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Translation:

In sandy soil, when deep you delve, you reach the springs below;
The more you learn, the freer streams of wisdom flow.
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Preface

Discrete Mathematics and Programming courses are all-pervasive in Com-
puter Science, Mathematics, and Engineering curricula. This book is intended
for undergraduate/graduate students of Computer Science, Mathematics, and
Engineering. The book is in continuation of our first book, Foundations of
Discrete Mathematics with Algorithms and Programming (CRC Press, 2018).
The student with a certain mathematical maturity and who has programmed
in a high-level language like C (although C is not such a high-level language) or
Pascal can use this book for self-study and reference. A glance at the Table of
Contents will reveal that the book deals with fundamental graph algorithms,
elements of matrix theory, groups, rings, ideals, vector spaces, finite fields,
coding theory, and cryptography. A number of examples have been given to
enhance the understanding of concepts. The programming languages used are
Pascal and C. The aim of the book is to bring together advanced Discrete
Mathematics with Algorithms and Programming for the student community.

Scope of the Book

In Chapter 1 on Graph Algorithms I, we study various algorithms on graphs.
Unfortunately, the graphs are not manipulated by their geometrical repre-
sentation inside a computer. We start with two important representations of
graphs, the adjacency matrix representation, and the adjacency list represen-
tation. Of course, we have to choose a representation so that the operations
of our algorithm can be performed in order to minimize the number of ele-
mentary operations.

After seeing how the graphs are represented inside a computer, two mini-
mum spanning tree algorithms in a connected simple graph with weights asso-
ciated with each edge, one due to Prim and the other invented by Kruskal,
are presented.

Then, shortest path problems in a weighted directed graph are studied.
First, the single-source shortest path problem due to Dijkstra is presented.
Next, the single-source shortest path algorithm for negative edge weights is
given. Then, the all-pairs shortest path problem due to Floyd and the transi-
tive closure algorithm by Warshall are given. Floyd’s algorithm is applied to
find the eccentricities of vertices, radius, and diameter of a graph.

Xix



XX Preface

Finally, we study a well-known graph traversal technique, called depth-first
search. As applications of the graph traversal method, we study the algorithms
to find connected components, biconnected components, strongly connected
components, topological sort, and PERT (program evaluation and research
technique). In the last subsection, we study the famous NP-complete problem,
the traveling salesman problem (TSP) and present a brute force algorithm and
two approximate algorithms.

In Chapter 2: Graph Algorithms II, we introduce another systematic way
of searching a graph, known as breadth-first search. Testing if a given graph
is geodetic and finding a bipartition of a bipartite graph are given as applica-
tions. Next, matching theory is studied in detail. Berge’s characterization of
a maximum matching using an alternating chain and the Konig-Hall the-
orem for bipartite graphs are proved. We consider matrices and bipartite
graphs: Birkhoff-von-Neumann theorem concerning doubly stochastic matri-
ces is proved. Then, the bipartite matching algorithm using the tree-growing
procedure (Hungarian method) is studied. The Kuhn-Munkres algorithm con-
cerning maximum weighted bipartite matching is presented. Flows in trans-
portation networks are studied.

Chapter 3: Algebraic Structures I deals with the basic properties of the
fundamental algebraic structures, namely, groups, rings, and fields. The sec-
tions on matrices deal with the inverse of a non-singular matrix, Hermitian
and skew-Hermitian matrices, as well as orthogonal and unitary matrices. The
sections on groups deal with Abelian and non-Abelian groups, subgroups,
homomorphisms, and the basic isomorphism theorem for groups. We then
pass on to discuss rings, subrings, integral domains, ideals, fields, and their
characteristics. A number of illustrative examples are presented.

In Chapter 4 on Algebraic Structures II, we deal with vector spaces and
their applications to solutions of systems of linear homogeneous and non-
homogeneous equations. To be specific, bases of a vector space, the dimension
of a vector space, and linear independence of vectors are discussed. As applica-
tions of these concepts, solutions of linear equations over the real field are dealt
with. Moreover, the LUP decomposition of a system of homogeneous/non-
homogeneous linear equations is discussed in detail. This is followed by illus-
trative examples. Finally, a detailed discussion on finite fields is presented.

Coding theory has its origin in communication engineering. It has been
greatly influenced by mathematics. Chapter 5, Introduction to Coding The-
ory, provides an introduction to linear codes. In particular, we discuss genera-
tor matrices and parity-check matrices, Hamming codes, sphere packings and
syndrome coding, cyclic codes, and dual codes. The algebraic concepts that
are used in this chapter have all been discussed in Chapters 3 and 4.

Chapter 6 deals with cryptography. Cryptography is the science of trans-
mitting messages in a secured way. Naturally, it has become a major tool
in these days of e-commerce, defense, etc. To start with, we discuss some of
the classical cryptosystems like the Caesar cryptosystem, the affine cryptosys-
tem, cryptosystems using matrices, Vigenere ciphers, and the one-time pad.
The most important and widely used cryptosystem is the RSA. We discuss
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this system as well as the ElGamal cryptosystem. RSA is built on very large
prime numbers. So, this gives rise to the following natural question: Given a
large positive integer, how do we test if the given number is prime or not?
We briefly discuss the Miller-Rabin primality testing algorithm. This is a ran-
domized probabilistic algorithm to test if a given number is prime or not.
However, the problem of finding a deterministic polynomial-time algorithm to
test if a given number is prime or not remained unsolved until the Agrawal-
Kayal-Saxena (AKS) primality testing algorithm was proposed in 2002. We
present this algorithm, its proof, and some illustrative examples.

Use of the Book

The instructor has a great deal of flexibility in choosing the material from
the book. For example, the chapters on graph algorithms I and II may be
suitable for a course on “graphs and algorithms.” The chapters on algebraic
structures I and IT and the chapters on coding theory and cryptography may
form a course on “Applied Algebra.” Many illustrative examples have been
given to help the understanding of the concepts. Algorithms are expressed
as informal pseudo-codes and programs in Pascal/C. Of course, these can be
easily translated into any language like C++, JAVA, etc. Exercises at the end
of each chapter/section test the understanding of the concepts developed in
the text.

We feel that the presentation of these chapters would go a long way in
providing a solid foundation in Discrete Mathematics to the students of Math-
ematics, Computer Science, and Engineering.
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Chapter 1

Graph Algorithms I

The aim of physical sciences is not the provision of pictures, but the
discovery of laws governing the phenomena and the application of
these laws to discover new phenomena. If a picture exists, so much the
better. Whether a picture exists or not is only a matter of secondary
importance.

P. Dirac

In this chapter, we study various algorithms on graphs. Unfortunately, the
graphs are not manipulated by their geometrical representation inside a com-
puter. We start with two important representations of graphs: the adjacency
matrix representation and the adjacency list representation. Of course, we
have to choose a representation so that the operations of our algorithm can
be performed in order to minimize the number of elementary operations.

After seeing how the graphs are represented inside a computer, two min-
imum spanning tree algorithms in a connected simple graph with weights
associated to each edge, one due to Prim and the other invented by Kruskal
are presented. Then, shortest path problems in a weighted directed graph are
studied. First, the single-source shortest path problem due to Dijkstra is pre-
sented. As an application, an algorithm is given to test the bipartiteness of a
graph. Next, a single-source shortest path algorithm for negative edge weights
is given. Then, all-pairs shortest path problem due to Floyd and the transitive
closure algorithm by Warshall are given. Floyd’s algorithm is applied to find
eccentricities of vertices, radius and diameter of a graph.

Finally, we study a well-known graph traversal technique, called depth-first
search. As applications of the graph traversal method, we study the algorithms
to find connected components, biconnected components, strongly connected
components, topological sort and program evaluation and research technique
(PERT). In the last subsection, we study the famous NP-complete problem,
traveling salesman problem (TSP) and present the brute-force algorithm and
two approximate algorithms. For basic properties of graphs and digraphs, the
reader may see [6].

1.1 Representation of Graphs
Consider the graph of Figure 1.1 represented geometrically [3].
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3

FIGURE 1.1: Geometric representation of a graph.

This graph of Figure 1.1 on 4 vertices is represented by the following 4 x 4
matrix M: (For a formal treatment on matrices, see Chapter 3.).

1 2 3 4

1/1 1 0 1

210 0 0 O
M73 0 2 00
4\0 0 1 0

Here, 4 is the number of vertices of the graph. The (4, j) entry of the above
matrix M is simply the number of arcs with its initial vertex at ¢ and the
terminal vertex at j. This matrix is called the adjacency matrix of the graph
of figure.

More generally, for a n vertex graph G with vertex set X = {1,2,...,n},
the adjacency matriz of G is the n x n matrix M = (m;;) where

m;; = number of arcs of the form (i, j).

Memory space for the adjacency matriz: Since an n x n matrix has exactly n?
entries, the memory space necessary for the adjacency matrix representation
of a graph is of order O(n?). The time complexity of initializing a graph by
its adjacency graph is O(n?). This may preclude algorithms on graphs whose

complexities are of order strictly less than n?.

Properties of the adjacency matriz: Let M denote the adjacency matrix of
a graph with vertex set X = {1,2,...,n}. Then, by the definition of the
adjacency matrix, we have the following properties:

1. The sum of the entries of the ith row of M is equal to the out-degree of
the vertex .

2. The sum of the entries of the jth column of M is equal to the in-degree
of the vertex j.

3. The sum of all the entries of the matrix M is the number of arcs of the
graph.
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3

FIGURE 1.2: A multigraph.

Adjacency matrix representation of a multigraph:
Consider the following multigraph of Figure 1.2 which is obtained by ignoring
the orientations of the arcs of the graph of Figure 1.1.

Its adjacency matrix is the 4 x 4 matrix M (see below) with its (7, j) entry,
the number of edges from the vertex ¢ to the vertex j.

1 2 3 4

1/1 1 0 1

211 0 2 0
M73 0 2 01
4\1 0 1 0

More generally, the adjacency matrix of a multigraph with vertex set X =
{1,2,...,n} is an n x n matrix M = (m,;) where

m;; = The number of edges between the vertices ¢ and j.

Note that the adjacency matrix of a multigraph is a symmetric matrix.
The following properties are easily proved for the adjacency matrix M of a
simple G.

1. The sum of the entries of the ith row of M is the degree of the vertex 1.
2. The sum of all the entries of the matrix M is twice the number of edges.

Incidence matrix representation of a graph:

Consider a directed graph G' = (X,U) with vertex set X = {1,2,...,n} of
n elements and the arc sequence U = {uy,ua,...,u,} of m elements. Then,
the incidence matrix M of the graph G is the n X m matrix (mij)nxm where

1 if 4 is the initial vertex of u;
— —1 if 4 is the final vertex of u,
)2 if w; is a loop at vertex ¢
0 otherwise

Note that the first subscript ¢ in m;; indicates the vertex i and the second
subscript j indicates the arc u;.
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FIGURE 1.3: Incidence matrix of a graph.

The following example clarifies the definition.

Example 1.1: Incidence Matrix

Consider the directed graph G of Figure 1.3. This graph has four
vertices and six arcs. The incidence matrix of the graph G is

Uy U2 U3 Ug  Us  Up

1/1 2 1 0 0 0
210 0 -1 -1 -1 O
M= 310 0 0 1 1 -1
4\-1 0 O 0 0 1

The following are properties of the incidence matrix of a directed graph:

1. The sum of entries of every column except the ones which represent
loops is 0.

2. The sum of entries of every column representing a loop is 2.

3. The sum of entries of the ith row (not containing the entry 2) is d* (i) —
d= (7).

Incidence matrix representation of a multigraph:

Consider a multigraph G = (X, E) with X = {1,2,...,n} and with edge
sequence E = (e1,ea,...,ey). The incidence matrix M is an n x m matrix
(M4 ) nxm Where

1 if vertex 7 is incident with e;
m;j = ¢ 2 if e;is aloop at vertex i
0 otherwise
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Example 1.2

Consider the graph G of Figure 1.3 by ignoring the orientations of
the arcs and taking u; = e;. Then, the incidence matrix M of G is

€1 €2 €3 €4 €5 Cp

SR N
= o O
OO O N
O = = O
_= -0 O

The following are properties of the incidence matrix of a multigraph:
1. The sum of every column entry of an incidence matrix is 2.

2. The sum of the entries of the i-th row of an incidence matrix is the
degree of the vertex i which is d(i).

Space complexity to represent a graph in the form of incidence matriz: There
are mn entries in the incidence matrix and hence the space complexity is
O(mn).

A formal study of matrices is done in Chapter 3.

Adjacency list representation of a digraph:
In the adjacency matrix representation of a graph G, an (i,j) entry zero of
the matrix represents the absence of arc (7,7) in the graph G. The adja-
cency list representation can be considered as a “condensed form” of the adja-
cency matrix representation omitting the zero entries. Consider the graph of
Figure 1.4.

This graph of 4 vertices is represented by 4 adjacency lists: suce(1), suce(2),
suce(3), suce(4) where succ(l) = (1,2,4), succ(2) = (), the null list, suce(3) =
(2,2), succ(4) = (3). More generally, an n vertex graph G is represented by n

lists suce(1), succ(2),. .., succ(n) where a vertex j appears k times in the list
1 2
G:
4
3

FIGURE 1.4: A graph and its adjacency lists.
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3

FIGURE 1.5: A multigraph and its adjacency lists.

suce(t) if and only if there are k arcs with initial vertex ¢ and final vertex j,
that is, the multiplicity of the arc (7,j) is k.

Adjacency list representation of a multigraph:

When the sage points his finger to the Moon, the novice looks at its

finger. Tamil Proverb

A multigraph of n vertices is represented by n adjacency lists adj(1), adj(2), .. .,
adj(n) where the list adj(i) consists of all vertices j which are joined to the
vertex 7. Note that the vertex j appears k times in the list adj(7) if the vertices
1 and j are joined by k multiple edges. Further, if ¢j is an edge, then the vertex
Jj is in the list adj(i) and the vertex i is in the list adj(j) (see Figure 1.5).

This graph of 4 vertices is represented by 4 adjacency lists: succ(1), suce(2),
suce(3), succ(4) where suce(l) = (1,2,4), succ(2) = (1,3,3), succ(3) =
(2,2,4), succ(4) = (1, 3).

Figure 1.6 gives a linked lists representation of graph of Figure 1.5.

Space needed for adjacency linked list representation of a digraph:
Consider a graph G with n vertices and m arcs. It is represented by n adjacency
lists succ(l), suce(2),. .., succ(n). The number of elements in the list succ(q)
is clearly the out-degree of the vertex i. In the linked list representation of
succ(i), each vertex in the list succ(i) is stored in a node consisting of two
fields: a vertex field and a pointer field. Counting each node as two units of
space, one for each field, we need 2d™ (i) + 1 space to represent succ(i) where
d™ (i) is the out-degree of the vertex i. Note that the pointer succ(i) needs
one unit of space. Hence the total space needed to represent the graph is

—
|

- E-CE-EEw
Gy EAE o ERE 2
I S EE S S A D
gEE RN E R

FIGURE 1.6: Linked lists representation of graph of Figure 1.5.

Q
o
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n n
> o@dt(@) +1) =n+) 2d"(i) =n+2m=0(n+m).
i=1 i=1
(since the sum of the out-degrees of the vertices of a graph is equal to the
number of arcs).
Hence, we see that the adjacency list representation uses only linear space
O(m + n), whereas the adjacency matrix needs a quadratic space O(n?).

Which representation to choose: adjacency matriz or adjacency linked list?:
The answer to this question depends on the operations performed by the algo-
rithm at hand. If a graph is “sparse,” that is, the graph does not have too many
arcs, then the adjacency list representation may be suitable. Suppose an algo-
rithm on graph frequently needs to test the existence of an arc from a vertex to
another vertex, then the adjacency matrix will be appropriate since accessing
an arbitrary entry of a matrix can be done in constant time. With the adja-
cency matrix, since the initialization itself takes O(n?) time, the importance
of algorithms may be diminished with complexity O(nlogn) or O(n®/?).

Let us write a program in C which reads a directed graph G represented
by a linked list. The program finally writes the successors of each vertex (see
Figure 1.6).

#include <stdio.h>
#define max_n = 20 /* maximum number of vertices */
#define max_m = 100 /* maximum number of arcs */
struct node
{int v; struct node *next;};/* v for vertex */
int n, m; /*n = number of vertices. m = number of arcs */
struct node *succ[max_n]; /* graph is represented as an
array of pointers */
/* We work with a global graph.Otherwise the graph should be
declared as a variable parameter*/
void adj_list ( )
{
int i, a, b; /* i for the loop.(a,b) is an arc.*/
struct node *t; /* t, a temporary pointer */
printf ("Enter two integers for n and m\n");
scanf (%d %d\n", &n, &m); /* read n and m */
/* initialize the graph with n vertices and 0 arcs */
for (i = 1; i <= n; i++) succ[i] = NULL;
/* read the m arcs */
for (i = 1; i <= m; i++)
{
printf ("Enter the arc number %d ", i);
scanf ("%d %d \n", &a, &b);/* un arc is an ordered pair of
vertices. b will be in succ(a) */
/* create a node referenced by t*/
t = (struct node *) malloc(sizeof *t);
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t->v = b; /* assign b to v field of t-> */
/* attach t-> at the head of list succl[a] */
t->next = succlal;
succla] = t;
}/*forx/
}/*adj_listx/

void print_list ( )
{
/* print_list writes the list of successors of
each vertex of the graph G*/
int i; /* i for the loop */
struct node *t; /* t, a temporary pointer */
for (i = 1; i <= n; i++)
{
/* write the list succl[i]*/
t = succl[i];
if (¢ == NULL)
printf(" No successors of %d\n ", 1i);
else
{
printf(" The successors of Jd are :", i);
/* scan the list succ[i] and write the v fields of nodes */
while (t !'= NULL)
{
printf("%d ", t->v);
t = t->next; /* move t to next node */
}/*whilex/
printf("\n");
}/*elsex/
}/*for*/
}/* print_list*/

int main( )
{
adj_list ( ); /* call %/
print_list ( ); /* call x/
}

Let us write a program in C to represent a multigraph G with adjacency
matrix. The Program finally prints the adjacency matrix.

#include <stdio.h>

#define max_n = 20 /* maximum number of vertices*/

int i, j, n, m;/* n, the number of vertices. m, the number of edges
i, j for the loops*/
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int adj[max_n] [max_n];/* The graph is represented by the
matrix adj. We don’t use row O and column O*/
/* We work with a global graph.Otherwise the graph should be
declared as a variable parameter*/
void adj_matrix ( )
{
int a, b; /* ab is an edge. An edge is an unordered pair*/
printf ("Enter two integers for n and m\n");
scanf ("%d %d\n", &n,&m);
/* initialize the graph with n vertices and 0 edges */
for (i =1; i <= n; i++)
for ( j= 1; j <= n; j++)
adjl[i]l [j]1 = O;
/* end of initialization */
/* read the m edges*/
for (i = 1; i <= m; i++)
{
printf ("Enter the edge number d " , i);
scanf ("%d %d \n", &a, &b);
adj[al [b]++;adj[b] [al++;
}/*for*/
}

void print_adj_matrix ( )

{
int i, j;/* i, j for the loops */
for (i = 1; i <= n; i++)
{ for( j =1; j <= n; j++)

printf("%d ", adjlil[j1);
printf ("\n");

}

}

int main ( )

{
adj_matrix( );/* call */
print_adj ( ); /* call */

}

1.2 Minimum Spanning Tree Algorithms

A free tree or simply a tree is a connected graph without an elementary
cycle, that is, a tree is a connected acyclic graph. Hence, a tree does not contain
loops or multiple edges, that is, a tree is a simple graph. In the following figure,
a tree with ten vertices is drawn (see Figure 1.7).
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FIGURE 1.7: A tree.

In the tree of Figure 1.7 with ten vertices, we observe the following
properties:

1. There is a unique elementary walk, that is, a path between any two
vertices.

2. The number of edges is exactly one less than the number of vertices.
We now prove the above two properties for any general tree.
Proposition 1.1. In any tree, there is a unique path joining any two vertices.

Proof. We shall prove the proposition by contradiction. If not, consider two
different paths P; and P; joining the vertices x and y. If the paths P; and P»
are vertex-disjoint, except of course the initial and final vertices, then clearly
the union of the paths P, U P, is an elementary cycle in the tree, which is a
contradiction. Otherwise, let z(# y), 2’ (possibly x) be the last and next-to-
last vertices common to the paths P; and Ps, respectively. Then, the union of
the two subpaths of the paths P; and P, from 2’ to z is an elementary cycle,
a contradiction. Hence the result. O

For the second property, we need the following simple lemma.

Lemma 1.1. Every simple graph with the degree of each vertex at least two
contains an elementary cycle.

Proof. Consider a longest possible path P in the graph. (The length of a path
is the number of edges in the path.) Let xo be the initial vertex of the path
P = (zg,21,...,x;) (the length of the path P is ) and consider the vertices of
the graph adjacent to the initial vertex z(. Since the degree of xy > 2, there
is a vertex y # x1 such that zpy is an edge of the graph.

If y # x; for 2 <4 <[, then we have a path (y, o, z1,...,z;) whose length
[ + 1 exceeds that of P, a contradiction.

If y = x; for some ¢ with 2 < ¢ <, then (zg,21,...,2;,2o) (since zpy is
an edge) is an elementary cycle. O
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Proposition 1.2. In any tree with n vertices, the number of edges m is exactly
n— 1.

Proof. The proof proceeds by induction on the number of vertices of the tree.

Basis: If the number of vertices n = 1, then the tree consists of only one vertex
and no edges, that is, the number of edges m = 0. Hence the proposition is
trivially satisfied.

Induction hypothesis: Suppose the proposition is true for all trees with the
number of vertices n at least two.

We shall prove the proposition for trees with n+ 1 vertices. Consider a tree
T with n + 1 vertices. We claim that the tree T contains a vertex of degree
one. If not, the degree of each vertex is at least two and by Lemma 1.1, T
contains a cycle, a contradiction. Let o be a vertex of degree one in the tree
T. Then, the vertex deleted graph T — x is still a tree. Note that 7 and T — x
differ by exactly one vertex x and exactly one edge, the edge incident with
x. Now T — x is a tree on n vertices and the number of edges m of the tree
T — x, verifies, by induction hypothesis, the following equation,

m=mn— 1.

Adding one on both sides, we get m + 1 = (n + 1) — 1, that is, the number
of edges of T is exactly one less than the number of vertices of 7. Thus, the
proof is complete. ]

Spanning tree of a connected graph:

Consider a connected graph G. A spanning subgraph of G, which is a tree,
is called a spanning tree of G. In a connected graph, a spanning tree always
exists as we shall see below:

Since a tree is acyclic, we intuitively feel that if we remove all the cycles of
the graph G without disconnecting G, we will be left with a spanning tree. In
fact, this is the case.

Consider any elementary cycle of G and delete exactly one of its edges.
This results in a connected spanning subgraph G of G, since in an elementary
cycle, between any two vertices of the cycle, there are exactly two different
internally vertex-disjoint paths. If the resulting graph is a tree, then we have
obtained a desired spanning tree. Otherwise, we find an elementary cycle of
(1 and delete one of its edges. This gives us a connected spanning graph Gs.
If G5 is a tree, then G5 is a desired spanning tree of G. Otherwise, we continue
the procedure as before till a spanning tree of G is found. If a graph G contains
a spanning tree, then clearly it must be connected. Thus, we have proved the
following result.

Theorem 1.1. A graph G has a spanning tree if and only if it is connected.

1.2.1 Prim’s minimum spanning tree algorithm

Input: The input of this algorithm is a connected simple graph G with weights
associated to each edge of the graph (see Figure 1.8). Such graphs are also
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G:
1 9 4
T: 3 6
5
7 6

FIGURE 1.8: A weighted graph G and its spanning tree 7.

called networks. The vertices are interpreted as cities and the edges as high-
ways connecting its end vertices. The weight associated with an edge is inter-
preted as the cost of constructing a highway connecting its end vertices (cities).
The total cost of the network is the sum of the costs on each edge of G. For
example, the total cost of the figure G is 55 (see Figure 1.8).

How to represent a weighted graph?:
One way to represent a weighted graph is by weighted adjacency matriz
M = (m;j)nxn where

weight of the edge 75 if ij is an edge of the graph

oo if 47 is not an edge of the graph.
In the computer implementation, the oo is replaced by, for example,
“INT_MAX” in the language C if the weights are integers, “maxint” in the
language Pascal, or a very large number which will not be a “legal” cost of
constructing a highway.

The weighted graph G of Figure 1.8 is represented by its weighted adja-

cency matrix as follows (the weight of a missing edge is taken as 100):

1 2 3 4 ) 7

6
0 9 100 100 100 2 3
9 0 5 100 100 7 100
100 5 0 8 6 6 100
100 100 8 0 6 100 100
100 100 6 6 0 100 100
2 7 5 100 100 O
3 100 100 100 100 4

I
N Ut W N
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The other way of representing a weighted graph is by weighted adjacency lists.
In this representation, we introduce a new field called weight in each node, in
addition to the two existing fields, namely, the field containing the vertex and
the field containing the pointer. In the weight field, the weight of the edge ij
will be stored, if the content of the vertex field is j and the node in question
belongs to the list adj(i).

Output: A minimum spanning tree of G, that is, a spanning tree T' of the
graph G such that the sum of the costs of all the edges of the tree T' is a
minimum (see Figure 1.8). In Figure 1.8, a spanning tree T of G is depicted
and its total cost is 38.

Algorithm 1.1 (Brute-force method). One way to find a minimum cost
spanning tree in the graph G is the following exhaustive search.

Generate all possible spanning trees of G and find the total cost of each of these
spanning trees. Finally, choose one tree for which the total cost is minimum.
This procedure will work “quickly” if the number of vertices of the input graph
G is sufficiently small. If the number of vertices is not sufficiently small, this
procedure takes an enormous amount of time, that is, exponential time since
by Caley’s theorem [1] there are n 2 possible non-identical trees on n given
vertices.

Algorithm 1.2 (Prim’s algorithm). This is a polynomial time algorithm.
Prim’s algorithm, though it is greedy, provides us with an exvact solution. We
shall now describe what is meant by a greedy algorithm.

A Greedy algorithm: A greedy algorithm is an algorithm which “hopes” to
find a global optimum by choosing at each iteration of the algorithm a local
optimum. A greedy algorithm sees only “short-term” gains. More generally, a
heuristic is an algorithm which “quickly” produces a suboptimal solution but
not necessarily an optimal solution. The word “quickly” means “in polynomial
time.”

For example, greedy is a heuristic. Greedy does not always give an optimal
solution, but it gives “somewhat” of an acceptable solution. But in the case
of Prim’s algorithm, greedy provides us with an exact solution. First of all,
we shall illustrate Prim’s algorithm with our graph of Figure 1.8.

Observation 1.1. Trees can be grown by starting with one vertex (initializa-
tion) and adding edges and vertices one-by-one (iteration).

According to Observation 1.1, we start with any vertex, say the vertex 1. The
vertex 1 forms a tree T by itself. The algorithm chooses an edge e; of the
graph G such that one end of the edge e; lies in tree T" and the other end
lies outside of the tree T' (this is to avoid cycle in T') with the weight of e;
minimum. Then, we add the edge e; to the tree T. In our figure, the edge
e1 = 16. Then, we select an edge es such that one end of the edge ey lies
in the tree T under construction, and the other end lies outside of the tree
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TABLE 1.1: Execution of Prim’s algorithm on graph of Figure 1.8

Iteration S # X? s t S« SU{t} T — TU{st}
number
0 - - - {1} 0
(Initial)
1 yes 1 6 {1,6} {16}
2 yes 1 7 {1,6,7} {16,17}
3 ves 6 3 1,6,7,3) (16,17, 63}
4 ves 3 2 {1,6,7,3,2) (16,17, 63,32}
5 ves 3 5 {1,6,7,3,2,5}  {16,17,63,32,35}
6 ves 5 4 {1,6,7,3,2,5,4} {16,17,63,32,35,54}
Exit the no

loop

FIGURE 1.9: A minimum spanning tree 7" of G.

T with the weight of e minimum. In our case, the edge e; = 17 and so on.
The different steps of the tree-growing procedure are illustrated in Table 1.1.
In Table 1.1, the set S denotes the vertices of the tree T" under construction.
T denotes the set of edges of the tree which is grown by the algorithm, s and
t denote vertices of the graph G with s € S and ¢t € X \ S, and X represents
the set of vertices of the graph G. The procedure ends as soon as the tree T’
under construction contains all of the vertices of the graph G. The edges of
a minimum spanning tree obtained are found in the 6th column of iteration
number 6 in Table 1.1. The minimum spanning tree obtained by Table 1.1 is
shown in Figure 1.9 and its cost is the sum of the costs of its edges which

is 27. Now let us write the algorithm in pseudo-language.

procedure prim(var G : Graph; var T: Set of Edges);

(* The procedure prim takes as input a connected weighted

graph G and returns as output a minimum spanning tree T of G.

Note that the representation of the graph G as well as the

tree T are left unspecifiedx)

var S : Set of Vertices; (* representation of S unspecified *)
s, t : Vertex;

begin(* prim *)




Graph Algorithms I 15

(* initialization of S and T*)
(* S denotes the set of vertices of tree T grown by prim in a
step by step manner. T denotes the set of edges of tree T *)
S := {1}; T := empty_set;
(* iteration *)
while S not_equal_to X do (x X = {1,2,...,n} denotes
the set of vertices of G *)
begin(* while *)
(1) select an edge st such that s in S and t in X - S
with the weight of st minimum;
(2) add the vertex t to the set S;
(3) add the edge st to the tree T;
end; (* while %)
end; (* prim *)

Complexity of Prim’s algorithm:

Clearly, the initialization takes a constant amount of time O(1), which involves
two assignments. The while loop is executed exactly n — 1 times, because of
the following two reasons:

1. At each iteration, the number of vertices in the set S is incremented by
one unity, thanks to the instruction (2) in the while loop.

2. The loop terminates as soon as S = X and | X| = n.

We shall now consider the instruction number (1) of the while loop of Prim.
This statement can be implemented in O(n) time. Hence, each execution of
the while loop demands O(n) time (Recall that when we compute complexity,
the lower-order terms and multiplicative constants can be neglected [6]).

Therefore, complexity of Prim’s algorithm is (n — 1)O(n) = O(n?), which
is a polynomial of degree 2.

Why does Prim’s greedy algorithm give the exact optimum?:
Prim’s algorithm chooses at each iteration what appears “locally” as the best
thing to do. At the end of the iteration, it obtains the best overall! The fol-
lowing result explains the magic.

Minimum spanning tree property:

Property 1.1. Let G be a connected simple graph with weight attached to
each edge of the graph G. Consider a proper subset S of vertices of G and an
edge e having one end in S and the other end outside of S with the weight of
the edge e minimum. Then, there is a spanning tree of minimum weight in G
containing the edge e.

Proof. Since G is a connected graph, by Theorem 1.1, it contains a spanning
tree. Consider a spanning tree T of the graph G. If the tree T contains the



16 Discrete Mathematics

edge e = xy, then we are done. Otherwise, the tree T surely will contain an
edge ¢ = z'y’ having one end 2’ in S and the other end 3’ outside of S, for,
if not, the tree T' will not be connected. (In fact, more generally, a graph is
connected, if and only if for any partition of the vertex set into two proper
subsets, there is an edge having one end in one subset of the partition and the
other end in the other subset of the partition.) Since the weight of the edge
e is a minimum among all edges joining S and and its complement, we have
the weight of ¢/ > the weight of e.

Now consider the spanning subgraph obtained by adding the edge e to
the tree T, that is, consider the graph G’ = T + e. Then, G’ contains ezactly
one elementary cycle. This is because of the following argument: By Propo-
sition 1.1, in the spanning tree 7', there is a unique path P joining the end
vertices x and y of the edge e. But then, G’ = T + ¢ contains the unique ele-
mentary cycle P+e (A path plus the edge joining the initial and final vertices
of the path is an elementary cycle) (see Figure 1.10).

Now form the graph 7" = G’ — ¢’. T’ is still connected, because the end
vertices &’ and y’ of the deleted edge ¢’ are connected by the path P+ e — ¢’
in the graph T’. Moreover, T" is a tree, because the only cycle P + e of G’ is
destroyed by the removal of the edge e’ of this cycle. Not that the trees T' and
T’ differ by only two edges e and €. Since the weight of the edge e < the weight
of the edge €', we have, the weight of the tree 77 < the weight of the tree T.

Since T' is a minimum weight spanning tree, we must have equality of the
weights of T" and T”. Thus, we have constructed a minimum spanning tree 7"
containing the edge e. ]

We shall now write a computer program in C to implement Prim’s algorithm.
The given weighted graph is represented by its cost matrix M where M[i][/]
is the cost of the edge ij. If there is no edge between the vertices ¢ and j,
we set Mi][j] = oo. In C, oo can be replaced by the constant INT_MAX if
costs of the edges are “small” integers. In fact, in a computer implementation
of Prim’s algorithm, co is replaced by a cost which cannot be a “legal” cost

FIGURE 1.10: A step in the proof of Prim’s algorithm.
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of any edge. We define two arrays dad and cost_mins. dad[i] gives the vertex
in S that is currently “closest” (with respect to the cost of edges) to vertex i
in X \ S. cost_min[i]= the cost of the edge (i, dad]i]).

Implementation of Prim’s algorithm in C:
#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

/* INT_MAX is defined in this library */
#define n_max 10//maximum vertices

int M[n_max] [n_max],n,m;//M, the cost matrix
//n,m the number of vertices, edges
void graph ()

{/*keyboarding the Mx/

int i,j,x,y,c;

/*i,j for the loops

x--y is an edge, its cost c */

printf ("enter the values of n,m \n ");
scanf ("%d %d",&n,&m ) ;

/* initialization of Mx/

for (i=1;i<=n;i++)
for ( j=1;j<=n;j++)
M[i] [j1=INT_MAX;

/*end of initialization */

/* enter the costs of edges */
for (i=1;i<=m;i++)
{
printf ("enter the two ends of edge %d \n",i );
scanf ("%d%d", &x,&y );
printf (" enter the edge cost ¢ : \n");
scanf ("%d",&c);
M[x] [yl=c; Mly] [x]=c;
}
}
void print_graph ()
{
int 1i,j;
for (i=1;i<=n;i++)

{
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for (j=1;j<=n;j++)
printf ("%5d ",M[i]1[j1);
printf ("\n\n\n");

}

//begin Prim
void prim()
{ int dad[n_max], cost_min[n_max];
//array dad represents the tree under construction
int 1i,j,k,min;
//initialization
for(i=1;i<=n;i++)

dad[i]=1;//tree consists of only one
//vertex 1

cost_min[i]=M[i] [1];

//if there is no edge (1,i), M[1][il=
//INT_MAX

T

for(i=1;i<=n;i++)
{//find a vertex k outside the tree to be added to the
//tree
k=2;
min=cost_min[2];

for(j=3;j<=n;j++)
if (cost_min[j]<min)
{
k=j;
min=cost_min[j];

}

//print edge
printf ("%d%d\n",k,dad [k]) ;
cost_min[k]=INT_MAX;//k is added to tree
//update arrays cost_min, dad
for(j=2;j<=n;j++)

if ((M[k] [jl1<cost_min[j])&&(cost_min[jI<INT_MAX))
{
cost_min[j1=M[k] [j];
dad[jl=k;
}
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}
//end of prim

int main ()

{
graph O ;
print_graph O ;
primQ) ;
return O;
}

1.2.2 Kruskal’s minimum spanning tree algorithm

This is again a greedy algorithm which furnishes us an ezact optimum. An
acyclic simple graph is often referred to as a forest, that is, each connected
component of a forest is a tree. This algorithm proceeds somewhat in the
“opposite direction” of Prim’s algorithm. We shall now describe Kruskal’s
algorithm.

Input: A weighted connected simple graph, that is, a simple connected graph
with a weight attached to each edge. As in Prim’s algorithm, the vertices
represent different cities and the weight associated with an edge e = zy may
represent the cost of constructing a highway or railway line between the two
cities z and y.

Output: A minimum weight spanning tree of the graph.

Algorithm: We shall first illustrate the algorithm on the graph of Figure 1.8.

First of all, the edges of the given graph are sorted in order of increasing
cost. Initially, we start with a forest F' consisting of all the vertices of the graph
but no edges. Let us denote by PX the set vertices of the connected com-
ponents of the forest F' which evolves during the execution of the algorithm.
PX defines a partition of the vertex set X of the graph G.

Then, we consider each edge e = xy in turn among the sorted list of edges.
If the end vertices z and y of the edge e under consideration are in distinct
components of the forest F', then we add the edge e to the forest. Note that
this operation reduces the number of components of the forest F' by one. If
the vertices x and y are in the same component of the forest F', we discard the
edge e. The algorithm proceeds like this, until the forest F' consists of only one
connected component, that is, until F' becomes a tree. This terminal condition
can be tested by the equality: |[PX| = 1, that is, the number of subsets in the
partition is 1.
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TABLE 1.2: Sorting the edges of graph Figure 1.8 in

order of increasing cost

Edges Costs Edges Costs
16 2 35 6
17 3 45 6
67 4 26 7
23 5 34 8
36 5 12 9

TABLE 1.3: Execution of Kruskal’s algorithm on the graph G of

Figure 1.8
Iteration Edges Add or PX F |PX| =17
number reject
0(Initial) {1}, {2}, {3}
- - {4}7 ey {7} @ -
1 16 add {1,6},{2}, {3} {16} no
{4}, {5}, {7}
2 17 add {1,6,7},{2} {16,17} no
{3} {4}, {5}
3 67 reject no
4 23 add {1,6,7},{2,3} {16,17,23} no
{4}, {5}
5 36 add {1,6,7,2,3} {16,17,23, 36} no
{43.{,5}
6 35 add  {1,6,7,2,3,5},{4}  {16,17,23,36,35} no
7 45 add {1,6,7,2,3,5,4} {16,17,23,36, 35,45} no
Exit loop yes

The different steps in the execution of the algorithm on the graph G of
Figure 1.8 are shown in the following table.

Let us first sort the edges in order of increasing cost (Table 1.2). The
edges of a minimum spanning tree are available in the fifth column of iteration
number 7 in Table 1.3. The reader can see that the spanning tree obtained by
Kruskal’s algorithm is the same as the one obtained in Prim’s algorithm (see
Figure 1.11).

We shall now write Kruskal’s algorithm in pseudo-code.

FIGURE 1.11: Kruskal’s minimum spanning tree 7" of G.
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Kruskal’s Algorithm
procedure Kruskal( var G: Graph; var F: Set of Edges);
(* Kruskal’ takes as input a connected weighted graph G and
outputs a minimum spanning tree F*)
var PX : Partition of the vertex set X;
(* PX denotes the partition of the vertex set X, induced by
the connected components of the forest Fx)
e : Edge; L : List of Edges;
x,y @ Vertex; (* x, y are the ends of edge ex*)
begin (* Kruskal *)
(* initialization of PX and F *)
PX := empty_set; F := empty_set;
Form a list L of the edges of G in increasing order of cost;
(* Forest consists of isolated vertices and no edges *)
for each vertex x of the graph G do
add {x} to PX;
(* Iteration *)
while | PX | > 1 do
begin (* while *)
(1) choose an edge e = x y, an edge of minimum cost from the
list L;
(2) delete the edge e from the list L;
(3) if x and y are in two different sets S1 and S2 in PX

then begin
(4) replace the two sets S1 and S2 by their union S1
U S2;
add the edge x y to F;
end;
end; (x while *)

end;

Complexity of Kruskal’s algorithm:

The “for” loop in the initialization part takes O(n) time where n is the number
of vertices of the graph G. In fact, the edges are not sorted in the initialization
part into a list but are kept in a heap data structure [3]. A heap is an array
all],al2],...,a[n] of numbers such that a[i] < a[2i] for 1 < i < n/2 and
afi] < af2i + 1] for 1 < i < n/2. This array structure can be conveniently
viewed as a quasi-complete binary tree [3] in which the value at a node is less
than or equal to the values at its children node. This organization of the edges
require O(m) time.

The major cost of the algorithm is dominated by the while loop. In the
while loop, each edge is examined one-by-one in order of increasing cost. Either
the edge examined is added to the forest F' under construction or it is rejected.
Hence, the while loop is executed at most m times where m is the number
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of edges of the graph G. The instruction (1) choosing an edge of minimum
cost can be performed in O(logm) time. In fact, logm is the initial height
of the heap viewed as a binary tree. The total time needed to execute the
instructions (3) and (4) is O(m) for all “practical” values of m, if we use the
fast disjoint-set union algorithm [3]. The remaining instructions in the while
loop can be performed in O(1) time. Hence, the complexity of the Kruskal
algorithm is O(mlogm).

1.2.3 Rooted ordered trees and traversal of trees

A rooted tree T can be defined recursively as follows:

Definition 1.1 (Rooted tree). A single vertex v alone is a tree and r is
its root. (basis of recursion)

If Ty, T, ..., Ty are trees with roots s1, Sa, . . . , S, Tespectively, then we may
construct a new tree T = (r; Ty, Ty, ..., Ty) with root r as follows (see Figure
1.12):

11,15, ..., T, are called the subtrees of the root r and si,Ss3,...,S are

called the sons/daughters of the root r taken in this order. (recursion) Ty is
the leftmost subtree of v, and Ty, is the rightmost subtree. Note that the order of
the sons is taken into account. The edges are supposed to be directed downwards
(even though it is not represented in Figure 1.12. If there is a downward path
from a vertex x to a vertex y, then y is called a descendant of x, and x is
called an ancestor of y. A direct descendant is a son/daughter and a direct
ancestor is called the dad or mom. A vertex with no son/daughter is called a
leaf.

Traversal of rooted ordered trees:
We define three tree traversals: (1) Preorder, (2) Inorder, (3) Postorder.
These traversals are again defined recursively. In fact, they are simply
mappings of the two-dimensional tree into a one-dimensional list.
If the tree consists of only one vertex, the root r, T'= (r) then the list (r)
consisting of only one element is the preorder, inorder and postorder traversal
of T That is, preorder(T)=inorder(T)=postorder(T)=(r).(basis).

T2

FIGURE 1.12: Recursive definition of a rooted tree.
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FIGURE 1.13: Illustration of tree traversals.

IfT = (r;T1,Ts,...,Ty), then we define the preorder, inorder, and pos-
torder as the lists of vertices

preorder(T) = (r, preorder(Th ), preorder(15)), . . ., preorder(T},))(recursion).
inorder(T) = (inorder(Th),r, inorder(T3) . .., inorder(Ty))(recursion).

postorder(T) = (postorder(Th), postorder(Ts), . . ., postorder(Ty), r)(recursion).

Note that the root r comes first in preorder, last in postorder. In the inorder,
the root r comes after the listing of vertices of the first subtree of 7[3].

A useful trick to find these orders:

We shall illustrate this trick by an example. Consider the tree of Figure 1.13.
Think of a walk around the tree in the counter-clockwise direction, starting
from the root and staying as close to the tree as possible.

For preorder, we write the vertex in the list the very first time we meet it
during the walk.

For postorder, we write the vertex in the list the last time we meet it
during the walk, that is, as we move upwards.

For inorder, we write the leaf (a leaf is vertex of the tree with no son/
daughter) the first time we meet it during the walk and other vertices during
the second time during the walk (in the bay).

Note that each vertex is written exacly once in the list. In the graph
of Figure 1.13, preorder(T) = (r,1,4,5,9,2,6,7,3,8), postorder(T) =
(4,9,5,1,6,7,2,8,3,r), inorder(T) = (4,1,9,5,7,6,2,7,8,3). The sons/
daughters of the root r are 1,2,3 taken in this order: the leftmost subtree
of r is the vertex 1 and all its descendants in the tree T

1.3 Shortest Path Algorithms

In this section, we may consider without loss of generality directed graphs
with no multiple arcs, that is, 1-graphs, without loops. We shall first study
the single-source shortest path algorithm invented by Dijkstra. This is again a
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greedy algorithm. We use “cheapest cost path” as synonym for the “shortest
path.” “Path” always means in this section a “directed path.”

1.3.1 Single-source shortest path algorithm

Input: A directed graph G = (X,U) where X = {1,2,...,n}. To each arc
is associated a non-negative weight. We interpret the vertices of the graph G
as different cities and the weight of an arc u = (x,y) as the cost of traveling
from the city x to the city y along the arc u. The weight function on the set of
arcs is denoted by w, that is, the weight of the arc u = (z,y) is w(z,y). The
vertex 1 is designated as the source or origin. This vertex 1 may be interpreted
as the capital city.

If there is no arc from a vertex s to a vertex ¢, we set the weight of the
arc (s,t), w(s,t) = oco. In the computer implementation of the algorithm,
oo will be replaced by a large number which cannot be a legal cost of traveling
between two cities. For example, if the weights are non-negative integers, we
may replace oo by INT_MAX in the language C or maxint in the language
Pascal.

Output: The cheapest cost of traveling from the vertex 1 to all other vertices
of the graph is along a directed path. The cost of a directed path is the sum
of the costs of its arcs (see graph G of Figure 1.14).

The cheapest dipath from the vertex 1 to the vertex 5 is (1,2,4,5) and its
cost is 5 + 4 + 3 = 13 and the cheapest path from the source vertex 1 to the
vertex 3 is the path (1,3) which consists of the directed edge 13 and its cost
is just 3.

Algorithm: To explain the algorithm, we need a few ideas. A vertex x of a
directed graph G, is called a root of G if there is a path from the root vertex
to all other vertices of G. A root may not always exist.

An arborescence is a graph possessing a root and having no cycles. Note
that the root of an arborescence is unique. The following figure is a spanning
arborescence of the graph of Figure 1.14 (see Figure 1.15). In fact, it is a
“minimum weighted” spanning arborescence.)

FIGURE 1.14: A directed weighted graph G.
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FIGURE 1.15: A minimum spanning arborescence A of Figure 1.14.

In an arborescence, there is a unique path from the root to all the other ver-
tices. In fact, Dijkstra’s algorithm constructs a spanning arborescence of the
given graph G having its root as the source of the graph GG and its unique path
from the root to a vertex x as a cheapest path in the graph G. In the algorithm,
we use the variable S denoting the set of vertices of a cheapest arborescence
under construction. (Note that in Prim’s algorithm also the variable S denotes
the set of vertices of a minimum spanning tree under construction.)

The variable S satisfies the following two properties, which can be consid-
ered as loop invariant:

1. For all vertices s in the set S, a cheapest cost of a path (also called
shortest path) from the source 1 to s is known and this path lies entirely
in the set S, that is, all the vertices and the arcs of a shortest path
from 1 to s lies fully in S. This condition implies that the set S must
contain the source vertex 1. In fact, the assignment S := {1} is used as
initialization of the set S.

2. For a vertex t outside of the set S (if such a vertex exists), a path relative
to the set S is a path from the source vertex 1 to the vertex ¢ such that
all the vertices of this path lie completely in the set S but for the last
vertex t. We shall now state the second property of the set S in terms
of paths relative to the set S. For each vertex ¢ outside of the set S, a
shortest path from 1 to t relative to S lies completely in the set S except
for the final vertex t.

Interpretation of two properties of S when S equals the whole of the vertex set
X of G:
According to the first property of S = X, a shortest path from the origin
vertex 1 to any vertex x of the graph is known, and we have solved the
problem! Note that the second property is not applicable, since X \ S = 0.
Hence, the terminal condition of the algorithm is S = X.

In the Dijkstra’s algorithm, the following elementary observation is used:

A subpath of a shortest path is a shortest path!
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Note that the above observation will not be valid if the weights of the arcs
are not non-negative numbers. Another property on which Dijkstra’s algo-
rithm works is the following: This is the point where the algorithm becomes
greedy!

Consider a shortest path P among the shortest paths relative to the set
S. Then, the path P is a shortest path in G itself.

Let us write Dijkstra’s algorithm in pseudo-code. The weighted graph is
represented by its weighted adjacency matrix W = (w;;)nxn Where

0 ifi=j
w;; = § weight of the arc ¢j if 75 is an arc
00 otherwise.

The vertex set is X = {1,2,...,n}. We use the array D where

Dli] = The cost of the shortest path from the vertex 1 toiif i € 5,
~ | The cost of the shortest path relative to S if i ¢ S.

Note that we obtain the final result in the array D as soon as S = X. We use
the types, Matrix and T-Array where Matrix is a two-dimensional n x n array
of real numbers, and T-Array is a one-dimensional array of n numbers in the
algorithm:

procedure Dijkstra( var W : Matrix; var D : T_Array);
(*x Dijkstra takes as input a matrix of non-negative weights
and it returns an array D of cheapest cost paths.x*)
var S : set of vertices; x, y : vertex;
begin(* Dijkstrax)
(* Initialization of S and Dx)

S :={1};
D[1] := 0;(* The cheapest cost from 1 to itself of 0%)
for i := 2 to n do

D[i] := w(1, i);(* The shortest path relative to S = {1}
is the arc (1, i). S verifies the two properties *)
(* iteration *)
while S not equal to X do
begin (* while *)
(1) choose a vertex y in X - S such that D[y] is minimum
(x y is called the pivot vertexx)
(2) add y to the set S;(* The shortest path among the
shortest paths relative to S is a shortest path in G.
This is the statement where "greedy" comes into
play *)
(3) for each x in X - S do
(4) D[x] := min( D[x], DIyl + w(y, x));
(* This "for" loop is the crux of the Dijkstra’s
algorithm.
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In this loop, we adjust the values of D[x] to take
into account the vertex y just added to S, to preserve
the second property of the set S*)
end; (*whilex)
end; (*Dijkstrax)

Remark 1.1. The vertex y in Dijkstra’s algorithm is called the pivot vertex.
Of course, the pivot changes at each iteration.

Let us now execute Dijkstra’s algorithm on the graph of Figure 1.14. The
following Table 1.4 traces the different steps of the algorithm.

The final result is found in columns 5, 6, 7, 8, 9 of iteration number 5 in
Table 1.4.

We observe the following properties of Dijkstra’s algorithm:

1. The vertices are added to the set S in order of their increasing costs
of D.

2. Once a vertex x is added to the set S, the value of D[z] will remain
constant till the end of the algorithm. Hence the set S can be interpreted
as the set of Stabilized vertices.

3. The statement number (4) of the algorithm can be described as follows:
Can we reduce the value of D[xz] for each z in the set X \ S by using
the newly added vertex y to the set S, that is, is there a cheaper path
relative to S from 1 to x by using the vertex y as the next-to-last vertex
in the path? We shall call the vertex y as the pivot vertex. Of course,
the pivot vertex changes at each iteration.

Complexity of Dijkstra’s algorithm:
The initialization of the set S takes O(1) time and the initialization of the
D array costs O(n) time. Hence the total cost of the initialization step is O(n).

TABLE 1.4: Execution of Dijkstra’s algorithm on the graph of

Figure 1.14
Iteration S# X y S« Su{y} D[2] D[3] D[4] D[5] DJ6]
number

O(Initial) ~ — - 1} 4 3 11 oo T
1 yes 3 {1,3} 4 3 10 00 7
2 yes 2 {1,3,2} 4 3 9 00 6
3 ves 6 {1,3,2,6) 4 3 9 14 6
4 ves 4 {1,3,2,6,4} 4 3 9 13 6
5 ves 5 {1,3,2,6,45 4 3 9 13 6

Exit loop no
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The “while” loop is executed exactly n — 1 times, since the number of
vertices in the set S is incremented exactly by one at each iteration and the
loop terminates as soon as |S| = n. Statement (1) requires O(n) steps (finding
a minimum in an array of n integers requires O(n) steps) and similarly, the
“for” loop demands O(n) time. Hence, the complexity of the algorithm is
O(n) + (n — 1)O(n) = O(n?). (Recall that while computing the complexity
of an algorithm, we can ignore the lower-order terms and the multiplicative
constants.)

Proof of Dijkstra’s algorithm:

Proof. We have to prove the following two properties (the loop invariant) of
the set S at the beginning of the “while” loop of the algorithm:

1. For each vertex, s in S, the cost D[s] of a cheapest path from the vertex 1
to the vertex s is known, and this path lies entirely within the set S.

2. For all ¢ outside of the set S, the cost D]t] of the cheapest path relative
to S is known.

Proof proceeds by the induction on the number of elements of S.

Basis. |S| = 1. If S = {1}, then clearly, the cheapest path from 1 to itself has
no arcs and hence its cost is zero. Further, to each vertex t outside of the set
S, a path relative to S is simply an arc (1,t) and its cost is w(1,t). Thanks to
the initialization of S and the array D, the two properties of S are satisfied.

Induction hypothesis: Suppose the two properties for the set S with |S| =
k < n, that is, the properties are true after (k — 1)th iteration. We shall prove
the two properties after performing the kth iteration.

During the k-th iteration, the pivot vertex y is added to the set S. We claim
that D[y] is the cost of the shortest dipath from 1 to y. Otherwise, there is
a shorter dipath P to the vertex y. By the choice of the pivot vertex y, this
path P must have a vertex # y outside of S (see Figure 1.16).

In Figure 1.16, illustrating Dijkstra’s algorithm, the wavy lines represent
directed paths. The directed path P starts from the source vertex 1 passing

FIGURE 1.16: A step in the proof of Dijkstra’s algorithm.
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through the vertex s, then goes directly to the vertex z, then again goes
possibly inside the set S and finally reaching the vertex y. The directed path
from the vertex 1 to the vertex y relative to the set S goes through the vertex ¢
and then directly reaches the vertex y from the vertex ¢ through an arc.

Let z be the first vertex of path P outside of S. Then, the subpath P(1, z)
of P from 1 to z is a path relative to S and its cost D][z] is clearly strictly less
than the length of the path P which is strictly less than the number DJy], by
induction hypothesis. This is impossible since D[y] was a minimum among all
vertices outside of the set S during the (k+1)-th iteration (statement number
(1) of the procedure Dijkstra). Note that we use here the fact that the costs
of the arcs are non-negative numbers. Otherwise, our argument will not be
valid. Hence the first property of the set S after the iteration number k£ + 1.

The second property of S remains true even after adding the pivot ver-
tex, y, because of statement number (4) of the procedure Dijkstra of Section
1.3.3, which adjusts the cost of each Dx], x € X \ S to take into account the
arrival of the pivot vertex into the set S. U

Recovering paths in Dijkstra’s algorithm:

Dijkstra’s algorithm finds the cost of a cheapest path from the source vertex 1
to all vertices of a weighted digraph. We are now interested in finding paths
realizing the minimum costs.

An arborescence can be conveniently represented by an array “dad” where
dad|[i] gives the father of the vertex i. Stated differently, dad[i] = j if and only
if (i,7) is an arc of the arborescence. Initially, the paths relative to S = {1}
are the arcs (1,4). Hence, we add the following loop in the initialization part:

for i := 2 to n do
dad[i] := 1; (* The vertex 1 is the root of the arborescence
and hence has no dad*)

When and where to update the array dad?

Consider statement number (4) of Dijkstra’s algorithm. In this assignment, if
Dly] + w(y, x) < Dlz], that is, if we could use the pivot vertex y as the next-
to-last vertex to reach z via a path from the source vertex 1, then we update
dad[z] := y. Hence, we assign and replace the “for” loop numbered (3) and the
statement numbered (4) of the procedure Dijkstra 1.3.1 by the following loop:

for each x in X - S do
if D[y] + w(y, x) < D[x]
then
begin
D[x] := D[yl + w(y, x);
dad[x] := y;(* update dad of x*)
end;
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Once we have recorded the dads of different vertices, a shortest path from the
vertex 1 to any vertex ¢ can be printed by “climbing” up the arborescence
from the vertex i till the root 1. The following procedure prints the vertices
of a shortest path from the vertex 1 to the vertex i. The vertices which are
encountered while climbing up the tree will be pushed into the array a and
finally will be popped to get the right order of vertices on the path from the
vertex 1 to the vertex 1.

procedure path ( i : vertex);

var a : arrayl[vertex] of vertex;
k : integer;

begin(* pathx)

k :=1;

while i < > 1 do

begin
alk] :=i; k := k + 1;
i := dad[i];

end;

alk] := 1;

(* print the vertices of the pathx*)
for i := k down to 1 do
write(al[il, ° ?);
end; (* path *)

We shall now write a computer program in C to implement Dijkstra’s
algorithm. The given weighted graph is represented by its cost matrix M
where MT[i][j] is the cost of the arc/directed edge (i,7). If there is no edge
between the vertices ¢ and j, we set M|i|[j] = co. In C, co can be replaced by
the constant INT_M AX if costs of the edges are “small” integers. In fact, in
a computer implementation of Dijkstra’s algorithm, oo is replaced by a cost
which cannot be a “legal” cost of any directed edge. We define two arrays
D (for Distance) and S. D[i] represents the minimum cost of a directed path
from the root vertex 1 to the vertex ¢ with respect to the set S. S[i] = 1 if
i€ Sand S[i]=0if ¢ ¢ S. dad[i] is the father/mother of the vertex i in the
arborescence under construction.

Dijkstra’s algorithm in C:
#include<stdio.h>

#include<stdlib.h>

#include<limits.h>

#define nmax 10//maximum vertices

int M[nmax] [nmax];//cost matrix

int n,m;//number of vertices and arcs
void dijkstra(){

int D[n+1],S[n+1],dad[n+1],stack[n+1];
//S[il=1 if i in S, otherwise S[i]=0.




Graph Algorithms I

31

//D, the distance array Dijkstra
int p,i,j,min,k,head=0;//p, the pivot vertex
// in the pseudo-code we have used y for pivot instead of p
S[11=1;//arborescence consists of only one vertex
for (i=2; i<=n;i++)

{
S[i]=0;
D[i]=M[1][i];
dad[i]=1;
}
for (i=2;i<=n;i++)
{
k=1;//find the least vertex k outside S
while (S[++k] !=0);
p=k;min=D[p];
for (j=k+1;j<=n;j++)
if (s[j1==0)
if (D[j1<D[pD)
{p=3;
min=D[p];
}
Slpl=1;//add p to S
//update arrays D, dad
for (j=2; j<=n;j++)
if (8[j]1==0)
if ((D[p]!=INT_MAX) && (M[p]l[j] !=INT_MAX))
if (D[p] +M[p]l [j1< D[31)
{ D[jl= (DIpl+Mlpl[j1);
dad[jl=p;
3}

for (i=2;i<=n;i++)
{printf("%5d4d ",D[il);
¥

//print a shortest path from 1 to a vertex i
printf("enter a vertex to which you want to print a minimum
path\n");
scanf ("%d",&i) ;

//climb the arborescence from i to the root 1
//and stack the vertices encountered
while(i!=1)

{

stack[++head]=1;

i=dad[il;}
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stack[++head]=i;//i=1
//print the path from 1 to i
printf("the path is ");
for(i=head;i>0;i--)

printf ("%d ",stack[i]);

}
void graph(){

int 1i,j,x,y,cC;
printf("enter n",\n);
scanf ("%d",&n) ;

printf ("\n");
printf("enter m",\n);
scanf ("%d",&m) ;

for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
M[i] [j1=INT_MAX;
if (i==3)
M[i] [j1=0;
}

for(i=1;i<=m;i++)
{
printf ("enter the arc %d",i) ;
scanf ("%d %d",&x,&y) ;
printf("enter the cost %d",i) ;
scanf ("%d",&c) ;
M[x] [yl=c;
133
void print_graph()
{

int 1i,j;

for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf("%5d ",M[i]1[j1);
printf("\n\n\n");
}
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int main()

{
graph(Q) ;
print_graph();
dijkstra();
return O;

}

1.4 Dijkstra’s Algorithm for Negative Weighted Arcs

Dijkstra’s algorithm does not work if some of the arcs are associated with
negative weights. We shall consider Figure 1.17.

Clearly, in Figure 1.17, the cheapest cost of a path from the source 1 to the
vertex 3 is 3 — 2 = 1. But, we shall see that Dijkstra’s algorithm as presented
above will give the answer 2, which is false. This is an example where the
greedy method does not always work!

Let us execute the algorithm on the graph of Figure 1.17. The following
table traces the different steps during execution. (Table 1.5).

The result of the execution can be read from columns 5 and 6 of the
iteration number 2. Column 6 of the iteration number 2 says that the cost of
a shortest path from the vertex 1 to the vertex 2 is 2, which is not correct.

FIGURE 1.17: Illustration of Dijkstra’s algorithm for negative weighted
arcs.

TABLE 1.5: Execution of Dijkstra’s algorithm on

Figure 1.17
Iteration S#X y S SU{y} D[2] DJ3]
number
0(Initial) - - (1} 3 2
1 yes 3 {1,3} 3 2
2 yes 2 {1,3,2} 3 2

Exit loop no
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Modification of Dijkstra’s algorithm for negative weight arcs:
Consider a directed graph with weight (possibly negative) associated to each
arc; however, the graph has no negative circuits, that is, the graph does not
possess a circuit with the sum of the weights of its arcs < 0.

Note the following fact:

Fact 1.1. In the case of graphs with negative-weight arcs, the “greedy” state-
ment that the shortest path among the shortest paths relative to S is a shortest
path in G is no longer valid!

The following algorithm computes the cost of a shortest path from the
source vertex 1 to all other vertices of the graph. As in Dijkstra’s algorithm
for graphs with non-negative weights, we use the variables S, the array D,
and the variable vertices z, y and the integer variable 1.

procedure Dijkstra( var W : Matrix; var D : T_Array);

(* Dijkstra takes as input a matrix whose entries can be < 0
but no negative cycles and it returns an array D
of cheapest cost paths.*)

var S : set of vertices; x, y : vertex;

begin(* Dijkstrax)
(* Initialization of S and Dx)

s := {1}
D[1] := 0;(* The cheapest cost from 1 to itself of 0x)
for i := 2 to n do

D[i] := w(1, i);(x The shortest path relative to S = {1}
is the arc (1, i). *)

(* iteration *)

while S not equal to X do

begin (* while *)
(1) choose a vertex y in X - S such that D[y] is minimum;
(2) add y to the set S;
(3) for each x in X with D[x] > D[y] + w(y, x) do

begin(* for *)

(4) DI[x] := DIyl + w(y, x);
(5) S := 8 - {x};(* x not stabilized. so delete x
from S *)

end; (x for *)
end; (xwhilex)
end; (* Dijkstra *)

Let us execute the negative-weight version of Dijkstra’s algorithm on the
graph of Figure 1.17. The following table illustrates the different steps during

execution (Table 1.6).
The final result of the execution is found in columns 5 and 6 of the last

iteration number 3, which is the correct answer.
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TABLE 1.6: Execution of improved Dijkstra’s algorithm on

Figure 1.17
Iteration S#X y S+ SuU{y} DJ[2] D[3] S S\{z}
number
0(Initial) - - {1} 3 2
1 yes 3 {1,3} 3 2 {1,3}
2 yes 2 {1,3,2} 3 1 {1,2}
3 yes 3 {1,2,3} 3 1 {1,2,3}
Exit loop no

1.5 All-Pairs Shortest Path Algorithm

In this section, we may consider without loss of generality directed graphs
with no multiple arcs, that is, 1-graphs, without loops. We study all-pairs
shortest path algorithm due to Floyd. Floyd’s algorithm finds the cost of a
cheapest path between any two vertices of a directed graph with a non-negative
weight associated to each arc. We use “cheapest cost path” as synonym for
the “shortest path.” “Path” always means in this section “directed path.”

Input: A directed graph with a non-negative weight associated to each arc.
As in Dijkstra’s algorithm, the vertices represent the different cities and the
weight of an arc (4, j) represents the cost of traveling from the city ¢ to the city
j along the arc (i, 7). As in Dijkstra’s algorithm, the given graph is represented
by a weighted matrix W = (w;;)nxn as follows:

0 ifi=j
Wi; = { 00 if 77 is not an arc
weight of the arc ij otherwise

In a computer program implementing Floyd’s algorithm, the symbol co will be
replaced by a large number which cannot be a legal cost of traveling from city ¢
to city j. For example, if the weights of arcs are integers, we may replace the
symbol co by INT_MAX in the language C or maxint in the language Pascal.
We assume that the vertex set X = {1,2...,n}.

Output: The cheapest cost of a directed path from city ¢ to city j for all
1 <i,7 < n. The cost of a directed path is the sum of the cost of its arcs.

Algorithm 1.1: The first algorithm which comes to our mind is to invoke
Dijkstra’s algorithm n times for an n vertex directed graph by varying the
source vertex among all vertices of the graph.

The complexity of calling n times Dijkstra’s algorithm is nO(n?) = O(n?3),
since the complexity of Dijkstra’s algorithm is O(n?).

We will now see one direct algorithm to compute the shortest directed
path between any two vertices of a directed weighted graph.
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Algorithm 1.3 (Floyd’s Algorithm). For a directed path from the vertex
1 to the vertex j, the set of vertices of the path other than the initial vertex of
the path i and the final vertex of the path j are called its intermediate vertices.

The algorithm constructs a sequence of n + 1 matrices My, My, ..., M,

where in the matriz My, = (m(-k)

i Vnxn where m( ) — The cost of a shortest
directed path from the vertex i to the vertex j not passing through any inter-
mediate vertices k+1,k+2,...,n, that is, the cost of a cheapest dipath from i

to j where the set of its intermediate vertices is a subset of the set {1,2,...,k}.

The subscript k£ in the matrix M} represents the matrix obtained after k

iterations and the superscript k in the entry m( ) is the (i,7) entry of the
matrix M, after k iterations. These subscripts and superscripts will not be
present while expressing Floyd’s algorithm, and we will see that we can work
with only one copy of the matrix M.

With this definition of My for 0 < k < n, let us interpret the matrices M
and M,,.

Interpretation of Mj:
My = (mgg))nxn, where m( ) is the weight of a shortest dipath from the ver-
tex ¢ to the vertex j not passmg through any intermediate vertices 1,2, ...,n.
Since the vertex set of the graph is X = {1,2,...,n}, this means that m(o)
is the weight of the shortest dipath not using any intermediate vertices at
all, that is, m(J) is the weight of (4,j), if (i,7) is an arc. Hence, My = W,
the weighted adjacency matrix. This assignment is used as initialization in
Floyd’s algorithm.

Interpretation of M,,:
By definition, M,, = (mgl)) where m( ") is the weight of a shortest path from
the vertex i to the vertex j mot passmg through any intermediate vertices of

the set {n+1,n+2,...}. But this set is the empty set (), because the vertex set

of the graph is X = {1,2,...,n}. Hence, m( R simply the cost of a shortest

dipath whose internal Vertlces are from the set of vertices {1,2,...,n} of the

graph G. This means that mg J ™) is the cost of a shortest dipath in the graph G.

Therefore, the matrix M,, is the desired result of the algorithm.

We shall now see how to find the matrix My = (m; (k )) given that the

matrix My_; = (m(;C b

to the k-th iteration?

To do this, we again exploit the definition of the matrices Mjy_1 and Mj.
Consider a shortest cost path P,_1)(i, k) from i to k not passing through any
intermediate vertices k,...,n and a shortest cost path Py,_q)(k, ) from the
vertex k to the vertex j not passing through any intermediate vertices k, . .., n.
For the path P;_1)(i, k), k is the final vertex and for the path P,_1)(k, j) the
vertex k is the initial vertex. The concatenation or juxtaposition of the dipaths
P—1y(i, k) and P,_1)(k, j) taken in this order which gives us either a directed
elementary path from ¢ to j with k as an intermediate vertex (see Figure 1.18)

), that is, how to move from the (k — 1)-th iteration
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FIGURE 1.18: A step illustrating Floyd’s algorithm.

or there is no directed elementary path (but there will be a simple directed
path but not elementary, since there is a directed circuit passing through & in
the concatenation) from vertex i to vertex j passing through the vertex k.

If the dipaths P(,_1)(i, k) and Py,_1)(k,j) are internally vertex-disjoint,
then their concatenation will still give us a directed path from the vertex 4
to the vertex j for which the set of intermediate vertices is a subset of
{1,2,...,k}, that is, this concatenated path includes the vertex k as an inter-
mediate vertex and other intermediate vertices p satisfy the inequalities 1 <
p < k—1. Hence we derive the following formula to compute the entries of the

(k)) in terms of the entries of the matrix Mj_; = (m(k_l)).

matrix M, = (mij ij

Ef_l),mgz—l) + mg;_l)) , for 1<4,j<n.

mz(»f) = min (m
In words, the above formula can be stated as follows:

The cost of a shortest path from the vertex i to the vertex j not passing
through any intermediate vertices higher than k is the minimum of the cost
of a shortest path from ¢ to j not passing through any intermediate vertex
higher than k — 1, and the cost of a shortest path from vertex i to k not
passing through any intermediate vertices higher than k£ — 1, plus the cost
of a shortest path from £ to j not passing through any intermediate vertices

higher than k — 1.
(k) _ (k=1)

By setting ¢ = k in the above formula, we have my; = My since
m,(ﬁ;l) = 0. Similarly, by setting j = k in the formula, we get ml(.,lj) = mz(-llzfl).

This means that during the kth iteration of Floyd’s algorithm, that is, during
the computation of the entries of the matrix My, the entries of the kth row
and the entries of the kth column of the matrix Mj_; will remain unchanged.
Hence, we can carry out our computation in Floyd’s algorithm with only one
copy of the matrix M.

The vertex k during the kth iteration is called the pivot vertex. This vertex
k is equivalent to the pivot vertex y in Dijkstra’s algorithm. We now write the
algorithm:

procedure Floyd(var W, M : Matrix);
(*x Floyd takes as input parameter a matrix W which is the
weighted adjacency matrix of a directed weighted graph. The
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procedure returns as output parameter the matrix M of the cost
of a shortest directed path of the graph G. *)
var i, j, k : integer; (x i, j, k for the loops *)
begin (x Floyd *)
(* Initialization of M = W *)
for i := 1 to n do
for j :=1 to n do
M[i, j1 := WIi, j1;
[* iteration *)
for k := 1 to n do
(* compute the matrix M sub k *)
for i :=1 to n do
for j := 1 to n do
if M[i, k] + M[k, j]1 < M[i, j]
then M[i, j] := M[i, k] + M[k, jl;
end; (* Floyd *)

The complexity of Floyd’s algorithm:
The initialization part has two nested loops, and each loop is executed exactly
n times. Hence, the number of steps needed for the initialization part is O(n?).
The iteration part is constituted by three nested loops and the conditional
statement inside obviously requires O(1) step. Therefore, the iteration part
requires O(n?) steps.

Hence, the time taken by Floyd’s algorithm is O(n?) + O(n3) = O(n?).

Proof of Floyd’s algorithm:

Proof. The proof is by induction on k. Base: k = 0. By the definition of the
matrix My, we have the equality My = W, where W is the weighted adjacency
matrix of the given graph. Hence, we have correctly initialized the matrix M.
(k—l))

Induction Hypothesis: Suppose the entries of the matrix My_; = (mij

satisfy the following property:
ml(-]-cfl) = The cost of a cheapest path from the vertex ¢ to the vertex j
not passing through any intermediate vertex > k — 1, for 1 <i,5 < n.
We shall show that the entries of the matrix Mj, = (mgf)) obtained after k

iterations are such that mgf) is equal to the cost of a cheapest path from the

vertex ¢ to the vertex j not passing through any intermediate vertices > k.
The induction step follows because of the fact that the algorithm simply
implements the formula

(k) _ - (k—1) (k—1) (k—1)
m;;” = min (mij s M —|—mkj )

Thus, the proof is complete. ]
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FIGURE 1.19: A digraph on which Floyd’s algorithm is executed.

Let us execute Floyd’s algorithm on a given graph.

39

Example 1.3

Execution of Floyd’s algorithm:
Consider the graph of Figure 1.19.
The graph is represented by the weighted adjacency matrix W where

1 2 3 4 5

1 /0 7 10 oo o0
2100 0 2 o 4
W=3]lo0 o 0 oo 8
4100 o0 8 0 o0
5\3 o oo 3 0

The indices in the entry represent the last iteration number that changed
the entry. These indices are useful in finding the paths realizing the min-
imum costs. Initially, My = W. Can we use the vertex 1 as an interme-
diate vertex to reduce the entries of the matrix M;?

Iteration 1:

0 7 3 00 o0
oo 0 2 oo 4
M, = |0 o0 0 oo 8
o0 0 8 0 oo
3 10, 131y 3 0

Can we use some vertices of the set {1,2} as intermediate vertices to
reduce the entries of the matrix M;?
Iteration 2:

0 7 95 oo 11p
o 0 2 oo 4
My = |0 o0 0 oo 8
o0 00 8 0 oo
3 10, 129 3 0
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Can we use some vertices of the set {1,2,3} as intermediate vertices
to reduce the entries of the matrix Msy?
Iteration 3:

0 7 95 oo 1lg
o 0 2 oo 4
Ms= oo o0 0 oo 8
00 00 8 0 163
3 10, 129 3 0

Can we use some vertices of the set {1,2,3,4} as intermediate ver-
tices to reduce the entries of the matrix Ms3?
Iteration 4:

0 7 95 oo 119
o 0 2 oo 4
My= oo o0 0 oo 8
00 00 8 0 163

3 10, 11, 3 O

Can we use some vertices of the set {1,2,3,4,5} as intermediate vertices
to reduce the entries of the matrix M,?

Iteration 5:
0 7 99 145 119

75 0 2 75 4
My = [115 18 0 115 8

195 265 8 0 163

3 10, 114 3 0

The final result is made available by the entries of the matrix Ms.

Recovering paths in Floyd’s algorithm:

Let us again refer to Example 1.3. As we have already remarked, the subscripts
in the entries of the final matrix represent the last iteration number which has
modified the corresponding entry. We shall denote the entries corresponding
to the subscripts of the final matrix M5 by INTER (for intermediate vertex)
where

0 if there is no subscript in the entry (i,j) of Mj

INTER[, j] = {subscript of the entry (i,j) of M5

With this definition, the matrix INTER of the graph Figure 1.19 is given by

INTER =

O Ot Ot ot O
= Ut ot O O
_ O O O N
O O Ot Ot Ot
O WO O
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This matrix INTER will be used to recover paths realizing the cheapest costs.
Note that if an (4, j) entry of the matrix INTER is 0, then the path realizing
the minimum cost from the vertex ¢ to the vertex j is just the arc (4, j), with
no intermediate vertices.

For example, the cost of a cheapest path from the vertex 4 to the vertex
2 is the (4,2) entry of the matrix Mj;, which is 26. What are the intermediate
vertices of a path from 4 to 2 realizing this cost 267 To find the intermediate
vertices, we read first the (4,2) entry of the matrix INTER which is 5. This
means that 5 is an intermediate vertex between 4 and 2. Now we read the
entry (4,5) of the matrix INTER to find an intermediate vertex between 4
and 5 which is 3. Hence, 3 is an intermediate vertex between 4 and 5. Next,
we read the entry (4,3) which 0. This means that there is no intermediate
vertex between 4 and 3. We read the entry (3,5) which is again 0. We read the
entry (5,2) which is 1. This means that 1 is an intermediate vertex between
5 and 2. Now the entries (5,1) and (1,2) are 0 meaning that no intermediate
vertices are found between 5,1 and 1,2.

Hence, the intermediate vertices of a cheapest path from 4 to 2 are 3, 5, 1
and the cheapest cost path is (4, 3, 5, 1, 2).

Let us now write an algorithm to find the matrix INTER. To do this, we
have only to initialize the matrix INTER and update the entries of INTER
at the appropriate point in Floyd’s algorithm.

procedure Floyd( var W, M, INTER : Matrix);

(* Floyd takes as input parameter a matrix W which is the
weighted adjacency matrix of a directed weighted graph G. The
procedure returns as output parameters the matrix M giving the
cost of a shortest directed path of the graph G and the matrix
INTER with its (i, j) entry, the last iteration number k which
has changed the (i, j) entry of M *)

var i, j, k : integer; (x* i, j, k for the loops *)

begin (* Floyd *)

(* Initialization of M = W and INTER = 0 *)

for i := 1 to n do
for j := 1 ton do
begin

MIi, 31 := Wi, j1;
INTER[i, j] := O;
end;
(* iteration *)
for k := 1 to n do
(* compute the matrix M sub k *)
for i := 1 to n do
for j := 1 to n do
if M[i, k] + M[k, j] < M[i, j]
then
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begin(* we use k to reduce the cost*)
M[i, j1 := M[i, k] + M[k, jl;
INTER[i, j] := k;(* update INTER[i, jl*)
end;
end; (* Floyd *)

We shall now write a recursive algorithm to print the intermediate vertices
of a shortest path from the vertex i to the vertex j using the matrix INTER.

procedure interpath(i, j : integer);
(* print_path writes the intermediate vertices of a shortest path
from the vertex i to the vertex j using the matrix INTER *)
var k : integer;
begin
k := INTER[i, jl;
if k = 0 then
return;
interpath(i, k);(* recursive call writing intermediate vertices
between i and k *)
write(k, ’ ’);
interpath(k, j);(* recursive call writing intermediate vertices
between k and j *)
end;

The following example illustrates the call of procedure “interpath(4, 2)”
on the graph Figure 1.19 with the help of the matrix INTER.

Example 1.4

Hand simulation of the procedure call “interpath(4, 2)”:
(see the tree of Figure 1.20).

The call interpath(4, 2) results in two calls: interpath(4, 5) and inter-
path(5, 2).

The call interpath(4, 5) leads to two calls interpath(4, 3) and inter-
path(3, 5). The calls interpath(4, 3) and interpath(3, 5) lead to no calls,
since INTER[4, 3] = INTERJ[3, 5] = 0. This results in printing of the
vertices : 3, 5

Now interpath(5, 2) calls interpath(5, 1) and interpath(1, 2).
The calls interpath(5, 1) and interpath(l, 2) lead to no calls, since
INTER/[5,1] = INTER]L, 2] = 0. This leads to printing of the vertex: 1.

Hence, the intermediate vertices of a shortest path from the vertex
4 to the vertex 2 are 3, 5, 1.
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INTERPATH(4,2)

INTERPATH(4,5) INTERPATH(S,2)

INTERPATH(4,3) INTERPATH(3,5) INTERPATH(S,1) INTERPATH(1,2)

FIGURE 1.20: A tree illustrating different recursive call interpath(4,2).

1.5.1 An application of Floyd’s algorithm

Radius, diameter, and center of a graph:

Consider a directed graph G = (X, U) with a non-negative weight associated
with each arc. The distance between two vertices x and y denoted by d(z,y)
is the cost of a shortest directed path from the vertex = to the vertex y. The
cost of a directed path is the sum of the cost of its arcs. If there is no path
from z to y, we set d(x,y) = oco.

The eccentricity e(v) of a vertex v is the maximum of the lengths of the
paths from the vertex v to any vertex of the graph. Symbolically, e(v) =
max(d(v,w) | w € X).

The radius of the graph G, denoted by r(G), is the minimum taken over
all eccentricities of the vertices of G, that is, r(G) = min(e(v) | v € X). The
diameter d(G) of G is the mazimum of all eccentricities of the vertices, that
is, d(G) = max(e(v) | v € X). In other words, the diameter of a graph G is
the maximum of the distances between any two vertices of G.

Finally, the center of the graph G is the set of all vertices whose eccen-
tricities coincide with the radius of the graph G. These notions arise from
the telecommunication problems. The graph of Figure 1.21 illustrates these
notions.

FIGURE 1.21: Graph illustrating eccentricities, radius and diameter.
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TABLE 1.7: Eccentricity table of graph of Figure 1.21

5
[3]

1 2 3 4
e[5]9]7[4

The eccentricities of different vertices of the graph of Figure 1.21 are given
by the Table 1.7

Example 1.5:

Radius, Diameter and Center of graph of Figure 1.21.
The graph is represented by its weighted adjacency matrix W where

3
00
3
0
00
2

w o wy w o

2 5
2 00
0 00
%) o0
00 2
2 0

S

I
TU R W N =
— 888 o~

Then, we apply Floyd’s algorithm to the matrix to obtain the matrix
M where

1 2 3 4 5

1/0 2 5 5 o

219 0 3 6 8
M=3]16 70 3 5
413 4 4 0 2

5\1 2 2 3 0

Then, the eccentricity e(i) of the vertex ¢ is simply the mazimum of
the coefficients of the ith line of the matrix M. Finally, the radius of
the graph is the minimum of the eccentricities and the diameter is the
mazximum of the eccentricities. In our example, the radius of the graph
is 3 and the diameter is 9. The center of the graph is the set {5}.

Let us now write an algorithm to the radius, diameter and the center of a
graph.

Algorithm to find the radius, diameter and the center of a given
graph G:

Floyd(W, M); (* call to Floyd’s algorithm *)

(* now M, the cheapest cost matrix of G *)

for i:= 1 to n do

begin
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(x find el[il *)

e[i] := M[i, 1];(* initialization of e[i] *)
(* iteration *)
for j := 2 ton do

if e[i] < M[i,j] then
e[i] := M[i,j];
end;
(* We have found the eccentricity table e *)
(* Initializing r and d *)
r := e[1]; d := e[1];
(* iteration *)
for i:= 2 to n do
begin
if r > e[i] then
r := el[i];
if d < e[i] then
d := el[i];
end;
(* finding the center Cx)
(* initialization of Cx*)
for i: = 1 to n do
C[i] := 0; (* C is empty *)
(* iteration *)

for i := 1 to n do
if r = e[i] then
C[i] := 1;

(* print center *)
(*C[i] = 1 if i in C, O otherwise *)
for i := 1 to n do

if C[i] =1 then write (i, ’ ’);

The complexity of the algorithm for finding the radius, diameter,
and the center:
A call to Floyd requires O(n?®) steps. We have to scan every entry of the
matrix M to find the radius and diameter. This needs O(n?) steps. Finally
finding the center requires only O(n) steps as it scans the array e.

Hence the complexity is O(n®) + O(n?) + O(n) = O(n?).

1.6 Transitive Closure of a Directed Graph

Sometimes, we may be interested in knowing if there is a directed path
from the vertex i to the vertex j of a directed graph. Transitive closure of the
graph helps us answer this question directly.
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FIGURE 1.22: A graph to illustrate transitive closure.

G+:

FIGURE 1.23: The transitive closure of the graph of Figure 1.22.

Consider a directed graph G = (X,U). The transitive closure of the
graph G denoted by G is a graph whose vertex set is the same as that of
the graph G, that is, X, and two vertices 7 and j (not necessarily distinct)
of the transitive closure are joined by an arc (7,j) if there is a directed path

of length at least one in the original graph G.

Example 1.6

where
1 2 3 4 5
1/0 1 0 0 O
210 0 1 1 0
M=3]10 0 0 0 0
410 1 0 0 1
5\1 0 0 0 0

Transtive closure of a graph: Consider the graph G of Figure 1.22.
This graph is equivalently represented by its adjacency matrix M
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The transitive closure of the graph of Figure 1.22 is drawn in Figure
1.23.

The adjacency matrix of the transitive closure of the graph G is the
matrix T'M where

— = O = =
— = O = =N
—_ = O = =W
— = O
— = O = = Ot

For example, the (4,4) entry of TM is 1 because there is a directed path
from the vertex 4 to itself, namely (4,5, 1,2,4), the (5,3) entry of TM
is one because of the directed path (5,1,2,3), whereas the (3,1) entry
of T'M stays as 0 because there is no directed path in the graph G from
the vertex 3 to the vertex 1.

1.7 An O(n®) Transitive Closure Algorithm Due to
Warshall

Input: A directed graph G = (X,U) with X = {1,2,..., n}. The graph is
represented by its adjacency matrix M.

Output: The adjacency matrix T'M of the transitive closure of the graph G.

Algorithm: This algorithm is invented by Warshall. This algorithm is a special
case of Floyd’s algorithm but it predates Floyd’s algorithm.

The algorithm constructs a sequence of matrices My, M, ..., M, where
the matrix M) = ml(-;-c) for 1 < k < n is defined as follows:

1 if there is a path from i to j not passing through any
mi; = intermediate vertex > k
0 otherwise
Interpretation of My = (mz(.?)):

(0)

By the above definition of the entries of the matrix M, m;;’ is equal to 1

if there is a directed path from 7 to j not passing through any intermediate
vertex > 0 and is equal to 0, otherwise. Since the smallest numbered vertex is
1, this means that mv(;;)) is simply 1 if there is an arc from i to j, zero otherwise.
This is the definition of the adjacency matrix of the graph G. Hence My = M.

This equation is used as initialization in Warshall’s algorithm.
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Interpretation of M,, = (mgl))
By definition, mgm is equal to 1 if there is a directed path from ¢ to j not
going through any intermediate vertex > n and is equal to 0, otherwise. Since
no vertex of the graph is > n, this means that mg»l) is equal to 1 if there is a
directed path from i to 7 in G and is equal to 0, otherwise.

This means that M, is the desired output matrix 7M. The subscript k in
My, represents the iteration number.

Induction leap:
How to find the matrix M} given the matrix My 17?7

We are given the n? entries mz(-j_l) of the matrix My_1. We have to express
mgf) in terms of mg:*l) and m](:;*l). This is because during the construction

of Mj, we have the right to use the vertex k as an intermediate vertex which
is mot the case with the matrix Mj_.

We must not disturb the entries “one” of the matrix Mj_1, since a directed
path from i to j not going through any intermediate vertex > k — 1 is also a
directed path not passing through any intermediate vertex > k. We are only
interested in a possible reassignment of zero coefficients of the matrix Mj_q
into 1. Since the concatenation of a path from ¢ to k£ not going through any
intermediate vertex > k — 1 and a path from k to j not passing through any
intermediate vertex > k — 1 is a path from the vertex i to the vertex j not
passing through any intermediate vertex > k, we have the following formula
for ml(?).

(k—1) (k—1) (k—1)

mz(.;?) = max (mij M X My ) , for1<i, j<n.

(k)

ik

By setting 7 = k in the above formula, we have m;,’ = max(mgl,zfl), ml(-llzfl) X

m,(ﬁ;l)) = mEZﬁl) and similarly by setting ¢ = k we get, m,(!;) = m,(ckfl).
Hence, we can carry out our computation with only one copy of the
matrix M. Let us describe the above formula in words:

There is a directed path not going through any intermediate vertex > k if:

1. There is already a path from the vertex 7 to j not going through any
intermediate vertex > k — 1 (this is equivalent to saying: we must not
modify the entries “one” of the matrix My_1) or

2. There is a path from ¢ to k& not passing through any intermediate ver-
tex > k — 1 and a path from & to j not going through any intermediate
vertex > k — 1.

We shall now write Warshall’s algorithm. We use the type “Matrix” to repre-
sent n X n matrices of 0 and 1.

procedure Warshall( var M, TM : Matrix);
(* The input parameter is M, the adjacency matrix of the
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given graph G. The output parameter is TM, the adjacency matrix
of the transitive closure of G. *)
var i, j, k : integer; (x i, j, k are for loops *)

begin
(* initialization of TM = M *)
for i := 1 to n do

for j := 1 to n do
™I[i, j1 := M[i, j];
(* iteration *)
for k := 1 to n do (* k-th pass over TM *)

for i : =1 to n do
for j := 1 to n do
if TM[i, j] = O then TM[i, j] := TM[i, k] *
™[k, jl;

end; (* Warshall *)

The complexity of Warshall’s algorithm:

The initialization of the matrix requires O(n?) steps, as there are two nested
loops involved. The iteration step takes O(n?) steps, as there are three nested

loops. Hence, the complexity of Warshall’s algorithm is O(n?) + O(n?)
O(n?).

Let us execute Washall’s algorithm on a given graph.

Example 1.7

Execution of Warshall’s algorithm: Consider the graph which is an
elementary circuit of length 4 with vertex set {1,2,3,4} and the arc set
{(1,2),(2,3),(3,4), (4,1)}. The adjacency matrix of the above graph is

1 2 3 4

1/0 1 0 0

210 0 1 0
M_3 00 01
4\1 0 0 O

Initialization of TM : TM = M. Iteration k¥ = 1. We use 1 as an
intermediate vertex.

TM =

=~ N

_ o oo
_ o O = N
OO = O W
O = OO
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Tteration k& = 2. We may use 1/2 as intermediate vertices.

TM =

IS JUI NI

_ o O O =
_— O O~ N
— O = = W
O = OO =

Iteration k£ = 3. We may use 1/2/3 as intermediate vertices.

TM =

[ENUCRN N

_ o o o =
— O O = N
— O, =) W
O =

Tteration k£ = 4. We may use any vertices as intermediate vertices.

TM =

IS JUI NI

e e e
=== DN
— == =W
—o

1.8 Navigation in Graphs

We are interested in traversing a multigraph in a systematic manner, that
is, “visiting” the vertices and edges of a multigraph. The vertices are normally
variables of type “struct” in the language C or the type “record” in Pascal.
These vertices contain information and we are interested in reaching the infor-
mation stored in the vertices to perform some kind of operation. For example,
we may want to update the information in each vertex or simply write the
contents of a particular field of each vertex. We shall study two important
graph traversal methods: The depth-first search and breadth-first search.

Depth-first search:
The depth-first search of a graph can be viewed as a generalization of preorder
traversal of a tree. If the graph does not possess a cycle, then the depth-first
search (dfs) of a graph coincides with the preorder traversal of a tree.

Let us first explain the dfs in an intuitive manner. Consider a connected
multigraph G. We start with a vertex, called the starting vertex, which will
become the root of a spanning tree to be generated by dfs. From the starting
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7 3

FIGURE 1.24: A simple graph to illustrate depth-first search.

vertex, we construct a path as long as possible. Then, we backtrack from the
current vertex, that is, we climb up the tree which is a path at present. The
climbing up continues until we find a vertex at which a side-path, that is, a new
branch, may be constructed to a “new” vertex. If the graph is not connected,
then we have to choose a new vertex of a new connected component as a
starting vertex and perform the dfs etc., until all vertices of the graph are in
some tree induced by dfs.

The dfs can be useful as a model around which one can design various effi-
cient graph algorithms like finding: connected components of a graph, bicon-
nected components, strongly connected components, finding triply connected
components, testing planarity, etc.

Dfs may be used to perform “exhaustive search” to solve T'SP, permutation
generation, Knight’s tour in a Chess board, etc.

Let us illustrate the dfs with an example.

Example 1.8

dfs: Consider the following simple graph G of Figure 1.24 consisting
of two connected components.

The graph G is represented by the adjacency lists. In each adjacency
list, the vertices are listed in increasing order. We use an array “mark”
the vertices processed by the dfs. Initially, for each vertex i, we have
mark[i] = 0. We set mark[i] < 1 as soon as the vertex i is reached
during the dfs. (0 means “unprocessed” or “unvisited” and 1 means
“processed” or “visited.”)

L(1) = (46):L(2) = (5)iL(3) = (6,7)L(4) = (1,5,6);L(5) =
(2,4,6); L(6) = (1,3,4,5,7); L(8) = (9,10),L(9) = (8,10); L(10) =
(8,9). Now let us take a vertex, say, the vertex 1, as the starting vertex
and set mark[l] < 1. The adjacency list of 1, L(1) is scanned to find
a vertex marked 0. The very first vertex 4 in L(1) is chosen and we set
mark[4] < 1. The traversing of the list L(1) is temporarily suspended
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and we start scanning the list L(4) to find a vertex “unprocessed.” The
vertex 5 is found and we set mark[5] <« 1. Then, again the scanning
of the list L(4) is temporarily suspended and we start scanning the list
L(5) and we find the vertex 2 and we assign mark[2] < 1. We now scan
the list L(2) in search of a unprocessed vertex. No new vertices are found
by scanning L(2) and we climb up the tree to find the vertex 5 which is
the “dad” of vertex 2, that is, dad[2] < 5. We now restart the scanning
of the list L(5), which was suspended previously. We find the vertex 6,
then the vertex 3 and the vertex 7. Now all the vertices of the connected
component containing the vertex 1 have been “processed.” We now con-
sider the second connected component and “visit” each vertex according
to dfs. (See the forest F' of Figure 1.25. The forest F' is defined by the
solid edges.)

The edges of the forest F' are drawn as continuous edges, and the
edges of the graph G not in the forest are depicted as dotted edges.
The children/sons/daughters of a vertex are drawn from left to right. A
vertex j is called a descendant of a vertex i, if there is a downward path
from the vertex ¢ to the vertex j in a tree of the forest generated by dfs.
In this case, we also say that the vertex i is an ancestor of the vertex
j. We consider a vertex x as an ancestor and descendant of itself. A
descendant or ancestor of a vertex x other than itself is called a proper
descendant or proper ancestor of x.

We associate to each vertex i of the graph, called the depth-first
search number(dfsn), where df sn[i] = j if and only if ¢ is the jth vertex
visited during the dfs. Table 1.8 gives the dfsn of each vertex of the
above forest F.

FIGURE 1.25: Illustration of depth-first search algorithm.
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TABLE 1.8: Depth-first search number table of graph G of Figure 1.25

1 2 3
dfsn‘1‘4‘6‘

4 5 6 7 8 9 10
3[3[5[7[8[9]10]

We now write the dfs algorithm in pseudo-code.

Input: A multigraph G = (X, E) represented by n adjacency lists where the
vertex set X = {1,2,...,n}.

Output: A partition of the edge set E into a set of edges belonging to the
spanning tree/forest and a set of dotted edges, also called the back edges. The
algorithm also assigns to each vertex a dfs number.

Algorithm: The algorithm is described recursively. We use an array “mark”
of vertices where mark[i] = 0 if the vertex ¢ is not yet visited by dfs and
mark[i] = 1 if the vertex 4 is visited by the dfs. dfsn[i] = j if ¢ is the jth
vertex visited during the search.

dfs algorithm:
(* initialization *)

for i :=1 to n do
mark[i] := 0;
F : = empty; (* F, the forest under constructionx)
counter : = 1; (* counter is used to assign the dfs number *)

(* end of initialization *)

procedure dfs( i : integer);

(* dfs visits each vertex of a connected component of G
containing i using depth-first search *)

var j : integer; (x vertex j scans L(i) *)

begin
mark[i] := 1;
dfsn[i] := counter;
counter := counter + 1;

(* scan L(i) *)
for each vertex j in L(i) do
if mark[j] = O then
begin
add the edge ij to F;
dfs(j); (* recursive call *)

end;
(* iteration *)
for i := 1 to n do

if mark[i] = O then
dfs(i); (* invoking dfs *)
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The edges of the graph G which are not in the spanning forest induced
by dfs are the back edges. If the graph is connected, then the dfs induces a
spanning tree, called the dfs spanning tree.

Let zy be an edge of the dfs spanning forest, that is, forest induced by
dfs, with y, a son of x. Then, dfs(x) called dfs(y) directly during the dfs. In
other words, the vertex y is marked zero, when we scan the list L(x), the list
of vertices adjacent to x.

We distinguish two types of calls:

1. Direct calls
2. Indirect calls

dfs(x) called directly dfs(y) if and only if the edge zy is an edge of the spanning
forest constructed by dfs, that is,  is the father/mother of y in the spanning
forest.

Note also that when we are at vertex z, scanning the list L(z), and z
in L(x), that is, zz is an edge (and hence, z is also in the list L(z)), with
mark[z] = 1, we cannot simply put the edge xz in the set of back edges,
because the vertex z can be the father/parent of the vertex x.

If zy is a back edge, then neither dfs(x) nor dfs(y) called the other directly,
but one called the other indirectly, that is, dfs(y) called dfs(z), which in turn
called dfs(x), and hence y is an ancestor of x.

Remark 1.2. The dfs spanning forest need not be unique. A dfs forest gen-
erated by the search procedure dfs depends on the starting vertices, that is, the
roots of each tree in the spanning forest and the order of the vertices in each
list L(i).

The complexity of the dfs:

Intuitively, during the traversal of the graph, each vertex is marked only once
and each edge ry is traversed exactly twice — once from x and once from y.
Hence the complexity of the dfs algorithm is O(n + m) = O(max(n,m)) by
the sum rule of the complexity. Here, m denotes the number of edges of the
graph G.

In a formal manner, the initialization step takes O(n) time. The iteration
part is executed n times.

The number of steps in executing the call dfs(i), without taking into
account the recursive call to itself is the number of vertices in the list L(i),
which is equal to the degree of the vertex i. Thus, one call to dfs costs O(d(7)),
where d(i) is the degree of the vertex i. By Euler’s theorem, the sum of the
degrees of the vertices of a graph is twice the number of edges. Hence, the
total costs of the “for” loop of the “procedure dfs” is >_"" ; d(i) = 2m. Note
that dfs(i) is called only once, since as soon as we touch the vertex i, we
mark ¢ “visited” and we never call dfs on a vertex with its “mark” set to 1.
Hence, the total number of steps required is O(2n + 2m) = O(max(n,m)).
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Property of a back edge:

Property 1.2. Consider a connected graph and let T and B be the set of
tree edges and back edges obtained by dfs. Then, each back edge xy joins an
ancestor and a descendant in F. (A vertez is considered as an ancestor and a
descendant of itself.)

Proof. We may assume without loss of generality that the vertex z is “visited”
before the vertex y. This means that the vertex y is marked “unvisited” when
we reach the first time the vertex z. Since xy is an edge of the graph, we have
the vertex y in the list L(z). But then the call df s(x) would not be complete
until all the vertices of L(x) are “visited.” Hence, the vertex y is marked
“visited” between the initiation of the call dfs(x) and the completion of the
call dfs(x). All vertices between the initiation of dfs(x) and the end of the
call dfs(x) will become descendants of the vertex x in the dfs spanning tree
constructed by the search. In particular, the vertex y is a proper descendant
of x which is not a son of z in the dfs spanning tree. Hence the property. [l

Relation “x is to the left of y”:

Let us note that the children of a vertex are in the left-to-right order in
the dfs spanning forest and the different trees of the spanning forest are also
drawn in the left-to-right order. Consider a dfs spanning tree T" of a connected
graph and consider two vertices z and y which are not related by the relation
descendant-ancestor. Such vertices can be put in relation called, “is to the left
of.” We say that the vertex x lies to the left of the vertex y or y lies to the
right of x if the following condition is satisfied:

We draw the unique path from the root to the vertex y. Then, all vertices to
the “left” of this path are treated as to the left of the vertex x and all vertices
to the “right” of this path are considered as to the right of the vertex y.

If the vertex i is a proper ancestor of the vertex j in a dfs spanning tree,
then dfsn[i] < dfsn[j] and if i is to the left of j, then also dfsn[i] < dfsn[j].

Remark 1.3. The order in which the different calls terminate in the dfs is
the postorder traversal of the dfs tree.

1.9 Applications of Depth-First Search
1.9.1 Application 1: Finding connected components
Input: A multigraph G = (X, E) with X = {1,2,...,n}.

Output: List of vertices of each connected component and the number of con-
nected components.

Algorithm: Of course, the connected components of a graph can be easily
found by “eyeballing” if the graph is drawn in the geometric representation
and if it is sufficiently small. On the other hand, if we are given a complex
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electrical circuit, the question of whether the circuit is connected is not at all
obvious “visually.”

Our problem is to instruct a computer so that it writes different connected
components of a multigraph. The algorithm can be easily written using the
dfs. We use an integer variable “nc” to calculate the number of connected
components of G. Then, we add the following statement in the dfs algorithm.

After the assignment mark[i] := 0 at the beginning of the “procedure dfs,”
add the following print statement: write(’ ’,i); which means that as soon as we
“touch” or “visit” a vertex i, we immediately print the corresponding vertex.
Add the statement nc := 0; in the initialization part of the algorithm.

Finally we rewrite the “iteration part” of the dfs algorithm as follows:

for i := 1 to n do
if mark[i] = O then
begin
nc := nc + 1;(x update nc *)

dfs(i); (* call to dfs. i is a root of a sub-tree
in dfs spanning forest which is under
construction *)
writeln; (* print a new line character to separate
componentsx)
end;
writeln(nc); (* print the number of components *)

Justification of the algorithm: Each call dfs(i) in the “iteration part” corre-
sponds to the root i of a subtree in the dfs spanning forest. Once the call dfs(i)
is initiated, all vertices connected to the vertex i by a “downward” path in
dfs forest are marked with 1. Hence, the validity of the algorithm.

The complexity of finding connected components:

The time needed to find the connected components is the same as that of dfs,
since the instructions added are of time complexity O(1). (Recall that O(1)
represents a constant.)

1.9.2 Application 2: Testing acyclic graph
Input: A multigraph G = (X, E) with vertex set {1,2,..., n}.

Output: “Yes” if the graph is acyclic, that is, if G has no cycles;
“No” otherwise. In this case, print the cycles the dfs encounters.

Algorithm: We shall use the following fact: Every back edge we meet during
the dfs search defines a cycle and conversely if a graph possesses a cycle,
then we must meet a back edge in the course of our dfs search. Why? This
is because of Property 1.2. Note that a back edge 7j is encountered the first
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time in the course of the dfs search if we are at vertex i and df sn[i] > df sn[j].
Of course, the same back edge ij = ji is traversed the second time when we
are again at vertex j. A loop is considered as a back edge. Let us now write
the algorithm. We shall use an array “dad” where dad[j] = i if the vertex 7 is

the father/parent of the vertex j in the spanning dfs forest.

dfs algorithm for cycles:
(* initialization *)

for i := 1 to n do
mark[i] := 0;
counter := 1;(* counter to assign dfs number *)
acyclic : = 0; (* acyclic is 0 if the graph has no cycles.

acyclic is 1, otherwise *)
(* end of initialization *)
procedure dfs(i:integer);
(* dfs visits each vertex of a connected component of G
containing i using depth-first search *)
var j, k : integer; (* vertex j scans L(i) *)

begin
mark[i] := 1;
dfsn[i] := counter;
counter := counter + 1;

(* scan L(i) *)
for each vertex j in L(i) do
if mark[j] = O then
begin
dad[j] := i;(* ij is an edge of dfs forest *)
dfs(j); (* recursive call *)
end
else (x j is marked ‘‘visited’’ *)
if ((dad[i] <> j) and (dfsn[i] > dfsn[j]))or(i = j)
(* ij is a back edge possibly a loop *)
then
begin
acyclic :=1;
(x print the cycle *)
if i = j
then
write(i,i,’ is a loop’)
else
begin
k = 1i;
repeat (* climb up the tree
till we meet the vertex j *)
write(k,’ ?);
k := dad[k];
until k = j;

end
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writeln; (* new line to separate the cycles *)
end;

end; (* dfs *)
(* iteration *)
for i := 1 to n do
if mark[i] = O then

dfs(i); (* invoking dfs *)
if acyclic = 0
then

writeln (’yes’)
else

wtiteln(’no’);

The complexity of the algorithm testing for cycles:

The complexity is O(n + m), which is the same as that of dfs, since we have
only added the statements to the “else part” in the “procedure dfs” of the
“dfs algorithm.” In the worst case, the added statements cost O(n) steps.
By the sum rule [6] of big Oh notation, we may write the complexity as
O(n+m) = O(max(m,n)). (The sum rule says that, in a sum, it is enough to
take into account the “dominating term” of the sum, ignoring constants and
constant coefficients.)

1.9.3 Application 3: Finding biconnected components of a
connected multigraph

Hopcroft’s algorithm:

Consider a connected multigraph G = (X, F) with X = {1,2,...,n}. We
assume that the graph G has no loops. A vertex x is a cut vertex or articulation
verter of the graph G if the removal of the vertex z from G results in a
disconnected graph. Note that the removal of the vertex x also results in the
removal of all edges incident with the vertex x.

An edge with the analogous cohesive property is called a bridge or cut edge
or isthmus of the graph G, that is an edge e is a bridge of the graph G if the
removal of the edge e from the graph results in a disconnected graph. Note
that by removing an edge e = xy, the end vertices of the edge e will still be
in the graph G — e. It can be easily seen (by constructing examples) that the
removal of an edge results in a graph with at most two connected components,
whereas the removal of a vertex may result in a graph with several connected
components.

Remark 1.4. If we allow loops in the multigraph, then a vertex x incident
with a loop and another edge which is not a loop is considered as a cut vertex.

In the following graph of Figure 1.26, the vertices 3, 4, and 6 are cut ver-
tices and the bridges are edges 47 and 36. Note that an end vertex of a bridge
is a cut vertex if its degree is strictly more than one.
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5

FIGURE 1.26: Illustration of cut points and bridges.

Example 1.9: Cut vertices and bridges

Consider a tree T with at least two vertices. Each vertex of degree
one of this tree T (there must be at least two such vertices, otherwise,
0(T) > 2 and hence the graph has a cycle [6], which is impossible) is
not a cut vertex of T" and all other vertices are cut vertices of T.

On the other hand, every edge of T' is a bridge.

A connected graph with at least two vertices is a biconnected graph or a
block if it does not contain a cut vertex. A biconnected component or block
of a connected graph is a maximal induced subgraph without any cut vertex.
In other words, the graph H is a biconnected component of the graph G if
H is biconnected in its own right and for any vertex z lying outside of H,
the subgraph of G induced by the vertices of H U z is either disconnected or
contains a cut vertex.

A graph can be partitioned into mutually disjoint connected components.
In an analogous manner, a given connected graph can be decomposed into
mutually edge-disjoint biconnected components. Note that a graph is bicon-
nected if and only if its unique biconnected component is itself.

The nomenclature “biconnected” is justified because of the following prop-
erty enjoyed by a biconnected graph with at least three vertices:

Theorem 1.2. A connected graph with at least three vertices is biconnected
if and only if between any two distinct vertices of the graph there are at least
two internally vertez-disjoint elementary paths.

In the following graph of Figure 1.27, we have a connected graph, with
four biconnected components.

The list of edges of the three biconnected components of the graph of
Figure 1.27 are:

1. 12, 14, 24, 29, 19, 49
2. 23

3. 36, 37, 67

4. 59, 58, 89



60 Discrete Mathematics

Bl1:

FIGURE 1.27: Illustration of biconnected components of a graph.

The biconnected components listed above satisfy the following proper-
ties:

1. Two distinct biconnected components intersect in at most one vertex.

2. If two distinct biconnected components intersect in exactly one vertex
x, then this vertex must be a cut vertex of the graph.

The above two properties are in general true for any connected graph with
at least two vertices. Intuitively, this means that the different cut vertices of
a graph are the “frontiers” between the biconnected components.

We shall now describe the biconnected components algorithm.

Input: A connected multigraph G = (X, E) with X = {1,2,...,n}.
Output: A list of edges of each biconnected component of the graph G.

Algorithm: We shall first illustrate the algorithm on the graph of Figure 1.27.
Step 1: The graph is represented by its adjacency lists. Let us assume that
the vertices are listed in the increasing order in each list L(i), that is, L(1) =
(2,4,9), L(2) = (1,3,4,9), etc., till L(9) = (1,2,4,5,8). We choose a starting
vertex, say, the vertex 1.

Step 2: The graph is searched according to the algorithm dfs. This search
gives us a partition of the edge set into 7" and B, where T is the set of edges
of the spanning tree induced by the dfs and B is the set of back edges which
is equal to £\ T. During the search, each vertex is assigned a number called
the dfs number. Recall that dfsn[i] = j if and only if the vertex i is the jth
vertex “visited” in the course of the dfs (see the graph of Figure 1.28 below
obtained by dfs).

The following Table 1.9 gives us the dfsn of different vertices.
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FIGURE 1.28: Depth-first search of the graph of Figure 1.27.

TABLE 1.9: Depth-first search number (dfsn) table of the graph of
Figure 1.28

1 2 3
dfsn‘l‘Q‘S‘

45 6 7 8 9
6[8[4]5[9]7]

To help in finding the biconnected components, we need to define the fol-
lowing function “LOW?” on the set of vertices of the graph.

The function LOW:
LOWT[i] is the smallest dfsn less than or equal to dfsn[i] one can reach either
from 4 or from one of the descendants of ¢ in the dfs spanning tree using only
once a back edge. If all such back edges lead to vertices with dfsn > df sn[i,
or if there is no back edge from ¢ or from one of its descendants of 7, then we
define LOW[i] = dfsn][i].

Mathematically, we write

LOWT/i] = min({dfsn[i]} U {dfsn[j] | there is a back edge
from a descendant of 7 to j}).

The function LOW will be computed by the algorithm in postorder traversal
of the depth-first search spanning tree obtained. In our example, the postorder
traversal of the dfs tree is: (7,6,3,8,5,9,4,2,1). So, the first vertex for which
LOW is computed is the vertex 7.

LOW|7] = min(df sn[7], df sn[3]) = min(5,3) = 3 because of the back edge 73
from the vertex 7. LOW/[6] = min(dfsn[6], df sn[3]) = min(5,3) = 3 because
of the back edge 73 from the son 7 of the vertex 6.

LOW[3] = 3.
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LOW 2] = min(df sn[2], df sn[1], df sn[1], df sn[2]) = 1 because of the back edges
41,91, 92.

Note that a vertex is considered as a descendant of itself. The following table
gives the LOW function of different vertices of our example graph (Table 1.10).

As we have already remarked, the different cut vertices of the graph G serve
as “frontiers” between biconnected components. So we are first interested in
characterizing the cut vertices of the graph G. Let us again refer to the graph
of Figure 1.28. The vertex 3 is a cut vertex, whereas the vertex 6 is not. Why
is vertex 6 not a cut vertex? This is because of the following fact: There is a
back edge, namely, 73, from the son of 6, that is, from a proper descendant
of 6, to a proper ancestor of 6. This back edge gives us a second path from
3 to 7 and the first path from 3 to 7 is obtained via the tree edges. On the
other hand, there is no back edge from a proper descendant of the vertex 3
to a proper ancestor of 6. Hence, there are no two vertex-disjoint paths from
a proper descendant of 3 to a proper ancestor of 3. This makes the vertex 3,
a cut vertex of the graph G. In a similar manner we can conclude that the
vertices 2 and 9 are cut vertices.

We now state the following theorem whose proof is intuitively clear from
the above discussion. For a formal proof, the reader can consult the book [3].

Theorem 1.3. Consider a connected multigraph G and consider a partition
of the edge set of the graph G into T, a set of tree edges and B, a set of back
edges induced by a search dfs. Then, a vertex i is a cut vertex of G if and only
if it satisfies exactly one of the following properties:

1. i is the root of the tree T and the root i has at least two sons in the
spanning dfs tree T.

2. i is not the root and i possesses at least one son s in the spanning dfs
tree with LOW|s] > df snl[i].

Back to our example illustrating Hopcroft’s biconnected components algo-
rithm: With this characterization of cut vertices, we continue our illustration.
We shall use a stack S of edges. Initially our stack is empty. Each edge tra-
versed the first time in the course of the dfs is pushed into the stack. Recall
that each edge of the graph is encountered twice during the search procedure.
Note that a tree edge xy is pushed into the stack in the order (father, son),
where z is the father of y, whereas a back edge da is pushed into the stack
with the vertex a an ancestor of the vertex d. Note that a loop is considered
as a back edge.

TABLE 1.10: LOW function table of the graph of Figure 1.28

1 2 345 6 7 89
LOW [1[1[3[1[7[3][3[7]1]
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In our example, the stack will look as below when we are at vertex 7 before
backtracking from 7 to the father of 7 which is 6 (the stack grows from left
right).

S = (12,23, 36,67,73).

The edge at the top of the stack, namely, edge 73, is a back edge whereas all
other edges in the stack are tree edges. Tree edges occur as a result of direct
recursive calls, that is, xy is a tree edge if and only if dfs(z) calls dfs(y)
directly during the search.

When we backtrack from the vertex 7, that is, when we climb up the tree
from vertex 7 to his father 6, the following test is performed.

LOWI[7] > df sn[6]? If the test is true, then we pop up the stack till the edge
67 (including the edge 67) to emit a biconnected component. In our example,
the test is false, since LOW([7] = 3 < dfsn[6] = 4. So no pop-up occurs. We
are at the vertex 6 and the search finds no more new vertices from 6. So we
climb up the tree from 6 to the father of 6 which is 3. The following test is
performed.

LOWI[6] > dfsn[3]? The inequality is true, since LOW[6] = 3 and
dfsn[3] = 3. Hence, we pop up the stack till and including the edge 36.

Thus, our first biconnected component is

B; = (73,67,36)
and the stack will look as follows:
S = (12,23).

We are at vertex 2 and no new vertices are found from the vertex 2. Hence
we climb up the tree from 2 to his father 1. The test LOW[2] > df sn[1] turns
out to be true and we pop up the stack till the edge 23.

The second biconnected component found is

By =23

and the stack

S = (12).
We are now at vertex 2. We find a new vertex 4 by scanning the list L(2) and
the edge 24 is pushed. Then, the following edges are pushed into the stack:

41,49,91,92,95,58,89. No new vertices are found from the vertex 8. At this
point, the stack S from left to right is

S = (12,24,41,49,91,92, 95, 58, 89).

We backtrack from the vertex 8 to his father 5 and the test LOW[8] >
df sn[5] is false. We further backtrack from 5 to his father 9 and the test
LOW/[5] > dfsn[9] turns out to be true. Hence, the stack is popped till we
arrive at the edge 95.
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The third biconnected component found is
B3 = (89,58, 95)

and the stack
S =(12,24,41,49,91,92).

We climb up the tree from 9 to 4 (the test is false) and then from 4 to 2
(the test is false) and finally from 2 to 1. The test LOW[2] > dfsn[1]7 is true.
Hence, the stack is popped till the edge 12. This gives us the fourth and last
biconnected component B4 where

By = (12,24,41,49,91,92).

Note that the stack is finally empty.

With this hand simulation as our model, we are now almost ready to write
the Hopcroft’s biconnected components algorithm in pseudo-code. One more
final point remains. We have to express the definition of the function LOW in
a recursive manner. Since a son j of a vertex 7 in a dfs spanning tree T' is a
proper descendant i, we rewrite LOW as follows:

partl part2 part3

———
LOW([i] = min({dfsn[i]} U{LOW|j] | j is a son of iin T }U{dfsnlk] | ik € B},

where B is the set of back edges. The search procedure dfs is augmented with
suitable statements to print different biconnected components. We use the fol-
lowing variables: the arrays mark[l..n] of 0..1, df sn[1..n] of integer, LOW/1..n]
of integer, dad[l..n] of integer. We also use a stack S whose objects are edges.
The vertices are 1,2,...,n.

Biconnected components algorithm:

procedure dfs_biconn( i : integer);

var j : integer; (* j is used to scan L(i)*)
LOW, dad, dfsn : array[1l..n] of integer;

begin
mark[i] := 1;
dfsn[i] := counter;
counter := counter + 1;

(* initialization of LOW[i] *)

LOW[i] := dfsn[il; (* part 1 of the def. of LOW *)

(* scan L(i) for a new vertex *)

for each j in L(i) do

if mark[j] = 0

then

begin
dad[j] := i;(* add edge ij to dfs tree *)
push ij into S;
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dfs_biconn(j); (* recursive call *)
(* at this point we have computed LOW[j] *)
(* update LOW[i], the part 2 of the def. of LOW *)
LOW[i] := min(LOW[i], LOW[jl1);
if LOW[j]l >= dfsn[i]
then(* a biconnected component is found *)
begin (*write the edges of biconnected componentx)
pop S till(including) the edge ij;
writeln; (* new line x)
end
else(* j already visitedx)
(* test if ij is a back edge *)
if (dad[i] <> j) and (dfsn[il > dfsn[jl)
then (* update LOW. part 3 of the def. of LOW *)
begin
LOW[i] := min(LOW[il, dfsn[j1);
push ij into S;
end;
end; (* dfs_biconn *)

(* initialization *)

for i := 1 to n do
mark([i] := O;
counter := 1:

S := empty; (* empty stack *)
dfs_biconn(1); (* procedure call *)

Complete program in Pascal:
Let us write the complete program for finding biconnected components in
Pascal.

Biconnected components in pascal:

program biconnected;

const maxn = 50; (* maximum number of vertices *)
maxm = 250; (* maximum number of edges *)

type pointer = “node;
node = record
info : integer;
next : pointer;
end;

var n, m, i, j, X, y, counter : integer;
L : array[l..maxn ] of pointer;
S : array[l..maxm ] of integer;
(xS, stack of edges and an edge
is a pair of vertices *)
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top :integer; (* top of the stack S *)
procedure input_graph;
var i, j, x, y :integer;(* xy is an edge *)
t :pointer;
begin(* input_graph *)
write(’ enter the number of vertices ’);
readln(n);
write(’ enter the number of edges ’);
readln(m) ;

(* initialization. graph with n vertices and O edges *)

for i := 1 to n do
L[i] := nil;

(¥ read the edges *)

for i := 1 to m do

begin
write(’enter the edge ’, 1i);
readln(x,y);

(* add y at the head of the list L[x] *)
new(t); (* create a node pointed by t *)
t~.info := y;

t~.next := L[x];

L[x] := t;(* attach t at the head of L[x] *)
(* add x at the head of list L[yl *)
new(t);
t~.info := x;
t~.next := L[y];
Lyl := t;
end;

end; (* input_graph *)
procedure output_graph;
var t : pointer;

i : integer;

begin

for i := 1 to n do

begin
t := L[i];
if t = nil
then

write(’no vertices joined to ’, i)

else
begin

write(’the vertices joined to ’,i, ’ are :’);
(* scan the list L[i] *)
while t <> nil do
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begin
write(t~.info,’ ’);
t := t~.next;

end;

writeln;

end;
end; (* output_graph *)

procedure dfs_biconnected;

var t : pointer; j:integer;
dfsn : array[l..maxn] of integer;
LOW : array[l..maxn ] of integer;
dad : array[l..maxn ] of integer;

begin
mark([i] := 1;
dfsn[i] := counter; counter := counter + 1;

(* initialization of LOW: part 1 *)
LOW[i] := dfsn[il;
(*x scan L[i] =*)

t := L[i];
while t <> nil do
begin
j := t~.info;
if mark[j] = O
then
begin

dad[t~.info] := i;(* add (i,j) to dfs tree x)

(* push (i, j) into the stack *)
S[top+1] := i;
S[top+2] Js
top := top +2; (* update top *)
dfs_biconnected(j); (* recursive call *)
(* at this point we have found LOW[j] *)
(* update LOW[i]: part 2 *)
if LOW[i] > LOW[j] then

LOW[i] := LOW[j];
if LOW[j] >= dfsn[i] then
begin

(* a biconnected component is found *)

(* pop S till the edge ij *)
repeat

write(’ (°,S[topl,’,”,S[top-11,7)");

top := top - 2;
until S[top+1] = i;
writeln;
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end;
end (* thenx)
else
(*x test if ij is a back edge *)
if (dad[i] <> j) and (dfsn[i] > dfsn[jl)
then
begin
S[top + 1] := i;
Sltop + 2] := j;
top := top + 2;
(* update LOW[i]: part 3 x)
if LOW[i] > dfsn[j] then
LOW[i] := dfsn[jl;
end;
t := t7.next;
end; (* whilex)
end; (x dfs_biconnected *)

begin(* main programx)
(* initialization *)

for i := 1 to n do
mark[i] := 0;
counter := 1;

top := 0;(* empty stack S *)
(* end of initialization *)
input_graph;

output_graph;
dfs_biconnected(1); (* call *)
end.

The complexity of the biconnected components algorithm:

The complexity of the algorithm is the same as that of the dfs search, since the
added instructions, namely, calculating the function LOW, pushing each edge
once into the stack and popping each edge out of the stack takes O(m) steps.
Hence, the complexity is O(n 4+ m). But the input is a connected graph and
for a connected graph we always have m > n — 1. Hence the complexity is
O(m) by the rule of sum. (We can ignore lower-order terms while computing
complexity.)

1.10 Depth-First Search for Directed Graphs

The algorithm of the depth-first search for un undirected graph holds
equally well for a directed graph also. In a directed graph if (i,7) is an arc
and (j,7) is not an arc, then we place the vertex j in the list succ[i] but the
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FIGURE 1.29: Digraph to illustrate the depth-first search.

FIGURE 1.30: Depth-first search of graph of Figure 1.29.

vertex ¢ will not be in the list succ[j]. In the case of an undirected graph, if
ij is an edge, then we include the vertex j in the list L[i] and also include the
vertex 7 in the list L[j].

The search dfs for a directed graph is illustrated by the following example.
Consider the graph of Figure 1.29.

As in the case of an undirected graph, the graph is represented by list of
successors of each vertex.

suce[l] = (2,5,6); succ[2] = (3,4); suce[3] = (1); succl[d] = (3); succ[5] =
(6,7); succl6] = (); suce[7] = (6); succ[8] = (5,9, 10); succl9] = (); succ[10] =
(8,9).

Let us now perform the dfs on the graph of Figure 1.30. The first call dfs(1)
“visits” the vertices 1,2,...,7 and gives us a tree with the root 1. Then, the
second call dfs(8) “visits” the remaining vertices 8,9, 10 and gives us a second
tree of the dfs spanning forest. The original graph is restructured as in the
following graph Figure 1.30. In this figure, the solid arcs define a spanning
arborescence.

We observe the following properties:

Property 1.3. There are four types of arcs:

1. The tree arcs which are drawn as continuous arcs. If (i,7) is an arc
in the dfs spanning forest induced by the algorithm, then dfs(i) called
directly dfs(j) during the search (e.g., (2,4)).
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2. Dotted arcs like (1,6) which go from an ancestor towards a decendant.
These arcs are called descending dotted arcs. If (i,7) is a descending
dotted arc, then df sn[i] < df sn[j].

3. Dotted arcs like (3,1) which go from an ancestor towards a descendant.
These arcs are called mounting dotted arcs. Note that a loop is consid-
ered as a mounting dotted arc. If (i,7) is a mounting dotted arc, then
df sn[i] > df s[j].

4. Dotted arcs like (4,3) and (8,5) which join two vertices that are not in
the relation ancestor-descendant or descendant-ancestor. Such arcs are
called dotted cross arcs.

We shall now observe and prove the following key property of a dotted
Cross arc.

Property 1.4. A dotted cross arc always goes from the right to the left. (We
assume that the children of each vertex are drawn from left to right and the
different trees of the dfs spanning forest are also drawn in the left to right
fashion.) In other words, if (i,7) is a dotted cross arc, then df snli] > df sn[j].

Proof. Consider a dotted cross arc (i,j). This means that the vertex j is
“visited” before the vertex i is “visited” during the search. Otherwise, suppose
the vertex i is “visited” before the vertex j. That is, when we reach the vertex i
for the first time, the vertex j is still marked “unvisited.” Since (7, j) is an edge
of the graph, we have j in the list of succ[i]. But then the “visit” of i would
not be complete unless we touch the vertex j. Hence, j must be a descendant
of 7 in the dfs spanning forest. Since (7, ) is a dotted edge, we conclude that
(,7) must be a descending dotted edge, a contradiction.

Hence j is “visited” before the vertex i. This means that when we reach ¢ for
the first time, j is marked “visited.” Hence, df sn[i] > df sn[j]. (Geometrically,
the vertex i is to the right of the vertex j.) O

1.11 Applications of Depth-First Search for Directed
Graphs

1.11.1 Application 1: Finding the roots of a directed graph

Consider a directed graph G = (X,U) where the vertex set X =
{1,2,...,n}. A root of the directed graph G is a vertex r, from which we
can reach all other vertices of the graph by a directed path from r. A root
does not always exist. A graph may have more than one root. With the help
of the dfs, one can find all the roots of a given directed graph.

Input: A directed graph G = (X,U) with the vertex set X = {1,2,...,n}.
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The graph is represented by n successor lists, succ[l], succ[2], ..., succln].
Output: Find all the roots of the graph G.

Algorithm: We mark all vertices as “unvisited,” set the “counter” used to
assign dfs number to 1. Then, we call the procedure dfs(1). If we mark as
“visited” all the vertices of the graph with this call, then the vertex 1 is
a root. Then, we repeat the calls with dfs(2),dfs(3),...,dfs(n). Let us now
write this algorithm.

procedure dfs( i : integer);

(* dfs visits each vertex of a connected component of G
containing i using depth-first search *)

var j : integer; (* vertex j scans succ[i] *)

begin
mark[i] := 1;
dfsn[i] := counter;
counter := counter + 1;

(* scan succ[i] *)
for each vertex j in succ[i] do
if mark[j] = O then
begin
add the arc ij to F;
dfs(j); (* recursive call x)
end;

(* initialization *)

for i := 1 to n do
mark[i] := O;
counter := 1;

F := empty; (* empty forest *)

(* iteration *)

for i := 1 to n do

begin (x test if i is a root *)
dfs(i): (* call to the procedure dfs *)
if counter = n+l
then write(i,’ is a root’);

(* reinitialize: mark all vertices ¢

‘unvisited’’ *)

for i := 1 to n do
mark[i] := 0;
counter := 1;

end;

The complexity of finding all the roots of a graph:
A call to dfs costs O(n + m) and we make n calls, one call with each vertex
of the graph. Hence the time complexity of the algorithm is O(n(n + m)).
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FIGURE 1.31: Illustration to test if a graph is acyclic.

1.11.2 Application 2: Testing if a digraph is without
circuits

The existence of a directed circuit in a given digraph can be easily tested
using the dfs.

Input: A digraph G.
Output:

“yes” if the graph has no directed circuit.
“no” if the graph possesses a directed circuit.

Algorithm: By definition, each mounting dotted arc encountered during the
search clearly defines a circuit. Conversely, if the given digraph possesses a
circuit, then one must encounter a mounting dotted arc in the course of the
search.

To prove the converse part, consider a graph with at least one circuit and
perform the depth-first search on the graph. Now choose the vertex  whose
dfsn is the smallest among the vertices belonging to a circuit. Consider an arc
(y,x) on some circuit containing the vertex x. Since x belongs to a circuit,
such an arc must exist ( d~(z) > 1.) Since  and y are on the same circuit, y
must be a descendant of x in the dfs spanning forest. Thus, the arc (y,z)
cannot be a dotted cross arc. Because the dfsn of y > the dfsn of z, (y, )
cannot be a tree arc or dotted descending arc. Hence, (y, ) must be a dotted
mounting arc as in the figure below. Hence the converse part of the assertion
(see the graph of Figure 1.31).

In the above figure, the vertex x in the above argument is the vertex 2, and
the vertex y is the vertex 4 and the circuit in discussion is the circuit (2, 3,4, 2).

1.11.3 Application 3: Topological sort

Consider a directed graph without circuits. Geometrically, a topological
sort means laying the vertices of a directed graph without circuits in a hor-
izontal manner from left to right such that each arc of the graph goes from
left to right. In other words, if the graph has n vertices, we are interested in
assigning the integers 1,2, ..., n to the vertices of the graph such that if there
is an arc from the vertex i to the vertex j, then we have the inequality ¢ < j.
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FIGURE 1.32: A graph to illustrate topological sort.
We shall shortly show that a topological sort is possible if and only if

the graph is without circuits. Before proving the assertion, let us look at an
example.

Example 1.10

Consider the following graph of Figure 1.32 without circuits.

Let us assign the integer 1 to the vertex e, 2 to a, 3 to d, 4 to b and
finally 5 to the vertex c¢. This assignment defines a topological sorting
of the vertices of the graph. The same graph is redrawn below in Figure
1.33 to reflect the property of “topological sorting.”

Theorem 1.4. A directed graph G admits a topological sort if and only if the
graph is without circuits.

Proof. One part of the theorem is obvious. If the graph admits a topological
sort, then by definition we can assign the integers 1,2,...,n as new labels to
its vertices in such a way that if (¢,7) is an arc of the graph, then ¢ < j. If
the graph possesses a circuit (vq, v, ..., vs,v1), then because of the property
of the new labeling of the vertices, we have v; < vo < .-+ < v,. But then,
(vs,v1) is an arc of the circuit with v; < v, a contradiction.

Now for the second part, consider a longest directed path (zg,x1,...,2q)
in the given graph. Its length is d. We shall first prove that the initial vertex
xo of our longest path satisfies d~(x¢) = 0. If not, there is an arc (z,z¢) in
the graph. We shall distinguish two cases.

' )
Topo(G) : h c
D o ¢ 55 (5)

FIGURE 1.33: Topological sorting of the graph of Figure 1.32.
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Case 1. x #£ x; for 1 <i <d.
We then have a directed path (z, xg, x1,...,xq) of length d+1, a con-
tradiction.

Case 2. © = z; for some ¢ with 1 <7 < d.
Then, (zo,...,2;,xo) is a circuit of the graph, a contradiction.

Hence there is a vertex, say 1, in the graph with no arc entering into it. Now
consider the vertex deleted subgraph graph G —1. It has still no circuits. Hence
there is a vertex, say, 2, with no arcs entering into it in the graph G — 1. Then,
we consider the subgraph G—1—2, etc. till we arrive at the graph with exactly
one vertex which will be labeled as n.

These vertices 1,2, ..., n define a topological ordering of the vertices of the
graph G. O

We shall now prove the following result concerning the adjacency matrix
of a digraph without circuits. This result is an immediate consequence of the
topological sort.

Theorem 1.5. Let G be a directed graph on n vertices without circuits. Then,
its vertices can be labeled by the integers 1,2, ..., n so that its adjacency matrix
18 an upper triangular.

Proof. Since the graph is without circuits, it admits a topological sort. Let
this order be 1,2...,n. We now relabel the vertices of the graph in this order.
According to this labeling, if (4,7) is an arc, then ¢ < j. This means that, if
i > 7, then (i,7) is not an arc of the graph. This means that in the adjacency
matrix M of the graph G, we have M[i, j] = 0 if ¢ > j. Hence the result. [

Remark 1.5. According to Theorem 1.5, a graph without circuits can be
represented by an upper triangular matriz. Since the graph has no loops, the
diagonal entries of this matriz are also 0. Hence a graph on n wvertices and
without circuits may be represented economically by a one-dimensional array
using only (n?> —n)/2 memory space, (by omitting 0 entries on and below the
main diagonal) instead of n® space needed to store an n x n matriz.

Algorithm for the topological sort:

Input: A directed graph G without circuits.

Output: Assigning the integers 1,2,...,n to the vertices of the graph in such
a way that if (i, 7) is an arc of the graph, then we have i < j.

Algorithm 1.4. Choose a vertex x such that the in-degree of the vertex x is 0.
According to Theorem 1.4 such a vertex exists. Label this vertex as 1. Then,
consider the vertex deleted subgraph G1 = G — 1 and choose a vertex in Gy
for which the in-degree is 0. Call this vertex 2. Then, consider Go = G —1—2
and choose a vertex in Go with in-degree 0. Continue like this till we arrive
at the graph with only one vertex. This last vertex will be labeled as n. The
sequence 1,2,...,n is the required topological sort.
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Let us write the algorithm in pseudo-code. We use the following variables:
The graph is represented by n successor lists, succ[l], succ[2],. .., succ[n]. We
use an array id[l..n] where id[i] is the in-degree of the vertex i, that is, the
number of arcs entering into the vertexr i. Once a verter i is processed by
the algorithm, we set id[i] equal to -1 or some value which cannot be a legal
in-degree of a vertex. The variable “counter” is used to count the number of
vertices printed in topological order.

Topological sortl:
(* initialization of counter *)
counter := 0;
while counter < n do
begin
(* scan the array id to find vertices of in-degree zero *)
for i :=1 to n do
if id[i] = O then
begin
write(i,’ ?);
counter := counter + 1;
id[i] := -1; (* vertex i is processed *)
(* scan succ[i] to reduce the in-degree by one *)
for each j in succ[i] do
id[j] := id[j] - 1;
end;
end;

The complexity of the topological sort:

The worst case arises when the graph is a directed path (1,2, ..., n). The array
id is defined as id[i] = 1 for 0 < 4 < n and id[n] = 0. The algorithm prints
the vertex n first and the variable counter is set to 1. During the next pass
through the while loop, the algorithm prints the vertex n — 1 and the counter
is assigned the value 2, etc. Hence, the while loop is executed n times for
this graph. Each execution of while loop costs O(n) steps, because of the for
loop inside the while loop. Hence the complexity is O(n?) steps. The desired
topological sort is (n,n —1,...,1).

Algorithm 1.5. This algorithm uses dfs. It is based on the following property:
A directed graph is without circuits if and only if there is no dotted mounting
arc during the dfs. A simple write statement at the end of the dfs procedure
gives us a reverse topological sort. We use a stack S of vertices. We will give
the procedure below:

Topological sort algorithm using dfs:
(* initialization *)
for i := 1 to n do

mark[i] := 0;
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top := 0; (* empty stack *)
(* end of initialization *)

procedure toposort( i : integer);
begin
mark[i] := 1;
(* scan the list succ(i) *)
for each vertex j in succ(i) do
if mark[j] = O then
dfs(j); (* recursive call *)
(* push i into the stack *)
top := top +1;
S[topl := 1i;
end;

(* iteration *)
for i := 1 to n do
if mark[i] = O then
dfs(i); (* invoking toposort *)
(* print the vertices in topological sort *)
for i: = n downto 1 do
write (S[il,’ ’);

Let us justify the algorithm:

Proof. When the procedure “toposort” finishes scanning entirely the list
succ(i), it pushes the vertex ¢ into the stack. Since the graph is without cir-
cuits, there are are no dotted mounting arcs from i. The only possible arcs
going out of i are the arcs of the forest, dotted descending arcs, and dotted
cross arcs. But these arcs are directed toward vertices whose successor lists
have been completely scanned and therefore already pushed into the stack.
Hence the proof. O

The complexity of the topological sort:

We have added only two elementary statements to the procedure dfs, namely,
incrementing the variable “top” and pushing a vertex into the stack. Hence
the complexity is the same as that of the complexity of the dfs procedure
which is O(m + n).

1.11.3.1 An application of topological sort: PERT

PERT and the critical path method: Imagine a project like constructing
a big house. A project like this is often divided into a number of smaller
subprojects like clearing land, building foundation, constructing walls, ceil-
ings, carpentry works, plumbing, electricity work, landscaping, etc. In order
to complete well the entire project within a given time limit, these subprojects
should be carried out in a certain order. For example, land clearing should be
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FIGURE 1.34: An activity digraph.

completed first before the foundation work starts, and plumbing and electric-
ity may be taken later once the walls and ceilings will have been completed,
etc. These subprojects are called the activities of tasks; that is, a project is
constituted of activities. These activities are interrelated heavily by the con-
straints like a certain activity may not start until other activities have been
completed.

Let us illustrate this by an example.

Example 1.11

The vertices of the graph (see Figure 1.34) without circuits repre-
sent different activities and the graph itself represents a project. An arc
from the vertex i to the vertex j means the activity ¢ must have been
completed before initiating the activity j. The weight w(i, j) associated
with an arc (i, j) represents the time needed (e.g., measured in weeks) to
finish the task 7. In our example, the task 1 has no predecessor and the
task 9 has no successor. Such vertices always exist in a directed graph
without circuits. For example, the first vertex in a topological sort has
no predecessor, and the last vertex of the sort has no successor. We
introduce two new vertices s and e to the activity digraph. The vertex
s corresponds to the starting of the project and the vertex e to the end
of the entire project. The vertex s is joined to all vertices of the graph
for which the in-degree is 0 and all vertices of the graph for which the
out-degree is 0 are all joined to the vertex e. Finally, we associate the
weight to all arcs of the form (s,4) and all arcs of the form (j,e). In our
example, there is only one vertex of in-degree 0, namely the vertex 1
and the only vertex of out-degree 0 is 9.

We are interested in finding the minimum number of weeks needed to
finish the entire project. This problem is equivalent to finding a directed
path of maximum weight in a graph without circuits. In our example, a
directed path of maximum weight is (1,2, 3,4,7,9) and its weight is 38.
Note that task 2 can start only after completing task 1, and 3 can be
initiated after finishing 3, etc. This means that to complete the entire
project we need a minimum of 38 weeks. Why? The time required to
complete the entire project cannot be less than 38 weeks, since otherwise
not all of the tasks of the graph could be completed.
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To see this, let us write the vertices of the activity digraph in topolog-
ical order. The desired order is (1,2,3,4,5,6,7,8,9). We first start and
finish the task 1; then we start and finish the task 2 and then 3. Now we
can start simultaneously the tasks 4, 5 and 6 since these three activities
are not related by the constraints of precedence (technically these tasks
4,5, and 6 form a stable set, that is, there are no arcs joining these three
vertices in the graph. After finishing 4, we can initiate 7. Note that after
finishing 5, we cannot immediately start the task 7, since we have to wait
for the completion of the task 4 which takes longer than the task 5. (The
task 7 has two predecessors: 4 and 5.) After finishing 6, we start 8. The
task 7 starts before the task 8 but is completed only after the task 8,
because the weight of a longest path to 7 is 28, whereas the one to 8 is 31.
That is, 7 starts two weeks later than 8 but is completed one week earlier.

A directed path of maximum weight is called a critical path. The
different tasks on a longest weighted path are called critical tasks. In
our example, the critical tasks are 1,2, 3,4,7,9. If the completion of one
of the tasks on a critical path is delayed, say, by one week, then the entire
project will be delayed by one week. Techniques referred to as CPM and
PERT use weighted directed graphs without circuits as models.

Longest path in a directed path without circuits:
We shall now present a polynomial time algorithm to find the mazimum weight
of a directed path (also called longest directed path) in a given directed graph
without circuits and with a weight associated to each arc.

There is no known polynomial time algorithm for finding the mazimum
weight of a directed path in an arbitrary weighted directed graph. This prob-
lem belongs to a large class of problems called NP-Complete problems.

Input: A weighted directed graph without circuits w(s, j) is the weight of the
arc (4,7)-

Output: t[i], the mazimum weight of a directed path arriving at the vertex ¢
for each vertex i.

Algorithm: Let us first perform a topological sort of the vertices of the given
graph. Let this order be 1,2,...,n. The algorithm processes the vertices in
this order. For each vertex 7, we list all the predecessors of the vertex i in the
list pred(z). Let us write the algorithm in pseudo-code.

Maximum weight of a directed path arriving at each vertex:
The vertices are ordered as 1,2,...,n according to the topological sort.
(* initialization *)
for i := 1 to n do
t[i] := 0;
(* iteration *)
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for i := 1 to n do
begin
for each vertex j in the list pred(i) do
if t[j] + w(j,i) > t[i]l then
tli] := t[3] + w(j,i);
end;

The complexity of finding a longest dipath in a digraph

without circuits:

A call to topological sort requires (n+m) steps. The initialization of the table ¢
takes O(n) steps. Now consider the iteration step: It has two nested loops. For
each vertex ¢, the interior loop is executed exactly d~ (i) times where d ™ (4) is
in-degree of the vertex ¢, that is, the number of arcs entering into the vertex 1.
Since the sum of the in-degrees of all vertices of a graph is the number of
arcs of the graph, the cost of the iteration is O(m). Hence the complexity is
O(n+m)+0(m)+O0(m) = O(max(n, m)), by the sum rule of the complexity.

1.11.4 Application 4: Strongly connected components
algorithm

Consider a directed graph G = (X,U) with vertex set X = {1,2,...,n}.
The graph G is strongly connected if between any two vertices  and y there is
a directed path from x to y and a directed path from y to z. In other words,
a graph is strongly connected, if any two distinct vertices lie on a circuit
(not necessarily elementary). By convention, the singleton sequence (z) is
considered as a directed path of length 0 from z to itself. In this subsection,
edge means directed arc/edge.

Example 1.12: Strongly connected graph

The graph G of Figure 1.35 is strongly connected. We see that any
two vertices lie on a circuit.

The vertices 2 and 5 lie on the circuit (2,1,3,4,5,1,3,2) which is
not even simple, because the arc (1, 3) is repeated twice.

A graph which is not strongly connected can be decomposed into strongly
connected components. A strongly connected component of a directed graph G
is a maxtmal induced subgraph H which is strongly connected. That is, H is
an induced subgraph of G with the following properties:

1. The graph H is strongly connected.

2. For any vertex x of G but not in H, the subgraph of G induced by
H U {z} is not strongly connected.
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FIGURE 1.35: A graph and its strongly connected components.

Let us illustrate this notion by an example. Note that a graph is strongly
connected if and only if its only strongly connected component is itself.

Example 1.13

Consider the graph of Figure 1.35.

The graph of Figure 1.35 is not strongly connected because there is
no directed path from the vertex 1 to the vertex 6 even though there is a
directed path from the vertex 6 to the vertex 1. The graph possesses three
strongly connected components. These strongly connected components
are induced by the vertex sets {1,2,3,4,5} and {6,7,8} and {9}.

Note that every vertex of the graph G lies in exactly one strongly
connected component, but there are edges like (6, 5) and (7,9) which are
not in any strongly connected components. In other words, the different
strongly connected components of a graph define a partition of the vertex
set of X of G into a union of mutually disjoint subsets of X.

Tarjan’s algorithm for strong components:

We shall now present an algorithm for finding strong components of a directed
graph. This algorithm is based on the dfs of the given graph G. There is
some similarity between the strong components algorithm and the biconnected
components algorithm we have already studied. Recall that we have defined
a function LOW which helped us to find the biconnected components of a
connected graph using dfs. The function LOW used the dfs spanning tree, the
dfsn of the vertices and the back edges. In a similar manner, we will be defining
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a function LOWLINK using dfs spanning forest, dfsn, dotted mounting arcs
and dotted cross arcs.

In the biconnected components algorithm, we have pushed and popped the
edges of the undirected connected graph, because the different biconnected
components form a partition of the edge set. In the strongly connected com-
ponents algorithm, we will be pushing and popping the vertices of the graph
because the different strong components of a graph form a partition of the
vertex set.

In short, the strong components algorithm and the biconnected compo-
nents are “dual” algorithms.

Méme quand ’oiseau marche, on sent qu’il a des ailes.

Lemierre (1733-1793)

This duality will be shortly explained.

With this analogy in mind, we shall study the strongly connected compo-
nents algorithm.

Input: A directed graph G = (X,U) with vertex set X = {1,2,...,n}.
Output: The list of vertices of each strongly connected component.
Algorithm: Let us first illustrate this algorithm by means of an example. Con-
sider the following graph G of Figure 1.36.

To find the strong components of the graph, we search the graph according
to dfs. The graph is represented by successor list of each vertex: succ[l] =
(2,4); succ[2] = (3,4); succ[3] = (2); succld] = (3); succ[5] = (1,6,9); succl6] =
(7,8); succ[8] = (7); succ[9] = (10); succ[10] = (9).

The dfs structure of the graph G of Figure 1.36 is given in Figure 1.37:

The following Table 1.11 gives the dfsn of different vertices.

The function LOWLINK: Like the function “LOW” of the biconnected

components algorithm, we shall define the function “LOWLINK” on the set
of vertices of the graph.

9 10

FIGURE 1.36: Illustration of strong components algorithm.
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FIGURE 1.37: dfs: strong components algorithm.

TABLE 1.11: Depth-first search number (dfsn) table of graph of
Figure 1.37

3 45 6 7 8 9 10
[3[4[5[6][7[8]9]10]

1 2
dfsn [ 1 ]2

LOWLINK]i] is the smallest dfsn < dfs[i] one can reach, either from the
vertex 4 or from one of the descendants of ¢ in the dfs spanning forest, using
only one dotted mounting or cross arc. In the case of utilization of a dotted
cross arc in the calculation of LOWLINK, this dotted cross arc must lie in
some circuit of the graph. If such dotted arcs lead to vertices whose depth-first
search number > df sn[i] or if no such dotted arcs exist from ¢ or from one of
its descendants, then we define LOWLINK][i| = df sni].

Mathematically, we write LOWLINK[i] = min({dfsnl[i]} U B), where

B = {dfsn[j] | 3 an arc € M U C lying in a circuit from a
descendant of i to j},

where M is the set of mounting arcs and C is the set of cross arcs. Let
us calculate the function LOWLINK in our example. In the algorithm, the
different LOWLINKS are computed according to the postorder traversal of
the vertices of the spanning dfs forest. The postorder of our dfs forest is
(3,4,2,1,7,8,6,10,9,5). Hence the first vertex for which LOWLINK is com-
puted is the vertex 3.

LOWLINK|[3] is min(dfsn[3],dfsn[2]) = min(3,2) = 2, because of
the mounting dotted edge (3,2) from the vertex 3. LOWLINK[4] is
min(df sn[4], df sn[3]) = min(4, 3) = 3 because of the dotted cross edge (4, 3)
from the vertex 4 and this arc lies in a circuit (4,3,2,4). LOWLINK][2] =
min(df sn[2], df sn[2]) = 2 because of the dotted mounting arc from the son 3
of the vertex 2. LOWLINKJ[1] = 1. LOWLINK][7] is min(dfsn[7],df sn[5] =
min(7,5) = 5. Note that the dotted cross arc (7,4) from the vertex 7 is not
taken into account for the calculation of LOWLINK][7] because this cross arc
does not lie in any circuit of the given graph. Similarly, while computing
LOWLINK]5], the dotted cross arc (5,1) will not be considered because of
the absence of a circuit passing through this arc. On the other hand, while
computing LOWLINK][8], we have to take into consideration the dotted cross
arc (8,7) because this arc lies in a circuit (8,7,5,6,8) of the given graph.
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TABLE 1.12: LOWLINK function table of graph of Figure 1.37

1
LOWLINK [ 1 |

5 6 7 8 9 10
[515[5][7]9]9]

2 3 4
21213

The following table gives the function LOWLINK (Table 1.12).
In our example, there are four strong components. These components are
induced subgraphs of the graph G generated by the vertex set:

{2,3,4}; {1}; {5,6,7,8} and {9, 10}.

We make the following important observation from the example:

The intersection of the arcs of the strong component generated by the set
{2,3,4} and the arcs of the dfs spanning forest is a tree of the spanning forest.
This is true for the other three strong components as well. In fact this is true
in general. For a proof, see [3].

The root of the tree obtained by the intersection of the arcs of a strong
component and the dfs spanning forest is called the root of the strongly con-
nected component.

Putting it differently, in each strong component, choose the vertex r whose
dfsn is minimum among all vertices of the strong component. This vertex is
called the root of the strongly connected component.

Back to our example, the root of the strong component induced by the set
{2,3,4} is the vertex 2 and the root of the strong component generated by
{1} is 1, {5,6,7,8} is 8 and the one generated by {9, 10} is the vertex 9.

Once we have identified the roots of the strong components, we can easily
find the set of vertices of each strong components. We use a stack S of vertices.
Initially, the stack S is empty. Recall that we have used a stack of edges in
the biconnected components algorithm.

As we traverse the graph by means of the dfs, we push the vertices into
the stack as soon as we “visit” them. When should we pop up the stack to get
the strong components? As in the biconnected components algorithm, when
we backtrack, that is, when we climb up the dfs forest under construction,
if a root r of a strong component is encountered, then we pop up the stack
till (including) the vertex 7, to obtain the strong component containing the
vertex r.

In our example, we push into the stack the vertices 1 and 2 and finally the
vertex 3. No more new vertices are found from the vertex 3. So we prepare to
backtrack to the father of the vertex 3 which is 2. At this point, the stack will
look as (stack grows from left to right)

S =(1,2,3).

Now we test if the vertex 3 is a root of a strong component. The answer is
“no.” So no pop-up occurs. From the vertex 2, we find a new vertex 4 and
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hence we push into the stack the vertex 4. No new vertices are found from the
vertex 4 and we are ready to backtrack from 4 to his father 2. At this point
the stack will look as

S =(1,2,3,4).

We perform the test: Is 4 a root of a strong component? Since this is not the
case, no pop-up occurs. We climb up to the vertex 2. From 2, no new vertices
are found and we perform the test if 2 is a root of a strong component. Since
the answer to the test is “yes,” we pop up the stack S till the vertex 2. This
is the vertex set of the first strong component found by the algorithm.

The first strong component is induced by the set {4, 3, 2}.

We go back to the vertex 1. Since no new vertices are found from 1, we
perform the test if 1 is a root of a strong component. Since 1 is a root, we pop
the stack till the vertex 1.

The second strong component found is induced by the set {1}.

At this point the stack is again empty. The dfs takes a new vertex 5 as a
root of a tree in the spanning forest under construction and initiates the dfs
search from this vertex 5. From 5 we find 6 and from 6 we find the vertex 7. No
new vertices are found from 7. So we backtrack. At this point, the stack will be

S =(5,6,7).

Test fails for 7 and we move to 6. From 6, we find 8. No new vertices are
“visited” from 8. We prepare to climb up the tree from 8 to the father of 8
which is 6. At this point, the stack will be S = (5,6,7,8). 8 is not the root.
From 6 no new vertices are “visited.” Since 6 is not a root, we reach the
vertex 5. From 5, we find the new vertex 9, from 9 we find the vertex 10. At
this point, the stack is S = (5,6,7,8,9,10). 10 is not a root and we reach back
to 9. No new vertices are found from 9. 9 is a root and we pop up the stack
till the vertex 9.

Hence the third strong component is induced by the set {10, 9}.

The stack S = (5,6,7,8). Finally, we climb up to the vertex 5. Since no
new vertices are found from 5, it is a root. Hence we pop up the stack till the
vertex 5.

Hence the fourth and final strong component is induced by the set
{8,7,6,5}.

Note that the order in which the strong components are found is the same
as that of the termination of their dfs calls. In our example, this order is
2,1,9,5. The call dfs(2) ends before the call dfs(1) ends. The call dfs(1) ends
before the call dfs(9) ends. Finally, the call dfsn(9) ends before the call dfs(5)
ends.

It remains to recognize the different vertices which are the roots of strong
components. From the example, we observe the following property of the roots
of strong components.
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The root r of a strong component satisfies the equality LOWLINK]r] =
dfsn[r] and conversely if a vertex x satisfies the equality LOWLINK|z] =
df sn[z], then z is a root of some strong component.

Before proceeding to write the algorithm, we shall express the function
LOWLINK in a recursive manner. In this recursive definition, LOWLINK
of a vertex x is expressed in terms of the LOWLINK of the children of the
vertices of x and dotted mounting arcs and cross arcs from a descendant of
the vertex x.

partl part2

—_——— ,
LOWLINK][i] = min({dfsn[i]} U{LOWLINK]s] | s, a son of i in dfs forest} UC")

where

part3

C" = {dfsn[j] | 3 an arc € M U C lying in a circuit from a descendant of i to j},

where M is the set of mounting arcs and C' is the set of cross arcs. We are
now ready to describe the algorithm in pseudo-code.

We use the following variables: The array “mark” (mark[i] = 0 if the ver-
tex ¢ is “unvisited” and markl[i] = 1 if the vertex ¢ has been “visited during
the dfs). The array “dfsn” where dfsn[i] is the depth-first search number of
the vertex ¢ and the array “LOWLINK” to compute the LOWLINK of each
vertex. The variable “counter” is used to assign the dfsn. The stack S elements
are the vertices of the graph.

Strongly connected components algorithm:

procedure dfs_strong_comp( i : integer);

var j : integer;

LOWLINK : array[1l..n] of integer; (* n is the number of vertices *)

begin
mark[i] := 1;
dfsn[i] := counter; counter := counter + 1;

(* initialization of LOWLINK: part 1 of recursive definition *)
LOWLINK[i] := dfsn[i];
top := top +1; S[top] := i; (* push i into the stack S *)
(* scan the list succ(i) to find a new vertex j *)
for each j in succ(i) do
if mark[j] = 0
then (* j is a son of i in dfs forest *)
begin
dfs_strong_comp(j); (* recursive call *)
(* at this point we have computed LOWLINK[j] *)
(* update LOWLINK: part 2 of recursive definition *)
LOWLINK[i] := min(LOWLINK[i],LOWLINK([j]);
end
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else(* j is "visited" *)
(* test if arc (j,i) is a mounting or cross arc *)
if (dfsn[i] > dfsn[j]) and ((j,i) in a circuit)
then
(* update LOWLINK: part 3 of LOWLINK definition *)
LOWLINK[i] := min(LOWLINK([i],dfsn[jl);
(* test if the vertex i is a root of a strong component *)
(x if so pop up the stack till the vertex i *)
if LOWLINK[i] = dfsn[i]
then
repeat
write(S[topl,’ ’);
top := top - 1;
until S[top+1] = i;
writeln; (*new line to separate strong components *)
end;

(* initialization *)
for i := 1 to n do
mark[i] := 0;
top := 0; (* empty stack *)
counter := 1; (* to assign dfs number x)
for i := 1 to n do
if mark[i] = 0
then dfs_strong_comp(i); (* call to procedure dfs_
strong_compx*)

The above algorithm is simply an implementation of the function
LOWLINK. In order to write a working program, we have to implement
“part 3” of the recursive definition of LOWLINK. In this part 3 of LOWLINK,
we take into account a dotted cross arc (i,7) to compute LOWLINK if this
arc lies in a circuit of the graph (see part 3 of the recursive definition of
LOWLINK).

There is a circuit passing through the dotted cross arc (7, ) if and only if
the vertex j is still in the stack S.

To illustrate this, let us again refer to our example illustrating strong
components algorithm.

In the example, the order of the roots of the strong components according
to the termination of their dfs call is (2,1,9,5). Note that we have taken into
account the cross arc (4, 3) in the computation of LOWLINK][4], since this arc
lies in a circuit or equivalently the terminal vertex 3 of the cross arc (4, 3) is
in the stack S while we examine this cross arc. Similarly, we have taken into
consideration the cross arc (8,7) in the computation of LOWLINK]I8], when
we are at vertex 8 traversing this cross arc, since the end vertex of the arc,
namely, the vertex 7 is in the stack S.
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On the other hand, the cross arc (5,1) is not taken into consideration in
the computation of LOWLINK]5], since the end vertex 1 of this cross arc does
not belong to the stack S. Note that the strong component containing the
vertex 1 has already been emitted by the algorithm when we are at vertex 5

examining the cross arc (5,1). For a similar reason, we discard the cross arc
(7,4) in the computation of LOWLINK]7].

Strong components program in Pascal:
program strongcomp;
const maxn = 50; (* maximum number of vertices *)
maxm = 250; (* maximum number of edges *)
type pointer = "node;
node = record
info : integer;
next : pointer;
end;

var n, m, i, j, X, y, counter : integer;
succ : array[l..maxn ] of pointer;
S : array[l..maxn ] of integer;(* stack of vertices *)
top :integer; (* top of the stack S *)
procedure input_graph;
var i, j, x, y :integer;(* (x,y) is an arc *)
t :pointer;
begin(* input_graph *)
write(’ enter the number of vertices ’);
readln(n);
write(’ enter the number of arcs ’);
readln(m) ;

(* initialization. graph with n vertices and O arcs *)
for i := 1 to n do
succ[i] := nil;
(*x read the arcs *)
for i := 1 to m do
begin
write(’enter the arc ’, i);
readln(x,y);
(* add y at the head of the list succ[x] *)
new(t); (* create a node pointed by t *)
t~.info :=y;
t~.next succ[x];
succ [x] t;(* attach t at the head of L[x] *)
end;
end; (* input_graph *)
procedure output_graph;
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var t : pointer;
i : integer;

begin
for i := 1 to n do
begin
t := succlil;
if t = nil
then
write(’no successor to ’, i)
else
begin
write(’the successor to ’,i, ’ are :’);
(* scan the list succ[i] *)
while t <> nil do
begin
write(t~.info,’ ’);
t := t”.next;
end;
writeln;
end;

end; (* output_graph *)
procedure dfs_strong_comp( i : integer);
var t : pointer; j : integer;
dfsn : array[1l..maxn] of integer;
LOWLINK : array[1l..maxn] of integer;
instack : array[l..maxn] of boolean;
(* instack[i] is true if i is in stack, false otherwise *)

begin
mark[i] := 1;
dfsn[i] := counter; counter := counter + 1;

(* push i into stack *)
top := top + 1; S[top] := i;
isstack[i] := true;
(* initialization of LOWLINK[i] using part 1 *)
LOWLINK[i] := dfsn[il;
(* scan the list succ[i] *)
t := succl[i];
while t < > nil do
begin
j = t7.info;
if mark[j] = 0
then (* j is a new vertex *)
begin
dfs_strong_comp(j); (* recursive call *)
(* at this point we have computed LOWLINK[j]*)
(* update LOWLINK[i] using part 2%)
if LOWLINK[i] > LOWLINK[j]
then LOWLINK[i] := LOWLINK[j];
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end
else
if (isstack[j] = true) and (dfsn[i] > dfsn[j])
then (* (i,j) is cross arc in a circuit x)
(* update LOWLINK[i]: part 3 *)
if LOWLINK[il > dfsn[j]
then LOWLINK[il := dfsn[jl;
t := t”.next;
end;

(x test if i is a root of a strong component *)
if LOWLINK[i] = dfsn[i]
then(* i is a root of a strong component *)
begin
repeat
write(S(topl,’ ’);
isstack[S[topl] := false;
top := top - 1;
until S[top +1] = i;
writeln; (* new line *)
end;
end;
begin (* strongcomp *)
(* initialization *)
for i := 1 to n do
begin
mark[i] := 0O;
isstack[i] := false;
end;
top := 0; (* empty stack *)
counter := 1;
(* end of initialization *)
input_graph;
output_graph;
for i := 1 to n do
if mark[i] = 0
then dfs_strong_comp(i); (* call *)
end.

Complexity of strong components algorithm:

The complexity of the strong components algorithm is the same as that
of the dfs procedure. Intuitively, each vertex is “visited” only once and
pushed/popped only once. Each edge is traversed only once. Hence the com-
plexity of Tarjan’s algorithm is O(max(n,m)).

Remark 1.6. We have already said that the biconnected components algo-
rithm and the strongly connected components algorithm are dual algorithms.
This duality actually comes from the following observation:
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In a graph, vertices and edges can be considered as dual concepts. The
different biconnected components of an undirected connected graph may be
obtained as equivalence classes induced by a suitable equivalence on the set of
edges E of the graph G. This relation Ry is defined as below.

Two edges e1 and es are related by the relation Ry if e = e or there is
an elementary cycle passing through these two edges. This is an equivalence
relation on the set of edges of the graph G. Reflexivity of Ry is evident by
the definition. Symmetry of Ry is also clear, since the order of appearance of
the edges e1 and es on an elementary cycle is not relevant according to the
definition. Now let us prove transitivity of Ry. If e;Ries and eaRyies, then
there is an elementary cycle Cy passing through e; and es and an elementary
cycle Cy passing through es and es.

Then, the symmetric difference (considering the cycles C1 and Cy as sets
of edges) C1ACy = (C1UC2)\(C1NCy) is an elementary cycle passing through
the edges e1 and es.

The subgraphs induced by the edges of the equivalence classes of this rela-
tion Ry are the biconnected components of the graph.

Let us define an equivalence relation Ry on the vertex set of a directed
graph so that the different classes of this equivalence relation induces strong
components of the directed graph. Two vertices x and y are in relation under
Ry if either x =y or there is a directed elementary path from the vertex x to
the vertex y and an elementary directed path from the vertex y to the verter x.
Then, we can prove easily that the relation Ry is an equivalence relation on the
vertex set of the graph. The subgraphs induced by the vertices of the equivalence
classes of Ro are the strong components of the graph.

1.12 Traveling Salesman Problem

One of the famous NP-complete problems is the traveling salesman prob-
lem (TSP). Let us state this problem.

Input: There are n cities 1,2,...,n and the cost of traveling between any two
cities 4,7,(¢ # j) is ¢ij = ¢(4,7), (1 < ¢,j < n). We assume that the cost
function is a symmetric function, that is, ¢(i, j) = ¢(j, 7).
Output: Find a tour of a salesman starting from the city 1, visiting each city
exactly once and returning to the starting point 1, by minimizing the total
cost of the travel. The cost of a tour is the sum of the costs of the travel
between the cities.

This problem can be cast into a graph problem by representing the cities
by vertices and the intercity routes by the corresponding edges, with the cost
of traveling between the vertices ¢ and j as a weight of the edge ij.

Input: A complete simple graph K, on n vertices and a weight attached to
each edge ij, 1 <i,5 < n.
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1

5

FIGURE 1.38: Illustrating the traveling salesman problem.

TABLE 1.13: Three tours of Figure 1.38

Tour number Tour Cost of tour
1 (1,2,3,4,1) 21
2 (1,3,2,4,1) 19
3 (1,3,4,2,1) 20

Output: Find a Hamiltonian cycle of the complete graph K,, with the sum of
the weights of the edges of the cycle as a minimum, that is, find an elementary
cycle passing through each vertex exactly once with the sum of the weights of
the edges as a minimum.

Let us illustrate this problem with an example (see graph of Figure 1.38).
In the graph of Figure 1.38, the different tours and their corresponding costs
are given in Table 1.13. In Table 1.13, there are three tours and the minimum
tour is the tour number 2 whose cost is 19. Note that the tours (1,2,3,4,1)
and the reverse tour (1,4,3,2,1) give the same cost. Hence such duplicated
tours are not listed in the table. The following lemma gives the number of
Hamiltonian tours in a complete graph K.

Lemma 1.2. The number of Hamiltonian tours in K, is (n—1)!/2 (by iden-
tifying the reverse tours, that is, for n =3, (1,2,3,1) = (1,3,2,1), because
they have the same cost).

Proof. Every tour of K,, defines a cyclic permutation and conversely every
cyclic permutation of the set {1,2...,n} defines a tour of K,,. But the number
of cyclic permutation of the n set [n] is (n — 1)! (see [6]). By identifying a
tour and its reverse tour (because they have the same total cost), the desired
number is (n — 1)!/2. O

Brute-force algorithm to solve TSP:

The first algorithm which comes to our mind is the brute-force algorithm:
Generate all the possible tours of the salesman and find one for which the
total cost is a minimum. But this algorithm takes exponential time, because
there are essentially (n — 1)!/2 tours and the following inequality shows that
factorial n is an exponential function (for a proof, see [6]).

n™? <nl < ((n+1)/2)".
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For a proof of this inequality, see [6]. The following program implements the
brute-force algorithm. This program does not check for equality between a
tour and its reverse tour. There are four cities 1, 2, 3 and 4. 0 is not a city.
The reader is requested to see the recursive permutation generation program
in [6] and appreciate the similarity with TSP brute-force program.

Brute-force C program for tsp:

#include <stdio.h> //load input-output library
#include <stdlib.h>

#include <limits.h> //INT_MAX is defined here
#define N 4 // N, the number of cities

int v[N+1]={0,1,2,3,4} ; // v= ville, means city in French

int c[N+1][N+1]={{0,0,0,0,0},{0,0,4,3,5},{0,4,0,5,6},{0,3,5,0,7},
{0,5,6,7,0}};

//c, the cost matrix

int +t[N+1]; //t, the Hamiltonian tour

int mc=INT_MAX ; //mc, minimum cost

void tsp(int k)

{/*tsp finds the cost of a minimum cost Hamiltonian cycle  */
int i,temp,s; // i for the loop, temp for swap and s for the sum

if (k==1) //basis of recurrence

{s=0;
for (i=1;i<N;i++)
s = s+c[v[i]] [v[i+1]];
s = s+c[v[NII[v[1]];
if (s<mc)
{mc=s;
//save the Hamiltonian cycle
for (i=1;i<=N;i++)
t[il=v[i];
}
}
else // recurrence
{ tsp(k-1); //recursive call
for (i=1;i<k;i++)
{//swap v[i] et v[k]
temp=v[i];
v[il=v[k];
v[k]=temp;
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tsp(k-1); //recursive call
//restore array v

//swap again v[i] et v[k]
temp=v[i];
vlil=v[k];
v[k]=temp;

}
int main ( )

{ int i ;
tsp ( N ) ; //call with k = N
//print the result
printf ("the minimum cost tour is %d \n", mc );
//print the tour
for (i=1;i<=N;i++)
printf ("%3d",t[i]);
printf ("%3d",t[1]1);
system ("pause");
return O;

}

1.12.1 Approximate algorithms for traveling salesman
problem

Definition 1.2 (Approximate algorithm). An algorithm A is said to be
an approximate algorithm for the traveling salesman problem (TSP), if for
any instance I of the TSP (an instance of a problem is obtained by specifying
particular values of the parameters of the problem, for example, the graph of
Figure 1.38 is an instance of TSP) if the ratio

r(4) = A(I)/E(I)

is bounded above by a constant ¢, where A(I) is the value found by the algo-
rithm A on the input I and E(I) is the exact value of the instance. The-
oretically, we may obtain E(I) by executing the brute-force algorithm on the
instance I. Note that ¢ > 1. If the constant ¢ is 1, then A is an exact algorithm.

We shall now study three approximate algorithms for TSP [7].

Nearest neighborhood (NN) algorithm:

This is a heuristic. A heuristic for TSP is an algorithm which gives an accept-
able solution but not necessarily optimal solution for TSP. We shall describe
the heuristic.
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TABLE 1.14: Execution of
NN algorithm on Figure 1.38

Partial tour Vertex chosen

=N W

Input: A complete graph K,, with vertices 1,2, ...,n and a cost function ¢ asso-
ciated to each of the n(n —1)/2 edges of K,,. We further assume the triangle
inequality, that is, for any three cities i, j, k, we have ¢(i, k) < c(i,7) + c(j, k).
Output: A solution for this instance I such that the ratio

NN(I)/E(I) <1/2([logyn] +1)

where NN (I) is the value obtained by the NN algorithm on the instance I
and E(I) is the exact value on the instance I.

Algorithm: We shall describe in an informal way this algorithm. Choose the
starting city 1 and let ¢; = 1. Choose a city ¢ # ¢; (2 < n) such that
c(c1,¢2) is a minimum (ties may be broken by choosing a smallest city c¢s).
Next choose a city ¢3 (3 < n and ¢3 # ¢1, c2) such that ¢(cz, ¢3) is a minimum.
More generally, having thus constructed a partial tour c1,ca,...,cp, (p < n),
we choose ¢p+1 which is different from ¢; for i = 1,2,....p and c(cpy1,¢p) is
a minimum. Finally, having chosen ¢,,, we choose ¢y, the starting city to close
the path. We have thus constructed the complete tour (c1,ca,...,cn,c1). An
algorithm must be seen to be believed. Let us execute the NN algorithm on
an example. Let us refer to the graph of Figure 1.38.

Example 1.14: Execution of NN algorithm

Table 1.14 illustrates the execution.

The complete tour obtained is (1, 3,2,4, 1), whose cost is 19, which is exact
in this case. We shall now present a C program to implement the NN algorithm
for TSP.

C program implementing the NN algorithm:

#include <stdio.h> //load the input/output library
#include <stdlib.h>
#include <limits.h> //INT_MAX is defined in limits.h

#define N 4 // N is the number if cities
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//int v[N+1]={0,1,2,3,4} ; // v= villes, means cities in French

int c[N+1] [N+1]={{0,0,0,0,0},{0,0,4,3,5},{0,4,0,5,6},{0,3,5,0,7%},
{0,5,6,7,0}};

// c, the cost matrix

int t[N+1]; //t, the resulting tour

int mark[N+1]={0,0,0,0,0};

// mark[i]=0 if city i is not yet visited

//mark[i]l=1, otherwise

void tsp_nn( )

int i,j,k,min,counter; //counter is the number of cities visited
//min, the nearest cost neighborhood

// k is the name of the next city to include

t[1]=1; //start with 1

mark[1]=1;

counter=1;

i=1; //i, current city

while (counter<N)
{
min=INT_MAX; //initialisation
for ( j=1;j<=N;j++)
if ((mark[j1==0)&&(i!=j)&&(c[i] [j1<min))
{
min=c[i] [j];
k=j;
}
mark[k]=1; //visit city k
counter=counter+1;
i=k;
t [counter]=k;
}//end while
} //end tsp_nn

int main ()

{

int i,mc=0;//mc, minimum cost tour

tsp_nn() ; //function call

for (i=1;i<N;i++)
cm=cm+c [t [i]] [t[i+1]];
cm=cm+c [t [N]] [t [1]];

//print the result
printf("the minimum cost is %d\n",cm);
//print tour
for (i=1;i<=N;i++)
printf ("%3d",t[i]);
printf("%3d",t[1]1);
system("pause") ;
return O

}
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TABLE 1.15: An approximate algorithm for TSP using MST

Algorithm: We shall describe the algorithm in an informal way.

Step 1: Find a minimum cost spanning tree for the graph K,,, by applying
Prim’s algorithm (see Section 1.2.1)

Step 2: To each edge of the minimum cost tree T, add one more additional
edge. This operation converts the T into an Eulerian graph ET,
that is a connected graph in which the degree of each vertex is even.

Step 3: Find a Eulerian cycle of the graph ET. (A Eulerian cycle is a cycle
passing through each edge exactly once, but a vertex may be visited
more than once. In an eulerian cycle, each vertex x is visited exactly
d(z) times).

Step 4: Convert the Eulerian cycle into a Hamiltonian cycle, that is,
traveling salesman tour, by taking “shortcuts.”

An approximate algorithm for TSP using minimum spanning tree
and Eulerian cycle (MSTEULER):

Input: A complete graph K, with vertices 1,2,...,n and a cost function ¢
associated to each of the n(n—1)/2 edges of K,,. We further assume the triangle
inequality, that is, for any three cities i, 7, k, we have ¢(i, k) < ¢(i,7) +c(J, k).
Output: A solution for this instance I such that the ratio

MSTEULER(I)/E(I) < 2

where MSTEULER(I) is the value obtained by the MSTEULER algorithm
on the instance I and E(I) is the exact value on the instance I.

Before illustrating the algorithm with an example, let us see an algorithm
to find a Eulerian cycle in a Eulerian graph. We shall recall the definition of
a bridge. In any graph G, not necessarily connected, a bridge is an edge e of
G (e is not a loop), such that the number of connected components of G — ¢
is strictly greater than the number of components of G.

Algorithm to find a Eulerian cycle in a Eulerian graph:
This algorithm is invented by Fleury.
Fleury’s algorithm is given in Table 1.16.

Execution of Fleury’s algorithm:
Let us execute Fleury’s algorithm on the graph of Figure 1.39.

Start with any vertex, say, the vertex 1. Choose any edge incident with the
vertex 1, say, the edge e3. Now Fy = {e3} and Ey = F'\ E;. Now we are at
vertex 3 and we must not choose the edge es as our next edge as the edge ey
is a bridge of the edge induced subgraph Fs, because we have an alternative
edge e5 or e; is incident with 3 which are not bridges of the edge induced
subgraph Fs. We choose the edge, say, e5 as our next edge of the cycle. We
are now at the vertex 4. Again, we must not choose the edge e4 for the same
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TABLE 1.16: Informal Fleury algorithm

Input: A connected graph (loops and multiple edges allowed) G = (X, E)
in which the degree of each vertex is even.

Output: A Eulerian cycle.

Algorithm: Start with any vertex ;. Traverse any edge incident with
the vertex z (this edge may be a loop). Having reached a vertex xy,
(1 <k < n), we distinguish two types of edges:

Type 1: The edges already in the cycle being constructed by Fleury’s
algorithm.

Type 2: The edges not yet included in the partial Eulerian cycle already
constructed by the algorithm.

Let us denote the set of edges of type 1 by E; and the set of edges of
type 2 by Es. Note that £ = E; U Ey and E; N Ey = (). Initially, E; = ()
and Fy = E, the entire edge set of G.

At the vertex xy, unless there is no alternative, we select an edge incident
with xy in the edge induced subgraph Eo, which is not a bridge of the edge
induced subgraph E,. The algorithm terminates as soon as Fy = ().

FIGURE 1.39: Illustration of Fleury’s algorithm.

reason and we choose an edge, say, e7 incident with 4. At vertex 6, we must
choose the loop eg. Now again at vertex 6, since there is no alternative, we
choose the edge eg even though it is a bridge of the edge induced subgraph
E5 = {es, €6, €4, €2, €1 }. Continuing like this, we choose the sequence of edges
es, €4, €2, e1(note that there are alternative choices left for these edges even
though they are bridges). Now Es = () and the algorithm stops. We have thus
the Eulerian cycle,
(e3, €5, €7, €9, €8, €, €4, €2, €1 ).

Now we are ready to execute the MSTEULER algorithm for TSP. Consider
the graph of Figure 1.38. We shall execute the algorithm on this graph of
Figure 1.38.

Step 1. Execution of Prim’s algorithm on the graph of Figure 1.38 gives us
the spanning tree Figure 1.40.

Step 2. Doubling the edges of the graph of the spanning tree Figure 1.40 gives
us the graph of Figure 1.41.

Step 3. A Eulerian cycle of the graph of Figure 1.41 is: (eq, ea, €5, €6, €3, €4).

Step 4. Taking shortcuts gives the Hamiltonian cycle: (1,2,4,3,1).
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FIGURE 1.40: Spanning tree of Figure 1.38.

FIGURE 1.41: Doubling the edges of the tree of Figure 1.40.

How to take the shortcuts:

We follow the vertices visited by the Eulerian cycle already constructed. The
first edge is e; whose ends are 1 and 2. Hence the Hamiltonian cycle starts
with the vertex 1 followed by the vertex 2. Now the next edge in the Eulerian
cycle is es whose end vertices are 2 and 1 (in the order appearing in the cycle),
but these vertices are already in the Hamiltonian cycle under construction.
Hence we do not include them. We now examine next edge in the Eulerian
cycle which is e5 whose ends are 1 and 4 (in the order) and the vertex 1 is
already in the cycle under construction but the vertex 4 is a new vertex (which
is not in the cycle under construction). Hence we take the shortcut from the
vertex 2 directly to the vertex 4. The partial cycle constructed is (1,2,4).
The next edge in the Eulerian cycle is eg whose ends are 4 and 1. Both are
already in the partial Hamiltonian cycle. So we do not include them. The
next edge we consider is e3 whose ends are 1 and 3. But 3 is not in the cycle.
Hence we take the shortcut from the vertex 4 to the vertex 3. The cycle thus
constructed is (1,2,4,3). Since all the vertices are in the cycle, we complete
the cycle by adding once more initial vertex 1 of the cycle. The cycle obtained
is (1,2,4,3,1). The cost of the cycle is 20.

Theorem 1.6. For any instance of the TSP, we have
MSTEULER(I)/E(I) < 2

where the MSTEULER(I) is the cost obtained by the MSTEULER algorithm
and E(I) is the ezact cost.

Proof. Let us observe that if C' is a Hamiltonian cycle and e is an edge of
C, then C'\ e is a spanning tree of the graph G. Hence, if T is a minimum
cost spanning tree of G, then w(T) > w(C \ e) where w(T) is the sum of



Graph Algorithms I 99

the weights of the edges of T' and w(C'\ e) is the sum of the weights of the
edges of C'\ e. By doubling each edge of T, we obtain the graph ET, with
w(ET) = 2w(T). Since a Eulerian cycle traverses each edge of ET exactly
once, its total weight is also w(ET). Taking shortcuts will not increase the
cost w(ET) as:

c(xy,29) + c(xa,x3) + - + c(wp—1, 2k) < c(x71,0K)

by triangle inequality, where c is the cost function associated with each edge.
Hence the theorem. O

Another approximate algorithm for TSP using a minimum
matching (tspmm):

Input: A complete graph K, with vertices 1,2,...,n and a cost function ¢
associated to each of the n(n—1)/2 edges of K,,. We further assume the triangle
inequality, that is, for any three cities i, j, k, we have ¢(i, k) < c(i,7) + c(j, k).
Output: A solution for this instance I such that the ratio

tspmm(I)/E(I) < 3/2

where tspmm(I) is the value obtained by the MSTEULER algorithm on the
instance I and FE(I) is the exact value on the instance I.

Algorithm: The algorithm is given in Table 1.17.

TABLE 1.17: An approximate algorithm for TSP using a minimum
matching

Algorithm: We shall describe the algorithm in an informal way.

Step 1: Find a minimum cost spanning tree T of K, using Prim’s algorithm
in Section 1.2.1. Hence this step is the same as the first step of the
previous algorithm.

Step 2: Recall that in any graph, the number of vertices whose degrees are
odd integer is always an even integer (see [6]). We find a perfect
matching (a matching is a collection of edges no two of which are
adjacent. A perfect matching is a matching with exactly n/2 edges
for a n vertex graph. Of course, n must be even.) among the
vertices of odd degree of T" whose total weight is a minimum.

Step 3: Add the edges of a minimum weight matching found in step 2. The
graph thus obtained MT is a connected graph whose degrees are
even (because of the addition of a matching). Hence MT is an
eulerian graph. Find an eulerian cycle using Fleury’s algorithm 1.16.

Step 4: As in the previous algorithm (see step 4 of Table 1.15), take
shortcuts of the Eulerian cycle obtained in step 3.
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1.13 Exercises

1.

Consider a directed graph G represented by its adjacency matrix. Write
a program in C to find the vertex-deleted subgraph G — k where k is
any vertex of the graph G. Find the complexity of your program.

. Consider a directed graph G represented as linked lists. Write a program

in C to find the vertex-deleted subgraph G — x where z is any vertex of
the graph G. Find the complexity of your program.

Consider a directed graph G represented by its adjacency matrix. Write
a program in C to find the arc-deleted subgraph G — (z,y) where (z,y) is
any directed edge of the graph G. Find the complexity of your program.

Consider a directed graph G represented as linked lists. Write a program
in C to find the arc-deleted subgraph G— (i, j) where (3, j) is any directed
edge of the graph G. Find the complexity of your program.

Write a program in C to represent a graph in the form of its incidence
matrix. What is the complexity of your program?

Let G be a connected simple graph containing at least one bridge, with
weights associated to each edge of the graph G. Let T be a minimum
cost spanning tree found by Prim’s algorithm/Kruskal’s algorithm.

Then, T contains all the bridges of the graph G. True or false? Justify
your answer.

Let G = (X, F) be a simple graph on n vertices with weights associated
to each edge of G and let T' be a minimum cost spanning tree obtained
by applying Prim’s algorithm on the graph G. Let c¢1,ca,...,¢ch—1 be
the edges of the tree T arranged in non-decreasing order; that is, ¢; <
co < -+ < ¢p_1. Consider any spanning tree 7" of G with edge costs
¢S <<y

Show that ¢; < ¢ for all 4 with 1 <i <n— 1.

Apply Prim’s algorithm on the graph of Figure 1.42. The weights of
edges are written on each edge. Give the weight of the spanning tree
thus obtained.

FIGURE 1.42: A weighted simple graph.
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11.

12.

13.

14.
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Apply Kruskal’s algorithm on the graph of Figure 1.42. The weights of
edges are indicated on each edge. Give the weight of the spanning tree
obtained.

Apply Dijkstra’s algorithm on the graph of Figure 1.43 by taking the
vertex 1 as the source vertex. The weights of arcs are indicated on each
directed edge. Give the array “dad.” Draw the spanning arborescence
obtained by the algorithm.

Execute Warshall’s algorithm on the graph of Figure 1.43 by ignoring
the weights associated to each arc.

Execute Floyd’s algorithm on the graph of Figure 1.43. Give the matrix
INTERs55 obtained at the end of the execution. Execute the call inter-
path(1,4) and write the vertices printed by the call.

FIGURE 1.43: A weighted directed graph.

Prove that in a directed graph, the number of directed walks of length k
from a vertex i to a vertex j is the (7, j) entry of the matrix M* where M
is the adjacency matrix of the graph. Using this result, design a O(n?)
algorithm for transitive closure of a graph.

Execute Hopcroft’s algorithm to find the biconnected components on
the graph of Figure 1.44. The vertices are arranged in increasing order
in each adjacency list. Process the vertices in increasing order. Draw
clearly the dfs tree together with the back edges. Give the arrays a dfs
number and LOW.
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15.

16.

17.

18.

19.
20.
21.
22.
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FIGURE 1.44: A simple connected graph.

Add suitable instructions in Hopcroft’s biconnected components algo-
rithm to print the cut vertices and bridges of a connected graph with at
least two vertices.

Execute Tarjan’s strongly connected components algorithm on the graph
of Figure 1.44 after giving following directions/orientations to the edges
of the graph:

Orient the edges as follows: (1,2),(2,3),(3,1),(3,7),(7,8), (8,3),
(4,3),(1,5),(2,5),(3,5), (5,6), (6,10), (10,9), (9, 5).

Write the arrays dfsn and LOWLINK. Draw the dfs spanning forest with
forward, backward, and cross dotted arcs.

Execute Dijkstra’s negative cost algorithm on the following graph of five
vertices. The graph is represented by its 5 x 5 costs matrix W.

o 7 8 9 10
0 0 8 9 10
W=|0 -2 0 9 10
0 -4 -3 0 10
0O -7 -6 =5 0
Can you guess the complexity of Dijkstra’s negative cost algorithm from
this example?
Execute the topological sort algorithm on the graph of Figure 1.44 after
assigning the following orientations to the edges of the graph:
Orient the edges as follows: (1,2),(1,3), (1,5),(2,3),(2,5),(3,5),(4, 3),
(5,6),(6,10),(10,9), (5,9),(3,7),(7,8),(3,8).
Write a program in Pascal for Dijkstra’s algorithm.
Write a program in C for Dijkstra’s algorithm.

Write a program in Pascal for Prim’s algorithm.

Write a program in C for Prim’s algorithm.



Chapter 2

Graph Algorithms I1

The things we have understood in such a way that they can be
instructed to a computer could be called science. Otherwise they
are only art.

D. E. Knuth

In this chapter on graph algorithms II, we introduce another systematic
way of searching a graph known as breadth-first search (BFS). Testing if a
given graph is geodetic and finding a bipartition of a bipartite graph are given
as applications. Next, matching theory is studied in detail. Berge’s charac-
terization of a maximum matching using alternating chain and Konig-Hall
theorem for bipartite graphs are proved. We consider matrices and bipartite
graphs: Birkhoff-von Neumann theorem concerning doubly stochastic matrices
is proved. Then, the bipartite matching algorithm using a tree growing proce-
dure (Hungarian method) is studied. The Kuhn-Munkres algorithm concern-
ing maximum weighted bipartite matching is presented. Flow in transporta-
tion networks is studied. The Ford-Fulkerson algorithm to find a maximum
flow and a minimum cut capacity in a transportation network is treated.
As applications of bipartite networks, we give an algorithm to determine if
a given sequence of pairs of integers is realizable by a p-graph (that is, a
graph in which the number of parallel edges/directed arcs from a vertex a
to a vertex b is at most p). Greedy algorithm and approximate algorithm
for a minimum transversal in a graph are studied. Havel-Hakimi’s algorithm
concerning degree sequence of a simple graph is studied. Exact exponential
algorithm and polynomial greedy algorithm for graph coloring are studied.
Finally, the relation between the chromatic number and the examination time
tabling problem is discussed.

2.1 Breadth-First Search

In Chapter 1 on Graph Algorithms I, we have discussed the depth-first
search (dfs). Another systematic way of processing/visiting the vertices of a
graph is the breadth-first search (bfs). In dfs, we go as deeply as possible into
the graph before fanning out to other vertices. On the other hand, during the
bfs, we “fan” out to as many vertices as possible, before going “deeper” into
the graph (see [3]).

103
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FIGURE 2.2: Breadth-first search tree of graph G of Figure 2.1.

We shall illustrate this procedure by an example. Let us consider the con-
nected simple graph G of Figure 2.1.

The graph is represented by the adjacency lists: L(a)
(a.c.e, 0 L(e) = (a,b,d, f,g,h); L(d) = (a,e,h,1); L(e)
(b;c,e); L(g) = (¢, h); L(h) = (c,d, g,); L(i) = (d, h).

Initially all the vertices are marked “unvisited.” We start the search with
any vertex as the starting vertex, say, the vertex a. This vertex a will be
the root of the bfs tree under construction. We mark the vertex a “visited.”
Then, we scan completely the adjacency list of the vertex a looking for vertices
marked “unvisited.” We mark each of the vertices b, ¢, d “visited” and add the
edges ab, ac, ad to the bfs tree. We now scan the list L(b) looking for vertices
marked “unvisited.” Two new vertices e, f are found and they are marked
“visited” and the edges be,bf are added to the bfs tree.

Now by scanning the list L(c), we find two new vertices g, h and the edges
cg,ch are added to the tree. Next by scanning the list L(d), only one new
vertex 7 is found and the edge di is added to the tree. The tree T obtained
by the search is defined by the solid edges in Figure 2.2 and all other edges of
the graph GG which are not in the tree T are drawn as dotted edges.

We observe the following properties of the dotted edges.

(b7 ¢ d); L(b)
(0, f); L(f)

Observation 2.1. A dotted edge, which is not a loop, is always a cross edge,
that is, a dotted edge joins two vertices x,y where neither is an ancestor or
descendant of the other. This property is just the opposite of the property of
the dotted edges of the dfs of an undirected graph.
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FEvery cross edge defines an elementary cycle as in the dfs. More precisely,
consider a cross edge xy, and let the verter z be the closest common ancestor
of the vertices x and y in the bfs tree. Then, the unique path from z to x in
the tree and the unique path from z to y in the tree together with the cross
edge gives an elementary cycle of the graph.

For example, in Figure 2.1, the cross edge hi defines the cycle
(a,c,h,i,d,a), the common ancestor being the root vertex a.

Having seen an example, let us now describe the bfs algorithm in
pseudo-code.

Breadth-first or level-order search algorithm:

Input: An undirected graph G = (X, F) with X = {1,2,...,n}. The graph
is represented by the n lists L(7),i =1,2...,n.

Output: A partition of the edge set E into the edge F', where F' is a spanning
forest of G, with F' being a vertex disjoint union of trees and the set D of
dotted edges.

Algorithm: An array mark[l..n] is used where mark[i] = 0 if and only if the
vertex ¢ is not yet “visited” during the search. Initially, mark[i] := 0 for each
vertex i. We use a “queue of vertices” @. Initially, the queue is empty. The bfs
tree is represented by an array of “dad,” that is, dad[j] = i if the vertex i is
the father of the vertex j in the tree, that is, 75 is an edge of the bfs tree under
construction. Initially, the set of edges of the bfs tree T' is empty. We use an
array bfsn[l..n] where bfsn stands for the breadth-first search number. More
precisely, bfsn[i] = k if i is the kth vertex “visited” during the bfs. Thus, the
bfsn of the root vertex of the first tree in F' is 1. The integer variable counter
is initialized to 1. The algorithm is given below in pseudo-code.

procedure bfs(x : vertex);
(* bfs marks by breadth first search, all the vertices
accessible from the vertex x by an elementary path *)
var y,z:vertex; Q: queue of vertex;
begin (xbfs*)
(* initialization of Q *)
Q:= empty;
mark([x] :=1; bfsn[x]:=counter; counter;= counter +1;
enqueue x in Q;
while Q is nonempty do
begin
y:= head of the queue Q;
dequeue; (*remove the front vertex of Q)
for each vertex z in L(y) do
if mark[z]=0
then begin
mark[z] :=1; bfsn[z]:=counter; counter: counter+1;
enqueue z in the queue Q;
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dad[z] :=y; (x add the edge yz to the forest Fx*)
F:=F + {yz};
end; (*whilex*)
end; (xbfs*)

begin(* main program*)
(*initialization of array mark , F and counter*)
for each vertex x do
mark [x] :=0;
F:=empty;counter:=1;
for each vertex x do
if mark[x] = O then
bfs(x); (¥ callx)
end;

Note that if the graph is not connected, bfs will be called from the main
program on a vertex of each connected component, that is, there will be as
many calls to bfs as the number of connected components of the graph. Let
us now discuss the complexity of bfs.

Complexity of bfs algorithm:

As in the dfs, each vertex is processed at most a constant amount of time
(e.g., marking, enqueueing, dequeueing) and each edge xy is traversed exactly
twice, once from = and once from y. Hence, the time taken by bfs is O(n+2m)
which is O(max(n, m)) by the sum rule of “big-oh” notation.

Property 2.1 (Level sets: Partition of the vertex set induced by bfs).
Bfs induces a partition of the vertex set of a connected graph with the following
properties:
The vertex set
X = Lo(a)ULy(a) U---U Lg(a)
where a is the root vertex, k is the eccentricity of the vertex a and the set
L;(a) consists of all vertices at distance i from the vertex a. Symbolically,

Li(a) ={x|d(a,z) =1}

The sets L;(a) are called level sets with respect to the vertex a. By the definition
of level sets, there cannot be an edge of the graph between vertices of the level
sets L;(a) and the level sets Lj(a) if |i — j| > 1.

Example 2.1: Level sets induced by bfs
Let us refer to graph G of Figure 2.1. In this graph, the level sets are
Lo(a) = {a} then Li(a) = {b,ec,d} and finally Lo(a) = {e, f,g,h,i}.
Note that Li(a) = 0 for all k > 3.
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This partition can be easily obtained from the bfs algorithm as follows:

An array variable L[1..n] of integer is declared together with an integer
variable k to assign levels to wvertices. k is initialized to 1. In the beginning
of the bfs procedure, we add the instruction L[a] = 0 and write the statement
L[z] := k just after the instruction mark[z] := 1. Finally, the variable k is
updated by the statement k := k + 1 just before the end of the while loop.

Once the array L is available, to find the vertices at level i from the root
vertex a, we simply scan the L array to print the vertices x for which L[x] = 1.

2.2 Applications of bfs Algorithm

As in the case of the dfs algorithm, bfs can be used directly to find the
connected components of a graph and to test the existence of cycles in graphs.

We shall now see few applications of bfs: Testing if a given graph is geode-
tic, testing if a graph is bipartite and finding a maximum matching in a
graph.

Geodetic graph:
An undirected graph is geodetic if between any two vertices there is a unique
elementary path of shortest length. Let us recall that the length of an elemen-
tary path is the number of edges in the path.

By the definition, a geodetic graph must be a simple connected graph. For
example, a tree is a geodetic graph. Other examples are the famous Petersen
graph of Figure 2.3 and any elementary cycle of odd length.

An algorithm to test if a graph is geodetic:
The algorithm is based on the following simple characterization of geodetic
graphs due to Parthasarathy and Srinivasan (see [11]).

Theorem 2.1 (Characterization of geodetic graphs). Consider a simple
connected graph G and a partition of the vertex set X generated by bfs from an
arbitrary root vertexr x. Then, the graph is geodetic if and only if for every root

FIGURE 2.3: An example of a geodetic graph.
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vertex x, a vertex y of the ith level set L;(x) is joined by an edge to exactly
one verter z in the (i — 1)th level set L;_1(x).

Proof. Let G be a geodetic graph. Then, each vertex y in L;(z) is adjacent to
exactly one vertex z of L;_1(x). For, if there is a vertex y € L;(x) adjacent to
two vertices z1, zo belonging to L;_1, then by the definition of level sets, there
are two paths of shortest length i from the root vertex x to the vertex z, one
going through z; and the other passing via zo, a contradiction.

For the converse part, suppose that every vertex of the i¢th level set is joined
to exactly one vertex of the (i —1)th level set, for all root vertex z € X. If G is
not geodetic, then there are vertices x and y such that there are two shortest
paths P, and P, from = to y. Let z # y be the last vertex common to both
P, and P, while going from x to y. Then, clearly, z = x for, otherwise the two
paths will be identical. Now, if the distance between x and z is 7, then in the
bfs with x as the root vertex, the vertex z in the ith level set has two adjacent
vertices in the (i — 1)th level set, a contradiction. O

We are now ready to describe the algorithm:
Input: A connected simple graph G.
Output: “1” if G is geodetic, “0” if not.
Algorithm: By the above characterization of geodetic graphs, G is geodetic if
and only if there is no dotted edge between two consecutive level sets, for any
root vertex z € X.

The algorithm is given below in pseudo-code: We declare an integer vari-
able “geo” which is initialized to 1. If there is a dotted edge between two
consecutive level sets, then the variable “geo” is set to 0 and the procedure
“bfs” terminates, thanks to the statement “return” and the control falls back
to the statement which activated the procedure “bfs.” L[s] = L[f] + 1 if and
only if the vertex f is the father of the vertex s in the bfs tree. Note that the
square brackets in L[z] denote the level number of the vertex z, whereas the
parenthesis in L(z) denotes the list of vertices adjacent to the vertex x.

procedure bfs_goedetic(x : vertex);
var y,z:vertex; Q: queue of vertex;
begin (*bfs_geodetic*)
(* initialization of Q *)
Q:= empty;
mark[x]:=1; L[x]:=0;
enqueue x in Q;
while Q is nonempty do
begin
y:= head of the queue Q;
dequeue; (*remove the front vertex of Q%)
for each vertex z in L(y) do
if mark[z]=0
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then begin
mark([z] :=1;
enqueue z in the queue Q;
dad[z] :=y; (* add the edge yz to the Tx*)
L[z]:= L[y]+1; (*assign level number to z*)
end
else (*z already visitedx*)
if Llyl=L[z]+1
then
if dad[y] is not z
(x yz is a dotted edge joining consecutive level sets*)
then begin geo:=0; return; end;
end; (*whilex)
end; (xbfs*)

begin(* main program#)
(*initialization of mark ,T,geox*)
for each vertex x do
mark[x] :=0;
geo:=1; T:=empty;
for each vertex x do

begin
bfs_geodetic(x); (xcallx)
if geo =1

then (* reinitialize the array mark and tree T*)
for each vertex x do begin mark([x]:=0; T:= empty; end
else break; (* quit the for loop, not geodetic*)
end;
write(geo);
end;

Remark 2.1. During the bfs, each edge is traversed twice. A dotted edge
joining two vertices of the same level is first traversed from left to right and a
dotted edge xy joining two vertices of consecutive levels with x in level i and y
in level i + 1 is first traversed from x to y, that is, geometrically, assuming
that the sons of a vertex are drawn in the left to right manner, the vertexr x
is to the right of the vertex y. Hence in the above algorithm, we can simply
replace the “else” part of the “for loop” in the procedure “bfsgeodetic” by the
following statement:

if Lly] = L[z] — 1 then geo:=0;

Complexity of the geodetic graph algorithm:

The “for loop” of the main program activates the procedure “bfs_geodetic” at
most n times for an n vertex graph. The procedure “bfs_geodetic” is activated
exactly n times if and only if the graph is geodetic. Since the cost of each
activation is O(max(n,m)), the total time spent is O(n max(n,m)).
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Algorithm for testing if a graph is bipartite using bfs:
Input: An undirected connected graph G = (X, E). If the graph is not con-
nected, we can consider its connected components separately.

Output: “yes” if the graph G is bipartite, “no” otherwise.

Algorithm: The algorithm is given in Figure 2.4. The algorithm is based on
the following property:

Property 2.2. A graph is bipartite if and only if there are no dotted edges
joining two vertices of the same level sets.

Proof. By Konig’s theorem (see the chapter on Introduction to Graph Theory
in [6]), a graph G is bipartite if and only if G does not contain an odd cycle.

Let us first apply the bfs procedure on G from a root vertex a. Suppose
there is a dotted edge 'y joining two vertices of the same level, say, z,y € L;[a].
Now consider the closest common ancestor of the vertices  and y in the bfs
tree. Let s be such an ancestor. Then, the shortest path from s to z and
the shortest path from s to y together with the dotted edge xy will be an
elementary cycle of length d(s,x) + d(s,y) + 1 = 2d(s,x) + 1, which is odd, a
contradiction.

Conversely, suppose G contains an odd elementary cycle. We shall show
that there is a dotted edge between two vertices of the same level, when we
perform bfs of the graph G. Let C' = (21, 22, ..., Z2p4+1) be an elementary odd
cycle of shortest possible length. First of all, we shall prove that the distance
d(z1,xp41) = p in the graph G (evidently, the distance between z1 and zp4+1
along the edges of the cycle C' is p). Otherwise, suppose there is a path P in
the graph G between z; and z,,1 with length strictly less than p. Let the
distance path from z; to x,,1 along the edges of the cycle be Q. Since the
paths P and @ have the same initial and final vertices and P # @, their union
PUQ contains at least one elementary cycle. Since the length of the path @ <
the length of the path P, there must be an elementary cycle C’ in PUQ with
the following property.

Exactly two vertices x; and z; of the cycle C' are in C' N @ and the length
of the subpath of P from x; to x; > the length of the subpath of @ from x;
to z;. In fact, the cycle C’ is the union of the subpath of P from z; to z; and
the subpath of @ from z; to z;.

Since p is the length of a smallest possible odd cycle and the length of the
cycle C' > the length of the cycle C”, the length of the cycle C’ must be even.
This means that the subpaths of P from x; to x; and the subpath of @) from
x; to x; are of the same parity. This implies that the removal of the edges of
the subpath of P from ; to z; and adding the edges of the subpath of () from
x; to x; gives us an odd cycle whose length is < the length of the cycle C,
a contradiction. Hence, the distance d(z1,zp+1) = p in the graph G. By a
similar argument, it can be proved that the distance between the vertices z;
and xp42 is p in the graph G.

Now let us perform the bfs of the graph G starting from the root vertex x;
which belongs to the cycle C. By the definition of the level set L,(z1), the
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procedure bfs_bipartite(x : vertex);
var y,z:vertex; Q: queue of vertex;
begin(xbfs_bipartitex)
(* initialization of Q *)
Q:= empty;
mark[x]:=1; L[x]:=0;
enqueue x in Q;
while Q is nonempty do
begin
y:= head of the queue Q;
dequeue; (xremove the front vertex of Qx)
for each vertex z in L(y) do
if mark[z]=0
then begin
mark[z] :=1;
enqueue z in the queue Q;
dad[z] :=y; (* add the edge yz to the T*)
L[z]:= L[yl+1; (xassign level number to z*)
end
else(*z already visitedx)
if Llyl=L[z]
then (*yz is a dotted edge in the same level set*)
begin bip:=0; return; end;
end; (*whilex*)
end; (*bfs_bipartitex*)

begin(* main program*)
(*initialization of mark ,T,bipx)
for each vertex x do
mark[x] :=0;
bip:=1; T:=empty;
bfs_bipartite(x); (*call with any vertex xx)
if bip = 1
then
begin write("yes");
(*write the bipartition of Gx)
for i:=1 to n do
if L[i] mod 2 = 0
then write(i,’ ’);
writeln; (*newline to separate bipartition)
for i:=1 to n do
if L[i] mod 2 =1 write(i,’ ’);
end
else write("no");
end;

FIGURE 2.4: Algorithm to test if a connected graph is bipartite.

vertices 11 and 42 are in the level set L, (z1). But then, the vertices a1
and x40 are joined by a dotted edge (since they are consecutive vertices of
the cycle C).

Hence the property. O
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Property 2.3. Consider a connected bipartite graph G. Perform a level order
search of the graph G starting from any vertex x. Then, the bipartition of the
graph G is given by the union of evenly subscripted level sets and the union of
oddly subscripted level sets. Symbolically, the bipartition of the vertex set X
is Lo(x) U La(x) U Ly(z)U- -+ and Ly(z) U Ly(z) U---.

Proof. Since graph G is bipartite, by Property 2.2 there are no cross edges
between two vertices of the same level. By Property 2.2 of the level sets,
there can be no edge between any two oddly/evenly subscripted level sets.
This implies that there can be no edge between any two vertices of the union

Ufi%)LQi(LIJ) and no edge joining two vertices of U;Sl)ng_l, where e(z) denotes

the eccentricity of the vertex x. O

Example 2.2: Bipartition of a bipartite graph

Consider graph G of Figure 2.5.

Let us perform a level order search from the vertex 1. Vertices are
listed according to the increasing order in each adjacency list. The level
order search gives us the bfs tree of Figure 2.5.

Lo(1) ={1} Li(1)={2,6,7} Lo(1) ={3,8,5,12} L3(1) =
{4,9,13,11}  L4(1) = {10}. Hence the bipartition of the graph
is Lo(1) U La(1) U Ly(1) = {1,3,8,5,12,10} and Lq(1) U L3(1) =
{2,6,7,4,9,13,11 }.

Having seen Properties 2.2, 2.3 and Example 2.2, we can now write the
algorithm to test if a given graph is bipartite.

We perform a level order search from an arbitrary vertex. We use a Boolean
variable “bip” which is initialized to 1 (means true). If we find a dotted
edge joining two vertices in the same level set, then the variable “bip” is set
0 (means false) and the procedure “bfs_bipartite” terminates thanks to the
instruction “return.” If the graph is bipartite, the algorithm writes the bipar-
tition by scanning through the array L[1..n| printing the evenly subscripted

bfs tree of G:

FIGURE 2.5: Finding a bipartition of a bipartite graph G of Figure 2.5.
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vertices in one line and oddly subscripted vertices in the next line (n is the
number of vertices of the graph).

Complexity of the algorithm “bfs_bipartite”:
Clearly the complexity is the same as that of the bfs which is O(max(m,n)).

2.3 Matchings in Graphs

Consider an undirected graph G = (X, E). A matching M in G is a set
of edges of G satisfying the following two conditions: 1. No loop belongs to
M, 2. No two of the edges of M are adjacent, that is, no two of the edges of
M share a common vertex. The following example illustrates the concept.

Example 2.3

M = { fa,gb,hc,id,je} is a matching of graph G of Figure 2.6.
Another matching is M" = { ab, cd, fj,gh }.

A vertex x of the graph G is saturated by the matching M or M — saturates
the vertex z, if there is an edge in M incident with the vertex z. The set of
all saturated vertices under the matching M is denoted by S(M). If the edge
zy is in the matching M, we say that the vertex z is matched under M with
the vertex y.

A matching M of the graph G is a maximum matching, if there is no
matching M’ of G such that |M’'| > |M]|. Here, |M| stands for the number
of edges in M. A perfect matching M is a matching which saturates every
vertex of the graph G. Perfect matchings are also called 1-factors. Every
perfect matching is a maximum matching but the converse is not always true.
Note that the number of edges in a perfect matching is exactly n/2 where
n is the number of vertices. Hence the minimal condition for the existence of
a perfect matching is that the number of vertices of the graph must be even.

A perfect matching in a graph of n vertices may be viewed as a “bijection
along the edges” from a suitable set of n/2 vertices onto its complement set
of vertices.

FIGURE 2.6: [llustration of matchings.
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FIGURE 2.7: A 3-regular graph without a perfect matching.

When we discuss the maximum matching problem, we may assume without
loss of generality that the graph is a simple graph, that is, it has no loops and
no multiple edges.

Let us refer to Example 2.3 (see the graph G of Figure 2.6). M is a perfect
matching, whereas M’ is not. The graph of Figure 2.7 is an example of a
3-regular graph without a perfect matching.

Example 2.4

We shall see below a few real-world situations in which matchings
arise naturally.

We would like to distribute 64 square chocolates among 32 children.
Let us imagine that the 64 pieces are arranged in the form of an 8 x 8
square, like a Chess board. The first child gets two square pieces which
are at the diagonally opposite corners of the 8 x 8 square.

Question: Is it possible to distribute the remaining 62 square pieces
(corresponding to the truncated Chess board) among the remaining 31
children in such a way that each child gets a 1 x 2 rectangular piece?

The problem is equivalent to finding the existence of a perfect match-
ing in the following graph: The vertices correspond to the 62 squares of
the truncated Chess board and two vertices are joined by an edge if the
squares corresponding to vertices share a common side, not merely a
single point. We can demonstrate that the graph thus defined does not
possess a perfect matching. We will use the following parity argument
(see Tables 2.1 and 2.2).

Color the squares of an 8 x 8 Chess board alternately black and
white, that is, if a square s is colored black, then a square sharing a
common side with the square s should be colored white and vice versa.
Note that the two diagonally opposite corner squares are colored with
the same color. Hence the truncated Chess board has either 32 black
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squares and 30 white squares or 32 white squares and 30 black squares.
But an edge of a matching saturates exactly one black square and one
white square. In order to obtain a perfect matching, we should have the
same number of black and white squares. Hence we cannot distribute
the 62 pieces among the 32 children in the form of a 1x2 rectangle.

TABLE 2.1: Checker board

x| B|W|B|W|B|W|B
BIW|B|W|B|W|B|W
W| B | W|B|W|B|W|B
BIW|B|W|B|W|B|W
W| B | W|B|W|B|W|B
BIW|B|W|B|W|B|W
W| B W|B|W|B|W|B
BIW|B|W|B|W|B]| x

Example 2.5: Domino

In Table 2.2, the shape of a dominoe is drawn. The dominoe is drawn
horizontally in the table. It can be also drawn vertically.

TABLE 2.2: Domino
. W [ B ]

Example 2.6: Personnel assignment problem

In a certain company, there are p technicians t1,1»,...,%, and ¢ jobs
JisJ2,---,Jq- Each technician is qualified to do one or more jobs.

Question: Is it possible to assign each technician one and only one
job for which he/she is qualified?

We construct a bipartite graph with vertices {ti,ta,...,tp} U
{j1,J2,---,Jq }- Two vertices t; and j, are joined by an edge if and
only if the technician ¢ is qualified for the job j,.. Now the problem is
to find existence of a matching saturating each vertex t; for 1 <k <p
in the bipartite graph thus constructed.
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bl b2, b3

g g2 23

FIGURE 2.8: Illustration of the dancing problem.

Example 2.7: Dancing problem

In a certain college, each girl student has exactly £ > 0 boyfriends
and each boy student has exactly £ > 0 girlfriends.

Question: Is it possible to organize a weekend dance in such a way that
each boy dances with exactly one of his girlfriends and each girl dances
with exactly one of her boyfriends? (See Figure 2.8.)

In the graph of Figure 2.8, each boy b; has exactly 2 girlfriends and
each girl g; has exactly 2 boyfriends. Thus, the bipartite graph is regular
of degree 2. The perfect matching M = {b1gs3,b29g1,b3g2 } corresponds
to a dance in which the boy b; dances with the girl g3, bo with ¢g; and
bs with go.

Such a dance is always possible. We construct a bipartite graph in
which each vertex corresponds to a student and two vertices are joined
by an edge if one vertex corresponds to a boy b and the other to a
girl g with b a boyfriend of g, g a girlfriend of b. We can show that the
bipartite graph thus constructed possesses a perfect matching. This will
be proved later.

Alternating and augmenting paths with respect to a matching:
Consider a matching M in a graph G = (X, E). An M-alternating path or an
alternating path with respect to M is an elementary path in G whose edges
are alternately in M and E'\ M, that is, for any two consecutive edges, one of
the edges should be in M and other must be in E'\ M. An M-augmenting path
is an M-alternating open path whose initial and final vertices are unsaturated
by the matching M. The following example clarifies the notion (see Figure
2.9). Note that an edge xy of G where the vertices x and y are unsaturated
by a matching M is an augmenting path relative to the matching M. A path
of length zero, that is, a path consisting of the single vertex (z) is regarded
as an alternating path.
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FIGURE 2.9: A graph and its alternating paths.

Example 2.8: Alternating path

Consider a matching M = {25,34,67,89 } of the graph G of Figure
2.9. The path P, = (1,2,5,4,3) is an alternating path with respect to
the matching M. The path P, is not an M-augmenting path because
the initial vertex 1 of P; is not saturated by the matching M.

On the other hand, the path P, = (1,2,5,8,9,10) is an
M-augmenting path, because the initial vertex 1 and the final vertex
10 of P, are saturated by the matching M.

We make the following observation: Consider an elementary cycle Cy, =
(r1,22,...,%2p,x1) of length 2p. Then, the set of alternating edges of this
cycle M = {xix2,2x324,...,22p_122p } is a matching, as well as the set
M'" = {xox3, 2425, ..., x2px1 }. In the same manner, alternating edges of an
elementary open path form a matching.

Property 2.4. Consider a matching M in a graph G. Let P be an augmenting
path with respect to the matching M. Then, the length of the path P is an odd
integer.

Proof. By the definition of an augmenting path, the initial and final vertices
of P are distinct and are unsaturated by the matching. Hence the path starts
with an initial edge not in M and ends with an edge also not in M. Hence the
number of edges in the path P must be odd. O

Let us recall the operation of symmetric difference of two sets: For any two
sets A and B, the symmetric difference of A and B denoted by AAB is the
set (AU B) \ (AN B) which is also equal to (A\ B)U (B \ A).

Lemma 2.1 (Berge). Consider a graph G = (X, E) and two matchings M,
and My in the graph G. Let H = (X, M1AM,) be a spanning subgraph of G
where My AMs is the symmetric difference (M, U Ms)\ (M1 N Ms). Then, the
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connected components of the graph H can only be one of the following three
types:

Type 1: An isolated vertex x, that is, the degree of the vertex x in the
graph H is zero.

Type 2: An elementary cycle of even length whose edges are alternately
m My and M.

Type 3: An elementary open path whose edges are alternately in My and
Ms whose initial and final vertices are unsaturated by exactly one of the
matchings My and Ms.

Proof. Let us first observe that the degree of each vertex of the spanning sub-
graph (X, M) is either 0 or 1, since M; is a matching. Similar observation
holds for the spanning subgraph (X, Ms). Hence the degree of each vertex x in
the spanning subgraph H = (M;AM>) is at most 2, because x can be incident
with at most one edge of M; and at most one edge of My. This means that
the only possible components of the spanning subgraph are isolated vertices,
an elementary path, and an elementary cycle.

(See Figure 2.10. The spanning subgraph induced by the symmetric dif-
ference of matchings M;AMs has five connected components of which three
are isolated vertices, one is an elementary path of length 2 and the other is
an elementary cycle of length 4.)

By the definition of M;AMsy = (M7 UMs)\ (M N Ms), the edges alternate
in My and My in each of the component containing at least one edge of H.
Hence the length of the cycle component must be even, otherwise either M;
or My will not be a matching.

Finally, for a path component, if the initial edge belongs to the matching
M, then the initial vertex of the path component cannot be saturated by
My, since otherwise either the degree of the initial vertex will be 2 in H or
the initial edge belongs to both M; and Ms, a contradiction to the symmetric
difference M1 AMs;. A similar argument holds for the final vertex of any path
component of H. O

An efficient maximum matching algorithm in a graph hinges on the fol-
lowing theorem due to the eminent graph theorist: Claude Berge.

Theorem 2.2 (Berge). A matching M in a graph G = (X, E) is a mazimum
matching if and only if the graph G possesses no M-augmenting path relative
to M.

Proof. Consider a matching M and an augmenting path P relative to M. We
shall show that the matching M is not a maximum matching. By Property 2.4,
the length of such a path must be an odd integer. Let (21,2, ...,2op4+2) be
an M-augmenting path of length 2p+ 1. By the definition of augmenting path
relative to M, this means that the edges x;x;41 are in the matching M for
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1 3
G 5 —O4
M1=16,25,87,(9,10)
M2=16,23,(8,10),79
8 )7
10 9
Spanning subgraph of G induced by M1 delta M2:
1o 3
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FIGURE 2.10: A graph G and the spanning subgraph induced by M; AM;.

2 <i < 2p and the other edges of the path are in E\ M with x; and zp41
unsaturated by M. Now define a new matching M’ which consists of the edges
of the symmetric difference

(MUP)\(MQP) = {MU{$1$2,$2$3,...,$2pl‘2p+1 }\
{ZCQ.’L’g, T4T5, .oy T2pT2p4+1 }

(Note that P represents the set of edges of the path P.) Then, M’ is a matching
and |M'| = |M| + 1, since we have removed p alternate edges of P from M
and added p + 1 alternate edges of P to M to obtain the new matching M’.
Hence M is not a maximum matching.

For the converse part, consider a matching M which is not maximum. We
shall prove the existence of an M-augmenting path. Let M’ be a maximum
matching in G. Then, |M'| > |M].

Consider the spanning subgraph H = (X, M'AM) induced by the edge
set (M'\ M)U(M\ M’). By Lemma 2.1, the connected components of H are
isolated vertices or elementary cycles of even length with edges alternately in
M and M’ or an elementary path with edges alternately in M and M’ with
initial and final vertices saturated by exactly one of the matchings M and M’.
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Since, |M’\ M| > |M \ M’|, the spanning subgraph H contains at least one
more edge of M’ than of M. But the (even) cycle components of H account
for the equal number of edges of M and M’. Hence there must be some path
component P of H such that P contains more edges of M’ than of M. Such a
path must start with an edge of M’ and end with an edge of M’. The initial and
final vertices of P are M’-saturated in H, and hence must be M-unsaturated
in G. Thus, P is an M augmenting path in G. O

We are now ready to present an outline of a maximum matching algorithm:

An outline of a maximum matching algorithm:
Input: An undirected graph G = (X, E).
Output: A maximum matching in G.
Algorithm: The algorithm is given in Figure 2.11.
In Figure 2.11, P denotes the set of edges of the path P in G, and M denotes
the set of edges of the matching in G.
Let us perform the algorithm of Figure 2.11 on a given graph.

Example 2.9: Illustration of matching algorithm

Consider the graph of Figure 2.12. We are interested in finding a
maximum matching in this graph.

Initialization of matching M with an arbitrary edge 34: M = {34 }.
The only saturated vertices are 3 and 4.

Before beginning each iteration, we perform the following test: Is
there any augmenting path relative to the matching M? If the answer
is “yes,” we continue the iteration. Otherwise, the algorithm terminates
with a maximum matching M.

To find an augmenting path relative to the matching M, we use our
“eye ball,” that is we try to find an augmenting path visually. Table 2.3
illustrates the different steps.

Algorithm:
(* Initialization of M *)
M:=Any edge of the graph G or M := {);
(*iteration™)
while there is an augmenting path relative to M do
begin(*while*)
Let P be an augmenting path with respect to M;
M:=(MUP)\ (MnP);
end;(*while*)
print the edges of M;

FIGURE 2.11: An outline of maximum matching algorithm.
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6

FIGURE 2.12: A graph to illustrate matching algorithm.

TABLE 2.3: Execution of matching algorithm
Iteration Is there an M-augmenting M := (M U P)\

number path P? (M N P)
0 (initialization) not applicable {34}
1 “yes,” P = (1,3,4,5) (13,45}
2 “yes,” P = (2,1,3,4,5,7) {21,34,57}
3 “yes,” P = (6,8) {21,34,57,68 }

“no,” quit the loop

Hence a maximum matching obtained by the above algorithm is
{21,34,57,68 }

The above maximum matching algorithm is incomplete because we do
not know yet how to find in a systematic and progressive manner an
M-augmenting path, if one exists in the graph. This can be achieved by “a tree
growing procedure” which is somewhat equivalent to the bfs. Before present-
ing this procedure, called “tree growing procedure,” we prove the following
good characterization of bipartite graphs not containing a particular type of
maximum matching.

2.3.1 An application: (kK — 1)-regular subgraphs of
k-regular graphs

As an application of Berge’s matching algorithm, we solve the following
regular subgraph problem:
Input: A k-regular simple connected graph G on odd number of vertices with
no an induced star Kj 3.

Output: A (k — 1)-regular subgraph of G.

Algorithm (Sriraman Sridharan): The vertex set is { 1,2,...,n }. The graph G
is represented by its adjacency matrix M = (m;;)nxn Where we set m;; = 0o
if vertices 7 and j are not adjacent. In the implementation, co can be replaced
by a “large” integer. The algorithm uses the following results:
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Step 1: Apply Floyd’s algorithm to the matrix M = (m;;j)nxn(see chapter 1).
The (4,5 entry of M is the length of a shortest path between vertices i and
jin G
In step 2, we find a peripheral vertex of G
Step 2:
for i:=1 to n do
begin
set el[#] = max(mg;|1 <j< n)
end
The ith entry of array e gives the eccentricity of vertex
find a vertex p such that e[p] = max(eld]1 < i< n)
Step 3:
Construct the subgraph G, = G\ p\ T'(p)
find a perfect matching M of G,
return G\ {pU M}

FIGURE 2.13: Algorithm to find a (k — 1)-regular subgraph in a k-regular
graph with no induced star K 3.

If p is a peripheral vertex, that is, a vertex p such that its eccentricity
e(p) = d(G) where d(G) is the diameter of G, then G\p\I'(p) is still connected
and a connected graph with no induced K 3 on even number of vertices has a
perfect matching. For more details of the algorithm, see Sriraman Sridharan,
Polynomial time algorithms for two classes of subgraph problem, RAIRO,
Oper. Res. 42, 291-298, 2008.

The algorithm is given in Figure 2.13. The required subgraph is G\ { pUM }
which is (k — 1)-regular, where M is a perfect matching of G\p \ I'(p). The
reader is asked to execute the algorithm by hand on a 4-regular graph to
have an understanding of the algorithm. Complexity: The complexity of the
algorithm can be shown to be O(n?).

The following theorem can be viewed as a profound generalization of the
following simple observation:

Observation 2.2. Consider two non-empty sets A and B. There is no injec-
tive function f : A — B if and only if |A| > |B|. Stated differently, there is no
injective function from the set A to the set B, if and only if for every function
f A — B, there is a subset S of A satisfying the inequality |f(S)| < |S].
Here, f(S) ={f(s)|s € S}, the image set of S.

Theorem 2.3 (Konig-Hall). Consider a bipartite graph G = (X1, Xo; E)
with bipartition X1 and Xs. Then, the graph G has no matching saturating all
the vertices of the set Xy if and only if there is a subset S of X1 satisfying the
inequality [N (S)| < |S] (in fact,|N(S| = |S|—1). Here, N(S), the neighbor set
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of S, denotes the set of vertices which are collectively adjacent to the vertices

of S.

Proof. We first prove the easy part of the theorem. Suppose there is a set
S of X satisfying the inequality |[N(S)| < [S|. Then, we will prove that
there is no matching in G saturating each vertex of the set X;. If M is a
matching saturating each vertex of X7, then since S is a subset of X7, there
is a subset M’ of M such that M’ saturates each vertex of S and |[M'| =|S|.
M’ is also a matching in G (since a subset of a matching is a matching) and
the vertices in S are matched under M’ with distinct vertices of the set N(S).
This implies that |[N(S) > |S], a contradiction.

Now consider the converse part. Suppose the graph G possesses no match-
ing saturating all the vertices of X;. We shall show that there is a subset S
of X satisfying the inequality |S| < |N(S)|. By our assumption, M does not
saturate all the vertices of the set X;. Hence there must exist a vertex x1 € X3
unsaturated by the maximum matching M. Let R be the set of all vertices of
the graph G reachable by an M-alternating path from the initial vertex ;.
Note that the path of length zero (x1) is vacuously an M-alternating path
and hence the set R is non-empty. Since the matching M is maximum, by
Theorem 2.2, x; is the only unsaturated vertex in the set R.

Let S be the set of vertices of R belonging to the set X; and let T be
the set of vertices of R belonging to the set Xo, that is, S = RN X; and
T = RN Xs. Then, we shall show that

IT| = |S] — 1 and |N(S)| = T.

Consider any M-augmenting path P = (x1,%2,23,...,%,) from the initial
vertex x1. Note that an initial portion/section of this path P is also an
M-augmenting path. Since G is bipartite, all the oddly subscripted vertices
of the path P are in S and all the evenly subscripted vertices of P are in 7.
By the definition of M-augmenting path, the vertex x5 is saturated under M
with x3, x4 is saturated under M with zs5, etc.

Hence the vertices of the set S\ z1 are matched under M with the vertices
of the set T'. This implies that

|T|=|S|—1and N(S) 2 T. (2.1)

Every vertex belonging to N(S) is reachable from z; by an M-augmenting
path. For if 8" € N(S), then by the definition of N(S), there is an s € S such
that ss’ is an edge of the graph. We shall show that there is an M-augmenting
path from the vertex z; to the vertex s’.

Since s € S, by the definition of the set S, there is an M-augmenting path
Q@ from z71 to s. If s’ is in the path @, then we take the initial portion of
this path @ ending in s’, to have an augmenting path from s to s’; otherwise,
we extend the path @ by adding one more vertex s’ (and the edge ss’) to @
to obtain an augmenting path from z1 to s’. Since s’ € S, we have by the
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definition of the set T', s’ € T. Hence we have the equality
N(S)=T.
Hence, by (2.1), we have [N(S)| = |T| = |S| -1 < |S|. O
The following example illustrates the fact that Theorem 2.3 is a good

characterization of a bipartite graph G = (X7, Y7; E) possessing no matching
saturating all the vertices of the set X;.

Example 2.10: Illustration of good characterization

If a bipartite graph contains a matching saturating all the vertices
of X1, then we have to “convince or exhibit,” the existence of such a
matching in a “reasonable amount of time,” that is, in a formal manner,
in polynomial time.

Conversely, if a bipartite graph does not possess a matching saturat-
ing all the vertices of X7, we must be able to “exhibit” the non-existence
of such a matching in a “reasonable amount of time” (technically poly-
nomial time in the size of the input length).

Consider the bipartite graph of Figure 2.14.

To “convince quickly” that the graph G of Figure 2.14 has a matching
saturating all the vertices 2s, we have to “exhibit” such a matching. One
such matching is M = { z1y1, z2y2, x3y3 }. Now one can “easily” verify
that the set M is indeed a matching and it saturates all the vertices x;
for 1 = 1,2, 3. For example, one can color the edges of M in the graph G
and see immediately that M is a desired matching. Note that the time
taken to find the matching M is irrelevant.

Conversely, consider the bipartite graph Figure 2.15.

To “convince quickly” that the graph of Figure 2.15 has no match-
ing saturating all the vertices z;, we must exhibit a subset S of
{z1,22,25,24} such that N(S) = |S| — 1. Such a set is § =
{z2,23,24 }. Now one can “easily” verify the equation N(S) = |S| — 1,
because N(S) = {y2,ys3 } and |S| = 3 and |N(S)| = 2. Note again here
that the time to find such a set is not taken into account. We take into
account only the time to find the neighbor set N(.S) and the verification
of the equation |N(S)| = |S| — 1.

Definition 2.1 (Succinct certificate). Consider o bipartite graph G =
(X1,Y7; E) having no matching saturating all the vertices of the set X1. Then,
a set S C X1 satisfying the equality N(S) = |S| — 1 is called a succinct cer-
tificate to “exhibit” the non-existence of a matching saturating all the vertices
of the set X;.
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FIGURE 2.14: A perfect matching in a bipartite graph.

N(S)

FIGURE 2.15: A graph to illustrate the idea of a succinct certificate.

We shall now prove that the dancing problem (see Example 2.7) has always
an affirmative answer:

Corollary 2.1. Consider a k-regular (k > 0) bipartite graph G = (X1, X2; F)
with bipartition X1 and Xo. Then, the graph G contains a perfect matching.

Proof. Note that the necessary condition for the existence of a perfect match-
ing in a bipartite graph is |X;| = |xa|. We shall first prove this minimal
condition.

Since G is bipartite, the number of edges of G is the same as the number
of edges of the graph G incident with the vertices of the set X; (because there
are no edges between two vertices of the set Xo). Since G is k-regular, we have

By the same argument, we have m = k|Xs|.

Therefore, m = k| X1| = k| X2|. Since k > 0, | X;| = | X3|.

We shall now show that there is no subset S of X satisfying the inequality
IN(S) <[S].

Let S be any subset of X; and let F; and E5 be the set of edges incident
respectively with the vertices of S and with the vertices of the neighbor set
N(S). Since G is bipartite, by the definition of the neighbor set N (), we have
the relation E; C Es (because there may be edges of the graph G joining a
vertex of N(5) and a vertex of Xj \ 5).

But |E1| = k|S| and |Es| = k| X2|. Hence,

kS| < E|N(S)| because |Ey| < |Es|.
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This implies that, |S| < |[N(S)| for every subset S of X;. By the Konig-Hall
Theorem 2.3, G contains a matching M saturating every vertex of Xj. Since
| X1| = | X2|, the matching M must be a perfect matching. O

The following corollary asserts that the edge set of a regular bipartite
graph containing at least one edge can be partitioned into edge disjoint union
of perfect matchings.

Corollary 2.2. The edge set of a k-regular bipartite graph (k > 0) can be
partitioned into k edge-disjoint perfect matchings.

Proof. Let G be a k-regular bipartite graph with £ > 0. Then, by Corollary
2.1, G contains a perfect matching M;. Now consider the spanning subgraph of
G — M of G obtained by removing the edges of the set M. Since the removal of
the edges of M reduces the degree of each vertex of G by exactly one, G — M
is a (k — 1)-regular bipartite graph. If K — 1 > 0, then we again apply the
Corollary 2.1 to get a perfect matching M5 of the graph G — M. We continue
like this until we get a bipartite spanning subgraph with no edges. Thus, we
have decomposed the edge set E of G as

E=MUMs---UMj;
with M; N M; =0 for all ¢, j with 1 <i < j <k. O

Corollary 2.3. Consider a (0,1) n x n square matriz A with the property
that the sum of the entries in each row is equal to the sum of the entries in
each column, each sum being an integer k > 0. Then, the matrix A can be
written as the sum of k permutation matrices.

Proof. Associate a bipartite graph G = (I, .J; E) where I is the set of row
indices of the matrix A and J is the set of column indices of A. Two vertices i
and j are joined by an edge if i € I and j € J and the (7, ) entry of A is 1.
The degree of a vertex ¢ is simply the sum of the entries of the row ¢ is ¢ € I.
Similarly, the degree of the vertex j is the sum of the j-th column where j € J.
Hence G is a k-regular bipartite graph. By Corollary 2.2, the edge set can be
partitioned into k disjoint perfect matchings

E =M UMs;---UDM,.

Each perfect matching M; corresponds to a permutation matrix and con-
versely. For if M = {i1j1,42J2,...,inJn } is a perfect matching in the graph G,
then the corresponding n x n permutation matrix P has (is, js) entry 1 for
1 < s < n and all other entries of P are zeros and conversely. Hence, the given
matrix

A=Pi+ P+ -+ P

where P;s are permutation matrices corresponding to disjoint perfect
matchings. O
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2.4 Matrices and Bipartite Graphs

Corollary 2.2 can be formulated in terms of (0, 1) matrices, that is, matrices
whose entries are either 0 or 1. A permutation matrix is a square matrix having
exactly one entry 1 in each row and in each column and all other entries are
Z€ros.

To each (0,1) matrix A, we can associate a bipartite graph in the following
manner: The vertices of the graph G correspond to the indices of the rows
and columns of the matrix A and two vertices are joined by an edge if one
corresponds to a row ¢ of A and the other to a column j of A with the (i, )
entry of the matrix A equal to 1. Conversely, we can associate a (0, 1) matrix
to each bipartite graph.

Example 2.11

The matrix corresponding to the bipartite 2-regular graph of Figure
2.16 is

Y1 Y2 Y3
zy (0 1 1
T2 1 0 1
T3 1 1 0

The perfect matching M = {z1y2, 2y3, z3y1 } of the graph of Figure
2.16 corresponds to the permutation matriz P where

0 1 0
P=]0 01
1 00

A (0,1) matrix is called a permutation matrix if its entries are either 0
or 1 and it contains exactly one entry 1 in each row and in each column.
Equivalently, a permutation matrix is obtained by permuting the rows
and columns of the identity matrix of order n.

y y

FIGURE 2.16: A bipartite graph and its corresponding (0,1) matrix.
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Corollary 2.4. Consider a (0,1) n x n square matriz A with the property
that the sum of the entries in each row is equal to the sum of the coefficients
in each column which is equal to an integer k > 0. Then, the matriz A can be
written as the sum of k permutation matrices.

Proof. Associate a bipartite graph G = (I,J; E) where I is the set of row
indices of the matrix A and J is the set of column indices of A. Two vertices i
and j are joined by an edge if ¢ € I and j € J and the (7, ) entry of A is 1.
The degree of a vertex ¢ is simply the sum of the entries of the row i if ¢ € I.
Similarly, the degree of the vertex j is the sum of the j-th column if j € J.
Hence G is a k-regular bipartite graph. By Corollary 2.2, the edge set can be
partitioned into k disjoint perfect matchings

E =M UMs---UM,.

Each perfect matching M; corresponds to a permutation matrix and con-
versely. For if M = {411,422, ...,injn } is a perfect matching in the graph G,
then the corresponding n X n permutation matrix P has (is,js) entry 1 for
1 < s < n and all other coefficients of P are zeros and conversely. Hence, the
given matrix

A=P +Py+-+ P,

where P;s are permutation matrices corresponding to disjoint perfect
matchings. ]

Birkhoff-von Neumann theorem on bi-stochastic matrices:
As an application of the Konig-Hall Theorem 2.3, we shall derive the Birkhoft-
von Neumann theorem on bi-stochastic matrices:

An m x n matrix M = (m;;) is bi-stochastic if the entries are all non-negative
and the sum of the coefficients of each row and each column is equal to 1.

Observation 2.3. Any bi-stochastic matriz is necessarily a square matriz. In
fact, if M is bi-stochastic with m rows and n columns, the sum of all entries of
M is the sum of n columns of M =n (as each column sum is 1). In symbols,

i=1j=1 j=1 \i=1 j=1

The same sum is also equal to the sum of m rows of M = m (as each row
sum is 1). Symbolically,

Hence m = n.
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Example 2.12: Bi-stochastic matrix

Clearly, every permutation matrix is bi-stochastic.

0 1/2 1/4 1/4
1/4 1/4 0 1/2
1/4 1/4 1/4 1/4
12 0 1/2 0

M =

M 1is bi-stochastic.

Determinants:

Recall that for an n x n square matrix M = (m;;, with m;; reals, the deter-
minant of M denoted by det M is defined as the sum of the products of the
entries of M taken only one entry from each row and each column of the
matrix M. Symbolically,

det M = Z (=1)Mig(1)M25(2) "+ s Mno(n)
o€eS,

where the sum is taken over all possible permutations S, of the set
{L,2,...,n}.

Remark 2.2. Of course, this definition does not give an efficient way to cal-
culate the determinants because there are n! terms in the det M. Surprisingly,
determinants of order n can be calculated in polynomial time, in fact in O(n?)
time by row reducing the matrix M to triangular form.

Lemma 2.2. Consider an n x n square matric M = (m;;). In the expansion
of the determinant of the matriz M, each term is zero, if and only if there
is a reqular submatriz (a matriz which can be obtained from M by removing
certain rows and columns of M) of order kx (n—k+1), (k < n) whose entries
are all zeros.

Proof. We will apply the Konig-Hall Theorem 2.3 to prove the lemma.

Let us associate a bipartite graph G = (X1,Y1;F) with X; =
{z1,29,...,2y } and Y1 = {y1,vy2,...,¥yn } with the edge set E = {z;y; |
Mg 7& 0 for all ’L,] }

Each term of the determinant is of the form £my;, maj, - - - My, . But then
this term is non-zero, if and only if each my;, # 0 for all p with 1 < p < n.
This is true if and only if the set of edges {z1vi,, T2Yiy, ..., Tny;, } form a
perfect matching of the corresponding bipartite graph G (see Example 2.11),
that is, if and only if G’ has a matching saturating each vertex of Xj.

Therefore, every term in the expansion of the det M is zero if and only if
the corresponding bipartite graph contains no matching saturating each vertex
of Xi. By the Konig-Hall theorem, this is so, if and only if there is a subset S
of the set X; satisfying the equality N(S) = [S| — 1. Set |S| = k. Then,
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IN(S)| =k —1and | X3\ N(S)|=n—k+ 1. Note that by the definition of
N(S), there are no edges between the vertex sets S and Y7 — N(.S). Hence the
desired k x (n—k+1) matrix is obtained by removing the rows of the matrix M
corresponding to the vertices of X7 —5 and the columns of M corresponding to
the vertices of the set N(S). Symbolically, the matrix M’ = (m;) sx (v;\N(5))
has all its coefficient zeros. O

Lemma 2.3. In a bi-stochastic matriz, there is at least one term in the expan-
sion of its determinant which is non-zero.

Proof. Consider an n x n bi-stochastic matrix M = (m;;). If all the terms
in the expansion of the det M is zero, then by Lemma 2.2, there is a subma-
trix M’ of dimension k x (n — 1 + k) all of whose terms are zero. Note that
a permutation of two rows and/or two columns of a bi-stochastic matrix is
again a bi-stochastic matrix. Hence, the given matrix can be restructured and
partitioned into the following form:

1 2 kE—1 k .on

1 \

2 \

: R ‘ ZEROS

k \

k+1 \

: T ‘ N

n |

In the above partition, set R = (74)ix k1), T = (tij)(n—t)x(k-1), N =
(Mij) (n—k)x (n—k+1)- The above matrix is still bi-stochastic. Note that the
row indices {1,2,...,k} correspond to the set S and the column indices
{1,2,...,k — 1} correspond to the set of neighbors N(S) in the Koénig-Hall
Theorem 2.3.

Now the sum of all the entries of the matrix N is equal to n — k + 1 (by
adding the entries of N column-by-column).

But then the sum of the entries of the matrix T is equal to

n k—1
Z Zti]’ = n—k—sum of all the entries of N =n—k—(n—k+1) = —1,
i=k+1\j=1

a contradiction because the entries of a bi-stochastic matrix are all non-
negative. This contradiction establishes the result. O

We are now ready to prove the Birkhoff-von Neumann theorem on the
decomposition of bi-stochastic matrices in terms of permutation matrices.

To present the theorem, we need the notion of convexr combination of vec-
tors. A vector of dimension n is an ordered n-tuple (aq, o, . . ., oy, ) where each
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a; 1s a real number. Two vectors v = (a1, o, ..., ay) and u = (81, B2, ..., Gn)
are declared equal, that is u = v if and only if o; = (3; for all i satisfying the
inequalities 1 < ¢ < n. The sum of the vectors u and v denoted by u + v is the

vector (g + f1, a0 + Ba, ..., a, + () and the scalar product av for a real «
is defined as the vector (aaq, aqs, ..., aap).
Finally, the vector v is a convex combination of the vectors vy, v, ..., v,

if the vector v can be expressed as
V= QU1 + QU + -+ Uy

where each a; > 0 and > , a; = 1.
Before presenting the theorem, let us see an example.

Example 2.13: Convex combination

Consider the 4 x 4 bi-stochastic matrix

14 [1/4] 174 174
12| 14 0 14
0 1/2 1/4
14 0 1/2 [1/4

M =

This matrix can be viewed as a vector (ri,79,r3,74) of dimension
16 = 4 x 4 where r; denotes the ith row of the matrix M. We can
write the matrix M as the convex combination of permutation matrices
as follows:

1 1 1 1
M_ZP1+ZP2+ZP3+1P4

where

01 0 0 00 0 1
1 00 0 10 0 0
Pr=1y9 01 0 =141 0 0
|00 0 1 | 00 1 0|
(1 0 0 0] [0 0 1 07
00 0 1 0100
PBs=19 1 0 0 Pi=109 0 0 1
[0 0 1 0| | 1.0 0 0 |
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Theorem 2.4 (Birkhoff-von Neumann). A matriz is bi-stochastic if and
only if it can be expressed as the convex combination of permutation matrices.

Algorithmic proof. By definition of scalar product, a convex combination of
vectors and permutation matrices, it is easy to see that a convex combination
of permutation matrices is a bi-stochastic matrix.

For the converse part, let M = (m;;) be an n x n bi-stochastic matrix.
Then, we shall prove that M can be expressed as a convex combination of
permutation matrices. In fact, we shall give an algorithm to express M as a
convex combination of permutation matrices.

By Lemma 2.3, in the expansion of the det M, there is a term of the form
M1y M2iy s Mg, # 0 where (i1,42,...,4,) Is a permutation of (1,2,...,n)
(in Example 2.13, the product of the four en-squared terms is a term of the
determinant # zero).

Set ap = min(ma;,, Maj,, ..., Mp;, ). Note that @y > 0 (in Example 2.13,
(1)
ij
pi}i) =0if k # s (in Example 2.13, the corresponding permutation matrix is

s

).
Set Ri = M — a1 P, = (7’1(71)) The matrix R; possesses more zero entries
' (1)

than the matrix M, because at least the coefficient Thiy, = 0 with ay = myip >
0 for some k.

Now we apply the same argument to the matrix R;. If every term in
the expansion of the det Ry is equal to zero, then the theorem is proved,
because this implies that the matrix Ry is the zero matrix. Otherwise, there

is a term r%l)jlrél)jg e T%l)

ay = 1/4). Now define a permutation matrix P; = (p;.’) where pgli =1 and

Jjn in the expansion of det Ry different from zero.
Let P, = (pg)) be the permutation matrix defined as

@2 1 ifk=s
kis 7 10 otherwise

Set ag = min(ril)jl, Tél)jg, e ,r%l)jn). Define the matrix
R2:R1—OZQP2:M—C¥1P1—C¥2P2.

As before, the matrix Ry has more zero entries than the matrix R;. If every
term in the expansion of the det Rj is zero, then the theorem is proved, because
this implies that the matrix Ry is the zero matrix. Otherwise, we continue the
same argument.

Sooner or later we must have the equation

RSZM—Oll.Pl—OZQPQ—"'—CESPS (22)

with every term in the expansion of R equal to zero. Then, we claim that
the matrix R is the zero matrix. Otherwise, by Equation (2.2), the sum
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of the entries of each row and each column of the matrix Ry is 1 — a1 — ag —

-—ag >0.Set a =1—a; —as — -+ — ay. By dividing every term of
the matrix R, we obtain a bi-stochastic matrix, that is, the matrix (1/a)Rs
is bi-stochastic. According to Lemma 2.3, the matrix (1/a)R,s has a term
in the expansion of det(1/«a)R, different from zero. But by a property of
determinants, det(1/a)Rs = (1/a™)det Rs. This implies that there is a
term in the expansion of det Ry different from zero, a contradiction to our
assumption. Hence the matrix Ry is identically equal to zero. Therefore, by
Equation (2.2)

MZO(1P1+()[2P2+"'+045PS

and the sum of each row of M = the sum of each column of M = a7 +
s+ -+ as =1, since M is bi-stochastic. Thus, the proof is complete. [

In the maximum matching algorithm of Figure 2.11, it is not indicated
how to find an augmenting path relative to the matching M if such a path
exists in the graph GG. Now we shall do this for the special case of the bipartite
graphs.

To present the algorithm for finding an augmenting path relative to a given
matching M, we need the following definition.

Definition 2.2 (An M-alternating bfs tree). Consider a connected bipar-
tite graph G = (X1, Xo; E) and a matching M in the graph G with at least one
unsaturated vertex of the set X1. Perform a level order search of the graph G
starting from an unsaturated vertex x1 € Xy. Let T be a bfs tree obtained by
the level order search starting from the vertex x1 (see graph G of Figure 2.2).
Process the vertices in increasing order. Then, as we have already remarked
(see Example 2.1), the tree T, partitions the vertex set of the graph G as
Lo(x1) ULy (z1)U---ULk(x1) where L;i(x1) consists of all the vertices at dis-
tance i from the vertexr x1 and the integer k represents the eccentricity of the
vertexr xi.

A full M-alternating bfs tree with the root vertexr x1 is obtained by the
removal of all the edges of T \ M joining a vertex of Lo;—1(x1) and a ver-
tex of Loi(x1) for all i = 1,2,.... In other words, by going down in the bfs
tree T', we remove all the edges joining an oddly subscripted level vertex to
an evenly subscripted level vertex not belonging to the matching M. In other
words, during the level order search, we add only the edges belonging to the
matching M from an odd level to an even level. A partial M -alternating tree
or simply an M -alternating tree is a subtree of the full alternating tree having
the same root.



134 Discrete Mathematics

FIGURE 2.17: A bipartite graph G and a partial M-alternating tree.

The following example clarifies the definition.

Example 2.14: An M-augmenting tree

Consider the bipartite graph G of Figure 2.17 with bipartition X; =
{1,3,8,5,12,10 } and X, = {2,6,7,4,9,13,11 }.

Consider the matching M = {23,65,78,(4,10) }. Then, the tree T
of Figure 2.17 is a partial M-alternating bfs tree with the root vertex 1.
Note that between the level 1 and level 2 of the tree T', only the edges
belonging to the matching M are added. A full alternating tree 77 is
also shown in Figure 2.17. Note that between the level 3 and level 4,
only the edge (4,10) belonging to the matching M is added. The full
tree T cannot be grown further. The tree T is a subtree of 77 having
the same root as 7.

Algorithm for finding an M-augmenting path in a bipartite graph:
Input: A bipartite graph G = (X1,Y7; E) and an arbitrary matching M.

Output: An M-augmenting path, if such a path exists. “No,” if there is no
M-augmenting path.

Algorithm: see Figure 2.18.
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Algorithm:
for each unsaturated vertex z in X; do
begin(* while*)
grow an M-alternating bfs tree T by definition 2.4.1;
if we come across an unsaturated vertex y in an oddly subscripted
level set during the growth of T’
then
begin
the unique path P from root z to y in T' is an augmenting path;
return;
end
else there is no M-augmenting path from z;
end;(*while*)

FIGURE 2.18: Informal algorithm for finding an M-augmenting path.

The complexity of the maximum matching algorithm in a bipartite
graph:

For finding an M-augmenting path, we perform a bfs from an unsaturated
vertex of a matching M. The complexity of the bfs is O(max(n,m)) where
n is the number of vertices and m is the number of edges. Each M augmenting
path leads us to an improved matching M’ where |M’| = |M| + 1. Since the
cardinality of a maximum matching is at most n/2, the bfs will be called at
most n/2 times. Hence, the complexity of the maximum matching algorithm
is O((n/2) max(n,m)) = O(nmax(n,m)).

What can be done once, may be repeated many times.
Dijkstra

Now we give an algorithm to find a succinct certificate (see Definition 2.1)
in a bipartite graph G = (X1, Y1; E), if it exists. The variable array L (whose
indices are the vertices of the bipartite graph G) records the level of each ver-
tex during the bfs from unsaturated root vertex z. More precisely, L[v] = k if
the vertex v is in the kth level, that is, v € Ly (x).

Algorithm to find a succinct certificate:

Input: A bipartite graph G = (X1, Y1; E).

Output: A matching saturating all the vertices of the set X; or else a succinct
certificate.

Algorithm: The algorithm is given in Figure 2.11.

Proof of the algorithm of Figure 2.19:

The proof that the algorithm of Figure 2.19 gives either a matching saturating
all the vertices of X7 or else a succinct certificate is the same as the proof of
the necessary part of the Konig-Hall Theorem 2.3 and the properties (see
Property 2.1 of the level sets induced by the bfs).
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Algorithm:

Apply the maximum matching algorithm of figure 2.11 to the graph G;
Let M be the maximum matching obtained;

if M saturates all the vertices of X

then
begin
print the edges of M;
return;
end
else
begin
Let A be an M alternating tree obtained from an unsaturated vertex x; € Xj;
(*S := Lo(x) U La(x) U La(x) - - - %) in the tree A;
S:=0(* initialization of the set S*)
for i :==1ton do
if z; € A and L]z;] mod2 =0
then S :=SU{w;};
print the vertices of succinct certificate S
end;

FIGURE 2.19: Algorithm to find a matching that saturates all the vertices
of the set X; or else a succinct certificate.

The complexity of the algorithm of Figure 2.19: The complexity is the
same as that of the maximum matching algorithm which is O(n max(n,m)).

As an application of the maximum matching algorithm, we shall study in
the following subsection an algorithm to find a weighted perfect matching in
a weighted complete bipartite graph.

2.4.1 Personnel assignment problem or weighted matching
in a bipartite graph

Input: A complete bipartite simple graph G = (X1,Y:; F) with | X;| =
|Y1| = n. Let us recall that such a bipartite graph is denoted by K, ,. The
vertices of the set X; denote k technicians x1, xo,...,x; and the vertices of
the set X5 stand for n jobs y1,y2,...,yx. Bach edge z;y; for 4,5 =1,2,...,n
of the graph K, ,, is assigned a non-negative number w(z;y;). This number
w(x;y;) can be considered as the efficiency (measured in terms of the profit
to the company) of the technician x; on the job y;.

The weighted complete bipartite K, ,, is represented as an n X n matrix

W = (w;;) where the rows of the matrix represent the n technicians
t1,t2,...,t, and the columns represent the n jobs yi,¥2,...,y, with w;; =
w(z;y;)-

Output: A maximum weighted perfect matching in the graph G, where the
weight of a matching M is the sum of the weights of its edges.
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Example 2.15: Personnel assignment problem

Consider the weighted complete bipartite graph represented by a
4 x 4 matrix W where

Y1 Y2 Y3 Ya

(4 3 2 2
W= z3| 3 0 2 0
g \3 4 0 3

For example, the efficiency of the technician x5 on the job y3 is
we3 which is equal to 5. A maximum weighted matching is M =
{1y4, 22y3, T3y1, T4y } and its weight w(M) = wig + woz + ws1 +
wyo = 14. This maximum matching M assigns the technician z; to the
job y1 and x5 to the job y3 and so on.

Algorithm (Brute-force): Generate all possible perfect matchings of the
complete bipartite graph K, , and choose one of them for which the weight

is a maximum.

The most serious objection to this case-by-case method is that it works far too
rarely. The reason is that there are n! possible perfect matchings possible in
the complete bipartite graph K, , and n! is an exponential function because

n"/2§n!§ (n—;—l) .

For example, 10! > 3.5 million.

Example 2.16: Brute-force weighted matching algorithm

Let us execute the brute-force weighted matching algorithm on the
complete weighted bipartite graph K3 3 where the weights of the edges
are given by the 3 x 3 matrix

Y1 Y2 Y3

T 2 4 3

W = To 1 2 4
T3 3 4 5

The following Table 2.4 gives all the possible 3! = 6 perfect matchings
and their corresponding weights. The last row 6 of the table gives us a
maximum weighted matching whose weight is 11.

We are now ready to present the Kuhn-Munkres algorithm for the weighted
matching problem in bipartite graph.
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TABLE 2.4: Brute-force weighted matching algorithm

Number Matchings Weights
1 {z1y1, 222, w3y3} 9

2 {z1y1, 223, 23y2 } 10

3 {w1y3, 2202, w391 } 8

4 {w1y2, 2291, 233 } 10

5 {®1y3, 22y1, T3Y2 } 8

6 {z1y2, 22y, w351 } 11

Description of the Kuhn-Munkres algorithm:

Definition 2.3 (Good labeling of the vertices of K, ). Consider a
weighted bipartite graph K, , and the weight matrizc W = w;; of the edges.
We assign to each vertex v of the graph a non-negative number l(v), called the
label of the vertex v such that the weight of an edge is at most the sum of the
labels of its end vertices. Symbolically,

wij < U(z;) +1(y;)

foralli,j=1,2,...,n. Such a labeling is called a good labeling of the weighted
complete bipartite graph.

Example 2.17: Good labeling

Consider the weight matrix W of the complete bipartite graph Ky 4
where

Y Y2 Ys Y4

1 (4 3 2 2
) 2 3 5 1
W= zz| 3 0 2 0
z4\3 4 0 3

A good labeling function [ is given as follows: I(z1) = 4 I(z2) = 5
l(z3) = l(zg) =4 and I(y1) = l(y2) = l(ys) = l(ya) = 0. In fact,
I(x;) is deﬁned as the maximum value of the entry in the ith row and
I(y;) is defined as zero for all j.

More generally, we observe that for a given weighted matrix W = (w;;) of
a complete bipartite graph K, ,,, the function [ defined as

maxj < <n Wij ifo= xX;
l(”)_{o if v =y,

is always a good labeling.
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There are n? edges in the complete bipartite graph K, ,. The following
lemma on which the algorithm is based says “many” of the n? edges can
be eliminated from the graph in order to find a maximum weighted perfect
matching.

Lemma 2.4. Consider a weighted matric W = w;j, of a balanced complete
bipartite graph G = K,, , = (X1,Y1; E) and a good labeling function | of its
vertices. Let Gy be a spanning subgraph of G with vertex set X1 UY7 and the
edge set E; where

By = {ay; | Uz:) + U(y;) = wij }-

In other words, the spanning subgraph G; consists of all edges of G such that
the weight of the edge is equal to the sum of the labels of its end vertices. If
the graph Gy contains a perfect matching M, then M is a maximum weighted
perfect matching of the graph G.

Proof. Let M C E; be a perfect matching in the graph G;. Then, we have to
show that M is a maximum weighted perfect matching of the graph G. Since
E, C E, M is also a perfect matching of the graph G. Let M’ be a perfect
matching of G. We have to show that w(M') < w(M).

Now,

w(M) = Z Wi

r;y; EMCE;

= > () +Uyy))

T;iYj EMCE,;

Z I(v) (since M saturates all the vertices)  (2.3)
veX1UY7

But then,

wM)= Y wy (2.4)

quijI\/I/CE
= > (@) +Uy))
ziy; EM'CE

Z l(v) (since [ is a good labeling)
veEX1UY:

IN

By Equations (2.3) and (2.4), we have w(M') < w(M). O

Example 2.18: The graph G|

Let us refer to Example 2.17. The graph G, corresponding to the
good labeling [ is drawn in Figure 2.20.
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x1

x3b

N(SD

FIGURE 2.20: The graph G;, where [ is the good label.

Once the graph G is constructed, we apply the maximum matching algo-
rithm of Figure 2.11 to the spanning bipartite graph G of the given graph G.

If the graph G; possesses a perfect matching M, then by the Lemma 2.4,
the matching M is a desired maximum weighted perfect matching in the given
graph G and the algorithm “STOPS.”

Otherwise, the graph G; has a succinct certificate (see Definition 2.1) S;.
More precisely, there is a subset S; € X7 such that the number of vertices
collectively adjacent to the vertices of the set S; in the graph G is exactly
one less than the number of vertices in S;. Symbolically,

ING, (S1)| = |Si] — 1.

Note that this succinct certificate S; can be obtained by an M-alternating
tree of the graph G; where M is a maximum (but not perfect) matching of
the graph G;. More precisely, if M is a maximum matching of G; which is
not perfect, then we grow a full M-alternating tree A from an unsaturated
vertex z1 € Xy as a root vertex (see Algorithm of Figure 2.18). Since M is a
maximum matching, by Berge’s Theorem 2.2, we obtain a tree A with only
one unsaturated vertex x;. Then, the succinct certificate S; is given by the
intersection X; N X (A) (which is also the union of all oddly subscripted level
sets of the tree A) where X (A) is the set of vertices of the tree A.

Now, with the help of the set 5;, we shall modify the good labeling [ in
such a way that the tree A can still be grown further in the new graph Gj.
The following definition redefines the labeling I.

Definition 2.4 (New labeling from the old one). First of all, define the
number d; as

di = (@) + Uy;) = wlas,)) - (2.5)

min
z; €S1,y;€Y1—-T)

Here, the set T; denotes the neighbor set N(S;) in the graph G;. Note that
by the definition, the number d; satisfies the inequality d; > 0. Now the new
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x1

1
x3b

FIGURE 2.21: An M-alternating tree A of Gj.

labeling 1 is defined as follows:

l(w)y—d ifves
L(v) =< lv)+d ifveT
I(v) otherwise

The above modification of the labeling is illustrated in the following
example.

Example 2.19: New labeling from the old one

Let us refer to the graph G of Example 2.18. A maximum match-
ing M in this graph G; is M = { xays, z3y1, T4y2 } which is not perfect
and the corresponding M-alternating tree A with the root x; is drawn
in Figure 2.21:

The succinct certificate S; is S; = X3 N X(A) = {z1,23} where
X (A) is the set of vertices of the tree A. The set T} is T} = N¢, (S)) =
{y1} and the set T/ = Y1 — T = {y2,¥3,ya }. Then, the number
di = ming,es, y ey (H(z:) +U(y;) — w(z;y;)). Then, the new labeling /3
is given as follows:

ll(ﬂfl) = l(ﬂj’l) - dl =3 l(l’g) = l(.Tg) - dl =2 ll(yl) = l(yl) +
d; = 1 and all other vertices v keep their old [-values, that is, l; (v) := [(v)
for all other vertices. The graph Gj, corresponding to the labeling I; is
drawn in Figure 2.22.

Now we construct the new spanning subgraph Gy, of the graph G. Because
of the definition of the labeling function /;, in the new graph G, all the edges
between the sets S; and T; in the old graph G will also belong to the new
graph G, . In addition, at least one new edge (e.g., the edge z1y2 in the graph
G, of Example 2.19) between the set S; and the set Y7 — T will appear in
the new graph Gj,. This new edge enables us to grow the M-alternating tree
still further in the graph Gj,. An edge of the old graph G; having one end in



142 Discrete Mathematics
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FIGURE 2.22: An M-alternating tree A; of Gy, .

X1 — 5; and the other end in the set 7} may disappear in the new graph Gj,.
All other edges between the sets X; — .S; and Y7 — 1 of the graph G; will be
conserved in the new graph G, .

If the new graph Gj, contains a perfect matching M, then by virtue
of Lemma 2.4, M is a maximum weighted perfect matching in the original
graph G and the algorithm STOPS.

If not, we find a maximum matching (but not perfect) and the corre-
sponding succinct certificate in the graph G, and we continue the algorithm
as before. This continuation is explained in the example that follows:

Example 2.20: Continuation of Example 2.19

Let us refer to graph Gj, of Example 2.19. A maximum matching
M = {xays,x3y1,24y2 } in the graph G;, which is the same as the
maximum matching in the graph Gj.

The succinct certificate in the graph Gy, is S, = X1NX(4;) = X; =
{x1, 22,23, 24 } where X (A7) is the vertex set of the alternating tree A4,
relative to the matching M and T}, = {y1,y2,ys } which is the set of
vertices collectively adjacent to the vertices of S, in the graph Gy, . As
before, we calculate the number d;, whose value is 1. We calculate the
new labeling function Iy where lo(z1) =3 —1=2, Ily(z3) =5—1=4,
12(1‘3) =2-1=1, l2($4) =4—-1=3, lz(yl) =14+1=2, lg(yg) =
0O+1=1, lg(yg) =0+1=1and 12(y4) = ll(y4) =0.

Then, we construct the new graph G, (see Figure 2.23) and apply
the maximum matching Algorithm 2.11 to the graph Gy,.

This graph possesses a perfect matching M = { z1y2, 22y3, T3Y1, Tals }
and by Lemma 2.4, M is also a maximum weighted perfect matching in
the original graph G and the maximum weight is wy2 +wa3 +ws31 +wag =
3+ 54 3+ 3 = 14. Hence the algorithm STOPS.
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Gl2:

FIGURE 2.23: The graph Gi,.

We now write the Kuhn-Munkres algorithm in pseudo-code: To implement
this algorithm in a programming language, we may use the following data
structures:

The initial weighted bipartite graph G = K, , = (X1,Y1; E) with X; =
{z1,29,...,2n }, Y1 = {y1,y2,...,yn } is represented by an n x n matrix
W = (w;;) where w;; is the weight of the edge x;y;. We shall use an array [ of
integer for the labeling function. The indices of the array are the vertices of
the graph G. The graph G, again is represented by an n x n matrix B = (b;;)

where )
L[ i) ) =
77710  otherwise

The matching M is represented by an n x n matrix M = m;; where

— 1 if the edge z;y; is in the matching M
7710  otherwise

Algorithm(Kuhn-Munkres):
(* initialization of the labeling function I*)
for i:=1ton do

begin (*for*)
I(z;) = maxq<j<p wij;
I(y:) = 0;

end;(*for*)
construct the graph Giy;
Apply the maximum matching algorithm of figure 2.11 to the graph G;
while G has no perfect matching do
begin(*while*)
find a succinct certificate S; and T; = N(S;) in the graph Gy;
calculate d; by the formula 2.5;
for each vertex z; in the set S; do
W) == Uzy) — dp;
for each vertex y; in the set T; do
Wys) = Uya) + dis
construct the graph G;
end (*while*)
Let M be a perfect matching of the graph Gy;
Then M is a maximum weighted perfect matching in G;
Print the edges of M;

FIGURE 2.24: Kuhn-Munkres algorithm.
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A subset is usually represented by its characteristic function, if the universal
set is known in advance. Hence the succinct certificate S; may be represented
by a characteristic vector. More precisely, the set S is an array whose indices
are the vertices of the set X; where

{1 if z; € .5

Sifwi] = 0 otherwise

In a similar manner, we can represent 7, the set of neighbors of the set S; in
the graph G; by a characteristic vector whose indices are the vertices of the
set Y7 (Figure 2.24).

2.5 Exercises

1. Write a complete program in C for the breadth-first search of a simple
graph. (The graph is represented by its adjacency lists.)

2. Can we use the breadth-first search procedure to find the minimum cost
in an undirected connected graph, from a given source vertex, to all
other vertices, with weights associated with each edge of the graph? If
the answer is “yes,” write a pseudo-code to find the minimum costs of
all paths from the source. The weight of each edge is > 0.

3. Write a complete program in C for the breadth-first search of a simple
graph. (The graph is represented by its adjacency matrix.)

4. Describe an algorithm to find the diameter and the radius of an undi-
rected connected graph using the breadth-first search. The weight of
each edge is 1. Give the complexity of your algorithm.

5. Using the breadth-first search, write a program in C to test if a given
simple graph is bipartite.

6. Can a geodetic graph be a bipartite graph? Justify your answer.

7. Using the breadth-first search, write a program in C to test if a given
simple graph is geodetic.

8. Apply the maximum matching algorithm to the Petersen graph. Initially,
we start with any single edge as a matching. Is the matching obtained
at the end, a perfect matching?

9. Prove that the Petersen graph cannot be written as a union of three
mutually disjoint perfect matchings.

10. If M; and Mjy are two different perfect matchings of a graph, then
describe the spanning graph whose edge set is M;AMs where A is the



11.

12.

13.

14.

15.

16.
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symmetric difference of My and Ms. (Here, M; and My are considered
as sets of edges.)

Prove that the Petersen graph is not a Hamiltonian graph; that is, it
does not contain an elementary cycle passing through each vertex exactly
once.

If G is a 3-regular simple graph on an even number of vertices con-
taining a Hamiltonian cycle, then prove that the edge set of G can be
decomposed into union of three mutually disjoint perfect matchings.

Apply the Kuhn-Munkres algorithm on the following matrix W corre-
sponding to the weighted complete bipartite graph Ky 4:

Y1 Y2 Y3 Y4

X 4 4 3 2

x| 3 5 5 2
W= 3| 3 2 2 4
g \3 4 5 3

Write the following bi-stochastic matrix A as a convex combination of
permutation matrices:

1/4 1/2 0 1/4
1/2 1/4 1/4 0
0 1/4 1/2 1/4
1/4 0 1/4 1/2

A:

A diagonal of a real square matrix n x n is a set of n entries of the matrix
no two of which are in the same row or in the same column. The weight
of a diagonal is the sum of the elements of the diagonal. Find a diagonal
of maximum weight in the following 4 x 4 matrix A where

A:

N DN O N

3 2
3 3
4 3
4 5

W W N Ut

Using the Konig-Hall theorem for perfect matching in a bipartite graph
proved in this chapter, prove the following theorem due to the eminent
graph theorist: Tutte.

Let G = (X,E) be a simple graph. For a subset S C X, denote by
¢o(G — S), the number of connected components with odd number of
vertices of the induced subgraph (X — S).

Tutte’s theorem: A graph G has a perfect matching if and only if

¢o(G — S) < |S] for all subsets S C X

(For a proof, see [11].)
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Chapter 3

Algebraic Structures I (Matrices,
Groups, Rings, and Fields)

3.1 Introduction

In this chapter, the properties of the fundamental algebraic structures,
namely, matrices, groups, rings, vector spaces, and fields are presented. In
addition, the properties of finite fields which are so basic to finite geometry,
coding theory, and cryptography are also discussed.

3.2 Matrices

A complex matrix A of type (m,n) or an m by n complex matrix is a
rectangular arrangement of mn complex numbers in m rows and n columns
in the form:

ailp  ai2 a1n
A= azi @22 a2n
am1  Am2 Amn

A is usually written in the shortened form A = (a;;), where 1 < ¢ < m and
1 < j < n. Here, a;; is the (7, 7)-th entry of A, that is, the entry common to
the i-th row and j-th column of A. If m = n, A is a square matrix of order n.
In the latter case, the vector with the entries ay1, as2, ..., ay, is known as the
principal diagonal or main diagonal of A. All the matrices that we consider in
this chapter are complex matrices.

3.3 Operations on Matrices: Addition, Scalar
Multiplication, and Multiplication of Matrices

If A= (a;;) and B = (b;;) are two m by n matrices, then the sum A+ B
is the m by n matrix (a;; + b;;), and for a scalar (that is, a complex number)
a, aA = (aa;;). Further, if A = (a;;) is an m by n matrix, and B = (b;;) is

147
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an n by p matrix, then the product AB is defined to be the m by p matrix
(¢ij), where,

Cij = ailblj + a’i2b2j + o4 alnbn]
= the scalar product of the i-th row vector R; of A

and the j-th column vector C; of B.

Thus, ¢;; = R; - C;. Both R; and C; are vectors of length n. It is easy to see
that the matrix product satisfies both the distributive laws and the associative
law, namely, for matrices A, B and C,

A(B+C)=AB+ AC,
(A+B)C =AC+ BC, and
(AB)C = A(BC)

whenever these sums and products are defined.

3.3.1 Block multiplication of matrices

Let A be an m by n matrix, and B an n by p matrix so that the matrix
product AB is defined, and it is an m by p matrix. Now partition the rows of
A into my,ma, ..., my rows in order where mq + ms - - - + my = m. Further,
partition the columns of A into ¢; + ¢o + -+ + ¢; = n columns in order. We
partition the rows and columns of B suitably, so that the product AB can be
obtained by multiplying the partitioned matrices.

We explain it by means of an example. Let A = (a;;) be a 5 x 4 matrix, and
B = (b;;) be a 4 x 3 matrix so that AB is a 5 x 3 matrix. Partition the rows
of A into two parts, the first part containing the first three rows of A and the
second part containing the remaining two rows of A, keeping the order of the
rows unchanged all the time. Now partition the columns of A into two parts
with the first part having the first two columns in order, while the second part
containing the remaining two columns of A in order. Thus, we can write:

A Ay
A= ,
<A21 Az
where A7 18 3 X 2, A19i8 3 X 2, Agy is 2 x 2 and Agy is 2 X 2.

We now partition B as
Bi1 B
B =
(321 322)

where Bj; and Bs; have two rows each. Hence Bio and By, have also two
rows each. This forces By; and Bs; to have two columns each while Bys and
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Bss have each one column. This gives

AB — <A11 Au) (311 312> _ (Aan + A12Bo1 A1 B +A12322>
Aoy Agn ) \Ba1 B A21B11 + A2 By Ag1Bio + AsaBas )’

and we find that the matrix on the right, on simplification, does indeed yield
the product AB.

Note that it is not enough if we simply partition the matrices A and B.
What is important is that the partitioned matrices should be conformable
for multiplication. This means, in the above example, that the 8 products
A11B117 A12321, ‘e A22B22 are all defined.

The general case is similar.

3.3.2 Transpose of a matrix

If A = (ai;) is an m by n matrix, then the n by m matrix (b;;), where
b;j = a;; is called the transpose of A. It is denoted by A’. Thus, A* is obtained
from A by interchanging the row and column vectors of A. For instance, if

1 2 3 1 4 7
A=1|4 5 6|, then A'=[2 5 8
7 8 9 3 6 9
It is easy to check that
i. (AHt = A, and
ii. (AB)! = B'A', whenever the product AB is defined

(Note: If A is an m by p matrix, and B is a p by n matrix, then (AB)! is an
n by m matrix, and B*A" is also an n by m matrix.)

3.3.3 Inverse of a matrix

Let A = (a;;) be an n by n matrix, that is, a matrix of order n. Let B;;
be the determinant minor of a;; in A. Then, B;; is the determinant of order
n — 1 got from A by deleting the i-th row and j-th column of A. Let A;; be
the cofactor of a;; in det A(= determinant of A) defined by A;; = (—1)"" B;;.
Then, the matrix (A4;;)" of order n is called the adjoint (or adjugate) of A,
and denoted by adj A.

Theorem 3.1. For any square matriz A of order n,
A(adj A) = (adj A)A = (det A)I,,,

where I,, is the identity matriz of order n. (I, is the matriz of order n in
which the n entries of the principal diagonal are 1 and the remaining entries
are 0).
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Proof. By a property of determinants, we have
ailAjl + aigAjQ + -4 amAjn = aleU + anggi + 4 anjAm =detAor0

according to whether ¢ = j or ¢ # j. We note that in adj A, (4;1,...,4;s)
is the j-th column vector, and (Ai;,..., Ay;) is the j-th row vector. Hence,
actual multiplication yields

detA 0... 0
AladjA) = (adj A= | O detA o 0 ey,
0 0 det A

Corollary 3.1. Let A be a non-singular matriz, that is, det A # 0. Set A~! =
(1/det A)(adj A). Then, AA~1 = A=YA = I,,, where n is the order of A.

The matrix A~!, as defined in Corollary 3.1, is called the inverse of the
(non-singular) matrix A. If A, B are square matrices of the same order with
AB = I,then B = A~! and A = B~!. These are easily seen by premultiplying
the equation AB = I by A~! and postmultiplying it by B~!. Note that A1
and B~! exist since taking determinants of both sides of AB = I, we get

det(AB) =det A-det B=detI =1,

and hence det A # 0 as well as det B # 0.

3.3.4 Symmetric and skew-symmetric matrices

A matrix A is said to be symmetric if A = A'. A is skew-symmetric if
A = —A'. Hence if A = (a;;), then A is symmetric if a;; = aj; for all i and
J; it is skew-symmetric if a;; = —aj; for all 4 and j. Clearly, symmetric and
skew-symmetric matrices are square matrices. If A = (a;;) is skew-symmetric,
then a; = —a;;, and hence a;; = 0 for each 7. Thus, in a skew-symmetric
matrix, all the entries of the principal diagonal are zero.

3.3.5 Hermitian and skew-Hermitian matrices

Let H = (hi;) denote a complex matrix. The conjugate H of H is the

matrix (hi;). The conjugate-transpose of H is the matrix H* = (H)" = (H') =
(hji) = (hj;). H is Hermitian if and only if (iff) H* = H; H is skew-Hermitian
ifft H* = —H. For example, the matrix H = (2_131_ 2\';?) is Hermitian, while

the matrix S = ( 14 _ﬁ% 1;?) is skew-Hermitian. Note that the diagonal entries

of a skew-Hermitian matrix are all of the form ir, where r is a real number

(and i = /—1).
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3.3.6 Orthogonal and unitary matrices

A real matrix (that is, a matrix whose entries are real numbers) P of
order n is called orthogonal if PP* = I,,. If PP* = I,,, then P* = P~!. Thus,
the inverse of an orthogonal matrix is its transpose. Further, as P~'P = I,,,
we also have P'P = I,,. If R;,..., R, are the row vectors of P, the relation
PP' = I, implies that R; - R; = §;j, where 6;; = 1 if i = j, and §;; = 0
if 4 # j. A similar statement also applies to the column vectors of P. As an
example, the matrix (fgm 2};;3) is orthogonal where o is a real number.
Indeed, if (z,y) are the Cartesian coordinates of a point P referred to a pair
of rectangular axes, and if (z/,y’) are the coordinates of the same point P with
reference to a new set of rectangular axes got by rotating the original axes
through an angle a about the origin (in the counter-clockwise direction), then

2 =xcosa+ysina

Yy = —zsina + ycosa,

, .
that is, (acl> _ ( cosa sma> <x>
Y —sina cosa ) \y

so that rotation is effected by an orthogonal matrix.
Again, if (I3, m1,n1), (I2, ma,ne) and (I3, ms, n3) are the direction cosines
of three mutually orthogonal directions referred to an orthogonal coordinate
l1 mi1 N1

system in the Euclidean 3-space, then the matrix %2 ma nz) is orthogonal.
3 M3 N3

In passing, we mention that rotation in higher-dimensional Euclidean spaces
is defined by means of an orthogonal matrix.

A complex matrix U of order n is called unitary if UU* = I, (Recall
that U* is the conjugate transpose of U). Again, this means that U*U =
I,,. Also a real unitary matrix is simply an orthogonal matrix. The unit
matrix is both orthogonal as well as unitary. For example, the matrix U =
(1/5) (_21_";5’ __42__2ii) is unitary.

3.3.7 Exercises

1. If A= (‘;’ :‘1*), prove by induction that AF = (122’“ liékk) for any posi-
tive integer k.

—sina cos a —sin(na) cos(na)

2. If M = (%2, sme)) prove that M™ = ( cos(na) sin(na) ), n € N.

1-10
3. Compute the transpose, adjoint and inverse of the matrix ((1) é —11 )

4. If A= (21 3), show that A? — 3A + 81 = 0. Hence compute A~'.
5. Give two matrices A and B of order 2, so that

i. AB+# BA

ii. (AB)! # AB



152 Discrete Mathematics

6. Prove: (i) (AB)! = B'A?; (ii) If A and B are non-singular, (AB)~! =
B7'AL

7. Prove that the product of two symmetric matrices is symmetric iff the
two matrices commute.

8. Prove: (i) (1A)* = —iA*; (ii) H is Hermitian iff ¢H is skew-Hermitian.

9. Show that every real matrix is the unique sum of a symmetric matrix
and a skew-symmetric matrix.

10. Show that every complex square matrix is the unique sum of a Hermitian
and a skew-Hermitian matrix.

3.4 Groups

Groups constitute an important basic algebraic structure that occurs very
naturally not only in mathematics, but also in many other fields such as
physics and chemistry. In this section, we present the basic properties of
groups. In particular, we discuss Abelian and non-Abelian groups, cyclic
groups, permutation groups and homomorphisms and isomorphisms of groups.
We establish Lagrange’s theorem for finite groups and the basic isomorphism
theorem for groups.

3.4.1 Abelian and non-Abelian groups

Definition 3.1. A binary operation on a non-empty set S is a map : S xS —
S, that is, for every ordered pair (a,b) of elements of S, there is associated
a unique element a - b of S. A binary system is a pair (S,-), where S is a
non-empty set and - is a binary operation on S. The binary system (S,-) is
associative if - is an associative operation on S, that is, for all a,b,c in S,
(a-b)-c=a-(b-c)

Definition 3.2. A semigroup is an associative binary system. An element e
of a binary system (S,-) is an identity element of S if a-e =e-a = a for all
a€s.

We use the following standard notations:
7, = the set of integers (positive integers, negative integers and zero),
7+ = the set of positive integers,
N = the set of natural numbers {1,2,3,...} = ZT,
Q = the set of rational numbers,
Q7= the set of positive rational numbers,
Q* = the set of non-zero rational numbers,
R = the set of real numbers,
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R*= the set of non-zero real numbers,
C = the set of complex numbers, and
C*= the set of non-zero complex numbers.

Examples

1. (N,-) is a semigroup, where - denotes the usual multiplication.

2. The operation subtraction is not a binary operation on N (for example,
3—-5¢N).

3. (Z,—) is a binary system which is not a semigroup since the associative
law is not valid in (Z, —); for instance, 10 — (5 — 8) # (10 — 5) — 8.

We now give the definition of a group.

Definition 3.3. A group is a binary system (G,-) such that the following
axioms are satisfied:

(G1): The operation - is associative on G, that is, for all a,b,¢ € G, (a-b)-¢c =
a-(b-c).

(Go): (Existence of identity) There exists an element e € G (called an identity
element of G with respect to the operation -) such that a-e =e¢-a = a for
all a € G.

(Gs): (Existence of inverse) To each element a € G, there exists an element
a~! € G (called an inverse of a with respect to the operation -) such that

a-at=atl-a=ce.

Before proceeding to examples of groups, we show that identity element e,
and inverse element a~! of a, given in Definition 3.3 are unique.
Suppose G has two identities e and f with respect to the operation -. Then,

e=e-f (as fis an identity of (G,))
= f (as e is an identity of (G,-)).

Next, let b and ¢ be two inverses of a in (G, -). Then,

b="b-e
=b-(a-c) (as ¢ is an inverse of a)
= (b-a) - ¢ by the associativity of - in G
=e-c (as b is an inverse of a)

= C.

Thus, henceforth, we can talk of “The identity element e¢” of the group (G, ),
and “The inverse element a~! of a” in (G, -).
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Ifa € G, then a-a € G; also, a-a--- (n times) € G. We denote a-a--- (n
times) by a”. Further, if a,b € G, a-b € G, and (a-b)~* =b~!-a~t. (Check
that (a-b)(a-b)~! = (a-b)~(a-b) = e). More generally, if a1, as,...,a, € G,
then (ay - az---a,)"t = a;' - a,’,---a;’, and hence (a”)~! = (a=1)" =
(written as) a~". Then, the relation a™*" = o - a™ holds for all integers m
and n, with a® = e. In what follows, we drop the group operation - in (G, ),

and simply write group G, unless the operation is explicitly needed.

Lemma 3.1. In a group, both the cancellation laws are valid, that is, if a,b, c
are elements of a group G with ab = ac, then b = ¢ (left cancellation law), and
if ba = ca, then b = ¢ (right cancellation law).

Proof. If ab = ac, premultiplication by a~! gives a~(ab) = a~'(ac). So by
the associative law in G, (a~'a)b = (a~'a)c, and hence eb = ec. This implies
that b = ¢. The other cancellation is proved similarly. O

Definition 3.4. The order of a group G is the cardinality of G. The order
of an element a of a group G is the least positive integer n such that a™ = e,
the identity element of G. If no such n exists, the order of a is taken to be
nfinity.

Definition 3.5. Abelian Group [After the Norwegian mathematician Abel]
A group G is called Abelian if the group operation of G is commutative, that
is, ab = ba for all a,b € G.

A group G is non-Abelian if it is not Abelian, that is, there exists a pair
of elements x,y in G with zy # yx.

3.4.2 Examples of Abelian groups

1. (Z,+) is an Abelian group, that is, the set Z of integers is an Abelian
group under the usual addition operation. The identity element of this
group is O, and the inverse of a is —a. (Z,+) is often referred to as
the additive group of integers. Similarly, (Q,+), (R, +), (C,+) are all
additive Abelian groups.

2. The sets Q*, R* and C* are groups under the usual multiplication oper-
ation.

3. Let G = C[0,1], the set of complex-valued continuous functions defined
n [0,1]. G is an Abelian group under addition. Here, if f,¢g € CJ[0,1],
then f + g is defined by (f + g)(z) = f(z) + g(x),x € [0,1]. The zero
function O is the identity element of the group while the inverse of f

is —f.

4. For any positive integer n, let Z,, = {0,1,...,n — 1}. Define addition +
in Z, as “congruent modulo n” addition, that is, if a,b € Z,, then
a+b=c, where ¢ € Z, and a + b = ¢ (mod n). Then, (Z,,+) is an
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Abelian group. For instance, if n = 5, then in Z5, 2+2=4,2+4+3 =0,
3+ 3 =1, etc.

5. Let G = {r, : o = rotation of the plane about the origin through an
angle « in the counter-clockwise sense}. Then, if we set rg - 7o = Tats
(that is, rotation through « followed by rotation through 3 = rotation
through a+ (), then (G, -) is a group. The identity element of (G, -) is ro,
while (r,)~! = r_,, the rotation of the plane about the origin through
an angle « in the clockwise sense.

3.4.3 Examples of non-Abelian groups

1. Let G = GL(n,R), the set of all n by n non-singular matrices with real
entries. Then, G is an infinite non-Abelian group under multiplication.

2. Let G = SL(n,Z) be the set of matrices of order n with integer entries
having determinant 1. G is again an infinite non-Abelian multiplica-
tive group. Note that if A € SL(n,Z), then A~! = (1/det A)(adjA) €
SL(n,Z) since det A = 1 and all the cofactors of the entries of A are
integers (see Section 3.3.3).

3. Let S; denote the set of all 1-1 maps f : Ny — N4, where Ny =
{1,2,3,4}. If - denotes composition of maps, then (Sy, -) is a non-Abelian
group of order 4! = 24. (See Section 3.8 for more about such groups.)

For instance, let
fe 1 2 3 4
\4 1 2 3/

Here, the parantheses notation signifies the fact that the image under f
of a number in the top row is the corresponding number in the bottom
row. For instance, f(1) =4, f(2) =1 and so on. Let

12 3 4 12 3 4
g‘(s 1 2 4) Then, g'f_<4 3 1 2)'

Note that (g f)(1) = g(f(1)) = g(4) = 4, while (f - )(1) = f(9(1)) =
f(3) =2, and hence f-g # g- f. In other words, S; is a non-Abelian
group. The identity element of .Sy is the map

(1 2 3 4 (1 2 3 4
I_(1234> and _<2341>'

3.4.4 Group tables

The structure of a finite group G can be completely specified by means
of its group table (sometimes called multiplication table). This is formed by
listing the elements of G in some order as {g1,...,gn}, and forming an n by
n double array (g;;), where g;; = g;g;, 1 <1 < j < n. It is customary to take
g1 = e, the identity element of G.
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TABLE 3.1: Group table of Klein’s

4-group

\ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Examples Continued

1. [Klein’s 4-group K] This is a group of order 4. If its elements are e, a, b, ¢,
the group table of K, is given by Table 3.1.

It is observed from the table that
ab=0ba=c¢, and a(ba)b=a(ab)b
This gives
c? = (ab)(ab) = a(ba)b = a(ab)b = a*b* = ec = e.

Thus, every element of K, other than e is of order 2.

3.5 A Group of Congruent Transformations (Also
called Symmetries)

We now look at the congruent transformations of an equilateral triangle
ABC'. Assume without loss of generality that the side BC' of the triangle is
horizontal so that A is in the vertical through the middle point D of BC.

Let us denote by r, the rotation of the triangle about its center through
an angle of 120° in the counter-clockwise sense and let f denote the flipping
of the triangle about the vertical through the middle point of the base. f
interchanges the base vertices and leaves all the points of the vertical through
the third vertex unchanged. Then, fr denotes the transformation r followed
by f and so on.

A C C
Al" f/\
— —>
B D cC A B B A
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TABLE 3.2: Group table of the dihedral group D3

r=e r r? f rf rf

rd=e e r r? f rf r2f
r r r? e rf rf f
r2 r2 e r r2f f rf
f f r r? e r? r
rf rf f r2f r e r2
rf r2f rf f r? r e

Thus, fr leaves B fixed and flips A and C' in AABC. There are six con-
gruent transformations of an equilateral triangle and they form a group as per

group Table 3.2
For instance, rfr and rf are obtained as follows:

A C C B
//A\\, _f//ﬁ\\ -
E—— —_— e
B C A B B A A
A A B

r
Af /\
B C C B A C

Thus, 72 fr = rf, and similarly the other products can be verified. The result-
ing group is known as the dihedral group Ds. It is of order 2 -3 = 6.

3.6 Another Group of Congruent Transformations

Let D, denote the transformations that leave a square invariant. If r
denotes a rotation of 90° about the center of the square in the counter-
clockwise sense, and f denotes the flipping of the square about one of its
diagonals, then the defining relations for D, are given by:

M=e= 2= (rf)

D, is the dihedral group of order 2 x 4 = 8. Both D3 and D, are non-Abelian
groups. The dihedral group D,, of order 2n is defined in a similar fashion as



158 Discrete Mathematics

the group of congruent transformations of a regular polygon of n sides. The
groups D,,, n > 3, are all non-Abelian. D,, is of order 2n for each n.

3.7 Subgroups

Definition 3.6. A subset H of a group (G,-) is a subgroup of (G,-) if (H,")
1S @ group.

Definition 3.6 shows that the group operation of a subgroup H of G is the
same as that of G.

3.7.1 Examples of subgroups
1. Z is a subgroup of (Q,+).

2. 27 is a subgroup of (Z,+). (Here, 2Z denotes the set of even integers).
3. Q* is a subgroup of (R*,-). (Here, - denotes multiplication).

4. Let H be the subset of maps of Sy that fix 1, that is, H = {f € Sy :
f(1) =1}. Then, H is a subgroup of Sy).
Note that the set N of natural numbers does not form a subgroup of
(Z,+).

3.7.2 Subgroup generated by a subset of a group

Definition 3.7. Let S be a non-empty subset of a group G. The subgroup
generated by S in G, denoted by (S), is the intersection of all subgroups of G
containing S.

Proposition 3.1. The intersection of any family of subgroups of G is a sub-
group of G.

Proof. Consider a family {G, }aer of subgroups of G, and let H = NyerGa.
If a,b € H, then a,b € G, for each a € I, and since G, is a subgroup of
G,ab € G, for each a € I. Therefore, ab € H, and similarly a=! € H and
e € H. The associative law holds in H, a subset of G, as it holds in G. Thus,
H is a subgroup of G. O

Corollary 3.2. Let S be a non-empty subset of a group G. Then, (S) is the
smallest subgroup of G containing S.

Proof. By definition, (S) is contained in every subgroup H of G containing S.
Since (S) is itself a subgroup of G containing S, it is the smallest subgroup of
G containing S. ]
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3.8 Cyclic Groups

Definition 3.8. Let G be a group and a, an element of G. Then, the subgroup
generated by a in G is ({a}), that is, the subgroup generated by the singleton
subset {a}. It is also denoted simply by (a).

By Corollary 3.2, (a) is the smallest subgroup of G containing a. As a €
(a), all the powers of a™,n € Z, also belong to (a). But then, as may be
checked easily, the set {a™ : n € Z} of powers of a is already a subgroup of G.
Hence {a) = {a" : n € Z}. Note that a” = e, the identity element of G, and
a~" = (a~1)", the inverse of a™. This makes a™ - a™ = a™*" for all integers
m and n. The subgroup A = (a) of G is called the subgroup generated by a,
and a is called a generator of A.

Now since {a":ne€Z} = {(a7'):n€Z}, a™' is also a generator of
(a). Suppose a is of finite order m in (a). This means that m is the
least positive integer with the property that a”™ = e. Then, the elements
a' =a,a?,...,a™ !, a™ = e are all distinct. Moreover, for any integer n, by
Euclidean algorithm for integers, there are integers ¢ and r such that

n=qgm+r, 0<r<m.
Then,
a” = a9t = (a™)a" = ela” =ea” =a", 0<r<m,
and hence a™ € (a). Thus, in this case,
(a) = {a,d® ...,a" " a" = e}.

In the contrary case, there exists no positive integer m such that a™ = e.
Then, all the powers a” : r € Z are distinct. If not, there exist integers r and
s, r # s, such that a” = a®. Suppose r > s. Then, » — s > 0 and the equation
a” = a® gives a~*a” = a~*a®, and therefore a"~* = a® = e, a contradiction.
In the first case, the cyclic group (a) is of order m while in the latter case, it

is of infinite order.

3.8.1 Examples of cyclic groups

1. The additive group of integers (Z,4+) is an infinite cyclic group. It is
generated by 1 as well as —1.

2. The group of n-th roots of unity, n > 1. Let G be the set of n-th roots
of unity so that

27 27
G:{w,wz,...,wnzl; W =cos— +isin— .
n n

Then, G is a cyclic group of order n generated by w, that is, G =< w >.
In fact w*, 1 < k < n, also generates k iff (k,n) = 1. Hence, the number
of generators of G is ¢(n), where ¢ is the Euler’s totient function.
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If G = (a) = {a":n€Z}, then since for any two integers n and m,
a”a™ = a"™™ = a™a", G is Abelian. In other words, every cyclic group
is Abelian. However, the converse is not true. Ky, the Klein’s 4-group (See
Table 3.1 of Section 3.4) is Abelian but not cyclic since K4 has no element of
order 4.

Theorem 3.2. Any subgroup of a cyclic group is cyclic.

Proof. Let G = (a) be a cyclic group, and H, a subgroup of G. If H = {e},
then H is trivially cyclic. So assume that H # {e}. As the elements of G are
powers of a, a™ € H for some non-zero integer n. Then, its inverse a~! also
belongs to H, and of n and —n at least one of them is a positive integer. Let
s be the least positive integer such that a® € H. (recall that H # {e} as per
our assumption). We claim that H = (a®), the cyclic subgroup of G generated
by a®. To prove this, we have to show that each element of H is a power of a®.
Let g be any element of H. As g € G, g = a™ for some integer m. By division
algorithm,

m=gqs+r, 0<r<s.

Hence a” = o™ % = a™(a®)"% € H as o™ € H and o® € H. Thus, a" € H.
This however implies, by the choice of s, 7 = 0 (otherwise a” € H with 0 < r <
s). Hence a” = a’ = e = a™(a®)79, and therefore, g = a™ = (a*)?, q € Z.
Thus, every element of H is a power of a® and so H C (a®). Now since a® € H,
all powers of a® also € H, and so (a®) C H. Thus, H = (a°) and therefore H
is cyclic. ]

Definition 3.9. Let S be any non-empty set. A permutation on S is a bijective
mapping from S to S.

Lemma 3.2. If 01 and oy are permutations on S, then the map o = o109

defined on S by
o(s) = o102(s) = 01 (02(8)), s€S
18 also a permutation on S.
Proof. Indeed, we have, for s1, so in S, o(s1) = o(s2) gives that oq(o2s1) =

o1(0282). This implies, as 1 is 1 — 1, 0981 = 0282. Again, as oo is 1 — 1, this
gives that s; = so. Thus, o is 1 — 1. For a similar reason, o is onto. O

Let B denote the set of all bijections on S. Then, it is easy to verify that
(B, -), where - is the composition map, is a group. The identity element of this
group is the identity function e on S.
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The case when S is a finite set is of special significance. So let S =
{1,2,...,n}. The set P of permutations of S forms a group under the compo-
sition operation. Any o € P can be conveniently represented as:

Then, o~ is just the permutation

e (TP )

What is the order of the group P? Clearly o(1) has n choices, namely, any
one of 1,2,...,n. Having chosen o(1),0(2) has n — 1 choices (as o is 1 — 1,
o(1) # o(2)). For a similar reason, o(3) has n—2 choices and so on, and finally
o(n) has just one left out choice. Thus, the total number of permutations on
S is

n-(n—1)-(n—-2)---2-1=nl
In other words, the group P of permutations on a set of n elements is of order

n! It is denoted by S, and is called the symmetric group of degree n. Any
subgroup of S,, is called a permutation group of degree n.

Example

Let S ={1,2,3,4,5}, and let o and 7 € S5 be given by

/12 3 45 /1 2 3 45
9 \2 3 5 4 1) T7\5 2 4 1 3)
Then,

(1t 2345 o2 ega_ (L 2345
TT=0T=\1 3 4 2 5) M TTTO=N\3 5 1 4 2)

Definition 3.10. A cycle in S, is a permutation o € S,, that can be repre-
sented in the form (ay,as,...,a,), where the a;, 1 < i <r,r <n, are all in

S, and o(a;) = ajy1, 1 <i<r—1, and o(a,) = ay, that is, each a; is mapped
cyclically to the next element (or) number a; 1 and o fizes the remaining a;s.

For example, if
1 3 2 4
(’_(3 2 1 4)654’

then o can be represented by (132). Here, o leaves 4 fized.
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Now consider the permutation
(1 2 3 4 5 6 7
P=\3 4216 5 7)
Clearly, p is the product of the cycles

(1324)(56)(7) = (1324)(56).

Since 7 is left fixed by p, 7 is not written explicitly. In this way, every permu-
tation on n symbols is a product of disjoint cycles. The number of symbols in
a cycle is called the length of the cycle. For example, the cycle (1 3 2 4) is a
cycle of length 4. A cycle of length 2 is called a transposition. For example,
the permutation (1 2) is a transposition. It maps 1 to 2, and 2 to 1. Now
consider the product of transpositions t; = (13), to = (12) and t3 = (14). We
have

ftaty = (13)(12)(14) = (; i’) (; f) (}1 ‘11) _ (}l § il)’ ;‘) — (1423).

To see this, note that
(tltgtg)(4) = (t1t2>(t3(4)) = (tltg)(l) = tl(tQ(l)) = t1(2) = 2, and so on.

In the same way, any cycle (ajas . ..a,) = (a1a,)(a1a,-1) - - - (a1a2) is a prod-
uct of transpositions. Since any permutation is a product of disjoint cycles
and any cycle is a product of transpositions, it is clear that any permutation
is a product of transpositions. Now in the expression of a cycle as a product of
transpositions, the number of transpositions need not be unique. For instance,
(12)(12) = identity permutation, and
(1324) = (14)(12)(13) = (12)(12)(14)(12)(13).
However, this number is always odd or always even.
Theorem 3.3. Let o be any permutation on n symbols. Then, in whatever

way o is expressed as a product of transpositions, the number of transpositions
1s always odd or always even.

Proof. Assume that o is a permutation on {1,2,...,n}. Let the product

P =(ay —as)(a; —az) - (a1 —ay,)

(a2 —ag) -+~ (az — an)

(an—l - an)

1 1 .1

ay a2 Qan,

= H (a; —aj) = det | af ai - ad?
1SZ<]Sn ... e e

-1 -1 n—1
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Any transposition (a;a;) applied to the product P changes P to —P as this
amounts to the interchange of the i-th and j-th columns of the above determi-
nant. Now ¢ when applied to P has a definite effect, namely, either it changes
P to —P or leaves P unchanged. In case o changes P to —P, o must always
be a product of an odd number of transpositions; otherwise, it must be the
product of an even number of transpositions. O

(The determinant (call it D) on the right is known as the Vander Monde
determinant. If we set, for ¢ < j,a; = a; in D, then two columns become
identical, and hence D = 0. This means that (a; —a;) is a factor of D. Further

the coefficient of aza? ...a" ! on both sides is 1. Hence the last equality.)

Theorem 3.4. The even permutations in S, form a subgroup A,, of Sy, called
the alternating group of degree n.

Proof. If 01 and o4 are even permutations in S,,, then each of them is a product
of an even number of transpositions and hence so is their product. Further if
o = tity...t,, where each t; is a transposition, then o= =t -1t 1 . ;M7 h
Hence the inverse of an even permutation is even. Further the identity per-
mutation is even since for any transposition t,e =t ot = ¢2. ]

Definition 3.11. A permutation is odd or even according to whether it is
expressible as a product of an odd number or even number of transpositions.

Example 3.1

123456789
Let":(451237986>'
Then, o = (14253)(679)(8)
— (13)(15)(12)(14)(69) (67)

= a product of an even number of transpositions.

Hence o is an even permutation.

3.9 Lagrange’s Theorem for Finite Groups

We now establish the most famous basic theorem on finite groups, namely,
Lagrange’s theorem. For this, we need the notion of left and right cosets of a
subgroup.
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Definition 3.12. Let G be a group and H a subgroup of G. For a € G, the
left coset aH of a in G is the subset {ah : h € H} of G. The right coset Ha of
a 18 defined in an analogous manner.

Lemma 3.3. Any two left cosets of a subgroup H of a group G are equipotent
(that is, they have the same cardinality). Moreover, they are equipotent to H.

Proof. Let aH and bH be two left cosets of H in G. Consider the map
¢:aH — bH

defined by ¢(ah) = bh, h € H. ¢ is 1 —1 since ¢(ahy) = ¢(ahs), for hy,hy € H,
implies that bh; = bhs and therefore h; = ho. Clearly, ¢ is onto. Thus, ¢ is
a bijection of aH onto bH. In other words, aH and bH are equipotent. Since
eH = H, H itself is a left coset of H and so all left cosets of H are equipotent
to H. (Recall that two sets are equipotent if there is a bijection between
them.) O

Lemma 3.4. The left coset aH s equal to H iff a € H.

Proof. If a € H, then aH ={ah: h€ H} C H as ah € H. Further if b € H,
then a='b € H, and so a(a='b) € aH. But a(a='b) = b. Hence b € aH, and
therefore aH = H. (In particular if H is a group, then multiplication of the
elements of H by any element a € H just gives a permutation of H.)
Conversely, if aH = H, then a = ae € aH = H, as e € H. ]

Example 3.2

It is not necessary that aH = Ha for all @ € G. For example, consider
Ss3, the symmetric group of degree 3. The 3! = 6 permutations of S5 are
given by

6_(1 2 3)7 (1 2 3)_(23)7 (1 2 3)_(13)
o 1 2 3 13 2 3 2 1

12 3 12 3 12 3
(2 1 3)2(12)’ (2 3 1)2(123)’ (3 1 2)2(132)'

Let H be the subgroup {e, (12)}. For a = (123), we have

aH = {(123)e = (123), (123)(12) = (13)}, and
Ha = {e(123) = (123), (12)(123) = (23)},

so that aH # Ha.

Proposition 3.2. The left cosets aH and bH are equal iff a='b € H.
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Proof. aH = bH < a *(aH) = a ' (bH) & H = (a"'b)H < a~'b € H by
Lemma 3.4. O

Lemma 3.5. Any two left cosets of the same subgroup of a group are either
identical or disjoint.

Proof. Suppose aH and bH are two left cosets of the subgroup H of a group G,
where a,b € G. If aH and bH are disjoint, there is nothing to prove. Otherwise,
aH NbH # ¢, and therefore, there exist hy,ho € H with ah; = bhy. This
however means that a=1b = hy h2_1 € H. So by Proposition 3.2, aH = bH. [

Example 3.3

For the subgroup H of Example 3.2, we have seen that (123)H =
{(123),(13)}. Now (12)H = {(12)e,(12)(12)} = {(12),e} = H, and
hence (123)H N (12)H = ¢. Also (23)H = {(23)e, (23)(12)} = {(23),
(132)}, and (13)H = (13){e, (12)} = {(13),(123)} = (123)H. Note that
(13)71(123) = (13)(123) = (12) € H (refer to Proposition 3.2).

Theorem 3.5. Lagrange’s Theorem [After the French mathematician
J. L. Lagrange] The order of any subgroup of a finite group G divides the
order of G.

Proof. Let H be a subgroup of the finite group G. We want to show that
o(H)|o(G). We show this by proving that the left cosets of H in G form a
partition of G. First of all, if ¢ is any element of G, g = ge € gH. Hence
every element of G is in some left coset of H. Now by Lemma 3.5, the distinct
cosets of H are pairwise disjoint and hence form a partition of G. Again, by
Lemma 3.3, all the left cosets of H have the same cardinality as H, namely,
o(H). Thus, if there are [ left cosets of H in G, we have

l-o(H)=0(G) (3.1)

Consequently, o(H) divides o(G). O

Definition 3.13. Let H be a subgroup of a group G. Then, the number (may

be infinite) of left cosets of H in G is called the index of H in G and denoted
by ic(H)

If G is a finite group, then Equation (3.1) in the proof of Theorem 3.5

shows that
0o(G) = o(H)ic(H)

Theorem 3.6 (An application of Lagrange’s theorem). If p is a prime,
and n any positive integer, then

"\¢(P" - 1)’

where ¢ is Euler’s totient function. First we prove a lemma.
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Lemma 3.6. If m > 2 is a positive integer, and S, the set of all positive
integers less than m and prime to it, then S is a multiplicative group modulo m.

Proof. If (a,m) = 1 and (b,m) = 1, then (ab,m) = 1. For if p is a prime
factor of ab and m, then as p divides ab, p must divide either a or b, say, p|a.
Then, (a,m) > p, a contradiction. Moreover, if ab (modm) =¢, 1 < ¢ < m,
then (¢,m) = 1. Thus, ab(modm) = ¢ € S. Also as (1,m) = 1,1 € S.
Now for any a € S, by Euclidean algorithm, there exists b € N such that
ab = 1 (modm). Then, (b,m) = 1 (if not, there exists a prime p with p|b and
p|m, then p|1, a contradiction). Thus, a has an inverse b(modm) in S. Thus,
S is a multiplicative group modulo m, and o(S) = ¢(m). O

Proof. (Proof of Theorem 3.6) We apply Lemma 3.6 by taking m = p™ — 1.
Let H = {1,p,p? ...,p""'}. All the numbers in H are prime to m and hence
H C S (where S is as defined in Lemma 3.6). Further p/ - p"~7 = p™ =

(mod m). Hence every element of H has an inverse modulo m. Therefore (as
the other group axioms are trivially satisfied by H), H is a subgroup of order
n of S. By Lagrange’s theorem, o(H)|o(S), and so n|¢(p™ — 1). O

As another application of Lagrange’s theorem, we have the following result.
Theorem 3.7. Any group of prime order is cyclic.

Proof. Let G be a group of prime order p. Suppose H is a subgroup of G with
order ¢q. Then, by Lagrange’s theorem ¢|p. Hence ¢ = 1 or ¢ = p, as p is prime.
This means that G = {e} or G = H and any element a(# €) generates G since
the cyclic subgroup (a) of G is equal to G. O

3.10 Homomorphisms and Isomorphisms of Groups

Consider the two groups:

G; = the multiplicative group of the sixth root of unity
= {wﬁ =1, w,w?,...,w’ : w= a primitive sixth root of unity}

and Gy = the additive group Zg¢ = {0,1,2,...,5}.

G; is a multiplicative group while Gy is an additive group. However,
structure-wise, they are just the same. By this we mean that if we can make
a suitable identification of the elements of the two groups, then they behave
in the same manner. If we make the correspondence

whe—i,0<i <5,

we see that wiw’/ «— i+ j as w'w’ = w7, when i + j is taken modulo 6. For
instance, in G, w3w? = w” = w!, while in Gy, 3+4 =1 as 7= 1(mod 6). The
order of w in G; = 6 = the (additive) order of 1 in Gs. Gy has {1,w2,w4} as
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a subgroup while Gy has {0,2,4} as a subgroup and so on. It is clear that we
can replace 6 by any positive integer n and a similar result holds good. In the
above situation, we say G; and Gg are isomorphic groups. We now formalize
the above concept.

Definition 3.14. Let G and G’ be groups (distinct or not). A homomorphism
from G to G' is a map f: G — G’ such that

flab) = f(a)f(b). (3.2)

In Definition 3.14, the multiplication operation has been used to denote
the group operations in G; and Gs. If, for instance, G; is an additive group
and Gg is a multiplicative group, Equation 3.2 should be changed to

fla+b) = f(a)f(b)
and so on.

Definition 3.15. An isomorphism from a group G to a group G’ is a bijective
homomorphism from G to G', that is, it is a map f : G — G’ which is both a
bijection and a group homomorphism.

It is clear that if f : G — G’ is an isomorphism from G to G’, then
f~': G — G is an isomorphism from G’ — G. Hence if there exists a group
isomorphism from G to G', we can say without any ambiguity that G and G’
are isomorphic groups. A similar statement cannot be made for group homo-
morphism. If G is isomorphic to G’, we write: G ~ G'.

Examples of Groups, Homomorphisms and Isomorphisms

1. Let G = (Z,+), and G’ = (nZ,+),n # 0 (nZ is the set gotten by
multiplying all integers by n). The map f : G — G’ defined by f(m) =
mn,m € G, is a group homomorphism from G onto G'.

2. Let G = (R,+) and G' = (R*,:). The map f : G — G’ defined by
f(x) =€,z € G, is a group homomorphism from G onto G'.

3. Let G = (Z,+), and G' = (Z x Z,+). The map f : G — G’ defined by
f(n) =(0,n),n € Z is a homomorphism from G to G'.

4. Let G = R? = R x R, the real plane with addition + as group operation,
that is (z,y) + (2/,9') = (z+2',y+%'), and Py : R? — R be defined by
Px(z,y) = z, the projection of R? on the X-axis. Px is a homomorphism
from (R?,+) to (R, +).

We remark that the homomorphism in the last list of examples is not onto
while those in Examples 1, 2 and 4 are onto. The homomorphisms in Examples
1 and 2 are isomorphisms. The isomorphism in Example 1 is an isomorphism
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of G onto a proper subgroup of G. We now check that the map f of Example 2
is an isomorphism. First, it is a group homomorphism since

flaty)=e"" =e"e = f(a)f(y).

(Note that the group operation in G is addition while in G', it is multiplica-
tion). Next we check that f is 1 — 1. In fact, f(z) = f(y) gives e* = e¥, and
therefore e~ = 1. This means, as the domain of f is R, z —y = 0, and hence
x = y. Finally, f is onto. If y € R, then there exists x such that e* = y; in
fact, x = logey, is the unique preimage of y. Thus, f is a 1 — 1, onto group
homomorphism and hence it is a group isomorphism.

3.11 Properties of Homomorphisms of Groups

Let f: G — G’ be a group homomorphism. Then, f satisfies the following
properties:

Property 3.1. f(e) = €, that is, the image of the identity element e of G
under [ is the identity element €' of G'.

Proof. For x € G, the equation ze = z in G gives, as f is a group homomor-
phism, f(z)f(e) = f(xe) = f(x) = f(x)e’ in G'. As G’ is a group, both the
cancellation laws are valid in G’. Hence cancellation of f(z) gives f(e) =¢’. O

Property 3.2. The image f(a™') of the inverse of an element a of G is the
inverse of f(a) in G, that is, f(a™') = (f(a))~t.

1

I
Kﬁ
)

Proof. The relation aa™! = e in G gives f(aa™!)
erty 3.1, f(e) = ¢, and as f is a homomorphism, f(aa™!
Thus, f(a)f(a=!) = ¢’ in G'. This implies that f(a=') = (f(a))~ . O

Property 3.3. The image f(G) C G’ is a subgroup of G'. In other words, the
homomorphic image of a group is a group.

Proof.

i. Let f(a), f(b) € f(G), where a,b € G. Then, f(a)f(b) = f(ab) € f(G),
as ab € G.

ii. The associative law is valid in f(G). As f(G) C G’ and G’ being a group,
f(G) satisfies the associative law.

iti. By Property 3.1, the element f(e) € f(G) acts as the identity element
of f(G).
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iv. Let f(a) € f(G), a € G. By Property 3.2, (f(a))™ = f(a™t) € f(G), as
a"!eG.

Thus, f(G) is a subgroup of G'. O

Theorem 3.8. Let [ : G — G’ be a group homomorphism and K =
{a € G: f(a) = €'}, that is, K is the set of all those elements of G that are
mapped by f to the identity element ¢ of G. Then, K is a subgroup of G.

Proof. Tt is enough to check that if a,b € K, then ab~! € K. (Then, aa~! =
e€ K, and ea™! = a7 € K. Further, as b= € K,a(b™)"! = ab € K). Now
f(ab™1) = (as f is a group homomorphism)

and hence ab~! € K. Thus, K is a subgroup of G. O

Definition 3.16. The subgroup K defined in the statement of Theorem 3.8
1s called the kernel of the group homomorphism f.

As before, let f: G — G’ be a group homomorphism.
Property 3.4. Fora,b e G, f(a) = f(b) iff ab=! € K, the kernel of f.

Proof.

Property 3.5. fisal—1 map iff K = {e}.

Proof. Let f be 1 —1,a € K. Then, by the definition of the kernel, f(a) = ¢’.
But ¢’ = f(e), by Property 3.1. Thus, f(a) = f(e), and this implies, as f is
1—1, that a = e.

Conversely, assume that K = {e}, and let f(a) = f(b). Then, by Prop-
erty 3.4, ab~! € K. Thus, ab~! = e and so a = b. Hence f is 1 — 1. O

Property 3.6. A group homomorphism f : G — G’ is an isomorphism iff
f(G) =G’ and K (= the kernel of ) = {e}.

Proof. f is an isomorphism iff f is a 1 — 1, onto homomorphism. Now f is
1 —1iff K = {e}, by Property 3.5. Further, f is onto iff f(G) = G'. O

Property 3.7 (Composition of homomorphisms). Let f : G — G and
g: G — G"” be group homomorphisms. Then, the composition map h = gof :
G — G” is also a group homomorphism.
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Proof. h is a group homomorphism iff h(ab) = h(a)h(b) for all a,b € G.
Now h(ab) = (gof)(ab) = g (f(ab))

g(f(a)f(b)), as fisa group homomorphism
g(f(a)gf(b)), as g isa group homomorphism
(9 Fla)-(g- f)(b)

= h(a)h(b). O

3.12 Automorphism of Groups

Definition 3.17. An automorphism of a group G is an isomorphism of G
onto itself.

Example 3.4

Let G = {wo = 1,w,w2} be the group of cube roots of unity, where
w = cos(27/3) + isin(2mw/3). Let f : G — G’ be defined by f(w) = w?.
To make f a group homomorphism, we have to set f(w?) = f(w - w) =
(@) (@) = w? =w, and f(1) = () = (f(@))* = (©?)° = (%) =
13 = 1. In other words, the homomorphism f : G — G’ is uniquely
defined on G once we set f(w) = w?. Clearly, f is onto. Further, only
1 is mapped to 1 by f, while the other two elements w and w? are
interchanged by f. Thus, Ker f = {1}. So by Property 3.7, f is an
isomorphism of G onto G, that is, an automorphism of G.

Our next theorem shows that there is a natural way of generating at least
one set of automorphisms of a group.

Theorem 3.9. Let G be a group and a € G. The map f, : G — G defined by
fa(z) = axa™! is an automorphism of G.

Proof. First we show that f, is a homomorphism. In fact, for z,y € G,

fa(zy) = a(zy)a™ by the definition of f,

= a(za tay)a™"
= (aza~Y)(aya™)
= Jfa(@) faly)-

Thus, f, is a group homomorphism. Next we show that f, is 1 — 1. Suppose
for 2,y € G, fu(x) = fu(y). This gives ara™! = aya~!, and so by the two
cancellation laws that are valid in a group, = y. Finally, if y € G, then
a"tya € G, and f,(a"tya) = a(a tya)a~! = (aa"H)y(aa™t) = eye = y, and
so f is onto. Thus, f is an automorphism of the group G. O
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Definition 3.18. A map of the form f, for some a € G defined by f.(z) =
axa~',x € G, is called an inner automorphism of G.

3.13 Normal Subgroups

Definition 3.19. A subgroup N of a group G is called a normal subgroup of
G (equivalently, N is normal in G) if

aNa ' € N for each a € G. (3.3)

In other words, N is normal in G if N is left invariant by the inner auto-
morphisms f, for each a € G. We state this observation as a proposition.

Proposition 3.3. The normal subgroups of a groups G are those subgroups
of G that are left invariant by all the inner automorphisms of G.

Now the condition aNa~! C N for each a € G shows, by replacing a by
a~t a"!N(a=t)"! =a " 1Na C N. The latter condition is equivalent to

N CaNa™ ' for each a € G. (3.4)

The conditions (3.3) and (3.4) give the following equivalent definition of a
normal subgroup.

Definition 3.20. A subgroup N of a group G is normal in G iff aNa™' = N
(equivalently, aN = Na) for every a € G.

Examples of normal subgroups

1. Let G = Ss, the group of 3! = 6 permutations on {1,2,3}. Let N =
{e, (123), (132)}. Then, N is a normal subgroup of Ss. First of all note
that N is a subgroup of G. In fact, we have (123)? = (132), (132)% =
(123), and (123)(132) = e. Hence (123)~! = (132) and (132)~! = (123).
Let a € S5. If a € N, then aN = N = Na (See Lemma 3.4). So
let @ € S\ N. Hence a = (12),(23) or (13). If a = (12), then
aNa™' = {(12)e(12), (12)(123)(12), (12)(132)(12)} = {e, (132), (123)}.
In a similar manner, we have (23)N(23) = N and (13)N(13) = N. Thus,
N is a normal subgroup of Ss.

2. Let H = {e,(12)} C S3. Then, H is a subgroup of G that is not normal
in S3. In fact, if @ = (23), we have

aHa ' = (23) {e, (12)} (23)
= {(23)e(23), (23)(12)(23)}
={e, (B)} #H

Hence H is not a normal subgroup of Ss.
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Definition 3.21. The center of a group G consists of those elements of G
each of which commutes with all the elements of G. It is denoted by C(G).
Thus,

C(G) ={z € G: za = ax for eacha € G}

For example, C(S3) = {e}, that is, the center of S is trivial. Also, it is easy
to see that the center of an Abelian group G is G itself.

Clearly the trivial subgroup {e} is normal in G and G is normal in G.
(Recall that aG = G for each a € G.)

Proposition 3.4. The center C(G) of a group G is a normal subgroup of G.

Proof. We have for a € G,
aC(Ga™! = {aga_l 1 g€ C(G)}

= {(ag)a™": g € C(G)}
= {(ga)a_1 t g€ C(G)}
= {g(aail) t g€ C(G)}
={9:9€C(G)}

=C(G)

]

Theorem 3.10. Let f: G — G’ be a group homomorphism. Then, K = Ker f
18 a normal subgroup of G.

Proof. We have, for a € G, aKa™' = {aka™': k€ K}. Now f(aka™!) =
fl@)f(k)f(a™t) = fla)e'f(a™!) = f(a)f(a™") = f(a)(f(a))™" = e’ Hence
aka™' € K for each k € K and so aKa~! C Ker f = K for every a € G. This
implies that K is a normal subgroup of G. O

3.14 Quotient Groups (or Factor Groups)

Let G be a group, and H a normal subgroup of G. Let G/H (read G modulo
H) be the set of all left cosets of H. Recall that when H is a normal subgroup
of G, there is no distinction between the left coset aH and the right coset
Ha of H. The fact that H is a normal subgroup of G enables us to define a
group operation in G/H. We set, for any two cosets aH and bH of H in G,
aH -bH = (ab)H. This definition is well defined. By this we mean that if we
take different representative elements instead of a and b to define the cosets
aH and bH, still we end up with the same product. To be precise, let

eH =a1H, and bH =0,H (3.5)
Then, ala; e H and b ', € H.

Let a~'a; = h € H. This gives: (ab) '(a1b1) = b= (a ta1)by = b= 1hby =
(b=1hb)(b=1b1) € H, since b='hb € H (H being a normal subgroup of G),
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and b~'b; € H. Consequently, (aH) - (bH) = (a1 H)(b1H) as the product on

the left is (ab)H while the poduct on the right is (a1by)H. Hence the binary

operation on the set of cosets of H in G is well defined in the sense that it is

independent of the representative elements chosen for the cosets of H in G.
Further eH = H acts as the identity element of G/H as

(aH)(eH) = (ae)H = aH = (ea)H = eH - aH
Finally, the inverse of aH is a ' H since
(aH)(a 'H) = (aa"")H = eH = H,
and for a similar reason (¢ 'H)(aH) = H.

Thus, G/H is a group under this binary operation. G/H is called the quotient
group or factor group of G modulo H.

Example 3.5

We now present an example of a quotient group. Let G = (R?, +), the
additive group of points of the plane R2. (If (z1, 1) and (x2,y2) are two
points of R?, their sum (21, y;) + (22, y2) is defined as (21 + 2,31 +¥y2).
The identity element of this group (0,0) and the inverse of (x,y) is
(—z,—y)). Let H be the subgroup: {(z,0) : € R} = X-axis. If (a,b) is
any point of R?, then

(a,b) + H={(a,b) + (z,0) = (a + x,b) : = € R}

=line through (a, b) parallel to X-axis. Clearly if (a,b)+H = (a’,b')+ H,
then ((a' —a), (b — b)) € H) = X-axis and therefore the Y-coordinate
b —b=0and so '/ =b. In other words, the line through (a,b) and the
line through (a’,b’), both parallel to the X-axis, are the same iff b =¥/,
as is expected (See Figure 3.1). For this reason, this line may be taken
as (0,b) + H. Thus, the cosets of H in R are the lines parallel to the
X-axis and therefore the elements of the quotient group R/H are the
lines parallel to the X-axis. If (a,b)+ H and (a’,b")+ H are two elements
of R/H, we define their sum to be (a+a’,b+)+ H = (0, b+bV')+ H,
the line through (0, b + ') parallel to the X-axis. Note that (R?,+)
is an Abelian group and so H is a normal subgroup of R2. Hence the
above sum is well defined. The above addition defines a group structure
on the set of lines parallel to the X-axis, that is, the elements of R/H.
The identity element of the quotient group is the X-axis = H, and the
inverse of (0,b) + H is (0, —b) + H.

Our next result exhibits the importance of factor groups.
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Y
0.5+
0.5 (a+x,b)
(a,b)
(0, ) (atx,b)
.lt
0 @0) x0) (a=.0) X

FIGURE 3.1: An example for quotient group.

3.15 Basic Isomorphism Theorem for Groups

Theorem 3.11. If there exists a homomorphism f from a group G onto a
group G with kernel K, then G/K ~ G’.

Proof. We have to prove that there exists an isomorphism ¢ from the factor
group G/K onto G’ (observe that the factor group G/K is defined, as K is a
normal subgroup of G (see Theorem 3.10)). Define ¢ : G/K — G’ by ¢(gK) =
f(g) (the mapping ¢ is pictorially depicted in Figure 3.1. See Example 1
below).

It is possible that gK = ¢’ K with g # ¢’ in G. Hence we need to establish
that ¢ is a well-defined map. As per our definition of ¢, ¢(gK) = f(g), while
o(¢'K) = f(¢'). Hence our definition of ¢ will be valid only if f(g) = f(¢').
Now gK = ¢’K implies that ¢ 'g € K. Let ¢ 'g = k € K. Then, f(k) = ¢’
the identity element of G'. Moreover, ¢ = f(¢ 'g) = f(g’_l)f(g) =
f(g)tf(g9) (as f is a group homomorphism, Property 3.2 holds). Thus,
f(d) = f(g), and f is well defined. We next show that ¢ is a group iso-
morphism.

i. ¢ is a group homomorphism: We have for g1 K, g2 K in G/ K,

(91 K)(92K)) = &((9192) K)
g192), by the definition of ¢

(
(
(91)f(g2), as fis a group homomorphism
(91 K)¢p(g2K)

Thus, ¢ is a group homomorphism.

f
f
¢

ii. ¢ is 1 — 1: Suppose ¢(g1 K) = ¢(g2K), where g1 K, g2 K € G/K. This
gives that f(g1) = f(g2), and therefore f(g1)f(g2)~! = €/, the identity
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clement of G But f(g1)/(92)"" = f(g)f(65") = flgrg3"). Hence
g1g; " = ¢, and so g1g, " € K, and consequently, ;K = goK (by

Property 3.4). Thus, ¢ is 1 — 1.

ili. ¢ is onto: Let ¢’ € G'. As f is onto, there exists g € G with f(g) = ¢'.
Now gK € G/K, and ¢(gK) = f(g) = ¢'. Thus, ¢ is onto and hence ¢
is a group isomorphism. O

3.15.1 Examples of factor groups

1. Let us see as to what this isomorphism means with regard to the factor
group R? /K given in Example 3.5. Define f : R? — R by f(a,b) = (0,b),
the projection of the point (a,b) € R? on the Y-axis = R. The identity
element of the image group is the origin (0,0). Clearly K is the set
of all points (a,b) € R? that are mapped to (0,0), that is, the set of
those points of R? whose projections on the Y-axis coincide with the
origin. Thus, K is the X-axis(= R). Now ¢ : G/K = R?/R — G’ is
defined by ¢((a,b) + K) = f(a,b) = (0,b). This means that all points
of the line through (a,b) parallel to the X-axis are mapped to their
common projection on the Y-axis, namely, the point (0,b). Thus, the
isomorphism between G/K and G’ is obtained by mapping each line
parallel to the X-axis to the point where the line meets the Y-axis.
(Note: G/K = R?/(X-azis), and G’ = Y-axis.)

2. We now consider another example. Let G = S,,, the symmetric group
of degree n, and G’ = {—1, 1}, the multiplicative group of two elements
(with multiplication defined in the usual way). 1 is the identity element
of G’ and the inverse of —1 is —1. Define f : G — G’ by setting

1 if 0 € 5, is an even permutation, that is, if o € A,,
-1 if o € S, is an odd permutation.

Recall that A,, is a subgroup of S,,. Now |S,,| = n! and |A,| = n!/2.
Further, if o is an odd permutation in S,,, and o € A,,, then ao is an
odd permutation, and hence |aA,,| = n!/2. Let B,, denote the set of odd
permutations in S,,. Then, S, = A, UB,, A, N B, = ¢, and aA,, = B,
for each o € B,,. Thus, S, /A, has exactly two distinct cosets of A,,
namely, A,, and S, \ A,, = B,,.

The mapping f : S, — {1, —1} defined by f(«) = 1 or —1 according
to whether the permutation « is even or odd clearly defines a group
homomorphism. The kernel K of this homomorphism is A,, and we
have S, \ 4,, ~ {1,—1} = G’. The isomorphism is obtained by mapping
the coset oA, to 1 or —1 according to whether ¢ is an even or an odd
permutation.
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3.16 Exercises

1.

10.
11.
12.
13.

Let G = SL(n,C) be the set of all invertible complex matrices A of
order n. If the operation - denotes matrix multiplication, show that G is
a group under -.

. Let G denote the set of all real matrices of the form (¢ ) with a # 0.

Show that G is a group under matrix multiplication.

Which of the following semigroups are groups?

i (@)
i (R, )
iii. (Q,+)

(R",")

v. The set of all 2 by 2 real matrices under matrix multiplication.

iv.

vi. The set of all 2 by 2 real matrices of the form (¢9).

Prove that a finite semigroup in which the right and left cancellation laws
are valid is a group, that is, if H is a finite semigroup in which both the
cancellation laws are valid (that is, az = ay implies that z = y, and
xa = ya implies that =y, where a,z,y € H), is a group.

Prove that in semigroup G in which the equations ax = b and yc = d,
are solvable in G, where a,b,c,d € G, is a group.

In the group GL(2,C) of 2 x 2 complex non-singular matrices, find the
order of the following elements:

O (6%) @ @GH G (6%) () (T8 35)

Let G be a group, and ¢ : G — G be defined by ¢(g) = g~', g € G. Show
that ¢ is an automorphism of G iff G is Abelian.

Prove that any group of even order has an element of order 2. (Hint:
a # e and o(a) # 2 iff a # a~1.) Pair off such elements (a,a™!).

Give an example of a non-cyclic group where each of its proper subgroup
is cyclic.

Show that no group can be the set union of two of its proper subgroups.
Show that S = {3,5} generates the group (Z, +).
Give an example of an infinite non-Abelian group.

Show that the permutations 7' = {12345} and S = (25)(34) generate a
subgroup of order 10 in Ss.



14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.
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Find if the following permutations are odd:

. . . (1 2 3 45 6 7 8 9
(1) (123)(456) (ii) (1546)(2)(3) (iii) (2 543176 9 8)
If G = {a1,...,a,} is a finite Abelian group of order n, show that
(arasz...a,)? =e.

Let G ={a € R:a # —1}. If the binary operation x* is defined in G by
axb=a+b+ ab for all a,b € G, show that (G, *) is a group.

Let G = {a € R : a # 1}. If the binary operation x* is defined on G by
a*xb=a+b—abforall a,b € G, show that (G, *) is not a group.

Let 0 = (i1i2 . ..4,) be a cycle in S, of length 7. Show that the order of
o (= the order of the subgroup generated by o) is r.

Prove that the center of a group is a normal subgroup G.

Let «, 8,7 be permutations in S4 defined by
(v 234y, (1234 (12 3 4
T\ a3 2) P21 a3 7T 31 2 4)
Find (i) o™, (i) o718y, (i) gyt
Show that any infinite cyclic group is isomorphic to (Z,+).

Show that the set {¢™™ : n € Z} forms a multiplicative group. Show that
this is isomorphic to (Z,+). Is this group cyclic?

Find a homomorphism of the additive group of integers to itself that is
not onto.

Give an example of a group that is isomorphic to one of its proper
subgroups.

Prove that (Z,+) is not isomorphic to (Q, +). (Hint: Suppose 3 an iso-
morphism ¢ : Z — Q. Let ¢(5) = a € Q. Then, 3b € Q with 20 = a. Let
x € Z be the preimage of b. Then, 2z = 5 in Z, which is not true.)

Prove that the multiplicative groups R* and C* are not isomorphic.

Give an example of an infinite group in which every element is of finite
order.

Give the group table of the group S3. From the table, find the center of
Ss.

Show that if a subgroup H of a group G is generated by a subset S of
G, then H is a normal subgroup iff aSa=! C (S) for each a € G.

Show that a group G is Abelian iff the center C'(G) of G is G.
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31. Let G be a group. Let [G, G] denote the subgroup of G generated by
all elements of G of the form aba='b~! (called the commutator of a
and b) for all pairs of elements a,b € G. Show that [G,G] is a nor-
mal subgroup of G. [Hint: For ¢ € G, we have c(aba='b71)c™! =
(cac™)(ebe 1) (cac™ ) (ebe™ 1)t € [G, G]. Now apply Exercise 29.]

32. Show that a group G is Abelian < [G, G] = {e}.
Remark: [G, G] is called the commutator subgroup of G. In general, the
commutators of a group G need not form a subgroup of G, and it is for
this reason that we take the subgroup generated by the commutators
of G. There is no known elementary counter-example. For a counter-
example, see for instance, Theory of Groups [34].

33. Let G be the set of all roots of unity, that is, G = {w € C: w™ =1 for
some n € N}. Prove that G is an Abelian group that is not cyclic.

34. If A and B are normal subgroups of a group G such that AN B = {e}.
Then, show that for Va € A and Vb € B, ab = ba.

35. If H is the only subgroup of a given finite order in a group G, show that
H is normal in G.

36. Show that any subgroup of a group G of index 2 is normal in G.
37. Prove that the subgroup {e, (13)} of S5 is not normal in Ss.

38. Prove that the subgroup {e, (123), (132)} is a normal subgroup of Ss.

3.17 Rings

The study of commutative rings arose as a natural abstraction of the alge-
braic properties of the set of integers, while that of fields arose out of the sets
of rational, real and complex numbers.

We begin with the definition of a ring and then proceed to establish some
of its basic properties.

3.17.1 Rings, definitions and examples

Definition 3.22. A ring is a non-empty set A with two binary operations,
denoted by + and - (called addition and multiplication, respectively) satisfying
the following axioms:

Ry: (A,+) is an Abelian group. (The identity element of (A,+) is denoted
by 0).

Ry: - is associative, that is, a - (b-c) = (a-b)-c for all a,b,c € A.
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R3: For all a,b,c € A,
a-(b+c)=a-b+a-c (left distributive law)
(a+b)-c=a-c+b-c (right distributive law).

It is customary to write ab instead of a - b.

Examples of Rings

1. A = 7Z, the set of all integers with the usual addition + and the usual
multiplication taken as -.

2. A =27, the set of even integers with the usual addition and multiplica-
tion.

3. A=Q, R or C with the usual addition and multiplication.

4. A =7Z, = {0,1,2,...,n— 1}, the set of integers modulo n, where +
and - denote addition and multiplication taken modulo n. (For instance,
if A=7Zs, theninZs,3+4=7=2,and 3-4=12=2).

5. A = Z[X], the set of polynomials in the indeterminate X with integer
coefficients with addition 4+ and multiplication - defined in the usual
way.

6. A=7Z+iV3Z={a+iby/3:a,b € Z} C C. Then, A is a ring with the
usual + and - in C.

7. (Ring of Gaussian integers). Let A =Z +1Z ={a+ib: a,b € Z} C C.
Then, with the usual addition 4+ and multiplication - in C, A is a ring.

8. (A ring of functions). Let A = (0, 1], the set of all complex-valued
continuous functions on [0, 1]. For ¢t € [0,1], and f,g € A, set (f+g)(t) =
F() 4+ g(t), and (f - g)(t) = f(t)g(t). Then, it is clear that both f + ¢
and f - g are in A. It is easy to check that A is a ring.

Definition 3.23. A ring A is called commutative if for all a,b € A, ab = ba.

Hence if A is a non-commutative ring, there exists a pair of elements
x,y € A with xy # yzx.

All the rings given above in Examples 1 to 8 are commutative rings. We
now present an example of a non-commutative ring.

Example 3.6

Let A = M5(Z), the set of all 2 by 2 matrices with integers as entries.
A is a ring with the usual matrix addition + and usual matrix multipli-
cation -. It is a non-commutative ring since M = ((1) (IJ),N = ((1) (1)) are

in A, but MN # NM.
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3.17.1.1 Unity element of a ring

Definition 3.24. An element e of a ring A is called an identity or unity
element of A if ea = ae = a for all a € A.

An identity element of A, if it exists, must be unique. For, if e and [ are
identity elements of A, then,

ef =e as f is an identity element of A,

ef = f as e is an identity element of A.

Therefore e = f. Hence if a ring A has an identity element e, we can refer
to it as the identity element e of A.

For the rings in Examples 1, 3 and 7 above, the number 1 is the identity
element. For the ring CJ0, 1] of Example 8 above, the function 1 € CJ0, 1]
defined by 1(¢) =1 for all ¢ € [0, 1] acts as the identity element. For the ring
M>(Z) of Example 9, the matrix () acts as the identity element. A ring may
not have an identity element. For instance, the ring 2Z in Section 3.17.1 above

has no identity element.

3.17.2 Units of a ring

An element a of a ring A with identity element e is called a unit in A if
there exist elements b and ¢ in A such that ab = e = ca.

Proposition 3.5. If a is a unit in a ring A with identity element e, and if
ab=ca = e, then b= c.

Proof. We have, b = eb = (ca)b = c(ab) = ce = c. O

We denote the element b(= ¢) described in Proposition 3.5 as the inverse of
a and denote it by a~!'. Thus, if a is a unit in A, then there exists an element
a~! € A such that aa=! = a~'a = e. Clearly, a~! is unique.

Proposition 3.6. The units of a ring A (with identity element) form a group
under multiplication.

Proof. Exercise. O

3.17.2.1 Units of the ring Z,

Let a be a unit in the ring Z,,. (See Example in Section 3.17.1 above). Then,
there exists an x € Z,, such that az = 1 in Z,,, or equivalently, az = 1(modn).
But this implies that az — 1 = bn for some integer b. Hence ged(a,n) = 1.
(Because if an integer ¢ > 1 divides both a and n, then it should divide 1.)
Conversely, if (a,n) = 1, by Euclidean algorithm, there exist integers x and y
with az + ny = 1, and therefore axz = 1(mod n). This, however, means that a
is a unit in Z,,. Thus, the set U of units of Z,, is precisely the set of integers
in Z,, that are relatively prime to n and we know that the order of this set is
¢(n), where ¢ is the Euler function.
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3.17.2.2 Zero divisors

In the ring Z of integers, a is a divisor of c¢ if there exists an integer b such
that ab = ¢. As Z is a commutative ring, we simply say that a is a divisor of ¢
and not a left divisor or right divisor of ¢. Taking ¢ = 0, we have the following
more general definition.

Definition 3.25. A left zero divisor in a ring A is a non-zero element a of
A such that there exists a non-zero element b of A with ab =10 in A. a € A is
a right zero divisor in A if ca =0 for some c € A, ¢ # 0.

If A is a commutative ring, a left zero divisor a in A is automatically a
right zero divisor in A and vice versa. In this case, we simply call a a zero
divisor in A.

Examples relating to zero divisors

1. If a = 2 in Z4, then a is a zero divisor in Zy, as 2-2 =4 =0 in Zy4.

2. In the ring M>(Z), the matrix [} }] is a right zero divisor as
(6310661 =100]

and [J 9] is not the zero matrix of M(Z).

o

3. If p is a prime, then every non-zero element of Z, is a unit. This follows
from the fact that if 1 < a < p, then (a,p) = 1. Hence no a € Z,, a # 0
is a zero divisor in Z,,.

Theorem 3.12. The following statements are true for any ring A.

1. a0 = 0a for any a € A.
2. a(=b) = (—a)b = —(ab) for all a,b € A.
3. (—a)(=b) = ab for all a,b € A.

Proof. Exercise. U

3.18 Integral Domains

An integral domain is an abstraction of the algebraic structure of the ring
of integers.

Definition 3.26. An integral domain A is a commutative Ting with identity
element having no divisors of zero.
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Examples relating to integral domains

1.

The ring of integers Z and the ring of Gaussian integers Z + iZ are both
integral domains.

The ring 27 of even integers is not an integral domain even though it
has no zero divisors (Why?).

Let Z x Z = {(a,b) : a € Z,b € Z}. For (a,b), (¢,d) in Z x Z, define
(a,b) £ (¢,d) = (ax ¢, b+ d),
and(a,b) - (¢,d) = (ac, bd).

Clearly Z x Z is a commutative ring with zero element (0, 0) and identity
element (1,1) but not an integral domain as it has zero divisors. For
instance, (1,0) - (0,1) = (0,0).

3.19 Exercises

1.
2.

Prove that Z,, n > 2, is an integral domain iff n is a prime.
Give the proof of Proposition 3.6.

Determine the group of units of the rings:

() Z, (i) My(Z), (i) Z+iZ, (iv) Z+iV3Z.
Let A be a ring, and a, by, ba, ..., b, € A. Then, show that a(by + by +
<o+ b,) =aby + abs + - - - ab,,. (Hint: Apply induction on n).

Let A be a ring, and a,b € A. Then, show that for any positive integer
n?

n(ab) = (na)b = a(nb).

(na stands for the element a + a4+ -+ (n times) of A).
Show that no unit of a ring A can be a zero divisor in A.

(Definition: A subset B of a ring A is a subring of A if B is a ring with
respect to the binary operations + and - of A). Prove:

i. Z is a subring of Q.
ii. Q is a subring of R.
iii. R is a subring of C.
Prove that any ring A with identity element and cardinality p, where p is

a prime, is commutative. (Hint: Verify that the elements 1,1+1,...,1+
14---+1 (p times) are all distinct elements of A.)
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3.20 Ideals

One of the special classes of subrings of a ring is the class of ideals. Con-
sider, for example, the set S of all multiples of 3 (positive multiples, negative
multiples, and zero multiple) in the ring Z of integers. Then, it is easy to see
that S is a subring of Z. More than this, if n € Z and a € S, then na € S
as na is also a multiple of 3. We then call S an ideal in Z. We now present
the formal definition of an ideal in a general ring (that is, not necessarily
commutative) A.

Definition 3.27. Let A be any ring, and S C A. S is called a left ideal in
the ring A if

i. S is a subring of A, and
. Fora€ A, ands € S, as € S.

We call S a left ideal of A because we are multiplying s by a on the left
of s. If we take sa instead of as, and if sa € S for every a € A and s € S, we
call S a right ideal of A. If S is both a left ideal and right ideal of A, it is a
two-sided ideal of A. If A is a commutative ring, it is obvious that we need
make no distinction between left ideals and right ideals.

Example 3.7

Let A be the ring of all 2 x 2 matrices over Z. (Note: A is a non-
commutative ring). Let

s={(2 O).asez).
(06 o-Gb)

it is easy to see that S is a subring of A. Moreover, if

a 0 Ty

<b 0> €5, and <z t> €A,
z y\(a 0\ [(xa+yb O
<z t) (b 0) - <za+tb 0) €5

Hence S is a left ideal of A. However, S is not a right ideal of A. For
instance,

(6 0)es v (50)( )= 1)es

Then, as

we have




184 Discrete Mathematics

Example 3.8

Let A = Zx], the ring of all polynomial in = with integer coefficients.
Let S = (2,x), the ideal generated by 2 and = in A = smallest ideal
containing 2 and = in A = Set of all integer polynomials in z with even
constant terms. (Note that the integer 0 is also an integer polynomial.
Also remember that A is a commutative ring.)

Definition 3.28. Let A and B be two rings. A ring homomorphism from A
to B is a map f: A — B such that for all a,b € A,

i. fla+0b)= f(a)+ f(b), and
ii. f(ab) = f(a)f(b).

Example 3.9

Let A =7 and B = Zj5 consisting of integers modulo 5. Hence Z5 =
{0, 1,2, 3,4} where addition and multiplication are taken modulo 5. (For
example, 24+ 3 = 0, and 2.3 = 1 in Zs.) Clearly Zs is a ring. Now
consider the map f : Z — Zs defined by f(a) = ag where ag € Z5, and
a = ap(mod 5). Then, f is a ring homomorphism.

In the above example, what are all the elements that are mapped to 37
They are all the numbers n = 3(mod 5) in Z. We denote this set by [3], where
B ={...,—12,-7,—2,3,8,13,...}. We call this set the residue class mod-
ulo 5 defined by 3 in Z. Note that [3] = [8], etc. Hence Z5 = {[0], [1], [2], [3], [4]},
where [m] = [n] iff m = n(mod5) for any integers m and n iff m —n € (5),
the ideal generated by 5 in Z. The ring Zs is often referred to as the residue
class ring or quotient ring modulo the ideal (5).

More generally, let S be an ideal in a commutative ring A, and let Ag
denote the set of residue classes modulo the ideal S, that is, for a € A, the
residue class defined by a € A, namely [a] = {a + s,s € S} then Ag is the
residue class ring or quotient ring defined by the ideal S is the ring A.

3.21 Principal Ideals

Definition 3.29. Let S be a subset of a commutative ring A. S is called a
principal ideal of A if

1. S is an ideal of A, and

2. S is generated by a single element, that is 3 s € S such that S = {as :
a€ A}.
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Definition 3.30. A principal ideal ring (or more specifically, a principal ideal
domain (P.I.D.)) is a commutative ring A without zero divisors and with unit
element 1 (that is, an integral domain) and in which every ideal is principal.

Example 3.10

The ring Z of integers is a PID. This is because first Z is an integral
domain. Suppose S is an ideal of A. If S = (0), the zero ideal, S is
principal. So assume that S # 0. If a € S, and a # 0, (—=1)a = —a € S.
Of the two numbers a and —a, one is a positive integer. Let s be the
least positive integer belonging to S.

Claim: S = (s), the ideal generated by s. Let b be any element of S.
We have to show that b € (s), that is, b is an integral multiple of s. By
division algorithm in 7Z,

b=gqs+r, 0<r<s.

Asse S,qgse€ S and henceb—gs =1 € S. But if r #£ 0, r < s, and this
contradicts the choice of s. In other words, b € (s), and S = (s).

Example 3.11

Let F be a field. Then, the ring F[z] of polynomials in z with coef-
ficients in F' is a P.I.D.

Proof. Trivially, F[z] is a P.I.D. Let S be an ideal in F[z]. If S = (0),
trivially S is principal. So assume that S # (0): Let s(z) be the monic
polynomial of least degree r belonging to S. Such a polynomial s(z)
must exist since if 0 # a(x) € S, and if the leading coefficient of a(z) is
ke F, kla(z) also € S (as k™! € F C F[z]) = k~'a(z) is a monic
polynomial in S. Moreover, such a monic polynomial in S is unique.
For, if there are two such monic polynomials of the same least degree
r in S, their difference is a polynomial in S of degree less than r. This
contradicts the choice of r.

We now imitate the proof of Example 3.10. Let a(z) be any poly-
nomial of F[x] in S. Divide a(z) by s(z) by Euclidean algorithm. This

gives

a(x) = q(x)s(x) + r(z), O




186

Discrete Mathematics

where either r(z) = 0 or deg r(x) < deg s(z). As a(z), s(z) are in S,
q(x)s(x) € (a), and a(z) — q(x)s(x) = r(z) € S. By the choice of s(x),
we should have r(z) = 0 = a(z) = ¢(z)s(z) = every polynomial in S is
a multiple of s(z) in F[z] = S is a principal ideal in Flz] = F[z] is a
principal ideal domain.

S = (2,z) in Zlz] which consists of all polynomials in x with even
constant terms is not a principal ideal. For, suppose S is a principal
ideal in Z[z]. Let S = (a(x)). As 2 € S, S must be equal to (2), since
otherwise 2 cannot be a multiple of a non-constant polynomial. But
then every polynomial in S must have even integers as coefficients, a
contradiction. (For instance 2 + 3z € S). Hence Z[z] is not a P.ID.

Example 3.12
The ring Z[z], though an integral domain, is not a P.I.D. The ideal

Definition 3.31. Let A and B be commutative rings, and let f : A — B
be a ring homomorphism, and let K C A be the set of those elements of A
that are mapped to the zero element of B. Then, K is called the kernel of the
homomorphism f, and denoted by Ker f.

Theorem 3.13. Let A and B be two commutative rings, and let f — B be a
ring homomorphism f. Then,

1. Kerf is an ideal of A, and

it. If f is onto, then A/Kerf ~ B.

Proof.

i

ii.

Let z,y € K and a € A so that f(z) = 0 = f(y). Then, trivially,
x+y, az all belong to K. This is because, f(x+y) = f(x)+ f(y) [Note

asy+(—y) =0, f(-y) = —f(y)], and f(az) = f(a)f(z) = f(a) - 0=0.
Hence K is an ideal of A.

We are assuming that f : A — B is onto. Define the map f: A/K — B
by f(a+ K) = f(a), a € A. Note that this map is well-defined. Indeed,
ifa+ K =b+ K, then a—b € K and hence f(a—b) =0. But f(a—b) =
fla) = f(b) = f(a) = f(b). Hence f(a+K) = f(a) = f(b) = f(b+ K).

We now verify that f is a ring isomorphism.

A fisl—1: f(a1+K) = flaz+K) for aj,as € A= f(a1) = f(az) =
f(al—ag):OEB:>a1—a2€Kz>a1+K:a2+K.
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B. fis onto: Let b € B. Then, as f is onto, 3 a € A with f(a) = b.
Then, f(a+ K) = f(a) =b= f is onto.

C. f is a ring homomorphism: For a1,as € K, f((a1+K)+ (ag+K)) =

§E(a1+a2)+K) = flar +a2) = fla1) + f(az) = fla1 + K) +

as + K). In a similar manner, f((a1 + K)(az + K)) = f((a1a2) +
K) = f(araz) = f(a1)f(az) = f(a1 + K)f(az + K). This proves that
f:A/K — B is a ring homomorphism.

Thus, f is a 1 — 1, onto ring homomorphism and hence f is an iso-
morphism. O

Corollary 3.3. Let F be a field and let ¢ : Fx] — Flx]/(z™ — 1) be the ring
homomorphism defined by:

o(f(x)) = f(x) = Residue class of f(z) € Flz]/(z" —1).
Then, K is the principal ideal (z™ — 1) C Flx].
Consider the special case when F' = R, and 7 is the ring homomorphism
6 Rlz] — R[z)/(z° — 1).

Then, ¢(x® + z* + 2%+ 1) = the residue class [z2 + 2 +1+1] = [22 + 2 + 2],
the class defined by x? + z + 2 modulo the principal ideal (z® — 1) in R[z].
This is because [2° + 2t + 23+ 1] = [(2® - )(@®* + 2+ 1)+ (2 + 2+ 2)] =
[#3 =122 +z+1]+[22+2+2] = [0][z2 +x+ 1]+ [22 +2+2] = [2® + 2+ 2].
(Note: square brackets stand for residue classes.) More generally, we have:

Remark 3.1. Every element of Rlz]/(x™ — 1) can be identified with a real
polynomial of degree at most (n — 1).

3.22 Fields

We now discuss the fundamental properties of fields and then go on to
develop in the next chapter the properties of finite fields that are basic to
coding theory and cryptography. If rings are algebraic abstractions of the
set of integers, fields are algebraic abstractions of the sets @, R and C (as
mentioned already).

Definition 3.32. A field is a commutative ring with identity element in which
every non-zero element is a unit.

Hence if F' is a field, and F* = F\ {0}, the set of non-zero elements of
F, then every element of F™* is a unit in F. Hence F™* is a group under the
multiplication operation of F. Conversely, if F' is a commutative ring with
unit element and if F* is a group under the multiplication operation of F,
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then every element of F* is a unit under the multiplication operation of F,
and hence F' is a field. This observation enables one to give an equivalent
definition of a field.

Definition 3.33 (Equivalent definition). A field is a commutative ring F
with unit element in which the set F* of non-zero elements is a group under
the multiplication operation of F'.

3.22.1 Examples of fields
1. Q,R and C are all examples of infinite fields.

2. If F is a field, then F(x), the set of all rational functions in z, is an
infinite field (even if F' is a finite field). Indeed, if a(x)/b(x) is a non-
zero rational function, so that a(z) is not the zero polynomial, then its
inverse is the rational function b(z)/a(x).

3. If p is a prime, then the ring Z, of integers modulo p is a field with p
elements.

Every field is an integral domain. To see this, all we have to verify is that
F has no zero divisors. Indeed, if ab = 0, a # 0, then as a ™! exists in F, we
have 0 = a~!(ab) = (a~'a)b = b in F. However, not every integral domain is a
field. For instance, the ring Z of integers is an integral domain but not a field.
(Recall that the only non-zero integers which are units in Z are 1 and —1.)

3.23 Characteristic of a Field

Definition 3.34. A field F is called finite if |F|, the cardinality of F, is finite;
otherwise, F is an infinite field.

Let F' be a field whose zero and identity elements are denoted by 0r and
1, respectively. A subfield of F' is a subset F’ of F' such that F’ is also a
field with the same addition and multiplication operations of F'. This of course
means that the zero and unity elements of F’ are the same as those of F. It is
clear that the intersection of any family of subfields of F' is again a subfield of
F'. Let P denote the intersection of the family of all subfields of F. Naturally,
this subfield P is the smallest subfield of F. Because if P’ is a subfield of
F that is properly contained in P, then P C P’ g P, a contradiction. This

smallest subfield P of F' is called the prime field of F. Necessarily, O € P
and 1p € P.

Aslp € P, theelements 1p,lp+1p =2-1p, lp+1p+1p =3 -1F and, in
general, n - 1p, n € N, all belong to P. There are then two cases to consider:
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Case 1: The elements n-1p, n € N, are all distinct. In this case, the subfield
P itself is an infinite field and therefore F' is an infinite field.

Case 2: The elements n-1g, n € N, are not all distinct. In this case, there exist
r,s € Nwith r > s such that r-1p = s-1p, and therefore, (r—s)-1z = 0, where
r—s is a positive integer. Hence, there exists a least positive integer p such that
p-1p = 0. We claim that p is a prime number. If not, p = p1ps, where p; and ps
are positive integers less than p. Then, 0 = p-1p = (p1p2)-1r = (p1-1r)(p2-1F)
gives, as F' is a field, either p; - 1p = 0 or ps - 1 = 0. But this contradicts the
choice of p. Thus, p is prime.

Definition 3.35. The characteristic of a field F is the least positive integer p
such that p-1p = 0 if such a p exists; otherwise, F is said to be of characteristic
zero.

A field of characteristic zero is necessarily infinite (as its prime field already
is). A finite field is necessarily of prime characteristic. However, there are
infinite fields with prime characteristic. Note that if a field F' has characteristic
p, then px = 0 for each z € F.

Examples of integral domains and fields

i. The fields Q, R and C are all of characteristic zero.
ii. The field Z,, of integers modulo a prime p is of characteristic p.

ili. For a field F', denote by F[X] the set of all polynomials in X over F, that
is, polynomials whose coefficients are in F. F[X] is an integral domain

and the group of units of F[X] = F*, the set of all non-zero elements
of F.

iv. The field Z,(X) of rational functions of the form a(X)/b(X), where
a(X) and b(X) are polynomials in X over Z,, p being a prime, and
b(X) # 0, is an infinite field of (finite) characteristic p.

Theorem 3.14. Let F be a field of (prime) characteristic p. Then, for all
z,y € F, (x+y) =aP" £y, and (zy)?" = " y?".

Proof. We apply induction on n. If n = 1, (by binomial theorem which is valid
for any commutative ring with unit element).

(z+y)f =2+ (?)mp_ly—km—i- (pp1>xyp_1 +y”

=aP 4y, since p|<?),1<¢<p—1. (3.3)
2
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So assume that
(z+y)P" =2 +y?" neN.
n41 n\ P
Then, (2 +y)""" = ((@@+y)"")

" n\ P
= (mp + 9P ) (by induction assumption)
= (aP" )P 4 (yP" )P (by Equation 3.3)

n+1

="y (3.4)

Next we consider (z — y)P". If p = 2, then —y = y and so the result is valid.
If p is an odd prime, change y to —y in Equation 3.4. This gives
(@ =y =" + (—y)”

n n

="+ (1)

n

since (—1)?" = —1 when p is odd. O



Chapter 4

Algebraic Structures I1
(Vector Spaces and Finite Fields)

4.1 Vector Spaces

In Section 3.22, we discussed some of the basic properties of fields. In the
present section, we look at the fundamental properties of vector spaces. We
follow up this discussion with a section on finite fields.

While the three algebraic structures—groups, rings, and fields—are natural
generalizations of integers and real numbers, the algebraic structure vector
space is a natural generalization of the 3-dimensional Euclidean space.

We start with the formal definition of a vector space. To define a vector
space, we need two objects: (i) a set V of vectors, and (ii) a field F' of scalars.
In the case of the Euclidean 3-space, V is the set of vectors, each vector being
an ordered triple (z1,z2,x3) of real numbers and F' = R, the field of real
numbers. The axioms for a vector space that are given in Definition 4.1 below
are easily seen to be generalizations of the properties of R3.

Definition 4.1. A vector space (or linear space) V' over a field F is a non-
void set V' whose elements satisfy the following axioms:

A. V has the structure of an additive Abelian group.

B. For every pair of elements o and v, where « € F and v € V, there
exists an element av € V' called the product of v by a such that

i. a(fv) = (af)v for alla,f € F and v €V, and

il. lv =w for each v € V (here 1 is the identity or unity element of
the field F').

C. i Fora€F,andu,vinV, a(ut+v) = autaw, that is, multiplication
by elements of F is distributive over addition in V.

ii. Fora,B€ F andv eV, (a+ B)v = av+ B, that is multiplication
of elements of V by elements of F' is distributive over addition in F.

If F = R, V s called a real vector space; if FF = C, then

V' is called a complex vector space. When an explicit reference
to the field F is not required, we simply say that V is a vec-
tor space (omitting the words “over the field F”). The product

191
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av,a € F,v € V, is often referred to as scalar multiplication,
« being a scalar.

4.1.1 Examples of vector spaces

1. Let V = R3, the set of ordered triples (x1,z2,23) of real numbers.
Then, R? is a vector space over R (as mentioned earlier) and hence R?
is a real vector space. More generally, if V = R™ n > 1, the set of
ordered n-tuples (x1,...,x,) of real numbers, then R™ is a real vector
space. If © = (x1,...,2,) and y = (y1,...,yn) € R™ then z +y =
(x14+y1,. -y Zn+Yn), and ax = (a1, ..., ax,). The zero vector of R™
is (0,...,0). R™ is known as the real affine space of dimension n.

2. Let V = C", the set of ordered n-tuples (z1,...,2,) of complex num-
bers. Then, V is a vector space over R as well as over C. We note that
the real vector space C™ and the complex vector space C" are essen-
tially different spaces despite the fact that the underlying set of vectors
is the same in both cases.

3. R is a vector space over Q.

4. F[X], the ring of polynomials in X over the field F, is a vector space
over F'.

5. The set of solutions of a homogeneous linear ordinary differential equa-
tion with real coefficients forms a real vector space. The reason is that
any such differential equation has the form

dny dnfly

— +C

4 Co iy =0, 41
dzn Yt T + On-1y =0 (41)

Clearly, if y;(z) and ya(z) are two solutions of the differential Equa-
tion 4.1, then so is y(z) = a1y1(z) + agy2(x), a1, oz € R. It is now easy
to verify that the axioms of a vector space are all satisfied.

4.2 Subspaces

The notion of a subspace of a vector space is something very similar to the
notions of a subgroup, subring, and subfield.

Definition 4.2. A subspace W of a vector space V' over F is a subset W
of V' such that W is also a wvector space over F with addition and scalar
multiplication as defined for V.
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Proposition 4.1. A non-void subset W of a vector space V' is a subspace of
V iff for all u,v € W and o, 3 € F,

au+ pveW

Proof. If W is a subspace of V, then, as W is a vector space over F' (with the
same addition and scalar multiplication as in V'), au € W and v € W, and
therefore au + fv € W.

Conversely, if the condition holds, then it means that W is an additive
subgroup of V. Moreover, taking 0 = 0, we see that for each a« € F, u € W,
au e W. As W C V, all the axioms of a vector space are satisfied by W and
hence W is a subspace of V. O

4.2.1 An example of a subspace

Let W = {(a,b,0) : a,b € R}. Then, W is a subspace of R. (To see this,
apply Definition 4.2.) Geometrically, this means that the zy-plane of R? (that
is, the set of points of R® with the z-coordinate zero) is a subspace of R3.

Proposition 4.2. If Wy and Wy are subspaces of a vector space V', then
Wi N Wsy is also a subspace of V. More generally, the intersection of any
family of subspaces of a vector space Vis also a subspace of V.

Proof. Let u,v € W = W1 N Wy, and o, € F. Then, au + (v belongs to
W7 as well as to W5 by Proposition 4.1, and therefore to W. Hence W is a
subspace of V' again by Proposition 4.1. The general case is similar. O

4.3 Spanning Sets

Definition 4.3. Let S be a subset of a vector space V over F. By the sub-
space spanned by S, denoted by (S), we mean the smallest subspace of V' that
contains S. If (S) =V, we call S a spanning set of V.

Clearly, there is at least one subspace of V' containing S, namely, V. Let
S denote the collection of all subspaces of V' containing S. Then, Ny egW is
also a subspace of V' containing S. Clearly, it is the smallest subspace of V'
containing S, and hence (S) = Ny esW.

Example 4.1
We shall determine the smallest subspace W of R? containing the
vectors (1,2,1) and (2, 3,4).
Clearly, W must contain the subspace spanned by (1,2, 1), that is,
the line joining the origin (0,0,0) and (1,2, 1). Similarly, W must also
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contain the line joining (0,0,0) and (2,3,4). These two distinct lines
meet at the origin and hence define a unique plane through the origin,
and this is the subspace spanned by the two vectors (1,2, 1) and (2, 3,4).
(See Proposition 4.3 below.)

Proposition 4.3. Let S be a subset of a vector space V over F. Then, (S) =
L(S), where L(S) = {a151 4+ agsg + -+ apsy ts; €85, 1 < i <r and
aeF1<i<r re N} = set of all finite linear combinations of vectors of
S over I.

Proof. First, it is easy to check that L(S) is a subspace of V. In fact, let
u,v € L(S) so that

u=qaiS; + -+ a.s., and
/ /
v=Bis, + o+ By,

where s; € 5, a; € F for each i, and s} € S,B; € F for each j. Hence if
a, 3 € F, then

au+ fv = (aa)si + - + (aay)s, + (B41)sy + -+ + (BB)s; € L(S).

Hence by Proposition 4.1, L(S) is a subspace of V. Further 1-s = s € L(S) for
each s € S, and hence L(S) contains S. But by definition, (S) is the smallest
subspace of V' containing S. Hence (S) C L(S5).

Now, let W be any subspace of V' containing S. Then, any linear combi-
nation of vectors of S is a vector of W, and hence L(S) C W. In other words,
any subspace of V' that contains the set S must contain the subspace L(S).
Once again, as (S) is the smallest subspace of V' containing S, L(S) C (S).
Thus, (S) = L(S5). O

Note : 1f S = {uy,...,u,} is a finite set, then (S) = (uq,...,u,) = subspace
of linear combinations of u1,...,u, over F. In this case, we say that S gener-
ates the subspace (S) or S is a set of generators for (S). Also L(S) is called
the linear span of S in V.

Proposition 4.4. Letuy,...,u, andv be vectors of a vector space V. Suppose
that v € (uy,us, ..., up). Then, (U1,...,up) = (Ul,..., Un;0).
Proof. Any element ayuy + -+ 4+ aptin, ; € F for each 4, of (u,...,u,) can

be rewritten as
aiuy; + - Fapuy +0-v

and hence belongs to (uy,...,u,;v). Thus,

(Ugy ooy tpn) C(Upy ..., Up;v)
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Conversely, if
w=auy + -+ appn + Po € (Ur, ..., up; V),
then as v € (uy,...,up), v ="y1u1 + -+ + YnUn, v € F, and therefore,

w = (aruy + -+ apun) + 6 (vrur + -+ ntin)

(ai Jrﬁ’yz)ul c <U1,...,un>.

v

i=1

N

Thus, (u1,...,un;v) C (u,...,u,) and therefore

(U1, .oy tp) = (U1, .., up; V). O

Corollary 4.1. If S is any non-empty subset of a vector space V, and v € (S},
then (SU{v}) = (5).

Proof. v € (S) implies, by virtue of Proposition 4.3, v is a linear combination
of a finite set of vectors in S. Now the rest of the proof is as in the proof of
Proposition 4.4. O

4.4 Linear Independence of Vectors

Let V = R3, and e; = (1,0,0), e; = (0,1,0) and ez = (0,0,1) in R3. If
v = (1,5, 2) is any vector of R?, then v = xe; + yeq + ze3. Trivially, this is the
only way to express v as a linear combination of e, es, e3. For this reason, we
call {ej1, es,e3} a base for R3. We now formalize these notions.

Definition 4.4. Linear independence and linear dependence of vectors

i. A finite subset S = {v1,...,v,} of vectors of a vector space V. over a
field F' is said to be linearly independent if the equation

ai1vy + agvg + -+ apv, =0, o €F

implies that a; = 0 for each i.
In other words, a linearly independent set of vectors admits only the
trivial linear combination between them, namely,

0-v1+0-v3+---4+0-v, =0.

In this case we also say that the vectors vy, ...,v, are linearly indepen-
dent over F. In the above equation, the zero on the right refers to the
zero vector of V', while the zeros on the left refer to the scalar zero, that
18, the zero element of F.
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ii. An infinite subset S of V is linearly independent in V if every finite
subset of vectors of S is linearly independent.

iii. A subset S of V is linearly dependent over F if it is not linearly inde-
pendent over F. This means that there exists a finite subset {vy,...,v,}
of S and a set of scalars o, ..., oy, not all zero, in F such that

av + -+ apv, = 0.

If {v1,...,v,} is linearly independent over F, we also note that the
vectors vy, . .., vy, are linearly independent over F.
Remark 4.1.

i. The zero vector of V' forms a linearly dependent set since it satisfies the
non-trivial equation 1-0 =0, where 1 € F and 0 € V.

ii. Two vectors of V are linearly dependent over F iff one of them is a
scalar multiple of the other.

ili. Ifv eV andv # 0, then {v} is linearly independent (since for a € F,
av = 0 implies that o = 0).

iv. The empty set is always taken to be linearly independent.

Proposition 4.5. Any subset T' of a linearly independent set S of a vector
space V is linearly independent.

Proof. First assume that S is a finite subset of V. We can take T' = {v1,...,v,}
and S ={v1,...,0;Vr41,...,0s},n > 1. The relation

arvy + o, =0, o €F
is equivalent to the condition that
(al'Ul + "'arvr) + (O"Ur+1 +0vn) =0.

But this implies, as S is linearly independent over F', o; = 0, 1 < i < n. Hence
T is linearly independent.

If S is an infinite set and 7" C S, then any finite subset of T is a finite
subset of S and hence linearly independent. Hence T is linearly independent
over F. O

A restatement of Proposition 4.5 is that any superset in V' of a linearly
dependent subset of V' is also linearly dependent.

Corollary 4.2. Ifv € L(S), then S U {v} is linearly dependent.

Proof. By hypothesis, there exist vy,...,v, in S, and a1,...,a, € F such
that v = aqvy + -+ - v, and therefore aqvy + -+ - av, + (—1)v = 0. Hence
{v1,...,vn; v} is linearly dependent and so by Proposition 4.5, S U {v} is
linearly dependent. O
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Examples of linearly independent set of vectors

1. C is a vector space over R. The vectors 1 and ¢ of C are linearly inde-
pendent over R. In fact, if o, § € R, then

a-1+8-i=0

gives that a + fi = 0, and therefore « = 0 = 3. One can check that
{1+1i,1—1} is also linearly independent over R, while {2+1i,14¢,1—4}
is linearly dependent over R. The last assertion follows from the fact
that ifu =2+¢,v=14+7iand w =1—14, thenu+w =3 and v+ w = 2
so that

2(u+w) =3(v+w)

and this gives
2u —3v—w = 0. O

2. The infinite set of polynomials S = {1, X, X2,...} in the vector space

R[X] of polynomials in X with real coefficients is linearly independent.

Recall that an infinite set S is linearly independent iff every

finite subset of S is linearly independent. So consider a finite subset
{X% X% ... X'} of S. The equation

M X 4 XX o 4 )\, X =0, the zero polynomial of R[X], (A)

where the scalars \;, 1 < i < n, all belong to R, implies that the
polynomial on the left side of Equation (A) is the zero polynomial and
hence must be zero for every real value of X. In other words, every real
number is a zero (root) of this polynomial. This is possible only if each
A; is zero. Hence the set S is linearly independent over R. O

4.5 Bases of a Vector Space

Definition 4.5. A basis (or base) of a vector space V' over a field F is a
subset B of V' such that

i. B is linearly independent over F', and
ii. B spans V; in symbols, (B) = V.

Condition (ii) implies that every vector of V' is a linear combination of (a
finite number of ) vectors of B while condition (i) ensures that the expression
18 unique. Indeed, if u = cyuy +- -+ apu, = Brur +- - -+ Boun, where the u;’s
are all in B, then (ay —B1)ur +- -+ (an — Bn)un, = 0. The linear independence
of the vectors uy,...,u, means that a; — 3; = 0, that is, o; = B; for each i.
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(Notice that we have taken the same uq, ..., u, in both expressions, as we can
always add terms with zero coefficients. For example, if

li /
u = Uy + aaus = fruy + Bausy,  then
u = oy + agug +0-uy +0-ul

=0-uy +0-us + fruf + Bous.)

Example 4.2

The vectors e; = (1,0,0), e = (0,1,0) and e3 = (0,0,1) form a
basis for R3. This follows from the following two facts.

1. {e1, e, e3} is linearly independent in R3. In fact, aje; + azes +
aszes = 0, a; € R, implies that

061(17070) + OZQ(O, 1,0) + ()[3(0,0, 1) = (04170(2,063) = (03070)7
and hence a; =0, 1 <17 < 3.

2. (e1,eq,e3) = R3. To see this, any vector of (e, eq,e3) is of the
form aje; + ages + ages = (a1, ag, a3) € R? and, conversely, any
(a1, a9, a3) in R is aje; + ages + azesz and hence belongs to
<€17 €2, 63>'

4.6 Dimension of a Vector Space

Definition 4.6. By a finite-dimensional vector space, we mean a vector space
that can be generated (or spanned) by a finite number of vectors in it.

Our immediate goal is to establish that any finite-dimensional vector space
has a finite basis and that any two bases of a finite-dimensional vector space
have the same number of elements.

Lemma 4.1. No finite-dimensional vector space can have an infinite basis.

Proof. Let V be a finite-dimensional vector space with a finite spanning set
S ={v1,...,v,}. Suppose to the contrary that V has an infinite basis B. Then,
as B is a basis, v; is a linear combination of a finite subset B;, 1 < i < n of
B. Let B’ = U] B;. Then, B’ is also a finite subset of B. As B’ C B, B’
is linearly independent and further, as each v € V is a linear combination of
V1,...,Un, v is also a linear combination of the vectors of B’. Hence B’ is also
a basis for V. If z € B\ B’, then z € L(B’) and so B’ U {z} is a linearly
dependent subset of the linearly independent set B, a contradiction. O
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Lemma 4.2. A finite sequence {v1,...,v,} of non-zero vectors of a vector
space V' is linearly dependent iff for some k, 2 < k < n, v is a linear combi-
nation of its preceding vectors.

Proof. In one direction, the proof is trivial; if vy € (v1,...,vk_1), then by
Proposition 4.5, {v1,...vg—1; v} is linearly dependent and so is its superset
{v1, ..., v}

Conversely, assume that {vy,va,...,v,} is linearly dependent. As vy is a
non-zero vector, {vy } is linearly independent (see (iii) of Remark 4.1). Hence,
there must exist a k, 2 < k < n such that {vy,...,v5_1} is linearly indepen-
dent while {v1,...,vg} is linearly dependent since at worst k can be n. Hence
there exists a set of scalars ay, ..., ag, not all zero, such that

vy + -+ agu = 0.

Now «y, # 0; for if oy = 0, there exists a non-trivial linear relation connecting

v1,...,v,—1 contradicting the fact that {vq,...,vx_1} is linearly independent.
Thus,
-1 -1
Vg = =0, U1 — -+ — O Qp_1Vk—1,
and hence vy, is a linear combination of its preceding vectors. O

Lemma 4.2 implies, by Proposition 4.4, that under the stated conditions
on vg,

A
(U1, ey Vky ooy Un) = (U1 ey U1, U1y e o5 Un) = (U1, oo oy Uy e ooy Up ),

where the A symbol upon vy indicates that the vector v should be deleted.
We next prove a very important property of finite-dimensional vector
spaces.

Theorem 4.1. Any finite-dimensional vector space has a basis. Moreover,
any two bases of a finite-dimensional vector space have the same number of
elements.

Proof. Let V be a finite-dimensional vector space. By Lemma 4.1, every basis
of V is finite. Let S = {u1,...,un}, and T = {v1,...,v,} be any two bases
of V. We want to prove that m = n.

Now vy € V = (uq,...,un). Hence the set S1 = {v1; uq, ..., up} is linearly
dependent. By Lemma 4.2, there exists a vector u;, € {uy,...,un,} such that
A
(V15 UL, - Um) = (UL ULy Uy ey U

Now consider the set of vectors
A
So = {2,015 U1,y Uiy U} = {v2, 015 U )\ g, )

A .
As vy € V = (v1; uty ... Uiy, ..., Up), there exists a vector u;, € {uy, ...,
A

Uiy -+ -5 U} such that u;, is a linear combination of the vectors preceding it
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in the sequence Ss. (Such a vector cannot be a vector of T as every subset of
T is linearly independent.) Hence if

A A
S3 = {01,025 Uty .oy Uiy e Uiny ey U}
= {1, v9; u17...,uil,...uiz,...,um}\{uil,uiz},

(S5) =V.

Thus, every time we introduce a vector from 7', we are in a position to delete a
vector from S. Hence |T'| < |S|, that is, n < m. Interchanging the roles of the
bases S and T', we see, by a similar argument, that m < n. Thus, m =n. O

Note that we have actually shown that any finite spanning subset of a
finite-dimensional vector space V' does indeed contain a finite basis of V.
Theorem 4.1 makes the following definition unambiguous.

Definition 4.7. The dimension of a finite-dimensional vector space is the
number of elements in any one of its bases.

If V is of dimension n over F', we write dimp V' = n or, simply, dimV = n,
when F' is known.

Examples for dimension of a vector space

1. R™ is of dimension n over R. In fact, it is easy to check that the set of
vectors

S ={e; =(1,0,...,0), e3 = (0,1,0,...,0),..., en = (0,...,0,1)}

is a basis for R™ over R.
2. C™ is of dimension n over C.

3. C™ is of dimension 2n over R. In fact, if e, € C™ has 1 in the k-th
position and 0 in the remaining positions, and f; € C™ hasi=+/—1 in
the k-th position and 0 in the remaining positions, then

S:{ela”wen; flv"‘?fn}

forms a basis of C" over R. (Verifyl!)

4. Let P,,(X) denote the set of real polynomials in X with real coefficients
of degrees not exceeding n. Then, B = {l,X7 X2, .. .,X"} is a basis
for P, (X). Hence dimg P,,(X) =n + 1.

5. The vector space R over Q is infinite-dimensional. This can be seen as
follows: Suppose dimgR = n (finite). Then, R has a basis {v1,...,v,}
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over Q. Hence
R={ajvy + 4+ a,v,: a; € Q for each i}.

But as Q is countable, the number of such linear combinations is count-
able. This is a contradiction as R is uncountable. Thus, R is infinite-
dimensional over Q.

Proposition 4.6. Any maximal linearly independent subset of a finite-
dimensional vector space V is a basis for V.

Proof. Let B be a maximal linearly independent subset of V', that is, B is not
a proper subset of B’, where B’ is linearly independent in V. Suppose B is
not a basis for V. This means, by the definition of a basis for a vector space,
that there exists a vector x in V' such that = ¢ (B). Then, BU {z} must be a
linearly independent subset of V; for, suppose B U {«} is linearly dependent.
Then, there exist vy, ...,v, in B satisfying a non-trivial relation

avy + -+ apu, + 6 =0, «a; €F, foreachiand g€ F.

Now,  # 0, as otherwise, {v1,...,v,} would be linearly dependent over F.
Thus, = =371 (aqvy + -+ + anv,) € (B), a contradiction. Thus, B U {z}
is linearly independent. But then the fact that B U {z} D B violates the
maximality of B. Hence B must be a basis for V. O

4.7 Solutions of Linear Equations and Rank of a Matrix

Let
ayp a2 ... Qin
a1 a9 e A92n
A = . . .
Am1 Am2 P Amn,

be an m by n matrix over a field F'. To be precise, we take F' = R, the field of
real numbers. Let Ry, Ro, ..., R, be the row vectors and C1,Cs,...,C, the
column vectors of A. Then, each R; € R" and each C; € R™. The row space
of A is the subspace (Ry,...,R,;,) of R", and its dimension is the row rank
of A. Clearly, (row rank of A) < m since any m vectors of a vector space span
a subspace of dimension at most m. The column space of A and the column
rank of A(< n) are defined in an analogous manner.

We now consider three elementary row transformations (or operations)
defined on the row vectors of A:

i. R;;: interchange of the i-th and j-th rows of A.

ii. kR;: multiplication of the i-th row vector R; of A by a non-zero scalar
(real number) k.
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iii. R;+cR;: addition to the i-th row of A, ¢ times the j-th row of A, ¢ being
a scalar.

The elementary column transformations are defined in an analogous manner.
The inverse of each of these three transformations is again a transformation
of the same type. For instance, the inverse of R; 4 cR; is obtained by adding
to the new i-th row, —c times R;.

Let A* be a matrix obtained by applying a finite sequence of elementary
row transformations to a matrix A. Then, the row space of A = row space
of A*, and hence, row rank of A = dim(row space of A) = dim(row space of
A*) = row rank of A*. Now a matrix A* is said to be in row-reduced echelon
form if:

i. The leading non-zero entry of any non-zero row (if any) of A* is 1.

ii. The leading 1s in the non-zero rows of A* occur in increasing order of
their columns.

iii. Each column of A* containing a leading 1 of a row of A* has all its other
entries zero.

iv. The non-zero rows of A* precede its zero rows, if any.

Now let D be a square matrix of order n. The three elementary row (respec-
tively column) operations considered above do not change the singular or
non-singular nature of D. In other words, if D* is a row-reduced echelon form
of D, then D is singular iff D* is singular. In particular, D is non-singular iff
D* = I,,, the identity matrix of order n. Hence if a row-reduced echelon form
A* of a matrix A has r non-zero rows, the maximum order of a non-singular
square submatrix of A is r. This number is called the rank of A.

Definition 4.8. The rank of a matriz A is the mazimum order of a non-
singular square submatriz of A. Equivalently, it is the mazimum order of a
non-vanishing determinant minor of A.

Note that from our earlier discussions, rank of A = row rank of A, = col-
umn rank of A. Consequently, a set of n vectors of R™ is linearly independent
iff the determinant formed by them is not zero; equivalently, the n x n matrix
formed by them is invertible.

Example 4.3
Find the row-reduced echelon form of

2 3 -
1 -1 4
3 2 3
6 4 6

1

D W N =
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As the leading entry of R; is 1, we perform the operations Ry —2Ry;
R3 — 3Ry; Ry — 6Ry (where R; stands for the i-th row of A). This gives

(1
0
0

10

A=

2
-3
-3
—6

3
-7
-7

—14

1]
6
6
12_

Next perform (—1/3)Rsy (that is, replace Ry by

A=

1
0
0

10

Now perform R; —2R; (that is, replace Ry by Ry —2Rs, etc.); Rz +3Rs;

R4 + 6R5. This gives the matrix

Ay =

OO O

Ay is the row-reduced echelon form of A. Note that As is uniquely
determined by A. Since the maximum order of a non-singular submatrix
of Ay is 2, rank of A = 2. Moreover, row space of Ay = (Ry, Ra(of As)).
Clearly Ry and Rs are linearly independent over R since for aq, as € R,
a1 R1 + as Ry = (041, o, —50[1/3 + 70[2/3, 3a1 — 20[2) =0= (0,0,0,0)
implies that a; = 0 = «y. Thus, the row rank of A is 2 and therefore

the column rank of A is also 2.

2
1
-3
—6

SO = O

3
7/3
-7

—14

-5/3
7/3
0
0

1]
—2
6

(=1/3)R2). This gives

12

3
-2

0

0

Remark 4.2. Since the last three rows of Ay are proportional (that is, one
row is a multiple of the other two), any 3 x 3 submatriz of Ay will be singular.

Since Ay has a non-singular submatriz of order 2, (for example, [(1) _23]), Aq

is of rank 2 and we can conclude that A is also of rank 2.

Remark 4.3. The word “echelon” refers to the formation of army troops in
parallel divisions each with its front clear of that in advance.

4.8 Exercises

1. Show that Z is not a vector space over Q.
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. If n € N, show that the set of all real polynomials of degree n > 1

does not form a vector space over R (under usual addition and scalar
multiplication of polynomials).

. Which of the following are vector spaces over R?

i. V1 ={(z,y,2) € R3 such that y + z = 0}.
ii. V1 ={(x,y,2) € R? such that y + z = 1}.
iii. V1 = {(z,y, 2) € R3 such that y > 0}.
(z,y,2)

iv. Vi = {(z,y,2) € R3 such that z = 0}.

. Show that the dimension of the vector space of all m by n real matrices

over R is mn. [Hint: For m = 2, n = 3, the matrices
1 0 0 01 0 0 0 1 0 0 O
0 0 o’ 0 0 o’ 0 0 o’ 1 0 0

0 0 0 0 0 0
01 0" |0 0 1

form a basis for the space of all 2 by 3 real matrices. Verify this first.]

. Prove that a subspace of a finite-dimensional vector space is finite-

dimensional.

. Show that the vector space of real polynomials in X is infinite-

dimensional over R.

. Find a basis and the dimension of the subspace of R* spanned by the

vectors u; = (1,2,2,0), ug = (2,4,0,1) and ug = (4,8,4,1).

. Find the dimension of the subspace of R® spanned by v; = (2,3,7),

vy = (1,0,—-1), v3 = (1,1,2) and vg = (0,1, 3).
[Hint: v1 = 3v3 — vy and vy = v3 — v2.]

. State with reasons whether each of the following statements is true or

false:

A. A vector space V can have two disjoint subspaces.

B. Every vector space of dimension n has a subspace of dimension m
for each m < n.

C. A two-dimensional vector space has exactly three subspaces.

D. In a vector space, any two generating (that is, spanning) subsets
are disjoint.

E. If n vectors of a vector space V span a subspace U of V', then
dimU = n.
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4.9 Solutions of Linear Equations

Consider the system of linear homogeneous equations:

X1 42Xo+3X5— X, =0
2X1 4+ Xo — X3 +4X, =0

3X, +3X, +2X5+3X, =0 (4.2)

6X1 4+ 6Xo +4X5 +6X, = 0.

These equations are called homogeneous because if (X1, X2, X35, X4) is a solu-
tion of these equations, then so is (kX1,kXo, kX3, kX,) for any scalar k.
Trivially (0,0,0,0) is a solution. We express these equations in the matrix
form

AX =0, (4.3)
where
1 2 3 -1 X 0
121 -1 4 | Xe |0
A= 3 3 2 3| X = X, | and 0= 0
6 6 4 6 X4 0

If X; and X, are any two solutions of Equation 4.3, then so is aX; + X5 for
scalars a and b since A(aX; + bX3) = a(AX;) + b(AX3) =a-0+b-0=0.
Thus, the set of solutions of Equation 4.3 is (as X € R*) a vector subspace of
R*, where 4 = the number of indeterminates in the Equations 4.2.

It is clear that the three elementary row operations performed on a sys-
tem of homogeneous linear equations do not alter the set of solutions of the
equations. Hence if A* is the row reduced echelon form of A, the solution sets
of AX =0 and A*X = 0 are the same.

In Example 4.3, A* = A,. Hence the equations A*X = 0 are

)
Xl — §X3 + 3X4 = O7 and

7
Xa+ 5 X~ 2X4 =0,

These give
5
X, = §X3 —3Xy
7
Xo = —§X3 +2Xy
so that
X3 5/3 —
Xo

I
Xs| = X3 1 + X4
Xy 0
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Thus, the space of solutions of AX = 0 is spanned by the two linearly inde-
pendent vectors

5/3 -3
—7/3 2
1 and 0

0 1

and hence is of dimension 2. This number 2 corresponds to the fact that
X1, Xo, X3, and X, are all expressible in terms of X3 and X,4. Here, X; and
X5 correspond to the identity submatrix of order 2 of A*, that is, the rank of
A. Also, dimension 2 = 4 — 2 = (number of indeterminates) — (rank of A).
The general case is clearly similar where the system of equations is given by
a1 X1+ -+ ainX, =0, 1 <7 <m. These are given by the matrix equation
AX =0, where A is the m by n matrix (a;;) of coefficients and

X1

we state it as a theorem.

Theorem 4.2. The solution space of a system of homogeneous linear equa-
tions is of dimension n — r, where n is the number of unknowns and r is the
rank of the matriz A of coefficients.

4.10 Solutions of Non-homogeneous Linear Equations

A system of non-homogeneous linear equations is of the form

a1 X1+ apXo+ - +aX, =b1

U1 X1 + amaXo + -+ @ Xy = b,

with not all b; being zero.
These m equations are equivalent to the single matrix equation

AX =B

9

where A = (a;;) is an m by n matrix and B is a non-zero column vector of
length m.
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It is possible that such a system of equations has no solution at all. For
example, consider the system of equations

X1 —Xo+X3=2
X1 +Xo—X35=0
3X, = 6.

From the last equation, we get X; = 2. This, when substituted in the first
two equations, yields — X5 + X3 = 0, Xo — X3 = —2 which are mutually
contradictory. Such equations are called inconsistent equations.

When are the equations represented by AX = B consistent?

Theorem 4.3. The equations AX = B are consistent if and only if B belongs
to the column space of A.

Proof. The equations are consistent iff there exists a vector

aq
Xo =

Qp,

such that AXy, = B. But this happens iff a1C; + -+ + ,,C,, = B, where
Ci,...,C, are the column vectors of A, that is, iff B belongs to the column
space of A. O

Corollary 4.3. The equations represented by AX = B are consistent iff rank
of A = rank of (A, B). [(A, B) denotes the matriz obtained from A by adding
one more column vector B at the end. It is called the matriz augmented by B].

Proof. By the above theorem, the equations are consistent iff B €
(C1,...,Cy). But this is the case, by Proposition 4.4, iff (Cy,...,C,) =

(C1,...,Cy,B). The latter condition is equivalent to, column rank of
A = column rank of (A, B), and consequently to, rank of A = rank of
(A, B). O

We now ask the natural question. If the system AX = B is consistent, how
to solve it?

Theorem 4.4. Let Xy be any particular solution of the equation AX = B.
Then, the set of all solutions of AX = B is given by {Xo + U}, where U varies
over the set of solutions of the auxiliary equation AX = 0.

Proof. If AU =0, then A(Xo+U) = AXg+ AU = B+0 = B, so that Xo+U
is a solution of AX = B.

Conversely, let X7 be an arbitrary solution of AX = B, so that AX; = B.
Then, AXg = AX; = B gives that A(X; — Xo) = 0. Setting X; — Xy = U,
we get, X7 = Xog+ U, and AU = 0. O
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As in the case of homogeneous linear equations, the set of solutions of
AX = Bremains unchanged when we perform any finite number of elementary
row transformations on A, provided we take care to perform simultaneously
the same operations on the matrix B on the right. As before, we row-reduce
A to its echelon form Ay and the equation AX = B gets transformed into its
equivalent equation A*Xqy = By.

4.11 LUP Decomposition

Definition 4.9. By an LUP decomposition of a square matriz A, we mean

an equation of the form
PA=LU (4.4)

where P is a permutation matrixz, L a unit-lower triangular matriz, and U an
upper triangular matriz.

Recall that a square matrix M is upper(resp. lower) triangular if all its
entries below(resp. above) its principal diagonal are zero. It is unit upper(resp.
lower) triangular if it is (i) upper(resp. lower) triangular, and (ii) all the entries
of its principal diagonal are equal to 1. Hence all the matrices P, A, L and U
in Equation 4.4 must be of the same order.

Suppose we have determined matrices P, L and U so that Equation 4.4
holds. The equation AX = b is equivalent to (PA)X = Pb in that both have
the same set of solutions X . This is because P~! exists and hence (PA)X = Pb
is equivalent to P~1(PA)X = P~1(Pb), that is, AX = b. Now set Pb = b'.
Then, PAX = Pb gives

LUX =V. (4.5)

Hence if we set UX =Y (a column vector), then (4.5) becomes LY = V.
We know from Section 4.10 as to how to solve LY = ¥’. A solution Y of this
equation, when substituted in UX =Y, gives X, again by the same method.

4.11.1 Computing an LU decomposition

We first consider the case when A = (a;;) is a non-singular matrix of
order n. We begin by obtaining an LU decomposition for A; that is, an LUP
decomposition with P = I,, in Equation 4.4. The process by which we obtain
the LU decomposition for A is known as Gaussian elimination.

Assume that a1 # 0. We write

ai ‘ ai2 A1n ai ‘alg AT
azi | a2 ... QG2pn a21

A/
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where A’ is a square matrix of order n — 1. We can now factor A as

1 Jo ... 0 an | ar ain
@21/611 .
P
. Infl
aiy
an1/ain 0
where
a21
v=| : and w' = (aja...a1,).

Note that vw! is also a matrix of order n — 1. The matrix A; =
A" — (vw'/aq1) is called the Schur complement of A with respect to aj;.

We now recursively find an LU decomposition of A. If we assume that
Ay = L'U’, where L’ is unit lower-triangular and U’ is upper-triangular, then

A= [ 1 0 ai wt
o I ’U/an In,1 0 A1
_ [ 1 0 a1 ’U.)t
o L v/au In—l :| |: 0 L/U/ :| (46)
o [ 1 0 ail ‘ ’U.)t
o L ’U/au LI 0 ‘ U/
= LU,

where

B 1 0 Can | W
b= 10, e v [l

The validity of the two middle equations on the right of Equation 4.6 can be
verified by routine block multiplication of matrices (cf: Section 3.3.1). This
method is based on the supposition that a;; and all the leading entries of
the successive Schur complements are all non-zero. If ai; is zero, we inter-
change the first row of A with a subsequent row having a non-zero first entry.
This amounts to premultiplying both sides by the corresponding permutation
matrix P yielding the matrix PA on the left. We now proceed as with the case
when a7 # 0. If a leading entry of a subsequent Schur complement is zero,
once again we make interchanges of rows—not just the rows of the relevant
Schur complement, but the full rows obtained from A. This again amounts to
premultiplication by a permutation matrix. Since any product of permutation
matrices is a permutation matrix, this process finally ends up with a matrix
P'A, where P’ is a permutation matrix of order n.

‘We now present two examples, one to obtain the LU decomposition when
it is possible and another to determine the LUP decomposition.
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Example 4.4
Find the LU decomposition of

2 3 1 2
4 7 4 7
A= 2 7 13 16
6 10 13 15
Here,
4
ain =2, v= |2, w'=[31,2].
6
Therefore
2 6 2 4
v/ap; = [1]|, andso wvw'f/a;;= |3 1 2|,
3 9 3 6
where w! denotes the transpose of w.
Hence the Schur complement of A is
T 4 7 6 2 4 1 2 3
Ay=|7 13 16| —1{3 1 2| =1{4 12 14
10 13 15 9 3 6 1 10 9

Now the Schur complement of A is
12 14 4 12 14 8 12 4 2
Az = [10 9}{1} 2 3] = {10 9}{2 3] - {8 6]'
This gives the Schur complement of A, as

Az = [6] - [2][2] = [2]
= [1][2] = LsUs,

where Lz = (1) is lower unit triangular and Us = (2) is upper triangular.
Tracing back we get,

1 |o 4w§]
A:
2 {Uz/auLs}{OUs

C[1]o[4a]2]
—[mHoﬂ—LQUQ'
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This gives, )
1[0 0 1/2 3
Ay=14]1 0 04 2
12 1]]0]0 2|
Consequently,
1[0 00 2[3 1 2]
211 0 0 0/1 2 3
A= 114 1 0 010 4 2| LU,
311 2 1 0]0 0 2 |
where
_L 0 0 0]
211 0 0 . . .
L= 1la 1 0 is unit lower-triangular, and
| 3|1 2 1 |
(23 1 2]
0|1 2 3 . .
U= 0olo 4 2 is upper-triangular.
1 00 0 2 |

Note that A is non-singular as L and U are.

Example 4.5
Find the LUP decomposition of

2 3 1 2
4 6 4 7
A= 2 7 13 16
6

10 13 15

Suppose we proceed as before: The Schur complement of A is

(6 4 7 2 6 4 7 6
Ap=|7 13 16| —|1|[3 1 2]=|7 13 16| — 3
10 13 15 3 10 13 15 9
0 2 3
=14 12 14
1 10 9

W = N

DN
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Since the leading entry is zero, we interchange the first row of A; with
some other row. Suppose we interchange the first and third rows of A;.
This amounts to considering the matrix PA instead of Ay, where

0

_— o O O
o= O O

1
0
0

o o o

Note that the first row of A corresponds to the second row of A and
the last row of A; to the fourth row of A. This means that the Schur
complement of PA (instead of A) is

110 9
Al=14 12 14
0 2 3

We now proceed with A as before. The Schur complement of A is

12 14 4 12 14 40 36 —28 —22
Sl O 1 L el e e B e A
The Schur complement of As is

(5] [-22] = |

where L = [1] is unit lower triangular, and Us = [10/7] is upper trian-
gular. Hence

- U] =[2] = (1)(10/7) = L3Us,

As =[3] - > -

1 0] [-28 —22
=l 0
= Lo 2
This gives _
1 0 0]t 10 9
Al=14 1 0|0 —28 —22
0 & 1[0 o 2
Thus,
10 0 0olf2 3 1 2
31 0 0|0 1 10 9 | .,
14 1 0[]0 0 —28 —22 L'y,
2 0 74 1o o o %

where L’ and U are the first and second matrices in the product. Notice
that we have interchanged the second and fourth rows of A while com-
puting L’. Interchanging the second and fourth rows of L', we get

1 0 0 0]f2 3 1 2
2 0 =2 1/lo 1 10 9
_ 14 _
A=17 4 7 ol o 0 —28 —9o| =LV
31 0 0|l]o o0 o0 10
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We have assumed, to start with, that A is a non-singular matrix. Even if A
is invertible, it is possible that A has no LU decomposition. For example, the
non-singular matrix {(1) (1)} has no LU decomposition. It is easy to check that
if A is singular, it is possible that not only a column of a Schur complement
but even the full column corresponding to it may be zero. In that case, we
have to interchange columns. This would result in a matrix of the form AP
rather than PA. It is also possible that we get the form Py AP, where P; and
P, are both permutation matrices.

Example 4.6

Solve the system of linear equations using the LUP decomposition
method:

2X +3X, + X5 42X, = 10

AX) 46X, + 4X5 + X, = 25
2X) + 7X5 + 13X3 + 16X, = 40 (4.7)

6X1 + 10X + 13X5 + 15X, = 50.

These equations are equivalent to AX = B, where A is the matrix
of Example 4.5 and

10
25
40
50

If we interchange any pair of rows of (A|B), it amounts to inter-
changing the corresponding equations. However, this will in no way
alter the solution. Hence the solutions of Equation 4.7 are the same
as solutions of PAX = PB, where P is the permutation matrix
obtained in Example 4.5. Thus, the solutions are the same as the
solutions of LUX = B, where L and M are again those obtained in
Example 4.5.

Now set UX = Y so that the given equations become LY = B,
where
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This gives
Lo 00 my (o
2 0 i L | Y2 _ |50
14 1 of|Ys] |40
3 1 0 of LY 25
These are equivalent to
31 =10

1
2Y1 — —Y;+Y, =25
171 3+ Yy
Y] +4Y5, + Y3 =40
3Y1 + Y, =50,

and we get Y7 = 10, Yo = 20, Y3 = —50 and Yy = 10/7. Substituting
these values in UX =Y, we get

2 3 1 2 X, 10

0 1 10 9 X 20
2

0 0 —28 —22 Xa| = —50

10 3 10

These give

2X1 +3X5 + X3 +2X, = 10
X 4+ 10X3 + 9X, = 20
—28X3 — 22X, = —50
10 10

=X, = =
7T T

Solving backward, we get X1 =2, Xo = X3 =X, = 1.

4.12 Exercises
1. Examine if the following equations are consistent.
Xi+Xo+X354+X4=0

2X) —Xo +3X3+4X, =1
3X1 +4X3+5X, =2.
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2. Solve the system of homogeneous linear equations:

4X1 +4Xs 4+ 3X3 —5X4 =0
X+ X4+ 2X5 —3X, =0
2X; +2Xo — X5=0

X1+ Xo +2X5 — 2X, = 0.

Show that the solution space is of dimension 2.
3. Solve:

X1+ Xo+ X3+ X4=0
Xy 43Xy +2X5 +4X, =0
2X1+ X3 — X, =0.

4. Solve by finding LUP decomposition:
i.
2X; +3Xy —5X3+4X,=-8
3X) + Xo —4X3+5X, = -8
TX1 43X, —2X3+ X4 =56
4X) + Xo — X3+ 3X, = 20.

ii.
3X; —2Xo+X3=7

X4+ Xo+ X3 =12
—X; +4X5 — X3 = 3.

iii.
2X) +4Xy —5X3+ Xy =8
4X, 4+ —5X5 — Xy =16

—4X14+2Xo+ X4 =-5
6X1 +4Xy —10X3 +7X, = 13.

4.13 Finite Fields

In this section, we discuss the basic properties of finite fields. Finite fields
are fundamental to the study of codes and cryptography.

Recall that a field F is finite if its cardinality |F| is finite. |F| is the order
of F. The characteristic of a finite field F', as seen in Section 3.23, is a prime
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number p, and the prime field P of F' is a field of p elements. P consists of
the p elements 1p, 2-1p = 1p + 1p,...,p-1p = Op. Clearly, I is a vector
space over P. If the dimension of the finite field F' over P is n, then n is finite.
Hence F has a basis {uy,...,u,} of n elements over P. This means that each
element v € F' is a unique linear combination of u, ..., u,, say,

v =0oqup + ags + -+ apy,, o €P 1 <i<n.

For each 4, a; can take |P| = p values, and so there are p-p--- (n times) = p"
distinct elements in F'. Thus, we have proved the following result.

Theorem 4.5. The order of a finite field is a power of a prime number. [

Finite fields are known as Galois fields after the French mathematician
Evariste Galois (1811-1832) who first studied them. A finite field of order ¢
is denoted by GF(q).

We now look at the converse of Theorem 4.5. Given a prime power p"
(where p is a prime), does there exist a field of order p? The answer to this
question is in the affirmative. We give below two different constructions that
yield a field of order p™.

Theorem 4.6. Given p™ (where p is a prime), there exists a field of p"
elements.

Construction 1: Consider the polynomial X?" — X € Z,[X] of degree p".
(Recall that Z,[X] stands for the ring of polynomials in X with coefficients
from the field Z,, of p elements.) The derivative of this polynomial is

prXP Tl 1= 1¢e Z,[X],

and is therefore relatively prime to X?" — X. Hence the p" roots of X?" — X
are all distinct. (Here, though no concept of the limit is involved, the notion
of the derivative has been employed as though it is a real polynomial.) It is
known [12] that the roots of this polynomial lie in an extension field K D Z,,.
K is also of characteristic p. If @ and b are any two roots of X?" — X, then

n

" =a, and " =0b.

Now by Theorem 3.14
(a+b)P =da? £V,
and, by the commutativity of multiplication in K,
a?" b = (ab)?",

and so a £+ b and ab are also roots of X?" — X. Moreover, if a is a non-zero
root of X?" — X, then so is a~! since (a=")P" = (a?")~' = a~'. Also the
associative and distributive laws are valid for the set of roots since they are
all elements of the field K. Finally 0 and 1 are also roots of X?" — X. In

other words, the p" roots of the polynomial X?" — X € Z,[X] form a field of
order p". O
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Construction 2: Let f(X) = X"+a; X" '+ - +a, € Z,[X] be a polynomial of
degree n irreducible over Z,,. (The existence of such an irreducible polynomial
(with leading coefficient 1) of degree n is guaranteed by a result (see [12]) in
Algebra.) Let F denote the ring of polynomials in Z,[X] reduced modulo f(X)
(that is, if g(X) € Z,[X], divide g(X) by f(X) and take the remainder g; (X)
which is 0 or of degree less than n). Then, every non-zero polynomial in F' is a
polynomial of Z,[X] of degree at most n— 1. Moreover, if ao X" '+ Fan_y
and bo X" ! + ... 4+ b,_; are two polynomials in F of degrees at most n — 1,
and if they are equal, then,

(ap —bo)X™ 14+ (@n_1 — bn_1)

is the zero polynomial of F, and hence is a multiple of f(X) in Z,[X]. As
degree of f is m, this is possible only if a; = b;, 0 < ¢ < n — 1. Now if
ap X" '+, X" 2 +... +a,_, is any polynomial of F, a; € Z,, and hence a;
has p choices. Hence the number of polynomials of the form

aoXnil + -4+ an_1 € ZP[X]

is p™.

We now show that F' is a field. Clearly, F' is a commutative ring with unit
element 1(= 0- X" ! 4+ ... +0- X + 1). Hence we need only verify that if
a(X) € F is not zero, then there exists b(X) € F with a(X)b(X) = 1. As
a(X) # 0, and f(X) is irreducible over Z,,, the ged (a(X), f(X)) = 1. So by
Euclidean algorithm, there exist polynomials C(X) and ¢g(X) in Z,[X] such
that

a(X)C(X) + f(X)g(X) =1 (4.8)

in Z,[X]. Now there exists C1(X) € F with C1(X) = C(X)(mod f(X)). This
means that there exists a polynomial A(X) in Z,[X] with C(X) — C1(X) =
h(X)f(X), and hence C(X) = C1(X)+h(X) f(X). Substituting this in Equa-
tion 4.8 and taking modulo f(X), we get, a(X)C1(X) =1 in F. Hence a(X)
has C1(X) as inverse in F. Thus, every non-zero element of F' has a multi-
plicative inverse in F', and so F' is a field of p” elements. ]

We have constructed a field of p™ elements in two different ways—one, as the
field of roots of the polynomial X?" — X € Z,[X], and the other, as the field
of polynomials in Z,[X] reduced modulo the irreducible polynomial f(X) of
degree n over Zp. Essentially, there is not much of a difference between the
two constructions, as our next theorem shows (for a proof, see [18]).

Theorem 4.7. Any two finite fields of the same order are isomorphic under
a field isomorphism. O
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Example 4.7

Take p = 2 and n = 3. The polynomial X? + X + 1 of degree 3
is irreducible over Zo. (If it is reducible, one of the factors must be of
degree 1, and it must be either X or X +1 = X — 1 € Z,[X]. But 0 and
1 are not roots of X® + X + 1 € Zy[X].) The 2% = 8 polynomials over
75 reduced modulo X? + X + 1 are

0,L, X, X +1, X% X2+ 1, X + X, X+ X +1

and they form a field. (Note that X3 = X +1, X3+ X =1 and X3 +
X +1=0.) We have, for instance, (X? + X + 1) + (X + 1) = X? and
(X2+1D)(X+1)=X3+ X2+ X +1=X2% Also (X +1)2 = X%+ 1.

We know that if F' is a field, the set F™* of non-zero elements of F' is a
group. In the case when F' is a finite field, F'* has an additional algebraic
structure.

Theorem 4.8. If F is a finite field, F* (the set of non-zero elements of F)
s a cyclic group.

Proof. We know (as F is a field), F* is a group. Hence, we need only show
that F* is generated by a single element.

Let a be an element of the group F* of maximum order, say, k. Necessarily,
k < q—1, where ¢ = |F|. Choose 8 € F**, 3 # o, 1. Let o(3) (= the order of 3)
= 1. Then, [ > 1. We first show that [|k. Now o(3*D) = 1/(k,1), where (k,1)
denotes the ged of k and 1. Further, as (o(a),o(3%1)) = (k, (1/(k,1))) = 1,
we have o(af*D) = o(a) - o(3*D) = k- (1/(k,1)) = [k, 1], the lem of k and .
But, by our choice, the maximum order of any element of F'* is k. Therefore
[k,]] = k which implies that I|k. But [ = o(3). Therefore ¥ = 1. Thus, for
each of the ¢ — 1 elements z of F*, 2¥ =1 and so z is a root of ¥ — 1. This
means that, as |[F*| = ¢ —1, k = ¢ — 1. Thus, o(a) = ¢— 1 and so F* is the
cyclic group generated by a. U

Definition 4.10. (Primitive element, Minimal polynomial)

i. A primitive element of a finite field F is a generator of the cyclic
group F*.

ii. A monic polynomial is a polynomial with leading coefficient 1. For exam-
ple, X2 +2X + 1 € R[X] is monic while 2X? + 1 € R[X] is not.

iii. Let F' be a finite field with prime field P. A primitive polynomial in
F[X] over P is the minimal polynomial in P[X]| of a primitive element
of F. A minimal polynomial in P[X] of an element o € F is a monic
polynomial of least degree in P[X| having o as a root.
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Clearly the minimal polynomial of any element of F in P[X] is irreducible
over P.

Let a be a primitive element of F, and f(X) = X" + a; X" 1 + ... +
ay, € P[X] be the primitive polynomial of «. Then, any polynomial in Pla] of
degree n or more can be reduced to a polynomial in P[a] of degree at most
n — 1. Moreover, no two distinct polynomials of P[a] of degree at most n — 1
can be equal; otherwise, a would be a root of a polynomial of degree less than
n over P. Hence all the polynomials of the form

n—1
ag+aa+ -+ ap 1 s

in Pla] are all distinct and so |P[a]| = p™ where p = |P|. These p" elements

constitute a subfield I’ of F and o € F’. But then F C F’ and hence F' = F’.
Thus, |F| = |F’| = p™. As « is a primitive element of F, this means that

F= {0; a0, b :1}.

Example 4.8

Consider the polynomial X% + X + 1 € Zy[X]. This is irreducible
over Zsy (check that it can have no linear or quadratic factor in Zo[X]).
Let a be a root (in an extension field of Zs) of this polynomial so that
a* + a+1=0. This means that a* = a + 1.

We now prove that « is a primitive element of a field of 16 elements
over Zo by checking that the 15 powers «,a?,...,a'® are all distinct

and that a'® = 1. Indeed, we have

e L o Q
|

«
=«
a
at+llasa*+a+1=0—a*=a+1,asl = —1)

o =act =ala+1)=a’+a

a® =aa’® = a® + a?
"=ac’ =o'+t = +a+1
8 _ 7T _ 4 2 _ 2 _ 2
a®=aa' =a"+(a*+a)=(a+ 1)+ (a®+a)=a"+1
o’ =ac® =0’ +a
ad’=ad =a*+a?=a*ta+1
at=ad’ =’ +a* +a
a?=aal =+ (P +a)=(a+ )+ (P +®) =+l +a+1
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aB=aa? =o'+ (0®+a*+a)=(a+1)+(®+a®+0)

=a®+a?+1
at=aaP =o'+ (P +a)=(a+ 1)+ (@ +a)=a+1
ab =o' =a'+a=(a+1)+a=1

Thus, F' = {0} U F* = {0,04,042, o alh = 1} and so « is a primitive
element of F = GF(2%).

We observe that a polynomial irreducible over a field F' need not be primi-
tive over F'. For instance, the polynomial f(X) = X*+ X3+ X2+ X+1 € Zy[X]
is irreducible over Zy but it is not primitive. To check that f(X) is irreducible,
verify that F'(X) has no linear or quadratic factor over Zy. Next, for any root «
of f(X), check that a® = 1 so that o(a) < 15, and f(X) is not primitive over
Zs. (Recall that if f(X) were a primitive polynomial, some root of f(X)
should be a primitive element of GF(2*).)

4.14 Factorization of Polynomials Over Finite Fields

Let v be a primitive element of the finite field FF = GF(p"™), where p is
a prime. Then, F* = {a,az,...,a”n*I = 1}, and for any z € F, 2" = x.
Hence for each 7, 1 <i < p™ —1,

This shows that there exists a least positive integer ¢ such that P = qd.

Then, set
C; = {i,pi,p*i,...,pli}, 0<i<p'—1

The sets C; are called the cyclotomic cosets modulo p defined with respect to
F and «. Now, corresponding to the coset C;, 0 < ¢ < p™ — 1, consider the
polynomial

t

fi(X) = (X_ai)(X—Oéi'p)(X—o/'pQ)...(X_o/'p ).

The coefficients of f; are elementary symmetric functions of of, aP, ..., o'
and if 3 denotes any of these coeflicients, then ( satisfies the relation P = .
Hence 3 € Z,, and f;(X) € Z,[X] for each 7,0 < i < p™—1. Each element of C;
determines the same cyclotomic coset, that is, C; = Cy, = Cjp2 = - = Cjper.
Moreover, if j ¢ C;, C; N C; = ¢. This gives a factorization of XP" — X into
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irreducible factors over Z,. In fact, X?" — X = X (X?"~! — 1), and

X"l l=(z—-a)(X—a?)- - (X —a?" 1)

=II{ [T&x-o)].

7 JEC;

where the first product is taken over all the distinct cyclotomic cosets. Fur-
thermore, each polynomial f;(X) is irreducible over Z, as shown below. To
see this, assume that

g(X)=ap+ a1 X +---+ap X" € F[X].
Then, (9(X))" =af +alX? + -+ al (X*)? (Refer Section 3.23)
=ag+a XP 4 -+ ap X*P
= 9(X?).

Consequently, if 3 is a root of g, g(8) = 0, and therefore 0 = (g(3))" = g (3°),
that is, 37 is also a root of g(X). Hence if j € C; and o/ is a root of f;(X),
then all the powers o, k € C;, are roots of f;(X). Hence any non-constant
irreducible factor of f;(X) over Z, must contain all the terms (X —a?), j € C;
as factors. In other words, g(X) is irreducible over Z,,.

Thus, the determination of the cyclotomic cosets yields a simple device to
factorize X?" — X into irreducible factors over Zp. We illustrate this fact by
an example.

Example 4.9

Factorize X2' — X into irreducible factors over Zs.

Let o be a primitive element of the field GF(2%). As a primitive
polynomial of degree 4 over Z, having « as a root, we can take (see
Example 4.8) X4 4+ X + 1.

The cyclotomic cosets modulo 2 w.r.t. GF(2%) and « are

Co = {0}

C1={1,2,2> =4,2> =8} (Note: 2* = 16 = 1(mod 15))
C3 = {3,6,12,9}

Cs = {5,10}

Cr={7,14,13,11} .
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Note that Cy = C7 = (4, and so on. Thus,

X-X=xx"-1)=Xx][(X-a) (4.9)

~x o) | T (-9 T 0o

ieCq

][

XX+1)(X*'+X+1) (X' +X°+ X+ X +1)
X (X24+X+1) (X' + X% +1).

In computing the products, we have used the relation a* + a4+ 1 = 0,
that is, a* = a + 1. Hence, for instance,

H (X—o/) = (X—a5) (X—alo)

1€C
- X2 _ (a5+a10)X+a15
=X+ [(®+a)+ (@®+a+1)] X +a
(see Example 4.8)
=X?+X+1

The six factors on the right of Equation 4.9 are all irreducible over
Zo. The minimal polynomials of o, a® and a” are all of degree 4 over
Zs. However, while a and o are primitive elements of GF(2*) (so that
the polynomials X% + X + 1 and X* + X3 + 1 are primitive), a? is not
(even though its minimal polynomial is also of degree 4).

Primitive polynomials are listed in [19]

4.15 Exercises

1. Construct the following fields:
GF(2%), GF(2°) and GF(3?).

2. Show that GF(2%) has no GF(23) as a subfield.

3. Factorize X2° + X and X2° + X over Z,.
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4. Factorize X3 — X over Zs.

5. Using Theorem 4.8, prove Fermat’s Little Theorem that for any prime p,
aP~! =1 (modp), if a # 0 (mod p).

4.16 Mutually Orthogonal Latin Squares

In this section, we show, as an application of finite fields, the existence of
n — 1 mutually orthogonal Latin Squares (MOLSs) of order n.

A Latin square of order n is a double array L of n rows and n columns
in which the entries belong to a set S of n elements such that no two entries
of the same row or column of L are equal. Usually, we take S to be the set
{1,2,...,n} but this is not always essential.

For example,

1 2 3

B ﬂ and 2 31
3 1 2

are Latin squares of orders 2 and 3, respectively. Let Ly = (a;;), and Lo = (b;;)

be two Latin squares of order n with entries in S. We say that L; and Lo are

orthogonal Latin squares if the n? ordered pairs (a;j, b;;) are all distinct. For

example,

3
Ll = 1 y and L2 =
2

N O
W = N

3
2
1

W N =
—_ W N

are orthogonal Latin squares of order 3 since the nine ordered pairs (1,1),
(2,2), (3,3); (2,3), (3,1), (1,2); (3,2), (1,3), (2,1) are all distinct. However, if
M, = [} 2] and M, = [2 }], then the four ordered pairs (1,2), (2,1), (2,1) and
(1,2) are not all distinct. Hence M; and My are not orthogonal. The study of
orthogonal Latin squares started with Euler, who had proposed the following
problem of 36 officers (See [6]). The problem asks for an arrangement of 36
officers of 6 ranks and from 6 regiments in a square formation of size 6 by 6.
Each row and each column of this arrangement is to contain only one officer
of each rank and only one officer from each regiment. We label the ranks and
the regiments from 1 through 6, and assign to each officer an ordered pair of
integers in 1 through 6. The first component of the ordered pair corresponds
to the rank of the officer and the second component his regiment. Euler’s
problem then reduces to finding a pair of orthogonal Latin squares of order 6.
Euler conjectured in 1782 that there exists no pair of orthogonal Latin squares
of order n = 2(mod 4). Euler himself verified the conjecture for n = 2, while
Tarry in 1900 verified it for n = 6 by a systematic case-by-case analysis. But
the most significant result with regard to the Euler conjecture came from Bose,
Shrikande and Parker who disproved the Euler conjecture by establishing that



224 Discrete Mathematics

if n = 2(mod 4) and n > 6, then there exists a pair of orthogonal Latin squares
of order n (see also [17,35]).

Aset {Ly,..., L} of t Latin squares of order n on S is called a set of MOLS
(Mutually Orthogonal Latin squares) if L; and L; are orthogonal whenever
i # j. It is easy to see [17] that the number ¢ of MOLS of order n is bounded
by n— 1. Further, any set of n —1 MOLS of order n is known to be equivalent
to the existence of a finite projective plane of order n [17]. A long standing
conjecture is that if n is not a prime power, then there exists no complete set
of MOLS of order n.

We now show that if n is a prime power, there exists a set of n —1 MOLS
of order n. (Equivalently, this implies that there exists a projective plane of
any prime power order, though we do not prove this here) (see [17] for more
details on finite projective planes).

Theorem 4.9. Let n = p¥, where p is a prime and k is a positive integer.
Then, for n > 3, there exists a complete set of MOLS of order n.

Proof. By Theorem 4.6, we know that there exists a finite field GF (p¥) =
GF(n) = F, say. Denote the elements of F' by ag =0, a1 =1, as,...,ap_1.
Define the n — 1 matrices Aq,..., A, _1 of order n by

At:(agj% 0<i,j<n-—1; and 1<t<n-—1,

aj; = ata; + aj (here af; stands for the (7, j)-th entry of the matrix A;). The

entries aj; are all elements of the field F. We claim that each A; is a Latin
square. Suppose, for instance, two entries of some i-th row of A;, say aﬁj and

al, are equal. This implies that
aga; + aj = aza; + a,

and hence a; = a;. Consequently j = [. Thus, all the entries of the i-th row
of A, are distinct. For a similar reason, no two entries of the same column of
A; are equal. Hence A; is a Latin square for each t.
We next claim that {A;,..., 4,1} is a set of MOLS. Suppose 1 < r <
u <n —1. Then, A, and A, are orthogonal. For suppose that
(afj, a?j) = (a;/j,, a;‘/j,). (4.10)
This means that

QrQ; + a5 = aray + ajr,
and ayua; + a; = ayay + aj.

Subtraction gives

(ay — ay)a; = (a, — ay)d,

and hence, as a, # a,, a; = ay. Consequently, ¢ = ¢’ and j = j'. Thus, A,
and A, are orthogonal. O



Chapter 5

Introduction to Coding Theory

ASCII (American Standard Code for Information Interchange) was
designed by the American Standards Association (ASA) subcom-
mittee, in order to facilitate the general interchange of information
among information processing systems, communication systems, and
associated equipment. An 8-bit set was considered but the need for
more than 128 codes in general applications was not yet evident.

ASA subcommiittee

5.1 Introduction

Coding theory has its origin in communication engineering. With Shan-
non’s seminal paper of 1948 [22], it has been greatly influenced by mathematics
with a variety of mathematical techniques to tackle its problems. Algebraic
coding theory uses a great deal of matrices, groups, rings, fields, vector spaces,
algebraic number theory and, not to speak of, algebraic geometry. In algebraic
coding, each message is regarded as a block of symbols taken from a finite
alphabet. On most occasions, this alphabet is Zy = {0,1}. Each message is
then a finite string of Os and 1s. For example, 00110111 is a message. Usu-
ally, the messages get transmitted through a communication channel. It is
quite possible that such channels are subjected to noises, and consequently,
the messages get changed. The purpose of an error correcting code is to add
redundancy symbols to the message, based of course on some rule so that the
original message could be retrieved even though it is garbled. Each message
is also called a codeword and the set of codewords is a code.

Any communication channel looks as in Figure 5.1. The first box of the
channel indicates the message. It is then transmitted to the encoder, which
adds a certain number of redundancy symbols. In Figure 5.1, these redun-
dancy symbols are 001 which when added to the message 1101 give the coded
message 1101001. Because of channel noise, the coded message gets distorted
and the received message is 0101001. This message then enters the decoder.
The decoder applies the decoding algorithm and retrieves the coded message
using the added redundancy symbols. From this, the original message is read
off in the last box (see Figure 5.1). The decoder has thus corrected a single
error, that is, error in one place.

225
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Message |—>| Encoder |—> Cﬁiiﬁd —>| %l(‘gscsgég —>{ Decoder |—> gglsgsglgag
1101 1101001 0101001 1101001 1101

FIGURE 5.1: Communication channel.

The efficiency of a code is the number of errors it can correct. A code
is perfect if it can correct all of its errors. It is k-error-correcting if it can
correct k or fewer errors. The aim of coding theory is to devise efficient codes.
Its importance lies in the fact that erroneous messages could prove to be
disastrous.

It is relatively easier to detect errors than to correct them. Sometimes,
even detection may prove to be helpful as in the case of a feedback channel,
that is, a channel that has a provision for retransmission of the messages.
Suppose the message 1111 is sent through a feedback channel. If a single error
occurs and the received message is 0111, we can ask for a feedback twice and
may get 1111 on both occasions. We then conclude that the received message
should have been 1111. Obviously, this method is not perfect as the original
message could have been 0011. On the other hand, if the channel is two-way,
that is, it can detect errors so that the receiver knows the places where the
errors have occurred and also contains the provision for feedback, then it can
prove to be more effective in decoding the received message.

5.2 Binary Symmetric Channels

One of the simplest channels is the binary symmetric channel (BSC). This
channel has no memory and it simply transmits two symbols 0 and 1. It has
the property that each transmitted symbol has the probability p(<1/2) of
being received in error, so that the probability that a transmitted symbol is
received correctly is ¢ = 1 — p. This is pictorially represented in Figure 5.2.
Before considering an example of a BSC, we first give the formal definition of
a code.

FIGURE 5.2: Binary symmetric channel.
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Definition 5.1. A code C of length n over a finite field F' is a set of vectors
in F™, the space of ordered n-tuples over F. Any element of C is called a
codeword of C.

As an example, the set of vectors, C = {10110,00110,11001,11010} is a
code of length 5 over the field Zy. This code C has 4 codewords.

Suppose a binary codeword of length 4 (that is, a 4-digit codeword) is sent
through a BSC with probability ¢ = 0.9. Then, the probability that the sent
word is received correctly is ¢* = (0.9)* = 0.6561.

We now consider another code, namely, the Hamming (7, 4)-code. (See
Section 5.5 below). This code has as its words the binary vectors 1000001,
0100011, 0010010, 0001111, of length 7 and all of their linear combinations
over the field Zs.

The first four positions are information positions and the last three are
the redundancy positions. There are in all 2* = 16 codewords in the code. We
shall see later that this code can correct one error. Hence the probability that
a received vector yields the transmitted vector is ¢” 4+ 7pq®, where the first
term corresponds to the case of no error and the term 7pqg® corresponds to
a single error in each of the seven possible positions. If ¢ = 0.9, ¢7 + Tp¢® =
0.4783 + 0.3720 = 0.8503, which is quite large compared to the probability
0.6561 arrived at earlier in the case of a BSC.

Hamming code is an example of a class of codes called Linear Codes. We
now present some basic facts about linear codes.

5.3 Linear Codes

Definition 5.2. An [n, k]-linear code C over a finite field F is a k-dimensional
subspace of F™, the space of ordered n-tuples over F'.

If F has q elements, that is, F = GF(q), the [n,k]-code will have ¢"
codewords. The codewords of C are all of length n as they are n-tuples over F.
k is called the dimension of C. C is a binary code if ' = Z.

A linear code C is best represented by any one of its generator matrices.

Definition 5.3. A generator matriz of a linear code C over F is a matriz
whose row vectors form a basis for C over F.

If C is an [n, k]-linear code over F', then a generator matrix of C is a k by
n matrix G over I whose row vectors form a basis for C.
For example, consider the binary code C; with generator matrix

1 0 0 1 1
Gi=10 1 0 1 0
0 01 01
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Clearly, all the three row vectors of Gy are linearly independent over Z,. Hence
C; has 22 = 8 codewords. The first three columns of G are linearly indepen-
dent over Zs. Therefore, the first three positions of any codeword of C; may
be taken as information positions, and the remaining two as redundancy posi-
tions. In fact, the positions corresponding to any three linearly independent
columns of G; may be taken as information positions and the rest redundan-
cies. Now any word X of C; is given by

X =x1Ry + 22Rs + x3R3, (51)

where x1, xo, 23 are all in Zs and Ry, Ry, R3 are the three row vectors of Gy
in order. Hence by Equation 5.1, X = (21, z2, 23,21 + 2,21 + x3). If we take
X = (21,2, 23,24, T5), we have the relations
r4 =1 + T2, and
(5.2)
T5 = X1+ T3.

In other words, the first redundancy coordinate of any codeword is the sum
of the first two information coordinates of that word, while the next redun-
dancy coordinate is the sum of the first and third information coordinates.

Equations 5.2 are the parity-check equations of the code C;. They can be

rewritten as
r1+ a0 —24 =0, and

(5.3)
T, +x3— x5 = 0.
In the binary case, Equations 5.3 become
r1+x0+ 24 =0, and
! E * (5.4)

x1+x3+x5=0.

In other words, the vector X = (z1, 2, 23,24, x5) € Cy iff its coordinates
satisfy Equations 5.4. Equivalently, X € C; iff it is orthogonal to the two
vectors 11010 and 10101. If we take these two vectors as the row vectors of a
matrix Hq, then H; is the 2 by 5 matrix:

11010
Hl_[10101]

H, is called a parity-check matrix of the code C;. The row vectors of H; are
orthogonal to the row vectors of G;. (Recall that two vectors X = (z1,...,z,)
andY = (y1,...,Yyn) of the same length n are orthogonal if their inner product
(= scalar product (X,Y) = x1y1 + - -+ + 2pyn) is zero). Now if a vector v is
orthogonal to uq,...,u, then it is orthogonal to any linear combination of
uy,...,u,. Hence the row vectors of Hjy, which are orthogonal to the row
vectors of (1, are orthogonal to all the vectors of the row space of Gy, that
is, to all the vectors of C;. Thus,

Ci = {X € Zg  Hy Xt = O} = Null space of the matrix H,

where X! is the transpose of X. The orthogonality relations H; X = 0 give the
parity-check conditions for the code C;. These conditions fix the redundancy
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positions, given the message positions of any codeword. A similar result holds
good for any linear code. Thus, any linear code over a field F' is either the row
space of one of its generator matrices or the null space of its corresponding
parity-check matrix.

Note that if we form any k linear combinations of the generator matrix
of a linear code which are also linearly independent over the base field, the
resulting k& words also form a basis for C. For instance, if

1 0 1 1
G= (0 11 1)
is a generator matrix of a binary linear code C of length 4, the matrix
, (1 0 1 1
G = <1 100
is also a generator matrix of C. The reason is that every row vector of G’ € C
and rank(G) = rank(G’) = 2.
So far, we have been considering binary linear codes. We now consider
linear codes over an arbitrary finite field F'. As mentioned in Definition 5.2,
an [n, k] linear code C over F' is a k-dimensional subspace of F™, the space of

all ordered n-tuples over F. If {uq,...,ux} is a basis of C over F, every word
of C is a unique linear combination

arul + - -+ apug, a; € F for eachi.

Since a; can take g values for each i, 1 <4 < k, C has q-q---q(ktimes) = ¢"

codewords.

Let G be the k£ by n matrix over F' having uq,...,u; of F™ as its row
vectors. Then, as G has k (= dimension of C) rows and all the k rows form a
linearly independent set over F', GG is a generator matrix of C. Consequently,
C is the row space of G over F. The null space of C is the space of vectors
X € F™ which are orthogonal to all the words of C. In other words, it is the
dual space C* of C. As C is of dimension k over F, C* is of dimension n — k
over F. Let {X1,..., X,,_1} be a basis of C* over F. If H is the matrix whose
row vectors are Xq,..., X, g, then H is a parity-check matrix of C. It is an
(n — k) by n matrix. Thus,

C = row space of G
= null space of H
—{XeF": HX'=0}.
Theorem 5.1. Let G = (Ix|A) be a generator matrixz of a linear code C over

F, where Iy, is the identity matriz of order k over F, and A is a k by (n — k)
matriz over F. Then, a generator matriz of C+ is given by

H = (-A"1,_y)

over F'.
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Proof. Each row of H is orthogonal to all the rows of G since (by block
multiplication, see Chapter 3, Section 3.3.1),

GHt:[Ik|A][ A] — At A=0.

Infk
Recall that in the example following Definition 5.3, k = 3, n = 5, and

11
G1 = (13|A), where A= |1 0 while H1 = (7At|12) = (At|12) over ZQ.
0 1

Corollary 5.1. G = [I;|4] is a generator matriz of a linear code C of length
n iff H = [—AY 1, k] is a parity-check matriz of C.

5.4 Minimum Distance of a Code

Definition 5.4. The weight wt(v) of a codeword v of a code C is the number of
non-zero coordinates in v. The minimum weight of C is the least of the weights
of its non-zero codewords. The weight of the zero vector of C is naturally zero.

Example 5.1

As an example, consider the binary code C; with generator matrix

1 01 1 0

C> has four codewords. Its three non-zero words are u; = 10110, us =
01101, and w3 = u; + uy = 11011. Their weights are 3, 3 and 4, respec-
tively. Hence the minimum weight of Cy is 3. A parity-check matrix of Cq, by
Theorem 5.1, is (as F' = Z)

Hy = [-A'|l;-2] = [A'|I3] =

O = =

1
0
1

O O =
o= O
_— o O

Definition 5.5. Let X,Y € F". The distance d(X,Y), also called the Ham-
ming distance between X and Y, is defined to be the number of places in which
X and Y differ. Accordingly, d(X,Y) = wt(X —Y).
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If X and Y are codewords of a linear code C, then X —Y is also in C and has
non-zero coordinates only at the places where X and Y differ. Accordingly, if
X and Y are words of a linear code C, then

dX,)Y)=wt (X =Y. (5.5)
As a consequence, we have our next theorem.

Theorem 5.2. The minimum distance of a linear code C is the minimum
weight of a non-zero codeword of C and hence it is equal to the minimum
weight of C.

Thus, for the linear code Cy of Example 5.1, the minimum distance is 3.

The function d(X,Y’) defined in Definition 5.5 does indeed define a distance
function (that is, a metric) on F™. That is to say, it has the following three
properties:

For all XY, Z in F",

i d(X,Y)>0,and d(X,Y)=0iff X =Y,
ii. d(X,Y)=d(Y,X), and
i, d(X,Z) <d(X,Y)+d(Y, Z).

We now give another interpretation for the minimum weight of a linear code
C over Fj

Theorem 5.3. Let H be a parity-check matriz of a linear code C over F,.
The minimum distance of C is d if and only if every set of d—1 columns of H
18 linearly independent and some set of d columns of H is linearly dependent.

Proof. Recall that C = {X € F} : HX' = 0} = {X € F} : XH' = 0} &
21Cy + 22Co + - -+ + 2,Cp, = 0 where C1,Cs,...,C, are the column vectors
of H and X = (z1,22,...,2y,). If wt(X) =k, (for instance, if n = 5, X =
(2,0,3,0,—4) and 2C; + 3C5 — 4C5 = 0, it means that (2,0,3,0, —4)H? =

and hence (2,0, 3,0, —4) belongs to code C, and it is of weight 3) then there are
k of the coefficients among 1, xo, ..., z, that are not zero, and hence there
is a linear dependence relation among the corresponding k column vectors,
and in this case wt(X) = k. As X is a codeword, d(C) = d is the minimum &
such that there exists a linear dependence relation between d column vectors
of H. O

5.5 Hamming Codes

Hamming codes are binary linear codes. They can be defined either by their
generator matrices or by their parity-check matrices. We prefer the latter. Let
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us start by defining the [7, 4]-Hamming code Hj. The seven column vectors of
its parity-check matrix H of Hj are the binary representations of the numbers
1 to 7 written in such a way that the last three of its column vectors form I3,
the identity matrix of order 3. Thus,

111 0|1 0 O
H=|1 1 0 1/0 1 0
101 1]0 0 1
The columns of H are the binary representations of the numbers 7, 6, 5, 3; 4,

2, 1, respectively (7 = 22 4 2 4 2%¢tc.,). As H is of the form [—A*|I3], the
generator matrix of Hs is given by

10 0 0|1 1 1
01 0 0[1 10
G=rslAl=LlAl=1 o o 1 ol1 0 1
00 0 1[0 11

Hj is of length 22 — 1 = 7, and dimension 4 = 7 — 3 = 23 — 1 — 3. What is
the minimum distance of H3? One way of finding it is to list all the 24 — 1
non-zero codewords (see Theorem 5.2). However, a better way of determining
it is the following. The first row of G is of weight 4, while the remaining rows
are of weight 3. The sum of any two or three of these row vectors as well as
the sum of all the four row vectors of GG are all of weight at least 3. Hence the
minimum distance of Hs is 3.

5.6 Standard Array Decoding

We now write the coset decomposition of ZJ with respect to the subspace
Hs. (Recall that Hj is a subgroup of the additive group Z7). As ZI has 27
vectors, and H3 has 2* codewords, the number of cosets of Hj in F7 is 27 /2% =
23. (See Chapter 3). Each coset is of the form X + Hs = {X +v: v € H3}
where X € F7. Any two cosets are either identical or disjoint. The vector X
is a representative of the coset X + Hj. The zero vector is a representative of
the coset Hs. If X and Y are each of weight 1, the coset X + Hs # Y + H,
since X — Y is of weight at most 2 and hence does not belong to Hs (as Hs
is of minimum weight 3). Hence the seven vectors of weight 1 in Z together
with the zero vector define 8 = 23 pairwise disjoint cosets exhausting all the
23 x 2% = 27 vectors of ZI. These eight vectors (namely, the seven vectors of
weight one and the zero vector) are called coset leaders.

We now construct a double array (Figure 5.3) of vectors of ZI with the
cosets defined by the eight coset leaders (mentioned above). The first row is
the coset defined by the zero vector, namely, Hs.

Figure 5.3 gives the standard array for the code Hs. If u is the message
vector (that is, codeword) and v is the received vector, then v — u = e is
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the error vector. If we assume that v has one or no error, then e is of weight
1 or 0. Accordingly e is a coset leader of the standard array. Hence to get
u from v, we subtract e from v. In the binary case (as —e =€), u = v + e.
For instance, if in Figure 5.3, v = 1100110, then v is present in the second
coset for which the leader is e = 1000000. Hence the message is u = v + e =
0100110. This incidentally shows that Hs3 can correct single errors. However,
if for instance, v = 0100110 and v = 1000110, then e = 1100000 is of weight 2
and is not a coset leader of the standard array of Figure 5.3. In this case, the
standard array decoding of Hjs will not work as it would wrongly decode v as
1000110 — 0000001 = 1000111 € Hjs. (Notice that v is present in the last row
of Figure 5.3). The error is due to the fact that v has two errors and not just
one. Standard array decoding is therefore mazimum likelihood decoding.

The general Hamming code H,, is defined analogous to Hs. Its parity-check
matrix H has the binary representations of the numbers 1, 2, ..., 2™ — 1 as
its column vectors. Each such vector is a vector of length m. Hence H is an
m by 2™ — 1 binary matrix and the dimension of H,, is (2" — 1) —m =
(number of columns in H) — (number of rows in H). In other words, H,, is a
[2™ — 1,2™ — 1 — m] linear code over Z,. Notice that H has rank m since H
contains I,,, as a submatrix.

The minimum distance of Hl,,, is 3, m > 2. This can be seen as follows.

Recall that H,, = {X S ngfl s HX' = O}. Let i, 7,k denote respectively

the numbers of the columns of H in which the m-tuples (that is, vectors of
length m) 0...011,00...0101 and 0...0110 are present (Figure 5.4).

Let v be the binary vector of length 2™ —1 which has 1 in the i-th, j-th and
k-th positions and zero at other positions. Clearly, v is orthogonal to all the
row vectors of H and hence belongs to H,,. Hence H,, has a word of weight
3. Further, H,,, has no word of weight 2 or 1. Suppose H,,, has a word u of
weight 2. Let 7,5 be the two positions where u has 1. As Hul = 0, by the
rule of matrix multiplication, C; 4+ C; = 0, where C};, C; are the i-th and j-th
columns of H, respectively. This means that C; = —C; = C; (the code being
binary). But this contradicts the fact that the columns of H are all distinct.
For a similar reason, H,, has no codeword of weight 1. Indeed, assume that
H,, has a codeword v of weight 1. Let v have 1 in its, say, k-th position and
0 elsewhere. As v € H,,, Hv = 0, and this gives that the k-th column of H is

0 0 0
H 0 1 1
1 0 0
1 1 0

FIGURE 5.4: Form of the parity-check matrix of H,,(m > 2).
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the zero vector, a contradiction. Thus, H,, has no codeword of weight 1 or 2
but it has a word of weight 3. Hence the minimum weight of H,, is 3.

5.7 Sphere Packings

As before, let F'™ denote the vector space of all ordered n-tuples over the
field F. Recall (Section 5.4) that F™ is a metric space with the Hamming
distance between vectors of F™ as a metric.

Definition 5.6. In F", the sphere with center X and radius r is the set
SXor)={Yer":dX)Y)<r}CF"

Definition 5.7. An r-error-correcting linear code C is perfect if the spheres
of radius v with the codewords of C as centers are pairwise disjoint and their
union is F".

The above definition is justified because if v is a received vector that has
at most 7 errors, then v is at a distance at most r from a unique codeword u
of C, and hence v belongs to the unique sphere S(u,r); then, v will be decoded
as u.
Out next theorem shows that the minimum distance d of a linear code stands
as a good error-correcting measure of the code.

Theorem 5.4. IfC is a linear code of minimum distance d, then C can correct
t=1(d—1)/2] or fewer errors.

Proof. Tt is enough to show that the spheres of radius ¢ centered at the
codewords of C are pairwise disjoint. Indeed, if u and v are in C, and if
z € B(u,t) N B(v,t), that is, if the two spheres intersect, (see Figure 5.5),
then

d(u,v) < d(u, z) + d(z,0)
<t+t=2<d-1<d,

a contradiction to the fact that d is the minimum distance of C. Hence the
two spheres must be disjoint. O

/N

FIGURE 5.5: Case when two spheres intersect.
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Corollary 5.2. The Hamming code H,, is single error correcting.
Proof. As d =3 for H,,, |(d—1)/2| = 1. Now apply Theorem 5.4. O

Theorem 5.5. The Hamming code H,, is a single-error-correcting perfect
code.

Proof. H,, is a code of dimension 2™ —1—m over Zs and hence has 2(2™ ~1-m)
words. Now, if v is any codeword of H,,,, S(v, 1) contains v (which is at distance
zero from v) and the 2™ —1 codewords got from v (which is of length 2™ —1) by
altering each position once at a time. Thus, S(v, 1) contains 14 (2™ —1) = 2™
words of H,, (recall that H,, is single error correcting). As d = 3 for H,,, the
spheres s(v,1), v € H, are pairwise disjoint. The cardinality of the union
of the spheres S(v,1) as v varies over H,, is 22" ~1=™ . 2m = 22" ~1 — the
number of vectors in F™, where n = 2™ — 1. Thus the spheres S(v, 1), v € H,,
are pairwise disjoint and cover the whole space F". Hence H,, is perfect. [

5.8 Extended Codes

Let C be a binary linear code of length n. We can extend this code by
adding an overall parity check at the end. This means, we add a zero at the
end of each word of even weight in C, and add 1 at the end of every word of
odd weight. This gives an extended code C’ of length n + 1.

For looking at some of the properties of C’, we need a lemma.

Lemma 5.1. Let w denote the weight function of a binary code C. Then,
AX,)Y)=w(X+Y)=wX)+wl)—2(X*Y) (5.6)
where X xY is the number of common 1sin X and Y.

Proof. Let X and Y have common 1s in the 7;,1s,...,7,-th positions so that
X %Y = p. Let X have 1s in the 41,...,7, and ji, ..., j,-th positions, and
Y in the 41,...,i, and ly,...,[-th positions (where no jj is an l;). Then,
wX) =p+q w) =p+rand w(X +Y) = ¢+ r. The proof is now
clear. ]

Coming back to the extended code C’, by definition, every codeword of C’
is of even weight. Hence C’ is an even weight code.

Theorem 5.6. Suppose d is odd. Then, a binary [n, k|-linear code with dis-
tance d exists iff a binary [n + 1, k]-linear code with distance d + 1 ewists.

Proof. Suppose C is a binary [n,k]-linear code with distance d. C’ is the
extended code obtained from C. Since wt(X') is even for every codeword X’
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of ', by Lemma 5.1, d(X',Y”) is even for all X', Y’ € C’. Therefore d(C’) is
even. Also d < d(C") < d + 1. By assumption, d is odd. Hence d(C") = d + 1.
Thus, C’ is a binary [n + 1, k]-linear code with distance d + 1.

Suppose C’ is an [n + 1, k]-linear code with distance d + 1. Since d(C') =
d + 1, there exist two codewords X and Y such that d(X,Y) = d+ 1. Choose
a position in which X and Y differ and delete this from all the codewords.
The result is an [n, k]-linear code C with distance d. O

A generator matrix of C’ is obtained by adding an overall parity check to
the rows of a generator matrix of C. Thus, a generator matrix of the extended
code H, is

10 0 01 1 1]0
01 001 1 01
001010 1|1
0001 01 1]1

5.9 Syndrome Decoding

Let C be an [n, k]-linear code over GF'(q) = F'. The standard array decod-
ing scheme requires storage of ¢" vectors of F™ and also comparisons of a
received vector with the coset leaders. The number of such comparisons is
at most ¢" %, the number of distinct cosets in the standard array. Hence
any method that makes a sizeable reduction in storage and the number of
comparisons is to be welcomed. One such method is the syndrome-decoding
scheme.

Definition 5.8. The syndrome of a vector Y € F™ with respect to a linear
[n, k]-code over F with parity-check matriz H is the vector HY'".

As H is an (n — k) by n matrix, the syndrome of Y is a column vector
of length n — k. We denote the syndrome of Y by S(Y). For instance, the
syndrome of Y = 1110001 with respect to the Hamming code Hy is

1
1
11101 0 0 1 1
1101 010 0[=10
1 01 1 001 0 1
0
_1_

Theorem 5.7. Two vectors of F™ belong to the same coset in the standard
array decomposition of a linear code C iff they have the same syndrome.

Proof. Let u and v belong to the same coset a + C, a € F", of C. Then,
u=a+ X and v = a+Y, where X, Y are in C. Then, S(u) = S(a + X) =
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H(a+ X)' = Ha' + HX?® = S(a) (Recall that as X € C, S(X) = HX! =0).
Similarly S(v) = S(a). Thus, S(u) = S(v).

Conversely, let S(u) = S(v). Then, Hu' = Hv' and therefore H(u—v)" =
0. This means that uw — v € C, and hence the cosets u + C and v 4+ C are
equal. ]

Theorem 5.7 shows that the syndromes of all the vectors of F™ are deter-
mined by the syndromes of the coset leaders of the standard array of C. In
case C is an [n, k]-binary linear code, there are 2"~* cosets and therefore the
number of distinct syndromes is 2" . Hence in contrast to standard-array
decoding, it is enough to store 2"~* vectors (instead of 2" vectors) in the
syndrome decoding. For instance, if C is a [100, 30]-binary linear code, it is
enough to store the 279 syndromes instead of the 21°° vectors in Z3%, a huge
saving indeed.

5.10 Error Detection

Consider the binary code C = {0000,1100,1111}. If we change any single
coordinate of a codeword, it does not give another codeword. However, the
same thing is not true if we change two coordinates. For instance, if we replace
both 1s by 0 or both 0s by 1 in 1100, we end up in another codeword. Hence
we say that C can detect one error but not 2 or more.

Definition 5.9. Let C be any code, not necessarily linear. Then, C is t-error
detecting, if any word of C incurs k errors, 1 < k < t, then the resulting word
does not belong to C.

Theorem 5.8. A code C of length n over F of minimum distance d can detect
at most d — 1 errors.

Proof. Suppose X € C,and Y € F",Y # X such that d(X,Y) <t < d. Then,
Y cannot belong to C. Hence C can detect up to d — 1 errors. O

5.11 Sphere Packing Bound or Hamming Bound

We look at the following problems: Given a t-error correcting linear code of
length n over the finite field F = GF(q), where ¢ is a prime power p”(p being
a prime), what is the number of elements of F" = {(x1,x2,...,2,) : ; €
F,1 <i<n} that a (closed) sphere S of radius ¢ with center at a codeword
u can contain? Now any vector in S is at distance k from u, where 0 < k < ¢.
Let nj be the number of vectors in S which are at distance k from wu. Clearly,
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ng = 1. Any vector in S which is at distance 1 from u can be obtained by
replacing any one of the n coordinates of u by a new element of GF(q), and
this can be done in (¢ — 1) ways. Each single coordinate can be chosen in
n ways, as the vector is of length n. Hence there are ()(¢ — 1) vectors in
S which are at a distance 1 from u. Next to find the point in S which are
at distance 2 from u, we change two of the coordinates of u. But then there
are (72’) ways of choosing two coordinates out of the n coordinates of u. So
there are (%) (g — 1)? vectors in S which are at a distance 2 from u. The same
argument extends to the number of points at any distance s, 1 < s < . As
the code is t-error correcting, we have the following result.

Theorem 5.9. The number of points that a (closed) sphere of radius t in the
space F' of n-tuples over the Galois field F, of q elements is

)+ (s (ot (o

Corollary 5.3. (Sphere-packing bound or Hamming bound.) An (n, M,
2t + 1)-linear code C over GF(q) satisfies the condition

M{(g)(q—l)—&-(Z)(q—l)z—i—---—k(?)(q—l)t}gq"...(*)

Proof. As the minimum distance of C is d = 2t+1, the closed spheres of radius
t = (d — 1)/2 about the codewords are pairwise disjoint. The total number of
points of Fy that belong to these spheres is, by virtue of Theorem 5.9, the
expression on the LHS of (*). Certainly, this number cannot exceed the total
number of points of Fy which is ¢". This proves the result. O

Corollary 5.4. If the (n,M,2t + 1)-code is binary, then the sphere packing
bound 1is given by

()« () e () e

Proof. Take ¢ = 2 in Corollary 5.3. O

Consider again the binary case (that is, when ¢ = 2), and let n = 6. Then,
|Z§| = 26 = 64. We ask: Can an (n, M,d) = (6,9,3), code exist in Z§ so that
the closed unit spheres with centers at the 9 codewords contain all the 64
vectors of Z$? The answer is “no” since the nine spheres with centers at each
of the nine vectors can contain at the most M[(}) + (7)] = 9[(}) + (©)] = 63
vectors and hence not all of the 64 vectors of Z$. This leads us to the concept
of a perfect code.

Definition 5.10. An (n, M,d)-code over the finite field F, is called perfect if
the spheres of radius |(d — 1)/2] with the centers at the M codewords cover
all the ¢" vectors of length n over Fy.

In other words, an (n, M,d)-code is perfect iff equality is attained in (*)
(of Corollary 5.3).
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Example of a perfect code Let H be the m by 2™ — 1 matrix, in
which the columns of H are the 2™ — 1 non-zero binary vectors of length m
given in some order. Let H,, be the binary linear code with H as its parity-
check matrix. As H contains I,,, the identity matrix of order m as a submatrix,
rank(H) = m. As the number of columns of H is 2™ — 1, and H,,, is the null
space of H,

dim(H,,) = 2™ — 1 — m. (see [20]).

Taking ¢t = 1, and M = 22”17 in (**) above, we get M((G) + (1) =
22’"717m(1 +n) = 22’”*1*’”(1 +@2m-1)) = 22" =1 = 91 — the RHS of (*%).
We thus conclude:

Theorem 5.10. The binary Hamming code H,, is a single error correcting
perfect code.

Our earlier results show that no binary (6,9,3) perfect code exists. (See
also Exercise 9 at the end of this section). We now look at the general Ham-
ming code C of length m over the field GF(g). The column vectors of any
parity-check matrix of C consists of non-zero vectors of length m over GF(q).
Now the space spanned by any such vector v over GF(q) is the same as the
space spanned by av for any non-zero element e of GF(q), that is, (v) = {av)
for 0 # a € GF(q). Hence we choose only one of these ¢ — 1 vectors as a
column vector of H. As there are ¢"* — 1 non-zero vectors of length m over
GF(q), we have (¢™ — 1)/(q — 1) distinct vectors of length m, no two of which
spanning the same subspace over GF(q). Hence the number of columns of the
parity-check matrix of this generalized Hamming code is (¢™ —1)/(q — 1).

Note: When ¢ = 2, the number of columns of the Hamming code is
(2™ —-1)/(2—1) = 2™ — 1, as seen earlier.

Another Example We now construct the Hamming code H,, with m = 3
over the field GF(3). The elements of GF(3) are 0,1,2 and addition and
multiplication are taken modulo 3. The number of non-zero vectors of length
3 over GF(3) is 3% — 1 = 26. But then for any vector of z of length 3 over
GF(3), 2z is also such a vector. Hence the number of distinct column vectors
of H = Hjs in which no two column vectors span the same space is 26/2 = 13.
Hence H is a 3x 13 matrix of rank 3 and it is therefore of dimension 13—3 = 10.
This shows that H3 is a (13,3, 3)-ternary perfect code. In fact, the condition

(*) is

so that equality is present in (*). Finally, we give the parity-check matrix H
of the code as constructed above:

0000111111111
011100011122 2
101201201201 2
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We observe that the first non-zero entry in each column is 1. This makes H
unique except for the order of the columns. We may as well replace any column
vector v by 2v (where 0 # 2 € GF'(3)).

5.12 Exercises

1. Show by means of an example that the syndrome of a vector depends
on the choice of the parity-check matrix.

2.(a) Find all the codewords of the binary code with generator
101 1 1
10 0 1 1)

(b) Find a parity-check matrix of the code.

matrix {

(¢) Write down the parity-check equations.

(d) Determine the minimum weight of the code.

3. Decode the received vector 1100011 in Hy using (i) the standard array
decoding, and (ii) syndrome decoding.

4. How many vectors of Z} are there in S(u,3), where u € Z5?
5. How many vectors of F™ are there in S(u,3), where u € F", and |F| = ¢?

6. Show that a t-error-correcting binary perfect [n, k]-linear code satisfies

the relation
n n n
=on—k,
() +()++()

More generally, show that a t-error-correcting perfect [n, k]-linear code
over GF(q) satisfies the relation

()« ()= e ()=

7. Show that the function d(X,Y") defined in Section 5.4 is indeed a metric.

8. Show that it is impossible to find nine binary vectors of length 6 such
that the distance between any two of them is at least 3.

9. Let C be a linear code of length n over a field F', and let C be of minimum
weight 5. Can there be two vectors of FY, each of weight 2, belonging to
the same coset of C in F"?

10. Determine the number of errors that the linear code C over F° with
generators 01234, 12044, 13223 can detect.
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11. Show by means of an example that the generator matrix of a linear code
in ZI (that is a code of length 7 over the field Z3) need not be unique.

12. Let C C Z3 be given by:
C = {(1'1,{172,%3) e Z% X1+ 20 + 2(E3 = 0}
A. List all the codewords of C.
B. Give a generator matrix of C.

C. Give another generator matrix of C (different from what you
gave in (ii)).

Calculate the minimum distance d(C) of C.

How many errors can C correct?

= = O

How many errors can C detect?

G. Give a parity-check matrix for C using (c) above.

13. Show by means of an example that the coset leader of a coset of a linear
code need not be unique.

We close this chapter with a brief discussion on a special class of linear codes,
namely, cyclic codes.

5.13 Cyclic Codes

Definition 5.11. A linear code C over a field F is called cyclic if every cyclic
shift of a codeword in C also belongs to C.

To be precise, (ag,a1,az2,...,a,-1) € C = (ap_1,00,01...,a,-2) € C.
This definition of course implies that (a,—2,a,-1,a0,...,an—3) € C, etc.
For example, if n = 4, and (ag, a1, a9, a3) € C, then (as, ap, a1, az), (az,as, ag, a1),
(a1, az2,a3,ap) are all in C.

We now identify the codeword (ag, a1, as,...,a,-1) of C with the polyno-
mial (See Section 3.20)

9(z) = ap + a1z + asx® + -+ a,_12" " € Flz]/(z" — 1). (5.7)

It is more precise to say that we identify the codeword (ag, a1, ..., a,—1) with
the residue class

ap+a1x- -+ ap_12" "+ (2" —1).

But then as mentioned in Remark 3.1, we can identify the residue class with
the corresponding polynomial and do arithmetic modulo (2™ — 1). The identi-
fication given by Equation 5.7 makes xg(x) = z(ap +a1x +- - +a, 12" ') =
apr +a122 Fasxd + - ap_ 12" = ap_1+aor+arz>+asz®+- -+ ay_ox™ !
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to correspond to the word (a,_1,ag, a1, - +an_2), 22g9(x) = ay_o+an_17+
apr®+. .., a, 32" to correspond to the word (@, _2,an_1,a0,...,a,_3) and
so on. Moreover, if g(x) € C, kg(x) also belongs to C for every k € F. Hence if
f(x) € Flz], f(x)g(x) € C (under the identification). In other words, C is an
ideal in the commutative ring F[z]/(z™ —1). Recall that (Theorem 3.13), any
ideal in F[x] is principal and it is generated by the unique monic polynomial
of least degree present in C.

Example 5.2

Let V' be the space of all binary 3-tuples of R. Then, the cyclic codes
in V are the following;:

Code Codewords in C Corresponding polynomials in Rg

Cy (0,0,0) 0

Co (0,0,0) 0
(1,1,1) 14z + 22

Cs (0,0,0) 0
(1,1,0) 1+
(0,1,1) x + x>
(1,0,1) 1+ 22

Cy All of V All of Ry

Note: Not every linear code is cyclic. For instance, the binary code ¢ =
{(0,0,0),(1,0,1)} is the code generated by (1,0,1) but it is not cyclic (as
(1,1,0) ¢C).

To summarize, we have the following result.

Theorem 5.11. Let C be a cyclic code of length n over a field F, and let
R, = Flz]/(z™ —1). Then, the following are true:

i. There exists a unique monic polynomial g(z) of least degree k < n — 1

in C.
ii. C={(g(x)), the ideal generated by g(x) € R,,.

iii. g(x)/(a™ —1).

(For a proof of (iii), see Theorem 3.13.) We observe that the constant term
in g(x) # 0. For assume that g(z) = ag + a;x + -+ + a,_xz" %, and ag = 0.
Then, 2" 1g(z) € C = 2" ayz + -+ + a,_,rx" %) € C (C being an ideal in
R,) = a1 + agz + -+ + agz™ *~1 € C, contradicting (i).

We now determine the generator polynomial of a cyclic code.
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Theorem 5.12. Let C = (g(x)) be a cyclic code of length n, equivalently an
ideal in R,, = F[z]/(z™ —1). Let g(x) = ag+a1x+---+a,_xz" %, a,_1 #0.
Then, a generator matriz of C is

apg aip Qs .  Gp_p 0 0 O 0
0 ap aip am . Ap—f 0 0 0
G: 0
0o 0 0 0 ag a . . Qp—k 0
0 0 0 0 0 ag ay . . Ap—k
Consequently dim C = k.
Proof. (ag,a1,as,...,an—1) € C is equivalent to: g(x) = ap + a1z + -+ +

an_12"" ! € (ideal) C C€ R,. Hence g(z),xg(z),..., 2" 1g(z) all belong to
C.
Claim: The above polynomials are linearly independent over F'. Indeed,
cog(w) + crzg(w) + -+ + cxg_12¥ tg(x) = 0, where ¢; € F, for each i,
0<i<k-1,
= (co+cz+-+ep12F)g(x) =0
= (co+crz+- - +ep12 Y (ag + a1z + - +a,_12" 1) = 0 (the zero poly-
nomial)
= cpag = 0,cpay + crag = 0, cpaz + c1a1 + cpag = 0, ete.
Recall ag # 0 = ¢ = 0 = ¢ = 0 = ¢3 = 0, etc. Hence ¢; = 0 for each 1,
0<i<k-1.
Again, the k polynomials span C. To see this, assume that s(x) € C. Then,
s(z) is a multiple of g(x).
= 3 a polynomial c(z) of degree < (n — 1) — (n — k) = k — 1, say,
c(z) = co + 1w+ -+ cp_12"7 such that s(z) = c(z)g(z) = cog(x) +
cixg(z) + -+ cx_127 1g(z) = s(x) belongs to the row space of the matrix
G. This proves the result.

O

Consider C = (g(z)), where g(x) = 1+ 2% +23. Then, dimC =7—-3 =4. A
generator matrix G of C is obtained by writing the vectors for the polynomials
g(z), zg(x),2%g(z) and 23g(z). Thus, as g(z) = 1+ 0.z + L.22 + 1.2° + 0.2* +
0.2° + 0.25,

1011000
c_l01 01100
oo 10110
0001011
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Hence C is of dimension 4 = number of rows of G. (Note: The last four columns
form a lower triangular non-singular matrix. In the binary case, it is in fact
unit lower triangular).

Example 5.3

Binary cyclic codes of length 7.

If C = (g(z)) is a binary cyclic code of length 7, g(z) € Zs[z] and
g(z)/(x" — 1). Hence, to determine all binary cyclic codes of length
7, we first factorize 2”7 — 1 into irreducible factors over Zy. In fact we
have:

T —1=1+2)(1+z+23)(1 +22 +23).

As there are three irreducible factors on the right, there exist 23 = 8
binary cyclic codes of length 7.

5.14 Dual Codes

Let C be a linear code of length n and dimension k over R. Let C*+ denote
the set of vectors in F™ which are orthogonal to all the codewords of C. If v
and w are orthogonal to u, then any linear combination of v and w over F is
also orthogonal to u. Hence C* is also a linear code. It is the null space of a
generator matrix of C and hence its dimension is n — k.

Suppose C is a cyclic code. The natural question is: Is the code C* also
cyclic? The answer is “yes” as shown below.

Let g(x) be the generator polynomial of C. By Theorem 5.11 g(z)/(2™ —1).
Let 2™ — 1 = g(x)h(z). However, h(z) need not be the generator polynomial
of Ct. For example, consider again the polynomial g(z) = 1 + 22 + 23 of
Example 5.3 which corresponds to the vector (1,0,1,1,0,0,0) € Zs. Now
h(z)=(z"—1)/1+22+23) =1 +2)1+2+23) =1+2%+ 23+ 2% and
this corresponds to the vector (1,0,1,1,1,0,0). The inner product of these
two vectors is 1 and not zero. It turns out that the generator polynomial of
C* is the reciprocal polynomial of h(z).

Definition 5.12. Let h(z) = c¢o + c1o + -+ + c,_12" 1. then the reciprocal
polynomial hr(x) of h(x) is defined by: hr(z) = cp_1+cpn_ox+--+cox" 1 =

2"~ (h(1/x)).

Lemma 5.2. Let u(z) = ag+ayz+---+a,_ 12" 1 and v(x) = bg+byx+---+
by—12" 1 be two polynomials in R,, = F[z]/(z"—1). Then, u(z)v(z) =0 in R,
iff the vector uy = (ag,as,...,an—1) is orthogonal to vi = (bp—1,bp—2,...,bo)
and to all the cyclic shifts of vy.
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<= (apbn—1 + arbp—2 + -+ ap_1bo)x" "t + (a1by—1 + azby_o + ...
+ apbg)z™ + -+ - + (ap—1bp—1 + agbp—2 + .. .an,gbo)xn_Q =0

<= (on rearranging)(aob,_1 + a1by_o + -+ + an_1bg)x" " +
(agbo + arby—1 + asby_o + -+ an_1b)x" 2 + - + (aghp—2
+arby—3+ -+ an—2by + ap_1by—1)z" "2 =0

<= ecach coefficient of xi, 0<it<n-—1, is zero.

<~ uy = (ag,ai,...,a,—1)is orthogonal tovy = (bg, b1,...,bp—1)

and to all the cyclic shifts of v;.
O

Corollary 5.5. (with the same notation as in Lemma 5.2) u(z)v(z) = 0 in
Ry, iff (boyb1, ..., bp_1) is orthogonal to vi = (ap—1,an—2,...,a9) and all its
cyclic shifts of vy.

Proof. a(x)b(x) =0 <= b(x)a(x) = 0(in R,). Now apply Lemma 5.2 O

Theorem 5.13. Let C be a cyclic code of length n with generator polynomial
g(z) = ag +arx+asx? + -+ a,_px" " so that C is of dimension k. Suppose
2" —1 = g(x)h(x), and let hr(x) be the reciprocal polynomial of h(z). If G
and H are respectively the k by n and n — k by n matrices:

(ag a1 as .  an_s 0 0 0 0
0 ay a1 as . Ap—r. 0 0 0
G- 0 . . . . . .. . . . and
0 O O 0 agpn a1 Ap—fk 0
_O 0 0 0 0 ag a1 Ap—k
Ry hp—1 hp_o hg 0 0 0 0
0  hy hi_y hi hg 0 0 0
H— 0 0 . ’
| 0 0 0 0 0 hg . . ht ho

then G is a generator matriz of C, and H is a generator matriz of C+. Con-
sequently, C* is also a cyclic code.

Proof. That G is a generator matrix of C has already been seen in Theorem
5.12. By hypothesis, g(x)h(z) = 2™ — 1 and hence g(z)h(xz) = 0 in R,. This
means, by virtue of Lemma 5.2, every row of G is orthogonal to every row
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of H. Moreover, rank of G = k = dim (C), and rank of H = n — k. Hence H
is a generator matrix of Ct and dim(C*) = (n — k). Further, as the rows of
H are cyclic shifts of its first row, C* is also cyclic. O

Note that of the matrices G and H, the transpose of one is the parity-check
matrix of the linear code defined by the other.

5.15 Exercises

1.

Let G be the generator matrix of a binary linear code C of length n and
dimension k. Let G’ be the matrix obtained by adding one more parity
check at the end of each row vector of G (that is add 0 or 1 according
to whether the row vector is of even or odd weight). Let C' be the code
generated by G'. Show that G is an even-weight code (that is, every
word is of even weight). Determine H ‘L a parity-check matrix of c

Let Cs5 be the code of Example 5.2. Show that Cs is cyclic. Determine
dim(C3) and C3-.

Determine all the binary cyclic codes of length 8.

Determine the binary cyclic code of length n with generator polynomial
14+ x.

Factorice 27 —1 over Zs. Hence determine two cyclic codes each of dimen-
sion 3. Show that these two codes are equivalent.

Let C be a binary code of odd length n and d(C) > 3. Prove that C has
no codewords of weight n — 2.
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Chapter 6

Cryptography

Three may keep a secret, if two are dead.

Benjamin Franklin
Statesman and Scientist

6.1 Introduction

To make a message secure, the sender usually sends the message in a
disguised form. The intended receiver removes the disguise and then reads
off the original message. The original message of the sender is the plaintext,
and the disguised message is the ciphertexrt. The plaintext and the ciphertext
are usually written in the same alphabet. The plaintext and the ciphertext
are divided, for the sake of computational convenience, into units of a fixed
length. The process of converting a plaintext to a ciphertext is known as
enciphering or encryption, and the reverse process is known as deciphering
or decryption. A message unit may consist of a single letter or any ordered
k-tuple, k > 2. Each such unit is converted into a number in a suitable arith-
metic and the transformations are then carried out on this set of numbers. An
enciphering transformation f converts a plaintext message unit P (given by
its corresponding number) into a number that represents the corresponding
ciphertext message unit C' while its inverse transformation, namely, the deci-
phering transformation just does the opposite by taking C to P. We assume
that there is a 1-1 correspondence between the set of all plaintext units P
and the set of all ciphertext units C. Hence each plaintext unit gives rise to a
unique ciphertext unit and vice versa. This can be represented symbolically by

P Lele

Such a setup is known as a cryptosystem.

6.2 Some Classical Cryptosystems
6.2.1 Caesar cryptosystem

One of the earliest of the cryptosystems is the Caesar cryptosystem
attributed to the Greek emperor Julius Caesar of the first century B.C. In
this cryptosystem, the alphabet is the set of English characters A, B, C, ...,

249
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TABLE 6.1: Numerical equivalents of English characters
A B C D E F G H 1 J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N OP QR S T UV W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

X, Y, Z labelled 0, 1, 2, ..., 23, 24, 25, respectively, so that 0 corresponds
to A, 1 corresponds to B and so on, and finally 25 corresponds to Z. In
this system, each message unit is of length 1 and hence consists of a single
character. The encryption (transformation) f : P — C is given by

fla)=a+3 (mod 26), (6.1)
while the decryption (transformation) f=!:C — P is given by
f7t0)=b-3 (mod 26). (6.2)

Table 6.1 gives the 1-1 correspondence between the characters A to Z and
the numbers 0 to 25.

For example, the word “OKAY” corresponds to the number sequence “(14)
(10) (0) (24)” and this gets transformed, by Equation 6.1 to “(17) (13) (3)
(1)” and so the corresponding ciphertext is “RNDB.” The deciphering trans-
formation applied to “RNDB” then gives back the message “OKAY.”

6.2.2 Affine cryptosystem

Suppose we want to encrypt the message “I LIKE IT.” In addition to
the English characters, we have in the message two spaces in between words.
So we add “space” to our alphabet by assigning to it the number 26. We
now do arithmetic modulo 27 instead of 26. Suppose, in addition, each such
message unit is an ordered pair (sometimes called a digraph). Then, each
unit corresponds to a unique number in the interval [0, 272 — 1]. Now, in
the message, “I LIKE IT,” the number of characters including the two spaces
is 9, an odd number. As our message units are ordered pairs, we add an extra
blank space at the end of the message. This makes the number of characters
as 10 and hence the message can be divided into 5 units Uy, Us, ..., Us:

[I=| [LI| [KE] |=I| [T-|
where Uy = I— etc. (here, — stands for space). Now U; corresponds to the

number (see Table 6.1) 8 - 271 + 26 = 242. Assume that the enciphering
transformation that acts now on ordered pairs is given by

C=aP+b (mod 27?) (6.3)

where a and b are in the ring Zy7, @ # 0 and (a, 27) = 1. In Equation 6.3,
P and C denote a pair of corresponding plaintext and ciphertext units.
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The Extended Euclidean Algorithm (see chapter 3 of [25]) ensures that as
(a, 27) =1, (a, 27?) = 1 and hence a has a unique inverse a=! (mod 729) so
that

ac”' =1 (mod 27?).

This enables us to solve for P in terms of C' from the Congruence (6.3). Indeed,
we have

P=a*C-b) (mod27%). (6.4)

As a specific example, let us take a = 4 and b = 2. Then,
C=4P+2 (mod 27?).

Further as (4, 27) = 1, 4 has a unique inverse (mod 27?); in fact 471 = 547
(mod 729) as 4-547 = 1 (mod 27?). (Indeed, if 4z = 1 (mod 729),4(—z) =
-1 =728 = —2x =182 = x = —182 = 547 (mod 729).) This when substi-
tuted in the congruence (6.4) gives

P =547(C —2) (mod 277).
Getting back to P = “I (space)” = 242 in I LIKE IT, we get

C=4-2424+2 (mod 27%)
=241 (mod 27%).

Now 241 = 8 - 27 + 25, and therefore it corresponds to the ordered pair 17 in
the ciphertext. (Here, I corresponds to 8 and Z corresponds to 25.) Similarly,
“LI “KE” and “(space)l” and “T(space)” correspond to SH, NS, YH and
77, respectively. Thus, the ciphertext that corresponds to the plaintext “I
LIKE IT” is “IZSHNSYHZZ.” To get back the plaintext, we apply the inverse
transformation (6.4). As the numerical equivalent of “IZ” is 241, relation (6.4)
gives P = 547 (241 —2) = 243 (mod 27?) and this, as seen earlier, corresponds
to “I (space).” Similarly, the other pairs can be deciphered in order.
An equation of the form C' = aP + b is known as an affine transformation.
Hence such cryptosystems are called affine cryptosystems.

In the Ceasar cryptosystem, given by the transformation f(a) = a + 3
(mod 26), 3 is known as the key of the transformation. In the affine transfor-
mation, given by Equation 6.3, there are two keys, namely, a and b.

6.2.3 Private key cryptosystems

In the Caesar cryptosystem and the affine cryptosystem, the keys are
known to the sender and the receiver in advance. That is to say that what-
ever information the sender has with regard to his encryption, it is shared
by the receiver. For this reason, these cryptosystems are called private key
cryptosystems.
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6.2.4 Hacking an affine cryptosystem

Suppose an intruder I (that is a person other than the sender A and
the receiver B) who has no knowledge of the private keys wants to hack the
message, that is, decipher the message stealthily. We may suppose that the
intruder knows the type of cryptosystem used by A and B including the unit
length of the system, though not the keys. Such an information may get leaked
out over a passage of time or may be obtained even by spying. How does I go
about hacking? He does it by a method known as frequency analysis.

Assume for a moment that the message units are of length 1. Look at a
long string of the ciphertext and find out the most-repeated character, the next
most-repeated character and so on. Suppose, for the sake of precision, they
are U, V, X, .... Now in the English language, the most common characters
of the alphabet of 27 letters consisting of the English characters A to Z and
“space” are known to be “space” and E in order. Then, “space” and E of
the plaintext correspond to U and V of the ciphertext, respectively. If the
cryptosystem used is the affine system given by the equation (see Table 6.1).

C=aP+b (mod 27),
we have 20=a-264+b (mod 27),
and 2l =a-4+b (mod 27).

Subtraction yields
22a = -1 (mod 27) (6.5)

As (22,27) = 1, (6.5) has a unique solution, namely, a = 11. This gives
b=21—4a=21-44 = —23 =4 (mod 27). The cipher has thus been hacked.
O

Suppose now the cryptosystem is based on an affine transformation C' =
aP + b with unit length 2. If the same alphabet consisting of 27 characters
of this section (namely, A to Z and space) is used, each unit corresponds to
a unique non-negative integer less that 272. Suppose the frequency analysis
of the ciphertext reveals that the most commonly occurring ordered pairs are
“CA” and “DX” in their decreasing orders of their frequencies. The decryption
transformation is of the form

P=dC+V (mod 27?) (6.6)

Here, a and b are the enciphering keys and a’, b’ are the deciphering keys.
Now it is known that in the English language, the most frequently occurring
order pairs, in their decreasing orders of their frequencies, are “E(space)” and
“S(space).” Symbolically,

“E(space)” — CA, and
“S(space)” — DX.
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Writing these in terms of their numerical equivalents, we get

(4x27)+26=134 — (2x27)+0 =54, and
(18 x 27) 4+ 26 = 512 — (3 x 27) + 23 = 104. (6.7)

These, when substituted in Equation 6.5, give the congruences:

134 =54a’ +b  (mod 729), and
512 =104a’ + V" (mod 729).

Note that 729 = 272. Subtraction gives
50a’ = 378  (mod 729). (6.8)

As (50, 729) = 1, this congruence has a unique solution by the Extended
Euclidean Algorithm. In fact, a’ = 270 as Equation 6.8 implies that 50a’ =
3% x 14 (mod 3%) = o’ = 33¢, where 50c = 14(mod 3%) = ¢ = 10. This gives
that o = 134 — 54a’ (mod 27%) = b’ = 134(mod 27?), as 27%|54a’ = b =
4 x 27 + 26 = V' = ESpace. Thus, the deciphering keys a’ and " have been
determined and the cryptosystem has been hacked.

In our case, the ged(50, 729) happened to be 1 and hence we had no prob-
lem in determining the deciphering keys. If not, we have to try all the possible
solutions for a’ and take the plaintext that is meaningful. Instead, we can also
continue with our frequency analysis and compare the next most repeated
ordered pairs in the plaintext and ciphertext and get a third congruence and
try for a solution in conjunction with one or both of the earlier congruences.
If these also fail, we may have to adopt ad hoc techniques to determine a’
and b'.

6.3 Encryption Using Matrices

Assume once again that the message units are ordered pairs in the same
alphabet of size 27 of Section 6.2. We can use 2 by 2 matrices over the ring
Za7 to set up a private key cryptosystem in this case. In fact if A is any 2 by
2 matrix with entries from Zs7, and (X, Y) is any plaintext unit, we encipher

itas B=A Eﬂ , where B is again a 2 by 1 matrix and therefore a ciphertext
X/
Y/

unit of length 2. If B = [ } , we have the equations

)=,

and [ﬂ =A"! {)ﬂ . (6.9)
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The first equation of (6.9) gives the encryption, while the second gives the
decryption. Notice that A~! must be taken in Z,7. For A~! to exist, we must
have ged(det A, 27) = 1. If this were not the case, we may have to try once

again ad hoc methods.

i ;] Then, det A = 2, and ged(det 4, 27) =
ged(2, 27) = 1. Hence 27! exists: in fact, 27! = 14 € Zy;. This gives (Recall
A~! = (1/det A)(adjA)), where (adjA) = adjugate of the matrix A = (B;;).
Here, B;; = (—1)""7Aj; where Aj; is the cofactor of aj; in A = (a;;) (see
Chapter 3). Hence

- 3 -1 42 —14] _[15 13
A1:14[_4 2]:{_56 28}:[25 1] over Zy.  (6.10)

As an example, take A =

(The reader can verify that AA™! = A71A = I (mod 27).)
Suppose, for instance, we want to encipher “HEAD” using the above matrix

transformation. We proceed as follows: “HE” corresponds to the vector [ﬂ ,

and “AD” to the vector B] Hence the enciphering transformation gives the

corresponding ciphertext as

A[Z g]Am, Am (mod 27)

E Y] Al
[18

3
= |40 9] (mod 27)

<[ o= R ]

Thus, the ciphertext of “HEAD” is “SNDJ.” We can decipher “SNDJ” in
exactly the same manner by taking A~! in Z,7. This gives the plaintext

AT Eg} , A1 B} , where A7l = Bg 113} , as given by (6.10)

Therefore the plaintext is

i [32] morm =[] 3]

and this corresponds to “HEAD.”
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6.4

Exercises
17 5

. Find the inverse of A = {8 7] in Zoz.

123

. Find the inverse of A = {5 17} in Zag.

. Encipher the word “MATH” using the matrix A of Exercise 1 above as

the enciphering matrix in the alphabet A to Z of size 26. Check your
result by deciphering your ciphertext.

. Solve the simultaneous congruences

r—y=4 (mod 26)
Tr —4y =10 (mod 26).

. Encipher the word “STRIKES” using the affine transformation C =

4P + 7 (mod 27%) acting on units of length 2 over an alphabet of size
27 consisting of A to Z and the exclamation mark ! with 0 to 25 and
26 as the corresponding numerals.

. Suppose that we know that our adversary is using a 2 by 2 enciphering

matrix with a 29-letter alphabet, where A to Z have numerical equiv-
alents 0 to 25, (space)=26, 7=27 and !=28. We receive the message

AMGQTZAFJVMHQV

Suppose we know by some means that the last four letters of the plain-
text are our adversary’s signature “MIKE.” Determine the full plain-
text.

6.5

Other Private Key Cryptosystems

We now describe two other private key cryptosystems.

6.5.1 Vigenere cipher

In this cipher, the plaintext is in the English alphabet. The key consists of
an ordered set of d letters for some fixed positive integer d. The plaintext is
divided into message units of length d. The ciphertext is obtained by adding
the key to each message unit using modulo 26 addition.

For example, let d = 3 and the key be XYZ. If the message is “ABAN-
DON,” the ciphertext is obtained by taking the numerical equivalence of the
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plaintext, namely,
(O][1][0] [13] [3] [14] [13],

and the addition modulo 26 of the numerical equivalence of “XYZ,” namely,
[23] [24] [25] of the key. This yields

23] [25] [25] [36] [27] [39] [36] (mod 26)
= [23] [25] [25] [10] [1] [13] [10]
= XZZKBNK

as the ciphertext.

6.5.2 The one-time pad

This was introduced by Frank Miller in 1882 and reinvented by Gilbert
S. Vernam in 1917. The alphabet ¥ for the plaintext is the set of 26 English
characters. If the message M is of length N, the key K is generated as a
pseudo-random sequence of characters of 3 also of the same length N. The
ciphertext is then obtained by the equation

C=M+K (mod 26)

Notwithstanding the fact that the key K is as long as the message M, the
system has its own drawbacks.

i. There are only standard methods of generating pseudo-random
sequences from out of ¥, and their number is not large.

ii. The long private key K must be communicated to the receiver in
advance.

Despite these drawbacks, this cryptosystem was said to be used in some high-
est levels of communication such as the Washington-Moscow hotline.

There are several other private key cryptosystems. The interested reader
can have a look at these in public domains.

6.6 Public Key Cryptography

All cryptosystems described so far are private key cryptosystems. “This
means that someone who has enough information to encipher messages has
enough information to decipher messages as well.” As a result, in private key
cryptography, any two persons in a group who want to communicate messages
in a secret way must have exchanged keys in a safe way (for instance, through
a trusted courier).
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In 1976, the face of cryptography got altered radically with the invention
of public key cryptography by Diffie and Hellman [36]. In this cryptosystem,
the encryption can be done by anyone. But the decryption can be done only
by the intended recipient who alone is in possession of the secret key.

At the heart of this cryptography is the concept of a “one-way func-
tion.” Roughly speaking, a one-way function is a 1-1 function f which is such
that whenever k is given, it is possible to compute f(k) “rapidly” while it is
“extremely difficult” to compute the inverse of f in a “reasonable” amount of
time. There is no way of asserting that such and such a function is a one-way
function since the computations depend on the technology of the day—the
hardware and the software. So what passes for a one-way function today may
fail to be a one-way function a few years later.

As an example of a one-way function, consider two large primes p and ¢
each having at least 500 digits. Then, it is “easy” to compute their product
n = pq. However, given n, there is no efficient factoring algorithm as on date
that would give p and ¢ in a reasonable amount of time. The same problem
of forming the product pg with p and ¢ having 100 digits had passed for a
one-way function in the 1980s but is no longer so today.

6.6.1 Working of public key cryptosystems

A public key cryptosystem works in the following way: Each person A
in a group has a public key P4 and a secret key S4. The public keys are
made public as in a telephone register with P given against the name A. A
computes his own secret key S and keeps it within himself. The security of
the system rests on the fact that no person of the group other than A or an
intruder would be able to find out S4. The keys P4 and S are chosen to be
inverses of each other in that for any message M,

(PaoSaA)M =M= (S40Py)M.

6.6.1.1 Transmission of messages

Suppose A wants to send a message M to B in a secured fashion. The
public key of B is Sp which is known to everyone. A sends “Pg - M” to
B. Now, to decipher the message, B applies Sp to it and gets Sp(PgM) =
(Sp-Pp)M = M. Note that none other than B can decipher the message sent
by A since B alone is in possession of Sp. O

6.6.1.2 Digital signature

Suppose A wants to send some instruction to a bank (for instance, transfer
an amount to Mr. C out of his account). If the intended message to the bank
is M, A applies his secret key S4 to M and sends S4 M to the bank. He
also gives his name for identification. The bank applies A’s public key Pa
to it and gets the message Pa(SaM) = (Ps o Sq)M = M. This procedure
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also authenticates A’s digital signature. This is in fact the method adopted in
credit cards. O

We now describe two public key cryptosystems. The first is RSA, after their
inventors, Rivest, Shamir and Adleman. In fact, Diffie and Hellman, though
they invented public key cryptography in 1976, did not give the procedure to
implement it. Only Rivest, Shamir and Adleman did it in 1978, two years later.

6.6.2 RSA public key cryptosystem

Suppose there is a group of people who want to communicate among them-
selves secretly. In such a situation, RSA is the most commonly used public key
cryptosystem. The length of the message units is fixed in advance as also the
alphabet in which the cryptosystem is operated. If, for instance, the alphabet
consists of the English characters and the unit length is k, then any message
unit is represented by a number less than 26F.

6.6.2.1 Description of RSA
We now describe RSA.

i. Each person A (traditionally called Alice) chooses two large distinct
primes p and ¢ and computes their product n = pq, where p and ¢ are
so chosen that n > N, where NN is a very large positive integer.

ii. Each A chooses a small positive integer e, 1 < e < ¢(n), such that

(e, ¢(n)) = 1, where the Euler function ¢(n) = ¢(pq) = ¢(p)d(q) =
(p—1)(¢—1). (e is odd as ¢(n) is even).

ili. As (e, ¢(n)) =1, by Extended Euclidean Algorithm [25], e has a multi-
plicative inverse d modulo ¢(n), that is,
ed=1 (mod ¢(n)).
iv. A (Alice) gives the ordered pair (n, e) as her public key and keeps d as
her private (secret) key.
v. Encryption P(M) of the message unit M is done by
P(M)=M° (mod n), (6.11)
while decryption S(M’) of the cipher text unit M’ is given by
S(M')y =M (mod n). (6.12)

Thus, both P and S (of A) act on the ring Z,. Before we establish the cor-
rectness of RSA, we observe that d (which is computed using the Extended
Euclidean Algorithm) can be computed in O(log®n) time. Further powers of
Me and M’ modulo n in Equations 6.11 and 6.12 can also be computed in
O(log® n) time [25]. Thus, all computations in RSA can be done in polynomial
time.
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Theorem 6.1 (Correctness of RSA). Equations 6.11 and 6.12 are indeed
inverse transformations.

Proof. We have
S(P(M)) = (S(M*)) = M (mod n).
Hence it suffices to show that
M =M (mod n).
Now, by the definition of d,
ed=1 (mod ¢(n)).

But ¢(n) = ¢(pg) = ¢(p)é(q) = (p — (g - 1),
and therefore, ed =1+ k(p — 1)(¢ — 1) for some integer k. Hence

Med = ppitke—1(g—-1)
= M - MFP-1D(a-1)
By Fermat’s Little Theorem (FLT), if (M, p) =1,
MP~1 =1 (mod p)
and therefore,
Med = pr. prke=Da-1) = M,(M(pfl))k(qfl) = M.(l)k(qfl) =M (mod p).

If, however, (M, p) # 1, then (as p is a prime) (M, p) = p, and trivially (as p
is a divisor of M)
M =M (mod p).

Hence, in both the cases,
M =M (mod p). (6.13)

For a similar reason,
M =M (mod q). (6.14)

As p and ¢ are distinct primes, the congruences (6.13) and (6.14) imply that

M =M (mod pq),
so that M°? = M (mod n).

O

The above description shows that if Bob wants to send the message M to
Alice, he will send it as M€ (mod n) using the public key of Alice. To decipher
the message, Alice will raise this number to the power d and get M = M
(mod n), the original message of Bob.
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The security of RSA rests on the supposition that none other than Alice
can determine the private key d of Alice. A person can compute d if he/she
knows ¢(n) = (p—1)(¢ — 1) =n — (p+ q) + 1, that is to say, if he/she knows
the sum p + ¢. For this, he should know the factors p and ¢ of n. Thus, in
essence, the security of RSA is based on the assumption that factoring a large
number n that is a product of two distinct primes is “difficult.” However, to
quote Koblitz [30], “no one can say with certainty that breaking RSA requires
factoring n. In fact, there is even some indirect evidence that breaking RSA
cryptosystem might not be quite as hard as factoring n. RSA is the public
key cryptosystem that has had by far the most commercial success. But,
increasingly, it is being challenged by elliptic curve cryptography.”

6.6.3 The ElGamal public key cryptosystem

We have seen that RSA is based on the premise that factoring a very
large integer which is a product of two “large” primes p and ¢ is “difficult”
compared to forming their product pq. In other words, given p and ¢, finding
their product is a one-way function. ElGamal public key cryptosystem uses
a different one-way function, namely, a function that computes the power of
an element of a large finite group G. In other words, given G, g € G, g # e,
and a positive integer a, ElGamal cryptosystem is based on the assumption
that computation of g = b € G is “easy” while given b € G and g € G, it is
“difficult” to find the exponent a.

Definition 6.1. Let G be a finite group and b € G. If y € G, then the discrete
logarithm of y with respect to base b is any non-negative integer x less than
o(@), the order of G, such that b* =y, and we write log,y = x.

As per the definition, log, y may or may not exist. However, if we take
G = Iy, the group of non-zero elements of a finite field F; of g elements and g,
a generator of the cyclic group Fy (see [25]), then for any y € F, o » the discrete
logarithm log, y exists.

Example 6.1

5 is a generator of Fj5. In F}5, the discrete logarithm of 12 with
respect to base 5 is 9. In symbols: logy 12 = 9. In fact, in F7s,

(5) = {5' =5, 5 =8,5 = 6,5" =13,5° = 14,5° = 2,57 = 10, 5° = —1,

59 =125 =9 51t =11,52 =453 =35 =155 =7 56 =1

This logarithm is called “discrete logarithm,” as it is taken in a finite
group.
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6.6.4 Description of ElGamal system

The ElGamal system works in the following way: All the users in the
system agree to work in an already chosen large finite field F,. A generator g
of Fy is fixed once and for all. Each message unit is then converted into a
number of F,. For instance, if the alphabet is the set of English characters
and if each message unit is of length 3, then the message unit BCD will have
the numerical equivalent 262 - 1 + 26 - 2 4+ 3 (mod ¢). It is clear that in order
that these numerical equivalents of the message units are all distinct, g should
be quite large. In our case, ¢ > 263. Now each user A in the system randomly
chooses an integer a = a4, 0 < a < g—1, and keeps it as his or her secret key.
A declares g* € Fy as his public key.

If B wants to send the message unit M to A, he chooses a random positive
integer k, k < ¢ — 1, and sends the ordered pair

(g*, M) (6.15)

to A. Since B knows k, and since g is the public key of A, B can compute
¢**. How will A decipher B’s message? She will first raise the first number
of the pair given in Equation 6.15 to the power a and compute it in F. She
will then divide the second number M g** of the pair by ¢** and get M. A
can do this as she has a knowledge of a. An intruder who gets to know the
pair (g, Mg®) cannot find a = log (g™*) € Fy, since the security of the
system rests on the premise that finding discrete logarithm is “difficult,” that
is, given h and h® in F,, there is no efficient algorithm to determine a.

There are other public key cryptosystems as well. The interested reader
can refer to [30].

6.7 Primality Testing
6.7.1 Non-trivial square roots (mod n)

We have seen that the most commonly applied public key cryptosystem,
namely, the RSA, is built up on very large prime numbers (numbers having,
say, 500 digits and more). So there arises the natural question: Given a large
positive integer, how do we know that it is a prime or not? A ‘primality test’
is a test that tells if a given number is a prime or not.

Let n be a prime, and a, a positive integer with a®> = 1 (mod n). Then,
a is called a square root mod n. This means that n divides (a — 1)(a + 1),
and so, n|(a — 1) or n|(a + 1); in other words, a = +1 (mod n). Conversely,
if @ = £1 (mod n), then a> = 1 (mod n). Hence a prime number has only
the trivial square root 1 and —1 modulo n. However, the converse may not be
true, that is, there exist composite numbers m having only trivial square roots
modulo m; for instance, m = 10 is such a number. On the other hand, 11 is a
non-trivial square root of the composite number 20 since 11 # +1 (mod 20)
while 112 =1 (mod 20).
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Consider the modular exponentiation algorithm which determines a¢
(mod n) in O(log?nlogc) time [25]. At any intermediate stage of the algo-
rithm, the output ¢ is squared, taken modulo n and then multiplied to a or
1 as the case may be. If the square i (mod n) of the output i is 1 mod-
ulo n, then already we have determined a non-trivial square root modulo n,
namely, i. Therefore, we can immediately conclude that n is not a prime and
therefore a composite number. This is one of the major steps in the Miller-
Rabin Primality Testing Algorithm to be described below.

6.7.2 Prime Number Theorem

For a positive real number z, let 7(z) denote the number of primes less
than or equal to . The Prime Number Theorem states that 7(x) is asymptotic
to x/log x; in symbols, m(x) ~ =/ log x. Here, the logarithm is with respect to
base e. Consequently, 7(n) ~ n/logn, or, equivalently, w(n)/n ~ 1/logn. In
other words, in order to find a 100-digit prime, one has to examine roughly
log, 1019° ~ 230 randomly chosen 100-digit numbers for primality (Recall that
any 100-digit number k satisfies the inequalities 109 < k < 10199) (this figure
may drop down by half if we omit even numbers), (cf. [37]).

6.7.3 Pseudo-primality testing

Fermat’s Little Theorem (FLT) states that if n is prime, then for each a,
1<a<n-—1,

a"'=1 (mod n). (6.16)

Note that for any given a, a”~! (mod n) can be computed in polynomial time
using the repeated squaring method [25]. However, the converse of FLT is not
true. This is because of the presence of Carmichael numbers. A Carmichael
number is a composite number n satisfying (6.16) for each a prime to n. They
are sparse but are infinitely many. The first few Carmichael numbers are 561,
1105, 1729 (the smallest 4-digit Ramanujan number).

Since we are interested in checking if a given large number n is prime
or not, n is certainly odd and hence (2, n) = 1. Consequently, if 2~1 # 1
(mod n), we can conclude with certainty, in view of FLT, that n is composite.
However, if 2"~! =1 (mod n), n may be a prime or not. If n is not a prime
but 2! =1 (mod n), then n is called a pseudo-prime with respect to base b.

Definition 6.2. n is called a pseudo-prime to base a, where (a, n) =1, if

i. m is composite, and

ii. a1 =1 (mod n).

In this case, n is also called a base a pseudo-prime.
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6.7.3.1 Base-2 Pseudo-prime test

Given an odd positive integer n, check if 2°~! £ 1 (modn). If yes, n is
composite. If no, 2”1 =1 (mod n) and n may be a prime.

But then there is a chance that n is not a prime. How often does this hap-
pen? For n < 10000, there are only 22 pseudo-primes to base 2. They are 341,
561, 645, 1105, . ... Using better estimates due to Carl Pomerance (See [27]),
we can conclude that the chance of a randomly chosen 50-digit (resp. 100-digit)
number satisfies (6.16) but fails to be a prime is < 1076 (resp. < 10713).

More generally, if (a,n) = 1, 1 < a < n, the pseudo-prime test with
reference to base a checks if a”~! # 1 (mod n). If true, a is composite; if not,
a may be a prime.

6.7.4 Miller-Rabin Algorithm

The Miller-Rabin Algorithm is a randomized algorithm for primality test-
ing. A randomized algorithm is an algorithm which during the execution of
the algorithm makes at least one random choice. It is in contrast with the
deterministic algorithms in which every step has a unique subsequent step. A
randomized polynomial time algorithm is a randomized algorithm which runs
in polynomial time (RP for short). We now give the precise definition of a
randomized algorithm.

Definition 6.3 (RP algorithm). Consider a decision problem, that is, a
problem whose answer is either “yes” or “no.” (For example, given an integer
n > 2, we would like to know if n is prime or composite). A randomized
polynomial time algorithm is a randomized algorithm which runs in polynomial
time in the worst case such that for any input I, the probability that the answer
is “yes” for the input I is > 1/2 and the probability that the answer is “no”
is 0. That is, the algorithm errs in case of output “yes” and makes no error
in case of ouput “no.”

A randomized algorithm for primality test can be devised subject to the
following conditions:

1. The existence of a set S which contains a large number of “certificates”
for the proof of primality of a given number p.

2. The set S can be sampled efficiently.

6.7.5 Horner’s method to evaluate a polynomial

The Miller-Rabin method uses the Horner’s method to evaluate a polyno-
mial at a given point. It is a classical algorithm based on parenthesizing. To
evaluate a polynomial of degree n, Horner’s method uses only n additions and
n multiplications unlike the naive method which uses n additions but 2n — 1
multiplications. This method is also called synthetic division. Let us illustrate
this method by an example.



264 Discrete Mathematics

TABLE 6.2: Horner’s
method
t=p[nJ;
for(i =n — 1;i > 0;——1)
{ t=t*c; t=t+pl[i];

printf(“%d”, t)

Example 6.2 Horner’s method

Let us evaluate p(x) = 3z* — 523 + 622 + 22 + 7 at z = 2. First we
factorize the polynomial p(x) from right, that is, we write:
p(z) = (((3x —5)x+6)z +2)z + 7.

More generally, we write a polynomial p(z) = Y1, p;z’ of degree n as

() = (((..(Pn& + Pn—1)T + Pr—2)T + Ppn—3)x + - -+ )& + Po

Note that there are (n— 1) opening parentheses “(” and (n — 1) closing paren-
theses “)” . Let us write a pseudo-code for Horner’s method:

Input: A polynomial p(z) = Y7, p;z’ of degree n and a constant c.

Output: The value of p(c).
The algorithm is given in Table 6.2.

Clearly, in the loop of the algorithm of Table 6.2, there are n additions
and n multiplications. The Miller-Rabin algorithm is based on the following
result in number theory.

Theorem 6.2. If there is a non-trivial square root of 1 with respect to modulo
n, then n is a composite number. In notation, if the equation

z2=1 (mod n)
has a solution other than +1 and —1, then n is a composite number.

For example, the equation 2 = 1 (mod 8) has a solution x = 3 (other
than 41) because 32 = 1 (mod 8). Here, n = 8, a composite number. In the
algorithm we use the method of converting an integer n into its binary rep-
resentation: Just divide successively n by 2, keeping the remainders, until we
arrive at the quotient 0. To get the binary representation of n, we now sim-
ply write the remainders obtained during the division process, in the reverse
manner. For example, if n = 25, we get the successive remainders: 1,0,0,1,1.
Writing these in reverse order, we get: (11001)s (the subscript says that the
number is in base 2) as the binary representation of 25.
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More generally, the binary representation of a non-negative integer b is
written as

b= (bpbp_1bp_2 ... babibg)a

by is the least significant digit and b, is the most significant digit. We observe
by Horner’s method b = b,2P + b,_12P71 + - -+ 4 b92? 4 b12 + by which is also
equal to (by Horner’s method)

(((coa(bp2 + by—1)2 + bp—2)2 + by_3)2 - - + b1 )2 + bo.

We need one more algorithm to state Miller-Rabin algorithm: It is called the
modular-exponentiation algorithm:

6.7.6 Modular exponentiation algorithm based on repeated
squaring

Input: Three integers a,b,n where a and b are non-negative integers and n is
a positive integers.
Output: a® mod n.

Algorithm: The naive strategy of multiplying a by itself uses b — 1 multi-
plications which is an exponential algorithm because the number of bits to
represent b in binary is [logy b + 1 and b — 1 = 2!°92® — 1 which is an expo-
nential in log, b.

Instead, the algorithm we study is a polynomial algorithm based on ‘‘repeated
squaring.” The algorithm is given in Table 6.3. It is based on the equation
which uses the Horner’s method:

al = q((Co(bp2+4bp—1)2+4bp—2)2+bp—5)2--+b1)24bo
where b = (bybp—1bp—a...bab1by) is the binary representation of b. The
repeated multiplication by 2 in the power of the above equation for a® trans-
lates into repeated squaring.

Complexity of the Modular exponentiation: The loop is executed exactly
p+ 1 times and p = |log, b| + 1, which is polynomial in log, b.

TABLE 6.3: Modular exponentiation

Write b = (bpbp—1bp—2 ... babibg)2 in binary representation.
//initialization of v. At the end of algorithm v = a®.
v=1;//empty product is defined as 1 in the same spirit as 0!=1 or 2° = 1.
for (i = pyi > 0; ——i)
{ v =wv*vmod n;//square v

if (b; ==1)

v=vxamodn //v=albrbr-1)2 p, = ( has no effect on v.

}

return v;
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TABLE 6.4: Certificate of compositeness

int certificate(int a, int n)
{Express n — 1 = (bpbp_1bp—2 ... bab1bg)2 in binary notation
v=1;
for (i =p; i > 0;——1)
t=v; v = v x v mod n;//save in v square v
if (v ==1)&&(t! = 1)&&(t! =n — 1))// non-trivial square root of 17?
return 1;//1=true
if (b;==1)v=v*amodn

if (v! = 1) return 1;//1=true because a"~! mod n # 1 by Fermat’s theorem
return 0://0=false

TABLE 6.5: Miller-Rabin primality testing algorithm
int miller_rabin(int n, int m)
{ for (i =1;i <=m;++1)
{ a=(rand()% (n — 1)+1;
if (certificate(a,n)) return 1;//function call true. surely composite
return 0;//false. Not composite with probability >=1—1/2™

}

We are now ready to present the Miller-Rabin algorithm. The algorithm
uses a function called “certificate(a,n).” The function certificate(a,n) returns
the value “true” if and only if a can be used to certify that n is a composite
number, that is, we can use a to prove that n is composite. Table 6.4 gives
the function “certificate(a,n),” where n is assumed to be an odd integer. For
example, a divisor a # 1,n of an integer n is a certificate of compositeness
of n, because one can indeed verify if a divides n by the usual division. The
Miller-Rabin algorithm is the same as the modular exponentiation, except
that it checks if a non-trivial square root of 1 is obtained after every squaring
and if so it stops with output “true,” by Theorem 6.2. In the algorithm, we
use Fermat’s little theorem in the contrapositive form: If there is an integer
a < n such that a® ! mod n # 1 then n is a composite number. Note that
n—1=-1 (mod n).

We can now write the Miller-Rabin algorithm (See Table 6.5). The algo-
rithm tests if n is a composite number. It generates randomly m integers a
between 1 and n — 1 and tests if each random integer is a certificate for the
compositeness of n. This algorithm is based on the following fact: By repeating
a randomized algorithm several times, the error probability can be reduced
arbitrarily. Of course, repetition increases the running time. Further the algo-
rithm uses the following result:
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Theorem 6.3. For an odd composite number n, the number of certificates for
the proof of compositeness of n is > ”T_l

6.8 The Agrawal-Kayal-Saxena (AKS) Primality
Testing Algorithm

6.8.1 Introduction

The Miller-Rabin primality testing algorithm is a probabilistic algorithm
that uses Fermat’s Little Theorem. Another probabilistic algorithm is due
to Solovay and Strassen. It uses the fact that if n is an odd prime, then
a®=Y/2 = (a/n) (mod n), where (a/n) stands for the Legendre symbol. The
Miller-Rabin primality test is known to be the fastest randomized primal-
ity testing algorithm, to within constant factors. However, the question of
determining a polynomial time algorithm [25] to test if a given number is
prime or not remained unsolved until July 2002. In August 2002, Agrawal,
Kayal and Saxena of the Indian Institute of Technology, Kanpur, India made
a sensational revelation that they have found a polynomial time algorithm for
primality testing which works in O (log'®®n) time (where O (f(n)) stands
for O (f(n) - polynomial in log f(n))). (Subsequently, this has been reduced
to O (log™®n).) It is based on a generalization of Fermat’s Little Theorem
to polynomial rings over finite fields. Notably, the correctness proof of their
algorithm requires only simple tools of algebra. In the following section, we
present the details of the AKS algorithm.

6.8.2 The basis of AKS algorithm

The AKS algorithm is based on the following identity for prime numbers
which is a generalization of Fermat’s Little Theorem.

Lemma 6.1. Leta € Z, n € N, n > 2, and (a, n) = 1. Then, n is prime if
and only if

(X+a)"=X"+a (modn). (6.17)

Proof. We have
n—1 n
X n_ xn Xn—l i n
(v = x4 3 ()

If n is prime, each term (?), 1 <4 < n—1, is divisible by n. Further, as
(a, n) = 1, by Fermat’s Little Theorem, a™ = a (mod n). This establishes
(6.17) as we have (X 4+ a)” = X" +a" (mod n) = X" + a (mod n).
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If n is composite, n has a prime factor ¢ < n. Let ¢*||n (that is, ¢*|n but
¢**1 fn). Now consider the term (Z)X”_qaq in the expansion of (X + a)™.
We have

q

(n> nn—1)-(n—q+1)

- 1-2---q

Then, ¢* }/(Z) For if ¢* (Z) , (as ¢*[|n), (n—1) -+ (n—gq+1) must be divisible
by ¢, a contradiction (As ¢ is a prime and ¢|/(n — 1)(n — 2)...(n — g + 1),
q must divide at least one of the factors, which is impossible since each term
of (n—=1)(n—=2)...(n—q+1) is of the form n — (¢ — k), 1 < k < qg—1).
Hence ¢*, and therefore n does not divide the term (7) X" 9a“. This shows
that (X +a)” — (X™+a) is not identically zero over Z,, (note that if an integer
divides a polynomial with integer coefficients, it must divide each coefficient
of the polynomial). O

The above identity suggests a simple test for primality: Given input n,
choose an a and test whether the congruence (6.17) is satisfied, However,
this takes time Q(n) because we need to evaluate n coefficients in the LHS
of congruence 6.17 in the worst case. A simple way to reduce the number of
coefficients is to evaluate both sides of Equation 6.17 modulo a polynomial of
the form X" — 1 for an appropriately chosen small r. In other words, test if
the following equation is satisfied:

(X+a)"=X"+a (mod X" —1,n) (6.18)

From Lemma 6.1, it is immediate that all primes n satisfy Equation 6.18 for all
values of @ and . The problem now is that some composites n may also satisfy
Equation 6.18 for a few values of a and r (and indeed they do). However, we
can almost restore the characterization: we show that for an appropriately
chosen r if Equation 6.18 is satisfied for several a’s, then n must be a prime
power. It turns out that the number of such a’s and the appropriate r are both
bounded by a polynomial in logn, and this yields a deterministic polynomial
time algorithm for testing primality.

6.8.3 Notation and preliminaries

F, denotes the finite field with p elements, where p is prime. Recall that if p
is prime and h(z) is a polynomial of degree d irreducible over F,, then F,[X]/
(h(X)) is a finite field of order p?. We will use the notation, f(X) = g(X)
(mod h(X), n) to represent the equation f(X) = g(X) in the ring Z,[X]/
(h(X)), that is, if the coefficients of f(X), g(X) and h(X) are reduced modulo
n, then h(X) divides f(X) — g(X).
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As mentioned in Section 6.8.1, for any function f(n) of n, O(f(n)) stands
for O(f( ) - polynomial in log (f )) For example,

( (log (logk n)))
(log n - poly (10 (logn)k)>
=0( (

1og n - poly (klog (1og n)))

log n)

O(log n - poly log log n))

= O(logk"|r€ n) for any € > 0.

All logarithms in this section are with respect to base 2.

Given r € N, a € Z with (a, r) = 1, the order of a modulo r is the smallest
number k such that a® = 1 (mod r) (note that such a k exists by Euler’s
Theorem [6]). It is denoted O, (a). ¢(r) is Euler’s totient function. Since by
Euler’s theorem, a?(") = 1 (mod r), and since a®(®) = 1 (mod r), by the
definition of O,(a), we have O,(a) | ¢(r).

We need the following result of Nair (see [33]) on the least common multiple
(Iem) of the first m natural numbers.

Lemma 6.2. Let LCM(m) denote the lem of the first m natural numbers.
Then, for m > 9, LCM(m) > 2™.

6.8.4 The AKS algorithm

Input, integer n > 1

If (n = a® for @ € N and b > 1), output COMPOSITE

Find the smallest r such that O,.(n) > 4log®n

If 1 < ged(a, n) < n for some a < r, output COMPOSITE

If n < r, output PRIME

For a =1 to [24/¢(r) -logn], do if (X 4+ a)™ # X" + a (mod X" — 1, n),
output COMPOSITE

6 output PRIME

T W N~

Theorem 6.4. The AKS algorithm returns PRIME iff n is prime.
We now prove Theorem 6.4 through a sequence of lemmas.
Lemma 6.3. If n is prime, then the AKS algorithm returns PRIME.

Proof. If n is prime, we have to show that AKS will not return COMPOSITE
in steps 1, 3 and 5. Certainly, the algorithm will not return COMPOSITE in
step 1 (as no prime n is expressable as a®, b > 1). Also, if n is prime, there
exists no a such that 1 < ged(a, n) < n, so that the algorithm will not return
COMPOSITE in step 3. By Lemma 6.1, the ‘For loop’ in step 5 cannot return
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COMPOSITE. Hence the algorithm will identify n as PRIME either in step 4
or in step 6. O

We now consider the steps when the algorithm returns PRIME, namely,
steps 4 and 6. Suppose the algorithm returns PRIME in step 4. Then, n
must be prime. If n were composite, n = ning, where 1 < ny, no < n.
Then, as n < r, if we take a = ny, we have a < r. So in step 3, we would
have had 1 < (a,n) = a < n, a < r. Hence the algorithm would have
output COMPOSITE in step 3 itself. Thus, we are left out with only one
case, namely, the case if the algorithm returns PRIME in step 6. For the
purpose of subsequent analysis, we assume this to be the case.

The algorithm has two main steps (namely, 2 and 5). Step 2 finds an
appropriate r and step 5 verifies Equation 6.18 for a number of a’s. We first
bound the magnitude of r.

Lemma 6.4. There exists an r < 16log® n + 1 such that O,(n) > 4log® n.

Proof. Let r1,...,7; be all the numbers such that O, (n) < 4log®n for each i
and therefore r; divides o; = (n9r: (") —1) for each i (recall that if O, (n) = ki,
then n*: — 1 is divisible by r;). Now for each i, a; divides the product

[41og? n|

p= ][ ='-1

i=1

We now use the fact that Hﬁzl(ni -1) < n'”, the proof of which follows
readily by induction on ¢. Hence,

P< n1610g4n _ (2log n)1610g4n _ 21610g5n

As r; divides o; and «; divides P for eachsz', 1 <1 < t, the lem of the r;’s also
divides P. Hence (lem of the r;’s)< 2161°8" " However, by Lemma 6.2,

lem {1,2,..., [1610g” nl} > o[16 28" "]

Hence there must exist a number r in {1,2,..., (1610g5 n}}, that is, r <
161og” n + 1 such that O,.(n) > 4log®n. O

Let p be a prime divisor of n. We must have p > r. For, if p < r, (then
as p < n), n would have been declared COMPOSITE in step 3, while if
p = n < r, n would have been declared PRIME in step 4. This forces that
(n, r) = 1. Otherwise, there exists a prime divisor p of n and r, and hence
p < r, a contradiction as seen above. Hence (p, r) is also equal to 1. We fiz p

and r for the remainder of this section. Also, let I = |24/¢(r)logn].
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Step 5 of the algorithm verifies | equations. Since the algorithm does not
output COMPOSITE in this step (recall that we are now examining step 6),
we have

(X4+a)"=X"+a (mod X" —1,n)
for every a, 1 < a <. This implies that

(X+a)"=X"+a (mod X" —1,p) (6.19)
for every a, 1 < a <. By Lemma 6.1, we have

(X +a)’ =XP+a (mod X" —1, p) (6.20)

for 1 < a <. Comparing Equation 6.19 with Equation 6.20, we notice that n
behaves like prime p. We give a name to this property:

Definition 6.4. For polynomial f(X) and number m € N, m is said to be
introspective for f(X) if

[FO]" = f(X™)  (mod X" —1, p)

It is clear from Equations 6.19 and 6.20 that both n and p are introspective
for X +a, 1 < a <. Our next lemma shows that introspective numbers are
closed under multiplication.

Lemma 6.5. If m and m' are introspective numbers for f(X), then so
is mm/.

Proof. Since m is introspective for f(X)
(Xm) (f(X)™  (mod X" —1, p)

and hence  [f(X™)]™ = f(X)™ (mod X" —1, p). (6.21)

, we have

~—

Also, since m’ is introspective for f(X

~—

, we have
f (Xm’) — f(X)™  (mod X" —1, p).
Replacing X by X™ in the last equation, we get
F () = f(xXm™ (mod X~ 1, p).

and hence f (Xmm') = f(X™™ (mod X” —1, p) (6.22)

(since X" — 1 divides X™" — 1). Consequently from Equations 6.21 and 6.22

(FE)™™ = f (X)) (mod X" 1, p).

Thus, mm’ is introspective for f(X). O
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Next we show that for a given number m, the set of polynomials for which
m is introspective is closed under multiplication.

Lemma 6.6. If m is introspective for both f(X) and g(X), then it is also
introspective for the product f(X)g(X).

Proof. The proof follows from the equation:
[F(X) - g(X)]" = [F(X)]"[g(X)]" = f(X™)g(X™) (mod X" —1, p).
O

Equations 6.19 and 6.20 together imply that both n and p are intro-
spective for (X + a). Hence by Lemmas 6.5 and 6.6, every number in the
set [ = {nlp7 D, J > O} is introspective for every polynomial in the set

P = {Hl (X +a): eq > 0}. We now define two groups based on the

a=1
sets I and P that will play a crucial role in the proof.

The first group consists of the set G of all residues of numbers in I mod-
ulo r. Since both n and p are prime to r, so is any number in I. Hence G C Z,
the multiplicative group of residues modulo r that are relatively prime to r.
It is easy to check that G is a group. The only thing that requires verification
is that n’p/ has a multiplicative inverse in G. Since n® (™ =1 (mod r), there
exists i/, 0 < i’ < Op(n) such that n’ = n?. Hence inverse of n’ (= n'') is
n(Or(mM=i) " A similar argument applies for p as por(™ = 1. Let |G| = the
order of the group G =t (say). As G is generated by n and p modulo r and
since O,.(n) > 4log?n, t > 4log” n. (Recall that all our logarithms are w.r.t.
base 2.)

To define the second group, we need some basic facts about cyclotomic
polynomials over finite fields. Let Q,(X) be the r-th cyclotomic polynomial
over the field F, [28]. Then, @, (X) divides X" —1 and factors into irreducible
factors of the same degree d = O, (p). Let h(X) be one such irreducible factor
of degree d. Then, F = F,[X]|/(h(X)) is a field. The second group that we
want to consider is the group generated by X + 1, X +2,..., X + [ in the
multiplicative group F* of non-zero elements of the field F'. Hence it consists
of simply the residues of polynomials in P modulo h(X) and p. Denote this
group by G.

We claim that the order of G is exponential in either ¢t = |G| or .

Lemma 6.7. |G| > min {2t -1, Ql},

Proof. First note that h(X)|Q,(X) and Q,(X)| (X" — 1). Hence X may be
taken as a primitive r-th root of unity in F' = F,[X]/(h(X)).

We claim:
(*) if f(X) and g(X) are polynomials of degree less than ¢ and if f(X) # ¢g(X)
in P, then their images in F' (got by reducing the coefficients modulo p and
then taking modulo h(X)) are distinct.
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To see this, assume that f(X) = g(X) in the field F' (that is, the images of
f(X) and g(X) in the field F' are the same). Let m € I. Recall that every
number of I is introspective with respect to every polynomial in P. Hence m
is introspective with respect to both f(X) and g(X). This means that

f(X)"L:f(X’m) (mOd Xr_lap)a
and ¢g(X)" =g¢(X™) (mod X" —1, p).
Consequently, f(X™)=g¢(X™) (mod X" —1, p),

and since h(X) | (X" — 1),
fX™) =g(X™)  (mod h(X), p).

In other words f(X™) = ¢g(X™) in F', and therefore X™ is a root of the
polynomial Q(Y) = f(Y) — g(Y) for each m € G. As X is a primitive r-th
root of unity and for each m € G, (m, r) = 1, X™ is also a primitive r-th
root of unity. Since each m € G is reduced modulo r, the powers X™, m € G,
are all distinct. Thus, there are at least ¢ = |G| primitive r-th roots of unity
X™ m € G, and each one of them is a root of Q(Y'). But since f and g are
of degree less than t, Q(Y) has degree less than ¢. This contradiction shows
that f(X) # ¢g(X) in F. This establishes (*).

We next observe that the numbers 1, 2, ..., t are all distinct in F},. This
is because

l=|2y¢(r)logn| < 2y/rlogn

t
< 2\/77% (as t > 4log®n)

<r (ast <r;recall that G is a subgroup of Z))
< p (by assumption on p).

Hence {1,2,...,1} C {1,2,...,p—1}. This shows that the elements X + 1,
X +2, ..., X +1 are all distinct in F,[X] and therefore in F,[X]/h(X) = F.
If ¢ < [, then all the possible products of the polynomials in the set
{X+1,X+2,...X +t} except the one containing all the ¢ of them are all
distinct and each of them is of degree less than ¢. Their number is 2t — 1 and
all of them belong to P. By (*), their images in F are all distinct, that is,
|G| > 2t — 1. If t > [, then there exist at least 2! such polynomials (namely,
the product of all subsets of {X + 1,...,X +1}). These products are all of
degree at most [ and hence of degree < t. Hence in this case, |G| > 2!. Thus,
|G| > min {2 — 1, 2'}. O

Finally we show that if n is not a prime power, then |G| is bounded above
by a function of .

Lemma 6.8. If n is not a prime power, |G| < (1/2)n2V?.
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Proof. Set I = {n"-p7: 0<i,j<|[t]}. If nisnot a prime power (recall that
p|n), the number of terms in I = (|t] +1)* > t. When reduced mod r, the
elements of I give elements of G. But |G| = t. Hence there exist at least two
distinct numbers in I which become equal when reduced modulo r. Let them
be my, ms with my; > ms. So we have (since r divides (m; — ms)),

X™ = X™  (mod X" — 1) (6.23)
Let f(X) € P. Then,

[FEOT™ = f(X™)  (mod X" — 1, p)
= f(X™) (mod X" —1, p) by (6.23)
—[FXOI™  (mod X7~ 1, p)
— [F(X)]™  (mod A(X), p)(since
W) (X7~ 1))
This implies that  [f(X)]™" = [f(X)]™ in the field F. (6.24)

Now f(X) when reduced modulo (h(X), p) yields an element of G. Thus, every
polynomial of G is a root of the polynomial

Q(Y)=Y™ —Y"™ over F.

Thus, there are at least |G| distinct roots in F. Naturally, |G| < degree of
@1 (Y). Now the degree of Q1(Y")

=ma (as mq > ’ITLQ) (625)
< (np)lV¥  the greatest number in [ (6.26)
n2\v* n
< (2) (p < 5 since pln, and p# n) (6.27)
n2vVt  p2vi
Hence |G| < my < (n?V1/2). O

Lemma 6.7 gives a lower bound for |G|, while Lemma 6.8 gives an upper
bound for |G|. These bounds enable us to prove the correctness of the algo-
rithm. Armed with these estimates on the size of G, we are now ready to prove
the correctness of the algorithm.

Lemma 6.9. If the AKS algorithm returns PRIME, then n is prime.
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Proof. Suppose that the algorithm returns PRIME. Lemma 6.8 implies that
for t = |G| and | = |2/¢(r) logn],

|G| > min{2! — 1,2'}

> min{ -1, glog” MT)}

> min {Qt -1, 2n2V ¢(r)}
1
> min {Zt -1, 2n2\/z} (since t divides ¢(r))

. {22\/5103;71’ n2ViL (since t > (2logn)?)

\%

1
2

TL2

\Y
S

N |

By Lemma 6.8, |G| < (1/2)n2V? if n is not a power of p. Therefore, n = p* for
some k > 0. If £ > 1, then the algorithm would have returned COMPOSITE
in step 1. Therefore, n = p, a prime. This completes the proof of Lemma 6.9
and hence of Theorem 6.4. O

It is straightforward to calculate the time complexity of the algorithm. In
these calculations, we use the fact that addition, multiplication, and division
operations between two m-bit numbers can be performed in time O (m). Sim-
ilarly, these operations on two degree d polynomials with coefficients at most
m bits in size can be done in time O (d - m) steps.

Theorem 6.5. The asymptotic time complexity of the algorithm is
0(10g105 )

Proof. The first step of the algorithm takes asymptotic time 5(10g3 n).

In step 2, we find an r with o,(n) > 4log®n. This can be done by trying
out successive values of 7 and testing if n* # 1(mod r) for every k < 4log®n.
For a particular r, this will involve at most O(log2 n) multiplications mod-
ulo 7 and so will take time 6(log2 nlogr). By Lemma 6.4, we know that only
O(log® n) different 7’s need to be tried. Thus, the total time complexity of
step 2 is O(log” n).

The third step involves computing gcd of » numbers. Each ged computa-
tion takes time O(logn), and therefore, the time complexity of this step is
O(rlogn) = O(log® n). The time complexity of step 4 is just O(logn).

In step 5, we need to verify [24/¢(r)logn| equations. Each equation
requires O(logn) multiplications of degree r polynomials with coefficients
of size O(logn). So each equation can be verified in time O(rlog®n) steps.
Thus, the time complexity of step 5 is O(r\/é(r)log®n) = O(r2 log®n) =
’Ov(loglo'5 n). This time complexity dominates all the rest and is therefore the
time complexity of the algorithm. O
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As mentioned earlier, certain improvements on the time complexity of
the algorithm are available (see, for instance, [26,32]). Our presentation is
based on the lecture given by Professor Manindra Agrawal at the Institute
of Mathematical Sciences, Chennai on February 4, 2003 and reproduced in
the Mathematics Newsletter of Vol. 13 (2003) published by the Ramanujan
Mathematical Society.

We now present some illustrative examples. (The computations have been
done in C++. Readers who require the details of the computation may write
to any of the two authors):

Examples using AKS algorithm
1. Check whether the following numbers are prime or composite.

i. 25
Solution: Here, n = 25. According to step 1 of the algorithm, n = a
for a = 5 and b = 2. Hence, the given number is composite.
ii. 34
Solution: Here, n = 34.
Step 1: Since n # a® ¥ a,b € N and b > 1. Hence, step 1 does not
give anything decisive.

b

Step 2: Smallest value of 7 such that O,.(n) > 4log”n is 113.
Step 3: For a = 2 < r, ged(a,n) = 2, and hence 1 < ged(a,n) < n.
It concludes that 34 is composite.
iii. 23
Solution: Here, n = 23.
Step 1: Since n # a® ¥V a,b € N and b > 1. Hence, step 1 does not
give anything decisive.

Step 2: Smallest value of r such that O,.(n) > 4log®n is 89.

Step 3:
gcd(a,23) =1 for all a < 22 and
gcd(a, 23) is either 1 or 23 for all a > 23. Hence, step 3 does not give
anything decisive.

Step 4: n =23 and r = 89, so n < r. It concludes that 23 is prime.

iv. 31
Solution: Here, n = 31.

Step 1: Since n # a® ¥V a,b € N and b > 1. Hence, step 1 does not
give anything decisive.

Step 2: Smallest value of 7 such that O,.(n) > 4log®n is 107.
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Step 3:
gcd(a,31) =1 for all a < 30 and ged(a,31) is either 1 or 31 for all
a > 31. Hence, step 3 does not give anything decisive.

Step 4 : n = 31 and r = 107, so n < r. It concludes that 31 is prime.

. 271
Solution: Here, n = 271.

Step 1: Since n # a® ¥V a,b € N and b > 1. Hence, step 1 does not
give anything decisive.

Step 2: Smallest value of 7 such that O,(n) > 4log®n is 269.

Step 3: ged(a,271) = 1 for all a < 269. Hence, step 3 does not give
anything decisive.

Step 4: n = 271 and r = 269, so n > r. Hence, step 4 does not give
anything decisive.

Step 5: ¢(r) = 268, and |2/, - logn]| = 264.
For all a, where 1 < a < 264,
(X +a)?™ = X2™ 4 q(mod X269 —1,271).

Step 6: The algorithm outputs that 271 is prime.
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Appendix A: Answers to
Chapter 1—Graph Algorithms I

Exercises 1.13

Exercise 2: We suppose the graph has been already represented by n linked
lists L[] of nodes for i = 1,2,...,n where we assume the declaration struct
node {int v; struct node *succ;}; L[i] is the pointer to the list of all successors
of the node 7 in the graph. Note that a node consists of two fields: v of type
integer representing a vertex and succ is a pointer to a node in linked list.
Here, n is the number of vertices. When we delete the vertex k, we not only
delete the vertex k, but also the arcs going into the vertex k and leaving out
of k. The removed vertex k will point to an artificial node whose “v” field is
—1, which cannot be a vertex. We now write a fragment of a program in C.
The reader is asked to write a complete program in C based on this fragment
and execute on some examples.

/* remove the nodes in the list L[k]*/

struct node *t,*p;/* t,p pointers to node*/

t=L[K];

{while(t!=NULL){p=t; t=t— >succ; free(p)}

t=(struct node *) malloc(sizeof *t);/*create a node pointed by t*/
t— > v=-1; t— >succ=NULL;L[k]=t;

/*scan all other lists to remove the node containing the vertex k*/

int i;
for(i = 1;i <=nji+ +)
if (i1=k)

{t=L[i];while(t!=NULL)if (t— > v==k) {p=t;t=t— >succ; free(p)};else
{t=t— >succ};

Complexity: O(n + m)

Exercise 4: Note that when we remove an arc (directed edge) (i,7), the
vertices ¢ and j remain in the graph. Removing the arc (i,j) means that we
remove the node containing the field j from the liked list L[i]. We now have a
fragment of a program in C. The reader is asked to write a complete program
and execute on some examples.

struct node *t,*p;/* t,p are temporary pointers to node*/
t=L[i];
while(t!=NULL)

279
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FIGURE A.1: A weighted simple graph.

if (t— > v==j){ p=t;t=t— >succ; free(p)};else {t=t— >succ};

Complexity: O(n)

Exercise 6: True. Suppose a spanning tree 7" of G does not contain a bridge
e = xy of G. Since, T is a spanning connected graph it contains the vertices
2 and y. Since the only elementary path between x and y in G is the edge xy
and this edge is not in 7'. This means that in the tree T, the vertices x and y
are not connected by any path, which is impossible.

Exercise 8: The reader is asked to draw the tree obtained by Table A.1.

TABLE A.1: Execution of Prim’s algorithm on graph of Figure A.1

Iteration S # X7 s t S—Su{t} T—TuU{st}
Number

0 - - - {1} 0

(Initial)

1 yes 13 {1,3} {13}

2 yes 35 {1,3,5) (13,35}

3 ves 1 2 {1,3,5,2} {13,35,12}

4 ves 3 4 {1,3,5,2,4} {13,35,12,34}

5 ves 4 6  {1,3,524,6) {13,35,12, 34,46 }
6 ves 6 7 {1,3,5,2,4,6,7}  {13,35,12,34,46,67}
7 ves 7 8 {1,3,524,6,7,8) {13,35,12,34,46,67}
8 ves 79 {1,3,5,2,4,6,7,8,9} {13,35,12,34,46,67,79}
Exit the no

loop

TABLE A.2: Execution of Dijkstra’s algorithm on the graph
of Figure A.2

Iteration S# X y S~ Su{y} DJ[13] D [14] D [15] D [16]
Number

0(Initial) - - {1} 5 00 00 5
1 yes 2 {1,2} 5 12 00 5
2 ves 5 {1,2,5) 5 11 15 5
3 ves 3 {1,2,5,3} 5 11 14 5
4 ves 4 {1,2,53,4} 5 11 14 5

Exit loop no
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Exercise 10: The execution is given in Tables A.2 and A.3. X =
{1,2,3,4,5}. The reader is asked to draw the arborescence using the dad

array.

Exercise 12: Initialization:

1 2 3 4 5 1 2 3 4 5

1/0 5 o0 oo 5 1 /0 5 o0 o0 b

2l o0 0 7 00 o 21 0 0 7 o0 00

=3l oo 0 3 Mi=3]l oo oo 0 3 o

41 0 oo oo 0 oo 41l o0 o0 oo 0 o©

5\6 oo 6 10 0 5\6 11; 6 10 O

2 3 4 5 1 2 3 4
1 0 5 122 o0 5 1 0 5 122 153 5
2100 0 7 o0 00 2100 0 7 103 oo
My=3l 0 oo 0 3 oo M3=3|l 0 oo 0 3 o
41 00 o0 oo 0 o 41 00 o0 o0 0 oo
5\6 11; 6 10 O 5\6 11y 6 93 0
My = Ms

because d*(4) = 0.

FIGURE A.2: A weighted directed graph.

TABLE A.3: Evaluation of dad array in
Dijkstra’s algorithm of Figure A.2

Dad [13] Dad [14] Dad [15] Dad [16]

e
[ QNG NG B NO R
W W Ut = =
e
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FIGURE A.3: A simple connected graph.

1 2 3 4 5
1/0 5 115 145 5
2100 O 7 103 oo
Ms;= 3| 0 o0 0 3 o0
4 0 oo oo 0 oo
5\6 11; 6 935 0
1 2 3 4 5
1/0 0 5 5 0
210 0 0 3 0
INTER=3|0 0 0 0 O
4({0 0 0 0 O
5\0 1 0 3 0

Call to interpath(1,4) prints the intermediate vertices between 1 and 4 in a
shortest path from 1 to 4. The output is 5, 3.

Exercise 14: The following Table A.4 gives us the dfsn of different vertices
of the graph of Figure A .4.

TABLE A.4: Dfsn table of graph of
Figure A.4

1 2 3

4
dfsn [T ][2]3]4

5 6 7 9
[5]6]9]10]8]7]

The following Table A.5 gives the LOW function of different vertices.

TABLE A.5: LOW function table of the
graph of Figure A.4

1 2 3 4 5 6
)

7
low [T[1[1[4[1[5]3

8 9 10
[3[3[5]5]
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FIGURE A.4: A dfs drawing of the graph of Figure A.3.

The evolution of stack of edges (the rows from left to right):

We push the edges, 12,23,31,34. Stack = (12,23,31,34). Now at the ver-
tex 4, low[4] > dfsn[3]. Hence, we pop the edge 34 from the stack,
which is the first biconnected component. Now the stack grows to: stack=
(12,23, 31, 35,51, 52,56, (6,10), (10,9),95). At the vertex 6, low[6] > df sn[5].
Hence, we pop the edges from the stack till and including edge 56, that is,
95,(10,9),(6,10),56 which is the second biconnected component emitted. The
new stack after popping: stack = (12,23,31,35,51,52). The stack grows as: stack
= (12,23,31,35,51,52,37,78,83). At vertex 7, we have low[7] > df sn[3]. Hence,
we pop till the edge 37, that is, 83,78,37 which is the third biconnected com-
ponent. The stack shrinks to stack = (12,23,31,35,51,52). At vertex 2, we have
low[2] > df sn[1]. We pop the edges till the edge 12, that is, 12,23,31,35,51,52
which is the fourth and last biconnected component. Note that the stack is
empty.

Exercise 16: The reader is first asked to draw the graph with direction of
the arcs as given in the exercise. As usual, we process the vertices in increasing
order and we suppose the vertices are listed in increasing order in each list
L[] for 1 = 1,2,...,10. The following Table A.6 gives the dfsn of different

vertices.

TABLE A.6: dfsn table of graph of
Figure 1.38

1 2 3 45 6 7 8 9 10
dfsn [T 2[3[4[5[6[9]10[8]7]

The dfs drawing of the graph is given in Figure A.5.
The following Table A.7 gives the function LOWLINK.
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FIGURE A.5: dfs: strong components algorithm.

TABLE A.7: LOWLINK function table of
graph of Figure 1.38

1 2 3 45 6 7 8 9 10
LOWLINK [1[1[1[4[5][5[3[3]5][5]

We use a stack of vertices. The stack grows from left to right.
Stack=(1,2,3,4). At vertex 4, we find LOWLINKJ[4] = dfsn[4]. Hence, we
pop the vertex 4 which forms a strongly connected component consisting of
a single vertex. Then, we push the vertices 5,6,10,9 onto the stack. Hence
the stack is, stack=(1, 2, 3,5, 6,10,9). While climbing the tree, we find at ver-
tex 5, LOWLINK][5] = df sn[5]. Hence we pop the stack till the vertex 5, that
is, we output: 9,10,6,5 which is the second strongly connected component.
The stack now shrinks to: stack=(1,2,3). The vertices 7 and 8 are pushed
onto the stack. Stack=(1,2,3,7,8). We climb the tree till the vertex 1. Since,
LOWLINK|1] = df sn[1], we pop the stack till the vertex 1, that is, we output:
8,7,3,2,1 which is the third and last strongly connected component.

Exercise 18: After assigning the given orientations, we observe that the
resulting directed graph is without circuits. Hence the topological sort is pos-
sible. As usual, we process the vertices in increasing order and in each linked
list L[¢], with ¢ = 1,2,...,10, the vertices are listed in increasing order. We
perform dfs of the graph by drawing only the tree arcs. We obtain two arbores-
cences in Figure A.6 (the reader is asked to perform the dfs):

Note that the second arborescence consists of only one vertex 4. We
now write the vertices of the forest of arborescence in postfix order:
9,10,6,5,8,7,3,2,1,4. We now take the mirror image, that is, write the postfix
order obtained from right to left: 4,1,2,3,7,8,5,6,10,9. This is the topological
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40

FIGURE A.6: dfs: topological sort.

order required. The reader is asked to draw the entire graph by aligning the
vertices horizontally and verify that there are no arcs going from right to left.

Exercise 20: See the text.

Exercise 22: See the text.
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Appendix B: Answers to
Chapter 2—Graph Algorithms I1

Exercises 2.5

Exercise 2: “Yes.” Let the source vertex be 1. Perform a breadth-first search
(bfs) from 1. This search partitions the vertex set X ={1,2,...,n} as:

X = L(J(l) U L1<1) - U Le(l)(l)

where Lo(1) = {1}, L;(1) = {z|d(1,2) =i}, e(1) is the eccentricity of the
vertex 1. Here, d(1,x) is the minimum length of a path from the vertex 1 to
the vertex x. Let us recall that the length of a path is the number of edges in
it. We use an array D of n reals.

Arrange the vertices of the graph in non-decreasing order of distances from
the vertex 1. For example, write the source vertex 1 first, then the vertices of
Ly(1) (in any order), then the vertices of Ly(1) (in any order), etc., till the
vertices of L.(1)(1). D[1] = 0; //initialization for each vertex z # 1 in non-
decreasing order from the vertex 1 to D[z] = min{ D[y| +c(y,z)ly € L;—1(1) }
//c(y, z) is the cost associated with the edge yz.

Exercise 4: Perform the bfs from each vertex i, with 1 <4 < n. The largest
integer k with Ly (i) # emptyset is the eccentricity of the vertex 7. (See the
solution of Exercice 2.) The minimum of the eccentricities is the radius of the
graph, and the maximum of the eccentricities is the diameter of the graph.
Since we perform n bfs, and the cost of a single bfs is O(max(m,n)), the com-
plexity of the algorithm is O(nmax(m,n)) where n and m are the number of
vertices and edges, respectively, of the graph.

Exercise 6: A bipartite graph is geodetic if and only if it is a tree.

Exercise 8: Let us first draw the Petersen graph (see Figure B.1). The
execution of the algorithm is illustrated in Table B.1. We find an augmenting
path visually. The reader is asked to draw the edges of the matching during
the execution by a color, say, red, the other edges black. Hence, an augmenting
path is an elementary path with alternating colors black and red, beginning
with a black edge and ending with another black edge. Note that the origin
and the terminus of such a path are both unsaturated by red edges. Note that

287
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FIGURE B.1: the Petersen graph.

TABLE B.1: Execution of matching algorithm
Iteration Is there an M augmenting M := (M U P)\

number path P? (MnP)
O(initialization) not applicable {34}
1 “yes,” P = (2,3,4,5) (23,45}
P “yes,” P = (7,2,3,4,5,1) {15,34,27}
3 “yes,” P = (9,7,2,1,5,10) (97,21, (5,10),34 }
4 “yes,” P = (6,8) (97,21, (5,10), 34,68 }

a black edge alone with its end vertices unsaturated is an augmenting path.
The matching obtained at the 4th iteration is a perfect matching.

Exercise 10: My and M are two different perfect matchings of a graph G.
The spanning subgraph whose edge set is M;6My = (M; U Ms) — (M; N Mo)
has connected components either isolated vertices or an elementary cycle of
even length whose edges are alternatively in M; and M,. (The reader is asked
to draw a graph with two different perfect matchings M; and M, and find the
graph (X, MlAMQ))

Exercise 12: A 3-regular graph G has always an even number of vertices.
(Because, the number of vertices of odd degree in a graph is always even.)
Since the graph contains a Hamiltonian cycle C', and the number of vertices
in C is even (note that C' is a spanning connected subgraph of G with the
degree of each vertex in C' is 2), the alternating edges of C form two disjoint
perfect matchings. Now by removing the edges of these two perfect matchings
from the original graph G, we obtain another (third) disjoint perfect match-
ing. Note that these three mutually disjoint perfect matchings exhaust all the
edges of the graph.

Exercise 14: See an example in the text.

Exercise 16: See the reference K. R. Parthasarathy [11]



Appendix C: Answers to
Chapter 3—Algebraic Structures I

Exercises 3.3.7

Exercise 2: The proof is by induction in n. The result is true for n = 1.
Assume the result for n so that

e (3l ).
Then,
et et = () ) (sl )
_ ( cos(na) cosa —sin(na)sina  cos(na) sin(a) + sin(na) cos a)
— sin(na) cos a — cos(na)sina  — sin(na) sin a + cos(na) cos a

= (tp e, et ).

Exercise 4: If

() -GG Y-6E )

and hence

) (5 9\ (13 1 0y _ (00
eosnar= (3 N a(3 st )= (0 0).

Now det(A) # 0 and hence A~! exists. Multiplying by A=, we get

- -1 -1/-2 3
1 1 _
A=BI+8A7 =0= A7 = —(A-3) = ( 5 _1)_<

NN

|
o= m‘w
S——

Exercise 6:
(i) Take

ann a2 - Qip bin bz -+ bip
Am1 Am2 - Omn bnl bn2 e bnp

so that product AB is defined. Now check that (AB)! = B'A".

289
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(ii) Trivially (AB)(B~1A™!) = A(BB™')A™! = AIA™! = I. Similarly,
(B-)(A)(AB) = .

Exercise 8:

(i) Recall that if A = (a;;), A* = (bi;), where b, = a,. Here, iA = (ia,s),
(Recall i = /—1) and therefore (iA)* = (ias,)* = —(ias) = —i(@s) =
—iA*.

(ii) H is Hermitian < H* = H. iH is skew-Hermitian < (iH)* = —iH &
—iH* = —iH < H* = H.

Exercise 10: Let A be a complex square matrix. Then, A = ((A + A*)/2)+
((A— A*)/2). Here, (A + A*)/2 is Hermitian since
2 N 2 2

Further

A— A* *_A*—(A*)*_A*—A__ A— A*
2 - 2 2 2 ’

Uniqueness: Suppose A = Ay + Ay = By + By, where A; and By are Her-
mitian, while By and By are skew-Hermitian. Then, A — By = By — As, and
A; — B is Hermitian while By — Ay is skew-Hermitian. But if a matrix is both

Hermitian and skew-Hermitian, it must be the zero matrix (check!). Hence
Al = Bl and A2 - BQ.

Exercises 3.16

Exercise 2: Closure:

a 0\ (d 0\ [ ad OEG
b 1)\ 1) \bad +0 1 '

Note: As a # 0,a’ # 0,aa’ # 0). Associative law is true for matrix products.

Identity: (é (1)> is of the form (Z (1)> with a =1 and b = 0.

Inverse: The inverse of
a 0 . % 0
bo1) B\ 1)

Exercise 4: Let S = {x1,22,...,2,} be a finite semigroup satisfying both
cancellation laws. Let z; € S. Then, the set {x;x1,z;xo,...,2;2,} is a per-
mutation of S. This is because z;z; = x;x;, = =; = x;. Hence there exists a
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p, 1 < p < n, such that z;z, = ;. We claim that z, is the identity element
of S. This is because if x,, € S, x, = xx; for some k, 1 < k < n. (Note i is
fixed). Hence x,x, = (zrx;)z = (as S is associative) xp(x;xp) = vpx; = .
Thus, z,x, = z,, and similarly z,2; = ;. Indeed, as z;x, = x;, for
any i, z;rpr; = x;x; = (cancelling z;) xzp,x; = xz; for each j. Hence z,
is the identity element of S. Again, for any i, 1 < ¢ < n, there exists
J» 1 < j < nsuch that x;x; = x,. Also, if x2; = xp, vjzx; = xj2p =
xpx; (as xp is the identity element) = (by right cancellation law) z;2; = ).
Thus, x; is the inverse of x;. This proves that S is a group.

Exercise 6: Recall that the order of a non-singular square matrix A is the
least positive integer k such that A* =T

(i) Order is 4.

(11 s (1 2 s (1 3
A_<0 1), then A _<0 1), A _<0 1)

1 k
0 1

(ii) If

and so on, and, in general, A* = (

I. Thus, o(A) = zero.

) and hence for no finite k, A* =

(iii) Order =4

(iv) If A¥ = I, then (detA)* = 1. But this is not the case. Hence o(A) = 0.

Exercise 8: If o(a) = 2,a%> = e, and therefore a = a~!. Conversely, if
a=a"'and a # e,o(a) = 2. Hence if a # a~!,0(a) # 2. Pairing off such
elements (a,a~!), we see that since the group is of even order and o(e) = 1,
the group must contain an odd number of elements, and hence at least one
element must be of order 2.

Exercise 10: Suppose to the contrary that a group G is the union of two
of its proper subgroups, say, G; and Gs. Then, there exist 2 € G \ Gy (and
hence z € G1) and y € G\ Gy (and hence y € G3). Then, look at zy. As
G =G, UGy, 2y € Gy or Go. f vy = 21 € Gy, then y = 272y € Gy, a
contradiction. A similar argument applies if zy € G.

Exercise 12: The set of all invertible 2 x 2 real matrices or the set of all
diagonal 2 x 2 matrices with real entries and determinant not equal to zero.

Exercise 14:

(1) (123)(456) = (12)(13)(45)(46), a product of an even number of transpo-
sitions and hence the permutation is even.
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(i) (1516)(2)(3) = (15)(1)(16)(2)(3) = (15)(16) is even. [Note: The numbers
that do not appear are all fixed]

(iii)
@ A 2):(125)(34)(67)(89):(12)(15)(34)(67)(89)

is an odd permutation, as it is a product of an odd number, namely 5,
of transpositions.

Exercise 16: Let a,b € G. Then, a x b also belongs to G as axb = —1 =
a+b+ab=—-1= (a+b)(b+1) =0 that is, a = —1 or b = —1 which is
not the case. So closure property is satisfied. A routine verification shows that
(a*b)*c=ax(b*c) for any three a,b,c € G. Hence associative property is
true. Further, a * 0 = 0 % a = a. Hence 0 acts as the identity in G. Finally,
given a € G, we have a* ((—a)/(1+a)) =a— (a/(1 +a)) — (a®>/(1 +a)) =0,
and hence (—a)/(1 + a) is the inverse of a. G under * is commutative. Hence
right inverse of a is automatically its left inverse.

Exercise 18: 0 = (iyiy...4,). Hence 02 = (iyigis ... ),0° = (i1igis...) and
so 0" = identity. Hence o(o) = r.

Exercise 20:

Q
—
@
)
Il
N
—
EN V)
W w
N >
N~
N
[N
— o
NNV
[GURTEN
N
N\
W =
— N
o o
NN
N
Il
>

51)=a"'fy(1) =a"'BB) =a "' (4) =2,

(1 2 3 4\ (3 1 2 4\ (1 2 3 4
by _(2 1 4 3)(1 2 3 4)‘(1 4 2 3>'

Exercise 22: For m,n € Z, e - ¢ = ¢+t m 4+ n € Z. Further €0 = 1
is the identity element. e - e~ =1 = e~ is the inverse of ™, —n € Z.
Associative law is trivially true. Hence the first part. Now consider the map
¢ e™ — n¢is 1-1. Since ¢(e™) = ¢(e™) = n = m = " = ™M,
Trivially, ¢ is onto. ¢ is a homomorphism. Since for m,n € Z, ¢(e'™ - ™) =
ot = n4m = ¢(e™) + d(e™). Hence ¢ is a 1-1, onto homomorphism
from the multiplicative group {e‘™ : n € Z} to the additive group (Z, +). This

establishes the isomorphism. The given group is cyclic as (Z, +) is.

(iii)
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Exercise 24: The map ¢ : (Z,+) — (27, +) from the additive group of inte-
gers to the additive group of even integers is a group isomorphism. (Check).

Exercise 26: Suppose there exists an isomorphism ¢ from (R* ) onto
(C*,-). Then, ¢(1) = 1 and hence ¢(—1) = —1 since (—1)2 = 1 in R* and
C*. But then i? = —1 in C* while there exists no element a € R* with a® = —1.

Exercise 28: Note: The center of S3 consists of identity element only

(Table C.1).

TABLE C.1: Numerical equivalents for English

characters

e (12) (23) (31) (123) (132)
e e (12) (23) (31) (123) (132)
(12) (12) e (123) (132) (23) (13)
(213)  (23) (132) e (123)  (13) (12)
(31) (31)  (123) (132) e (12) (23)
(123) (123) (13) (12) (23) (132) -

Exercise 30: If G is Abelian, trivially C(G) is G. If C(G) = G, then every
element of G, that is, of C'(G) certainly commutes with all elements of G.

Exercise 32: ab = ba < aba~1b~! = e and hence [G,G] = {e}.

Exercise 34: For a € A and b € B, aba"'b~! = (aba"')b~! € B (as B
is normal in G and so aba~! € B). Similarly aba=1b~! = a(ba'b71) € A
as a~! € A and as A is a normal subgroup of G, ba~'b~! € A and hence

aba~'b~! € A. Thus,

aba bt € AN B = {e}

= ab = ba for all a,b € G

= @ is an Abelian group.
Exercise 36: Let H be a subgroup of index 2 in G. Then, for all h €
H, hH = H = Hh, while if g € G\H,G = HU Hg = H U gH, where the

unions are disjoint.

Exercise 38: Follows immediately from Exercise 36.
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Exercises 3.19

Exercise 2: Routine verification.

Exercise 4: Result is true for n = 2 (from the axioms of a ring). Assume
that a a(by + by + -+ + b,) = aby + aby + ---ab,. Then, for elements
a, bl, bg, ey bn, bn+1 of A,
a(br + -+ by +bpg1) = alby + -+ bn) + (bny1)

=a(by + -+ by) + ab,1 (by the axioms for a ring)
= (aby + - - - + ab,) + ab,41 (by induction hypothesis)
=aby + -+ + ab,, + ab,41 (by the associative property of +).

Exercise 6: Suppose v is a unit and ux = 0. As u~! exists, v~ ! (ur) = 0 =
(ulu)r=0=14-2=0= 2 =0 (14 is the unit element of A). Similarly,
zu=0=2=0.

Exercise 8: Look at the elements 1,1 4+ 1,...,1 4+ 1+ --- 4+ 1(p times).
These elements must all be distinct. If not, there exist r,s with 0 <r < s <p
such that 14+ 1+ .-+ 4 (r times) =14+ 1+ -+ 4 1(s times) = 1 + 14 --- +
1(s—r times) = 0. So there must exist a least positive integer k(< p) such that
14+14---+1(k times) = 0 = k|p, a contradiction to the fact that p is a prime.
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4—Algebraic Structures I1

Exercises 4.8

Exercise 2: If f(z) = a9 + a1z + -+ + apz™ € Rz],a, # 0, and
g(x) = by + bix + - + byz™ € Rlz],b, # 0 are polynomials of degree n,
then b, f(x) — ang(x) is a polynomial in R[z] of degree < n. Hence the result.

Exercise 4: As in the Hint, if

100 0 0 0
€11 = 0 0 O yeeoy €33 = 0 0 O s
0 00 0 0 1

then if

ail @iz ais
A= lax azx ax
asy asz as3

is any real matrix, then A = Z?,j:l a;je;;. Further, if A = 0, all the 32
coefficients a;; are zero. Hence the 3% matrices e;; are linearly independent
and span the space of all 3 x 3 real matrices over R. Hence dimension of the
vector space of all real 3 x 3 matrices over R is 32. Now generalize to m x n
matrices.

Exercise 6: Let V' be the vector space of all real polynomials in X. Suppose
V' is finite dimensional. Let n be the maximum of the degrees of the polyno-
mials in a basis B of V. As every polynomial of V' is a linear combination of
the polynomials in B, each polynomial in V is of degree n, at the most, a
contradiction.

Exercise 8: Note v; = 3vs — vy and vy = wv3 — vg. Hence the space
(v1,va,v3,v4) = (va,v3) (here (uj,us,...,u,) stands for the space spanned
by {u1,us,...u,}). Now v; and vy are linearly independent over R since oth-
erwise one would be a scalar multiple of the other, (here the scalars are the
elements of R). Hence dim(vy, va,v3,v4) = 2.
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Exercises 4.12

Exercise 2: The given system of equations is equivalent to

4 4 3 =5\ /Xi 0
11 2 =3||[x2| |o
2 2 -1 0 X; | T o
11 2 -2/ \4x, 0

Perform the row operations: Ry — (Rs + R3 + R4). Followed by R3 — (Ra +
Ry). These give

00 0 0\ /X 0
11 2 =3||x| [o
00 -5 5 |[xs] |0
11 2 —2/\Xx, 0

The matrix on the left is of rank 3 and hence there must be 4(number of
columns)-3(rank)=1 linearly independent solution over R.

The given equations are equivalent to X7 + Xs +2X35—-3X, =0, —5X35+
5X4 =0, X1+ X9+2X3—-2X,=0= X3 =X,

Subtracting the 3rd equation from the 1st, we get Xy = 0. Hence X3 =
X4 = 0. So we can take (1,—1,0,0) as a generator of the solution space.

Exercise 4(a): The given set of equations is equivalent to AX = B, where
2 3 -5 4 X; -8
131 -4 5 I P.C I
A=17 3 2 1] A= |x,| ™ B=1s
4 1 -1 3 Xy 20
The Schur complement of A is
3
1 -4 5 2
Ai=1{3 =2 1| -3 -5 4)
1 -1 3 4
2
1 —4 5 3 =0 6 3 5 1
_ _ |2 =35 — =15 3
=13 21 TS U =52 5 13
1 -1 3 6 —-10 8 -5 9 =5

The Schur complement of A; is Ay, where
ooy (B
Ay = (; 5>_ e -
7
—76
-1 %)
2 .
4=



Appendiz D 297

The Schur complement of As is

where L3 = (1) is unit lower-triangular, and Us = (1—73) is upper-triangular.

This gives
4y = (

<

(Sl Ol =
—= O
—
~— N
o 0
S o
|
\1‘5\1‘\1
= Qﬂ‘\‘]
N—— @ =N
v

= LyUs.
Therefore,
1 0 0 *77 % -1
A =(%2 10 0 8 =) =r,0U.
10 1 13
7 z /N0 0 &
Consequently,
O 00N 3 5 4
s 1 0 0 -7 7
2 0 5 5 -1
A=1|z7 15 2 2 _w | =LU
5 = 1 0 o 0 8 ==
10 1 13
2 L 1 3/ N0 0 0 7

Note that L is lower unit-triangular and U is upper-triangular.
Therefore, the given system of linear equations is equivalent to LUX = B.
Set
Y
Y,
Y3
Yy

UX =Y =

We then have LY = B. We now solve for Y and then for X. Now LY = B
gives

1 0 0 0 Y; -8
5 1 00w |-8
% % 1 0 Ys | | 56
o L 1 9)\Y 20
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3 7 15
=Y = —8,§Y1 + Y, = —8,51/1+7Y2+Y3 = b6 and
10 1
2Y; + 7Y2 + §Y3 + Y, =20
528 —52

= Yl = 78,Y2 = 4,Y3 = 7, andY4 = T
We now determine X from the equation UX =Y.
UX =Y =2X;+3Xy—5X3+4X;,=-8

-7 7
X4 =Xy — Xy =4
5 2+2 3 4
76 528
8Xy — — Xy =—
ST M Ty
1 _
13, B2
7 7

Solving backward, we get Xy = —4, 8X3 — (76/7)(—4) = (528/7) = 8X3 =
(528 — 304)/7 = 32 = X3 = 4. Hence ((—=7)/2)Xs + (7/2) X5 — X4 = 4 gives
(=7)/2) Xz + 14 +4 =4 = X, = 4.

Finally, 2X7 + 3X3 — 5X3 + 4X, = 8 gives X; = 8. Thus,

X1 8
Xl | 4
X=lx|=1|4
Xy —4
4(b): Similar to 4(a). Answer:
X, 2
Xo| =13
X3 7

4(c): Since there are zeros in the principal diagonal of the matrix A, inter-
change the first two and the last two equations to avoid zeros in the main
diagonal.

Exercises 4.15

Exercise 2: Let Fy = GF(2°) and F, = GF(23). If F, is a subfield of
Fy, then F3, the multiplicative group of the non-zero elements of F5 should
be a subgroup of F;. But |Fj| =25—1 =31, and |F;y| =2%—1=7and 71 31.

Exercise 4: X3 — X = X(X8—1) = X(X4—1)(X*+1) = X(X - 1)(X +
DX2+1) (X +1) = X(X +2)(X +1)(X?+1)(X*+1). Note that X%+ 1
is irreducible over Zs since neither 1 nor 2 is a root X2 + 1 in Zs. A similar
statement applies to X* + 1 as well.
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Chapter 5—Introduction to Coding
Theory

Exercises 5.12
Exercise 2(a): Take

1 0 1 1 1
G_<1 00 1 1) over Zsg.

G is of rank 2, and so H is of rank 5 —2 = 3 and each row of H is orthogonal
to every row of G. So H can be taken either as

1 1.0 1 0 1 1 0 0 1
Hi=|1 0 0 0 1)or H=(|1 0 0 0 1
01 0 0 O 01 0 1 1
Let
1
0
X=11
1
1
Then, S(z) with respect to Hj is
0
HXxT=10],
0
while S(z) with respect to Hj is
0
HXT =10
1

Solutions to 2(b), 2(c) and 2(d) are similar to the steps in Example 5.1.
Exercise 4: u has 7 coordinates. s(u, 3) contains all binary vectors of length
7 which are at distances 0, 1,2 or 3 from u and hence their number is 1+ (I) +

(;) + (;) =147+ 21+ 35 = 64. [Here, (D arises from vectors which are at a
distance 1 from u etc.]
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Exercise 6: Let C be such a code.Then, |C| = 2. Further, the spheres with
centers at these 2¥ codewords and of radii ¢ cover Z%, where |Z%| = 2". Each
codeword is of length n. Hence, as in the solution of Exercise 2, a sphere of
radius ¢ with center at a codeword will contain 1+ () + (5) +- -+ () vectors
of Z%. Hence, as there are 2* spheres,

(0)- () ()

The general case is similar.

Exercise 8: Assume the contray, that is, there exists a set of 9 vectors in
75 (the space of binary vectors of length 6) which are pairwise at a distance
at least 3. Look at the last two coordinates of these 9 vectors. They should
be from {00,01,10,11}. As there are 9 vectors, at least one of these pairs
must occur at least 3 times. Consider such a set of 3 vectors which have the
same last two coordinates. These coordinates do not contribute to the dis-
tance between the corresponding three vectors. Hence if we drop these last
two coordinates from these 3 vectors of Z$, we get 3 binary vectors of length
4 such that the distance between any two of them is at least 3. This is clearly
impossible. This contradiction proves the result.

Exercise 10: Let e; = 01234,e, = 12044 and ez = 13223. Note that
e3 = e1 + e over F°. Hence Span(ey, ez, e3) = Span(ey, ea). Now write down
the (5 x 5) — 1 = 24 non-zero codewords of the code and find the minimum
weight d. Then, the code can detect d — 1 errors (Refer to Theorem 5.8).

Exercise 12:

A. Since there is a single constraint dim(C) = 3 — 1 = 2. Hence
IC|] = 3% = 9. To get all 9 words, give all possible 32 val-
ues to the pair (x2,z3). These are (0,0),(1,0),(2,0); (0,1),(1,1),(2,1);
(0,2),(1,2),(2,2). These give, as x1 + xo + 2x3 = 0, the triads,
(07070)a(2’170)a(1’270)a(17071)a(Ovlvl)a (2a2,1)7(2a0’2)7(17172)7(07272)’

B. As dim(C') = 2, any two linearly independent codewords over Zsz would
form a generator matrix for C. For instance,

101
Gl_(l 1 2>'
101
G2:<2 2 1)'

D. d = minimum weight of a non-zero codeword = 2 (Look at the nine
codewords in (A)).
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E. C can correct (d —1)/2| = 0 error.
F. C can detect d —1 =2 —1 =1 error.

G. Rank of Gy = 2 = k. Hence rank of the pairity-check matrix H is
3 —2 = 1. Every row of H is orthogonal to every row of G over Zs.
Hence we can take H = [112].

Exercises 5.15

Exercise 2: Cs is cyclic since the three non-zero codewords are the cyclic
shifts of any one of them. For example, (1,1,0) — (0,1,1) — (1,0, 1).
Since one of them is a linear combination (over Zs) of the other 2, as a gen-
erator matrix for Cz, we can take any two of these codewords. Hence

110
G_(011)

is a generator matrix of C5. As rank(G) = 2, its null space is of dimension 1.
Hence the dual code of G, namely G+ = [1 1 1], and so G is also cyclic and
dim(G+) = 1.

Exercise 4: The codeword 1+ x corresponds to the n-vector (1,1,0,...,0).
Hence the generator matrix of the binary code generated by 1 + z is

11 0 0 ... 0
01 1 0 0
00 1 1 ...0
0 0 0 1 1

(Note: G is an (n — 1) x n matrix of rank n — 1. Hence the dimension of the
cyclic code is n — 1).

Exercise 6: Suppose C contains a word X of weight (n—2). Then, C contains
exactly two zeros and all the rest are 1s. Cyclically shift X and get the word
Xo = (zo,1,...,2n—1), where 29 = 0 = x;, and z; = 1 for every j # 0,1.
Cyclically shift X, until z; moves to the O-th position. This can be effected in
n — 4 shifts. These n — ¢ shifts will not move the first zero of X to the second
zero of Xg. For this requires ¢ shifts, and this means that i = n — 7 = n is
even, a contradiction to our assumption that n is odd. Let X; be the new word
obtained after these n —i shifts. Clearly, d(Xy, X1) = 2, again a contradiction
to our assumption that d(C) > 3.
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Appendix F: Answers to
Chapter 6—Cryptography

Exercises 6.4

Exercise 2: det A = 12.7 — 5.3 = 204 — 15 = 189 = 15 in Zsgg, and hence it
is prime to 29. Now 15 x 2 = 30 = 1(mod 29). Hence (detA)™! = 1571 =2 in
Zing. Therefore

-1 1 Ay 17 =3\ (5 23
A7 = (detA)" (adjA) =2 (5 12) =19 24
in Zgg.
Exercise 4: The given equations are
T 4 1 -1
A (y) = (1(]) , where A= (7 _4> .

Now detA = 3 which is prime to 26. Hence 37! exists in Zog. In fact 37! =9
as 3-9 =1 (mod 26). Therefore,

-1 -4 1\ (=36 9
AT =9 (—7 1) \-63 9
in Zog. One can check that AA™ = A=A = I, in Zog.

Exercise 6: “MHQV” should be deciphered as “MIKE.” Let the deciphering

matrix be
a b
c dj’

¢ D)2 = 9(E)-()

where the suffix n in M, stands for the numerical equivalence of M,
namely, 12, etc. (See Table 6.1).Thus, we have

E ()= () = o)) -()

Then,
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These give a pair of simultaneous linear equations in a, b and ¢, d, namely,

12a 4+ 7b = 12, 16a + 21b = 10 and
12¢ + 7d = 8,16¢ + 21d = 4.

Note that we have to solve these equations in Zsyg, and since 29 is a prime,
Zag is actually a field. We can add and subtract multiples of 29 to make our
calculations become easier but must avoid multiplication by 29.

Now the first set of equations is equivalent to

12a + 7b = 12,

and 16a — 8b = 10,
= 48a + 28b = 48,
48a — 24b = 30.

Subtraction gives 52b = 18(mod 29) = —6b = 18 = b = -3 = 26 (all
congruences are modulo 29). Now 12a + 7b = 12 gives 12a — 21 = 12 = 12a =
33=4=3a=1=a=10.

We now consider the second set of equations, namely, 12¢ + 7d = 8 and
16¢c + 21d = 4. Multiply the first equation by 3, and subtract from it the
second equation. This gives 20c = 20 = ¢ =1 and hence d = 16.

Hence the deciphering matrix is

4 fa b\ _ (10 26
=)= %)

To simplify over-working, we can take

10 -3

-1 _

A= <1 16) '

We now start deciphering pairs of letters in succession from left to right in the
ciphertext. The first pair in the ciphertext is “AM,” and its corresponding

column vector is (109> . Hence it represents the plaintext

(110 Ig)) (109> = (__15670> (as 19 = —10(mod 29))

- (114> (as — 160 = 14(mod 29))

= “BO”.

Thus, “AM?” represents to “BO” in the plaintext. In a similar way, it can be
checked that the following is true:
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Ciphertext Corresponding Plaintext Pair

AM BO
GQ MB
TZ IN
AF ow
JV ?(space)
MH MI
Qv KE

Hence the plaintext is: BOMBINOW? MIKE.
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(0,1) matrices, 127
1-factor, 113

A full M alternating tree, 133
a useful trick for traversals, 23
activities or tasks, 77

acylic graph, 9

adjacency list, 5

adjacency matrix, 2

Algebraic Structures, 147-224
All-pairs shortest path algorithm, 35
ancesstor, 22

ancestor, 52

approximate algorithm, 93
arborescence, 24

back edges, 53

Benjamin Franklin, 249

bi-stochastic matrix, 128

biconnected component, 59

biconnected graph, 59

block, 59

breadth first search, 103

breadth first search number, 105

Breadth-first or Level-order search, 105

Breadth-First Search, 103

breadth-first search, 50

bridge, 58

BSC, see binary symmetric channels,
226

Caley’s theorem, 13
Carmichal number, 262
center, 43
channels

binary symmetric, 226
characterictic function, 144
characteristic vector, 144
Claude Berge, 118
code

dimension, 227

extended, 236
generator matrix, 227, 241
Hamming, 227, 231
Hamming weight, see minimum,
230
linear, 227, 231
sphere packings, 235
weight
minimum, 230
Coding theory, 225-247
convex combination, 130, 131
critical path, 78
critical tasks, 78
Cryptography, 249-274
cryptosystem, 249
Caesar, 249
cryptosystems
affine, 251
cut edge, 58
cut vertex or articulation vertex, 58

dad or mom, 22
decode
standard array, 232
syndrome, 237
decryption, 249
depth-first search, 50
depth-first search number, 52
descendant, 22, 52
descending dotted arcs, 70
determinant, 129
dfs spanning forest, 54
dfs spanning tree, 54
diameter, 43
dotted cross arcs, 70

eccentricity, 43

encryption, 249

equation
homogeneous, 205
inconsistent, 207
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equation (Continued)
indeterminates, 205
linear
non-homogeneous, 206
exact algorithm, 93
exponential function, 137

fast disjoint-set union algorithm,

22
Finite Fields, 215-224
Fleury, 96
forest, 19
free tree, 9

Galois, 216
Galois field, 216
Gaussian elimination, 208
geodetic, 107
geodetic graph, 107
good characterization, 121
good labeling, 138
greedy algorithm, 13
Group
abelian, 154
Automorphism, 170-176
centre, 172
cyclic, 159
dihedral, 157
homomorphism, 167
kernel, 169
isomorphism, 167
Klein’s 4, 156
nonabelian, 154
permutation, 161
Quotient, 172
subgroup, 171
table, 155
Groups, 152-170

hamiltonian cycle, 91
hamiltonian graph, 145
heap data structure, 21
heuristic, 13, 93
Hopcroft’s algorithm, 58
Horner’s method, 263

inorder, 22
isthmus, 58

Kuhn-Munkres algorithm, 137

Index

Lagrange, 152, 165

leaf, 22, 23

level sets, 106

LUP decomposition, 208

M-alternating path, 116
M-augmenting path, 116
matching, 99, 113
matrix
adjoint, 149
hermitian, 150
inverse, 149
orthogonal, 151
skew-hermitian, 150
skew-symmetric, 150
symmetric, 150
transpose, 149
maximum matching, 107, 113

maximum matching algorithm, 120

minimum spanning tree, 13

modular-exponentiation algorithm, 265

MOLS, 223
mounting dotted arcs, 70

MSTEULER algorithm for tsp, 96

networks, 12

NN algorithm, 93
NP-complete problem, 90
NP-Complete problems, 78

parity argument, 114
partial M alternating tree, 133
perfect matching, 99, 113
peripheral vertex, 122
permutation matrix, 127
PERT and the critical path
method, 76

Petersen graph, 107
pivot vertex, 27, 37
polynomial

cyclotomic, 272

monic, 218

primitive, 218
postorder, 22
preorder, 22
program evaluation

and research technique, 78

pseudo code dijkstra, 26
pseudo code prim, 14



radius, 43
Randomized algorithm, 263
regular subgraph problem, 121
regular submatrix, 129
repeated squaring, 265
Ring, 179
commutative, 180
noncommutative, 180
units, 181
unity element, 181
root, 24
strong components, 83
Rooted tree, 22

scalar product, 131
Schur complement, 209
set

spanning, 193
single-source shortest

path algorithm, 23

son/daughter, 22
spanning tree, 11
Sriraman Sridharan, 122
strongly connected components, 79
strongly connected graph, 79
subgroup, 158

313

sum of the vectors, 131
symmetric difference, 117
synthetic division, 263

Tarjan’s strong components
algorithm, 80
theorem
Fermat’s Little, 262
Lagrange’s, 163
topological sort, 72
traveling salesman problem, 51
Travelling Salesman Problem, 90
tree, 9
triangle inequality, 94, 96, 99
triangular form, 129
tsp using minimum matching, 99
Tutte’s perfect matching theorem, 145

vector, 130

weighted adjacency lists, 13
weighted adjacency matrix, 12
weighted matching
problem in bipartite graph, 137
weighted perfect
matching, 136



Taylor & Francis Group
an informa business

Taylor & Francis eBooks

www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,
and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

Improved
A streamlined A single point search and

experience for of discovery discovery of

our library for all of our content at both
customers eBook content book and
chapter level

REQUEST A FREE TRIAL

support@taylorfrancis.com

€Y Routledge Bc RC Press

Taylor & Francis Group / Taylor & Francis Group

8
]


http://taylorandfrancis.com
mailto:support@taylorfrancis.com

	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Contents���������������
	List of Figures����������������������
	List of Tables���������������������
	Preface��������������
	Acknowledgment���������������������
	Authors��������������
	1. Graph Algorithms I����������������������������
	1.1 Representation of Graphs�����������������������������������
	1.2 Minimum Spanning Tree Algorithms�������������������������������������������
	1.2.1 Prim's minimum spanning tree algorithm���������������������������������������������������
	1.2.2 Kruskal's minimum spanning tree algorithm������������������������������������������������������
	1.2.3 Rooted ordered trees and traversal of trees��������������������������������������������������������

	1.3 Shortest Path Algorithms�����������������������������������
	1.3.1 Single-source shortest path algorithm��������������������������������������������������

	1.4 Dijkstra's Algorithm for Negative Weighted Arcs����������������������������������������������������������
	1.5 All-Pairs Shortest Path Algorithm��������������������������������������������
	1.5.1 An application of Floyd's algorithm������������������������������������������������

	1.6 Transitive Closure of a Directed Graph�������������������������������������������������
	1.7 An O(n3) Transitive Closure Algorithm Due to Warshall����������������������������������������������������������������
	1.8 Navigation in Graphs�������������������������������
	1.9 Applications of Depth-First Search���������������������������������������������
	1.9.1 Application 1: Finding connected components��������������������������������������������������������
	1.9.2 Application 2: Testing acyclic graph�������������������������������������������������
	1.9.3 Application 3: Finding biconnected components of a connected multigraph������������������������������������������������������������������������������������

	1.10 Depth-First Search for Directed Graphs��������������������������������������������������
	1.11 Applications of Depth-First Search for Directed Graphs������������������������������������������������������������������
	1.11.1 Application 1: Finding the roots of a directed graph������������������������������������������������������������������
	1.11.2 Application 2: Testing if a digraph is without circuits���������������������������������������������������������������������
	1.11.3 Application 3: Topological sort���������������������������������������������
	1.11.3.1 An application of topological sort: PERT��������������������������������������������������������

	1.11.4 Application 4: Strongly connected components algorithm��������������������������������������������������������������������

	1.12 Traveling Salesman Problem��������������������������������������
	1.12.1 Approximate algorithms for traveling salesman problem�������������������������������������������������������������������

	1.13 Exercises���������������������

	2. Graph Algorithms II�����������������������������
	2.1 Breadth-First Search�������������������������������
	2.2 Applications of bfs Algorithm����������������������������������������
	2.3 Matchings in Graphs������������������������������
	2.3.1 An application: (k-1)-regular subgraphs of k-regular graphs������������������������������������������������������������������������

	2.4 Matrices and Bipartite Graphs����������������������������������������
	2.4.1 Personnel assignment problem or weighted matching in a bipartite graph�����������������������������������������������������������������������������������

	2.5 Exercises��������������������

	3. Algebraic Structures I (Matrices, Groups, Rings, and Fields)����������������������������������������������������������������������
	3.1 Introduction�����������������������
	3.2 Matrices�������������������
	3.3 Operations on Matrices: Addition, Scalar Multiplication, and Multiplication of Matrices��������������������������������������������������������������������������������������������������
	3.3.1 Block multiplication of matrices���������������������������������������������
	3.3.2 Transpose of a matrix����������������������������������
	3.3.3 Inverse of a matrix��������������������������������
	3.3.4 Symmetric and skew-symmetric matrices��������������������������������������������������
	3.3.5 Hermitian and skew-Hermitian matrices��������������������������������������������������
	3.3.6 Orthogonal and unitary matrices��������������������������������������������
	3.3.7 Exercises����������������������

	3.4 Groups�����������������
	3.4.1 Abelian and non-Abelian groups�������������������������������������������
	3.4.2 Examples of Abelian groups���������������������������������������
	3.4.3 Examples of non-Abelian groups�������������������������������������������
	3.4.4 Group tables�������������������������

	3.5 A Group of Congruent Transformations (Also called Symmetries)������������������������������������������������������������������������
	3.6 Another Group of Congruent Transformations�����������������������������������������������������
	3.7 Subgroups��������������������
	3.7.1 Examples of subgroups����������������������������������
	3.7.2 Subgroup generated by a subset of a group������������������������������������������������������

	3.8 Cyclic Groups������������������������
	3.8.1 Examples of cyclic groups��������������������������������������

	3.9 Lagrange's Theorem for Finite Groups�����������������������������������������������
	3.10 Homomorphisms and Isomorphisms of Groups����������������������������������������������������
	3.11 Properties of Homomorphisms of Groups�������������������������������������������������
	3.12 Automorphism of Groups����������������������������������
	3.13 Normal Subgroups����������������������������
	3.14 Quotient Groups (or Factor Groups)����������������������������������������������
	3.15 Basic Isomorphism Theorem for Groups������������������������������������������������
	3.15.1 Examples of factor groups���������������������������������������

	3.16 Exercises���������������������
	3.17 Rings�����������������
	3.17.1 Rings, definitions and examples���������������������������������������������
	3.17.1.1 Unity element of a ring���������������������������������������

	3.17.2 Units of a ring�����������������������������
	3.17.2.1 Units of the ring Zn������������������������������������
	3.17.2.2 Zero divisors�����������������������������


	3.18 Integral Domains����������������������������
	3.19 Exercises���������������������
	3.20 Ideals������������������
	3.21 Principal Ideals����������������������������
	3.22 Fields������������������
	3.22.1 Examples of fields��������������������������������

	3.23 Characteristic of a Field�������������������������������������

	4. Algebraic Structures II (Vector Spaces and Finite Fields)�������������������������������������������������������������������
	4.1 Vector Spaces������������������������
	4.1.1 Examples of vector spaces��������������������������������������

	4.2 Subspaces��������������������
	4.2.1 An example of a subspace�������������������������������������

	4.3 Spanning Sets������������������������
	4.4 Linear Independence of Vectors�����������������������������������������
	4.5 Bases of a Vector Space����������������������������������
	4.6 Dimension of a Vector Space��������������������������������������
	4.7 Solutions of Linear Equations and Rank of a Matrix�������������������������������������������������������������
	4.8 Exercises��������������������
	4.9 Solutions of Linear Equations����������������������������������������
	4.10 Solutions of Non-Homogeneous Linear Equations
	4.11 LUP Decomposition�����������������������������
	4.11.1 Computing an LU decomposition�������������������������������������������

	4.12 Exercises���������������������
	4.13 Finite Fields�������������������������
	4.14 Factorization of Polynomials Over Finite Fields�����������������������������������������������������������
	4.15 Exercises���������������������
	4.16 Mutually Orthogonal Latin Squares���������������������������������������������

	5. Introduction to Coding Theory���������������������������������������
	5.1 Introduction�����������������������
	5.2 Binary Symmetric Channels������������������������������������
	5.3 Linear Codes�����������������������
	5.4 Minimum Distance of a Code�������������������������������������
	5.5 Hamming Codes������������������������
	5.6 Standard Array Decoding����������������������������������
	5.7 Sphere Packings��������������������������
	5.8 Extended Codes�������������������������
	5.9 Syndrome Decoding����������������������������
	5.10 Error Detection���������������������������
	5.11 Sphere Packing Bound or Hamming Bound�������������������������������������������������
	5.12 Exercises���������������������
	5.13 Cyclic Codes������������������������
	5.14 Dual Codes����������������������
	5.15 Exercises���������������������

	6. Cryptography����������������������
	6.1 Introduction�����������������������
	6.2 Some Classical Cryptosystems���������������������������������������
	6.2.1 Caesar cryptosystem��������������������������������
	6.2.2 Affine cryptosystem��������������������������������
	6.2.3 Private key cryptosystems��������������������������������������
	6.2.4 Hacking an affine cryptosystem�������������������������������������������

	6.3 Encryption Using Matrices������������������������������������
	6.4 Exercises��������������������
	6.5 Other Private Key Cryptosystems������������������������������������������
	6.5.1 Vigenere cipher����������������������������
	6.5.2 The one-time pad�����������������������������

	6.6 Public Key Cryptography����������������������������������
	6.6.1 Working of public key cryptosystems������������������������������������������������
	6.6.1.1 Transmission of messages���������������������������������������
	6.6.1.2 Digital signature��������������������������������

	6.6.2 RSA public key cryptosystem����������������������������������������
	6.6.2.1 Description of RSA���������������������������������

	6.6.3 The ElGamal public key cryptosystem������������������������������������������������
	6.6.4 Description of ElGamal system������������������������������������������

	6.7 Primality Testing����������������������������
	6.7.1 Non-trivial square roots (mod n)
	6.7.2 Prime Number Theorem���������������������������������
	6.7.3 Pseudo-primality testing�������������������������������������
	6.7.3.1 Base-2 Pseudo-prime test���������������������������������������

	6.7.4 Miller-Rabin Algorithm�����������������������������������
	6.7.5 Horner's method to evaluate a polynomial�����������������������������������������������������
	6.7.6 Modular exponentiation algorithm based on repeated squaring������������������������������������������������������������������������

	6.8 The Agrawal-Kayal-Saxena (AKS) Primality Testing Algorithm���������������������������������������������������������������������
	6.8.1 Introduction�������������������������
	6.8.2 The basis of AKS algorithm���������������������������������������
	6.8.3 Notation and preliminaries���������������������������������������
	6.8.4 The AKS algorithm������������������������������


	Appendix A: Answers to Chapter 1–Graph Algorithms I����������������������������������������������������������
	Appendix B: Answers to Chapter 2–Graph Algorithms II�����������������������������������������������������������
	Appendix C: Answers to Chapter 3–Algebraic Structures I��������������������������������������������������������������
	Appendix D: Answers to Chapter 4–Algebraic Structures II���������������������������������������������������������������
	Appendix E: Answers to Chapter 5–Introduction to Coding Theory���������������������������������������������������������������������
	Appendix F: Answers to Chapter 6–Cryptography����������������������������������������������������
	Bibliography�������������������
	Index������������


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




