular BFS algorithm cannot solve the shortest path
problem as it cannot guarantee that the vertex at the front of the queue is the vertex closest to
source s.

Before going to code let us understand how the algorithm works. As in unweighted shortest path
algorithm, here too we use the distance table. The algorithm works by keeping the shortest
distance of vertex v from the source in the Distance table. The value Distance[v] holds the
distance from s to v. The shortest distance of the source to itself is zero. The Distance table for
all other vertices is set to —1 to indicate that those vertices are not already processed.



Vertex | Distance[v] | Previous vertex which gave Distance|v]
A -1 -

QMmO a| ™
|
H
|

After the algorithm finishes, the Distance table will have the shortest distance from source s to
each other vertex v. To simplify the understanding of Dijkstra’s algorithm, let us assume that the
given vertices are maintained in two sets. Initially the first set contains only the source element

and the second set contains all the remaining elements. After the k" iteration, the first set contains
k vertices which are closest to the source. These k vertices are the ones for which we have
already computed the shortest distances from source.

Notes on Dijkstra’s Algorithm

. It uses greedy method: Always pick the next closest vertex to the source.
. It uses priority queue to store unvisited vertices by distance from s.
. It does not work with negative weights.

Difference between Unweighted Shortest Path and Dijkstra’s Algorithm

1) To represent weights in the adjacency list, each vertex contains the weights of the
edges (in addition to their identifier).

2) Instead of ordinary queue we use priority queue [distances are the priorities] and the
vertex with the smallest distance is selected for processing.

3) The distance to a vertex is calculated by the sum of the weights of the edges on the
path from the source to that vertex.

4)  We update the distances in case the newly computed distance is smaller than the old
distance which we have already computed.



void Dikstra(struct Graph *G, mt §) |
struct PriorityQueue *PQ = CreatePriorityQueue();
int v, w;
EnQueue(PQ, 3):
for (int 1 = 0; i< G=Vii+4)
Distance[i]=-1;
Distance|s| = 0;
while {(!IsEmptyQueue(PQ)) |
v = DeleteMin(PQ);
for all adjacent vertices w of v |
Compute new distance d= Distance[v| + weight[v]w];
if| Distance[w]| == -1) |
Distance|w| = new distance d;
[nsert w in the priority queue with priority d
Path(w] = v;

|
|

flDistance[w| > new distance d) |
Distance|w| = new distance d;
Update priority of vertex w to be d;

Path[w] = v;

The above algorithm can be better understood through an example, which will explain each step
that is taken and how Distance is calculated. The weighted graph below has 5 vertices from A —
E.

The value between the two vertices is known as the edge cost between two vertices. For
example, the edge cost between A and C is 1. Dijkstra’s algorithm can be used to find the shortest
path from source A to the remaining vertices in the graph.



Initially the Distance table is:

Vertex | Distance[v] | Previous vertex which gave Distance[v]
A 0 -
B -1 -
L -1 -
D -1 -
E -1 -

After the first step, from vertex A, we can reach B and C. So, in the Distance table we update the
reachability of B and C with their costs and the same is shown below.
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Shortest path from B,C from A

Now, let us select the minimum distance among all. The minimum distance vertex is C. That
means, we have to reach other vertices from these two vertices (A and C). For example, B can be
reached from A and also from C. In this case we have to select the one which gives the lowest
cost. Since reaching B through C is giving the minimum cost (1 + 2), we update the Distance table
for vertex B with cost 3 and the vertex from which we got this cost as C.
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Shortest path to B, D using C as intermediate vertex

The only vertex remaining is E. To reach E, we have to see all the paths through which we can
reach E and select the one which gives the minimum cost. We can see that if we use B as the
intermediate vertex through C we get the minimum cost.
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Performance

In Dijkstra’s algorithm, the efficiency depends on the number of DeleteMins (V DeleteMins) and

updates for priority queues (E updates) that are used. If a standard binary heap is used then the
complexity is O(ElogV).

The term ElogV comes from E updates (each update takes logV) for the standard heap. If the set
used is an array then the complexity is O(E + V?).

Disadvantages of Dijkstra’s Algorithm



. As discussed above, the major disadvantage of the algorithm is that it does a blind
search, thereby wasting time and necessary resources.

. Another disadvantage is that it cannot handle negative edges. This leads to acyclic
graphs and most often cannot obtain the right shortest path.

Relatives of Dijkstra’s Algorithm

. The Bellman- Ford algorithm computes single-source shortest paths in a weighted
digraph. It uses the same concept as that of Dijkstra’s algorithm but can handle
negative edges as well. It has more running time than Dijkstra’s algorithm.

. Prim’s algorithm finds a minimum spanning tree for a connected weighted graph. It
implies that a subset of edges that form a tree where the total weight of all the edges
in the tree is minimized.

Bellman-Ford Algorithm

If the graph has negative edge costs, then Dijkstra’s algorithm does not work. The problem is that
once a vertex u is declared known, it is possible that from some other, unknown vertex v there is a
path back to u that is very negative. In such a case, taking a path from s to v back to u is better
than going from s to u without using v. A combination of Dijkstra’s algorithm and unweighted
algorithms will solve the problem. Initialize the queue with s. Then, at each stage, we DeQueue a
vertex v. We find all vertices W adjacent to v such that,

distance to v + weight (v,w) < old distance to w

We update w old distance and path, and place w on a queue if it is not already there. A bit can be
set for each vertex to indicate presence in the queue. We repeat the process until the queue is

empty.



void BellmanFordAlgorithm(struct Graph *G, int 8) |
struct Queue *Q = CreateQueue();
It v, w;
EnQueue(Q), s);
Distancels| = 0; /| assume the Distance table is filled with INT_MAX
while {(!IsEmptyQueue(Q)) |
v = DeQueuelQ);
for all adjacent vertices w of v |
Compute new distance d= Distance[v] + weight|v)[w]
iffold distance to w > new distance d | |
Distancelv] = (distance to v) + weight[v][w]);
Path[w] = v;
if{w 15 there in queue|
EnQueue(Q, w]

This algorithm works if there are no negative-cost cycles. Each vertex can DeQueue at most | V|
times, so the running time is O(|E|. |V]) if adjacency lists are used.

Overview of Shortest Path Algorithms

Shortest path in unweighted graph [Modified BFS] O(|E| + |V])
Shortest path in weighted graph [Dijkstra’s] O(|E| log |V])

Shortest path in weighted graph with negative edges [Bellman — Ford] | O(|E|.|V])

Shortest path in weighted acyclic graph O(|E| + |V])

9.8 Minimal Spanning Tree

The Spanning tree of a graph is a subgraph that contains all the vertices and is also a tree. A
graph may have many spanning trees. As an example, consider a graph with 4 vertices as shown
below. Let us assume that the corners of the graph are vertices.



Vertices Edges
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The algorithm we will discuss now is minimum spanning tree in an undirected graph. We assume
that the given graphs are weighted graphs. If the graphs are unweighted graphs then we can still
use the weighted graph algorithms by treating all weights as equal. A minimum spanning tree of
an undirected graph G is a tree formed from graph edges that connect all the vertices of G with
minimum total cost (weights). A minimum spanning tree exists only if the graph is connected.
There are two famous algorithms for this problem:

. Prim’s Algorithm
. Kruskal’s Algorithm

For this simple graph, we can have multiple spanning trees as shown below.

Prim’s Algorithm

Prim’s algorithm is almost the same as Dijkstra’s algorithm. As in Dijkstra’s algorithm, in Prim’s
algorithm we keep the values distance and paths in the distance table. The only exception is that
since the definition of distance is different, the updating statement also changes a little. The
update statement is simpler than before.



void Prims(struct Graph *G, int ) |
struct PriorityQueue *PQ = CreatePriorityQueue();

int v, w,
EnQueue(PQ, s|;
Distance(s| = 0; /| assume the Distance table is filled with -1

while {{lsEmptyQueue(PQ)) {
v = DeleteMin(PQ):
for all adjacent vertices wof v |
Compute new distance d= Distancelv] + weight[v][w];
f{Distance|w| == -1) |
Distance|w| = weight|v][w};
[nsert w in the priority queue with prionty d
Path[w| = v;

if{Distance[w| > new distance dj |
Distance[w| = weight[v][w];
Update prionty of vertex w to be d;
Path|w| = v;

The entire implementation of this algorithm is identical to that of Dijkstra’s algorithm. The
running time is O(|V]?) without heaps [good for dense graphs], and O (ElogV) using binary heaps
[good for sparse graphs].

Kruskal’s Algorithm

The algorithm starts with V different trees (V is the vertices in the graph). While constructing the
minimum spanning tree, every time Kruskal’s alorithm selects an edge that has minimum weight
and then adds that edge if it doesn’t create a cycle. So, initially, there are | V | single-node trees in
the forest. Adding an edge merges two trees into one. When the algorithm is completed, there will
be only one tree, and that is the minimum spanning tree. There are two ways of implementing
Kruskal’s algorithm:

. By using Disjoint Sets: Using UNION and FIND operations
. By using Priority Queues: Maintains weights in priority queue



The appropriate data structure is the UNION/FIND algorithm [for implementing forests]. Two
vertices belong to the same set if and only if they are connected in the current spanning forest.
Each vertex is initially in its own set. If u and v are in the same set, the edge is rejected because it
forms a cycle. Otherwise, the edge is accepted, and a UNION is performed on the two sets
containing u and v. As an example, consider the following graph (the edges show the weights).

il

Now let us perform Kruskal’s algorithm on this graph. We always select the edge which has
minimum weight.
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From the above graph, the edges which have minimum weight (cost) are: AD and BE. From these two we can
select one of them and let us assume that we select AD (dotted line).
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DF is the next edge that has the lowest cost (6).
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BE now has the lowest cost and we select it (dotted lines indicate selected edges).
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Next, AC and CE have the low cost of 7 and we select AC.
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Then we select CE as its cost is 7 and it does not form a cycle.
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The next low cost edges are CB and EF. But if we select CB, then it forms a cycle. So we discard it. This is also
the case with EF. So we should not select those two. And the next low cost is 9 (BD and EG). Selecting BD
forms a cycle so we discard it. Adding EG will not form a cycle and therefore with this edge we complete all
vertices of the graph.



void Kruskal(struct Graph *G) |
S=; [/ Atthe end S will contains the edges of minimum spanning trees
for (int v = 0; v< G-V; v+
MakeSet [v);
Sort edges of E by increasing weights w;
for each edge (u, v) in E | / /from sorted hist
if[FIND fu) # FIND (v)) {
S=8U Ju, v
UNION [u, vi;

'E
return 3;

Note: For implementation of UNION and FIND operations, refer to the Disjoint Sets ADT
chapter.

The worst-case running time of this algorithm is O(ElogE), which is dominated by the heap
operations. That means, since we are constructing the heap with E edges, we need O(ElogE) time
to do that.

9.9 Graph Algorithms: Problems & Solutions

Problem-1 In an undirected simple graph with n vertices, what is the maximum number of
edges? Self-loops are not allowed.

Solution: Since every node can connect to all other nodes, the first node can connect to n — 1
nodes. The second node can connect to n — 2 nodes [since one edge is already there from the first

node]. The total number of edgesis: 1 +2+3+--- +n—= n(nT—l) edges.
Problem-2 How many different adjacency matrices does a graph with n vertices and E edges

have?

Solution: It’s equal to the number of permutations of n elements, i.e., n!.

Problem-3 How many different adjacency lists does a graph with n vertices have?

Solution: It’s equal to the number of permutations of edges, i.e., E!.

Problem-4 Which undirected graph representation is most appropriate for determining
whether or not a vertex is isolated (is not connected to any other vertex)?



Solution: Adjacency List. If we use the adjacency matrix, then we need to check the complete
row to determine whether that vertex has edges or not. By using the adjacency list, it is very easy
to check, and it can be done just by checking whether that vertex has NULL for next pointer or not
[NULL indicates that the vertex is not connected to any other vertex].

Problem-5 For checking whether there is a path from source s to target t, which one is best
between disjoint sets and DFS?

Solution: The table below shows the comparison between disjoint sets and DFS. The entries in
the table represent the case for any pair of nodes (for s and t).

Method Processing Time Query Time Space
Union-Find V + ElogV logV V
DFS E+V 1 E+V
Problem-6 What is the maximum number of edges a directed graph with n vertices can have

and still not contain a directed cycle?

Solution: The number is V (V — 1)/2. Any directed graph can have at most n> edges. However,
since the graph has no cycles it cannot contain a self loop, and for any pair x,y of vertices, at most
one edge from (x,y) and (y,x) can be included. Therefore the number of edges can be at most (V2 —
V)/2 as desired. It is possible to achieve V(V — 1)/2 edges. Label n nodes 1,2... n and add an
edge (X, y) if and only if x < y. This graph has the appropriate number of edges and cannot contain
a cycle (any path visits an increasing sequence of nodes).

Problem-7 How many simple directed graphs with no parallel edges and self-loops are
possible in terms of V?

Solution: (V) x (V —1). Since, each vertex can connect to V — 1 vertices without self-loops.

Problem-8 What are the differences between DFS and BFS?
Solution:
DFS BFS

Backtracking is possible from a dead end. | Backtracking is not possible.

Vertices from which exploration is
incomplete are processed in a LIFO order

The vertices to be explored are organized
as a FIFO queue.

The search is done in one particular
direction

The vertices at the same level are
maintained in parallel.

Problem-9

Earlier in this chapter, we discussed minimum spanning tree algorithms. Now,




give an algorithm for finding the maximum-weight spanning tree in a graph.

Solution:

: 1
Given graph Transformed graph with negative edge weights

Using the given graph, construct a new graph with the same nodes and edges. But instead of using
the same weights, take the negative of their weights. That means, weight of an edge = negative of
weight of the corresponding edge in the given graph. Now, we can use existing minimum
spanning tree algorithms on this new graph. As a result, we will get the maximum-weight
spanning tree in the original one.

Problem-10 Give an algorithm for checking whether a given graph G has simple path from
source s to destination d. Assume the graph G is represented using the adjacent matrix.

Solution: Let us assume that the structure for the graph is:

struct Graph |
int V; [ [Number of vertices
int E: [ [Number of edges

int ** adMatrix; / /Two dimensional array for storing the connections
h

For each vertex call DFS and check whether the current vertex is the same as the destination
vertex or not. If they are the same, then return 1. Otherwise, call the DFS on its unvisited
neighbors. One important thing to note here is that, we are calling the DFS algorithm on vertices
which are not yet visited.



void HasSimplePath(struct Graph *G, int s, int d |

int t;

Viisited]s| = 1

ifls == d
return 1;

for(t = 0; t < G=V; t+) |
if{G—ad;Matrix[s|[t] & [Visited]t]
fDFS(G, t, d))
return 1;

[
I

return 0;
}

Time Complexity: O(E). In the above algorithm, for each node, since we are not calling DFS on
all of its neighbors (discarding through if condition), Space Complexity: O(V).

Problem-11 Count simple paths for a given graph G has simple path from source s to
destination d? Assume the graph is represented using the adjacent matrix.

Solution: Similar to the discussion in Problem-10, start at one node and call DFS on that node.
As a result of this call, it visits all the nodes that it can reach in the given graph. That means it
visits all the nodes of the connected component of that node. If there are any nodes that have not
been visited, then again start at one of those nodes and call DFS.

Before the first DFS in each connected component, increment the connected components count.
Continue this process until all of the graph nodes are visited. As a result, at the end we will get
the total number of connected components. The implementation based on this logic is given
below:



voud CountSimplePaths(struct Graph * G, int s, mt d) |
int t;
Viisited[s| = I;
ifls ==dJ |
countte;
Visited|s| = 0;
return,
}
for(t = 0; t < G=V; t44) |
f|G—adjMatrix(s|t] && Viisited|t]) |
DF3(G, t, dJ;
Visited[t] = 0;

Problem-12 All pairs shortest path problem: Find the shortest graph distances between
every pair of vertices in a given graph. Let us assume that the given graph does not have
negative edges.

Solution: The problem can be solved using n applications of Dijkstra’s algorithm. That means we
apply Dijkstra’s algorithm on each vertex of the given graph. This algorithm does not work if the
graph has edges with negative weights.

Problem-13 In Problem-12, how do we solve the all pairs shortest path problem if the graph
has edges with negative weights?

Solution: This can be solved by using the Floyd — Warshall algorithm. This algorithm also
works in the case of a weighted graph where the edges have negative weights. This algorithm is
an example of Dynamic Programming -refer to the Dynamic Programming chapter.

Problem-14 DFS Application: Cut Vertex or Articulation Points

Solution: In an undirected graph, a cut vertex (or articulation point) is a vertex, and if we remove
it, then the graph splits into two disconnected components. As an example, consider the following
figure. Removal of the “D” vertex divides the graph into two connected components ({E,F} and

{AB, C, G}).

Similarly, removal of the “C” vertex divides the graph into ({G} and {A, B,D,E,F}). For this
graph, A and C are the cut vertices.



Note: A connected, undirected graph is called bi — connected if the graph is still connected after
removing any vertex.

DFS provides a linear-time algorithm (O(n)) to find all cut vertices in a connected graph. Starting
at any vertex, call a DFS and number the nodes as they are visited. For each vertex v, we call this
DFS number dfsnum(v). The tree generated with DFS traversal is called DFS spanning tree.
Then, for every vertex v in the DFS spanning tree, we compute the lowest-numbered vertex,
which we call low(v), that is reachable from v by taking zero or more tree edges and then
possibly one back edge (in that order).

Based on the above discussion, we need the following information for this algorithm: the dfsnum
of each vertex in the DFS tree (once it gets visited), and for each vertex v, the lowest depth of
neighbors of all descendants of v in the DFS tree, called the low.

The dfsnum can be computed during DFS. The low of v can be computed after visiting all
descendants of v (i.e., just before v gets popped off the DFS stack) as the minimum of the dfsnum
of all neighbors of v (other than the parent of v in the DFS tree) and the low of all children of v in
the DFS tree.



The root vertex is a cut vertex if and only if it has at least two children. A non-root vertex u is a
cut vertex if and only if there is a son v of u such that low(v) > dfsnum(u). This property can be
tested once the DFS is returned from every child of u (that means, just before u gets popped off
the DFS stack), and if true, u separates the graph into different bi-connected components. This can
be represented by computing one bi-connected component out of every such v (a component
which contains v will contain the sub-tree of v, plus u), and then erasing the sub-tree of v from the
tree.

For the given graph, the DFS tree with dfsnum/low can be given as shown in the figure below.
The implementation for the above discussion is:



int adjMatrix [256] [256] ;
int dfsnum [256], num = 0, low [256];
void CutVertices( intu ) |

low|u] = dfsnumlu| = num#t+;

for (intv=0;v<256; ++v)|
iflac;Matrix/u][v] && dfsnumfv] == -1) |
CutVertices( v ;
ifllow[v] > dfsnum(u])
printf{*Cut Vetex:%d" u);
low[u| = min [ low[u| , low[v] | ;

else /[ (uv]isa back edge
low[u | = min(low[u] , dfsnumlv] ;

Problem-15 Let G be a connected graph of order n. What is the maximum number of cut-
vertices that G can contain?

Solution: n — 2. As an example, consider the following graph. In the graph below, except for the
vertices 1 and n, all the remaining vertices are cut vertices. This is because removing 1 and n
vertices does not split the graph into two. This is a case where we can get the maximum number
of cut vertices.

Problem-16 DFS Application: Cut Bridges or Cut Edges

Solution:
Definition: Let G be a connected graph. An edge uv in G is called a bridge of G if G — uv is
disconnected.

As an example, consider the following graph.
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In the above graph, if we remove the edge uv then the graph splits into two components. For this
graph, uv is a bridge. The discussion we had for cut vertices holds good for bridges also. The
only change is, instead of printing the vertex, we give the edge. The main observation is that an
edge (u, v) cannot be a bridge if it is part of a cycle. If (u, v) is not part of a cycle, then it is a
bridge.

We can detect cycles in DFS by the presence of back edges, (u, v) is a bridge if and only if none
of v or v’s children has a back edge to u or any of u’s ancestors. To detect whether any of v’s
children has a back edge to u’s parent, we can use a similar idea as above to see what is the
smallest dfsnum reachable from the subtree rooted at v.

int dfsnum[256], num = 0, low [256];
void Bridges( struct Graph *G, intu ) |
low[u] = dfsnum[u] = num*++,

for (intv=0; G=V; +4v) |
f{G-adjMatrix|u|[v| && disnum|v] == -1] |
cutVertices| v) ;

ifllow[v] > dfsnum(u])
print (u,v) as a bridge

low[u] = min ( low[u] , low]v] ) ;

else /[ (uv) s a back edge
low[u | = min{low[u] , dfsnumlv];

Problem-17 DFS Application: Discuss Euler Circuits



Solution: Before discussing this problem let us see the terminology:

. Eulerian tour- a path that contains all edges without repetition.

. Eulerian circuit — a path that contains all edges without repetition and starts and
ends in the same vertex.

. Eulerian graph — a graph that contains an Eulerian circuit.

. Even vertex: a vertex that has an even number of incident edges.

. Odd vertex: a vertex that has an odd number of incident edges.

Euler circuit: For a given graph we have to reconstruct the circuits using a pen, drawing each line
exactly once. We should not lift the pen from the paper while drawing. That means, we must find a
path in the graph that visits every edge exactly once and this problem is called an Euler path
(also called Euler tour) or Euler circuit problem. This puzzle has a simple solution based on
DFS.

An Euler circuit exists if and only if the graph is connected and the number of neighbors of each
vertex is even. Start with any node, select any untraversed outgoing edge, and follow it. Repeat
until there are no more remaining unselected outgoing edges. For example, consider the following
graph: A legal Euler Circuit of this graphis01341235420.

™

If we start at vertex 0, we can select the edge to vertex 1, then select the edge to vertex 2, then
select the edge to vertex 0. There are now no remaining unchosen edges from vertex 0:
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We now have a circuit 0,1,2,0 that does not traverse every edge. So, we pick some other vertex
that is on that circuit, say vertex 1. We then do another depth first search of the remaining edges.
Say we choose the edge to node 3, then 4, then 1. Again we are stuck. There are no more
unchosen edges from node 1. We now splice this path 1,3,4,1 into the old path 0,1,2,0 to get:
0,1,3,4,1,2,0. The unchosen edges now look like this:

0 L

We can pick yet another vertex to start another DFS. If we pick vertex 2, and splice the path
2,3,5,4,2, then we get the final circuit 0,1,3,4,1,2,3,5,4,2,0.

A similar problem is to find a simple cycle in an undirected graph that visits every vertex. This is
known as the Hamiltonian cycle problem. Although it seems almost identical to the Euler circuit
problem, no efficient algorithm for it is known.

Notes:
. A connected undirected graph is Eulerian if and only if every graph vertex has an
even degree, or exactly two vertices with an odd degree.
. A directed graph is Eulerian if it is strongly connected and every vertex has an equal

in and out degree.

Application: A postman has to visit a set of streets in order to deliver mails and packages. He
needs to find a path that starts and ends at the post-office, and that passes through each street



(edge) exactly once. This way the postman will deliver mails and packages to all the necessary
streets, and at the same time will spend minimum time/effort on the road.

Problem-18 DFS Application: Finding Strongly Connected Components.

Solution: This is another application of DFS. In a directed graph, two vertices u and v are
strongly connected if and only if there exists a path from u to v and there exists a path from v to u.
The strong connectedness is an equivalence relation.

. A vertex is strongly connected with itself
. If a vertex u is strongly connected to a vertex v, then v is strongly connected to u
. If a vertex u is strongly connected to a vertex v, and v is strongly connected to a

vertex x, then u is strongly connected to x

What this says is, for a given directed graph we can divide it into strongly connected components.
This problem can be solved by performing two depth-first searches. With two DFS searches we
can test whether a given directed graph is strongly connected or not. We can also produce the
subsets of vertices that are strongly connected.

Algorithm

. Perform DFS on given graph G.

. Number vertices of given graph G according to a post-order traversal of depth-first
spanning forest.

. Construct graph G, by reversing all edges in G.

. Perform DFS on G,: Always start a new DFS (initial call to Visit) at the highest-

numbered vertex.
. Each tree in the resulting depth-first spanning forest corresponds to a strongly-
connected component.

Why this algorithm works?

Let us consider two vertices, v and w. If they are in the same strongly connected component, then
there are paths from v to W and from w to v in the original graph G, and hence also in G,. If two

vertices v and w are not in the same depth-first spanning tree of G,, clearly they cannot be in the

same strongly connected component. As an example, consider the graph shown below on the left.
Let us assume this graph is G.



Now, as per the algorithm, performing DFS on this G graph gives the following diagram. The
dotted line from C to A indicates a back edge.

Now, performing post order traversal on this tree gives: D,C,B and A.

Vertex Post Order Number
A 4
B 3
C 2
D 1

Now reverse the given graph G and call it G, and at the same time assign postorder numbers to
the vertices. The reversed graph G, will look like:



1) ()

The last step is performing DFS on this reversed graph G,. While doing DFS, we need to

consider the vertex which has the largest DFS number. So, first we start at A and with DFS we go
to C and then B. At B, we cannot move further. This says that {A, B, C} is a strongly connected
component. Now the only remaining element is D and we end our second DFS at D. So the
connected components are: {A, B, C} and {D}.

The implementation based on this discussion can be shown as:



| [Graph represented in ad) matrix,
int adjMatrix [256][256], table[256];
vector <int> st ;
int counter =0 ;
[ [This table contains the DFS Search number
int dfsnum [256], num = 0, low|256] ;
void StronglyConnectedComponents( int u ) |
low[u] = dfsnum| u | = numt+;
Pushist, u) ;
for(intv=0;v<256; ++v)|
f{graphfu||v| && tablelv] == -1 |
if| disnumly| == -1)
stronglyConnectedComponents(v) ;
low[u] = min(low[u] , low[v]| ;

|
!

|
ifflow{u| == dfsnum|u]} |
while( table[u] != counter) |
table[st.back()| = counter;
Pushst] ;
|

++ counter;

}

Problem-19 Count the number of connected components of Graph G which is represented in
the adjacent matrix.

Solution: This problem can be solved with one extra counter in DFS.



[ [Visited]] is a global array.
int Visited|G-V);
void DFS(struct Graph *G, int u) |
Visited[u| = 1;
for(int v =0; v < G-V; vt ) |
[* For example, if the adjacency matrix is used for representing the
graph, then the condition to be used for finding unvisited adjacent
vertex of u is: if] Visited|v] &b G-Adj[u][v] ) */
for each unvisited adjacent node vof u |
DFS(G, v;

i
|

|

I
vold DFSTraversallstruct Graph *G) |
int count = 0;
for int 1= 0; 1€ G=V;it4
Visited|i[=0;
/[ This loop 1 required 1f the graph has more than one component
for int 1= 0; i< G=Vii+4)
ifl Visited|i]) |
DFSI(G, 1)

count++;

|
!

return count,

|
I

Time Complexity: Same as that of DFS and it depends on implementation. With adjacency matrix
the complexity is O(|E| + |V|) and with adjacency matrix the complexity is O(|VP).

Problem-20 Can we solve the Problem-19, using BFS?

Solution: Yes. This problem can be solved with one extra counter in BFS.



void BFS[struct Graph *G, int u) {
int v,
Queue ( = CreateQueue();
EnQueue(Q, ul;
while(!IsEmptyQueue(Q)) |

u = DeQueue(Q);

Process u; [ /For example, print

Visited|s]=1;

[* For example, if the adjacency matrix is used for representing the
graph, then the condition be used for finding unvisited adjacent
vertex of u is: if| [Visited[v] &8& G—Adj{u][v] | */

for each unvisited adjacent node v of u
EnQueue(Q, v);
j
}

[

|
void BFSTraversal(struct Graph *G) |
for (int 1= 0; i« G=V;1t4)
Visited|[i|=0;
[ [This loop 1s required if the graph has more than one component
for fint1=0; 1< G=V; 1+4)
if{Visited[i]}
BFSIG, 1);

[
]

Time Complexity: Same as that of BFS and it depends on implementation. With adjacency matrix
the complexity is O(|E| + |V|) and with adjacency matrix the complexity is O(|VP).

Problem-21 Let us assume that G(V,E) is an undirected graph. Give an algorithm for finding a
spanning tree which takes O(|E|) time complexity (not necessarily a minimum spanning
tree).

Solution: The test for a cycle can be done in constant time, by marking vertices that have been
added to the set S. An edge will introduce a cycle, if both its vertices have already been marked.

Algorithm:



S =1{ [/Assume S 15 a set
for each edgee € E |
ifladding e to 5 doesn't form a cycle) |
add e to S;

mark e;

Problem-22 Is there any other way of solving 0?

Solution: Yes. We can run BFS and find the BFS tree for the graph (level order tree of the graph).
Then start at the root element and keep moving to the next levels and at the same time we have to
consider the nodes in the next level only once. That means, if we have a node with multiple input
edges then we should consider only one of them; otherwise they will form a cycle.

Problem-23 Detecting a cycle in an undirected graph

Solution: An undirected graph is acyclic if and only if a DFS yields no back edges, edges (u, v)
where v has already been discovered and is an ancestor of u.

. Execute DFS on the graph.
. If there is a back edge — the graph has a cycle.

If the graph does not contain a cycle, then |E| < |V| and DFS cost O(|V]). If the graph contains a
cycle, then a back edge is discovered after 2|V| steps at most.

Problem-24 Detecting a cycle in DAG

()
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Cycle detection on a graph is different than on a tree. This is because in a graph, a node can have
multiple parents. In a tree, the algorithm for detecting a cycle is to do a depth first search, marking
nodes as they are encountered. If a previously marked node is seen again, then a cycle exists. This
won’t work on a graph. Let us consider the graph shown in the figure below. If we use a tree
cycle detection algorithm, then it will report the wrong result. That means that this graph has a
cycle in it. But the given graph does not have a cycle in it. This is because node 3 will be seen
twice in a DFS starting at node 1.

Solution:



The cycle detection algorithm for trees can easily be modified to work for graphs. The key is that
in a DFS of an acyclic graph, a node whose descendants have all been visited can be seen again
without implying a cycle. But, if a node is seen for the second time before all its descendants have
been visited, then there must be a cycle. Can you see why this is? Suppose there is a cycle
containing node A. This means that A must be reachable from one of its descendants. So when the
DFS is visiting that descendant, it will see A again, before it has finished visiting all of A’
descendants. So there is a cycle. In order to detect cycles, we can modify the depth first search.

int DetectCycle(struct Graph *G} |
for (int 1= 0; 1= G=V, 1+4) {
Visited|s]=0;
Predecessor|i| = 0;

b
}

for inti=0;1< G=V;i++) |
if| Visited[i] && HasCycle(G, )
return 1;

|
b

return false::

int HasCycle(struct Graph *G, int u} |

Visited[u)=1;
for int 1= 0; i< G=V; i++) |
{G—Adj[s][i]) {
if{Predecessorfi] = u &b Visited]i)|
return 1,
else |

Predecessor{i] = u;
return HasCycle(G, 1);

1
|

return 0

Time Complexity: O(V + E).

Problem-25 Given a directed acyclic graph, give an algorithm for finding its depth.

Solution: If it is an undirected graph, we can use the simple unweighted shortest path algorithm
(check Shortest Path Algorithms section). We just need to return the highest number among all
distances. For directed acyclic graph, we can solve by following the similar approach which we
used for finding the depth in trees. In trees, we have solved this problem using level order



traversal (with one extra special symbol to indicate the end of the level).

[ [Assuming the given graph is a DAG
int DepthInDAG( struct Graph *G | |
struct Queue *Q;
nt counter;
imt v, w;
() = CreateQueue|);

counter = 0;
for (v =0; ve G-V, v+4]
if{ ndegree(v) == 0)
EnQueue( Q, v);
EnQueue( Q, ‘$'):

while( IlsEmptyQueue( Q )) |
v = DeQueue( Q );
iflv == 4 {
countert+;
if{llsEmptyQueue| Q ||
EnQueue(Q,$');

i
for each w adjacent to v
iff --indegree[w] == 0
EnQueue (Q, w;

i
1
DeleteQueue| Q );
refurn counter;

Total running time is O(V + E).

Problem-26 How many topological sorts of the following dag are there?

Solution: If we observe the above graph there are three stages with 2 vertices. In the early



discussion of this chapter, we saw that topological sort picks the elements with zero indegree at
any point of time. At each of the two vertices stages, we can first process either the top vertex or
the bottom vertex. As a result, at each of these stages we have two possibilities. So the total
number of possibilities is the multiplication of possibilities at each stage and that is, 2 x 2 X 2 =
8.

Problem-27 Unique topological ordering: Design an algorithm to determine whether a
directed graph has a unique topological ordering.

Solution: A directed graph has a unique topological ordering if and only if there is a directed
edge between each pair of consecutive vertices in the topological order. This can also be defined
as: a directed graph has a unique topological ordering if and only if it has a Hamiltonian path. If
the digraph has multiple topological orderings, then a second topological order can be obtained
by swapping a pair of consecutive vertices.

Problem-28 Let us consider the prerequisites for courses at IIT Bombay. Suppose that all
prerequisites are mandatory, every course is offered every semester, and there is no limit
to the number of courses we can take in one semester. We would like to know the minimum
number of semesters required to complete the major. Describe the data structure we would
use to represent this problem, and outline a linear time algorithm for solving it.

Solution: Use a directed acyclic graph (DAG). The vertices represent courses and the edges
represent the prerequisite relation between courses at IIT Bombay. It is a DAG, because the
prerequisite relation has no cycles.

The number of semesters required to complete the major is one more than the longest path in the
dag. This can be calculated on the DFS tree recursively in linear time. The longest path out of a
vertex x is 0 if x has outdegree 0, otherwise it is 1 + max {longest path out of y | (x,y) is an edge
of G}.

Problem-29 At a university let’s say IIT Bombay), there is a list of courses along with their
prerequisites. That means, two lists are given:
A— Courses list
B — Prerequisites: B contains couples (x,y) where x,y € A indicating that course x can’t be
taken before course y.

Let us consider a student who wants to take only one course in a semester. Design a schedule
for this student.

Example: A = {C-Lang, Data Structures, OS, CO, Algorithms, Design Patterns,
Programming}. B = { (C-Lang, CO), (OS, CO), (Data Structures, Algorithms), (Design
Patterns, Programming) }. One possible schedule could be:

Semester 1: Data Structures
Semester 2: Algorithms
Semester 3: C-Lang



Semester 4: oS

Semester 5: CO
Semester 6: Design Patterns
Semester 7: Programming

Solution: The solution to this problem is exactly the same as that of topological sort. Assume that
the courses names are integers in the range [1..n], n is known (n is not constant). The relations
between the courses will be represented by a directed graph G = (V,E), where V are the set of
courses and if course i is prerequisite of course j, E will contain the edge (i,j). Let us assume that
the graph will be represented as an Adjacency list.

First, let’s observe another algorithm to topologically sort a DAG in O(|V] + |E|).

. Find in-degree of all the vertices - O(|V| + |E|)
. Repeat:

Find a vertex v with in-degree=0 - O(|V])
Output v and remove it from G, along with its edges - O(|V])

Reduce the in-degree of each node u such as (v, u) was an edge in G and keep a list
of vertices with in-degree=0 — O(degree(v))

Repeat the process until all the vertices are removed

The time complexity of this algorithm is also the same as that of the topological sort and it is O(|V]
+|E]).

Problem-30 In Problem-29, a student wants to take all the courses in A, in the minimal
number of semesters. That means the student is ready to take any number of courses in a
semester. Design a schedule for this scenario. One possible schedule is:

Semester 1: C-Lang, OS, Design Patterns
Semester 2: Data Structures, CO, Programming
Semester 3: Algorithms

Solution: A variation of the above topological sort algorithm with a slight change: In each
semester, instead of taking one subject, take all the subjects with zero indegree. That means,
execute the algorithm on all the nodes with degree 0 (instead of dealing with one source in each
stage, all the sources will be dealt and printed).

Time Complexity: O(|V| + |E|).

Problem-31 LCA of a DAG: Given a DAG and two vertices v and w, find the lowest
common ancestor (LCA) of v and w. The LCA of v and w is an ancestor of v and w that
has no descendants that are also ancestors of v and w.

Hint: Define the height of a vertex v in a DAG to be the length of the longest path from root to v.
Among the vertices that are ancestors of both v and w, the one with the greatest height is an LCA



of v and w.

Problem-32 Shortest ancestral path: Given a DAG and two vertices v and w, find the
shortest ancestral path between v and w. An ancestral path between v and w is a common
ancestor x along with a shortest path from v to x and a shortest path from w to x. The
shortest ancestral path is the ancestral path whose total length is minimized.

Hint: Run BFS two times. First run from v and second time from w. Find a DAG where the
shortest ancestral path goes to a common ancestor x that is not an LCA.

Problem-33 Let us assume that we have two graphs G; and G,. How do we check whether
they are isomorphic or not?

Solution: There are many ways of representing the same graph. As an example, consider the

following simple graph. It can be seen that all the representations below have the same number of
vertices and the same number of edges.

Definition: Graphs G, = {V,, E{} and G, = {V,, E,} are isomorphic if

1)  There is a one-to-one correspondence from V; to V, and
2)  There is a one-to-one correspondence from E; to E, that map each edge of G, to G..

Now, for the given graphs how do we check whether they are isomorphic or not?

In general, it is not a simple task to prove that two graphs are isomorphic. For that reason we
must consider some properties of isomorphic graphs. That means those properties must be
satisfied if the graphs are isomorphic. If the given graph does not satisfy these properties then we
say they are not isomorphic graphs.

Property: Two graphs are isomorphic if and only if for some ordering of their vertices their
adjacency matrices are equal.

Based on the above property we decide whether the given graphs are isomorphic or not. I order
to check the property, we need to do some matrix transformation operations.

Problem-34 How many simple undirected non-isomorphic graphs are there with n vertices?

Solution: We will try to answer this question in two steps. First, we count all labeled graphs.
Assume all the representations below are labeled with {1,2,3} as vertices. The set of all such
graphs for n = 3 are:



A
A AN LA

There are only two choices for each edge: it either exists or it does not. Therefore, since the

n
maximum number of edges is ( 2) (and since the maximum number of edges in an undirected

graph with n vertices is A

2(2)

Problem-35 Hamiltonian path in DAGs: Given a DAG, design a linear time algorithm to
determine whether there is a path that visits each vertex exactly once.

n. = (2)), the total number of undirected labeled graphs is

C2

Solution: The Hamiltonian path problem is an NP-Complete problem (for more details ref
Complexity Classes chapter). To solve this problem, we will try to give the approximation
algorithm (which solves the problem, but it may not always produce the optimal solution).

Let us consider the topological sort algorithm for solving this problem. Topological sort has an
interesting property: that if all pairs of consecutive vertices in the sorted order are connected by
edges, then these edges form a directed Hamiltonian path in the DAG. If a Hamiltonian path
exists, the topological sort order is unique. Also, if a topological sort does not form a
Hamiltonian path, the DAG will have two or more topological orderings.

Approximation Algorithm: Compute a topological sort and check if there is an edge between each
consecutive pair of vertices in the topological order.

In an unweighted graph, find a path from s to t that visits each vertex exactly once. The basic
solution based on backtracking is, we start at s and try all of its neighbors recursively, making
sure we never visit the same vertex twice. The algorithm based on this implementation can be
given as:



bool seenTable[32];
void HamiltonianPath( struct Graph *G, mtu ) {
flu==t}
{* Check that we have seen all vertices. */
else |
for{ int v =0; v < n; v+ )
if] lseenTablev] && G—Adj[u][v] ) |
seenTable[v] = true;
HamiltonianPath( v );
seenTable|v| = false;

Note that if we have a partial path from s to u using vertices s = vy, V,..., v} = u, then we don’t

care about the order in which we visited these vertices so as to figure out which vertex to visit
next. All that we need to know is the set of vertices we have seen (the seenTable[] array) and
which vertex we are at right now (u). There are 2" possible sets of vertices and n choices for u. In

other words, there are 2" possible seenlable[] arrays and n different parameters to
Hamiltonian_path(). What Hamiltonian_path() does during any particular recursive call is
completely determined by the seenTable[ ] array and the parameter u.

Problem-36 For a given graph G with n vertices how many trees we can construct?

Solution: There is a simple formula for this problem and it is named after Arthur Cayley. For a

given graph with n labeled vertices the formula for finding number of trees on is n"~2. Below, the
number of trees with different n values is shown.

n value Formula value: n™? Number of Trees
2 1 1 2
1 3 2
3 3
2 3 1 2 3 |

Problem-37 For a given graph G with n vertices how many spanning trees can we construct?



Solution: The solution to this problem is the same as that of Problem-36. It is just another way of
asking the same question. Because the number of edges in both regular tree and spanning tree are
the same.

Problem-38 The Hamiltonian cycle problem: Is it possible to traverse each of the vertices
of a graph exactly once, starting and ending at the same vertex?

Solution: Since the Hamiltonian path problem is an NP-Complete problem, the Hamiltonian
cycle problem is an NP-Complete problem. A Hamiltonian cycle is a cycle that traverses every
vertex of a graph exactly once. There are no known conditions in which are both necessary and
sufficient, but there are a few sufficient conditions.

. For a graph to have a Hamiltonian cycle the degree of each vertex must be two or
more.
. The Petersen graph does not have a Hamiltonian cycle and the graph is given below.

. In general, the more edges a graph has, the more likely it is to have a Hamiltonian
cycle.
. Let G be a simple graph with n > 3 vertices. If every vertex has a degree of at least

n
> then G has a Hamiltonian cycle.

. The best known algorithm for finding a Hamiltonian cycle has an exponential worst-
case complexity.

Note: For the approximation algorithm of Hamiltonian path, refer to the Dynamic Programming
chapter.

Problem-39 What is the difference between Dijkstra’s and Prim’s algorithm?

Solution: Dijkstra’s algorithm is almost identical to that of Prim’s. The algorithm begins at a
specific vertex and extends outward within the graph until all vertices have been reached. The
only distinction is that Prim’s algorithm stores a minimum cost edge whereas Dijkstra’s algorithm
stores the total cost from a source vertex to the current vertex. More simply, Dijkstra’s algorithm
stores a summation of minimum cost edges whereas Prim’s algorithm stores at most one minimum
cost edge.

Problem-40 Reversing Graph: : Give an algorithm that returns the reverse of the directed
graph (each edge from v to w is replaced by an edge from w to v).



Solution: In graph theory, the reverse (also called transpose) of a directed graph G is another
directed graph on the same set of vertices with all the edges reversed. That means, if G contains
an edge (u, v) then the reverse of G contains an edge (v, u) and vice versa.

Algorithm:

Graph ReverseTheDirectedGraph(struct Graph *G) |
Create new graph with name ReversedGraph and
let us assume that this will contain the reversed graph.
[ [The reversed graph also will contain same number of vertices and edges.
for each vertex of given graph G |
for each vertex w adjacent to v §
Add the w to v edge in ReversedGraph;

/ /That means we just need to reverse the bits in adjacency matrix.

1
I
]
¥

return ReversedGraph;

Problem-41 Travelling Sales Person Problem: Find the shortest path in a graph that visits
each vertex at least once, starting and ending at the same vertex?

Solution: The Traveling Salesman Problem (TSP) is related to finding a Hamiltonian cycle.
Given a weighted graph G, we want to find the shortest cycle (may be non-simple) that visits all
the vertices.

Approximation algorithm: This algorithm does not solve the problem but gives a solution which
is within a factor of 2 of optimal (in the worst-case).

1) Find a Minimal Spanning Tree (MST).

2) Do a DFS of the MST.

For details, refer to the chapter on Complexity Classes.

Problem-42 Discuss Bipartite matchings?

Solution: In Bipartite graphs, we divide the graphs in to two disjoint sets, and each edge connects
a vertex from one set to a vertex in another subset (as shown in figure).

Definition: A simple graph G = (V, E) is called a bipartite graph if its vertices can be divided
into two disjoint sets V = V; U V,, such that every edge has the form e = (a,b) where a € V; and

b € V,. One important condition is that no vertices both in V; or both in V, are connected.



—

Properties of Bipartite Graphs

. A graph is called bipartite if and only if the given graph does not have an odd length
cycle.
. A complete bipartite graph K, ,, is a bipartite graph that has each vertex from one

set adjacent to each vertex from another set.

sz K"!'J.n

. A subset of edges M C E is a matching if no two edges have a common vertex. As
an example, matching sets of edges are represented with dotted lines. A matching M
is called maximum if it has the largest number of possible edges. In the graphs, the
dotted edges represent the alternative matching for the given graph.

3
1 3 1
2 4 2 4
. A matching M is perfect if it matches all vertices. We must have V; = V, in order to
have perfect matching.
. An alternating path is a path whose edges alternate between matched and

unmatched edges. If we find an alternating path, then we can improve the matching.
This is because an alternating path consists of matched and unmatched edges. The
number of unmatched edges exceeds the number of matched edges by one.



Therefore, an alternating path always increases the matching by one.

The next question is, how do we find a perfect matching? Based on the above theory and
definition, we can find the perfect matching with the following approximation algorithm.

Matching Algorithm (Hungarian algorithm)

1)  Start at unmatched vertex.

2) Find an alternating path.

3) [Ifit exists, change matching edges to no matching edges and conversely. If it does not
exist, choose another unmatched vertex.

4)  If the number of edges equals V/2, stop. Otherwise proceed to step 1 and repeat, as
long as all vertices have been examined without finding any alternating paths.

Time Complexity of the Matching Algorithm: The number of iterations is in O(V). The
complexity of finding an alternating path using BFS is O(E). Therefore, the total time complexity
is O(V x E).

Problem-43 Marriage and Personnel Problem?

Marriage Problem: There are X men and Y women who desire to get married. Participants
indicate who among the opposite sex could be a potential spouse for them. Every woman can be
married to at most one man, and every man to at most one woman. How can we marry everybody
to someone they like?

Personnel Problem: You are the boss of a company. The company has M workers and N jobs.
Each worker is qualified to do some jobs, but not others. How will you assign jobs to each
worker?

Solution: These two cases are just another way of asking about bipartite graphs, and the solution
is the same as that of Problem-42.

Problem-44 How many edges will be there in complete bipartite graph K, ,,?

Solution: m x n. This is because each vertex in the first set can connect all vertices in the second
set.

Problem-45 A graph is called a regular graph if it has no loops and multiple edges where
each vertex has the same number of neighbors; i.e., every vertex has the same degree.
Now, if K, , is a regular graph, what is the relation between m and n?

Solution: Since each vertex should have the same degree, the relation should be m = n.

Problem-46 What is the maximum number of edges in the maximum matching of a bipartite
graph with n vertices?

Solution: From the definition of matching, we should not have edges with common vertices. So



in a bipartite graph, each vertex can connect to only one vertex. Since we divide the total vertices
into two sets, we can get the maximum number of edges if we divide them in half. Finally the
n

answer is E

Problem-47 Discuss Planar Graphs. Planar graph: Is it possible to draw the edges of a
graph in such a way that the edges do not cross?

Solution: A graph G is said to be planar if it can be drawn in the plane in such a way that no two
edges meet each other except at a vertex to which they are incident. Any such drawing is called a
plane drawing of G. As an example consider the below graph:

How do we decide whether a given graph is planar or not?

The solution to this problem is not simple, but researchers have found some interesting properties
that we can use to decide whether the given graph is a planar graph or not.

Properties of Planar Graphs

. If a graph G is a connected planar simple graph with V vertices, where V = 3 and E
edges, then E = 3V —6.

. K: is non-planar. [K; stands for complete graph with 5 vertices].

. If a graph G is a connected planar simple graph with V vertices and E edges, and no



triangles, then E = 2V — 4.
. Kj 3 is non-planar. [Kj 5 stands for bipartite graph with 3 vertices on one side and
the other 3 vertices on the other side. K3 5 contains 6 vertices].

. If a graph G is a connected planar simple graph, then G contains at least one vertex
of 5 degrees or less.
. A graph is planar if and only if it does not contain a subgraph that has Kz and K5, as

a contraction.

. If a graph G contains a nonplanar graph as a subgraph, then G is non-planar.

. If a graph G is a planar graph, then every subgraph of G is planar.

. For any connected planar graph G = (V,E), the following formula should hold: V + F
— E = 2, where F stands for the number of faces.

. For any planar graph G = (V, E) with K components, the following formula holds: V
+F-E=1+K

In order to test the planarity of a given graph, we use these properties and decide whether it is a
planar graph or not. Note that all the above properties are only the necessary conditions but not
sufficient.

Problem-48 How many faces does K, 5 have?

Solution: From the above discussion, we know that V+ F — E = 2, and from an earlier problem
weknow thatE=mxn=2x3=6andV=m+n=5...5+F-6=2=F=3

Problem-49 Discuss Graph Coloring

Solution: A k —coloring of a graph G is an assignment of one color to each vertex of G such that
no more than k colors are used and no two adjacent vertices receive the same color. A graph is
called k —colorable if and only if it has a k —coloring.

Applications of Graph Coloring: The graph coloring problem has many applications such as
scheduling, register allocation in compilers, frequency assignment in mobile radios, etc.

Clique: A clique in a graph G is the maximum complete subgraph and is denoted by w(G).

Chromatic number: The chromatic number of a graph G is the smallest number k such that G is k
—colorable, and it is denoted by X (G).

The lower bound for X (G) is w(G), and that means w(G) < X (G).
Properties of Chromatic number: Let G be a graph with n vertices and G’ is its complement.

Then,

. X (G) <A (G) + 1, where A (G) is the maximum degree of G.
. X(G) w(G)=n
. X(G)+tw(G)Y<n+1



- X(G)+(G)<n+1

K-colorability problem: Given a graph G = (V,E) and a positive integer k < V. Check whether G
is k —colorable?

This problem is NP-complete and will be discussed in detail in the chapter on Complexity
Classes.

Graph coloring algorithm: As discussed earlier, this problem is NP-Complete. So we do not
have a polynomial time algorithm to determine X(G). Let us consider the following approximation
(no efficient) algorithm.

. Consider a graph G with two non-adjacent vertices a and b. The connection Gy is

obtained by joining the two non-adjacent vertices a and b with an edge. The
contraction G, is obtained by shrinking {a,b} into a single vertex c(a, b) and by

joining it to each neighbor in G of vertex a and of vertex b (and eliminating multiple

edges).

. A cgolo)ring of G in which a and b have the same color yields a coloring of G;. A
coloring of G in which a and b have different colors yields a coloring of G,.

. Repeat the operations of connection and contraction in each graph generated, until
the resulting graphs are all cliques. If the smallest resulting clique is a K —clique,
then (G) = K.

Important notes on Graph Coloring

. Any simple planar graph G can be colored with 6 colors.
. Every simple planar graph can be colored with less than or equal to 5 colors.

Problem-50 What is the four coloring problem?

Solution: A graph can be constructed from any map. The regions of the map are represented by
the vertices of the graph, and two vertices are joined by an edge if the regions corresponding to
the vertices are adjacent. The resulting graph is planar. That means it can be drawn in the plane
without any edges crossing.

The Four Color Problem is whether the vertices of a planar graph can be colored with at most
four colors so that no two adjacent vertices use the same color.

History: The Four Color Problem was first given by Francis Guthrie. He was a student at
University College London where he studied under Augusts De Morgan. After graduating from
London he studied law, but some years later his brother Frederick Guthrie had become a student
of De Morgan. One day Francis asked his brother to discuss this problem with De Morgan.

Problem-51 When an adjacency-matrix representation is used, most graph algorithms require
time O(V?). Show that determining whether a directed graph, represented in an adjacency-



matrix that contains a sink can be done in time O(V). A sink is a vertex with in-degree |V/|
— 1 and out-degree 0 (Only one can exist in a graph).

Solution: A vertex i is a sink if and only if M[i,j] = 0 for all j and M[j, i] = 1 for all j # i. For any
pair of vertices i and j:

MJi,j] = 1 2 vertexican't be a sink
MJi,j] = 0 ?vertex j can't be a sink

. Startati =1, =1
. If M[i,j]=0 — i wins,j + +
. If M[i,j1=1 - jwins, i ++

. Proceed with this process until j = nori =n+1
. If i == n + 1, the graph does not contain a sink
. Otherwise, check row i — it should be all zeros; and check column i — it should be all

but M[i, i] ones; — if so, tis a sink.

Time Complexity: O(V), because at most 2|V] cells in the matrix are examined.

Problem-52 What is the worst — case memory usage of DFS?

Solution: It occurs when the O(|V]), which happens if the graph is actually a list. So the algorithm
is memory efficient on graphs with small diameter.

Problem-53 Does DFS find the shortest path from start node to some node w ?

Solution: No. In DFS it is not compulsory to select the smallest weight edge.

Problem-54 True or False: Dijkstra’s algorithm does not compute the “all pairs” shortest
paths in a directed graph with positive edge weights because, running the algorithm a
single time, starting from some single vertex x, it will compute only the min distance from
x to y for all nodes y in the graph.

Solution: True.

Problem-55 True or False: Prim’s and Kruskal’s algorithms may compute different minimum
spanning trees when run on the same graph.

Solution: True.



CHAPTER

SORTING 1 O

10.1 What is Sorting?

Sorting is an algorithm that arranges the elements of a list in a certain order [either ascending or
descending]. The output is a permutation or reordering of the input.

10.2 Why is Sorting Necessary?

Sorting is one of the important categories of algorithms in computer science and a lot of research
has gone into this category. Sorting can significantly reduce the complexity of a problem, and is
often used for database algorithms and searches.

10.3 Classification of Sorting Algorithms

Sorting algorithms are generally categorized based on the following parameters.



By Number of Comparisons

In this method, sorting algorithms are classified based on the number of comparisons. For
comparison based sorting algorithms, best case behavior is O(nlogn) and worst case behavior is

O(n?). Comparison-based sorting algorithms evaluate the elements of the list by key comparison
operation and need at least O(nlogn) comparisons for most inputs.

Later in this chapter we will discuss a few non — comparison (linear) sorting algorithms like

Counting sort, Bucket sort, Radix sort, etc. Linear Sorting algorithms impose few restrictions on
the inputs to improve the complexity.

By Number of Swaps

In this method, sorting algorithms are categorized by the number of swaps (also called
inversions).

By Memory Usage

Some sorting algorithms are “in place” and they need O(1) or O(logn) memory to create
auxiliary locations for sorting the data temporarily.

By Recursion

Sorting algorithms are either recursive [quick sort] or non-recursive [selection sort, and insertion
sort], and there are some algorithms which use both (merge sort).

By Stability

Sorting algorithm is stable if for all indices i and j such that the key A[i] equals key A[j], if record
R[i] precedes record R[j] in the original file, record R[i] precedes record R[j] in the sorted list.
Few sorting algorithms maintain the relative order of elements with equal keys (equivalent
elements retain their relative positions even after sorting).

By Adaptability

With a few sorting algorithms, the complexity changes based on pre-sortedness [quick sort]: pre-
sortedness of the input affects the running time. Algorithms that take this into account are known to
be adaptive.



10.4 Other Classifications

Another method of classifying sorting algorithms is:
. Internal Sort
. External Sort

Internal Sort

Sort algorithms that use main memory exclusively during the sort are called internal sorting
algorithms. This kind of algorithm assumes high-speed random access to all memory.

External Sort

Sorting algorithms that use external memory, such as tape or disk, during the sort come under this
category.

10.5 Bubble Sort

Bubble sort is the simplest sorting algorithm. It works by iterating the input array from the first
element to the last, comparing each pair of elements and swapping them if needed. Bubble sort
continues its iterations until no more swaps are needed. The algorithm gets its name from the way
smaller elements “bubble” to the top of the list. Generally, insertion sort has better performance
than bubble sort. Some researchers suggest that we should not teach bubble sort because of its
simplicity and high time complexity.

The only significant advantage that bubble sort has over other implementations is that it can detect
whether the input list is already sorted or not.

Implementation



void BubbleSort(int A[], int n) {
for (int pass =n - 1, pass »= 0, pass--)|
for int1=0;1<=pass- 1 ;144
iflAfl] > Afi+1]){
[ [ swap elements
int temp = A[i;
Ali] = Ali+1];
Afi+1] = temp;

Algorithm takes O(n?) (even in best case). We can improve it by using one extra flag. No more
swaps indicate the completion of sorting. If the list is already sorted, we can use this flag to skip
the remaining passes.

void BubbleSortimproved(int A[], int n) |
Int pass, 1, temp, swapped = I;
for (pass = n - 1; pass »>= 0 && swapped; pass--| |
swapped = 0,
for 1=0;1<=pass-1;1+4)|
iffA[l] > Afi+1]){
|| swap elements
temp = A[i];
All| = Alit1];
Afit]] = temp;
swapped = [;

}

This modified version improves the best case of bubble sort to O(n).

Performance

Worst case complexity : O(n?)

Best case complexity (Improved version) : O(n)




Average case complexity (Basic version) : O(n?)

Worst case space complexity : O(1) auxiliary

10.6 Selection Sort
Selection sort is an in-place sorting algorithm. Selection sort works well for small files. It is used

for sorting the files with very large values and small keys. This is because selection is made
based on keys and swaps are made only when required.

Advantages

. Easy to implement
. In-place sort (requires no additional storage space)

Disadvantages

«  Doesn’t scale well: O(n?)

Algorithm

1.  Find the minimum value in the list
2. Swap it with the value in the current position
3. Repeat this process for all the elements until the entire array is sorted

This algorithm is called selection sort since it repeatedly selects the smallest element.

Implementation



void Selection(int A [], int n) |
nt 1, J, min, temp;
forfi=0;1<n-1;144{
min = 1;
for [j = 1+1;] < m; J+4) |
if{A [j] < A [min]|
min = j;

/| swap elements
temp = A{min|;
Almmn] = Aj;

All] = temp;

Performance

Worst case complexity : O(n?)

Best case complexity : O(n?)

Average case complexity : O(n?)

Worst case space complexity: O(1) auxiliary

10.7 Insertion Sort

Insertion sort is a simple and efficient comparison sort. In this algorithm, each iteration removes
an element from the input data and inserts it into the correct position in the list being sorted. The
choice of the element being removed from the input is random and this process is repeated until
all input elements have gone through.

Advantages

. Simple implementation

. Efficient for small data

. Adaptive: If the input list is presorted [may not be completely] then insertions sort
takes O(n + d), where d is the number of inversions

. Practically more efficient than selection and bubble sorts, even though all of them

have O(n?) worst case complexity



. Stable: Maintains relative order of input data if the keys are same

. In-place: It requires only a constant amount O(1) of additional memory space
. Online: Insertion sort can sort the list as it receives it
Algorithm

Every repetition of insertion sort removes an element from the input data, and inserts it into the
correct position in the already-sorted list until no input elements remain. Sorting is typically done
in-place. The resulting array after k iterations has the property where the first k + 1 entries are

sorted.
Sorted partial result Unsorted elements
T T
< ® I By i X
1 |
Sorted partial result Unsorted elements
becomes | : :
E {"_: x 1 | :-} .x-‘
1 1 |

Each element greater than x is copied to the right as it is compared against x.

Implementation

void InsertionSort{int A[], int ) |

inti, j, v
forfi=1;i<=n-1;1++{

v=Al;

1=1

while (Al-1] = v &&j>=1){
Alj] = A-1;

-

Al =

Example



Givenanarray: 6 8145 3 7 2 and the goal is to put them in ascending order.

68145372 (Consider index 0)

68145372 (Consider indices O - 1)

16845372 (Consider indices O - 2: insertion places 1 in front of 6 and 8)
14685372 (Process same as above is repeated until array is sorted)
14568372

13456782

12345678 (The array is sorted!)

Analysis
Worst case analysis

Worst case occurs when for every i the inner loop has to move all elements A[1], . . ., Ali — 1]
(which happens when A[i] = key is smaller than all of them), that takes ®(i — 1) time.

T(n) = O(1) +O(2) + O(2) + vt O — 1)

= B{L+ 2% 34+ .- +n—1)—0(( )m()(nz)
Average case analysis
For the average case, the inner loop will insert Ali] in the middle of A[1], . . ., Ali — 1]. This

takes ©(i/2) time.

n

T(n) = Z 0(i/2) = 0(n?)

i=1

Performance

If every element is greater than or equal to every element to its left, the running time of insertion
sort is ®(n). This situation occurs if the array starts out already sorted, and so an already-sorted
array is the best case for insertion sort.

Worst case complexity: ©(n?)

Best case complexity: ©(n)

Average case complexity: ®(n?)




Worst case space complexity: O(n?) total, O(1) auxiliary

Comparisons to Other Sorting Algorithms

Insertion sort is one of the elementary sorting algorithms with O(n?) worst-case time. Insertion
sort is used when the data is nearly sorted (due to its adaptiveness) or when the input size is small
(due to its low overhead). For these reasons and due to its stability, insertion sort is used as the
recursive base case (when the problem size is small) for higher overhead divide-and-conquer
sorting algorithms, such as merge sort or quick sort.

Notes:
e : ne : : :
. Bubble sort takes — comparisons and — swaps (inversions) in both average case
2 2
and in worst case.
2
. Selection sort takes 2 comparisons and n swaps.
2
. Insertion sort takes Z— comparisons and i swaps in average case and in the worst
4 8
case they are double.
. Insertion sort is almost linear for partially sorted input.
. Selection sort is best suits for elements with bigger values and small keys.

10.8 Shell Sort

Shell sort (also called diminishing increment sort) was invented by Donald Shell. This sorting
algorithm is a generalization of insertion sort. Insertion sort works efficiently on input that is
already almost sorted. Shell sort is also known as n-gap insertion sort. Instead of comparing only
the adjacent pair, shell sort makes several passes and uses various gaps between adjacent
elements (ending with the gap of 1 or classical insertion sort).

In insertion sort, comparisons are made between the adjacent elements. At most 1 inversion is
eliminated for each comparison done with insertion sort. The variation used in shell sort is to
avoid comparing adjacent elements until the last step of the algorithm. So, the last step of shell
sort is effectively the insertion sort algorithm. It improves insertion sort by allowing the
comparison and exchange of elements that are far away. This is the first algorithm which got less
than quadratic complexity among comparison sort algorithms.

Shellsort is actually a simple extension for insertion sort. The primary difference is its capability
of exchanging elements that are far apart, making it considerably faster for elements to get to
where they should be. For example, if the smallest element happens to be at the end of an array,
with insertion sort it will require the full array of steps to put this element at the beginning of the
array. However, with shell sort, this element can jump more than one step a time and reach the



proper destination in fewer exchanges.

The basic idea in shellsort is to exchange every hth element in the array. Now this can be
confusing so we’ll talk more about this, h determines how far apart element exchange can happen,

say for example take h as 13, the first element (index-0) is exchanged with the 14" element

(index-13) if necessary (of course). The second element with the 157 element, and so on. Now if
we take has 1, it is exactly the same as a regular insertion sort.

Shellsort works by starting with big enough (but not larger than the array size) h so as to allow
eligible element exchanges that are far apart. Once a sort is complete with a particular h, the
array can be said as h-sorted. The next step is to reduce h by a certain sequence, and again
perform another complete h-sort. Once h is 1 and h-sorted, the array is completely sorted. Notice
that the last sequence for ft is 1 so the last sort is always an insertion sort, except by this time the
array is already well-formed and easier to sort.

Shell sort uses a sequence h1,h2, ...,ht called the increment sequence. Any increment sequence is
fine as long as h1 = 1, and some choices are better than others. Shell sort makes multiple passes
through the input list and sorts a number of equally sized sets using the insertion sort. Shell sort
improves the efficiency of insertion sort by quickly shifting values to their destination.

Implementation

void ShellSort(int A[], int array_size) |
inti, j, h, v;
for (h = 1; h = array_size/9; h = 3*h+1);
for (;h=0;h=h/3]|
for {1 = h+1; 1= array_size;1+= 1] |
v=All}
et
while (j = h && A[J-h] = v] |
Aj] = Afj-hJ;
jh

|

IAU] =4

}

Note that when h == 1, the algorithm makes a pass over the entire list, comparing adjacent
elements, but doing very few element exchanges. For h == 1, shell sort works just like insertion
sort, except the number of inversions that have to be eliminated is greatly reduced by the previous



steps of the algorithm with h > 1.

Analysis

Shell sort is efficient for medium size lists. For bigger lists, the algorithm is not the best choice. It
is the fastest of all O(n?) sorting algorithms.

The disadvantage of Shell sort is that it is a complex algorithm and not nearly as efficient as the
merge, heap, and quick sorts. Shell sort is significantly slower than the merge, heap, and quick
sorts, but is a relatively simple algorithm, which makes it a good choice for sorting lists of less
than 5000 items unless speed is important. It is also a good choice for repetitive sorting of
smaller lists.

The best case in Shell sort is when the array is already sorted in the right order. The number of
comparisons is less. The running time of Shell sort depends on the choice of increment sequence.

Performance

Worst case complexity depends on gap sequence. Best known: O(nlog®n)

Best case complexity: O(n)

Average case complexity depends on gap sequence

Worst case space complexity: O(n)

10.9 Merge Sort

Merge sort is an example of the divide and conquer strategy.

Important Notes

. Merging is the process of combining two sorted files to make one bigger sorted file.

. Selection is the process of dividing a file into two parts: k smallest elements and n —
k largest elements.

. Selection and merging are opposite operations

o  selection splits a list into two lists

O  merging joins two files to make one file
. Merge sort is Quick sort’s complement
. Merge sort accesses the data in a sequential manner
. This algorithm is used for sorting a linked list



. Merge sort is insensitive to the initial order of its input

. In Quick sort most of the work is done before the recursive calls. Quick sort starts
with the largest subfile and finishes with the small ones and as a result it needs
stack. Moreover, this algorithm is not stable. Merge sort divides the list into two
parts; then each part is conquered individually. Merge sort starts with the small
subfiles and finishes with the largest one. As a result it doesn’t need stack. This
algorithm is stable.

Implementation



void Mergesort(int A[], int temp]], int left, int right) |
int mid;
ifiright = left] {
mid = (right + left} / 2;
Mergesort(A, temp, left, mid);
Mergesort(A, temp, mid+1, right);
Merge(A, temp, left, mid+1, right);
}
}

void Merge(int A[}, int temp]], it left, mt md, mt right) |
mt 1, left_end, size, temp_pos;
left end = mid - 1;
temp_pos = left;
size = right - left + 1;
while ((left <= left_end) & (mid <= nght]) |
if{A[left] <= Ajmid]) |
temp|temp_pos| = Alleft];
temp_pos = temp_pos + 1;
left = left +1;

|

else |
temp|temp_pos| = Almid];
temp_pos = temp_pos + 1;
mid = mid + 1;

|

|
while (left <= left_end) |
temp|temp_pos| = Alleft];
left = left + 1;
temp_pos = temp_pos + |;
|
while (mid <= right) {
temp|temp_pos| = A[mud];
mid = mid + ;
temp_pos = temp_pos t 1;
!
for (i = 0; 1 <= size; i+4) |
A[right] = temp[nght];
right = right - 1,



Analysis
In Merge sort the input list is divided into two parts and these are solved recursively. After
solving the sub problems, they are merged by scanning the resultant sub problems. Let us assume

T(n) is the complexity of Merge sort with n elements. The recurrence for the Merge Sort can be
defined as:

Recurrence for Mergesort is T(n) = ZT{E] + 6(n).
Using Master theorem, we get, T(n) = @( nlogn).

Note: For more details, refer to Divide and Conquer chapter.

Performance

Worst case complexity : ®(nlogn)

Best case complexity : ®(nlogn)

Average case complexity : ®(nlogn)

Worst case space complexity: ®(n) auxiliary

10.10 Heap Sort

Heapsort is a comparison-based sorting algorithm and is part of the selection sort family.
Although somewhat slower in practice on most machines than a good implementation of Quick
sort, it has the advantage of a more favorable worst-case ®(nlogn) runtime. Heapsort is an in-
place algorithm but is not a stable sort.

Performance

Worst case performance: ®(nlogn)

Best case performance: ®(nlogn)

Average case performance: ®(nlogn)

Worst case space complexity: ®(n) total, ®(1) auxiliary

For other details on Heapsort refer to the Priority Queues chapter.



10.11 Quicksort

Quick sort is an example of a divide-and-conquer algorithmic technique. It is also called
partition exchange sort. It uses recursive calls for sorting the elements, and it is one of the
famous algorithms among comparison-based sorting algorithms.

Divide: The array Allow ...high] is partitioned into two non-empty sub arrays Allow ...q] and Alg
+ 1... high], such that each element of Allow ... high] is less than or equal to each element of Alq
+ 1... high]. The index g is computed as part of this partitioning procedure.

Conquer: The two sub arrays Allow ...q] and Alq + 1 ...high] are sorted by recursive calls to
Quick sort.

Algorithm

The recursive algorithm consists of four steps:

1)  If there are one or no elements in the array to be sorted, return.

2) Pick an element in the array to serve as the “pivot” point. (Usually the left-most
element in the array is used.)

3)  Split the array into two parts — one with elements larger than the pivot and the other
with elements smaller than the pivot.

4)  Recursively repeat the algorithm for both halves of the original array.

Implementation



void Quicksort( int A[], int low, int high ) |
Int pivot;
[* Termmation condition! */
ifl high = low ) |
pivot = Partition| A, low, high |;
Quicksort( A, low, pivot-1);
Quicksort( A, pivot+1, high J;

[
I

[
I

int Partition| int A, int low, int high | |
int left, right, pivot_item = Aflow];
left = low;
right = high;
while { left < right | |
[* Move left while item < pivot */
while[ Alleft] <= pivot_item |
left++:
[* Move right while item = pivot */
while( Aright] > pivot_item |
right--;
if{ left < right |
swap|A left,mght);

[* right is final position for the pivot */
Allow] = A[right];

Alright] = pivot_item;

return right

Analysis

Let us assume that T(n) be the complexity of Quick sort and also assume that all elements are
distinct. Recurrence for T(n) depends on two subproblem sizes which depend on partition

element. If pivot is i smallest element then exactly (i — 1) items will be in left part and (n — i) in
right part. Let us call it as i —split. Since each element has equal probability of selecting it as

. - o .1
pivot the probability of selecting i’ element is —.
n

Best Case: Each partition splits array in halves and gives



T(n) = 2T(n/2) + ®(n) = B(nlogn), [using Divide and Conquer master theorem]
Worst Case: Each partition gives unbalanced splits and we get
T(n) = T(n—1) + B(n) = O(n?)[using Subtraction and Conquer master theorem]
The worst-case occurs when the list is already sorted and last element chosen as pivot.

Average Case: In the average case of Quick sort, we do not know where the split happens. For
this reason, we take all possible values of split locations, add all their complexities and divide
with n to get the average case complexity.

n
1
T(n) = Z#ramtr’.me withi=split)+n+1
=1

IH'I
| = ¢ i
- HZ(TU -1 +T(n-10)+n+1

[ [since we are dealing with best case we can assume T(n—i) and T(i = 1) are equal
n

2
==)T(i-1)+n+1
n
=1
n-1

z
== YT +n+1
n

=0

Multiply both sides by n.
n-1
nT(n) = 2 Z T(i)+n*+n
i=0
Same formula for n — 1.
n-2
mn—1DTn—-1) = 22T(1’)+(n— 1)2+(n—-1)
i=0

Subtract the n — 1 formula from n.



n—1

nT(n) — (n— DT —1) = 2 Z T@) +n? +n— (2 Z T+ (m—1)2 + (n— 1))

nT(n)—(n—1)Tn-1) = 2T(n - 1)+ 2n
nT(n) =(n+1T(n—-1)+2n

Divide with n(n + 1).

T(n) = Tnh-1) 2
+

n+1 n n+1

= T(n-=-2) 2 2

n-1 n n+l1

- O] + I

= 0O(1)+0(2logn)
T(n) = O(logn)
n+1
T(n) = O((n+1)logn)=0(nlogn)

Time Complexity, T(n) = O(nlogn).

Performance

Worst case Complexity: O(n?)

Best case Complexity: O(nlogn)

Average case Complexity: O(nlogn)

Worst case space Complexity: O(1)

Randomized Quick sort

In average-case behavior of Quick sort, we assume that all permutations of the input numbers are
equally likely. However, we cannot always expect it to hold. We can add randomization to an
algorithm in order to reduce the probability of getting worst case in Quick sort.

There are two ways of adding randomization in Quick sort: either by randomly placing the input
data in the array or by randomly choosing an element in the input data for pivot. The second

choice is easier to analyze and implement. The change will only be done at the partition
algorithm.



In normal Quick sort, pivot element was always the leftmost element in the list to be sorted.
Instead of always using Allow] as pivot, we will use a randomly chosen element from the
subarray Allow..high] in the randomized version of Quick sort. It is done by exchanging element
Allow] with an element chosen at random from A[low..high]. This ensures that the pivot element is
equally likely to be any of the high — low + 1 elements in the subarray.

Since the pivot element is randomly chosen, we can expect the split of the input array to be
reasonably well balanced on average. This can help in preventing the worst-case behavior of
quick sort which occurs in unbalanced partitioning. Even though the randomized version improves

the worst case complexity, its worst case complexity is still O(n?). One way to improve
Randomized — Quick sort is to choose the pivot for partitioning more carefully than by picking a
random element from the array. One common approach is to choose the pivot as the median of a
set of 3 elements randomly selected from the array.

10.12 Tree Sort

Tree sort uses a binary search tree. It involves scanning each element of the input and placing it
into its proper position in a binary search tree. This has two phases:

. First phase is creating a binary search tree using the given array elements.
. Second phase is traversing the given binary search tree in inorder, thus resulting in a
sorted array.

Performance

The average number of comparisons for this method is O(nlogn). But in worst case, the number of
comparisons is reduced by O(n?), a case which arises when the sort tree is skew tree.

10.13 Comparison of Sorting Algorithms



Average Worst Auxiliary Is
e Caaf Case Memur? Stable? Otaerfioiea
Bubble 0(n?) 0(n?) l yes | Small code
Selection | O(n®) O(n?) 1 no Stability depends on the implementation.
; ; Average case 15 also O(n +d), where d1s
Insertion. | O(r’) 0(r’) 1 Y | the nfmher of irwersir.:[n 5. )
Shell - O(nlogn) 1 no
Merge sort | O(nlogn) | O(nlogn) depends yes
Heap sort | O(nlogn) | O(nlogn) | 1o
Quick sort | O(nlogn) | O(r) O(og) | depends Can he Innp]ewnented asa stghle sort
depending on how the pivot is handled.
Tree sort | O(nlogn) | O(n?) O(n) depends | Can be implemented as a stable sort,

Note: n denotes the number of elements in the input.

10.14 Linear Sorting Algorithms

In earlier sections, we have seen many examples of comparison-based sorting algorithms. Among
them, the best comparison-based sorting has the complexity O(nlogn). In this section, we will
discuss other types of algorithms: Linear Sorting Algorithms. To improve the time complexity of
sorting these algorithms, we make some assumptions about the input. A few examples of Linear
Sorting Algorithms are:

. Counting Sort
. Bucket Sort
. Radix Sort

10.15 Counting Sort

Counting sort is not a comparison sort algorithm and gives O(n) complexity for sorting. To
achieve O(n) complexity, counting sort assumes that each of the elements is an integer in the
range 1 to K, for some integer K. When if = O(n), the counting sort runs in O(n) time. The basic
idea of Counting sort is to determine, for each input element X, the number of elements less than
X. This information can be used to place it directly into its correct position. For example, if 10
elements are less than X, then X belongs to position 11 in the output.

In the code below, A[0 ..n — 1] is the input array with length n. In Counting sort we need two more
arrays: let us assume array B[O ..n — 1] contains the sorted output and the array C[0 ..K — 1]
provides temporary storage.



void CountingSort [int A[], int n, int B, int K) |
int C[K], 1, J;
[ |Complexaty: O[K]
for (i =0 ; 1<K; 1t4)
Cl| = 0;
{ [Complexity: O[n)
for (j =0 ; j=n; j+4)
CAG]] = CIAQ] + 1;
[ /C[i] now contains the number of elements equal to i
[ [Complexity: O(K]
for 1 =1 ; I<K; i+#)
Cli| = Cli] + Cli-1);
[/ C[1] now contains the number of elements < i
[ {Complexity: O[n|
for j = n-1; j>=0; -} {
BICIAQI) = Ap:
CIAD]] = CIA]] - 1;

}

Total Complexity: O(K) + O(n) + O(K) + O(n) = O(n) if K =0O(n). Space Complexity: O(n) if K
=0(n).

Note: Counting works well if K =0(n). Otherwise, the complexity will be greater.

10.16 Bucket Sort (or Bin Sort)

Like Counting sort, Bucket sort also imposes restrictions on the input to improve the
performance. In other words, Bucket sort works well if the input is drawn from fixed set. Bucket
sort is the generalization of Counting Sort. For example, assume that all the input elements from
{0, 1, ..., K- 1}, i.e., the set of integers in the interval [0, K — 1]. That means, K is the number

of distant elements in the input. Bucket sort uses K counters. The i counter keeps track of the

number of occurrences of the i element. Bucket sort with two buckets is effectively a version of
Quick sort with two buckets.

For bucket sort, the hash function that is used to partition the elements need to be very good and
must produce ordered hash: if i < k then hash(i) < hash(k). Second, the elements to be sorted must
be uniformly distributed.



The aforementioned aside, bucket sort is actually very good considering that counting sort is
reasonably speaking its upper bound. And counting sort is very fast. The particular distinction for
bucket sort is that it uses a hash function to partition the keys of the input array, so that multiple
keys may hash to the same bucket. Hence each bucket must effectively be a growable list; similar
to radix sort.

In the below code insertionsort is used to sort each bucket. This is to inculcate that the bucket sort
algorithm does not specify which sorting technique to use on the buckets. A programmer may
choose to continuously use bucket sort on each bucket until the collection is sorted (in the manner
of the radix sort program below). Whichever sorting method is used on the , bucket sort still tends
toward O(n).

#define BUCKETS 10
void BucketSort(int A[], int array_size) {
int i, j, k;
int buckets[BUCKETS];
forj =0; j < BUCKETS; j++4
bucketsj] = 0;
for(i =0; 1 < array_size; 1++)
++ buckets|A||;
forf1 =0, j=0; ] < BUCKETS; j++)
for(k = buckets[j|:k = 0; -k
AliH] = j;

Time Complexity: O(n). Space Complexity: O(n).

10.17 Radix Sort

Similar to Counting sort and Bucket sort, this sorting algorithm also assumes some kind of
information about the input elements. Suppose that the input values to be sorted are from base d.
That means all numbers are d-digit numbers.

In Radix sort, first sort the elements based on the last digit [the least significant digit]. These
results are again sorted by second digit [the next to least significant digit]. Continue this process
for all digits until we reach the most significant digits. Use some stable sort to sort them by last
digit. Then stable sort them by the second least significant digit, then by the third, etc. If we use
Counting sort as the stable sort, the total time is O(nd) ~ O(n).

Algorithm:
1)  Take the least significant digit of each element.



2)  Sort the list of elements based on that digit, but keep the order of elements with the
same digit (this is the definition of a stable sort).
3) Repeat the sort with each more significant digit.

The speed of Radix sort depends on the inner basic operations. If the operations are not efficient
enough, Radix sort can be slower than other algorithms such as Quick sort and Merge sort. These
operations include the insert and delete functions of the sub-lists and the process of isolating the
digit we want. If the numbers are not of equal length then a test is needed to check for additional
digits that need sorting. This can be one of the slowest parts of Radix sort and also one of the
hardest to make efficient.

Since Radix sort depends on the digits or letters, it is less flexible than other sorts. For every
different type of data, Radix sort needs to be rewritten, and if the sorting order changes, the sort
needs to be rewritten again. In short, Radix sort takes more time to write, and it is very difficult to
write a general purpose Radix sort that can handle all kinds of data.

For many programs that need a fast sort, Radix sort is a good choice. Still, there are faster sorts,
which is one reason why Radix sort is not used as much as some other sorts.

Time Complexity: O(nd) = O(n), if d is small.

10.18 Topological Sort

Refer to Graph Algorithms Chapter.

10.19 External Sorting

External sorting is a generic term for a class of sorting algorithms that can handle massive
amounts of data. These external sorting algorithms are useful when the files are too big and cannot
fit into main memory.

As with internal sorting algorithms, there are a number of algorithms for external sorting. One
such algorithm is External Mergesort. In practice, these external sorting algorithms are being
supplemented by internal sorts.

Simple External Mergesort

A number of records from each tape are read into main memory, sorted using an internal sort, and
then output to the tape. For the sake of clarity, let us assume that 900 megabytes of data needs to
be sorted using only 100 megabytes of RAM.

1) Read 100MB of the data into main memory and sort by some conventional method



(let us say Quick sort).

2)  Write the sorted data to disk.

3) Repeatsteps 1 and 2 until all of the data is sorted in chunks of 100MB. Now we need
to merge them into one single sorted output file.

4)  Read the first 10MB of each sorted chunk (call them input buffers) in main memory
(90MB total) and allocate the remaining 10MB for output buffer.

5) Perform a 9-way Mergesort and store the result in the output buffer. If the output
buffer is full, write it to the final sorted file. If any of the 9 input buffers gets empty,
fill it with the next 10MB of its associated 100MB sorted chunk; or if there is no
more data in the sorted chunk, mark it as exhausted and do not use it for merging.

K-Way Mergesort
Internal Sort > Merge

The above algorithm can be generalized by assuming that the amount of data to be sorted exceeds
the available memory by a factor of K. Then, K chunks of data need to be sorted and a K -way
merge has to be completed.

If X is the amount of main memory available, there will be K input buffers and 1 output buffer of
size X/(K + 1) each. Depending on various factors (how fast is the hard drive?) better
performance can be achieved if the output buffer is made larger (for example, twice as large as
one input buffer).

Complexity of the 2-way External Merge sort: In each pass we read + write each page in file. Let



us assume that there are n pages in file. That means we need [logn| + 1 number of passes. The
total cost is 2n([logn] + 1).

10.20 Sorting: Problems & Solutions

Problem-1 Given an array A[0...n— 1] of n numbers containing the repetition of some number.
Give an algorithm for checking whether there are repeated elements or not. Assume that
we are not allowed to use additional space (i.e., we can use a few temporary variables,
O(1) storage).

Solution: Since we are not allowed to use extra space, one simple way is to scan the elements
one-by-one and for each element check whether that element appears in the remaining elements. If
we find a match we return true.

nt CheckDuplicatesInArray(mn A[], int n) |
for int1 = 0;1<n; i+
for intj=1+1;]<n; ]+t
ifAf]==Af])
reutrn true;
return false;

}

Each iteration of the inner, j-indexed loop uses O(1) space, and for a fixed value of i, the j loop
executes n — i times. The outer loop executes n — 1 times, so the entire function uses time
proportional to

n(n-1) n(n-1)

rtin—i=nn-1)-Yli=nn-1) - - - =0{n")

Time Complexity: O(n?). Space Complexity: O(1).

Problem-2 Can we improve the time complexity of Problem-17?

Solution: Yes, using sorting technique.



int CheckDuplicatesInArray(m A[], int n) |
{ [for heap sort algorithm refer Priority Queues chapter
Heapsort( A, n J;
for inti = 0;1<n-1; i++)
if{A[i]==A[i+1])
reutrn true;
refurn false;

Heapsort function takes O(nlogn) time, and requires O(1) space. The scan clearly takes n — 1
iterations, each iteration using O(1) time. The overall time is O(nlogn + n) = O(nlogn).

Time Complexity: O(nlogn). Space Complexity: O(1).

Note: For variations of this problem, refer Searching chapter.

Problem-3 Given an array A[O ...n — 1], where each element of the array represents a vote in
the election. Assume that each vote is given as an integer representing the ID of the chosen
candidate. Give an algorithm for determining who wins the election.

Solution: This problem is nothing but finding the element which repeated the maximum number of
times. The solution is similar to the Problem-1 solution: keep track of counter.

int CheckWhoWinsTheElection{in A[], int n) |
int 1, j, counter = 0, maxCounter = 0, candidate;
candidate = A[0)];
for (1 = 0;1<mn;1t4) |
candidate = Ali];
counter = 0;
for(j =i+1;j<n;j+) |
if{A[l]==A[]]] counter++;

I
I

ifcounter > maxCounter) |
maxCounter = counter;

candidate = Afi];

!
}

I
I

return candidate;

Time Complexity: O(n?). Space Complexity: O(1).



Note: For variations of this problem, refer to Searching chapter.

Problem-4 Can we improve the time complexity of Problem-3? Assume we don’t have any
extra space.

Solution: Yes. The approach is to sort the votes based on candidate ID, then scan the sorted array
and count up which candidate so far has the most votes. We only have to remember the winner, so
we don’t need a clever data structure. We can use Heapsort as it is an in-place sorting algorithm.

int CheckWhoWinsTheElection{in A[], int o) |
int 1, j, currentCounter = 1, maxCounter = 1;
int currentCandidate, maxCandidate;
currentCandidate = maxCandidate= A[0];

[ [for heap sort algorithm refer Priority Queues Chapter
Heapsort( A, n |;
for (int1 = 1;1<=n;it4) |
iff Afi] == currentCandidate)
currentCounter ++;
else |
currentCandidate = Afi];

currentCounter = 1;

b
}

ifleurrentCounter > maxCounter)
maxCounter = currentCounter;
else |
maxCandidate = currentCandidate;
maxCounter = currentCounter;

I
}

I
I

return candidate;

i
!

Since Heapsort time complexity is O(nlogn) and in-place, it only uses an additional O(1) of
storage in addition to the input array. The scan of the sorted array does a constant-time
conditional n — 1 times, thus using O(n) time. The overall time bound is O(nlogn).

Problem-5 Can we further improve the time complexity of Problem-37?

Solution: In the given problem, the number of candidates is less but the number of votes is
significantly large. For this problem we can use counting sort.

Time Complexity: O(n), n is the number of votes (elements) in the array. Space Complexity: O(k),



k is the number of candidates participating in the election.

Problem-6 Given an array A of n elements, each of which is an integer in the range [1, n?],
how do we sort the array in O(n) time?

Solution: If we subtract each number by 1 then we get the range [0, n> — 1]. If we consider all
numbers as 2 —digit base n. Each digit ranges from 0 to n> — 1. Sort this using radix sort. This uses
only two calls to counting sort. Finally, add 1 to all the numbers. Since there are 2 calls, the
complexity is O(2n) = O(n).

Problem-7 For Problem-6, what if the range is [1... n3]?

Solution: If we subtract each number by 1 then we get the range [0, n3 — 1]. Considering all

numbers as 3-digit base n: each digit ranges from 0 to n> — 1. Sort this using radix sort. This uses
only three calls to counting sort. Finally, add 1 to all the numbers. Since there are 3 calls, the
complexity is O(3n) = O(n).

00

Problem-8 Given an array with n integers, each of value less than n'%, can it be sorted in

linear time?

Solution: Yes. The reasoning is same as in of Problem-6 and Problem-7.

Problem-9 Let A and B be two arrays of n elements each. Given a number K, give an
O(nlogn) time algorithm for determining whether there exists a € A and b € B such that a
+b=K

Solution: Since we need O(nlogn), it gives us a pointer that we need to sort. So, we will do that.

int Find( int A[], int B[}, int n, K ) |

int 1, ¢;
Heapsort( A, n J; /[ Ofnlogn)
for i =0; 1< n; 1#4] | {] O(n)
¢ = k-B(i: /1 0(1)
if{BinarySearch(A, ] /[ O(logn)
return |;
I-
return 0;

]
H

Note: For variations of this problem, refer to Searching chapter.

Problem-10 Let A,B and C be three arrays of n elements each. Given a number K, give an
O(nlogn) time algorithm for determining whether there exists a € A, b € Band ¢ € C such
thata + b + c = K.

Solution: Refer to Searching chapter.



Problem-11 Given an array of n elements, can we output in sorted order the K elements
following the median in sorted order in time O(n + KlogK).

Solution: Yes. Find the median and partition the median. With this we can find all the elements

greater than it. Now find the K™ largest element in this set and partition it; and get all the elements
less than it. Output the sorted list of the final set of elements. Clearly, this operation takes O(n +
KlogK) time.

Problem-12 Consider the sorting algorithms: Bubble sort, Insertion sort, Selection sort,
Merge sort, Heap sort, and Quick sort. Which of these are stable?

Solution: Let us assume that A is the array to be sorted. Also, let us say R and S have the same key
and R appears earlier in the array than S. That means, R is at Ali] and S is at A[j], withi < j. To
show any stable algorithm, in the sorted output R must precede S.

Bubble sort: Yes. Elements change order only when a smaller record follows a larger. Since S is
not smaller than R it cannot precede it.

Selection sort: No. It divides the array into sorted and unsorted portions and iteratively finds the
minimum values in the unsorted portion. After finding a minimum x, if the algorithm moves x into
the sorted portion of the array by means of a swap, then the element swapped could be R which
then could be moved behind S. This would invert the positions of R and S, so in general it is not
stable. If swapping is avoided, it could be made stable but the cost in time would probably be
very significant.

Insertion sort: Yes. As presented, when S is to be inserted into sorted subarray A[1..j — 1], only
records larger than S are shifted. Thus R would not be shifted during S’ insertion and hence
would always precede it.

Merge sort: Yes, In the case of records with equal keys, the record in the left subarray gets
preference. Those are the records that came first in the unsorted array. As a result, they will
precede later records with the same key.

Heap sort: No. Suppose i = 1 and R and S happen to be the two records with the largest keys in
the input. Then R will remain in location 1 after the array is heapified, and will be placed in
location n in the first iteration of Heapsort. Thus S will precede R in the output.

Quick sort: No. The partitioning step can swap the location of records many times, and thus two
records with equal keys could swap position in the final output.

Problem-13 Consider the same sorting algorithms as that of Problem-12. Which of them are
in-place?

Solution:



Bubble sort: Yes, because only two integers are required.
Insertion sort: Yes, since we need to store two integers and a record.
Selection sort: Yes. This algorithm would likely need space for two integers and one record.

Merge sort: No. Arrays need to perform the merge. (If the data is in the form of a linked list, the
sorting can be done in-place, but this is a nontrivial modification.)

Heap sort: Yes, since the heap and partially-sorted array occupy opposite ends of the input array.

Quicksort: No, since it is recursive and stores O(logn) activation records on the stack.
Modifying it to be non-recursive is feasible but nontrivial.

Problem-14 Among Quick sort, Insertion sort, Selection sort, and Heap sort algorithms,
which one needs the minimum number of swaps?

Solution: Selection sort — it needs n swaps only (refer to theory section).

Problem-15 What is the minimum number of comparisons required to determine if an integer
appears more than n/2 times in a sorted array of n integers?

Solution: Refer to Searching chapter.

Problem-16 Sort an array of 0’s, 1’s and 2’s: Given an array A[] consisting of 0’s, 1’s and
2’s, give an algorithm for sorting A[]. The algorithm should put all 0’s first, then all 1’s and
all 2’s last.

Example: Input = {0,1,1,0,1,2,1,2,0,0,0,1}, Output = {0,0,0,0,0,1,1,1,1,1,2,2}

Solution: Use Counting sort. Since there are only three elements and the maximum value is 2, we
need a temporary array with 3 elements.

Time Complexity: O(n). Space Complexity: O(1).

Note: For variations of this problem, refer to Searching chapter.

Problem-17 Is there any other way of solving Problem-167?

Solution: Using Quick dort. Since we know that there are only 3 elements, 0,1 and 2 in the array,
we can select 1 as a pivot element for Quick sort. Quick sort finds the correct place for 1 by
moving all 0’s to the left of 1 and all 2’s to the right of 1. For doing this it uses only one scan.

Time Complexity: O(n). Space Complexity: O(1).

Note: For efficient algorithm, refer to Searching chapter.

Problem-18 How do we find the number that appeared the maximum number of times in an
array?



Solution: One simple approach is to sort the given array and scan the sorted array. While
scanning, keep track of the elements that occur the maximum number of times.
Algorithm:

QuickSort(A, nj;
int 1, j, count=1, Number=A[0], ;=0;
for{i=0:<n;i+4 {
ifiAf==A) {
COUNt++,
Number=Aj];

=1

|

printf{'Number:%d, count.%d", Number, count);

Time Complexity = Time for Sorting + Time for Scan = O(nlogn) +O(n) = O(nlogn). Space
Complexity: O(1).

Note: For variations of this problem, refer to Searching chapter.

Problem-19 Is there any other way of solving Problem-18?

Solution: Using Binary Tree. Create a binary tree with an extra field count which indicates the
number of times an element appeared in the input. Let us say we have created a Binary Search
Tree [BST]. Now, do the In-Order traversal of the tree. The In-Order traversal of BST produces
the sorted list. While doing the In-Order traversal keep track of the maximum element.

Time Complexity: O(n) + O(n) ~# O(n). The first parameter is for constructing the BST and the
second parameter is for Inorder Traversal. Space Complexity: O(2n) ~ O(n), since every node in
BST needs two extra pointers.

Problem-20 Is there yet another way of solving Problem-187?

Solution: Using Hash Table. For each element of the given array we use a counter, and for each
occurrence of the element we increment the corresponding counter. At the end we can just return
the element which has the maximum counter.

Time Complexity: O(n). Space Complexity: O(n). For constructing the hash table we need O(n).

Note: For the efficient algorithm, refer to the Searching chapter.

Problem-21 Given a 2 GB file with one string per line, which sorting algorithm would we
use to sort the file and why?



Solution: When we have a size limit of 2GB, it means that we cannot bring all the data into the
main memory.

Algorithm: How much memory do we have available? Let’s assume we have X MB of memory
available. Divide the file into K chunks, where X * K ~ 2 GB.

. Bring each chunk into memory and sort the lines as usual (any O(nlogn) algorithm).
. Save the lines back to the file.

. Now bring the next chunk into memory and sort.
. Once we’re done, merge them one by one; in the case of one set finishing, bring more
data from the particular chunk.

The above algorithm is also known as external sort. Step 3 — 4 is known as K-way merge. The
idea behind going for an external sort is the size of data. Since the data is huge and we can’t bring
it to the memory, we need to go for a disk-based sorting algorithm.

Problem-22 Nearly sorted: Given an array of n elements, each which is at most K positions
from its target position, devise an algorithm that sorts in O(n logK) time.

Solution: Divide the elements into n/K groups of size K, and sort each piece in O(KlogK) time,
let’s say using Mergesort. This preserves the property that no element is more than K elements out
of position. Now, merge each block of K elements with the block to its left.

Problem-23 Is there any other way of solving Problem-227?

Solution: Insert the first K elements into a binary heap. Insert the next element from the array into
the heap, and delete the minimum element from the heap. Repeat.

Problem-24 Merging K sorted lists: Given K sorted lists with a total of n elements, give an
O(nlogK) algorithm to produce a sorted list of all n elements.
Solution: Simple Algorithm for merging K sorted lists: Consider groups each having% elements.

Take the first list and merge it with the second list using a linear-time algorithm for merging two
. . . . . . Zn
sorted lists, such as the merging algorithm used in merge sort. Then, merge the resulting list of =

elements with the third list, and then merge the resulting list of B?n elements with the fourth list.

Repeat this until we end up with a single sorted list of all n elements.

Time Complexity: In each iteration we are merging K elements.

T()_Zn 3n  4n Kn()_nzl
n_K+K+K+ Kn_K,zl

i=
K(K+1)

T(n) = =| | ~o(mK)



Problem-25 Can we improve the time complexity of Problem-247?

Solution: One method is to repeatedly pair up the lists and then merge each pair. This method can
also be seen as a tail component of the execution merge sort, where the analysis is clear. This is
called the Tournament Method. The maximum depth of the Tournament Method is logK and in
each iteration we are scanning all the n elements.

Time Complexity; O(nlogK).
Problem-26 Is there any other way of solving Problem-24?

Solution: The other method is to use a rain priority queue for the minimum elements of each of
the if lists. At each step, we output the extracted minimum of the priority queue, determine from
which of the K lists it came, and insert the next element from that list into the priority queue. Since
we are using priority queue, that maximum depth of priority queue is logK.

Time Complexity; O(nlogK).
Problem-27 Which sorting method is better for Linked Lists?

Solution: Merge Sort is a better choice. At first appearance, merge sort may not be a good
selection since the middle node is required to subdivide the given list into two sub-lists of equal
length. We can easily solve this problem by moving the nodes alternatively to two lists (refer to
Linked Lists chapter). Then, sorting these two lists recursively and merging the results into a
single list will sort the given one.



typedef struct ListNode |
int data;
struct ListNode *next;

1.
ja

struct ListNode * LinkedListMergeSort{struct ListNode * first) |

struct ListNode * hst1HEAD = NULL;
struct ListNode * list1TAIL = NULL;
struct ListNode * list2HEAD = NULL;
struct ListNode * ist2TAIL = NULL;
ifffirst==NULL || first=next==NULL|

return first;
while (first I= NULL) |

Append(first, listIHEAD, list1TAIL);

ifffirst 1= NULL]

Append|first, list2ZHEAD, list2TAIL);

b

I

list IHEAD = LinkedListMergeSort(hist1HEAD);
list2HEAD = LinkedListMergeSort(list2HEAD);
return Merge(list IHEAD, listZHEAD);

Note: Append() appends the first argument to the tail of a singly linked list whose head and tail
are defined by the second and third arguments.

All external sorting algorithms can be used for sorting linked lists since each involved file can be
considered as a linked list that can only be accessed sequentially. We can sort a doubly linked list
using its next fields as if it was a singly linked one and reconstruct the prev fields after sorting
with an additional scan.

Problem-28 Can we implement Linked Lists Sorting with Quick Sort?

Solution: The original Quick Sort cannot be used for sorting Singly Linked Lists. This is because
we cannot move backward in Singly Linked Lists. But we can modify the original Quick Sort and
make it work for Singly Linked Lists.

Let us consider the following modified Quick Sort implementation. The first node of the input list
is considered a pivot and is moved to equal. The value of each node is compared with the pivot
and moved to less (respectively, equal or larger) if the nodes value is smaller than (respectively,
equal to or larger than) the pivot. Then, less and larger are sorted recursively. Finally, joining
less, equal and larger into a single list yields a sorted one.

Append() appends the first argument to the tail of a singly linked list whose head and tail are
defined by the second and third arguments. On return, the first argument will be modified so that it



points to the next node of the list. Join() appends the list whose head and tail are defined by the
third and fourth arguments to the list whose head and tail are defined by the first and second
arguments. For simplicity, the first and fourth arguments become the head and tail of the resulting
list.

typedef struct ListNode |
int data;

struct ListNode *next;
[

i1
void Qsort(struct ListNode *irst, struct ListNode * last) |
struct ListNode *lesHEAD=NULL, lesTAIL=NULL;
struct ListNode *equHEAD=NULL, equTAIL=NULL;
struct ListNode *larHEAD=NULL, larTAIL=NULL;
struct ListNode *current = *first;
nt pivat, info;
iffcurrent == NULL) return;
pivot = current—data;
Append(current, equHEAD, equTAIL);
while [current |= NULL) {
info = current—data;
if{info < pivot|
Append|current, lesHEAD, lesTAIL)
else 1ffinfo > pivot)
Append(current, larHEAD, larTAIL|
else  Append(current, equHEAD, equTAlIL);
}
Quicksort(&lesHEAD, &lesTAIL);
Quicksort(&larHEAD, &larTAIL);
Join(lesHEAD, lesTAIL.equHEAD, equTAILj;
Join(lesHEAD, equTAIL larHEAD, larTAIL);
*first = lesHEAD;
*last = larTAIL;
j

Problem-29 Given an array of 100,000 pixel color values, each of which is an integer in the
range [0,255]. Which sorting algorithm is preferable for sorting them?

Solution: Counting Sort. There are only 256 key values, so the auxiliary array would only be of
size 256, and there would be only two passes through the data, which would be very efficient in
both time and space.

Problem-30 Similar to Problem-29, if we have a telephone directory with 10 million entries,



which sorting algorithm is best?

Solution: Bucket Sort. In Bucket Sort the buckets are defined by the last 7 digits. This requires an
auxiliary array of size 10 million and has the advantage of requiring only one pass through the
data on disk. Each bucket contains all telephone numbers with the same last 7 digits but with
different area codes. The buckets can then be sorted by area code with selection or insertion sort;
there are only a handful of area codes.

Problem-31 Give an algorithm for merging K-sorted lists.
Solution: Refer to Priority Queues chapter.

Problem-32 Given a big file containing billions of numbers. Find maximum 10 numbers from
this file.

Solution: Refer to Priority Queues chapter.

Problem-33 There are two sorted arrays A and B. The first one is of size m + n containing
only m elements. Another one is of size n and contains n elements. Merge these two arrays
into the first array of size m + n such that the output is sorted.

Solution: The trick for this problem is to start filling the destination array from the back with the
largest elements. We will end up with a merged and sorted destination array.

void Merge(int[] A[], int m, int B[], int n) |
int count = m;
inti=n-1,j=count- I, k=m- I,
for(k>=0;k--) |
(Bl = AG] |] 1< 0)
Alk] =Bi);
L==
if|i=0]
break;

|
b

else |

Alk] = AJj);

J=

Time Complexity: O(m + n). Space Complexity: O(1).

Problem-34 Nuts and Bolts Problem: Given a set of n nuts of different sizes and n bolts
such that there is a one-to-one correspondence between the nuts and the bolts, find for each
nut its corresponding bolt. Assume that we can only compare nuts to bolts: we cannot



compare nuts to nuts and bolts to bolts.

Alternative way of framing the question: We are given a box which contains bolts and
nuts. Assume there are n nuts and n bolts and that each nut matches exactly one bolt (and
vice versa). By trying to match a bolt and a nut we can see which one is bigger, but we
cannot compare two bolts or two nuts directly. Design an efficient algorithm for matching
the nuts and bolts.

Solution: Brute Force Approach: Start with the first bolt and compare it with each nut until we
find a match. In the worst case, we require n comparisons. Repeat this for successive bolts on all

remaining gives O(n?) complexity.
Problem-35 For Problem-34, can we improve the complexity?

Solution: In Problem-34, we got O(n®) complexity in the worst case (if bolts are in ascending
order and nuts are in descending order). Its analysis is the same as that of Quick Sort. The
improvement is also along the same lines. To reduce the worst case complexity, instead of
selecting the first bolt every time, we can select a random bolt and match it with nuts. This
randomized selection reduces the probability of getting the worst case, but still the worst case is

o(n?).
Problem-36 For Problem-34, can we further improve the complexity?

Solution: We can use a divide-and-conquer technique for solving this problem and the solution is
very similar to randomized Quick Sort. For simplicity let us assume that bolts and nuts are
represented in two arrays B and N.

The algorithm first performs a partition operation as follows: pick a random boltB[t]. Using this
bolt, rearrange the array of nuts into three groups of elements:

. First the nuts smaller than BJi]
. Then the nut that matches BJ[i], and
. Finally, the nuts larger than B[i].

Next, using the nut that matches B[i], perform a similar partition on the array of bolts. This pair of
partitioning operations can easily be implemented in O(n) time, and it leaves the bolts and nuts
nicely partitioned so that the “pivot” bolt and nut are aligned with each other and all other bolts
and nuts are on the correct side of these pivots — smaller nuts and bolts precede the pivots, and
larger nuts and bolts follow the pivots. Our algorithm then completes by recursively applying
itself to the subarray to the left and right of the pivot position to match these remaining bolts and
nuts. We can assume by induction on n that these recursive calls will properly match the
remaining bolts.

To analyze the running time of our algorithm, we can use the same analysis as that of randomized
Quick Sort. Therefore, applying the analysis from Quick Sort, the time complexity of our
algorithm is O(nlogn).



Alternative Analysis: We can solve this problem by making a small change to Quick Sort. Let us
assume that we pick the last element as the pivot, say it is a nut. Compare the nut with only bolts
as we walk down the array. This will partition the array for the bolts. Every bolt less than the
partition nut will be on the left. And every bolt greater than the partition nut will be on the right.

While traversing down the list, find the matching bolt for the partition nut. Now we do the
partition again using the matching bolt. As a result, all the nuts less than the matching bolt will be
on the left side and all the nuts greater than the matching bolt will be on the right side.
Recursively call on the left and right arrays.

The time complexity is O(2nlogn) ~ O(nlogn).

Problem-37 Given a binary tree, can we print its elements in sorted order in O(n) time by
performing an In-order tree traversal?

Solution: Yes, if the tree is a Binary Search Tree [BST]. For more details refer to Trees chapter.

Problem-38 Given an array of elements, convert it into an array such that A<B>C<D>E
< F and so on.

Solution: Sort the array, then swap every adjacent element to get the final result.

#include<algorithms
convertArraytoSawToothWavef)|
int Al] = 10,-6,9,13,10,-1,8,12,54,14,-5};
int n = sizeof|A}/sizeof[A[0]), 1 = 1, temp;
sort(A, A+n);
for{i=1; 1 < n; i+=2)}
iffi+1 < )|
temp = A[i]; Ali] = A[i+1]; A[i+1] = temp;
I-
{
for(i=0: i < n; i+4)]
printf(“ad *, Ali]);

|
i

The time complexity is O(nlogn+n) =~ O(nlogn), for sorting and a scan.

Problem-39 Can we do Problem-38 with O(n) time?

Solution: Make sure all even positioned elements are greater than their adjacent odd elements,
and we don’t need to worry about odd positioned elements. Traverse all even positioned
elements of input array, and do the following:

. If the current element is smaller than the previous odd element, swap previous and



current.
. If the current element is smaller than the next odd element, swap next and current.

convertArraytoSawToothWavef)|
int A[] = 10,-6,9,13,10,-1,8,12,54,14,-5};
mt 1 = sizeof|A)/ sizeof[A[0)), 1= 1, temp;
sort(A, A+n);
forfi=1; 1< n; 1+=2)
if 120 && Ali-1] = Afi| ){
temp = Ali]; Ali] = A[i-1); Afi-1] = temp;
if (1<n-1 && Ali] < Ali+1] )}
temp = Ali]; Ali] = Afi+1]; Ali+1] = temp;

I
for(i=0; 1 < n; 1t+)|
cout<<Afie< "

i

1
I

The time complexity is O(n).

Problem-40 Merge sort uses
(a) Divide and conquer strategy
(b)  Backtracking approach
(c)  Heuristic search
(d)  Greedy approach

Solution: (a). Refer theory section.

Problem-41 Which of the following algorithm design techniques is used in the quicksort
algorithm?
(a) Dynamic programming
(b)  Backtracking
(c) Divide and conquer
(d)  Greedy method

Solution: (c). Refer theory section.

Problem-42 For merging two sorted lists of sizes m and n into a sorted list of size m+n, we
required comparisons of
(@) O(m)
(b) O(n)
() O(m+n)



(d) O(logm + logn)

Solution: (c). We can use merge sort logic. Refer theory section.

Problem-43 Quick-sort is run on two inputs shown below to sort in ascending order
G 1,23..n
(i) n,n-1,n-2,...2,1
Let C1 and C2 be the number of comparisons made for the inputs (i) and (ii) respectively.

Then,

(@) Ci1<(C2
(b) C1>cC2
(c) Ci1=cC2

(d)  we cannot say anything for arbitrary n.

Solution: (b). Since the given problems needs the output in ascending order, Quicksort on already
sorted order gives the worst case (O(n?)). So, (i) generates worst case and (ii) needs fewer
comparisons.

Problem-44 Give the correct matching for the following pairs:
(A)  O(logn)
(B) O(n)
(C)  Of(nlogn)
(D) O(n?)

(P)  Selection

(Q) Insertion sort

(R) Binary search

(S) Merge sort

(@ A-RB-PC-Q-D-S
(b) A-RB-PC-SD-Q
(o0 A-PB-RC-SD-Q
(d A-PB-SC-RD-Q

Solution: (b). Refer theory section.

Problem-45 Let s be a sorted array of n integers. Let t(n) denote the time taken for the most
efficient algorithm to determine if there are two elements with sum less than 1000 in s.
which of the following statements is true?

a) t(n)is O(1)
b) n<tm)<nlogh
0 nlogy < t(n) < (3)

o tm) =(3)

Solution: (a). Since the given array is already sorted it is enough if we check the first two
elements of the array.



Problem-46 The usual ®(n?) implementation of Insertion Sort to sort an array uses linear
search to identify the position where an element is to be inserted into the already sorted
part of the array. If, instead, we use binary search to identify the position, the worst case
running time will
(a) remain ®(n%)

(b)  become ®(n(log n)?)
(c)  become ®(nlogn)
(d) become B(n)

Solution: (a). If we use binary search then there will be [g g?f comparisons in the worst case,

which is ®(nlogn). But the algorithm as a whole will still have a running time of ®(n®) on
average because of the series of swaps required for each insertion.

Problem-47 In quick sort, for sorting n elements, the n/4™ smallest element is selected as
pivot using an O(n) time algorithm. What is the worst case time complexity of the quick
sort?

(A)  6(n)
(B) ©(nLogn)
© 6
(D)  ®(n’logn)

Solution: The recursion expression becomes: T(n) = T(n/4) + T(3n/4) + en. Solving the recursion
using variant of master theorem, we get ®(nLogn).

Problem-48 Consider the Quicksort algorithm. Suppose there is a procedure for finding a
pivot element which splits the list into two sub-lists each of which contains at least one-
fifth of the elements. Let T(n) be the number of comparisons required to sort n elements.
Then
A) Tm<2T(/5)+n
B) TMm<T({m/5+T(@n/5)+n
C) Tm<2T(4n/5)+n
D) T(m<2T(n/2)+n

Solution: (C). For the case where n/5 elements are in one subset, T(n/5) comparisons are needed
for the first subset with n/5 elements, T(41n/5) is for the rest 4n/5 elements, and n is for finding the
pivot. If there are more than n/5 elements in one set then other set will have less than 4n/5
elements and time complexity will be less than T(n/5) + T(4n/5) + n.

Problem-49 Which of the following sorting algorithms has the lowest worst-case
complexity?
(A) Merge sort
(B) Bubble sort
(C)  Quick sort
(D)  Selection sort



Solution: (A). Refer theory section.

Problem-50 Which one of the following in place sorting algorithms needs the minimum
number of swaps?
(A)  Quick sort
(B) Insertion sort
(C)  Selection sort
(D)  Heap sort

Solution: (C). Refer theory section.

Problem-51 You have an array of n elements. Suppose you implement quicksort by always
choosing the central element of the array as the pivot. Then the tightest upper bound for the
worst case performance is
(A)  O(n?)

(B)  Of(nlogn)
(C)  ©O(nlogn)
(D) O’

Solution: (A). When we choose the first element as the pivot, the worst case of quick sort comes
if the input is sorted- either in ascending or descending order.

Problem-52 Let P be a Quicksort Program to sort numbers in ascending order using the first
element as pivot. Let t1 and t2 be the number of comparisons made by P for the inputs {1,
2,3,4,5} and {4, 1, 5, 3, 2} respectively. Which one of the following holds?

(A) t1=5
(B) tl<t
(C) tl>w
(D) tl=t2

Solution: (C). Quick Sort’s worst case occurs when first (or last) element is chosen as pivot with
sorted arrays.

Problem-53 The minimum number of comparisons required to find the minimum and the
maximum of 100 numbers is

Solution: 147 (Formula for the minimum number of comparisons required is 3n/2 — 3 with n
numbers).

Problem-54 The number of elements that can be sorted in T(logn) time using heap sort is
A)  6@1)
(B)  O(sqrt(logn))
(C) O(log n/(log log n))
(D)  B(logn)

Solution: (D). Sorting an array with k elements takes time ®(k log k) as k grows. We want to
choose k such that ©(k log k) = ©(logn). Choosing k = ®(logn) doesn’t necessarily work, since



B(k log k) = ©(logn loglogn) # B©(logn). On the other hand, if you choose k = T(log n/ log log n),
then the runtime of the sort will be

O((logn / loglogn) log (logn / loglogn))
= @)((logn / loglogn) (loglogn - logloglogn))
= O(logn - logn logloglogn / loglogn)
= O(logn (1 - logloglogn / loglogn))

Notice that 1 — logloglogn / loglogn tends toward 1 as n goes to infinity, so the above expression
actually is ©(log n), as required. Therefore, if you try to sort an array of size ®(logn / loglogn)
using heap sort, as a function of n, the runtime is ®(logn).

Problem-55 Which one of the following is the tightest upper bound that represents the
number of swaps required to sort n numbers using selection sort?
(A)  O(logn)

(B) O(n)
(C)  Of(nlogn)
(D) O(n?)

Solution: (B). Selection sort requires only O(n) swaps.

Problem-56 Which one of the following is the recurrence equation for the worst case time
complexity of the Quicksort algorithm for sorting n(> 2) numbers? In the recurrence
equations given in the options below, c is a constant.

(A)T(n) = 2T (/2) + cn

(B) Tm)=Tmnh-1)+T(O)+cn
(G TMm=2T(M-2)+cn

(D) Tm =T(?2)+cn

Solution: (B). When the pivot is the smallest (or largest) element at partitioning on a block of size
n the result yields one empty sub-block, one element (pivot) in the correct place and sub block of
size n— 1.

Problem-57 True or False. In randomized quicksort, each key is involved in the same number
of comparisons.

Solution: False.

Problem-58 True or False: If Quicksort is written so that the partition algorithm always uses
the median value of the segment as the pivot, then the worst-case performance is O(nlogn).

Soution: True.



CHAPTER

SEARCHING 1 1

11.1 What is Searching?

In computer science, searching is the process of finding an item with specified properties from a
collection of items. The items may be stored as records in a database, simple data elements in
arrays, text in files, nodes in trees, vertices and edges in graphs, or they may be elements of other
search spaces.

11.2 Why do we need Searching?

Searching is one of the core computer science algorithms. We know that today’s computers store
a lot of information. To retrieve this information proficiently we need very efficient searching
algorithms. There are certain ways of organizing the data that improves the searching process.
That means, if we keep the data in proper order, it is easy to search the required element. Sorting
is one of the techniques for making the elements ordered. In this chapter we will see different
searching algorithms.



11.3 Types of Searching

Following are the types of searches which we will be discussing in this book.

. Unordered Linear Search

. Sorted/Ordered Linear Search

. Binary Search

. Interpolation search

. Binary Search Trees (operates on trees and refer Trees chapter)

. Symbol Tables and Hashing
. String Searching Algorithms: Tries, Ternary Search and Suffix Trees

11.4 Unordered Linear Search

Let us assume we are given an array where the order of the elements is not known. That means the
elements of the array are not sorted. In this case, to search for an element we have to scan the
complete array and see if the element is there in the given list or not.

int UnOrderedLinearSearch (int A[], int n, int data) |
for (inti =0;1<n;i+4) ]
iffA[i] == data)
return 1;

return -1;

|

Time complexity: O(n), in the worst case we need to scan the complete array. Space complexity:
O(1).

11.5 Sorted/Ordered Linear Search

If the elements of the array are already sorted, then in many cases we don’t have to scan the
complete array to see if the element is there in the given array or not. In the algorithm below, it
can be seen that, at any point if the value at A[i] is greater than the data to be searched, then we
just return —1 without searching the remaining array.



int OrderedLinearSearch(int A[], int n, int data] |
for int1 =0;1<n; 144 |
if(A[i] == data)
return 1;
else if{Afi] » data)
return -1;

1
!

return -1;
i

Time complexity of this algorithm is O(n).This is because in the worst case we need to scan the
complete array. But in the average case it reduces the complexity even though the growth rate is
the same.

Space complexity: O(1).

Note: For the above algorithm we can make further improvement by incrementing the index at a
faster rate (say, 2). This will reduce the number of comparisons for searching in the sorted list.

11.6 Binary Search

Let us consider the problem of searching a word in a dictionary. Typically, we directly go to
some approximate page [say, middle page] and start searching from that point. If the name that we
are searching is the same then the search is complete. If the page is before the selected pages then
apply the same process for the first half; otherwise apply the same process to the second half.
Binary search also works in the same way. The algorithm applying such a strategy is referred to
as binary search algorithm.

low data to be searched high

(high=low) i low+high
or

mid = low + 2




[ [lterative Binary Search Algorithm
int BinarySearchlterative(int A[], int n, int data) |
int low = 0;
mnt high = n-1;
while {low <= high| {
mid = low + (high-low)/2; //To avoid overflow
if[A[mid] == data)
return mid;
else if{A[mid] < data)
low= mid + 1;
else high = mid - 1;

|
!

return -1;

}

| [Recursive Binary Search Algonthm
int BinarySearchRecursive[int A[}, int low, int high, int data) |
it mid = low + (high-low)/2; //To avoid overflow
if (low=high|
return -1;
if{A[mid| == data)
return mid;
else if{A[mid| < data)
return BinarySearchRecursive (A, mid + 1, high, data);
else return BinarySearchRecursive (A, low, mid - 1, datal;
return -1;

}

Recurrence for binary search is T (n) = T(g) +®(1). This is because we are always

considering only half of the input list and throwing out the other half. Using Divide and Conquer
master theorem, we get, T(n) = O(logn).

Time Complexity: O(logn). Space Complexity: O(1) [for iterative algorithm].

11.7 Interpolation Search

Undoubtedly binary search is a great algorithm for searching with average running time
complexity of logn. It always chooses the middle of the remaining search space, discarding one
half or the other, again depending on the comparison between the key value found at the estimated
(middle) position and the key value sought. The remaining search space is reduced to the part



before or after the estimated position.

In the mathematics, interpolation is a process of constructing new data points within the range of a
discrete set of known data points. In computer science, one often has a number of data points
which represent the values of a function for a limited number of values of the independent
variable. It is often required to interpolate (i.e. estimate) the value of that function for an
intermediate value of the independent variable.

For example, suppose we have a table like this, which gives some values of an unknown function
f. Interpolation provides a means of estimating the function at intermediate points, such as x = 55.

fx)
10
20
30
40
50
60
70

N (U R [WIN|[F] X

There are many different interpolation methods, and one of the simplest methods is linear
interpolation. Since 55 is midway between 50 and 60, it is reasonable to take f(55) midway
between f(5) = 50 and f(6) = 60, which yields 55.

Linear interpolation takes two data points, say (x;. y,) and (x,, ¥,), and the interpolant is given by:
X— %y, ]
y=y1+ (2 —y1)—— atpoint (x,y)
X2 —Xq

With above inputs, what will happen if we don’t use the constant Y2, but another more accurate
constant “K”, that can lead us closer to the searched item.

low data to be searched high

N data—low
~ high-low

This algorithm tries to follow the way we search a name in a phone book, or a word in the
dictionary. We, humans, know in advance that in case the name we’re searching starts with a “m”,



like “monk” for instance, we should start searching near the middle of the phone book. Thus if
we’re searching the word “career” in the dictionary, you know that it should be placed
somewhere at the beginning. This is because we know the order of the letters, we know the
interval (a-z), and somehow we intuitively know that the words are dispersed equally. These
facts are enough to realize that the binary search can be a bad choice. Indeed the binary search
algorithm divides the list in two equal sub-lists, which is useless if we know in advance that the
searched item is somewhere in the beginning or the end of the list. Yes, we can use also jump
search if the item is at the beginning, but not if it is at the end, in that case this algorithm is not so
effective.

The interpolation search algorithm tries to improve the binary search. The question is how to find
this value? Well, we know bounds of the interval and looking closer to the image above we can
define the following formula.

B data — low

~ high — low

This constant K is used to narrow down the search space. For binary search, this constant K is
(low + high)/2.

Now we can be sure that we’re closer to the searched value. On average the interpolation search
makes about log (logn) comparisons (if the elements are uniformly distributed), where n is the
number of elements to be searched. In the worst case (for instance where the numerical values of
the keys increase exponentially) it can make up to O(n) comparisons. In interpolation-sequential
search, interpolation is used to find an item near the one being searched for, then linear search is
used to find the exact item. For this algorithm to give best results, the dataset should be ordered
and uniformly distributed.

int InterpolationSearch(int Af], int datal{
int low = 0, mid, high = sizeof|A) - 1;
while (low <= high| |
mid = low + (((data - Allow]) * (high - low))/{Ahigh] - Allow])};
if (data == A[mid|}
returnmd + 1;
if (data < Almd])
high = mid - 1;
else
low = mid + 1;
|

return -1;

|
!



11.8 Comparing Basic Searching Algorithms

[mplementation Search-Worst Case | Search-Average Case
Unordered Array n n/2
Ordered Array (Binary Search) logn logn
Unordered List n n/2
Ordered List n n/2
Binary Search Trees (for skew trees) n logn
Interpolation search n log(logn)

Note: For discussion on binary search trees refer Trees chapter.

11.9 Symbol Tables and Hashing

Refer to Symbol Tables and Hashing chapters.

11.10 String Searching Algorithms

Refer to String Algorithms chapter.

11.11 Searching: Problems & Solutions

Problem-1 Given an array of n numbers, give an algorithm for checking whether there are

any duplicate elements in the array or no?

Solution: This is one of the simplest problems. One obvious answer to this is exhaustively
searching for duplicates in the array. That means, for each input element check whether there is
any element with the same value. This we can solve just by using two simple for loops. The code

for this solution can be given as:




void CheckDuplicatesBruteForce(int A[], int n) |
for{int 1= 0;1< n; 144} |
for(int j = i+1; ] < n; j#4) |
AD] == AD)) |
printf{*Duplicates exist: %d", Afi]);

return;

]
]

E

i
}

pﬁntf{"Nﬂ duplicates in given array.”);
i
Time Complexity: O(n?), for two nested for loops. Space Complexity: O(1).

Problem-2 Can we improve the complexity of Problem-17% solution?
Solution: Yes. Sort the given array. After sorting, all the elements with equal values will be

adjacent. Now, do another scan on this sorted array and see if there are elements with the same
value and adjacent.

void CheckDuplicatesSorting(int A[], int n) |

Sort(A, n}; [ [sort the array
forfinti=0;1<n-1; i++) |
iffAfl] == Afit1]) |
printf|“Duplicates exist: %d", A[i]);
return;

|
}

i
§

printf(*No duplicates in given array.’);

I
}

Time Complexity: O(nlogn), for sorting (assuming nlogn sorting algorithm). Space Complexity:
O(1).

Problem-3 Is there any alternative way of solving Problem-17?
Solution: Yes, using hash table. Hash tables are a simple and effective method used to implement
dictionaries. Average time to search for an element is O(1), while worst-case time is O(n). Refer

to Hashing chapter for more details on hashing algorithms. As an example, consider the array, A =
{3,2,1,2,2,3}.

Scan the input array and insert the elements into the hash. For each inserted element, keep the



counter as 1 (assume initially all entires are filled with zeros). This indicates that the
corresponding element has occurred already. For the given array, the hash table will look like
(after inserting the first three elements 3,2 and 1):

1T 1
oT— 1
3' . 1

Now if we try inserting 2, since the counter value of 2 is already 1, we can say the element has
appeared twice.

Time Complexity: O(n). Space Complexity: O(n).

Problem-4 Can we further improve the complexity of Problem-1 solution?

Solution: Let us assume that the array elements are positive numbers and all the elements are in
the range 0 to n — 1. For each element A[i], go to the array element whose index is A[i]. That
means select A[A[i]] and mark - A[A[i]] (negate the value at A[A[i]]). Continue this process until
we encounter the element whose value is already negated. If one such element exists then we say
duplicate elements exist in the given array. As an example, consider the array, A = {3,2,1,2,2,3}.

Initially,

8 2 1 2 2 3

0 1 2 3 4 S

At step-1, negate A[abs(A[0])],

3 2 1 -2 2 %)

o) 1 2 3 4 S

At step-2, negate Alabs(A[l])],

3 2 -1 -2 2 3

o) 1 2 3 4 S

At step-3, negate A[abs(A[2])],



3 -2 -1 -2 2 &

o) 1 2 3 4 S

At step-4, negate A[abs(A[3])],

3 -2 -1 -2 2 3

o) 1 2 3 4 S

At step-4, observe that Alabs(A[3])] is already negative. That means we have encountered the
same value twice.

void CheckDuplicates(int Af], int n) |
for{int1=0; 1% n; it+) |
ifiAfabs(A[i)] < 0] {
printf{“Duplicates exist.%d", Ali]);
returt,;
I-
else A[A[i]] = - A[A[i]];
|
printf|“No duplicates in given array.");

I
I

Time Complexity: O(n). Since only one scan is required. Space Complexity: O(1).

Notes:
. This solution does not work if the given array is read only.
. This solution will work only if all the array elements are positive.
. If the elements range is not in 0 to n — 1 then it may give exceptions.
Problem-5 Given an array of n numbers. Give an algorithm for finding the element which

appears the maximum number of times in the array?

Brute Force Solution: One simple solution to this is, for each input element check whether there
is any element with the same value, and for each such occurrence, increment the counter. Each
time, check the current counter with the max counter and update it if this value is greater than max
counter. This we can solve just by using two simple for loops.



int MaxRepititionsBruteForce(int Af], int n) |
mt counter =0, max=0;
for{int i = 0; i< n; i+4) |
cotnter=0:
forfint j = 0;] < n; j+4) |
ifA[i] == A}

countert+;

fjcounter > max| max = counter;

J

refurn max;

I
I

Time Complexity: O(n?), for two nested for loops. Space Complexity: O(1).

Problem-6 Can we improve the complexity of Problem-5 solution?

Solution: Yes. Sort the given array. After sorting, all the elements with equal values come
adjacent. Now, just do another scan on this sorted array and see which element is appearing the
maximum number of times.

Time Complexity: O(nlogn). (for sorting). Space Complexity: O(1).

Problem-7 Is there any other way of solving Problem-5?

Solution: Yes, using hash table. For each element of the input, keep track of how many times that
element appeared in the input. That means the counter value represents the number of occurrences
for that element.

Time Complexity: O(n). Space Complexity: O(n).

Problem-8 or Problem-5, can we improve the time complexity? Assume that the elements’
range is 1 to n. That means all the elements are within this range only.

Solution: Yes. We can solve this problem in two scans. We cannot use the negation technique of
Problem-3 for this problem because of the number of repetitions. In the first scan, instead of
negating, add the value n. That means for each occurrence of an element add the array size to that
element. In the second scan, check the element value by dividing it by n and return the element
which gives the maximum value. The code based on this method is given below.



void MaxRepititions(int A]], int n) |
mt1= 0, max = 0, maxIndex;
for(i=0;1 < n; i+4)
AJAfi]%n] +=n;
for(i =0;1 < n; i+4)
if[Afi]/n > max] |
max = Afi|/n;
maxIndex =,

1
[

return maxndex;

Notes:
. This solution does not work if the given array is read only.
. This solution will work only if the array elements are positive.
. If the elements range is not in 1 to n then it may give exceptions.

Time Complexity: O(n). Since no nested for loops are required. Space Complexity: O(1).

Problem-9 Given an array of n numbers, give an algorithm for finding the first element in the
array which is repeated. For example, in the array A = {3,2,1,2,2,3}, the first repeated
number is 3 (not 2). That means, we need to return the first element among the repeated
elements.

Solution: We can use the brute force solution that we used for Problem-1. For each element, since
it checks whether there is a duplicate for that element or not, whichever element duplicates first
will be returned.

Problem-10 For Problem-9, can we use the sorting technique?

Solution: No. For proving the failed case, let us consider the following array. For example, A =
{3, 2, 1, 2, 2, 3}. After sorting we get A = {1,2,2,2,3,3}. In this sorted array the first repeated
element is 2 but the actual answer is 3.

Problem-11 For Problem-9, can we use hashing technique?

Solution: Yes. But the simple hashing technique which we used for Problem-3 will not work. For
example, if we consider the input array as A = {3,2,1,2,3}, then the first repeated element is 3,
but using our simple hashing technique we get the answer as 2. This is because 2 is coming twice
before 3. Now let us change the hashing table behavior so that we get the first repeated element.
Let us say, instead of storing 1 value, initially we store the position of the element in the array. As
a result the hash table will look like (after inserting 3,2 and 1):



L=S——* §

2 T 2

3—T—> 1

Now, if we see 2 again, we just negate the current value of 2 in the hash table. That means, we
make its counter value as —2. The negative value in the hash table indicates that we have seen the
same element two times. Similarly, for 3 (the next element in the input) also, we negate the current
value of the hash table and finally the hash table will look like:

] —/ 3

2 b_2

34— » -1

After processing the complete input array, scan the hash table and return the highest negative
indexed value from it (i.e., —1 in our case). The highest negative value indicates that we have seen
that element first (among repeated elements) and also repeating.

What if the element is repeated more than twice? In this case, just skip the element if the
corresponding value i is already negative.

Problem-12 For Problem-9, can we use the technique that we used for Problem-3 (negation
technique)?

Solution: No. As an example of contradiction, for the array A = {3,2,1,2,2,3} the first repeated
element is 3. But with negation technique the result is 2.

Problem-13 Finding the Missing Number: We are given a list of n — 1 integers and these
integers are in the range of 1 to n. There are no duplicates in the list. One of the integers is
missing in the list. Given an algorithm to find the missing integer. Example: I/P:
[1,2,4,6,3,7,8] O/P: 5

Brute Force Solution: One simple solution to this is, for each number in 1 to n, check whether
that number is in the given array or not.



int FindMissingNumber(int A[], int n} |
int 1, J, found=0;
for(i=1;1<=n;1+%)|

found = 0;
forj=0;]<n;)+4
fAf==i
found = 1;

ifffound) return i;

returm -1;

L
I

Time Complexity: O(n?). Space Complexity: O(1).

Problem-14 For Problem-13, can we use sorting technique?

Solution: Yes. Sorting the list will give the elements in increasing order and with another scan we
can find the missing number.

Time Complexity: O(nlogn), for sorting. Space Complexity: O(1).

Problem-15 For Problem-13, can we use hashing technique?

Solution: Yes. Scan the input array and insert elements into the hash. For inserted elements, keep
counter as 1 (assume initially all entires are filled with zeros). This indicates that the
corresponding element has occurred already. Now, scan the hash table and return the element
which has counter value zero.

Time Complexity: O(n). Space Complexity: O(n).

Problem-16 For Problem-13, can we improve the complexity?

Solution: Yes. We can use summation formula.
1)  Get the sum of numbers, sum = n x (n + 1)/2.
2)  Subtract all the numbers from sum and you will get the missing number.

Time Complexity: O(n), for scanning the complete array.

Problem-17 In Problem-13, if the sum of the numbers goes beyond the maximum allowed
integer, then there can be integer overflow and we may not get the correct answer. Can we
solve this problem?

Solution:

1)  XOR all the array elements, let the result of XOR be X.



2)  XOR all numbers from 1 to n, let XOR be Y.
3) XOR of X and Y gives the missing number.

int FindMissingNumber(int A[], int n} {
inti, X, Y;
forfi=0;1<n;1+4
X A= Al
fori1=1;1<=n;144)
Y A=)
[ /In fact, one variable is enough.
return X * Y,

1
!

Time Complexity: O(n), for scanning the complete array. Space Complexity: O(1).

Problem-18 Find the Number Occurring an Odd Number of Times: Given an array of
positive integers, all numbers occur an even number of times except one number which

occurs an odd number of times. Find the number in O(n) time & constant space. Example :
I/P=11,2,3,2,3,1,3] O/P =3

Solution: Do a bitwise XOR of all the elements. We get the number which has odd occurrences.
This is because, AXOR A = 0.

Time Complexity: O(n). Space Complexity: O(1).

Problem-19 Find the two repeating elements in a given array: Given an array with size,
all elements of the array are in range 1 to n and also all elements occur only once except
two numbers which occur twice. Find those two repeating numbers. For example: if the
array is 4,2,4,5,2,3,1 with size = 7 and n = 5. This input has n + 2 = 7 elements with all
elements occurring once except 2 and 4 which occur twice. So the output should be 4 2.

Solution: One simple way is to scan the complete array for each element of the input elements.
That means use two loops. In the outer loop, select elements one by one and count the number of
occurrences of the selected element in the inner loop. For the code below, assume that
PrintRepeatedElements is called with n + 2 to indicate the size.

void PrintRepeatedElements(int A]], int size) |
for(int 1= 0; 1 < size; 144
for(int j = i+1; ] < size; j+4)
iflA[1 == A[)
printf(“%d”, Ali]);

[
!

Time Complexity: O(n?). Space Complexity: O(1).



Problem-20 For Problem-19, can we improve the time complexity?

Solution: Sort the array using any comparison sorting algorithm and see if there are any elements
which are contiguous with the same value.

Time Complexity: O(nlogn). Space Complexity: O(1).
Problem-21 For Problem-19, can we improve the time complexity?

Solution: Use Count Array. This solution is like using a hash table. For simplicity we can use
array for storing the counts. Traverse the array once and keep track of the count of all elements in
the array using a temp array count[] of size n. When we see an element whose count is already
set, print it as duplicate. For the code below assume that PrintRepeatedElements is called with n
+ 2 to indicate the size.

void PrintRepeatedElements(int A[], mt size| |
int *count = [int *|calloc(sizeof(int), (size - 2));
for(int 1= 0; 1 < s1ze; 14+) |
count[Afi||++;
iflcount[A[i]] == 2)
printf{“d”, Afi]);

?

Time Complexity: O(n). Space Complexity: O(n).

Problem-22 Consider Problem-19. Let us assume that the numbers are in the range 1 to n. Is
there any other way of solving the problem?

Solution: Yes, by using XOR Operation. Let the repeating numbers be X and Y, if we XOR all
the elements in the array and also all integers from 1 to n, then the result will be X XOR Y. The 1’s
in binary representation of X XOR Y correspond to the different bits between X and Y. If the k" bit
of X XOR Yis 1, we can XOR all the elements in the array and also all integers from 1 to n whose
ki bits are 1. The result will be one of X and Y.



void PrintRepeatedElements (int A[], int size| |

int XOR = AJ0];

int 1, right_most_set_bit_no, X=0,Y =0

for(i = 0; 1 < size; i++) [* Compute XOR of all elements in A[J*/
XOR = A[l];

forfi=1;1<=n; 1+4 [* Compute XOR of all elements {1, 2 .n} */
XOR 7= 1;

right_most_set_bit_no = XOR & ~[ XOR -1); [/ Get the rightmost set bit in right_most_set_hit_no
[* Now divide elements in two sets by comparing rightmost set */
forfi = 0; 1 < size; 1#4) {
f[A[1] & right_most_set_bit_no|
X = X" All; [*XOR of first set in A[| */
else  Y=YAAfl,  /*XOR of second set in Af] */

I
}

for(i = 1;1 <= n; i+4) |
if[i & right_most_set_bit_nol
X=X"i; [*XOR of first set in Al| and {1, 2, ..n }*/
else  Y=YAj /*XOR of second set n A] and {1, 2, .n} ¥/

printf(“%ed and %d" X, Y);

I
I

Time Complexity: O(n). Space Complexity: O(1).

Problem-23 Consider Problem-19. Let us assume that the numbers are in the range 1 to n. Is
there yet other way of solving the problem?

Solution: We can solve this by creating two simple mathematical equations. Let us assume that
two numbers we are going to find are X and Y. We know the sum of n numbers is n(n + 1)/2 and
the product is n!. Make two equations using these sum and product formulae, and get values of
two unknowns using the two equations. Let the summation of all numbers in array be S and
product be P and the numbers which are being repeated are X and Y.

nn+1)
X+Y=5- )

XY = P/n!

Using the above two equations, we can find out X and Y. There can be an addition and
multiplication overflow problem with this approach.

Time Complexity: O(n). Space Complexity: O(1).



Problem-24 Similar to Problem-19, let us assume that the numbers are in the range 1 to n.
Also, n — 1 elements are repeating thrice and remaining element repeated twice. Find the
element which repeated twice.

Solution: If we XOR all the elements in the array and all integers from 1 to n, then all the
elements which are repeated thrice will become zero. This is because, since the element is
repeating thrice and XOR another time from range makes that element appear four times. As a
result, the output of a XOR a XOR a XOR a = 0. It is the same case with all elements that are
repeated three times.

With the same logic, for the element which repeated twice, if we XOR the input elements and also
the range, then the total number of appearances for that element is 3. As a result, the output of a
XOR a XOR a = a. Finally, we get the element which repeated twice.

Time Complexity: O(n). Space Complexity: O(1).

Problem-25 Given an array of n elements. Find two elements in the array such that their sum
is equal to given element K.

Brute Force Solution: One simple solution to this is, for each input element, check whether there
is any element whose sum is K. This we can solve just by using two simple for loops. The code
for this solution can be given as:

void BruteForceSearch[int AJ], int n, int K} |
for int1=0;1<n; 1+4){
for(intj=1;j < n; j++) {
A +Af] == K) |
printf(‘ltems Found:%d %d", 1, );
return,

1
|

I-
printf{“Ttems not found: No such elements’);

|

Time Complexity: O(n?). This is because of two nested for loops. Space Complexity: O(1).

Problem-26 For Problem-25, can we improve the time complexity?

Solution: Yes. Let us assume that we have sorted the given array. This operation takes O(nlogn).
On the sorted array, maintain indices loIndex = 0 and hilndex = n — 1 and compute A[loIndex] +
Alhilndex]. If the sum equals K, then we are done with the solution. If the sum is less than K,
decrement hilndex, if the sum is greater than K, increment loIndex.



void Searchlint A[], int n, int K} {
int loIndex, hilndex, sum;
Sort(A, n);
for(lolndex = 0, hilndex = n-1; loIndex < hilndex) |
sum = Allolndex| + Alhilndex];
iflsum == K| |
printf|'Elements Found: %d "d", loIndex, hilndex);

return,

|
I

else if{sum = K|
lolndex = lolndex + 1;
else  hilndex = hilndex - 1;

I-

return;

|
!

Time Complexity: O(nlogn). If the given array is already sorted then the complexity is O(n).

Space Complexity: O(1).

Problem-27 Does the solution of Problem-25 work even if the array is not sorted?

Solution: Yes. Since we are checking all possibilities, the algorithm ensures that we get the pair
of numbers if they exist.

Problem-28 Is there any other way of solving Problem-25?

Solution: Yes, using hash table. Since our objective is to find two indexes of the array whose sum
is K. Let us say those indexes are X and Y. That means, A[X] + AlY] = K. What we need is, for
each element of the input array A[X], check whether K — A[X] also exists in the input array. Now,
let us simplify that searching with hash table.

Algorithm:
. For each element of the input array, insert it into the hash table. Let us say the current
element is A[X].
. Before proceeding to the next element we check whether K — A[X] also exists in the
hash table or not.
. Ther existence of such number indicates that we are able to find the indexes.
. Otherwise proceed to the next input element.

Time Complexity: O(n). Space Complexity: O(n).

Problem-29 Given an array A of n elements. Find three indices, i,j & k such that Ali]? + A[i]2



= A[K|%?

Solution:
Algorithm:
. Sort the given array in-place.
. For each array index i compute A[i]? and store in array.

. Search for 2 numbers in array from 0 to i — 1 which adds to A[i] similar to Problem-
25. This will give us the result in O(n) time. If we find such a sum, return true,
otherwise continue.

Sort{A); // Sert the input array
for (int 1=0; i < m; 14
Ali] = AAf;
for (i=n; i > 0; i~ |
res = false;
iffres) {
| [Problem-11/12 Solution

Time Complexity: Time for sorting + n x (Time for finding the sum) = O(nlogn) + n x O(n)= n°.
Space Complexity: O(1).

Problem-30 Two elements whose sum is closest to zero. Given an array with both positive
and negative numbers, find the two elements such that their sum is closest to zero. For the
below array, algorithm should give -80 and 85. Example: 1 60 — 10 70 — 80 85

Brute Force Solution: For each element, find the sum with every other element in the array and
compare sums. Finally, return the minimum sum.



void TwoElementsWithMinSum(int A[], int n) |
int i, J, min_sum, sum, min_i, min_j, inv_count = 0;
ifin < 2) |

printf{'Invalid Input');
returm;

[* Initialization of values */
min_1 = 0,

min_j = 1;

min_sum = A[0] + A[1];
forli=0;i<n-1;i+4) |

fori=i+1;j<nj+ |
sum = Afi] + Aj]:
iffabs(min_sum) > abs(sum]) {
Mmin_SUm = sum;
min_i = i;
min_j = J;

printf{" The two elements are %d and %d", arrfmin_i|, arr{min_j|};

I
I

Time complexity: O(n?). Space Complexity: O(1).

Problem-31 Can we improve the time complexity of Problem-307?

Solution: Use Sorting.

Algorithm:
1.
2.

Sort all the elements of the given input array.

Maintain two indexes, one at the beginning (i = 0) and the other at the ending (j = n —
1). Also, maintain two variables to keep track of the smallest positive sum closest
to zero and the smallest negative sum closest to zero.

While i < j:

a. If the current pair sum is > zero and < postiveClosest then update the
postiveClosest. Decrement j.

b. If the current pair sum is < zero and > negativeClosest then update the
negativeClosest. Increment i.

c. Else, print the pair



void TwoElementsWithMinSum(int A[], int n) {
int =0, j = n-1, temp, postiveClosest = INT_MAX, negativeClosest = INT_MIN;
Sort(A, n);
whilefi < j) {
temp = Afi] + Alj]:
ifftemp = 0) |
if temp < postiveClosest
postiveClosest = temp;
I
j
else if ftemp < 0) 4
if (temp * negativeClosest)
negativeClosest = temp;

it+;

|
else printf] Closest Sum: %d ", Afi] + Afj]);

i
i

retirn (abs(negativeClosest)> postiveClosest: postiveClosest: negativeClosest);

L
I

Time Complexity: O(nlogn), for sorting. Space Complexity: O(1).

Problem-32 Given an array of n elements. Find three elements in the array such that their sum
is equal to given element K?

Brute Force Solution: The default solution to this is, for each pair of input elements check
whether there is any element whose sum is K. This we can solve just by using three simple for
loops. The code for this solution can be given as:

void BruteForceSearch[int A[], int n, int data) |
for int1=0;1<n;1+4){
forfint j = 1+1; ] < n; j+4) |
for(int k = j+1; k < m; kt+ [
if{A[1] + Afj] + Alk]== data) {
printf|“ltems Found:%d %d %d", 1, J, k),
refurn,

1
1

|

printf{“Items not found: No such elements”);



Time Complexity: O(n), for three nested for loops. Space Complexity: O(1).

Problem-33 Does the solution of Problem-32 work even if the array is not sorted?

Solution: Yes. Since we are checking all possibilities, the algorithm ensures that we can find
three numbers whose sum is K if they exist.

Problem-34 Can we use sorting technique for solving Problem-327

Solution: Yes.

void Searchlint Af}, int n, int data) |
Sort(A, n);
for(int k = 0; k < n; k++) |
forfinti= k+1,j=n-1;1<j; ||
if[Alk] + Ali] + A[j] == data) {
printf(‘Ttems Found.%d %d %d", 1, j, k);
return;

else iflA[K| + Af] + Afj] < data)
1= 1+1;
else  j=7-1;

]
1}

return;

Time Complexity: Time for sorting + Time for searching in sorted list = O(nlogn) + O(n?) =
O(n?). This is because of two nested for loops. Space Complexity: O(1).

Problem-35 Can we use hashing technique for solving Problem-32?

Solution: Yes. Since our objective is to find three indexes of the array whose sum is K. Let us say
those indexes are X,Y and Z. That means, A[X] + AlY] + AlZ] = K.

Let us assume that we have kept all possible sums along with their pairs in hash table. That means
the key to hash table is K — A[X] and values for K — A[X] are all possible pairs of input whose
sum is if — A[X].

Algorithm:

. Before starting the search, insert all possible sums with pairs of elements into the
hash table.



. For each element of the input array, insert into the hash table. Let us say the current

element is A[X].
. Check whether there exists a hash entry in the table with key: K — A[X].
. If such element exists then scan the element pairs of K — A[X] and return all possible

pairs by including A[X] also.
. If no such element exists (with K — A[X] as key) then go to next element.

Time Complexity: The time for storing all possible pairs in Hash table + searching = O(n?) +
O(n?) = O(n?). Space Complexity: O(n).

Problem-36 Given an array of n integers, the 3 — sum problem is to find three integers whose
sum is closest to zero.

Solution: This is the same as that of Problem-32 with K value is zero.

Problem-37 Let A be an array of n distinct integers. Suppose A has the following property:
there exists an index 1 < k < n such that A[l],..., A[k] is an increasing sequence and A[k +
1],..., Aln] is a decreasing sequence. Design and analyze an efficient algorithm for finding
k.
Similar question: Let us assume that the given array is sorted but starts with negative
numbers and ends with positive numbers [such functions are called monotonically
increasing functions]. In this array find the starting index of the positive numbers. Assume
that we know the length of the input array. Design a O(logn) algorithm.

Solution: Let us use a variant of the binary search.



int Search (int A[], int n, int first, int last) |
int mid, first = 0, last = n-1;
whilefirst <= last) |
[ | if the current array has size |
if{first == last)
return Affirst];
[ [ if the current array has size 2
else ifffirst == last-1)
return max(A[first], Allast]);
[ [ if the current array has size 3 or more
else |
mid = first + (last-first)/2;
if[A[mid-1] < Ajmid) && Almid] > Almid+1])
return Afmid);
else if{A[mid-1] < Almid] &8 Almid] < Ajmid+1])
first = mid+1;
else iffA[mid-1] » Almid] &b A[mid] > Ajmid+1]]
last = mid-1;
else  return INT_MIN ;
| /[ end of else
| /[ end of while

}

The recursion equation is T(n) = 2T(n/2) + c. Using master theorem, we get O(logn).

Problem-38 If we don’t know n, how do we solve the Problem-377?

Solution: Repeatedly compute A[1],A[2],A[4],A[8],A[16] and so on, until we find a value of n
such that A[n] > 0.

Time Complexity: O(logn), since we are moving at the rate of 2. Refer to Introduction to
Analysis of Algorithms chapter for details on this.

Problem-39 Given an input array of size unknown with all 1’s in the beginning and 0’s in the
end. Find the index in the array from where 0’s start. Consider there are millions of 1’s and
0’s in the array. E.g. array contents 1111111........ 1100000........ 0000000.

Solution: This problem is almost similar to Problem-38. Check the bits at the rate of 2Kwhere k
= 0,1,2 .... Since we are moving at the rate of 2, the complexity is O(logn).

Problem-40 Given a sorted array of n integers that has been rotated an unknown number of
times, give a O(logn) algorithm that finds an element in the array.
Example: Find 5 in array (15 16 19 20 251 34 5 7 10 14) Output: 8 (the index of 5 in

the array)



Solution: Let us assume that the given array is Al]and use the solution of Problem-37 with an
extension. The function below FindPivot returns the k value (let us assume that this function
returns the index instead of the value). Find the pivot point, divide the array into two sub-arrays
and call binary search.

The main idea for finding the pivot point is — for a sorted (in increasing order) and pivoted array,
the pivot element is the only element for which the next element to it is smaller than it. Using the
above criteria and the binary search methodology we can get pivot element in O(logn) time.

Algorithm:

1)  Find out the pivot point and divide the array into two sub-arrays.
2) Now call binary search for one of the two sub-arrays.
a. if the element is greater than the first element then search in left
subarray.
b. else search in right subarray.
3) Ifelement is found in selected sub-array, then return index else return —1.



int FindPivot{int A[}, int start, int finish) |
iflfinsh - start == 0)
return start;
else iffstart == finish - 1} {
f[A[start] == Alfimish])
return start;
else  return finish;

else |
mid = start + (finish-start)/2;
iffA[start] >= A[mid])
return FindPivot(A, start, mid);
else  return FindPivot(A, mid, finish);
|

|
int Search(int Af], int n, int x] {
int pivot = FindPivot(A, 0, n-1);
if(A[pivot] == x|
return pivot;
f{A[pvot] <= x|
return BinarySearch(A, 0, pivot-1, x);
else return BinarySearch(A, pivot+1, n-1, x);
|
int BinarySearch(int A[], it low, int high, int x} |
iffhugh == low] |
mt mid = low + (high - low}/2;

iffx == Afrmd]|
return mid:
iflx = Ajmid])

return BinarySearch(A, (mid + 1), high, xJ;
else  return BinarySearch{A, low, {mid -1), x);

|
f

refurn -1; [ [-11f element 15 not found

E
Time complexity: O(logn).

Problem-41 For Problem-40, can we solve with recursion?

Solution: Yes.



int BinarySearchRotated(int A[], int start, int finish, int data) |

int mid = start + (finish - start) / 2;

if[start = finish|
return - 1;

ifldata == Afmid))
refurn mid;

else if{A[start] <= Almid]) | /[ start half is in sorted order.
if{data == A[start] && data < A[mid||

return BinarySearchRotated(A, start, mid - 1, data);

else  return BinarySearchRotated(A, mid + 1, finish, data);

else | [/ Ajmid] <= Alfinish), finish half is in sorted order.
ifdata > Almid] & data <= Alfinish])
return BinarySearchRotated(A, mid + 1, finish, data);
else  return BinarySearchRotated(A, start, mid - 1, datal;

Time complexity: O(logn).

Problem-42 Bitonic search: An array is bitonic if it is comprised of an increasing sequence
of integers followed immediately by a decreasing sequence of integers. Given a bitonic
array A of n distinct integers, describe how to determine whether a given integer is in the
array in O(logn) steps.

Solution: The solution is the same as that for Problem-37.

Problem-43 Yet, other way of framing Problem-37.
Let A[] be an array that starts out increasing, reaches a maximum, and then decreases.
Design an O(logn) algorithm to find the index of the maximum value.

Problem-44 Give an O(nlogn) algorithm for computing the median of a sequence of n
integers.

. n
Solution: Sort and return element at E

Problem-45 Given two sorted lists of size m and n, find median of all elements in O(log (m
+n)) time.

Solution: Refer to Divide and Conquer chapter.

Problem-46 Given a sorted array A of n elements, possibly with duplicates, find the index of
the first occurrence of a number in O(logn) time.

Solution: To find the first occurrence of a number we need to check for the following condition.



Return the position if any one of the following is true:
mid == low && Amid] == data || A[mid] == data && A[mid-1] < data

int BinarySearchFirstOccurrencefint A[], int low, int high, int data) |
it mid;
if(high »= low) |
mid = low + [high-low] | 2;
iff(mid == low &b A[mid] == data] | | [A[mid] == data & Almid - 1] < data])
return mid;

[ | Give preference to left half of the array
else if|A[mid] >= data)

return BinarySearchFirstOccurrence (A, low, mid - 1, data);
else  return BmarySearchFirstOccurrence (A, mid + 1, high, data);

!
refurn -1;

I
}

Time Complexity: O(logn).

Problem-47 Given a sorted array A of n elements, possibly with duplicates. Find the index of
the last occurrence of a number in O(logn) time.

Solution: To find the last occurrence of a number we need to check for the following condition.
Return the position if any one of the following is true:

mid == high && Ajmid] == data || A[mid] == data && A[mid+1] > data

int BinarySearchLastOccurrence(int A[), int low, int high, int data] {
int mid;
iffhigh == low) {
mid = low + (high-low) / 2;
iff(mid == high &b Ajmid] == data) | | (A[mid] == data && Almid + 1] » data|
return mid;
/| Give preference to right half of the array
else if|A[mid] <= data)
return BinarySearchLastOccurrence (A, mid + 1, ligh, data);

else  return BmarySearchLastOccurrence (A, low, mod - 1, datal;

1
!

return -1;



Time Complexity: O(logn).

Problem-48 Given a sorted array of n elements, possibly with duplicates. Find the number of
occurrences of a number.

Brute Force Solution: Do a linear search of the array and increment count as and when we find
the element data in the array.

int LinearSearchCount(int A[], int n, int data) |

mt count = 0;
for int1=0;1<n; 1+4]
iflA[l] == data)
count+;

return count;

}

Time Complexity: O(n).
Problem-49 Can we improve the time complexity of Problem-487?

Solution: Yes. We can solve this by using one binary search call followed by another small scan.

Algorithm:
. Do a binary search for the data in the array. Let us assume its position is K.
. Now traverse towards the left from K and count the number of occurrences of data.
Let this count be leftCount.
. Similarly, traverse towards right and count the number of occurrences of data. Let
this count be rightCount.
. Total number of occurrences = leftCount + 1 + rightCount

Time Complexity — O(logn + S) where 5 is the number of occurrences of data.

Problem-50 Is there any alternative way of solving Problem-48?
Solution:
Algorithm:
. Find first occurrence of data and call its index as firstOccurrence (for algorithm
refer to Problem-46)
. Find last occurrence of data and call its index as lastOccurrence (for algorithm
refer to Problem-47)
. Return lastOccurrence — firstOccurrence + 1

Time Complexity = O(logn + logn) = O(logn).



Problem-51 What is the next number in the sequence 1,11,21 and why?
Solution: Read the given number loudly. This is just a fun problem.

One One
Two Ones
One two, one one=> 1211

So the answer is: the next number is the representation of the previous number by reading it
loudly.

Problem-52 Finding second smallest number efficiently.

Solution: We can construct a heap of the given elements using up just less than n comparisons
(Refer to the Priority Queues chapter for the algorithm). Then we find the second smallest using
logn comparisons for the GetMax() operation. Overall, we get n + logn + constant.

Problem-53 Is there any other solution for Problem-52?

Solution: Alternatively, split the n numbers into groups of 2, perform n/2 comparisons
successively to find the largest, using a tournament-like method. The first round will yield the
maximum in n — 1 comparisons. The second round will be performed on the winners of the first
round and the ones that the maximum popped. This will yield logn — 1 comparison for a total of n
+ logn — 2. The above solution is called the tournament problem.

Problem-54 An element is a majority if it appears more than n/2 times. Give an algorithm
takes an array of n element as argument and identifies a majority (if it exists).

Solution: The basic solution is to have two loops and keep track of the maximum count for all
different elements. If the maximum count becomes greater than n/2, then break the loops and return
the element having maximum count. If maximum count doesn’t become more than n/2, then the
majority element doesn’t exist.

Time Complexity: O(n?). Space Complexity: O(1).
Problem-55 Can we improve Problem-54 time complexity to O(nlogn)?

Solution: Using binary search we can achieve this. Node of the Binary Search Tree (used in this
approach) will be as follows.

struct TreeNode |
Int element;
int count;
struct TreeNode *left;
struct TreeNode *right;
| BST;



Insert elements in BST one by one and if an element is already present then increment the count of
the node. At any stage, if the count of a node becomes more than n/2, then return. This method
works well for the cases where n/2 +1 occurrences of the majority element are present at the start
of the array, for example {1,1,1,1,1,2,3, and 4}.

Time Complexity: If a binary search tree is used then worst time complexity will be O(n?). If a
balanced-binary-search tree is used then O(nlogn). Space Complexity: O(n).

Problem-56 Is there any other of achieving O(nlogn) complexity for Problem-54?

Solution: Sort the input array and scan the sorted array to find the majority element.

Time Complexity: O(nlogn). Space Complexity: O(1).
Problem-57 Can we improve the complexity for Problem-54?

Solution: If an element occurs more than n/2 times in A then it must be the median of A. But, the
reverse is not true, so once the median is found, we must check to see how many times it occurs in
A. We can use linear selection which takes O(n) time (for algorithm, refer to Selection
Algorithms chapter).
int CheckMajority(int A[], in n) {
1)  Use linear selection to find the median m of A.
2) Do one more pass through A and count the number of occurrences of m.
a. If m occurs more than n/2 times then return true;
b. Otherwise return false.

}
Problem-58 Is there any other way of solving Problem-54?

Solution: Since only one element is repeating, we can use a simple scan of the input array by
keeping track of the count for the elements. If the count is 0, then we can assume that the element
visited for the first time otherwise that the resultant element.



int MajorityNum(int[] A, int ] |
int count = 0, element = -1;
for{inti=0;1<n;itt) |
/| 1t the counter 1s 0 then set the current candidate to majerity num and set the counter to 1.
iffcount == 0} |
element = Afi];
count = 1;
I-
else iffelement == Afi]) |
/[ Increment counter If the counter is not 0 and element is same as current candidate,
countt+,
I-

else |
|| Decrement counter If the counter 1s not 0 and element 1s different from current candidate.
count--;

|

return element;

[
!

Time Complexity: O(n). Space Complexity: O(1).

Problem-59 Given an array of 2n elements of which n elements are the same and the
remaining n elements are all different. Find the majority element.

Solution: The repeated elements will occupy half the array. No matter what arrangement it is,
only one of the below will be true:

. All duplicate elements will be at a relative distance of 2 from each other. Ex:n, 1, n,
100, n, 54, n...
. At least two duplicate elements will be next to each other.

Ex: n,n, 1,100, n, 54, n,....
n, 1,n,n,n,54,100...
1,100,54, n.n.n.n....
In worst case, we will need two passes over the array:
. First Pass: compare A[i] and Ali + 1]
. Second Pass: compare Ali] and A[i + 2]

Something will match and that’s your element. This will cost O(n) in time and O(1) in space.

Problem-60 Given an array with 2n + 1 integer elements, n elements appear twice in
arbitrary places in the array and a single integer appears only once somewhere inside.



Find the lonely integer with O(n) operations and O(1) extra memory.

Solution: Except for one element, all elements are repeated. We know that A XOR A = 0. Based
on this if we XOR all the input elements then we get the remaining element.

int Solution(int* A) |

mt 1, res;

for 1 = res = 0; 1< 2n+]; 1+4)
res = res * Afi];

return res,

1
!

Time Complexity: O(n). Space Complexity: O(1).

Problem-61 Throwing eggs from an n-story building: Suppose we have an n story building
and a number of eggs. Also assume that an egg breaks if it is thrown from floor F or higher,
and will not break otherwise. Devise a strategy to determine floor F, while breaking

O(logn) eggs.

Solution: Refer to Divide and Conquer chapter.

Problem-62 Local minimum of an array: Given an array A of n distinct integers, design an
O(logn) algorithm to find a local minimum: an index i such that Ali — 1] < A[i] < A[i + 1].

Solution: Check the middle value A[n/2], and two neighbors Aln/2 — 1] and A[n/2 + 1]. If A[n/2]
is local minimum, stop; otherwise search in half with smaller neighbor.

Problem-63 Give an n x n array of elements such that each row is in ascending order and
each column is in ascending order, devise an O(n) algorithm to determine if a given
element x is in the array. You may assume all elements in the n X n array are distinct.

Solution: Let us assume that the given matrix is A[n][n]. Start with the last row, first column [or
first row, last column]. If the element we are searching for is greater than the element at A[1][n],
then the first column can be eliminated. If the search element is less than the element at A[1][n],
then the last row can be completely eliminated. Once the first column or the last row is
eliminated, start the process again with the left-bottom end of the remaining array. In this
algorithm, there would be maximum n elements that the search element would be compared with.

Time Complexity: O(n). This is because we will traverse at most 2n points. Space Complexity:
O(1).

Problem-64 Given an n x n array a of n®> numbers, give an O(n) algorithm to find a pair of
indices i and j such that A[i][j] < Ali + 1][j]1.Alil[j] < Alill[j + 1LALil[j]1 < Ali — 1][j], and
Ali]lj] < Alillj - 11.

Solution: This problem is the same as Problem-63.



Problem-65 Given n x n matrix, and in each row all 1’s are followed by 0’s. Find the row
with the maximum number of 0’s.

Solution: Start with first row, last column. If the element is 0 then move to the previous column in
the same row and at the same time increase the counter to indicate the maximum number of 0’s. If
the element is 1 then move to the next row in the the same column. Repeat this process until your
reach last row, first column.

Time Complexity: O(2n) ~# O(n) (similar to Problem-63).

Problem-66 Given an input array of size unknown, with all numbers in the beginning and
special symbols in the end. Find the index in the array from where the special symbols
start.

Solution: Refer to Divide and Conquer chapter.

Problem-67 Separate even and odd numbers: Given an array A[], write a function that
segregates even and odd numbers. The functions should put all even numbers first, and then
odd numbers. Example: Input = {12,34,45,9,8,90,3} Output = {12,34,90,8,9,45,3}

Note: In the output, the order of numbers can be changed, i.e., in the above example 34 can
come before 12, and 3 can come before 9.

Solution: The problem is very similar to Separate 0’s and 1’s (Problem-68) in an array, and both
problems are variations of the famous Dutch national flag problem.

Algorithm: The logic is similar to Quick sort.

1) Initialize two index variables left and right: left = 0, right = n—1
2)  Keep incrementing the left index until you see an odd number.
3) Keep decrementing the right index until youe see an even number.

4) If left < right then swap Alleft] and Alright]



void DutchNationalFlag(int A[], int n} {
int left = 0, right = n-1;
while(left < right) {
[ Increment left index while we see 0 at left
while(Aleft]|%2 == 0 && left < right)
left++;
|| Decrement nght index while we see 1 at right
while(A[right]"2 == 1 && left < right)
right--;
iffleft < right) |
/| Swap Alleft] and A[right]
swap|(GA[left], &A[rght]);
left++;
right--;

Time Complexity: O(n).

Problem-68 The following is another way of structuring Problem-67, but with a slight
difference.
Separate 0’s and 1’s in an array: We are given an array of 0’s and 1’s in random order.
Separate 0’s on the left side and 1’s on the right side of the array. Traverse the array only
once.
Input array = [0,1,0,1,0,0,1,1,1,0] Output array = [0,0,0,0,0,1,1,1,1,1]

Solution: Counting 0’s or 1’s

1.  Count the number of 0’s. Let the count be C.
2.  Once we have the count, put C 0’s at the beginning and 1’s at the remaining n- C
positions in the array.

Time Complexity: O(n). This solution scans the array two times.

Problem-69 Can we solve Problem-68 in one scan?

Solution: Yes. Use two indexes to traverse: Maintain two indexes. Initialize the first index left as
0 and the second index right as n — 1. Do the following while left < right:

1)  Keep the incrementing index left while there are Os in it
2)  Keep the decrementing index right while there are Is in it
3) [If left <right then exchange Alleft] and Alright]



[ [Function to put all Os on left and all 15 on right
void SeparateQand1(int A}, int n) {
[* Initialize left and right indexes */
int left = 0, right = n-1;
while(left < right) |
[* Increment left index while we see 0 at left */
while(A[left] == 0 && left < right]
left++;
/* Decrement right index while we see 1 at right */
while[A[right] == 1 &é& left < right]
right-;
[* If left 1s smaller than right then there is a 1 at left
and a 0 at right. Swap Afleft] and Afright]*/
iffleft < right) |
Alleft] = 0;
Anght] = 1;
left++;

right-;

}
Time Complexity: O(n). Space Complexity: O(1).

Problem-70 Sort an array of 0’s, 1’s and 2’s [or R’s, G’s and B’s]: Given an array A[]
consisting of 0’s, 1’s and 2’s, give an algorithm for sorting A[].The algorithm should put all
0’s first, then all 1’s and finally all 2’s at the end. Example Input =
{0,1,1,0,1,2,1,2,0,0,0,1}, Output = {0,0,0,0,0,1,1,1,1,1,2,2}

Solution:



void Sorting012sDutchFlagProblem(int A[],int n}{
int low=0,mid=0,high=n-1;
while{mid <=high|
switch{A[mud])|
case 0
swap(A[low],Almid]);
low++:md++:
break;
case 1;
mid++;
break;
case 2:
swap(A[mid],A[high));
high--;
break;

|
!

Time Complexity: O(n). Space Complexity: O(1).

Problem-71 Maximum difference between two elements: Given an array A[] of integers,
find out the difference between any two elements such that the larger element appears after
the smaller number in A[].
Examples: If array is [2,3,10,6,4,8,1] then returned value should be 8 (Difference between
10 and 2). If array is [ 7,9,5,6,3,2 ] then the returned value should be 2 (Difference
between 7 and 9)

Solution: Refer to Divide and Conquer chapter.

Problem-72 Given an array of 101 elements. Out of 101 elements, 25 elements are repeated
twice, 12 elements are repeated 4 times, and one element is repeated 3 times. Find the
element which repeated 3 times in O(1).

Solution: Before solving this problem, let us consider the following XOR operation property: a
XOR a = 0. That means, if we apply the XOR on the same elements then the result is 0.

Algorithm:
. XOR all the elements of the given array and assume the result is A.
. After this operation, 2 occurrences of the number which appeared 3 times becomes 0
and one occurrence remains the same.
. The 12 elements that are appearing 4 times become 0.

. The 25 elements that are appearing 2 times become 0.



So just XOR’ing all the elements gives the result.

Time Complexity: O(n), because we are doing only one scan. Space Complexity: O(1).

Problem-73 Given a number n, give an algorithm for finding the number of trailing zeros in
n!.

Solution:

int NumberOfTrailingZerosInNumberfint n) |
int 1, count = 0;
iffn < 0} return -1;
for(i=3n/1>0;1%= 5
count+=n / i;
return count;

Time Complexity: O(logn).

Problem-74 Given an array of 2n integers in the following format al a2 a3 ...an b1 b2 b3
...bn. Shuffle the array to al bl a2 b2 a3 b3 ... an bn without any extra memory.

Solution: A brute force solution involves two nested loops to rotate the elements in the second
half of the array to the left. The first loop runs n times to cover all elements in the second half of
the array. The second loop rotates the elements to the left. Note that the start index in the second
loop depends on which element we are rotating and the end index depends on how many positions
we need to move to the left.

void ShuffleArray() |

int n = 4;

int Af] ={1,3,5,7,2,4,6,8};

for (int1=0,q=1, k=n;1=<n; i+t ktt, qtt)

for(intj=k;j=>1+gq;j-|

int tmp = AJ-1];
Al-1] = All;
Al = tmp;

b

I
¥

for (inti=0;1 < 2*n; 1+4)
printf{"%d", Ali]);

Time Complexity: O(n?).



Problem-75 Can we improve Problem-74 solution?

Solution: Refer to the Divide and Conquer chapter. A better solution of time complexity
O(nlogn) can be achieved using the Divide and Concur technique. Let us look at an example

1.  Start with the array: al a2 a3 a4 b1 b2 b3 b4

2. Split the array into two halves: al a2 a3 a4 : b1 b2 b3 b4

3. Exchange elements around the center: exchange a3 a4 with b1 b2 and you get: al a.2
bl b2 a3 a4 b3 b4

4. Splital a2 bl b2 into al a2 : bl b2. Then split a3 a4 b3 b4 into a3 a4 : b3 b4

5. Exchange elements around the center for each subarray you get: al b1l a2 b2 and a3
b3 a4 b4

Note that this solution only handles the case when n = 2! where i = 0,1,2,3, etc. In our example n
= 22 = 4 which makes it easy to recursively split the array into two halves. The basic idea behind
swapping elements around the center before calling the recursive function is to produce smaller
size problems. A solution with linear time complexity may be achieved if the elements are of a
specific nature. For example, if you can calculate the new position of the element using the value
of the element itself. This is nothing but a hashing technique.

Problem-76 Given an array A[], find the maximum j — i such that A[j] > A[i]. For example,
Input: {34, 8, 10, 3, 2, 80, 30, 33, 1} and Output: 6 (j =7,i =1).

Solution: Brute Force Approach: Run two loops. In the outer loop, pick elements one by one
from the left. In the inner loop, compare the picked element with the elements starting from the
right side. Stop the inner loop when you see an element greater than the picked element and keep
updating the maximum j — i so far.

int maxIndexDifflint Af], int n)|
mt maxDiff = -1;
int i, j;
for [1=0; 1< n; ++1)f
for j=n-1;]>1; )
if{Af] > Ali] & maxDiff < ) - i)
maxDiff =) - 1;

|
I

}

return maxDiff:
i

Time Complexity: O(n?). Space Complexity: O(1).
Problem-77 Can we improve the complexity of Problem-76?

Solution: To solve this problem, we need to get two optimum indexes of A[]: left index i and



right index j. For an element A[i], we do not need to consider A[i] for the left index if there is an
element smaller than A[i] on the left side of A[i]. Similarly, if there is a greater element on the
right side of A[j] then we do not need to consider this j for the right index.

So we construct two auxiliary Arrays LeftMins[] and RightMaxs[] such that LeftMins[i] holds the
smallest element on the left side of A[i] including A[i], and RightMaxs[j] holds the greatest
element on the right side of A[j] including A[j]. After constructing these two auxiliary arrays, we
traverse both these arrays from left to right.

While traversing LeftMins[] and RightMaxs[], if we see that LeftMins[i] is greater than
RightMaxs[j], then we must move ahead in LeftMins[] (or do i++) because all elements on the left
of LeftMins[i] are greater than or equal to LeftMins[i]. Otherwise we must move ahead in
RightMaxs[j] to look for a greater y — i value.

int maxIndexDifffint A[], int n}}
int maxDiff, i, j;
int *LeftMins = (int *)malloc(sizeof(int)*n);
mt *RightMaxs = (int *jmalloc{sizeof[int)*n);
LeftMimns[0] = A[0);
for fi=1;1<n; +4)
LeftMins[i] = min(A[1], LeftMms[i-1]);
RightMaxs[n-1] = A[n-1];
for j = n-2; ] 2= 0; |
RightMaxs[j] = max{A[j], RightMaxs[j+1]);
1=0,]=0, maxDiff = -1;
while (j < n &b i < n)|
If (LeftMins|i] < RightMaxs|j])
maxDiff = max{maxDiff, j-1);
j=i*1
:.
elge
1=141;
}

return maxDiff:

|
!

Time Complexity: O(n). Space Complexity: O(n).

Problem-78 Given an array of elements, how do you check whether the list is pairwise
sorted or not? A list is considered pairwise sorted if each successive pair of numbers is in
sorted (non-decreasing) order.

Solution:



int checkPairwiseSorted|int A[], int n) |
fn==0]||n==1)
return 1;
for inti=0;i<n-1;i+=2)
if (A[i] = Afi+1])
return 0;

I1‘1:-".'c1,1rn l;

|
I

Time Complexity: O(n). Space Complexity: O(1).

Problem-79 Given an array of n elements, how do you print the frequencies of elements
without using extra space. Assume all elements are positive, editable and less than n.

Solution: Use negation technique.

void frequencyCounter(int Af],int n)|
int pos = 0;
while(pos < nj|
int expectedPos = Afpos| - 1;
iff{A[pos] > 0 && AlexpectedPos| > 0}
swap(A[pos|, AlexpectedPos]);
AlexpectedPos] = -1;
1
else if{A[pos| > 0)f
AlexpectedPos] --;
Alpos +4] = 0;

else|
pas +4;

}
for(int i = 0; i < n; ++i)|
printf|"%d frequency is %d\n’, i + 1 ,abs(Afi]});

i
!

int main(int arge, char* argv[]}{
int Al| = {10, 10,9,4,7,6,5,2,3, 2, 1};
frequencyCounter(A, sizeof|A)/ sizeof[A|0]));

return 0;

i
!

Array should have numbers in the range [1, n] (where n is the size of the array). The if condition



(A[pos] > 0 && AlexpectedPos] > 0) means that both the numbers at indices pos and
expectedPos are actual numbers in the array but not their frequencies. So we will swap them so
that the number at the index pos will go to the position where it should have been if the numbers
1,2,3,..,narekeptin0, 1, 2, ..., n — 1 indices. In the above example input array, initially pos =
0, so 10 at index 0 will go to index 9 after the swap. As this is the first occurrence of 10, make it
to -1. Note that we are storing the frequencies as negative numbers to differentiate between actual
numbers and frequencies.

The else if condition (A[pos] > 0) means A[pos] is a number and AlexpectedPos] is its frequency
without including the occurrence of A[pos]. So increment the frequency by 1 (that is decrement by
1 in terms of negative numbers). As we count its occurrence we need to move to next pos, SO pos
+ +, but before moving to that next position we should make the frequency of the number pos + 1
which corresponds to index pos of zero, since such a number has not yet occurred.

The final else part means the current index pos already has the frequency of the number pos + 1,
so move to the next pos, hence pos + +.

Time Complexity: O(n). Space Complexity: O(1).

Problem-80 Which is faster and by how much, a linear search of only 1000 elements on a 5-
GHz computer or a binary search of 1 million elements on a 1-GHz computer. Assume that
the execution of each instruction on the 5-GHz computer is five times faster than on the 1-
GHz computer and that each iteration of the linear search algorithm is twice as fast as each
iteration of the binary search algorithm.

%’000'000 or about 20

iterations at most (i.e., worst case). A linear search of 1000 elements would require 500

iretations on the average (i.e., going halfway through the array). Therefore, binary search would

500 . . . . . .
be T = 25 faster (in terms of iterations) than linear search. However, since linear search

Solution: A binary search of 1 million elements would require /o g

. . . . 25 . .
iterations are twice as fast, binary search would be . or about 12 times faster than linear search

overall, on the same machine. Since we run them on different machines, where an instruction on
the 5-GhZ machine is 5 times faster than an instruction on a 1-GHz machine, binary search would

12 . . . . .
be = about 2 times faster than linear search! The key idea is that software improvements can

make an algorithm run much faster without having to use more powerful software.
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12.1 What are Selection Algorithms?

Selection algorithm is an algorithm for finding the k™ smallest/largest number in a list (also
called as k' order statistic). This includes finding the minimum, maximum, and median elements.

For finding the k™ order statistic, there are multiple solutions which provide different
complexities, and in this chapter we will enumerate those possibilities.

12.2 Selection by Sorting

A selection problem can be converted to a sorting problem. In this method, we first sort the input
elements and then get the desired element. It is efficient if we want to perform many selections.

For example, let us say we want to get the minimum element. After sorting the input elements we
can simply return the first element (assuming the array is sorted in ascending order). Now, if we
want to find the second smallest element, we can simply return the second element from the sorted
list.



That means, for the second smallest element we are not performing the sorting again. The same is
also the case with subsequent queries. Even if we want to get k' smallest element, just one scan

of the sorted list is enough to find the element (or we can return the k™-indexed value if the
elements are in the array).

From the above discussion what we can say is, with the initial sorting we can answer any query
in one scan, O(n). In general, this method requires O(nlogn) time (for sorting), where n is the
length of the input list. Suppose we are performing n queries, then the average cost per operation

isjustn Laign

~O(logn)- This kind of analysis is called amortized analysis.
n

12.3 Partition-based Selection Algorithm

For the algorithm check Problem-6. This algorithm is similar to Quick sort.

12.4 Linear Selection Algorithm - Median of Medians Algorithm

Worst-case performance O(n)
Best-case performance O(n)
Worst-case space complexity O(1) auxiliary

Refer to Problem-11.

12.5 Finding the K Smallest Elements in Sorted Order

For the algorithm check Problem-6. This algorithm is similar to Quick sort.

12.6 Selection Algorithms: Problems & Solutions

Problem-1 Find the largest element in an array A of size n.

Solution: Scan the complete array and return the largest element.



void FindLargestinArray(int n, const int A]) |
int large = A[0];
for (inti=1;1<=n-1; i++)
iffAli] = large)
large = Ali];
prntf{*Largest.%d”, large);

1
|

Time Complexity - O(n). Space Complexity - O(1).

Note: Any deterministic algorithm that can find the largest of n keys by comparison of keys takes
at least n -1 comparisons.

Problem-2 Find the smallest and largest elements in an array A of size n.

Solution:

void FindSmallestAndLargestinArray (int A[], int n) |
int small = A[0];
int large =A[0];
for (int1=1;1<=n-1;1t4)
iffAfi] < small)
small = All];
else f{Ali] » large)
large = Afi];
printf{*Smallest:%d, Largest:%d", small, large);
}

Time Complexity - O(n). Space Complexity - O(1). The worst-case number of comparisons is 2(n
-1).

Problem-3 Can we improve the previous algorithms?

Solution: Yes. We can do this by comparing in pairs.



/[ n 1s assumed to be even. Compare in pairs.
void FindWithPairComparison (int A[], int n) |
int large = small = -1;

for (inti=0;1¢=n-1;1=1+2)| /[ Increment i by 2.
ffA[f] < Afi + 1)) §
if[A[1] < small)
small = A[i];
if{A[i + 1] = large)
large = Ali + 1;
else |
if{Af + 1] < small
small = Ali + 1,
iffAf1] = large)
large = Alil;

|
printfl*Smallest;%d, Largest:%d", small, large);

L
I

Time Complexity - O(n). Space Complexity - O(1).

3n ; .

— —2,if nis even
Number of comparisons: = .

3n % . .

= e if nis odd

Summary:

Straightforward comparison — 2(n — 1) comparisons

Compare for min only if comparison for max fails

Best case: increasing order — n — 1 comparisons

Worst case: decreasing order — 2(n — 1) comparisons

Average case: 3n/2 — 1 comparisons

Note: For divide and conquer techniques refer to Divide and Conquer chapter.

Problem-4 Give an algorithm for finding the second largest element in the given input list of
elements.

Solution: Brute Force Method



Algorithm:

. Find largest element: needs n — 1 comparisons
. Delete (discard) the largest element
. Again find largest element: needs n — 2 comparisons

Total number of comparisons: n—1+n—-2=2n-3

Problem-5 Can we reduce the number of comparisons in Problem-4 solution?

Solution: The Tournament method: For simplicity, assume that the numbers are distinct and that
nis a power of 2. We pair the keys and compare the pairs in rounds until only one round remains.
If the input has eight keys, there are four comparisons in the first round, two in the second, and
one in the last. The winner of the last round is the largest key. The figure below shows the
method.

The tournament method directly applies only when n is a power of 2. When this is not the case,
we can add enough items to the end of the array to make the array size a power of 2. If the tree is
complete then the maximum height of the tree is logn. If we construct the complete binary tree, we
need n — 1 comparisons to find the largest. The second largest key has to be among the ones that
were lost in a comparison with the largest one. That means, the second largest element should be
one of the opponents of the largest element. The number of keys that are lost to the largest key is
the height of the tree, i.e. logn [if the tree is a complete binary tree]. Then using the selection
algorithm to find the largest among them, take logn — 1 comparisons. Thus the total number of
comparisons to find the largest and second largest keys is n + logn — 2.

16

N/ N/ N\

NSNS

\/

Problem-6 Find the k-smallest elements in an array S of n elements using partitioning
method.



Solution: Brute Force Approach: Scan through the numbers k times to have the desired element.
This method is the one used in bubble sort (and selection sort), every time we find out the
smallest element in the whole sequence by comparing every element. In this method, the sequence
has to be traversed k times. So the complexity is O(n x k).

Problem-7 Can we use the sorting technique for solving Problem-6?

Solution: Yes. Sort and take the first k elements.
1.  Sort the numbers.
2.  Pick the first k elements.

The time complexity calculation is trivial. Sorting of n numbers is of O(nlogn) and picking k
elements is of O(k). The total complexity is O(nlogn + k) = O(nlogn).

Problem-8 Can we use the tree sorting technique for solving Problem-6?

Solution: Yes.

1. Insert all the elements in a binary search tree.
2. Do an InOrder traversal and print k elements which will be the smallest ones. So, we
have the k smallest elements.

The cost of creation of a binary search tree with n elements is O(nlogn) and the traversal up to k
elements is O(k). Hence the complexity is O(nlogn + k) = O(nlogn).

Disadvantage: If the numbers are sorted in descending order, we will be getting a tree which
will be skewed towards the left. In that case, the construction of the tree will be 0 +1+2 + ... +

- 1) == B

cost of constructing the tree will be only nlogn.

which is O(n?). To escape from this, we can keep the tree balanced, so that the

Problem-9 Can we improve the tree sorting technique for solving Problem-6?

Solution: Yes. Use a smaller tree to give the same result.

1. Take the first k elements of the sequence to create a balanced tree of k nodes (this
will cost klogk).
2.  Take the remaining numbers one by one, and

a. If the number is larger than the largest element of the tree, return.

b. If the number is smaller than the largest element of the tree, remove the
largest element of the tree and add the new element. This step is to
make sure that a smaller element replaces a larger element from the
tree. And of course the cost of this operation is logk since the tree is a
balanced tree of k elements.

Once Step 2 is over, the balanced tree with k elements will have the smallest k elements. The only



remaining task is to print out the largest element of the tree.

Time Complexity:

1.
2.

For the first k elements, we make the tree. Hence the cost is klogk.
For the rest n — k elements, the complexity is O(logk).

Step 2 has a complexity of (n — k) logk. The total cost is klogk + (n — k) logk = nlogk which is
O(nlogk). This bound is actually better than the ones provided earlier.

Problem-10 Can we use the partitioning technique for solving Problem-6?

Solution: Yes.

Algorithm

1.
2.

3.
4.

5.

Choose a pivot from the array.

Partition the array so that: A[low...pivotpoint — 1] <= pivotpoint <= Alpivotpoint +
1..high].

if k < pivotpoint then it must be on the left of the pivot, so do the same method
recursively on the left part.

if k = pivotpoint then it must be the pivot and print all the elements from low to
pivotpoint.

if k > pivotpoint then it must be on the right of pivot, so do the same method
recursively on the right part.

The top-level call would be kthSmallest = Selection(1, n, k).



int Selection (int low, int high, int k] |
int pivotpoint;
if{low == high)
return S{low];
else |
pivotpoint = Partition(low, high);
iflk == pivotpoint|
return S[pivotpoint]; //we can print all the elements from low to pivotpoint,
else iffk < pivotpoint)
return Selection (low, pivotpoint - 1, kJ;
else return Selection (pivotpoint + 1, high, k);

i
void Partition (int low, mnt high) |
int i, j, pivotitem;
pivotitem = S[low];
] = low;
for (i = low + 1; i <= high; i++)
ifS[i] < pivotitem) |
JH;
Swap S]i] and S[j];

i
I

pivotpoint = J;
Swap S[low| and S[pivotpoint|;
return pivotpoint;

I
I

Time Complexity: O(n?) in worst case as similar to Quicksort. Although the worst case is the
same as that of Quicksort, this performs much better on the average [O(nlogk) — Average case].

Problem-11 Find the k?-smallest element in an array S of n elements in best possible way.

Solution: This problem is similar to Problem-6 and all the solutions discussed for Problem-6 are
valid for this problem. The only difference is that instead of printing all the k elements, we print

only the k™ element. We can improve the solution by using the median of medians algorithm.

Median is a special case of the selection algorithm. The algorithm Selection(A, k) to find the k™
smallest element from set A of n elements is as follows:

Algorithm: Selection(A, k)
length(A)

5
last group may have fewer items).

1. Partition A into ceil ( ) groups, with each group having five items (the



2. Sort each group separately (e.g., insertion sort).
n
3. Find the median of each of the o groups and store them in some array (let us say A").

Use Selection recursively to find the median of A’ (median of medians). Let us asay
the median of medians is m.

length(A4)

m = Selection(A',——);
2

v

Let g = # elements of A smaller than m;
6. If(k==q+1)

return m;

/* Partition with pivot */
7. Else partition A into X and Y
. X = {items smaller than m)
. Y = {items larger than m}

/* Next,form a subproblem */
8. Ik<qg+1)

return Selection(X, k);
9. Else

return Selection(Y, k — (q+1));

Before developing recurrence, let us consider the representation of the input below. In the figure,
each circle is an element and each column is grouped with 5 elements. The black circles indicate
the median in each group of 5 elements. As discussed, sort each column using constant time
insertion sort.
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After sorting rearrange the

medians so that all

medians will be 1n

ascending order Median of Medians
[tems>= Gray

In the figure above the gray circled item is the median of medians (let us call this m). It can be
seen that at least 1/2 of 5 element group medians <m. Also, these 1/2 of 5 element groups
contribute 3 elements that are < m except 2 groups [last group which may contain fewer than 5
elements, and other group which contains m]. Similarly, at least 1/2 of 5 element groups
contribute 3 elements that are > m as shown above. 1/2 of 5 element groups contribute 3 elements,

1
except 2 groups gives: |_—|_ —|—| 2) ~— — 6. The remaining are
n — 31)—?; —6 =— + 6. SmceE + 6 is greater thanE — 6 we need to c0n51der— + 6
for worst.

Components in recurrence:

. In our selection algorithm, we choose m, which is the median of medians, to be a pivot, and
partition A into two sets X and Y. We need to select the set which gives maximum size (to
get the worst case).

. The time in function Selection when called from procedure partition. The number of keys

n
in the input to this call to Selection is =

. The number of comparisons required to partition the array. This number is length(S), let us
say n.

We have established the following recurrence:

T(n) =T (2)+ O@) + Max{T(X),T(V)}



From the above discussion we have seen that, if we select median of medians m as pivot, the
.. . 3n n )
partition sizes are: P 6 and o + 6. If we select the maximum of these, then we get:

T(n) = T(g) + @(n)+T(%+ 6)

T(E) +0(n) + T(Z—O) + O(1)
e+ 2+ On) +0(1)

Finally, T(n) =®(n).

Problem-12 In Problem-11, we divided the input array into groups of 5 elements. The
constant 5 play an important part in the analysis. Can we divide in groups of 3 which work
in linear time?

Solution: In this case the modification causes the routine to take more than linear time. In the
n
worst case, at least half of the r§—| medians found in the grouping step are greater than the

median of medians m, but two of those groups contribute less than two elements larger than m. So
as an upper bound, the number of elements larger than the pivotpoint is at least:

2(J=T-2) = 2-4

2
Likewise this is a lower bound. Thus up to n — (% — 4) = ?n + 4 elements are fed into the

recursive call to Select. The recursive step that finds the median of medians runs on a problem of
n
size r 5 —|, and consequently the time recurrence is:

T(n) = T(Z)+T(2n/3 + 4) +8(n).

Assuming that T(n) is monotonically increasing, we may conclude that
T(ZTn + 4) = T(Z?n) > ZT(E), and we can say the upper bound for this as

T(n) = BT(%) + ®(n), which is O(nlogn). Therefore, we cannot select 3 as the group
size.
Problem-13 As in Problem-12, can we use groups of size 7?

Solution: Following a similar reasoning, we once more modify the routine, now using groups of 7
n

instead of 5. In the worst case, at least half the r;—| medians found in the grouping step are

greater than the median of medians m, but two of those groups contribute less than four elements

larger than m. So as an upper bound, the number of elements larger than the pivotpoint is at least:

2n

4¢ 1721 n/7112) =2 =8



Likewise this is a lower bound. Thus upton — (2711 —8) = 57n + 8 elements are fed into the

recursive call to Select. The recursive step that finds the median of medians runs on a problem of
n
size r; —|, and consequently the time recurrence is

T(n) =T(2D+TE + 8) +0(n)

T(n) <d 27+ c(Z + 8) + O(n)
n 5n .
< c;-l— C7 + 8¢ + an,ais a constant
n

=cn—c7+ an + 9c

=(a + c)n — (c;— 9¢).

This is bounded above by (a + c¢) n provided that C% — 9¢ > 0. Therefore, we can select 7

as the group size.

Problem-14 Given two arrays each containing n sorted elements, give an O(logn)-time
algorithm to find the median of all 2n elements.

Solution: The simple solution to this problem is to merge the two lists and then take the average
of the middle two elements (note the union always contains an even number of values). But, the
merge would be ©(n), so that doesn’t satisfy the problem statement. To get logn complexity, let
medianA and medianB be the medians of the respective lists (which can be easily found since
both lists are sorted). If medianA == medianB, then that is the overall median of the union and we
are done. Otherwise, the median of the union must be between medianA and medianB. Suppose
that medianA < medianB (the opposite case is entirely similar). Then we need to find the median
of the union of the following two sets:

(rind|x >= mediand}{x inB|x <= medianB}
So, we can do this recursively by resetting the boundaries of the two arrays. The algorithm tracks

both arrays (which are sorted) using two indices. These indices are used to access and compare
the median of both arrays to find where the overall median lies.



void FindMedian(int A[}, int alo , int ahi, int B[], int blo mt bhi) |

amid = alo + (ahi-alo|/2;

amed = alamid);

bmid = blo + (bhi-blo}/2;

bmed = b[bmid];

if{ ahi - alo + bhi - blo < 4] |
Handle the boundary cases and solve it smaller problem in O{1) time.
return;

1
|

else iffamed < bmed)
FindMedian(A, amid, ahi, B, blo, bmid+1);
else  FindMedian(A, alo, amid+1,B, bmid+1, bh);

Time Complexity: O(logn), since we are reducing the problem size by half every time.

Problem-15 Let A and B be two sorted arrays of n elements each. We can easily find the k!
smallest element in A in O(1) time by just outputting Alk]. Similarly, we can easily find the

kh smallest element in B. Give an O(logk) time algorithm to find the k™ smallest element
overall {i.e., the k™" smallest in the union of A and B.

Solution: It’s just another way of asking Problem-14.

Problem-16 Find the k smallest elements in sorted order: Given a set of n elements from a
totally-ordered domain, find the k smallest elements, and list them in sorted order. Analyze
the worst-case running time of the best implementation of the approach.

Solution: Sort the numbers, and list the k smallest.

T(n) = Time complexity of sort + listing k smallest elements = ®(nlogn) + ©(n) = ®(nlogn).

Problem-17 For Problem-16, if we follow the approach below, then what is the complexity?

Solution: Using the priority queue data structure from heap sort, construct a min-heap over the
set, and perform extract-min k times. Refer to the Priority Queues (Heaps) chapter for more
details.

Problem-18 For Problem-16, if we follow the approach below then what is the complexity?

Find the k’-smallest element of the set, partition around this pivot element, and sort the k smallest
elements.

Solution:

T (n) = Time complexity of kth — smallest + Finding pivot + Sorting prefix
= 0(n) + ©(n) + O(klogk) = ®(n + klogk)



Since, k < n, this approach is better than Problem-16 and Problem-17.

Problem-19 Find k nearest neighbors to the median of n distinct numbers in O(n) time.

Solution: Let us assume that the array elements are sorted. Now find the median of n numbers and
n
call its index as X (since array is sorted, median will be at P location). All we need to do is

select k elements with the smallest absolute differences from the median, moving from X — 1 to 0,
and X + 1 to n — 1 when the median is at index m.

Time Complexity: Each step takes ®(n). So the total time complexity of the algorithm is ®(n).
Problem-20 Is there any other way of solving Problem-197?

Solution: Assume for simplicity that n is odd and k is even. If set A is in sorted order, the median
is in position n/2 and the k numbers in A that are closest to the median are in positions (n — k)/2
through (n + k)/2.

We first use linear time selection to find the (n — k)/2, n/2, and (n + k)/2 elements and then pass
through set A to find the numbers less than the (n + k)/2 element, greater than the (n — k)/2
element, and not equal to the n/ 2 element. The algorithm takes O(n) time as we use linear time
selection exactly three times and traverse the n numbers in A once.

Problem-21 Given (x,y) coordinates of n houses, where should you build a road parallel to
x-axis to minimize the construction cost of building driveways?

Solution: The road costs nothing to build. It is the driveways that cost money. The driveway cost
is proportional to its distance from the road. Obviously, they will be perpendicular. The solution
is to put the street at the median of the y coordinates.



Problem-22 Given a big file containing billions of numbers, find the maximum 10 numbers
from that file.

Solution: Refer to the Priority Queues chapter.

Problem-23 Suppose there is a milk company. The company collects milk every day from all
its agents. The agents are located at different places. To collect the milk, what is the best
place to start so that the least amount of total distance is travelled?

Solution: Starting at the median reduces the total distance travelled because it is the place which
is at the center of all the places.



CHAPTER

SYMBOL TABLES 1 3

13.1 Introduction

Since childhood, we all have used a dictionary, and many of us have a word processor (say,
Microsoft Word) which comes with a spell checker. The spell checker is also a dictionary but
limited in scope. There are many real time examples for dictionaries and a few of them are:

. Spell checker

. The data dictionary found in database management applications
. Symbol tables generated by loaders, assemblers, and compilers
. Routing tables in networking components (DNS lookup)

In computer science, we generally use the term ‘symbol table’ rather than ‘dictionary’ when
referring to the abstract data type (ADT).
13.2 What are Symbol Tables?

We can define the symbol table as a data structure that associates a value with a key. 