Theory of
COMPUTATION

AT

GEORGE TOURLAKIS

SWWILEY

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Theory of Computation

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Theory of Computation

George Tourlakis

York University
Toronto, Canada

SWILEY

A JOHN WILEY & SONS, INC., PUBLICATION

www.it-ebooks.info

http://www.it-ebooks.info/

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic formats. For more information about Wiley products, visit
our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Tourlakis, George J.
Theory of computation / George Tourlakis.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-118-01478-3 (hardback)
1. Computable functions. 2. Functional programming languages. [. Title.
QA9.59.T684 2012
511.3'52—dc23 2011051088

Printed in the United States of America.

10987654321

www.it-ebooks.info

http://www.it-ebooks.info/

To my parents

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Preface

1 Mathematical Foundations

1.1

1.2
1.3
1.4

1.5
1.6
1.7
1.8

Sets and Logic; Naively

1.1.1 A Detour via Logic

1.1.2 Sets and their Operations

1.1.3 Alphabets, Strings and Languages
Relations and Functions

Big and Small Infinite Sets; Diagonalization
Induction from a User’s Perspective

1.4.1 Complete, or Course-of-Values, Induction
1.42 Simple Induction

1.43 The Least Principle

1.4.4 The Equivalence of Induction and the Least Principle
Why Induction Ticks

Inductively Defined Sets

Recursive Definitions of Functions

Additional Exercises

www.it-ebooks.info

X1

27
39
40
51
61
61
64
65
65
68
69
78
85

vii

http://www.it-ebooks.info/

viii

CONTENTS

Algorithms, Computable Functions and Computations

2.1 A Theory of Computability
2.1.1 A Programming Framework for Computable Functions
2.1.2 Primitive Recursive Functions
2.1.3 Simultaneous Primitive Recursion
2.1.4 Pairing Functions
2.1.5 TIteration
2.2 A Programming Formalism for the Primitive Recursive
Functions
221 PRvs. L
2.2.2 Incompleteness of PR
23 URM Computations and their Arithmetization
24 A Double Recursion that Leads Outside the Primitive Recursive
Function Class
24.1 The Ackermann Function
24.2 Properties of the Ackermann Function
243 The Ackermann Function Majorizes All the Functions
of PR
244 The Graph of the Ackermann Function is in PR,
2.5 Semi-computable Relations; Unsolvability
2.6 The lteration Theorem of Kleene
2.7 Diagonalization Revisited; Unsolvability via Reductions
2.7.1 More Diagonalization
2.7.2 Reducibility via the S-m-n Theorem
2.7.3 More Dovetailing
274 Recursive Enumerations
2.8 Productive and Creative Sets
2.9 The Recursion Theorem
2.9.1 Applications of the Recursion Theorem
2.10 Completeness
2.11 Unprovability from Unsolvability
2.11.1 Supplement: ¢,(x) 1 is Expressible in the Language
of Arithmetic
2.12 Additional Exercises

A Subset of the URM Language; FA and NFA

3.1 Deterministic Finite Automata and their Languages
3.1.1 The Flow-Diagram Model

www.it-ebooks.info

91

91
92
103
116
118
123

125
135
139
141

147
148
149

153
155
158
172
175
176
183
196
202
209
212
214
217
221

229
234

24

243
243

http://www.it-ebooks.info/

32

33

34

35

CONTENTS

3.1.2 Some Closure Properties

3.1.3 How to Prove that a Set is Not Acceptable by a FA;
Pumping Lemma

Nondeterministic Finite Automata

3.2.1 From FA to NFA and Back

Regular Expressions

3.3.1 From a Regular Expression to NFA and Back

Regular Grammars and Languages

34.1 From a Regular Grammar to a NFA and Back

34.2 Epilogue on Regular Languages

Additional Exercises

4 Adding a Stack to a NFA: Pushdown Automata

4.1
4.2

4.3
44
4.5

The PDA

PDA Computations

421 ESvs AS vs ES+AS

The PDA-acceptable Languages are the Context Free Languages
Non Context Free Languages; Another Pumping Lemma
Additional Exercises

5 Computational Complexity

5.1

52
5.3

Bibliography

Index

Adding a Second Stack; Turing Machines

5.1.1 Turing Machines

512 A ZP-Completeness

5.1.3 Cook’s Theorem

Axt, Loop Program, and Grzegorczyk Hierarchies
Additional Exercises

www.it-ebooks.info

ix

251

253
257
260
266
268
2717
282
285
287

293

294
295
300
305
312
322

325

325
330
338
342
350
370

375

379

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

At the intuitive level, any practicing mathematician or computer scientist —indeed
any student of these two fields of study— will have no difficulty at all to recognize a
computation or an algorithm, as soon as they see one, the latter defining, in a finite
manner, computations for any given input. It is also an expectation that students of
computer science (and, increasingly nowadays, of mathematics) will acquire the skill
to devise algorithms (normally expressed as computer programs) that solve a variety

of problems.
But how does one tackle the questions “is there an algorithm that solves such
and such a problem for all possible inputs?” —a question with a potentially “no”

answer— and also “is there an algorithm that solves such and such a problem via
computations that take no more steps than some (fixed) polynomial function of the
input length?” —this, too, being a question with a, potentially, “no” answer.

Typical (and tangible, indeed “interesting” and practically important) examples
that fit the above questions, respectively, are

e “is there an algorithm which can determine whether or not a given computer
program (the latter written in, say, the C-language) is correct?”!

A “correct” program produces, for every input, precisely the output that is expected by an a priori
specification.

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

xii PREFACE

and

e “is there an algorithm that will determine whether or not any given Boolean
formula is a tautology, doing so via computations that take no more steps than
some (fixed) polynomial function of the input length?”

For the first question we have a definitive “no” answer,? while for the second one
we simply do not know, at the present state of knowledge and understanding of what
“computing” means.”

But what do we mean when we say that “there is no algorithm that solves a given
problem” —with or without restrictions on the algorithm’s computation lengths?
This appears to be a much harder statement to validate than “there is an algorithm
that solves such and such a problem™ —for the latter, all we have to do is to produce
such an algorithm and a proof that it works as claimed. By contrast, the former
statement implies a, mathematically speaking, provably failed search over the entire
set of all algorithms, while we were looking for one that solves our problem.

One evidently needs a precise definition of the concept of algorithm that is neither
experiential, nor technology-dependent in order to assert that we encountered such a
failed “search”. This directly calls for a mathematical theory whose objects of study
include algorithms (and, correspondingly, computations) in order to construct such
sets of (all) algorithms within the theory and be able to reason about the membership
problem of such sets. This theory we call the theory of computation. It contains tools
which, in principle, can “search™ the set of all algorithms to see whether a problem
is solvable by one; or, more ambitiously, to see if it can be solved by an algorithm
whose computations are “efficient” —under some suitable definition of efficiency.

The theory of computation is the metatheory of computing. In the field of comput-
ing one computes: that is, develops programs and large scale software that are well-

2There is some interesting “small print” here! As long as the concept of algorithm is identified with that
of, say, the Shepherdson-Sturgis “machines” of this volume —or for that matter with Turing machines—
then the answer is definitely a “no”: There is a simple mathematical proof that we will see later on,
that no Shepherdson-Sturgis machine (nor a Turing machine) exists that solves the problem. Now, such
an identification has been advocated by Alonzo Church as part of his famous belief known as “Church’s
Thesis”. If one accepts this identification, then the result about the non-existence of a Shepherdson-Sturgis
machine that solves the problem is tantamount to the non-existence of an algorithm that does so. However,
Church’s “thesis” is empirical, rather than provable, and is not without detractors; cf. Kalmar (1957).
Suffice it to say that this statement is mathematically valid: No program, written in any programming
language, which is equivalent in expressive power to that of our Shepherdson-Sturgis machines, exists that
solves the problem.

3There is substantial evidence that the answer, if discovered, will likely be “no”.

4The quotes are necessary since it is not precisely a search that one performs. For example, the unsolvability
—by any algorithm— of the program correctness problem is based on a so-called reduction technique that
we will learn in this volume. A reduction basically establishes that a problem A is solvable by algorithmic
means if we assume that we have a “black-box” algorithmic solution —that we may “call” just as we
call a built-in function— of another problem, B. We say that “A is reduced (or reducible) to B”. If we
now know (say via a previous mathematical proof of the fact) that A cannot be algorithmically solved,
then nor can B! We will, as a starting point, show the unsolvability by algorithmic means, certainly not
by any Shepherdson-Sturgis machine, of a certain “prototype” problem, known as the halting problem,
“z € K'7’. This will be done by a technique akin to Cantor’s diagonalization. After this, many reduction
arguments are effected by showing that K is reducible to a problem A. This renders A unsolvable!

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE Xiii

documented, correct, efficient, reliable and easily maintainable. In the (meta)theory
of computing one tackles the fundamental questions of the limitations of computing,
limitations that are intrinsic rather than technology-dependent.’> These limitations
may rule out outright the existence of algorithmic solutions for some problems, while
for others they rule out efficient solutions.

Our approach is anchored on the concrete (and assumed) practical knowledge
about general computer programming attained by the reader in a first year program-
ming course, as well as the knowledge of discrete mathematics at the same level. The
next natural step then is to develop the metatheory of general computing, building on
the computing experience that we have assumed the reader attained. This will be our
chapter on computability, that is, the most general metatheory of computing. We de-
velop this metatheory via the programming formalism known as Shepherdson-Sturgis
Unbounded Register Machines (URM) —which is a straightforward abstraction of
modern high level programming languages. Within that chapter we will also explore a
restriction of the URM programming language, that of the loop programs of A. Meyer
and D. Ritchie. We will learn that while these loop programs can only compute a
very small subset of “all the computable functions”, nevertheless are significantly
more than adequate for programming solutions of any “practical”, computationally
solvable, problem. For example, even restricting the nesting of loop instructions to
as low as two, we can compute —in principle— enormously large functions, which
with input z can produce outputs such as

X
) } 10350000 2
2? M
The qualification above, “in principle”, stems from the enormity of the output dis-
played in (1) —even for the input x = 0— that renders the above function way
beyond “practical”.

The chapter —after spending considerable care in developing the technique of re-
ductions— concludes by demonstrating the intimate connection between the unsolv-
ability phenomenon of computing on one hand, and the unprovability phenomenon
of proving within first-order logic (cf. Godel (1931)) on the other, when the latter
is called upon to reason about “rich” theories such as (Peano’s) arithmetic —that is,
the theory of natural numbers, equipped with: the standard operations (plus, times);
relations (less than); as well as with the principle of mathematical induction.

What to include and what not to include in an introductory book on the theory of
computation is a challenge that, to some extend, is resolved by the preferences of the
author. But I should like to think that the choices of topics made in this volume are
more rational than simply being manifestations of “preference”.

The overarching goal is to develop for the reader a “first-order” grounding in the
fundamentals, that is, the theoretical limitations of computing in its various models
of computation, from the most general model —the URM— down to the finite
automaton.

SHowever this metatheory is called by most people “theory”. Hence the title of this volume.

www.it-ebooks.info

http://www.it-ebooks.info/

Xiv PREFACE

We view the technique of reductions as fundamental in the analysis of limita-
tions of computing, and we spend a good deal of space on this topic, a variant of
which (polynomial-time reductions) the student of computer science will encounter
in Subsection 5.1.2 and will re-encounter in later studies as well, for example, in a
course on algorithms and complexity. On the other hand, we do not hesitate to omit
combinatorial topics such as “Post’s correspondence problem”, which only leads
to specialized results (e.g., the algorithmic unsolvability of detecting ambiguity in
context free languages) that we feel embody a less fundamental technical interest.
Our emphasis is on laying the foundational tools and concepts that allow us to carry
out a mathematical analysis of, and acquire a thorough understanding of, theoretical
limitations of computing in both their absolute manifestation (uncomputability) and
also in their relative manifestation (complexity and “intractability”).

Consistent with our stated goal and emphasis, we purposely give short shrift to
the area of so-called “positive” results, apart from a few familiarization examples
of “programming” with URMs, loop programs, FA, NFA, and PDA. This is not a
course about writing algorithms, but mostly about what algorithms cannot do at all
and about what they have a lot of trouble doing. For example, results of Chapter 5
immediately imply that, in general, FORTRAN-like programs that allow nesting of
the loop instruction equal to just three have highly impractical run times; certainly

as high as®
2 }
. z2’s
22

Thus, we leave out “applications” such as lexical scanners via finite automata;
autornata-minimization; parsing of context free languages using LL, LR, recursive-
descend, and other parsers; and defer them to a later course on compiler writing
tools —these topics do not belong here. We would rather concentrate on what is
foundationally important and omit what is not.

Another chalienge is where to start building this metatheory. What should be our
abstraction of a computer program? It should be a straightforward observation that
since this metatheory, or “theory” as we nickname it, abstracts computing practices
—in order to analyze and study said abstractions mathematically— the student must
have encountered in the first instance the concrete counterparts of these abstractions
for the latter to make any sense.

It is hardly the case that, prior to the second year of study, students have *“pro-
grammed” scanners or parsers. Rather, students have programmed solutions for less
specialized problems, using a high level general purpose language such as C/C++,
Java, possibly Pascal, etc. They never programmed an automaton, a push-down
automaton, or anything like a Turing machine (unless they have taken up machine
language in the first year).

Yet the overwhelming majority of the literature develops the “theory of compu-
tation”, in a manner of speaking, backwards —invariably starting with the theory of

6See 5.2.0.47 and 5.2.0.49. L3 programs have run times bounded by Ackermann’s A’§ (z), for some
k> 0.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE Xv

finite automata, as if automata is precisely what the reader was programming in his’
first university course on programming. We apply this principle: Before the student
studies the (meta)theory, he must have attained a good grasp of the practice that this
theory attempts to dissect and discuss. Thus, it is natural to start our story with the
(meta)theory of general purpose computer programs.

Because of these considerations, our first chapter is on URMs and computability.
The choice of URMs as an abstraction of general-purpose computing —a relative
latecomer (cf. Shepherdson and Sturgis (1963)) in the search for a good answer
to “what would be a good technology-independent model of computation?”’— also
connects well with the experience of the student who will come to this course to learn
what makes things tick in programming, and why some things do not tick at all. He
most likely learned his programming via a high level language like C or Java rather
than through machine language. The ubiquitous Turing machine (Turing (1936,
1937)) is more like machine language, indeed, is rather even less user-friendly.® It
offers no advantage at this level of exposition, and rather presents an obscure and
hard-to-use (and hard to “arithmetize””) model of computation that one need not use
as the basis of computability. On the other hand it lends itself well to certain studies
in complexity theory and is an eminently usable tool in the proof of Cook’s theorem
(cf. Subsection 5.1.3). So we will not totally avoid the Turing machine!

We turn to the formulaic topics of a book on Automata and Languages —
Chapter 3— only after we become familiar, to some extent, with the (general)
computability theory, including the special computability theory of more “practi-
cal” functions, the primitive recursive functions. Automata are introduced as a very
restricted programming formalism, and their limitations (in expressivity) and their
associated languages are studied.

It is often said, with justification, that a course in theory of computation has as side-
effect the firming up of the student’s grasp of (discrete) mathematical techniques and
mathematical reasoning, as well as the ability to apply such techniques in computer
science and beyond. Of course, it cannot be emphasized enough that the student of a
theory of computation course must be equipped already with the knowledge expected
to be acquired by the successful completion of a one-semester course on discrete
mathematics. This required background knowledge is often encapsulated, retold,
and aspects of it are emphasized, in the space of a few pages at the front-end of a
book like this. This is the ubiquitous “Chapter 0" of many books on the subject. In
the case of the present book I would like, most of all, to retell two stories, logic and
induction, that I often found being insufficiently developed in the student’s “toolbox”,
notwithstanding earlier courses he may have taken. Thus, in Subsection 1.1.1 we
develop the notational and how-to parts of elementary predicate logic in the space
of some 20 pages, paying special attention to correctness of exposition. Section 1.4
presents the induction principle on the natural numbers in two steps: One, how

TPronouns such as “he”, “his”, “him” are, by definition, gender-neutral in this volume and are used solely
for textual convenience.

#Machine language can manipulate numbers, whereas a Turing machine can only manipulate digits!
9This verb will make sense later.

www.it-ebooks.info

http://www.it-ebooks.info/

xvi PREFACE

to use its various forms, and a proof of their equivalence to the least (positive)
integer principle. Two, we argue, at the intuitive level, why induction must be a valid
principle after all!'® We also go over concepts about sets and related notation, as well
as relations and functions, very quickly since they do not need much retelling. We will
also introduce quickly and in an elementary fashion a topic likely not encountered by
the reader in the typical “discrete math” course: the distinction between two infinities
—countable and uncountable— so that we can have an excuse to introduce the reader
to Cantor’s ingenious (and simple) diagonalization argument, that recurs in one or
another shape and form, over and over, in the computability and complexity part of
the theory of computation.

On intuitive arguments; “formalization” and why a course in theory cannot
be taught exclusively by hand-waving: The main reason that compels us to teach
(meta)theory in a computer science curriculum is not so much to prevent the innocent
from trying to program a solution for the halting problem (cf. 2.5.0.16), just as we
do not teach courses in geometry just to prevent circle-squaring “research”. Rather,
formal mathematical methods used in a course in the theory of computation, more so
than the results themselves, are transferable skills that the student becomes endowed
with, which equip him to model and mathematically analyze concrete phenomena
that occur in computation, and through a mathematical process of reasoning to be
able to recognize, understand, and correlate such phenomena. These formal methods,
skills and results, put the “science” keyword into computer science.

Intuition, obtained through experience, is invaluable, of course, and we often
argue intuitively before we offer a proof of a fact. But: one cannot have “proof-by-
intuition”.

We have included in this volume a good amount of complexity theory that will
likely be mostly skipped whenever the book is called upon to serve a second year
course on the theory of computation. There are a few “high level complexity” results
already in Section 2.7 using diagonalization (cf. 2.7.1.9 and 2.7.1.11). Later, quite
a bit is developed in Chapter 5, including the concept of .4 Z?-completeness and
Cook’s theorem; an account of Cobham’s class of feasibly computable functions
(mostly delegated to the Exercises section, 5.3); and some elements of the hierarchy
theory of the primitive recursive functions culminating in the rather startling fact that
we cannot algorithmically solve the correctness problem of FORTRAN-like programs
even if we restrict the nesting of loops to just two levels. FORTRAN-like languages
have as abstract counterpart the loop programs of Meyer and Ritchie (1967) that we
study in the chapters on computability (2nd) and complexity (5th).

Were I to use this book in a second year course in the theory of computation I
would skim quickly over the mathematical “prerequisites” chapter, and then cover
2.1-2.7, parts of 2.10, certainly Godel’s incompleteness theorem and its relation to
uncomputability: 2.11 —but not 2.11.1. I would then cover only as much as time
permits from Chapter 3 on finite automata; certainly the pumping lemma, consistent

10Tn 5o doing I will be sure to let the student know that T am not squaring the circle: Induction is not a
provable principle of the arithmetic of Peano, it is an axiom. However, this will not stop us from arguing
its plausibility, i.e., why it is a reasonable, “natural” axiom.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE xvii

with my view that this is a “course” about what cannot be done, or cannot be done
“easily”, rather than a toolbox for how to do things. The latter is deferred to a course
and book on algorithms.

In a more advanced course where one can proceed faster, I would want also to
cover the sections on creative sets and the recursion theorem, and also as much
complexity theory as possible from Chapter 5, starting with the material leading to
Cook’s theorem.

The reader will forgive the many footnotes, which some will assess as bad style!
There is always a story within a story, the ““... and another thing . ..”, that is best
delegated to footnotes.

The style of exposition that I prefer is informal and conversational and is expected
to serve well not only the readers who who have the guidance of an instructor, but
also those readers who wish to learn the elements of the theory of computation on
their own. I use several devices to promote understanding, such as frequent “pauses”
that anticipate questions and encourage the reader to rethink an issue that might
be misunderstood if read but not studied and reflected upon. Additionally, I have
included numerous remarks, examples and embedded exercises (the latter in addition
to the end-of-chapter exercises) that reflect on a preceding definition or theorem. All
pauses are delimited by “Pause.” and «

The stylized “winding road ahead” warning, @, that I first saw in Bourbaki’s
books (Bourbaki (1966)) and have used in my other books, delimits a passage that is
too important to skim over. @ @

On the other hand, 1 am using to delimit passages that I could not resist
including, but, frankly, can be skipped (unless you are curious).

There are over 200 end-of-chapter exercises and 41 embedded ones. Many have
hints and thus I refrained from (subjectively) flagging them for level of difficulty.
After all, as one of my mentors, Alan Borodin, used to say to us (when I was a
graduate student at the University of Toronto), “attempt all exercises; but definitely
do the ones you cannot do”.

GEORGE TOURLAKIS

Toronto
November 2011

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

MATHEMATICAL FOUNDATIONS

In this chapter we will briefly review tools, methods and notation from mathematics
and logic, which we will directly apply throughout the remaining of this volume.

1.1 SETS AND LOGIC; NAIVELY

The most elementary elements from “set theory” and logic are a good starting point
for our review. The quotes are necessary since the term sez theory as it is understood
today applies to the axiomatic version, which is a vast field of knowledge, methods,
tools and research [cf. Shoenfield (1967); Tourlakis (2003b)]—and this is not what we
outline here. Rather, we present the standard notation and the elementary operations
on sets, on one hand, and take a brief look at infinity and the diagonal method
of Cantor’s, on the other. Diagonalization is a tool of significant importance in
computability. The tiny fragment of concepts from set theory that you will find in
this section (and then see them applied throughout this volume) are framed within
Cantor’s original “naive set theory”, good expositions of which (but far exceeding
our needs) can be found in Halmos (1960) and Kamke (1950).

We will be forced to interweave our exposition of concepts from set theory with
concepts—and notation—from elementary logic, since all mathematics is based on

Theory of Computation. By George Tourlakis 1
Copyright (©) 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

2 MATHEMATICAL FOUNDATIONS

logical deductions, and the vast majority of the literature, from the most elementary
to the most advanced, employs logical notation; e.g., symbols such as “v” and “3”.
The term “set” is not defined,!! in either the modern or in the naive Cantorian
version of the theory. Expositions of the latter, however, often ask the reader to
think of a set as just a synonym for the words “class”,!? “collection”, or “aggregate”.
Intuitively, a set is a “container” along with its contents—its elements or members.
Taken together, contents and container, are viewed as a single mathematical object.
In mathematics one deals only with sets that contain mathematical objects (so we are

not interested in sets of mice or fish).

Since a set is itself an object, a set may contain sets as elements.

All the reasoning that one does in order to develop set theory—even that of
the naive variety—or any part of mathematics, including all our reasoning in this
book, utilizes mathematical logic. Logic is the mathematics of reasoning and its
“objects” of study are predominantly mathematical “statements” or “assertions”—
technically known as formulae'3>—and mathematical proofs. Logic can be applied to
mathematics either experientially and informally—Ilearned via practice as it were—
or formally. The predominance of mathematical writings apply logic informally as
a vehicle toward reaching their objectives.'* Examples of writings where logic is
formally applied to mathematics are the volumes that Bourbaki wrote, starting here
[Bourbaki (1966)]. More recent examples at the undergraduate and graduate levels
are Gries and Schneider (1994) and Tourlakis (2003b) respectively.

In this volume we apply logic informally. An overview is provided in the next
subsection.

1.1.1 A Detour via Logic

As is customary in mathematics, we utilize letters, upper or lower case, usually
from near the end of the alphabet (u,v,y, z, 2,5, T, V) to denote, that is, to name
mathematical objects—in particular, sets.

By abuse of language we say that u,v,y,z,2,5,T,V are (rather than denote or
name) objects. These letters function just like the variables in algebra do; they are
object-variables.

1 The reader who has taken Euclidean geometry in high school will be familiar with this parallel: The
terms “point”, “line”, and “plane” are not defined either, but we get to know them intimately through their
properties that we develop through mathematical proofs, starting from Euclid’s axioms.

121n axiomatic set theory a “class” is a kind of collection that may be so “large” that it technically fails to
be a set. The axioms force sets to be “small” classes.

13More accurately, a “statement” and a formula are two different things. However, the latter mathematically
“encodes” the former.

“‘Despite the dangers this entails, as Godel’s incompleteness theorems exposed [Godel (1931)], modem
mathematicians are confident that their subject and tools have matured enough, to the point that one
can safely apply logic, once again, post-Godel, informally. For example, Kunen states in his article on
set-theoretic combinatorics, Kunen (1978), “A knowledge of [formal] logic is neither necessary, nor even
desirable”.

www.it-ebooks.info

4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 3

As is the case in algebra, the variables z, y, 2 are not the only objects set theory
studies. It also studies numbers such as 0,1, —7 and 7, matrices such as ((1) ;) and
objects that are the results of function applications such as 723900, £%" and 22,

Unlike axiomatic set theory, which introduces its objects via formal constructions,
naive set theory allows us to use, “off the shelf”, all the mathematical objects such as

the above, as well as, of course, objects that are sets such as {2, 3, {1}} and AU B."

Logicians like to call mathematical objects terms. We utilize in this book the generic
names ¢ and s (with primes or subscripts, whenever we need more than two such
names) to refer to arbitrary terms that we do not want to be specific about.

1.1.1.1 Definition. The simplest possible relations of set theory are of just two forms:
t € s—read “t is a member of s or “¢ belongs to s”—and ¢ = s, read “{ is equal to
s”, where, as we indicated above, ¢t and s are any terms whatsoever.

These relations are the atomic formulae (of set theory). The qualifier “atomic”
refers to two facts:

e These two types cannot be expressed (simulated) in terms of simpler relations
by using the notation and tools of logic.

o Using these two relations as building blocks we can construct every possible
formula of set theory as we will explain shortly. O

1.1.1.2 Example. z € y,u = v, z € S and 3 € z and 2% = y> are atomic formulae.

N, the set of all natural numbers (i.e., all the numbers that we obtain by starting
at 0 and repeatedly adding 1: 0, 1, 2, 3, 4, .. .), is an important constant in naive set
theory.

By “N ... is an important constant” we mean, of course, via the habitual abuse of
language exercised by mathematicians, the accurate “N ... denotes (or names) an
important constant”.

Here is an example that uses N in an atomic formula: —7 € N. Incidentally, this
formula makes (i.e., encodes) a false statement; we say the formula is false.

One may form this basic formula as well, N = | J;2 ,{i}, where the meaning of
the symbols “{...}” and “{J;2,” will be introduced later in this section.

Yet another example is {1} € {2, 1}—a false statement (formula) as we will be
able to determine soon. |

Logic (and mathematics) contain much more complex formulae than those of the
atomic variety. The added complexity is achieved by repeatedly “gluing” atomic

formulae together employing as glue the logical, or Boolean, connectives

—‘7/\,\/’_),5

15Notation for objects such as {. ..} and z U y will be reviewed shortly.

www.it-ebooks.info

®

http://www.it-ebooks.info/

A4

4 MATHEMATICAL FOUNDATIONS

and the quantifiers
v, 3

As we have noted already, unlike the case of naive set theory—where we take for
granted the a priori presence of all objects of mathematics, such as 3, —7, N and

z

z¥ — axiomatic set theory needs no a priori existence of any objects. Starting just
with the relations « € y and x = y it uses powerful rules, which can be used to build
not only all formulae of set theory, but also all the objects of mathematics that we are
familiar with, such as the above-mentioned and many others.

What about arithmetic? The arithmetical objects of “pure” (Peano) arithmetic are
the variables, constants, and outputs of functions applied on objects that we have
already built. What are its formulae? If we are thinking of pure arithmetic, which
is studied outside set theory, then we may choose as atomic formulae all those that
can be built from the three start-up relations z = z + y, 2 = X y and z = 2¥: new
atomic formulae result by substituting arbitrary (arithmetical) objects for variables.
Note that the equality relation is obtained from z = z + y by substituting O for y.

All formulae of arithmetic can be built, starting from the atomic ones, as ex-
plained in the general Definition 1.1.1.3 below. This assertion is revisited in Subsec-
tion 2.11.1.

Godel showed in Godel (1931) that the atomic formula z = z¥ is, well, not atomic:
It can be simulated (built) within pure arithmetic starting just with z = + y and
2= Xy.

The “practicing mathematician” prefers to work within an “impure” arithmetic, where
he has access to sets and their notations, operations, and properties. In particular, this
impure arithmetic employs set variables and, more generally, set objects in addition
to number variables and number objects.

Throughout this volume a formula (whether specific to set theory or to any other
area in mathematics, such as arithmetic—pure or impure) will be denoted by an upper
case calligraphic letter, such as 7, &, .%, 4.

We now indicate how formulae are put together using brackets, connectives, and
quantifiers, employing atomic formulae as basic building blocks. The definition be-
low is generic, thus unified: it applies to the structure of all formulae of mathematics.
The choice of atomic formulae (which presupposes an a priori choice of mathemat-
ical symbols, such as 0, +, €) and of types of variables is what determines whether
we build set theory formulae, pure or impure arithmetic formulae, or “other”.

1.1.1.3 Definition. A set theory formula is one of:
(1) An atomic formula (1.1.1.1).

(2) (~&), where & is known to be'® a formula.

161 ., to stand for one. Thus, the expression “(—.2)" is constructed by writing (", followed by writing
“=”, followed by writing in full whatever &/ names, and finally writing “)”.

www.it-ebooks.info

L8

4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 5

o N B), where &/ and & are known to be formulae.
oV B), where &/ and & are known to be formulae.
&/ — 9B), where &7 and £ are known to be formulae.

o = 9B), where o and % are known to be formulae.

(3z)«), where 47 is known to be a formula and z is any variable. We say in
the last two cases that “«7 is the scope of Qx, where Q) is V or 3.

We call V the universal and J the existential quantifiers. We will extend the termi-
nology “quantifier” to apply to the compound symbols (Vz) or (3). O

1.1.1.4 Definition. (Immediate Predecessors) Let.# be aformula. By 1.1.1.3ithas
one of the forms (1)—(8). If it is of type (1), then it has no immediate predecessors—
i.e., it was not built using connectives or quantifiers from simper formulae. If it has
the forms (2)—(8), then in each case its immediate predecessors are the formulae &7
and 4 [the latter enters in cases (3)—(6)] that were used to build it. We use the
acronym ip for immediate predecessors. il

The presence of brackets guarantees that the decomposition or deconstruction of a
formula into its immediate predecessors is unique. This fact can be proved, but it is
beyond our aims so we will not do so here [see Bourbaki (1966); Enderton (1972);
Tourlakis (2008, 2003a)]. Logicians refer to it as the unique readability of a formula.

1.1.1.5 Example. Here are some formulae:

T€Yy,3=22=z"—by(l),

(= = y)—Dby (1), followed by an application of (2); we usually write this more
simply as “x # y”,

(z € yV z = z%)—by (1), followed by an application of (4),

((Vz)z = 2¥)—Dby (1), followed by an application of (7),

(x = 0 = = = 0)—by (1), followed by an application of (5), and

(x =0 - ((Vx)z = 0))—by (1), followed by an application of (7) to obtain
((Vz)x = 0), and then by an application of (5).

The reader should check that we inserted brackets precisely as prescribed by
Definition 1.1.1.3. O

1.1.1.6 Remark. (Building a formula) If .% is (stands for, that is) a formula we can
deconstruct it according to Definition 1.1.1.3 using a natural process.

Initialize: Write down % . Flag it pending.
Repeat this process until it cannot be carried further:

www.it-ebooks.info

4

http://www.it-ebooks.info/

6 MATHEMATICAL FOUNDATIONS

Write down, above whatever you have written so far, the ip of all pending formulae
(if they have ip); and remove the flag “pending” from the latter. Add the flag to the
ones you have just written.

)

The process is terminating since we write shorter and shorter formulae at every
step (and remove the flags); we cannot do this forever!

Clearly, if we now review from top to bottom the sequence that we wrote, we
realize that it traces forward the process of constructing & by repeated application
of Definition 1.1.1.3. This top-down view of our “deconstruction” is a formula-
construction sequence for F .

For example, applying the process to the last formula of the preceding example
we get:

z=0

z=20

((vz)z = 0)

(z =0— ((Vz)z = 0))
where one copy of x = 0 was contributed by the bottom formula and the other (at
the top) by ({(Vz)z = 0).

Going forward we can discard copies that we do not need. Thus a valid formula
construction is also this one:

z=0

((Ve)z = 0)

(x =0 — ((Vz)z = 0))

Indeed, we validate the first formula in the sequence via (1) of 1.1.1.3; the second
using the first and (7); and the last one using the first two and (5). O

A term such as 22 has z as its only input variable. An atomic formulasuchasz € N
has z as its only input variable, while the (atomic) formula z +y = 4" has z, y and w
as input variables. Whenever we want to draw attention to the input variables—say,
z,u, S and z—of aterm ¢ or a formula &7 we will write t(z, u, S, z) or & (z, u, S, 2),
respectively. This is entirely analogous to writing “ f(z, z) = z2 + sin 2” in order to
name the expression (term) x2 +sin z as a function f(z, z) of the two listed variables.

1.1.1.7 Definition. (Input Variables—in Terms) All the variables that occur in a
term—other than an x that occurs in a term of the form {z : ...} (which is a set
object that will be introduced shortly)—are input variables. |

1.1.1.8 Example. Thus, the term z has x as its only input variable; while the term 3
2Y

has no input variables. 22° has z, z, y as its input variables. We will soon introduce

terms (set objects) such as {x : = 0}. This object, which the reader may recognize

as a fancy way to simply write {0}, has no input variables. a

www.it-ebooks.info

4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 7

1.1.1.9 Definition. (Input Variables—in Formulae) A variable occurrence!” in an

atomic formula ¢ € s or t = s is an input occurrence precisely if it is an input
occurrence in one of the terms ¢t and s. Thus, “0 € {z : « = 0} has no input
variables while “z = 0” has one.

Formation rules (2)—(6) in Definition 1.1.1.3 “preserve” the input occurrences of
variables in the constituent formulae & and % that we join together using one of
=, A, V, —, = as glue. On the other hand, each quantifier (Vz2) or (3z) forces each
occurrence of a variable as described below to become non-input:

o The occurrence z in the quantifier
e Any occurrence of z in the scope of said (Vz) or (3z)

Thus, if we start with 27 (z, y, z), of inputs z, y, z, the new formula ((Qy)« (x,y, z)),
where () stands here for one of V, 3, has only x and z as input variables. O

We have carefully referred to occurrences, rather than variables, in the above defi-
nition. A variable can be both input and non-input. An occurrence cannot be both.
For example, in (x = 0 — (Vz)z = 0) the first z-occurrence is input; the last two
are non-input. The variable x is both.

Thus “x is an input/non-input variable” (of a formula) means that there are
occurrences of x that are input/non-input.

The standard name utilized in the literature for input variables is free variables.
Non-input variable occurrences are technically called bound occurrences, but are
also called apparent occurrences, since even though they are visible, they are not
allowed—indeed it makes no sense—to receive arguments (input). This is analogous
to the “Y-notation” for sums: Zlei means 1 + 2 4 3. While we can “see” the

variable 4, it is not really there!'® It cannot accept inputs. For example, “3"5_, 2” is
total nonsense.

The jargon input/non-input is deliberately chosen: We may substitute terms only
in those variable occurrences that are free (input).

If & is some formula and z,y, z, . .. is the complete list of variables that occur
in it, we can draw attention to this fact by writing #(z,y,z,...). Ifz,y,2,...1isa
list of variables such that some!® among them occur in .#, then we indicate this by
Flz,y, 2, ...

In the context of # [z, y, 2, .. .| [or F(z,y, 2, .. .)], F[t1, ta, t3, . . .] [correspond-
ingly #(t1,ta,t3,...)] stands for the formula obtained from % by replacing each
original occurrence of z,y, z,.. . in .% by the terms ¢y, t2, t3, . . . respectively.

Some people call this operation simultaneous or parallel substitution. Thus, if
F [z, y] names “z = y”, whereas t1 is y+ 1, and £5 is 5, then F#[t1, to] is “y+1 = 57
and not “5-+1 = 5”. The latter result would have been obtained if we first substituted

TFor example, in = x the variable z has two occurrences.
18 A fact demonstrated strongly by the explicit form of the sum, 1 + 2 + 3.
194§ome” includes “none” and “all” as special cases.

www.it-ebooks.info

http://www.it-ebooks.info/

8 MATHEMATICAL FOUNDATIONS

t; in z to obtain y + 1 = y, and then substituted ¢» in y to obtain 54+ 1 = 5. If we
are to do this “simultaneous substitution” right, then we must not substitute ¢, into
the y to the left of “=""; this y is not “original”.

Observe also that if x does not occur in & [z], then F|t] is just the original F.

Before we turn to the meaning (and naming) of the connectives and quantifiers,
let us agree that we can get away with much fewer brackets than Definition 1.1.1.3
prescribes. The procedure to do so is to agree on connective and quantifier “priorities”
so that we know, in the absence of brackets, which of the two connectives/quantifiers
is supposed to “win” if they both compete to apply on the same part in a formula.

By analogy, a high school student learns the convention that “x has a higher
priority than 4, thus 2 4+ 3 x 4 means 2 + (3 x 4)—that is, x rather than + claims
the part “3”.

Our convention is this: The connective — as well as the quantifiers ¥V and 3 have the
highest priority, equal among the three. In order of decreasing priority, the remaining
binary connectives®® are listed as A, V, —, =. If two binary connectives compete to
glue with a subformula, then the higher-priority one wins. For example, assuming that
&/ has already in place all the brackets that are prescribed by Definition 1.1.1.3, then

.. V- means... — (d\/~--,while...w2{/\-~-means...(w@f Aver,

If two instances of the same binary connective compete to glue with a subformula,
then the one to the right wins. For example, assuming that &/ has all the brackets

prescribed by Definition 1.1.1.3 in place, then ... - & — --- means... — <42{ —

Similarly, if any of —,V, 3 compete for a part of a formula, again the one to the
right wins. E.g., ...~(Vz)(Jy)«/ - -- means ... <ﬂ((V:v)((3y)$27))> -+, where

once again we assumed that .2 has all the brackets prescribed by Definition 1.1.1.3
already in place.

How do we “compute” the truth or falsehood of a formula? To begin with, to
succeed in this we must realize that just as a function gives, in general, different
outputs for different inputs, in the same way the “output” of a formula, its truth-
value, can only be computed, in general, if we “freeze” the input variables. For each
such frozen instance of the input side, we can compute the output side: true or false.

But where do the inputs come from? For areas of study like calculus or arithmetic
the answers are easy: From the set of real numbers—denoted by R—and the set of
natural numbers respectively.

For set theory it sounds easy too: From the set of all sets!
If it were not for the unfortunate fact that “the set of all sets” does not exist, or,

to put it differently, it is a non-set class due to its enormity, we could have left it

20«Binary” since they each glue rwo subformulae.

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 9

at that. To avoid paradoxes such as “a set that is not a set”—cf. Section 1.3 on
diagonalization for an insight into why some collections cannot be sets—we will
want to take our inputs from a (comfortably large) set in any given set-theoretic
discussion: the so-called reference set or domain.

1.1.1.10 Remark. The mathematician’s intuitive understanding of the statement “.#
is true (resp. false)” is that “% is true (resp. false) for all the possible values of the
free (input) variables of %#”.

Thus, if we are working in arithmetic, “2n 4 1 is odd” means the same thing as
“itis true that, forall n € N, 2n + 1 is odd”. “2™ > n” again omits an implied prefix
“it is true that, for all » € N”. An example of a false statement with input variables
is “2n is odd”.]

1.1.1.11 Definition. An instance of a formula .%, in symbols .%#’, is a formula
obtained from # by replacing each of its variables by some value from the relevant
reference set.

Clearly, .#’ is variable-free—a so-called closed formula or sentence—and there-
fore it has a well-defined truth-value: exactly one of true or false.

Sometimes we use more explicit notation: An instance of 4(z,y, z,...) or of
Gz, y,2,...] is (i, 5,k,...) or 4[i,j,k,...], respectively, where 4, j, k, ... are
objects (constants) from the reference set.

F' and ¥’ are consistent or common instances of % and ¥ if every free variable
that appears in both of the latter receives the same value in both instances. O

1.1.1.12 Example. Let o stand for “z(x + 1} is even”, & stand for “2z + 1 is even”
and ¥ stand for “z is even”, where x is a variable over N. Then,

& istrue,
P s false, and

% is neither true, nor false.

The lesson from this is that if the truth-value of a formula depends on variables, then
not true s not necessarily the same as false.]

We will not be concerned with how the truth-value of atomic formulae is “com-
puted”’; one can think of them as entities analogous to “built-in functions” of computer
programming: Somehow, the way to compute their true/false output is a matter that
a hidden procedure (alternatively, our math knowledge and sophistication) can do
for us.

Our purpose here rather is to describe how the connectives and quantifiers behave
toward determining the truth-value of a complex formula.

In view of Remark 1.1.1.10, the road toward the semantics of & V %, ((Vz)</),
etc., passes through the semantics of arbitrary instances of these; namely, we need to
only define the meaning of &7’ vV &', ((Vx)&)', etc., respectively.

www.it-ebooks.info

4

http://www.it-ebooks.info/

10 MATHEMATICAL FOUNDATIONS

1.1.1.13 Definition. (Computing with Connectives and Quantifiers) Let.» and 2
be any formulae, and 7’ and %’ be arbitrary common instances (1.1.1.11).

(1) —&/’'—pronounced “not .&/’”—is true iff*! o/’ is false.

Q) &' v B'—pronounced “/’ or '"—is true iff either &’ is true or &' is true,
or both (so-called inclusive or).

(3) &' N 98'—pronounced “«/’ and #B'"—is true iff &’ is true and B’ is true.

4) &' — PB'—pronounced “if &7/, then SB'"—is true iff either &7’ is false or #' is
true, or both. %2

(5) @' = %'—pronounced “</ iff 8'”—is true just in case?® &' and &' are both
true or both false.

(6) The instance (Vz)4 (i1, ..., tm, T, j1, .. ., jn)—which is pronounced “for all x,
(i1, iy Ty J1, - - - Jn) (holds)"?*— is true iff, for all possible values k of
x from the domain, & (41, ... ,im, &, J1,. -, Jn) 18 true.

(7) Theinstance (3z) (i1, .- ,%m, T, J1,- - -, jn) —which is pronounced “for some
Ty (1, by Ty J1,5 -« + 4 Jn) (holds)y’—is true iff, for some value k of z from
the domain, & (i1, ...,%m,k, j1,. .., Jn) I8 true. O

1.1.1.14 Remark. (Truth Tables) The content of the preceding definition—cases
(1)-(5)—is normally captured more visually in table form (we have removed the
primes for readability):

o B\~ AN AVB |\ ANB| A > B | A=A
f f |t f f t t
f ot |t t f t f
t f) f t f f f
t t|f t t t t

We read the table as follows: First, the symbols t and f stand for the values “true”
and “false” respectively. Second, the two columns to the left of the vertical line || give
all possible pairs of values (outputs) of &/ and 4. Third, below ~&/, & V 9B, etc.,
we list the computed truth-values (of the formulae of the first row) that correspond
to the assumed & and # values.

The odd alignment under —&f is consistent with all the others: It emphasizes the
placement of the “result” under the “operator”—here ——that causes it. O

2Vif and only if

220ther approaches to “implication” are possible. For example, the Intuitionists have a different under-
standing for — than that of the majority of mathematicians, who adopt the classical definition above.
23A synonym of “iff”.

24The verb “holds” means “is true”.

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 11

@ 1.1.1.15 Remark. According to Remark 1.1.1.10,

(Vo) (Y1, -, Ym, Ty 21, - - - 5 2) 1S true M
means precisely this:

For every choice of the i; and j, from the reference set,
(VE)e (31, -yl Ty J1s -« 5 Jn) 18 tTUE *)

By 6 of Definition 1.1.1.13, (*) means

For every choice of the 7; and j, from the reference set,
and
for all possible values k of z from the domain,

(i1, im, Ky J1, -+, Jn) 18 true
The above, and hence also (1), translate via Remark 1.1.1.10 as

Y1y Ymy Ty 21, -« - 5 2p) 1S true (1)

Iterating this observation yields that (1) is an equivalent statement to the one we
obtain by quantifying universally any—in particular, all—of the variables y1, . . . , Ym,
T,21,...,2n of &, Thatis,

Adding or removing a “(Vz)” at the leftmost end of the formula makes

no difference to the latter’s meaning.

Hm. This begs the question: Then what do we need the universal quantifier for? [

1.1.1.16 Example. We note easily that, say, with R (the reals) as our domain, z =
0 — z = 0is true (cf. 4 in 1.1.1.13). However, z = 0 — (Vz)x = O is not, since
its instance 0 = 0 — (Vx)x = 0 is false: to the left of — we have true, while to the
right we have false.

Thus, adding or removing a “(Vx)” to parts of a formula can make a difference in
meaning! The universal quantifier is useful after all. O

Carrying around the predicate “is true” all the time is annoying. We will adopt im-
mediately the mathematician’s jargon: Simply stating “o/ (z,y, . ..)” is synonymous
to “o (z,y,...)is true” or “o/(x,y,...) holds”.
1.1.1.17 Example. Let N be our domain. Then,

(Fr)y <z (1)
is true. It says that “for every y, an x exists? such that y < z”. Accordingto 1.1.1.15

there is an implied (Vy) at the beginning of the formula.

25That is, “for every value of y, a value of « exists”. The mathematician is used to the sloppy language
that omits “value of . It is clear that he does not refer to the variables themselves, but rather refers to their
values.

www.it-ebooks.info

http://www.it-ebooks.info/

12 MATHEMATICAL FOUNDATIONS

Note that there is no single value of x that makes (1) true (because N has no upper
bound). For each value n of y, n + 1 is an appropriate value of x (so are n + 2,
2n + 1, etc.)

How can we write down the (false) statement that one value of x works for all y?

(Bz)(Vy)y <z

A final remark: How do we write that “there exists a unique x such that <7 is true”
(where & is any formula)?

(3z) (gf[x] A~(32) (2] A # z))
Fortunately, there is a short form for the above (3! reads “for some unique”)
(Jlz)o d

1.1.1.18 Example. The reader probably already knows that there is redundancy in
the chosen set of connectives, that is, some of them can be simulated by the others.
For example, it is immediate by comparing (4), (1), and (2) in 1.1.1.13, that
& — 2 is the same as (has the same meaning as) ~.2f V %. Similarly, & = Z is
the same as (& — B) AN (B —).
Even o/ A % can be expressed via — and V as —(—&/ VV 48). This is easiest to see,
perhaps, via a truth-table:

o B - (-~ & vV - 33) o NP
f £ @f (Dt 3t f
£t @f (It e f
t | @f (DF Gt @t f
t ot | @ (Df QF @f t

The numbers such as “(1)t” in the first row indicate order of evaluation using the
operator at the top of the column. Comparison of the column labeled (4) with the last
column shows that each of &/ A & and ~(—&/ V) yield the same output for any
given value-pair of & and 2. Thus we proved the equivalence of the o/ A Z and
—(—&/ V). This result is known as “de Morgan’s Law”. [

1.1.1.19 Exercise. Prove that & vV Z can be expressed as (-2 A 8). This is the
“other” (technically dual of) de Morgan’s Law. d

1.1.1.20 Example. Weknow [(7) of Definition 1.1.1.13] that (3z)%/ (21, . . . , 2m, Z, Y1,
.., Yn) Means

For every choice of 41, ..., %0m 51, -5 Ins (1.1)
there is a k such that (1.2)
A (i1, imy Ky J1, oo Gn) (1.3)

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 13

Now, the negation of “there is a k such that &7 (i1,...,im, k, §1,...,n)" 18
“no k makes & (i1,...,%m, &, J1,...,Jn) true” (1)

that is,
all k make -7 (41,...,%m, K, J1,- -, Jn) true (2)

(2) says the same thing as
(V)= (31, . -« s lms Ty 515 - -y Jn) (3)

(1.2)—(1.3), (1), and (3) yield (via 1.1.1.13)
(Bx)L (i1, s 8m, Ky J1y - oy Jn)

By (1.1) and 1.1.1.10, we have

(VL) (i1, -+ -y by T 1y -+)

BAx) (21, s 2m, Ly Y1y -y Yn) = (V2)2 (21, ooy Zmy Ty Yty e - -5 Yn)

for short
(Bx)o = =(Va)~of a

1.1.1.21 Exercise. Prove that (Vz)o/ = —(dz)~<. O

1.1.1.22 Remark. We note that &/ — 4B is true, in particular, when ro instance of
& is true, i.e., when &7 is false—in all its instances, that is. In this case the so-called
classical or material implication holds “vacuously”, even if there is no connection
between &/ and B at all and even if P is not true! For example, if o7 is 0 £ 0 and
4 is “in every Euclidean triangle the sum of the angles equals 977, then (& — $)
is true. The same holds if 4 stands for “n is even”. The latter has both true and
false instances over N, but that is immaterial. In each chosen instance, &’ — %’ is
true—that is (1.1.1.10), & — A is true.

Equally disturbing is the fact that while both sides of the arrow might be true,
though rotally unrelated, the implication will be true, asin ¥ — 2 where ¥ is0 =0
and 2 is “in every Euclidean triangle the sum of the angles equals 27”.

The Intuitionists, a school of thought founded on the writings of Kronecker,
Brouwer and Heyting, do not like this state of affairs. The intended meaning, or
intended semantics, for their & — 2, connects the hypothesis ¢ strongly to the
conclusion 2. The meaning, informally speaking, is that, from a proof (intuitionistic
proof, of course!) of .7, a proof for # can be constructed.

We are not going to say what is an intuitionistic “proof™, as this is of no concern
to us. As a matter of fact, “proof” (for classical logic) will be defined only later (see
1.1.1.34). Atpresent, let the reader think of “proof™ as a process used to establish that
a formula holds. Nevertheless, the above stated intentions regarding (intuitionistic)
proofs are a clear enough indication of how strongly & and % must be related before
the Intuitionist will agree to write &/ — A.

www.it-ebooks.info

http://www.it-ebooks.info/

14 MATHEMATICAL FOUNDATIONS

In particular, in intuitionistic logic — and Vv do not relate as in 1.1.1.18 above. In
fact, in both logics &/ — &/ holds, however, in intuitionistic logic & V -4/ does
not hold! Or as we say, the law of the excluded middle does not hold. Intuitively
speaking, the reason behind this phenomenon is that the intuitionistic proofs are so
structured that, to establish that a formula & vV Z holds, in general you need to
construct a proof of one of & or 2.

For example, the following classical proof that there are irrational numbers®® a, b
such that a® is rational is unacceptable intuitionistically.

Take a = b = /2. If this works, done. If not, that means that v/2 V2 18 irrational.

2

Well, then take a = \/5\/_ and b = v/2. Now ab = (\/5\/5)\/i = \/52 =92 A

rational. End of proof.

Above, & is “v/2 v is rational” and & is “V/2 vz 1s irrational”. We used the
(classical) fact that &7 V 48 is true, since one or the other of &7 and 4 is (classically)
true. However, classically, we do not need to know which is which!

A thorough exposition of intuitionistic logic can be found in the advanced book
of Schiitte ([Schii]). 0

1.1.1.23 Example. Suppose that = does not occur free in 7 [z].

Pause. Ensure that this is consistent with the notation introduced in Defini-
tion 1.1.1.11.«

Then
oz = (Vo) |z (1)

Indeed, let y, z,w, . . . be the complete list of free variables of &/, where z is not one
of them. To verify (1) we need to show that for any choice of values k,l,m, ... from
the domain

g (k,d,m,..)= Vo) |z, k,l,m,...] (2)

that is,
both sides of (2) are t or both are f. (3)

We need to analyze (Vz)&/ [z, k,I,m,...]. It says
“for all n in the domain, &/[n, k,l,m, ..] is true”

But this is true exactly when &7 (k,[,m,...) is, since n does not affect the output:
the variable z is non-input in 27" O

1.1.1.24 Exercise. Suppose we drop the condition “suppose that z does not occur
free in &/ [z]” above. Does (1) still hold? You must provide the “why”"! d

26That is, not rational. A rational number has the form, by definition, p/q where both p and ¢ # 0 are
integers.

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 15

1.1.1.25 Exercise. In view of 1.1.1.15, “&7[] is true” iff “(Va)./ [x] is true”. So, is
this observation not all that we need to assert (1)? See also the previous exercise. [

Atomic formulae contain no Boolean connectives at all. On the other hand,
formulae with a leading quantifier, V or 3, contain no explicit Boolean connectives:
any Boolean connectives they may have are “hidden” in the quantifier’s scope. Thus,
one may view these two categories of formulae as “atomic, but from a Boolean point
of view”, meaning you cannot split them into simpler ones by simply removing a
Boolean connective. For example, if you start with (Vz)(z = 0V = y) and remove
the V, you get the nonsensical (Vz)(z = 0 z = y). Logicians call these “Boolean
atomic formulae” prime formulae but also Boolean variables.

1.1.1.26 Definition. (Prime Formulae; Tautologies) A prime formula or Boolean
variable is either an atomic formula, or a formula with a leading quantifier.

If a formula #—when viewed as a Boolean combination of prime formulae,
that is, as a formula built from prime formulae using only the formation rules (2)—
(6) of 1.1.1.3—evaluates as t according to the truth table 1.1.1.14, for all possible
assumed truth-values of its Boolean variables, then we call it a tautology and write
this concisely as g0 F. O

1.1.1.27 Remark. Every formula is built by appropriately applying Boolean glue on
anumber of prime formulae: Indeed, in any formula built according to 1.1.1.3 we can
identify all its maximal prime subformulac—that is prime subformulae not contained
in larger prime subformulae.

For example, in (Vz)}(z = 0 — (Jy)z = y) V w = u A u = 2° we may indicate
the prime subformulae by “boxing” them as below.

o)z =0]— |Gz =v])||V|[w=2u]|r|lu=2"] (1)

Double-boundary boxes enclose maximal prime formulae. The Boolean structure of

(1) is

vIC_JjA L]

Only maximal prime formulae contribute to the Boolean structure and express the
original formula as a Boolean combination of prime formulae glued together by
connectives. The non-maximal prime formulae are hidden inside maximal ones.

The italicized claim above follows directly from an adaptation of the “deconstruc-
tion” in 1.1.1.6:

Just replace the step

Write down, above whatever you have written so far, the ip of all pending
formulae (if they have ip); and remove the flag “pending” from the latter.

by

www.it-ebooks.info

http://www.it-ebooks.info/

16 MATHEMATICAL FOUNDATIONS

Write down, above whatever you have written so far, the ip of all non-
prime pending formulae (if they have ip); and remove the flag “pending”
from the latter.

Conversely, a Boolean combination of prime formulae is a formula in the sense of
1.1.1.3: Indeed, a Boolean combination is an expression built by applying (2)—(6) in
the context of a formula-construction (cf. 1.1.1.6) with starting points prime formulae,
rather than atomic formulae. Since a prime formula is a formula, the process leads
to a formula. See Exercise 1.8.1 for a rigorous proof (that you will supply, equipped
with the induction tool). 3

The quantifier “(for all possible) assumed” in Definition 1.1.1.26 is significant. It
means that we do not compute the actual (intrinsic) truth-values of the constituent
Boolean variables (in the domain that we have in mind)—even if they do have such
a value; note that z = y does not.

Rather, we assume for each prime formula, all the—in principle—possible output
values; that is, both of t and f.

For example, for the determination of tautologyhood of a formula, where z = «
enters as a Boolean variable, we assume two possible output values, t and f even
though we know that its intrinsic value is t.

In particular, z = x is not a tautology.
Pause. Ensure that this last observation fits with 1.1.1.26'!«

We indicate this fact by writing 4.t © = .

Assuming all possible truth-values of a prime formula (rather than attempting to
compute “the” value) is tantamount to allowing the Boolean structure and Boolean
structure alone—that is how the connectives have glued the formula together—to
determine the truth-value via truth tables (1.1.1.14).

1.1.1.28 Example. Some tautologies: © = 0 —» z = 0, (Va)& V ~(Vz)&, =
y—ozr=yVz=2%2",

Some non-tautologies: z = 0 - z =5, (Vz)z = zV Wy =y, z =y —
z=wVz=2%". For example, looking at the value assumptions below—or value
assignments, as is the accepted term,

r=y:=t

r=w:=f,and

z2=22" .=f,
weseethats = y — 2 = wV 2z = 22" evaluates as f, thus it is indeed not a tautology.
Incidentally, I used “:=" to denote (truth) value assignment. O

1.1.1.29 Definition. (Tautological Implication) We say that &7, . . ., o7, tautolog-
ically imply B iff Eiqur A — oo = ... >) — B.

We write &, ..., %, Eieur A in this case. 2B, we say, is (the result of) a
tautological implication from &, . .., 7,. O

www.it-ebooks.info

4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 17

@ 1.1.1.30 Remark. We note that a tautological implication preserves truth, from left
to right. See exercise below. O

1.1.1.31 Exercise. Let p1,...,p, be all the Boolean variables that appear in the
formulae &, . .., o, B.

Show that), ..., &, Fiaue B iff every set of values assigned to the Boolean
variables that makes all the &7 t, also makes % t.]

1.1.1.32 Example. All of the following are correct: £ = 0 Figut 2 = 0,2 < Y,y <
2 Etaut T < YAY < 2, T = Y Etgur & V & (no matter what o stands for).
& Erou B — & is also correct, since & — B — o, thatis, & — (B — &)
can be readily verified as a tautology using either 4 of 1.1.1.13 or the truth table
(1.1.1.14). A shortcut is to just consider the two assumed values, t and f, for <.
The second makes the formula true outright, while the first makes the bracketed
subformula t, hence the whole formula t.

This is incorrect: = < y,y < 2z Fyqut T < z since choosing

r<y:=t
y < z:=t,and
r<z:=f
weseethatz < y = y < z = x < z evaluates as f, so it is not a tautology. O

@ 1.1.1.33 Remark. (Capture of a Free Variable) Let </ () stand for (Jy)y # z—
recall that iy # x is short for ~y = x. It states (i.e., codifies the statement) “for any
value of z there is a value of y that is different”. Assuming that our domain is N,
this is clearly a true statement. So is &/(z), obtained by substituting z for z, or, in
programming jargon, “calling” .o/ (x) with argument z.

What about & (y)? This is (3y)y # y which is evidently false: “there is a value
of ¢ which is different from itself™!

This is unfortunate because, intuitively, what < (x) says should have nothing to
do with the name of the input variable!

What happened here is that when we substituted y for x, the free y was captured—
i.e., became bound—by a lurking quantifier, (Jy): y got into the latter’s scope.

We should never allow such substitutions since, as this example shows, they may
change the intended meaning of the resulting formula. In general, a substitution
into F x| that results into F[t] should not be allowed, if the term t contains a free
variable y that will become bound (captured) after the substitution.

Is there a workaround? Yes!

Consider an instance (3z).% (i1, ..., tm, T, j1, .. ., Jn) Of

(Fx)F (21, Zm, Ty, W1, - o, W) (1)
and a consistent instance (cf. 1.1.1.11) (FJu).# (i1, ..., tm, U, J1, - - -, Jn) Of

(Fu)ZF (21, s Zm, Uy W, -« o, W) (2)

www.it-ebooks.info

http://www.it-ebooks.info/

18 MATHEMATICAL FOUNDATIONS

where v is a new variable. The two instances are equivalent, since if x = k works
for the first, then © = k works for the second, and vice versa. The instance being
arbitrary, we get the equivalence of (1) and (2), that is

(Fx)F (21, .y zmy w1, We) = (Bu)F (21, .o Zm, Uy W, - 2, Wy)

In view of 1.1.1.20 and 1.1.1.21, or directly using a similar argument as above, one
sees at once that changing the bound variable of a universal quantifier into a brand
new variable does not change the meaning either.

This leads to the so-called “variant theorem” of logic, that

Changing a bound variable in a formula into a new (i.e., not already used in the
Sformula) variable does not change the meaning: the original and the new formulae
are equivalent.

But then, given &[], we can always effect &/ [t] with impunity as long as we
rename out of harm’s way, before the substitution takes place, all the original bound
variables:?’ All we need to do in a successful renaming is to ensure that none of
them is the same as a free variable of t. Strictly speaking, in & [t] we do not have the
original formula <, but a variant of the original—since we have renamed the latter’s
bound variables. Nevertheless since the old and the new are equivalent, we will use
the same name for both, 2. O

We now turn to what a mathematician or computer scientist does with logic: He
writes proofs.

1.1.1.34 Definition. (Proofs) A proof is a construction process that builds a finite
length sequence of true formulae, one at a time. We normally write this sequence
vertically on the page, with explanatory annotation. Three simple rules regarding
what formula we may write at each (construction-) step govern the process. We may
write

(1) A formula that we know as, or accept as, true.

(2) A formula that is a tautological implication of formulae already written in the
course of the proof.

3) (vVx)Z(...,x,...) provided &(...,z,...) has already been written in the
course of the proof.

Any formula o/ that appears in a proof we call a theorem. We say that the proof
“established” or proved the theorem 7. O

A theorem follows from certain axioms I". Saying just “theorem” does not indicate
this dependence, unless what is the relevant set of axioms is clearly understood
from the context. If in doubt, or if we are discussing theorems of various theories

2TThis is a sufficient and straightforward overkill. In principle, we only need to rename those bound
variables that are referenced in those quantifiers that will capture a variable in ¢, if we do nothing.

www.it-ebooks.info

4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 19

simultaneously, then we must name the applicable axiom set in each case by saying
“I"-theorem” or “theorem from I,

It is clear from what we have developed so far, that steps (2) and (3) preserve truth
(cf. 1.1.1.15). An application of step (3) is called application of generalization, or
rule Gen, as we will say.

What exactly is going on in step (1)? Well, we know that some formulae are true
because we recognize them as such outright, without the help of any complicated
process; they are “initial” truths—or initial theorems—such as x = x, which is true
in all mathematics, or x + 1 # 0, which is true in a specific theory: arithmetic of
the natural numbers. These initial theorems, whether they are universal or theory-
specific, are called axioms.

1.1.1.35 Remark. All axioms are “atomic theorems”, that is, they are obtained by an
application of (1)—they are not “results” of the application of (2) or (3) on previous
theorems written in the course of a proof.

As indicated in the @-passage above, we have two types of axioms.

(a) Those that are true because of the way the formulae that express them are put
together, using connectives and quantifiers. These axioms are not specific to any
branch of mathematics: They hold for all mathematics.

We call such axioms logical.”®

With some ingenuity, a very small set of formulae® can be chosen, among the
universally or absolutely true formulae, to serve as logical axioms. Read on!

For example, ¢ = x and (Vz)&/[x] — </[t] are such universal truths, and we
will adopt both as logical axioms.

(b) A formula & is a nonlogical axiom in a mathematical theory provided it is taken
as an important start-up truth of the theory—an “atomic theorem”— not because
of its form, but rather because of what it says in connection with the various
symbols that are peculiar to the theory.

For example, z + 1 # 0 is an important start-up truth—a nonlogical axiom—of
(Peano) arithmetic over N, There is nothing to render it “universal”; in fact, it is
not a true statement if our domain is either the reals, R, or the integers, Z (all of
positive, negative and zero). Another nonlogical axiom, for Euclidean geometry,
is “Euclid’s 5th postulate”, which asserts that through a point outside a line we
can draw precisely one parallel to said line. Again, the existence of so-called
non-Euclidean geometries shows that this is not a universal truth.

When we use the term “theory I'"”’, we mean somewhat ambiguously, but equivalently,
either

28 They express universal truths of logic, that is.
29Strictly speaking, formula-forms or formula-schemata, since these formulae will contain, as subformulae,
formula-names of unspecified formulae (such as &), arbitrary (object) variables, function names, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

20 MATHEMATICAL FOUNDATIONS

o I is the set all its theorems, that is, the set of all formulae that can be proved
starting from the axioms of the theory repeatedly applying the proof-tools
(1)—(3) above.

Or

o T is identified with the set of all the postulated nonlogical axioms. Clearly, if
we have the nonlogical axioms, then using the logical axioms that are common
to all theories, along with the proof-process (1)—(3) above, we may write down,
in principle,* all the theorems of the theory.

We prefer the viewpoint of the second bullet, as it gives prominence to our start-up
assumptions; the nonlogical axioms.

The terminology “& is true in the theory” simply means that .# is a theorem of
the theory. Its truth is relative to the truth of the nonlogical axioms; it is not absolute
or universal. For example, “the sum of the angles of any triangle equals 180°” is true
in (is a theorem of) Euclidean geometry. It is not true in (is not a theorem of) either
Riemann’s or Lobachevski’s geometries.

That # is true in a theory ¥ will be denoted symbolically as > - &,

Note that the logical axioms are not mentioned at the left of “F". Thus, if X is
empty and we have proved & only using logical axioms, then we will write - Z.

It is immediate from the foregoing that since a proof is not obliged, in an appli-
cations of step (1) (1.1.1.34), to use any nonlogical axiom, that every theory also
contains among its theorems all the absolute truths .% for which - % 3!

It is clear that \- is transitive, that is, if we have X + of; fori = 1,...,n, and also
Ay, ..., A, b B, then ¥ | B. Indeed, we can clearly concatenate the proofs of
each A;—in any order—and then append the proof of # at the very end. What we
get is a proof of & as required.

Since at each step of writing a proof we look back rather than forward [steps (2)
and (3)], it is clear that chopping off the “tail” of a proof at any point leaves us with a
proof. This observation entails that when we attempt to prove a formula from given
axioms, we just stop as soon as we have written the formula down. O

1.1.1.36 Exercise. Elaborate on the remark above regarding the transitivity of -. [J

1.1.1.37 Exercise. In mathematical practice we are allowed to use in a proof any
already proved theorems, in a step of type (1) of 1.1.1.34. Carefully justify this
practice in the context of Definition 1.1.1.34. O

Since rules (2) and Gen on 1.1.1.34 preserve truth, and the logical axioms are
universally true, then so is any % for which we have - % . Logicians call the content
of this observation soundness.

30“In principle”: The set of theorems of an interesting theory such as arithmetic, Euclidean geometry, or
set theory is infinite.
3By Godel’s completeness theorem, Godel (1930), the hedging “for which - .#” is redundant.

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 21

1.1.1.38 Definition. (Logical Axioms) The usually adopted logical axioms are (forall
choices of formulae, variables and terms that appear in them):

(i) All tautologies
(i) (Vz)o/[z] — @/[t] (see conclusion of 1.1.1.33)
(ili) &/ [x] — (Vz)</[z], provided z is not free in o7 [z]
(iv) (Vz)([z] — Blz]) = (Vz)of [z] = (V&) B|z]
W z=z
(vi) t = s — ([t] = o/s]) (see conclusion of 1.1.1.33). O

That the above logical axioms are adequate to prove all universal truths using the
proof mechanism of 1.1.1.34 is a result of Godel’s {completeness theorem; Godel
(1930)}.

1.1.1.39 Remark. It is easy to verify that all the logical axioms are indeed universal
truths. For group (i) and (v) this is trivial. The “truth” expressed (codified) in group
(ii) is that “if & [x] is true for all objects in its domain, then it must be true if we take
x to be a specific object ¢”. Note that even if ¢ has input variables, then as they vary
over the domain they generate objects from the domain. The generated objects are
part of “all objects in its domain”.

The truth of all formulae in group (iii) follows from a trivial modification of the
argument in 1.1.1.23.

Group (vi) is Leibniz’s characterization of equality: It states that replacing “equals
by equals” in an argument slot (z of of &/[z] in our case) produces the same result.

Finally, let us look at group (iv). For simplicity we assume that x is the only
variable, so we will show the truth of (Vz)(&/(z) — B(z)) —» (Vz)(z) —
(Vx)%(x) in its domain. First off, this means

(v2) (o (2) = B(x)) > ((V2)o/ (z) - (V2)B(x)) (1)

Since (1) is an implication, 1.1.1.14 indicates that the only real work for us is if
(Vx)((x) — HB(x)) evaluates as t. If this is so, this means

For every k in the domain, 7 (k) — %B(k)ist (2)

We now try to prove that the right hand side of the leftmost — must evaluate as t. As
it too is an implication, we will only consider the real work case where (V) (z) is
true, that is

For every k in the domain, &7 (k) is t (3)

and try to obtain that
(Vz)B(z) (4)

www.it-ebooks.info

http://www.it-ebooks.info/

22 MATHEMATICAL FOUNDATIONS

is true. Now, via 1.1.1.14, (2) and (3) give “For every k in the domain, (k) is t”,
which establishes (4). O

1.1.1.40 Example. Here are some proofs written in extreme pedantry.
(I) Establish the (universal) truth of 27 [t] — (3z)&/[z]. The proof follows:

(1) (Vo)-~[z] = ~[t] (axiom (ii))
(2) Ht] = ~(Vz)~/[z] ((1) and rule (2) of proof-writing; 1.1.1.34)
[

] —
(3) At] - (Hx)|x] ((2) and rule (2) of 1.1.1.34, using 1.1.1.20)

The comments in (.. .)-brackets explain why we wrote the formula to their left. The
numbering to the left allows easy reference to previous formulae. The last step is
“replacing equivalents by equivalents” in a Boolean combination. The result stays
the same since it is as if we “called” & — £ with inputs, first -(Vz)—~2/[z] and
then (3x)</[x]. But these inputs have the same (truth) value, so both calls will return
the same answer. Since step (2) has written a truth (why?), so has step (2).

(II) Establish that ¢t = ¢ for any term ¢. The proof follows:

(1) z==« (axiom (v))
(2) (Vo)z==x {(1) + Gen)
(3) (Vx)x =z —>t=1t (axiom (ii))
4) t= ((2, 3) + tautological implication) O

1.1.1.41 Remark. In the second proof above we used two important tools explicitly.
We identify both here so they can be used “off the shelf” in diverse situations in the
future.

The step from (2) to (4) via (3) generalizes to the rule “from (the truth of) (V)& [x]
follows (the truth of) «7{t]”. This rule is called specialization or Spec. It follows
from an application of this tautological implication, #, # — 4 k144t ¢ known
as modus ponens, for short MP. The reader can easily verify that indeed MP is a
tautological implication, so it qualifies as a proof-step of type (2) (1.1.1.34). O

1.1.1.42 Exercise. Give a proof that from the truth of &/[x] follows the truth of
). O

1.1.1.43 Example. We verify that with an assumption (nonlogical!) of the form
o — 98 we can prove & — (Vx)9B, on the proviso that z is not free in &7. That is,
we verify, under the stated condition, that & — # + & — (Vz)A.

1) o> B (hyp)

2) (Vz) (& — B) {(1) + Gen)
3) (Vz) (o = B) — (Vo) — (V2)B (axiom (iv))
4) (Vo) — (Vx)B {2, 3) + MP)

o~~~ =

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 23

() o — (Vo)B ()

In step (1) we said “hyp”. The formula is a “hypothesis”—a starting point; not
something that we claim as true; a nonlogical axiom. In step (5) I wrote (*) so
that I can explain the reasons for the step outside the proof, since the explanation is
long, namely: (5) follows from (4) by replacing “equivalents for equivalents”—see
1.1.1.23 and the similar situation in 1.1.1.40. O

1.1.1.44 Exercise. Prove that o — % + -9 — —.«/. The two sides of |- are called
contrapositives of each other. O

1.1.1.45 Exercise. Prove that & — £+ (3)<f — 8 as long as z is not free in &.
Hint. Rely on 1.1.1.44 and use 1.1.1.43. g

1.1.1.46 Example. Let us establish the familiar commutativity property of equality
as a result of the logical axioms [in particular, of (v) and (vi); cf. p. 21].

Let &/ [2] stand for 2 = x. An instance of Leibniz’s axiom is z = y — (&/[z] =
[y]) i.e.,
r=y—>(z=x=y==x) (1)

We can now embark on a proof:

(a) z=y—>(x=x=y==2x) (logical axiom (1))

() z=z—ozx=y—y==z (tautological implication of (a))
(¢) z=z (logical axiom)

(dy z=y—oy== {(b, c) + MP}

Step (b) takes some doing, but is easy. Recall 1.1.1.29 and 1.1.1.31. We need to
argue that if line (a) is t, then this forces line (b)

z=zrz—(z=y—oy=1) (2)

to be t as well. By the way, the Boolean variables here are £ = z,z = y and y = x.
Well, the real work toward seeing that (2) istis when z = z andz = y are t. If
s0, the assumption that line (a) is true forces © = z = y = z to be true (because the
part to the left of — in said line is). Since z = x is assumed t,*? then so must y = x,
which establishes (2).
Since the above proof contains no nonlogical axioms, we may write - z = y —

y=2a.
The reader will note that this is not a tautology, since z = y and y = x are distinct
Boolean variables. O

32The word “assumed” was inserted for emphasis: & = in this argument is a Boolean variable. We are
not looking for its intrinsic value, rather we are taking turns to consider each of its “possible” values, f and
t. The argument skipped the first value because it trivially makes (2) true.

www.it-ebooks.info

http://www.it-ebooks.info/

LA

24 MATHEMATICAL FOUNDATIONS

1.1.1.47 Exercise. Armed with the commutativity of =, prove the transitivity of =.
That is, establish the claimbFz =y > y=2 >z = z. a

1.1.1.48 Example. There are a couple of trivial, but often-used proof tools. They
are expressed in the form 2, %, ... F &, that is, “if I know that 2", %, ... hold—
either because they are assumptions (e.g., could be nonlogical axioms) or are already
proved theorems—then I can prove that & holds as well”.

(a) Proof by cases. & — B,¢ - B+ A NE — B.

It states that to prove that 9 follows from a disjunction, it suffices to prove
separately that & follows from each case—7 and ¥—of the disjunction.

(b) Ping pong. &7 — B, # — o/ - of = . It states that to prove an equivalence,
o = B, it suffices to prove each direction—gof — % and # — o —separately,
since, from the two directions taken as hypotheses jointly, we can prove the
equivalence.

Each of (a) and (b) admit immediate proofs: Once we have assumed the hypotheses
on each side, a tautological implication yields the conclusion at once [cf. 1.1.1.34,
rule (2) applied]. a

A major proof tool of the mathematician and computer scientist is the so-called
deduction theorem. lt is stated without proof here—for us it is its statement that
matters.

See Tourlakis (2003a) or Tourlakis (2008) for a proof of the deduction theorem,
but be warned that the two versions in these references are different, because the
specific foundations of logic in these two are different! The difference lies in how
generalization is applied, and that affects the statement, and proof, of the deduction
theorem. The present volume uses the style of generalization as it is practiced in the
first cited reference.

1.1.1.49 Theorem. (Deduction Theorem) If we can prove % from assumptions T’
and &/, then we can prove & — B from the assumptions I" alone, on a condition.
The condition is that during the proof of 9B from hypotheses I and <, step (3) of
1.1.1.34 was never applied with a variable that occurs free in &7 .

In other words, the free variables of &/ during said proof are “frozen”; they
behave like constants.

We can say the above symbolically as “if ', & + %, then ' F &/ — %, on a
condition, etc.”

What is the deduction theorem good for? Well, for one thing, it tells us that instead
of proving & — 4 it suffices to prove the less complex—since the glue — and the
part &7 are removed—%. For another, we have the added bonus of “knowing more”
before starting the proof. While toward proving &/ — % we “knew” I, toward
proving % we also know 7.

www.it-ebooks.info

144

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 25

Is the restriction on .27 too limiting? Not really. In practice, say, we want to prove
that I' + &/ (x,y) — PB(z,y,w). We proceed as follows:

Fix all the variables of &/, here x and y, to some unspecified values.
Remember not to use either x or y in a rule Gen during the proof!

Assume now &/ (z,y). Proceed to prove #(z,y, w)—recall that y is a
“constant”.

By the deduction theorem, we have proved & (z,y) — %#(z,y, w) from
just I, because we never performed generalization with the frozen z
and y.

In practice we apply less pedantry in the process:

(1) We only say, “let us fix the values all free variables z, y, ... in &/”.

We are, of course, obliged to remember that this also fixes these same variables
in B, and everywhere else, throughout the proof. Thus, we cannot univer-
sally quantify any of these variables during the proof, nor can we (a subsidiary
operation this; cf. 1.1.1.42) substitute a term into such “frozen” variables.

(2) The task ends as soon as we prove 4.

We do rot need to repeat this kind of justification every time: “By the deduction
theorem, we have proved o/ — £ from just I, etc.”

We will see this proof technique applied many times in this book, starting from
the next subsection.

We conclude with the ancient technique of proof by contradiction.®> We will define

a contradiction to be a formula of the form &/ A —&7. From the truth tables we know

that this evaluates as f regardless of whether <7 itself evaluates a t or f. The reader @
can verify at once, that for any F, & A o Fiaur F.

1.1.1.50 Theorem. (Proof by Contradiction) For any closed o, we have I" - 2/
if T, ~d = NI, for some X .

Proof. Indeed, for the if-part, let I', -/ = 2 A % . By the deduction theorem
(applicable without hedging as 2 is closed) we get

Thodd = X A-I (1)

It is straightforward to see that =&/ — 2" A =2 iqut &, hence by transitivity of
b, we getI' - o,

only if-part. Say, ' - o/. Adding to the assumptions I" we can still prove <7 (see
that you agree! 1.1.1.34). Thus

T, o (2)

30ften used by Euclid, for example.

www.it-ebooks.info

http://www.it-ebooks.info/

26 MATHEMATICAL FOUNDATIONS

But also (why?)

'~ -~ (3)
The trivial &7, 7 =400 & A —47 along with (2) and (3) above, and transitivity of
F,yieldT, - - o A~ O

The technique is used as follows: To prove I' F &7 (closed &) we start by “Assume,
by way of contradiction, =/ and then proceed to indeed obtain one.

1.1.1.51 Definition. A mathematical theory, given by its set of nonlogical axioms, is
consistent o1 free from contradiction, provided it is impossible to prove a contradiction
from its axioms. Otherwise it is called inconsistent. d

Thus we can rephrase 1.1.1.50 as I' I &7 iff (the theory with axioms)
I', -4/ is inconsistent.

1.1.1.52 Remark. (“Everyday” Proof Style) A few important remarks are in order
to conclude our digression into logic.

(1) The proof of truth of a formula using first principles from 1.1.1.13 and working
directly with a reference set is now for us a thing of the past. The last time
we utilized the method was to establish that all the logical axioms were indeed
universal truths (1.1.1.39—see also 1.1.1.33). From then on we will ride on the
shoulders of our logical axioms 1.1.1.38, and whatever other assumptions we take
as true from time to time, to prove all our theorems, essentially “syntactically”,
that is, by writing proofs according to 1.1.1.34.

(2) The practicing mathematician or computer scientist uses a simplified, often
shorter, and rather conversational version of the proofs with annotation that
we presented so far (for example, in 1.1.1.43 and 1.1.1.46). We should get used
to this relaxed style. Here is an example. We will establish that

F (Vz)(AN B) = (Vo) N (V2) B

Proof. We employ ping pong. (—) direction: Assume (Vz)(o/ A %) with all
its free variables frozen (we are going via the deduction theorem). Remove the
quantifier (Spec) to obtain 2/ A % and apply two tautological implications to
obtain & and 9. Apply Gen to each to get (Vx)< and (V). A tautological
implication yields what we want.

For the («) direction, assume (Vz)o/ A (Vx)4B, freezing all free variables of
the formula. Two tautological implications yield (Vz)&/ and (Vz)%. Two
applications of Spec, followed by tautological implication yield o/ A 98. Via
Gen we get what we want.

(3) We finally establish that & — % + (V)& — (Vx)%B. Indeed, the hypothesis
yields (Vz)(&/ — %) by Gen. We are done via axiom (iv) (1.1.1.38) and modus
ponens. |

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NATVELY 27

1.1.1.53 Exercise. Establish the fact & = Z + (Vz)o = (Vz)%.
Hint. Use 1.1.1.52. O

1.1.1.54 Exercise. Establish the fact & = Z + (Jz)«/ = () B.
Hint. Use 1.1.1.53. O

1.1.1.55 Exercise. Establish the fact - (3z)(&/ vV B) = (3z) & Vv (3z)RB.
Hint. Use 1.1.1.52. O

1.1.2 Sets and their Operations

We now return to our brief study of sets. The naive set theory of Cantor is not
axiomatic. In our very brief and elementary review of it we will deviate only slightly
and adopt precisely one axiom. First off, consider the formulae x € A and x € B.
By 1.1.1.38(vi), we obtain®*

A=B - (xeA=z€B)
and further, via 1.1.1.43 we get (since z, A, B are distinct variables)
A=B - (Vz)(zrc A=z € B) (1)

Suppose next that A and B stand for sets—no such restrictive assumption was made
above. Then (1) says that if two sets are equal, then every member of one (z) is a
member of the other, and vice versa; they have precisely the same elements. Is the
converse® true?

That it is so is a fundamental property of sets; a nonlogical axiom. It is the
so-called axiom of extensionality.

For any sets A and B, (Vz)(r € A=z € B)— A=B (Ext)

Extensionality says that the extension—what sets contain— is what matters to deter-

mine their equality. In particular, “structure” does not matter. Nor does “intention”:

e.g., whether we say outright, “collect 1 and 2 into a set”, or, in a roundabout way,

“collect the roots of the equation 22 — 3z + 2 = 0 into a set” we get the same set.
Taking (1) and (Fxt) together (ping pong) we have [cf. (b) in 1.1.1.48]:

Forany sets Aand B,A=B = (Vz)(zx € A=z € B) (2)
Since z € 2 and z € 3 are false, as 2 and 3 are numbers and thus contain no elements,
(Ve)(x€2=2€3)—2=3

is false, since to the left of — we have a true formula, while to the right a false one.
Thus, the restriction on the type of A and B in (Ezt) and (2) is essential. Of course,
(1) is valid for any type of variables A, B, x.

34The mathematician and computer scientist will rather say “we obtain £ to indicate he proved so,
without using the provability symbol . He will also let the context fend for itself as to what the
assumptions were; here no nonlogical assumptions were made.

35The converse of the implication .o — % is B — .

www.it-ebooks.info

http://www.it-ebooks.info/

28 MATHEMATICAL FOUNDATIONS

1.1.2.1 Example. Let us introduce the notation-by-listing of sets, {...}, where the
*...” is in each case replaced by an explicit listing of all the set members. Here
are two examples: {1,2,1,2,2} and {2, 1}. These two sets are equal by inspection,
according to extensionality, for every element of one appears in the other, and vice
versa. In particular, neither multiplicity, nor order of listing matter. Only the presence
of an element matters, not where (in the listing), or how many times. So, we may
write {1,2,1,2,2} = {2,1} orindeed {2,1} = {1,2,1,2,2}.

It should be clear that only the (intuitively) finite sets (a concept we will soon
mathematically define) can be depicted by listing; and this only in principle, since
we may not want to list a set of one trillion elements. By the way, writing N =
{0,1,2,...} is not a by-listing depiction of N, rather, it is a sloppy and abused
notation (yet surprisingly common). The *“. ..” indicates an unending, and understood
from the context, process whereby the next element is generated by adding one to
the previous. The notation taken out of context is nonsensical and gives no clue as to
what “...” means. a

The notation A C B, read “A is a subset of B”, or “B is a superset of A”, means
that every member of A is in B as well. So it is given by the mathematical definition
below:

ACBE(z)(z € Az e B) (3)

So how does one prove, given some sets A and B that A C B? One uses definition (3)
above, and proves instead (Vz)(z € A —» z € B). But to so prove, it suffices to
prove instead z € A — x € B, since an application of Gen to this formula produces
the preceding one.

Perfect! One can then proceed as follows: “Fix = and assume z € A”. All that
one needs to do next is to prove x € B (1.1.1.49).

At the intuitive level, and from the “word description of equality and subset
relations”, we expect, for sets A and B, that if A = B, then also A C B (and
by symmetry, also B C A). This can be mathematically proved as well: The
assumption means (Vz)(z € A = z € B). Dropping (Vz) (Spec) and following up
with a tautological implication we get z € A — x € B. Reintroducing (Vz) (Gen)
we get A C B (Definition (3)).

Intuitively, for any to sets A and B, if we know that A C B and B C A, then
A = B (the vice versa was the content of the preceding paragraph). Indeed, the two
assumptions and (3) above expand to (Vz)(r € A - x € B) and (Vz)(z € B —
x € A), respectively. Dropping (Vx) (Spec) we obtainz € A - z € Bandz €
B — x € A. Following up with a tautological implication we getx € A =z € B.
Applying (Vz) we get A = B.

So, in practice, to prove set equality, A = B, we go about it like this: “(C)
direction: Fix z € A ... therefore, z € B is proved”. Then we do: “(2) direction:
Fix z € B ... therefore, z € A is proved”.

If A C Bbut A # B we say that “A is a proper subset of B” and write A C B.
As is usual in mathematics, negating a relation is informally denoted by the relation

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 29

symbol superimposed with a /. So A ¢ B, AZ Band A ¢ B mean ~A € B,
- A C Band ~A C B, respectively.

1.1.2.2 Definition. (Bounded Quantification) In much of what we do in this volume
we will find bounded quantifiers very useful. That is, in set theory we will often
want to says things like “for all z in A, 2[z] holds”. While this can be captured
by (Vz)(z € A — Z'[z]), the alternative shorthand is much in use, and preferable:
(Vz € A)Z [x] oralso (Vz)ea Z [z].

In arithmetic we will correspondingly often want to say “for all z < y, Z'[z]
holds”. This is coded directly as (Vz)(x < y — 2 [z]). The preferred shorthand is:
(Ve < y) & [z] or also (Vz)<, & [z]. In these two cases, respectively, A and y are
free variables. O

1.1.2.3 Remark. The corresponding “for some z in A, Z [x] holds” and “for some
z < y, Z'|z] holds” have the shorthands (Jz € A)Z [z] or (3x)ca X [z] for the
former and (Jx < y). 2 [z] or also (3z) <, £ [z] for the latter.

The shorthand (3z € A). 2 [x] and (3x < y)}Z [z] stand for (Fz)(z € AN Z[z])
and (3z)(x < y A Z'[z]), respectively.

Translating to V notation we do not get any nasty surprises. For example,

(Fz)(x € AN Z[z]) (%)

is equivalent to —(Vz)=(z € A A Z[z]). Using 1.1.1.53 and an obvious tautology,
we see that this is the same as —~(Vz){x € A — —X|[z]); in shorthand: —(Vz €
A)-X]z]. Neat! The original () has the bounded-quantifier expression (3z €
A)Z [z], so the “I = —V—" property (1.1.1.20) holds for bounded quantifiers!]

1.1.2.4 Exercise. Show that the v = —~3—" property (1.1.1.21) holds for bounded
quantifiers. O

There is a more general way to build sets than by just collecting together and
listing a finite number of elements; by “defining property”. That is, for any formula
& (z) we collect into a set all the x (values) for which &7 (z) is true. We denote this
set by the term {z : &/ (z)}. Of course, £/ (z) is the defining property or “entrance
requirement” that determines membership. To make this precise we define

1.1.2.5 Definition. S = {z : &/ (z)} is shorthand, suggestive, notation for (Vz)(x €
S = o (x)). O

1.1.2.6 Remark. Several remarks are in order.

(1) The S that enters in (Vz)(z € S = o/ (z)) is unique, that is, if also (Vz)(z €
T = &/(x)), then S = T. Indeed, the two imply (Spec) z € S = /() and
z €T =/ (x), thus,z € S =z € T by tautological implication. Generalizing
we get (Vz)(x € S=x € T),andhence S =T.

www.it-ebooks.info

http://www.it-ebooks.info/

30

@

&)

C))

®)

(6)

MATHEMATICAL FOUNDATIONS

Pause. Why not just say “The twomean S = {z : &/ (z)}and T = {z : &/ ()},
hence S = T by transitivity of equality”?«

Because the notation “S = {z : & (x)}” is only shorthand for something else.
The symbol of equality “=" is inserted in anticipation, but not due to an a priori
knowledge, that it will behave correctly, as equality. Now we know—through

the longer argument and post facto—that it was all right to have written *“=" after
all.

Renaming the bound variable of (Vz)(x € S = «7(z)) into (a new) z we get
the equivalent formula (cf. 1.1.1.33) (V2)(z € § = &/(z)). The latter says
S ={z:4(2)}. So, z (and z) in {z : &/ (x)} is a bound variable that can be
renamed without changing the meaning.

By specializing (Va)(z € S = &/ (z)) we gett € S = &/(t) for any term ¢.
This says what our intuition wants: To test if an object ¢ is in the set .S, just test
that it passes the entrance requirement: </ (t).

Another way to say the same thing is t € {z : &/ (x)} iff &7 (2).

It is time to be reminded (this was mentioned in passing earlier) that it is rot the
case that every formula 27 (z) leads to a ser {z : &/ (x)}. To think so leads to
nasty contradictions, as it did in Cantor’s naive set theory. Examples of formulae
that are not set-builders are z ¢ x and x = x (cf. Section 1.3).

The statements {z : &/[z]} = {x : Blz]|} and &[z] = B|x] are equivalent.
Indeed, if we assume the first, then by (1) on p. 27 [which is no more than an
application of (vi) from 1.1.1.38] we get z € {z : Z[z]} =z € {z : B[z},
which by (3) above is (replacing equivalents by equivalents) & [z] = 2B[x].
These steps can be reversed [in this direction Ext is invoked rather than (1) on
p- 271 to prove the converse.

This is not unexpected at an intuitive level, but it is nice to have it affirmed
mathematically: If two “defining properties” are equivalent, then they yield the
same result, true or false, on every object we apply them. Thus, precisely the
same objects will “pass” each of the two.

{z : &(x,y,2 ...)} denotes several different sets (modulo the previous warn-
ing), one for each choice of the unspecified values y, z,.... These y, z, ... are
called parameters. g

1.1.2.7 Example. A few paragraphs ago we called the set-building process by defin-
ing property “more general” than the process of building sets by grouping members
and listing them explicitly between braces { }. Here is why: {a,b} = {z : z =
a V x = b}. This simple “trick” can be applied to any finite set, to represent it by a
defining property, namely, the disjunction of atomic formulae of the form z = a for
every a that we want to include in the set.]

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 31

@@ There is nothing in naive set theory that helps us argue that the collection of just
two objects—the so-called (unordered) pair—is a set (one that does not lead to
contradictions, that is).>® In the naive approach we take it for granted as a “self
evident” fact! Equipped with the hindsight of the early (naive) set theory paradoxes
and their workarounds, we can be content that a pair is so “small” as a collection—
just two elements—and is not about to cause any problems. In axiomatic approaches @
there is an axiom which says that we can indeed form a ser of two elements.

1.1.2.8 Example. {z : 2 € N Az > y} consists of all numbers in N greater
than y. Thatis: y+ 1,y + 2,y + 3,... We may also use the (abuse of) notation
{z € N: z > y} for this set. O

1.1.2.9 Example. Sometimes we collect more complicated objects than values of
variables. For example, {2 : z = 2V x = 9} is the set {22,9?%}, i.e., {4, 81}.

A more complicated exampleis S = {z+y : 0 < & < y}, where z, y are varying
over N.

(1) Suppose that y is the only a parameter. Then S = {y+ 1,y +2,...,2y — 1}.

(2) Suppose z is the only a parameter. Then S = {2z + 1,2z + 2,...}. This is
all of N, except the segment from 0 to 2.

(3) Suppose neither of z or y are parameters. Then S = {3,4,5,...}.

(4) Finally, suppose that both x and y are parameters. Then what S = {z + y :
0 < z < y} denotes is an infinite family of one-element sets, using all the elements
of Nexcept 0,1, 2: {3}, {4},{5},... O

@ Because of (4) in 1.1.2.6, mathematicians found a way to limit the size of collections
to ensure they are, technically, sets. An easy (but not the only) way to do this is to
build any new sets as parts (subsets) of some other set that we have already built.

Thus all our discussions in set theory will have some—usually unspecified, large
enough to be useable but not too large to be troublesome; and totally unobtrusive®’—
reference set tucked away somewhere; let us call it U.

This U is our “resource” where we take our set theory objects from, give values
to our variables from, and have our quantifiers vary over. Thus, in set naive theory,
when we write (Vz) or (3z) we really mean (Vz € U) or (Jz € U), respectively.
This reference set that we put aside for a discussion is also called the domain (of
discourse).

In other branches of mathematics whose objects can be collected into a set we
are less vague about the reference set; thus the calculus of one variable has R as its @
domain, while Peano arithmetic has N as its domain.

It is convenient to have a set with no elements around, the “empty set”. This is
the set .S given by the condition

(Ve)(x € S=z #a} (%)

3L et’s face it: naive set theory is not exactly clear as to what a set is, nor does it care.
37We do not pin it down.

www.it-ebooks.info

http://www.it-ebooks.info/

32 MATHEMATICAL FOUNDATIONS

By (1) in 1.1.2.6, there is just one set .S that satisfies (*), and the symbol reserved
for it is §. That it is a set is not in question as it is far too small! It contains nothing.
Indeed, by 3 in 1.1.2.6,

reld=z#=x (%)

thus no passes the entrance test, the later being false for all x. Of course, we can
write

0={z:~z=2z}

It is useful to note that for any set A, we have) C A. Indeed, this means xz €) —
x € A. This is true since, by (xx), z € 0 is false.

If we want to build more complex sets we will do well to devise operations on
sets. Thus,

1.1.2.10 Definition. If A and B are sets, then their union, AU B, isthe set {z : z €
Avz e B} d

AU B is formed by emptying the members of A and B in a single {. ..} “bag”.

The union makes sense even if one or both of A and B stand for atomic elements
with no set-theoretic structure, such as numbers.*® For example, if B is atomic, then
z € Bisfalse,andhencex € AVez € B=x € Aby 1.1.1.14. Thatis, AUB = A
in this case. If both A and B are urelements, then AU B = (.

The reader may be wondering: Is it not better to not allow things like z € 2—to
make it “illegal”, rather than false? No. For one thing, that would mean that before
we build an atomic formula ¢ € s we would then have to analyze first s to ensure it
is not an urelement; betraying that syntax has to be determined, well, syntactically!
Secondly, it would require far too many special cases to be considered in all our
definitions.

Thus the following is true [with or without a leading (Vx); cf. 1.1.1.15]:
r€AUB=cec AVzeB

We can form the union of three sets as either AU (B U C) or (AU B) U C. Since
z € AU (B U Q) is equivalent to

xeA\/(:ceBVaceC) 1)
and z € (AU B) U C is equivalent to
(reaveeB)vacc 2)

The equivalence of (1) and (2) proves that AU (BUC) = (AU B)UC which renders
brackets irrelevant in a chain of two U—indeed, in any finite chain of U by refining

38Such atomic elements are called urelements in the literature.

www.it-ebooks.info

4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 33

the previous argument (e.g., using induction® on the number of U symbols in the
chain).

1.1.2.11 Exercise. For any sets A and B, prove AU B = B U A. g

1.1.2.12 Example. For any set A, we have A U () = A. Indeed, this translates to
[using 1.1.1.15 to eliminate (V), and (3) in 1.1.2.6]

T€EAVrFr=xcA

which is clearly true, since = # z is false (cf. 1.1.1.14). O

The “big U” is a very important generalization of union applied to any collection
of sets (and/or urelements), not just finitely many.

1.1.2.13 Definition. (Generalized Union) Let S be a set (may contain sets and/or

urelements; may be, intuitively, finite or infinite). The symbol | J.S denotes the set

that we build by emptying the contents of every set in S into a new container.
Mathematically,

S ™ z: (34 € 5)c € 4)

“ (1]

That is, an is put into the new container iff we can spot it inside some A, which
in turn is in S. (]

We have some special cases of the |JS: If S is a collection of sets A;,—
{Ao, Ay, As, .. .}—indexed by i € N we may write alternatively

UA or UA or UA
i>0 €N

More generally, we may have a collection of sets A, indexed by a set I other than
N—e.g., I =R, I = {2,3}. We indicate | J S in this case by the alternative

U

acl
1.1.2.14 Example. Ua€{2’3} A, = Az U As. O

1.1.2.15 Definition. If A and B are sets, then their intersection, A N B, is the set
{z:z € ANz € B}. If AN B = () then we call A and B disjoint. O

AN B is formed by emptying only the common members of A and B in a single
{...} bag. The intersection makes sense even if one or both of A and B are urelements.

3Knowledge of induction, as well as of everything else in this review is presupposed; this is only a review!
Induction will be our review-subject in Section 1.4.

www.it-ebooks.info

http://www.it-ebooks.info/

34 MATHEMATICAL FOUNDATIONS

For example, if B is atomic, then z € B is false, and hence z € A A x € B is false
1.1.1.14. Thatis, A N B = @ in this case.

1.1.2.16 Definition. (Generalized Intersection) Let S be a set (may contain sets
and/or urelements; may be, intuitively, finite or infinite). The symbol () S denotes
the set that we build by emptying the contents that are common to every member of
S into a new container. Mathematically,

STz (VAe S)z € A)

That is, an “x” is put into the new container iff we can spot it inside every Ain 5. [J

Thus, if a urelement or §) are members of S, then (S = §.

For this definition too we have some special cases of the (].5: If S is a set of sets
{4, A1, As, ...} we may write alternatively

ﬂAmﬂAmﬂA
i>0 iEN

More generally, we may have a collection of sets A, indexed by a set I other than
N—eg, I =R, I =1{0,1,2,3,11}. We indicate [} S in this case by the alternative

N4

acl

1.1.2.17 Example. (),c 073 Aa = Ao N A7. O
1.1.2.18 Example. What is (| ? By 1.1.2.16

xEﬂ@ (VvAed)zec A

that is
ze()0=(VA(A €D~z € A)

Since A € (is false, the entire right hand side of = is true. That is, the left hand side
is true precisely for every z. Recalling that “every 2 means “every x-value in the
domain U”, we have

x € ﬂ f=xeU
hence (10 = U.
Were it not for the “protection” afforded us by the domain, “every ” would mean
“everything”, and we cannot form the set of everything! O

1.1.2.19 Definition. If A and B are sets, then their difference, A — B, is the set
{z:z € Anx ¢ B}. We may also write thisas {x € A:x ¢ B}. If A= U then
we write B for U — B-and call it the complement of B.)

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 35

1.1.2.20 Theorem. A - B= AN B.

Proof * € A— Bmeansz € ANz ¢ B. Giventhatz ¢ B = z € B, we are
done. g

1.1.2.21 Example. Let us compute {a, b} — {a}. Now, if a = b, then {a, b} = {a},
hence the difference equals). So let a # b. We have {a,b} = {z:z=aVz =b}
and {a} = {z : z = a}, thus

{a,b} —{a} ={z:(z=aVz=b Az #a} (1)

The reader will have no trouble verifying that, sincebothz = aVz = band -z = ¢
are true in our context, we have

(r=avVz=bA-xr=a=z=b (2)

Indeed, in the context of {a,b} — {a}, the truth-value of z = a is f and thus the left
hand side of = in (2) has the same truth-value as the right hand side—«cf. 1.1.1.14 and
note the truth-value of & A % when & is t and also the truth-value of 2 V %8 when
& is f. Therefore the right hand side of (1) simplifies to {z : = b} [cf. 1.1.2.6,
item (5)], i.e., {b}. This is the difference. O

1.1.2.22 Example. What conclusions may we draw from the following equality?

{{a}{a.0}} = {{4}.{4,B}} 1

Well, we get, first off, that

N {fa} {a.br} =N {14} {4, B}}

by an application of Exercise 1.8.4 (p. 85). That is,

{a} = {4}
hence

a=A (2)
This time let’s apply | to both sides of (1), We get {a, b} = { A, B}, which, by (2),

becomes
{a,b} = {a, B} (3)
Applying again Exercise 1.8.4 (p. 85), to the function x — {a} this time, we get via (3)
{a,b} — {a} = {a, B} — {a} (4)

If a = b, then the left hand side of (4) is }, so @ = B and therefore

b=RB (5)

www.it-ebooks.info

http://www.it-ebooks.info/

e

36 MATHEMATICAL FOUNDATIONS

If a # b, then, also a@ # B (else the right hand side, and hence the left, is §)). By the
previous example, (4) yields {b} = { B} in this case, so we obtain (5) once more.
In summary, (1) implies (2) and (5). [l

1.1.2.23 Definition. (Kuratowski’s Ordered Pair) For any objects x and y (sets or
not), we reserve the symbol (z,y) as an abbreviation of the set {{z}, {z,y}}. We
call (z,y) the ordered pair of z and y. O

The nomenclature for (z,y) stems from the property established in 1.1.2.22, that
If (,y) = (X,Y),thenz = X andy =Y (pair)

that is, order or position matters in the pair. This property is not shared by {a, b}
since, by extensionality, {a, b} = {b, a}, as we know. Of course, the converse—that
= X and y = Y implies (z,y) = (X,Y)—is not miraculous at all, and simply
follows by two applications of Exercise 1.8.4, p. 85: First, (z,2) = (X, 2) and then
(z,y) = (X,Y).

The reader is familiar with ordered pairs from analytic geometry, where ordered
pairs of real numbers give the coordinates of points on the Cartesian plane. Indeed,
the concept of Cartesian product relies on the (z, y) objects.

1.1.2.24 Example. So, (1,2) # (2,1)lest1 = 2. Is (1,1) = {1}? To ask explicitly,
is {{1},{1,1}} = {1}—that is, by extensionality, twice—is {{1}} = {1}? Not
unless {1} = 1, but this cannot be since 1 is an urelement, it has no set-theoretic
structure. O

How about

A={4} (*)

in general, for some set A? We cannot use here a “type” argument as we did above,
since both sides of = are of type set.

Can this be? An unfair question this, since naive set theory cannot resolve it. If
we grant (x), then we have A € A. Well, can this be?

Axiomatic foundations disallow this state of affairs, basing it on an intuitive
concept®® that “sets are formed by stages”, so you can’t have a set (built) before
you have (built) its members. A € A requires the left A being available before the
right A is—an untenable proposition. Thus set theorists have adopted an axiom (of
Jfoundation) which precludes bottomless (unfounded) chains such as

...€decebea

The impossibility of A € A follows from this, since otherwise it would lead to
...€AcAcAc A

4O All reasonable axioms are based on intuitively acceptable concepts. The idea that sets are formed by
stages led to many nice axioms of axiomatic set theory.

www.it-ebooks.info

a4

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 37

Ordered triples, quadruples and beyond can be easily defined using the ordered
pair as the basic building block:

1.1.2.25 Definition. (Ordered Tuples) We define the symbol (z;,...,z,), pro-
nounced the ordered n-tuple or just—n-tuple—by two recurrence equations:

<1'1,9U2> = (931,302)
and, for n > 2,
(X1, T, Tnp1)= (&1, o, Tn)y Tng1)

z; is the {-th component of the tuple. (a, b} is also called an 2-tuple (as well as an
ordered pair).

We often employ the abbreviation &, for the (ordered) sequence x1,...,z,. The
presence of “™” will not permit the confusion between the sequence Z, and the
component z,. If the length n is immaterial or known, we may just write . g

The above is a simple recursive or inductive definition. It compactifies and renders
finite an infinite-length definition such as:

(z,y) = (¥,y)
(xy,> = ({z,9),2)
(x,y,2,u) = ({z,9,2),u)
(z,y, 2,u, w>= (z, y,z u), w)

sa.”

In essence, it finitely describes the above.

This is entirely analogous with loops in programming where a variable-length (and
therefore syntactically illegal)—it depends on the value of N—program segment is
correctly implemented as a loop; that is, the following, where X < X + 1 occurs N
times

read N, X
X <«+0
X «X+1
X «X+1

is captured by this

read N, X
X +«~0
repeat N times

{

X —X+1

www.it-ebooks.info

http://www.it-ebooks.info/

38 MATHEMATICAL FOUNDATIONS

}

The reader has seen recursive definitions similar to the one in 1.1.2.25, for example,
the one that defines nonnegative (integer) powers of a non zero real number a by two
equations:

a® =1
and, forn > 0,
a"tl=gq-a"

Recursive definitions of this and of more general types are reviewed in Section 1.4. @

1.1.2.26 Exercise. Show that the name ordered (4-) tuple is apt for (z,y, z,w) by
showing that (z,y,z,w) = (X,Y,Z, W) implies that x = X,y = Y, z = Z and
w=W. |

1.1.2.27 Exercise. Write down explicitly the set for which the tuple (x,y, z, w) is
compact notation.

1.1.2.28 Definition. (Cartesian Product) Let A4, ..., A, besets. Then their Carte-
sian product, in the given order, is the set

{(al,...,an):ai eAi,forizl,...,n}

We will employ the symbols

X A; or X A

1<i<n i=1

as alternative shorthands for this product.
2

If Ay = Aand Ay = B then we write A x B rather than et A;. Ttis all right,

but sloppy, to write A; x --- x A,, for the general case. If A; = C, for all ¢, then we
n
write C™ for X iy Ai O
1.1.2.29 Example. {1} x {2} = {(1,2)} and {2} x {1} = {(2,1)}. Thus {1} x
{2} # {2} x {1}; the Cartesian product is not commutative in general. O
n

X A; can be given by a simple recursive (inductive) definition:
=1

1
X A= 4,
i=1

and, forn > 1,
n+1

X A= (X A) x Apr
i=1

i=1

www.it-ebooks.info

http://www.it-ebooks.info/

SETS AND LOGIC; NAIVELY 39

The reader should verify that this is consistent with 1.1.2.28 and 1.1.2.25.
Similarly, A™ can be defined inductively (recursively) as

Al =4
and, forn > 1,
Artl= A" x A

1.1.2.30 Example. A x § = 0, since (z,y) € A x @ is equivalenttoz € AAy € 0,
which is false. Similarly, § x 4 = {. O

We conclude our review of set operations with the power set.

1.1.2.31 Definition. (Power Set) For any set A, its power ser—denoted as P(A) or
24 —is {z:z C A}. a

1.1.2.32 Example. Thus,2? = {0};2{% = {0, {0}}; and 2{%{®}} = {9, {0}, {{0}},
{0,{0}}}.
2001} — {9 {0},{1},{0,1}}.

Since) C A and A C A for any set A, we have always) € 24 and 4 € 24. [

1.1.3 Alphabets, Strings and Languages

A string or expression or a word is just a tuple, all of whose components come from
the same set, A, the latter being called the alphabet. We say that “x is a string of
length n over the alphabet A” meaning x € A™.

Traditionally, strings are written down without separating commas or spaces, nor
with enclosing angular brackets. So if A = {a, b} we will write aababa rather than
{a,a,b,a,b,a).

Concatenation of (a1, ...,ay) and (b, ..., by,) in that order, denoted as

(@1 yam) * {b,...,bp)
is the string of length m + n
<a1,...,am,b1,...,bn>

Clearly, concatenation as defined above is associative, that is, for any strings x, y and
zwehave (zxy) x 2 =2x * (y* z).

Itis convenient to introduce a null or empty string, that has no members, and hence
has length 0. We will denote it by e. We will not attempt to give it a precise tuple
counterpart, but some people write “()” with nothing between brackets.

At the intuitive level, and given how concatenation was defined, we see that
T x€ = e¢xx = x for any string . We will distinguish () and € since one is an
“unordered set” will the other is ordered; but both are empty.

www.it-ebooks.info

http://www.it-ebooks.info/

40 MATHEMATICAL FOUNDATIONS

The set of all strings of non zero length over A is denoted by A*. This is, of

course,
00
U4
1=1

Adding € to the above we get the unqualified set of all strings over A, denoted by A*;
thatis, A* = AT U {e}. This set is often called the Kleene star of A.

A string A is a prefix of a string B if there is a string C such that B = A+« C. It
is a suffix of B if for some D, we have B = D x A, The prefix (suffix) is proper if it
is not equal to B.

Just as we use implied multiplication, ab for a X b or a - b, we also use implied
concatenation, xy for z ¥ y —leaving it up to the context to fend off ambiguities.

]

1.1.3.1 Example. Notall alphabets are amenable to writing tuples in “string-notation”.
For example, A = {1,11} has a problem. The notation 111 is ambiguous: Do we
mean (1,1,1), (11, 1), or {1,11)? O

1.1.3.2 Definition. (Languages) A language, L, over an alphabet A is just a subset
of A*. a

The “interesting” languages are those that are finitely definable. Automata and
language theory studies the properties of such finitely definable languages and of the
“machinery” that effects these finite definitions.

1.1.3.3 Definition. (Concatenation of Languages) If L and M are two languages
over an alphabet A, then the symbol L * M or simply (implied concatenation) LM
means the set {zy:x € LAy € M}. O

One can learn to live with * as both a unary (one-argument) operation, A*, and as a
binary one, L * M, much the same way we can see no ambiguity in uses of minus as
—xandy — 2.

1.2 RELATIONS AND FUNCTIONS

Intuitively, arelation is a formula, & (x, y, z). We say that a, b, ¢ are related according
to &/ (x, y, z) justin case & (a, b, ¢) is true. Influenced by the set theorist who wants to
realize “everything” (even formulae) as some set, the modern mathematician views
relations extensionally (by what they contain) as sets. For example, </ (z,y, z)
naturally defines this set, its extension: {(x,y,z) : &/(z,y, z)}. One goes one step
further and forgets the role of /. As a result, we give a totally extensional definition
of a relation as a set of tuples, disregarding how it may have been formed by a
“defining property”.

www.it-ebooks.info

http://www.it-ebooks.info/

L%

RELATIONS AND FUNCTIONS 41

1.2.0.4 Definition. A binary relation —or simply relation—R is a set of 2-tuples.
We use the notations (x,y) € R, xRy and R(z,y) to mean the same thing. O

A relation R, on the other hand, immediately gives rise to an atomic formula —
variably denoted by one of the forms (x,y) € R, 2Ry or R{x,y)— just as the
specific relations < and € lead to the atomic formulae z < y and x € y (cf. 1.1.1.1).

Pause. So,every formula.@/(z, . ..) defines therelation A = {(z,...) : &(z,...)},

and every (binary) relation R defines the (atomic) formula x Ry; right?«

Not exactly. If we have an “enormous™! supply of symbols for formulae, then we

could do this, since for every relation we could then introduce a formula symbol (so-
called “predicate”)—say, R, ¢, <, or whatever—by a definition, such as “z < y if and
only iff (z,y) is a member of the given relation”. This fails in most practical cases,
e.g., in set theory and arithmetic, where our symbol-alphabet is finite or enumerable
(cf. Definition 1.3.0.40). To write down —that is, to “have”—a formula, we need
notation for it. As we will see in Section 1.3, we have far “more” binary relations R
than we have means to “write them down” as formulae x Ry, if our symbol-alphabet
is finite or enumerable.

Hm. Did I not just write down “zRy”? Well, yes; however, writing one or two
symbols down, like “R” or “Q)” and saying that they “stand for relations” does not
equate to having a system of notation to write down all binary relations.

Intuitively, a relation is a table—possibly infinite in length—of pairs like

x z
ay | a3
af | a3

The head-row names the relation’s variables. The entries in each row represent the
tuples-members of the relation. It is standard convention to think of the left column,
headed by x as the “input-side”, while the right column as the “output-side”. This is
consistent with a “black box” view of the relation

aj — — aj

where we don’t know or don’t care what makes it tick, but we do know which inputs
cause which output(s).

It is not a priori precluded to have the same input produce several outputs. For
example, think of R = {(1,2), (1,1),(1,7) }.

Thus, the relation (table) establishes a one-to-many input/output correspondence.

Contrary to our viewpoint with formulae 7 (x, y)—where the input variables are all
the free variables, here x and y—in the case of relations we are allowed two points
of view, one being the one presented above, and the other where both x and y are the
inputs of the relation R(x,y). The context will fend for us!

4ISee also Section 1.3 to appreciate that not all infinities are equal in size.

www.it-ebooks.info

L

http://www.it-ebooks.info/

42 MATHEMATICAL FOUNDATIONS

Of course, when we take all the variables of a relation as input, then the output
that is implied—just as in the case of formulae—is one of t or f.

Since {Gn11) = ({@n), Gn+1), there is no loss of generality in focusing mostly on
binary relations. In other words, the left (input) column may well be a column of
n-tuple entries o’ = (A}, A}, ..., Al). The relation is then said to be (n + 1)-ary
and, in table form, would look like

1 ... x| 2

T T T
A% e Ag a%
Ay ..o AL] a3

The set consisting of the entries in the input column is the relation’s domain—that
is, those inputs that cause some output—while those in the output column constitute
the range—that is, the set of all outputs.

1.2.0.5 Definition. Let R be a (binary) relation. Its domain, denoted by dom(R), is
the set {z : (Jy)xRy}. Its range, denoted by ran(R), is the set {z : (Jy)yRz}. O

1.2.0.6 Example. Let R = {{(z,z) : x € N}. Then dom(R) = ran(R) = N.
Let @ = {{0,z) : z € N}. Then dom{Q) = {0} and ran(Q) = N.
Let S = {{z,0) : z € N}. Then ran(S) = {0} and dom(S) = N.
Let T = {(0,0),(0,7)}. Then dom(T") = {0} and ran(T") = {0, 7}. O

An abstract term of logic captures well the intentional aspect of a function—indeed
a function call—of mathematics and programming: we have a “rule” that defines the
input/output dependence. For example, the *rule” x 4 y that tells us how the output
is to be obtained, once we have the « and y values.

While, in logic, a term is a totally different type of object from a formula, on the
other hand, extensionally—i.e., in its set theory realization—a function is a subsidiary
construct of a relation. Referring back to the black box analogy, a function is simply
a relation that obeys the restriction that no input can cause more than one output. So
a function, extensionally, is a single-valued relation.

1.2.0.7 Definition. A function R is a single-valued relation. That is, whenever we
have both z Ry and x Rz, we will also have y = z.

It is traditional to use, generically, lower case letters from among f, g, h, k to
denote functions but this is by no means a requirement.]

1.2.0.8 Example. The empty set is a relation of course, the empty set of pairs. It is
also a function since
(,y) €ON(z,2) €D > y=2

vacuously, by virtue of the left hand side of — being false.]

It is often the case that we study relations, and functions, that take their inputs from
a given set A that is fixed throughout the study, and, similarly, produce their outputs
in a given fixed set B.

www.it-ebooks.info

http://www.it-ebooks.info/

RELATIONS AND FUNCTIONS 43

For example, our work on computability in this volume deals exclusively with
functions and relations whose inputs and outputs are from N.

Additional terminology has been invented to name these fixed “input-” and
“output-spaces” and also to name relations that fully utilize one or the other of
these spaces. The input space is called the left field while the output space is called
the right field.

If A and B are the adopted left and right fields of the function or relation R
then clearly R C A x B, and, in particular, dom(R) C A while ran(R) C B. A
well-established abbreviation—other than R C A x B— for “R is relation with left
field A and right field B” is R : A — B, read “R is a relation from A to B”.

If A = B, then we say “R is a relation on A”.

If dom(R) = A, then R is totally defined on A. We just say “R is total”. If
ran{R) = B, then R “covers” the entire right field with its outputs. We say “R is
onto”.

Pause. Totalness and ontoness are relative to a left field and a right field, respec-
tively; they are not absolute notions. <

A relation R : A — B is either total or not (nontotal). An indifference to-
ward which is which will be expressed by calling R partial. Thus “partial” is not
synonymous with “nontotal”. All relations are therefore partial relations.

All the terminology introduced in this @—segment applies to the special case of
functions as well.

We now turn to notation and concepts specific to functions. Let f be a function.
First off, f(a) denotes the unique b such that a fb or (a,b) € f. Note that such a b
exists iff a € dom(f). Thus

b= f(a)iff (a,b) € fiff afb

We write f(a) |—pronounced “f(a) is defined” or “f(a) converges”—to mean
a € dom(f). Otherwise we write f(a) T—pronounced “ f(a) is undefined” or “ f(a)
diverges”.

The set of all outputs of a function, when the inputs come from a particular set X,
is called the image of X under f and is denoted by f_, (X). Thus,

[o(X) ={f(z): z e X} 1)
Pause. So far we have been giving definitions regarding functions of one variable.
Or have we?«

Not really: We have already said that the multiple-input case is subsumed by
our notation. If f : A — B and A is a set of n-tuples, then f is a function of
“n-variables”, essentially. We usually abuse the notation f({(Z,)) and write instead
f(@n).

The inverse image of a set Y under a function is useful as well, that is, the set of
all inputs the generate f-outputs in Y. It is denoted by f.(Y") and is defined as

fe (V) ={z: f(z) e Y} (2)

www.it-ebooks.info

?

http://www.it-ebooks.info/

44 MATHEMATICAL FOUNDATIONS

Regarding, say, the definition of f_,:
What if f(a) T? How do you “collect” an undefined value into a set?
Well, you don’t. Both (1) and (2) have a rendering that is independent of the notation

“f(@)"
F4(X) = {y: Gr € X){z,) € 1} ()

fe(Y) ={z: Fy e Y)(z,y) € f} (2

1.2.0.9 Example. Thus, f,({a}) = {f(z) : z € {a}} = {f(z) : 2 = a} =
{f(a)}.

Iilet now g = {(1,2),({1,2},2),(2,7)}. Thus, g({1,2}) = 2, but g, ({1,2}) =
{2,7}. Also, g(5) T and g, ({5}) = 0.

On the otherhand, g ({2, 7}) = {1,{1,2},2}and g ({2}) = {1, {1, 2}}, while
g ({8}) = 0. O

When f(a) |, then f(a) = f(a) as is naturally expected. What about when
f(a) 1? This begs a more general question that we settle as follows:

First, seeking help from logic. For any formula &/[z] and term ¢ that does not
contain the variable z,

Ft] = (3z)(z =t A Lz]) (1)

We settle (1) by a ping pong argument (putting aside an urge to proclaim “but, it is
obvious!™).
(~) direction. We want to prove & [t] — (3z)(x = t A &/|z]). Note that

] =t =t A A[t]

is true. So is
t=tAHt] = (Fz)(xz =t A Z[x])

by 1.1.1.40 since we may view z = t A & [z] as (¢ = t A &/[z])[z] and thus view
t=tAt] as (z = t A & [z])[¢] due to the absence of z in ¢. Using this and the
previous displayed formula along with tautological implication we get what we want.

(+) direction. We want to prove (3z)(z = ¢t A &[z]) — &/[t]. We will employ
the deduction theorem, so we freeze all free variables in (3z)(z = t A &/[x]), and
assume it. So, let us call @ an z-value that makes the quantification work (cf. 1.1.1.13).
We have

a=tA a (2)

Since the a = ¢ part of (2) and the Leibniz axiom [(vi) of 1.1.1.38] yield & [a] = <[],
the remaining part of (2) yields the truth of &/[t], as needed.

www.it-ebooks.info

http://www.it-ebooks.info/

RELATIONS AND FUNCTIONS 45

Transferring the above result to the specific case of substituting terms into input
variables*? of relations, we have the following.

1.2.0.10 Remark. For any (m + n + l-ary) relation R(z1, ..., Zm, Z, Y1y -+, ¥Un),
function f, and object a, the substitution R(z1,..., zm, f(a),y1,-- ., ¥n) is short-
hand for

(Ew)(w=f(a)/\R(zl,...,zm,w,yl,...,yn)) (3)

Note that w = f(a) entails that f(a) |, so that if no such w exists [the case where
f(a) 11, then (3) is false; not undefined!

This convention is prevalent in the modern literature [cf. Hinman (1978), p. 9].
Contrast with the convention in Kleene (1943), where, for example, an expression
like f(a) = g(b) [and even f(a) = b] is allowed to be undefined! O

1.2.0.11 Example. Thus, applying the above twice, f(a) = g(b) means (Fu)(Fw)(u =
fla) A w = g(b)) which simplifies to (Fu)(u = f(a) A u = g(b)). In particular,
f(a) = g(b) entails that f(a) | and g(b) |. 0

The above is unsettling as it fails to satisfy the reflexivity of equality [axiom (v)
of 1.1.1.38]: If f(a) 1, then = f(a) = f(a). To get around this difficulty, Kleene
(1943) has extended equality to include the undefined case, restoring reflexivity in this
“generalized” equality relation. We will use this so-called Kleene-complete-equality
quite often in the chapter on computability. This version of equality uses a different
symbol, ~, to avoid confusion with the “standard” equality, =, of Remark 1.2.0.10
that compares only objects (not “undefined values”). For any two functions f and g,
we define

F(@) = g(6) Z £(a) T Ag(b) 1 V(f(a) L Ag(b) I Af(@) = g())
while f(a) ~ b means the same thing as afb, thatis, f(a) = b.
1.2.0.12 Example. Let ¢ = {(1,2),{{1,2},2),(2,7)}. Then, g(1) = g({1,2})
a

and also g(1) ~ g({1,2}). Also, g(1) # ¢(2) and also g(1) # ¢(2). Moreover,
9(3) ~ g(9). O

If f and g are functions and f C g then g is an extension of f while f is a
restriction of g. If g : A — B, one way to restrict g to f is to choose for f a
“smaller” left field, C' C A, and take for f only those 2-tuples that have the their first
component in C. We write thisas f =g | C. Thus, g | C = gn (C x B).

Note that every function f extends the totally undefined function () since § C f.

1.2.0.13 Definition. A function f is 1-1 if for all z and y, f(z) = f(y) implies
=y. [l

Note that f(z) = f(y) implies that f(x) | and f(y) J (1.2.0.10).

“2Here we view every variable of R as input; output is t or f. Cf. discussion on p. 42.

www.it-ebooks.info

4

http://www.it-ebooks.info/

46 MATHEMATICAL FOUNDATIONS

1.2.0.14 Example. {(1,1)} and {(1,1),(2,7)} are 1-1. {(1,0),(2,0)} is not. @ is
1-1 vacuously.]

1.2.0.15 Definition. (Relational Converse) If R is a relation, then its converse, de-
noted by R~! is the relation {{z,v) : yRz}. O

1.2.0.16 Exercise. Prove that if f is a 1-1 function, then the relation converse f~!
is a function (that is, single-valued). U

1.2.0.17 Definition. (1-1 Correspondence) A function f : A — B is called a I-]
correspondence iff it is all three: 1-1, total and onto.

Often we say that A and B are in 1-1 correspondence writing A ~ B, omitting
mention of the function that is the 1-1 correspondence.]

The terminology is derived from the fact that every element of A is paired with
precisely one element of B and vice versa.

1.2.0.18 Definition. (Composition of Relations and Functions) Let R : A — B
and Q) : B — C be two relations. The relation Ro @ : A — C, their relational
composition, is the relation

{ (z,y) : (32)(zRz A zQz)} (1)

If R and () are functions, then their functional composition—or composition as
functions—refers to their relational composition, but has a different notation: (QR)
(no “o”) is an alternative notation for R o QQ; note the order reversal. O

So zR o Qy iff (3z)(zRz A zQy). Let then xR o Qy and also xR o Qw. For some
a and b, guaranteed to exist, we have x Ra and aQy on one hand and 2 Rb and bQw
on the other. Let next R and @ both be functions. Then ¢ = b (from R) and hence
y = w (from Q). Thus,

If R and Q) are functions, then so is their composition, R o Q or (QR).

Let R and @ still be functions. Assume that (QR){(a) |. Then, for some b,
aR o b, and hence, for some ¢, aRc and ¢@b. That is,

R(a) = cand Q(c) = b. For short, (QR)(a) = Q(R(a)) (2)
The above justifies the order reversal for the alternative notation of “functional

composition”.

1.2.0.19 Theorem. Relational composition is associative, that is, R o (Q o S) =
(Ro Q) oS for any relations R, Q, S. If the relations are functions we may also

write (SQ)R) = (S(QR)).

Proof. See Exercise 24 in Section 1.8.]

www.it-ebooks.info

http://www.it-ebooks.info/

RELATIONS AND FUNCTIONS 47

1.2.0.20 Definition. The identity function on aset Ais 14 : A — A given by
la(z)=xforallx € A. d

By 1.2.0.19,if R, Q, T, S are relations, then Ro Q o T o S is unambiguous, as it
means the same thing regardless of how we insert brackets. In particular,

RoRo...oR
S—_—

n2>1 copies of R

is unambiguous regardless of the absence of brackets. We have the shorthand R™ for
the above chain of compositions. We can put this into an inductive definition similar
to the one that defines positive powers of a positive real:

1.2.0.21 Definition. (Relational Powers) The symbol R", for n > 1, is the rela-
tional power of R and is defined as

R'=R
and, forn > 1,
Rn—H — RORn

If R is a relation on A, then we replace the first equation by R® = 1,4 and the
condition for the second becomes “and, for n > 0. O

The following interesting result connects the notions of ontoness and 1-1ness with
the “algebra” of composition.

1.2.0.22 Theorem. Let f : A — Band g : B — A be functions. If (gf) = 14,
then g is onto while f is total and 1-1.

We say that g is a left inverse of f and f is a right inverse of g.

Proof. About g: Our goal, ontoness, means that, for each z € A, a y exists such that
gly) = z. Fix thenan z € A. By (gf) = 14, we have (gf)(x) = 14(z) = z. But
(9f)(@) = 9(f(@)). Sotake y = f(z).

About f: As seen above, x = g(f(x)) for each z € A. Since this is the same as
“zf o gz is true”, there must be a 2 such that zfz and zgz. The first of these says
f(z) = z and therefore f(x) |. This settles totalness.

For the 1-1ness, let f(a) = f(b). Applying g to both sides (that is, using
Exercise 1.8.4) we get g(f(a)) = g(f(b)). But this says a = b, by (gf) = 14, and
we are done. (]

1.2.0.23 Example. The above is as much as we can be expected to prove. For

example, say A = {1,2} and B = {3,4,5,6}. Let f : A — B be {(1,4),(2,3)}
and g : B — Abe {{4,1),(3,2),(6,1)}, or in friendlier notation

www.it-ebooks.info

http://www.it-ebooks.info/

48 MATHEMATICAL FOUNDATIONS

9(3)= 2

g(4)=

9(5)T

9(6)=1

Clearly, (gf) = 14 holds, but note:

(1) f is not onto.
(2) g is neither 1-1 nor total. [l

1.2.0.24 Example. With A = {1,2}, B = {3,4,5,6}and f : A— Bandg: B —
A as in the previous example, consider also the functions f and § given by
f(1)=6
(2)=3

and
9(3)=2
g4)=1
g(
7

Shy

5)1
(6)=2

Clearly, (§f) = 14 and (gf) = 1.4 hold, but note:

M f#f

(2)g # g

Thus, neither left nor right inverses need to be unique. The article in the
definition of said inverses was well-chosen. g

“ 13

The following two partial converses of 1.2.0.22 are useful.

1.2.0.25 Theorem. Let f : A — Bbetotaland I-1. Thenthereisanontog: B — A
such that (gf) = 14.

Proof. Consider the converse relation (1.2.0.15) of f and call it g:

9= (z,y): fly) =2} (1)

By Exercise 1.2.0.16, g : B — A is a (possibly nontotal) function. Note that, for
any a € A, there is a b such that f(a) = b (f is total), and, by (1), g(b) = a. That s,

g(f(a)) = a,or (gf) = 14. O
1.2.0.26 Remark. By (1)above,dom(g) = {z : (3y) (z,y) € g} = {z : (Fy)f(y)
2} = ran(f). 0

1.2.0.27 Theorem. Let f : A — B be onto. Then thereisatotaland1-1g: B — A
such that (fg) = 1p.

Proof. By assumption, § # f ({b}) C A, forall b € B. To define g(b) choose one
¢ € f({b}) and set g(b) = c. Since f(c) = b, we get f(g(b)) = bforallb € B,
and hence g is 1-1 and onto by 1.2.0.22. |

www.it-ebooks.info

?

Q@

http://www.it-ebooks.info/

RELATIONS AND FUNCTIONS 49

@@ The above argument makes potentially infinitely many choices, one from each

f({b}). Of course, these sets are pairwise disjoint.
Pause. Why is it that f,_ ({z}) N f({y}) = 0if z # y?«

Contrast with the case where B = {b, '}, a set of two elements. Then we can
define g by simply saying

Letce f_ ({b}), and set g(b) = c. Let ' € f({¥'}), and set g(V') = ¢

We can contain our (two) choices in the space of a proof. The same is true if B
had 2359000 elements. We would just have to write a proof that would be, well, a bit
longer, using a copy of the sentence “Let y € f. ({z}), and set g(z) = y” once for
each one of the 23590%0 members of B that we generically called here “z”.

However, the “Let . .. approach does not work for an infinite B, since we cannot
contain infinitely many such sentences in the space of a finite-length proof; unless we
have a way to codify the infinitely many choices in a finite manner. For example, if
A is a set of natural numbers then so is f.({b}) for each b and we can say precisely
how a ¢ can be chosen in each case: For example, “for each b € B, choose the
smallest c in f ({b})” would do just fine.

Some mathematicians did not accept that one may effect infinitely many choices,
in the absence of a finitely describable process of how to go about making them; this
was not mathematically acceptable. They argued that in the absence of some kind
of known “structure” in the various f ({b}), all the elements of these sets “look
the same” and therefore the infinite process of “choosing” cannot be compacted into
a finite well-defined description. This observation hinges on the number of choices
one needs to make rather than on the number of elements in a f ({b}).

An example of the difficulty, in layman’s terms, attributed to Russell, contrasts
two cases: One where we have an infinite set of pairs of shoes, and another, where
we have an infinite set of pairs of socks.

In the former case we can finitely define infinitely many choices of one shoe per
pair by always choosing the left shoe in each pair. In the case of socks this “rule”
does not define well which sock to pick, because, the two socks in a pair have no
distinct “left” or “right” members.

I used past tense above, “Some mathematicians did not accept, etc.”, for the
dissenting opinion. This is because mathematicians nowadays feel comfortable with
the notion of effecting infinitely many choices without having a finite process to
describe said choices. They even have an axiom (the Axiom of Choice, or AC) that
says they can do so [for a thorough discussion of AC, see Tourlakis (2003b)].

1.2.0.28 Definition. (Equivalence Relations) Let R be a relation on a set A, We
call it an equivalence relation iff it has all the three following properties:

(1) Itis reflexive, that is, z Rx holds, for all z € A

(2) It is symmetric, that is, x Ry implies yRx, for all x and y

(3) 1tis transitive, that is, z Ry and yRz imply xRz, for all z, y and z. d

www.it-ebooks.info

e

http://www.it-ebooks.info/

L4 4

50 MATHEMATICAL FOUNDATIONS

The concept “equivalence relation” does not apply to relations R : A — B with
A # B. The concept of reflexivity requires reference to the left (and right, since they
are equal) field. If we make the fields larger, without adding any pairs to the relation,
a previously reflexive relation will cease being reflexive.

1.2.0.29 Example. The function 14 : A — A is an equivalence relation.

The relation < on N is transitive, but neither symmetric, nor reflexive; on the other
hand, < has reflexivity (still fails symmetry).

The relation R on Z given by: “xRy iff the difference x — y is divisible by
57 (divisible with 0 remainder, that is) can be easily verified to be an equivalence
relation. g

Given an equivalence relation R on a set A, we define for each x € A the set of
all its equivalents in A. This is known as an equivalence class of R. We employ the
symbol [z] g, thus

2]z = {y € A: 2Ry})

Despite employing the term “class” in this context, which is standard practice in the
literature, we do not imply at all that these classes are “too large” to technically be
sets. On the contrary, any such class is a subset of A.

1.2.0.30 Theorem. Given an equivalence relation R on A. Its equivalence classes
[x] g satisfy

(1) [zl #10

(2) ifzRy iff [z]r = [y]r

(3) if[z]a N [yl # 0. then [z]r = [y]r
(4) UzeA[x]R =A

Proof.

(1) [z]g # 0: Infactx € [x]g by zRx.
(2) if xRy iff [z]r = [y]r:

First, assume the left hand side of the “iff 7, which also yields y Rx by symmetry.
For the (C) of the right hand side let 2z € [z]g. Thus xRz. Transitivity yields
yRz, hence z € [y]g.

3
4

For the (D), let 2z € [y|rg, i.e., yRz. Along with xRy and transitivity we have
xRz, thatis, z € [z]g.

Now assume the right hand side of the “iff”. By the proof of (1), y € [z]g, thus
zRy.

(3) if [z]r N [y]r # O, then [z]g = [y]r: By the assumption, there is a z such
that z € [z]g and z € [y]g. Thus xRz and yRz, the latter implying zRy. By
transitivity, x Ry; done by (2).

www.it-ebooks.info

L84

http://www.it-ebooks.info/

BIG AND SMALL INFINITE SETS; DIAGONALIZATION 51

(4) Ugecalzlr = A: The (C) is trivial, since [z]g C A for any z € A. For (2),
let z € A, But z € [z]g and this meets the entrance requirement for z in

UzeA[I]R' d

1.2.0.31 Remark. (Partitions) Thus the equivalence classes of an R on A meet the
three conditions a partition of A must satisfy, by definition:
A partition on A is a set of sets P such that

(a) IfC € P,thenC # 0
(b) (Nonoverlap) If C and D arein Pand C N D # @, then C = D
(c) (Coverage) | J S = A.

So equivalence classes furnish an example of partitions. More is true (cf. Exer-
cise 1.8.33): If P is a partition on A, then an equivalence relation on A can be defined
in a natural way, whose equivalence classes are precisely the members of P. |

1.2.0.32 Definition. (Order) A relation R on a set A is called an order or order
relation iff it is transitive and irreflexive, the latter meaning —~(3z)zRz.

We normally use the abstract symbol < for orders and let the context fend off
confusion with concrete usage of the symbol as the order on N or R. O

We call all orders partial, since some orders, < on A, are total or linear, while others
are not.

Indeed, we will seldom use the qualifier “partial” for orders as it is automatically
understood. Exception: Often one presents the “package” consisting of the order
and the underlying set A together, in symbols (A, <), and calls it a partially ordered
set or POset.

That an order < on A is total means that every pair of members x and y of A are
comparable: That is, one of © = y, x < y or y < z holds (this is also know as the
trichotomy property of linear orders).

1.2.0.33 Example. A standard example of a total order is < on N. A standard
example of a nontotal (nonlinear) order is C on 2#. For example, taking as A =
{0,1}, we see that {0} and {1} are not comparable under C. That the latter is an
order is trivial to verify (it is irreflexive by definition), a task that we leave to the
reader. O

1.3 BIG AND SMALL INFINITE SETS; DIAGONALIZATION

Two broad distinctions of sets by size are finite vs. infinite. Intuitively, we can count
the elements of a finite set and come up with a (natural) number at some distinct
point in (future) time. No such possibility is open for infinite sets. Just as finite sets
come in various sizes, a 5-element set, vs. a 0-element set, vs. a 23500000_alament set,

www.it-ebooks.info

http://www.it-ebooks.info/

52 MATHEMATICAL FOUNDATIONS

Cantor has taught us that infinite sets also come in various sizes. The technique he
used to so demonstrate is of interest to us, as it applies to computability, and is the
key topic of this section.

1.3.0.34 Definition. (Finite sets) A set A is finite iff it is either empty, or is in 1-1
correspondence with {z € N : z < n}. We prefer to refer to this “normalized” finite
set by the sloppy notation {0, ...,n}.

In this case we say that “A has n + 1 elements”. If A = () we say that “A has 0
elements”. If a set is rof finite, then it is infinite. O

1.3.0.35 Example. If A and B have n+1 elements, then A ~ B (cf. Exercise 1.8.31).
)

1.3.0.36 Theorem. If X C {0,...,n}, then there is no onto function f : X —
{0,...,n}.

Proof. First off, the claim holds if X = {, since then f = @ and its range is empty.
Let us otherwise proceed by way of contradiction, and assume that it is possible to
have such onto functions, for some n. Suppose then that the smallest n that aliows
this to happen is ng, and let X be a corresponding set “X” that works, that is, we
have an onto f : Xo — {0,...,n}. Thus Xo # @, by the preceding remark, and
therefore ng > 0, since otherwise X, = (.

Letus set H = f ({no}). § # H C X; the # by ontoness.

Case I. ng € H. Then f | (Xo — H) is onto, from Xo — Hto {0,...,n9 — 1}—
where Xy — H C {0,...,no — 1}—contradicting minimality of ng.

Case 2. ng ¢ H. If ng ¢ Xp, then we are back to Case 1. Otherwise,
Xo—H ¢ {0,...,n0—1} and we need a bit more work togetaY C {0,...,no—1},
and an onto function from left to right, to get our contradiction.

Well, we first look at the subcase where f(ng) 1: then just ignore ng; that is, take
Y = Xo — H — {ng}. Our function (onto {0,...,ng — 1} is f { Y.

Finally, consider the subcase where f{ng) = m. Take g = (f = ({{no,m)}u
H x {no})) U (H x {m}). Essentially, g is f; except that it ensures that (a) we

get no output ng, (b) ng ¢ dom(g), and yet (c) we do obtain output m—to maintain
ontoness. Now, taking Y = Xy — {ng} wesee thatg : Y — {0,...,n9 — 1} is
onto. O

1.3.0.37 Corollary. (Pigeon-Hole Principle) Ifm < n, then{0,...,m} £ {0,...,n}.

Proof. 1f the conclusion fails then we have an onto f : {0,...,m} — {0,...,n},
contradicting 1.3.0.36.]

Here is a “quick proof” of 1.3.0.37 that does not utilize 1.3.0.36: Since A ~ A for
any non-empty set, {0,...,m} has m + 1 elements. If {0,...,m} ~ {0,...,n},
then, by 1.3.0.34, it also has n + 1 elements. Impossible!

Pause. Do you accept this “proof”?«

www.it-ebooks.info

http://www.it-ebooks.info/

BIG AND SMALL INFINITE SETS; DIAGONALIZATION 53

You shouldn’t. “A has n + 1 elements” is just informal jargon for “A ~
{0,...,n}”. It may well be that this naming was unfortunate, and that it fails
to uniquely assign a number fo a finite set as “the number of its elements”. That the
nomenclature in quotes is apt is the content of Corollary 1.3.0.37, not the other way
around.

1.3.0.38 Corollary. There is no onto function from {0,...,n} to N.

“For all n € N” is, of course, implied (cf. 1.1.1.10).

Proof. Fix an n. By way of contradiction, let g : {0,...,n} — N be onto. The

function f given below is onto from N to {0,...,n + 1}
£(0) 0
@y =1
@ =2

fin+l)=n+1
fim) =0, forallm>n+1

Thus (cf. Exercise 1.8.34) (fg) : {0,...,n} = {0,...,n+1} is onto, contradicting
1.3.0.36. O

Our mathematical definitions have led to what we hoped they would: That N is
infinite!

N is a “canonical” infinite set, and sets that can be enumerated using natural
number indices
ag,ai, ...

have a special name.
1.3.0.39 Definition. (Countable Sets) A set A is countable, if it is empty or (in the
opposite case) if there is a way to arrange all its members in an infinite sequence, in

a “row of locations”, utilizing one location for each member of N. It is allowed to
repeatedly list any element of A, so that finite sets are countable. For example, {1}:

1,1,1,...

Technically, this enumeration is a total and onto function f : N — A. We say that
£ (n) is the nth element of A in the enumeration f. We often write f,, instead of f(n)
and then call n a “subscript” or “index”. O

A closely related notion is that of a set that can be enumerated using the elements
of N as indices, but without repetitions.

www.it-ebooks.info

http://www.it-ebooks.info/

54 MATHEMATICAL FOUNDATIONS

1.3.0.40 Definition. (Enumerable Sets) A set A is enumerable iff it is in 1-1 corre-
spondence with N. g

1.3.0.41 Example. Every enumerable set is countable, but the converse fails. For
example, {1} is countable but not enumerable due to 1.3.0.38. {2n : n € N} is
enumerable, with f(n) = 2n effecting the 1-1 correspondence f : N — {2n:n €
N}. O

1.3.0.42 Theorem. If A is an infinite subset of N, then A ~ N.

Proof. We will build a 1-1 and total enumeration of A, presented in a finite manner
as a (pseudo) program below:

X — A

n +—0

repeat forever:

pick a, the smallest member of X
tag a with n as a subscript; print a,,
n —n+1

X — X —{an}

Since A in not finite, this process never ends. In particular, all the members of A will

be picked (picking always the smallest avoids gaps) and all numbers from N will be

utilized as indices, considering the non-ending nature of the process, the sequential

choice of indices, and the starting point n = (. That is, the function f : N — A,

given for all n by f(n) = a,, is total and onto. Since f is strictly increasing—

f(n) < f(n+ 1)—itis 1-1 (distinct inputs cause distinct outputs). O
See also Exercise 1.8.35.

1.3.0.43 Theorem. Every infinite countable set is enumerable.

Proof. Let f : N — A be onto and total, where A is infinite. Let g : A — N such
that (fg) = 14 (1.2.0.27). Letus set B = ran(g). Thus, g is onto B, and by 1.2.0.22
is also 1-1 and total. Thus itisa 1-1 correspondence g : A — B,or A ~ B.

B must be infinite, otherwise (1.3.0.34), for some n, A ~ B ~ {0,...,n}.
By transitivity of ~ (Exercise 31), this proves that A is finite, contradicting the
hypothesis. Thus, by 1.3.042, A ~ B ~ N, hence (again, Exercise 1.8.31) A is
enumerable. O

So, if we can enumerate an infinite set at all, then we can enumerate it without
repetitions. It is useful to observe that we can convert a multirow enumeration

(fi,j)for allZ,jinN

into a single-row enumeration quite easily. This is shown diagrammatically below.
The “linearization” or “unfolding” of the infinite matrix of rows is effected by walking

www.it-ebooks.info

¢

http://www.it-ebooks.info/

BIG AND SMALL INFINITE SETS; DIAGONALIZATION 55

along the arrows.

(0,0) (0,1) (0,2) (6,3)
/ e a

(1,0 (1,1) (1,2)
e /

(2,0) (2,1)
/!

(3,0)

Technically, the set N x N—the set of “double subscripts” (i, j)—is countable. This
can be seen by a less informal argument; in fact, N x N ~ N:

Perhaps the simplest way to see this is to consider the function f : Nx N —- N
given by f(m,n) = 2™3™. It is clearly total, and (less) clearly 1-1: For the latter
just show that

2m3" = 2™ 3" implies m = m’ and n = n’
But ran(f) is infinite (see Exercise 1.8.36). Thus N x N ~ ran(f) ~ N,

This unfolding of a matrix into a straight line yields a very useful fact regarding
strings over countable sets (alphabets):

If the string alphabet V' is countable, then the set of all strings of length 2 over
V is also countable. Why? Because the arbitrary string of length 2 is of the form
d;d;, where d; and d; represent the ith and j elements of the enumeration of V,
respectively. Unfolding the infinite matrix exactly as above we get a single-row
enumeration of these strings.

By induction on the length n > 2 of strings we see that the set of strings of any
length n > 2 is also countable. Indeed, a string of length n + 1 is a string ab, where
a has length n and b € V. By the induction hypothesis, the set of all strings a can be
arranged in a single row (is countable), and we are done exactly as in the case of the
d;d; above (think of d; as an “a” and d; as a “b”).

Finally, let us collect @/l the strings over V into a set S. Is .S countable? Yes! We
can arrange S, at first, into an infinite matrix of strings mn; ;, that is, the jrh string of
length i. Then we employ our matrix-unfolding trick above.

Given what we understand as a “string” (cf. subsection 1.1.3), the above argument
translates as

(1) If V is countable, then so is V™ for any n > 2.
(2) If V is countable, then so is V+

With little additional effort one can see that if A and B are countable, then so is

n
A x B and generalize to the case of X A;.

=1

www.it-ebooks.info

4

http://www.it-ebooks.info/

56 MATHEMATICAL FOUNDATIONS

1.3.0.44 Remark. Letus collecta few more remarks on countable sets here. Suppose
now that we start with a countable set A. Is every subset of A countable? Yes, because
the composition of onto functions is onto (Exercise 1.8.34). As a special case, if A
is countable, then so is A N B for any B, since AN B C A.

In particular, there is only an enumerable set of formulae if we start with a countable
alphabet V, since the set of formulae is a subset of V*. This comment relates to the
discussion under the Pause on p. 41.

How about A U B? If both A and B are countable, then so is A U B. Indeed, and
without inventing a new technique, let

ag, @1, ...

be an enumeration of A and
bo, b1, ...

for B. Now form an infinite matrix with the A-enumeration as the 1st row, while
every other row is the same as the B-enumeration. Now unfold this matrix!

Of course, we may alternatively adapt the unfolding technique to an infinite matrix
of two rows. d

1.3.0.45 Example. Suppose we have a 3 x 3 matrix

1 0
1 1
0 1

— =

and we are asked: Find a sequence of three numbers, using only 0 or 1, that does not
/it as a row of the above matrix—i.e., is different from all rows.

Sure, you reply: Take 0 0 0.

That is correct. But what if the matrix were big, say, 10350000 x 10350000 o even
infinite?

Is there a finitely describable technique that can produce an “unfit” row for any
square matrix, even an infinite one? Yes, Cantor’s diagonal method or technique.

He noticed that any row that fits in the matrix as the, say, i-th row, intersects the
main diagonal at the same spot that the ¢-th column does.

Thus if we take the main diagonal—a sequence that has the same length as any
row—and change every one of its entries, then it will not fit anywhere as a row!
Because no row can have an entry that is different than the entry at the location where
it intersects the main diagonal!

This idea would give the answer 0 1 0 to our original question. While
1000 11 3 also follows the principle and works, we were constrained by “us-
ing only 0 or 1”. More seriously, in a case of a very large or infinite matrix it is best to
have a simple technique that works even if we do not know much about the elements
of the matrix. Read on! O

www.it-ebooks.info

¢

http://www.it-ebooks.info/

BIG AND SMALL INFINITE SETS; DIAGONALIZATION 57

1.3.0.46 Example. We have an infinite matrix of 0-1 entries. Can we produce an
infinite sequence of 0-1 entries that does not match any row in the matrix? Yes, take
the main diagonal and flip every entry (O to 1; 1 to 0).

If the diagonal has an a in row 4, the constructed row has an 1 — ¢ in column 1, so
it will not fit as row 4. So it fits nowhere, 7 being arbitrary. O

1.3.0.47 Example. (Cantor) Let S denote the set of all infinite sequences of Os and
Is.

Pause. What is an infinite sequence? Our intuitive understanding of the term
is captured mathematically by the concept of a total function f with left field (and
hence domain) N. The n-th member of the sequence is f(n).«

Can we arrange all of S in an infinite matrix—one element per row? No, since
the preceding example shows that we would miss at least one infinite sequence (i.e.,
we would fail to list it as a row), for a sequence of infinitely many Os and/or 1s can
be found, that does not match any row!

But arranging all members of S as an infinite matrix—one element per row—is
tantamount to saying that we can enumerate all the members of S using members of
N as indices.

So we cannot do that. S is not countable! a

1.3.0.48 Definition. (Uncountable Sets) A set that is not countable is called un-
countable. O

So, an uncountable set is neither finite, nor enumerable. The first observation
makes it infinite, the second makes it “more infinite” than the set of natural numbers
since it is not in 1-1 correspondence with N (else it would be enumerable, hence
countable) nor with a subset of N: If the latter, our uncountable set would be finite or
enumerable (which is absurd) according as it is in 1-1 correspondence with a finite
subset or an infinite subset (cf. 1.3.0.42 and Exercise 1.8.31).

Example 1.3.0.47 shows that uncountable sets exist. Here is a more interesting
one.

1.3.0.49 Example. (Cantor) The set of real numbers in the interval

0,1]ZfzeR:0<z <1}
is uncountable. This is done via an elaboration of the argument in 1.3.0.47.

Think of a member of (0, 1), in form, as an infinite sequence of numbers from
the set {0,1,2,3,4,5,6,7,8,9} prefixed with a dot; that is, think of the number’s
decimal notation.

Some numbers have representations that end in Os after a certain point. We call
these representations finite. Every such number has also an “infinite representation”
since the non zero digit d immediately to the left of the infinite tail of Os can be
converted to d — 1, and the infinite tail into 9s, without changing the value of the
number.

www.it-ebooks.info

54

http://www.it-ebooks.info/

58 MATHEMATICAL FOUNDATIONS

Disallow all finite representations.

Assume now by way of contradiction that a listing of all members of (0, 1] exists,
listing them via their infinite representations

-Ap0201302003004 - - -
-310011012013014 - . -
-020021022023024 - . -
-A30a31432033034 - . -

The argument from 1.3.0.47 can be easily modified to get a “row that does not fit”,
that is, a representation
dodydy - -

not in the listing.
Well, just let
2 ifaii:0Vaii:1
d; =)
1 otherwise

Clearly .dpd1dy - -- does not fit in any row ¢ as it differs from the expected digit
at the i-th decimal place: should be a;;, but d; # ay;. It is, on the other hand, an
infinite decimal expansion, being devoid of zeros, and thus should be listed. This
contradiction settles the issue. O

1.3.0.50 Example. (1.3.0.47 Revisited) Consider the set of all total functions from
Nto {0,1}. Is this countable?
Well, if there is an enumeration of these one-variable functions

fo, f1, fa, fa, ... (1)

consider the function g : N — {0,1} given by g(z) = 1 — f,(z). Clearly, this must
appear in the listing (1) since it has the correct left and right fields, and is total.

Too bad! If g = f; then g(i) = fi(i). By definition, it is also 1 — f;(7). A
contradiction.

This is a “mathematized” version of 1.3.0.47; as already noted, an infinite sequence
of Os and 1s is just a total function from N to {0, 1}. O

The same argument as above shows that the set of all functions from N to itself is
uncountable. Taking g(z) = f.(z)+ 1 also works here to “systematically change the
diagonal” fo(0), f1(1), ... since we are not constrained to keep the function values
in {0, 1}.

1.3.0.51 Remark. Worth Emphasizing. Here is how we constructed g: We have
a list of in principle available indices for g. We want to make sure that none
applies. A convenient method to do that is to inspect each available index, ¢, and
using the diagonal method do this: Ensure that g differs from f; at input ¢, setting

9(t) =1 = fuld).

www.it-ebooks.info

®

http://www.it-ebooks.info/

BIG AND SMALL INFINITE SETS; DIAGONALIZATION 59

This ensures that g #£ f;; period. We say that we cancelled the index i as a possible
“f-index” of g.

Since the process is applied for each i, we have cancelled all possible indices for @
g: For no i can we have g = f;. O

1.3.0.52 Example. (Cantor) What about the set of all subsets of N —P(N) or oN9
Cantor showed that this is uncountable as well: If not, we have an enumeration of
its members as

505517527"' (1)
Define the set i
DXE{zeN:z¢S,} (2)

So, D C N, thus it must appear in the list (1) as an S;. Buttheni € D iffi € S;

by virtue of D = S;. However, also i € D iff i ¢ S; by (2). This contradiction

establishes that 2V is uncountable. g%
In particular, it establishes that D is not an S;. O

1.3.0.53 Example. (Characteristic functions) First a definition: Given a set S in
the context of a reference set U, the characteristic function of S, denoted by xg, is

given by
(z) = 0 ifzesS
XS =1 itz el
If the reference set is N, the characteristic function of § C N is

(z) = 0 ifze S
XS =1 ifzeN-§

Note that there is a 1-1 correspondence F' between subsets of N and 0-1-valued
functions from N simply given by F(S) = xs—cf. Exercise 1.8.37. Thus

The set of 0-1-valued functions from N is in 1-1 correspondence with P(N)

In particular, the concept of characteristic functions shows that Example 1.3.0.52 fits
the diagonalization methodology. Indeed, xp(z) = 1 — xg, () for all 2. In other
words, x p is nothing else but the altered “main diagonal” (in bold face type) of the

infinite matrix
So(0) So(1) So(2) So(3)
51(0) S1(1) S1(2) Si1(3)
S2(0) S2(1) S2(2) S2(3)

0 ®

1.3.0.54 Example. By Exercise 1.8.38 we have that 28N ~ 2N 5o that

The set of all subsets of N x N is uncountable

www.it-ebooks.info

http://www.it-ebooks.info/

60 MATHEMATICAL FOUNDATIONS

The above can be rephrased to
The set of all binary relations on N is uncountable

Thus, if we build our formulae with symbols out of a countable alphabet, then we do
not have enough symbols to represent (in our notation) all binary relations on N by
formulae. This observation concludes our discussion that started on p. 41, following
Definition 1.2.0.4 and continued in 1.3.0.44.]

1.3.0.55 Example. (Russell’s Paradox is a Diagonalization) Russell formed the col-
lection of sets = given as
R={z:z ¢z} (1)

He argued that it is contradictory to accept R as a set: For if it is, and given that (1)
is equivalent to the statement (for all sets x)

reER=xédx (2)

we can substitute the specific set R into the set variable z to obtain—from the truth
of (2)—the truth of the special case

RcR=R¢R

This, of course, is absurd!

Let us now argue intuitively—taking liberties with working with all sets at once!—
that the above argument is a diagonalization over all sets.

Imagine an infinite matrix, M, whose columns and rows are labeled by all sets,
arranged in the same order along rows and columns. Assume that the matrix has as
entries only the numbers 0 and 1, entered such that in the location determined by the
row (named) x and the column (named) y we have a 0 iff y € x is true (we have 1
otherwise). That is,

yeziff M(z,y) =0 (1)

It follows that each row represents a set as an array of Os and 1s—that is, as the set’s
characteristic function.*®

Thus, the partial depiction of the row for set a informs us that the following are
true: a ¢ a, b € aand = ¢ a. Indeed, any array, X, of Os and Is whose entries are
labeled by the column names represents a collection of sets that has y as a member
iff the y-th entry of X is 0. For example, the diagonal collection

ab =z
4

“43Recall that this is an intuitive argument showing the (ironic) indebtedness of Russell’s argument to
Cantor’s original diagonalization method. Thus we will not be splitting hairs about qualms such as:
“Hmm, is this characteristic function defined over the collection of all sets? Can we do that?” Yes,
because this is only a qualitative argument to tease out the diagonal argument that was hidden in Russell’s
proof.

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTION FROM A USER'S PERSPECTIVE 61

contains b, but neither a, nor z.

The matrix M

a b -+ =x

Let us do Cantor’s trick now: We take the main diagonal d and form an array d from
it, by swapping all 1s with 0s. This d cannot fit as a row anywhere in the matrix M
since it will disagree at the diagonal entry in any placement.

The fact that the collection of sets (named) d does not fit as a row of M means
that it is not a set—because all sets are accounted for as row labels in M|

But which collection does d represent?

Well, using the analogy of X above, ¢ is in d iff the y-th entry of dis 0 iff the y-th
entry of dis 1 iff y ¢ y. Thus,

d = R, Russell’s *paradoxical collection”

1.4 INDUCTION FROM A USER’S PERSPECTIVE

In this section we will review the two widely used forms of induction, complete (or
strong) induction (also called course-of-values induction) and simple induction. We
will see how they are utilized, and when one is more convenient than the other; relate
them to each other, but also to another principle that is valid on natural numbers, the
least (integer) principle.

1.4.1 Complete, or Course-of-Values, Induction

Suppose that &2(n) is a “property”—that is, a formula of one free variable, n—of
the natural number ni. To prove that £ (n) holds for all n € N it suffices to prove for
the arbitrary n that & (n) holds.

What we mean by “arbitrary” is that we do not offer the proof of &?(n) for some
specific n such as n = 42; or n even; or any n that has precisely 105 digits, etc. If
the proof indeed has not cheated by using some property of n beyond the generic

www.it-ebooks.info

http://www.it-ebooks.info/

62 MATHEMATICAL FOUNDATIONS

“n € N7, then our proof is equally valid for any n € N; we have succeeded in effect
to prove Z(n), for all n € N (cf. 1.1.1.10 and 1.1.1.15).

1.4.1.1 Example. Suppose &(n) stands for the statement
0+1+2+3+--+2n=n2n+1) (1)

One way to prove (1), for all n, is as follows: Fix, but do not specify, n—that lack of
specification makes it arbitrary. Note the pairs below—separated by semicolons—
each consisting of two numbers that are equidistant from the two ends of the sequence
0,1,2,3,...,2n

0,2n;1,2n —1;2,2n—-2;...;n,2n—n

The above sequence is (almost) a permutation of the sequence 0,1,2,3,...,2n,
hence the sum of its terms is the same as the left hand side of (1), plus n.

Pause. Why “plus n”?«

We have n + 1 pairs, the sum of each being 2n, thus the left hand side of (1) equals
(n+1)2n — n. An easy calculation shows that (n + 1)2n —n=n(2n+1). O

Now the above endeavor—proving some #?(n) for the arbitrary n—is not always
easy. In fact, the above proof—attributed to Gauss—had a rabbit-off-a-hat flavor.
It would probably come as a surprise to the uninitiated that we can pull an extra
assumption out of the blue and use it toward proving £ (n}), and not only that: When
all is said and done, this process, with the extra assumption, is as good as if we have
proved % (n) without the extra assumption!

This out-of-the-blue assumption is that
P(k) holds forall k < n (I)
or, put another way, that the history, or the course-of-values, of %(n), namely,
2(0), 2(1),...,2(n-1) (I

holds—that is, it is a sequence of valid statements.
The extra assumption, (I) or (II), goes by the name induction hypothesis (1. H.)
The technique of proving

for all n, we have that #(n) holds (2)

using an L.H. toward the proof, is called proof by strong (complete, course-of-values)
induction.

The application (technique) of the proof by strong induction is:

(a) Pick an arbitrary n and prove the validity of £?(n) having also assumed the
validity of (I) or (II).

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTION FROM A USER'S PERSPECTIVE 63

(b) Once step (a) is completed, we conclude (2).

We note that the history, (1), of &2(n) is empty if n = 0. Thus every proof by
strong induction has two cases to consider: the one where the history helps, because
it exists, i.e., when we have n > 0; and the one where the history does not help,
because it simply does not exist, i.e., when n = 0.

Thus, the application of strong induction morphs into a two-step method:

(A) Pick an arbitrary n > 0 and prove the validity of &2 (n), having assumed the
validity of (1) or (1I).

(B) For n = 0 prove & (n)—i.e., #(0)—directly.
(C) Once steps (A) and (B) are completed, we conclude (2).

Some jargon: As we noted, (I) or (I7) are called the I.H. Step (A) above is called
the Induction Step (1.S.). Step (B) is called the basis of the induction. The process
(A)—(C) is proof by induction on n.

One often sees the basis done first, but it should be clear that it is just one of two
cases to be considered, and the cases can be taken care of in any order.

It cannot be emphasized enough that the phrase “Pick an arbitrary n > 0 and
prove...” is synonymous with “Fix, but do not specify, an n > 0 and prove ...”

Clearly the LH. is for a fixed but unspecified n—not for all n, as the latter would
beg the very question we are called to settle by induction!

1.4.1.2 Example. (Example 1.4.1.1 Revisited) We will prove (1) above, for all n,
by strong induction, faithfully following the plan (A)-(B) above. Fix an arbitrary n.
We have two cases:

Case n > 0. We assume the I.H. and try to prove (1). Well, we calculate as
follows:

0+1+2+--+2n-1)+2n—-142n=n-1)(2(n—-1)+1)+4n—1

=(n—-1)2n—-1)+4n -1
=2 —n—-2n+1+4n-1

=22 +n
=n(2n+1)
Note that the I.H. says
0+1+243+---+2k=k(2k+1),fork <n (3)

This, in particular, is true for £ = n — 1, a fact we have used in the first calculation
step above.

Case n = 0. In this case the statement to prove, namely, (1), becomes 0 = 0,
which is true. |

www.it-ebooks.info

http://www.it-ebooks.info/

64 MATHEMATICAL FOUNDATIONS

Hm. The L.H. (3) above seems to be an overkill given that only the case k = n — 1
was utilized in the 1.S. Good point! We take it up in the next example.

1.4.1.3 Example. This time we prove, for all n,
if n > 1, then n has a prime factor (4)

The reader will recall that a factor of n is a natural number m such that for some
natural number k& we have n = mk. A natural number p is a prime number (or just a
prime) if and only if it is greater than 1, and all its factors are p and 1.

By strong induction, we take up first the case for an arbitrary (but fixed) n that
allows a non-empty history; thus we assume the I.H. corresponding to (4):

forall k < mn, if k > 1, then k has a prime factor (I.H.)

The non-empty history case corresponds to n > 3, since 1 < k and k < 2 are
inconsistent.

Letthenn > 3. If n is a prime, then we are done (n is a factor of). Alternatively,
suppose that it is not. Then there exist a and b such that n = ab, where a # 1 # b—
else n would be prime! Can a < 1? No, for then ¢ = 0 and hence n = 0, contrary
to the case we are in. Thus @ > 1. Similarly b > 1. The latter yields n = ab > a.

Therefore the LH. applies to a, that is, a has a prime factor, p. This means that for
some m, a = pm. But then, n = pmb, and hence n has a prime factor.

The “basis” encompasses all the cases that have empty history: n = 0, 1, 2. For
the first two the claim is vacuously satisfied as n > 1 is false. For n = 2 it is satisfied
by virtue of 2 being a prime. O

This example shows the value of an L.H. that refers to the entire history below n:
We have no way of controlling where a falls in the sequence 0,1,2,...,n — 1. Itis
unreasonable to expect that @ = n — 1 in general. For example, if n = 6, then ¢ = 2
andb=3,ora=3andb=2 Butn—1=>5.

1.4.2 Simple Induction

Since on occasion we will also employ simple induction in this book, let me remind
the reader that in this kind of induction the I.H. is not the assumption of validity of the
entire history, but that of just 2(n — 1). As before, simple induction is carried out
for the arbitrary n, so we need to work out two cases: when the LH. exists (n > 0)
and when it does not (n = 0). The case of proving Z?(0) directly is still called the
basis of the (simple) induction.

The reader will notice that Example 1.4.1.2 can be recast under a simple induction
proof since in the first step of the n > 0 case we only have used the assumption that
(D is true fork =n — 1.

Common practice has it that in performing simple induction the majority of users
in the literature take as LH. &?(n) while the 1.S. involves proving & (n + 1).

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTION FROM A USER'S PERSPECTIVE 65

1.4.3 The Least Principle

The least principle states that each non-empty subset of natural numbers contains a
smallest (least) number.

1.4.3.1 Example. (Euclid) We prove that given a natural number & > 1, each natural
number n can be expressed as n = bq + r for some natural numbers ¢ and r , where
0 < r < b. We only argue the case n > 0 since the case n = Q0 is trivial: n = 0b+0.

Solet n > 0. Note that the set S = {bx —n : £ € NA bz —n > 0} is not
empty. For example, since bn > n (by b > 1), it is bn — n > 0. By the least
principle, S contains a smallest number, which has the form bm — n for some m.
From m # 0 (since —n is not positive and cannot be in S) we getg =m — 1 € N,
Since bg —n <bm —n,itisbg —n ¢ S. Thusbg —n < 0,ie,n —bg > 0.

We set r = n — bg. Now, since bg < n < b(g + 1) (recall, m = q + 1) we have
0<n-—bg<blg+1)—bg, thatis,0 <r < b O

A related result that does not need the least principle (nor induction) is that the
quotient g and remainder r are uniquely determined by n and b: Indeed, suppose that
we have

n=>bq +r (5)
0<r <b (6)
n=bq" +r" (7)
0<r" <b (8)
By (5) and (7) we have
blg' —¢"| = |r' — "] (9)

Can it be that |¢' — ¢"| £ 0? If so, |¢’ — ¢”| > 1, hence, multiplying both sides by b
and using (9),
P — 7" >b (10)

(6) and (8) tell a different story though! They yield [e.g., thinkof (8)as —b < —r"' < 0
and add with (6), term by term] —b < r’ — 7" < b, that is |[r' — r”| < b, which
contradicts (10).

We thus must answer the earlier question “Can it be that |¢’ — ¢”| # 07" by “no”.
But then (9) yields also ' = 7"/, as needed.
1.4.4 The Equivalence of Induction and the Least Principle

Somewhat surprisingly, all three proof techniques, by least principle, by simple or by
course-of-values induction, have exactly the same power.

1.4.4.1 Theorem. The least principle is equivalent to course-of-values induction.

Proof. This proof requires two directions.

www.it-ebooks.info

http://www.it-ebooks.info/

66 MATHEMATICAL FOUNDATIONS

One, we can prove the least principle, using strong induction: Indeed, let § #
S C N. We will argue, by way of contradiction, that S has a least element.

So let instead S have no such element. The plan is to use strong induction to
arrive at a contradiction. We may encounter more than one such contradictions,
but the “primary” one that we will strive for is to prove that S = ()—contrary to
hypothesis—which is tantamount to N = N — S| or in many words:

for all natural numbers n,n € N — S (1)

For the basis, we argue that 0 € N — S. Indeed, if not, then 0 € S will be least in
S, contradicting what we assumed for .S. Let then pick an n > 0 and accept as [.H.
that for all £ < n we have k € N — S. It immediately follows that n € N — S for
otherwise it is the first n to enter .S, which makes it least in S We have proved (1).

Two, we prove that strong induction is valid, by assuming that the least principle
is. That is, we will show the following, for any property & (n):
If #(0) holds, and if, foranyn > 0, 2 (n) holds wheneverall of (0}, ..., #(n—1)
hold; then 22 (n) holds for all n.

So we assume that the if-part of the italicized statement above is valid and prove
the then-part, that “4?(n) holds for all n”.

Well, assume we are wrong in our conjectured conclusion (then-part). But then
S = {n:—=2(n)} is not empty.

By the least principle, we have a smallest member of S, let us call it m. Now, m # 0,
since the italicized statement’s if-part includes the validity of $?(0). What about
0,1,2,...,m — 1 then? (Now that we know that m — 1 > 0, we may ask.) Well,
none are in S (all being smaller than m), that is, they all satisfy &?. But then, the
if-part of the italicized statement guarantees that £?(m) must hold as well. This is
no good because it says m ¢ S/

This contradiction forces us to backtrack over our “assume we are wrong” above.
So it is, after all, the case that £(n) does hold for all n. O

1.4.4.2 Theorem. Simple induction and course-of-values induction have the same
power.

Proof. That is, one tool can simulate the other. We need to prove two things:

One, whatever property 2?{n) we can prove (for all n) via simple induction, we
can also prove it using strong induction. Simple induction achieves this:

If 22(0) holds, and if, for any n > 0, 22(n) holds whenever 2 (n — 1) holds;

then 2 (n) holds for all n.

So assume the if-part of the italicized statement. Can course-of-values induction
prove the then-part, namely, that “4?(n) holds for all n”*?

WEell, strong induction will have to check that £2(0) holds: That much is given
by the if-part above. Now, for the arbitrary n > 0, strong induction’s I.H. is that
2(0),...,2(n—1)all hold. Can this assumption produce the truth of &2(n)? Yes,

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTION FROM A USER'S PERSPECTIVE 67

because this strong I.H. yields the truth of 42(n — 1). By the if-part of the italicized
statement above, this alone yields the truth of &2 (n).
Now, by strong induction, we indeed get the then-part: &2 (n) holds for all n.

Two, conversely, we prove that strong induction is valid, by assuming that simple
induction is. That is, we will show that the following statement is valid, for any
property £ (n):

If £2(n) holds on the assumption that, for all k£ < n, £(k) holds;
then £2(n) holds for all n. (2)

So we will assume the validity of if-part of (2), and then employ simple induction to
prove the then-part, that
Z(n) holds for all n (3)

We will be a bit trickier here, so let us consider the new property Z(m) defined as
follows:
for all k < m, (k) holds (4)

So, instead of directly proving (3),
I will prove that, for all n € N, 2(n) holds (5)

I deliver on the promise (5) by simple induction, which, by assumption, is the tool at
my disposal in this part of the proof: First, by (4), 2(0) says “for all k < 0, (k)
holds”. Ineed to verify this, my (simple) induction’s basis. Fortunately, the statement
in quotes is vacuously true since it is impossible to refute it since a refutation requires
a k < 0 [that makes £ (k) false].

Next, let us fix an n and take the LH. that 2(n) is true. We proceed to show
that 2(n + 1) is true too, and this will conclude (5). Now, 2(n + 1) says “for all
k <n+1, 2(k)holds”, or, “for all k < n, P (k) holds”. Another way of putting
itis: for all k < n, and for k = n, 22(k) holds. That is, we want to show that

2(n) and #(n) hold (6)

Now 2(n) is true by the LH. of our simple induction. That is, for all k¥ < n, 2 (k)
is true, by the definition of 2 in (4). But we have assumed the if-part of (2), and this
yields the truth of £2(n). Thus (6) is established, i.e., 2(n + 1), is true. Hence we
have concluded (5). Having moreover just seen that 2(n) implies £?(n), for any n,
(5) implies that £2(n) too holds for all n—and this statement is (3). d

At this point we can “strengthen” our inductions to “start” (basis) at any integer
ng > 0.

Simple induction with non zero basis: To prove that, for all n > ng, &?(n) holds
just do:

(A) Prove the truth of & (ny).

(B) Fix an arbitrary n > ng and prove the truth of #(n + 1) on the assumption that
P (n) holds.

www.it-ebooks.info

http://www.it-ebooks.info/

68 MATHEMATICAL FOUNDATIONS

Strong induction with non zero basis: To prove that, for all n > ng, & (n) holds
just do:

(a) Prove the truth of &?(nyg).

(b) Fix an arbitrary n > ng and prove the truth of ?(n) on the assumption that
P (k) holds for all ng < k < n.

1.4.4.3 Exercise. Start by the trivial observation that the least principle holds on the
set N,,, = {ng,no + 1,n0 + 2,...}, namely: Every non-empty subset of N,,, has a
least element. Now modify the proof of 1.4.4.1 (using N,,, instead of N, judiciously)
to conclude that the proof schema (a)—(b) above is equivalent to the least principle
on the set N,,,,.

Conclude that the proof schema (a)—(b) is valid. O

1.4.4.4 Exercise. Imitate the proof of 1.4.4.2 to prove that the schemata (a)—(b) and
(A)—(B) above are equivalent in power.
Conclude that the proof schema (A)~(B) is valid. O

1.5 WHY INDUCTION TICKS

Induction is neat, but is it a valid principle? Why should we believe such a thing?
Unfortunately, the previous section does not shed much light other than the somewhat
surprising equivalence of the two induction principles with the least principle.

It turns out that we cannot prove either of the three as valid from any substantially
simpler and therefore more readily believable facts of arithmetic. We can build
a plausible case, however. Given the equivalence of the three, let us use simple
induction as the pivot of our plausibility argument.

Simple induction is, intuitively, a proof generator that, for each given property
P(n), certifies the latter’s validity for any n that we want: Recall that the combination
of the LH. and LS. establish for the arbitrary n, that if (n) is valid, then so is
P(n+ 1). Thus given the starting point, that is, the validity of £2(0), we can certify
the validity of £2(1). And then of 2(2). If we repeat this process—of inferring the
truth of #2(n + 1) from that of #(n)—forn =0,1,2,3,...,k — 1, for any k that
we desire, then we will obtain the validity of 2(k) (in k steps).

Imagine the process running for ever. Then the truth of &?(n), forn =0,1,2,...
is established!

This argument is quite plausible, but glosses over two things: A mathematical
proof has finite length so it cannot be an infinite process running for forn = 0,1, 2, ...
Moreover, we must be sure that “for all n € N” really means the same thing as “for
n=0,1,2,3,...7, or that N is the smallest set around with the properties**

(a) it contains 0

443ome bigger sets that have the properties (a) and (b) include Z, the set of all integers; Q, the set of all
rational numbers; R, the set of all real numbers; and more.

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTIVELY DEFINED SETS 69

(b) if it contains 7, it also contains n + 1.

By the way, by “smallest” we mean that any other set T with the properties will
satisfy N C T'.

Hm. This sounds right! N is the smallest set there is that satisfies (a) and (b),
is it not? And if we are content with that, then here is a “real” proof of the simple
induction principle, one that has finite length!

Pick any property £?(n) and assume that we have performed the steps of simple
induction, that is, we have already proved that

(A) Z(0) is true.
(B) On the LH. that #?(n) is true we have proved that & (n + 1) is true too.

Now let us form the set S = {n : #(n)}. By (A), we have that 0 € S—that is, S
satisfies (a) above. By (B), if n € S, then also n + 1 € S—again, S satisfies (b)
above. Since N is the smallest that satisfies (a) and (b), we have N C S. That is, for
all n € N we have n € S. Expressing this in terms of #2(n) we have

for all n € N, #(n) holds (1)

That is, performing successfully the steps of simple induction—(A) and (B)—on
2 (n) we have succeeded in obtaining (1) as induction promises. Induction works!

Not so fast. Let us pick any set R that satisfies (a) and (b) above. I will show by
induction that
foralln € N, n € R holds (2)

Well, the basis 0 € R is satisfied, since R obeys (a). Let us fix an n now and take
the .H. n € R. But, because K obeys (b), we will also have n + 1 € R. By simple
induction, we have proved (2). But that says N C R. Since R was arbitrary we have
used induction to prove that N is the smallest set satisfying (a) and (b).

Thus the validity of induction and the just stated property of N are equivalent
principles and we are back to square one: We have not succeeded in providing a
proof of the validity of induction that is based on more primitive, non equivalent to
induction, principles.

However, it is expected that our discussion brought some degree of comfort
to the reader about the plausibility (and naturalness) of the induction principle!
Mathematicians have long ago stopped worrying about this, and have adopted the
induction principle as one of the starting points, i.e., nonlogical axioms, of (Peano)
arithmetic.

1.6 INDUCTIVELY DEFINED SETS

One frequently encounters inductive—or, as they are increasingly frequently called,
recursive—definitions of sets. This starts like this: Suppose that we start with the
alphabet {0, 1} and want to build strings as follows: We want to include ¢, the empty

www.it-ebooks.info

http://www.it-ebooks.info/

70 MATHEMATICAL FOUNDATIONS

string. We also want the rule or operation that asks us to include 0A1 if we know
that the string A is included. So, some strings we might include are €, 01,0011 and
001. The first was included outright, while the second and third are justified by the
rule, via the presence of € and 01, respectively. The last one would be legitimate if
we knew that 0 was included. But is it? That is not a fair question. It becomes fair
if we consider the smallest—with respect to inclusion C—set of strings that we can
build, by including € and repeatedly applying the rule. Then it can be proved that
neither O nor 001 can be included in this smallest set.

There are several examples in mathematics and theoretical computer science of
“smallest” sets defined from some start-up objects via a set of operations or rules
whose application on existing objects yields new ones to include. Another one is the
set of terms, formulae and proofs of logic. Further down we will encounter more
examples such as the set of partial recursive and primitive recursive functions. But
why look that far: Perhaps the simplest such smallest set built from initial objects
and the application of operations is N, as we have noted already: the initial object is
0 and the operation is “ + 17, the successor function.

The purpose of this section is to offer some unifying definitions and discuss their
connection to each other.

1.6.0.5 Definition. (Operations) An n-ary operation or rule is a (binary) relation R
such that whenever aRb, then a is an n-tuple. We will write R(ay, ..., a,,b) rather
than R({ai,...,an),b) or {a1,...,a,)Rb. We will call the sequence of objects
ai,...,a, inputs, and the object b an output, or a result of R applied to the listed
inputs.

It is not required that the relation be single-vatued in its outputs. g

1.6.0.6 Definition. (Derivations) Given a set of objects, Z—the initial objects—and
a set of operations O. An (Z, @)-derivation, or just derivation if the context makes
clear which Z and O we have in mind, is a finite sequence of objects, aq, . .., a, such
that every a; is one of

(1) amember of 7

(2) aresult of some k-ary operation, from the set O, applied on k inputs among the
a; that appear before a; in the sequence —i.e., j < ¢ for all such inputs a;.

We call the number n the length of the derivation. O

Since the legitimacy of any a; in a derivation never depends on a ax with k > 4, it is
clear thatif aq,...,a,,...,a, is a derivation, then so is a1, ..., G,.

Note also that nowhere does the definition ask that the a; be distinct. Indeed,
once an a; is placed as the i-th element, for the first time, it can be placed again
thereafter—as a; = a;, with j > i—any number of times we wish. The same reason
of legitimacy that applied originally to a; still applies to all the additional placements
a;.

www.it-ebooks.info

4

http://www.it-ebooks.info/

INDUCTIVELY DEFINED SETS 71

1.6.0.7 Example. Let Z = {0} and O contain just the relation (given in atomic
formula form) z + 1 = y, with y being the output variable. Then the reader can
readily verify that the sequences

0,0,1,2,2,2,3,0,0,4

and
0,1,2,3,4

are derivations. O

1.6.0.8 Example. Let Z = {0} and O contain just the relation (given in atomic
formula form) x 4+ 1 = y, this time x being the output variable. Then the reader can
readily verify that the sequences

0,0,—1,-2,-2,-2,-3,0,0, —4

and
0,-1,-2,-3,—4,—5,—6

are derivations. O

1.6.0.9 Definition. A set S is built by steps from a set of initial objects, Z, and a set
of operations O as follows: S = {a : a appears in some (Z, O)-derivation}. O

If S is a set built by steps, then we can prove properties of its members by induction
on the lengths of their derivations.

1.6.0.10 Example. Given the alphabet {0,1}. Let Z = {e}, while O contains just
the operation on strings 0z1 = y—x being the input and y the output variables. We
will show that the set S built by steps from the given pair (Z, O) is {0"1™ : n > 0},
where, for any string A, and n > 0, A™ means

AA.. A
—_—

n copies of A

while A° means .
We have two directions to establish set equality:

C. For any a € S we do induction on its derivation length to show ¢ = 0™1™
for some m. If the length is 1, then it can only contain € (initial object). Thus
a = 0°1°. We take as L.H. the truth of the claim when a is in a derivation of length
<n.

For the L.H., suppose that a has a derivation, a1, ..., ap.

If a = a; with ¢ < n, then since a1, . . ., a; is a shorter derivation, we are done by
the LH. If a = a,, we have two cases: One, a is initial. This has already been dealt
with. Two, a = 0a;1, for some i < n.

By the I.H. a; = 0™1™. Thus, @ has the same form.

www.it-ebooks.info

http://www.it-ebooks.info/

72 MATHEMATICAL FOUNDATIONS

2. For any n > 0 we prove that 0™1™ must appear in some derivation. This is
done by (simple) induction on n. For n = 0 (basis) 01" = ¢; in S. Fix an n and
assume that 0™1™ € S (this is the L.H.)

For the LS. note that 0" 11"+ = 00"1"1. The L.H. guarantees a derivation exists
in which 0™1™ occurs. Without loss of generality (see remark following 1.6.0.6) the
derivation has the form aj,as,...,0"1". This can be extended to the derivation
ai,asg,...,0"1" 00™1"1, hence 0011 € S. O

1.6.0.11 Definition. A set S is closed under an n-ary operation iff, for every n-tuple
of inputs chosen from S, all the results that the operation produces are alsoin S. [

For example, N is closed under z + y = z (z is output), x X y = z (2 is output),
but not under & — y = z (z is output). For example, 0 — 1 = -1 ¢ N.

1.6.0.12 Definition. (Closure) Given a set of initial objects, Z, and a set of opera-
tions, O. A set S is called the closure of T under O—in symbols S = CI(Z, O)—iff
it is the smallest set that contains 7 as a subset and is closed under all of the operations
of O.

A set such as CI(Z, O) is also called recursively or inductively defined from the
initial objects Z and rules O. a

Note that “smallest” means C-smallest, that is, if a set 7" contains Z and is closed
under O, then S C T. This attribute, smallest, directly leads to the technique of
(structural) induction over CI(Z, O):

Structural Induction: Let S = CI(Z,) and £(z) be a property (formula). To
show that all @ € S have the property, do the following:

(1) Prove #{a) foralla € .

(2) Prove that the property propagates with every R € O, that is, whenever the
inputs of R have the property, then so does the output.

The part “the inputs of R have the property” above is the I.H. for R. There will be
one LH. for each R € O. The LS. for the R in question is to prove that, based on the
I.H., the output has the property—i.e., the property propagates from the input side to
the output side of the “black box” R.

Why “structural”? Because the induction is with respect to how the set was built.

The process (1)-(2) is (structural) induction over S, or induction with respect

to S.

1.6.0.13 Theorem. Structural Induction works: That is, if (1) and (2) above are
indeed proved, then, for all a € S, % (a) holds.

Proof. Let P = {a : #(a) holds}. Now (1) translates into Z C PP, while, by (2), for
any R € O, whenever all the inputs of R are in P [i.e., they all satisfy &?(z)], then
so is the output, that is, P is closed under all the operations of O. By the “smallest”
property of S (1.6.0.12), we have S C P, that is, for all ¢ € S, £?(a) holds. a

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTIVELY DEFINED SETS 73

@% It turns out that not all properties &?(z) lead to sets {z : 9?(z)}—some such

collections are “too big” to be, technically, “‘sets™ (cf. Section 1.3).

Our proof above was within Cantor’s informal or naive set theory that glosses
over such small print. However, formal set theory, that is meant to save us from
our naiveté, upholds the “principle” of structural induction, (1)—(2), albeit using a
slightly more complicated proof. Cf. Tourlakis (2003b).

1.6.0.14 Theorem. Given a set of initial objects, I, and a set of operations, O. The
two sets: S—built by steps (1.6.0.9) from I and O—and CI(Z, O) are equal.

Proof. For C we do induction on derivation length of ¢ € S. If the length equals 1,
thena € Z. Since Z C CI(Z, O) by 1.6.0.12, the basis is settled. Assume next (L.H.)
that for all k < n, if a occurs in a derivation of length k£, then q is in the closure.

I.S.: Let a occur in a derivation of length n. If it does not occur at the right
end, then the I.LH. kicks in and ¢ is in the closure. So let a be the last object in
the derivation. If it is initial, we have nothing to add to what we said for the basis.
Suppose instead that a is the result of an operation from O that was applied on inputs
aj,,...,a;, that appeared to the left of a in the derivation. By the LH. all the a;,,
are in the closure. The later being closed under all operations from O we conclude
that the result of the operation, a, is in the closure.

For O we do induction over CI(Z, O): For the basis, if a € Z then a € S via
a derivation of length 1. We now show that the property “a € S” propagates with
every R € O. To unclutter exposition, and without loss of generality, fix an R—and
pretend without loss of generality that its arity is 3—and let its inputs a, b, c be all in
S. Let R(a,b,c,d). Wewantd € S.

Well, by I.H. there are three derivations ..., a,...;...,b,..;and ... c,...

If we concatenate them into one sequence

S P/ NPT A
we have a derivation (why?). Due to the way d is obtained, so is
S Y NPT AN
But then d € S by the way S is obtained. O

1.6.0.15 Remark. The above is a significant theorem: If we want to prove properties
of CI(Z, ©) as a whole, the best idea is to do structural induction over the set. If on
the other hand we want to prove that some a is a member of C1{(Z, O}, then the best
idea is to provide a derivation for it.

Compare: If we want to prove a property of all theorems of a theory, then we do
induction over the theory that is built using 1.1.1.34 (and 1.1.1.38). If on the other
hand we want to verify that a formula is a theorem, then we produce a proof for it.
Evidently, by1.6.0.14 we have that the iterative definition of “theorem” in 1.1.1.34
is equivalent with the inductive one: The set of all theorems is CI(Z, O) where T is

www.it-ebooks.info

e

http://www.it-ebooks.info/

74 MATHEMATICAL FOUNDATIONS

the adopted set of axioms and O is the adopted rules of inference. Cf. also 1.6.0.17
below.

Note that since b appears in a derivation iff it is either initial or a result of
some R € O applied on prior members of the derivation—and the latter
is tantamount to saying “members of CI(Z, O)” because of 1.6.0.14—we
have the following very useful “membership test”:

b e CHZ,O) iff b € T orb is the result of some rule applied to members
of CI(Z, O).

In words, the theorem says that the inductive approach—forming the closure—and
the iterative approach, building one element at a time via a derivation, yield the same
result. U

1.6.0.16 Example. Let Z = {3} and O consistof just z +y = zand z — y = 2,
where in both cases z is the output variable. We are thinking of Z as our reference
set here. Let us see why we have

CUZ,0) = {3k : k € Z} 1)

For the C we do, of course, induction over CI(Z, Q). Well, Z contains just 3, and
3 = 3 x 1, hence is in the right hand side (rhs) of (1).

Let us see that membership to the right propagates with the two rules: So let a
and b be in the rhs. Then @ = 3m and b = 3r for some m, r in Z. Trivially, each of
a + band @ — b is a multiple of 3.

As for 2, let a be in the rhs, that is, a = 3k forsome k € Z.

Case 1. k£ > 0. Let us do induction on & > 0 to show that 3k in the left hand
side (lhs). Well, if £ = 0, then we are done by the derivation 3,0 (why is this a
derivation?).

Take as L.H. the truth of the claim for (fixed) k£ and go to &k + 1. Given that
3(k + 1) = 3k + 3, we are done by the I.LH. and since the lhs is closed under
x + y = z (of course, 3 is in lhs).

Case 2. k < 0. Well, 0 € CI(Z, O): indeed, apply x — y = z to input 3,3. But
then 3k € CI(Z, O) as well, since 3k = 0 — 3(—k); now apply the same rule on
inputs 0 and 3(—k) with the help of Case 1. O

1.6.0.17 Example. Let us work within arithmetic (simply for the sake of having a
fixed alphabet of symbols). We take as Z the set of all logical axioms (1.1.1.38), and
these two rules form O:

M(Z %, %) holds iff # has the form 2" — & (MP)

and
G(Z', %) holds iff # has the form (Vz)Z for some z (Gen)

That is, our familiar MP and Gen. So, what is C1(Z, O)? But of course—immediately
from 1.6.0.14—it is the set of all absolute theorems (provable without nonlogical
axioms) that we can prove if we employ as our only rules Gen and MP (cf. 1.1.1.34).

www.it-ebooks.info

http://www.it-ebooks.info/

e

INDUCTIVELY DEFINED SETS 75

By induction over this CI(Z, O)—or as logicians prefer to say, by induction on
theorems—we can prove the soundness of this proof system: That every theorem,
i.e., member of CI(Z, O), is true.

Well, the claim holds for Z as we already know (1.1.1.39).

We only need to show that the claim propagates with the two rules above: Indeed,
the MP is a special case of tautological implication, and Gen preserves truth by
1.1.1.15. O

In 1.1.1.34 we adopted all tautological implications—not just MP—as rules. This
was expedient. It suffices to include just one such implication: MP. The interested
reader can see why in Tourlakis (2008, 2003a).

Both examples 1.6.0.7 and 1.6.0.16 employ rules that are functions (single valued).
Example 1.6.0.17 on the other hand has a rule that is not a function:

input; «; output: (V)

since for each of the infinitely many choices of z we have a different output (why
“infinitely many”’?)

A more crucial—and troublesome—observation is this: In 1.6.0.7 every member
of the closure has a unique immediate predecessor. Not so in Examples 1.6.0.16
and 1.6.0.17. In the former, 12 could be 15 — 3 or 6 + 6 or 9 + 3. Indeed, 3 is
both initial, and something that can be (re)built: 6 — 3, for example. In the latter
example, if &7, o/ — £ yield % so do infinitely many pairs 2, & — & for all
possible choices of 2. This phenomenon is called ambiguity.

1.6.0.18 Definition. (Ambiguity) A pair Z, O is ambiguous if one or more of the
following hold. Otherwise it is unambiguous.

(1) For some a € CHZ,O) and some n-ary rule R € O, there are (p1,...,pn) #
(q1,--.,qn) suchthat R(p1,...,pp,a) and R(q1,...,¢n, a);

(2) For some a € CI(Z,0) and two distinct n-ary and m-ary rules R and @
in O, there are {p1,...,pn) and {(q1,...,qn) such that R(p1,...,pn,a) and
Q(qlv <o Qms a);

(3) For some element a € Z, there is an n-ary rule R € O, and a tuple (p1,...,pn)
such that R(p1,...,Dn,).

Ifa € CI(Z,0) and R(p, . . ., Pn,a) holdsforsome R € O, wewillcall (p1,...,pn)

a vector (or sequence) of immediate predecessors of a. For short, i.p. W

1.6.0.19 Example. Here is why ambiguity is trouble. Let us start with the alphabet of
symbols A = {1,2, 3, +, x }. We will inductively define a restricted set of arithmetic
expressions (for example, we employ no variables) as follows. Let Z = {1, 2, 3} and
let O consist of just two string operations:

from strings X and Y form X +Y (1)

www.it-ebooks.info

e

http://www.it-ebooks.info/

76 MATHEMATICAL FOUNDATIONS

from strings X and Y form X x Y (2)

Some examples are 1 + 1, 2 x 1 and, more interestingly, 1 + 2 x 3. What do these
strings mean? Let us assign the “natural” meaning: “1” means 1, “2” means 2, and

“3” means 3. “+” means add (plus) and *“x” means multiply. Thus, extending this to
an arbitrary member of CI{Z, O) we will opt for the natural approach: As Cl(Z, O)
is defined inductively itself, why not effect a recursive definition of meaning via a
function “EV” (for “evaluate”), which will compute the value of a member A of
CI(Z, O) by calling itself recursively on A’s i.p.

Therefore, we define (if you will, we program) EV by:

EV() =1

EV(2) =2

EV(3) =3

EV(X+Y)=EV(X)+ EV(Y)

EV(X xY)=EV(X)x EV(Y)
So what is the value (meaning) of 1 4+ 2 x 3? Well,
EV(1+2x3)=EV(1+2)x EV(3)

- (EV() + EV(Z)) x 3

(1+2)x3
9

Il

No, no, you say. Itis

EV(1+2x3)= EV(1) + EV(2 x 3)
=EV(1)+ (EV(2) x BV (3))
=1+ (2x3)
=7

We are both “right”, of course. The pair Z, O is ambiguous; in particular, the string
1+2x 3 has two i.p.: {1+2,3) on which the first computation is based, and (1,2 x 3)
on which we based the second computation. a

While we are on the subject of closures, let us look at the very important transitive
closure of a relation.

1.6.0.20 Definition. (Transitive Closure) The transitive closure of a relation R is
the smallest (in the sense of inclusion, C) transitive relation that includes R, that is,
if Q) is a transitive closure of R, then we must have

MWRCQ

(2) Q is transitive, and

(3)If T is transitiveand R C T, then Q C T.. O

(1) While we have no a priori reason to expect that transitive closures exist just by
virtue of us coining this term, we can say one thing:

www.it-ebooks.info

http://www.it-ebooks.info/

INDUCTIVELY DEFINED SETS 77

A relation R cannot have more than one transitive closure. Indeed, if @ and Q'
are both transitive closures of R, then having ()’ pose as “T” we get @ C ’. Next,
having @ so pose, we have Q' C Q. Thus, Q@ = @'.

(2) Intuitively, we can imagine the (we can now say “the”) transitive closure of a
relation R as the relation that we get from R by step-by-step adding pairs {a, ¢) to the
relation that we have built so far, as long as, for some b, {a, b) and (b, ¢) are already
included. We stop this process of adding pairs as soon as we obtain a transitive
relation via this process. This observation is made precise below.

1.6.0.21 Theorem. Forany relation R, its unique transitive closure exists and equals
ClUZ, ©), where T = R—a set of ordered pairs—and O contains just one operation
on pairs that, for any two input pairs {a,b) and (b,c) (note the common b), the
operation produces the pair {(a, ¢).

We will denote the transitive closure of R by R*.

Proof. We show that C1(Z, O) satisfies (1)-(2) of 1.6.0.20, which will confirm that
R* = CI(Z, O). For (1), we are done by the property Z C CI{Z, ©) of any closure.
For (2) we are done since CI(Z, ©O) is closed under the operation in O: If {a, b} and
(b, c) are in CI(Z, O), then so is {a, ¢).

For (3), let T' be transitive and R C T. We want to show that C1(Z, O) C T. Well,
both 7" and CI(Z, O) are supersets of R and are closed under the operation “if (a, b)
and (b, ¢) are included, then so is {a,c)”. But, as a closure, C1(Z,) is C-smallest
with these two properties, therefore C1{(Z, O) C T as needed. O

1.6.0.22 Corollary. Forany relation R, its transitive closure R is equalto| J,, >1 B

We also may write
o0
Rt =|JR"

n=1

Proof. Letus set @ = |-, R™ and prove that Q = CI(Z, ©), where Z, O are as in
1.6.0.21.

For Q@ C CI(Z, O) it suffices to prove that R™ C CI(Z, O), forn > 1, by induction
onn: Forn = 1,a R! bmeans a Rb thus (a, b) € CI(Z, Q) since R = Z. Taking the
obvious I.H. for n we next let @ R**1 b. This means that for some c we have a Rc
and ¢ R™ b. By the basis and I.H. respectively we have {a, ¢) and {c, b} in CI(Z, O),
hence (a, b) is in CI(Z, O) (transitivity).

For Q D CI(Z, Q) we do induction on the closure. Since Z = R C (), we only
need show that) is transitive. Let then a Q) ¢ and ¢ @ b, hence, for some m and n,
a R™c and ¢ R™ b. Therefore a R™ o R™ b and thus a R™*™ b by Exercise 1.8.42.
Thus a Q) b. O

1.6.0.23 Remark. (1) Thus, we have a Rt b iff, for some n, a R b iff, for some
sequence
ag,...,0n

www.it-ebooks.info

http://www.it-ebooks.info/

78 MATHEMATICAL FOUNDATIONS

where ag = a and a,, = b, we have
a;Ra;1,fori=0,1,...,n—1
The notation below is also common.
a R" biff, for some a;,itisa Ra; Raz Raz---ajRaj41-- Gn-2 Ran_1Rb

(2) If R is on A, then its reflexive transitive closure is denoted by R* and is defined @
by 14 UR™. Thatis,a R*biffa =bora R b. O

1.7 RECURSIVE DEFINITIONS OF FUNCTIONS

We often encounter a definition of a function over the natural numbers such as

f(0,m) =0
f(n+1,m) = f(n,m) +m
Is this a legitimate definition? That is, is there really a function that satisfies the
above two equalities for all n and m? And if so, is there only one such function,

or is the definition ambiguous? We address this question in this section through a
somewhat more general related question.

1.7.0.24 Example. Let us look at a simpler question than the above and see if we
can produce a good answer. First off, is there a function g given by the following two
equalities for all values of n?

9(0) =1
g(n+1) =29
Well, let’s see: By induction on n we can show that g(n) | for all n: Indeed, this is

true for n = 0 by the first equality. Taking the I.H. that g(n) | (for a fixed unspecified
n) we can compute g(n + 1) so indeed

g(n)] foralln

We can say then that the function g exists; right?

Wrong! A function is a set, in this case an infinite table of pairs (if we take its
existence for granted). We did not show that it exists as a table of pairs; rather we
have only shown that

If a g satisfying the given equalities exists, then it is total.®

45The set of texts on the subject of the theory of computation, which seriously propose the above erroneous
“proof” of existence is non-empty.

www.it-ebooks.info

http://www.it-ebooks.info/

144

RECURSIVE DEFINITIONS OF FUNCTIONS 79

We can however prove that any two functions satisfying the equalities must be
equal. Thatis, if h is another such function, then A = g or, on an input by input basis,

g(n) = h(n), for all n (1)

Note that we wrote = in (1), rather than ~ (c¢f. 1.2.0.11), since we already know that
if a function satisfies the given equalities, then it is total.

As for (1), for n = 0 we are done by the first equality. Taking as I.H. the case for
some fixed n, the case for n+1is easily settled: g(n41) = 29(®) = 2h(") = h(n+1),
where the middle = is due to the I.H. O

So how do we settle existence? We build a function f (or g) given as above
either iteratively, by stages [which is the usual approach in the literature, when
done correctly; cf. Tourlakis (1984)] or as a closure; a set of the form CI(Z, O) for
appropriate Z, O. The latter approach is from Tourlakis (2003b), which also develops
the iterative approach. Mindful of the example in 1.6.0.19, we will define functions
recursively on an inductively defined set CI(Z, O) that is given via an unambiguous
pair Z, O.

1.7.0.25 Theorem. (Function definition by recursion) Let 7, O be an unambigu-
ous pair and CI(Z, O) C A, for some set A. Leth: T — Bandgr: A X B" — B,
for each r-ary R € O, be given functions.*¢

Under these assumptions, there is a unique function f : CI(Z,O) — B such that

y = h(z) andz €T

y = f(x)iff OR, forsome R € O,
y = gr(z,01,...,0.) and R(ay,...,ar,x) holds,
where o; = f(a;), fori=1,...,r

(D

The reader may wish to postpone studying this proof, but he should become
thoroughly familiar with the statement of the theorem, and study the examples that
follow the proof.

Proof. To prove the existence of a “solution” f to the given recursive definition (1),
we will build a single-valued binary relation F' C A x B, which, when we rewrite
F(z,y) as “y = F(x)"—with y as the output variable—satisfies (1) above. To build
it, we will realize it as an appropriate C1(7, T'), for appropriately chosen initial set
J and set of rules 7. R

For each r-ary rule R € O, define the r-ary rule R by

o~

R({a1,01),...,{ar,0r), (b gr(b,01,...,0.))) iff R(ay,..., ar,b) (2)

4 An r-ary operation (rule) is an (r + 1)-ary relation; cf. 1.6.0.5.

www.it-ebooks.info

4

http://www.it-ebooks.info/

80 MATHEMATICAL FOUNDATIONS

For any a4, ..., a,, b, the above definition of R is effected for all possible choices of
01, ..., 0. in B for which ggr(b, 01, ..., 0,) is defined.

By the way, there is no mystery in the definition of R (the name chosen to show
the close association with R): If we anticipate that (1) does have an f-solution, we
can then view the o; as the f(a;). Then R’s job is—once we give it, in the form of
input/output pairs, where the outputs are those of f on all the i.p. of b—to compute
f(b) using gr and to output the input/output pair (b, f(b))).

Collect now all the rules R as defined, to form the rule-set 7.

As the initial objects-set 7, which we will associate with the rule-set 7, we take
J = h—thatis, (z,y) € Jiff h(z) = y.

Claim 1. The set F' = CI(J, T) is a single-valued binary relation C}(Z, O) — B.

Proof of Claim 1. First off, that F C CI(Z, O) x B is immediate: 7 C CI(Z, O) x
B, and each relation of 7 has as output a pair in CI(Z, O) x B, by definition (2).

We next establish that F’ is single valued in its second component, doing induction
over CI(J, 7). The claim to prove will be

if (a,b) € F and (a,c) € F, thenb = ¢ (%)

Basis: Suppose that {a,b) € J and let also (a,c) € F.
By 1.6.0.15, the latter entails, in principle:

(i) {a,c) € J. Thenc = h(a) = b,

OR,

(ii) for some r-ary R € T, we have R({a1,01),...,{ar,0,), (a,c)), where
R(ai,...,ar,a),c=ggrla,01,...,0.),and {(ay,01),...,{ar,0r) arein F.

The right hand side of the capitalized “or” cannot be applicable—due to its
requirement that R(a4, .. .,a,, a)—given that a € T and (Z, O)is unambiguous.

We next prove that the property (*) propagates with each Qe T. So, let

©(<a17 01>’ SER) <ara or), (a, b))
Since by the previous argument (a, ¢} ¢ J, let also
P((a},0),... . (a}, o)), (a,c))
where Q(aq,...,ar,a)and P(a],...,a},a), butalso [cf. (2)]
b=go(a,01,...,0.)and ¢ = gp(a,of,...,0}) (3)

Since (Z,O) is unambiguous,) = P (hence also @ = 13); thus » = [, and
a; =aj,fori=1,...,r
ByLH., 0, =0}, fori =1,...,r hence b= c by (3). End of proof: Claim 1.

Claim 2. F satisfies (1). Now that we know that F'is a function we can write

b= F(a) for {a,b) € F

www.it-ebooks.info

http://www.it-ebooks.info/

RECURSIVE DEFINITIONS OF FUNCTIONS 81

Our task here is to show that if we replace the “(function) variable” f in (1) by the
constructed F', the “iff” stated in (1) will hold.

() direction: We prove that the right hand side (rhs) of (1) implies the left, if
the letter f is replaced throughout by F'. The rhs is a disjunction, so we have two
cases to consider [cf. 1.1.1.48(a)]. First,letz € Zandy = h(z). Sinceh=J C F,
we have that F'(z, y) is true, that is, y = F(z).

Second, consider the complicated side of OR in (1): So let, for some R € O,
y =gr(z,01,...,0.), where R(a,,...,a,,z)and 0; = F(a;),fori=1,...,7.

By (2), ﬁ((al, 01),..-,{ar,0.), (x,y)), thus—F being closed under all the rules
in R—(z,y) € F; for short, y = F(z).

(—) direction Now we assume that F(x,y) holds. We want to infer the right
hand side (of iff) in (1)—with f replaced by F'.

So let y = F(x). There are two cases according to 1.6.0.15:

Case 1. {z,y) € J. Thus (by J = h) y = h(z), and z € T (definition of .7); the
top case of (1).

Case 2. Suppose next that (z,y) € F because, for some Q € T, the following
hold (see (2)):
@ Q((a1,01),. .-, (ar, 07), (z,1))
) Qai,...,ar,x)
©) y=gql(z,01,...,0.)
(d) Allof {ay,01),...,(ar,0) arein F

By (d), 0; = F(a;),fori = 1,...,r. But then the conjunction of the foregoing
observation with (b) and (c) is the right hand side of the OR; as needed. End of proof:
Claim 2.

Uniqueness of F. Let the function K also satisty (1). We show by induction over
Cl(Z, O) that

Forallz € CI(Z,0)and ally € B, y= F(z)iffy = K(x) (4)

(=) Letz € Z, and y = F(z). By lack of ambiguity, z has no i.p. Thus,
y = h(z). But then, y = K(x), since K satisfies (1).

Let now Q(ay,...,a,,x) and y = F(z). By (1), there are (unique, as we now
know) o1, ..., 0, such that o; = F(a;),fori =1,...,r,andy = go(z,01,...,0.).
By the LH., 0; = K(a;). As K satisfies (1), y = K(x).

(«) The roles of the letters F' and K in the above argument being symmetric,
we need say no more. O

www.it-ebooks.info

http://www.it-ebooks.info/

82 MATHEMATICAL FOUNDATIONS

The above formulation with the so-called “graphs” of the utilized functions—a
term applying to the relation y = f(x)*—rather than writing, say,

h(z) ifreZ

go(z, flar),..., flar)) ifQ(ay,...,a,) holds,

flz) =

appears to be unnecessarily cumbersome. Cumbersome, yes, but not “unnecessarily”:

In the used formulation, by keeping an eye on both the input and output sides at
once, we took care of the partial function case (fotal or not) without having to worry
about points of undefinition of the defined function or to use Kleene equality. In fact,

69

using “=" above is incorrect in the nontotal case.

1.7.0.26 Example. Referring back to Example 1.7.0.24, we see that the defined
by recursion g exists (and is, of course, unique): It is defined over the set N =
C1({0}, {S}), where I denoted by S the successor rule:

S(z,x+ 1), forallz in N
The rule is clearly unambiguous, so Theorem 1.7.0.25 applies. g

1.7.0.27 Example. Fix n > 0 from N and consider the rule R below
R({z,n), (x + 1,%n)), forall z,y; in N

and form N,, = CI(Z, {R}), where T = {(0, ,,) : for all y; in N}.

The rule R is clearly unambiguous: every {x, y,) is either initial or has the unique
ip. (x — 1,y,). Thus Theorem 1.7.0.25 applies—N,, = N"*! of course—and
enables recursive definitions like the following, based on two given functions / and
g from N™ and N"*! x B respectively to some set B, to produce unique f-solutions.

F(@:gn) ~ (1)
9(z,Gn, f(x —1,7,)) otherwise

As is usual, we listed the arguments, e.g., in £, in their proper order, however omitting
the (.. .) brackets.

The above recurrence is the primitive recursion schema of Kleene, and it will play
quite an active role in the next chapter. It is customary to write the schema in this
form:

f(0,9n) = h(¥n)
fle+1,4,) ~ gl(x»gm f(z,9n))

4TTo plot f(z) you plot the pairs (z,y) such that y = f(x); hence the terminology “graph”.

www.it-ebooks.info

144

http://www.it-ebooks.info/

RECURSIVE DEFINITIONS OF FUNCTIONS 83

where ¢’ is g, but modified to accept input x rather than z + 1 in the first argument
slot.

Incidentally, the recursion given at the very opening of this section—taking there
B = N—fits the primitive recursion schema above, so the function it defines exists
and is unique. The reader will immediately recognise that the function defined there
is multiplication, n. x m. O

1.7.0.28 Exercise. Prove that if h and g are total, then so is f defined by (1) above,
so we can replace ~ by =. O

1.7.0.29 Example. What about a recursion like this, where we still take our inputs
(of f) from N?
h(in) ifr=0
F (@, §a) =)) i) ,
g(ét,yn, {£0,82), -, f(& = 2,5), flz - Lyn)}> otherwise

Before we answer this, a few comments on intentions, and notation. We intend that
the value f(z, i,,) is computed based on our knowledge of the entire history of values
of f—or course-of-values [Kleene (1952)]—at the set of all previous *“points”

{(0.2), (1,70), (@ = 1.} } (1)

As we can have no functions of a variable number of arguments, we have tentatively
grouped the entire history into a single ser-argument. It turns out that it is more
profitable to use a set of pairs of inputs and outputs (of f) rather than just outputs in
the recursive call embedded in g above, since such pairs can naturally handle nontotal
functions—the pair {a, f(a)) is listed iff f(a) |.

{<<0a gn)vf(ovgn)>v ceey <<T - 27?7n>vf(3" - 2737n)>7 <<.’L‘ - 1’gn>af(x - 1agn)>}

f(0,9n) = h(gn)
f(l' + 17?771) =~ g/ (-Tailj’ru {<<0737n>a f(07gn)>, R <<ZL‘ - 1a?jn>7f(‘r - 1717n)>})

The switch to ¢’ from g reflects the modification to the z-argument and to the set-

argument.
Now, if we call the set (1) “S,_; g, for the sake of convenience, we may rewrite
the above recurrence more correctly, and without . ..”, as
f(0,9n) =~ h(gn) ()
@+ 1,5 = g (2,50 f | Soz) 3

www.it-ebooks.info

http://www.it-ebooks.info/

84 MATHEMATICAL FOUNDATIONS

Here is now why the recurrence (2)—(3) has a unique f-solution: Let us write
H(z,¥y,) as an abbreviation of f [S; 5 . We can then have—using (2)—(3)—a

(simple) primitive recursion (as in 1.7.0.27) for H:

H(0,5) = {{(0.5a), 7)) | @
H@+1,7) = Hz,5) U {{ @+ 1,79/ (0,00, H(z.3)))})

A unique H exists that satisfies (4)—(5), by 1.7.0.27. But f(z, 7,.) =~ H(z,) (m gn)
for all z, §/,,; so f exists and is unique.*®

Given that H(x,¥,) = f | S 3, —a single-valued table of tuples—we
see that evalvating H(x,¥,) at (i, §y,), for i = 0,1,...,z, we end up
with the output (if it exists) of f at input (i, ¢/,). That is, the expression
“H(z,¥n)(z, §n)” above makes sense, and, when defined, teases out
f(@, 7).

If we work strictly within arithmetic—that is, we allow no set arguments, in
particular—then one neat way to deal with a sequence of numbers is to code them by
a single number. Applying this trick reduces once again the original recursion to the
standard schema of Example 1.7.0.27. This approach has additional important side
benefits and we will revisit it in the next chapter. |

1.7.0.30 Example. Let A = {1, 2}. In this example we consider only functions with
inputs from A* and outputs in A*. Suppose that h, g; and g are such given functions
of n for the first and n 4 2 variables for the other two. The recursion (for fixed n > 0)

f(-r * 1 yn)N gl(x Uns (2, 90))
f(@ *2,9n) g2(x, o, [(2, Yn))

is called right primitive recursion on notation—"right” since we change z by con-
catenating a 1 or 2 to its right; “on notation” since we are thinking in terms of the
notation rather than value of £ when we increment it.

Given the h and the g; there is a unique f that satisfies the three equalities above,
for all z, ¢/,,. To apply Theorem 1.7.0.25 we define A7, as C1{(Z, O) where O has two
rules,

Ri({x, §n), {(x * 1,7,)), for all z, ¢, in A*

and
Ro({z, n), {z * 2, ¥n)), for all z, 7, in A*

We define 7 as {(¢, §,,) : forall y; in A*}.
Clearly the pair Z, O is unambiguous and 1.7.0.25 applies to the recursion on
notation schema above, proving existence and uniqueness of f.

48The “g-function” in (5) is G(@, §n, Z) ~ Z U {<(m + 1,7), ¢ (2, Fns Z))>}, where Z is a set
argument. If the right field of the original h and g is a set B, then Z takes its values from P(N?1+1 x B).

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL EXERCISES 85

One can similarly utilize /eff recursion on notation, going from ztoz*x, forz = 1
ori =2, a

1.8 ADDITIONAL EXERCISES

1. Let us first define: The set of propositional formulae of, say, set theory, denoted
here by Prop, is the smallest set such that
(1) Every Boolean variable is in Prop (cf. 1.1.1.26)
(2) If &7 and & are in Prop, then so are (—47) and (& o) —where L used o as

an abbreviation of any member of {A,V, —, =}.

If we call WFF the set of all formulae of set theory as defined in 1.1.1.3, then
show that WFF = Prop.
Hint. This involves two structural inductions, one each over WFF and Prop.

2. Prove the general case of proof by cases (cf. 1.1.148): & — 8,9 —» 2 +
INEC > BV D.

3. Letusprove x = y. By way of contradiction, let us assume —z = y (i.e., x # ¥).
Using substitution (1.1.1.42) we obtain —z = 2z which along with axiom (v)
(1.1.1.38) and tautological implication yields the contradiction x = z A ~x = z.
Done.

Hm. There is something very wrong here! Clearly, z = y is not true, hence a
proof of it must be impossible (cf. soundness, p. 20). What exactly went wrong
with our “proof™?

4. Verify that for any (formal) function f[z] we have - z =y — flz] = f[y].
Hint. Start with (vi) of 1.1.1.38 taking as “&7[z]” the formula f[z] = f[z].

5. Give the missing details of Example 1.1.2.14.

6. This is a useful but simple exercise! For all sets A, B, C prove:

(@) AUA=A and ANA=A
(ii) AU(ANB)=A and AN(AUB)=A

(115) AU(BNC)=(AUB)N(AUC)and AN(BUC) = (ANB)U(ANC)
(w) ACB=AUB=B ammdACB=ANB=A

7. Compute | J{2}.
8. Compute (0.
9. Compute ({7}

www.it-ebooks.info

http://www.it-ebooks.info/

86 MATHEMATICAL FOUNDATIONS
10. Use induction on n > 2 to prove that if (x1, z2,...,Z,) = (Y1, Y2, .- ., Yn), then,
fort=1,...,n,wehave z; = y;.
11. Can A™ be also defined as
Al =A

and, forn > 1
AMtl= A x A"

Why?
12. Whatis A x 1? Why?
13. Provethat Ax @ =0 x A = 0.
14. Provethat Ax B=0iff A=0or B = 0.
15. What is P(A) if A is an urelement?

16. Assume an intuitive understanding of “the set A has n elements”. Prove by
induction on 7 that 24 has 2" elements. This motivates the notation “24”.

Hint. Show carefully that adding one new element to A doubles the number of its
subsets.

17. Show that for any function f : A — B, f(a) 1= f—({a}) = 0; and [is onto iff
(vz € B)fe({z}) £ 0.

18. Show by an example that function composition is not commutative. That is, in

general, (gf) # (fg).
19. For any function g and sets X and Y, we have g, (X — Y) = g (X) — g (Y).

20. Let f: X = Y begivenas wellas A C Y and B C Y. Prove that

e fe(AUB) = f_(A)U f(B)
o fe(ANB)=f(A)N f(B)

21. Let f: X — Y begivenas wellas A C X and B C X. Prove that

e fL(AUB)=f,(A)Uf.(B)
e f5(ANB) C f,(A)N f-(B)
e B C Aimpliesthat f,(A— B) D f(A) — f(B)

22. let f: X — Y begivenaswellas A C X and B C Y. Prove that
i f—»(f(—-(B)> CB
o fe(fa) 24

www.it-ebooks.info

http://www.it-ebooks.info/

23.

24.
25.
26.

27.

28.

29.

30.
31.
32,

ADDITIONAL EXERCISES 87

n
Let the relation R :)X A; — Ay, be given by

=1

R={({(a1,...,ak,...,an),ax) 1 a; € Aj,forj=1,...,n}

(1) Prove that R is a total function. We call it the k-th Cartesian projection

function of X A;, and often denote it by p?.

i=1

(2) Prove thatif f : B — X :;1 A; is a (vector- or tuple-valued) function, then
we may decompose it into n functions, f;,fori =1,... n: f; : B — A;, so that,
for all a € dom(f), we have f(a) = (fi(a),..., fa(a)).

We say that the f; is the i-th component or projection of the tuple-valued (vector-
valued) function f.

Hint. Consider (pf f) (i.e., f o p}").
Prove Theorem 1.2.0.19.
Suppose that f : A — B. Then (1pf) = fand (f14) = f.

Let f: A — B bea l-1 correspondence. Then show that g = f~!: B — Aisa
1-1 correspondence as well and (fg) = 1p while (¢f) = 14.

Consider f : A - B,g: B —» Aand h : B — A such that (fg) = 1p and
(hf) = 14 hold.

Show that f is a 1-1 correspondence and that g = h = f~1.

Hint. Start with expanding (h(fg)) = (h1g), using associativity and Exercise 25.

Let f: A — Bbea l-1 correspondence and g : B — A be a function for which
(gf) = 14. Then show that g = f~! and therefore (fg) = 15 as well.

Let f: A — Bbeal-1 correspondence and g : B — A be a function for which
(fg) = 1p. Then show that g = f~! and therefore (gf) = 14 as well.

Exercises 27, 28 and 29 show that if an f has both a left and a right inverse, then
the two are equal to f ! and in fact f is a 1-1 correspondence. Moreover, a 1-1
correspondence has a unique left and right inverse, equal in each case to f 1.

This unique inverse is called—for 1-1 correspondences—*“the” (two-sided) in-
verse.

Prove that R is transitive iff R?2 C R.

Prove thatif A~ Band B~ Cthen A~ C.

l

Prove, for any two functions f and g, that f = g (as sets of tuples) iff (Vz)(f(z) ~

g9(z)).

www.it-ebooks.info

http://www.it-ebooks.info/

88

33.
34.

3s.

36.
37.
38.

39.

40.

41.

MATHEMATICAL FOUNDATIONS

Prove the claims made in Remark 1.2.0.31.

Let f: A— Band g : B — C be onto functions. Show that (gf) : A — C'is
onto.

Hint. An h: X — Y is onto iff for any b € Y, the “equation” h(x) = b has a

solution.

Revisit Theorem 1.3.0.42 and give it a mathematical proof, using tools from
Section 1.4. Specifically, if A C N is infinite, define by recursion the function f
by f(0) = min A and f(n + 1) = min(A4 — {f(0),..., f(n)}) and prove that
dom(f) = N, ran(f) = A and fis I-1.

Prove that the range of f : N x N — N given by f(x,y) = 2%3Y is infinite.
Prove that there is a 1-1 correspondence that corresponds each S C N to xg.

Let A and B be enumerable, Then 24 ~ 25,

Hint. Let f : N - Aand g : N — B be 1-1 correspondences. Define F' : 24 —
2B 50 that F(#) = 0 and F sends the set {f(iq), f(i1), f(i2), f(i3), ...} to the
set {g(%), g(11), g(i2), g(43), .. .}. Argue that F is total, 1-1, and onto.

Refer to 1.6.0.19. Define the simple arithmetic terms of that example differently:
Let us start with the alphabet of symbols A = {1,2,3,+,x,(,)}. WeletZ =
{1,2,3} and O consist of just two string operations:

from strings X and Y form (X +Y) (1)

from strings X and Y form (X x Y) (2)

Prove that Z, @ is unambiguous and thus EV, defined as in 1.6.0.19, over CI(Z, O)
exists and is unique.

Toward a proof of lack of ambiguity you may want to prove a couple of lemmata:
(a) Every member of CI(Z, Q) has an equal number of left and right brackets.

(b) Every proper non-empty string prefix of an A € CI1(Z, O) has an excess of left
brackets.

(c) Every A € CI(Z, ©O) has unique i.p. and 1,2, 3 have no i.p.

Prove, as Euclid did, that every natural number n > 1 is a product of primes in a
unique way, except for permutation of factors.

Hint. Use strong induction and 1.4.1.3.

Prove that if R : A — A is reflexive and also satisfies, for all z, y and z,
Ry ANzRz — yRz

then it is also symmetric and transitive, hence an equivalence relation.

www.it-ebooks.info

http://www.it-ebooks.info/

42.

43.

44.

45.

46.

47.

48.

ADDITIONAL EXERCISES 89

Prove, by induction on n, that for any relation R on a set A we have
(1) RM™oR" = Rm+n

Suppose that R is on a finite set of n elements. Prove that R™ = | JI_, R".
Hint. Cf. 1.6.0.22. Prove the redundancy of all terms beyond R™ in this case.

Suppose that R, defined on a finite set of n elements, is reflexive. Prove that
R* = R L

Hint. Prove the redundancy of all terms but R*~! in this case.

Let m > 1 be an integer. Prove that any integer n > 0 can be uniquely written as
n=mq+7r,where) <r <m.

Hint. Note the inequalities! Either imitate the proof given in 1.4.3.1, or base a
proof on the result of 1.4.3.1.

(m-ary notation.) Prove that every integer n > 0 has a unique representation as
n=dm" +dr_ym "+ dp_am™ 2+ 4 dp (1)

where 0 < d; < mforalli =0,...,r. (1) is called the m-ary notation of n, and
the d; are the m-ary digits.

(m-adic notation.) Prove that every integer n > 0 has a unique representation as
n=dm" +d_im " +d_am"2 4+ +dp (2)

where 0 < d; < mforalli =0,...,r. (2)is called the m-adic notation of n [cf.
Smullyan (1961); Bennett (1962)], and the d; are the m-adic digits.

Prove that for any set X, we have X £ 2%.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

ALGORITHMS, COMPUTABLE
FUNCTIONS AND COMPUTATIONS

2.1 A THEORY OF COMPUTABILITY

Computability is the part of logic and theoretical computer science that gives a math-
ematically precise formulation to the concepts algorithm, mechanical procedure, and
calculable function (or relation). Its advent was strongly motivated, in the 1930s,
by Hilbert’s program to found mathematics on a (metamathematically provably)
consistent (cf. 1.1.1.51) axiomatic basis, in particular by his belief that the Entschei-
dungsproblem, or decision problem, for axiomatic theories, that is, the problem *“is
this formula a theorem of that theory?” was solvable by a mechanical procedure that
was yet to be discovered.

Now, since antiquity, mathematicians have invented “mechanical procedures”,
e.g., Euclid’s algorithm for the “greatest common divisor”,* and had no problem
recognizing such procedures when they encountered them. But how do you math-
ematically prove the nonexistence of such a mechanical procedure for a particular

49That is, the largest positive integer that is a common divisor of two given integers.

Theory of Computation. By George Tourlakis 91
Copyright (© 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

92 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

problem? You need a mathematical formulation of what is a “mechanical procedure”
in order to do that!

Intensive activity by many [Post (1936, 1944), Kleene (1936), Church (1936b),
Turing (1936, 1937), and, later, Markov (1960)] led in the 1930s to several alternative
formulations, each purporting to mathematically characterize the concepts algorithm,
mechanical procedure, and calculable function. All these formulations were soon
proved to be equivalent; that is, the calculable functions admitted by any one of them
were the same as those that were admitted by any other. This led Alonzo Church to
formulate his conjecture, famously known as “Church’s Thesis”, that any intuitively
calculable function is also calculable within any of these mathematical frameworks
of calculability or computability.>

By the way, Church proved [Church (1936a,b)] that Hilbert’s fundamental Entschei-
dungsproblem admits no solution by functions that are calculable within any of the
known mathematical frameworks of computability. Thus, if we accept his “thesis”,
the Entscheidungsproblem admits no algorithmic solution, period!

The eventual introduction of computers further fueled the study of and research
on the various mathematical frameworks of computation, “models of computation”
as we often say, and “computability” is nowadays a vibrant and very extensive field.
The model of computation that I will present here, due to Shepherdson and Sturgis
(1963), is a later model that has been informed by developments in computer science,
in particular, by the advent of so-called high level’! programming languages.

2.1.1 A Programming Framework for Computable Functions

So, what is a computable function, mathematically speaking? There are two main
ways to approach this question. One is to define a programming formalism—that
is, a programming language—and say: “a function is computable precisely if it can
be ‘programmed’ in the programming language”. Such programming languages are
the Turing Machines (or TMs) of Turing and the unbounded register machines (or
URMSs) of Shepherdson and Sturgis. Note that the term machine in each case is
a misnomer, as both the TM and the URM formulations are really programming
languages, the first being very much like assembly language of “real” computers, the
latter reminding us more of (subsets of) Algol (or Pascal).

The other main way is to define a set of computable functions inductively, as a
CI(Z, O)—f. Section 1.6. To do so we start with some set of initial functions Z
that are immediately recognizable as “intuitively computable”, and choose a set O of
function-building operations that preserve the “computable” property. This approach
was originally due to Dedekind (1888) for what we nowadays call primitive recursive

501 will stress that even if this sounds like the “completeness theorem” of logic—that states the provability of
all universally true formulae—Church’s Thesis, existing in the realm of computability, is not a completeness
result. It is just an empirical belief, rather than a provable result—unlike Godel’s completeness theorem.
For example, Kalmar (1957) and Péter (1967) have argued that it is conceivable that the intuitive concept of
calculability may in the future be extended so much as to transcend the power of the various mathematical
models of computation that we currently know.

51The level is “higher” the more the programming language is distanced from machine-dependent details.

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 93

Sunctions. 1t evolved later [Kleene (1936)] into what we nowadays call partial recur-
sive functions. The definition of computable functions as members of some Cl(Z, O)
is very elegant mathematically [cf. Tourlakis (1984)], but is less intuitively immedi-
ate, whereas the programming approach has the attraction of appearing “natural” to
those who have done some programming,

We now embark on defining the high level programming language URM. The
alphabet of the language is

—,+,-,5,X,0,1,2,3,4,5,6,7,8,9,if, else, goto, stop (1)

Just like any other high level programming language, URM manipulates the contents
of variables. However, these are restricted to be of natural number rype—i.e., the only
data type that such variables can denote (or “hold”, or “contain”, in programming
jargon) are members of N. Since this programming language is for theoretical
considerations only——rather than practical implementation—every variable is allowed
to hold any natural number whatsoever, without limitations to its size, hence the “UR”
in the language name (“unbounded register”, used synonymously with variable of
unbounded capacity).

The syntax of the variables is simple: A variable (name) is a string that starts with
X and continues with one or more 1:

URM variable set: X1, X11, X111, X1111,... (2)

Nevertheless, as is customary for the sake of convenience, we will utilize the bold face
lower case letters x,y, z, u, v, w, with or without subscripts or primes as metavari-
ables in most of our discussions of the URM, and in examples of specific programs
(where yet more, convenient metanotations for variables may be employed).

A URM program is a finite (ordered) sequence of instructions (or commands) of
the following five types:

L:x+a

L:x+x+1

L:x+x=-1 (3)
L : stop

L: if x =0 goto M else goto R

where L, M, R, a, written in decimal notation, are in N, and x is some variable. We
call instructions of the last type if-statements.

Each instruction in a URM program must be numbered by its position number,
L, in the program, where “:” separates the position number from the instruction. We
call these numbers labels. Thus, the label of the first instruction is always “1”. The
instruction stop must occur only once in a program, as the last instruction.

The semantics of each command is given in the context of a URM computation.
The latter we will let have its intuitive meaning in this subsection, and we will defer

a mathematical definition until Section 2.3, where such a definition will be needed.

www.it-ebooks.info

http://www.it-ebooks.info/

94 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Thus, for now, a computation is the process that cycles along the instructions of
a program, during which process each instruction that is visited upon—the current
instruction—causes an action that we usually term “the result of the execution” of
the instruction. I said “cycles along” because instructions of the last two types (may)
cause the computation to loop back or cycle, revisiting an instruction that was already
visited by the computation.

Every computation begins with the instruction labeled “1” as the current instruc-
tion. The semantic action of instructions of each type is defined if and only if they
are current, and is as follows:

(i) L :x ¢ a. Action: The value of x becomes the (natural) number a. Instruction
L + 1 will be the next current instruction.

(i) L : x « x+ 1. Action: This causes the value of x to increase by 1. The
instruction labeled L + 1 will be the next current instruction.

(iii) L : x « x — 1. Action; This causes the value of x to decrease by 1, if it was
originally non zero. Otherwise it remains 0. The instruction labeled L 4 1 will
be the next current instruction.

(iv) L : stop. Action: No variable (referenced in the program) changes value. The
next current instruction is still the one labeled L.

(v) L:if x = 0 goto M else goto R. Action: No variable (referenced in the
program) changes value. The next current instruction is numbered M if x = 0;
otherwise it is numbered R.

g% This command is syntactically illegal (meaningless) if any of M or R exceed
the label of the program’s stop instruction.

We say that a computation terminates, or halts, iff it ever makes current (as we
say “reaches”) the instruction stop. Note that the semantics of “L : stop” appear
to require the computation to continue ad infinitum, but it does so in a trivial manner
where no variable changes value, and the current instruction remains the same:
Practically, the computation is over.

One usually gives names to URM programs, or as we just say, “to URMs”, such
asM,N,P,QQ,R,F,H,QG.

2.1.1.1 Definition. (Computing a Function) We say that a URM, M, computes a
function f : N* — N of n arguments provided—for some choice of variables
Xj,...,Xpn of M that we designate as input variables and a choice of one variable y
that we designate as the output variable—the following precise conditions hold for
every choice of input sequence (or n-tuple), a1, .. ., a, from N:

(1) We initialize the computation, by doing two things:

(a) We initialize the input variables with the input values ai,...,a,. We
initialize all other variables of M to be Q.

www.it-ebooks.info

®

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 95

(b) We next make the instruction labeled “1” current, and thus start the com-
putation.

(2) The computation terminates iff f(a;,...,a,) is defined, or, symbolically, iff
fla,...,an)) (cf. p. 43).

(3) If the computation terminates, that is, if at some point the instruction stop
becomes current, then the value of y at that point (and hence at any future point,
by (iv) above), is f(a1,...,ax). O

(1) We recall that the notation “f(ay,...,a,) 17 means that f(aq,...,a,) is
undefined (cf. p. 43).

(2) The function computed by a URM, M, with inputs and output designated as
above, can also be denoted by the symbol M;‘l""’x". This symbol, with no need for
comment, makes it clear as to which are the input variables (superscript) of M, and
which is the output variable (subscript). The variables x4, ...,%, in Mgt are
“apparent”, or not free for substitution, since My**» is not a term (in the logic
sense of the word; cf. p. 3); it does not denote an object value. Note also that any
attempt to effect such substitutions, for example, M)'?’x““”‘", would lead, in general,
to nonsensical situations like “L : 3 «— 3 + 1”, a command that wants to change the
(standard) value of the symbol “3” (from 3 to 4)!

Thus, we may write f = M *», but not f(ay,...,a,) = M}‘(ll;'l“j_a_"a)

Note that f denotes, by name, a function, that is, a potentially infinite table of
input/output pairs, where the input is always an n-tuple. On the other hand, Mg »-~*»
goes a step further: It finitely represents the table f, being able to do so because it
is a finite set of instructions that can be used to compute the output for each input
where f is defined.

2.1.1.2 Definition. (Computable Functions) A function f : N* — N of n vari-
ables x1,...,x, is called partial computable iff for some URM, M, we have
f = Mjr-*»_ The set of all partial computable functions is denoted by P. The set
of all the total functions in P—that is, those that are defined on all inputs from N—is
the set of computable functions and is denoted by R. The term recursive is used in
the literature synonymously with the term computable. O

2.1.1.3 Remark. Note that since a URM is a theoretical, rather than practical,
model of computation we do not include human-computer interface considerations
in the computation. Thus, the “input” and “output” phases just happen during
initialization—they are not part of the computation. That is why we have dispensed
with both read and write instructions and speak instead of initialization in (1) of
2.1.1.1. This approach to input/output is entirely analogous with the input/output
convention for the other well-known model of computation, the Turing machine [cf.
Davis (1958); Hopcroft et al. (2007); Lewis and Papadimitriou (1998); Sipser (1997);
Tourlakis (1984)]. O

www.it-ebooks.info

4

http://www.it-ebooks.info/

96 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.1.4 Example. Let M be the program

l:xex+1
2 : stop

Then M is the function f given, for all z € N, by f(z) = x + 1, the successor
function. O

2.1.1.5 Remark. (\ Notation) To avoid saying verbose things such as “MJ is the
function f given, for all z € N, by f(z) = z 4+ 17, we will often use Church’s
A-notation and write instead “M¥ = Az.xz + 17.

In general, the notation “X--- .” marks the beginning of a sequence of input
variables - - -~ by the symbol “A\”, and the end of the sequence by the symbol “.”
What comes after the period “.” is the “rule” that indicates how the output relates to
the input. The template for A-notation thus is

2 <&

A¥input”.“output-rule”

Relating to the above example, we note that f = Az.x +1 = Ay.y + 1 = Az.f(2)
is correct—although the rule “y + 1” is more informative than “f(z)”. To the left
and right of each “=" we have (a symbol for) the table of a function, and we are
saying that all these tables are the same. Note that x, y, z are “apparent” variables
(“dummy” or bound) and are not free (for substitution). In particular, f = f(x) is
incorrect as we have distinct data types to the left and right of “=", namely, a table
on one hand and a number on the other (albeit an unspecified number).

Pause. Why bother with these notational acrobatics?«

Because well-chosen notation protects against meaningless statements, such as
Mf=x+1 (1)

that one might make in the context of the above example. As remarked before, “MX”
is not a term, nor are the occurrences of x in it free (for substitution). For example,
“M3$ = 4” [obtained by substituting 3 for x throughout in (1)] is totally meaningless,
as it says

1:3«3+4+1
2 : stop

However, MY = Ax.x + 1 does make syntactic and semantic sense; indeed it is true,
as two tables are compared and are found to be equal! Since Ax.x + 1 = Ay.y + 1,

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 97

the following three tables are identical:>?

Input || Output Input || Output
- X X x+1 y y+1
0 1 0 1 0 1
1 2 1 2 1 2
2 3 2 3 2 3
3 4 3 4 3 4

In programming circles, the distinction between function definition or declara-
tion, AZ. f(Z), and function invocation (or call, or application, or “use”’)—what we
call a term, f(Z), in logic parlance—is well established. The definition part, in
programming, uses various notations depending on the programming language and
corresponds to writing a program that implements the function, just as we did with
M here.

However, there is a double standard in notation when it comes to relations. Exten-
sionally, a relation R is a table (i.e., set) of n-tuples. Its counterpart in formal logic is
a formula (cf. the discussion following Definition 1.2.0.4). But where in formal logic
we rather infrequently write a formula A as A{x]—doing so only if we want to draw
attention to our interest in its (free) variable v—in the metatheory we most frequently
write a relation R as R(Z,), without employing A notation, to draw attention to its
“input slots”, which here are z1,. .., z, (i.e., its “free variables”).

Since stating “R(d,,)”, by convention, is short for stating “(@,,}) € R”, we have
two notations for a relation: Logical or relational, i.e., R(Z,), and set-theoretic,
i.e., (Z,) € R, both without the benefit of A notation. There are exceptions to this
practice, for example, when we define one relation from another one via the process
of “freezing” some of the original relation’s inputs. For example, writing z < y (the
standard “less than” on N) means that both = and y are meant to be inputs; we have
a table of ordered pairs. However, we will write Az.z < y to convey that y is fixed
and that the input is just x. Clearly, a different relation arises for each y; we have
an infinite family of tables: For y = 0 we have the empty table; for y = 1 one that
contains just 0; for y = 2 one that contains just 0, 1; etc. |

@ We wrote on p. 41

Thus, the relation (table) establishes a one-to-many input/output corre-
spondence. Contrary to our viewpoint with formulae &7 (z, y)—where
the input variables are all the free variables, here z and y—in the case of
relations we are allowed two points of view; one being the one presented
above, and the other where borh x and y are the inputs of the relation
R(z,y). The context will fend for us!

Py — means “x is input to M and — x indicates “x is output from M.

www.it-ebooks.info

http://www.it-ebooks.info/

98 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Our attitude in computability—the “context”—will be to view n-ary relations not as
one-to-many correspondences

(n1) — — n

with n — 1 input-variables and one output variable, but rather as formulae R(Z,)
of n free variables. This is already implicit in Remark 2.1.1.5 above, where we said
“writing x < y (the standard “less than” on N) means that both = and y are meant to
be inputs” and “we will write Az.2z < y to convey that y is fixed and that the input is
just 7.

2.1.1.6 Example. Let M be the program

l:xe—x-+1
2 :stop

Then M} is the function Az.x — 1, the predecessor function. The operation - is
called “proper subtraction” and is in general defined by

ey JETTY ifz >y
v= 0 otherwise

It ensures that subtraction (as modified) does not take us out of the set of the so-called
number-theoretic functions, which are those with inputs from N and outputs in N.
O

Pause. Why are we restricting computability theory to number-theoretic func-
tions? Surely, in practice we can compute with negative numbers, rational numbers,
and with nonnumerical entities, such as graphs, trees, etc. Theory ought to reflect,
and explain, our practices, no?«4

It does. Negative numbers and rational numbers can be coded by natural number
pairs. Computability of number-theoretic functions can handle such pairing (and
unpairing or decoding). Moreover, finite objects such as graphs, trees, and the
like that we manipulate via computers can be also coded (and decoded) by natural
numbers. After all, the internal representation of all data in computers is, at the lowest
level, via natural numbers represented in binary notation. Computers cannot handle
infinite objects such as (irrational) real numbers. But there is an extensive “higher
type” computability theory [which originated with the work of Kleene (1943)] that
can handle such numbers as inputs and also compute with them. However, this theory
1s beyond our scope.

2.1.1.7 Example. Let M be the program

1:x¢0
2 :stop

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 99

Then M7 is the function Az.0, the zero function. O

In Definition 2.1.1.2 we spoke of partial computable and total computable functions.
We retain the qualifiers partial and total for all number-theoretic functions, even for
those that may not be computable. Indeed, total vs. nontotal (no hyphen) has been
defined with respect to some assumed left field for any relation, single-valued or not
(cf. p. 42).

The set union of all total and nontotal number-theoretic functions is the set of all
partial (number-theoretic) functions. Thus partial is not synonymous with nontotal.

2.1.1.8 Example. The unconditional goto instruction, namely, “L : goto L'”, can
be simulated by L : if x = 0 goto L’ else goto L. O

2.1.1.9 Example. Let M be the program segment

k—1:x+0

k: X x+1

k+1l:z«2z->-1

k+2:if z=0goto k+ 3 else goto k
k+3:...

What it does, by the time the computation reaches instruction k¥ + 3, is to have set
the value of z to 0, and to make the value of x equal to the value that z had when
instruction £ — 1 was current. In short, the above sequence of instructions simulates

the following sequence
L: X Z

L+1:z+0
L+2:...

where the semantics of L : x + z are standard in programming: They require that
upon execution of the instruction the value of z is copied into x, but the value of z
remains unchanged. O

2.1.1.10 Exercise. Write a program segment that simulates precisely L : x « z;
that is, copy the value of z into x without causing z to change as a side-effect. [

Because of the above, without loss of generality, one may assume that any input
variable, x, of a program M is read-only. This means that its value remains invariant
throughout any computation of the program. Indeed, if x is not so, a new input
variable, x/, can be introduced as follows to relieve x from its input role: Add at
the very beginning of M the (derived) instruction 1 : x « x’ of Exercise 2.1.1.10,
where x’ is a variable that does not occur in M. Adjust all the following labels
consistently, including, of course, the ones referenced by if-statements—a tedious
but straightforward task. Call M’ the so-obtained URM. Clearly, M’ ’z‘/’y Leeod¥n =
MZEY--Yn and M’ does not change x’.

www.it-ebooks.info

?

http://www.it-ebooks.info/

100 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.1.11 Example. (Composing Computable Functions) Suppose that Az7. f(z, 7)
and \7.g(?) are partial computable, and say f = F*¥ while g = GZ.

Since we can rewrite any program, renaming its variables at will, we assume
without loss of generality that x is the only variable common to F and GG. Thus, if we
concatenate the programs GG and F in that order, and (1) remove the last instruction
of G (k : stop, for some k)—call the program segment that results from this G’, and
(2) renumber the instructions of F'as k, k+ 1, ... (and, as a result, the references that
if-statements of F' make) in order to give (G’ F) the correct program structure, then,
MiZ. f(g(Z), 7) = (G'"F)¥Z. Note that all non-input variables of F will still hold 0
as soon as the execution of (G’ F') makes the first instruction of F current for the first
time. This is because none of these can be changed by G’ under our assumption, thus
ensuring that F works as designed. a

Thus, we have, by repeating the above a finite number of times:

2.1.1.12 Proposition. If A\g,.f(¥,) and A\Z.g,(Z), fori = 1,.. . n, are partial com-
putable, then so is AZ.f(g1(2), ..., gn(Z)).

We can rephrase 2.1.1.12, saying simply that P is closed under composition.
For the record, we will define composition to mean the somewhat rigidly defined
operation used in 2.1.1.12, that is:

2.1.1.13 Definition. Given any partial functions (computable or not) Ag,,. f (%,) and
AZ.g:(Z), fori = 1,...,n, we say that A\Z. f(g1(2), ..., gn(Z)) is the result of their
composition.]

We characterized the definition as “rigid”. Indeed, note that it requires all the
arguments of f to be substituted by some g;(Z)—unlike Example 2.1.1.11, where we
substituted a function invocation (cf. terminology in 2.1.1.5) only in one variable of
f there, and did nothing with the variables j—and for each application g;(...) the
argument list, . ..”, must be the same, for example Z. That is, in computability we
only say, technically, that “we do composition” if—in the sense of 1.2.0.18—we take
an f : N* - N and the n-tuple-valued function (g;,...,gn) : N™ — N"3% and
form {(g1,...,gn) 0 f.

As we will show in examples in the next subsection (2.1.2), this rigidity is only
apparent.

Composing a number of times that depends on the value of an input variable—or
as we may say, a variable number of times—is iferation. The general case of iteration
is called primitive recursion.

2.1.1.14 Definition. (Primitive Recursion) A number-theoretic function f is de-
fined by primitive recursion from given functions A\y.h(¥) and A\zyz.g(x, §, z) pro-

S3For each m-tuple Z, (g1, ..., gn)(2) = (g1(2), ..., gn(2)).

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 101

vided, for all z, vy, its values are given by the two equations below:

f0,9) =h(y)
fle+1,9)> g(z, 7, f(x, 7))

h is the basis function, while g is the iterator. In 1.7.0.27 we saw that a unique f that
satisfies the above schema exists. Moreover, if both A and g are total, then so is f
and the ~ in the schema may be replaced by = (cf. the exercise following 1.7.0.27).

It will be useful to use the notation f = prim(h, g) to indicate in shorthand that
f is defined as above from / and g (note the order).]

Note that f(1,4) ~ g(0,4,h(%)). f(2,9) =~ 9(1,%,9(0,5, M), f(3,%) ~
9(2,7,9(1,9,9(0,4, h(¥)))), etc. Thus the “z-value”, 0, 1, 2, 3, etc., equals the
number of times we compose g with itself (i.e., the number of times we iterate g).

2.1.1.15 Example. (Iterating Computable Functions) Suppose that \z3z.9(z, ¥, 2)
and \ij.h(Z) are partial computable, and, say, g = GL¥% while h = HY.

By earlier remarks we may assume:

(1) The only variables that H and G have in common are z,y.

(ii) The variables ¥ are read-only in both H and G.

(iii) 1 is read-only in G.

(iv) x does not occur in any of H or G.

We can now argue that the following program, let us call it F', computes f defined

as in 2.1.1.14 from h and ¢, where is program H with the stop instruction

removed, is program G that has the stop instruction removed, and instructions
renumbered (and if-statements adjusted) as needed:

T i<0

r+1: if x =0gotok+ m + 2 else gotor + 2
r+2; X+—x-1

k: ie—i+1

k+1: wi < 0

k+m: W, «— 0

k+m+1:gotor+1
k+m+2:stop

The instructions w; < 0 set explicitly to zero all the variables of G’ other than
i,z,¥ to ensure correct behavior of G'. Note that the w; are implicitly initialized to
zero only the first time G’ is executed. Clearly, f = FJ%Y. O

We have at once:

www.it-ebooks.info

http://www.it-ebooks.info/

102 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.1.16 Proposition. If f, g, h relate as in Definition 2.1.1.14 and h and g are in P,
then so is f. We say that P is closed under primitive recursion.

2.1.1.17 Example. (Unbounded Search) Suppose that A\zy.g(x, %) is partial com-
putable, and, say, ¢ = GX¥. By earlier remarks we may assume that ¥ and x are
read-only in G and that z is not one of them.

Consider the following program F, where is program G with the stop instruc-
tion removed, and instructions have been renumbered (and if-statements adjusted) as
needed so that its first command has label 2.

1: x+0
k: ifz=0gotok+ [+ 3elsegotok+1

k+1: wy« 0{Comment. Setting all non-input variables to 0; cf. 2.1.1.15.}

E+1: w; « 0 {Comment. Setting all non-input variables to 0; cf. 2.1.1.15.}
E+l+1:x+x+1

k+1+2:goto?2

k+1+4 3:stop

Let us set f = FY. Note that, for any &, f(@) | precisely if the URM F, initialized
with @ as the input values in ¥y, ever reaches stop. This condition becomes true as
long as the two conditions, (1) and (2) below, are fulfilled:

(1) Instruction k just found that z holds 0. This value of z is the result of an
execution of G (i.e., G’ with the stop instruction added) with input values @ in ¥
and, say, b in x, the latter being the iteration counter—0, 1,2, . . .—that indicates how
many times instruction 2 becomes current.

(2) In none of the previous iterations (with x-value < b) did G’ (essentially, G)
get into a non-ending computation (infinite loop).

Correspondingly, the computation of F' will never halt for an input & if either G
loops for ever at some step, or, if it halts in every iteration b, but nevertheless it never
exits with a z-value of 0.

Thus, for all a,
f(d):min{m:g(x,d):0/\(‘v’y)(y<x—>g(y,d')¢)} a
2.1.1.18 Definition. The operation on partial functions g given for all @ by
min {a: 1g(z, @) =0A(Vy)(y <z — gy, @) |)}
is called unbounded search (along the variable z) and is denoted by the symbol

(px)g(x,d). The function Ay.(ux)g(z,¥) is defined precisely when the minimum
exists. g

The result of Example 2.1.1.17 yields at once:

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 103

2.1.1.19 Propeosition. P is closed under unbounded search; that is, if \xy.g(x,¥) is
in P, then so is A\y.(ux)g(x, 7).

Why “unbounded” search? Because we do not know a priori how many times we
have to go around the loop. This depends on the behavior of g.

2.1.1.20 Example. Is the function AZ,,.z;, where 1 < i < n, in P? Yes, and here is
a program, M, for it:

1: w; <0

i z + w; {Comment. Cf. Exercise 2.1.1.10}
n: w, <0

n+1:stop

AE,.x; = MY~ To ensure that M indeed has the w; as variables we reference them
in instructions at least once, in any manner whatsoever. |

2.1.2 Primitive Recursive Functions

Exercises 2.1.1.4, 2.1.1.7, and 2.1.1.20 show that the successor, the zero, and the
generalized identity functions respectively—which we will often name S, Z and U
respectively—are in P; thus, not only are they “intuitively computable”, but they
are so in a precise mathematical sense. We have also shown that “computability”
of functions is preserved by the operations of composition, primitive recursion, and
unbounded search. In this subsection we will explore the properties of the important
set of functions known as primitive recursive. Most people introduce them by
derivations just as one introduces the theorems of logic, as in the definition below.

Note that the “U” (u = unit) in U]* is suggested by the behavior of the function
as the identity or unit function®* that, essentially, takes z to x, but has additional
“non active” or “don’t care” inputs. These unit functions are also called projection
functions and are indeed the the p}* of Exercise 1.8.23, but here we employ them
in the special setting where A; = N, for j = 1,...,n. Unfortunately, the term
“projection function” in computability clashes with the names of the specialized K
and L functions associated with pairing functions (cf. 2.1.4.1).

2.1.2.1 Definition. (PR-derivations; PR-functions) A PR-derivation is a finite
sequence of number-theoretic functions that obeys, in its step-by-step construction,
the following requirements. At each step we may write:

54The identity function behaves with respect to composition like the number 1 does with respect to
multiplication; as a “unit”. Cf. 1.8.25.

www.it-ebooks.info

54

http://www.it-ebooks.info/

104 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(1) Any one of Z, 5, U* (for any n > O and any 0 < i < n).

) AZ.f(g1(2),...,9n(2)), provided each of f, g1, ..., g, has already been writ-
ten.

(3) prim(h, g), provided appropriate h and g have already been written. Note that
h and g are “appropriate” (cf. 2.1.1.14) as long as g has two more arguments than A.

A function f is primitive recursive, or a PR-function, iff it occurs in some PR-
derivation. The set of functions allowed in step (1) are called initial functions. We
will denote this set by Z. The set of all PR-functions will be denoted by PR. O

2.1.2.2 Remark. The above definition defines essentially what Dedekind (1888)
called “recursive” functions. Subsequently they have been renamed primitive recur-
sive allowing the unqualified term recursive to be synonymous with computable and
apply to the functions of R (cf. 2.1.1.2).

The concept of a PR-derivation is entirely analogous with that of proof. Vis-
a-vis proofs, derivations have the following analogous elements: initial functions
(vs. axioms) and the operations composition and primitive recursion (vs. the rules of
inference).

As it is the case with proofs, we can cut the tail off a derivation and still have a
derivation. The reason is immediate: If the legitimacy of appearance of a function
f in some PR-derivation is based on (2) or (3) of 2.1.2.1, then the presence or
absence of the “tail” after f in said derivation is totally irrelevant to f’s legitimacy of
appearance. Thus, we deduce at once that a P R-function is one that appears at the
end of a PR-derivation.

Properties of primitive recursive functions can be proved by induction on derivation
length, just as properties of theorems can be proved by induction on the length of
proofs.

That a certain function is primitive recursive can be proved by exhibiting a deriva-
tion for it, just as is done for the certification of a theorem: We exhibit a proof.
However, in proving theorems we accept the use of known theorems in proofs. Sim-
ilarly, if we know that certain functions are primitive recursive, then we immediately
infer that so is one obtained from them by an allowed operation {composition, prim-
itive recursion, or yet-to-be-introduced derived operations). For example, if / and
g are in PR and prim(h, g) makes sense according to 2.1.1.14, then the latter is in
PR, too, since we can concatenate derivations of h and g and add prim(h, g) to the
right end.

In analogy to the case of theorem proving, where we benefit from powerful derived
rules, in the same way the certification of functions as primitive recursive is greatly
facilitated by the introduction of derived operations on functions beyond the two that
we assumed as given outright (primary operations) in Definition 2.1.2.1. O

The reader will recognize at once that Definition 2.1.2.1 is a “concrete” or special
instance of the abstract (or “general”) Definitions 1.6.0.6 and 1.6.0.9. Moreover, we
must emphasize the fundamental (and practically important) relationship between
iterative and recursive definitions of sets (cf. 1.6.0.14). The extremely useful principle
of “induction on (with respect to) a closure” (or structural induction) is based, as

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 105

the reader will recall from 1.6.0.13, on the characterization of a set of objects as a
closure. The earlier Remark 1.6.0.15 notes when we benefit from the iterative and
when from the recursive point of view. It also provides an alternative reason for the
correctness of the observation above:

Similarly, if we know that certain functions are primitive recursive, then we
immediately infer that so is one obtained from them by an allowed operation

Thus we may state at once: @

2.1.2.3 Theorem. PR is the closure of 1 under primitive recursion and composi-
tion.

2.1.2.4 Remark. (Induction over PR) For the general principle, cf. 1.6.0.13. We
can do induction over PR toward proving a property Z2(f) for all f € PR. We
prove:

(1) (Basis) All of Z, S, U[* (for any n > 0 and any 0, ¢ < n) has the property &2.
(2) AZ.f(g1(2),. .., gn(Z)) has the property, provided each of f, g1,. .., g, do.
(3) prim(h, g) has the property, provided & and g do.

The above procedure is more elegant (and more widely used) than induction on the @
length of PR-derivation. il

2.1.2.5 Example. If Azyw. f{x, y,w) and Az.g(z) are in PR, how about Azzw. f(z,
9(z), w)? Itis in PR since

Nezw. f(z, g(2), w) = Aezw. (U, 2,w), g(US (@, 2,), U(z, z,w))

and the U* are primitive recursive. The reader will see at once that to the right of
“=" we have correctly formed compositions as expected by 2.1.1.13.
Similarly, for the same functions above,

(1) Ayw.f(2,y,w) isin PR. Indeed, this function can be obtained by composition,
since

Myw. f(2,y,w) = dyw. f (SSZ(Uf(y, w)), Y, w)

where [wrote “SSZ(...)” as short for S(S(Z(...))) for visual clarity. Clearly,
using SSZ(UQQ(y, w)) above works as well.

(2) dzyw.f(y,z,w)isin PR. Indeed, this function can be obtained by composition,
since

Azyw. f(y, z, w) = Awyw-f(Ué‘(w,y,w), Ud(z,y,w),U3(z,y, w))

@ In this connection, note that while Azy.g(x, y) = Ayz.g(y, z), yet \zy.g(z, y) #
Azy.g(y,) in general. For example, Azy.z — y asks that we subtract the second
input (y) from the first (x), but Azy.y — x asks that we subtract the first input {x) g%
from the second (y).

www.it-ebooks.info

http://www.it-ebooks.info/

106 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

3) Azy.f(z,y,x)is in PR. Indeed, this function can be obtained by composition,
since

Azy.f(z,y,z) = Aey.f (UL (x,y), U3 (z,y), U (z, y))

4) Azyzwu.f(z,y, w) is in PR. Indeed, this function can be obtained by compo-
sition, since

Azyzwu. f(z,y,w) =
/\xyzwuf(Uf(:r, Yy, 2w, u)v U25(.’L', Y,z w, 'U,), Uj(ﬂ?, Y, 2, w, U))
O

The above examples are summarized, named, and generalized in the following
straightforward exercise:

2.1.2.6 Exercise. (The Grzegorczyk (1953) Substitution Operations) PR is closed
under the following operations:

(i) Substitution of a function invocation for a variable:

— —

From AZyZ. f(Z,vy, Z) and M&.g(wW) obtain A\ZW?Z. f (&, g(W), Z).

(ii) Substitution of a constant for a variable:
From \ZyZ. f(Z,y, Z) obtain AZZ.f(Z, k, Z).

(iii) Interchange of two variables:

From AZyZwi. f(Z, vy, Z, w, ©) obtain \ZyZwi. f (T, w, Z,y, ¥).

(iv) Identification of two variables:

- =

From AZyZwil. f (T, y, Z,w, i) obtain AZyzu.f(Z,y, Z,y, q).

(v) Introduction of “don’t care” variables:
From A\Z. f(&) obtain A\ZZ. f(Z). O

By 2.1.2.6 composition can simulate the Grzegorczyk operations if the initial
functions Z are present. Of course, (i) alone can in turn simulate composition. With
these comments out of the way, we see that the “rigidity” of Definition 2.1.1.13 is
gone.

2.1.2.7 Example. The definition of primitive recursion is also rigid, but this rigidity
is removable as well. For example, natural and simple recursions such as p(0) = 0
and p(z + 1) = x—this one defining p = Az.z — 1—do not fit the schema of
Definition 2.1.1.14. This is because it requires the defined function to have one
more variable than the basis, so no one-variable function can be directly defined!
We can get around this. Define first p = Azy.x = 1 as follows: p{0,y) = 0 and
p(x + 1,y) = z. Now this can be dressed up according to the syntax of the schema
in 2.1.1.14,

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 107

that is, p = prim(Z,U}). Then we can get p by (Grzegorczyk) substitution: p =
Az.p(z, 0). Incidentally, this shows that both p and 7 are in PR.

Another rigidity in the definition of primitive recursion is that, apparently, one
can use only the first variable as the iterating variable. Consider, for example,
sub = Azy.x ~ y. Clearly, sub(x,0) = x and sub(z,y + 1) = p(sub(x,y)) is
correct semantically, but the format is wrong: We are not supposed to iterate along
the second variable! Well, define instead sub = Azy.y —

@(o,y) =Uily)
sub(z + 1,y)= p(U§ (x,y, sub(z,y)))

Then, using variable swapping [Grzegorczyk operation (iii)], we can get sub: sub =
Azy. sub(y, z). Clearly, both sub and sub are in PR. With practice, one gets used
to accepting at once simplified recursions like the one for p and sub. One needs to
make them conform to the format of 2.1.1.14 only if the instructor insists! O

2.1.2.8 Exercise. Prove that Azy.xz + y and Ary.z X y are primitive recursive. Of
course, we will usually write multiplication z x y in “implied notation”, zy. O

2.1.2.9 Example. The very important “switch” (or “if-then-else”) function sw =
Azyz.if © = 0 then y else z is primitive recursive. It is directly obtained by primitive
recursion on initial functions: sw(0,y,2) = y and sw(z + 1,4y, z) = 2.]

2.1.2.10 Exercise. Dress up the recursion sw(0,y, 2) = y and sw(z + 1,y,2) = 2z
to bring it into the format required by Definition 2.1.1.14. O

2.1.2.11 Exercise. Prove by induction first on derivation lengths, and then “over
PR, that all functions in PR are total. O

2.1.2.12 Proposition. PR C R.

Proof. By 2.1.1.12,2.1.1.16, and 2.1.2.3, PR C P. But all the functions in PR are
total (cf. 2.1.2.11 and Definition 2.1.1.2). O

Indeed, the above inclusion is proper, as we will see in Subsection 2.4. We also
state for the record:

2.1.2.13 Proposition. R is closed under both composition and primitive recursion.

Proof. Because P is, and both operations conserve totalness. 0

2.1.2.14 Example. Consider the function ex given by

ex(z,0) =1
ex(z,y + 1)= ex(z,y)x

Thus, if z = 0, then ex(z,0) = 1, but ex(z,y) = 0 forall y > 0. On the other hand,
if z > 0, then ex(z,y) = zV¥ for all y.

www.it-ebooks.info

http://www.it-ebooks.info/

108 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Note that z¥% is “mathematically” undefined when z = y = 0> Thus, by
Exercise 2.1.2.11 the exponential cannot be a primitive recursive function!

This is rather silly, since the computational process for the exponential is so
straightforward; thus it is a shame to declare the function non-PR. After all, we
know exactly where and how it is undefined and we can remove this undefinability
by redefining “x¥” to mean ex(z,y) for all inputs.

Clearly ex € PR. In computability we do this kind of redefinition a lot in order
to remove easily recognizable points of “non definition” of calculable functions. We
will see further examples, such as the remainder, quotient, and logarithm functions.

Caution! We cannot always remove points of non definition of a calculable function
and still obtain a computable function. That is, there are functions f € P that have
no recursive extensions. This we will show in Subsection 2.7. O

2.1.2.15 Definition. A relation R(F) is (primitive) recursive iff its characteristic
function,
0 if R(&)
= AZ.
XR {1 if ~R(Z)

is (primitive) recursive. The set of all primitive recursive (respectively, recursive)
relations is denoted by PR, (respectively, R.). a

Computability theory practitioners often call relations predicates. It is clear that
one can go from relation to characteristic function and back in a unique way, since
R(%) = xr(#) = 0. Thus, we may think of relations as “0-1 valued” functions.
The concept of relation simplifies the further development of the theory of primitive
recursive functions.

The following is useful:

2.1.2.16 Proposition. R(Z) € PR, iff some f € PR exists such that, for all Z,
R(Z) = f(¥)=0.

Proof. For the if-part, | want x g € PR. This is so since xg = AZ.1 = (1 ~ f(Z))
(using Grzegorczyk substitution and Azy.x — y € PR, cf. 2.1.2.7). For the only
if-part, f = y g will do. [l

2.1.2.17 Corollary. R(Z) € R. iff some f € R exists such that, for all ¥, R(Z) =
f(@ =0

Proof. By the above proof, 2.1.2.12, and 2.1.2.13. g

2.1.2.18 Corollary. PR. C R..
Proof. By the above corollary and 2.1.2.12. J

351n first-year university calculus we learn that “0%” is an “indeterminate form”.

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 109

2.1.2.19 Theorem. PR, is closed under the Boolean operations.

Proof. 1t suffices to look at the cases of — and V, since R - Q = -RV Q,
RAQ=-(-RV-Q)and R = Q is short for (R — Q) A (Q — P).

(-) Say, R(Z) € PR.. Thus (2.1.2.15), xg € PR. Butthen x_r € PR, since
X-r = AZ.1 = xr(Z), by Grzegorczyk substitution and Azy.x ~ y € PR.

(V) Let R(Z) € PR, and Q(¥) € PR.. Then AZ¥.xrvo(Z, ¥) is given by

xavQ(#,§) = if R(F) then 0 else xo(7)
and therefore is in PR. [

2.1.2.20 Remark. Alternatively, for the V case above, note that xrvq(Z,7) =
x&(Z) X xo(¥) and invoke 2.1.2.8. O

It is common practice to use R(Z) and x g(F) (almost) interchangeably. For example,
“if R(Z) then ...” is the same as “if xg(Z) = 0 then ...”. The latter more directly
shows that a (Grzegorczyk) substitution was effected into an argument of the if-then-
else (2.1.2.9) function:

XR(%)
o
if x =0O0then...

thus establishing the primitive recursiveness of the resulting function.

2.1.2.21 Corollary. R. is closed under the Boolean operations.

Proof. As above, mindful of 2.1.2.12, and 2.1.2.13. 4

2.1.2.22 Example. The relations z < y, z < y, ¢ = y are in PR,.. See 2.1.1.5 for
a refresher on our conventions regarding lambda notation and relations.

With this out of the way, note that z < y = ¢ — y = 0 and invoke 2.1.2.16.
Finally invoke Boolean closure and note that z < y = -y < z while z = y is
equivalenttox < yAy < . I}

2.1.2.23 Proposition. IfR(,y,) € PR. and Mij.f (i) € PR, then R(Z, f (D), Z)

isin PR..

Proof. Let Q(Z,w, Z) denote R(Z, f(w), Z). Then xo(&, W, 2) = xr(Z, f(W), 2).
(N

2.1.2.24 Proposition. If R(Z,y,Z) € R. and M. f (W) € R, then R(Z, f(W), Z) is

in R..

Proof. Similar to that of 2.1.2.23.]

2.1.2.25 Corollary. If f € PR (respectively, in R), then its graph, z = f(Z) is in
PR, (respectively, in R.).

Proof. Using the relation z = y and 2.1.2.23. (]

www.it-ebooks.info

http://www.it-ebooks.info/

110 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The following converse of 2.1.2.25, “if = = f(Z) is in PR, and f is total, then
f € PR” is not true. A counterexample is provided by the Ackermann function.
However, “if z = f(&) is in R, and [is total, then f € R” is true. More on the
Ackermann function in Section 2.4.

2.1.2.26 Exercise. Using unbounded search, prove that if z = f(Z) is in R, and f
is total, then f € R. O

2.1.2.27 Definition. (Bounded Quantifiers) The abbreviations (Vy).,R(z,) and
(Fy)<=R(z, &) stand for (Vy)(y < z = R(z,&)) and (Jy)(y < z A R(z,&)),
respectively, and similarly for the nonstrict inequality “<”. (]

2.1.2.28 Theorem. PR, is closed under bounded quantification.

Proof. By 2.1.2.19 it suffices to look at the case of (Jy) . since (Vy)<.R(y,Z) =
~(3y)<-~R(y, T).

Let then R(y,) € PR, and let us give the name Q(z, T) to (Jy) <, R(y, T). We
note that Q(0, £) is false (why?) and Q(z + 1, %) = Q(2,%) V R{z, &). Thus,

xQ(0,%) =1
XQ(Z+17f) :XQ(va)XR(Z7f) u
2.1.2.29 Corollary. R, is closed under bounded quantification.

2.1.2.30 Exercise. The operations of bounded summation and bounded multiplica-
tion are quite handy. These are applied on a function f and yield the functions
A2Z. Y, f(i, &) and AzZ.]], ., f(4,%), respectively, where >, o f(i,%) = 0
and [[, ., f(4,%) = 1 by definition. Prove that PR and R are closed under both
operations; i.e., if f is in PR (respectively, in R), then so are A\2&. >, _, f(4, %) and
M T, o, f3,%). O

2.1.2.31 Definition. (Bounded Search) Let f be a total number-theoretic function
of n + 1 variables. The symbol (uy)<. f(y, Z), for all z, Z, stands for

min{y : y <z A f(y,7) =0} if (3y)<:f(y,&) =0
z otherwise

We define “(1y)<,” to mean “(4y) < +1” O

2.1.2.32 Theorem. PR is closed under the bounded search operation (uy)< .. That
is, if \WZ.f(y, @) € PR, then \2Z.(py) <. f(y, Z) € PR.

Proof. Set g = A\z2Z.(uy)<.f(y,Z). Then the following primitive recursion settles
it:

g(0,7) =1

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 111

g(z+1,%) = if g(2,7) < z then g(z, %)
else if f(z,Z) = 0 then 2
else z + 1 t

2.1.2.33 Exercise. Mindful of the comment following 2.1.2.19, dress up the primitive
recursion that defined g above so that it conforms to the Definition 2.1.1.14. O

2.1.2.34 Corollary. PR is closed under the bounded search operation (py) <.
2.1.2.35 Exercise. Prove the corollary. O
2.1.2.36 Corollary. R is closed under the bounded search operations (uy) <, and

(1Y) <z

Consider now a set of mutually exclusive relations R;(Z), 1 = 1,...,n, that is,
Ri(Z) N R;(Z) is false for each I as long as i # j.

Then we can define a function f by cases R; from given functions f; by the
requirement (for all &) given below:

f1(Z) if R (%)
f2(Z) if Ry (%)

@ iR
fas1(Z) otherwise

where, as is usual in mathematics, “if R;(Z)” is short for “if R;(&) is true” and
“otherwise” is the condition ~(R(Z) V - - - V R, (Z)). We have the following result:

2.1.2.37 Theorem. (Definition by Cases) If the functions f;, i = 1,...,n+ 1 and
the relations R;(¥), i = 1,...,n are in PR and PR,, respectively, then so is f
above.

Proof. By repeated use (composition) of if-then-else. Alternatively, by noting—
being mindful of 2.1.2.19—that

f(@) = @A = xr, (@) + -+ [= xR, (F)+
St (E)(A = Xo(Ryv- VR, (T)) O

2.1.2.38 Corollary. Same statement as above, replacing PR and PR. by R and
R, respectively.

The tools we now have at our disposal allow easy certification of the primitive
recursiveness of some very useful functions and relations. But first a definition:

2.1.2.39 Definition. (py)<.R(y, &) means (uy)<.Xr(Y,). a

www.it-ebooks.info

http://www.it-ebooks.info/

112 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Thus, if R(y, &) € PR. (resp. € R,), then A\zZ.(uy) <, R(y,Z) € PR (resp.
€ R), since xr € PR (resp. € R).

2.1.2.40 Example. The following are in PR or PR.. as appropriate:

(1) Azy.|z/y)% (the quotient of the division z/y). This is another instance of
a nontotal function with an “obvious” way to remove the points where it is
undefined (cf. 2.1.2.14). Thus the symbol is extended to mean (uz) < ((z+1)y >
x) forall z, y. It follows that, for y > 0, |z/y] is as expected in “normal math”,
while |z/0] =z + 1.

(2) Azy.rem(z,y) (the remainder of the division z/y). rem(z,y) =z ~ y|z/y].

(3) Azy.zly (z divides y). z|y = rem(y,z) = 0. Note that if y > 0, we cannot
have Oly—a good thing!—since rem(y,0) = y. Our redefinition of |z/y|
yields, however, 0|0, but we can live with this in practice.

4) Pr(z)(zisaprime). Pr(z) =z > 1A (Vy)<(ylz 2 y=1Vy=1z).

(5) m(z) (the number of primes < z).>’ The following primitive recursion certifies

the claim: 7(0) = 0, and n(z + 1) = if Pr(z + 1) then 7(x) + 1 else n(z).

(6) An.p, (the nth prime). First note that the graph y = p,, is primitive recursive:
y = p, = Pr(y) An(y) = n+ 1. Next note that, for all n, p, < 22" (see
Exercise 2.1.2.42 below), thus p,, = () <22 (y = pn), which settles the claim.

(7) Anz.exp(n, z) (the exponent of p,, in the prime factorization of). exp(n,z) =
(1Y) <a™(p%+ @),

(8) Seq(z) (x’s prime number factorization contains at least one prime, but no gaps)
Seq(z) =2 > 1A (VY)<z(V2)<z (Pr(y) APr(z) ANy < zAzlz = ylz). O

2.1.2.41 Remark., What makes exp{n, x) “the exponent of p,, in the prime factoriza-
tion of 2", rather than an exponent, is Euclid’s prime number factorization theorem:
Every number x > 1 has a unique factorization—within permutation of factors—as
a product of primes. See Exercise 40 of Section 1.8. O

2.1.2.42 Exercise. Prove by induction on n, that for all n we have p,, < 22",

Hint. Consider, as Euclid did,*® pop1 - - - p,, + 1. If this number is prime, then it is
greater than or equal to p, 41 (why?). If it is composite, then none of the primes up
to p,, divide it. So any prime factor of it is greater than or equal to p,, 1 (why?). O

56The symbol “|x|” is called the floor of . It succeeds in the literature (with the same definition) the
so-called “greatest integer function, [z]”, i.e., the integer part of the real number x.

57The n-function plays a central role in number theory, figuring in the so-called prime number theorem.
See, for example, LeVeque (1956).

58In his proof that there are infinitely many primes.

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 113

2.1.2.43 Exercise. Prove that Az.|[log, 2| € PR. Remove the undefinedness at

x = 0 in some convenient manner. For example, arrange that |log, 0] = 0 O
2.1.2.44 Definition. (Coding Sequences) Any sequence of numbers, ag,...,an,
n > 0, is coded by the number [ag, . .., a,] defined as
H p?i+l O
i<n

For coding to be useful, we need a simple decoding scheme. By Remark 2.1.2.41
there is no way to have z = [ag, ...,as] = [bo, . . ., b, unless

() n=m

and
(i) Fori=0,...,n,a; = b;.
Thus, it makes sense to correspondingly define the decoding expressions:

(¢) {h(z) (pronounced “length of 2”) as shorthand for (uy)<,—(py|2)
(74) (z); as shorthand for exp(4,z) ~ 1

Note that
(2) Miz.(z); and Az.lh(z) are in PR.

(b) If Seq(z), then z = [ay, . . ., a,| for some ay, . .., a,. In this case, lh(z) equals
the number of distinct primes in the decomposition of z, that is, the length n 4-1
of the coded sequence. Then (z);, fori < [h(z), equals a;. For largeri, (z); = 0.
Note that if ~Seq(z) then lh(z) need not equal the number of distinct primes in
the decomposition of z. For example, 10 has 2 primes, but [h(10) = 1.

The symbol |[...| for numerical sequence coding is not standard. Usually, {...) is
used in the literature on theory of computation. But this clashes with the use of the
same symbol in set theory, used to denote ordered tuples of objects.

The tools Ih, Seq(z), and Aiz.(z); are sufficient to perform decoding, primitive
recursively, once the truth of Seq(z) is established. This coding/decoding scheme is
essentially that of Godel (1931), and we will use it throughout this volume.

We conclude this subsection with a flexible extension of primitive recursion on
total functions. Simple primitive recursion defines a function “at n+1” in terms of its
value “at n”’. However we also have examples of “recursions” (or “recurrences’”), one
of the best known perhaps being the Fibonacci sequence, 0,1,1,2,3,5,8, ..., that
is given by Fy = 0, Iy = 1 and (forn > 1) F,,1 = F,, + F,,_1, where the value at
n+ 1 depends on both the values at n and n — 1. This generalizes to recursions where
the value at n + 1 depends, in general, on the entire history, or course-of-values, of
the function values at inputs n,n — 1,n — 2,...,1,0. Cf. 1.7.0.29. The easiest way

www.it-ebooks.info

http://www.it-ebooks.info/

114 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

to represent the history of values of a rotal number-theoretic function f “at (input)
z”, namely, {f(0,%), f(1,9),..., f(z,)}. is to code it by a single number!

2.1.2.45 Definition. (Course-of-Values Recursion) We say that f, of n + 1 argu-
ments, is defined from two total functions—namely, the basis function Ay,.b0(¥y)
and the iterator \xgnz.g(z, Un, 2)—Dby course-of-values recursion if for all z, §j,, the
following equations hold:

f(0,9x) = b(n)
fle+Lgn) =9(@,4n, H(z,§n))

where A\zyy,.H(x, §n) is the history function, which is given “at z” (for all #,,) by

[£00,9), F(L,G),..., f(z,7)] 0

Compare with the general case in 1.7.0.29. Here, totalness allows a neat coding of
the “history” {f(0,%), f/(1,%),..., f(z,%)} as a single number that depends on x
and #7.°°Of course, 1.7.0.29 guarantees the existence of an f satisfying the schema (1)
above.

(1)

2.1.2.46 Exercise. Prove that f given by (1) is total.
Hint. Use strong induction on z. O

The major result here is:

2.1.2.47 Theorem. PR is closed under course-of-values recursion.

Proof. So, letband g be in PR. We will show that f € PR. It suffices to prove that
the history function H is primitive recursive, for then f = /\a:gj’n.(H (z, gn))x and
we are done by Grzegorczyk substitution. To this end, the following equations—true
for all z, §,,—settle the case:

H(0,n) = [b(¥n)]
H(z+1,§,) = H(z, §,)psGim oo+ O
The same proof with trivial adjustments yields:

2.1.2.48 Corollary. R is closed under course-of-values recursion.

2.1.2.49 Example. The Fibonacci sequence, (F},)n>0, is given by
Fg == O
=1
otherwise,

The inclusion of £(%, %) in Higxpif(i'ng renders all of H (z,) undefined if (¢, 7) 7. Inaset setting,
the latter condition simply means that f(, %) is not included in the set { f(0,9), f(1, %), ..., f(z, %) }.

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 115

Fn+1=Fn+Fn—1

It can be viewed as a function An.F;,. As such it is in PR. Indeed, letting H,
be the history of the sequence at n—that is, [Fy, ..., Fj,]—we have the following
course-of-values recursion for An.F,, in terms of functions known to be in PR.

Fo=0
Foi1=1i1fn=0thenl
else (Hn),_ + (Hn), -,)

2.1.2.50 Remark. How important is totalness in course-of-values recursion?

Let us analyze the primitive recursion schema below, where b and g are known to
be in P. What can we learn from the partial recursive H that is defined as follows?
(Note the use of “~” this time.)

H(0,9n) =~ [b(Fn)]
H(z +1,§,) =~ H(z, i,)pl&Fm H @i+ (1)

First off, the domain of Ax.H (z, ,) is either N, or a set of the form {i € N: i < k}
for some k& (that depends on the chosen fixed #,,). We call this latter set an initial
segment of N,

Let us verify this claim. We fix a ¢,,. If Az. H(z, §,,) is total, then there is nothing
to prove. Otherwise, let x = g be smallest such that H(z, i) 1. By induction on
x we see that H(x,7,) T, for x > xo. Indeed, the basis is from the choice of z;.
On the obvious LH. let us look at H{z + 1, ,). By the L.H., the product in the right
hand side of (1) is undefined.

Next, we note that “if z < zo then H(z,%,) = [ao,...,as], for appropriate
a;”. Of course, if zo = 0 then the statement is vacuously true. So assume zg > 0.
We do induction on z. The basis is settled by H(0, %,) = [b{(g,)] (why “="7). If
H(z,9,) = |eo,-..,az] and z + 1 < zg (LH.), then the second equation of (1)
yields H(z + 1,%,) = [ao, - - -, az, (2, §n, H(z, ¥r))], as needed.

Let us now set Dt

C|

@) (H@da)) (2)

Thus we have the validity of the course-of-values recurrence, for all z and ,

f(0,9n) ~ b(gn)
[l +1,30) = g(x, §n, H(z, §n)) (€)]

By (2) and the earlier remarks, dom(f) = dom(H) and in particular, for each fixed
Un» dom(Az. f(x, 7,)) is either N or a set of the form {¢ € N : ¢ < k} for some &k
(that depends on the chosen fixed g,).

By definition, (1) is the course-of-values recursion schema for partial functions.
It defines a function H, but also a function f, the latter satisfying (3). We can now
summarize: O

www.it-ebooks.info

http://www.it-ebooks.info/

116 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.2.51 Theorem. P is closed under the schema of course-of-values recursion, that
is, (1) of 2.1.2.50. For any fixed iy, the subsidiary function f defined by (2) is either
total in x or is an initial segment of N. Moreover it satisfies the recursion (3).

2.1.3 Simultaneous Primitive Recursion

Taking B = N* in 1.7.0.27, and letting h and g be total functions from N™ and
N+ x N respectively to N¥, and replacing ~ by =, (1) in said example becomes

f($ +1, gn) = g(l'»?jm f(xagn))

(1)

Now f, h, and g are k-tuple valued, so they are not number-theoretic functions
(which must have a right field equal to N, by definition; cf. 2.1.1.6). However, if we
write them in terms of their components, for example,

f(x’:ljn) = <f1(x’gn)7 o 'afk(x’?]n))

then we can rewrite the recurrence equations (1) componentwise, to obtain the schema
of simultaneous (primitive) recursion below, which first occurred in Hilbert and
Bernays (1968).

f1(0, %) = h1(¥n)

fk(oagn) = hk(gn)

fl(ll+17:l7n) :gl(a"’gn’fl(xvgn)a'-->fk($vgn))

fk(x + 1527n) = gk(xagnvfl(xvgn)v .. -,fk($7§n))

Hilbert and Bernays proved the following:

2.1.3.1 Theorem. If all the h; and g; are in PR (resp. R), then so are all the f;
obtained by the schema (2) of simultaneous recursion.

Proof. Define, for all z, ¢y, and Zj,

F(‘L‘agn) Qﬁf[fl(xagn)v s 7fk(x7gn)]

H(§n) Z ha (F), - - - o (§0n)]

ey

G(T, Y, 2k) = (91(2, Urr Z&), - -+, G (T, Ty Z)]

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 117

We readily have that H € PR (resp. € R) and G € PR (resp. € R)—and, in
particular, Axy,2.G(z,¥n, (2)o,-..,(2)k-1) € PR (resp. € R)—depending on
where we assumed the h; and g; to be. We can now rewrite schema (2) as

F(0,4n) = H(gn)
F(z+1,§) ::(;(J“g%’(ﬁxx’@”>o’”"(wa’ﬁﬂ>k—l> ’

By the above remarks, F' € PR (resp. € R) depending on where we assumed the
h; and g; to be. In particular, this holds for each f; since, for all z, §,,, fi(x,¥,) =

(F(-T,an))i_l- O

2.1.3.2 Example. We saw one way to justify that Az.rem(z,2) € PR in 2.1.2.40.
A direct way is the following. Setting f(x) = rem(x, 2), for all z, we notice that
the sequence of outputs (forz = 0,1,2,...) of f is

0,1,0,1,0,1...

Thus, the following primitive recursion shows that f € PR:

f(0) =0

flz+1) =1+ f(z)
Here is a way, via simultaneous recursion, to obtain a proof that f € PR, without
using any arithmetic! Notice the infinite “matrix”

01 0101
1 01 010
Let us call g the function that has as its sequence outputs the entries of the second
row—obtained by shifting the first row by one position to the left. The first row still

represents our f. Now

f(0) =0
g.(().) i 1 (1)
fla+1) =g(z)
glz+1) = flz
O

The reader may protest that the above example contains a bit of an overstatement, if
not sophistry: After all, to legitimize simultaneous recursion as a “PR operation”
not only did we use arithmetic, but quite a bit at that. Didn’t we?

Well yes, but that is irrelevant to the point we are driving at: A very simple
programming language (formalism), which we will discuss in the next section, is
intimately connected with simultaneous recursion, and we will see that, within that
formalism, we indeed can compute rem(z, 2) doing no arithmetic at all!

How we will do this is precisely reflected by the recursion (1) above.

www.it-ebooks.info

4

http://www.it-ebooks.info/

118 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.3.3 Example. We saw one way to justify that Az. |2/2] € PR in2.1.2.40. A
direct way is the following.

g
[x;IJ =SJ+rem(x,2)

where rem is in PR by 2.1.2.40 or by 2.1.3.2.
Alternatively, here is a way that can do it—via simultaneous recursion—and with
only the knowledge of how to add 1. Consider the matrix

The top row represents Az. [z/2], let us call it “f”. The bottom row we call g and
is, again, the result of shifting row one to the left by one position. Thus, we have a
simultaneous recursion

f(0) =0
g(0 =0
o @
flz+1) =g()
glz+1) = flz)+1
O
2.1.4 Pairing Functions
Coding of sequences ag, a1, ..., an, for n > 1, has a special case; pairing functions,

that is, the case of n = 2.

2.1.4.1 Definition. A total, 1-1 function .J : N x N — Nis called a pairing function.
O

2.1.4.2 Remark. By 1.2.0.25 thereisanonto g : N — N x Nsuch that g(J(z,y)) =
(x,y) forall z,y inN. gis pair-valued (“vector”-valued) thus not a number-theoretic
function. As in the previous subsection, we may write, for all z € dom(g),

9(z) = (K(2), L(2))

that is, decompose g as a pair of functions (K, L), along the “z-” and “y-axes”. We
call K and L the first and second projection functions of the pairing function f,
respectively. We have at once, for all z and y in N,

K(J(z,y)) == (1)

and
L(J(z,y)) =y (2)

www.it-ebooks.info

http://www.it-ebooks.info/

A THEQORY OF COMPUTABILITY 119

One usually encounters the (capital) letters K, L in the literature as (generic) names
for projection functions of some (generic) pairing function. In turn, the generic
symbol for the latter is J rather than “f”. We will conform to this notational
convention in what follows.

We must emphasize that since Definition 2.1.4.1 does not require a pairing function
J to be onto N, we cannot expect

J(K(2),L(z)) = z, forall 2 (3)

to hold in general. In fact, (3) requires that J is onto (cf. 1.2.0.22).
Pause. What if in (3) we said “for all z € dom({K, L))” instead?«
Hint. See Section 1.8, Exercise 26.
Also note that if the ¢ of this remark is obtained precisely as in 1.2.0.25, then its

domain equals the range of J-—cf. 1.2.0.26. However, we can extend g to a total
function g, for example, letting, for all z € N,

3(z) = {g(z) if z € dom(g)

(0,0) otherwise

Clearly, we still get (§.J) = 1nxn, that is, g(J(z,y)) = (z,y) for all z and y in N,
simply because J(z,y) € dom(g). Of course, by preceding remarks, (Jg§) = 1y
must fail unless J is onto N. O

The set of “tools” consisting of a pairing function J and its two projections K
and L is a coding/decoding scheme for sequences of length two. We want to have
computable such schemes and indeed there is an abundance of primitive recursive
pairing functions that also have primitive recursive projections. Some of those we
will indicate in the examples below and others we will let the reader to discover in
the exercises section.

2.1.4.3 Example. The function J = Axy. [z, y] is pairing. Its projections are K =
Az.(z)p and L = Az.(2);. All three are already known to us as members of PR.
This J is not onto. For example, 5 ¢ ran(.J). Nevertheless, K and L are total—
because Aiz.(z); is; indeed is in PR—and unlike the explicit extension of g in the
preceding remark, this fact did not require our intervention. O

Pause. Does the coincidence of the non ontoness of the .J above, and the totalness
of K and L, contradict our calculation in 1.2.0.267«

2.1.4.4 Example. The function J = Azy.273Y is pairing. Its projections are K =
Az.exp(0, z) and L = Az.exp(l, 2} (cf. 2.1.2.40). All three are already known to
us as members of PR.

This J is not onto. Again, 5 ¢ ran(.J). Nevertheless, K and L are total-—because
Miz.exp(i, 2) is; indeed is in PR—and unlike the explicit extension of g in the
preceding remark, this fact did not require our intervention either. |

Clearly, for any distinct primes p; and p;, the function J = \zy.p7 pg is pairing, with
projections Az. exp(4, z) and Az. exp(J, z).

www.it-ebooks.info

http://www.it-ebooks.info/

120 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.4.5 Example. Note that every number n > 1 has a unique representation—i.e.,
the = and y are uniquely determined by n—of the form 2%(2y + 1). This, for
n > 2 is just an abstraction of the unique factorization theorem, recognizing that
the 3959'79" ... part of the factorization is an odd number. On the other hand,
1=2%2-0+1).

Thus, the J = Azy.2*(2y + 1) of Grzegorczyk (1953) is pairing. This J is not
onto either; it just misses one member of N!

Its projections can be easily calculated in a manner that readily establishes their
primitive recursiveness. Kz = exp(0, z) and

ohz) -1

Lz = [2 O

The preceding example illustrates a notational convention that we will adhere to
regarding projection functions: We will write “Kz”, “Lz”, “K LLz”, etc., omitting
brackets from around arguments. This is a visual improvement over “K (z)”, “L(z)”,
“K(L{L(2)))”, etc.

2.1.4.6 Example. J = \zy.2°tY*2 + 2¥*1 s pairing. That it is in PR and hence
total is trivial. Why is it 1-1? Well, we may prove this directly, but instead, what if I
can find z and y uniquely in terms of z once I set z = 2*+¥+2 4 2v+19

If that succeeds then [have defined two functions Az. K z and Az. Lz that satisfy (1)
and (2) of 2.1.4.2. This will prove that .J is 1-1 by 1.2.0.22!

Let us do this, and start by setting z = J(z,y). We will “solve” for (natural
number-values of) = and y:%° Notice that 2¥+1 < 2%+¥+2 61 hence, 22TV+2 < 2 <
22 +y+2 4 92+y+2 — 9T+y+3 Thus, taking logarithms base-2, z + y + 2 < log, 2 <
z + y + 3. We obtain at once

T+y+2=log, 2] (1)

Now, z = 21108221 4 2u+1 thyg
y = \‘logQ (Z = 9llog, ZJ)J -1

We obtain Lz = |log, (z ~ 2U°822))| = 1 and, from (1), Kz = |logyz] =
(Lz + 2). From Exercise 2.1.2.43 we conclude that K and L are indeed in PR. O

2.1.4.7 Example. In 2.1.4.6 we note that J(z,y) > z and J(z,y) > y, for all z, y.
Thus an alternative way to prove that the related K and L are in PR is to compute
as follows:

Kz = (ur)<.(Fy)<=(J (2, y) = 2) (1)

60 An equation for which we seek integer solutions only is called a Diophantine equation.
61For example, take the logarithm base-2 for both sides.

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 121

and
Lz = (.uy)ﬁz(am)iz(‘](x)y) = Z) (2)

Equipped with theorems 2.1.2.28 and 2.1.2.32, and Definition 2.1.2.39, we see that
(1) and (2) establish that K and L are in PR.

But this approach—unlike that in the preceding example—does not prove that K
and L exist or that the .J is 1-1!

Pause. Why?« O

2.1.4.8 Example. Here is a pairing function that does not require exponentiation.
Let J(z,y) = (z + y)? + x. Clearly, J € PR.

Let us use the methodology of 2.1.4.6. So let us set z = (x + y)? + z and solve
this “equation” for x and y (uniquely, hopefully). Well, (z+y)? < z < (z+y+1)2.
Thus z + y < /2 <z +y + 1, hence

Tty= L\/EJ (1)

Then, z = |/z)° + x and therefore Kz = z = |/z|%. By (1), Lz = | /z] - Kz.

As in 2.1.4.7, the J here satisfies J{x,y) > x and J{z,y) > y. Thus, if
we have an independent proof of the existence of K and L (say, by proving di-
rectly that J is 1-1; cf. Exercise 4 in Section 2.12), then their primitive recur-
siveness follows from the calculations Kz = (ux)<.(Jy)<.(J(z,y) = 2) and
Lz = (ny)<:(r)<:(J(z,y) = 2). O

Why bother about pairing functions when we have the coding of sequences scheme
of the previous subsection? Because prime-power coding is computationally very
inefficient, while quadratic schemes such as that of the previous example allow us
to significantly reduce the “computational complexity” of coding/decoding. But can
we code arbitrary length sequences efficiently?

Yes, because any J, K, L scheme can lead to a coding/decoding scheme for
sequences aj, . .., an, 1 > 2, for both the cases of a fixed or variable n.

2.1.4.9 Definition. Given a primitive recursive pairing scheme J, K, L.
For any fixed n > 2 we define by recursion on n the symbol [a1,...,a,]]("):

[z,y]® = J(z,y);and [z, 41, .,y)" = T, [vn, -, un]™). 0

2.1.4.10 Remark. Itis a trivial exercise to verify that the 1-1ness of .J implies that of
lvi,- s Un]](n), for any n > 2. Moreover, if J is onto N, then sois [y1,. .-, ¥n]](")
(cf. Exercise 34 in Section 1.8).

The primitive recursive K and L give rise to primitive recursive projections,
denoted by II7 for each fixed n, and each 1 <17 < n.

These will satisty [T [y1,. .., yn]](n) =y, forl <i<n.

www.it-ebooks.info

http://www.it-ebooks.info/

122 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The IT are defined by composition from K and L as follows (cf. Exercise 8 in
Section 2.12). if z = [y1,...,yn], then

nr =K
I = KL
Iy = KLL
Iy = KL!
n-1= KL
m, =L
where we wrote L* for '
—_—
(LL---L)
for any fixed ¢ (¢ — 1 compositions with itself). 1 g%

We can also effect coding of variable length sequences, starting with a J, K, L
primitive recursive scheme. However, we will not take this approach in this volume.
Here is how:

2.1.4.11 Definition. Given a primitive recursive pairing scheme J, K, L, with a J
that is onto.

A sequence aq, ..., d,, n > 0—n = 0 denoting the empty sequence—is coded
by the expression [0,0]® if n = 0; i[l,ao]]@) ifn=1;and [n,a1,...,a,]]("+1)
otherwise. We denote by lg(z) the sequence length, thus we set lg = K. O

@ Ontones of J, and hence of [a,,...,ap]]("), for any n > 2, ensures that every z is a
valid “code”, so it makes sense to decode it once we know the code’s length; we do @
not need a predicate analogous to “Seq” (Example 2.1.2.40, item 8).

The projections, denoted by ((2)),, for non zero Ig(z) and 1 < i < lg(z), are

_ KLz ifl1<i<lg(z)
(=)= {Liz ifi =1g(z)

The reader encounters here the symbol “L*”, where i is variable (an input), for the
first time. What does it mean, and is \iz.L*(z) primitive recursive?

This is a special case of primitive recursion, known as iteration (composing a
function with itself a “variable number of times”), a concept that we will take up in

www.it-ebooks.info

http://www.it-ebooks.info/

A THEORY OF COMPUTABILITY 123

the next subsection. In the present case we note that

I’z =2

L*Tl = L(Lmz)

Brackets were inserted in “LL*z” above to make the iterator (2.1.1.14) “L(...)”
stand out. The above primitive recursion shows that Aiz.L'z € PR.

2.1.5 Iteration

A very natural special case of primitive recursion, that of composing a function
with itself a number of times that is “read” as an input—a “variable number of
times”—has been studied by Robinson (1947) in the context of number-theoretic
functions. In general, if ¢ : A — A is some function, its (pure) iteration is the
function Azy.¢%(y) : N x A — A given by the following definition:

2.1.5.1 Definition. (Pure Iteration) We say that Azy.f(z,y) : Nx A - A—where
A is some set—is defined from Azx.g(x) : A — Aby pure iteration iff, for allz € N
and y € A, we have

fO,y) =y
flz+1,y) ~g(f(z,y))

We write g*(y) for f(x,y), since a trivial induction on k shows that, for any &k € N,
f(k,y) ~ (g9g---g(y)) , while we adhere to the convention that g% = 1 4. d
—_————

k — 1 compositions

2.1.5.2 Remark. Of course, we replace ~ above by = if g is total. Thus every
iteration is a special case of primitive recursion in the style of 2.1.1.14. Indeed, for
any g € PR, Azy.g*(y) € PR. O

2.1.5.3 Example. Let g : N x N — N x N be given by g(x,y) = (y,z). What is
97(0,1)? Tt is {rem(z,2),rem(z + 1, 2)). Cf. Example 2.1.3.2. O

2.1.5.4 Example. Let g : N x N = N x N be given by g(x,y) = (y,z + 1). What
is g*(0,0)? Consider the diagram below that indicates the values of ¢°, g', g%, g%, . ..
starting at input {0, 0) (depicted as 8 below). The arrows, labeled g, indicate the
input/output relation of ¢ applied to the input at the left of the arrow in each case.

o
@
—
']
—
=3
[\
©
()
o
w
o
w
Rs}
e

Thus, g%(0,0) = (| 5|, [%4}). Cf. Example 2.1.3.3. O

www.it-ebooks.info

http://www.it-ebooks.info/

124 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.1.5.5 Example. Let g : A — A" be such that its first component is the “identity”
function, in the sense, p}(g({a,...))) = a for all {a,...) € dom(g) (cf. Exer-
cise 1.8.23). In other words, if ¢ = (g1,-..,9y) is the decomposition of g into its
components, then g1 (£,,) = x1 for all T, in its domain.

We will show that the first component of A\Z,,.g*(Z,,) is also the identity.

Indeed, we can show this by induction on z: For z = 0, ¢°(Z,,) = (Z,.), hence
Pt (g°(£,)) = x1, for all Z,. For fixed z, assume (I.H.) that

p1(9°(£n)) = x1, for all £, on which the left hand side of = is defined (%)
that is, g*(Z,) = (z1,...). Thus,

FTHE) = gz, ...) =P (@1, 02((z1, ..)y - gu({r, ..))) O
2.1.5.6 Remark. The preceding result clearly holds in the special cases on the two
extremes:

(1) The induction step above essentially proves that if the first component of each of
g: A" — A" and f : A™ — A" is the identity, then this holds for (fg) and (gf)
as well. Indeed, all that we used about g in the 1.S. above was (*); we might as
well think of AZ,,.g%(&n) as the “f here.

(2) With g as in 2.1.5.5, let us set f = AZ,2.9%°(Z,). Then f(Z,,2) = (x1,...)
whenever it is defined.

It is clear from the arguments presented here and in 2.1.5.5 that x;, the “first”
variable, is not particularly privileged with respect to the foregoing reasoning, and
that the results hold no matter which component of g and f is the identity. The
“general” case starts with ¢ = (g1,...,gn) [and f = (f1,..., fa) in (1)], where
gk (Tn) = ok [and fx(F,) = zk in (1)], for all ,, in the respective domains. |

The main result in this subsection is Robinson’s theorem, that in the presence of
pairing functions we have a converse of Remark 2.1.5.2: that iteration can simulate
primitive recursion of number-theoretic functions.

2.1.5.7 Theorem. If a class of total number-theoretic functions is closed under iter-
ation and composition and includes a pairing scheme J, K, L, then it is closed under
the full primitive recursion of 2.1.1.14 as well.

Proof. We follow Tourlakis (1984). We are given the number-theoretic g (iterator)
and A (basis). We will simulate the schema (A} below, using pure iteration.

(A) f(ovgn) B i h(gnl B
fle+1L,9.) = g(@, ¥n, f(z,9n))

62Recall that we write g(z, y, . . .) for g((z,y,...)); cf. p. 43.

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 125

Using the coding introduced in Definition 2.1.4.9 that is generated by the given here
J, K, L, we define the function F by

F(2,§n) = [, F, f(2,)]
We may write a primitive recursion for F':
gy {FOF) =05 b)Y
Flx+1,9.) =[x+ 1,n, 9(x, §n, f(mv?jn))]]
Noting that (omitting bracketing) IIT**F(z,7,) = a, O} ?F(z,§,) = i, for
1 <i<n;and IPT2F(x, 7,) = f(x,Jn), we see that schema (B) has the form

n+2
L [FO.G) = H)
= {F(m FL3) = G(F@ d)

where
. - n+2 n+2 n-+2
G= Mrgnz. [IIT %2+ 1, H1+iz,...,£ll+nz, , , ,
n+ n+ n+ n+
g™z, M7z, ... 0T 2, H7752)]

and H = Ajn. [0, G, () 72

A trivial induction on x shows that F(z, ¥,) = G* H(§,). Thus, we have reduced
the schema (A) to pure iteration G* and composition and can obtain f as the (n + 2)-
th projection of F, as already indicated. g

2.2 A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE
FUNCTIONS

Loop programs were introduced by Meyer and Ritchie (1967) as a program-theoretic
counterpart to the number-theoretic introduction of the set of primitive recursive func-
tions PR. This programming formalism is analogous to the URM formalism, but,
unlike the latter, it corresponds—i.e., is able to “compute”—precisely the primitive
recursive functions. It also provides a connection between the definitional (or struc-
tural) complexity of primitive recursive functions—that is, the complexity of their
syntactic definition—with their (run time) computational complexity as we show in
Chapter 5.

Loop programs are very similar to programs written in the old programming
language FORTRAN, but have a number of simplifications—notably, they lack an
unrestricted do-while instruction (equivalently, they lack a goto instruction).

While we have an infinite supply of (program) variables, each loop program—
being a finite string—references (uses) only a finite number of variables. We will
most often denote variables metamathematically by single letter names (upper or
lower case is all right) with or without subscripts or primes.5*

63The precise syntax of variables will be given shortly, but even after this fact we will continue using signs
suchas X, A, Z’, Y{} to stand for variables—i.e., we will continue using metanotation.

www.it-ebooks.info

http://www.it-ebooks.info/

126 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Let us define by induction (cf. 1.6.0.12), at first somewhat loosely, the structure
(syntax) of loop programs. To assist the definition, and our general discussion about
loop programs, we will be using syntactic variables (or metavariables) P, }, R (with
or without primes) to stand for loop programs.

2.2.0.8 Tentative Definition. (The Set L of Loop Programs) A loop programis one
of

(1) Asingle instruction, that is, a string of type (i)—(iv) below

(i) X <0
(i) X Y
(i) X « X +1
(iv) Loop X; P; end
where P is a loop program and “;” is a separator, just like the semicolon

used in the C programming language. There is no restriction on whether
X may or may not occur in P.

In (i)—(iv), X and Y are metasymbols that denote arbitrary variables, including,
possibly, two identical variables.

(2) The superposition or concatenation of a loop program, P, with an instruction,
Q.% in that order: That is, P; Q.

The set of all loop programs we denote by L. g

Instruction (iv) is substantial. However, this situation is common in programming
language definition. For example, an Algol or Pascal “if-then-else” instruction has the
form “if condition then instructionl else instruction2”, where each of instructionl
and instruction2 may be a so-called “begin-end block”, which is a self-standing
program.

By clause (2) above, a loop program is an ordered sequence of instructions,
separated by semicolons. In informal discussions we normally write a loop program
vertically, in which case the separator “;” becomes redundant and is omitted. Thus,
rather than

PQ
we write
P
@
Rather than

Loop X; P; end

64Using the letter Q to stand for an instruction is consistent with clause (1).

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 127
we write

Loop X
P
end

The the syntactic construct Loop X; P; end is called a loop closure of P.

We will shortly offer a careful definition of loop program semantics, that is, exactly
what loop programs “compute”. It is instructive to do so informally at first. Thus,
to begin with, as in the case of the URM formalism, the variables X, Y, Z,3, etc.,
that we utilize in a loop program can hold any natural number. We assume that an
appropriate “computing agent” (which may be human) understands and performs, or
executes, a loop program’s instructions.

In the course of this sequential instruction-execution the agent successively points to
the next instruction that must be executed. Once the agent has completed executing
the instruction, it will then point to the one immediately following it. It will do so
for one instruction at a time, from the first toward the last.

Pause. But will the agent always reach the last instruction?«

We will answer this affirmatively, shortly.
If there is no instruction to point to, then the agent terminates its computation.

2.2.0.9 Tentative Definition. (Informal Loop Program Semantics) The semantics,
or prescribed behavior of the computing agent is as follows:

(1) The effect of executing any one of instructions (i)—(iv) by the agent is to

(i) make the value of X equal to 0; and then point just below the instruction
(where the next instruction is located, unless the executed instruction was
the last one);

(i1) copy the value of Y into X non destructively—i.e., the value of ¥ does not
change—and then point just below the instruction;

(iii) increment the current value of X by 1, and then point just below the
instruction;

(iv) according as X holds the value O or & > 0 immediately prior to the
execution of the instruction: Case where X holds 0. Do nothing toward
the instruction; then point just below the instruction. Case where X holds
k > 0. Macro expand instruction (iv) as below, (x), and execute the
indicated sequence of instructions; then point just below the instruction.

www.it-ebooks.info

4

4

http://www.it-ebooks.info/

128 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Note that by recursion on the (tentative) definition of programs, the agent
knows how to execute in sequence all the instructions of (each copy of) P:

P

P
k copies < . (%)

P

g% The semantics of (iv) require that the value of X immediately before the
execution of instruction (iv) matters in determining the macro expansion.
Any instructions of the type (i)—(iii) included in P may change X, but not
the k in (x).

(2) The effect of executing the program
P
Q

where P is a program, and () is an instruction is to let the agent start by pointing
at the first instruction of P and allowing it to begin execution. By recursion on the
(tentative) definition of programs, the agent knows how to execute in sequence
all the instructions of P.

If the last instruction of P eventually gets executed, then the agent points to
instruction (), which we execute according to part (1) of this definition.]

As already noted, in a program P all instructions are executed in sequence, starting
with the first instruction. The program terminates iff its last instruction has eventually
been executed. The hedging in the preceding definition, “If the last instruction of P
eventually gets executed”, will now be removed:

2.2.0.10 Theorem. Every loop program P terminates.

Proof. By induction on the set L, as this is defined recursively in 2.2.0.8. We will
also use 2.2.0.9.

First off, the basis looks into the case of programs consisting of a single instruction
of types (i)—(iii). By 2.2.0.9 such a one-line program terminates, since the execution
of the instruction can be clearly completed.

Assuming as I.H. that the claim holds in the case of a program P we prove that
the execution of an instruction of type (iv)—Loop X; P; end—terminates. Indeed,
this is trivial if X holds O initially. If, on the other hand, it holds & > 0, then the
instruction that the agent actually executes from top to bottom is the macro expansion

p
P
k copies

P

www.it-ebooks.info

4

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 129

By the I.H., the agent reaches and concludes the last instruction in each copy of P,
so it eventually does so with the k-th copy.
The last case to consider is when we have a program

P
R =
Q
where () is an instruction. Starting the agent at the first instruction of R is the same
as starting it at the first instruction of P. By the L.H. the agent will eventually point

to (. But as we saw, it will be able to conclude the execution of) under each case
(1)—(iv) of 2.2.0.8. O

2.2.0.11 Example. What does

Loop X
X+—X+1

end
do? For any initial value of X, a, the above is computed as

X+ X+1

X~ X+1
a copies

X+ X+1

Thus, the end-value of X is 2a. This is correct for both a = 0 and a > 0; cf. 2.2.0.9.
O

2.2.0.12 Example. What does

LoopY
X+ X+1
end

do? Assuming that X and Y initially hold a and b, respectively, the final value of X
is @ + b, while the final value of Y is still b. g

2.2.0.13 Example. What does

Loop Z
W+ X
X«Y
YW

www.it-ebooks.info

http://www.it-ebooks.info/

130 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

end

do if X, Y, and W are initially 0, 1 and 1 respectively (cf. 2.1.5.3)? Given that
the three instructions inside the loop swap the X and Y values, then, if the original
value of Z is k, the end-values of X, Y, Z, W are, in order, rem(k,2),rem(k +
1,2),k,rem(k +1,2).

We could have programmed this also reusing Z in the place of W, not in-
troducing a fourth variable. Then the end-values of X,Y, Z would be, in order,
rem(k,2),rem(k + 1,2),if kK = 0 then O else rem(k + 1, 2). O

2.2.0.14 Example. What does

Loop Z
WX
XY
Y« W
Y«Y+1

end

doif X, Y are both 0, initially O (cf. 2.1.5.4)? Given that the four instructions inside
the loop swap the given X and Y values, but make Y hold a value that is equal to
X + 1, the effect is

X — Y

Yy — X +1
Thus, if the original value of Z is k, the end-values of X, Y are, in order, {% [&2

We could have programmed this also reusing Z in the place of W, not introducing

a fourth variable. O

2.2.0.15 Example. What does the following do if Z = a originally?

X +0
Y <0
Loop Z
Y+ X
X+—X+1

end

Notice the result of each “pass” around the loop:

x _*0 g Ly

#0 #1
> 0 > 0

#2 #3 #4 #5
2 > 3 4

#2 1 #3 2 #4 3

s 5.

#5

Y 4.-.

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 131

Thus, the end-value of Y 1s ¢ — 1, while that of X is a. This is correct also in the
case where ¢ = 0 initially.]

We now present a more careful inductive definition of the syntax of loop pro-
grams. This, in turn, will allow a more mathematical definition of semantics that will
eventually enable us to prove that loop programs compute precisely the functions of
PR. We start with the finite alphabet of symbols:

Y ={v,1,+,+,0,Loop,end,;} (1)
We next define the exact strings that are the variables:

2.2.0.16 Definition. (Variables of Loop Programs) The set of all variables used in
loop programs is the closure of the single-element set®® {v1} under the string opera-
tion that, given a string x, produces x1 (z concatenated with 1). ad

Thus, the variables form the set {v1,v11,v111,...,v1", ...}, where 17, for
n > 0, denotes the string that consists of n 1-symbols. By convention, for any string
x, z° denotes ¢, the empty string.

We will often use a variation on the notation v1”, namely, v;.

Indeed, even more often, we will use, as we have already done in the preceding
examples, metasymbols such as z,y, X, Y, Z§5, Y to stand for variables. Clearly,
the v; are also metasymbols, but are closer to the “ontology” of loop program
variables. We can now see why our earlier statement “X and Y are metasymbols
that denote arbitrary variables, including, possibly, two identical variables” (p. 126)
makes sense: For example, both X and Y might actually stand for v11.

We can now state the final form of Definition 2.2.0.8:

2.2.0.17 Definition. The set of loop programs, L, is the closure of the set of strings
over X [(1), p. 131] below

{fvi+0:i>1}U{viv; 1> 1A 21} U{v; v +1:0> 1}
under the following string-operations:
(1) From any string P we may form the string
Loop v;; P;end
forany i > 1.
(2) From any strings P and @ we may form the following strings,’ for all i > 1 and

=1L

650ne calls single-element sets singletons.
%60f course, P and () may—but don’t have to—name the same string (loop program). The same holds
for v; and v;: It is allowed to have 7 = j.

www.it-ebooks.info

http://www.it-ebooks.info/

132 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(a) P;v; <0

(b) P;v; + vy

© Py v +1

(d) P;Loop v;;Q;end O

The definitive semantics of loop programs describe what the execution of such
a program does to the values (or “contents”) of its list—or tuple under some fixed
ordering—of variables. Cf. also 2.2.0.9

2.2.0.18 Definition. (Loop Program Semantics) Letzy,...,z, beafixed ordering
of variables that includes all the variables that occur in a program P. Each x;, of
course, stands for a v1¥, for some k& > 0. We denote by AZ,,.p(Zy,) the vector-valued
function from N® — N™ computed by P. This function is the semantics of P, and is
defined by recursion on the definition of P (cf. Section 1.7) using 2.2.0.17 as follows:

For all (values of) x1, . . ., x,, that are in effect immediately prior to executing P:
If Pis

Dz <0 Thenp(‘fn) = <£131, s i1, 0,37i+1, s 7$n>'
(I z; < x;: Thenp(Z,) = (T1,. .., Ti1, L5, Tit 1y -, Tn)-

) z; < z; + 1: Thenp(fn) ={x1,.. . X1, + 1,201, ... ,l‘n>.

(IV) Loop Z; Q; end, where Z is, without loss of generality, the variable z; (our
ordering of the variables was arbitrary): Then p(Z,,) = ¢™* (Z,).

(V) R;S, where S is a program of the types encountered in (I)-(IV) above: Then
p(:cl,...,xn):s(r(ml,...,xn)>]

We notice that in the case (IV) above we followed precisely the informal semantics
of 2.2.0.9. The case establishes that if Z = a then the effect of Loop Z; Q; end is
the same as that of the program

Q;Q;-;Q
e ——
a copies of @
namely,

qq - - q (), where the Z,, hold the values in effect before the loop-start.
N——
a copies of ¢
The number of iterations, a, is predetermined before we enter the loop and regardless
of what may be happening to Z (i.e., ;) inside (. That is, if Z is changed by)

this does not affect the number of copies of () in the above macro expansion. This
number depends only on the value that Z held just prior to entering the loop. In

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 133

particular, if Z = 0 the loop is in effect skipped, a fact captured by ¢°(Z,,) = (%),
for all 7,, (identity function from N™ — N"),

2.2.0.19 Example. Intuitively, a variable z; that does not occur in a loop program
P will not have its value changed by the execution of P. This expectation is upheld
by our loop program semantics. That is, the semantics AZ,.p(Z,) of P—where
T1,...,Z, includes all the variables that occur in P—will, under our assumption,
satisfy

p(fn) = <p1 (fn)v I apk—l(jn)v $k,pk+1(fn) tee 7pn(fn)> (1)

for all #,. We can prove (1) by induction on loop programs, with the help of
Definition 2.2.0.18.

If P has the forms (I)—(III) (basis), then k is neither ¢ nor j, therefore x;, stays
unchanged.

If P has the form (IV), then as x; does not occur in it, it is neither Z, nor occurs
in (). By the I.H. we have that the semantics of @, i.e., g, satisfies for all Z,,,

q(-fn) = <QI (fn)y sy Qk—l(fn)» Tk, Qk+1(fn) s ,qn(fn»

By Remark 2.1.5.6, if we set f = A\%,,.q"* (&), where, without loss of generality, Z
is z1, we will have f(Z,) = (..., xk,...), forall Z,.
Finally, if P is R; S, then the I.H. applies to the semantics s and g, that is,

P(Zn) = (ri{@n)s oy Ph—1(Tn), Thy Tk 1 (Zn) -y 10 ()
and

$(ZTn) = (s1(Fn), -, Sk_1(Fn), They Sk 1(Tr) - -+ 5 S0 (Tn))
for all &,. Once more, invoking 2.1.5.6, we see that s(r(Z,)) = (..., 2k, ...}, for
all Z,. O

2.2,0.20 Remark. The preceding example removes any ambiguity in the semantics
that may be implied by our ability to arbitrarily add (in the definition) variables that
may not occur in a program. The values of such variables remain invariant in the
semantics. Or as we say, “during the loop program computation”.’ O

Let us turn once more to case (IV) of 2.2.0.18. We aim to write the iteration that
defines p as a primitive recursion, and to this end we consider two cases according
as x1 occurs, or does not occur, in Q. Thus, for all Z,,, in the first case we have

(I(fn) = <q1(fn)aq2(fn)“-7Qn(fn)> (1)
while, by 2.2.0.19, in the second case we have the decomposition
q(Zn) = ($1,g2(fn)-~-aQn(fn)> (2)

67We will define URM computations explicitly in Section 2.3. In the case of loop programs we have defined
semantics that will characterize the set of computed functions without the need to define mathematically
the concept of “computation” explicitly.

www.it-ebooks.info

http://www.it-ebooks.info/

134 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The primitive recursion for F' = Aag,.q%(¥y,) is given below (cf. 2.1.5.1):

F(an1,~-~7yn) :<y1a"')yn> (3)
Fla+1Ly,....un) =a(F(a,y1,...,yn))
One invokes (“calls”) F' with the argument «1, 1,22 . .., &, to obtain the semantics

p of (IV) above. Thatis, p = A%, . F(z1, Zp).
Thus, if we represent F in terms of its components, for all a, ¥y,

F(a,yj’n) = <F1(aagn)7F2(a7gn) .- 'aFn(avgn»

the recurrence (3) yields the following simultaneous recursion [in the style of (2) on
p. 116)], if representation (1) holds for g,

Fi(o’gn) =Y

L, _, . 3
Fi((l-f'l,yn): qi(Fl(a,yn),...,Fn(a,yn)> ()
while it gives the following, if representation (2) holds.
Fi(a+1,4n)= Fi(a, Un) ,
and, fori = 2,...,n, 3")

Fila+1,7)= 6 (Fi(@), . Fula, 7))

Incidentally, a trivial induction on a, using the recurrence for Fj in (3"), rediscovers
the result of 2.1.5.6: Fy(a,%,) = y1 for all a,,. In particular, this confirms our
intuitive expectation that the variable Z of P remains unchanged by the execution of
“instruction” (IV), if it does not occur in (.

Thus, if all the component-functions, g;, of g—the AZ,.q;(Z,) above—are in PR,
then so are all the F;. It follows at once by identification of variables (cf. 2.1.2.6)
that all the p;—the components of the semantics of P in (IV),

pi = A-’i“nFﬂ(-fljlyi"n)
are in PR as well. @

Similar comments apply to the case (V) above: With the same notation as before,
it is immediate that expressing the semantics p of P = R; S component-wise

(AL D1(Zn)s -« o s A Dn(Tn))

we have the component-wise identities, fori = 1,...,n:

Pi = ATn.5i (rl(ir’n), . ,rn(fn))

Thus, if all the r; and all the s, are in PR, then so are all the p; functions.

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 135

We have done all the work that allows us now to state

2.2.0.21 Theorem. For any loop program P whose variables are among I, each
of the components of the semantics function p—AZ,,.p;(Vy), fori = 1,... ,n—is in
PR.

Proof. Induction on programs P. If P corresponds to (I)-(III) in Definition 2.2.0.18,
then each of AZ,.p;(&),) is initial or is obtained from an initial function by adding
“don’t care” variables (cf. 2.1.2.6).

For case (IV), we are done by the I.H.—which applies to ()—and the preceding
analysis of the semantics of the loop-instruction.

For case (V):

e If S is of type (I)-(III), then we are done by the basis case, and the remarks
about (V) made before the theorem statement. We also invoke the I.H. that
applies to R.

e If S is of type (IV), then we rely on the remarks made prior to the theorem
about (IV): Accordingly, s; € PR by the I.H. that applies to), while the [.H.
that applies to R concludes the case by remarks regarding (V). |

221 PRvs. L

We next define what it means for a program P—whose list of variables is (rather
than “includes”) x1, . .., z,—to compute a number-theoretic function. This will be
in exact analogy with the corresponding definition for URM programs (cf. 2.1.1.1).
Of course, here we have no undefined/no-termination cases, since loop programs
compute only total functions, indeed, exclusively primitive recursive functions as we
just saw.

As in the case with the URM, we first decide which ones among the &,, we want
to be the input variables; say,®

z1,...,2q,wherer < n (1)

We also decide on one output variable; say, zy,.

The “agent” that executes a loop program (human, or machine) will first implicitly—
i.e., not via instructions that are contained in the program—initialize the computation
as follows:

(a) Sets the variables in the list (1) to hold the inputs a4, . . ., a,.
(b) Sets the variables z,41, ..., 2z, to hold 0.

The agent will then execute program P according to the semantics of 2.2.0.18.

%8More generally, we could have chosen Tiy,--.,&q, for input. Since renaming of variables is up to us
we can avoid the ugly notational acrobatics that this choice entails.

www.it-ebooks.info

http://www.it-ebooks.info/

136 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The function computed by P with the given input-output choice is (with notation as
in2.2.0.18)

A U (p(:z;, 0,0, ..., 0))

n — T ZEeros

where U (p(%)) is short for the composition (2.1.1.13) U2 (p1 (%), . . . , pn(¥)) that is @
written in terms of the components p; of p.

Intuitively, after “termination” of the the execution of P we read off what zy
holds—this is the output caused by input Z,.. We can thus record:

2.2.1.1 Definition. For a loop program program P whose variable list is &,,—these
variables are precisely those that occur in P—we define the symbol Pf,:, where
1 < r, k < n, to mean the computed by P function

\G,.UD (p(:E'T, 0,..., 0))

The set of all loop program computable functions Pf; we denote by .&Z. O

2.2.1.2 Remark. Note that we have a totally syntactic definition of %"
= {Pfkr : P € L A the Z, and xy, occur in P}

0 ®

By 2.2.0.21, we have at once

2.2.1.3 Theorem. .¥ C PR.

The converse is true.

2.2.1.4 Theorem. PR C ..

Proof. By induction on PR and brute-force programming:

Basis: Az.z + 1is P))((where Pis X < X + 1. Similarly, AZ,.z; is P))i" where
Pis
X1 (—Xl;XQ — Xo;.. s X, — X,

The case of Az.0 is as easy.
How does one compute Az. f(g(x)) if g is G¥ and f is F¥ ? One uses

(%),
F)x
where &’ is G, but modified to avoid side-effects: One must ensure that all the
variables of GG other than X are set to 0 upon exit from G, because F' expects all

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 137

these variables to be 0 in order to compute f correctly. G’ does that by placing at the
end of G several statements of the type Y + 0.

The general case AZ.f (g1 (), ..., gn(Z)) is programmed similarly.

Finally, we indicate in “pseudo code”, as we say in programming courses, how to
compute f(z, §,) where

f(l + lvgn) = g(a?, 27717 f(:l?, gn))

assuming we have loop programs H and G for h and g, rspectively. The pseudo code

18
24 h(gr)

1+ 0
Loop =
z ¢ g4, Yn, 2)
11i+1
end

Letthenh = H ;7" and g = Gi@" '# where we have been careful to ensure that H and
(7 do not have side-effects that affect adversely the semantics of the loop. That is,

(1) ¢y are not changed by either H or G—they are “read-only”.
(2) Neither H nor G contain the variable z.
(3) 7 is read-only in G and does not occur in H.

(4) H and G have no variables in common, other than z, i/,,.

Let GG additionally contain the variables 71, . .., Z,, and H contain, additionally,
Wi,...,W,.

(5) Program G explicitly sets the Z; to 0 via Z; < 0 instructions—first thing, up in
front—rather than wait for the “agent” to do so (cf. 2.2.1.1).

Thus, the pseudo code above transforms into

P {H
1 +«— 0
Loop =
G
Gl
@ {z —i+1
end
The program P; ¢ computes f. O

www.it-ebooks.info

http://www.it-ebooks.info/

138 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.2,1.5 Corollary. .Z = PR.

2.2.1.6 Example. It is instructive to follow Definition 2.2.0.18 to actually prove that
P; () above indeed computes f of 2.2.1.4 in the sense of 2.2.1.1. Let us (arbitrarily)
order all the variables of P; () as

z’ x’ 27 yn’ Zm’ W’f'

Given our assumptions (1)—(5) above, about the variables, and about what H and
G compute (cf. 2.2.1.1), the semantics (vector-valued function; cf. 2.2.0.18) of H,
diagrammatically is

R program H " . L2 ,
<0ax,l’ynazm70r> —_— <h(yn),x,2,yn,Zm,dontcare>
program ¢ < 0

. (1)
<h(:‘7n), z,0, Zjna Zm7 don’t care>

where “don’t care” indicates our indifference to what happens to the Wr since they
do not occur in G, and therefore the computation of G and G’ is independent of the
W;-values. The sequential action from left to right indicated by the above arrows is
the semantics of P.

Now, the semantics of G’ = (G;i « i + 1) is

L2 = rogram G .. .S -
<Zax)7/7ynyzmvw’!‘> —F:)g_——) <g(l7ynaz)aw727yn7"' 3W7‘>
rogram ¢ % = (2)
program ¢ i+ 1, <g(i,37n,z),a:,i+ L, - 7Wr>
Recall that G sets the Z; to 0 explicitly, first thing, up in front! The “- - -” just after

» indicate what happens to the Z,, as a side-effect of executing program G (about
which variables we do not need to be specific—nor can we possibly know anything
about, in this general setting).

The WT, as well as the z, 7, ¢, remain unchanged under our assumptions. (3)

The result in the z-coordinate is justified by 2.2.1.1 and the assumption that G
“programs” g.

By 2.2.0.18, the semantics of @ is ¢ = (¢')*(2, 2, %, n, Zoms Wr) and, therefore,
that of (P; Q) is [refer to (1) above]

(¢ (W(Gn), @, 0, G, Zm, don’t care) (4)
The values in the W; are “don’t care” with respect to iterating ¢’ since this function

does not change the W; by earlier remarks.
We now proceed to make some sense out of (4) toward our final goal, which is to

verify that B
P Z,Yn
=(g) Z %)

www.it-ebooks.info

http://www.it-ebooks.info/

A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 139

The diagram uses a new iteration variable, a, and depicts an inductive proof that the
arrow labeled “(g')*” is “correct”.

<07$,i>gn)2m76r> fP;])) <h(g,n),a‘," valj'ruZm,dOn’t Care>
cf.
(Ig,; ; (f(a,¥n)sz,a, §n,--- ,don’t care)

(g") [ef. (D]
—

1S <g(a,:ljn,f(a,:l7n>>,$,a+1,:177“'-- ,don’tcare>

The induction diagrammed above goes like this: Assume correctness of the arrow
labeled (g’)* for some fixed a > 0 (I.H.) But then the arrow for (¢')**! is also correct
for it is precisely the third arrow: Notice that f(a + 1,7,) = g(a, g, f(a, 7). Of
course, a = 0 is the case
— O -

<h(g’n),x,0,§'n,Zm,don’tcare> BRI <f(0,gjn),9:,0,gn,Zm,don’tcare>
which is correct: f(0,%,) = h(¥n)-

To use the (P; @) semantics, (4) above, we simply set ¢ = z. By 2.2.1.1, the
right hand side of (5) is the first projection (“along 2”) of this semantics, and we have
proved it to be f(z, ¥,). We have proved (5). n

2.2.2 Incompleteness of PR

We encounter in this subsection our first application of Cantor’s diagonalization
argument to computability. We will argue that PR cannot possibly contain all the
intuitively computable total functions. We say that PR is incomplete with respect
to the notion of “computable total function”—or, it is an incomplete formalism of
computable functions.

A fully mathematical version of this fact will be revisited, and proved, first in
Section 2.4 and later revisited in Section 2.9. The argument is easy in the presence
of the result of Corollary 2.2.1.5.

We proceed as follows:
(A) The reader will readily accept that he can algorithmically tell whether a string

P over the alphabet ¥ on p. 131 is a well-formed loop program (syntactically
speaking) or not.

(B) We can algorithmically build the list, List|, of all strings over Y—i.e., £%
(p. 40). Here is how: We list strings by increasing length, and in each length
group, we list them lexicographically (alphabetically).®

(C) Simultaneously with building List;, we build List; as follows: For every string
P generated in List,, we copy it into Listy iff P € L (which we can test
algorithmically, by (A)).

9Fix the ordering of ¥ as listed in (1) on p. 131. Lexicographic order is the resulting alphabetic order.

www.it-ebooks.info

http://www.it-ebooks.info/

140 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(D) Simultaneously with building List,, we build Lists: For every P (necessarily
a program) copied in List,, we copy all the finitely many strings P (for all
choices of X and Y in P) alphabetically—we “linearize” the string P as
P; X;Y—into Lists.

At the end of all this we have an algorithmic list of all the functions Az f(z) of PR,
listed by their aliases, the PX. Let us call this list

fosfisfay ooy fayens
By Cantor’s “diagonalization method” we define a new function d for all z as follows:
d(z) = fa(z) +1 (1)

Two observations:

1. d is total (obvious, since each f; is) and intuitively computable. Indeed, to
compute d(a) we generate the lists long enough until we find the a-th item
(countingasin0,1,2,...,a)in Lists. This item has the format Pff—i.e., asa
loop program with its designated (one) input and output variables. We execute
this program with input value a (in X). Once it terminates, we add 1 to what
Y holds and we are done! This is d{a).

2. The function d is not in the list! For otherwise, d = f; for some ¢ > 0. We get
a contradiction as in 1.3.0.50:

Ji0) " S) M ET) +1

2.2.2.1 Remark. We elaborate somewhat on the claim we made in (A) above: “The
reader will readily accept ...”. There is not much that needs elaboration regarding
recognition of instructions of types (I)-(II) of Definition 2.2.0.18. A word about
checking that the words Loeop and end balance each other (the reader will likely
be familiar with this process from first year programming courses, where one often
is asked to write programs that “recognize arithmetic expressions”): We will use a
stack, that is, an ordered set of data where we can add or delete new data always at
the same end of the ordered set, but nowhere else. This end is known as the rop of
the stack.

Pause. The reader probably already knows about stacks in the programming
context. Thus, we do not need to define them carefully here [stacks will reappear in
a formal context when we turn our attention to pushdown automata (PDA) later in
this volume]. For now we simply observe that, as the word suggests, a stack of data
acts like a stack of plates in a cafeteria!«

Back to the task: We want to verify (or reject, as the case may be) the claim that a
given string P over the alphabet X of p. 131 is a loop program.

66,9

To this end we scan the string P from left to right. We look for “;” as separators,
as in 2.2.0.17. Of course, there is no start-separator nor end-separator.

www.it-ebooks.info

http://www.it-ebooks.info/

URM COMPUTATIONS AND THEIR ARITHMETIZATION 141

Whenever we recognize an instruction among the types (I)-(IIl), we resume our
scanning. Whenever we recognize a string of the type “Loop X (for any X) we add
it—or as the jargon has it, push it—into the stack. Whenever we recognize a string
of the type “end” we do:

o If the top of the stack contains a string of the type “Loop X (for any X), then
delete it—or pop it, as we say—and resume scanning.

¢ If the condition fails—where clearly the stack is empty, as we push nothing
else into it—then we stop the process and reject P

We also stop and reject P if we encounter some string (other than separators) which
does not fit the categories (I)—(III), Loop X and end.

Otherwise, once we have scanned all of P, we accept it as a well-formed loop
program. The push/pop part of the process ensures that the Loop X and end
strings balance each other like left and right brackets in a well-formed mathematical
expression.]

The reader may wish to experiment with actually programming a loop program
“parser”, using the above ideas.

2.3 URM COMPUTATIONS AND THEIR ARITHMETIZATION

We now return to the systematic development of the basic theory of partial recursive
functions, with a view of gaining an insight in the inherent limitations of the com-
puting processes. Instrumental to this study is a mathematical characterization of
what is going on during a URM computation as well as a mathematical “coding”,
as a primitive recursive predicate, of the statement “the URM M, when presented
with input T has a terminating computation, coded by the number y” —the so-called
Kleene-predicate. We achieve this “mathematization” via a process that Godel (1931)
invented in his paper on incompleteness of arithmetic, namely, arithmetization. The
arithmetization of URM computations is our first task in this section. This must begin
with a mathematically precise definition of “URM computation”.

As an “agent” executes some URM’s, M, instructions, it generates at each step
instantaneous descriptions (IDs)—intuitively, “snapshots”—of a computation. The
information each such description includes is simply the values of each variable of
M, and the label (instruction number) of the instruction that is about to be executed
next—the so-called current instruction.

In this section we will arithmetize URMs and their computations—just as Gédel
did in the case of formal arithmetic and its proofs (loc. cit.)—and prove a cornerstone
result of computability, the “normal form theorem” of Kleene that, essentially, says
that the URM programming language is rich enough to allow us write a universal
program for computable functions. Such a program, U, receives two inputs: One is
a URM description, M, and the other is “data”, . U then simulates M on the data,
behaving exactly as M would on input z. Programmers may call such a universal
program an interpreter or a compiler.

www.it-ebooks.info

http://www.it-ebooks.info/

142 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.3.0.2 Definition. (Codes for Instructions) The instructions are coded—using prime-
power coding as in Definition 2.1.2.44—as follows, where X 1° is short for

2 ones
—
X1...1

(1) L: X1 < ahascode[1, L,i,al.

(2) L: X1* « X1* + 1 has code [2, L,).

(3) L: X1" « X1* = 1 has code [3, L, 1].

(4) L: if X1* = 0 goto P else goto R has code [4, L, i, P, R].

(5) L : stop has code [5, L].]

The first component of each instruction code z, (z), denotes the instruction type,
the second—(z);—denotes the label, and the remaining components give enough
information for us to uniquely know what precise instruction we are talking about.
For example, in z = |3, L, i] we read that we are talking about the “decrement by
one” instruction ((z)g = 3) applied to X 1¢ ((z), = 4), which is found at label L
((2)1 = L).

In turn, we code a URM M as an ordered sequence of numbers, each being a
code for an instruction. Thus given a code z [i.e., z codes something: Seq(z) is true]
we can determine algorithmically whether z codes some URM. This remark is made
precise in Theorem 2.3.0.3 below.

2.3.0.3 Theorem. The relation U RM (z) that holds precisely if z codes a URM is in
PR..

Proof. In what follows we employ shorthand such as (3z, w) <, for (32) <y, (Fw) <y,
and similarly for longer quantifier groupings, as well as for V.

URM(2) = Seq(2) A (2)gay =1 = 5 1h(2)] ™ A
(VL) cany (Seat ()2 A (L £ 12) = 1 (2)1n) A
{(Z)L = [5,L+1]V
(3, a)<a(2)p = [LL+ 1,i +1,q] V
(ai)gz{(z)L =2 L+1,i+1]V
(z2)L =8, L+1,i+1}V

Note that z = [(2)o,-- -, (z)lh(z)il]' Since labels are positive, the last label is [h(z). A similar

comment holds about “(3i,a)<.(2)L = [I,L +1,i4 1,a]”, etc. Why 7 + 1?7 Because the variables
are X1, X11, X111, ...

www.it-ebooks.info

http://www.it-ebooks.info/

URM COMPUTATIONS AND THEIR ARITHMETIZATION 143

(an R)<lh(z) (Z)L

:[4,L+1,z’~|—1,M+1,R+1]}}> O

@ 2.3.0.4 Remark. (Normalizing Input/Qutput:) There is clearly no loss of general-
ity (why?) in assuming that any URM that computes a function of n > 1 inputs
does so using X 11 through X 1™*! as input variables and X 1 as the output variable.
Such a URM will have at least two instructions, since the stop instruction does not
reference any variables. O

2.3.0.5 Definition. An ID of a computation of a URM M is an ordered sequence
L;ay,...,a,, where all of M’s variables appear among the X1, X11,... X1"—
the latter denoted in metanotation as Xq,...,X,—and a; is the current value of
x; immediately before instruction L is executed. L points precisely to the current
instruction, meaning the immediately next to be executed.

All IDs have the same length, and we say that ID Iy = L;aq,...,a, vields ID
I, = P;by,..., by, in symbols I} - I, exactly when

(i) Llabels “x; < ¢”,and I; and I, are identical, exceptthatb; = cand P = L+1.

(ii) L labels “x; < x; + 17, and I; and I are identical, except that b; = a; + 1
and P=L +1.

(iii) L labels “x; +- x; — 17, and [; and 75 are identical, except that b; = a; — 1
and P=L + 1.

(iv) L labels “if x; = 0 goto R else goto 7, and /7 and I are identical, except that
P = Rif a; = 0, while P = Q otherwise.

(v) L labels “stop”, and I; and I are identical.

A terminating computation of M withinput a,, ..., ax is a sequence Iy, . .., I, such
that for all i < n we have I; - I;; and for some j < n, I; has as Oth member the
label of stop. Moreover, [y is initial; that is,

10:1;070,1,...,ak, 0,...,0
SN——
r—k—10s

The above reflects the normalizing convention of 2.3.0.4, and the standard convention
of implicitly—i.e., not as part of the computation—setting all the non-input variables

to 0, i.e., the Xk y2, ..., X, and x1, before the computation “starts”.
The length or run time of the computation is its number of steps I; - I;.1: That
is, n. O
WecodeanID I = L;aq,...,a, as code(I) = [L,ay,...,a,] and a terminating

computation Iy, ..., I, by [code(ly), . .., code(I},)].

www.it-ebooks.info

http://www.it-ebooks.info/

144 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.3.0.6 Theorem. For any n > 1, the relation Comp'™ (z,y), which is true iff y
codes a terminating computation of the n-input normalized URM coded by z is
primitive recursive.

Proof. By the remark on p. 143, which normalizes the input/output convention, it
must be that lh(y) > 2. In the course of the proof we will want to keep our quantifiers
bounded by some primitive recursive function so that the placement of Comp(™ (2, y)
in PR can be achieved.

So, how long need an ID be? Given its format (2.3.0.5), it suffices that it is as long
as the largest index j of of any variable X ; that occurs in the URM; plus one.

Since the maximum j is max{((z):), : ¢ < lh(z)} and ((2):), < z we adopt the
generous, but simple, bound z + 1. Observe next that

Comp(z,y) = URM (2) A Seq(y) A (%) <uniyy (Sea((v)) A Th((w)s) = =+ 1) A
M{y) > 1A (V) iy 19eld(z, (9)55 ()j4+1) A
{Comment. The last ID surely has the label of z’s stop.} ((y Jib(y)=1)o = 1A(z) A
{Comment. The initial ID.} (()o)o =1 A ((¥)0o)1 =0A
(Vi)<z(n+1<i— ((y)o): =0)

The relation “yield(z, (y);, (y);j+1)” above says “URM z causes (y); + (y)j+1”
The notation “yield(z,u,v)” is thus shorthand that expands as follows (cf. 2.3.0.5
and 2.3.0.2):

yield(z,u,v) = (k)< (L) cin(z) (L +1=(u)gANk>0A {

(Fa)<.((z)r = [1, L+ 1,k,a] Av = 2p2+ {u/pexpw ")J v
((2)p = [2,L + 1, k] A v = 2pgu) V
((2)r =[3, L+ 1,k] Av=2(if (u)x = Othenuelse |u/px])) V
(3P, R)<inisy((2)n = [4, L+ 1,k, P,RJAP >0AR> 0 A
v =if (u)x = 0 then |u/2E+2]2P+!
else |u/20+2] 2R+1) v

((z)L:[5,L+1]/\v:u)}) O

2.3.0.7 Corollary. (The Kleene T-predicate) Foreachn > 1, the Kleene predicate
T (")(z, Zn,y) that is true precisely when the n-input URM z with input &,, has a
terminating computation y, is primitive recursive.

Proof. By earlier remarks, T (z,%,,y) = Comp™(z,9) A ((¥)o), = 71 A
((y)0)3 =Ta AL A ((y)o)n+1 = Tn. O

T\'The effect of “L +1: X1* + a”onIDu = (L 4+ 1,...) is to change L + 1 to L + 2 (effected by

the factor 2) and change the current value of X 1%, i.e., (u)—stored in the ID as a factor pexPUC u)

factor that we remove by dividing u by it—to a, this being stored in v as a factor p“+1.

www.it-ebooks.info

http://www.it-ebooks.info/

URM COMPUTATIONS AND THEIR ARITHMETIZATION 145

Recalling that for any predicate R(y, Z), (uy)R(y, Z) is alternative notation for
(uy)xr(y, T)—cf. 2.1.2.39—we have:

2.3.0.8 Corollary. (The Kleene Normal Form Theorem)

(1) For any input/output normalized URM M of code z (2.3.0.2) and n inputs, we
n+1
have that M))flu X1 g defined on the input T, iff (3y)T™ (2, %,,y).

(2) There is a primitive recursive function d such that for any AZ,,.f(Z,) € P there
is a number z and we have for all T,,:

F(@n) ~ d((uy)T™ (2, &,)

Proof. Statement (1) is immediate as “(3y)T(™)(z, &,,,y)” says that there is a termi-
nating computation of M (coded as z) on input Z,.

For (2), let f = M;{(ln"“XWH, where M is a normalized URM of code z. The
role of d is to extract, from a terminating computation’s last ID, its 1st component.
Thus, for all y, we let d(y) = () 21);- O

In what follows, the term computation will stand for terminating computation. Note
that the “complete” equality (cf. 1.2.0.11) in the corollary, (2), becomes standard
equality, =, iff we do have a (terminating) computation.

2.3.0.9 Definition. (-Notation of Rogers (1967)) We denote by ¢\ the partial re-
cursive n-ary function computed by a URM of code z, as M))((11 Lo X1 is,
ol = Ay d((py)T™ (2, T, y)). We usually write ¢, for ¢t and T(2, z, y) for
TW (2,2, y). O

Pause. Why did I not write “~" above? (Cf. 1.8.32.)«

2.3.0.10 Remark. If f = QSZ("), for some URM code 7, then we call ¢ a ¢-index
of f. O

We now readily obtain the very important number-theoretic characterization of P,
a class that was originally defined in 2.1.1.2 via the URM formalism. This result is a
direct consequence of 2.3.0.8 and is the direct analog of Theorem 2.2.1.5, about PR.

2.3.0.11 Corollary. (Number-Theoretic Characterization of P) P is the closure
of the same I that we used for PR, under composition, primitive recursion, and
unbounded search.

Proof. If we temporarily call P the closure that we mentioned in the corollary, then
since P contains 7 and is closed under the three stated operations (cf. 2.1.1.12,
2.1.1.16, and 2.1.1.19), we immediately have P C P.

Conversely, ignoring closure under (uy) for a moment, we get PR C P. Thus

AT d((uy)T™ (2, &, y)) € P, for all z. This shows P C P. O

www.it-ebooks.info

http://www.it-ebooks.info/

146 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The preceding corollary provides an alternative formalism—that is, a syntactic, finite
description other than via URM programs——for the functions of P: Via P-derivations,
which can be defined totally analogously with the case of 2.1.2.1, by adding the
operation of unbounded search. Both types of derivation are special cases of the
general case of 1.6.0.6.

2.3.0.12 Remark. (1) The normal form theorem says, in particular, that every unary
function that is computable in the technical sense of 2.1.1.2—or, equivalently,
2.3.0.11—can be expressed as an unbounded search followed by a composition,
using a toolbox of just two primitive recursive functions(!): d and Azzy.xr(z,,y).
This representation, or “normal form”, is parametrized by z, which denotes a URM
M that computes the function in a normalized manner: as M1, Thus what we had
set out to do at the beginning of this section is now done: The two-input URM U that
computes \zz.d((uy)T (2, T, y))—a computable function by 2.3.0.11—is universal,
in precise the same way that compilers’* of practical computing are: The universal
URM U accepts two inputs—a program M, coded as a number z, and data for said
program, z. It then “interprets” and acts exactly as program z would on z, i.e., as
MEN,

(2) From Definition 2.3.0.2 it is clear that not every z € N represents a URM.
Nevertheless, “Xz.d((uy)T(z,z,y))” in Definition 2.3.0.9 is meaningful for all
natural numbers z regardless of whether they code a URM or not,

and is in P, by the latter’s closure properties.

Thus, if z is not a URM code, then T'(z, z, y) will simply be false, for all z, and all
y; thus we will have ¢, (x) 1 for all z. This is perfectly fine! Indeed, it is consistent
with the phenomenon where a real-life computer program that is not syntactically
correct (like our z here) will not be translated by the compiler and thus will not run.
Therefore, for any input it will decline to offer an output; the corresponding function
will be totally undefined.

Due to these considerations we extend the concept of ¢-index to all of N, and
correspondingly remove the hedging from Definition 2.3.0.9: “computed by a URM
n+1
of code z, as M))((l11 SX1H
We now say: Forall z € N, d)z denotes the function Az, .d((uy)T™ (2, Zn, y))-
(3) In view of the above redefinition, Definition 2.1.1.2 can now be rephrased as

“NEn.f(Z,) € P iff, for some z € N, f = (™»__not just “for some 2 that is a
URM code”. 0

2.3.0.13 Exercise. Prove that every function of P has infinitely many ¢-indices.

Hint. There are infinitely many ways to modify a program and yet have all
programs so obtained compute the same function.]

72 A “compiler” translates “high level” programs written in C, Pascal, etc., into machine language so they
can be “understood” by a computer, and therefore be executed on given input data.

www.it-ebooks.info

http://www.it-ebooks.info/

A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS 147

2.3.0.14 Example. The nowhere-defined function, @, is in P, as it can be obtained
from any invalid code. For example,

0= /\as.d((,uy)T(O, x, y))

Pause. Why is 0 not a URM code?«

_ It can, however, also be obtained from a program that compiles all right. Setting
S = dyz.z + 1 we note:
(1) Mz.(py)S(y,z) € Pby2.1.2.12 and 2.1.1.19.

(2) By the techniques of 2.1.1.17 we can write a program for §) = Az.(uy)S(y, z).
As a side-effect we have that PR # P and R # P. O

2.4 A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE
RECURSIVE FUNCTION CLASS

We saw in Subsection 2.2.2 that there are intuitively computable total functions
that are not in PR. This means that this class is an inadequate, or incomplete,
formalization of the concept “total computable function”. While the proof that our
counterexample function is not in PR can be trivially completed into a mathematical
proof, the part about it being “intuitively” computable was informal by virtue of the
imprecision in the term “intuitively computable”. The current section revisits this
issue in a totally mathematical fashion. First, we produce a total function that is
provably not in PR. Second, we mathematically establish that this function is a
member of R, showing therefore that PR C R. This says more than “there exists
an intuitively computable” f ¢ PR, since we produce a provably computable such
f, by placing it within our P formalism.

We should note that it is customary in computability to talk of a “formalism” (such
as that of PR, for example)—and we utilized this jargon several times already.
The term “formalism” entails a syntactic (= formal) method of describing our
(mathematical) objects of study, which are then studied by rigorous mathematical
methods.”® Thus, either of the approaches, via loop programs, or via derivations (or
closures; cf. 2.1.2.3) for the definition of PR is a formalized approach in this sense.
The same holds true of either the URM-based or the P-as-a-closure (cf. 2.3.0.11)
approaches for the introduction of P.

We cannot say this for R though! If we could have a syntactic definition of
R, then we could repeat the diagonalization argument of Subsection 2.2.2 to find
a total “intuitively computable” g ¢ R. At the present state of knowledge it does

73 A pure unadulterated formalism also employs the purely syntactic (or formal) application of logic, based
on appropriately chosen nonlogical axioms. In such mode of application of logic, meaning or semantics is
redundant, although well-chosen mathematical/logical argot, as in Bourbaki (1966) and Tourlakis (2003a),
may create the feeling that one argues pretty much as in “everyday mathematics”. As we have noted already
in the Preface, while our use of logic is mathematically rigorous and correct, we do not insist on basing
our reasoning on nonlogical axioms, e.g., such as those of Peano arithmetic.

www.it-ebooks.info

http://www.it-ebooks.info/

148 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

not appear that such a g exists! Indeed, Church’s conjecture—famously known as
“Church’s Thesis”—states categorically that no intuitively computable total function
exists outside R

Quite apart from the empirical question of whether “Church’s Thesis” is correct
or not, we note that within the formalization of ‘P, in which the functions ¢, of R
have finite descriptions z € N, it is impossible to have an enumeration of all such
descriptions via a recursive function of R.

So, at least, within the P-formalism we cannot diagonalize out of R by an
argument like the one given in 2.2.2. This observation will be proved mathematically
without invoking any “beliefs”. Cf. 2.5.0.29

Pause. Why can’t diagonalization of the type employed in 2.2.2 show the existence
of partial, intuitively computable functions outside the syntactically defined P, thus
handily rejecting Church’s Thesis?«

Because f;(i) ~ f;(¢) + 1 is not necessarily a contradiction! (why?)

2.4.0.15 Remark. Can we tell, given z, whether ¢, is total (hence in R)? No because
if we could then we could build an enumeration of all such z—that we promised,
above, to prove impossible. Indeed, if we could so test (computably), then for each
z2=20,1,2,3,...,if z defines a total function, then add it to a list “List”. This “List”
would be an enumeration that we said we cannot have. O

2.4.1 The Ackermann Function

The “Ackermann function” was proposed, naturally, by Ackermann. The version
here is a simplification offered by Robert Ritchie.

What the function does is to provide us with an example of a number-theoretic
intuitively computable, total function that is not in PR. But this function is more
than just intuitively computable! It is computable—no hedging—as we will show by
showing it to be a member of K.

Another thing it does is that it provides us with an example of a function AZ. f (Z)
that is “hard to compute” (f ¢ PR) but whose graph—that is, the predicate \yZ.y =
f(&)—is nevertheless “easy to compute” (€ PR.).”*

2.4.1.1 Definition. The Ackermann function, Anx.A,(z), is given, for all n >
0,z > 0 by the equations

Ansi(z) = A7(2)

74Here the colloquialisms “easy to compute” and “hard to compute” are aliases for “primitive recursive”
and “not primitive recursive”, respectively. This is a hopelessly coarse rendering of easy/hard and a much
better gauge for the runtime complexity of a problem is on which side of O(2™) it lies. However, our
gauge will have to do for now: All I want to leave you with is that for some functions it is easier to
compute the graph—to the quantifiable extent that it is in PR .—than the function itself, to the extent that
it fails being primitive recursive.

www.it-ebooks.info

http://www.it-ebooks.info/

A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS 149

where h* is function iteration (cf. 2.1.5.1). O

The A-notation makes it clear that both n and x are arguments of the Ackermann
function. While we could have written A(n,x) instead, it is notationally less chal-
lenging to use the chosen notation. We refer to the n as the subscript argument, and
to x as the inner argument.

2.4.1.2 Remark. An alternative way to define the Ackermann function, extracted
directly from Definition 2.4.1.1, is as follows:

Ao(.’E) =x+2
Aps1(0) = 2
Angi(z +1) = Ap(Ania(z)) u

2.4.2 Properties of the Ackermann Function

We present a sequence of less than earth-shattering—but useful—theorems. So we
will just call them lemmata.

2.4.2.1 Lemma. Foreachn > 0, Ax.A,(x) € PR.

Proof. Induction on n: For the basis, clearly Ay = Az.z + 2 € PR. Assume now
the case for (arbitrary, fixed) n—i.e., 4,, € PR—and go to that for n+ 1. Immediate
from Definition 2.4.1.2, last two equations. g

It turns out that the function blows up in size far too fast with respect to the
argument n. We now quantify this remark.

The following unassuming lemma is the key to proving the growth properties of
the Ackermann function. It is also the least straightforward to prove, as it requires a
double induction—at once on n and z—as dictated by the fact that the “recursion”
of Definition 2.4.1.2 does not leave any argument fixed.

2.4.2.2Lemma. Foreachn > 0andzx > 0, A,(z) >z + 1.

Proof. We start an induction on n:
n-Basis. n = 0: Ag(z) =z + 2 > x + 1; true.
n-1.H.”> For all z and a fixed (but unspecified) n, assume A,(z) > z + 1.
n-1.5.76 For all z and the above fixed (but unspecified) n, we must prove A,, 1 (z) >
z+ 1
We do the n-1.S. by induction on z:
z-Basis. =0: A,.,(0) =2 > 1; true.

73To be precise, what we are proving is “(Vn)(Vz)An(x) > = + 1”. Thus, as we start on an induction
onn, its LH. is “(Vz)An (z) > & + 1 for a fixed unspecified n.

76To be precise, the step is to prove—from the basis and LH.—“(Vx) Ap+1(x) > x + 1” for the n that
we fixed in the L.H. It turns out that this is best handled by induction on z.

www.it-ebooks.info

http://www.it-ebooks.info/

150 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

z-1.H. For the above fixed n, we now fix an x (but leave it unspecified) for
which we assume A, +1(z) >z + 1.

z-1.S. For the above fixed (but unspecified) n and z, prove A, 1(x + 1) >
T+ 2.

Well,

Apt1(z +1) = An(Ap41(z)) by Def. 2.4.1.2
> Apy1(z) +1 by n-LH.
>x+2 byz-LH. O

2.4.2.3 Lemma. \z.4,(z) /.

“Xz.f(x) 7 means that the (total) function f is strictly increasing, thatis, z < y
implies f(z) < f(y), for any x and y. Clearly, to establish the property one just
needs to check for the arbitrary z that f(x) < f(z + 1).

Proof. We handle two cases separately.
Ag: Az.x + 2 1, immediate.

Ay Anir(z+1) = Ap(Ansa () > Apya(z)+1—the “>"by Lemma2.4.2.2.

d

2424 Lemma. \n.A,(z +1) /.

Proof. Aps1(z+1) = Ap(Anta(z)) > An(z + 1)—the “>" by Lemmata 2.4.2.2
(left argument > right argument) and 2.4.2.3. O

The “z+1” in Lemma 2.4.2.4 is important since A,,(0) = 2 for all n. Thus An.A,,(0)
is increasing but not strictly (constant).

2.4.2.5 Lemma. Ay AY(z) /.

Proof. AY*(z) = A,(AY%(x)) > AY(z)—the “>" by Lemma 2.4.2.2. O
2.4.2.6 Lemma. \z.AY(z) M

Proof. Induction on y: For y = 0 we want that Az. A% (x) 7, thatis, Az.x 7, which
is true. We next take as [.H. that

ALz +1) > A3 (2) (1)
We want
A @ +1) > AL (2) (2)
But (2) follows from (1) and Lemma 2.4.2.3, by applying A,, to both sides of “>".
g

2.4.2.7 Lemma. Foralln,z,y, AY_ (x)> AY%(x).

www.it-ebooks.info

®

http://www.it-ebooks.info/

A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS

151

Proof. Induction on y: For y = 0 we want that A | (z) > A%(2), that is, z > =,

which is true. We now take as I.H. that
AL (z) > AY(x)

We want
AV (2) > AV ()

This is true because

AL (@) = Aps (4%, (@)
by Lemma 2.4.2.4
2 An (AZH (95))
Lemma 2.4.2.3 and I.H.
ETANC)

O

2.4.2.8 Definition. Given a predicate P(F), we say that P(L) is true almost every-
where—in symbols “P(Z) a.e.”—iff the set of (vector) inputs that make the predicate

false is finite. That is, the set {Z : —=P(Z)} is finite.

A statement such as “Azy.Q(z,y, z, w) a.e” can also be stated, less formally, as

“Qz,y, z,w) a.e. with respect to x and y”.

2.429 Lemma. A,y1(z) > z + [a.e. with respect to z.

Thus, in particular, 4, (z) > z + 10359000 g ¢,

Proof. In view of Lemma 2.4.2.4 and the note following it, it suffices to prove

Ai(z) >z + 1 ae. withrespect to z

Well, since

x2's
A

~

O

Al(m) = AS(Q) = ((((y+2) +2)+2) + "'+2) “evaluatedaty:? =2+2z

we ask: Is 2 4+ 2z > x + [a.e. with respect to 2?7 Itis so for all z > [— 2 (only

x=0,1,...,1 — 2 fail).

2.4.2.10 Lemma. A, (z) > Al (z) a.e. with respect to x.

Proof. If one (or both) of [and n is O, then the result is trivial. For example,

12's

A@) =1 ((+2)+2)+2)+ +2) =z +2

We are done by Lemma 2.4.2.9.

www.it-ebooks.info

O

4

http://www.it-ebooks.info/

152 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Let us then assume that [> 1 and n > 1. We note that (straightforwardly, via
Definition 2.4.1.1)

An(@) = An(A7T (@)

-2 An_3(33)
_ A) gt) TR

The straightforward observation that we have a “ladder” of k A,,_1’s precisely when
the topmost exponent is | — k can be ratified by induction on k (left to the reader).
Thus we state

Al—k:
kAn_1 . .
Al (x) = A,y (2)
In particular, taking k = [,
Alfl .
Al @ g) A2, (2)
! 1 An K L An_1 -
An(z) = A, (2) = Ay 2) (%
Let us now take x > .
Thus, by (),
{ AL 1(2)
T An41 O t. .
Ant1(z) = A7 (2) = Ans (2) ()

By comparing (%) and (xx) we see that the first “ladder” is topped (after { A,_4
“steps”) by z and the second is topped by

{ A2 (2)
=l An_1 K ..
An—l (2)

Thus—in view of the fact that AY (x) increases with respect to each of the arguments
n, ¢, y—we conclude by asking . ..

A% 1(2)

Sin—1

z—1 An—1 .
“Is {A;—L—1 *(2) > z a.e. with respect to 77

... and answering, “Yes”, because by (k) this is the same question as “is A1 (x —
{) > x a.e. with respect to z?”, which we answered affirmatively in 2.4.2.9. |

2.4.2.11 Lemma. Foralin,z,y, Ant1(z +y) > AZ(y).
Proof.

Anti(z +y) = A7TT(2)

www.it-ebooks.info

http://www.it-ebooks.info/

A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS 153

= 4z (an(2))
= 45 (Aun ()
> AZ(y) by Lemmata2.4.2.2 and 2.4.2.6 O

2.4.3 The Ackermann Function Majorizes All the Functions of PR

We say that a function f majorizes another function, g, iff g(&) < f(Z) forall Z. The
following theorem states precisely in what sense “the Ackermann function majorizes
all the functions of PR”.

2.4.3.1 Theorem. For every function MZ.f(Z) € PR there are numbers n and k,
such that for all T we have f(¥) < AF(max(Z)).

Proof. The proof is by induction with respect to PR. Throughout I use the abbrevi-
ation |Z| for max(7Z) as this is notationally friendlier.
For the basis, f is one of:

e Basis.

Basis 1. Ax.0. Then Ag(z) works (n = 0,k = 1),
Basis 2. Ax.xz + 1. Again Ag(z) works (n = 0,k = 1).
Basis 3. A\Z.z;. Once more Ag(z) works (n = 0,k = 1): x; < |[F] < Ao(|Z]).

e Propagation with composition. Assume as LH. that
F(@n) < AR(1Zm)) (1)
and
fori=1,...,m, g:(¥) SAZZ(M]]) (2)
Then
F@@), - gm(@) < AR(191(@), - -, gm()]), by (1)
< AR AR (gD, - .., AR (191)]), by 2.4.2.6 and (2)
< AF (| Amax ki (g|)), by 2.4.2.6 and 2.4.2.7
< Aptex (1)), by 2.4.2.7

max(n,n;

e Propagation with primitive recursion. Assume as I.H. that

h(i) < AR(19) (3)

and
g(x,7,2) < A7 (|2, 7, 2) (4)

www.it-ebooks.info

http://www.it-ebooks.info/

154 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Let f be such that

I claim that

£, 9) < Az (AL (2,) (5)
I prove (5) by induction on x:

For z = 0, I want £(0,%) = h(j) < AX(|0,7]). This is true by (3) since
10,91 = |4].

As an L.LH. assume (5) for fixed x.

The case for z + 1:

fz+1,9) = g(=,7, f(z, 7))
< AL (|2, 7, f(=,9)]), by (4)

< A7 (|o 7, A7 (45 (2 7))
— AT (A:;f (A§(|x,g|))), by 2.4.2.6 and AT (A% (|z, 7)) > |z, 7]

= AT+ (Aﬁ(liv’ﬁl))

), by the LH. (5), and 2.4.2.6

With (5) proved, let me set] = max(m,n). By Lemma 2.4.2.7 [now get

flz,§) < Alm+k(|$’) Lemma<2.4.2.11 Az, gl +rz + k) (6)

Now, |z, 7] + rz + k < (r + 1)|z, 7] + k thus, (6) and 2.4.2.3 yield

f(@,7) < Aa((r + Dz, 41 + k) (7)
To simplify (7) note that there is a number ¢ such that

(r+Dz+k< AY(z) (8)
for all . Indeed, this is so since (easy induction ony) AY(z) = 2¥z+2¥ +2v~1 +
<+ + 2. Thus, to satisfy (8), just take y = g large enough to satisfy r + 1 < 2¢
andk <29429°14... 42
By (8), the inequality (7) yields, via 2.4.2.3,
f(@.9) < Ava (A (2. 7)) < AL (1, 71)

(by Lemma 2.4.2.7) which is all we want. O

www.it-ebooks.info

http://www.it-ebooks.info/

A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS 155

g% 2.4.3.2 Remark. Reading the proof carefully we note that the subscript argument of
the majorant”’ is precisely the maximum depth of nesting of primitive recursion that
occurs in a derivation of f.

Pause. In which derivation? There are infinitely many. «

Indeed, the initial functions have a majorant with subscript 0; composition has
a majorant with subscript no more than the maximum subscript of the component
parts—no increase; primitive recursion has a majorant with a subscript that is bigger
than the maximum subscript of the h- and g-majorants by precisely 1. O

2.4.3.3 Corollary. \nz.A,(x) ¢ PR.

Proof. By contradiction: If Anz.A,(x) € PR then also Az.A;(x) € PR (identi-
fication of variables; cf. 2.1.2.6). By the theorem above, for some n, k, A, {x) <
Ak (), for all z, hence, by 2.4.2.10

Az(x) < Apg1(x), a.e. with respect to (1)

On the other hand, A, 11(z) < A,(x) a.e. with respect to z—indeed forallx > n+1
by 2.4.2.4—which contradicts (1). O

2.4.4 The Graph of the Ackermann Function is in PR,

How does one compute a yes/no answer to the question
“Ap(x) = 277 (1)

Thinking “recursively” (in the programming sense of the word), we will look at the
question by considering three cases, according to the definition in the Remark 2.4.1.2:

(a) If n = 0, then we will directly check (1) as “is z + 2 = 27",
(b) If z = 0, then we will directly check (1) as “is 2 = 2?”.

(c) In all other cases, i.e., n > 0 and = > 0, for an appropriate w, we may
naturally78 ask rwo questions [both must be answerable “yes” for (1) to be true]:
“Is Ap—1(w) = 277, and “is A, (z — 1) = w?”

Assuming that we want to pursue this by pencil and paper or some other equivalent
means, it is clear that the pertinent info that we are juggling are ordered triples of
numbers such as n, x, z, or n — 1, w, z, etc. That is, the letter “A”, the brackets, the
equals sign, and the position of the arguments (subscript vs. inside brackets) are just
ornamentation, and the string “A;(j) = k”, in this section’s context, does not contain

’

any more information than the ordered triple “(i, j, k)”.

7T The function that does the majorizing.
BAn(x) = An—1(An(z ~ 1)).

www.it-ebooks.info

http://www.it-ebooks.info/

156 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Thus, to “compute” an answer to (1) we need to write down enough triples, in
stages (or steps), as needed to justify (1): At each stage we may write a triple (i, j, k)
down just in case one of (i)—(iii) holds:

(i) i=0andk=35+2
(i) j=0and k =2

(iii) 7 > O and 7 > 0, and for some w, we have already written down the two triples
(i —1l,w,k)and (5,5 — 1,w).

Pause. Since “(i,j, k)" abbreviates “A;(j) = k”, Lemma 2.4.2.2 implies that
j< k.-

Our theory is more competent with numbers (than with pairs, triples, etc.) prefer-
ring to code tuples into single numbers. Thus if we were to carry out the pencil and
paper algorithm within our theory, then we would be well advised to code all these
triples, which we write down step by step, by single numbers: We will use our usual
prime-power coding, [¢, j, k].

We note that our computation is “tree-like”,”® since a “complicated” triple such as
that of case (iii) above requires two similar others to be already written down, each
of which in turn will require two earlier similar others, etc., until we reach “leaves”
[cases (i) or (ii)] that can be dealt with directly without passing the buck.

This “tree”, just like the tree of a mathematical proof,3° can be arranged in a
sequence of coded triples [z, 7, k] so that the presence of a “[¢, 7, k]” implies that all
its dependencies appear earlier (to its left).

We will code such a sequence by a single number, u, using the prime-power coding
of sequences given in 2.1.2.44:

[ag, .. -0z 1] = Mic,ptit?

In effect, what we are doing is that we arithmetize our pencil-and-paper computation
of the answer to question (1) above, a technique that we have already employed and
learned in Section 2.3.

Now, given any number u, we can primitively recursively check whether or not it
is a code of an Ackermann function computation:

2.4.4.1 Theorem. The predicate
Comp(u) f., codes an Ackermann Junction computation

is in PR..

79 A term the reader surely is familiar with, from programming and discrete math courses.

80 Assuming that modus ponens is the only rule of inference, the proof a formula A depends, in general,
on that of “earlier” formulae X — A and X, which in turn depend (require) earlier formulae each, and
so on and so on, until we reach formulae that are axioms.

www.it-ebooks.info

http://www.it-ebooks.info/

A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS 157

Proof. We will use some notation that will be useful to make the proof more intuitive.
Thus we introduce two predicates: Avu.v € v and Avwu.v <, w. The first says

and the second says

Both are in PR, since
v € u = Seq(u) A () <rnu) (W) = v

and
v <y w= Seq(u) A (3, §) cinguy (W) =vA (W) =wAi<j)

We can now define Comp(u) by a formula that makes it clear that it is in PR ,:
Comp(u)=Seq(u) A (Yv)<y (’U € u— Seq(v) Alh(v) =3 A

{Comment: Case (i), p. 156} {(v)o =0A(v)e=(v)1 +2V
{Comment: Case (ii)} (v); =0A(v)2 =2V
{Comment: Case (iii)} ((v)o >0A(w)1>0A

Gulan((®h = 1300l <uv A [0, (0 = 1,0] <, 0)) })

The “Pause” on p. 156 justifies the bound on (Jw) above. Indeed, we could have
used the tighter bound “(v),”. Clearly Comp(u) € PR.. O0

Thus A, (z) = ziff [n, z, 2] € u for some u that satisfies Comp. For short
An(z) = 2z = (Fu)(Comp(u) A [n,x, 2] € u) (1)

If we succeed in finding a bound for w that is a primitive recursive function of n, z, z
then we will have succeeded showing:

2.4.4.2 Theorem. \nzcz.A,(z) = z € PR..

Proof. Let us focus on a computation u that as soon as it verifies A,,(x) = z quits,
that is, it only codes [n, x, z] and just the needed predecessor triples, but no more.
How big can such a u be?

Well, N
u=-- .p[rz,g,k]-H . ‘pgn,x,z]+1 (2)
for appropriate [(=lh(u) — 1). For example, if all we want is to verify Ag(3) = 5,
_ [0,3,5]+1
then u = pg .

Similarly, if all we want to verify is A;(1) = 4, then—since the “recursive

calls” here are to Ag(2) = 4 and A;(0) = 2—two possible u-values work: u =
2, 0,2]+1_[1,1,4 1,0,2]+1, [0,2,4 1,1,4]+1
pgo 2 4]+1p[11 1+ pg S pé L]+1p[2 J+1

www.it-ebooks.info

http://www.it-ebooks.info/

158 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

How big need [be? No bigger than needed to provide distinct positions (I + 1
such) in the computation, for all the “needed” triples i, j, k. Since z is the largest
possible output (and larger than any input) that is computed, there are no more than
(2 + 1)3 wriples possible, so [+ 1 < (2 + 1)3. Therefore, (2) yields

U S . .pLZ,Z,Z]%*l . ‘pl[zvzvz]‘i'l

= (Higlpi
< pl(l+1)([z,z,z]+1)

)[z,z,z]+1

(2+1)3([z,2,2]+1)
> Pzi1)s

(z4+1)3([2,2,2]+1)

Setting g =)\z.p(z+1)3

we have g € PR and we are done by (1):
An(z) = 2 = (Fu)<gz) (Comp(u) A [n,z, 2] € u) O

Worth saying: If f is total and y = f(Z) is in PR., then it does not necessarily
follow that f € PR, as 2.4.4.2 exemplifies. On the other hand, if f is total and
y = f(Z)is in R., then, trivially, f € R since f = Az.(uy)(y = f(£)).

What is missing from the preceding expression is a primitive recursive bound on
the search (uy), and this absence does not allow us to conclude that f is primitive
recursive even when its graph is. For example, such a bound is impossible in the
Ackermann case as we know from its growth properties. Why is it, qualitatively,
possible for a graph y = f(&) to be “easier” to compute (say, primitive recursively,
vs. recursively) than the function itself, at input £? Because the complexity of the
graph is not expressed in terms of & only; it is also expressed in terms of y; thus, we
do not have to compute the “output” before we compare y and f(&).

Lest the reader thinks that the foregoing justification is just a matter of creative
accounting, it is not: Not all recursive functions f have an “easy” graph y = f(Z),
as we will see in the Section 2.7. Functions that grow too fast (like the Ackermann
function), are in a certain sense “honest”,3! that is, all the computational effort to
compute their output goes toward building a very large output. Thus, e.g., having
z already given and being asked to then test for z = A, (x) is a computation saver.
On the other hand, if it takes an enormous amount of computation time to compute
g(Z), but the output of g is always 0 or 1, then we have no computational benefit in
knowing, say, y = 0 when being asked to verify (or reject) y = g{Z).

2.5 SEMI-COMPUTABLE RELATIONS;
UNSOLVABILITY

We next define a P-counterpart of R, and PR, and look into some of its closure
properties.

8! This is actually a technical term due to Blum (1967). See also Tourlakis (1984), Ch. 12.

www.it-ebooks.info

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 159

2.5.0.3 Definition. (Semi-computable Relations) A relation P(Z) is called semi-
computable or semi-recursive iff for some f € P, we have, for all Z,,,

P(Zn) = f(Zn) | (1)

The set of all semi-computable relations is denoted by P,.

Iff= ¢((1") in (1) above, then we say that “a is a semi-computable index or just a
semi-index of P(Z,)”. If n = 1 (thus P C N) and a is one of the semi-indices of P,
then we write P = W, [Rogers (1967)]. O

We are making the symbol P, up, in complete analogy with the symbols PR, and
R.. Itis not standard in the literature.

‘We have at once:

2.5.0.4 Theorem. (Normal Form Theorem for Semi-computable Relations)
P(Z,) € P, iff. for some a € N, we have (for all £,) P(#,) = (32)T™(a, &, 2).

Proof. Only if-part. Let P(Z,) = f(&,) |, with f € P. By Remark 2.3.0.12,
f= qbt(z") for some a € N. We conclude by Corollary 2.3.0.8(1).

If-part: By 2.5.0.3 and 2.3.0.12, the given equivalence translates into P(Z,,) =

((z,) {. But ¢, € P. O

[l

Rephrasing the above theorem (hiding the ¢-index “a”, and remembering that
PR. C R,), we have:

2.5.0.5 Corollary. (Strong Projection Theorem) P(Z,) € P, iff, for some recur-
sive predicate Q(Ty,, z), we have (for all T,,) P(Z,) = (32)Q(Zn, 2).

Proof. For the only if, take Q(Z,, z) tobe AT, 2.T™ (a, &,, z) for appropriate a € N.
For the if, take f = AT,.(12)Q(Zn, 2} (cf. 2.1.2.39). Then f € P and P(Z,) =
(@) - O

2.5.0.6 Corollary. P(Z,) € P. iff, for some A\ZT,.g(&n) € P, we have (for all Z,)
P(%,) = g(Zn) =0.
Proof. The only if is immediate from 2.5.0.3: Let f € P such that, for all &,
P(Z,) = f(Zn) |. Take g = AZ,.1 = (1 = f(&n)).

For the if, note that f = ¢§") for some 4, thus

F(@) = 0= (32) (T(”) (4,8, 2) A d(2) = o)

We are done by 2.5.0.5. O

The preceding corollary is the analogue of 2.1.2.16 and 2.1.2.17 for P.. It provides,
among other things, easy proofs for the facts PR, C P, and R, C P.. Forexample,
say, Q(f) € PR.. Then, for some g € PR, Q(Z) = g(Z) =0, forall . Butg € P
as well, and we can invoke 2.5.0.6.

www.it-ebooks.info

®

4

http://www.it-ebooks.info/

160 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.5.0.7 Corollary. (Graphs of Partial Recursive Functions) \Z,.f(Z,) € P iff
y = f(&y) is semi-recursive.

Proof. For the only if, let f = ¢§"’. Then

y = f(&) = (32)(T™ (i, &n, 2) Ad(2) = y)
We conclude by 2.5.0.5. For the if part, let (again, 2.5.0.5)

y = f(@n) = (32)Q(2,Tn, y)

To compute f(Z,,)—given £,—we enumerate all pairs {2, y) and stop at the “first”,
if any, that satisfies Q(z, Z,, y); we output y. Mathematically,

1@ = (1) Q((who, Fa, (w)1))

Clearly f € P. a

Pause. Why not argue the if part more simply, in view of 2.5.0.6? Let g € P
such that

y=f(Zn) =9y, Tn) =0
Then f(Z,) = (1y)g(y, Tn), for all Z,,, and thus f € P.«
See Exercise 2.12.33.

2.5.0.8 Remark. (Deciders and Verifiers) A computable relation P(Z,) is, by def-
inition, one for which xyp € R; thus it has an associated URM M that decides
membership of any @, in P both ways: “yes” (output 0) if it is in; “no” (output 1) if
it is not. Thus this M is a decider for P(Z,,).

A semi-computable relation QX{Z,,), on the other hand, comes equipped only with
a verifier, i.e., a URM N that verifies @,, € @), if true, by virtue of halting on input
@m. A verifier gives no tangible information about the non membership cases, which
cause it to enter a so-called “infinite loop” (it enters a non terminating computation).

While, mathematically speaking, d,, ¢ @ is also “verified” by virtue of looping
forever on input @, algorithmically speaking this is no verification at all as we
do not have a way of knowing whether N is looping forever as opposed to simply
being awfully slow, planning perhaps to halt in a couple of trillion years (cf. halting
problem 2.5.0.16).

In the algorithmic sense, a verifier (of a semi-computable set of m-tuples) verifies
only the “yes” instances of questions such as “Is @,, € Q7"—hence its name. O

Thus, the output of a verifier for a semi-computable relation Q (), when it halts, is
irrelevant. It has verified membership of its input to) simply by virtue of terminating
its computation.

2.5.0.9 Definition. (Undecidable Problems) A problem is a question of the form

Z € Q. Synonymously, a question of the form Q(Z)

www.it-ebooks.info

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 161

A Decider A Verifier

X, «—— Input

A URM for the [A URM for the
problem | problem
X, ed
B |
"Yes"; print 0 "No"; print 1 "Yes"; denoted by
and halt and halt halting. Output is "No"; denoted by

irrelevant looping.

Figure 2.1 A decider and a verifier, pictorially, for handling the query, “Z, € A?”, by a
URM.

Thus, a problem is a predicate.
We say that a problem Q(Z) is decidable or (recursively)®? solvable, iff there is
a decider for it, which mathematically is expressed by “Q(Z) € R."—i.e., Q is
recursive. In the opposite case we say that Q(Z) is undecidable or (recursively)
unsolvable.

A problem Q(Z) is semi-decidable iff there is a a verifier for it, that is, iff Q(Z) is

semi-computable.]

Intuitively, we see that if we have a verifier for a relation Q(Z,) and also have
a verifier for its complement (negation) ~Q)(&,), then we can build a decider for
Q(&,): On input @, we simply run both verifiers simultaneously. If the one for Q
halts, then we print O and stop the computation. If, on the other hand, the one for
—(halts, then we print 1 and stop. Of course, one or the other will halt, since one of

Q(dy,) or ~Q(d,) is true!
This process computes X (d,). Put more mathematically,

2.5.0.19 Propeosition. If Q(&,,) and ~Q(Z,,) are in P, then both are in R..
Proof. Let i and j be semi-indices of 2 and - respectively, that is (2.5.0.4),

QFn) = (32)T (4, T, 2)
~Q(&,) = 32)T™(j, &n, 2)

82The parenthetical qualifier is usually omitted.

www.it-ebooks.info

http://www.it-ebooks.info/

162 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Define
g = M. (u2) (T (i, Ty 2) V T™ (5, &, 2))

Intuitively, g implements (mathematically) the process in which we run the two
verifiers simultaneously, (coded as) ¢ and j, and look for one that halts, by looking
for the smallest z that codes a computation®? of j or j as the case may be.

Trivially, g € P. Hence, g € R, since it is total (why?). We are done by
noticing that Q(Z,,) = T (i, Z,, g(Z,))—cf. 2.1.2.24. By closure properties of
R, (2.1.2.21), =Q(Z,) is in R, too. 0O

2.5.0.11 Proposition. R, C P.,.

Proof. Let Q(Z) € R. and y be a new variable (other than any of the Z). Since)
does not depend on y, we have Q(Z) = (Jy)Q(F). By 2.5.0.5, Q(Z) € P.. O

2.5.0.12 Remark. An intuitive way to see the truth of the preceding proposition is
this: Given a URM M that decides Q(Z), that is, computes x ¢, modify it to compute

instead
0 if 7) =0
g=AT. . XQ(x). e .
1 i.e., “getinto an infinite loop”, otherwise

How do we do this? Easy: Using M as a subprogram, we build a new URM, G, for
g that

(1) Given the input &, G first computes x g (Z)—using M.

(2) If the computed answer is 0, then it halts (jumps to the stop instruction of G).
If the answer is 1 then it enters an infinite loop.

How do we enter an infinite loop deliberately? Well, say that the output variable
of M and G is Y. We just need the following program “logic” (as programmers say):

: Comment. Above k — 1 we have just M, with its stop removed
k—-1:ifY =0gotokelsegotok —1
k: stop

g

2.5.0.13 Remark. (Undecidable Problems and Uncomputable Functions Exist)
We can readily show, albeit in a somewhat intangible manner, that undecidable
problems and therefore uncomputable total functions (their characteristic functions)
exist.
This readily follows from a so-called cardinality argument: By Kleene’s Normal
Form theorem, we have only a countable set of partial recursive functions

{¢: 1€ N} (1)

83 A terminating one; cf. remark following the proof of 2.3.0.8.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 163

Thus the subset (recall 1.3.0.44) of total (computable) 0-1-valued functions (and
hence, decidable problems) is countable. However, by 1.3.0.50, the set of all total
functions f : N — {0, 1} is uncountable. So there must be many such functions that
do not belong to the enumeration (1)! Each such function f not only provides an
example of an uncomputable function, but being 0-1-valued provides an example of
an undecidable problem, this one: f(z)} = 0.

We called this an “intangible demonstration” of the existence of undecidable
problems as it produced no specific meaningful problem that is undecidable. We
remedy this below. O

2.5.0.14 Definition. (The Halting Problem) The halting problem has central sig-
nificance in computability. It is the question whether “program = will ever halt if it
starts computing on input z”. That is, if we set K = {x : ¢,(z) |}, then the halting
problem is z € K. We denote the complement of K by K.]

2.5.0.15 Exercise. The halting problem z € K is semi-recursive.
Hint. The problem is “¢,(z)]”. Now invoke the normal form theorem
(2.3.0.8(1)).]

2.5.0.16 Theorem. (Unsolvability of the Halting Problem) The halting problem is
undecidable.

Proof. In view of the preceding exercise (and 2.5.0.10), it suffices to show that K
is not semi-computable. Suppose instead that i is a semi-index of this set. Thus,
z € K = (32)T (i, x, z), or, making the part z € K—that is, ¢, (z) T—explicit:

—~(32)T (z,z,2) = (32)T(i, 2, 2) (1)
Substituting ¢ into x in (1) we get a contradiction. O

2.5.0.17 Remark. (1) By 2.5.0.3 a set S C N is semi-recursive iff “it is a W;”, that
is, for some 7, S = W;. The above proof says that “K is nota W;”. Is this surprising?
Well, no!

This goes back to the Cantor diagonalization that shows that D (C N), below,

D={z:z¢5;}

is not an S; (cf. 1.3.0.52), where each S; is a subset of N. Indeed,

reW; "2 ¢:(z) 1= Gy)T (0, 2,y)

hence » ¢ W;=—(3y)T (4, 2, y) and, in particular, i ¢ W;=-(Jy)T(i,4,y). But the
right hand side says “®;(¢) 17, thatis, ¢ € K. Thus

K={z:z¢W,}

and Cantor’s diagonalization argument shows that “K is not a W;”. So the proof of
2.5.0.16 was a well-concealed diagonalization argument!

www.it-ebooks.info

http://www.it-ebooks.info/

164 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(2) Since K € P.,, we conclude that the inclusion R. C P, (2.5.0.11) is proper,
ie., R, C P..

(3) The characteristic function of K provides an example of a total uncomputable
function.

(4) In 2.1.2.14 we saw an example of how to remove “points of non definition”
from a function so that it remains computable after it has been extended to a total
function. Can we always do that?

No. For example, the function f = Az.¢ (x) + 1 cannot be extended to a
total computable function. Of course, by 2.3.0.8, f € P, since, for all z, f(z) ~
d((uy)T(z,z,y)) + 1. Here is why: Suppose that g € R extends f. Thus, g = ¢;
for some 4. Let us look at g(i): We have

9(d) = ¢i(i) # g+l = fO)™

byg=i " both sides defined def. of f
But since f(¢) |, we also have g(i) = f(4) as g extends f, a contradiction. 0
Once we have built a class of functions or predicates, we next look at their closure
properties.
2.5.0.18 Theorem. (Closure Properties of P.) P. is closed under Vv, A, (3y)<.,
(Fy), and (Vy) <. It is not closed under either — or (Vy).

Proof. Given semi-computable relations P(Z,), Q(¥x), and R(y,dy) of semi-
indices p, ¢, r, respectively. In each case we will express the relation we want to
prove semi-computable as a strong projection (2.5.0.5):

\
P(Z) V Qfim) = (32)T™ (p, #n, 2) V (32)T ™ (g, §im, 2)
= (32) (T (p, &, 2) V T™ (g, Gim, 2))
A
P(2,) A Q(gim) = 32)T™ (p, &n, 2) A (32)T™ (g, i, 2)
= (3uw)((32)<wT™ (9, Zn, 2) A (32) < T (4, Gim, 2))

()<=

(By)<-R(y, k) = () < Guw)TEV (r,y, @k, w)

= (Jw)(Fy) <. TEV (r, y, ik, w)

(Fy)

(Fy)R(y, @) = Gy) Fu)TH (r,y, iy, w)
= (3Z)(3y)<z (Elw)<zT(k+1) (Ta Y, Eka w)

84We have used = rather than ~ throughout, since all expressions used in this display are defined.

www.it-ebooks.info

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 165

(vy)<z
(7)< (Fu)T*HD (1, y, i, w)
= (31})(vy)<z(3w)<vT(k+l) (’I", Y, ﬂk) ’LU)

(YY) <= R(y, k)

As for possible closure under — and Vy, K provides a counterexample to —:
K € P. (25.0.15 but K ¢ P, (2.5.0.16). Closure under Vy is also untenable
as —T'(z,z,y) provides a counterexample: Being primitive recursive, it is in P,.
However, (Vy)—T (z, z,y) is not, since this is =(3y)T(z, z, y)—thatis,z € K. O

2.5.0.19 Remark. The case for V in the proof above is straightforward since 3
distributes with V—(3z) (&' vV &) = (3z)/ V (Jz)B.

However, it does not distribute with A, hence the complication in the A case. We
want to say that P(Z,,) AQ (¥,) is true precisely when two independent computations
21 and zp exist for the machines (coded by) p and g, if the inputs are &, and ¥,,,
respectively.

One way to say this is just as we did, by saying that there is a number w, bigger
than both of z; and zo—for example w = max(z1, 22} + 1 will do—and then use
“(d2) <" in each case.

Pause. Why not forget about these acrobatics and just rest the case with the first
line of the A case above?«

But surely, because we want to express the left hand side as a formula of the
form (Jw)S(w,...)—in order to invoke 2.5.0.5—that is, a formula with a single
existential quantifier up in front and with a recursive S [confirmed due to bounded
quantifications, “(3z) <,,”, being employed].

An alternative way of saying “I have two computations z; and 25" is to use coding:

P(Z) A Q(Fm) = (32)(T™ (p, &, (2)0) AT ™ (g, Fims (2)1))

For the (3y) <. case we used the commutativity betwee the two 3.

Pause. But one is bounded! Can it commute with an unbounded one? (See
Exercise 2.12.26)«

In the double-3 case we reduce the two quantifiers to one, as needed for a form
(Jw)S(w, . ..) with recursive S, by using a z > y,w (e.g., z = max(y,w) + 1 will
do). Alternatively, we can use z = [y, w] and thus say

(Fy)R(y, @) = 32)T*V (r, (2)o, Gr, (2)1)

Regarding the (Vy) ., case, commuting 3 and V is not on.
Pause. Think of (Vz)(Jy)x < y vs. (Fy)(Vr)x < y.«
Yet, we wanted to bring

(V) < Gu)T*D (1, y, i, w) (1)

inthe form (Jw)S(w, . ..) witharecursive S. Thus, we argued (implicitly) as follows:
(1) says that forevery y = 0, 1, ..., z — 1 there is a w-value—possibly dependent on

www.it-ebooks.info

http://www.it-ebooks.info/

166 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

the y—that is, there is a sequence of numbers wg, w1, . . ., w,—1 that make the predi-
cate T+ (1,4, iy, w;) true. If we set u = max{wg, wy, ..., w,_; }+1 then we can
capture this observation by making the quantifier prefix of (1) “(Ju)(Vy) <, (Fw) <o,
Incidentally, this expresses (1) in the form required: (Jw)S(w, . ..) with a recursive
S. This is precisely what we did in our proof above.

An alternative technique, using coding, is often encountered in the literature: (1)
is equivalent to

(3u) (Seq(u) A (7)< T®HD (7, y, @k, (w),))
which has the proper form. g

2.5.0.20 Proposition. If A\Z.f(Z) € P and Q(z,Y) € P, then Q(f(F),y) € P..
Proof. By 1.2.0.10,

Q@) 7 = (32)(= = £@) 7 Q=)

By 2.5.0.7 and 2.5.0.18, the right hand side, and hence the left hand side, of = is
semi-recursive. O
For a more direct proof, see Exercise 2.12.32.

2.5.0.21 Example. This is our first example of a reduction argument, a trivial one.
We introduce a generalization, Ky, of the halting set K, by

Def

Ko ={(z,y) : ¢=(y) i}
We show that the problem (z,y) € Kj is undecidable, that is,
Ko ¢ R. (1)

Suppose that (1) is false. Then the characteristic function, Azy.x k, (z,y) of Ky isin
‘R. But then so is the function f = Az.xk,(x, x) obtained from x x, by identification
of variables (cf. 2.1.2.6). However, f is the characteristic function of the halting set,
and we just have shown that the halting problem is decidable!

This contradiction shows that (1) is correct, after all.

We have just witnessed an instance of an argument that went like this: If I have
an algorithm that solves problem B,* then I know how to build another algorithm
that uses the one for B and solves problem A.%°

That is, we reduced problem A to problem B (this makes A “more decidable”
than B; and makes B “more undecidable” than A).

This reduction shows that if we know that A is undecidable, then so must be B.

8Here (x,y) € Ko.
8Here z € K.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 167

We will ercounter many more reduction arguments in Section 2.7.]

@ 2.5.0.22 Example. (A Very Hard Problem) The equivalence problemis: given two
programs, decide if they compute the same function or not.

A “program” here can be any finite way of describing a function. This finite way
could be an actual program, such as a URM or a loop program. Or it could be a
derivation (cf. 2.1.2.1 and Corollary 2.3.0.11), say, within PR or P, which defines a
function.

To fix ideas, let us focus attention on primitive recursive functions, finitely defined
via loop programs. We ask: Is the problem of determining whether two such functions
are equal decidable?

Well, if it is, then in particular so will be the special case of determining whether
Ay.1 and A\y.x7(z, z, y)—where T is the Kleene predicate—are the same function
or not, for any given z. The reader may readily imagine—due to the primitive
recursiveness of both functions—that they are given by loop programs.

The question, mathematically, is (Vy)(1 = xr(z,2,y)). In terms of T this says
(‘v’y)—'T(:z:,a:,y), or —\(Hy)T(x,;L',y). _

We recognize the last expression as x € K, which we know that is not semi-
computable (2.5.0.16), let alone recursive!

Pause. Why “let alone” 7«

Thus the equivalence problem of primitive recursive functions is incredibly hard:
There is not even a verifier for it! g

2.5.0.23 Remark. (Computably Enumerable Sets) There is an interesting charac-
terization of non-empty semi-computable sets that is found in all introductions to
the theory of computation. These sets are precisely those that can be “enumerated
effectively” or “computably”, that is, we can prove that

A non-empty set S C N is semi-computable iff it is the range (cf. Defini-
tion 1.2.0.5) of some f € PR.

@ The enumeration is not required to be 1-1, so there may be repetitions. Notice that
since the enumerating function is total, there will necessarily be repetitions in the
case when S is finite.

What is the intuition for this? Well,

(1) Assume first that we have an algorithmic enumeration of all the members of S.
Here is then how to verify (semi-decide) the question z € S: Given z, start the
algorithmic enumeration and keep an eye on what it “prints”. If and when z is
printed, then stop. We have verified z € S. What if z ¢ S? Well, then it will
never be printed by the enumeration and we will never stop our process.

(2) Conversely, assume that we have a verifier, M (a URM), for x € S. We write a
new program /N that behaves as follows: It systematically generates all pairs of
numbers (x, y), one at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

168 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

For example, one can enumerate all numbers
0,1,2,3,...,2,...

in turn, and, for each z generated, one can generate the pair ((z)o, (2)1).

For each pair generated, N checks whether M, on input z, halts within y
computation steps.¥’ If so, x is printed (as it clearly belongs to S).

Pause. Why make it so complicated and not instead enumerate all numbers zx in
turn, and if M halts on z, then print 274

The technique in (2) above is called dovetailing several computations (of M)
for several inputs “at once”. Well, strictly speaking, not “at once”. The method
implements, indeed sequentially simulates, a “poor person’s parallelism”, because,
in essence, it sirnulates the in parallel examination of several questions of the type
“does M halt on z?”.

The essential feature of parallelism is not the temporal simultaneity of testing the
questions “does M halt on £?” for various x, but rather the fact that if an input x = a
causes M to run forever, this does not affect, nor block, the testing of other inputs for
which M halts. A true parallel “environment” allocates one process to each input z.

On the other hand, dovetailing captures this key property of parallelism and does so @
with a single computation process (or “single processor”)!

The simulation of parallelism is effected by allowing to each question gradually
more and more time (number of steps) to reach an answer. Notice that since there are
infinitely many pairs {(a, y) with first component a, if M ever halts on a—say, using
y = b computation steps—then this fact will be eventually verified in the process (2):
It will happen precisely when we will be testing the pair (a, b}.

An intuitively more immediate rearrangement of the dovetailing process of (2),
which demonstrates the sense in which dovetailing is approaching true parallelism
“in the limit”, is captured by the matrix below:

0;1
0,1;2
0,1,2;3
0,1,2,3;4

0,1,2,3,...,54+1

The number at the far right in each row is the number of steps that we let M run.
The other numbers in each row are the inputs we test for said number of steps. In
the “limit”, it is as if we are testing all inputs “simultaneously”: input O for one step;
inputs 0 and 1 for two steps; inputs 0, 1 and 2 for three steps; ..., inputs 0,1,...,4
for 7 4 1 steps; and so on. g

87Think of a “step” as the passage from one ID to the next.

www.it-ebooks.info

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 169

Mathematically, we repeat the above informal argument, (1) and (2), in 2.5.0.24
below to prove the italicized statement at the beginning of the previous remark.
Central in our preceding discussion was the concept of “step”. But what is a step
mathematically? We take as “step” to be the entire computation, coded as y in
the Kleene predicate T'(i, z,y). That is, for any ¢;, its step-counting or complexity
function is

®; = Az.(uy) TG, z,y) (%)

This is reasonable, since the computation y is a strictly increasing function of how
many ID-to-1D “real steps” took place in the (terminating) computation.

In fact, Blum (1967) takes as the key, indeed defining, properties of the concept
of complexity of ¢; the following two:

(D ¢;(x) | iff ®,(x) |; that is, the program ¢ halts on input z iff a complexity of
computation can be assigned for said input.

(IT) ®;(x) < y is recursive; that is, we can decide whether machine ¢ halts within
y (i.e.,in < y) “steps”.

Blum (1967) takes (I)—(II) as the axioms for complexity theory, that is, without
specifying & explicitly. Many concrete choices of ¢ that satisfy the axioms are
possible. By the way, for our chosen @ in (x), (I) is trivially obtained directly
from 2.3.0.8. As for (I), ®;(z) < y = (Iz)<,T(4,z,z) which is more than
recursive: primitive recursive.

On the other hand y < ®,(x) = - ®,(y) < y; also in PR..

It is important to observe that we bypass (I), above, when we assess

(I)Z(l‘)

VA
@2

We do not compute ®;(z) (which may diverge!) to figure out the answer. @

2.5.0.24 Theorem. A non-empty set S C N is semi-computable iff it is the range of
some f € PR.

Proof. For the part (1), let f be primitive recursive such that ran(f) = S. That is,
yeS=3)f(z)=y

Given that f(z) = yisin PR, (2.1.2.25), y € Sis semi-computable by the projection
theorem (2.5.0.5).

For the dovetailing part, (2) of 2.5.0.23, assume that the non-empty S is semi-
computable. Let i be a semi-index for .S, thus,

re S =3T3, z,y) (%)

www.it-ebooks.info

http://www.it-ebooks.info/

170 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

for all z. Following directly on the idea in (2), with the concept of “step” made
mathematically precise in the preceding remarks, we define the enumerating function
by:
£ T(i
£) = {<z>o if 70, (2)o, (2)1)
a otherwise

Iyl

where “a” is some fixed member of S that we keep outputting every time the condition
“T'(i,(2)o, (2)1)” fails,%® ensuring that f is total. Of course f is primitive recursive.
Is it true that ran(f) = S?

Indeed, as ran(f) contains only numbers of the form (z)q such that T'(4, {2)o, (2)1)
holds, it is immediate by (x) that ran(f) € S. Conversely, let z € .S and let b be a
value of y that makes (x) true. But then f([z,b]) = x, so « € ran(f). O

The above result justifies the following nomenclature:

2.5.0.25 Definition. A set S C N is called computably enumerable (c.e.) or recur-
sively enumerable (r.e.) iff it is either empty, or is the range of a primitive recursive
function. 0

There is no loss of generality in presenting the above definition for subsets of N
since via coding [...] it can be trivially and naturally extended to sets of n-tuples
forn > 1. A set § C N™ is c.e. iff there is a primitive recursive f such that

ran(f) = {[z] : S(Z)}.
2.5.0.26 Corollary. A non-empty set S C N is semi-recursive iff it is c.e. (re.)

2.5.0.27 Corollary. A non-empty set S C N" is semi-recursive iff it is c.e. (re.)

Proof. The if is straightforward, while the only if is a direct adaptation of the proof
of 2.5.0.24: Let
In €S = (3T (i, Z,,y) (*x)

for all x. The enumerator f is given by

if TG, (2)o, ..., (2)net, (2)n
F2) = {[éa...,wn_l] £T, (2o, -, (2)nms (2)n)

otherwise

“—' 11

where is some fixed member of S. O

2.5,0.28 Corollary. A set S C N" is semi-recursive iff it the range of an f € P.

Proof. The only if is proved as above, where we just drop the “[d,,] otherwise”. For
the if, suppose that

yeS=0Ca)f(z)=y

88Condition failed: Either because we did not let the computation ¢; () to go on long enough, or no
terminating computation exists.

www.it-ebooks.info

http://www.it-ebooks.info/

SEMI-COMPUTABLE RELATIONS;UNSOLVABILITY 171

By 2.5.0.7 and 2.5.0.18, the above yields S € P,. O

2.5.0.29 Example. (Another Very Hard Problem) The set #Z = {z : ¢, € R}—
which trivially is the same as {z : ¢, is total}; cf. 2.1.1.2—is very important in
computability. One certainly wants to know whether or not we can “tell” if a
program z computes a total function. We can tell in one of two ways: We can fully
(algorithmically) decide the question x € %, or we can just verify it when true.
Which one is it here?

Neither. Z is not semi-recursive, hence nor is it recursive {2.5.0.11). In that sense
this is another very hard—and very meaningful—problem of which we cannot even
verify the positive instances.

We prove the non semi-recursiveness by proving that & is not c.e. using diagonal-
ization (cf. Subsection 2.2.2 and 1.3.0.50). So, by way of contradiction, let f € PR
be such that Z = ran(f). This means that {¢) : z € N} is the set of all total
computable functions of one variable. Consider the function d = Az.¢ (4 (x) + 1.

By the preceding remark, and composition with the successor function, d € R.
Thus, for some ¢,

d= ¢ (1)

since Z is the set of all programs that compute total 1-argument functions, thus a
program m for d must be an f (7).
What do we know of ¢ ¢(;y(i)? Well,

By () By Def. of d

Gy (1) dii) " =" ¢pui) +1
A contradiction, since all sides of = are defined. So no such f exists, and & is
not c.e. (]

The above example concludes a discussion we have started in the @-enclosed
passage on p. 147.

Quite apart from the empirical question of whether or not “Church’s
Thesis” is correct, we note that within the formalization of P, in which
the functions ¢, of R have finite descriptions z € N, it is impossible
to have an enumeration of all such descriptions via a recursive function
of R.

So, at least, within the P-formalism we cannot diagonalize out of R by
an argument like the one given in 2.2.2. This observation will be proved
mathematically without invoking any “beliefs”.

2.5.0.30 Exercise. (Definition by Positive Cases) Consider a set of mutually exclu-
sive relations R;(¥), 1 =1,...,n, thatis, R;(F) A R;(&) is false for each & as long
asi # j.

www.it-ebooks.info

http://www.it-ebooks.info/

172 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Then we can define a function f by positive cases R; from given functions f; by
the requirement (for all £) given below:
) if Ri(%)
if Ry(Z)

oy
HE

fo(E) if Ra(Z)
T otherwise

Prove that if each f; is in P and each of the R;(Z) is in P,, then f € P.
Hint. Use 2.5.0.7 along with closure properties of P, relations to examine y =

f@). 0

A semi-recursive predicate is “positive” having the form (Jy)}Q(y, Z) for some re-
cursive @ (2.5.0.5). It is also known as a X; predicate.

It is important to note about the last case in the definition:

(1) The otherwise condition, is the negation of a positive predicate, namely, of
the semi-recursive By V---V R,,. A “negative” predicate such as this negation has
the form (Vy)R(y, &), for some recursive R, since it is the negation of one of the
form (Jy)Q(y, &), for some recursive (). Such negative predicates are also called IT;
predicates.

(2) Note that the “output” in the last case is 1. This, intuitively, is as much as is
expected in general, given that, for example, the “otherwise” of some positive cases,
such as ¢ € K, are not even semi-recursive so that the obvious “program” for the
function f will enter into an infinite loop when pondering the condition “otherwise”.

This last observation is firmed up mathematically in Exercise 2.12.35 via two
examples.

2.6 THE ITERATION THEOREM OF KLEENE

Suppose that ¢ codes a URM program, M, that acts on input variables = and y
to compute a function Azy.f(z,y). It is certainly trivial to modify program M
to compute Az.f(x,a) instead. In computer programming terms, we replace an
instruction such as “read y” by one that says “y < a”.

In URM terms, since the input variables X 11, X111, ... are initialized before the
computation starts, the way to implement the suggested “decommissioning” of y as
an input variable—opting rather to initialize it with the number a explicitly, first thing
during the computation—is to do the following, assuming x and y of f are mapped
to X11 and X111 of M:

(1) Remove X111 from the input variables list, X11, X111, and

(2) Modify M into M’ by adding the instruction X111 + a as the very first
instruction.

From the original code, i, a new code (depending on % and a) can be easily calculated.
This is the intuition of Kleene’s iteration or “S-m-n” theorem below.

www.it-ebooks.info

http://www.it-ebooks.info/

THE ITERATION THEOREM OF KLEENE 173

The mathematical details are as follows.

2.6.0.31 Definition. (Code Concatenation)

Def xp(t,
2y E 2 TP =

2.6.0.32 Remark. Clearly, Azy.x * y is primitive recursive. The definition’s aim is
to achieve this—which it clearly does:

[@1,...,an) % [b1,.- . bm] = a1, s an, b1, oo B
If Seq(x) or Seq(y) fail, then the result of z * y is irrelevant to us. O
2.6.0.33 Exercise. What is 10 *x 57 O
2.6.0.34 Exercise. Whatis 1 % z? z % 1? |

2.6.0.35 Definition. (Concatenating URMs) Given two URMs M and N of codes
m and n. We denote their concatenation by M N and n —~ n in terms of their codes.
Note that M N means the superposition of the two URMs, in that order, with the
stop-instruction removed from M and all the instructions of NV adjusted to reflect
that the first label of N now is [h(m).

We define m — n to be 0 if either of m or n is not a valid URM code. (]

2.6.0.36 Lemma. Let adj(n, k) (“adjust n”) be the expression that codes a URM n
after k was added to all its instruction numbers (and all if-statements were adjusted
to still transfer to the same instructions as before). Let also adj(n, k) = 0 if n does
not code a URM. Then the function Ank.adj(n, k) is primitive recursive.

Proof. First let us define a less ambitious function, f, that adjusts one instruction due
to adding & to the instruction number:

3k2 if (3L,4,a)< ((1,L,i,a] V
=[2,L,4V
=[3,L,4qV
=15.1])

231%z if (3L,4, P, Q)Szz =[4,L,i, P, Q)
L0 otherwise

f(z,k)

Note that 231 = 3 - 7 - 11. Clearly, f € PR. Finally,

fl(n)ik)+1

I1, J

(k) = { i<th(n)P] if URM (n)
0 otherwise

www.it-ebooks.info

http://www.it-ebooks.info/

174 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Clearly, adj is primitive recursive. O

2.6.0.37 Lemma. Amn.m — n is primitive recursive.

Proof.
_ :{p—(lﬁ(ﬂ%m x adj(n,lh(m) = 1) ifURM(m) AURM((n)
mon= Ih(m)-1
0 otherwise

The left hand operand of * above represents the removal of the stop-instruction of
the URM m prior to concatenation. It is immediate from the above and the preceding
lemma that Amn.m — n is primitive recursive. O

2.6.0.38 Theorem. (Kleene’s Iteration or ‘“S-m-n”’ Theorem) Foreachm > 1land
n > 1, there is a primitive recursive function \ig,.S*(i,y,) such that, for all
i) 'f my :’j’ru
+ — — m —
¢Em n)(mm» Un) = ¢‘(9;n)(iygn)(mm)
Proof. The construction of S is guided by the introductory remarks of this section:
If ¢ codes a URM M such that

X11,..,x1m+tn+1 m+n
MXl = (155) (1)

then we remove the n variables X 1™+2 .. X 1™+ +! from the designated input-
variable list and add the instructions below at the top of program M.

X1 oy, X1 g, XTI gy

To avail ourselves of the tools we have developed in this section, we implement the
above plan by concatenating the following URM, N, to the left of M. Note that N
is not normalized, but N M is, since M is.

1: X1m%2

: 1 (V)
n: X1t oy
n-+1:stop

The code for N is a function of ¢, (recall that n, n are constants) which we will
name init(y,). Referring to 2.3.0.2,

[L,1,m+2,41]+1_[1,2,m43,y2]+1 [Lmm4nd1,92]4+1_[5,n+1]+1
Po P cp piem Tt (2)

n—1

init(yn) =

It is immediate that A, .init(g,) is primitive recursive. Thus, ST, given below for
all 4, ¢, is too by Lemma 2.6.0.37.

S:zn(zv gn) = ’LTLZt(an) ~1 (3>

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 175

It is important to note that (by 2.6.0.37) if ¢ fails the URM (i) “test”, then so does
S™ (1, ¥rn) (indeed, equals 0; cf. 2.6.0.37) and thus both sides of (1) are (Kleene-)
completely equal (the empty function is undefined on all inputs). O

2.6.0.39 Remark. (1) It is important to note by inspecting (2) and (3) in the proof
above that if U RM (i) holds, then S is strictly increasing with respect to each y;
variable. Of course, if URM (i) fails, then S returns 0 no matter what the inputs
y; may be.

(2) A note on notation: In S]* the upper index, m, is a mnemonic tool for how many
variables stayed “up” (in the ¢ argument), while the lower index, 7, indicates how
many variables were moved “down”, to be hardwired into the “program” ST (%, ¥y,)
as it were.

These considerations led to the nickname of the iteration theorem as the “S-m-n
theorem”.

(3) In practice, the S-m-n theorem is applied as follows: If A\ZyyZ,.. f(Zx,y, Zr) €
P, then there is a -1 h € PR, such that, for all Z,y, 2., we have

F@roy, 2) = o (T, 2)

By the assumption on f and 2.3.0.12, there is an i € N, such that f(Zk,y, Z.) ~
¢FYTH(#, 7., y). Note the permutation of variables, where y was moved to the end
of the argument list of ¢f”+1, to align with requirements of the S-m-n theorem.
Can we do this? Yes, since we may chose the URM 3 such that we have mapped the
variables &'y, vy, Z. of f to the “formal” variables X 11,... X1%+7+2 5o that 4/’s role
is played by X 15+7+2,

Pause. Is this the same as saying “use 2.1.2.6(iii) to permute variables so that y is

last”?7 4
We take h = A\y.S¥*"(i,y). Note that the italicized part, “a 1-17, above is a
weakening of the observation (1) above. O

2.7 DIAGONALIZATION REVISITED; UNSOLVABILITY VIA
REDUCTIONS

This section further develops the theory of computability and uncomputability by
developing tools—in particular, reducibility—that are more sophisticated than the
ones we encountered so far in this volume, toward discovering undecidable and non
c.e. problems. We also demonstrate explicitly that diagonalization is at play in a
number of interesting examples.

As we mentioned in the Preface and elsewhere already, the aim of computability
is to “formalize” the concept of “algorithm” and then proceed to classify problems
as decidable vs. undecidable and verifiable vs. unverifiable.

We continue taking—by definition—the term “algorithm” to mean URM program,
and computable (partial) function to mean a URM-computable function, or equiva-
lently, one that has a P-derivation (cf. 2.3.0.11). Thus proving that such and such

www.it-ebooks.info

4

http://www.it-ebooks.info/

176 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

a problem = € A does not have an “algorithmic solution”, or is not even verifi-
able, becomes mathematically precise: We need to show that A ¢ R, or A ¢ P,,
respectively.

Church has gone a step further, and observing that all known formalisms of
the concept of algorithm were proved to be equivalent (each produced the same
computable functions), formulated

Church’s Thesis. Any partial function that can be informally demonstrated to
be computable by some algorithm, can be mathematically demonstrated to be
programmable in any one of the known formalisms (such as Turing machines,
Markov algorithms, Post systems, URMs*).

Of course, this “thesis” is a belief based on empirical evidence, not a metatheorem.
The difficulty (toward theoremhood) lies in the fact that in order to, say, demonstrate
mathematically that the concepts of “algorithm” and URM coincide, we must already
have a mathematical formulation of algorithm!

This is why we said above that we take by definition that algorithm means URM. We
cannot do better than being arbitrary like this. We already mentioned that while the
“Thesis” is widely adopted—indeed, some advanced books such as Rogers (1967)
use it to shorten proofs that such and such a function is computable—the adoption is
not universal; c¢f. Kalmar (1957).

This volume will not take the shortcut of relying on Church’s Thesis. Whenever
we want to prove that f is computable we will do so mathematically, invariably
using 2.3.0.11 and closure properties of P. Nevertheless, we will often also offer an
intuitive argument that establishes the desired computability.

2.7.1 More Diagonalization

We begin the development of the theory by revisiting the proof (2.5.0.16 and 2.5.0.17)
of the undecidability of the halting problem.

2.7.1.1 Theorem. (The Undecidability of the Halting Problem; Again) K ¢ R..

Proof. We will argue by contradiction, so we assume that K € R,, that is, the
relation ¢, (x) | is recursive. We view a one-argument function f as a sequence of
values,

f(0), £(1), ...

where (informally), if f(z) 1, then we take the symbol “1” as the yielded value.

8 Actually, the URM formalism postdates the formulation of Church’s Thesis but is demonstrably equiv-
alent to all the others.

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 177

On this understanding we form the infinite matrix below, of which the i-th row
represents ¢;, for all ¢.

$0(0) ¢o(1) ¢o(2)
$1(0) ¢1(1) ¢1(2)

5:0) 6i(1) &i(2)

We proceed as in 1.3.0.53 to utilize the main diagonal

$0(0),01(1),...,¢:(3), ...

and build a function that cannot be a row of the above matrix. We simply change
each entry that is 1 to |, and vice versa:

1 ifeu(@)
d(x)_{T if 6, (2) |

The above captures the idea, but it is not a well-defined function since we have
not said what the output of d is when it is defined. We resolve this “uncertainty”

arbitrarily as follows:
12 if gg(z) 1
d(z) = 1
@ {T if ¢ (a) | W

Indeed, d does not match any row above, as it differs from each row in the spot where
it intersects the diagonal. Why do we care? Well, since P is closed under definition
by cases (Exercise 2.12.28), and since by assumption both ¢ () | and ¢, (x) 1 are
recursive,

Pause. Why “both”?«

it follows that d € P, i.e., d = ¢; for some i—i.e., d must be some row in the above
matrix. We have a contradiction. O

An intuitive reason as to why the function d as defined in (1) is computable, is
presented here by outlining a pseudo algorithm for the computation of d(z): Let M
be a URM that decides the predicate ¢, (x) |. Given input z, run M on z. If it says
“no”, then print 42 and halt; if it says “yes”, then get into a deliberate infinite loop
(cf. 2.5.0.12).

Worth repeating. We chose d so that at input « it differs from ¢, (z), and thus it
differs from ¢,; full stop. We have cancelled x as a possible ¢-index of d (cf. 1.3.0.51).

Given that we have done this for all x, we have cancelled all possible ¢-indices
of d. Thus d is not computable. Since our assumption about ¢, () | also forced d
to be computable, we managed to reject said assumption as it forced a contradiction.

A version of unbounded search is the following:

www.it-ebooks.info

http://www.it-ebooks.info/

178 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.7.1.2 Definition. (Alternate Unbounded Search Operator) For any fotal func-
tion A\yZ.g(y, £) the expression (ziy)g(y, T) stands for

min{y : g(y,Z) = 0} if the minimum exists
T otherwise

O

It is immediate that (py) (2.1.1.18) and (jzy) coincide on total functions since—in
9(y, ¥) = 0N (V2)<y(9(2z, &) |)—the subformula (Vz) ., (g(z, &) |) is true for such
¢ and therefore its presence or absence in the formula is immaterial.

2.7.1.3 Definition. We say that a class of number-theoretic functions C is closed
under (jiy) just in case for every fotal g in the class, AZ.(fy)g(y, £)—which may
fail to be total—is in the class.]

2.7.1.4 Theorem. P is clo§ under (i1y).

Proof. By the preceding X -remark, if ¢ € R, then, for all 7, (y)g(y,%) ~
(ny)g(y,), thus AZ.(iy)g(y, ¥) € P. O

2.7.1.5 Corollary. In 2.3.0.11 we may replace p by [i.

Proof. We reuse the proof of 2.3.0.11 by simply replacing P by P = CI(Z, {com-
position, primitive recursion, /i }), throughout. In the forward part we use 2.7.1.4. In
the part of said proof that begins by “Conversely”, we replace p by fi. d

Immediately after the proof of 2.3.0.11 we noted
The preceding corollary provides an alternative formalism—that is, a syntactic,
finite description other than via URM programs . . .
We cannot say the same here. The requirement that (fzy) apply on total functions
makes it a semantic rather than a syntactic operator: As we have seen, the problem
of whether ¢>1(-”+1) is in R or not is undecidable, indeed not even c.e.
Thus, given i we cannot know whether writing (7iy)¢™ V) (y, Z,,) makes sense or

not: For we cannot decide, as Definition 2.7.1.2 requires, whether ¢1(-n+1) is total.

Pause. Hmm. Why can’t we stop worrying about totalness and just allow—
in defiance of Definition 2.7.1.2—(zy) to apply to all partial functions, including
nontotal ones? 4

Well, a first approximation objection to the suggestion of defiance is that while
(1y)g(y, T) is correctly computed by the pseudo program below (cf. 2.1.1.17)

y 0
while
-9(y, %) =0
y+—y+1
end

—

the same program does not compute (fiy)g(y,)

www.it-ebooks.info

?

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 179

@ For the sake of argument, say, for a given @, we have ¢(0, @) T, but g(1,a) = 0.

If so, the above pseudo program correctly computes (uy)g(y, @) since the defini-
tion requires —for convergence—that (Vz < 1)g(z, @) |.

This is not the case for (zy)g(y, @), which ought to return min{y : g(y,a@) =
0} = 1 (overlooking the nontotal-ness of g) but the program above loops forever,
since the call to (0, @) does.

But wait! What if there is a really clever alternative program that computes
correctly min{y : g(y, @) = 0}, for any computable g, total or not?

How can we establish that such a program does not exist (assuming we believe
that it does not)? By producing a partial recursive, nontotal, Axy.(x,y), for which

X (iy (e, y) ¢ P!

2.7.1.6 Theorem. There is a nontotal Axy.p(x,y) € P such that Ax.(ly)¢(z,y) ¢
P.

Proof. The proof just firms up the “what if”” discussion above that cast some initial
doubt on the appropriateness of applying (jiy/) to nontotal functions. So let us define
¥ by

0 if(y=0A¢gu(z)l)Vy=1

1 otherwise

Ylx,y) = {

Given that the predicate ¢, (x) | is semi-recursive (2.5.0.15), closure properties of
P, (2.5.0.18) establish the top condition in the definition of v as semi-recursive. By
definition by positive cases we have that ¢ € P.

Let us evaluate

(By)d(z, y) (1)

There are just two possible output values: The search returns 0 if ¢, (z) |, while it
returns 1 if ¢, (x) 1. Thus Az.(fy) (z, y) is x i and therefore is not in P). g

Incidentally, note that x g, being a characteristic function, it is total, even though
1 is not.

2.7.1.7 Proposition. The problem which requires us to determine for a given URM
program i and input x whether a predetermined output y is attained is undecidable.

We opted to say the above in English, in the first instance. Mathematically we are
saying that A\iz.¢;(x) = y is notin R.,.

Proof. If the stated predicate is in R, then so is Az.¢,, () = y by closure properties.
We will use a straightforward diagonalization to see that the latter cannot be.

$0(0) do(1) ¢o(2)
61(0) o1(1) ¢1(2)

dh"(O) (bi‘(l) ¢i.(2)

www.it-ebooks.info

http://www.it-ebooks.info/

180 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Define the new diagonal so that it differs from the one above at every place.

o) = {y+1 if go(2) = y

Y otherwise

Thus, d is not a row above. On the other hand, since we assumed that Az.¢,(x) =y
is recursive, we have that d € R (it is total) hence d = ¢; for some i and hence must
be a row. A contradiction. O

2.7.1.8 Corollary. \izy.¢;(z) = y is not in R..

Proof. Otherwise we would contradict the preceding proposition [2.1.2.6(ii)]. [

The next result, also based on a variant of diagonalization, has a computational
complexity flavor: There are arbitrarily hard-to-compute recursive functions! Recall
our concept of complexity of computable functions, ®, introduced in the context of
the dovetailing technique on p. 169.

2.7.1.9 Theorem. For any a priori chosen recursive function Ax.g(x), we can con-
struct an f € R such that, for any i, if f = ¢, then g(z) < ®;{(x) forall z > i.

Thus, we have a priori arbitrarily chosen a level of computational “difficulty”, g.
We may choose a horrendously “big” g [e.g., Az (z), where A is the Ackermann
function of Section 2.4]. Then we show how to find a function f, which no matter
how we program it (via a URM 7), such a program will take more than g(x) “steps”
to terminate on almost all inputs x, indeed on all x > 1.

Proof. We want to build an f that for ¢ < x cannot be computed within < g(z) steps.
Thus, we need to meet two requirements:
(1) Ensure that the f we build is recursive.
(2) Ensure that all ¢-indices i that satisfy

i <z and ®;(z) < g(z)

are cancelled.

Let us thus set et
I(z) ={i:i <z Adi(z) < g(2)}

Given that ®;(z) < y is recursive (cf. p. 169), so is ®;(x) < g(x) since g € R, and
thus we have that Aiz.i € I(z) is recursive. So is the predicate I(z) # @, being
equivalent to (Vi)<,—®;(z) < g(x). We define f, for all z, as follows:

f(z) = {1 + D icr@ i(z) i I(z) #0

1 otherwise

3)

It is clear that f € P from Exercise 2.12.28, but we need to work a bit more to show
it is total, before we show that it has property (2) above. Let us define, for all i, x,
the function h:

h{i, z) Xfif i e I(z) then ¢;(z) else 1

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 181

By 2.1.2.9 and the earlier remark on i € I(x) we have that h € P. Since whenever
¢ € I(z) holds we have ¢;(z) | (why?), it follows that & € R. Thus the totalness of
f is established as soon as we rewrite (3) as

flz)= {1 t Lige M o) il 1) 20

1 otherwise

We finally turn to establish property (2) for f. Let then f = ¢, for some k (as it
must since it is recursive) and pick any x > k. Can it be that @ (z) < g(z)?

No, for otherwise k € I(x) holds and therefore f(z) =1+ ...+ ¢p(z) +... >
ox(x). A contradiction. O

The reader will note that the claim that we “can construct” an f with the stated
properties is apt.

2.7.1.10 Corollary. There is no Ax.g(x) € R such that every recursive ¢; is ex-
pressed as ¢; = A\z.d((1y) < ()T (3, T, ¥)).

Proof. See Exercise 2.12.41. O

The corollary says that there is no upper bound on the complexities of the recursive
functions.

It is noteworthy that there are arbitrarily hard to compute 0-1 valued recursive
functions, that is, arbitrarily hard to compute recursive predicates. The following and
its proof is due to Blum (1967).

2.7.1.11 Theorem. For any a priori chosen recursive function Ax.g(z), we can
construct 0-1 valued f € R such that, for any i, if f = ¢y, then g(z) < ©;(z) a.e.

Proof. With a0-1 valued function we have to employ a more tricky index cancellation
process, following Blum (1967). Adding all the ¢; —for the ¢ we want to cancel—and
then adding 1 on top of that will not work. We define instead as follows:

1= ¢r(x) if k is the smallest uncancelled 7 in I(z);
flz) = now cancel the k that was employed above; (1)
1% if no uncancelled i exists in I(z)

Let us leave for last the rather dull verification that (1) can be made mathematically
precise toward showing that f € R. That f is 0-1 valued is obvious.

For now, we view the description in (1) as a reasonably complete guideline on
how to “program” f and embark on proving its claimed complexity.

Let then f = ¢, for some r, and let us argue by contradiction.

Since f = ¢,, the ¢-index 7 is never cancelled. (2)

90Could have used output 0; either is fine.

www.it-ebooks.info

http://www.it-ebooks.info/

182 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

If the claim is false, then there is an infinite sequence of inputs above r,
r<r <r2<r3<... <y <...<

on which the complexity of ¢, is < g(x;), foreach z;: i = 1,2,.. ..
Now, input x;, for each i, satisfies v < x; and, by assumption, also ®,(z;) <
g(z;). Moreover, 7 is uncancelled—that is, there are available indices to
cancel in 1(x;); cf (1). So we cancel some j < r (why j < r?) at this step,
and set f(x;) =1 = ¢;(x;).
From the above follows that we will have an infinite sequence of indices, j;, that
we will cancel, one for each z;:

o < Je < jz <...<r
t T t

duetoxr; duetoxzs duetoxs

The inequalities are clear: Since r cannot be cancelled, it must be j; < r, and indeed
j1 is the smallest available. For x,, index j; is already cancelled, so the next larger
uncancelled index, jo, is cancelled. Always, it must be that the indices we cancel are
below r, as the latter is never cancelled.

This leads us to the absurdity that we have an infinite ascending sequence of
integers between j; and r. We conclude that &,.(z) > g(z) a.e. as claimed.

But why is f recursive? We build f together with Az.c(z), the latter a function
that stores, via prime power coding, the cancelled indices i < z, after f(x) has been
defined. We start with ¢, but first we recall the notation x € z from 2.4.4.1. The
function c is given by a primitive recursion.

c(0) =1
uncancelled
!
(z+1) =c@)+ |if Gy el@Ay € @)
then (uy) <o (y € I(z) A~y € c(z)) else 1]

Ayx.y € I(x) being in R, we conclude that ¢ € R. We return to f:
f(z) = {1 " e (ver@n-ye (=) (@) i ()saly € I@) Ny € ()
1 if =(3y) <= (y € I(x) Ay €c(z))

Since Azy.¢,(y) € P and by Exercise 2.12.28, f € P. It is also defined on any x
since the index of ¢ is in I(z). d

The above theorem establishes the existence of arbitrarily hard to compute recursive
predicates. Does this mean that there are recursive predicates that are not in PR,7
Yes (cf. Exercise 5.3.32).

www.it-ebooks.info

N4

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 183

2.7.2 Reducibility via the S-m-n Theorem
We now turn to the development of the technique of reductions, using the S-m-n

theorem.

2.7.2.1 Definition. (Strong Reducibility) We say that the set A (subset of N) is
strongly reducible to set B, in symbols A <,, B, iff there is a recursive function
f such that for all z, we have z € A iff f(z) € B. We say that f effects the
reducibility. O

2.7.2.2 Remark. Several remarks are in order:

(1) The m in the reducibility symbol reflects the fact that f is not required to be 1-1.
So, strong reducibility, by default, is a many-one reducibility or m-reducibility.

We also have -1 reducibility or 1-reducibility. This is when f is 1-1.

(2) The condition z € Aiff f(x) € B says that if we know how to decide z € B and
also know how to compute f(x) for all x, then we know how to decide z € A.
Thus, the symbol <, is apt: Intuitively A is “more solvable” than B since we
can decide it if we can decide B. Conversely, B is more unsolvable than A.

We express this technically in the proposition below.

(3) By definition, A <, Biff A = {z: f(z) € B}. Thatis,iff A= f_(B). O

2.7.2.3 Proposition. Suppose that A <,,, B. Then

(1) A is recursive if B is. Contrapositively, B ¢ R, if A ¢ R..

(2) A is semi-computable if B is. Contrapositively, B is not c.e. if A is not c.e.
Proof.

(1) Ifz € Bisrecursive, thensois f(z) € B by theassumptionon f and by 2.1.2.24.

(2) If z € B is semi-recursive, then so is f(z) € B by the assumption on f and
by 2.5.0.20. (]

2.7.2.4 Definition. (Complete Index Sets) GivenasubsetC C P,wecall{z : ¢, €
C} a complete index set (defined by C). O

2.7.2.5 Remark. That is, a complete index set A = {z : ¢, € C} is the set of all
(codes of) URM programs that compute the functions of some given subset C of P.
Indeed say f € C. As this is computable, take any program i for f, thatis, f = ¢;.
Now ¢, € C yields i € A by the definition of A.]

This subsection deals with the undecidability of membership in several complete
index sets. Indeed, “several” is an understatement. We will conclude with the rather

www.it-ebooks.info

4

http://www.it-ebooks.info/

184 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

surprising Theorem of Rice, according to which the only decidable such problems
involve the two trivial cases: C =) or C = P.

@ 2.7.2.6 Remark. (The General Technique) The technique in general outline goes
like this: We want to show that some A given as {z : ¢, € C}, for some C C P, is
not recursive.

Equipped with 2.7.2,3 we attempt to show either K <,, A or K <,, A—
whichever is easier. The latter, of course, yields more information (a stronger result):
that A is not c.e.

To this end, we need to demonstrate that there is an h € R that effects one of
K<, AorK <, A.

To execute this plan, we utilize the S-m-n theorem so that we come up with a
primitive recursive h such that

Case of K <,,, A:
iy = some specific f € C if ¢ (x) |
"= 7 some specificg ¢ ¢ if () T

Thus, h(z) € A iff the top case holds, iff z € K—that is, ¢,(x) J. For short,
K <, Aviah.

Case of K <,,, A:

{ some specific f € C if ¢ (x) T
¢h(x) =

some specific g ¢ C if ¢, () J

Thus, h(x) € A iff the top case holds, iff € K—that is, ¢,(x) 1. For short,
K <, Aviah. O

The following theorem is important both in content and in regards to the technique
employed for its proof.

2.7.2.7 Theorem. The following sets are not recursive.
(1) A= {x: ¢, is a constant function}

(2) B={z: ¢y istoral} = {z : ¢, € R}

3) € ={{z,y) : y € ran(¢z)}

@ D={{z,y,2) : 2 = ¢a(y)}

() E = {z : dom(¢,) = 0}

(6) F = {z : dom(e,) is finite}

(7) G = {z : dom(¢,) is infinite}

(8) H ={z:ran(¢;) = 0}

9) I = {x: ran(¢,) is finite}

www.it-ebooks.info

http://www.it-ebooks.info/

(10)

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 185

J = {z : ran(¢,) is infinite}

Proof.

ey

)

A = {z: ¢, is a constant function}.

We will be more expansive in just this first case. Following 2.7.2.6, we want to
find an & € R such that

hi) = some specific constant function if ¢(x) 1)
M@ 7\ some specific non constant function if ¢, (z) 1
Well, the simplest solution is probably this: Define, for all z and y
0 ifgu(z) |
TR S ()
T if ga(z) T

We see first at the intuitive level that 7 is computable: Given z,y. We ignore y.
Next, we fetch the URM M of code « and call it on input z. If it ever halts, then
we print “0” and halt everything. If M never halts, then our process will never
return from the call, which is the correct behavior for ¥ (z, y)—bottom case.

Intuitively, we cannot expect to yield some output in the bottom case, since, at
least in the process described above, the call to M for input = will never halt to
give us an opportunity to print anything.

Pause. Do you have a mathematical reason as to why defining ¢ so that, say, it
yields 42 in the bottom case renders 1) non computable (i.e., not in P)?«

Mathematically, 1 € P via definition by positive cases (2.5.0.30). Of course,
“¢.(x) 1" is not a positive case, being non c.e. However, reference back
to 2.5.0.30 shows that the last (bottom) case is the “otherwise” case.

By the S-m-n theorem, there is an 2 € PR such that, for all z and y,

o itga(e)y
Fna) (1) = { SO (%)
This can be rewritten as (note the change from ~ to =)
a0 ifga(a))
Ph(z) = {0 if 60 () 1 (% % %)

where () is the empty function—clearly not a constant function! We have achieved
the setup (f) and we conclude by directly invoking 2.7.2.6.

B={x:¢,istotal} = {z: ¢, € R}.
Note that (* * *) can be recast as
Brioy = a specific total f ifo.(z) 4
M7 a specific nontotal g if ¢ {(x) T
Thus, K <,, B and therefore B ¢ R, asin 2.7.2.6.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

186 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

@ This result says less than what we already proved in 2.5.0.29, however, it is
important to see this alternative technique even if (seemingly) achieves less.
Seemingly. We will refine the technique in the next theorem, to redidcover the
non semi-recursiveness of B. @

3) C={(z,y) : y € ran(¢,)}.
We have seen this example, and the next, already in Subsection 2.7.1. Let us use
the present technique. If C is recursive, then so is Co = {x : 0 € ran(¢n(s))}
(by 2.1.2.6)—where h is the same as above.

But 0 € ran(¢p()) can happen iff we are in the top case of (* *), which is in
the case x € K. Thus K <,,, Cy via h.

4) D={(z,y,2) 1 2= ¢ (y)}-
If D is recursive, then sois Do = {z : 0 = ¢34 (0)}. The latter is equivalent to
x € K as above and we conclude exactly as in the case of C above: K <,,, Dg.

(5) E ={z:dom(¢,) = 0}.
We can still mine diverse unsolvability results from the very same setup (x * *)
above. We rewrite this as

iy = a g with a non-empty domain if ¢,{(z) |
")~ Y an £ with an empty domain if g (x) t

Thus, as in 2.7.2.6, h(z) € E iff we are in the bottom case; iff = € K. That s,
K <,, E via h. We have proved more than what we were asked to: E is not
even semi-recursive, let alone decidable.

(6) F = {x:dom(¢,) is finite}.
We rewrite (* * x) as
baie) = a g with an infinite domain if ¢, (z) |
M@ = Yan f with a finite domain if ¢ (z) T

Thus, h(z) € F iff we are in the bottom case; iff z € K. Thatis K <,,, F via h.
Once again we have proved more than we were asked to: F' is not semi-recursive.

(7) G = {x : dom(¢,) is infinite}.
Yet again, we rely on (x * x). Indeed, see the argument for F' above. We have
that h(z) € G iff we are in the top case; iff x € K. Thatis, K <,, G via h and
thus G is not recursive.

(8) H = {z : ran(¢p;) = 0}.

One last time we mine (* %), rewriting it as

iy = a g with a non-empty range if ¢, (z) |
M®) 7 an f with an empty range if o (x)

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 187

Thus, h(x) € H iff we are in the bottom case; iff z € K. Thus K <,, Hand H
is not semi-recursive.
9) I ={z :ran(¢,) is finite}.

This case needs a fresh start, since neither A\y.0 nor # have an infinite range,
as needed for the “dichotomy” infinite vs. finite (range), toward applying the
technique of 2.7.2.6. So, we define a new function, for all z and y, by

) {y if ¢, () L

1T otherwise

X is computable. Intuitively, given x and y we decode x to get the URM M that
it codes. We then call M on input z. If it ever halts, we print y and halt all;
otherwise we keep going.

Mathematically, y is defined by positive cases, since ¢, (x) | is c.e. Thus it is
in P. The S-m-n theorem allows the existence of a k € R, such that, for all z

and y,
if &,
N

1T otherwise

Put more conveniently, with no reference to inputs,

beiey = {Ay.y if ¢z () 4 0

0 otherwise

Note that k(x) € I iff we are in the bottom case of (1);iffz € K. Thus K <,, I
via k, rendering [non c.e., which says more than what we set out to prove.

(10) J = {z : ran(¢,) is infinite}.
We reuse (). Here k(z) € J iff we are in the top case of (1); iff € K. Thus
K <,, J via k, rendering = € J undecidable. g

g% Worth stating. Since the s and % utilized above are S-m-n functions, they are
1-1 (cf. 2.6.0.39). Therefore all reducibilities that we have effected above are 1-
reducibilities, <;.

2.7.2.8 Theorem. None of the sets in 2.7.2.7 are semi-recursive, except C and D.

Proof. D is semi-recursive by 2.5.0.7. As for C, we see that y € ran(¢,) =
(32)0,(2) = y. Its semi-recursiveness follows from 2.5.0.7 via 2.5.0.18.

We now turn to those sets listed in 2.7.2.7, which we have not already proved to
be non c.e. in the proof of said theorem.

(1) A= {z: ¢, is a constant function}.

www.it-ebooks.info

4

http://www.it-ebooks.info/

188

ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The obvious approach, that is, badly imitating 2.7.2.6 and modifying (*) to read

0 ifga(a) 1t

¢@”:{rﬁ%uu

will not work. The intuitive reason is that if we try to compute this new % in
the obvious way, given x and y we will ignore y, and will decode z to obtain
the machine it denotes, M. We will run M on input z and will output and stop
everything precisely if M is in an infinite loop, which is precisely if ¢, (z) 1
Otherwise (¢, {z) J) we will ensure that the overall computation never halts by
a technique we have already employed (in 2.5.0.12).

The catch is that this “obvious” way is doomed, for our program—indeed, no
program—can test, or even just verify that ¢, (x) 1.

The definitive reason that this ¢ is not computable is this: If it were,
then so would be Az.y)(x,z). But the domain of the latter is K.
Impossible, because this set is not the domain of any partial recursive
function.

Pause. Why “definitive”? Isn’t the intuitive reason (of the uncomputability of
1)) enough?«

No. The intuition only warns and guides; it does not prove. After all, the
suggested “program that did not work™ was just one suggested, and “obvious”,
program to compute .

Why can it not be the case that a future programmer might come up with a really
clever and non obvious URM that computes 1)?

Precisely because we got the definitive answer mathematically: There can be no
such a URM, now or ever; it does not exist.

OK, here is how to do it right: We want to build a partial recursive 1 such that

0 if g () 1

not a constant result if ¢, () |

Y(z,y) =~ {

In view of the above remarks, we cannot use the condition “¢.(z) 1" outright as
the top condition, so we will approximate it with “¢,.(x) does not converge in
< y steps”.

Note that for a “large” (number of steps) y, the casual (and impatient) observer
wilt consider a computation for ¢, (z), which is still going, as divergent.

So we finally define

0 if ¢, (z) does not converge in < y steps .
wmm:{ (@) e P (i

P ifa(e)

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 189

This ¢ is computable! Let us see why, intuitively at first. We program as follows:
Given inputs x and y. We call the URM M, coded by z, on input z. If M has
not stopped after y steps of its computation, then we print 0 and stop everything.
In the contrary case—that is, the call to M with input = stopped within < y
steps—we deliberately enter an infinite loop as in 2.5.0.12.

Mathematically, () can be rewritten as

Z(y) if-d,(z) <y

By) if 2.(2) <y (&)

Y(z,y) ~ {

where Z = Ay.0. Since the conditions are recursive (cf. p. 169), we have, by
Exercise 2.12.28, that iy € P.%!

By the S-m-n theorem, we have a primitive recursive ¢ such that, for all z and y,

Z(y) if®.(z) <y

o(z ~ . 111

P (v) {@(y) if ®(2) < y ()
Let us now consider the two cases below:

Case 1: ¢,(x) 1. Then ~®,(x) < y is true; for this x and all y, the top case
applies. That is:

¢o’(m) = AyO (“))
Case 2: ¢,(z) |. Let yo be smallest such that &, (x) < yo. That is

Fory=0,1,...,y0 — 1, we have -®,(z) <y

In this case
Yo 2€eros

———
¢a(z) = <0a 0,... 7O> (U)

where in (v) we have denoted the finite function
flyy=ifz=0vae=1V- -Vz=yo—1thenOelse H(y)

as the finite sequence of its outputs. Of course, f € P.

We summarize what cases 1 and 2 say in (iv) and (v):

Ay.0 if ¢z (z) T
o) = § (0,0,...,0) ifg(z)] (1)
NN
Yo Zeros

Given that the function in the bottom case is not a constant function, we imme-
diately have o(z) € Aiff x € K, or K <,,, A as needed.

910ne is normally less pedantic and rather than explicit function calls Z(y) and @(y) writes 0 and 1
respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

190 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(2) B={x: ¢ istotal} = {z: ¢, € R}.

We may reuse (f) immediately above, since the top case is total while the bottom
case is nontotal. Thus, o(z) € Biff x € K, or K <,,, B as needed.

(3) G = {x : dom(¢,) is infinite}.

We may reuse () since the top case has infinite domain while the bottom case
has finite domain. Thus, o(z) € Giff x € K, or K <,,, G as needed.

(4) J = {z : ran(¢,) is infinite}.
We cannot reuse (1) here as both the top and bottom cases have finite ranges. We
work entirely analogously to (i7) above, and define, for all z, y,

oy if ~®,(z) <y
x(z,y) =~ {@(y) if B, (z) < y

As x is defined from partial recursive functions by recursive cases, it is in P. By
S-m-n we have a primitive recursive 7 such that, for all x, y,

y if =®,(z) <y

@m@_{mﬁiwdwﬁy

A similar analysis as above shows readily that

If ¢z () T, then ¢ (z) = Ay.y, while if ¢, () |, then
¢‘r(a:) = <071a-~-ay0 - 1>

a finite function displayed as a sequence of outputs, where yg is smallest y such
that ¢, (z) < y.

Thus,
8 _ Ay.y if ¢ (z) 1
" T0 L0 - 1) ifa(e))
and therefore 7(z) € Jiff z € K, or K <,,, J as needed. O

The techniques used so far are unified in the results that we develop below.

2.7.2.9 Theorem. (The Rice Lemma) Given a complete index set A_ ={z:¢, €
C}—where C C P. If some f € C has an extension g € P —C, then K <, A.

Proof. Let ¢, € C and ¢, ¢ C, where ¢,, C ¢,.”> The plan is to prove that a
primitive recursive h exists such that

b ifda(z) 1
Onte) = {¢n if ¢z (z) | @

92Cf. p. 45.

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 191

As we have already observed, to avail ourselves of the “definition by positive cases”
technique, the top case must be the “otherwise”. But if so, we cannot allow, in
general, an “output” other than “1” (cf. the remarks in 2.5.0.30 and the followup in
Exercise 2.12.35).

Thus, once again, we will approximate the condition ¢, (z) 1.

(2,y) ~ Om(y) if ¢, (x) does not converge before ¢, (y) does
XY= én(y) if ¢z(z) converges before ¢, (y) does

Is x computable? Intuitively, it is. Here is how: Let H be a URM for verifying
¢z (z) |, M a URM that computes ¢, and N a URM for ¢,,. Let x and y be given.

We run H on input z, and M on input y in parallel. If M halts but H is still
running, then we print ¢,,,(y) and stop everything.

Worth neting. If each of H and M loops for ever, then the top condition is valid;
we correctly output ¢, (y) in this case (we “output” t—that is, nothing).

If, on the other hand, H halts before M does, then we abort M and call N on
input y in order to (if convergence is achieved) output ¢, (y).

The mathematical reason for the computability of x is based on the above informal
description. @

The content of the above -comment is the “otherwise”; thus we achieve a
definition by positive cases:

Pm(y) if (32)(Pm(y) = 2 A ~0s(2) < 2)
X' (@y) = daly) if (32)(Pa(@) = 2 A ~Pm(y) < 2)
T otherwise

Since the above is a definition by positive cases—recall that ®;(z) = w, ®;(z) < w,
and ®;(z) < w are (primitive) recursive—y’ € P,
Pause. Butis y = x'7«

Yes. The top condition for x' says “¢.(x) does not converge before ¢, (y)
does”—this is the case of ¢, (y) |, where ¢, (x) may or may not converge. The case
of ¢ (y) T and &, (z) 1 is covered by the “otherwise” as we already have remarked,
noticing that both the top and middle cases now fail. The middle condition says
“¢.(z) converges before ¢, (y) does”.

By the S-m-n theorem there is an & € PR such that, for all = and y,

om(y) if (Ez)(@m(y) =2/A"®,(x) < z)
Priz)(Y) = { dnly) if (32)(Ps(z) = 2 A ~®r(y) < 2)
0 otherwise

We can now verify that we have (1) above.

o Let ¢y(x) 7. Then ®,.(z) < z is false for all z, hence the middle case
cannot apply.

www.it-ebooks.info

http://www.it-ebooks.info/

192 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(a) If we have ¢, (y) |, then (32)®,,(y) = 2, thus the top condition is true
and @ (z) (y) = Pm(y).

(b) If we have ¢,,(y) 1, then &,,(y) < z is false for all z, thus only the
“otherwise” applies. We have, once more ¢p(z)(y) =~ ¢m(y) (note the

‘G:”).
For short, ¢p(z) = ¢m in this case.
o Let g, (x)|. Letzbesmallest such that &,(z) = 2. Now fixay.

(i) If ®,,(y) < z, then the top case holds, thus @p(,)(y) =~ dm(y). But
om(y) | (why?), thus, by ¢, C ¢, we have ¢, (y) = ¢n(y) (note the
“=’7)‘

Therefore ¢n(z)(y) = dn(y).”

(il) If ~®,,(y) < z, then the middle case holds, and again ¢, (z)(y) =~ én(y)

(“~" this time is essential, as it may be that ¢,,(y) 1.)

For short, ¢p(z) = ¢n in this case.

This establishes (1), and hence the equivalences h(z) € A iff @p () € Ciff Pp(z) =
¢m iff z € K. Thatis, K <,, A via h. O

2.7.2.10 Corollary. Given a complete index set A = {z : ¢, € C}—where C C P.
If some f € C has an extension g € P — C, then A is not c.e.

2.7.2.11 Corollary. (The Theorem of Rice) A compete indexset A= {z: ¢, € C}
is recursive iff it is trivial, meaning that either A = § or A = N.

Proof. The if part is immediate since, in fact, § and N are pn'mit_ive recursive.
As for the only if, say A is recursive. Then A and N — A (or A), that is,

{z:¢,€eP—-C}

are both c.e.

We consider two cases. First, let §°* € C. Since A is semi-recursive, 2.7.2.10
yields that every computable extension of @} is in C. Thus C = P and hence A = N.

Second, let) € P — C. As above, since N — A is c.e., 2.7.2.10 yields that every
computable extension of @ is in P — C. Thatis, ? - C = P and hence N — A = N.
Therefore, A = . O

2.7.2.12 Example. We look back to 2.7.2.7. We see at once by application of Rice’s
theorem that each of the sets A, B, and E—-J are not recursive.

Each of them is a nontrivial complete index set. For example, the set of constants
C is not equal to either () or P, for, on one hand, constant functions exist (!), such as

93 Again note the “=" used for emphasis. The more general symbol = would also be correct.
94The empty function in this context

www.it-ebooks.info

http://www.it-ebooks.info/

L4 4

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 193

Az.380, or Az.0, and, on the other hand, not every computable function is a constant;
for example, Azy.x + y, Ax.x, etc. Thus,) # A # N,

Similarly one shows all of E—J to be nontrivial.

The sets C and D are not complete index sets so the theorem of Rice does not
help. One can employ either the technique of 2.7.2.7 or direct diagonalization (cf.
2.7.1.7).]

2.7.2.13 Example. Wait a minute! We have not verified that, e.g., set F' of 2.7.2.7 is
a complete index set.

As a principle we must, in each case prior to the application of Rice’s theorem.
Often it is easy to do so.

Apropos F' = {z : dom(¢,) is finite}, let us set C = {f € P : dom(f) is finite}.
Thus F = {x : ¢, € C}. And this is a complete index set in the format defined
in2.7.2.4. O

2.7.2.14 Example. We have seen already that every computable function has in-
finitely many ¢-indices by arguing the case via URM programs. Here is a “high
level” approach: Let f € P. Then § # {z : ¢, = f} # N. By Rice’s theorem,
{z : ¢ = [} is not recursive, hence must be infinite (every finite set is primitive
recursive). O

2.7.2.15 Example. But how about K? Is K = {z : ¢,(z) |} a complete index
set? That is, is there a C C P such that K = {z : ¢, € C}? We will answer this
negatively in Section 2.9. I

The Rice Lemma 2.7.2.9 can help in easily establishing non semi-recursiveness.
Let us revisit 2.7.2.8.

2.7.2.16 Example. Look at E = {z : dom({¢,) = (}. For convenience let us set

CE(f e P:dom(f) =0}

Note that dom(@) = (. However, Az.0 extends @ but is not in C—its domain is N.
By 2.7.2.10, E is not c.e.

A similar argument holds for F', since () has a finite domain hence is in F’s implied
“C”. Any constant function extends @) but is not in this “C”. Thus, F is not c.e.

Corollary 2.7.2.10 can similarly show that H and I are not c.e. although we should
use Az.x or any other computable infinite-range function—instead of Az.0—as an
extension of () that lies outside the “C” of these two complete index sets.

However the corollary does not help the proof of non semi-recursiveness of
A, B,G, or J. A new general technique is needed. W]

The following theorem is the contribution of several people (Rice, Myhill, Shapiro,
McNaughton). First a definition.

www.it-ebooks.info

e

http://www.it-ebooks.info/

194 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.7.2.17 Definition. (Finite Functions) A number theoretic function f is finite iff
dom(f) is a finite set. O

2.7.2.18 Theorem. Given A = {z : ¢, € C}, where C C P. Suppose that some
f € C hasno finite subfunction é—i.e., £ C f—that is amember of C. Then K <,,, A.

Proof. The idea is to find, using the S-m-n theorem, an h € PR such that

_ e ey
W’”‘{f if g2 () 1 W

If this succeeds, then h(z) € A iff ¢p) € Ciff dppy) = fiff z € K. Thus,
K <, A

Now to justify (1) we straightforwardly generalize the technique from 2.7.2.8,
case (4). Thus we define, for all z, y,

z ~ fly) if-2(x) <y
x(z,y) ~ {@(y) i, (2) < y

This is a definition by recursive cases, thus x € P. By the S-m-n theorem we have
an h € PR such that

¢h(z><y>_{®(y) A @)

Let us now consider the two cases:

(@) ¢z(z) 1. Then the top condition of (2) is true for all y, thus ¢} ;) = f in this
case.

(b) ¢z(z) |. Let yp be the smallest y-value such that the bottom condition in (2)
holds. Assume first that yo > 1. Thus, for y = 0,1,...,y9 — 1, we have that
-®,(z) < y holds, and therefore

fory =0,1,...,50 — L,itis dnz)(y) = f(y), but @y (v) T.ify > 5o (3)

Let us call £ the finite subfunction of f in (3) above: £ = f | {0,1,...,y0 — 1}
(cf. definitions and notation on p. 45). Thus, ¢p(z) = £(C f) in this case, for
7o > 0.

If yo = 0, then the bottom condition holds for all y, thus ¢,y = 0. But @ C f.
We have verified (1). [

2.7.2.19 Corollary. Let the complete index set A = {z : ¢, € C} be c.e. Then
f € C iff some finite subfunction of f is in C.

Proof. The only if is by 2.7.2.18, for otherwise K <,,, A, contradicting the assump-
tion. The if is by 2.7.2.9, forif C 5 £ C f,then f € C. a

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 195

2.7.2.20 Example. We return to the concluding comment

However the corollary does not help the proof of non semi-recursiveness of

A, B,G, or J. A new general technique is needed.
from 2.7.2.16. The respective C-sets in each of the index sets A and B contain total
functions only. Thus no f in such a C can have a finite (nontotal!) subfunction also
in C. By 2.7.2.19, neither A nor B can be c.e.

Similarly, the respective C-sets in each of the index sets GG and J contain functions

with infinite domains only. Thus no f in such a C can have a finite subfunction also
in C. Again, by 2.7.2.19, neither G nor J can be c.e. 0

2.7.2.21 Remark. A variant of a complete index set has this form
A={z:W, e} (1)

where C, C P,. That indeed this is only a variant of the notation {z : ¢, € D} is

immediate from (cf. 2.5.0.3)

W, = dom(g,)

Thus, setting C = {f € P : dom(f) € C.}, we may rewrite (1) as
A={z:6,€C) @)
(]

This new notation is very useful in computability theory. We explore here reword-
ings of the Rice-related theorems that utilize this new notation.

2.7.2.22 Theorem. Given a complete index set A = {z : W, € C,}—where
Ci CP.. If some S € C, satisfies S C T, where T € P, — Cy, then K <,,, A.

Proof. Following the notational translations of 2.7.2.21, we write C = {f € P :
dom(f) € C,}. So,
A={z:¢,€C}

Let S and T be as given. Thus, for some f € C, S = dom(f). The function
g =Azx.1 = (1 =+ f(z)) satisfies S = dom(g) as well. Let T = dom(h) with h € P
and ran(h) = {0} [if necessary, we use Az.1 =~ (1 = h(x)) instead).

Notice that g € C,g C h,and h ¢ C.%° By 2.7.2.9, K <,, A. 0

2.7.2.23 Theorem. (Rice’s Theorem—IW -Version) A compete index set A = {x :
W, € C.} is recursive iff it is trivial, meaning that either A = 0 or A = N.

Proof. This can be proved by invoking 2.7.2.11 after we translate the W;-notation
into ¢;-notation, using 2.7.2.21. It can be proved just as easily, directly from 2.7.2.22.

9If h € C, then dom(h) € Cy by definition; hence T' € C.

www.it-ebooks.info

http://www.it-ebooks.info/

196 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

A trivial index set being primitive recursive, we turn to the only if. So let both A
and A be c.e.

Case where @) € C,. Then S € C, for every c.e. subset of N by {§ C S. It follows
thatC, = P,,ie., A=N.

Case where () ¢ C.. We work with the c.e. set A = {z : W, € P, —C.}. As
above, S € P, — C, forevery c.e. subset of N. Thus, P, — C, = P,,ie, A=0. O

2.7.2.24 Theorem. Given A = {z : W, € .}, where C. C P.. Suppose that some
S € C, has no finite subset D that is a member of C,. Then K <, A.

Proof. We derive this as a corollary of 2.7.2.18, using the notational translations from
2.7.2.21. We writeC = {f € P : dom(f) € C.}. So,

A={z: ¢, €C}

Let S be as given. Thus, for some f € C,, S = dom(f). As before, we may assume
that ran(f) = {0}. If we had a finite £ C f as a member of C, then it would be that

(a) dom(&) is a finite set D € C,—by the translation—and

D CS.

(a) and (b) contradict the hypothesis. Thus, no such ¢ exists, and thus K <,, A
by 2.7.2.18. 0

2.7.2.25 Example. {z : W, = (0} is not c.e. by 2.7.2.22. Indeed, C, = {0}. But
@ C N, yetN ¢ {0}. {z : W, is infinite} is not c.e. by 2.7.2.22. Indeed, the C,-set
here is the set of all infinite members of P,. This C, fails to contain any finite subset
of any set that it contains. We are led to K <, {x : W, is infinite} by 2.7.2.24. O

2.7.3 More Dovetailing

A c.e. set can be given either via a URM that is a verifier—the set is the domain of the
verifier—or a URM that is an enumerator: the set is the range of the URM-computed
function.

Suppose we are given one of these two types of finite description of a set. Can we
construct the other? Yes!

Say that a semi-computable set S has been given by a verifier M of code m, that
is, $ = W,,. How do we construct a URM program N, of code n to compute ¢,
such that

ran(¢y,) = Wp,? (1)

The idea is that, for each x for which M halts—that is, *+ € W,,—our new
program N must output . Now, we cannot have NV enumerate all z = 0,1, 2,3, ...
and simulate M on each such input in turn, since, on some such inputs, A/—and
therefore N—will be stuck forever; an unfortunate event as there may well be later
x-values that need outputting. So, we dovetail instead! (Cf. 2.5.0.23.) Thus, N will
simulate M on all inputs x = 0,1, 2,3, ... as follows: It will simulate one step of M
on input 0; then two steps on inputs 0 and 1; then . .. then k + 1 steps on all inputs

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 197

0,1,...,k. It will continue in this pattern, for all £ > 0. All inputs which during the
simulation cause M to halt will be output by N. Note that we have “constructed”
N (in outline), using knowledge of M (“subroutine”). Clearly, the set of outputs
generated by N is precisely the set of inputs on which M halts.

Mathematically, the fact that the program n is constructed from m is captured by
the existence of a primitive recursive h such that n = h(m). We state and prove

2.7.3.1 Theorem. There is a primitive recursive h such that for all x, ran(¢p(y)) =
We.

Proof. Thisis a trivial adaptation of the proof of 2.5.0.24 following the idea in 2.5.0.28:
Define, for all z and z,

(Z)o lfT(CIZ, (z)g,(z)l)
T otherwise

¥(z,z) ~ { (1)

1y is trivially partial recursive, hence (by S-m-n) there is a primitive recursive h such
that

Z)O lfT(:I:? (Z 0, Z)l)
¢h(z) (Z) = (.) (
T otherwise

By 2.5.0.28, ran(¢y(y)) = Wx. O
Pause. Can we ensure that whenever W, # () we obtain a total ¢y, 7«

Yes, if we can replace 1 in (1) of the above proof by a computed “a”, analogous
to the one employed in 2.5.0.24, where we said

[rnt)

... where “a” is some fixed member of .S that we keep outputting every time the
condition “T'(Z, (2)o, (2)1)” fails . ..

The “some fixed” a can easily be replaced by a computed value (from the verifier
code x of W) via the selection theorem.

2.7.3.2 Theorem. (Selection Theorem) There is a partial recursive g of one vari-
able such that, for all x,

(i) Wy #0iffg(z) |
(i) If W, # 0, then g(z) € W,.

Proof. A familiar dovetailing technique is at play: We compute the first pair [y, w]
such that T'(z, y, w) holds. That is, setting z = [y, w], we let

9(@) = ()T, ()0, (2)1)) (1)

0

For (i), let W, # 0. Thus (Jy, w)T(x,y, w) is true and the search in (1) succeeds.
Conversely, if the search succeeds, then (z)o € W,. For (ii), the successful search
yields a (z)g € W,. But g(z) = (2)o. O

www.it-ebooks.info

http://www.it-ebooks.info/

e

198 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

The selection theorem is a computable version of the axiom of choice. The axiom
of choice postulates that if {S, : a € I} is an indexed collection of sets—indexed
by I—then there is an f such that S, 7 @ implies f(a) € S,,.

Our “g” does just that for the collection {W,, : € N}; computably!

2.7.3.3 Corollary. There is a primitive recursive h such that for all x, ran(¢y5)) =
Wa. Moreover, if Wy, # 0, then ¢p ;) € R.

Proof. We use the proof of 2.5.0.24, adding the as an argument, and using g(¢)—the
selection function at ¢—rather than the intangible “a”. That is,

i) = {(Z)O if TG, (2)o, (1)

g(i) otherwise

% is trivially partial recursive, hence (by S-m-n) there is a primitive recursive & such

that
) (&) i T((2)o, (2)1)
Ono)(2) = {g(z) otherwise
O

2.7.3.4 Example. Rogers (1967) offers the following simple proof that obscures the
dovetailing at work: Let

1T otherwise

T(x,2) ~ {z if 6(2) 4

Via definition by positive cases, 7 is partial recursive. Let (by S-m-n) c—primitive
recursive—be such that ¢, () (2) =~ 7(z, z), for all z, 2. Note that 2 € ran(@, ()) iff
¢ (2) |, that is, iff z € W,.

Of course, the definition-by-positive-cases theorem (2.5.0.30) already includes a
dovetailing argument buried in its proof. a

Next, say that a semi-computable set S has been given by an enumeration, by
some URM M of code m. That is, S = ran(¢,,). How do we construct a URM
program N of code n, for ¢, that is a verifier for S, in other words,

ran(¢m) = Wn? (2)
If ¢,,, is total, then all that N need do is this: Given z, N tests “z € S7” by
fory=0,1,2,... do
if M on input y outputs z, then halt

For nontotal ¢,,, this will fail, since, say, it could be that ¢,,,(1) = x while ¢,,(0) 1.
The call to M on input 0 would go forever, never reaching the computation ¢, (1).
Once again, one must dovetail:

forT=1,2,... do
if M on any input y < T outputs z within T steps, then halt

www.it-ebooks.info

N84

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 199

Mathematically,

2.7.3.5 Theorem. There is a primitive recursive k such that for all x, ran(¢,) =
Wk(:l?)'

Proof. Define, for all z and y,

)0 if (32, w)(T(z, z,w) Ay = d{w))
x(@,y) = {T otherwise

The top predicate is c.e. thus y is defined by positive cases. This makes x partial
recursive. By the S-m-n theorem, thereis ak € PR such that ¢y ;) (y) ~ x(z,y), for
all z, . The definition of x immediately yields that ¢y ;) (y) | iff y € ran(¢;). O

2.7.3.6 Corollary. There are o and 7 in PR such that, for all x,

(i) W = ran(¢g(z)) and, moreover, ¢y is 1-1. Ifitis nontotal, then dom(¢,(5y) =
{i € N: i < n}, for some n.

(ii) ran(¢;) = ran(¢.(y)) and, moreover, ¢,z is 1-1. If it is nontotal, then
dom(e,(z)) = {i € N:i < n}, for some n.

Proof.

(i) We adapt the proof of 2.7.3.3, being careful not to output values that have
already been output. The technique for generating outputs is dovetailing; the
technique to avoid repetitions of outputs is to keep a list of “outputs so far”, and
not output a generated value if it is in the list.

So this time we define a modified 1) via a course-of-values recursion following
the careful approach of 2.1.2.50 and 2.1.2.51, albeit in the present application
we will not start with, nor write down, the (simple) primitive recursion for the
history function

H(i,z) = [¢(i,0),...,9(i,)]

In this connection we recall the predicate « € y used in the proof of 2.4.4.1.

¥(i,0) ~ ()
Wiz + 1) (1) (TG, (2o, (2)1) A ~(2)o € H(iy))

The S-m-n theorem yields a o such that ¢,y (y) =~ ¥(z,y), for all z,y.
The claim for dom(¢, () follows from 2.1.2.51. That W, = ran(¢,(s)) is
immediate.

(ii) By 2.7.3.5 we get an h such that ran(¢,) = W,(,). Applying part (i) we get a
o such that Wy, (;y = ran(¢y(x(z))). We set 7(z) = o(h(z)), for all z. O

We continue with a brief exploration of effectively—a synonym of computably—
obtaining the results of computable set-theoretic operations on c.e. sets.

www.it-ebooks.info

http://www.it-ebooks.info/

200 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.7.3.7 Example. There is a primitive recursive h such that Wy, .y = W, N W,.
Herein lies the effectiveness of this operation: If we know the verifiers « and y of
two c.e. sets, then we can construct (via h) a verifier h(x, y) for their intersection.
Note that W, N W,, = dom(¢, + ¢,). Fix an ¢ such that, for all z,y and z, we

have ¢§3)(;,;,y, z) >~ ¢z (z) + ¢y(2). By S-m-n, ¢s;(z’,z,y)(z) ~ ¢l(3)(x, y, z). Take
h = A\ry.S3(i, 2, 9). a

2.7.3.8 Example. (2.7.3.6 Revisited) How about proving 2.7.3.6, case (i), by select-
ing an a in W;; selecting an o’ in W; — {a}; selecting an a” in (W; — {a}) — {a'};
etc.?

OK, let us organize this idea. First off, we can finda k € PR such that Wy, ;) =
W, — {«} for all i,z. We do this by noting that W; — {z} = W; N (N — {z})
W; N Wi(z), the last equality by Exercise 2.12.58. Using 2.7.3.7 we have

Il

Wh(ir(zy) = Wi — {2}
Our k is Miz.h(i,r(x)).
We can now take care of the iteration “etc.” above using the selection function g:

We let @ = g(i); then remove a to obtain Wy(q ;);
We nextleta’ =g (k (a, z)), then remove a’ to obtain Wi(a/ k(a i)

Wenextleta” =g (k (a, k(a, z))) ; then remove a” to obtain Wi(a/ k(a’ k(a,i)))}
etc. We can define an f by recursion,

f(0,4) =1
fla+1,1) = k(g(f(@,9)), f(=,7))

f enumerates the W-sets—verifiers of, that is—
Wi =W, 2 Wi D Wrea D Wi 2 -

while the sequence

9(f(0,2)),9(f(1,1)),9(f(2,2)), ...

1-1-enumerates (the members of) W;, because g(f(x,))~~if defined—is not in
Wi (y,i), for y > z, and thus will not be chosen again.

Indeed, by the second equation for f, f(z + 1,1) is what g selects in the original
W, after the removal of g(f(z,7)) in this very step—the g(f(z — 1,1)), g(f(z —
2,4)),...,9(f(0,7)) having been removed in the preceding steps (by an obvious
induction).

It is also clear that either Az.g(f(x, 1)) is total, or an initial segment of N, since @
the enumeration will not get stuck until W; is depleted. a

2.7.3.9 Example. Let A be a c.e. set and f a partial recursive function. What can
we conclude about the inverse image of A under f, that is, f._(A)? (Cf. p. 43.)

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 201

Well, z € f(A) = (Fy)(f(z) =y Ay € A). Thus, by closure properties of P,
and 2.5.0.7, the inverse image is c.e.

We can do better than this: From programs for f and A we can construct an
enumerator for the inverse image. This is done by yet another dovetailing argument!

Intuitively, we dovetail the “enumeration” f: Enumerate all triples (x,y, z) in
some systematic way. For example, as {(w)o, (w)1, (w)2), forw =0,1,2,...

For each (z, y, z) generated, we do z steps of the verification of f(z) = yAy € A
using the given program for f and the verifier for “y € A?”

If we get a “yes” then we enumerate z into f,_(A).

Mathematically this is even simpler, although the dovetailing is hidden. Note
that z € (¢z)(Wy) = ¢g(2) € Wy. But ¢,(2) € Wy = ¢y(é2(2)) {. By
S-m-n applied to ¢ = Azyz.¢,(¢,(2)) we have an b € PR such that ¢(x,y, z) ~
Ph(z,y)(2), for all x,y,z. That is, dom(dp(zy)) = (Pz)(Wy), or Wiz y)
(@) (Wy).

ol

2.7.3.10 Example. Letus address the same question as in 2.7.3.9, but for the forward
image f_,(A) = {f(z) : z € A} for c.e. A and partial recursive f. First off, choose
a verifier ¢, for A. Then we can dovetail as follows: Enumerate systematically, as
in the preceding example, all triples (x, w, z). For each triple generated as a number
u = [z,w, 2], check whether in z steps we have f(z) | while we have ¢, (z) | in w
steps; if so, print f(x).

Mathematically, let A = dom(¢,) and f = ¢,. Thus, we can enumerate f_,(A)
by

d((uw)2) ifT(y, (u)o, (u)1) AT (z, (u)g, (u)2)
1 otherwise

¥(z,y,u) = {

By S-m-n, thereis a o in PR such that forall z, y, u, we have ¢, (5) (1) ~ ¥(z,y, u).
Clearly, ran(¢, (z,4)) = (62)— (Wy). D

We have so many times remarked that the “dovetailing is hidden” or “obscured”.
In a way this is a deliberate outcome of the tools of this subsection—2.7.3.1, 2.7.3.5,
and 2.7.3.2 along with their variants and corollaries—which “hardwire” dovetailing
arguments into themselves, making it often unnecessary to use such an argument
explicitly.

Here is another example that verifies the above point.

2.7.3.11 Example. Let us revisit the “hard direction”of 2.5.0.7, thatis, if y = f(&,)
is semi-recursive, then f is partial computable. We utilize the selection theorem as
it was generalized in Exercise 2.12.61. By assumption, for some i,

y=f(@) ="y, %) |

Then f = AZ,.Sel™*tD (i, Z,). 0O

www.it-ebooks.info

http://www.it-ebooks.info/

202 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.7.4 Recursive Enumerations

The definition of the term c.e. (r.e.) was via a recursive enumeration f for non-empty
such sets. It turns out that we can say a bit more if the c.e. set is recursive.

2.7.4.1 Definition. A total function f : N — N is increasing iff, for all and y, we
have that ¢ < y implies f(x) < f(y). ltis strictly increasing iff, for all z and y, we
have that z < y implies f(z) < f(y). O

2.7.4.2 Theorem. A non-empty recursive set A has an increasing recursive enu-
merating function, and conversely: If the c.e. set B has an increasing recursive
enumerating function, then it is recursive.

Proof. Let A be as stated. If it is finite, with distinct members in the following
increasing order,

agp, a1, - --,0%
then
ag ifx=0
al ifz=1
flz)=
ap_1 fr=k-1
ak ifxe >k

is primitive recursive, increasing, and ran{f) = A.
Assume now that A is infinite. Define a function h by

h(0)=a
hz+1) = (uy)(y € ANy > h(z))

where q is the smallest member of A. Thus, h € P, and since the search succeeds for
all z, we have h € R. Tt is clear that h is strictly increasing and that ran(h) C A. Is
it possible that m € A —ran(h)? If so, let m be smallest such. Now, m # h(0) = a.
Let then h(y) < m < h(y + 1) for the appropriate y [which is such that y + 1 is
smallest with A(y + 1) > m, a minimum that exists since A is strictly increasing
and thus its outputs increase without bound]. But then, h(y + 1) is wrongly chosen,
since it is not the smallest > h(y) in A! Therefore we can have no such m, and
A =ran(h).

For the converse, let B = ran(f), where f is a recursive increasing function. If
B is finite, then it is recursive—indeed primitive recursive—since in predicate form
it is a disjunction of a finite number of elementary formulae of the type x = a, one
foreacha € B.

Let then B be infinite. We need to show that the predicate « € B is recursive.
Well, B is the increasing “array”

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 203

How do we search such an array for x with a view of finding the first 4, if any, such
that z = f(7)? Our programming experience suggests the pseudo program

i 0
while = > f(i)
141+1
end while
if z = f(7) then print %

else print “not found”

This “proves”—modulo rewriting the program as a URM—that B is recursive. We
can easily turn the above to a mathematical proof.

z € B=f((u)z < f(i))

T

Since B is infinite, the partial recursive function Az.(ui)z < f(¢) is recursive. Thus,
sois Az.f((ui)z < f(3)). a
We have at once:

2.7.4.3 Corollary. An infinite recursive set A has a strictly increasing recursive
enumerating function, and conversely: If the c.e. set B has a strictly increasing
recursive enumerating function, then it is recursive and infinite.

2.7.4.4 Corollary. An infinite c.e. set A has an infinite recursive subset.

Proof. Let A = ran(f) for recursive f. We define a strictly increasing (recursive)
sub-sequence
9(0),9(1),...

of
£(0), £(1),... (1)
and then invoke 2.7.4.3. Note that because A is infinite the sequence (1) is unbounded

hence, for any z, there is a y such that g{z) < f(y).
This leads to this primitive recursion for g:

g(0) = f(0)
glz+1) = f((u) f(y) > g(z))

Since the search above always succeeds, the partial recursive g is total, hence recur-

sive. But it is also, by construction, strictly increasing. (]
Note that the above proof was constructive in that from the knowledge of f we

“programmed” g. This can be made more precise mathematically as follows.

2.7.4.5 Corollary., There is a primitive recursive r such that if ¢, is recursive and

ran(¢.) is infinite, then ¢r(y) is recursive, ran(¢,(y)) is recursive and infinite, and,
moreover, 1an(¢r.(z)) C ran(¢;).

www.it-ebooks.info

http://www.it-ebooks.info/

204 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Proof. A straightforward adaptation of the proof above. Define instead

9(0,z) >~ ¢(0)
9y +1,2) = ¢ ((12)d2(2) > g(y, 2))

As above, the recursiveness and unboundedness of ¢, means that g is recursive and
strictly increasing with respect to the y variable. S-m-n gives us an r such that, for

all z,y, we have ¢.(5)(y) ~ g(y, z). O

2.7.4.6 Corollary. There is a primitive recursive h such that if W, is infinite, then
Wh(zy © Wa, and Wy is infinite and recursive.

Proof. A direct consequence of the proof of 2.7.4.5: Employ first 2.7.3.3 to obtain a
o € PR such that ran(¢,(,)) = W, and where W, # 0 implies ¢,(;) € R. Now
apply Corollary 2.7.4.5 to obtain ¢, (4 (). Finally, apply 2.7.3.5 to obtain a primitive
recursive h such that Wy, ;) = ran(¢,((a)))- a

2.7.4.7 Remark. The “programs” r and h in Corollaries 2.7.4.5 and 2.7.4.6 do not
simply exist; we demonstrated their existence by constructing them. We say that
the proofs were constructive. Constructive proofs that “a program exists” are not
always possible. For example, we know from the proof of 2.7.4.2 that for any finite,
non-empty set, there is an algorithm that can enumerate it in strict ascending order
and then it will “taper off”” repeating (the enumeration of) the maximum entry forever.

It turns out that given a finite set we cannot construct said algorithm.”® We will
demonstrate the particulars of this claim in the following discussion. |

Pause. But how is a finite set “given”?7«

Well, a recursive set S can be given by a decider for S—that is, an z, such that
¢z = xs—or by a verifier for S—that is, a z, such that W, = S. Note that giving
a set as an enumerator is computably equivalent to giving it as a verifier, since one
can go back and forth between these two representations computably (cf. 2.7.3.1 and
2.7.3.5).

2.7.4.8 Example. We have already seen that we can convert a decider for a set S to
a verifier for the same set (2.5.0.12). The process described was clearly constructive,
albeit at an informal level.

Mathematically, let

0 ifg,(y)=0
1 otherwise

Y(z,y) = { 1)

9This statement is dependent on how the finite set is “given”, as the reader will see shortly (cf. 2.7.4.11-
2.7.4.14).

www.it-ebooks.info

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 205

As (1) is an instance of definition by positive cases, ¥ is computable, so, by S-m-n,
let h € PR be such that)(z,y) ~ @y ()(y) for all z,y. Thus

D) (Y) 4= ¢2(y) =0 (2)
If now ¢, = x5 for some S (rendering S recursive), then, by (2), W) =S. O

For recursive sets, can we go, computably, from a verifier to a decider repre-
sentation? No, for one way to go about it would be to seek a 1y € P such that it
satisfies

o ty(z) | iff W, is recursive

and
e in case W; is recursive, ¢y) = Xw, -

The first bullet requires dom(v) = {z : W, € R.}, which cannot be, since the
left hand side is c.e. but the right hand side is not (cf. Exercise 2.12.48). No such %
exists.

2.7.4.9 Remark. Hmm. What about weakening 3 so that we allow it to converge as
it pleases outside {z : W, € R.}, yielding irrelevant answers? That is, can we have
a “new” 1 of which we only ask:

if W, is recursive, then () | and ¢y 5y = xw, (1)

This is also impossible [Rogers (1967)]. To see this, we go back to Theorem 2.7.2.7
and reuse (* x %) (reproduced below)

a0 ifga(a) L
() = .
0 if po(z) 1
from the proof of its item (1), rewriting it in this guise:
N ifzeK
Whiz) = — 2
") {0 ifzc K @
Of course, h is primitive recursive. Suppose now that we have this new, weaker ¢
that we are looking for. Then,
(@) ¥(h(z)) . for all z, since either way, “top” or “bottom”, W}, () is recursive.

(b) Since ran(xn) = {0}, we have that 1 € ran(¢y((c))) iff we have the bottom
case in (2).

Thus, .
le ran(d)w(h(z))) =ze K

www.it-ebooks.info

http://www.it-ebooks.info/

206 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

This is untenable, since one side of = is c.e. but the other is not. Indeed, 1 €
ran(py(n(z))) = (39) B2)(T(dy(h(ay): ¥> 2) Ad(z) = 1) O

Of course, the foregoing comments also apply to finite sets since these are (primi-
tive) recursive. However, finiteness provides yet another manner to finitely code such
a set, not coding it via a decider or verifier, but rather coding the set of its elements
itself by a single number.

This can be done in any one of the many ways that we have at our disposal for
coding finite sequences, for example, prime-power coding (allowing O to be the code
for the empty set). As this entails a decision on selecting one of the n!°” orders of a
set of n elements, the following coding is more elegant.

2.7.4.10 Definition. (Canonical Indices) The canonical index of a finite set S =

{ag, . ..,a, }—where the a; are distinct but not otherwise sorted in any “preferred”
order—is the number v = 2%0 4 291 4 ... 4 2%,
The canonical index of () is 0. O

u—expressed in binary notation—has a digit (“bit”) 1 in precisely the positions a;,
fori =0,...,n (where position-0 is the rightmost or “least significant”).

2.7.4.11 Example. It is rather trivial to see that if we have a canonical index u of
a finite set S, then we can construct a program for its characteristic function, and
therefore —by 2.7.4.8—can also construct a program for a verifier of S.

Indeed, if u = 0, then the characteristic function is Az.1. Alternatively, once we
have recovered from u (by just looking where its binary notation has 1s) the members

{bo,...,bm}

of S, the characteristic function—and indeed the enumerator of p. 202—can be
constructed at once:

0 ife=b
xs(x) = ¢
0 ifz=>5b,

1 otherwise

The converse will not work:

2.7.4.12 Example. We cannot (in general) have a computable function 7 such that
if W, is finite, then ¥ (x) | and ¢¥(x) equals the canonical index of W, while, if W,
is not finite, then ¥ (x) 1.

70! = 1and (n+ 1)! = n! x (n + 1).

www.it-ebooks.info

¢

http://www.it-ebooks.info/

DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 207

Indeed, if we had such a 1, then dom(¢)) = {z : W is finite}.
This is impossible, as the left hand side is c.e. but the right hand side is not (cf.
Exercise 2.12.50). O

2.7.4.13 Example, If a finite set S is given by its characteristic function, ¢, then
we have more information about S’ than we would have if it were given as a W,.
Does this extra information allow us to have a computable function £ such that if
{y : ¢(y) = 0} is finite, then £(x) | and £(z) equals the canonical index of

{y: ¢(y) = 0}; while, if {y : ¢.(y) = 0} is not finite, then £(z) 1?
The answer is still negative, for consider the following definition by recursive

cases
1 if-®,.(z) <y
m? = .
f@.y) {O otherwise

f € R and thus, by S-m-n, we have a ¢ € PR, such that

f(.’E, y) = ¢a‘(m) (y)9 for all z, Y

Note that if ¢(x) 1, then the top condition is always true, thus, using sequence-
notation

bo(m) =111,
1s forever
that is,
x € K implies that ¢,(;) = Xp (1)

If, on the other hand, ¢, {x) |, let y = y, be smallest such that ®,(z) < y. Thus,

Gq(zxy = 111...1000...in this case

yz — 1 1s Os forever

Thus, ¢g(s) is the characteristic function of an infinite set in the z € K case, and
hence £(o(z)) 1. Therefore, assuming we have our ¢ as stated, we also have

toz)l=ze K

This will not do, since the left hand side is a c.e. relation, while the right hand side is
not c.e. O

2.7.4.14 Example. Perhaps, if we weaken the requirement on £, we may have a
computable passage from the program of the characteristic function of a finite set to
its canonical index.

Thus, let us relax the requirement that if {y : ¢,(y) = 0} is not finite, then we
are “informed” of this by “4(x) 1. Since we cannot computably know whether
{y : ¢=(y) = 0} is not finite, we lose nothing if we allow £ to converge for such z
(cf. the analogous situation in 2.7.4.9).

So, can we have the validity of the weaker statement below?

www.it-ebooks.info

http://www.it-ebooks.info/

208 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

“A computable & exists such that if {y : &, (y) = 0} is finite, then £(z) | and
&(x) equals the canonical index of {y : ¢ (y) = 0}.”

Thus, we are willing to live with a much less informative version of “£”, where
the statement “{y : ¢,(y) = 0} is not finite” may well coexist with £{x) . Such
a ¢ still would always correctly build the canonical index of a set S if it received as
input a program z that computes the characteristic function of S, but would produce
nonsensical outputs for some x that satisfy “{y : ¢, (y) = 0} is not finite”.

It turns out that we cannot have this version of £ either! Indeed, define

0 ify=min{z: ®,(x) <2
g(z,y) = . {21 @:(a) < 2}
1 otherwise

Note that
y=min{z: ®,;(z) < 2} = 0, () < yA (Vz)y=P(x) < 2

hence both defining conditions (for g) are recursive. Thus g is recursive. Let o in
PR be such that, for all x and y, we have ¢, (,(y) = g(z,y). Thus,

if ¢z (x) 1, then ¢, () = Az.1—that is, xg

and
if ¢ (z) |, say, at the earliest in y, steps, then ¢, () = X{y.}

Since the canonical index of @) is 0, we have
0=¢((o(z)=ze K
contradicting the non semi-recursiveness of K. So, no such £ exists. O @

We now return to the question that motivated all this discussion. We noted that
for any finite set there exists an algorithm, that of p. 202, that enumerates the set in
strict ascending order and once it reaches the maximum element it keeps outputting
said element forever.

We claimed that this algorithm’s existence cannot be proved constructively, that
is, there is no computable process that constructs said algorithm for the arbitrarily
given finite set S.

Indeed, say, S is given by a program (¢-index) for its characteristic function—for
a decider. If we can construct its enumerator from this information, then we will
obtain knowledge of all the members of S by running the enumerator. From this we
can construct the canonical index of .S, contradicting the preceding example.

Next, say, S is given as a W,. If we can construct from this information its
enumerator, in the form given on p. 202, then we could also construct it from a
program for its characteristic function, since the latter can be algorithmically obtained
from x (2.7.4.8). This cannot be. Trivially, if S is “given” by its canonical index,
then the enumerator, a verifier, and a decider for S can be constructed.

www.it-ebooks.info

http://www.it-ebooks.info/

PRODUCTIVE AND CREATIVE SETS 209

Pause. Hmm. In 2.7.3.6 we saw that there is a constructive way, o, that takes us
from W to a 1-1 ¢, () such that W, = ran(¢,(;)) and, if ¢, () is nontotal, then
its domain is {3 : i < n}, for some n. So, why not use this ¢,y to determine the
elements

bo(2)(0), ..., o(z)(n — 1)

of the finite set W,—if indeed it is finite?«

2.8 PRODUCTIVE AND CREATIVE SETS

Some non r.e. sets S are, in a way of speaking, “effectively non r.e.” in that we have
an algorithmic way to refute their r.e.-ness in the context of any claim of the form
“W, = S§”. That is, we can construct a counterexample m € S — W,. Such sets
were called productive by Dekker.

2.8.0.15 Definition. A set S is productive with a productive function f € R if, for
all z, whenever we have W, C S then f(z) € § — W,. O

Clearly, every productive set S is not c.e. for if we think otherwise, then S = W,,,
for some m. But then f(m) € S — W,,—where f is a given productive function for
S—and this yields a contradiction.

2.8.0.16 Example. K is productive with productive function Az.z. Indeed, let W, C
K. Note that this entails that z € W, is false, for it says ¢,(z) |, thatis, z € K,
which is incompatible with the assumption.

Thus, z ¢ W,. But this says = € K so, together, z € K — W, |

We can discover more productive sets via m-reducibility.

2.8.0.17 Theorem. If A <,,, B and A is productive, then so is B.

Proof. Let A <,, B be via g and let f be a productive function for A. We will
construct a productive function for B.

So let W, C B. Thus g, (W,) C g, (B). By 2.7.3.9, there is an h € PR such
that W5y = g (W) for all z. Thus, we have Wj,(,) C A = g (B). Since fisa
productive function for A, we have f(h(z)) € g (B) — Wh(y), that is,

f(h(z)) € g (B) — g (Wy) (1)
Since g (X —Y) = g (X)— g (Y) (cf. 1.8.19), (1) yields g(f (h(2))) € B—Ws.
Thus, Az.g(f(h(x)) is a productive function for B. O

2.8.0.18 Example. Thus, since we know that K <1 {z: ¢. € R}, K <4
{z : W, is finite}, and K <; {z : W;isinfinite}, all of {z : ¢, € R}, {z :
W, is finite}, and {z : W, is infinite} are productive. O

www.it-ebooks.info

http://www.it-ebooks.info/

210 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

A concept closely related to that of productive sets is that of creative sets, due to
Post.

2.8.0.19 Definition. A c.e. set with a productive complement is called creative. [

A creative set cannot be recursive, since its complement is not c.e.

It turns out that the set of theorems of theories such as Peano arithmetic is creative®
and thus has no deciders. This prompted Post to choose the name “creative” for such
sets since it takes more than a mechanical process to decide theoremhood for such
theories.

2.8.0.20 Example. K is creative, since it is c.e. and Kis productive. O
2.8.0.21 Corollary. If A is creative and A <,, B, then B is productive.

Proof. Let f effect the reducibility. Then A < B (negating both sides of z € A =
f(z) € B). Now apply 2.8.0.17. O

2.8.0.22 Theorem. For any productive set A and any W,, C A there is an infinite
W, such that Wy C A and W, N W, = (.

Proof. At the intuitive level this is obvious, for given a productive f for A we can

build W, by explicit enumeration: Set ap = f(z). Assuming that distinct aq, ..., an
have been enumerated, let z be a semi-index for W, U {ao, ..., an}—a c.e. set by
closure properties. Accepting for now that z can be computed from z and ag, . . ., an,

we set ant1 = f(2).
Now for the mathematical formalities: We will organize inductively the above
loosely described process, building two related sequences

W Wt e W oo Wy

and
ag, 1,02, ...,0Qp,y...

such that
e g, € A-W,,,using a; = f(z;)

and

. VVZH_1 = Wzi U {ai},

each for all 7, where zg = .

98 Where this set is converted to a set of numbers, as we show how in Section 2.11.

www.it-ebooks.info

®

44

http://www.it-ebooks.info/

PRODUCTIVE AND CREATIVE SETS 211

From Exercises 2.12.59 and 2.12.60 we know that we have primitive recursive ¢
and k such that, for all i,

w w

Zi+1 = k(Ziyq(f(Zi)))

Thus the recursive function that builds the sequence z; (as a function also of z) is

g(0,z) =z
gli+1,2) =k(g(i2)a(f(9(i,2)))

Assuming W, C A, the set “W,,” that we set out to build is

J(9(0,2)), £(9(1,2)), f(9(2,2)),-.., f(9(n,2)), ..

that is, ran(/\n. f (g(n, x))) Of course, this range is infinite as the enumeration is
1-1. By the second bullet, W, C W,,, for all ¢, thus, by the first bullet, the built set
is indeed disjoint from W,. O

The above proof is constructive. Given z and the productive function f (the latter
by a ¢-index) we can construct the set W, of the theorem, i.e., can compute the y
using 2.7.3.5.

Also note that if W, ¢ A, then, even though g still enumerates a c.e. set
ran()\n. f (g(n7 :z:))), this set does not have the described properties. For example, @
f(z) may not even be in A.

2.8.0.23 Corollary. A productive set has an infinite c.e. subset. Moreover, this subset
can be constructed from a phi-index of the given productive function.

Proof. Take W, = . O

2.8.0.24 Corollary. A productive set has an infinite recursive subset. Moreover, this
subset can be constructed from a phi-index of the given productive function.

Proof. By 2.7.4.4. O

2.8.0.25 Example. Let A be c.e. and A N B = C, where C' is productive. Then B
is productive.
To see this let us construct a productive function for B from a productive function
f for C and a semi-index e of A.
So, let W, C B. Thus
AnWwW, CC (1)

By 2.7.3.7, we have an h in PR such that A NW, = Wy, for all z. By (1),
Wizy € C, thus f(h(z)) € C' —~ W}, and therefore

f(h(z)) e ANB—-ANW, (2)
In particular, f(h(z)) € A, thus, from (2), f(h(z)) € B — W,. We found a
productive function for B. O

www.it-ebooks.info

http://www.it-ebooks.info/

212 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

29 THE RECURSION THEOREM

The recursion theorem, by that name, is due to Kleene but owes its existence (and
proof) to the work of Gédel (1931) on the incompleteness phenomenon. We look at
a few versions of this very powerful tool in what follows, and then come back to this
comment regarding the connection with Godel’s work.

2.9.0.26 Theorem. (Kleene’s Recursion Theorem) If AzZ.f(z,&,) € P, then for
(n) /= ~ - —
some e, we have ¢¢ ' (T,) =~ fle, Ty), for all Z,.

Proof. Let o§" ™" = Az&,.f(ST(2, 2), %,). Then

F(S2(a,a), Tp) ~ ¢V (a, 7,)

= ¢§T§) (a,a)(Zn) by 2.6.0.38

Take e = S7(a, a). O

2.9.0.27 Corollary. (Recursion Theorem—Rogers’s version) If Ax.g(x) is recur-
sive. then there is an e such that 40y = Ge.

This does not say that g(e) = e. Rather, that the two programs g(e) and e compute
the same function.

Proof. Let f(x,y) ~ ¢g(z)(y), for all z,y. Since f € P, 2.9.0.26 applies to yield
an e such that f(e,y) ~ ¢.(y), for all y. d

2.9.0.28 Remark. It is instructive to see Rogers’s direct proof for the corollary:
Define 1 by
U(z,y) ~ b, (2) () (1)
By the normal form theorem, ¢» € P. Let h be obtained by S-m-n such that
Y(x,1y) ~ ¢n(z)(y). for all z,y. Let a be such that (gh) = ¢,. By (1) we now get
(for all y)
o) (V) = P(a,y) = G4, (a)(¥) = Pg(h(a))(Y)

e = h(a) works.

Note that, in (1), ¢.(z) is not a ¢-index unless ¢, (z) |, but this is irrelevant
to the proof, in which we applied the S-m-n theorem to the computable function ¢
given—in detail—by

Awy.d((,uz)T(d((,uw)T(x, z,w)),y, z))

2.9.0.29 Corollary. (Recursion Theorem with Parameters)
If AeGn@n (2, Y, Tn) € P, then there is a 1-1 primitive recursive function h

such that f(h(fm), Gir En) = $40)) (Fn). for all G, Fr.

www.it-ebooks.info

http://www.it-ebooks.info/

THE RECURSION THEOREM 213

Proof. Let FDzef/\zyj'mfn.f(Sf,‘lH(z, Zy Ym) Ym, Zn) and a € N be such that F =

A2Gmn. ST ™ (2 G, &n). Thus,

R . . . _, \ by S-m-n -
f(S,’ﬁLH(a, a, ym)v Ym, Tn) = ¢:+m+1(a’ Ym» mn) =~ ¢S;‘L+1(a,a,gm)(xn)

Just take h = Aj,.Spy 11 (a, a, §m) and note that the S-m-n functions are 1-1. |

2.9.0.30 Corollary. (Recursion Theorem with Parameters—Rogers Style)
For any g € R of m + 1 arguments, there is a 1-1 primitive recursive function h

such that ¢é7(li)b(gm),gm) = ‘75;:;7);,”)’ forall §,,.

Proof. f = AefmZn.0\™) . (%) isin P. Now apply 2.9.0.29. O

9(z,Gm)
The reader has noted no doubt that the proofs of all versions of the recursion theorem
are constructive. For example, in the proof of 2.9.0.30, if g is given as ¢£Um+1), then

weuseanew f: f =)\zwg'ma‘:‘n.qb((Z,,) and, correspondingly, the new h

$U") (2,0m)
will be an S-m-n function dependent on w as well, yielding for all w, 7, , Zn,
(n) _ 4(n)
¢ y (bh(w,im)

ST (R,) T

2.9.0.31 Remark. (Indebtedness to Godel (1931)) The proof that Godel gave in
loc. cit. to his first incompleteness theorem was based on a modification to the liar’s
paradox (the latter due to the Cretan philosopher Epimenides). Epimenides is credited
with the sentence “All Cretans are liars”. But then, him being a Cretan, the statement
must be false, so there is at least one Cretan who is not a liar. This is rather unsettling
since by virtue of him simply making this utterance he forced the existence of truthful
Cretans! A more unsettling version is the statement “I am lying”, for, if I am, then
I am not, for my statement is false; if I am not, then I am, for my statement is true.
Godel built an analogous sentence . within Peano arithmetic, one that states its own
unprovability: “I am not a theorem” (of Peano arithmetic).

Intuitively—and based on the fact that Peano arithmetic cannot prove false state-
ments—such a sentence is neither provable, nor is its negation: Indeed, if Peano
arithmetic can prove ., then it has just proved a false statement. So . cannot be a
theorem. But then it is true, as it says just that! This makes —.% false, therefore it
cannot be proved either.

But let us get back on track. Godel built within Peano arithmetic a so-called
provability predicate, ©(z), analogous to the Kleene predicate. ©(x) says “the
formula coded by the number z is a theorem”.

Pause. By the way, in honor of Gdédel, we call such formula-codes “Godel
numbers”. <

Gddel also devised in his paper a primitive recursive substitution function of two
variables, s(a,b), which computes the (new) Godel number of a formula obtained

www.it-ebooks.info

http://www.it-ebooks.info/

214 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

from % (z)—the latter of G6del number a—if we replace = by b. This is an S-m-n
Sfunction, but in the context of formulae.

Next, he proved his diagonalization lemma, that for any formula .#(z), there is
an e such that e is the Godel number of the sentence .# (e).

He did this as follows: Let us consider the new formula % (s(z,z)) of Godel
number, say, a. But then, the Gédel number of #(s(a,a)) is s(a,a). Take e =
s(a, a). Now compare with the statement and proof of 2.9.0.26!

To conclude this discussion, apply the diagonalization lemma to —©(z) to find
an m such that m is the Godel number of —~©(m). So the latter says, “m is not a
theorem”, that is, “I am not a theorem”. [l

2.9.1 Applications of the Recursion Theorem

2.9.1.1 Theorem. (Rice’s Theorem—Revisited) A complete index set is recursive
iff it is trivial.
Proof. [The idea of this proof is attributed in Rogers (1967) to G.C. Wolpin.]

if-part. Immediate, since xy = Az.1 and xny = Az.0.
only if-part. By contradiction, suppose that A = {z : ¢, € C} is nontrivial, yet
A€ R, So,leta e Aand b ¢ A. Define f by

b ifreA
f(w):{a ifxg A

Clearly,
x € Aiff f(z) ¢ A, forall x (1)

By the recursion theorem (e.g., 2.9.0.27), there is an e such that ¢ () = @e.
Thus, e € A iff f(e) € A, contradicting (1). O

2.9.1.2 Corollary. If A = {x : ¢, € C}, then A £, A and thus A %, A.

Proof. Suppose
ze€ Aiff f(r) € A (%)

where f is recursive. If e is as above, then e € A iff ¢ € C iff g5 € C iff
f(e) € A, contradicting (). O

2.9.1.3 Example. K is not a complete index set, that is, there is no C C P such that
K={z:¢,€C} (1)
Suppose such a C exists. Define

ey = {0 ifz =1y

1 otherwise

www.it-ebooks.info

http://www.it-ebooks.info/

THE RECURSION THEOREM 215

By definition by positive cases, 1 is computable, so let by 2.9.0.26, e be such that
P(e,y) =~ ¢e(y), for all y. It follows that

de(e) L (2)
but
Pe(y) T.ify#e (3)
By (2), e € K and, by (1),
¢ €C (4)

Let now m # e be another among the infinitely many indices of ¢, that is, e = ¢p,.
By (4), ¢ € C. By (1) and the original definition of K, this entails ¢,,(m) |
which also says ¢.(m) |, contradicting (3). We cannot have (1)! O

2,9.1.4 Example. A machine that ignores the input and just outputs itself! Define
P as ¥ = Azy.x. By 2.9.0.26 there is an e such that ¢.(y) = ¥(e,y) = e, for all
Y. d

The next application is about self-referential (recursive) definitions of functions
F that may look arbitrarily complicated as the one below

F(:’c‘n):f<F(F()>F(F(F()))> (1)

where nesting of occurrences of F' is aliowed (unlike the case of primitive recursion).

For example, the Ackermann function Anz.A, () involves some nesting of A inside
A in its definition (2.4.1.2). This function’s definition is an instance of (1) as we can
immediately see if we rephrase it a bit: A,,(x) is given by

z+2 ifn=20
An(z)y =<2 elseifz =0
A,-1(An(z = 1)) otherwise

We are interested in just those cases that the right hand side of (1), the “f(...)”
consists only of “computable operations”, meaning that the right hand side can be
built by a P-derivation modified to utilize F' as an initial function. Another way to
describe the shape of the right hand side of (1) is in terms of closures (cf. 1.6.0.12).

2.9.1.5 Definition. We say that a function is partial recursive in F iff it is in the
closure of Z U {F'} under composition, primitive recursion, and (11y), where Z is the

already adopted set of initial functions of P. O

2.9.1.6 Remark. It follows from 2.9.1.5 that if F' € P, then a function that is partial
recursive in F' is just partial recursive—see Exercise 2.12.70.

www.it-ebooks.info

4

http://www.it-ebooks.info/

216 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

In particular, if we replace F' throughout the right hand side of (1) by a partial

recursive function qb,(g") of the same arity as F', then we end up with a partial recursive
function. g

In (1) F acts as a function variable to “solve” for. A solution h for F is a specific
function that makes (1) true for all &, if we replace all occurrences of F by h.

We next show that if the right hand side of (1) is partial recursive in F', then
(1) always has a partial recursive solution for F'. That is,

(Je) (if F in (1) is replaced everywhere by ¢{™, (1) becomes true for all :ft'n) (2)

Indeed, the function A\zZ,.G(z, &) given below by substituting all F in the right
hand side of (1) by Az&,. o)(wn) is partial recursive by 2.9.1.6.

G(z,Z,) 3)
:f(¢<">(..¢n)(...)...).. g ((. ¢<">(...)...)...)...)
By the recursion theorem there is an e such that

Gle, &n) ~ ¢ (&,), for all Z,
Thus, (3) yields

¢ (&)
:f(¢><n(.¢<">(...)...)...¢g">((. ¢<">(...)...)...)...)

That is, setting the function variable I equal to ¢<(3") we have solved (1), and with a
‘P-solution at that!

The above technique says nothing about uniqueness of solution for F, or totalness.
Such issues must be explored separately by methods other than the recursion theorem.

2.9.1.7 Example. Here is a second solution to the question “is Anz. A, (z) € R?".
Ay (z) is given by

T+ 2 ifn=20
An(z)=(¢2 elseifz =0
A, -1 (An(z = 1)) otherwise

We rewrite the above using F' as a function variable and setting F'(n,z) = A,(z).
Thus, F is “given” by

x+2 ifn=20
F(n,z) =42 elseifz =0 (4)
F(n=1,F(n,z = 1)) otherwise

www.it-ebooks.info

http://www.it-ebooks.info/

COMPLETENESS 217

(4) has the form (1) of the preceding general discussion, and all assumptions are met.

Thus, for some e, F' = ¢£2) works. But is this ¢£2’ total? Is it the same as A,,(z)?
Yes, provided (4) has a unigue total solution! That (4) indeed does have a unique
total solution is an easy (double) induction exercise that shows F'(n,z) = F'(n,z)
for all n, x if

x+2 ifn=0
F'(n,z) =42 elseifz =0
F'(n=1,F/(n,z = 1)) otherwise

The existence (of a solution), is of course, provided by the recursion theorem. See
Exercise 2.12.71. a

2.9.1.8 Example. Here is a recursion that goes “backwards”, that is, defines a func-
tion at input n in terms of its value at input n 4+ 1. Suppose that g is recursive and
define

. n ifg(n,Zx) =0
h(n, &) ~ ifeln @) (1)
h(n+1,Zx) otherwise
Replacing the 4 in the right hand side by ¢§’“+”, we have a partial recursive G:
n if g(n, k) =0
G(z,n,Tg) =~ . 2
(k) { ,(zk+1)(n+ 1,Zx) otherwise @
By the recursion theorem, there is an e such that qﬁ,(gk“) solves (1):
if g(n, &) =0
kD) 7) e g, 3
CCED {q&ffﬂ)(n +1,Z%) otherwise ®)

What is the import of this example? That we rediscover the computability of

functions defined by /i. Indeed, we see that ¢>£’“+1) (0, %x) =~ (py)g(y, Tx), for all T,
(cf. 2.7.1.2 and Exercise 2.12.72). O

2.10 COMPLETENESS

The concept of reducibility has been instrumental toward certifying in the preceding
papes that several problems were unsolvable or non c.e. culminating to the proof
of Rice’s lemmata and theorem. At the heart of the use of the technique was the
observation that when A <,,, B or A <; B, then B is “more unsolvable” than
A. Does this ordering, <,, (resp. <1}, have a “maximal” element among c.e. sets?
Indeed, it does have several. Such sets are called m-complete (resp. 1-complete).

2.10.0.9 Definition. (/- and 1-completeness) A set A is called m-complete (resp.
1-complete) iff the two conditions below hold

www.it-ebooks.info

http://www.it-ebooks.info/

218 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(1) Aisce.
(2) If Sis any c.e. set, then S <,,, 4 (resp. S <; A). O

2.10.0.10 Example. K; = {[z,y] : ¢-(y) |} is 1-complete.
Indeed, first K; is semi-recursive since

ze K1 =33y (z =z, y] A da(y) 1)

Second, let S be c.e., that is, S = W, for some e. Then z € S = [e,z] € K. Thus,
S <3 K, since Az. [e, z] is 1-1. O

2.10.0.11 Example. K 1-complete. Indeed, first we know that K is semi-recursive.
Second, let S be semi-recursive. Define

0 ifzesS
1 otherwise

Yz, y) ~ {

% is defined by positive cases, so it is computable. By S-m-n, thereisan 1-1 2 € PR
such that, for all z and y, we have ¥(z,y) =~ ¢p(z)(y). Hence

0 ifzeS
Pr(a) () {¢ otherwise
and therefore
bnmy(h(z) =z € S (1)
(1) says “S <; K~ -

2.10.0.12 Proposition. A c.e. set A ism-completeiff S <,, Aforsomem-complete S.

Proof. For the if, let B be c.e. Then B <,,, S. Hence (Exercise 2.12.64), B <,,, A.
For the only if, the assumption on A and the semi-recursiveness of S will do. O

2.10.0.13 Corollary. If A is m-complete, then it is creative.

Proof. By assumption, K <,, A. By 2.8.0.21, A is productive. But A is c.e. O

It is clear that all 1-complete sets have the “same difficulty” and the same is true of
all m-complete sets, for if A and B are 1-complete, then we have both A <; B and
B <; A—applying the second condition from 2.10.0.9 first for B and then for A.
This “equal difficulty (or complexity)” concept has a symbol: We write A =; B for
A<i;BAB<yAand A=, BforA<,, BAB <,, A.

2.10.0.14 Example. Each of =; and =,, are equivalence relations. Cf. Exer-
cise 2.12.65. g

www.it-ebooks.info

¢

http://www.it-ebooks.info/

COMPLETENESS 219

2.10.0.15 Definition. The equivalence classes (cf. 1.2.0.29) of =, and =,,, are called
1-degrees and m-degrees, respectively. If A =; B we then say that “A and B have,
or belong to, the same 1-degree”. If A =,, B we then say that “A and B have, or
belong to, the same m-degree”. O

2.10.0.16 Example. Thus, K and K belong to the same 1-degree and to the same
m-degree. By Theorem 1.2.0.30, K € [Ko]_, and also K € [K] O

=m

2.10.0.17 Example. Since trivially A <; B implies A <,, B we also have that
A =; B implies A =,, B. Therefore, for any A, we have [A]_ C [A]_ (cf.
1.2.0.30). d

Along with a concept of “having the same complexity” one needs a concept of
“having strictly less (more) complexity”.

2.10.0.18 Definition. We write A <, B (resp. A <1 B)for A <,, BA—-B <, A
(resp. A <y BA-B <1 A). O

2.10.0.19 Example. A <, Bisequivalentalsoto A <,, BA-A =, B. A similar
observation applies to <;.]

A usual shorthand for denoting the negation of a relation R is to write £. Thus we
may write B «,,, Afor-B <,, Aand B #,,, Afor-B =,, A.

2.10.0.20 Example. Is there any set A such that A <; K? Well, yes! Every
recursive set A satisfies this inequality, since K <; A cannot be; it would render A
non recursive. O

How about c.e. sets? Are all non recursive c.e. sets 1-complete? Post has answered
this negatively.

2.10.0.21 Definition. (Simple sets) A set.S is called simple if it fits the three follow-
ing conditions:

(1) Sisc.e.
(2) S is infinite.
(3) S intersects® every infinite W. O

Thus a simple set is c.e. but not recursive (cf. Exercise 2.12.66). Post proved,
constructively, that simple sets exist.

2.10.0.22 Theorem. (Post (1944)) Simple sets exist.

99That is, for every such W, we have SN W, # 0.

www.it-ebooks.info

http://www.it-ebooks.info/

220 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Proof. We construct one! In building (enumerating) a simple set S by stages, we
will achieve requirement (1) of Definition 2.10.0.21 by enumerating computably the
set that we are constructing. We achieve requirement (2) by making S have large
“gaps” in its enumeration, thus ensuring a “large” complement.

Requirement (3) is met by systematically putting into S at least one member from
each W,—and therefore from each infinite W,.'® We meet (3) by modifying the
selection function (2.7.3.2): For each z, we select a member m of W, and place it
in the under construction S as long as m > 2z. This guarantees that our .S intersects
every infinite W, as it will have a member such as m.

This process being computable, makes S c.e. On the other hand, in every interval
of integers, 0,...,2m a k will be in S only if k¥ > 2i for some i < m. The largest
“¢” that would contribute a “k” is m — 1. Thus there are at most m members of S in
the interval, and hence at least m + 1 members in S. m being arbitrary, S is infinite.

Mathematically, the enumerator f is given, for all z, by

f@) = ((12)(T@, (2)o, (2)1) A ()0 > 22))
Clearly, f € P, and thus ran(f) is c.e. O

2.10.0.23 Corollary. There is a c.e. set that is not m- nor 1-complete.

Proof. The simple set S fits the bill, for were it m-complete it would then be also
creative by 2.10.0.13. But a creative set has a productive complement which contains
an infinite W. O

From the above: A simple set cannot be creative.

2.10.0.24 Example. Myhill proved that creative sets are 1-complete. This entails
that the concepts of 1-complete and m-complete coincide, since, by 2.10.0.13, if
A is m-complete then it is creative, and therefore 1-complete. But, trivially, 1-
completeness implies m-completeness.

We show here a less involved and weaker result that creative sets are m-complete.

So, let A be creative and let f be a productive function for A. Now A is c.e. so
we only need to show that K <, A (cf. 2.10.0.12).

Define, for all z,y, 2,

0 ifz=flz)Aye K
1 otherwise

Y(z,y,2) ~ {

1) is defined by positive cases hence is computable. By S-m-n we have a 1-1 primitive
recursive g of two variables such that ¢(z,y, z) ~ ¢g(,,)(2), for all z,y, z. Thus,
by 2.9.0.30, there is a 1-1 (primitive recursive) function h such that

Py(hiy)y) = Phy) (1)

100We cannot algorithmically focus on infinite W only, since {z : W, is infinite} is not c.e. (cf. Exercise
2.12.51).

www.it-ebooks.info

®

http://www.it-ebooks.info/

UNPROVABILITY FROM UNSOLVABILITY 221

for all y. Hence,

0 ifz=fhy)AyeK
o~ ~(h(y),y, 2) ~ 2
Pn(y) () = bg(ny)m) (2) = V(R(Y), y, 2) {T otherwise (2)
Taking domains, we have W 1,(,) 2y = Wh(y) by (1) and
{f(r(y)} ifyeK
Whiyy = 3
) {(Z) otherwise (3)

by (2). We claim that K <,, A via (fh). To see this, let first y € K. Thus, by (3),

Wi = {f(h(¥))} (4)

We argue that f(h(y)) € A. Forif not, then f(h(y)) € A, thatis, Wy, C A4,
by (4). Since f is a productive function for A we also obtain f(h(x)) € A — Whi(z)
which is untenable by (4). This settles the claim.

Conversely, let y ¢ K. We want f(h(y)) ¢ A, that is, f(h(y)) € A. This is
s0, since, by (3), in this case we have Wh(y) = () C A, thus, by productiveness,

f(h(y)) € A=Wy = A
Alltold, y € K iff f(h(y)) € A.

Pause. There is a short distance from this result to the full result of Myhill’s
that proves A to be 1-complete. The latter readily would follow if f, the productive
function, were 1-1—in which case so would be (fA). It turns out that we can prove
that we can always choose a 1-1 productive function, a proof we will not get into
here. See Rogers (1967) or Tourlakis (1984).4 O

2.11 UNPROVABILITY FROM UNSOLVABILITY

This section draws from background developed in Section 1.1 and in particular in
Subsection 1.1.1. Nevertheless, we will need to indulge in some repetition here,
aiming to make this section self-sufficient on one hand, and, on the other, making
the underlying logic that we use and discuss here more formal than we managed to
get away with so far,'°! since in the present section logic will not be just a tool, but
primarily will be an object for study—precision is called for!

We will prove here a semantic version of Godel’s first incompleteness theorem
that relies on computability techniques. In this form the theorem states that any
“reasonable” axiomatic system that attempts to have as theorems precisely all the
“true” (first-order) formulae of formal arithmetic!%? will fail to be complete in this
sense: There will be infinitely many true formulae that are not theorems. Imitating

1011y this volume we apply logic informally, we announced on p. 2.
102\ hat makes arithmetic formal is its foundation on axioms and precise rules of logic, where the form of
formulae, rules of inference and proofs matters.

www.it-ebooks.info

L84

http://www.it-ebooks.info/

222 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Cantor’s separation of infinities of sets, between “small” (enumerable) and “large”
(non-enumerable) we will show that the set of true formulae of arithmetic is “com-
putably large” (non c.e., indeed, productive) while the set of provable formulae is
“computably small” (c.e.). Thus the two cannot coincide.

The qualifier reasonable could well be replaced by practical: One must be able
to tell, algorithmically, whether or not a formula is an axiom—how else can one
check a proof, let alone write one? “True” means true in the standard interpretation
of the abstract symbols of the formal arithmetic, terminology that we will carefully
introduce in what follows.

Now, in order to “do” axiomatic arithmetic we need, first of all, a first-order
(logical) language, which we use to write down formulae and proofs. Before we get
to the language—that is, the set of “important” strings, namely, terms and formulae,
of our axiomatic arithmetic—we need an alphabet. This alphabet has two parts:
One that is standard in all logical languages (logical symbols) that we employ to do
mathematics, namely

(1) Two symbols, v and #, used to generate all the (infinitely many) formal names
of variables of natural number type. These names are

v#...#v,foralln >1 (4)
N —
n#’s
(2) The logical part also contains the following symbols (see also Subection 1.1.1)
_|’ \/? :3 V’ (7)

The other part of the alphabet is specific to doing arithmetic. It contains the special
symbols
07 S’ +7 X 3 @7 <

These are the nonlogical symbols for arithmetic, which we—in principle—can inter-
pret any way we please, but we will interpret them in the standard (expected) way,
namely,

Abstract (language) symbol | Concrete interpretation
0 (zero)
Ar.x+1

Azy.x+y

AzZy.x Xy
Azy.zY

Azy.z <y

NPBeX+ o

We next turn to the definition of the objects, technically known as terms, which
the language can express—beyond the obvious objects that are the variables and the
constant 0.

2.11.0.25 Definition. A term is a variable or the symbol 0, or—assuming that ¢ and
s designate terms—any of St, (t + s), (¢ x s), (t@s). If a term is variable-free it is
called closed. O

www.it-ebooks.info

http://www.it-ebooks.info/

UNPROVABILITY FROM UNSOLVABILITY 223

One forms formulae now in the standard way (see also Subsection 1.1.1) start-
ing with the atomic formulae, and then building more complicated ones using the
connectives and the quantifier.

2.11.0.26 Definition. An atomic formula has one of the forms ¢t = sort < s. O

2.11.0.27 Definition. A formula, or well-formed-formula (wff) is one of:

(a) atomic

or, assuming that &7 and & stand for formulae, and x stands for any variable,
(b) (—)
© (& VAB)
@) ((va)o)
A formula with no free variables is closed, it 1s also called a sentence. O

Unlike the case of Subsection 1.1.1, we adopt here only three logical operators since,
as we know, all the others, namely, A, —, =, 3, can be introduced by definitions, such
as “o/ — % means ~ V £, etc. The priorities of p. 8 hold for all these derived
operators as well.

In all that follows, ¢, s will stand for any terms; o7, #,%, 2 will stand for any
formulae; and x,y,z, in this section and in Subsection 2.11.1, will stand for any
formal variable—such as v##w, etc.

They are all metavariables (syntactic variables).

Each of these may be embellished by subscripts and/or primes, thus we can
effectively generate infinitely many metavariables of each sort.

As outlined in Subection 1.1.1, one omits redundant brackets by adopting priorities
for the various connectives and operations. The priority sequence from highest (least
scope) to lowest is taken to be

S,Q, x,+

for operations. For the logical operations V, — and V priorities are as in Subsec-
tion 1.1.1, p. 8.

Pivotal in this (and the next sub-) section is the expression “¢,(x) 17 (cf. 2.3.0.9)
of computability. We will want to know that it is definable by a formula in the
language of arithmetic so that its central relevance to the incompleteness problem
of arithmetic can be established. What “definable” means hinges on what we mean
when we say that “a closed formula of arithmetic is true”.

Thus we immediately visit the semantics of the language of arithmetic. The
traditional way to do so is to define the so-called Tarski semantics of any first-order
language, and then apply it to the special case of the language of arithmetic—as was
done in Tourlakis (2003a, 2008). Instead we will take a shortcut here, following
Smullyan (1992).

www.it-ebooks.info

http://www.it-ebooks.info/

224 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.11.0.28 Definition. (Interpretation of Closed Terms in N) The meaning or in-
terpretation of any closed term ¢, in symbols tN is some member & of N, defined as
follows (cf. the table on p. 222). We will write tN = k.

M oN=0
) (SN =N 41
(3) (t+s)N =N 4N

@) (txs)N=¢N.gN
5) (t@s)N = ()5

The symbol = above, and the symbols + and - on its right, are the informal equals,
plus and times over N, respectively. As usual, we will write ab rather than a - b when
a and b are natural numbers. |

2.11.0.29 Definition. (Numerals) For any natural number n the (meta)symbol 71 is
a short name for the closed term

55---50 (N)
—
T times
and it is called a numeral (for n). O

Clearly, 0 denotes the formal 0, since, in this case, we have an empty S-prefix
in (N) above. Intuitively, 2 is a formal representation of n in the language of
arithmetic. Conversely,
2.11.0.30 Example. (Interpretation of Numerals) For every n, we have aN = n.
We can see this by induction on n: For n = 0, we have OY = 0N = 0—the first
equality by the previous remark, the second by (1) in 2.11.0.28. We next fix n and
take the LH. that 71" = n.

For the L.S. we compute as follows:

mN =211029(g7)N

—211028 3N 4 g

=My 41 O

Lastly, we define when a closed formula in the language of arithmetic is true. This is
done by induction on the complexity of a formula, that is, the number of occurrences
(counting repetitions) of the symbols -, V, V in the formula.

Recall from Subsection 1.1.1, p. 7, that &/ (x) means that x is the only free variable
of formula .

www.it-ebooks.info

http://www.it-ebooks.info/

UNPROVABILITY FROM UNSOLVABILITY 225

2.11.0.31 Definition. (Truth of Formulae) For closed ¢t and 5, ¢t < sand t = s are
true precisely when tN < s and tV = sN are true over N.

For closed formulae o7 and &, —&f is true iff &7 is not; &/ VV 4B is true iff at least
one of & or 2B are. (Vx).27 (x) is true iff, for all n € N, &7 (71) is true. O

We embark now on stating and proving Godel’s First Incompleteness Theorem.
As this speaks of any recursive axiomatization of arithmetic, that is, any first-order
theory that attempts to prove all the true sentences of arithmetic, starting from a
recognizable set of special axioms, we will outline what such an axiomatic system
would look like, what its components, (1)-(4) must be.

(1) A recursive set of strings: The well-formed formulae (wff).

(2) A recursive subset of wif that characterize the “behavior” of (the symbols of)
arithmetic: These are the special (or nonlogical) axioms for arithmetic. We will
leave them unspecified, beyond the requirement of them forming a recursive set,
so that the requirement that the incompleteness theorem “speaks of any recursive
axiomatization of arithmetic” is met.!®3

(3) The logical axioms (see Subsection 1.1.1)

(4) The modus ponens rule of inference (see Subsection 1.1.1)

2.11.0.32 Remark.
(D) Intuitively, (1) above says that there is an algorithm that, for every string over
the following alphabet
—l,\/,:,V,(,),v,#,O,S,—i—,><,<,@,; (B)

will decide the string’s membership in wff—i.e., whether or not the string
parses correctly as a formula. The reader with some programming under his
belt, who has not skipped over Subection 1.1.1, will not have any trouble
believing that he can actually write a program that does just that. We will not
expand at such level of detail here.'®

(Il) The symbol “;” in (B) will be justified shortly.

(III) But what do we mean, mathematically, when we say that a set of strings is
recursive? After all, until now all our recursive sets were sets of numbers (or of

103 A particularly famous choice of axioms is due to Peano—the so-called Peano Arithmetic, for short
“PA”. It has axioms that give the behavior of every nonlogical symbol, plus the induction axiom schema:

P(0) A (Vx)(P(x) = P(5x)) = (Vx) P(x)

This “schema” (or form) gives one axiom for each choice of wff &2.

104 A rigorous mathematical proof of the recursiveness of the set of all formulae over the aiphabet (B)
is not difficult, but is tedious. The reader who would like to see how this is done may refer to Tourlakis
(2008).

www.it-ebooks.info

http://www.it-ebooks.info/

226

av)

V)

ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

tuples of numbers). Well, nothing has changed! Imagine that the symbols in our
alphabet (B) above, in precisely the order given, are just (strange) symbols for
the numbers 1 through 15. Then any string over the alphabet denotes a number
base 16'% (if you are comfortable with hexadecimal numbers like BBC—i.e.,
3004 in decimal—then you have to also be with what I have just said). For
example, (Vo#v)v#v = 0 denotes (in decimal notation) 5804772525881.

Thus, to speak of a set of strings over { B) is the same as talking about a subset
of N.

Notation. For any string T over the alphabet (B), "T" = x means that z is
the decimal value of the string 7. Thus we can recast the concluding example
above in the notation " (Vu#v)v#v = 07 = 5804772525881.

We have said right at the beginning that the set of axioms must be reason-
able, i.e., recognizable. That is precisely what item (2) above asks for, when
stipulating recursiveness. Since there are in principle infinitely many differ-
ent ways to choose axioms for arithmetic, the correct approach is to “stip-
ulate” recursiveness—as in “let us assume that the axioms are chosen to be
recursive”—rather than expect it to be an inevitable fact.

Indeed, the set of all true formulae of arithmetic is a fine set of axioms for
arithmetic, since from that axiom set precisely all true statements of arithmetic
are derivable (the tools of Subsection 1.1.1 lead immediately to this obvious
fact).

Except for one thing: This set of axioms is not recognizable! See 2.11.0.36.

But don’t we want to be able to recognize all the axioms, including the logical
ones? Yes, but this latter, fixed, set of axioms that does not change from
one mathematical theory to another, can be proved to form a recursive (rec-
ognizable) set. Intuitively, a formula can be recognized to be a logical axiom
just because of its form (cf. 1.1.1). Again the details are elementary but very
tedious and we will omit them.

We know that the union of two recursive sets is recursive, thus the full set of
axioms is recursive once we designed the special axiom set to satisfy (2).

It is also worth observing that the single rule of inference, modus ponens,
is recognizable by its form. That is, there is a recursive relation of three
arguments, M P(x,y, z), which is true precisely when, for some formulae
2 and %, we have either z = "2, y = "2 — ¥, and z = ¥,
orr="% - % y="Z", and z = "%, where (see Section 1.1.1)
X — % abbreviates ~Z V¥, a

105%Why not number the symbols in (B) by 0 through 14 and work base 15? Because we will have trouble
with strings such as =0 < 0. The “digit” in the most significant position is (of value) O and we lose
information as we pass to a numerical value. Le., both ~0 < 0 and 0 < 0 denote the same number.

www.it-ebooks.info

http://www.it-ebooks.info/

UNPROVABILITY FROM UNSOLVABILITY 227

2.11.0.33 Lemma. (Informal) The set of all theorems of an axiomatic arithmetic as
this has been described in (1)—(4) above is c.e.

Proof. (Informal) We will use the symbol “;” of the alphabet (B) as “glue” to
concatenate all the formulae in any given proof that we may write. Le., we explicitly

66,9

write “;” once between every pair of consecutive formulae
G, Py Fy
of a proof. We thus convert the sequence to a single string (over (B))
T Foy .. Ty, (7)

We can think of any expression (string) like (¢) above as a base-16 notation of a
number.

Now let us have the relation P(x,y) stand for the statement: For some proof
F1, Fo, ..., Fy, itisthe case thaty = " F1# Fodt .. . #F, ‘andx =" %,

It can be proved that P(x,y) is recursive: Intuitively, one first needs to express
the (given in decimal) numbers = and y in base 16, that is, convert them into strings
over (B).

One can now test (algorithmically; being able to tell an axiom from a non axiom
and to perform modus ponens algorithmically helps here!) whether or not the string
obtained from y has the form (%) and, if so, whether it is the “glued form” of a proof
whose last formula is the string extracted from x. If the test succeeds, then P(z, y)
is true, else it is false.

Let next ©(z) stand for “the representation of z in base 16 is a string that is a
theorem of arithmetic”. Then ©(z) = (Jy) P(x, y) and we are done by the projection
theorem. O

2.11.0.34 Corollary. The set of all closed theorems (theorems that are sentences) of
an axiomatic arithmetic as this has been described in (1)—(4) above is c.e.

Proof. Computably build two lists simultaneously: Listl is that of the preceding
lemma. For each sentence enumerated in List1, copy it in List2. O

Following Smullyan (1992) we will call a recursive axiomatization of arithmetic
correct iff all the nonlogical axioms are true in the standard interpretation given in
this subsection. For example, the Peano axiomatization is correct.

Since the only rule of inference is modus ponens and we have &, &/ — B E1qu
A, it follows that all the theorems of a correct axiomatization are true in the standard
interpretation. But are all truths theorems?

Let us call Complete Arithmetic, for short CA, the set
{87 : S is a true sentence of arithmetic}

We now have:

www.it-ebooks.info

http://www.it-ebooks.info/

228 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.11.0.35 Theorem. (Gidel’s First Incompleteness Theorem) Every correct and
recursive axiomatic system for arithmetic that satisfies (1)-(4) above is incomplete
in the sense that its set of closed theorems cannot equal the set CA.

Proof. In view of Corollary 2.11.0.34, it suffices to prove that CA is not c.e. To this
end, consider the two sets of sentences below:

K = {T¢5(@) 17 : ¢z(@) 1 is true as interpreted over N}

and

Q@={"¢a(@)1":a e N} (1)
Before we proceed, let me note that “¢z(a) 1” is an abbreviation of a formula of
arithmetic—in other words, it can be written down, in principle, using no more than
the symbols from the alphabet (B), and this formula will say (i.e, will be true iff)
“¢q(a) 1 holds” (see next subsection). Thus,

K={"¢z@) 1t :a€ K} (2)

Now, given any a € N, we can construct the formula ¢;(a) 1, which, using a
different abbreviation, is —(3y)T'(a, a,y). That is, the function f that on input a
outputs " ¢z(a@) 17 is, intuitively, computable.'% Thus

K<K (3)

by (2), since (2) says a € K iff f(a) € K. On the other hand,

Q = ran(f) (4)
by (1). Thus, K is not c.e., while Qisce. BuCANQ = K, thus CA cannot be c.e.
by closure properties.]

Note the emphasized “every” in the theorem. It draws attention to the fact that we
have not fixed any particular “reasonable” theory: whatever we have said holds for
all correct, recursive theories that axiomatize arithmetic.

The main result in the above proof was that CA is not c.e., a fact derivable irrespective
of correctness. Thus, that the set of theorems of the axiomatic theory does not equal
CA holds even without the correctness assumption. On the other hand, it would be
unreasonable to expect an “incorrect” axiomatization to have all its closed theorems
in CA anyway.

2.11.0.36 Corollary. CA is productive.

Proof. By (3) above and 2.8.0.17 we have that K is productive. Then, by 2.8.0.25
and CA N Q = K, we have that CA is productive. O

1061f one decides to verify this carefully, he will find that f is in fact even primitive recursive.

www.it-ebooks.info

http://www.it-ebooks.info/

UNPROVABILITY FROM UNSOLVABILITY 229

The corollary and 2.8.0.22 establish that not only we miss infinitely many true
arithmetic sentences in any recursive axiomatization of arithmetic, but, moreover, we
can algorithmically list an infinite subset of these missed true sentences.

Pause. Why “subset” 7«

Indeed, the recursive axiomatization has a c.e. set of closed theorems W, by
2.11.0.34. By correctness, we have that W, C CA. By 2.8.0.22 we can build an
infinite c.e. set, W,—in CA—that avoids all of W,

2.11.1 Supplement: ¢, (x) 1 is Expressible in the Language of
Arithmetic

The title of this subsection means that there is a formula of arithmetic, let us call it
&7 (x), such that, for all n, ¢,,(n) 1 is true iff &7 (%) is true—the latter in the sense of
Definition 2.11.0.31.

2.11.1.1 Definition. A relation R(z) over the natural numbers—that is, a relation in
the metatheory of formal arithmetic—is expressed (also called defined) by a formula
of arithmetic, %(x), iff for all n € N, we have

R(n) is true iff Z(7) is true

Suppressing reference to (x) we can also say that R(x) is expressible (or
definable, in the language of arithmetic).

The definition can be extended in the obvious way in the case of relations of many
variables. |

Let us next define the set of arithmetical relations on the set of natural numbers. '

2.11.1.2 Definition. The set of arithmetical relations is the smallest set of relations
over the set of natural numbers that satisfies:

It contains the “initial” relations (of three variables) z = x + y, 2 = = - y, and
z = z¥, where the exponentiation is the “ex” of Example 2.1.2.14 but we have
here reverted to the standard notation.

Moreover,
(1) If Q(Z) and P (%) are in the set, then so are ~Q(Z) and Q(Z) V P(7).
(2) If R(y, &) is in the set, then so is (Vy)R(y,).

(3) If Q(Z) is in the set, then so are all its explicit transformations.
107The arithmetical relations have a lot of tolerance for variations in their definition: Sometimes as much
as all of R, is taken as the “initial” arithmetical relations. Sometimes as littleas 2 = x+yandz =z - y.

For technical convenience we have added the graph of exponentiation rather than choosing the most
minimalist approach.

www.it-ebooks.info

http://www.it-ebooks.info/

230 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

Explicit transformations [Smullyan (1961) and Bennett (1962)] are exactly the
following: substitution of any constant into a variable, expansion of the variables-
list by “don’t care” variables (arguments), permutation of variables, identification
of variables—that is, Grzegorczyk operations (ii)-(iv) (cf. 2.1.2.6), albeit applied
to relations. U

Clearly the set of arithmetical relations is closed under the remaining Boolean
connectives and (Jy).

2.11.1.3 Lemma. Every arithmetical relation is expressible in the language of arith-
metic, over the alphabet (B) of p. 225.

Proof. We proceed by induction along the cases of Definition 2.11.1.2. The basis
contains three cases, z =z +yand z =z -y and z = zv.

We argue that the metamathematical relation z = z + vy is expressed by the formal
z = x + y of arithmetic.

This requires us (cf. 2.11.1.1) to establish for all m, n, k:

m = n + k holds iff /i = 7i + k is true (%)
Indeed,

M =7+ kis true iff (2.11.0.31) N = (7 + k)N is true
iff (2.11.0.28) MmN = AN + kN s true
iff (2.11.0.30) m = n + k is true

The verifications for the relations z = zy and z = z¥ are omitted being entirely
analogous. We leave it to the reader to verify that if R(Z) and Q(7) are expressed
by the formulae &7 (X) and H(¥) respectively, then -~ R(Z) and R(Z) vV Q() are
expressed by &/ (X) and & (X) vV Z(¥), respectively.

Next, we show that (Vy)R(y, Z,) is defined by (Vy)«/(y,X,), if R(y,Z,) is
defined by &/ (y, X,.). We are given, for any ¢, by, ...,b, in N, that

R(c,by, ..., b.) is true iff & (Z, b1, ..., by) is true (%%)

Now, we fix by,...,b. in N. (Vy)R(y,b1,...,b,) holds iff for all ¢ € N we
have that R(c,b1,...,b,) holds. By (*x) this is equivalent to saying “for all
¢ € N we have 427(5,51, e ,Er) is true”. By 2.11.0.31 the latter says precisely
(Vx) & (x, by, ..., by) is true.

We next look into explicit transformations. Let then Q(y, Z,.) be defined by the
formula & (y, %,). Then, forany fixedi € N, Q(i, Z,.) is clearly defined by < (7, %,.),
since forall a, by, ..., b, wehave Q(a, by, ..., b,)is true iffd(a,gl, .. ,Er) is true;
in particular, Q(¢, b1, ..., b,) is true iff 42?’(7,51, e ,E,,) is true.

The case of identifying or permuting variables being trivial, we conclude by
looking at the case of adding one “don’t care” variable (a case that is extensible by a

www.it-ebooks.info

http://www.it-ebooks.info/

UNPROVABILITY FROM UNSOLVABILITY 231

trivial induction to any fixed number). So let & (X,.) define Q(Z,) and let z be a new
informal variable.

I will argue that &7 (X,) A z = z defines the relation R = A\z&,..Q(&Z,):

We have, on one hand, for all b4, ..., b,:

Q(by,...,b,) is true iff & (by,...,b,) is true (% % %)

On the other hand, for all ¢, by, ..., b, Q(b1,...,b,) = R(c,by,...,b,) and, since
¢ = cis true (2.11.0.31),

Z(by,....b)) = (by,...,by) A(E=7)
Along with (x *) we get
R(c,by,...,by) istrue iff & (by, ..., by) A (€= ©) is true O

Thus, to show that ¢, (z) 1 is expressible in the language of arithmetic it suffices,
because of the preceding lemma, to prove that it is arithmetical. In turn, since
oz (z) 1= ~(3y)T(z, z,v), it suffices to prove that the Kleene predicate is arithmeti-
cal.

It will so follow if we can prove that every function f € PR has an arithmetical
graph, for then if x 7 is the characteristic function of T, we will have that x 7 (z, y, 2) =
w—and therefore x7(z,y, z) = 0 by explicit transformation—is arithmetical.!%

Items (7)—(10) below are due to Grzegorczyk (1953).

2.11.1.4 Lemma. The following relations are arithmetical.

1) = = 0 (and hence x # 0)

2) © <y (and hence x < y)

3) z=

4) x|y

(1)

(2)

3)

(4)

(5) Pr(z)

(6)

(7) Next(x,y) (meaning x < y are consecutive primes)

(8)

(9)
)

pow(z,x,y) (meaning x > 1 and x¥ is the highest power of x dividing z)

9) Q(z) (meaning z has the form pop2p3 - - - pT! for some n)

(10

QQ

=DPn

108Gsdel proved all this without the need to have exponentiation as a primitive operation in arithmetic.
However, adopting this operation makes things considerably easier and, as mentioned earlier (footnote 107
on p. 229), it does not change the set of arithmetical relations.

www.it-ebooks.info

http://www.it-ebooks.info/

232 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

(11) z =exp(x,y) (¢f. 2.1.2.40)

We need not worry about bounding our quantifications, for it is not our purpose to
show these relations in PR.. Indeed we know from earlier work that they are in this @
set. This time we simply want to show that they are arithmetical.

Proof.

(1) = = 0 (and hence z # 0): z = 0 is an explicit transformof x = y + z; £ # O is
obtained by negation.

(2) z € y (and hence = < y): This is equivalent to (32)(z + z = y).
(3) z=2z =~ y: Thisisequivalenttoz =0Axz <yVz =2z+y.

(4) z|y: This is equivalent to (3z)y = xz (I am using “implied multiplication”
throughout: “zy” rather than “z x y” or “z - y”).

(5) Pr(z): Thisis equivalenttoz > 1 A (Vy)(ylz > y=1Vy =zx).

(6) Seq(z): Thisisequivalentto z > 1A (Vz)(Vy)(Pr(z)APr(y) Az < yAy|z —

(7y Next(z,y): This is equivalent to Pr(z) A Pr(y) Az < y A ~{(3z)(Pr(z) A
r<zAz<y).
(8) pow(z,z,y): Thisis equivalenttox > 1 Az¥ |z A ~a¥t1 |2 19

(9) Q(z): This is equivalent to Seq(z) A ~4|z A (Vz)(Vy)(Nezt(z,y) Ay|z —
(Fw)(pow(z, z, w) A pow(z,y,w + 1))).

(10) y = py: This is equivalent to (32)(Q(2) A pow(z,y,n +1)).
(11) z = exp(z, y): This is equivalent to (Fw)(pow(y,w, z) A w = p;). O

We can now prove the following theorem that concludes the business of this
subsection.

2.11.1.5 Theorem. For every f € PR, its graphy = f(Z,,) is arithmetical.
Proof. We do induction over PR (cf. 2.1.2.4):

(1) Basis. There are three graphs to work with here: y = z + 1, y = 0 and
y = z (or, fancily, y = x;; or more fancily, y = U*(#,)). They all are explicit
transforms of y = = + z.

109 Again recall that ¥ is that of 2.1.2.14, and z¥ ' | z = (Ju)(u = y + 1 Az | 2). On the other hand,
¥ |z = Bw)(w=z* Aw|z).

www.it-ebooks.info

http://www.it-ebooks.info/

2

3

UNPROVABILITY FROM UNSOLVABILITY 233

Composition. Say, the property is true for the graphs of f,g,...,g,. Thisis
the LH. How about y = f(g1(Zm), 92(Zm), -, gn(Tm))? Well, this graph is
equivalent to

(Fui) - Cun)(y = f(@n) Aur = g1(Em) A+ Aty = go(Tm))
and we are done by the I.H.

Primitive recursion. This is the part that benefits from the work we put into
2.11.1.4. Here’s why: Assume (I.H.) that the graphs of h and g are arithmetical,
and let f be given for all z, i by

f(0,4) = h(z)
f(iE + lag) = g(m,ﬁ,f(x,ﬁ))

Now, to state z = f(x, §) is equivalent to stating

(Fmo)(B3my) - - (3ma) (mo = h(§) Az = mg A
6y

(Vw)(w <z = Myt+1 = 9(w, 7, mw)))
The trouble with the “relation’ (i) above is that it is not a relation at all, because

it has a variable-length prefix: (Img)(Fmy)--- (Im,). We invoke coding to
salvage the argument. Let us use a single number,

m = p6”0p71"1 .. .p;”z
to represent all the m;, fori = 0,.. ., z. Clearly,
m; = exp(t,m), fori =0,...,z

We can now rewrite (i) as

(Im) (exp(O, m) = h(y) N z = exp(z,m) A -
(Vw)(w < z — exp(w + 1,m) = g(w, 7, exp(w,m))))

The above is arithmetical because of the [.LH. Some parts of it are more compli-
cated than others. For example, the part

exp(w + 1,m) = g(w, ¥, exp(w, m))
is equivalent to
(Fu)(Fv) (v = exp(w + 1,m) Av = exp(w,m) Au = g(w, F,v))

The above is arithmetical by the I.H. and the preceding lemma. This completes
the proof. O

www.it-ebooks.info

http://www.it-ebooks.info/

234 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

2.12 ADDITIONAL EXERCISES

nooR W

I —J - B I Y

10.

11.

12.

13.

14.

. Prove (without looking up Euclid’s proof) that there are infinitely many primes.

Hint. See Example 2.1.2.40 and Exercise 2.1.2.42.
Modify the pairing function of Grzegorczyk (1953) (2.1.4.5) to make it onto.
Give a direct proof that the J in 2.1.4.6 is 1-1.

. Give a direct proof that the .J in 2.1.4.8 is 1-1.

. Show that J given by

J(z.y) = {(w+y)(f;+y+1)J +y

is an onto pairing function in PR. Show that its projections are in PR.

Hint. View N2 is the union of all the finite groups of pairs, fori = 0,1,2,...,
Gi={{z,y) eN? 1z +y =1}

Now enumerate N? by listing pairs (x, %), first, by ascending order (with respect
to ¢) of their group-number ¢, and then, within each group G;, listing them in
ascending order of the y-component. Show that the position n = 0,1,2,... of
(x,y) in this enumeration is precisely J(x, y), which settles onto-ness. Of course,
projections K and L exist (why?). Now observe that J(z,y) > xand J(z,y) > y
and use this fact to show that the projections K and L are primitive recursive.

. Prove that every finite set is primitive recursive.
. Prove that N is primitive recursive.
. Verify the claims made in Remark 2.1.4.10.

. Prove that Az.x! (factorial) is primitive recursive.

Without using the if-then-else function or definition by cases, prove that Azy. max(z, y)
and Azy. min(z, y) are primitive recursive.

Prove that if we know that (1) ¢ is primitive recursive; (2) f(&) < g(&), for all &,
and (3) AzZ.z = f(¥) is in PR., then [is primitive recursive.

Are the conditions (1) and (2) above necessary in order to arrive to the same
conclusion from just (3)?

What end-values do X, Y, Z, W hold in Example 2.2.0.13 if the variables initially
hold, in order, a, b, ¢, d?

Prove by an appropriate induction that the claim regarding the end-values of X
and Y in 2.2.0.15 are correct.

www.it-ebooks.info

http://www.it-ebooks.info/

15.
16.
17.

18.

19.

20.

21,
22,

23.

24.

25.

26.

27.
28.

ADDITIONAL EXERCISES 235

Write a loop program that computes Az. [z/k].
Write a loop program that computes Az.rem(z, k).

Redo the previous two problems to ensure that you do not nest the Loop-end
instructions.

Prove that the function Az.|jz||, where ||z|| here denotes the number of decimal
digits of z € N, is in PR.

Define
0 L oef | min{y sy < z A f(y,) = 0}
,Z) =) . .
()<= (v, &) {0, if the min does not exist

Prove that PR is closed under (ﬁy)gz.

Prove that if a class of functions C is closed under (ﬂy)gz and substitution, then
its corresponding class of relations C, = {f(Z) = 0 : f € C} is closed under

(Fy)<z-
Is the result of the previous exercise still valid if we replace (ﬁy)sz by (1y)<z?

Refer to Subsection 2.2.2. Prove that neither of the two relations Azy. f,(y) = 0
and Azy.f5(y) # 0 is primitive recursive.

Once again, refer to Subsection 2.2.2 where we constructed the “universal” two-
argument function Ayz. f, () that enumerates all one-argument primitive recur-
sive functions. Prove

e Forall Az.h(z) € PR, there is an m such that h(z) < f,,(z), for all z.
¢ Base on the preceding bullet a new proof of the fact that Ayzx. f,(z) ¢ PR.

Prove that it is impossible to form PR as the closure under substitution of some
finite set of primitive recursive functions.

Prove that for n > 0, we have A,,(z) < A,(2) a.e. Use this fact to show

e Forall Az.h(z) € PR, we have h(z) < A,(2) a.e.
e \z.4,(2) ¢ PR.

Suppose that z, y, z are distinct variables. Show that (3y)(3z)<.Q = (3z) . (Fy)Q.
Hint. (3z).,Q = (3z)(z < z A Q). But unbounded 3 commute.

Show that the set K defined as {(z,y) : ¢, (y) |} is semi-computable.

Prove the counterpart “definition by cases” theorem of 2.1.2.37 for R and P. The
assumptions are:

(1) For the R case, all the f; are in R, while for the P case they all are in P.

www.it-ebooks.info

http://www.it-ebooks.info/

236 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

29.

30.
31.

32.
33.

34.
3s.

36.

37.

38.

39.
40.

(2) In both cases, the R; are in R,.
The result to prove is that the defined f is in R and P, respectively.

In 2.5.0.17 we saw that A\z.¢,(x) + 1 cannot be extended into a recursive (total)
function. Prove that the same is true for Az.¢,(z).

Show that the set K defined as {[z, y| : ¢z (y) 1} is semi-computable.

Show that the set K| defined above is not recursive.

Hint. Caution: Do not confuse [z,y] with (z,y). K is {2z : ¢(,),((2)1) {}—a
set of numbers, not a set of pairs.

Show 2.5.0.20 directly from 2.5.0.3.

Explain precisely why the alternative “proof” of 2.5.0.7 that was suggested in
the Pause following the corollary will not work.

Prove that A\izy.®;(z) = y is primitive recursive.

fa) = {0 ifre K

Prove that neither

42 otherwise

o(a) = {o ifre K

nor

x otherwise
are in P. This justifies our remarks in 2.5.0.30 that the best we can suggest as
“output” in the “otherwise” case is 1. In general.
Why “in general”?
This exercise attempts to contradict 35. Solet z € K = ¢ (z) = 0 for some
1) € P (cf. 2.5.0.6).

Butthen f(z) ~ if ¢(z) = 0 then 0 else 42and g{x) ~ if ¥(z) = O then 0 else z,
which prove—via 2.1.2.6—that f and g are partial recursive. Is there something
wrong with this, and if so what precisely?

Prove that a non-empty set is c.e. iff it is the range of some recursive function.

Hint. One direction is trivial.

Is the “proof” below correct? If not, where exactly does it go wrong?

“Lety = f(&,)bere. Theny = f(&,) = ¥(y, Z,) = 0 for some ¢ € P. Thus
g = AZn.(uy)¥(y, Tn) is in P. But g = f, since the unbounded search finds the
y that makes y = f(&,) true, if f(&,,) |. Thus, f € P”

Prove that if f and g are in P, then f(z) = g(z) is c.e.

Prove that if f and g are in P, then f(z) ~ g(z) is not necessarily c.e.

www.it-ebooks.info

http://www.it-ebooks.info/

41.
42,

43.

44,
45.
46.
47.
48.
49.
50.
51.
52.

53.

54,
5S.

ADDITIONAL EXERCISES 237

Hint. Choose carefully specific f and g for a definitive (non c.e.) example.
Prove Corollary 2.7.1.10.

Prove that the set {(z,y) : ¢ = ¢,} is not semi-recursive. Thus, as expected
(given the result 2.5.0.22), the general “equivalence problem” of (URM-) com-
putable functions is also not semi-decidable.

Hint. Fix ¢, to a conveniently simple function.

Prove, via Rice’s lemmata, that the set of ¢-indices of each computable function
fisnotc.e.

Hint. You may want to consider the total and nontotal cases separately.

The invocation of Rice’s theorem is not permitted in Exercises 44-54.

Prove that the problem {0, 1,5} C ran{¢,) is undecidable.

Prove that the set {z : W, = {0}} is not c.e.

Prove that the set {z : W, = {0,1,2}} is not c.e.

Prove that the set {x : W, = N} isnot c.e.

Prove that the set {x : W, € R, } isnotc.e.

Prove that the set {x : W, = the set of all even numbers} is not c.e.
Prove that the set {x : W, is finite} is not c.e.

Prove that the set {x : W, is infinite} is not c.e.

Prove that the set = {x : dom(¢,) has exactly two elements} is not recursive. Is
itc.e.? Why?

Explore and prove as needed
o the set {z : ran(¢,) has exactly five distinct elements} is not recursive. (ILe.,
“x € Ais unsolvable”). Is it c.e.? Why?

e the set {z : ¢, is the characteristic function of some recursive set} is not
recursive. Is it c.e.? Why?

e the set {z : ran(¢;) contains only odd numbers} is not recursive. Is it c.e.?
Why?

Prove that {x : ¢, € PR} isnotce.

Can every infinite c.e. set be enumerated in strictly increasing order by a primitive
recursive function? Why?

Hint. Bring the Ackermann function into the question.

www.it-ebooks.info

4

http://www.it-ebooks.info/

238 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS

56.

57.

58.

59.
60.

61.

62.

63.

Let
f = Azif fr(z) = 0 then g(x) else if fo(x) = O then h(x) else T

where R,) are c.e. (and mutually exclusive), and g, h, fr, fo are partial recursive,
where R(z) = fr(z) = 0 and Q(z) = fo(z) =0.

Is f partial recursive? Why?

Is the f' defined below the same as f? Why?

g(x) if R(z)
fll@)y={hz) ifQx)

T+ otherwise

Suppose you answered “no” to the last question. Supplementary: Is f' partial
recursive? Why?

Prove that there is a primitive recursive 7 such that for all z, we have ran(¢,,) =
ran(¢,(,)) and, moreover, if ran(¢..) # 0, then ran(¢, () is total.

Hint. Combine 2.7.3.5 with 2.7.3.3.

There is a primitive recursive function such that N — {z} = W, for all z.
Hint. Consider ¥(z,y) ~ if y # x then O else 1.

There is a primitive recursive function g such that {z} = W, for all z.

There is a primitive recursive function k such that W, U W, = Wy,), forall z
and y.

(Selection Theorem) For each n > 1 there is a partial recursive function
Nigf.Sel™ V) (i, 47,) such that

@ 30) (&™) @,) |) ifF Sl (G)

®) @) (" (@,5) 4) iff ¢ (Sl V0, 7), G) 4

Hint. Imitate the dovetailing from the proof of 2.7.3.2.

Is there a partial recursive function Az. f(z) such that for all ¢
Wi #0— f(i) L Af(i) =min{y:y € Wi}

If you think that “yes”, then you must give a proof.

If you think that “no”, then you must give a definitive counterexample.

For your amusement: Write a “self-reproducing” program in your favourite pro-
gramming language. This program, on every input, will just print itself—exactly;
i.e., it prints nothing else—and then halts.

www.it-ebooks.info

http://www.it-ebooks.info/

64.
65.
66.

67.
68.

69.

70.

71.
72.
73.

74.
75.

ADDITIONAL EXERCISES 239

Prove that <,,, and <; are transitive relations.
Prove the claims made in 2.10.0.14.

Prove that a simple set is not recursive.

Hint. You want the set’s complement to be c.e. (Why?) Can this be?
If f, of one variable, is recursive then there is an e such that W, = Wf(e).

If g, of two variables, is recursive then there is an 1-1 primitive recursive Az.h(x)
such that Wy,) = Wy(n(e)), for all z.

Hint. From W, = dom{¢,) and 2.9.0.30.

Let f be recursive. Is any of {x : ¢¢(;)(z) |} and {z : ¢.(f(z)) |} a complete
index set?

Hint. 1t depends on f.

Let a F be a computable function. Then the closure of ZU{ F'} under composition,
primitive recursion and unbounded search is a subset of P (indeed equal to it).

Hint. Do induction on said closure.
Prove the uniqueness of solution of the recurrence for F' in 2.9.1.7.
Settle the unproved claims in Example 2.9.1.8.

Let g be recursive. Show that

0 if g(n, @) =0
h(n, Ty) ~ . if g(n xk)
h(n+1,Zk) +1 otherwise
. (n+1) . (n+1) - ~ -
has a computable h-solution ¢e that satisfies ¢e = (0, T) =~ (Ly)g(y, Tk),

for all Zy.
Answer the question in the Pause on p. 229.

Complete the proof given for 2.11.1.3.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

A SUBSET OF THE URM LANGUAGE;
FA AND NFA

This chapter is presented for enhanced completeness of coverage, but is a mostly
“how to” chapter, rather than one that poses and answers fundamental questions on
the limitations of computing,'!® the latter being our central theme in this volume.
Nevertheless, concepts and tools developed here are usable in the theory and practice
of compiler writing, a principal area of application.

We will first introduce informally a modified and restricted URM. This new URM
model will have explicit “read” instructions.!!!

Secondly, any specific URM under this model will only have one variable that we
may call generically “x”. This variable will always be of type digit; it cannot hold
arbitrary integers, rather it can only hold digits as values. It has no stop instruction,

nor instructions for adding/subtracting.

Pause. In the absence of a stop instruction, how does a computation halt? We
postulate that our modified URMs halt simply by reading something unexpected, that

110 owever, the pumping lemma, 3.1.3.1, exposes a limitation of the model of computation discussed in
this chapter.

11110 2.1.1.3 we explained why explicit read instructions are theoretically as redundant as explicit write
instructions are.

Theory of Computation. By George Tourlakis 241
Copyright (© 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

242 A SUBSET OF THE URM LANGUAGE; FA AND NFA

is, an object that is not a member of the input alphabet of permissible digits. Such
an illegal symbol serves as an end-marker of the useful stream digitss that constitute
the input string over the given alphabet. As such it is often called an “end-of-file”
marker, for short, eof. <

Thus the modified URM halts if it runs out of input.

We next modify the permissible instructions of 2.1.1, displayed on p. 93. The only
permissible instructions now is of the following type that we at first force into a “high
level” programming language format, not aiming for elegance; we will achieve the
latter once we formalize this model of computation that we will call a finite automaton
(plural: automata)—acronym, FA.

Our insistence on a URM-like model for the automaton will be restricted to this brief
motivational introduction and is only meant to illustrate the indebtedness of the finite
automata model to the general URM model of Chapter 2, as promised above.

The rypical instruction of an automaton.
read

if x = a then goto M’

if x = o’ then goto M"

if x = (") then goto M (™)
if x = eof then halt

where L and M’, ..., M (") are labels—not necessarily distinct—and a, @/, . . . , a{™
are all the possible digit values in the context of a specific URM program, that is,
{a,d/,...,a™} is the input alphabet.

The empty string, €, will never be part of a FA’s input alphabet.

The labels, in practice, are not restricted to be numerical or even consecutive (if
numerical). However, one instruction’s placement is significant. It is often identified
by a label such as “0”, or “gy”, or some such symbol and is placed at the very
beginning of the program.

Pause. A finite automaton does not care where its other instructions fall, as they
will be reachable by the goto-structure as needed, wherever they are. €

The semantics of the “typical” instruction of above is first to assign to the variable
x the just read value from some “external (to the URM) medium”, and then to move
to the next instruction as determined by the a(¥)s or the eof in the if-cases above.

Finally, we partition the instruction-labels—also called states—of any given re-
stricted URM into two types: accepting and rejecting. Their role is as follows: Such
a URM, when it has halted,

Pause. When or if 74

will have finished scanning a sequence of digits—a string over its alphabet. This
string is accepted if the program halted while in an accepting state, otherwise the
input is rejected.

www.it-ebooks.info

¢

¢

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 243

3.1 DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES

3.1.0.6 Example. Consider the restricted URM below that operates over the input
alphabet {0, 1}

(read
0 if x = 0 then goto 0
if x = 1 then goto 1
if x = eof then halt

read
1. if x = 0 then goto 1
if x = 1 then goto 0
if x = eof then halt

What does this program do? It has scanned a string of parity 0 (sum of its digits is
even) and halted iff it halted while in state 0. This claim will be revisited after we
formalize the automaton concept. [

3.1.1 The Flow-Diagram Model
The formalization is achieved by first abstracting a command

L : read; if x = q then goto M (1)

as the configuration below:

Figure capturing (1) above

Thus the “read” part is implicit, while the labeled arrow that connects the states
L and M denotes exactly the semantics of (1). Therefore, an entire automaton is
a directed graph—that is, a finite set of (possibly) labeled circles, the states, and a
finite set of arrows, the transitions, the latter labeled by members of the automaton’s
input alphabet. The arrows or edges interconnect the states. If L = M, then we have

www.it-ebooks.info

http://www.it-ebooks.info/

244 A SUBSET OF THE URM LANGUAGE; FA AND NFA

%a

where the optional label could be L, or M, L = M (as above), or nothing.
We depict the partition of states into accepting and rejecting by using two con-
centric circles for each accepting state as below.

O

The special start state is denoted by drawing an arrow, that comes from nowhere,

pointing to the state.

3.1.1.1 Definition. (FA as Flow Diagrams) A finite automaton, for short, FA, over
the input alphabet ¥ is a finite directed graph of circular nodes—the states— and
interconnecting edges—the transitions— the latter labeled by members of 3. We
impose a restriction to the automaton’s structure: For every state L and every a € 3,
there will be precisely one edge, labeled a, leaving L and pointing to some state M
(possibly, L = M).

We say the automaton is fully specified (corresponding to the italics in the part “For
every state L and every a € A, there will be . ..”") and deterministic (corresponding
to the italics in the part “there will be precisely one edge, ...").

This graph depiction of a FA is called its flow diagram and is akin to a programming
“flow chart”. O

the configuration

To summarize and firm up:

3.1.1.2 Remark. (1) Thus, full specification makes the transition function total—
that is, for any state-input pair (L, a) as argument, it will yield some state as output.
On the other hand, determinism ensures that the transition function is indeed a function
(single-valued).

www.it-ebooks.info

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 245

(2) Each “legal” input symbol is a member of the alphabet ¥, and vice versa.
In the preamble of this chapter we referred to such legal symbols as “digits” in
the interest of preserving the inheritance from the URM of Section 2.1.1, the latter
being a number-theoretic programming language. But what is a “digit”? In binary
notation it is one of 0 or 1. In decimal notation we have the digits 0,1,...,9. In
hexadecimal notation''? we add the “digits” a, b, ¢, d, e, f that have “values”, in that
order, 10, 11,12, 13, 14, 15. The objective is to have single-symbol, atomic, digits to
avoid ambiguities in string notation (cf. 1.1.3.1). Thus, a “digit” is an atomic symbol
(unlike “10” or “117).

We will drop the terminology “digit” from now on. Thus our automata alphabets
are finite sets of symbols, period. [l

3.1.1.3 Example. Thus, if our alphabet is A = {0, 1}, then we cannot have the
following configurations be part of a FA.

Nonototal Transition Function

Non-determinism

112Base 16 notation.

www.it-ebooks.info

4

http://www.it-ebooks.info/

246 A SUBSET OF THE URM LANGUAGE; FA AND NFA

3.1.1.4 Example. The FA of the example of 3.1.0.6, in flow diagram form but with
no decision on which state(s) is/are accepting is given below:

We wrote qg and ¢, for the states “0” and “1” of 3.1.0.6. O

Another way to define a FA without the help of flow diagrams is as follows:

3.1.1.5 Alternative Definition. (FA—Algebraically) A finite automaton, FA, is a
toolbox M = (Q, A, qo, 3, F),!'* where

(1) @ is a finite set of states.

(2) A s a finite set of symbols; the input alphabet.

(3) qo € Q is the distinguished start state.

4 6 :Q x A— @Qis atotal function, called the transition function.

(5) F C (@ is the set of accepting states; () — F is the set of rejecting states. O

3.1.1.6 Remark. Let us compare Definitions 3.1.1.1 and 3.1.1.5.

(1) The set of states corresponds with the nodes of the graph (flow diagram) model.
It is convenient—but not theoretically necessary in general—to actually name
(label) the nodes with names from Q).

(2) The Ain the flow diagram model is not announced separately, but can be extracted
as the set of all edge labels.

(3) go—the start state by any name; go being generic—in the graph model is rec-
ognized/indicated as the node pointed at by an arrow that emanates from no
node.

@) 6: @ x A— Q in the graph model is given by the arrow structure: Referring to
the figure at the beginning of 3.1.1, we have 6(L,a) = M.

& is sometimes given as a (finite) so-called transition matrix, which at row L
and column a will hold M and nothing else in the illustrated case. § being a

13« A1~ is generic; for “machine”.

www.it-ebooks.info

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 247

function guarantees determinism, that is, at most one entry in each location in
the matrix. Totalness guarantees at least one entry, and hence exactly one entry,
in each location.

(5) The members of £ in the graph model are identified by being concentric circles.

O

How does a FA compute? From the URM analogy, we understand the computation
of a FA consisting of successive read moves, and attendant changes of state, until the
program halts (by reading the eof). At that point we proclaim that the string formed
by the stream of symbols read is accepted or rejected according as the halted machine
is in an accepting or rejecting state.

To formalize this we use snapshots or IDs as we did in the full URM model of
2.1.1. The IDs of the FA are, however, very simple, since the machine (program) is
incapable of altering the input stream.

3.1.1.7 Definition. (FA Computations; Acceptance) Let M = (Q, A, g0, 9, F') be
a FA, and z be an input string—that is, a string over A that is presented as a stream
of input symbols. An M-ID or simply ID related to z is a string of the form {qu,
where g €), and = = tu.

Intuitively, this means that the computing agent, the FA, is in state ¢ and that the
next input to process is the first symbol of u. If u = e—and hence the ID is simplified
to tg—then M has halted (no more input).

Formally, an ID of the form ¢q has no next ID. We call it a terminal ID. However,
an ID of form tqau’, where a € A, has a unique next ID; this one: taqu’, provided
8(q,a) = q. We write

tgau' Fyr tagu’

or, simply (if M is understood)
tqau’ F tagu’

and pronounce it “(ID) tqau’ yields (ID) taqu’”.
We say that M accepts the string x iff, for some q € F', we have gy -3, 2q.

The language accepted by the FA M is denoted generically by L(M) and is the
subset of A* givenby L(M) = {z : (3¢ € F)goz F3; zq}.
An ID of the form ggz is called a start-ID. d

3.1.1.8 Remark. (1) Of course, -3, is the reflexive transitive closure of Fps (cf.
1.6.0.23) and therefore I 3, J—where I (not necessarily a start-ID) and J (not
necessarily terminal) are IDs—means that I = J or, forsomeIDs I,,,,m =1,...,k—

1, we have
Ity by by by oo b Ty Fpr J (1)

We call the disjunction of sequence (1) with “I = J”, or the shorthand notation of
this disjunction, I 3, J, an M -computation, or simply a computation.

www.it-ebooks.info

http://www.it-ebooks.info/

248 A SUBSET OF THE URM LANGUAGE: FA AND NFA

We may write (1) more informatively (but still suppressing reference to the [;) in
the shorthand I ¥ J, since there are exactly k occurrences of the relation - in (1).

The notations I F<™ J and I F<" J mean I F™ J where, respectively, m < n
and m < n.

(2) Let x = aya2- - a,, where the a; are symbols of the input alphabet A =
{b1,bs,...b.} of some FA M. Since

a1a2"'pmam"'anI_ala2"'ampm+lam+l"'an

(om) 22t

is a transition that belongs to the FA, when viewed as a flow diagram, then the
existence of a computation that starts at state p;, ends at state p, 1 (not necessarily
halting there!!*), which consumed (read) an input sequence x while doing so

p1a1...an Faypeas ... apFar ... p3as...a, - ete
Fay...pm@m...ant a1 .. . Pomi1@myr...an b a1 GpPrt
is equivalent to the existence of a labeled path—that we will aptly call a computation

path— in the flow diagram M, from p; to p,, .1 whose labels, concatenated from left
to right, form the string x:

‘ll"‘ll ‘i!'} a9 1‘!!’

XXX as
an-1

In particular, a string x over the input alphabet belongs to L(M) iff it is formed by
concatenating the labels of a path such as the above, where p1 = qq (start state) and
Pn+1 is accepting. In this case we have an accepting path.

We see that the flowchart model of a FA is more than a static depiction of an

automaton’s “vital” parameters, @), A, go, 6, F. Rather, all computations, including @
accepting computations, are also encoded within the model as certain paths. O

4] e., not necessarily meeting eof.

www.it-ebooks.info

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 249

3.1.1.9 Proposition. If M is a FA, then ¢ € L{M) iff qo is an accepting state.
Proof. First, say ¢ € L(M). By 3.1.1.7, we have

qoe " eq (1)

for some g that is accepting. Since {(go, €) is not in the domain of § (e is not in the
input alphabet), the only way to have (1) hold is as equality: That is, goe = eg; that
is, go = q.

Conversely, if gy € F, then since gpe = qg = €qp, we have gpe H* eqg and thus
€ € L(M). O

3.1.1.10 Example. (Examples 3.1.0.6 and 3.1.1.4 Revisited) We prove here that if
in 3.1.1.4 only gy is accepting, then L(M) is the set of all 0-1-strings of 0 (even)
parity, while if only ¢; is accepting, then L(M) consists of all strings of parity 1 (odd
parity).

We prove a bit more:

gox F* zq;, for j = 0 or j = 1, iff x has parity j (1)
only if. We do induction on the length |z| of z, to show that if
gox " zg; (2)

then z has parity j.

For |z| = 0 we have x = ¢, thus (2) yields 7 = 0. But indeed, the parity of € is 0
as we needed to conclude.

Assume the claim for any z of length n. Let now |z| = n + 1.

Case where x = y0. From (2), we have ¢oy0 F* yg,,0 F y0q;. By looking at the
FA in 3.1.1.4 we see that input 0 does not cause state change, thus m = j.

By the 1.H., y has parity m, but then so does z = y0; hence j = m correctly gives
this parity.

Case where = y1. Once again, we have, from (2), gyl -* ygm1 F ylg;. By
the L.H., the parity of y is m, thus the parity of y1 is 1 — m. We will be done if
j =1 — m. This indeed is the case from the diagram of 3.1.1.4: Input 1 sends ¢ to
q1, but sends ¢; to ¢g.

Conversely, the if. Suppose that z has parity j. By induction on the length n of =
we prove that we will have (2). First, if x = ¢, then (2) becomes gge F* €qg. Since
the parity of this = is 0, we have landed on the correct state.

Assume now that if |z| = n (fixed) has parity 7, then we have (2).

Consider the case of || = n + 1, of parity j.

Case where x = y0. We have goy0 F* yg,,0 I y0q,.. Now, the parity of y is j as
well, so the L.H. yields that m = j. What is r? Well, each of g, ¢; is sent back to
itself by input 0. Thus r = m = j.

Case where © = yl. We have goyl F* y¢,n1 F ylg,. Now, parity of yis 1 — j
thus the I.H. yields that m = 1 — j. What is r? Well, each of gg, g1 is sent to the
other by input 1. Thus » = 1 — m = 3, as needed. [

www.it-ebooks.info

http://www.it-ebooks.info/

250 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Of course, if none of the two states is accepting then L(M) =), while if both are
accepting, then L(M) = {0, 1}*—the set of all strings over {0, 1}.

3.1.1.11 Example. This example is much simpler than the preceding one. We readily
see that the following automaton’s only accepting paths will follow zero or more times
the “loop” labeled O (attached to the start state), and then the edge labeled 1 to end
up with an accepting state. Thus, its “L(M)” is the set {0"1 : n > 0}, where we are
reminded that for any string x, we have defined ™ by

0,1

Note that we need not assign state names in this example in order to discuss what
the FA does. The only purpose of the state below the accepting state is to ensure
the transition function ¢ is total (the FA must be fully specified) as required by the
definition. This state is one from which one cannot escape as once in it, all transitions
lead back to it. For that reason it is often called a trap state.

The reader should note the use of two shorthand notations in labeling: One, we
used two labels on the vertical down-pointing edge. This abbreviates the use of rwo
edges going from the accepting to the trap state, one labeled O, the other 1. We
could also have used the label “0, 1” at the left or right of the arrow, “,” serving as a
separator. This latter notational convention was used in labeling the loop attached to

the trap state. 0

3.1.1.12 Example. The two one-state FA over the input alphabet {0, 1} pictured here
accept the languages () and {0, 1}*, respectively.

N

0,1

www.it-ebooks.info

¢

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 251

N

0,1

3.1.2 Some Closure Properties

When one introduces a class of languages,'!> like the sets L(M), one next poses a
number of interesting and fundamental questions about them. Such as, what (set-
theoretic) closure properties do they have? Is the membership problem of such
languages decidable?

The latter has rather a trivial answer for the L{M). Given an L(M)—finitely, via
a FA M—and a string, x, over the alphabet of M. The question “is z € L(M)?”
has an algorithmic solution: We just run M on input z. Since a FA halts on all inputs
(by encountering eof), this task terminates. Then z € L(M) iff the state in which
the computation halted is accepting.

How about closure under U? N? Complement?

3.1.2.1 Theorem. Sets of the type L(M) over a common input alphabet are closed
under union.

Proof. The proof is constructive. So let M and N be two FA over the input alphabet
A = {a1,...,ar}. Without loss of generality (since we do not have to name the
states anyway), the states of M are Qp = {qo0,q1,- - ., ¢m While those of N are
@~ = {po,p1,- .., Pn} With gy and py being the respective start states.

We build a new FA, let us call it K, over the same input alphabet A. Its state set
is @ X Qn, thus the states of K are named by pairs (g;, p;) where ¢; € Qs and
p; € QN.

K has a transition

(Qi7pj>i><q;»p;> (1)
iff M has the transition
@5 q; (2)
and N has the transition
p; —5 P (3)

A state {q,p) of K is accepting, iff q is accepting in M, or p is accepting in N, or
both.

15Sets of strings over an alphabet; cf. 1.1.3.2.

www.it-ebooks.info

http://www.it-ebooks.info/

252 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Let now z = ajaj,...4a; , ...a; be an input string. Since the FA are fully
specified (their ¢ are total), there are M- and N-paths

a5y Gjg Ajy ’
do 9 4j, > ? Qjey 45, (2)
and a; aj a
J1 J2 Jt 1;
Po—Pj, —Pj; — ... —> Dj._, —*Dj, (3"

and a corresponding K -path labeled x, and this—by (1), (2) and (3)—is none other
than

(90,90 <25 (@1, Pir) ~2 (@as Dia) — o — (Gie1sPjucs)~ (G50, 05) (1)

Thus, we have the labeled paths (2') and (3’) iff we have the labeled path (1').
By the italicized sentence above concerning accepting states of K, we have that
(2') or (3’) (or both) are accepting paths iff sois (1'). Thatis, L(K) = L(M)UL(N).
O

3.1.2.2 Corollary. Sets of the type L(M) over a common input alphabet are closed
under intersection.

Proof. Modify the proof above so that accepting states of K are those pairs (g, p)
such that g and p are accepting in M and N, respectively. a

3.1.2.3 Proposition. Sets of the type L(M) over an input alphabet A are closed
under complement. That is, for any M there is an N such that L(N) = A* — L(M).

Proof. This proof is also constructive. Since z € L(N) iff ¢ L(M) we simply
need N to compute exactly as M—and hence to have structurally the same flow
diagram as that for M—but have its accepting states be the rejecting states of M and
vice versa. Indeed, under these circumstances, we have for the arbitrary input x a
computation gox 3 zq with q accepting iff we have goz 3, zg with g rejecting.
Pause. Full specification guarantees a computation for any .« |

3.1.2.4 Example. The automaton that accepts the complement of the language of
the FA in Example 3.1.1.11 is drawn without comment below.

N L)
f—@

www.it-ebooks.info

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 253

3.1.3 How to Prove that a Set is Not Acceptable by a FA; Pumping
Lemma

Is there a FA M such that L(M) = {0"1" : n > 0}? No? How can we be sure?
The following theorem, known as the pumping lemma enables us to establish such
“negative” results.

3.1.3.1 Theorem. (Pumping Lemma) If S = L(M) for some FA M, then there is a
constant C that we will refer to as a pumping constant such that for any string x € S,
if |z| > C, then we can decompose it as x = uvw so that

(1) v#e

(2) wo'w € S, foralli >0
and

(3) |uv] < C.

A pumping constant is not uniquely determined by S. @

Proof. So,let S = L(M) for some FA M of n states. We will show that if we take
C = n!16 this will work.

Let then x = ajas - - - ay - - - Gy, be a string of S. As chosen, it satisfies |z| > C.
An accepting computation path of M with input = looks like this:

(o))

Say p; repeats as

where p1, p2, ... denotes a (notationally) convenient renaming of the states visited
after go in the computation. In the sequence

qo,P15P25---,Pn

we have named n + 1 states, while we only have n. Thus, at least two names refer to
the same state.

116You see why C' is not unique, since for any S that is an L({M) we can have infinitely many different
M that accept S. Can we not?

www.it-ebooks.info

http://www.it-ebooks.info/

254 A SUBSET OF THE URM LANGUAGE; FA AND NFA

We may redraw the computation above as follows:

Ai4-2

We can now partition x into u, v and w parts from the picture above: We set
U =ai1az...a;

V= 0i4+1Gi42...05

and
W= Qqj4+10542...0,

Note that

(1) v # ¢, since there is at least one edge (a;+1) emanating from p; on the sub-path
that connects this state to the (identical) state p;.

(2) We may utilize the loop v zero or more times (along with v in the front and w
at the tail) to always obtain an accepting path (cf. 3.1.1.8). Thus, all of uviw
belong to L(M)—i.e., S.

(3) Since |uv| = j < n, we have also verified that juv| < C. d

The repeating pair p;, p; may occur anywhere between go and pr,.

3.1.3.2 Example. The language S = {0"1™ : n > 0} is not acceptable by any FA.
By way of contradiction, suppose that it is, and let C' be a pumping constant associated
with it. Let z = 0€1¢. This is in S and satisfies || > C. By the pumping lemma,
we have a decomposition z = uvw with [uv| < C and uv‘w in S for all ¢ > 0. This
cannot be, since uv is composed of Os only due to its length restriction, and thus, for
example, for ¢ = 0, the string uw ¢ S as it has the wrong form: It has at least one
less zero than it has ones (we miss all the zeros of v). O

All proofs by 3.1.3.1 are by contradiction and they prove non acceptability by any
FA (or, equivalently, NFA).

www.it-ebooks.info

http://www.it-ebooks.info/

DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 255

3.1.3.3 Example. We introduced FA as special URMs that cannot write. That in
itself almost at once implies that they cannot do “arithmetic”. For example, they
cannot compute Az.x + 1. “Trivially”, you say, “how can they add 1 if they cannot
write?”

Well, let us press on: How about accepting the language over A = {0, 1}, given
by T = {0"10"*1 : n > 0}?

We would agree that if this is FA-acceptable, then in a roundabout way FA “know”
how to add 1 and thus “compute” the graph of Ax.x + 1.

Alas, they cannot. Say 7' is FA-acceptable, and let C be an appropriate pumping
constant. Choose z = 0©10¢+1. Splitting = as uvw with [uv| < C we see that 1 is
to the right of v. Thus, uw (using v°) is not in T since the relation between the Os to
the left and those to the right of 1 is destroyed. This contradicts the assumption that
T is FA-acceptable. O

3.1.3.4 Remark. Indeed FA cannot even compute the identity function, Az.z, as it
should be clear from 3.1.3.2: One can think that we get “n in (0s) and n out (1s)”.
Another way to see that the identity function cannot be “computed” by FA is
by proving, adapting the argument for 7" above, that {0"10™ : n > 0} is not FA-
acceptable. This coding of the identity uses the same input and output notation. [

3.1.3.5 Example. The set over the alphabet {0} given by P = {07 : ¢ is a prime
number} is not FA-acceptable.

Assume the contrary, and let C be an appropriate pumping constant. Let Q) > C
be prime. We show that considering the string z = 0% will lead us to a contradiction.
Well, as « is longer than C, let us write—according to 3.1.3.1—z = uvw. By said
theorem, we must have that all numbers |u| + é|v| 4 |w], for ¢ > 0 are prime. These
numbers have the form

ai+b (1)

where ¢ = |v| > 1 and b = |u| 4 |w|. Can all these numbers in (1) (for all) be
prime?

Here is why not, and hence our contradiction: First, b = 0 is clearly impossible,
since the numbers have the form ai, and, e.g., a6 is not prime.

Second, say b # 0. Now taking ¢ = b, one of the numbers of the form (1) is
(a4 1)b. So, if b > 1 then this is not prime (recall that a +1 > 2). If however b = 1,
then take i = 2 + a to obtain the number (of type (1)) a® +2a + 1 = (a + 1)2. But
this is not prime! 0

The preceding shows that we can have a set that is sufficiently complex and thus fails
to be FA-acceptable even over a single-symbol alphabet. Here is another such case.

3.1.3.6 Example. Consider Q = {0"" : n > 0} over the alphabet A = {0}. It will
not come as a surprise that @ is not FA-acceptable.

For supposeitis. Then, if C is an appropriate pumping constant, consider z = 0c”’.
Clearly, z € @ and is long enough. So, splititas x = wvw with Juv] < C'and v # e.

www.it-ebooks.info

€

http://www.it-ebooks.info/

256 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Now, by 3.1.3.1,
wvw € Q (1)

But
C? < Juvvw| < Juvw| + luv] < C?+C < C?* +2C +1=(C+1)?

Thus, the number |uvvw| is not a perfect square being between two successive ones.
But this will not do, because by (1), for some n, we have uvvw = 0"2 and thus
|uvvw| = n?—a perfect square after all! O

Hmm. Can we do anything useful with FA? Well, yes, for example, compilers of
programming languages have an automaton front-end that will preprocess the input
(which is a program written in some high level language) and extract all sorts of
tokens such as, for example, names of variables. The principle of variable naming
is captured by the following language (set of names) over A = {L, D}, where we
chose “L” to suggest “letter” and “D” to suggest “digit”: “A name for a variable is a
string over A that starts with an L and continues with zero or more Ls or Ds”.

This language is V = {L}{L,D}*. An FA that accepts this language is the
following:

L,D

But remember that this volume is about fundamental limitations of computing,
not a how-to manual for, say, compiler writing. So we will leave this discussion at
that.

www.it-ebooks.info

?

http://www.it-ebooks.info/

NONDETERMINISTIC FINITE AUTOMATA 257

3.2 NONDETERMINISTIC FINITE AUTOMATA

The FA formalism provides us with tools to finitely define certain languages: Such a
language—defined as an L(M) over some alphabet A, for some FA M—contains a
string « iff there is an accepting computation

Qo Fr 2q (1)

or, equivalently an accepting path within the FA (given as a flow diagram) whose
labels from left to right form .

oo

The computation (1) above, equivalently, the path labeled x within the FA, are
uniquely determined by x since the automaton’s 6—the transition relation—is a total
function.

Much is to be gained in theoretical flexibility if we relax both the requirements
that 4 is single-valued (a function) and total.

This gives rise to a nondeterministic model of finite automata, a “NFA”, that may
accept a string in more than one ways, that is, there may be more than one distinct
paths from gq to an accepting state g, each labeled by the same string .

Indeed, even more flexibility is attained if we also allow “unconditional jumps”
from one state to another, such as

which, in the first approximation, will have unlabeled edges as above. However, in
order to retain the central property that we may “read off” what string is accepted
by any given accepting path, namely, by simply concatenating the edge labels of the
path from left to right, we will label all unconditional jumps by a string that is neutral
with respect to concatenation—that is, by €. For this reason, unconditional jumps
are also called “e moves”.

3.2.0.7 Example. The displayed flow diagram below, over the alphabet {0, 1}, in-
corporates all the liberties in notation and convention introduced in the preceding
discussion.

We have two € moves, and the string 1 can be accepted in two distinct ways: One
is to follow the top € move, and then go once around the loop, consuming input 1.

www.it-ebooks.info

http://www.it-ebooks.info/

258 A SUBSET OF THE URM LANGUAGE; FA AND NFA

The other is to follow the bottom ¢ move, and then follow the transition labeled 1 to
the accepting state at the bottom (reading 1 in the process).

Folklore jargon will have us speak of guessing when we describe what the diagram
does with an input. For example, to accept the input 00 one would say that the NFA
guesses that it should follow the upper epsilon, and then it would go twice around
the top loop, on input 0 in each case.

0,1

\ e

Q\G‘
O 1 @
This diagram is an example of a nondeterministic finite automaton, or NFA; it has €
moves, its transition relation—as depicted by the arrows—is not a function (e.g., the
top accepting state has two distinct responses on input 1), nor is it total. For example,

the bottom accepting state is not defined on any input, nor is the start state: e is not
an input! a

Returning to the issue of guessing, we emphasize that a NFA simply provides the
mathematical framework within which we can formulate and verify an existential
statement of the type

for some given input x, an accepting path exists

Given an acceptable input, the NFA does not actually guess “correct” moves (from
among a set of choices), either in a hidden manner (consulting the Oracle in Delphi,
for example), or in an explicit computational manner (e.g., parallelism, backtracking)
toward finding an accepting path for said x. Simply, the NFA formalism allows us to
state, and provides tools so that we can verify, the statement

for some given input T an accepting path exists (3.2.0.9) (1)

just as the language of logic allows us to state statements such as (Jy).Z (y, x), and
offers tools for their proof.

An independent agent, which could be ourselves or a FA—yes, we will see that
every NFA can be can simulated by some FA!—can effect the verification that indeed
an accepting path labeled x exists.

3.2.0.8 Definition. (NFA as Flow Diagrams) A nondeterministic finite automaton,
or NFA, over the input alphabet ¥ is a finite directed graph of circular nodes—the

www.it-ebooks.info

http://www.it-ebooks.info/

NONDETERMINISTIC FINITE AUTOMATA 259

states—and interconnecting edges, the transitions, the latter labeled by members of
A. Tt is specified as in Definition 3.1.1.1 with some amendments:

e The restriction (for FA) that for every state L and every a € %, there will
be precisely one edge, labeled a, leaving L and pointing to some state M
(possibly, L = M) is removed.

o The NFA need not be fully specified.

e Itis allowed unconditional jumps, that is, edges labeled only by e.

We will generically use names such as M, N, or K for NFA, just as we did for the
case of FA. O

The above can be recast in an algebraic formulation, viewing a NFA from an alter-
native point of view as a tuple of ingredients (), A, etc., just as we did for the FA.
If one does so, one will relax the requirement that § be a single-valued relation, and
will also relax the requirement of totalness. One will also allow § to have inputs of
the type (g, €) making sure to view this as an extension of what & can deal with (as
inputs) rather than mistaking this as an extension of the input alphabet. Said alphabet
cannot have the empty string as a member.

We will not pursue the algebraic model, as the flow diagram model will do all we
want it to do.

It is trivial that since a NFA is defined by relaxing requirements in 3.1.1.1, any FA
is also a NFA, but not conversely, as the preceding example demonstrates.

The NFA “computes” as follows:

3.2.0.9 Definition. (NFA Computations; String Acceptance) Let M be a NFA over
the input alphabet . An accepting path is a path in M from the start state to some
accepting state.

A string x over X is accepted by M iff z is obtained by concatenating the path
labels from left to right in an accepting path. We say that = names, or is the name of,
said accepting path. L(M) denotes the set of all strings over % accepted by M. We
say that M accepts L(M). O

3.2.0.10 Example. The following is a NFA but not a FA (why?). It accepts the
language {0}*{1} (cf. notation in 1.1.3.3).

L
Q_H

www.it-ebooks.info

http://www.it-ebooks.info/

260 A SUBSET OF THE URM LANGUAGE; FA AND NFA

3.2.0.11 Example. NFA are much easier to construct than FA, partly because of the
convenience of the e moves, and the lack of concern about single-valuedness of 4.
Also, partly due to lack of concern for totalness: we do not have to worry about
“installing” a trap state. For example, the following NFA over A = {0, 1} accepts its
alphabet A as we can trivially see that there are just two accepting paths: one named
“0” and one named “1”.

3.2.1 From FA to NFA and Back

We noted earlier that any FA is a NFA (compare Definitions 3.1.1.1 and 3.2.0.8), thus
the NFA are at least as powerful as the FA. They can do all that the deterministic
model can do. It is a bit of a surprise that the opposite is also true: For every NFA
M we can construct a FA N, such that L(M) = L(N).

Thus, in the case of these very simple machines, nondeterminism (“guessing”)
buys convenience, but not real power.

How does one simulate a NFA on an input 2? The most straightforward idea is
to trace all possible paths labeled x (due to nondeterminism they may be more than
one—or none at all) in parallel and accept iff one (or more) of those is accepting.

www.it-ebooks.info

http://www.it-ebooks.info/

NONDETERMINISTIC FINITE AUTOMATA 261

The principle of this idea is illustrated below.

Say the input to the NFA M is x = ab... Suppose that a leads the start state—which
is at “level 0”—to three states; we draw all three. These are at level 1. We repeat for
each state at level 1 on input b: Say, for the sake of discussion, that, of the three states
at level 1, the first leads to one state on input b, the second leads to two and the third
leads to none. We draw these three states obtained on input b; they are at level 2, etc.

A FA can keep track of all the states at the various levels since they can be no more
than the totality of states of the NFA M! The amount of information at each level is
independent of the input size—i.e., it is a constant—and moreover can be coded as a
single FA-state (depicted in the figure by an ellipse) that uses a “compound” name,
consisting of all the NFA state names at that level. This has led to the idea that the
simulating FA must have as states nodes whose names are sets of state names of the
NFA. Clearly, for this construction, state names are important through which we can
keep track of and describe what we are doing. Here are the details:

3.2.1.1 Definition. (a-successors) Let M be a NFA over an input alphabet 33, ¢ be
a state, and a € 3. A state p is an a-successor of q iff there is an edge from ¢ to p,
labeled a. O

@ In a NFA a-successors need not be unique, nor need to exist (for every pair (g, a)). @
On the other hand, in a FA they exist and are unique.

3.2.1.2 Definition. (e-closure) Let M be a NFA with state-set (and let S C @. The
e-closure of S, denoted by ¢(.5), is defined to be the smallest set that includes S but
also includes all ¢ € @, such that there is a path, named ¢, from some p € S to q.
When we speak of the e-closure of a state ¢, we mean that of the set {¢} and write
€(q) rather than e({q}). a

@ Note that a path named e will have all its edges named e. @

www.it-ebooks.info

http://www.it-ebooks.info/

262 A SUBSET OF THE URM LANGUAGE; FA AND NFA

3.2.1.3 Example. Consider the NFA below.

We compute some e-closures: €¢(a) = {a, b,d}; e(c) = {¢,a,b,d}. O

3.2.1.4 Theorem. Let M be a NFA with state set Q and input alphabet ¥.. Then
there is a FA N that has as state set a subset of P(Q)—the power set of Q—and the
same input alphabet as that of M. N satisfies L(M) = L(N).

We say that two automata M and N (whether both are FA or both are NFA, or we
have one of each kind) are equivalent iff L(M) = L(N). Thus, the above says that
for any NFA there is an equivalent FA. In fact, this can be strengthened as the proof
shows: We can construct the equivalent FA.

Proof. The FA N will have as state set some subset of P(()), meaning that every
state of N will have a compound name consisting of the names (in any order, hence
set rather than sequence) of the members of some subset of (). Moreover,

e The start state of N is €(qp), where ¢ is the start state of M.

e A state of NV is accepting iff its name contains at least one accepting state of
M.

e Let S be a state of N and let ¢ € 3. The unique a-successor of S in N is
constructed as follows:

(1) Construct the set of all a-successors in M of all members of S. Call T this
set of a-successors.

(2) Construct €(T); this is the a-successor of S in N.

As an illustration, we compute some 0-successors in the FA constructed as above if
the given NFA is that of Example 3.2.1.3.

(I) For state {a, b, d} step (1) yields {c}. Step (2) yields the e-closure of {c}: The
state {c, a, b, d} is the O-successor.

(I) For state {c, a, b, d} step (1) yields {c}. Step (2) yields the e-closure of {c}:
The state {c, a, b, d} is the O-successor; that is, the O-edge loops back to where it
started.

www.it-ebooks.info

¢

K4

http://www.it-ebooks.info/

NONDETERMINISTIC FINITE AUTOMATA 263

We return to the proof. We will show that this construction of the FA N works.
So let us prove first that L(M) C L(N).

Letz = ajag - - -a, € L(M). Without loss of generality, we have an accepting
path in M that is labeled as follows:

ela1e?azre’ay - I ap et 3)

where each e7i depicts j; > 0 consecutive path edges, each labeled €, where j; = 0 in
this context means that the j; group has no e-moves. We show this M -path graphically
below as the zig-zag path with horizontal segments alternating with down-sloping
segments. For easy reference, we assign the level number 4 to each horizontal part
labeled e’i+1, which is the one that is followed immediately by a down-sloping edge
labeled ;4.

Now the FA N that is constructed as detailed in the above three bullets will—its §
being total—have a unique''” path labeled ajas . .. a, from its start state to some
other state, its states being denoted by ellipses in the diagram.

The diagram implicitly claims that each N-state at level ¢, depicted as an ellipse in
the diagram,

(A) contains as part of its name all the states that participate in the M-sub-path with
name ¢i+1, fori =0,1,2,...

7By determinism.

www.it-ebooks.info

http://www.it-ebooks.info/

264 A SUBSET OF THE URM LANGUAGE; FA AND NFA

(B) the N-state at level 7 has the N-state shown, and partially named, at the next
level as its a;+1-successor.

We prove (A) by an easy induction on 7 and obtain (B) at once (bullet three on p. 262)
as a side-effect. Indeed, for level 7 = 0 (basis), all the state names shown (from M)
are in €(gp) and we are done by the first bullet on p. 262.

Taking as I.H. the validity of (A) for a fixed unspecified level i—where we have
an N -state S—we look next at level 7 + 1, where we have an N -state T'.

By definition of “level”, level ¢ + 1 is reached by the edge named a;, 1. By the
assumption on how M accepts z, the edge named a;4; bridges the two indicated
states, g and r. From what we know about the components present in the name of S
(I.H.), the third bullet that describes the transitions of /N entails that all states in the
e-path from 7 to p are in the N-state 7T".

The string will be accepted by N iff the state pointed at by a,—at level n—is
accepting in N. This is so by the fact that the last state of the M -computation is
accepting and—by (A)—is part of the last /V-state in the above N-path.

We turn to the converse. So let z = ajaq...a, € L(N). We will argue that
xz € L(M).

We will reuse the above figure. Let us concentrate at first only on the elliptical
states of the FA NV and the indicated in the figure interconnecting transitions, which
from top to bottom form the accepting /N-computation path labeled a;as ... a,. We
will want to produce a corresponding accepting M -path, that we will “fold” and fit
its “horizontal” (e-moves) parts inside appropriate ellipse states. This time it will be
most convenient to do so starting at the bottom of the FA path and work backwards.

Thus the last (bottommost) state of IV is two things:

(i) accepting; hence must contain an accepting M -state (as illustrated)

(ii) the a,-successor of the preceding N -state (not illustrated). Therefore (p. 262),
the latter must contain an M-state from which the a,-edge emanates and this
edge either points to the illustrated accepting M -state, or, more generally, to a
different M -state, which is part of the last ellipse’s name and is connected to the
accepting M -state by an e-path. We always adopt the general case (illustrated).

Continuing to build an M-computation path backwards, from an accepting state
toward the start state—and “folding it” inside the ellipses of V as we go, leaving
only the edges labeled a; to connect levels—assume that we have reached the ellipse
at level 7 + 1. This /N-state acts on input a;4o that emanates from the M -state p
inside the ellipse. By the third bullet on p. 262, this p must have become part of
the ellipse’s name either by directly being pointed to by the a,1-edge—emanating
from some M -state, that we will call g, inside the i-level ellipse—or the edge from
g actually points to a state r inside the level-i + 1 ellipse, this r, in turn, pointing to
p via an e-path (the “general case”), as illustrated.

Once we reach level 1 in this way, we have a state p’ (of M) as part of the level-1
ellipse’s name, which—as in the general case at level ¢ + 1—is either pointed to
by the a;-edge (emanating from ¢’) directly, or indirectly via an e-path from 7/, as

www.it-ebooks.info

http://www.it-ebooks.info/

NONDETERMINISTIC FINITE AUTOMATA 265

illustrated. Finally, at level O, we have N’s start state. Thus, either ¢’ is the start state
of M, or, more generally, as illustrated, ¢’ is reachable from M’s start state by an ¢
path. We have constructed an accepting path in M, labeled z. |

In theory, to construct a FA for a given NFA we draw all the states of the latter and
then determine the interconnections via edges, for each state-pair and each member
of the input alphabet . In practice we may achieve significant economy of effort
if we start building the FA “from the start state down”: That is, starting with the
start state (level 0) we determine all its a-successors, for each a € ¥. At the end of
this step we will have drawn all states at “level 1”. In the next step for each state at
level 1, draw its a-successors, for each a € X. And so on.

This sequence of steps terminates since there are only a finite number of states in
the FA and we cannot keep writing new ones; that is, sooner or later we will stop
introducing new states: edges will point “back” to existing states. See the following @
example.

3.2.1.5 Example. We convert the NFA of 3.2.1.3 to a FA. See below, and review the
above comment and the proof of 3.2.1.4, in particular, the three bullets on p. 262, to
verify that the given is correct, and follows procedure.

\
/N

[—1

0 0

You will notice the aforementioned economy of effort achieved by our process. We
have only three states in the FA as opposed to the predicted 32 (= 2%) of the proof
of Theorem 3.2.1.4. But what happened to the other states? Why are they not listed
by our procedure?

www.it-ebooks.info

http://www.it-ebooks.info/

266 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Because the procedure only constructs FA states that are accessible by the start
state via a computation path. These are the only ones that can possibly participate
in an accepting path. The others are irrelevant to accepting computations—indeed to
any computations that start with the start state—and can be omitted without affecting
the set accepted by the FA. O

3.2.1.6 Example. Suppose that we have converted a NFA M into a FA N. Leta
be in the input alphabet. What is the a-successor of the state named @) in N? Well,
there is no M state g that connects some state in (} to g with label a. Thus, the set
of a-successors (in M) of states from @ is itself the empty set. In other words, the
a-successor of § in N is {). The edge labeled a loops back to it.

Therefore, in the context of the NFA-to-FA conversion, () is a trap statein N. [0

3.3 REGULAR EXPRESSIONS

There is a very useful alternative (to FA and NFA) way to finitely represent the
L{M)-sets via a system of notation, or naming, that is called regular expressions.
Regular expressions are familiar to users of the UNIX operating system. They are
more than “just names” as they embody enough information—as we will see—to be
mechanically transformable into a NFA (and via Theorem 3.2.1.4 to a FA).

3.3.0.7 Definition. (Regular Expressions over >) Given the alphabet 3, we form
the extended alphabet
ZU{®7+")*’(’)} (1)

where the symbols @, +, -, %, (, } (not including the comma separators) are all abstract
or formal''® and do not occur in . In particular, “()” in this alphabet is just a symbol,
and so are “+7, “.”, “x”, and the brackets. All these symbols will be interpreted
shortly.

The set of regular expressions over ¥ is a set of strings over the augmented
alphabet above, given as the closure C1(Z, O), where

I=3XuU{0}
and O contains three operations
(1) From strings « and 3 form the string (o + 53)
(2) From strings o and § form the string (« - 3)
(3) From string « form the string (a*)

The letters «, 8, v are used as metavariables (syntactic variables) in this definition.
They will stand for arbitrary regular expressions (we may add primes or subscripts
to increase the number of our metavariables). O

'8 Employed to define form or structure.

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR EXPRESSIONS 267

@ 3.3.0.8 Remark.

() We emphasize that regular expressions are built starting from the objects con-
tained in X U {0}. We also emphasize that we have not talked about semantics
yet, that is, we did not say what sets these expressions will represent or name,

ERITaEL)

nor, what “+”, “.”_and “*” mean.
(ii) We will often omit the “dot” in (« - 8) and write simply (af3).

(i) We assign the highest priority to *, the next lower to -, and the lowest to . We
will let o o 0 @/ o o’ group (“associate”) from right to left for o € {+,-,* }.

Given these priorities, we may omit some brackets, as is usual. Thus, o + Gv*
means (a + (/3(7*))) and oy means (a(57)). 0

We next define what sets these expressions name (semantics).

3.3.0.9 Definition. (Regular Expression Semantics) We define the semantics of
any regular expression over X by recursion over the set of all such regular expressions.
We use the notation L(«) to indicate the set named by .

(1) L(P) = @, where the left “()” is the symbol in the augmented alphabet (1) above,
while the right “@” is the name of the empty set.

(2) L(a) ={a},foreacha € &
(3) L(e+8) = L(a) UL(B)
4) L{a- 8) = L{a)L({B)—cf. Definition 1.1.3.3.

5 L") = (L)’

A language over T (cf. 1.1.3.2) obtained as L(«) from some a over X is called a
regular language. O

3.3.0.10 Example. Let 3 = {0,1}. Then L((O + 1)*) = ¥*. Indeed, this is
because L(0+1) — LO)U L) = {0}u {1} = {0,1} = =. O

3.3.0.11 Example. We note that L(0*) = (L((Z)))* = (* = {e} (cf. p. 40). O

Of course, two regular expressions a and 3 over the same alphabet ¥ are equal,
written o = 3, iff they are so as strings. We also have another, semantic, concept of
regular expression “equality”:

3.3.0.12 Definition. (Regular Expression Equivalence) We say that two regular

expressions ¢ and § over the same alphabet 3 are equivalent, written o ~ 3,
iff they name the same language, that is, iff L(a) = L(8). 0

www.it-ebooks.info

http://www.it-ebooks.info/

268 A SUBSET OF THE URM LANGUAGE; FA AND NFA

3.3.0.13 Example. Let £ = {0,1}. Then (0 + 1)* ~ (0*1*)".

Indeed, L((0+1)*) = £*, by 3.3.0.10. It suffices to show that L((0*1*)*) = =*
as well. To this end, the inclusion L((0*1*)*) C ¥* is trivial, as the left hand side
is a set of strings over X.

We turn to L((0*1%)*) 2 £*. Now let us writt A = L(0*) and B = L(1*).
Thus the left hand side is (AB)*. Given that A = {0}* = {0™ : n > 0} and
B=A{1}*={1":m >0},

(AB)* ={0"1":n>0Am>0}* (1)

Let now z € ¥*. We show by induction on the length, k, of = that x belongs to the
left hand side. For k£ = 0 we have & = ¢ and the claim follows from the definition of
the Kleene star (p. 40) of any set X (here X = AB).

Assume the claim for a fixed k& (this is the I.LH.). The case for k£ 4+ 1 has two
sub-cases: First, z = Oy. By the L.H. and by (1), y, which has length &, has the form
below.

Qri1miQraqTeQre™e L Q1™
But z has the same form, hence is in the left hand side.

Second, let z = 1z. By the LH. and by (1), 2z (of length k) has the form above.
But z has the same form, since it is obtained by adding 0°1! to the left of (1). Hence
x is in the left hand side. O

By the above example, o ~ 5 does not imply o = (.

3.3.1 From a Regular Expression to NFA and Back

There is a mechanical procedure (algorithm), which from a given regular expression
o constructs a NFA M so that L{a) = L(M), and conversely: Given a NFA M
constructs a regular expression « so that L(a) = L(M).

We split the procedure into two directions. First, we go from a regular expression
to a NFA.

3.3.1.1 Remark. Every NFA M can be considered, without loss of generality, to
have exactly one accepting state. This means that, if it does not, we can construct an
equivalent NFA, M’, that does. Indeed, if M has no accepting states at all then we
just add one accepting state to it, to obtain M’'. We add no edges. Thus, just like the
original, M’ has no accepting paths. That is, L(M) = L(M') = {.

Suppose now that M has several accepting states,

P, Py..., P, (1)
We form M’ by doing this:
o add a new state, H, and designate it accepting

e connect each original accepting state to H via an e-move; we add no other
edges

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR EXPRESSIONS 269

¢ make all the F; in (1) rejecting.

Trivially, M’ has just one accepting state. On the other hand, say x € L{M). Then
there is an accepting path in M that ends, say, with P, for some k. This path is
labeled z. But then so is the path that we obtain by following the empty move to H:
it is labeled xe = x. Thus, z € L(M").

Conversely, let z € L(M’). Thus there is an accepting path that must end with
H. The label of this path is z. Moreover, the path passes through, say, some P, as
this is the only way to reach H, and indeed the latter is reached from F,, via a single
€-move.

Thus, if y is the label of the portion of the path from start state to F,,, then
z = ye = y. In other words, z € L(M), since P,, is accepting in M and therefore
y € L(M). d

3.3.1.2 Theorem. (Kleene) For any regular expression . over an alphabet ¥ we can

construct a NFA M with input alphabet ¥. so that L{a) = L(M).

Proof. Induction over the closure of Definition 3.3.0.7—that is, on the formation of
a regular expression « according to the said definition. For the basis we consider the
cases

e o = {b; the NFA below works

0 O

e o = a, where a € ¥; the NFA below works

a

—

Both of the above NFA have the form guaranteed by Remark 3.3.1.1. All the NFA
we construct in this proof will have that form, namely,

O

Assume now (the L.H. on regular expressions) that we have built NFA for o and
B—M and N—so that L(a) = L(M) and L(B) = L(N). Moreover, these M and
N have the form above. For the induction step we have three cases:

www.it-ebooks.info

http://www.it-ebooks.info/

270 A SUBSET OF THE URM LANGUAGE; FA AND NFA

o To build a NFA for a + 3, that is, one that accepts the language L{M) U L(N).
The NFA below works since the accepting paths are precisely those from M
and those from N. However, to maintain the single accepting state form, we
apply Remark 3.3.1.1 to the NFA below.

10
S

o To build a NFA for af, that is, one that accepts the language L(M)L(N). The
NFA below works—since the accepting paths are precisely those formed by
concatenating an accepting path of M {labeled by some x € L(M)] with an
e-move and then with an accepting path of N [labeled by some y € L(N)], in
that left to right order. The € that connects M and /V will not affect the path
name: rey = zy.

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR EXPRESSIONS 271

¢ To build a NFA for o*, that is, one that accepts the language L(M)*. The NFA
below, that we call P, works. Thatis, L(P) = L(M)*.

M

N

Y

€

(2 part) Indeed, let z € L(M)*. Then either x = ¢, or
T = 2129... 2k (1)

where each z; € L(M) (2)

In the former case, since x labels the one-edge path from the start state of P to
its accepting state, it is in L(P).

If, on the other hand, z is given by (1), then again P accepts it, since it has
a path from its start state to the accepting state, labeled x. Here is why: this
path starts at the start state of P, follows the e-move to the start state of M,
and then follows a path labeled z; in M. The path returns to the start state of
P via the e-move.

We repeat this path-building process, but this time we will traverse a path in
M labeled z;. We continue like this until we traverse a path labeled 2 in M
and then follow the e-move back to the start state of P. From here we move to
the accepting state of P via an e-move.

All the paths that we said we traverse in M exist by virtue of (2).

The entire path traversed via this process—in P—is labeled by
€EZ1€€EZQ€E . .. EZEEE

which is equal to z.

(S) Let now, for the converse inclusion, that y € L(P). This y labels a path
from the start state of P to its accepting state.

There are only two kinds of such paths: One is the one-edge path labeled e
from the start state of P directly to its accepting state. Thus y = €. But then,
y € L(M)*.

www.it-ebooks.info

http://www.it-ebooks.info/

272 A SUBSET OF THE URM LANGUAGE; FA AND NFA

The other kind of path is one that follows the loop that contains M one or more
times, finally to “exit” to the accepting state by following the e-move in the
figure above. If we denote by w; the name of the path traversed in A/—from
M’s start to its accepting state—the j-th time around the loop, and if y caused
the computation to enter the loop r times in total, then

Y = €W EEWEEWSE . . . EWp€E = WIWaW3 - . . Wy

But each w; is in L(M) by virtue of what path it names in M. Hence,
y € L(M)* as we needed to prove. O

3.3.1.3 Theorem. (Kleene) For any FA or NFA M with input alphabet 3. we can
construct a regular expression o over ¥, so that L(a) = L(M).

Proof. Given a FA M (if a NFA is given, then we apply 3.2.1.4 first). We will
construct an o with the required properties. The idea is to express L{M) in terms of
simple (indeed, finite) sets of strings over X by repeatedly using the operations -, U
and Kleene star, a finite number of times. It will be clear that a so constructed set can
be named by a regular expression.

So let Q@ = {q1,¢2,-..,qn} be the set of states of M, where ¢, is the start state.
We will refer to the transition function of M as § and to the set of its accepting states
as F\.

We next define several sets of strings (over ¥)—denoted by Rfj, for k =
0,1,...,n and each ¢ and j ranging from 1 to n.

Rfj = {z € " : gz F}; zg; and every gy, in this path, €]
other than the the endpoints g; and g;, satisfies m < k}

A superscript of n removes the restriction on the path g;x 3, zg; since every state
qm satisfies m < n.

We first note that for £ = 0 we get very small finite sets. Indeed, since state

numbering starts at 1, the condition m < 0 is false and therefore in R?j, if we have

i # 7, then the condition ¢;z 3, =g; can hold precisely when z = a € X for some
a—that is, iff §(¢;, a) = g;. The case ¢ = j also allows € in the set, since g;€ -3, €g;
for all i. To summarize, for all ¢ and j we have

0 {{aezzaqi,a):qj} ifi # j -

ij {eyU{aeX:d(q,a)=q;} ifi=j

Since every finite set of strings can be named by a regular expression (cf. Exer-
cise 3.5.26),

0
ij>

there are regular expressions a?j such that L(agj) =R}, foralli,j (3)

Next note that the Rfj can be given recursively using k as the recursion variable and

1, j as parameters, and taking (2) as the basis of the recursion.

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR EXPRESSIONS 273

To see this, consider a path labeled z in R, ", for k > 0. It is possible that all g,
(other than g; and g;) that occur in the path have m < k. Then this x also belongs to
Rk 1

If on the other hand, we have g, appear in the interior of the path labeled = once
or more times, then we have the picture below:

- A

where the ¢, occurrences start immediately after the path named z(and are connected
by paths named z;, for i = 1,...,t. Thus, x = 2p2122...2:2¢4+1. Noting that
2z € Rfk'l, z; € Rf;l—forz' =1,...,t—and 2,41 € Rl,gj_l, we have that z €
RE-T. (RZ;l)* . sz—l'm We have established, for all & > 1 and all 4, §, that

Rfj = Rfj_l U Rfk_l ’ (RII:;I)* 'sz_l (4)

Now take the I.H. that for k£ — 1 > 0 (fixed!) and all values of ¢ and j we have regular
expresswns ak ! such that L(1) = R’“_1 We see that we can construct—f{rom

the aij —regular expressions a . for the R’v Indeed, using the I.H. and (4), we
have, for all ¢, j and the fixed k,

k— k—1* k-1
Q5 = Oy "ol Hage) 05 (5)

Along with the basis (3) that the R sets can be named, this induction proves that
all the R"C can be named by rcgular expressions, which we may construct, from the

basis up.
Finally, the set L(M) can be so named. Indeed,
L) = | J Ry
g EF

The above is a finite union (F is finite!) of sets named by af; with ¢; € F'. Thus
we may construct its name as the “sum” (using “+”, that is) of the names af; with
g; € F. ([

VI91f there is just one g in the figure, then this is captured by the (R:;l)o in the (Rﬁ;l)* =
~0 (R:;l)l; cf. Subsection 1.1.3.

www.it-ebooks.info

http://www.it-ebooks.info/

274 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Because of the two Kleene theorems, every language that is accepted by a FA or NFA
is a regular language.

3.3.1.4 Example. Consider the FA of Example 3.1.1.4, reproduced below.

We will rename its states g, q1 t0 g, g2 respectively (not shown), so that we can
conform with the notation in the proof of Theorem 3.3.1.3.
We will compute regular expressions for:

o all sets RY;
o all sets R};
e all sets RZ;

Recall the definition of the Rfj, here for k = 0,1,2 and ¢, § ranging in {1, 2} (cf.
proof of 3.3.1.3):

{x : sz " zq;, where no state in this computation,
other than possibly the end-points g; and g;, has index higher than k}

This leads to the recurrence:
k k—1 k—1/pk—1\x pk—1
R = Ry UR (R)" Ry

Below I employ the abbreviated (regular expression) name “¢” for *.

Ry, || e+0
RY, 1
R$; 1
RY, || e+0

Superscript | now:

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR EXPRESSIONS 275

Direct Substitution
R, =RY URY(RY))*RY, || €+ 0+ (e+0)(e+0)*(e +0)
Ri, = R U R}, (RY))*RY, 1+ (e+0)(e+0)"1
Ry = R} URY, (RY,)*RY 1+1(e+0)*(e +0)
R}, = RS, U RS, (RY,)*RY} €+ 0+ 1(e+0)*1

Using the previous table, the reader will have no difficulty to fill in the regular
expressions under the heading “Direct Substitution” in the next table. To make things
easier it is best to simplify the regular expressions of the previous table, meaning,
finding simpler, equivalent ones. For example, L (€ + 0+ (e 4+ 0)(e + 0)*(e + 0)) =
{€,0} U {¢,0}{¢e,0}*{¢,0} = {0}*, thus

e+ 0+ (e+0)(e+0)"(e+0)~0"
Superscript 2:

Direct Substitution

R%, = Ri; URJ,(R3,)" Ry,
R%, = R}y U Riy(R3,)* Ry,
R%l = Rgl U R (R%2)*R§1
R%, = R}, U Ry, (R3,)" R,

O

3.3.1.5 Remark. We have the tools now to tackle the following question: Is there a
converse to the pumping lemma (3.1.3.1)?

That is, if a language L “can be pumped”, must it be regular?

Of course, we can certify the regularity of a language L by verifying one of
L = L{(M) or L = L(«a), for some FA or NFA M, or some regular expression «;
but is pump-ability an alternative tool for such certification?

First off, the colloquialism “can be pumped” means exactly this: For the given L
there is a positive integer C—a pumping constant—such that, if z € L and |z| > C,
then z can be decomposed as z = uvw and all of (a)—(c) hold

Qv F#e
®) lw| < C
(©) wv'w € L, forall i > 0.

No. The pumping lemma goes “one way”!
Here is why.

(i) First, we prove that the language L over ¥ = {a, b, ¢} given below
L={a'¥’c*:i>0,j>0k>0andifi =1thenj = k} (1)

“can be pumped” in the sense above.

www.it-ebooks.info

http://www.it-ebooks.info/

276 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Proof.

To settle the part that a C with the required properties exists, we make an
educated guess:'?° we pick C = 3, and show that this C works for the given
L. That is, we prove the existential claim “ there is a positive integer C, etc.”
constructively.

Pause. In earlier proofs by pumping lemma—cf. examples following 3.1.3.1—
that a given language is not regular, we did not take care to hand-pick a C. We
just said, “let C be an associated pumping constant”. How come we now need
to pick one that works? 4

We show now that all z € L, where |z| > 3, “pump” in the sense (c) above.
Let then 2z be arbitrary in L, and longer than 3.

(I) Case: z = a'b’c?. Take u = ¢, v = a. Pumping up or down—i.e., k > 0
or k = 0 in wv*w—we are still producing strings in L by the condition
to the left of “and” in (1).

(I) Case: z = a’bick, i > 2. Take u = aa, v the first symbol after the
second a (recall |z| > 3).

(III) Case: z contains no a (i = 0). Take u = ¢, v the first symbol in the
string. a
Pause. Will either of the choices C = 1 or C = 2 work?«

(ii) We next prove that L, notwithstanding that “it pumps”, is nof regular.

Pause. Hmm. How does one prove that L is not regular if the pumping lemma
does not help? All the non regular languages in our earlier examples were
proved as such by showing that “they cannot pump”. 4

There are are a number of alternative techniques, that go like “if L is regular,
then so is this L', obtained from L, by such and such operations that preserve
regularity.”” We try to make L’ such that its non regularity is amenable to a
proof by pumping lemma.

This idea works here. If L is regular, then so is
LN L(ab*c*) = {ab™c" : n >0}
by 3.1.2.2, using also Kleene’s theorems. Now the standard pumping lemma
proof shows that it is not; cf. Exercise 3.5.28. (]
Worth emphasizing. The pumping lemma is used for “negative” results of the type

“L is not regular”. It is used as follows:

120«Educated guesses” usually hide a lot of preliminary work and trial and error attempts; this kind of
“preprocessing” is almost always omitted from proofs so that the argument is not obscured. They are not
“guesses” at all.

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR GRAMMARS AND LANGUAGES 277

“If L is regular, then it pumps”. The lemma has no expectations or opinion on
whether non regular languages are allowed to pump (or not). So, the existence of a
non regular language L “that pumps” is fine, but the lemma cannot show via direct
application the non regularity of this L.

3.4 REGULAR GRAMMARS AND LANGUAGES

There is yet another way to finitely represent aregular set: by a grammar—which will
naturally be called a regular grammar. To motivate the core idea behind grammars,
consider, for example, the (inductive) definition of formulae (2.11.0.27). Moreover,
to simplify matters, let us stay in the Boolean domain—that is, we will include
only the connectives — and V but no quantifiers—and we will also adopt as aromic
formulae the set of Boolean variables,'?! generated by the symbol p with or without
primes. Thus, the atomic formulae include

p,p, 0", p™

where p(™) indicates p with n primes

n. primes

1 /

p

The alphabet over which we build these simplified well-formed (Boolean) formulae
is

(7)7) v7p7pl7p”7p,/,7 L
In the inductive clauses of 2.11.0.27 we have included “if &8 and € are formulae,
then so is (# V €)”. In words this says that

One way to get a “complicated” formula is to take two formulae, and join them
via a “V”, adding outermost brackets after that.

This generates this idea: Why not use a metavariable, named “(formula)”, to
stand for any formula, generically, and retell the above italicized sentence as

(formula) ::= ({formula) V (formula})

The above is an instance of a grammar rule (or grammar production) in so-called
Backus-Naur Form (or BNF). The symbol “::=” we read as “is defined as”. The
syntactic variable (formula) that names any formula is also called a nonterminal
symbol or just a nonterminal. Symbols such as (,), and V that name themselves are
called terminal symbols, or just terminals.

A grammar is a finite set of BNF productions. Our entire grammar for the set of
formulae has the structure below.

121 A varjable that, intuitively, assumes only the values frue or false, the so-called Boolean values. Cf. also
1.1.1.26.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

278 A SUBSET OF THE URM LANGUAGE; FA AND NFA

¢ (formula) ::= ((formula) v (formula))
e (formula) ::= (- (formula))

e (formula) :=p

o (formula) ::=p/

o (formula) ::= p”

e (formula) ::= p”’

Hmm. The above listing of rules is infinite. How can we make it finite? By finitely
generating the variables, rather than taking them from a ready to use, off-the-shelf in-
finite set! So let us use the nonterminal (var) to name any variable. A straightforward
recursive definition, expressed as BNF rules, for this new metavariable is

(var) == 1p
(var) ::= (var)’

BNF offers another notational convenience: We can group rules with the same left
hand side—that is, rules for the same nonterminal—using the separator | to separate

|

right hand side alternatives. is pronounced “or”.

The final grammar therefore is over the alphabet

(a)aﬂa\/vp,/ (*)
and its rules are

(1) (formula) ::= (var) ‘ ({formula) V (formula)) | (- (formula))

(2) (var) ::=p‘ (var)’

Every one of the two (grouped) rules defines a class of objects in the order listed:
formulae, and variables. Since the “primary” object we are interested in defining is
a formula, the nonterminal (formula) is the “important one”. It is called the start
(nonterminal) symbol of the grammar.

“Statically”, the rules (1)—(2) recast Definition 2.11.0.27 (after the adopted above
simplifications) in a new notation. Clearly, (1) says that a formula is either a variable,
or is formed by using simpler (shorter) formulae. Option one is to use two simpler
formulae, concatenate them so that we “sandwich” a “V”’ between them, and then
enclose the result in brackets. Option two is to use one simpler formula, prefix it
with a “=", and attach outermost brackets to the result. The subsidiary rule tells us
how to finitely generate (define) variables.

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR GRAMMARS AND LANGUAGES 279

g% Grammars do more than “statically” recasting in new notation inductive definitions
such as 2.11.0.27, as we detail below.

Suppose we want to verify that a string over (x) is a formula. We call such
verification parsing. To fix ideas, say, that we are checking, specifically,

(pV(-p")) (3)

We start by assuming that it is a formula and proceed to verify this assumption using
the rules (1)-(2).

To begin with, we view that the string (3) is “covered” by the nonterminal
(formula). At this highest level of abstraction (lowest level of detail), we just echo
our working assumption.

We next refine this “covering” using a well-chosen rule from group (1). The choice
is dictated here by the first couple of symbols in (3): The refinement or expansion of
the original covering cannot be either (var) or the right hand side of the third rule in
group (1), for the former requires the string to start with a “p” and the latter with a
“(_‘9!.

The refinement yields the covering
{({formula) Vv (formula)) (4)

We next, say, refine the left occurrence of “(formula)” in (4), and the “goal”, (3),
suggests that we use the first rule of group (1), to obtain

({var) V (formula)) (5)
Let us refine “(var)”. The goal suggest we choose the first rule in group (2) to obtain
(p V (formula}) (6)

We have uncovered quite a bit of (3)!
Next we use the third rule of (1) to refine “(formula)” in (7). Again, the context
“(—" helps us to choose. We obtain

(pV (= (formula))) (7)
This time we use group (1)—(formula) ::= (var)—to refine the above into
(v (- (var)) ®
and then
(pV (= (var))) 9)

using (2), second rule. One more application of (2), first rule, allows us to uncover
our entire goal! So, indeed, (3) is a formula.

@ These refinements involved, in each case, the rewriting (replacing) of some oc-
currence of a nonterminal in some string by a right hand side of a rule for said
nonterminal. For that reason we also call grammar rules rewriting rules.

www.it-ebooks.info

http://www.it-ebooks.info/

280 A SUBSET OF THE URM LANGUAGE; FA AND NFA

We have a better, symbolic, way to depict the several acts of rewriting (refinement):
Let us first introduce the relation “==>", pronounced yields, between strings over the
mixed alphabet

(,),ﬁ,v,p,’,(formula> ’ (var) (**)

defined for all o, o' over the alphabet (**) by
aRa' = afBd’ iff R € {{formula) , (var)} and R ::= B is arule (1)
Then we can summarize our rewriting sequence, from (formula) to (3), via (9), as

(formula) == (({formula) V (formula)) = ({var) Vv (formula)) =
(pV (formula)) = (p V (= ({formula))) = (p V (- {var))) =

(pV (= {var))) = (p v (-p'))
The sequence above is a derivation.

While our goal-driven choices worked deterministically in this example, it is not
guaranteed that an arbitrary grammar allows us the luxury of deterministic choices
during every derivation that attempts to verify that a given string is derivable (parsing).
In general, we may have to “guess” which rule to apply in each step in order to reach
our goal. Such guessing will usually be implemented by backtracking, that is, every
time we make a choice that further down gets us stuck (a “bad” choice), then we
go all the way back to said bad choice and make a different choice from among the
available options, until we get it right—or until we have verified that the string is not
derivable.

While BNF is very helpful in the definition of specific programming languages
via a grammar, in particular, allowing us to utilize mnemonics for nonterminals, such
as (if stmt), (begin block), etc.,!?? the metatheory of grammars benefits from a more
abstract, and simpler, notational convention as detailed in the definition below.

3.4.0.6 Definition. (Grammars) A grammar G = (V, 3, S, R) is a toolbox where
V is a finite set of nonterminals, ¥ is a finite set of terminals, where VN X = {).

S € V is the start symbol, and R is the set of rewriting rules or productions. The
symbols in V are denoted by upper case (single) Latin letters. The symbols of X
are single-character symbols that are not Latin capital letters. The rules are of the
form A — «, where & € (V U X)*. Note that in the domain of the metatheory of
grammars we have simplified the BNF notation “::=" to “—"".

Strings over V U X will have the generic names «, 3, 7y, § with or without primes,
while strings over ¥ will have the generic names z,y, z, u, v, w with or without
primes. Consistent with this convention, symbols of ~—if they are not non-letters,
such as 0, 1,9, 1, #, etc.—will be denoted by a, b, ¢, d with or without primes.

122BNF also allows multi-character mnemonics for terminals, using a variety of notations. For example,
the terminal “then” of Algol might be denoted by then, or then, or then.

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR GRAMMARS AND LANGUAGES 281

We define a relation = on (V U £)*, pronounced yields, by « = § iff, for
some «y and 7', we have &« = yAv' and 8 = 67’ where A — §isin R.

The language generated by G—in symbols L(G)—is the set {x € £* : § =*
.’E}.123
An « such that § =" « is called a sentential form. A chain

A:>a1:>a2:>a3...:a

is a derivation of « from A. If A is the start symbol, then we just say “a derivation”.
If & € ¥*—in which case we prefer to write something like « instead of a—then
it is called a sentence (of G). Thus, L(G) is the set of all sentences of G. O

In metatheoretical discussions we will feel free to use the BNF *|” to group together
rules with the same left hand side.

3.4.0.7 Definition. The grammar defined above is called a type-2 or context free
grammar, for short, CFG. The corresponding language L(G) is said to be a type-2 or
context free language, for short CFL. The type of grammar is determined by the fact
that the left hand side of every rule is a single nonterminal.

If the right hand side of every rule of a CFG is restricted to be of any of the four
forms ¢, a, B, or aB, where- a € ¥ and B € V, then the grammar is said to be a
type-3 or regular grammar. O

CFGs and CFLs will be studied further in Section 4.3.

3.4.0.8 Example. LetV = {S}, ¥ = {’} and the rules are S — ’|'S. This grammar
is regular. L(G) is clearly
E+={/ " om }

that is, the set of all non-empty strings of primes.

How “clearly”? Well, by L(G)’s definition, L(G) C 3*, but no rule can lead to
the generation of ¢ (the length of right hand sides of the two rules is > 1). Thus
L(G) C ¥t.

For the converse inclusion, ¥* C L(G), we do induction on the length of strings
xz € Y. For the basis, |z| = 1, we are looking at x = '. But § = /. Assume
now (LH.) that if |z| = n, then we have S =>* . What about a y of length n + 1?
Well, y = 'z, with |z| = n. Thus,

rule S—'S LH.
= 'S=*z O

123Cf. 1.6.0.20 and 1.6.0.23.

www.it-ebooks.info

http://www.it-ebooks.info/

282 A SUBSET OF THE URM LANGUAGE; FA AND NFA

3.4.1 From a Regular Grammar to a NFA and Back

In this section we, post facto, justify the terminology regular grammar and regular
language by proving the two theorems below, which relate the descriptive powers of
NFA and type-3 grammars.

3.4.1.1 Lemma. A sentential form o ¢ ©* of a regular grammar G = (V, ¥, 5, R)
has the form x A where x € ¥* and A is a nonterminal.

Proof. Induction on the length n of the derivation S =" « (cf. 1.2.0.21). The basis,
for n = 0, is immediate since then S = «. We take the obvious I.H. and consider

S ="t o (1)
Now, (1) can be rewritten, using the L.H., as
S ="14A = zaB

where a € ¥ U {¢} and B is a nonterminal.

Pause. Why can it not be that the (n + 1)-st step used a rule of the type A — a,
where a € L U {e}?«

We are done. 0]

3.4.1.2 Theorem. For any regular grammar G = (V, %, 8, R) we can construct a
NFA M = (Q, %, qo, 9, F) such that L(G) = L(M).

Proof. We take Q = V U {v'}, where the “checkmark”, v, is a new symbol (not in
V U X)) that names the unique accepting state of M—that is, F = {v'}. We take
go = S. The transitions (the &) are chosen as follows. We have a transition

M

A5 Y
iff A — aisarule, where a € £ U {¢}
(2)
A-5B
iff A— Bisarule
3)
A B

iff A — aBisarule, where g € ¥

We will show that L(G) = L(M). First we address C. We will assume thatz € L(G)
and prove that € L(M). As it is natural to do induction on the derivation length of
z, it is more convenient to show instead (cf. preceding lemma) that, for any y € X*
and A eV,

if § =" yA, then there is a path in M, labeled y, from S to A (4)

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR GRAMMARS AND LANGUAGES 283

The case for n = 1 means that we have a grammar rule S — yA, where y € X U {e}
and A is a nonterminal. If y is a terminal then we have a NFA move of type (3)
above, else we have one of type (2). We have settled the basis since in either case we
have a one-edge path from S to A labeled y.
We now fix n and take (4) as the I.LH. Let us next consider a derivation of length
n+1:
S =" yA = yaB

By the I.H. there is a path in M, labeled y, from S to A. This path continues from A
to B, with an edge labeled a ((2) or (3) above). Overall, we have a path from S to B
labeled ya. We are done in our task.

If now S =* z € ¥*, then (as S # x) we must have

S="yA = ya

where 2 = ya and a € £ U {e}. The last step of the derivation must be due to the
rule A — a. By what we proved above we have a path labeled y in M from S to
A. The rule A — a contributes to the tail-end of the path the edge (1) above. The
augmented path is labeled x and it ends at the accepting state. Done.

For the other direction, let
xz € L(M) (5)

We want to show that z € L(G). Correspondingly with the previous direction, we
will prove the following converse of (4), by induction on computation path length in
M, forallye X*and A€ @Q ~ F.

if there is a path of length n in M labeled y, from S to A, then S =" yA (6)
For n = 1, there is one edge in M
sS4 A

thus y = a € X or y = e. By (2) and (3) above, S — yA is arule, thus S = yA.
We next fix the n and take (6) as the .H. Suppose now that there is a path of length
n + 1 from S to A in M, labeled z. Let a be the label of the rightmost edge of the
path, connecting B to A, where a € ¥ U {e}. By (2) and (3),

B -2 Aisarule (7N

and, by LH., we have S =>* yB, where © = ya. Since by (7) we have B = a A,
we get a derivation
S =" yB = yaA

as needed.

With the induction completed, let us return to the hypothesis (5). It means that we
have a path from S to v/, labeled x. If the path has just one edge, then we have S — =
as a rule [cf. (1) above]. Hence S = x as needed. If the path has length at least 2,
then its nodes are S, ..., A, v/, for some A € Q — F. Say, the edge from A to v is

www.it-ebooks.info

http://www.it-ebooks.info/

284 A SUBSET OF THE URM LANGUAGE; FA AND NFA

labeled a € ¥ U {e}—thus A — a is a rule. By what we just proved by induction,
itis S =* y A, where x = ya, and, of course, y4 = ya. Thus S —>* z and we
are done.]

3.4.1.3 Theorem. For any NFA M = (Q, %, qo, 9, F) we can construct a regular
grammar G = (V, X, 5, R) such that L(G) = L(M).

Proof. First off, without loss of generality the names of the rejecting states are
capital Latin letters, with S as the start state that was generically denoted as “qq”
in the toolbox of M above. We also assume that we have “preprocessed” the given
NFA by adding a new, unique accepting state that we name v" (cf. Remark 3.3.1.1).
We do so even if the original NFA had a unique accepting state.

The construction of GG and the proof that it behaves as stated is entirely analogous
to that of 3.4.1.2. Thus, we take V = @ — F.

The rules of G are chosen exactly as in (1)—(3) in the preceding proof, reordering
the two sides of each “iff”” to emphasize that it is the NFA that is giver this time: We
have arule

(1) A — aisarule, where a € Z U {e}, iff

A5 v
is a transition
2) A — Bisaruleiff
A5 B
is a transition
(3) A — aBisarule, where a € X, iff
A-SB

is a transition
The proof that L(G) = L(M) can now be read off the proof of 3.4.1.2. O

Since every NFA is also a FA, the above construction, 3.4.1.3, works if we start with
aFA.

3.4.1.4 Example. Let us construct a regular grammar for the FA of Example 3.1.1.4,
which we reproduce below:

www.it-ebooks.info

http://www.it-ebooks.info/

REGULAR GRAMMARS AND LANGUAGES 285

To fix ideas, let us assume that we have designated gg as accepting and q; is rejecting.
Preprocessing gives the NFA below:

The proof of 3.4.1.3 gives us the rules

S—)e‘OS‘lAandA—)OA 18 0

3.4.2 Epilogue on Regular Languages

We look at some ad hoc additional results on regular languages, now that we have
three equivalent ways to finitely define them: automata, regular expressions, and
regular grammars. We will present these in the format of examples and will make no
effort to be “complete” given our philosophy that was outlined in the Preface of this
volume. The reader who wants to explore more on automata and their languages may
wish to refer to any of Sipser (1997), Lewis and Papadimitriou (1998), and Hopcroft
et al. (2007).

3.4.2.1 Example. Every regularlanguage L over an alphabet X is closed under taking
prefixes of its members. That is, the language

Init(L) = {z : for some y,xy € L} (1)

is also regular. To show regularity, we will look for an & or an M or a G and show
that the language in (1) is finitely defined by one of these. Which one we choose is
simply a matter of conveniewnce!
So let us take the regular expression avenue toward the proof, and translate the
assumption to
For some « over 3, we have L = L(«)
By induction on the formation of « (cf. 3.3.0.7 and 1.6.0.13) we argue that we can

find (for any) o such that L = L{«) a & such that Init(L) = L(a).

www.it-ebooks.info

http://www.it-ebooks.info/

286 A SUBSET OF THE URM LANGUAGE; FA AND NFA

Basis.
l.a=a €y Then & = a + P*.12*
2. o ={. Then & = c.

Induction steps. If o = 8 + 7, then & = B+7.
fa=p v, thena=3+5-7.
If @ = 8%, thena = B*f5. |

Another closure property is left as an exercise (Exercise 3.5.30).

3.4.2.2 Example. Given a regular language in one of the three ways that we know
of, can we check algorithmically whether it is equal to #? Yes! We use the FA
formalism to describe it (if it is not given that way we can certainly convert to this
representation) and then check to see if there is any path from the start state to any
accepting state. The language is empty iff no such path exists.]

3.4.2.3 Example. Givenaregularlanguage, L, can we check algorithmically whether
it is finite or not?

Yes! We assume without loss of generality that the language has been given as
L = L(M) for some FA M. This allows us to determine a pumping constant C (it
equals the number of states in M ; cf. proof of 3.1.3.1).

The language is infinite iff it contains strings with lengths greater than or equal
to C. But how can we tell whether it does?

Well, if we have infinitely many strings in L, then L must have strings of arbi-
trarily large lengths, hence, in particular, a string 2z of smallest possible length, but
nevertheless |z| > 2C. By 3.1.3.1, we can write this z as uvw with |uv| < C and
such that uv*w € L for i > 0. In particular, uw € L.

As z had least length above 2C, we have that

luw| < 2C (1)

Now, adding to 2C < |uvw| the inequality —C' < —|v]| [cf. 3.1.3.1, (3)] we get
C < |uw| (2)
So, if L is infinite, then we will be able to find an x € L of length—by (1) and (2)
C<lz|<2C (3)

Of course we will have to examine only finitely many strings, those in the length-
range (3), to find such an z.

But is finding an z in the language L, in the length-range (3), sufficient in order
for us to proclaim that L is infinite? Yes, because the left inequality of (3) and 3.1.3.1

124The set of prefixes of members of {a} is {¢,a}. But {¢} is given by the name (* —cf. 3.3.0.11.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL EXERCISES 287

imply that this z “pumps”; it leads to infinitely many strings in L. So this is the
algorithm:

Using the FA M, check all strings in the range (3) for membership in L. If any is

found, then L is infinite; otherwise it is finite. 1

3.5 ADDITIONAL EXERCISES

10.

11.

. Describe in set-theoretic notation the language of the automaton in 3.1.2.4. Inde-

pendently, describe set-theoretically the complement {0™1 : n > 0} and verify
that your two answers are equivalent.

. Construct a FA M over A = {0, 1} such that L(M) = {e}.
. Construct a FA M over A = {0, 1} such that L(M) = {0,1}7, that is, L(M) =

A* — {e}.

. Construct a FA that accepts L = {00, 11,10} over A = {0, 1}.

. Let ¥ = {0}. Which of the following languages over X is regular, and why?

(@) {z:|zz|is odd}

() {z: |z|is odd}

(©) {x : |zx|is not a prime }
(d) {z :|z|is not a prime}

(e) {z : |z|is a perfect cube}

. Find a finite automaton that accepts the language over A = {0, 1} that contains

precisely the strings that have no three consecutive Os.

. Find a finite automaton that accepts the language over A = {0, 1} that contains

precisely the strings that end in precisely three consecutive Os.

. Find a finite automaton that accepts the language over A = {0, 1} that contains

precisely the strings that end in at least three consecutive Os.

. Design a FA over {0, 1} that accepts exactly all the strings of length 3k + 1 for

some natural number k.
E.g., 0, 0110, 0000 are all in. 00, 000, 01101 are not.

Build a NFA that accepts precisely all the strings over {0, 1} of length > 5 that
contain at least one “1”” among their last five symbols.

You should argue the correctness of your design in general terms, not by example.

Design a FA over {0, 1} that accepts exactly all the strings whose digits have sum
equal to 3k + 1 for some natural number k.

www.it-ebooks.info

http://www.it-ebooks.info/

288 A SUBSET OF THE URM LANGUAGE; FA AND NFA

For example, 1, 100, 1111 are in. 11,0, 111 are not.

You must prove that your automaton works!
12. Convert to NFA (all are over {0, 1}) without comment:

o O1*
e (0+1)01
o 00(0+1)*

13. Convert the previous last two NFA to a FA.

14. For any string = over & = {0, 1}, let z® mean its reversal (i.e., 27 reads right-to-
left exactly as x does left-to-right), or, mathematically,

R z ifr=ce¢
T =
yfa,foralla € £ ifz =ay

Is {zwz® : z € * Aw € £*} regular?
A proof should be provided in support of either of the two possible answers.

15. This is a different question than the previous one!
Let L over &> = {0,1} be given by L = {zyz® : 2 € Z* Ay € T}

Prove or disprove: L is regular.

16. Prove that the language over {0, 1},
L = {w : w contains an equal number of occurrences of the substrings 01 and 10}

is regular.

Overlaps are allowed in the occurrences of 01 and 10. E.g., 010 is in. 0110 is in
too, but 1010 is not.

g% “Prove” is not fulfilled by just writing down a NFA (or FA or a regular expression).
The question remains: Why does the proposed finite description represent L?

Put positively, you need first to prove that L, as given above, can be redefined by
some much simpler description. Then it will be easy to give a NFA or FA or a @
regular expression that can readily be seen to “work”!

17. Prove that the language A below, over the alphabet ¥ = {0, 1, +, =},
A= {z+y=z:x,y, 2 are binary integers, and z is the sum of z and y}

is not regular.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL EXERCISES 289

18. A counterexample to the Pumping Lemma: “We know that L = {00,01} over

19.
20.
21.
22,
23.

24.

25.

26.

27.

28.
29,

30.

A = {0, 1} is regular. Let then C' > 0 be a pumping constant for L, and take a
z € L with [2| > C. Then we can write z = uvw—where |v| # 0—so that all
the strings uv*w, for ¢ > 0, are in L. But this is impossible! L is finite!”

The reasoning in quotes invalidates the pumping lemma! Do you believe this?

(i) We said “We know that L = {00,01} over & = {0, 1} is regular”. How do
we know this? Explain precisely.

(ii) Explain precisely where (and why) the counterexample argument is wrong.
Is the language L = {a®™ : n > 3} over {a} regular? Why?
Is the language L = {a®" : n > 3} over {a} regular? Why?
Is the language L = {a®b¥c* : z > y V y > z} regular? Why?
Is the language L = {a™(b'a’)*d"™ 14,5,k > 0 An > 1} regular? Why?

Let M be a NFA. “To get a NFA that accepts the complement of L(M) it suffices
to swap accepting and rejecting states”.

If you believe this prove it. If not, find a counterexample, that is, a NFA M
on which the above suggested swapping does not work: It produces a NFA that
accepts something other than the complement of L(M).

Define a new type of a nondeterministic automaton exactly as in Section 3.2,
except that the new model—in general—has more than one start state.

A string z is accepted by this model iff there is a path with label x from some
initial state to some state in F.

Prove that this model still recognizes exactly the regular languages.

For any regular expressions « and § over the alphabet 3, we have (o + 8)* ~
(Ct* IB*)* .

Prove that every finite set of strings over some alphabet A can be named by a
regular expression.

There were a number of “pauses” in 3.3.1.5 posing questions to the reader. Provide
all needed answers.

Prove that {ab™c™ : n > 0} over £ = {a, b, ¢} is not regular.

Prove the result in Example 3.4.2.1 using the NFA, rather than regular expressions,
as the formalism.

Prove that regular languages are closed under reversal. This is understood as
follows: The reversal of a string x over 3., denoted by 2%, is defined in Exercise 14
above.

www.it-ebooks.info

http://www.it-ebooks.info/

290 A SUBSET OF THE URM LANGUAGE; FA AND NFA

31.

32.

33.

34.

3s.

36.

37.

For any language L, its reversal, denoted by L is defined as L* = {zf : x € L}.
The exercise asks to prove that if L is regular, then so is L.

Hint. A technique similar to that used in 3.4.2.1 is recommended.

Prove that a CFG G over ¥, whose rules are of the types A - B, A — a, and
A — Ba—where a € £ U {e}—is regular.

Hint. This means that an «, or a FA M, or a regular grammar G’ exist, such that
the generated language equals L(a) [or L(M), or L(G")].

Prove (by an appropriate example) that we cannot normally mix rules of the types
A — Baand A — aB and expect to generate a regular language. More precisely,
find a CFG over X with rules of types A — a (where a € X U {¢}), A — B,
A — aB, and A — Ba that generates a language that we krnow is not regular.

Provide an algorithm that checks whether or not
(Gz)(z ¢ L1 U L)
for any given regular languages L1, L, and string z, all over some fixed X.

We know that if L and L’ are regular languages over X then so is L U L.
By induction on n prove that this extends to any number of regular languages
Ly,...,L,.

o0

Does the above extend to infinitely many regular languages L;? Will | J;Z, L; be
regular?

Thoroughly justify your answer (a proof, if you said “yes”; a counterexample if
you say ‘“no”

Prove that the equivalence problem of regular expressions, that is the question,
“a ~ 77, for any two o and 3 over some 3, is decidable (algorithmically
solvable).

Hint. Start by thinking set-theoretically.
Prove that universal FA do not exist. Let us make the preceding statement precise.

We can easily see that all possible FA with tape alphabet {0, 1} can be coded as
strings over a fixed alphabet to be specified below:

Indeed, let us code a FA M: Each instruction 6(g;, a) = g, is represented by the
string g1 * a * qJ, where a € {0,1} and 7 is the decimal representation of the
number i. Thus, adding “;” to the alphabet as a new symbol, we represent the
automaton by “gluing” the instruction-representations, one after the other, using
*” as inter-instruction glue, and appending at the end of the sequence the string
“sqm;qn;...; gk;” which indicates that q,, is the initial state and q,, ..., qx are
the accepting states.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDITIONAL EXERCISES 291

Any automaton, such as M, has more than one string representation (due to the
fact that permutations of states and/or instructions are possible) over the alphabet
£={0,1,2,3,4,5,6,7,8,9,¢,%,; }.

R(M) will denote all the representations of M. End of the description of how to
code a FA.

Thus, you are asked to prove that the language
L={z;y: 3M)(MisaFAandz € R(IM) Ay € L(M))}

is not regular, or, in plain English, “there is no FA U that can faithfully simulate
an arbitrary FA M (the latter coded as z) on arbitrary input y over {0,1}”.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

ADDING A STACK TO A NFA:
PUSHDOWN AUTOMATA

FA, and therefore NFA, accept some reasonably nontrivial languages over some
alphabet ¥, yet they fail decisively on certain simple languages, such as L = {0™1™ :
n > 0} over ¥ = {0, 1}, as we showed in 3.1.3.2. This language is an abstraction of
a special case of “the set of strings of balanced brackets”,!? that is, Lg = {(")" :
n > 0} over A = {(,)}. Balanced brackets play an important role in the definition of
syntax, and subsequently in the syntactic analysis of formulae, and of programming
language constructs. In the latter domain, the result of 3.1.3.2, for example, makes it
impossible for an automaton to recognize and pass string constants to the language
translator of Algol 60. The reason is that such strings have a balanced bracket
structure—where the brackets in this context are left and right quotes, “ and . This
does not happen with other major programming languages that do not define strings
this way.

In this chapter we will add slightly to the power of the NFA, without going all
the way back to the full-fledged URM, so that languages such as L and Lp are
acceptable.

125This special case includes strings such as ((())) but not ((()))(()).

Theory of Computation. By George Tourlakis 293
Copyright © 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

294 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

4.0.0.4 Remark. Translating the notation of 1.6.0.10 to grammar notation, we see at
once that L = L(G), where G is the CFG over £ = {0, 1} with just two rules:

S —€|0851

That is, this language is context free (type-2).]

We will see that the augmented NFA of this chapter accept precisely the CFL.

4.1 THE PDA

Computer science students almost certainly become familiar with the concept of a
stack by the time they enroll in a course on the (meta)theory of computation. Let us
think of a stack as a string ~y, over some alphabet I", whose length we are allowed to
vary by adding to it or deleting from it exactly one symbol at a time. We have some
restrictions to our access to the stack +:

(1) Adding takes place only at the left end of . This end is called the top of the
stack. Thus, if A € I, we can perform a Push operation and go from =y to A~.
We say that we pushed A into the stack. One often writes v | A to indicate that
we pushed A into 7.

(2) The reverse operation, deleting, is called a Pop operation and it also takes place
only at the left end of +. It is defined only if v # €. Say then v = B~'. Then a
pop operation on this v yields the string 7'. One often writes « 1 to indicate that
we popped the top of v (assuming we knew v # ¢€).

(3) Read access is allowed only at the top of 7.

(1) We endanger no confusion between the notations «y | and f(a) | as one is about
a string (stack) and the other about a function (cf. p. 43). One often encounters the
notations v < and < ~ for v | and v T, respectively. The danger of confusing
this symbol is greater in this context, where we are using its long form, —>, for the
yields-relation in (grammar) derivations.

(2) A so-augmented NFA in essence has the ability—additionally to the NFA’s
ability to read input, one symbol at a time, as well as the ability to make an e-move
without reading input—to record an unbounded, that is, dependent on input size,
amount of information v in a stack variable. In the preamble of Chapter 3 we
introduced the FA as a restricted URM with only one variable that can hold a single
digit at a time. The PDA model of this section will additionally have another variable
that can hold any string (equivalently, any natural number, just as the variables of
the unrestricted URM do), but we will put restrictions on the modes of access to this
string-variable. In what follows we will not refer to this variable explicitly any more
than we do so for the “input variable” of an NFA.

www.it-ebooks.info

54

http://www.it-ebooks.info/

PDA COMPUTATIONS 295

@@ Are we deviating from our “program” to introduce only subsidiary formalisms to

that of the URM? What of “string variables” and, especially, “restricted access” to
them? Notwithstanding the comment that we often make that strings and natural
numbers are interchangeable objects since the latter are coded as strings anyway
(e.g., decimal notation) and, conversely, they can code strings, can we claim that a
URM can perform those string-specific operations, such as “push” and “pop”? Yes.
However, we do not want to digress on this issue here. See Chapter 5.

4.2 PDA COMPUTATIONS

4.2.0.5 Definition. (PDA) A pushdown automaton or PDA, M, is a NFA equipped

with a stack variable whose contents we will generically denote by lowercase Greek

letters from the beginning of the alphabet («, 3,) with or without primes.
Algebraically speaking, M is a toolbox

M= <E,F,Q,5,QO,F>

where the finite set 3. is the input alphabet; () is a finite set of states; d is the “program”,
that is, the transition relation; qo (generic name!) is a distinguished member of Q,
the start state; F' is a finite set of accepting states.

I is new: It is a finite alphabet of stack symbols. The stack variable takes values
from I'*. It is allowed to have X N T # (.

The set of instructions (program) is encoded into the relation §. A PDA has only
four types of possible instructions, given below in flow-diagram form:

Semantics

,€—> A4
@a—’<@ q: Read a, Push 4; goto ¢’
€,654 B
q iy, q’ q: Push 4;goto ¢’

a,A—>€
q - q' g: Read a, Pop 4; goto ¢’
€,4A>€ o
'
<q> q: Pop 4; goto g’

www.it-ebooks.info

L84

http://www.it-ebooks.info/

296 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

where, generically, an “A” denotes a member of I" and an “a” denotes a member
of the input alphabet 3.126 The first and third are “mixed” instructions (both input
and stack activity), while the second and fourth are “pure” (stack activity only). The
second is a “pure push instruction”.

Mixed instructions “consume input” while pure instructions do not. For the latter
note the analogy with a NFA’s e-moves.

Note that instructions of type 3 and 4 are constrained by what is the leftmost
(“top”) symbol of the stack: A must be the symbol at the top of the stack; otherwise
the instruction is not applicable. O

Very important. Jargon such as “consume input”, and “push” into or “pop” from
a stack, help our intuition and guide us toward the next definition, which details
how PDAs compute. Such terminology has no formal status nor is it needed, except
to serve pedagogy. At the end of the day, a PDA, just like a NFA, is a string
transformation formalism—we are given a set of rules and a methodology on how
to construct certain sequences of strings. Such formalisms allow us to “correctly”
write down finite sequences such as

I|_M I/ '_M I// }_M I/// |_M ..

which we have seen before (FA and NFA). We also met such formalisms under a
different guise—that of grammars— which led to a mechanism that allows us to write
down derivations « = o = o/’ = ---. Above all, we have met such string
transformation formalisms way before all this: mathematical proofs (cf. 1.1.1.34).
Thus the above “semantics” embodies only stated intentions and guidelines no
more. Once we define “computations” the above semantics will become formal.

4.2.0.6 Example. We often allow, for the sake of convenience, the following derived
(simulated) types of moves that were not among the primitive (primary) moves of
Definition 4.2.0.5. Let us adopt in what follows that a € ¥ U {¢}.

The first is an “ignore-the-stack” move (and it will also ignore the input, if
a = €). In the simulation, A is a new stack symbol and ¢ a new state. This means
that if I “program” a PDA, M, with a “macro” like a,e — ¢, then the expansion
(implementation) of the macro is done by adding a new state ¢ and a new stack
symbol A to the respective alphabets () and ') of my original M and by using the

1261f instead we opted for the understanding that a € = U {e}, then we could conflate instructions one
and two, and three and four.

www.it-ebooks.info

http://www.it-ebooks.info/

PDA COMPUTATIONS 297

three-state sequence below to implement the derived move.

<EZ> a,eE>€ <EZ>

Simulated by

a,E—)A A E’A_)e

q

The next is also very useful when programming PDAs, e.g., when constructing
examples. The suggested implementation takes care of the general case in a compact
(recursive) manner. It says that “if you know how to macro expand (simulate) ‘a, A —
B’, then here is how to do ‘a, A — Bf’”. The “basis” of the recursive construction
is when 3 = ¢, which is covered by one of our basic moves (Definition 4.2.0.5).
Note that a, A — [means to read input a (if a # €) and also to pop A, provided it
is the top-of-stack symbol, and then to push all of 3 into the stack—without consuming
any more input. More precisely, if 7, the stack contents, is the string A~ before the
effect of the instruction, it will change to 3+’ after the instruction is performed.

a,A-Bp

Simulated by

a,A->p R €,e>B

!

www.it-ebooks.info

http://www.it-ebooks.info/

298 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

4.2.0.7 Example. Specifically, we simulate “a, A — B” as follows

a,A->B
@)

Simulated by

a,A—> € €, B
_— »

v
X

O

There are a number of concepts we need towards defining a computation of a
pushdown automaton, and eventually string acceptance.

4.2.0.8 Definition. (Configurations or IDs) A configurationis asnapshotin “time”,
also called an instantaneous description, for short, ID, of a PDA computation.2 It is
atriple (q,w,~y), where g denotes the current state, w is the unspent (“unexpended”
or unprocessed, or, unread-so-far) input, and -y is the total contents of the stack, read
from top to bottom (recall that the leftmost symbol of -y is the topmost symbol of the
stack).

From the description of w follows that the next input that will be read, if we
perform an instruction of types 1 or 2 (4.2.0.5) on this configuration, will be the
leftmost symbol of w. a

4.2.0.9 Definition. (Moves) If [and J are configurations of a PDA M, then I s J
or simply I - J if M is understood from the context—pronounced “I yields J”—
means that there is a move'”’ of M that transforms the ID I into J, in one step.
The foregoing is “English” for the following mathematically precise specification by

cases:
Foralla € ZU {e},y € T*and v € T'*,

(q,ay, Av) F (d',y,7)

iff instruction 3 (Def. 4.2.0.5, case a € X3), or 4 (Def. 4.2.0.5, case a = ¢) is available.

2The reader should not overlook the fact that we do nor need to know what a “computation” is before we
know what an “ID” is! Indeed, we will define a computation as an appropriate sequence of IDs.
127Note the there is. I am not saying that it is the only move, or that I uniquely determines J.

www.it-ebooks.info

http://www.it-ebooks.info/

PDA COMPUTATIONS 299

Foralla € ZU {¢},y € &* and v € T*,

(g,0y,7) F (d',y, Av)

iff instruction 1 (Def. 4.2.0.5, case a €), or 2 (Def. 4.2.0.5, case a = ¢€) is available.
O

4.2.0.10 Definition. (Initial, Terminal IDs) A configuration is initial iff it has the
form (qq, z, €). This captures the intended semantics that computations with input x
start at state “qop” (generic initial state) and with an empty stack.

A configuration (g, €,) is terminal or final (1 did not say “accepting!) iff there is
no defined next move. That is,

@) (@6) 0

4.2.0.11 Definition. (PDA Computations) A PDA computation is a sequence of
IDs, Iy, ..., I, such that

(1) I is initial
(2) 1,, is terminal (final)
(3) For ¢ :0,...,71— l,Ii - Ii+1-

As usual, we write Iy F* I, (denoting 0 or more occurrences of “I-”") and say
“Iy F* I,, is a computation”, which is a slight abuse of language: We should have
said—if we do not want to mention /Iy, . .., I,,_;—that “there is a computation with
Iy as initial and I, as terminal IDs”.

In this context it is sometimes best to write more specifically Iy - I,,, which
is explicit that there were n steps (applications of I-) in the computation, or that the
computation has length n, as we say. g

4.2.0.12 Remark. Thus, we require our computations to be terminating. This is
implicit in PDA models that one sees in the literature. For example, in the approach
taken in Hopcroft ez al. (2007), a stack move of the type ¢ — A (push) is not allowed.
Instead, the only stack moves allowed are of the type A — « (that is, “the stack must
always be consulted before moving ahead”).

The PDAs in loc. cit.,, which simulate ¢ — A by an instruction of the type
X — AX and accept their input by “empty stack” (see below), end up in a terminating
configuration, since no move is permitted without consulting the stack.!??

4.2.0.13 Definition. (Modes of Acceptance: ES, AS, and ES+AS) The string z is
ES-accepted '?° by a PDA, M, iff there is a computation (go,,¢) F* (g,¢,¢€) for
some g € Q).

1280 allow such PDASs to begin a computation, the stack is “externally”—i.e., not by a PDA instruction—
initialized with a special “bottom of the stack ‘initial’ symbol”.
1298y Empty Stack.

www.it-ebooks.info

http://www.it-ebooks.info/

300 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

For ES-acceptance, the set F' of accepting states is irrelevant, and is often

taken 1o be 0.

The string z is AS-accepted '*° by aPDA, M, iff there is a computation (o, , €) F*
(g, €,y) for some g € F. The stack contents, -y, at computation’s end are irrelevant
to AS-acceptance.

The string z is ES+AS-accepted'®' by a PDA, M, iff there is a computation
(go,x,€) F* (g, ¢, ¢€) for some g € F.

If the context helps, we may simply say M accepts z, without having to say in
what mode (ES, AS, or ES+AS). O

4.2.0.14 Definition. (Acceptance of Languages) If M is a PDA, then L(M) de-
notes the set {x € ¥* : z is accepted by M } (by ES, AS, or ES+AS acceptance, as
the case may be).

L is ES- (AS-, or ES+AS-) accepted
iff there is a PDA M that accepts by ES (respectively, AS or ES+AS) such that
L =L(M). O

42,1 ESvs ASvs ES+AS

4.2.1.1 Theorem. (AS Can Simulate ES) If M is a PDA accepting by ES, then we
can construct a PDA N that accepts by AS, so that L(M) = L(N).

Proof. We refer to the figure below. Let
M= (Evr’Q757q07F)

where F = (3, be our ES-PDA. We build N as it is (partially) suggested in the figure
below.

N = (27f7 Q737 %7 F)
where Q = QU {70,7}, F = {g}, and T = I U {$}. The symbols 75,7 and $ are
new and ¢ is J, augmented by the new instructions pictured below. The one involving
qo is self-explanatory. The “pure pop” instructions that lead to g

are only defined on states q that have no pure push moves (1)

Such states exist, unless M has no terminating computations, in which case L(M) =
(0 and the result is trivial.

130By Accepting State.
1318y Empty Stack and Accepting State. We may also say “AS-+ES-accepted”.

www.it-ebooks.info

http://www.it-ebooks.info/

PDA COMPUTATIONS 301

Pause. Why “trivial”?«

M accepts by ES

M

N accepts by AS
N e e

_ €E€>5S
@Q—,H 90

We now proceed to prove that
L(M) = L(N) (2)
For C: Letz € L{M). Then we have an M -computation
(g0, 7,€) 7 (g, €, ¢)
Thus,
(o, z,¢) F (go,,8) F* (g,¢,8) F (g, ¢, €) is an N-computation

Clearly the last ID is terminating, since, by construction of N, g has no moves at all.

Let us justify the last “t=": Since (g, €, €) is terminal in M, ¢ cannot have pure push
moves, else the computation could continue from (g, ¢, €), a fact that would render
this ID nonterminal; not possible (cf. Definition 4.2.0.10). Thus, this g is connected
to g as shown in the figure above. For short, z € L(N).

For D: Letz € L(N). Then
(Go,,€) F* (G,e€,7v) is an N-computation (3)

The only way to reach q is to reach it—in one move—from some g (of the original
M) that has no pure push moves (in M) (see figure above). Thus, (3), in some more

www.it-ebooks.info

http://www.it-ebooks.info/

302 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

detail, is the N-computation below, where the first step is obvious (and inevitable)
due to the construction of N:

(@, x,€) F (90,2,8) " (¢,6,7) - @, 6,7) (4)

Now, the only way for the last I- to be valid (see Definition 4.2.0.9 and the construction
of N) is that v/ = $v. Moreover, since N can only write $ once, in the very first
move (and the M -part cannot write § at all), we conclude that vy = .

Now we see (4) more clearly:

(%ax,f) - (q07$7$) |_* (q,e, $) = (@6,6)

Thus, forgetting the first and last moves, we obtain (qg, z,$) H* (g, €, $) and hence!?

(go,xz,€) F* (g, €, €) is an M -computation (5)

Note that the ID (q,¢,¢) is terminal in M. Thus, since M is an ES machine,
z € L(M). O

4.2.1.2 Theorem. (ES Can Simulate AS) If M is a PDA accepting by AS, then we
can construct a PDA N that accepts by ES, so that L(M) = L(N).

Proof. We refer to the figure below. Let
M= (23F7Q757q0»F)

be our AS-PDA. Without loss of generality we assume that F' = {q} and that q has
no moves. Indeed, if it is not so designed, then we modify the original as follows:

(i) we add a new a state g and we designate it as accepting.

(i1) for each (original) accepting state ¢/, we add a move “e,e¢ — €’ (recall our
macros in 4.2.0.6) from ¢’ to q.

(iii) we give no moves to g.

We build N as it is (partially) suggested in the figure below.

N = (Eafv Qvgv q_O»F)

yhere @ =QU{g,7}. F = 0 (thus, we have remO\ﬁad accept-status from gq), and
I' =T U {$}. The symbols g, 7 and $ are new and ¢ is §, augmented by the new
instructions pictured below.

B2n (go,z,8) F* (g,¢,$), thatis, in (go,2,8) - 1 F I2 + --- I, - (g, €, $) each I; has $ at the
bottom of its stack. In (5) we left all else the same, but we removed all the $’s.

www.it-ebooks.info

http://www.it-ebooks.info/

PDA COMPUTATIONS 303

M accepts by AS

N accepts by ES
N e

\
OE0) o

€,pop

€ ,pop

o

We now prove that L(M) = L(N).
For C: Letz € L(M). Then
(go,x,€) F* (g, €,7) is an M-computation
Then, trivially,
3

(@0, z,€) F (o, z,8) F* (g,€,78) F* (G, €, €) is an N-computation'?

Thus, € L(N).
For 2: Letz € L(N). Then

(o, xz,€) " (G, €, €) is an N-computation (1)

Pause. Wait a minute! Why is g the state in the last ID of (1)? Well, because no
other state can contemplate an empty stack. The only states that can erase $ are ¢
and g, each by a move that leads to .4

133Terminating, since g has no pure push moves.

www.it-ebooks.info

http://www.it-ebooks.info/

304 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

As in the proof of the previous theorem, let us work back from the end: §
consumes no input and is only accessible from state ¢ (see figure). Thus, when ¢ sent
the computation to g (by popping once), the input must have been already consumed.
This, coupled with the inevitable firsr move that places a $ in the stack—a symbol
which cannot be erased by “internal” M-moves—gives a more “detailed picture” of
(1), below:

(@0, x,€) + (o, z,8) F" (q,6,78) F* (T, ¢,€)

Now the part (go,,8) H* (g,¢,78), after we strip it, throughout, of the bottom $
stack symbol becomes the (terminating—remember the fact that ¢ has no moves in
M) computation

(qO» Z, 6) H* (q7 3 7)
Since g € F, it follows that x € L(M). O

4.2.1.3 Corollary. All three acceptance modes are equivalent.

Proof. By Theorems4.2.1.1and4.2.1.2, ES and AS acceptance modes are equivalent.
What about ES+AS?

Well, if M is ES, then an N that accepts by ES+AS can be build that simulates
M. We achieved this (without drawing attention to the fact, until now) in the proof
of Theorem 4.2.1.1.

Conversely, let M accept by ES+AS. We can then build an ES-PDA simulator,
N. The construction and proof is exactly as in Theorem 4.2.1.2 since neither the
construction nor the proof there made any assumptions whatsoever on what precisely
was the ~y that was left in the stack at the end of the computation. O

4.2.1.4 Example. Here is how to accept {0™1™ : n > 0} by ES.

0,€—>0
1,0—-€

\ 1,0—-€

Indeed, for n > 0,
(q070n1n) 6) '_n (q()’]-na On) F (Q7 177,—1’071—1) l_n_l (qv €, 6)

where 0 is equality. Clearly, (g, ¢, €) is terminal. We also note that (gg, €, €) F*
(go, €, €), and (qo, €, €) is terminal. Thus € is accepted.

www.it-ebooks.info

http://www.it-ebooks.info/

THE PDA-ACCEPTABLE LANGUAGES ARE THE CONTEXT FREE LANGUAGES 305

On the other hand, if the input z is “illegal”—i.e., not of the form 0¥ 1¥—then it
is not accepted. Here is why: Such an input starts with a 0 or it starts with a 1:

() z = 0"1™y, where y # e. Then (qo,0"1"y,¢) F* (q,y,¢). But (g,y,¢€)
is terminal, and the input has not been consumed (for acceptance, the middle
coordinate of the last ID must be ¢).

(2) = 0™1™y, where m > nand y = 0z, for some z € {0, 1}*. Then (qo, z, €) +*
(g,0z,0™" ™), We ran out of moves and did not reach (g, ¢, €)!

(3) « = 1z, where z € {0, 1}*, clearly is not acceptable either; it gets the PDA stuck
at g before it can make any move at all! O

4.3 THE PDA-ACCEPTABLE LANGUAGES ARE THE CONTEXT FREE
LANGUAGES

We have defined grammars, in particular, CFG in 3.4.0.7. We will see in this section
that CFG are an alternative formalism to that of PDA. They define exactly the same
languages. First off we note that for any CFG, G = (V, X, S, R), we can assume
without loss of generality that its instructions have two possible forms: A — a,
where a € ¥ U {e}, and A — X; X5 - - - X,,—the right hand side being a string of
X, each of which is a nonterminal.

Indeed, if G does not already have the desired rule structure, we add new non-
terminals, Y(“), one for each a € . We then replace each rule A — a—where o
contains at least one nonterminal—with A — o', where o is the result of replacing
each a occurring in & (@ € ¥) by y (@), Finally, we add the rules Y@ — g, for all
a €.

We will prove that if the so constructed grammar is G’, then L(G) = L(G’), which
justifies the “without loss of generality” above. Indeed, let z = ajas2 - - - a, € L(G),
where k = 0 means that x = . Thus we have

S =" a1az - Qg (1)

in G. Let us replace, everywhere, every a; that occurs in the derivation (1), by its
“alias” Y (@) This will transform the G-derivation (1) to a '-derivation

S —* yila)ylez) ylax) (2)
Utilizing the rules of the type Y(*) — g that we have placed in G’ we obtain
ylay(e) ylen) — g, v(@) . y(ee) — g g,¥(08) .. y(ax)
—k a a2 - Qg

Along with (2), this says that z € L{(G’).
Conversely, let y € L(G"). Thus, we have a G'-derivation

S ="y (3)

www.it-ebooks.info

http://www.it-ebooks.info/

306 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

We will show that we also have a GG-derivation of y. In order to use induction on
derivation length, we prove a somewhat more general statement:

if A="yinG',wherey € £*and A € V, then A =" yin G (4)

For n = 1, the G'-derivation in (4) can only be A = y, where y € ¥ U {¢}. But
this is also a G-derivation, since A € V. We take as I.H. that the statement (4) holds
for all derivation lengths < n. Note that the G’-derivation in (4) can be elaborated
as:

A= X1 Xo Xp =" wgug -ty =y ()
where for: =1, ..., m, we have
X, ="y, (6)
and > ;», n; =n — 1. Thus
n<n,fori=1,...,m (7N
Every X in (6) that is in V obeys the I.H. due to (7), thus
for all such X;, (6) implies X; =" u; in G (8)
On the other hand, any X in (5) that is not in V is a Y'%/. We replace each such X
in (5) by a;. Thus the corresponding u; is a;.
Let us call X7 ... X/, the so modified X; ...X,,. By the construction of G’,

A — X{...X] is arule of G. This observation and (8) transform (5) into a
G-derivation

A= X1X5- - X, =" wug - Um =y
We can now apply what we just proved to (3).

We these preliminaries out of the way, we can now turn to the equivalence of the
CFG and PDA formalisms.

4.3.0.5 Theorem. For any CFG G = (V, X, S,R) we can construct a PDA M =
(Q,%,T,qo,0, F) that accepts by ES such that L(G) = L(M).

Proof. Given the discussion preceding the theorem, without loss of generality, the
rules of G are of either the type A — X; X5 --- X,, or A — a, where capital Latin
letters denote, as usual, nonterminals and @ € ¥ U {e}. We have drawn below the

www.it-ebooks.info

http://www.it-ebooks.info/

THE PDA-ACCEPTABLE LANGUAGES ARE THE CONTEXT FREE LANGUAGES 307

PDA that we claim will work. We note that in the diagram below b € .

e, A-a

b, b
€, A= XXy X, SO

€, e— 9

q —>

The idea of how M “parses” an input string z is already embodied in the preamble
of Section 3.4. The stack is used to, well, stack “to do” items on top of each other
in the proper sequence. The first “to do”, given the input z, is to attempt to show
that S—the start symbol—"covers” x, in the jargon used in the discussion of said
preamble, or, technically, derives it. Now, if S — ABC is the right rule to use
(nondeterminism!) next, we replace and refine the task for S by the subtasks that
A, B, and C will have to cover appropriate parts of z: a prefix, a middle part, and
the remaining tail. Note that A, appropriately, will be on top of the stack. Note that
these tasks do not allow us to consume input. Input is consumed once a “&” (from
3%) is found on top of the stack; it is something we uncovered, and it better match the
input symbol scanned at that point!

Technically, we will prove that, forany z € ¥*,y € ™, A € V,and z € £*, we
have

(22, AY) F* (p, 2,7) iff A="z (1)
For the (—) in (1) we do induction on 7 of
(p, 2z, AY) F"* (p, 2,7) (2)

For the basis, let n = 1. The only way for (2) to happen in one move is if the move
involved is €, A — x where z = €. But then A = x, as needed. Assume the claim
for all values less than n. For n > 1 (the n = 1 case was done) we have two cases,
one that does not need the I.H. and one that does.

e n = 2: The first move is “¢, A — a”, where x = a € . Then the corre-
sponding IDs are connected as follows: (p,az, Ay) b (p,az,av) & (p, z,7).
The first move requires A — a to be a rule of G, hence we have A —> q, as
needed.

e n > 2: Weelaborate on (2) above: (p,zz, Ay) t (p, 22, X1 X2+ X;ny) F71
(p,2,7). We further elaborate on “+""1": There is a decomposition of x as

www.it-ebooks.info

http://www.it-ebooks.info/

308 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

T = UiU3 ... Um, such that
(P, - Um2, AY) F (pyur - Uz, X1 Xo - Xppy) 2
(pug .. Umz, Xa - Xm¥) F* (p,us ... umz, X3+ -+ Xpmy) HF8
(Prtta - Uz, Xa -+ Xpy) R4 FRm
(P, tmz, Xmy) Hom (p,2,7)

For each i it takes k; < n steps (cf. 4.2.0.11) to lose X; from the stack top and
to consume the portion u; of the input, that is, we have

(p,uw, Xv') 5 (p,w,) (3)
By the LLH., we must conclude that
Xi _ Ui (3/)

Coupling (3') with the fact the first - in the second bullet above requires that
A—- X, - X, isaGrule,weobtain A —= X1 - Xy, =" ur...upm =
x, as needed.

For the («) in (1) we do induction on n of
A="2 (4)
For n = 1 we have two cases:

e = e. Then we have A — ¢ is a rule, thus we have (p, zz, Ay) F (p, 2,7)
using the move pictured at the top of the loop of the PDA (p. 307).

e ¢ = a. Then we have that A — a is a rule, thus we have (p,az, Ay) +
(p,az,a7y) F (p, z,7), using the moves pictured at the top and top right of the
loop of the PDA.

For n > 1 we take the obvious I.H. and elaborate on (4):
A= X1 Xo - X, =" uus.. . um ==z (5)
where each X is responsible for the substring u; of z. More precisely,
fori=1,...,n,X;, ="y (6)

where =><" means =%, for some k < n. The LH. is applicable to (6), thus, from
(5) we get

(6)+1.H.
(p,ur...urz, AV (pyuy w2, Xq - Xpy) FF
(6)+1.H. (6)+1.H. (6)+IL.H.
(pyug...upz, Xo- - Xpy) F (puz.. upz,X3---Xpy) 0 FF

(6)+1.H.
(pyurz, Xpy) F° (p,2,7)

www.it-ebooks.info

http://www.it-ebooks.info/

THE PDA-ACCEPTABLE LANGUAGES ARE THE CONTEXT FREE LANGUAGES 309

With (1) proved, let § =* z. Then

by (*1)
(g, z,€) - (p,z,S) F* (p,€¢€)

Note that (p, €, €) is terminal as all moves from p require a non-empty stack. Next, let
(q,z,€) F* (p, €, €). The only move for ¢ is (¢, z, €) - (p, z, S), thus our assumption
implies (p, z, S) F* (p, ¢, ¢). By (1), S =" z holds. |

4.3.0.6 Theorem. Forany PDAM = (Q,3,T, qo, 0, F) that accepts by ES + AS we
can construct a CFG G = (V, %, S, R) such that L(G) = L(M).

Proof. Without loss of generality, F' = {q,. }. The nonterminals of G will be ordered
pairs of states of M: (g, p) for all ¢, p in @ (think of them as BNF nonterminals!).
We aim to design G so that we can prove

(g,p) =" z € X" iff, for all v € T'* and all z, we have
a subcomputation (g, zz,7v) F* (p, 2,+) that never pops from (1)

To achieve this we include the rules
(i) {(g,q) = ¢ forallge Q

(i) {q,p) = {qg,r) (r,p), forall ¢,p, and r in Q

(iil) {g,p) — a{(r,s)b, forall g,p,r, and s in @ and a,b in T U {e}, for all pairs
of moves such as the ones below. The first pushes some X € I' to the stack on
input a and the second, later, pops the same X, on input b.

(e ()
(=)

(iv) The start symbol, S, is (g0, Gace)-

Let us prove (1), splitting it into two directions:

(—): Assume (¢q,p) =" z and conclude the right hand side of “iff”. We use
induction on n. Given the kinds of rules that we adopted for G, the only string (over
¥} that can be produced for n = 1 is z = e. That means {(q,p) = €, {(q,p) — €

www.it-ebooks.info

http://www.it-ebooks.info/

310 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

being the responsible rule. Therefore p = q. But (g,ez,7v) F* (g, 2,) holds since
F* includes equality. Of course, this subcomputation never pops +.

Let n > 1. We assume the claim (1) for all derivation lengths & < n (the 1.H.)
Now (g, p) =™ x can be elaborated under two cases:

e For some r € (), we have
(a,p) = (g, 7) (r,p) =" ulr,p) =" w =2z (2)
With reference to (2), the L.H. gives us the subcomputation

(q,uvz,’y) = (7'7 UZ»'Y) F* (paza'.y)

where (still under the I.H.) none of the two “I-*” pop from =, hence nor does
the entire subcomputation (q, uvz,y) F* (p, z, 7).

¢ ¢ = qub—{a,b} C X U {e¢}—and, for some r and s in @), we have
{q,p) => a(r,s) b =" aub (3)

The first = entails that {(g,p) — a {r,s)b is a rule in G, and this in turn
means that, for some X € I', we have the two moves in M, depicted in the
preceding figure. On the other hand, by the I.H. we have, for any v, z, and the
X mentioned above,

(r,ubz, Xv) F* (s,bz, X¥)

where the stack X~ was never popped. Combining with the moves involving
X, we obtain

(9, 72,7) = (g, aubz,v) F (r,ubz, Xv) " (s,bz, X7) - (p, 2,7)
Clearly, since Xy was never popped in the above, nor was ~.

This completes what we set out to do.
For the («) direction of (1),

we assume that we have (q, 2z,) F" (p, 2z, y)—where we never popped v (4)

and prove {q,p) =* z.

For n = 0 the assumption is (q,z2,7) F° (p,z,v). But F° is the identity,
therefore ¢ = p and x = e. Since {q,q) — € is a rule, we have {gq,q) = ¢(= z),
as it was needed.

We next fix n > 0, adopt the I.H. that the claim is true for all £ < n, and address
the case for n. We have two subcases

e Case where the computation in (4)—while it never pops y—nevertheless “dips
down” to (stack contents) - in at least one intermediate instance (that is, it

www.it-ebooks.info

http://www.it-ebooks.info/

THE PDA-ACCEPTABLE LANGUAGES ARE THE CONTEXT FREE LANGUAGES 311

pops from stack (contents) Yy, for some Y). Say this happens for the first
time after a prefix u of = has been consumed:

(g, z2,7) = (q,uvz,v) F<" (r,vz,7) F<" (p, 2,7)

By the LH. we have (¢,7) =* u and (r,p) =—* v. Since (¢,p) —
{g,r) {(r,p) is a rule and thus (g, p) = (g,) (r, p), we conclude {q, p) ="
x, as was needed.

e Case where the computation in (4)—not only it never pops y—but also never
“dips down” to (stack contents) « in any instance except at the end of the very
last move that leads to ID (p, 2z, y). Thus the first move must push in the stack
some symbol X, and the last move of (4) must pop that very same X .

@ We are proving this metatheoretical result for the formal PDA model as this
was defined in 4.2.0.5. As such, this type of PDA has only push or pop moves;
it does not have “ignore the stack” moves—e — e—that we introduced post
facto as derived moves or macros in Example 4.2.0.6. Thus, pop being ruled
out in the first move, by the conditions of this case, push it is!

Thus, in (4), x = aub for some a and b in £ U {¢} and we refine (4) as
(g, aubz,v) = (r,ubz, Xv) F=" (s,bz, X7) F (p, 2,7)

By LH. we have (r,s) =* wu. Since the first and last move put the rule
(q,p) = a{r,s)bin G, we have (¢, p) =* x and we are done with the proof
of (1).

With (1) settled, we have in particular
(QOama 6) = (Qacm €, 6) iff <q07Qacc> :>* x

and this concludes the proof that L(M) = L(G). O

The convenience stemming from Theorems 4.3.0.6 and 4.3.0.5 is significant as
they allow us two distinct tools to use toward proving properties of PDA-acceptable
languages: PDA and CFG.

4.3.0.7 Example. If L = L(M) for some PDA M, then there is a PDA N such that
L* = L(N). That is, “PDA-acceptable languages are closed under Kleene star”.
We prove so (in outline) for CFLs instead!
Let then G be a CFG such that L = L(G). We built—rather than building N—a
CFG G’ such that L* = L(G"). In going from G to G’ we just add a new nonterminal
Z and make it the (new) start symbol. If S is the start symbol of GG, we add the rules

Z —e€e|87

to G to finalize the construction of G’.

www.it-ebooks.info

http://www.it-ebooks.info/

312 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

The reader can easily show that Z =—* S™, for all n > 0, from which the result
follows. The details are left to the reader. O

4.3.0.8 Example. Are CFL closed under intersection? It turns out that they are
not. Consider L = {0"1"2% : n > 0 Ak > 0} over {0,1,2}. Also consider
L' = {0"1%2% : n > 0 A k > 0}.

It is easily seen that they are CFL.

For L either give explicit rules, or, alternatively, note that it is the concatenation
of two context free languages, L, and Ly over {0, 1, 2}, and invoke Exercise 4.5.11.

Ly ={0™":n >0}

and
Ly ={2" .k >0}

(Lg is actually regular, being L(2*))
One similarly sees that L' is a CFL. However, L N L' = {0"1"2™ : n > 0} and
we will see in the next section that this language is not context free.]

4.4 NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA

In this section we prove a pumping lemma for CFL that is similar, but as expected from
the richer structure of the PDA, more complex than the one for regular languages.
We will benefit in our proof from the concept of parse tree for a CFG. The reader
has most likely encountered trees in courses on discrete mathematics, data structures,
etc. A tree is a structure like the one drawn below:

Q\

O

Since by default all edges point “downwards”, one does not need to emphasize so by
drawing them as arrows. The round nodes may or may not have names. Our parse
trees will have all their nodes named. The precise angle or slope of the edges does
not matter—meaning, we allow variation in drawings without changing the tree we
want to depict. However, left to right order matters, thus the following is a different

www.it-ebooks.info

http://www.it-ebooks.info/

NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA 313

tree from the one above. Our trees are ordered.

I

%Q
O O

Of course, the reader has encountered many aspects of discrete mathematics before,
but this did not stop me from reintroducing some such concepts in Chapter 1. So,
let us revisit the definition of trees. A tree has both a “data” component (the node
“contents”, whatever they may be) and a structural component or geometry, that is,
how the nodes are interconnected. This motivates us to opt for an abstraction toward
a mathematical definition that wants a tree to be an ordered pair of a “data” part
and a “structure” part, (S, T, where S is a set of objects and T' is the “geometry”
imposed upon them. To get quickly to our pumping lemma we present only as much
dendrology'34 as necessary, thus we will rather define directly those trees that matter
to us: labeled trees that are parse trees of some CFG G.

4.4.0.9 Definition. (Parse Trees) Given a CFG G = (V,3,5,R). The set of all
parse trees for (7, and the associated concepts of root, support, and yield, are defined
inductively.

In what follows we assume an infinite supply of (unspecified) objects, a set N of
nodes. We may visualize N as an infinite supply of “circles”, such as the ones
employed in the two illustrations above.

(1) Basis—“smallest” parse trees. T = nis aparse tree, if n € N. This nis labeled
by either some A € V or some a € ¥ U {e}.
We say that n is the root of T, sp(T) = {n} is its support, and the string A
(respectively a) is the yield of the tree.
@ Note that we use the labels in the definition of yield, but use the node name in the
definition of root!

As the recursive definition unfolds, we will note at once that the support of a tree
is simply the set of all nodes from NV that we utilized to build it.

(2) Suppose that 7T; are all parse trees, for i = 1,...,k, where for each i # j we
have sp(T;) N sp(T;) = 0'*¥—i.e., the trees do not “share nodes”.

134The study of (in our case, mathematical) trees.
135We say that the sp(7;) are pairwise disjoint.

www.it-ebooks.info

http://www.it-ebooks.info/

314 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA
@ They may share labels though!

Assume further that 7; has as root r;, and yield o;; € (V U Z)*,

Let r € N be new relative to the 7T; [i.e., r ¢ Ule sp(7T;)]. Then we can build
a new parse tree T = (r,T1,...,Tx) with sp(T) = {r} UL, sp(T;)—this
updates sp recursively and verifies the claim that we made about it above.

Building T has a restriction: if we want to use a 7; with root r; that is labeled e,
then it must be that this is the only tree we use to build 7.

We can label the root » with any A € V, provided the rule A — {3 is in the
grammar, where 3 is formed by concatenating the labels of the r; in the left to
right orderi = 1,2,3,...,k.

The yield of the new parse tree is a1 g . . . o

The 7T; are called (the) subtrees of r but also subtrees of T . 0

g% In what follows we will often say tree, meaning parse tree. Parse trees are the only
trees of interest in this volume. The root of any parse tree which has more than
one node (in its support) must be labeled by a nonterminal, since only construction
step (2) of the preceding inductive definition applies.

The following connects Definition 4.4.0.9 with the usual depiction of trees as
drawings of nodes connected by edges (“graphs”™).

4.4.0.10 Informal Definition. We will draw a “physical” tree that corresponds to
the inductive Definition 4.4.0.9. Via a recursive construction we associate a figure
composed of nodes (circles) and edges (straight lines sloping downwards), the latter
connecting pairs of nodes.

(1) A parse tree of type (1) in Definition 4.4.0.9 has no edges. It is drawn as a single
circle, labeled by the root label (written normally close to, or inside the circle).

(2') Assuming that we have associated a (labeled) drawing with each of the subtrees
T; occurring in case (2) of Definition 4.4.0.9, we draw the parse tree for T as
follows:

(a) We draw a circle for r and label it A [cf. 4.4.0.9, (2)]

(b) We introduce precisely k edges from the circle representing r (and named
A) to each of the roots of the subtrees 7;, which are drawn below r and from
left to right inthe order ¢ = 1,2,3, ... k.)}

www.it-ebooks.info

http://www.it-ebooks.info/

NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA 315

4.4.0.11 Example. Here are some parse trees for the CFG in 4.0.0.4.

() (2)
© @O

OJIO80

All three have roots labeled S. The yields of the trees, from left to right, are S, ¢, and
00511. O

4.4.0.12 Example. Often we want to discuss a parse tree without drawing a specific
one. We draw generic trees by essentially drawing a root and then connecting it to its
subtrees, the latter drawn as triangles with or without names (below we have called
the subtrees 71, T2 and T3). We gave label A to the root.

The following is easy but fundamental.

4.4.0.13 Propeosition. IfT is a (parse) tree, then the root node is the only one pointed
to by no edges. Every other node in T—that is, sp(T)—is pointed to by precisely
one edge.

Proof. We do induction over the set of parse trees (4.4.0.9)—or induction on trees.
If 7 = n € N, then the validity of the claim is immediate, since there is just a root
node and nothing else. Let then 7 = {(r,71,...,Tx) and assume the claim (I.H.)
for all the 7;. By 4.4.0.9, the root, r, of 7 will have no edges “coming in”, and the
only edges added are those from r to the r;—roots of the T; (4.4.0.10). Viewed from
within 7, each of the r; will now have precisely one edge pointing to them by L.H.

www.it-ebooks.info

4

http://www.it-ebooks.info/

316 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

Moreover, since there have been no other edges added, the 1.H. covers the case for
all other non root nodes as well. O

4.4.0.14 Definition. We introduce some standard terminology from graph theory:

The number of edges pointing to a node in a tree is called the indegree of the node.
We say that a node n in a tree is a child of a node m iff there is an edge from m to

n. Distinct children of m are called sibling nodes. We call m the parent node of n.

By 4.4.0.13, every non root node in a tree 7 has precisely one parent.

A sequence of nodes a1, as,...,a, in a tree is a path or a chain iff, for all
i=1,2,...,n — 1, we have an edge from a; to a;1;. We say that this is a path from
a1 to an, and that a,, is a descendant of a; while a; is an ancestor of a,,. The path is
said to have length n — 1, that is, one less than the number of its nodes. This number
coincides with the number of edges along the path.

A node is a leaf iff it has no children. A non leaf node is called an internal
node. g

We note that case (2) in Definition 4.4.0.9 dictates that every internal node must
be labeled by a nonterminal.

We have the following corollaries of 4.4.0.13:

4.4.0.15 Corollary. The root of a tree is an ancestor of every non root node of the
tree.

Proof. Induction on trees. For the basis, let 7 = n € N. The result is vacuously
true.

Let us look at the case of T = {r, Ty, ..., Tk}, where we take as L.H. the truth of
the claim for all 7;. Let n be an arbitrary non root node in 7, and say, without loss of
generality, that it is in 7;. By the LH. there is a path from r; (notation as in 4.4.0.9)
to n within 77. The case rests since there is an edge from r to r;. O

4.4.0.16 Remark. (1) The path from 7 to n that establishes the above mentioned

ancestry is unique, forif a1, ...,aq and by, ..., b, are two distinct such paths where
a1 = by = r and a4 = by, = n, then the paths have a maximal common part at the
tail-end—they certainly share n— say, c1, ..., ¢, where ¢, = n and each c; is both

an a4 and a b;. Now, by assumption, c; # r. Thus (by maximality), it has indegree
equal to > 2. A contradiction.

(2) More generally, for a non root a;, there is at most one path a4, ..., a, that
connects any a; to any a,,. Indeed, if there are two, we augment each by the path that
connects the root 7 to a; and thus have contradicted what we just established above.

(3) Apathay,...,a, cannot contain points in more than one subtree, 7;, of r, for,
say, that distinct a; and a; are in distinct 7, and 7, in that order. But then we have
two distinct paths from 7 to a,,, one via a; and the other via a;. These paths differ
already in their first edge: One is from r to rq while the other is from r to 7.

(4) A cycleis apath ay,...,a, of at least two distinct nodes such that a1 = a,.
A tree can have no cycles. By way of contradiction: If the above path is a cycle, then

www.it-ebooks.info

http://www.it-ebooks.info/

NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA 317

it cannot contain the root, since there can be no edge pointing to the root. Consider
then a path from 7 to a,,:

bl,...,bm (*)

where b; = r and b,, = a,,. Without loss of generality, the node b,,_1 is not one of
the a;—otherwise, we just walk backwards along the path (*) until we find the first
b; that is not an a;—such a b; exists (why?)—and use this b; instead. But then the
indegree of a,, (respectively, of b; 1) is at least 2.]

4.4.0.17 Definition. (L.evels) We define levels for every node in a tree sequentially
(iteratively): The root is assigned level 0. If b is any child of ¢ and a has level i
assigned, then b is assigned level 7 + 1.]

Remark 4.4.0.16 ensures that in the process of assigning levels every node is
processed, and hence assigned a level, only once, and therefore levels are uniquely
determined.

4.4.0.18 Remark. The length of a path from the root of a parse tree to a leaf equals
the maximum level possible along this path, for the path cannot be extended at the leaf,
and hence this is the node with the the maximum possible level along the path. [

4.4.0.19 Definition. (Height) The one-node tree of case (1) in 4.4.0.9 has height
equal to 0. If the root of the tree 7 has subtrees 7; of heights h; respectively, then
the height of 7 is 1 + max{h; : i = 1,...,k} [cf. 4.4.0.9, (2)]. O

4.4.0.20 Propeosition. The height of a tree equals the maximum level observed in the
tree.

The maximum level observed in the tree is the length of the longest path (from the
root to a leaf) in the tree (cf. 4.4.0.18). Despite “the”, a path that scores maximum
length is not unique. For example, in 4.4.0.11, the third tree has three longest paths;
all have length 2: (a) 5, 5,0;(b) S, S, S;and (c) S, 5, 1.

Thus, another way to state the proposition is that the height of a tree equals the
maximum path length among all paths from the root to a leaf.

Proof. Induction on trees. A one-node tree has height 0 and the maximum observed
level in it is 0.

Assume now the claim for the “small” trees 7;, for i = 1,...,k, of heights h;,
respectively, for i = 1,..., k. Consider T = (r,Ty,...,Tg) of height h. Let{ be
the length of the longest path in 7. We want to show that h = [.

Now the maximum among all longest path lengths observed in the 7,—of a path
from r; to a leaf—is one less that [since all r; are children of ». Since this [— 1
equals max{h; : ¢ = 1,...,k} by the LH., we have that [= 1 + max{h; : ¢ =
1,...,k} =h. O

www.it-ebooks.info

®

http://www.it-ebooks.info/

318 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

4.4.0.21 Propeosition. Given a CFG G whose rules have right hand sides with length
bounded by the number n. Then any parse tree of height h has a yield of length at
most n*.

Proof. Induction on trees. For a one-node tree the height is 0. The yield has length
0 or 1 according as the label is € or ¢ € X. That is, at most n°.
Assume the claim for all subtrees 7;, ¢ = 1,..., k of the root. By assumption on

the grammar rules, k < n. The yields of these subtrees satisfy
log| < nti fori=1,... k (1)

The yield of the entire tree is a;yag - - - and the tree height is 1 + max(h;). Let,
without loss of generality, hy = max(h;). Notice that

k k
by (1)
laras - ag| = E lo;] < E nt < k(nM) <n@mM)=nMtl=pt O
i=1

i=1

4.4.0.22 Remark. What if n = 1 in 4.4.0.217 The analysis above works, noting
k = 1 = n. In particular, the result means that such a grammar generates a finite set,
indeed, a subset of ¥ U {¢}. 0

4.4.0.23 Corollary. Given a CFG G whose rules have right hand sides with length
bounded by the number n. If the yield o of a parse tree of G has length > nC, then
the height of the parse tree is > C.

Proof. Aheight h < C leads to yields of length at most n*, but n* < n®. ad

Here is the import of parse trees: they depict derivations in a two-dimensional
manner and help to simplify the analysis of derivations.

4.4.0.24 Theorem. Let a CFG G be given. Then we have a parse tree with root
label A and yield o iff we have A —=* «ain G.

Proof. For the only if, let us have a parse tree as described. We proceed by induction
on parse trees (cf. 4.4.0.9). The one-node case, combined with the assumption, gives
us a tree with just one node labeled A. The yield is A. On the other hand, 4 =* A.

By taking the L.H. on subtrees, let our parse tree have subtrees 7;, ¢ = 1,...,k,
with root labels =;, i = 1, ... k, where each Z; isin VUX U{e}.!%® Let the respective
yields be «;. By 4.4.0.9,

o0 =012 ...0 (1)

By the I.H. we have
Z="a,it=1,...,k (2)

136This explains the specific to this proof, and “nonstandard”, choice of a non Latin capital letter, to allow
this level of “inclusivity” in the notation.

www.it-ebooks.info

http://www.it-ebooks.info/

NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA 319

where if Z; € ¥ U {¢}, then (2) holds as equality without needing any help from the
LH.

By 4.4.0.9, GG contains the rule A — =; - - - E, hence, from (1) and (2), we obtain
A:Elak :}* .

For the if we do induction on n in the hypothesis A =" «. For n = 0 we have
a = A. Thus the one-node parse tree with root label A will do. We assume the claim
(I.H.) for all m < n. Thus we look at

A=5, 5 ="q (3)

We have from above
Ei:><"ai,i=1,...,k (4)

where @ = a3 -- - ;. Note that if k& > 1, then no =; can be e—we just don’t write
rules like this: A — €Ba; we simply write A — Ba [cf. also the restriction in
case (2) of 4.4.0.9].

With this understanding noted, we analyze (4) to see what kinds of parse subtrees
we can obtain with root labels =;: If K = 1 and Z; = ¢, then we have a tree such as
the first one in 4.4.0.11 with root label e—that is, =1, and hence yield € = «j; the
I.H. was not needed in this subcase. Similarly, if =; = a € 3, then again, without
invoking the I.H., we have at once a two-node parse tree with root label a (this is =;)
and with yield a = a;.

The I.H. implies that, in general, we have k parse trees 7;, with roots labeled =;
and yields oy, fori = 1,...,%k. By 4.4.0.9 and the first => in (3), we select a new
root node, we label it A, and we connect this root, from left to right, with the roots of
the 71,..., Tx. The yield of the tree we have just built is o . . . ai (4.4.0.9). We are
done. O

We now turn to the main result of this section, a pumping lemma for the CFL.

4.4.0.25 Theorem. (The uvwzy-Theorem) For any infinite CFL, L, there is a con-
stant C (not uniquely determined by L!) such that if z € L and |z| > C then we can
partition z as z = uvwxy so that the following hold

(1) wiwaly € L foralli >0
(2) v £ ¢
3) |vwz| < C

Proof. First, letus fixaCFG G = (V, X, S, R) such that L = L(G). Let n represent
the maximum length of the right hand side of any rule of G. The assumption that L is
infinite implies 7 > 2 (4.4.0.22). We will take C' = n!VI+1, where by the symbol ||
we denote the number of nonterminals in V. We next fix a z € L such that |z] > C.
By the choice of z, we have S =—>* z. By Theorem 4.4.0.24, there is a parse tree
with root S and yield z.

Of all such parse trees we pick one with the least number of nodes. (*)

www.it-ebooks.info

http://www.it-ebooks.info/

320 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

We depict this parse tree—in a stylized manner, cf. 4.4.0.12—in the figure below.
We have denoted some of its nodes (one labeled S and two labeled A) by big dots
rather than by circles. The node labels are near these dots. Now, by 4.4.0.23, the
height h of the tree that we have chosen satisfies i > |V|. Moreover, by 4.4.0.20,
there is a path of longest possible length that has length precisely equal to the height
of the tree. We depict this path by the wavy line that goes from .S, through the two
A-labels, to the unlabeled dot that is part of the yield of the bottom “triangle” with
root A. This unlabeled dot is labeled by a terminal, since the entire yield, z, is in X*.

The longest path that we are referring to thus has length greater than |V|, and
therefore has more than |V| + 1 nodes on it. Since only the dot in the yield is
labeled by a terminal, this path has utilized more than |V| nonterminal labels. Thus
a nonterminal label repeats.

We depict label A as repeating. Moreover, we assume that there is no label B,
between the bottommost A and the last dot (on the yield) on the wavy path, that also
repeats. That is, the pair of the two As is bottommost.

With these preliminaries out of the way, we draw attention to the substrings of
z marked on the yield. Notice that if we remove the middle parse tree—of root
(labeled) A and yield v Axz— and join the first and last tree at A we obtain a parse tree
with root S and yield uwy. Thus S =—* uwy and we have proved (1), case ¢ = 0.

S

Let us next form a chain of triangles (parse trees), 71, ..., T% using a copy of the
middle triangle k > 1 times. For each i, we join 7; with 7;4;, using as connecting
point the node labeled A in the yield of the former with the root (also labeled A) of
the latter. By 4.4.0.9, the chain is a parse tree with yield v* Az*. We can now replace
the single copy of the middle triangle of the preceding figure by the k-long triangle
chain that we have just constructed. The root of the chain is glued to the A-node in
the yield of the top triangle. The bottom triangle’s root is attached to the bottom A
of the chain (the one in the yield of the chain). By 4.4.0.9 we obtained a parse tree
with a root labeled S and yield uv*wz*y. Thus § =>* uvFwa*y, and have just
proved (1) for i > 1. For ¢ = 1, of course, we need do nothing.

www.it-ebooks.info

http://www.it-ebooks.info/

NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA 321

Regarding (2), if vz = ¢, then the tree we got for 7 = 0 still has yield 2. Since this
has at least one node less than the original, we have contradicted our stipulation (x).
Thus, at least one of v or x is not €.

Finally, the wavy path from the first A, via the second A that ends on the yield
of the bottom triangle, has the longest length in the parse tree, T, formed by the
last two triangles (root labeled A, yield equal to vwy). If not, then there is a longer
path in 77, from the root, labeled A, to the tree’s yield. Appending this path to the
path in the top triangle that goes from S to A, we get an overall path in the original
tree—from S to the yield z—that is longer than the original, and this contradicts our
assumptions!

Now, omitting the first A, the resulting truncated path has length [< |V|—
otherwise we have a repeating nonterminal on it;'3” impossible by the way we
chose the pair of A. Since [+ 1 is the longest path length in 77, it equals the
height of 77 (4.4.0.20). Thus, [+ 1 < |V| + 1 and hence the yield, vwz, satisfies
lowz| < n!t! < nlVIFt = C—that is, (3) is true. O

The condition “For any infinite CFL, L, etc.” in the statement of the theorem was
used to guarantee that a CFG for the grammar cannot have all its rules have right
hand sides of length one. The proof is applicable for any CFL L that can be obtained
as L = L(G) where the CFG G has rules with right hand sides of length > 2.

4.4.0.26 Example. We show that L = {0"1"2" : n > 0} is not a CFL. If it is,
then the uvwaxy-theorem applies. Let then C be as in the 4.4.0.25, and consider
2z = 09192¢. This z must pump, i.e., there must be a partition as z = uvwzy, so
that vz # e, and the uv*wz'y are in L for all i. Seeing that |vwz| < C, we have two
cases: v contains a 0. Then vwz contains no 2, hence pumping leaves 2¢ invariant
and the pumped string cannot possibly be in L. On the other hand, if v contains no
0, then the part 0 remains invariant during pumping, and again the string cannot be
in L. O

4.4.0.27 Example. The language L = {2z : z € ¥*} over ¥ = {0, 1} is not a CFL
either.

Assume by way of contradiction that it is. So let C be chosen as in the uvwzxy-
theorem. We will show that certain strings of L that are longer than C “cannot pump”,
contradicting 4.4.0.25 (we do not expect this contradiction to be demonstrated for all
strings of L!).

“Cannot pump” means that if we do pump them as in (1) of 4.4.0.25, then we end up
with strings outside L.

Solookatt = 0¢1¢0¢ 1. Indeed, if we went along with the italicized hypothesis,
then we should be able to write t = uvwzy with [vwz| < C, and uwviwz'y would all
be in L, for 7 > 0. The latter cannot happen:

137The last node on the path is a terminal in w. A path of length has [+ 1 nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

322 ADDING A STACK TO A NFA: PUSHDOWN AUTOMATA

In view of the maximum length of vwz, this string can have three general positions
as a substring of ¢:

(1) It has no overlap with the last 0 1¢. This is inconsistent with the specification
of L, since pumping ¢ down (i = 0) will change at least one of the leftmost 0¢
or the leftmost 1€ but will leave the the last 0° 1€ invariant.

(2) Tt has no overlap with either the first 0% or the last 1¢. This is again inconsistent
with the specification of L, since pumping ¢ down will change at least one of the
leftmost 1€ or the second 0€ but will leave the first 0€ and the last 1€ invariant.

(3) It has no overlap with the first 0€1%. For one last time, this clashes with the
specification of L, since pumping ¢ down will change at least one of the rightmost
0€ or the last 1€ but will leave the first 0 1€ invariant.

These being the only possible placements of vwz we showed that ¢ “cannot pump”,
hence L is not a CFL. g

The following is analogous to 3.4.2.3.

4.4.0.28 Example. The CFL version of the pumping lemma gives us a characteriza-
tion of infinite (and hence of finite) CFL: Let L be a CFL given by some CFG G.
If all the rules of G have right hand side lengths equal to one, then the language is
finite, as we have already observed.

Let then this not be the case, and let C be the constant used in the proof of 4.4.0.25.
Then if there is a string z € L such that C < |z| < 2C, L will be infinite.

This is hardly surprising, as it directly follows from “pumping” the string. How-
ever, we have a converse! If L is infinite, then there will be a 2z’ € L such that
C < <2C.

So, let L be infinite, and let z—no prime—be in L, such that its length is smallest
such that |z| > 2C. Let z = wvwzy as in 4.4.0.25. We have that uwy € L. By
smallest length property of z, we obtain (recall, vz # €)

luwy| < 2C (1)

Moreover,
luwy| = |2| — Jvz| > |2] — Jowz| > 20 -C =C

We set z’ = uwy and we are done. The contrapositive of the characterization says
that L is finite iff there are no z € L in the length-range C < --- < 2C. O

4.5 ADDITIONAL EXERCISES

1. Modify the PDA in 4.2.1.4 to accept {0"1™ : n > 1} by ES.

2. Modify the PDA in 4.2.1.4 to accept {0"1" : n > 3} by ES.

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

12.
13.

14.
15,

16.

17.

18.

19.

ADDITIONAL EXERCISES 323

. Build a PDA over an input alphabet 3. that accepts strings by ES, and (provably)

accepts {zzf : x € £*}.

. Build a PDA for the language {0"1°" : n > 0}. You are free to choose the mode

of acceptance.

. Repeat the above task, but now do it in this way: First get a CFG for the language,

and then construct a PDA for the language that accepts by empty stack (cf. 4.3.0.5).

. Give a CFG G over ¥ = {0, 1} such that L(G) = {xzf : z € ©*}.
. GiveaCFG G over & = {(,)} such that L(G) is the full set of balanced brackets—

that is, not only those of the form ((())) but also those like ((()))(()).

. Provide a complete proof for the claims in Example 4.3.0.7.

. By induction on regular expression length prove: “For every «, there is a CFG,

G, such that L(G) = L(a)”.

Prove that CFL are closed under union, that is, if L and L’ are CFL, then so is
LurL.

Prove that CFL are closed under concatenation, that is, if L and L’ are CFL, then
sois LL'.

Prove that CFL are closed under reversal, that is, if L is a CFL, then so is L.

Prove that CFL are not closed under cgmplement. That is, if L is a CFL over X,
then it is not necessarily the case that L, that is, >* — L is a CFL.

Hint. Toward your counterexample begin by thinking set-theoretically.
Prove that the language over {a, b} givenby L = {a"ba"2 :n > 0} is not a CFL.

The language L = {17 : pis a prime}, over 3 = {1}, is not regular. Is it a CFL?
Why?

The language L = {1™° : n > 0}, over £ = {1}, is not regular. Is it a CFL?
Why?

Prove that the intersection of a CFL L and a regular language L’ is a CFL.

Hint. Let M be aPDA for L and N a FA for I'. Assume that the PDA accepts by
accepting state. Now imitate the construction of 3.1.2.2.

Prove that the language L of strings over {0, 1, 2} that have an equal number of
zeros, ones and twos is not a CFL.

Hint. The pumping lemma will not work directly. However, 0*1*2* defines a
regular language.

Prove that the language over {0, 1, #} given by {z#z#y : {z,y,z} C {0,1}* A
z = x + y in binary} is not a CFL.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

COMPUTATIONAL COMPLEXITY

What do we mean by saying “this problem, z € A, has no algorithmic solution”?
And why is it that some problems do not have such solutions? How can we classify
(compare) such undecidable problems? These are the fundamental questions of
computability theory that we studied in Chapter 2.

Among the problems z € A that do have algorithmic solutions (decidable or solv-
able problems), why is it that some require enormous computational resources toward
obtaining the answer? And how can we classify decidable problems according to
their demand on computational resources? This is the domain of computational com-
plexity, or just complexity, theory. This chapter discusses a few topics in complexity
theory.

5.1 ADDING A SECOND STACK; TURING MACHINES

We introduced the PDA as a special case (albeit nondeterministic) of the URM, with a
single number-type read/write variable—the stack variable. Actually, we viewed this
variable as a string-type variable suppressing a detailed look into how a URM can
effect string operations such as “pop” and “push”, until now. As in Section 2.11, we
can identify strings over a finite alphabet of m symbois with natural numbers—the

Theory of Computation. By George Tourlakis 325
Copyright (©) 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

326 COMPUTATIONAL COMPLEXITY

latter written in notation base-(m + 1). The correct way to do this (cf. 2.11.0.32, III)

is to fix an order of the alphabet and identify its members {a1,as, . .., a,, } with the
“digits” 1,2, ...,m (i.e., a; with). Thus a non-empty string
5,5,y Qg (1)

is uniquely represented by (and represents) the number
Jr(m+1)" 4 Gro1(m+ 1770+ 4 i (m 4 1) + o

0 corresponds to the string €.

Assume now that the stack variable is x, and that its contents is the string =,
which, in detail, is the string in (1). Moreover, let us have the stack top located at the
right end of «y rather than the left end.

Pause. Why is this not an about face of any significance vis a vis our earlier
conventions? «

Then we can do a pop—and assign the popped symbol in the variable z, if we
wish—as follows
z + rem(x,m + 1)—cf. 2.1.2.40 (2)

The stack (contents) change corresponds to the effect of

x<—l x J (3)

m+1

Both operations can be simulated by simpler URM operations (as the right hand sides
are calls to primitive recursive functions).
To push the one-digit contents of a variable w into x one simply does

x—(m+x+w (4)

That is, a URM, despite being inherently a “number-processing” device (read: pro-
gram), can perform all the string operations that are associated with stacks. Clearly,
a URM can be written to handle several stack variables.

The converse is an important question: Is it possible to simulate any URM with
one that only has stack variables and its primary instructions'3® are restricted to be
“push” and “pop” (and checking for empty stack)? And if so, how many stacks are
needed?

Suppose now that we add a second stack to a PDA. What more can such a turbo-
charged PDA do with its two stacks?

Well, we will show that a URM with just two stacks—of string type—can simulate
the operation of any number-processing URM! Here is how [cf. Minsky (1967) and
Tourlakis (1984)]:

1331n the standard URM the instructions x < x + 1 and x < @ are primary. The instructions x < y
and goto L are derived.

www.it-ebooks.info

4

®

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 327

5.1.0.29 Example. To prepare for the justification of the above claim, let us see first
that we can perform x «+ ax in a URM, using just one extra variable y, where a > 0.
The following fits the specification:

(y+0

X—x-1

:y < y+a {NB.Thisisy < y + 1, a times}
:if x = 0 goto 7 else goto 2

y+«—y-—-1

X+—x+1

:if y = 0 goto 8 else goto 5

: stop

O 3O Ut LN =

5.1.0.30 Example. We next see how to do
x « if rem(x,a) = 0 then |x/a| else x

in a URM with just two variables, where ¢ > 0. Below we present a pseudo URM
program for the task. For the simulation of “goto L” see 2.1.1.8.

y<+0
Loop : if x = 0 goto Ly {case of rem = 0}
xx-1

if x = 0 goto L; {case of rem = 1}

Xx+—x-=-1
if x =0goto L,_, {caseof rem =a — 1}
X+—x-=-1
y+<y+1
goto Loop

At this point

_ [original value of XJ
a

Ly :x<+ay
goto L
Cases where rem(x, a) # 0; we need to restore x.
L, :y<+ay
yey+1
X<y
goto L

www.it-ebooks.info

http://www.it-ebooks.info/

328 COMPUTATIONAL COMPLEXITY

Ly :y<+ay
y«<y+k
Xy
goto L

L, 1:y<+ay
y«<y+ta-—-1
Xy

L : stop

t

5.1.0.31 Example. We can now show how two number-type variables are sufficient
to simulate the function of a URM M that contains more than two variables,

Zg,y...,Zm (1)

where m > 1. We build (in outline) a URM N that employs just two variables, x
and y. The first stores the values of all the variables in (1) using a modified prime
power coding,

X =pg° X ...x pim (2)

where p; = 2,p2 = 3, etc.

To simplify matters, assume that M has only zg as its input/output variable. The
simulator V will have x as its only input variable, but it will “read” an input a encoded
as the number 2%—this means that the coding phase, going from a to 2% is not part
of the simulation. By our conventions on non-input variables, all of z;,...,2n
are “implicitly” set to 0, that is why the correct initial value of x is indeed just 2°.
Furthermore, without loss of generality, we restrict M so that it has no instructions
of the type w « s.

Pause. Why “without loss of generality”?«

Once (2) has been initialized, an instruction such as z; « z; + 1 is simu-
lated by N doing x < p;x. On the other hand, z; < 2z, — 1 will require N
do x « ifrem(x,p;) = Othen |x/p;| else x. Finally, the instruction if z; =
0 goto L’ else goto L” of M is simulated by N by, in a first approximation, the
instruction if rem(x, p;) = 0 goto L’ else goto L”. This can be implemented by a

modification of the URM in 5.1.0.30, where the instructions under labels Ly, ..., Ly,
transfer to L” (rather than to the label of stop), and the instructions under label Lg
transfer to L’ rather than to L. |

5.1.0.32 Remark. We can easily do what the previous three examples did with two
string-type stack variables—“two stacks” as we say. Let us call these variables L
and R.. They will be utilized as a simple counters. This means that the length of the
stored string represents the number stored—no matter what the actual symbols in the
stack may be.

www.it-ebooks.info

http://www.it-ebooks.info/

44

ADDING A SECOND STACK; TURING MACHINES 329

Pause. Therefore a stack alphabet I' of any one symbol, say, I' = {#}, will
work. «

Thus, “L | (push)” implements L +— L + 1 and “if L # ¢!* then L 1 (pop)”
implements L <~ L —~ 1. We also note that in the simulation in Examples 5.1.0.29,
5.1.0.30, and 5.1.0.31 we employed the variables x and y in what can be termed
push-pull*®® mode, that is, when one popped (“pulled”), the other pushed—since we
paired instructions

with
y . 1

We have abstracted in the above observation the detail that sometimes we had
a “+a” pairedwitha “ ~ 17, e.g., simulation of x < ax. This is legitimate
since a “push” like “ + a” can be thought of as one push, rather than a
consecutive pushes, if we allow groups of symbols to be pushed at once. In the
context of this simulation this can be “hardwired” into the simulating program
since there are only a finite number of different “a”: 2,3,5,..., pm.

Thus two string-type stacks—even if they are restricted to not work independently but
rather are constrained to work in push-pull mode—give the 2-stack PDA formalism
at least as much power as that of the URM.

Conversely, and rather trivially, a URM can simulate any deterministic program
written in this new formalism, since as we know (e.g., preamble of Section 5.1)
the number-theoretic URM can pop, push, and check for empty stack (equal to 0,
number-theoretically). O

What about nondeterminism? Does it give more computing power to the 2-stack
PDA formalism vs. that of the URM?

It turns out that it does not.

This can be seen in at least one straightforward way. On one hand, a nondeter-
ministic URM—which we will not define formally—is one that allows choice for
next instruction. By preceding remarks, such a URM subsumes the new formalism
completely.

On the other hand, a nondeterministic URM can be simulated by a deterministic
URM—by one of our standard URM, that is. Why? Because we can do this:

e Recast Definition 2.3.0.5 for nondeterministic URM.

1391f L were a numeric variable, then, of course, one could test for the condition L # 0 (non-emptiness)
since the number O corresponds to the string €. On the other hand, a “string stack”—Ilike the described
here “counter”—will not know when it is empty. We can get around this by initializing the stacks with a
special “bottom” symbol. For example, $. Emptiness then is equivalent with $ being the top symbol.
140A term that I borrowed from circuit design where two transistors are connected in push-pull mode if,
in operation, and at any given instance in time, when one’s current goes down by a certain amount, the
other’s increases by the same amount, and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

330 COMPUTATIONAL COMPLEXITY

¢ Define acceptance of an input Z,, to be equivalent to input T,, leads to at least
one terminating computation.

o Define that a relation R(Z) is URM-acceptable iff, for some nondeterministic
URM M, “R(Z)” is equivalent to “F is accepted by M.

e Do the arithmetization of the nondeterministic URM, by trivially modifying all
the work that we did following 2.3.0.5, which led to the normal form theorem.

e Prove a new ‘“Kleene Normal Form Theorem” for nondeterministic URM,
namely:

For any nondeterministic URM M of code z, we have that M accepts input
Ty iff (Eiy)TI(V"[),(z, Zn, y)—where, for every n, T](V"E), is a primitive recursive

“Kleene predicate” for nondeterministic URMs.

After all this work, which is tedious but easy, we have that the sets that are (nonde-
terministic) URM-acceptable are precisely the c.e. sets. Therefore, nondeterminism
bought us nothing in terms of power in the URM formalism.!#! This is analogous
with the situation of FA vs. NFA.

5.1.1 Turing Machines

Let us now carefully define the Turing machine—acronym TM—formalism of Turing
(1936, 1937), since we want to prove a metatheorem about it. We will essentially
identify the Turing machine with the 2-stack PDA but will offer some simplifications
in the eventual definition—in particular, we will join the two stacks into a single
variable of type “string”. Let us make a few additional observations before we
embark on definitions.

First, we adhere to the traditional point of view according to which “automata”—
whether these are FA, NFA, PDA, or the 2-stack PDA—are string-processing pro-
grams where concatenation rather than “+1” or “~ 1” are the primitive operations
in the formalism. Each such automaton has an input alphabet ¥ over which its string
inputs are formed. For the 2-stack PDA, an instantaneous description of its compu-
tation is partly determined by the contents of the two stacks, L and R, by the current
instruction number or state that the program is at, and by the symbol on top of the
stack.

Pause. Which one of the two stacks?«

Since the stacks operate in push-pull, we imagine the ID as the quadruple

(1,q,a,r)

where 1 and r are the contents of L and R, respectively, g is the current state, and a
is the current symbol, which we arrange always to be the top symbol of R.

The top of L is its rightmost symbol, while the top of R is its leftmost symbol.

14174 turns out that deterministic (1-stack) PDA are strictly less powerful than the (1-stack) PDA.

www.it-ebooks.info

A4

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 331

@ This ID ignores the input stream that is read via the input, read-only, variable of
digit-type (single-symbol-type). The reason is that it turns out that the presence or
absence of a read-only input variable, provably, does not add or subtract to the power
of the model. Thus, without loss of generality we will henceforth assume that there
is no input variable and that the input appears in the stack R initially.

We will not offer the proof that this simplification of the model indeed is “without
loss of generality”. Itis well known that the TM (the 2-stack PDA) is quite oblivious to
large variations in its definition, including the one we mentioned. Several startlingly
different but equipotent variants of the TM are presented in, for example, Hopcroft
et al. (2007). In particular, the reader can find in Tourlakis (1984) a full account
of how the TM that we outlined earlier—that is, the PDA with two stacks that are
implemented as counters—can be modified, still within the TM model as it is defined
in 5.1.1.1 below, to simulate a URM, including the part of transforming the input
from a to 2% (the “input format™ 2% was used in 5.1.0.31), this being done explicitly
this time as part of the computation.

At long last, we collect what we have said so far in this chapter, and define the TM
by actually “gluing” together the two stacks, fop to fop, an operation that makes sense
due to their push-pull operation: Thus we have just one read-write string variable in
a TM, to which the literature most often refers as the “tape” [a notable exception is
Papadimitriou (1994)].

5.1.1.1 Definition. (The Turing Machine) A Turing machine (abbreviation TM) is
a collection of tools, M = (Q, T, %, T, qo, F, I), as follows: @ is a finite set of states,
that is, instruction labels. T is the only variable, a string-type variable with special
access mode (cf. 5.1.1.2 below). Most of the literature refers to is as “the tape” of
the TM.

I' = {B,...} is a finite alphabet over which the contents of the tape are formed.
The symbol B occurs in all TM alphabets, is called the blank symbol, and is special.
More on it later (5.1.1.2).

¥ is the input alphabet; it satisfies 3 C T’ — {B}. gy is the label of the instruction
that must be executed first—the start state. F' is a possibly empty, finite set of
accepting states.

Finally, 7 is a finite set of instructions of the forms (1)—(3) below, where our
notation adheres to the rules that a, b, ¢, possibly with primes or subscripts, denote
generically members of I'; p, g, , possibly with primes or subscripts, denote members
of (). The TM can access at any one step of the computation (“computation” to be
defined in 5.1.1.2) one symbol of the string stored in T—any one symbol—which is
referred to as the “current” symbol.

(1) “qabq’ —”;this instruction is applicable only if the current instruction is (labeled)
q and the current symbol is a. The execution of the instruction causes the symbol
a to change to b. Note that a and b may denote the same symbol!

It also causes g’ to be the next instruction. Note that q and q' may denote the
same state! The new scanned symbol will be the one immediately to the right of
a (which has changed to b).

www.it-ebooks.info

http://www.it-ebooks.info/

332 COMPUTATIONAL COMPLEXITY

(2) “qabq’ <7 this instruction is applicable only if the current instruction is g and
the current symbol is a. The execution of the instruction causes the symbol a to
change to b. It also causes ¢’ to be the next instruction. The new scanned symbol
will be the one immediately to the left of a (which has changed to b).

(3) “gabq’”; this instruction is applicable only if the current instruction is g and the
current symbol is a. The execution of the instruction causes the symbol a to
change to b. It also causes ¢’ to be the next instruction. The new scanned symbol
will be the b, which is in the place of the original a.

If there are no two distinct instructions in Z that start with the same state and symbol
pair, “qa”, then the TM is deterministic; otherwise, it is nondeterministic. O

It is immediate that every deterministic TM is also nondeterministic, but not vice
versa. (This does not mean that we cannot simulate any nondeterministic TM by a
deterministic TM. This is only a comment about the structure of Turing machines.)

5.1.1.2 Definition. (IDs and Computations) Given a TM M as in 5.1.1.1. An in-
stantaneous description or ID of a computation of M '4? is a string

tqau

where a is the scanned symbol, ¢ is the current instruction label (state) and taw is the
string stored in the variable T—the total “tape contents”.

Connecting with the discussion that led us here, ¢ is the content of the stack variable
L (top at the right end of ¢) and au is the content of the stack variable R (top at the
left end of au).

Two IDs, tqau and t'q’a’u’ are related via the relation -,
tqau bFar t'q'a’y’, where M is omitted if it is understood from the context (1)
in words, tqau yields t'q’a’u’, iff one of (i)—(iii) holds:
(i) t=t,u=1,a = band gabq’ is an instruction

(ii) This is “push in L, puil (pop) from R”
o ¢ =tb,u = a'u',witha' €T, and gabq’ — is an instruction
ot/ =thu=c¢u =¢ a = B, and gabg’ — is an instruction
(iii) This is “push in R, pull from L”
e t=ta',u = bu, witha' €T, and qabq’ < is an instruction

o t' =B,t=c¢,a = B, v = bu, and gabg’ < is an instruction

142 Again, no circularity here!

www.it-ebooks.info

¢

http://www.it-ebooks.info/

ADDING A SECOND STACK: TURING MACHINES 333

@ The second bullet in each of (ii) and (iii) shows the special nature of the blank
symbol B. Intuitively each bullet formalizes how each half of the “tape”—that was
obtained by joining two stacks, top to top, as you recall—can be extended when the
computation reaches either of the two extremes and “wants” to go further. In stack

terms, the two stacks never “underflow”. 43

An ID of the form gpz, where £ € 7 is the input string, is called initial. An ID
tqau that has no next IDs, that is, ~(3J) (tgau Fpr J), is called terminal or final. An
ID tgau is called accepting iff it is terminal and q € F.

A computation of M—an M -computation—is a finite sequence of IDs J;, for
i =10,...,m, such that

(1) Jy is initial
(2) J,, is terminal
(3) Ji |_M Ji+1,fori :0,...,m— 1

A subsequence (J;)X_ . is a subcomputation iff it satisfies (3) for all pairs of consec-
utive terms.

A computation accepts the input x iff its initial ID is gpz and its terminal ID is
accepting. The symbol L(M), where M is a TM, denotes the language accepted by
M, thatis, {x € % : z is accepted by M }.

The complexity ot run time of a computation Jy, . . ., J,, is the number m—which

equals the number of “steps”, -as, applied in (3) above. O

@ Since TMs can write on their tape (string variable) they do not need accepting states
to indicate acceptance of a string—for example, just prior to halting, they may erase
the contents of the variable, and replace them with the word “accept™, or the word
“true”, or the number 1, to indicate that the input was accepted. Nevertheless, the
presence of accepting states makes arguments about the behavior of TMs—such as
the proof of Cook’s theorem in this section—easier.

Turing machines can do more than produce yes/no output. They can compute func-
tions just like the URM does. Indeed, the two formalisms have the same computing
power (Examples 5.1.0.31 and 5.1.0.32).

However, we will not explore the Turing machine in its function-computer role.
All our Turing machines will be acceptors.

The reader who wants to see how computability can be founded on the TM
formalism may consult Davis (1958) and Tourlakis (1984).

5.1.1.3 Definition. (The Classes .4 & and £?) Given a function An.T'(n). We say
that the language L has deterministic T'(n)-time complexity iff there is a deterministic
TM M such that L = L(M) and the run time of every computation of M is bounded
by T(|z|), where |z| is the length of the input x.

143 A stack “underflow” is the state where a stack is empty and yet we attempt to pop.

www.it-ebooks.info

http://www.it-ebooks.info/

334 COMPUTATIONAL COMPLEXITY

We say that the language L’ has nondeterministic T (n)-time complexity iff there
is a nondeterministic TM N such that L’ = L(N) and every acceptable input = of N
has at least one computation of run time < 7T°(|z|).

We often use the terminology “M (respectively, N) accepts x within time T(|z|)”.
We say that L has deterministic polynomial-time (or poly-time) complexity iff it
has deterministic 7'(n)-time complexity for some polynomial 7'(n). We say that
L’ has nondeterministic poly-time complexity iff it has nondeterministic T'(n)-time
complexity for some polynomial T'(n).

The class of all languages that have deterministic poly-time complexity is denoted
by &. The class of all languages that have nondeterministic poly-time complexity
is denoted by A 2. O

What the nondeterministic machine does when it does not accept x—it might even
compute forever for some rejected x—has no bearing on the complexity of L'.

In essence, a nondeterministic machine recognizes just the positive instances of a
relation of the form

(Fy)R(z,y) (1)

by accepting all x that make (1) true—but no other inputs. We may imagine that this
is done as follows:

o It first nondeterministically “writes down” (“‘guesses”) a value of y that works
for the given «

o It then deterministically verifies the truth of R(zx, y).

In other words, the machine works precisely as a mathematician does, when the latter
approaches the task of proving (1) for a given y.

The run time of the task described by the two bullets equals the time it takes to
write down y, plus the time it takes for the verification.

Pause. But surely deterministic and nondeterministic steps in a computation are
in general intertwined? How can (1) be the “general” case?«

It is. Every set S € N that is acceptable by a nondeterministic URM (or TM)
is c.e. @@
Cf. the discussion in the -passage on p. 329. Thus the relation x € S is
equivalent to (3y)Q(x, y) for some primitive recursive @, by the projection theorem.
Thus, x¢ can be computed by a a loop program.

Consider two examples:

Suppose first that we want to (nondeterministically'**) prove that some given z is
a composite number.

If such a claim about z is true, then we would probably want to guess a factor y
and then verify that it works, by computing rem(x, y) and making sure that its value
1s 0.

1447The reader no doubt has noted that most proofs are nondeterministic!

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 335

The next example addresses the question of how the “problem-template” (1) can
represent a problem where multiple “guessed values” are needed: Suppose that we
want to prove that a given Boolean formula 2 —whose Boolean variables are (in
metanotation) vy, . .., v,—is satisfiable. We can use as a single guessed value y an
appropriate coding of n appropriate truth values, which—when assigned into the
v;—will make 2~ true. Of course, if we hope to “solve” the problem in poly-time
with respect to the input size, | 27|, we will need to use a coding/decoding scheme
that can pack/unpack the truth-values into/from a single 3, and do so within time
that is a polynomial function of |Z |—the length of the formula. One such fast
coding/decoding scheme is to form a string formed by concatenating all the guessed
truth-values together. See also 5.1.2.13 below.

5.1.1.4 Remark. In 5.1.1.3 we have quoted run time as a function of input length.
This is a natural choice in complexity theory that deals with a large variety of problems
that involve non-numerical inputs. For example, problems about graphs—such as
the clique problem: “given a graph G and a number k; does G have a clique of size
k?7’—and problems about formulae—such as the SAT problem: “given a Boolean
formula 2 is it satisfiable?”

Of course, every set of strings over an alphabet X of k elements can be viewed as
a set of numbers, written base-k, as we already have remarked (e.g., Section 2.11).
However, quoting run time in terms of input value is not, in general, the same as
quoting time in terms of input length, unless k = 1. Here is why:

Each language L discussed in this and the next subsection is assumed to be over
some alphabet 1 of k > 2 elements. The length of a string = over ¥ —viewed as
a number base-k—essentially equals the logarithm base-k of z. Indeed, if

T =apk™ + @1 k" 4+ ap

then
<z <(k-DE"4+(k-Dk" 14+ (k—-1)

therefore,

=k -1 <k (1)

Now, n + 1 = |z] and, by (1), |z| — 1 < log, = < |z|. Thatis, |z| = [log z].

Often we take our time bound functions 7'(n) from some class of functions, C,
e.g., the class of polynomials, or the class PR. Obviously, if a TM runs within time
n° for some constant ¢ (a polynomial run time) it makes a world of difference if we
are quoting run time as a function of the input value or of the input size, when k > 2:
because z (the input value) is equal to about k!*! and thus a TM that runs within
time z°—a polynomial bound with respect to input value—runs within time (k)¢
which is an exponential bound with respect to input size (length).

Therefore, for time bounds from the class of polynomials we must be clear how
we quote run time! In this case we invariably do so with respect to input length.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

336 COMPUTATIONAL COMPLEXITY

On the other hand, if 7°(n) comes from a class that contains exponentials, e.g., T'
is in PR or in the class .%5 of Section 5.2, then it is irrelevant how we quote run time,
whether with respect to input value or input size, since An.kT(™ € PR aswell. O

5.1.1.5 Remark. Since every deterministic TM is also a nondeterministic TM, Def-
inition 5.1.1.3 yields at once

NP DD

The converse inclusion, and therefore the question “A4" & = £2?” of Cook (1971)
is a major open problem of complexity theory. In words, it asks: can we eliminate
guessing from a program that accepts in polynomial time to obtain a new, equivalent,
program that also runs in polynomial time? We turn now to concepts on which this
question hinges. O

5.1.1.6 Definition. (Feasible Computations) That the computations of a TM are
feasible means that they are poly-time bounded, the bound being quoted with respect
to input length. 0

?P 5.1.1.7 Remark. (I) Thus, unfeasible or intractable—these are technical terms!—
computations are those that require exponential run time or more. The distinc-
tion is fairly natural, but not totally. It leads to a nice theory, however. From a
practical standpoint, a TM that runs within time n3°°°%0 has no computations
that are any more “feasible” than one that runs within time 2”. The former is
as bad with an input of length 2 as the latter is with an input of length 350000.

Cobham (1964) has given a machine-independent characterization of the class
of feasibly computable functions.

(I) Machine-independent? How can this be possible? Are all machines as “fast”
(or as “slow”)? Do the URM and the TM, for example, spend the same amount
of time for every problem that one throws at them and for every input thereof?

Well, not the same, and “all machines” is a rather loose concept. However,
it is a known fact that if we equip the URM with the proper set of primitive
instructions and choose the concept of “step” carefully, so that it is mindful of
the length of the number stored in a variable x, then any URM that has compu-
tations running within time £(n) (n being the length of input) can be simulated
by some TM within time p(#(n)), for some polynomial p of very small degree.
That the converse simulation, TM by URM, also entails negligible run time
loss—a multiplicative constant overall, in fact—is rather immediate, once one
notes that the TM is essentially a a 2-variable URM (Subsection 5.1.1) with the
instructions x <— m x x and x < |x/m| built in as primitives, and executable
in one step each.!*> Thus,

145Cf. also Papadimitriou (1994), where it is shown that a TM can simulate in polynomial time even an
“augmented” URM that can access an unbounded number of registers via indirect addressing. Such a
URM is called a random access machine in the literature, a RAM.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 337

for polynomial time bounds it does not matter if we compute with URMs or
with TMs

as long as the URM programming language that is called upon to compute
functions f : £* — ¥*, for some fixed ¥ of m > 1 elements, is properly
equipped—in the interest of efficiency of computations—as follows: We add
to the basic model of 2.1.1, the instructions x < x * d,!® where d € ¥, and
X < |x/m] as primitives (cf. also the preamble of Section 5.1). Failing to
do so would result in “charging” an inordinate amount of steps to just add or
delete a single digit at the right end of the number (string!) stored in a variable
(least significant location) despite the obvious fact that such a string operation
ought not to depend on the size of the stored number.

Thus, for a string-processing URM one will charge |x| steps for each of

X+ x+1
X+—x-=-1
X a

and will charge one step for each of
if x = 0 goto M else goto R
X<+ xxd,whered €

X+ |x/m]

The wisdom for the assigned charge, for example, to the first instruction above
stems from the fact that to add 1 to 2" — 1 will necessitate to flip n binary
digits, from 1 to O.

(III) Cobham’s main theorem is that the class of functions, €y, that can be computed
feasibly is the closure of the set below,

{A\z.z x d (forall d €), Azy.z!¥'} (1)

under substitutions (2.1.2.6)—including the case of substituting any constant
into a variable—and bounded (right) recursion on m-adic notation, the latter
meaning the schema

f(0, %) = h(yn)
fle*d, ¥n)= ga(x, ¥n, f(x,¥n)), foralld € &
|F (@,)| < [Bla,)]

where the functions A, (g4)des, and B are given. Cf. 1.7.0.30.

Cobham prefers m-adic (Exercise 1.8.47) [over the more common (m + 1)-
ary] notation for integers n > 0, which—unlike the latter that allows digits

146The symbol * denotes concatenation.

www.it-ebooks.info

http://www.it-ebooks.info/

338

COMPUTATIONAL COMPLEXITY

0,...,m—only allows the digits 1, ... m. Wherever concatenation is used in
his paper, it is concatenation of m-adic notations of numbers.

The notation in (1) and in the bounded recursion schema above should be
read number-theoretically! Thus, z!¥! in (1) is ordinary (number-theoretic)
exponentiation but the exponent is the m-adic length of the y-argument, while
x * d—a right successor of x—has value the number m X z + d and length
|z| + 1. The base m of the m-adic notation is the number of elements in .
Note that we identify ¢ with 0, as m-adic notation does not apply to 0.

Cobham’s theorem is independent of the choice of alphabet X as long as the
latter has at least two elements—thus his class can be unambiguously named

.

As an example, notice the simple recursion on notation that defines |z|:

o] =0
|z dl={z| + 1, foralld €
el <l

Pause. “Simple”, yes; but only if we know that Az.z and Ax.x + 1 are in ¢!«

Well, here is how to obtain Az.z + 1 by bounded recursion in terms of functions
known to be in €

0+1 =1
zxd+1=zx(d+1),ford=1,2,...,m—1
zxm+1l=(zx+1)*1

lx+1| < o1

For more on Cobham’s feasibly computable functions (and relations) see Ex-
ercises 5.3.1-5.3.11, where you are asked to verify the membership in € of
Az.1, Az.0, and Az.x as well as that of many other more complex functions.

Cobham’s result is retold (and proved'*’) in full detail in Tourlakis (1984). (O

51.2 4 Z-Completeness

There are some languages (sets)*® in .#" % that have maximal complexity, just as
there are maximally complex c.e. sets, such as K.

5.1.2.1 Definition. (¥ 2?-Hard and .¥" %?-Complete Sets) A set L is A F-hard
iff for every L' € A2 we have L’ <,, L, where the reduction is effected by a

147 A far as I know, Cobham never published the complete proof.

148«Gets” is the habitual term used for sets of numbers. “Languages” is preferred for sets of strings
over some alphabet. The two concepts, as we know, are equivalent, and the nomenclature only reflects
(momentarily) a point of view, not a difference of any import.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 339

function that is computable by some URM in a number of steps that is a polynomial
function of input length.

We say that we have a polynomial-time or poly-time reduction and write
L' <, L (p for polynomial).
Alanguage L is called A P -complete iff itis A F?-hard and, moreover, is a member
of /P O

5.1.2.2 Remark. The Turing formalism, as we have already noted, is well positioned
to be used in the proof of Cook’s theorem. Thus we have introduced it here as an
acceptor device.

On the other hand, we have not developed the very primitive Turing machine
formalism as a basis of computability. Thus our reduction functions are computed
by URMs.

Another way to state this, in a machine-independent manner, is that these poly-
time reductions are effected using feasibly computable functions from Cobham’s
class € (cf. discussion in 5.1.1.7). O

5.1.2.3 Definition. (Big-O Notation) Given g : N — N. O(g(n)) is the set of all
f : N = N such that, for some constant C, we have f(n) < Cg(n) a.e. (cf. 2.4.2.8).
The notation f(n) = O(g(n)), introduced by the number-theorist E. Landau, means
f(n) € O(g(n)) and is called big-O notation.

Expressions in big-O notation are read from left to right. In particular, O(h(n)) =
O(g(n)) is abuse of notation for O(h{n)) C O(g{n)). Thus, it means that “for every
£, if f(n) = O(h(n)), then it is also the case that f(n) = O(g(n))”.

Some operations defined: f(n) € O(h{(n)) + O(g(n)) iff f(n) < f'(n) + f"(n)
a.e., with f'(n) € O(h(n)) and f"(n) € O(g(n)).

F(n) € O(h(n)) x O(g(m)) iff f(n) < f'(n) X f(n) ace., with f'(n) € O(h(n)
and /"(n) € Olg(). ,,

f(n) € O(h(n))PYM) iff f(n) < f/(n)f"™ ae., with f/(n) € O(h(n)) and
f"(n) € O(g(n)). O

5.1.2.4 Example. It is readily verifiable that O(n) = O(n?). But it is not true that
O(n?) = O(n). Recall, “Expressions in big-O notation are read from left to right”.
Also, O(n) + O(n?) = O(n?) and O(n)O(n?) = O(n3). Incidentally, writing
f(n) = O(1) means that f(n) is bounded a.e. by a constant. O

5.1.2.5 Exercise. It is immediate that O(n™) = O(n)°"). Is it also O(n)°(™*) =
2

on")? g

5.1.2.6 Example. If p(n) is a polynomial of degree k, then p(n) = O(n¥). The
reader will recall that the degree of a polynomial in the variable n is the highest
exponent of n that occurs in the polynomial. Indeed, let

-1

p(n) = apn® + ag_1n* "1 4+ ... +ag,, where a; > 0

www.it-ebooks.info

4

http://www.it-ebooks.info/

340 COMPUTATIONAL COMPLEXITY

Without loss of generality, all the integer coefficients a; are natural numbers; if not,
we replace them all by their absolute values and work instead with the so obtained
p'(n) that obviously satisfies p(n) < p/(n) for all n. We next note that

Op— Qp— a
p(n):nk<ak+ Ly k22'~'+-—%)
n n n
Taking n > max{a; : i =0,...,k— 1}Wegeta,—/nk_i <1l,for¢=0,...,k—1.
Thus, if we set C = ax + k we have p(n) < Cnk, ae. 0

5.1.2.7 Remark. In view of 5.1.2.6, we replace every statement of the form “...
within poly-time T(n) ...” by *... within time O(n*), for some k ...”, where
“within time O(n*)” means “within time f(n) in O(n*)”. O

5.1.2.8 Remark. We note here that if Az.f(x) is computable by a URM—as this
was modified in 5.1.1.7—within time ¢(|z]), then | f(z)| < ¢(Jz|) + |z|. For in the
worst case, all instructions (besides stop) are x < x = d. In one step we have the
length of x increase by 1 in such an instruction. Thus, in #(|x|) steps the length of
any variable increases by ¢(|z|), at most. O

The following is fundamental but easy. It is the counterpart of Proposition 2.7.2.3.

5.1.2.9 Proposition. If L' <, Land L € 2, then also L' € 2.

Proof. Let x € L' iff f(z) € L, where f is polynomial-time computable—say,
within time O(n™), for some m—where n = |z|. By assumption on L, z € L is
verified or rejected by a deterministic TM within O(n*) steps, for some k, where
n=|z|.

The polynomial-time algorithm for the verification or rejection of the claim x € L'
then is:

(1) we compute f(z). As this runs within time O(n™), we have that

|f(z)| = O(n™), where n = |z (%)

cf. 5.1.2.8 and note that n + O(n™) = O(n™);
(2) we run the algorithm for “z € L”, using z = f(x). This will conclude the
verification/rejection of € L’ within time
O(n™) + O(n*™) = O(n*™) 0
N N ——
for f(z) for f(z)EL
The proof outline above should suffice. The suppressed (tedious) details include

“reprogramming” the computation of f in the TM “language”, and then composing
(combining) this TM with the one that deterministically solves “z € L?”

5.1.2.10 Corollary. & = AN P iff P contains some N P-complete language L.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 341

Proof. We will see soon that .4/ #-complete languages exist.
The only if is trivial, since every .4 &?-complete language is in A4 2. The if part
is just as trivial: If L € 42 is A" &?-complete, then consider an arbitrary L' € A4 22,
By definition, L’ <, L. Thus, by 5.1.2.9, L’ € £, proving /' & C . O
The following is the counterpart of 2.10.0.12.

5.1.2.11 Proposition. A set L in N P is N P-complete iff S <, L, where S is
known to be N P-complete.

Proof. For the if, let B be in 4" &?. Then B <, S; say, via f(z) that runs within
time O(n¥) (n = |z|) on some URM M. Let also g effect S <,, L within time O(n")
(computed by some URM N). Thus,

z € Biff f(z) € Siff g(f(z)) € L

Note that g(f(z)) is computed by the concatenation of M and N (in that order) within
time O(n*) + O(|f(z)|"). By 5.1.2.8, | f(z)| = O(n*). Thus the concatenation of
M and N runs within time O(n*) + O(|f(z)|") = O(n*7).
The only if is immediate since L is A4 #-complete and S is in A Z2. O
At the beginning of Section 3.4 we (re)defined—via BNF—the set of Boolean
formulae over the variables-set

p, o, 0", 0", ...

employing only two connectives, = and V. Their semantics was given in Defi-
nition 1.1.1.26—a point where we circumvented an explicit definition of Boolean
formulae, and defined instead the concept of tautology directly, for any mathematical
Jormula. For the record,

5.1.2.12 Definition. (Satisfiable Boolean Formulae; SAT) A Boolean formula, <,
as defined in Section 3.4, is satisfiable iff there is at least one truth assignment to its
variables that renders .7 true (t; cf. 1.1.1.14).

& is a tautology iff every truth assignment to its variables renders it true.

We denote by SAT the set of all Boolean formulae-—as defined in Section 3.4—
that are satisfiable. We denote by TAUT the set of all Boolean formulae that are
tautologies. |

5.1.2.13 Proposition. SAT € .4 P.

Proof. [Outline; cf. the discussion surrounding (1) on p. 334.] A nondeterministic
TM that will accept precisely all the z € S AT will operate as follows:
(1) It will “guess” and write down a string y (over {t, f}) of truth assignments to

the variables
p(m)’p(nz)’ L. 7p(nr) 149

149For n; = 0, p{("™i) means p.

www.it-ebooks.info

http://www.it-ebooks.info/

342 COMPUTATIONAL COMPLEXITY

of x—these truth assignments are guessed so that they will work! As we have no
more variables than |z|, writing down y is doable within O(|z|) steps.

(2) Deterministically, the TM will verify that the “guess” indeed works by evalu-
ating x for said truth assignment. It is easy to see that this verification is doable in
O(n€) steps, for a very small ¢ (n = |z|). The timing of the overall computation, (1)
plus (2), is thus O(n°®). O

The reader will recall—from first year programming courses, for example—the
nomenclature infix notation meaning that non-atomic formulae are written as (—.%)
or (&7 V 98). Animportant alternative notation is postfix notation, also named reverse
Polish notation. An easy way to define it is to do so recursively:

Let us denote the postfix notation of a formula 2 by post(2?). Then, for atomic
formulae 27 (these are the Boolean variables!), post(#/) is just &Z. On the other
hand,

post((wzf)) is post(a/)—

and

post((,czf v %’)) is post(« Ypost(B)Vv

For example, post(p’”’) is p"’; post{((—~p"”’) V p)) is p"'—pV.

Postfix notation neither utilizes (nor needs) brackets.

Another folklore item from a first year programming course is how to program
algorithms, one designed to convert an infix formula to its postfix equivalent, the
other to evaluate a postfix expression, given a set of values for all its variables. Both
of these algorithms, which we will not describe here, use a stack and, in a URM-like
language (like Pascal, Algol, C, etc.) they will run in O(n) steps each, where n is the
length of the given infix input. A TM then can do almost as well, that is, finish the
task within time O(n°) for a very small (integer) ¢ > 0 (cf. 5.1.1.7).

5.1.3 Cook’s Theorem

Cook’s theorem [cf. Cook (1971)] is that SAT is A4 Z-complete. He proved this
by simulating nondeterministic poly-time bounded accepting TM computations by
Boolean formulae, which were satisfiable iff the TM accepted its input. Before we
embark on details, we will assume some restrictions—without loss of generality, to
be sure!—for our TM model.

Restriction 1. The nondeterministic TMs of this subsection have a “I-way infinite
tape”, which is folkloric jargon for: “the TM will never extend its
string variable contents to the left by adding a B symbol”—that is,
the second bullet of (iii) in 5.1.1.2 will never apply. This can be
accommodated simply by modifying the TM, if necessary, so that if it
need to so add, it will rather first shift the contents of its string variable
to the right, and add a B as a leftmost symbol. This is legitimate and
only “adds” a polynomial number of steps, by Cobham’s theorem and

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 343

the fact that Az.B # x is in Cobham’s class 4T (cf. 5.3.1)—1T being
the TMs total tape alphabet.

Restriction 2. Once the TM reaches the unique accepting state, q¢, the TM com-
putation continues forever without changing the ID! This is entirely
analogous with the behavior of URM computations once the stop
instruction has been reached.

Both the uniqueness and the trivial continuation of the computation
upon acceptance can be easily incorporated in a given TM. For exam-
ple, starting with an accepting state gy that has no moves, we modify
the TM by adding the moves gyaaqy, foralla € T'.

5.1.3.1 Theorem, (Cook’s Theorem; Cook (1971)) SAT is A P-complete.

Proof. So,let L € 4 &P, accepted by a nondeterministic TM, M, which is restricted
as above. The TM is accepting within time p(n), where p is a polynomial and » is
the length of input w. Our task is to construct the function f that effects the reduction

L <, SAT

Thus, f(w) must be a formula in SAT iff w is acceptable. We must make sure that
f(w) is constructed in O(n") time, for some r—which will resultin | f (w)| = O(n").

Let M = <Q’T7 21F7q07F7I>’Wher€Q = {q07q17 e 5qf}71_‘ = {0,1,(1,2, e 7am}
with F = {qs} and B = a;. We proceed as follows:

(1) Consider the (accepting) computation
IhFIgb L F--- T (1)

where [< p(n), n = |w|, Ip = gow and I; contains gy.

By the second restriction adopted for our TMs, we may assume | = p(n).

(2) In p(n) steps, and starting the computation with the ID gow, no ID—of the
form tqau (cf. 5.1.1.2)—can be longer than p(n) + 1. Thus, we will let all
IDs, I;, have the same length, equal to p(n) + 1, since we can pad them with
B-symbols as needed. This allows us to utilize an ID-template, that is, an array
of p(n) + 1 locations—0, 1, . .., p(n)—and also several Boolean variables, one
for each location, that will “say” something characteristic about these locations
for every point in “time” as the latter is measured by i.

(3) We will construct, for each ID I;, a Boolean formula .#; that will be satisfiable
iff I; has the correct structure as the i-th ID.

The formula .#; “knows” that it refers to time step ¢ by virtue of the fact that all
its Boolean variables have i as their first subscript—see below. This subscript
denotes “time” as it is measured along the computation (1).

www.it-ebooks.info

4

http://www.it-ebooks.info/

344 COMPUTATIONAL COMPLEXITY

(4) We define several mnemonic names that will be the Boolean variables of f(w):

(a) Sf;s—forj =1,...,mand 0 < 4,8 < p(n)—is a variable that is true (it
is assigned t) iff the s-th location of I; holds a;.

We have m(p(n) + 1)? = O(p(n)?) S-variables.

(b) Qz,s—forj =0,...,f,0<i<p(n)and0 < s < p(n) — 1—is a variable
that is true (it is assigned t) iff the s-th location of ; holds g;.

Note that a state cannot be in the last location (p(n)) since the ID must have
the form tgau, with a € I'. We have (f + 1)p(n)(p(n) + 1) = O(p(n)?)
Q-variables.

Thus, .#; that says “I; has the correct form at time i, namely, tgau” is the formula
that “says”, specifically:

(i) The ID-template has no empty locations.

(ii) Only one location, s, contains a state g;—i.e., Qf . is t—all other locations, ¢,
containing some ay, from I'—i.e., S¥, is t.

(iii) No location holds more than one (J-symbol or one I'-symbol.
(iv) The p{n)-th location contains a I'-symbol.

Thus, the abbreviation .#; stands for the following Boolean forrhula that we divide
into four parts that implement (i)—(iv), respectively.

Below we are using the notation
D
(VAT ARERY
s<i<t

and
N 4 E (don i N)

s<i<t
Note the brackets! We will also use more complicated ranges, such as
i
V %
J€T
s<i<t
an expression that expands into an V-chain of formulae %’;, forall j € T and all 4
such that s < i < t. The order of participating formulae in V- and A-chains is, of

course, immaterial. For exposition purposes, we use Z A % as an abbreviation for @
(=& VT,

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 345

this is 0 Ag<s<pn) (Vlstm 874V Vockes Qﬁs)
A

this is (ll) VOSSSP(TL) (VOSka Qi‘cys A /\t#s Vlﬁjﬂm Sg,t)
A

this is (ii1): Ao<acpin) Ngey oc s (7Qbs V =(QF, V S7,))

k£t
1<j<m

A AOSsgp(n) /\lgk,tgm (_'Slk,s 4 ﬂ(S;‘:,s N Qz,s))

k£t
0<j<f
/\ .
this is (iv): V1<;<m Sf’p(n)

We next define subformulae #%; of f(w). For each i, satisfiability of %; will be
tantamount to I; - I, 1. Thus, % stands for the formula

fz‘/\fiﬂ/\[

J T Yy k
vqjamaquel V0§s<p(n) (Qi,s A Si,s+1 A Si+1,s+1 A Qi+1,s/\

k — gk
/\ogtgp(n)(si,t = Si+1,t)

s£tF£Es+1
1<k<m

J T Y k
VQjazaka—>€I VOSs<p(n)—1150 (Qi,s A Si,s+1 A Sz'+1,s A Qi+1,s+1/\

k — ¢k
/\OStSP(n)(Si’t = Si+1,t)>

sFtF#£s+1
1<k<m

Vv
151 J T Y k
quazayq;d—eI v1§s<p(n) (i,8 A S’i,s+1 A Si+1,s+1 A Qi-‘r—l,s—l/\

Misien(Shr =S50 AN ooy (S5 = 550.0) |
tg¢{s—1,s,s+1}
1<k<m

In the above /\(S{ft = Snyt) says that for all k£ and ¢, the two symbols in location ¢
before and after the move are the same (= is “Boolean equality”). Of course, ' = %
is short for (=2 VH YA (~% vV Z').

1504, cannot occupy location p(n).
131 44 cannot occupy a location to the left of 0.

www.it-ebooks.info

http://www.it-ebooks.info/

346 COMPUTATIONAL COMPLEXITY

Putting all this together, f(w) is the formula below, where w = a;, a;, - - - a;

nt

initial ID

blanks: a; = B

0 ' in 1 1 1
No<icpin) Zi N Qoo ASeir A= ASGT A Somgt ASomga A+ NS pin)

f
A V0§s<p(n) Qp(n),s

The structure of f(w) is straightforward and thus the formula f (w) can be constructed
(“written down”) in time that is a polynomial function of its length. Note that p(n)
itself is an important parameter of the formula structure, as it determines the range of
certain subscripts and the ID-template length. By 5.1.2.6, p(n) is in O(n®), where a
is its degree. Thus, we can assume without loss of generality that p(n) is Cn® + C’,
for appropriate constants C' and C”.

In the most unsophisticated manner Cn® + C” can be computed by a — 1 multi-
plications each operating with operands of length O(log n).!5? This requires a total
time of O((logn)?) = O(n) steps, using the standard “school method”, digit by
digit, multiplication algorithm. On the other hand, n = |w/| can be obtained from w
in polynomial time with respect to |w]|, for example, due to the fact that Aw.|w| € €
(5.1.1.7).

Next, by inspection, the length of f(w) is estimated as follows:
(a) A subformula .#; has length O(p(n)?)—due to case (ii)
(b) A subformula %; has length O(p(n)?)

(c) Thus |f(w)| = O(p(n)?)

The above estimate is based on a simplifying first-order approximation that all the
Boolean variables S} and Q7 ; each have length equal to one. If the super/subscripts
are displayed in base-2 notation, then each variable needs space O(log,(p(n))) =
O(logy n) = O(n) to be written down.>* Thus |f(w)| = O(np(n)?) = O(p(n)*).
It flows directly from the construction of f(w) that w € L iff f(w) € SAT. O

5.1.3.2 Example. (CSAT) In preparation for identifying our next .4 Z?-complete
problem we review the concept of conjunctive normal form (CNF). A formula is in
conjunctive normal form iff it has the form below.

t S3
/\ \/ IZ, where each [] is a Boolean variable p{™ or a negation thereof
i=1j=1

We call each conjunct \/5-, I/ a clause of the CNF. We call each 17 aliteral.

1528ince logarithms of different bases are equal within a constant multiplier, there is no point to indicate
the base.

1530n the other hand, if they are written in unary (k written as a string of k 1-symbols), then each variable
needs space O(p(n)) to be written down.

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 347

It is easy to see that for every Boolean formula & there is another one, 4, that is
in CNF and they are either both in S AT or neither is. We outline how to construct
& given & .

This can be seen by induction on the number of occurrences of V and A connectives
in the formula. We assume that Boolean formulae are defined as at the onset of
Section 3.4, but this time we will allow all three of -, V, and A as primitives.

Prior to the induction, we preprocess 2/ by “pushing” all negations as close to
variables as possible. We then replace any maximal odd-length string of — symbols
by a single one; we eliminate any maximal even-length string of — symbols. This is
achieved by repeated use of the two de Morgan laws (1.1.1.18) and of the well-known
provable identity ——%2 = £ . Once this is done, in every subformula of the (fully
parenthesized) form (—%), % is a variable.

For the basis, if .27 is a literal, then it is already in CNF.

For the induction step, let first o/ be & A €. The L.H. yields that # and % have
associated CNF formulae %’ and 6" as above. A CNF associated with &/ then is
%' N €' If of is satisfiable, then so are % and € and hence %’ and €’ by the LH.
The same is true of 28’ A €. The converse is as easy.

The other induction step deals with the case where 7 is BV €. Again, by the
I.H. we have associated CNF formulae %’ and ¢”. Let us invoke Exercise 1.8.2:

XAV X SW N INESIVW (1)

The special case where 2" and % are literals is of import for our I.S. Let p be a new
variable—i.e., not occurring in %' or ¢'. Then we have, by (1),

-pV B . pVE B VE (2)

where “p V —p — 7 is eliminated from the right hand side of - in (2) since p V —p is
a tautology. It follows that

(~pVBYN(PVE) - B VE (3)

Note that, conversely, whenever we satisfy %’V €’ with some array of truth
assignments g to its variables, then there is a truth assignment to p that when we
append it to the array s yields a truth assignment that satisfies the left hand side of -
in (3).

This appending can happen without conflicts because p is new! @

Indeed, if 8’ v €’ is t due to &' being t, then we extend s by letting p to be t.
If we know instead that €” is t, then we extend s by letting p to be f.
This can be summarized as

B' v € is satisfiable iff (-pV B)YA (pV E€') is

Distributing the two V over the CNF forms %’ and €’ above we get the required
CNF and we are done with the proof.

www.it-ebooks.info

http://www.it-ebooks.info/

348 COMPUTATIONAL COMPLEXITY

The reader can propose an algorithm that implements the above on a string-
processing URM and verify that going from 27 to a CNF, tracking the above proof,
can be done within time O(].27|*) for some a > 0 (cf. Exercise 5.3.12).

With these preliminaries out of the way, we can now show that CSAT, that is,
the set of all satisfiable formulae in CNF, is .4 #?-complete. To this end, note that
to prove that C.SAT € A & we argue exactly as in the case of SAT (5.1.3.1). For
the A" -hardness part we show that

SAT <, CSAT

(cf. 5.1.2.11). But this is achieved by the algorithm of Exercise 5.3.12. |

5.1.3.3 Example. Here is a problem, C' P, that we can show .4 &?-complete by
effecting the reduction CSAT <, CP.

The reader has encountered the concept of a graph in discrete math courses. For
completeness, let us recall that a directed graph, or digraph, is, mathematically, a
relation E : V — V. We call the members of V nodes or vertices, and the members
of F—the pairs (a, b) where {a,b} C V—edges. A digraph is finite iff V' is finite. It
is habitual to identify a finite digraph with a physical object, a drawing, where each
node is depicted by a dot or a small circle and each edge (a, b} is depicted by an arrow
that starts on the (physical depiction of) node @ and ends (that is where the arrowhead
touches) on the node b. Flow-diagrams of FA and PDA are (labeled) digraphs.

A digraph is complete iff all possible edges are present, except those of the type
{(a,a). Thatis, F : V — V is complete, iff E = V x V — 1y, where 1y is the
identity (or diagonal) relation on V, namely, {(a,a) : a € V'} (cf. 1.2.0.20).

If the relation E is symmetric, that is, whenever a Eb it is also true that bEa, then
the graph is called undirected. One usually says “graph” implying undirected graph
and says “digraph” otherwise. In the physical depiction, we draw

rather than

e

A digraph C : A — Aisasubgraphof E : V = Viff AC Vand C =
EN(V x V)—that is, C uses some of the nodes of £ and all the edges that E uses
to interconnect said nodes.

A graph (undirected!) C is a clique in E iff it is a complete subgraph of . The
clique C is a k-clique if it has k nodes.

The clique problem, C P, is the question “given a graph (undirected!) E and

a number k; does E have a k-clique?”

www.it-ebooks.info

¢

http://www.it-ebooks.info/

ADDING A SECOND STACK; TURING MACHINES 349

Before we discuss the reduction, let us settle that CP € A4 . We need to
establish that given a graph ' : V — V and a number k&, every instance where there
is a positive answer to the question “does E have a k-clique?” can be verified as
follows:

(I We “correctly” choose (nondeterministically) a set of k nodes, A, from V; this
is accomplished in O(k) steps, and hence in linear time with respect to input
length—the input being (k, E.

We then proceed deterministically to verify that

(II) These nodes define a complete subgraph of F (one checksthat A x A —14 C
E); to do so we check k2 — k pairs of (distinct) nodes.

Pause. How is a graph (and a number) given?<

We can code (k, E') “linearly” as a sequence k, e, ..., e, where the e; are the
edges—(a, b)—of E. Of course, the edges implicitly include the node information
(set V). Without loss of generality, since V is finite, we assume that V' C N,

A particularly efficient coding that does not involve exponentiation and can be
easily decoded using string operations is the Quine-Smullyan coding [cf. Smullyan
(1961), Tourlakis (1984)]: Given the alphabet ¥ = {1,2,3,...,m}, where m > 1.
A sequence of strings (which can be viewed as integers written in m-adic notation)
inxXt,

ai,az,...,04

can be coded as follows:
First, locate the maximum length string over the alphabet {1 }—tally of ones—that
occurs as a substring in some of the a,. Say it is

r=11...1
N
7 ones
Then form the “glue”-string ¢ = 2 * = x 1 * 2. Finally, code the sequence by gluing
the a; in order:

C=g*a1*xgxGa*g*xaz*xg---g*xas*xg

Decoding is easy: Find the maximum length tally of ones in c—this will be x * 1.
Now the glue g = 2 % = x 1 * 2 is known, and the a; can easily be recovered.
Let us now establish the reduction CSAT <, CP, which proves that C'P is
A ZP-hard and along with the preceding discussion settles its .4 Z?-completeness.
We need to find a poly-time computable function f that converts the question
w € CSAT to f(w) € CP. So, we are given a Boolean CNF formula w:

t

AE V-V

i=1

www.it-ebooks.info

http://www.it-ebooks.info/

350 COMPUTATIONAL COMPLEXITY

We build an undirected graph, f(w), that will have a k-clique (for appropriate k)
iff w € CSAT. The graph has nodes arranged in ¢ rows. Row ¢ has nodes labeled

(6,00, (6 08), .., (6, 0)

There are no horizontal edges, that is, edges connecting nodes that have the same
first component, 4, in their labels. An edge connects nodes (z’, l;) and < 7 lg>, where

i # j, iff the literals /! and l,{ are compatible, that is, one is not the negation of the
other.

It is immediate that the constructed undirected graph has a t-clique iff at least one
literal in each row can be assigned t, without conflicts; and this is so iff w is satisfiable.
On the other hand, it is also easy to see that the graph, f(w), is constructible within
poly-time with respect to |w|. J

There is a huge library of known .4 &?-complete problems. A good start point
for the reader who wants to explore it is Papadimitriou (1994).

5.2 AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES

Computable functions can have some quite complex definitions. For example, a loop
programmable function might be given via a loop program that has depth of nesting
of the loop-end pair, say, equal to 200. Now this is complex! Or a function might be
given via an arbitrarily complex sequence of primitive recursions, with the restriction
that the computed function is majorized by some known function, for all values of
the input (for the concept of majorization see Subsection 2.4.3).

But does such definitional—and therefore, “static”—complexity have any bearing
on the computational—dynamic—complexity of the function? We will see that it
does, and we will connect definitional and computational complexities quantitatively.

Our study will be restricted to the class PR that we will subdivide into an infinite
sequence of increasingly more inclusive subclasses, S;. A so-called hierarchy of
classes of functions.

5.2.0.4 Definition. A sequence (5;);>o of subsets of PR is a primitive recursive
hierarchy provided all of the following hold:

(1) S; € Si4q,foralli >0

(2) PR = U0 Si-

The hierarchy is proper or nontrivial ift S; # S;41, for all but finitely many i.

If f € S; then we say that its level in the hierarchyis <. If f € S;;1 — S, then
its level is equal to ¢ 4 1. |

The first hierarchy that we will define is due to Axt and Heinermann [Heinermann
(1961) and Axt (1965)].

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 351

5.2.0.5 Definition. (The Axt-Heinermann Hierarchy) We define the class C,, for
each n > 0 by recursion on n. We let Kq stand for the closure of {\z.z, Az.xz + 1}
under substitution (2.1.2.6).

For n > 0, K41 is the closure under substitution of KC,, U {prim(h,g) : h €
Kr. Mg € K.}, where prim(h, g) is the function defined by primitive recursion from
the basis function A and the iterator function g (cf. 2.1.1.14). O

Thus, primitive recursion is the “expensive” operation, an application of which takes
us out of a given KC,,. On the other hand, as the classes are defined (the n + 1 case), it
follows that any finite number of substitution operations keeps us in the same class;
all IC,,, that is, are closed under substitution.

We list a number of straightforward properties.

5.2.0.6 Proposition. (K,,),>0 is a hierarchy, that is,
(1) K, CKpy1, forn >0,
and
(2) PR =U;»0 K.
Proof.
(1) Immediate from the definition of X, ; in 5.2.0.5.

(2) This is straightforward, from 5.2.0.5 and 2.1.2.3. The part D is rather trivial,
while the C part can be done by induction on PR.]

5.2.0.7 Proposition. A\z.A,(z} € K, for all n > 0, where Anz.A,(z) is the
Ackermann function of Subsection 2.4.1.

Proof. Induction on n. For n = 0, we note that Ay = Az.x + 2 € Ky. By 5.2.0.5
and 2.4.1.2, if Ax. A, (z) € K, then Az. Ay (z) € Ky p1—since Az.2 € Ky by
substitution, and Ky C K,,— and this concludes the induction. O

5.2.0.8 Proposition. For every f € K, there is a k € N such that f(Z) <
Ak (max(Z)), for all Z.

Proof. In 2.4.3.1 we proved that the Ackermann function majorizes every primitive
recursive function. The induction proof over PR demonstrated that composing
finitely many functions f;—each majorized by A%: using the same fixed n—produces

a function that is majorized by Ag: ik Thus, in the present context, and to settle the
proposition by induction on n, we will only need to show that every initial function
of Ky is majorized by some Aj and each initial function of X, 1, namely,

fek,U{prim(h,g):heKongekK,} (1)

is majorized by some appropriate A7 .

www.it-ebooks.info

http://www.it-ebooks.info/

352 COMPUTATIONAL COMPLEXITY

Well, each of x and = + 1 are less than z + 2 = Ag(z) and this settles the basis.
Assume the claim (I.H.) for K,,—fixed n > 0-—and tackle that for K,,, ;. By our
plan, we need to show the initial function are majorized by some A7, ;. For those
f € Ky, [ef. ()] this is the result of Lemmata 2.4.2.7 and 2.4.2.10. If f = prim(h, g),
then, by the I.H. on n, we have, for all z, z and 7,

h(y) < A7 (max(q))
and
9@, 7, z) < Ay (max(z, g, 2))
By 2.4.3.1 we have some r such that f(z,7) < A7, (max(z,7)), for all z and
y. O
5.2.0.9 Corollary. The Axt-Heinermann hierarchy is proper.

Proof. Indeed, Ax.Ap11 € Kpyy — Ky, forall n > 0. By 5.2.0.7, we only need to
see that Az. A, 1 ¢ K,. Indeed, otherwise, we would have, for all z, and some r,
Apii(z) < AL (x) (cf. 2.4.2.10). O

We can also base the definition of classes similar to C,, on simultaneous recursion:

5.2.0.10 Definition. We define the class K5 for each n > 0 by recursion on n. We
let ’Cgim = Ko.

For n > 0, K™ is the closure under substitution of K™ U {f : f is obtained

by simultaneous primitive recursion from functions in 5™ }. O

The following are straightforward (see Exercises 5.3.15, 5.3.16).

5.2.0.11 Proposition. Forn > 0, we have K,, C K5™,
Thus, PR = U, 50 Kn € Upso K™ € PR.
Thus, by 5.2.0.7,

5.2.0.12 Corollary. Forn > 0, we have \x.A,(z) € K™,

5.2.0.13 Proposition. For every f € K™ there is a k € N such that f(Z) <
Ak (max(Z)), for all Z.

Proof. A straightforward modification of the proof of 5.2.0.8. O

5.2.0.14 Corollary. The (K5™),,>o hierarchy is proper.

Proof. Exactly as in the proof of 5.2.0.9. (|
A closely related hierarchy——that is once again defined in terms of how complex
a function’s definition is—is based on loop programs [Ritchie (1965)].

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 353

5.2.0.15 Definition. (A Hierarchy of Loop Programs) Cf. Section 2.2. We denote
by Lg the class of all loop programs that do not employ the Loop-end instruction
pair.

Assuming that L,, has been defined, then L, 1 is the set of programs that is the
closure under program concatenation of this initial set:

L,U {LoopX; P;end : for any variable X and P € Ln} O

Trivially, L,, C L,,.; and the maximum nesting depth of the L.oop-end pair increases
by one as we pass from L, to L, ;. Of course, by virtue of L,, C L,,,1, not every
P € L, 1 nests the Loop-end pair as deep as n + 1. Thus, R € L,, iff the depth
of nesting of the Loop-end instruction pair is at most nn. Nesting depth equal to 0
means the absence of a Loop-end instruction pair.

The following is immediate.

5.2.0.16 Proposition. Cf. 2.2.0.8. (L,,)n>0 is a proper L-hierarchy. That is,

(1) Lp C Lyy1, forn>0

and

(2) L= UnZO Ln

We are more interested in the induced (by the L, sets) hierarchy of primitive
recursive classes:

5.2.0.17 Definition. Cf. 2.2.1.2. We denote by .%,, for n > 0, the class

{PIr: P € Ly A the &, and z occur in P} O

5.2.0.18 Proposition. For n > 0, we have that K™ = %,

Proof. In outline, the instruction pair Loop-end implements one simultaneous re-
cursion. On the other hand, by the definition of ICffm, this class contains functions
obtained from those of 5™ = K¢ by n nested simultaneous recursions (and possibly
some substitutions).

In detail, one can do induction on n and imitate the proofs of 2.2.1.4 and 2.2.1.3.
See Exercise 5.3.17. O

Thus, everything we said about the (K£™),>0 hierarchy carries over to the
(2) n>0 hierarchy—after all, it is the same hierarchy under two different definitions.
In particular, by 5.2.0.14,
5.2.0.19 Proposition. The PR- (or £-)hierarchy, (<£,)n>0, is proper.

5.2.0.20 Example. Here are some functions and predicates in the “lower” (small n)
classes of the (K5¥™),,>¢ hierarchy.

www.it-ebooks.info

http://www.it-ebooks.info/

354 COMPUTATIONAL COMPLEXITY

The following are in K; and hence in K{'™ = %,
(1) Azy.x + y. Indeed,
O+ty=y
(e+1D)+y=(z+y)+1
and A\y.y and Az.z + 1 are in Ky = K5,
(2) Azy.z(l = y). Indeed,
z(1-0)=zx
z(l-(y+1)=0
and \y.y and Az.0 are in Ky = KC5'™.
(3) Az.1 ~ z. By substitution operations from the previous function.
4) Az.x ~ 1. Indeed,
0-1=0
(z+1)~1==z
and \y.y and Az.0 are in Ko = K§'™.

(5) Az.|z/2] € K{*™. Indeed, see 2.1.3.3.

This example shows that K1 # K$™, since Az. |z/2] ¢ K; as follows from
results of Ritchie (1965) and Tsichritzis (1970) that were retold in Tourlakis
(1984).

(6) switch = Azxyz.if x = 0 then y else z. Indeed, we have the recursion

switch(0,y,2) =y
switch(x + 1,y,2) = 2

where \y.y is in Ko = K§™.
The following are in K2 and hence in ICS"” =%,
(a) Azy.x — y. Indeed,
z=-0==x
z-(y+)=@~-y) -1
and A\y.y and Az.z = 1 are in K; C K§'™,
(b) Azy.xy. Indeed,

z0=0
z(y+1)=zy+z

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 355

and \y.0 and Awz.w + z are in K; C K™,
(c) Ax.2%. Indeed,

20 =1
oy+l _ 9y + 2Y
and Ay.1 and Awz.w + z are in K; C K§'™, O

5.2.0.21 Definition. As is usual, the predicate classes K,, . and ICff;T—the latter
being the same as %, ,—are defined foralln > O as {f(£) = 0: f € K,,} and
{f(& =0: f € K™}, respectively. O

5.2.0.22 Proposition. For n > 1, we have that K, , and ICff’T are closed under —
and V—and hence under N\, —, and = as well.

Proof. Let Q(Z) € K, .. Then, for some ¢ € K,, Q(&) = ¢(£) = 0. Since
r =M1 = ¢q(&) € K,, if n > 1 by 5.2.0.20, we are done, noting —Q(Z)
r(Z) = 0. Next, let also S(¢) = s(¢) = 0 with s € K,,. Then Q(Z) Vv S(%)
switch(q(Z),0,7(7)) = 0; but switch € K, forn > 1 (cf. 5.2.0.20).

The cases for ICfoT are argued identically with the preceding two.

O

5.2.0.23 Corollary. The relations Az.x < a, Az.x < a and Ax.x = a are in K1 .
and hence in IC§*7".

Proof. By 5.2.0.20(4) and substitution, we have that Az.x ~ a € ;. Butz < a =
z — a = 0. Onthe otherhand, z < a =+ 1 - a = 0. Thus the claim about
Az.z < ais true. Noting that Az.e < z isin Ky , dueto

a<r=-x<a

and 5.2.0.22, we have that Az.xz = « is in Ky, by 5.2.0.22 and the observation
cr=a=x<aAha<uz. O

5.2.0.24 Proposition. For n > 1, we have that K,, and ICffm are closed under
definition by cases.

Proof. This is immediate from either of the suggested proofs for 2.1.2.37, noting
5.2.0.20, (1), (2) and (6). d
The three hierarchies that we introduced include increasingly complex classes,
using as a yardstick of complexity the nesting depth of primitive recursion. The
next hierarchy, due to Grzegorczyk (1953), gauges complexity of definition by the
(numerical) size of the function it produces—and, correspondingly, the class com-
plexity at level n by the size of the functions it contains. As the definition does
not necessarily force a function such as prim(h, g) to exit from a given level, the
Grzegorczyk hierarchy is much more amenable to mathematical analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

356 COMPUTATIONAL COMPLEXITY

5.2.0.25 Definition. (The Grzegorczyk Hierarchy) We are given a fixed sequence
of functions, (gn,)n>0 by

go=Azr.z+1
g1 =Azy.x+y
ga = Azy.xy

and, for n > 2,
Intl =)\xy.An(max(x,y))

where Any. A, (x) is the Ackermann function of Subsection 2.4.1.
The hierarchy (£™),>0 is defined as follows: £™ is the closure of

{Az.z + 1, z.z, 9.}

under substitution and bounded primitive recursion, the latter being the schema below

f(ov ?j) = h(ﬂ)
f(.’L‘ + 1737) = q(x,g',f(il?,?]))
f(z,9) < B(z,9)

where h, g and B are given functions. |

A class C is closed under bounded primitive recursion iff whenever h, ¢, and B are
in C, then so is the f produced as above.

We note that the bounded recursion is not on notation. Rather, it is an ordinary
number-theoretic primitive recursion along with a condition that the function f has
actually been “produced” only if its values are bounded everywhere by those of the
given B.

The g, -function included among the initial functions at each level, which gauges
the (numerical) size of functions included in each £ is (a version of) the Ackermann
function. Grzegorczyk used a different version than we do here. Our choice to use
the function of Subsection 2.4.1 was partly dictated by ease-of-use considerations,
but mostly because we know quite a bit about the A,, already. The reader may consult
Tourlakis (1984) to read a proof that the version we use here produces the same £™ @
classes as in Grzegorczyk (1953).

The class of relations at level n of the Grzegorczyk hierarchy is defined as usual.

5.2.0.26 Definition. £, for n > 0, denotes the class of relations {f(Z) =0: f €
Ent. O

5.2.0.27 Example. Here are some examples of functions and relations in £° and £0:

1) Azy.z(l = y).

z(1+-0)=z
z(l-(y+1)=0
z(1l+ty) <z

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 357

(2) Az.1 = z. By (1) and substitution.

3) \z.x - 1.
0-1=0
(z+1) 1=z
r-1<z
4) Azy.z ~ .
z-0=z
- (y+l)=(-y) -1
z-y<zx

(5) Azy.x < yand Azy.x < yarein £0. Indeed, x < y =z -~ y = 0 and @
r<y=(z+1)~y=0. O

5.2.0.28 Lemma. Foralln >0, E® C £,

Proof. E£" contains the initial functions of £° and is closed under the same operations.
d

5.2.0.29 Theorem. For n > 0, £ is closed under Boolean operations and also
under bounded quantification, namely, (3y) <., (y)<z (VY)<z (VY)<2-

Proof. We implicitly use 5.2.0.28. For Boolean operations it suffices to consider
and V only. So, let R(Z) = r(Z) = 0 and Q(g) = ¢(¥) = 0, where r and ¢ are in
E™. Now, =R(Z) =1 = r(Z) = 0 and we are done by 5.2.0.27(2). On the other
hand, R(Z) vV Q(§) = r(&)(1 = (1 = q(¥))) = 0 and we are done by 5.2.0.27(1).

For closure under bounded quantification, let P(y,Z) = p(y,Z) = 0, where
p € E™. Let x3 be the characteristic function (cf. 2.1.2.15) of (Jy),P(y,T).
Noting that

(Fy) <o P(y, T) is false, and (3y) <. +1P(y, T) = P(z, %) V (Jy) < P(y, %)

we have that y 3 satisfies the bounded recursion below:

X3(07f) -
xa(z +1,8) = xs(2,8) (1= (1 p(z9))
x3(z, %) <1

and we are done. The “1” in the inequality above is the output of Az.1 which is in
£Y. Clearly x3 belongs where p does, and (Jy) <. P(y,) = xa(z, %) = 0.

To conclude the proof for the remaining cases of quantification, note that (Jy) <. R =
RV (Jy) <. R; moreover, the universal quantifier cases foltow from the closure of £
under negation. O

www.it-ebooks.info

http://www.it-ebooks.info/

358 COMPUTATIONAL COMPLEXITY

Note that if a class C contains Ax.1 = z and is closed under substitution, then 2.1.2.16
applies to its class of predicates C,.

The following result is, modulo choice of Ackermann function, from Grzegorczyk
(1953).

5.2.0.30 Lemma. (Bounding Lemma) (1) Foreach f € £°, there are i and k such
that f(Z) < x; + k everywhere.
(2) Foreach f € £, there are C and k such that f(Z) < C max(Z) +k everywhere.

(3) For each f € £?, there are C,n, and k such that f(¥) < Cmax(Z)" + k
everywhere.

(4) For each f € "', n > 2, there is a k such that f(Z) < AF(max(Z))
everywhere.

Proof.
All proofs are by induction over the appropriate £™.

(1) The claim trivially holds for the initial functions and propagates with bounded
recursion since the I.H. applies to whichever bounding function B was employed.
Let then f be obtained by substitution,

f(xl,...,:vi_l,xiﬂ,...,xn,gj') :g(Il,..., xT; ,...,.T")

The LH. applies to g. Now, if g(%) < z; + k everywhere, for j # 4, then also

fz1, .. 2im1, Tig1, - - -, @0, §) < + k, everywhere.

If, on the other hand, j = 1, then f(z1,...,Ti—1,Tit1,---,Zn, §) < MG + k,
everywhere. Bythe LH.on h, f(z1,...,Zim1,Zit1, - Zn, §) < Yym + K+ K/,
everywhere, for some m and k'.

The other cases of substitution are as easy.
(2) The basis and the propagation of the claim with bounded recursion are as above

[note, incidentally, that + y < 2max(z, y)]. Let us now look at a substitution
h(i, (), Z). We have, by the L.H. applied to h,

h(y, 9(T), 2) < Cmax(y, 9(Z), 2) + k

LH. for g
< Cmax(9,C' max(Z) + k', 2) + k

< CC' max(§,%, %) + Ck + k

(3) Left as an exercise (see Exercise 5.3.20).

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 359

(4) The claim is true for the initial functions and propagates with bounded recursion
for the reason named earlier. As for substitution, we know that the subscript n
will not change (cf. 2.4.3.1) and thus if A*: majorize the component-functions

of the substitution, then A2~ majorizes the result. O

We can now prove that E* C £™F! for all n.

5.2.0.31 Theorem. (£™),>0 is a proper primitive recursive hierarchy.

Proof. First, E C £™1L, for all n, since every bounded recursion in £” can use
as bounding functions the bounds z; + k, C' max(Z) + k, and C max(Z)™ + k if
n =0, 1, 2, respectively—cf. (1)-(3) in 5.2.0.30—or Aflﬁl ifn > 3.

I am implying an induction over £™ in the above remark. Butis A,,_; € £"T1? Yes,
if we assume that A,,_5 is. See Exercise 5.3.21.

Reverting to the unified notation “g,,” and noting that g,., € "1 — £™ by
5.2.0.30, we promote C above to C:

E™ c ™ forall n.

Now, trivially, £* C PR, for all n. On the other hand, by 2.4.3.1, every primitive
recursion is a bounded recursion with bounding function A’Tj for some k, so PR C
Un>o €™ as well. O

5.2.0.32 Exercise. In view of 5.2.0.30, prove that switch (the “full” if-then-else)
and max are not in £°. O

We defined bounded summation and multiplication in 2.1.2.30 and saw that, as
operations, they do not take us out of PR. More interesting is this:

5.2.0.33 Proposition. Forn > 2, E™ is closed under bounded summation.
Proof. By reference to 2.1.2.30, we only need a bounding function for } , _, f(4,)
3 n
" 51;0; n =2, f{i,%) = O(max(i, £)"), for some r, due to 5.2.0.30. But then,
Zf(z,f) = ZO(max(i,a?’)r) = O(zmax(z,T)")
i<z i<z

Since, for any constants C and D, A\z#.Cz max(z,)" + D is in £2, our bounding
function is obtained by choosing the right C' and D.
Forn > 2, let, by 5.2.0.30, r be such that f(i, &) < A _,(max(i, Z)), forall i, Z.

Then
Zf i, &) < ZA _1(max(i, 7)) < zA]_, (max(z,T)) (1)

1<z 1<z

But Azy.zy and A2Z.A%_| (max(z, &)) are in E™ for n > 2. We have obtained the
required bounding function in (1). O

www.it-ebooks.info

4

http://www.it-ebooks.info/

360 COMPUTATIONAL COMPLEXITY

5.2.0.34 Proposition. Forn > 3, £ is closed under bounded multiplication.

Proof. We proceed as in the proof of 5.2.0.33 above.
Let, by 5.2.0.30, r be such that f(¢, %) < A7 _, (max(i, Z)), for all ¢, £. Then

n—1

Hf) < HA (max(i, 7)) < (A;_l(max(z,i))y (2)

1<z 1<z

But Azy.z? and AzZ.AE_, (max(z,Z)) are in £, for n > 3. We obtained the
required bounding function in (2).]

A definition of bounded search that is used in Grzegorczyk (1953) [cf. also Péter
(1967)] is the following:

5.2.0.35 Definition. (Alternative Bounded Search) For any total number-theoretic
function AyZ. f(y, &) we define

Def min{y :y <z A f(y,Z) =0} if (y)<.f(y,2) =0
(1) <= f(y, %) = {0 otherwise

()<= f(y, &) means (1y) <11 f(y, %), and (fy) < R(y, ¥) means (1y) <X R (¥),
where x g is the characteristic function of R. a

5.2.0.36 Theorem. Forn > 0, ™ is closed under (jiy) <.

Proof. Let f € E™. We set g(z, %) = (i) <= f(y, &). Notice that

9(0, %) =0

gz+1,%) =if (Vy)<.f(y,%) #0A f(z,Z) = Othen 2z
else g(z, %)

9(2, %) <z

The above bounded recursion works for n > 1, but will not work for n = 0 due to
5.2.0.32; some acrobatics will be necessary:

We note that the right hand side of the second equation is obtained by substituting
g(z,%) into w and x(z,Z)—the value at (z,&) of the characteristic function of

(V) <2f(y, &) # O A f(2,&) = O—into z in

if £ = 0 then z else w

Noting that g(z,Z) < z, we can replace the troublesome full if-then-else by the
expression sw(zx, z, w) given by

if £ = O then z

else if w < z then w else 0

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 361

Note that sw € £° because of the bounded recursion below.

sw(0,z,w) =z
sw(z+1,z,w) =ifw -~ z =0 then w else 0
sw(z,z,w) < z

Moreover, note that g(z + 1, %) = sw(x(z, %), z, ¢(z, T)). O
The absence of the full switch from £° qualifies the result about closure under
definition by cases:

5.2.0.37 Corollary. Forn > 1, E" is closed under definition by cases 2.1.2.37.
&Y is closed under definition by cases provided the produced function f satisfies
f(&) < z; + k everywhere, for some i and k.

Proof. For n > 1 the proof of 2.1.2.37 works. For £°, if f is given as in 2.1.2.37,
where the f; are in £9 and the R; in £9, then

1@ = ()<t (y = HE ARV VY = funr@ A Baa (@) ()

where we wrote R, for the “otherwise” relation. The reader should carefully
identify all the results that we proved so far about the Grzegorczyk classes that
make (1) work. O

5.2.0.38 Theorem. £? is closed under simultaneous bounded recursion, that is,
under the schema of Subsection 2.1.3, where, additionally, k bounding functions B;,
fori = 1,...,k, are given, and the functions f; resulting from the schema must
satisfy fi(z,9) < Bi{z,) everywhere.

Proof. Consider the schema below, where the h;, g; and B; are in £2.

f1(0,9) = h1(§n)

fi(0, Fn) = hi(¥n)

f1($+1>37n) =gl(xygnafl(xagn)a'"7fk($agn))

: (1)
fk(l"}'lygn) :gk(l"gn’fl(xagn)?"'afk(x7gn))

fl(x’gn) < B1(1‘,gn)

fk(l'Jjn) < Bk(xagn)

The pairing function J = Azy.(z+y)? +z (cf. 2.1.4.8) is in £2, and so are its projec-
tions K = Az.(pa)<,(3y)<.J(z,y) = zand L =)\z.(ﬁy)gz(ﬂx)ng(x,y) = z.

www.it-ebooks.info

http://www.it-ebooks.info/

362 COMPUTATIONAL COMPLEXITY

Thus, we have the coding-decoding scheme—A\Zy. [21, ..., 2]](k) and TI¥—of
2.149in &2

The proof of 2.1.3.1—that shows how to simulate a simultaneous recursion by a
single recursion—goes through unchanged if we replace the used there prime power
coding/decoding by the alternative [. ..]/IT¥ adopted here. Noting that

[[fl(x7gn)v . 'sfk(xagn)ﬂ(k) < [[Bl(ZIT,:ljn), o ’Bk(m>gn)]](k)

and that the right hand side of the above < is in £2 (as a function of z, §,) by
substitution, we obtain that

ALYn. [f1(x, Tn), - s fi(z, §n)]](k) c &2

and therefore, fori = 1,... .k, f; = Axgj‘n.Hi-‘([filz, o), .. .,fk(x,gj'n)]](k)) isin
£2. O

5.2.0.39 Corollary. £, forn > 2, is closed under simultaneous bounded recursion.

We have introduced four primitive recursive hierarchies—of Axt-Hienermann, Den-
nis Ritchie, and Grzegorczyk—the yardstick of “complexity” of a class at each level
n being that of its definition, whether the measure was numerical size of produced
functions (Grzegorczyk) or nesting depth of primitive recursion (in all the others).

We conclude this subsection by showing that this definitional complexity tracks
very accurately the computational complexity of the primitive recursive functions.
The URM formalism will be the computing model to which the computational com-
plexity will related.

The “main lemma” toward connecting the four hierarchies to each other on one
hand, and with the computational complexity of their functions on the other, will be
the Ritchie'>*-Cobham property of the Grzegorczyk classes, that

forn > 0, f € E™iff f is computable by some URM within time ¢t € £ (RC)

We will need a simulation tool, namely, we will show that the computation of
a URM can be simulated by a very simple simultaneous primitive recursion. The
reader is referred to 2.3.0.5, which defines the computation-related concepts that we
need.

Important! Unlike our practice in Section 5.1, where run time was expressed as a
function of input length, in the present section we will gauge run time as function of
input (numerical) value.

Thus, for the record:

5.2.0.40 Definition. Consider the function f = M)’,?” , where M is a URM—whether
M is normalized or not is immaterial for the purpose of this definition. A function

154Dennis Ritchie.

www.it-ebooks.info

4

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 363

AZ,, t(Z,) majorizes the run time complexity of M}’,Z" iff, for all @,,, if f(@,) | with
an M-computation of length [, then I < #(d@,,); else if f(@,) T, then also t(d@,) 1.
We say that AZ,,. f(F,,) is computable within time \Z,, .t(Z,,). O

5.2.0.41 Simulation lemma. Ler M be a normalized URM (2.3.0.4) with vari-
ables Vi,Va, ... Voi1,Vaso, ..., Vi, of which Vi is the output variable and the
Vi, fori=2,..., n+1, are input variables. With reference to 2.3.0.5 we define m + 1
simulating functions—for all y, d,—as follows:

v;(y, @) = the value of variable V; in the y-th ID of a (possibly non terminating)
computation with input .,

I(y,a,) = instruction number in the y-th ID of a (possibly non terminating)
computation with input .,

All the simulating functions are in K§'™.

In view of (v) in 2.3.0.5, all the simulating functions are total, since once the instruc-
tion stop is reached the computation continues forever “trivially”, that is, without g%
changing either the V; or the instruction number.

Proof. We have the following simultaneous recursion that defines the simulating
functions:

Ul(o’an) =0
vi(O,c‘in) =a;_1,fori=2,...,n4+1
v;(0,8,) =0,fori=n+2,...,m
1(0,d,) =1
Fory >0and:=1,...,m, we have
c if I(y,d,) = kwhere “k : V; <~ ”isin M
vi(y,dp) +1 ifI(y,d,) =kwhere“k : V, -V, +1”isin M
vz(y-l_]‘?an) - — . . — @ . 99 s .
vi(y,a@,) ~1 ifI(y,d@,) =kwhere“k:V, <V, = 1"isin M
v;(y, dn) otherwise
(ll if I{y,d,) = k where “k : if V; = 0 goto [; else
goto [,” isin M and v;(y,d,) =0
l if I(y, d@,) = k where “k : if V; = 0 goto [, el
Iy +1,6,) = 9 if I{y ‘,’,’f). where i £ goto [, else
goto [2” isin M and v;(y, d,) > 0
k if I{y, d,) = k where “k : stop” is in M
(I(y,@,)+1 otherwise

Since the iterator functions only utilize the functions Az.a, Az.x + 1, Az.x = 1,
Az.z, and predicates Az.x = a, and Az.x > a—all in Ki*™ and K{'[*—it follows
that all the simulating functions are in IC;"”, as claimed. d

www.it-ebooks.info

http://www.it-ebooks.info/

364 COMPUTATIONAL COMPLEXITY

5.2.0.42 Example. Let M be the program below

WV« Vi +1

2V2<—‘/2~'—1

:if V, = 0 goto 4 else goto 1
: stop

=W N

Let us assume that V5 is the input variable and V) is the output variable. The
simulating equations take the concrete form below, where a denotes the input value:

For y > 0 we have

vi(y,a)+1 ifI(y,a)=1
v1(y, a) otherwise

’01(:1/-1—1,(1) = {

valy,a) =1 ifI(y,a) =2

va(y+1,a) =
2(y) v2(y,a) otherwise
4 if I{y,a) =3 Ava(y,a) =0
Iy+1,0) = if I(y,a) =3 Ava(y,a) >0
T i I(y,a) = 4

I{y,a) +1 otherwise

5.2.0.43 Corollary. The simulating functions are in K4.

Proof. The above mentioned predicates and functions that are part of the iterator are
in Xy and X; .. Moreover, K is closed under definition by cases (5.2.0.24). To
convert the simultaneous recursion to a single recursion and back, we need pairing
functions and their projections.

The quadratic pairing function J = Azy.(z+1y)? +x is appropriate. Immediately,
J € K3 by 5.2.0.20. Now, let us place its projections, K and L, in the Axt hierarchy.
We know that (2.1.4.8) Kz = z — |/z|° and Lz = [/z] ~ Kz. By the results of
5.2.0.20 we need only locate Az. {1/z] in the hierarchy.

We start by noting that if z + 1 is a perfect square, that is, z + 1 = (k + 1) for
some k, then z + 1 = k? + 2k + 1 hence z = k? + 2k, thus

k> <2< (k+1)>
hence k = |/z]. This yields
[Vz+1|=k+1=|Vz]+1 (1)

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 365

Suppose next that z + 1 is not a perfect square. That is,
m? <z+1< (m+1)>2 (2)

for some m, and hence m? < z < m? + 2m < (m + 1)2. This entails m < \/z <

m + 1, thus m = [/z]. Butm = |/z + 1] as well, by (2).
At the end of all this we obtain the following recursion:

| V0] =0

p _JWEI+L itz = (lvE +1)?
Ve {L\/EJ otherwise

By reference to 5.2.0.20—and noting that x = y = (x ~ y) + (y — =) = 0, thus
Azy.x =y € Ky .—we see that A\z. /2] € K3, and thus so are K and L. But then,
the coding/decoding scheme that is based on this J, K, L (2.1.4.9) is in 3. Referring
to 2.1.3.1, we see that, due to the presence of the H;”H in the iterator part, the single
recursion that simulates the simultaneous recursion of the simulation lemma yields
the function

AYan. [1(y, @), v1(Ys @n)s - - - Om (Y, @n) ™Y

in K4. This guarantees that

Ay, T+ (110y, @), 01 (Y, @n)s - - s 0 (, @)]V)
arein K4, fori=1,...,m+ 1. O

5.2.0.44 Corollary. The simulating functions are in £2.

Proof. Given that the iterators in the simultaneous recursion employed in 5.2.0.41
are trivially in £2, we only need to provide £2-bounds for all the produced functions
(5.2.0.38). Well, I(y,d,) < k, where k is the label of the stop instruction of M.
On the other hand, since all we do with the iterators can at most add 1 in each step,
we also have the bounds v(y,a@,) < maxd, + y + C, a bound which is in £2 as a
function of y and d,,, seeing that max(x,y} = ¢ — y+y. The “+ C” accounts for all
the constants that may be assigned to a variable during the computation (instructions
of type V; « a). O
We can now prove (the nontrivial) half of the Ritchie-Cobham property:

5.2.0.45 Lemma. If f = MZ» runs on M within time t € £, for some n > 2, then
feén

Proof. Let the simulating functions of M be as in 5.2.0.41, where z is “V;”, the
output variable. Then, for all @,, we have f(d,) = v1(t(dy), @), and this settles
the claim by 5.2.0.44. O

The “easy” half of the Ritchie-Cobham property is proved by doing a bit of
programming.

www.it-ebooks.info

http://www.it-ebooks.info/

366 COMPUTATIONAL COMPLEXITY

5.2.0.46 Lemma. For n > 2, any AZ.f(Z) € E™ is URM-computable within time

ALH(F) € £

Proof. Induction over £7,

We settle the case of the initial functions first (cf. 5.2.0.25). Az.zx is computable,
as M “/?, within O(z) steps by the normalized URM M below

while Az.z + 1 is computable, as NV, Vf, also within O(z) steps by the normalized

URM N below:

1:

2
3
4

=W N =

Vi<Vi+1
Vo Vo =1

1if Vo = 0 goto 4 else goto 1

stop

Z‘/l(—Vl'f‘l

:VQ(_‘/Q;l

:if V; = 0 goto 4 else goto 1
2V1(—V1+1

: stop

The non normalized URM P below

1:Vi«Vi+1
2 : stop

computes Az.z + 1 as P“,/l‘ in O(1) steps.

Azy.zy is computable by the following loop-program, R, within time O(zy), as

XY,
RXY:

Loop X
Loop Y
Z— Z+1
end
end

A straightforward URM simulation of the above is

This still runs within O(zy) time. With the case of n = 2 done, we now turn to the

1

7
8

2
3
4:
5
6

1 goto 7

: goto 5
Z+—Z+1
Y«Y -1

:if Y = 0 goto 6 else goto 3
X+—X-=1

:if X = 0 goto 8 else goto 2
: stop

initial functions of E**1! for n > 2.

The only new case is A,,. We show that it is computable by some URM M within

time A, for some k.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 367

We know that 4, € L,,. Solet A, = PZ, where the program P € L,, terminates
within O(A% (z)) steps (cf. Exercise 5.3.22).

But how about computing P¥ on a URM? We can efficiently translate any loop
program into a URM program!

To this end, note that loop program instructions, other than those of type X « Y
and the Loop-end pair, occur also in URM programs and thus can be the translated
as themselves. On the other hand, X « Y can be simulated by a URM (cf~. 2.1.1.10).

Recursively, assume that we know how to translate R into a URM R and con-

sider (2:
Loop X
o fi

end
This is simulated by the URM

B+ X {Anew B is associated with each instruction “Loop X”'**}
goto L { L labels the “end” that matches the simulated “Loop X"}

M: ~

R

B+~ B-=-1
L: ifB=0 goto L+ 1 else goto M
L+1:

Let next the run time of a loop program be O(t). If an instruction of type “B + X
were to take 1 step in a URM, then the above described simulating URM would also
run within time O(¢). But this is not a primitive instruction of a URM! It takes time
O(X) to perform it (cf. 2.1.1.10).

For the P above in particular, and since t = O(A¥(z)), it follows that for any
variable X of P, we have O(X) = O(Ak(z)),'® and thus the URM runs within
time O((A4%(z))?) = O(A%T(z)) due to 2% = O(As(x)) = O(An(z)).

We have concluded the basis case for all n > 2. To conclude the induction over
E™ (n > 2) we show that the property propagates with substitution and bounded
recursion. »

Let then f and g from £”, n > 2, be URM-computable (by programs My and
M) with run times bounded by 7 and ¢;,—both in £". Consider

AEG.f(Z, 9(¥)) (%)

We can (essentially) concatenate M, and My in that order (cf. 2.1.1.11) to com-
pute (*). The run time of this program is bounded by AZy.t4(7) +t7(Z, g(¥)), which
is in €™, just as ATY. f(Z, g(¥)) is. The other cases of substitution are trivial and are
omitted.

155For a given X the instruction “Loop X~ may appear several times. Each occurrence is associated with
anew “B”.
156 see this think of X as the output variable!

www.it-ebooks.info

http://www.it-ebooks.info/

368 COMPUTATIONAL COMPLEXITY

Finally, let Azy. f(x, §) be obtained by a bounded recursion from basis 4, iterator
g and bound B, all in £, and all programmable in respective URMs within time
bounds ¢y, ty and ¢p, all in £*. A URM program for f, in “pseudo code”, is

z < h(y)
10
R :ifz = 0 goto L else goto L'
z < g(1,9,2)
1—i+1
z—x =1
goto R
L : stop

Its run time is
tn(@) + O Y ta(6,7. (0, 7)) 7 (1)
i<z
Since tp,t, and f are all in £, then so is the function given by expression (1), due
t0 5.2.0.33. a

The simulation of a loop program by a URM given on p. 367 represents the general-
purpose, “faithful” simulation that, in particular, is true to the fact that the number of
iterations of a loop, Loop X, depend only on the value of X upon entry in the loop.
That is the purpose of the new variable B.

The simulation on p. 366 is expedient but acceptable since neither X nor Y are @
present inside the “scope” of either loop.

By virtue of Lemmata 5.2.0.45 and 5.2.0.46 we have now proved:

5.2.0.47 Theorem. (The Ritchie-Cobham Property of £") For n > 2, a function
fis in E™ iff it can be computed on some URM within time t; € ™.

The Ritchie-Cobham property shows the extremely close relationship between static

and computational complexity of primitive recursive functions: The run time com-
plexity of a function f in £7*!—as it is measured by the amount of time it takes

to compute it, namely, Af—is exactly predicted by the definitional complexity of

the function: its level in the hierarchy. And conversely! The run time predicts the @
definitional complexity. Very accurately.

We can now compare all the hierarchies that we introduced:
5.2.0.48 Corollary. Forn > 2, we have K™ = £mF1,

Proof. The D is immediate by 5.2.0.47: Let f € £**! and let it run on some M
within time ¢y € £"V1. Now t4(F) < A7 (max), everywhere, by 5.2.0.30. If v;
is, as before (5.2.0.41), the simulating function for the output variable of M, then

f=AZv1 (A (max T), T)

1570f course, this denotes, for some C and D, the expression t (7)) + C dica ta(B T, FE, 1Y) + D.

www.it-ebooks.info

http://www.it-ebooks.info/

AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 369

But A7 € K5 (5.2.0.12), thus, f € K5™.

For the C we do induction on n > 2. For n = 2 note that, trivially, K§'™ C £3.
Now—by varying r— we can make A7 majorize every function of K™ (5.2.0.13),
thus every simultaneous recursion that produces functions in X§*™ (from functions
in KC§'™) is a bounded recursion within £3 (4, = \z.2z + 2 € £3). Therefore,
Kstm C £3. Repeating this argument we have that

every simultaneous recursion that produces functions in K™ (from functions
in K§¥™) is a bounded recursion within £ (since Ay € £3).

thus, k5™ C £3.
Taking as an L.H. the validity of the claim for some fixed n > 2, the case forn + 1
is repeating the idea we employed in the basis: recursions taking us from K3 to
st are bounded recursions performed within E72 (2 E"*! D, by LH., K&i™),
with bounding function some A7, ;—since A7, € K& N &2 O

By 5.2.0.18 we have at once
5.2.0.49 Corollary. Forn > 2, we have £, = E™11.

5.2.0.50 Corollary. Forn > 4, we have K,, = ™1,

Proof. The proof follows very closely that of 5.2.0.48. The C goes through un-
changed, but the D “starts” later, n > 4, due to the fact that the simulating function
vy isin Ky; cf. 5.2.0.43. O

Schwichtenberg has improved 5.2.0.50 by proving the case for n = 3 [H. Schwicht-
enberg (1969)]. This is retold in Tourlakis (1984). H. Miiller (1973) gives a proof @
for the case n = 2.

5.2.0.51 Remark. (A Very Hard Problem—Revisited) Corollary 5.2.0.49 adversely
impacts a problem of practical significance: That of program correctness. The prob-
lem “program correctness” is an instance of the equivalence problem of programs,
since it tasks us to determine whether a program follows faithfully a specification,
the latter being, of course, given by a finite description, just as the program is.

We strengthen here the observation we made in 2.5.0.22 about the equivalence
problem of primitive recursive functions, that is, the equivalence problem of loop
programs:

Given loop programs P and @), is it the case that P)i(= 3)5 ?

We saw that the equivalence problem for PR is unsolvable—indeed, worse: not
even c.e.—as a consequence of the fact Az.1 and Ay.xr(x,z,y) are in PR.

As these functions are also in £3—a fact that can be readily verified by looking
at the proof of the normal form theorem (Corollary 2.3.0.8)—it follows that the
equivalence problem for £2 functions is not c.e. either. By virtue of 5.2.0.49, this
yields the rather disappointing alternative formulation:

www.it-ebooks.info

http://www.it-ebooks.info/

370 COMPUTATIONAL COMPLEXITY

The equivalence problem for programs in Lo—i.e., those that have loop depth
equal to two—is not c.e.

Thus the various techniques employed to tackle loop correctness can be suc-
cessful in all instances of the problem only when we have un-nested loops—L-
programs. This holds true even though the loops are “FOTRAN-like”, that is, they
always terminate and the number of iterations of any such loop is known at the
time the loop is entered. It should be noted that Tsichritzis (cf. Tsichritzis (1970)
and Tourlakis (1984)) has shown that programs in L; have a solvable equivalence
problem, but, on the other hand, the corresponding set of functions, .#] is rather
trivial: it is the closure under substitution of {dzy.x + y, Az.z = 1, \zyz. ifz =
Othen y else z, Az, [x/k], Ax.rem(z, k)}. That is, all “looping” can be eliminated
if we adopt this enlarged set of initial functions. O

5.3 ADDITIONAL EXERCISES

1. Fix an alphabet ¥ with m > 1 elements. Show that the following functions are in
Cobham’s class %; (cf. 5.1.1.7):
i) dz.x
(ii) Az.0
(iii) The left successors: Ax.d * x,foralld € X
(iv) Az.z®, where z® is the number whose m-adic notation is the reverse of that

of x.

2. Fix an alphabet ¥ with m > 1 elements. Show that Cobham’s class €y, is closed
under bounded left recursion on notation, that is, under the schema below, where
the h, (g4)dex, and B are in €.

f(0,7n) = h(gn)
f(d*z,Fn)= ga(, Jn, f(z,¥n)), foralld € &

Hint. (iv) of the preceding exercise helps.

3. Fix an alphabet ¥ with m > 1 elements. Show that the following functions are in
Cobham’s class €x::
(i) init = Az.y, if z = y * d, for some d € £. We define init(0) = 0.
(i) last = Az.d, if z = y * d, for some d € ¥. We define last(0) = 0.
(iii) first = Az.d,if x = d * y, for some d € . We define first(0) = 0.
(iv) tail = Az.y, if ¢ = d x y, for some d € ¥. We define tail(0) = 0.
(v) Azyz.if z = 0 then y else z.
i) Az.l =~ z.

www.it-ebooks.info

¢

http://www.it-ebooks.info/

ADDITIONAL EXERGISES 371

(vii) Az.x = 1.

|| ones

e . . ,_M
(viii) ones = Az.if z = 0 then O else the numerical value of 11---1.

lz| — |y} ones
(ix) sub = Azy.if |z| < |y| then 0 else the numerical value of 11---1 .

(x) Azy.z %y (that is, the numerical value of the string x * y).

4. For any ¥ we define %, to be the class of relations {f(£) =0: f € €}.
Now, fix an alphabet 3 with i > 1 elements. We define

5.3.0.52 Definition. We define the predicates x By (“x begins 4), xEy (“z ends
yand z Py (“zispartof y”) by (3z)y = x+2, (I2)y = zxx, (2, w)y = wxx*2
respectively.

If R is a relation, then the notations (Jy) 5. R, (3y) . R, (3y) p. R, mean, respec-
tively, (Jy)(yBz A R), (3y)(yEz A R), (3y)(yPz A R). They are read in the
obvious way, e.g., “there is a y that begins z such that R holds”. The quantifiers
(Vy)B: R, (Yy)E- R, (Yy)p, R are defined similarly. O

With these concepts in mind, prove

(i) % is closed under Boolean operations.
(ii) . is closed under (3y)p. R.
(iii) % is closed under (3y)g. R
(iv) %. is closed under (Yy) B,
(v) %. is closed under (Vy) g,
Hint. We do not know yet whether either of the relations £ By or x = y are in ..

For (ii) you should offer a proof by direct bounded recursion on notation to define
a function f € % such that f(2,%) = 0 = (y) 5. R(y,). Your assumption will

—

be that a function » € % exists such that r(y, &) = 0 = R(y,).

5. Fix an alphabet ¥ with m > 1 elements. Show that the following relations are in
C.

(i) Ax.x =d,foralld € ¥.

—
(ii) Az.tallyg(z), for all d € X, where tallyqg(z) is true iff z = d...d, for
n> 0.

(i) Azy.lz| < |y|.
iv) Azy.x =y.

Hint. This is true iff = and y have the same length, and every prefix of z is
also a prefix of y.

www.it-ebooks.info

http://www.it-ebooks.info/

372 COMPUTATIONAL COMPLEXITY

10.

11.

12.

) Azy.xBy, Axy.xEy.
(Vi) Azyz.z=x*y.

(vii) Azy.zPy.

. Fix an alphabet ¥ with m > 1 elements. Show that %, is closed under (3y)p. R

and (Vy)p. R.

. 5.3.0.53 Definition. Let () bearelation. We define the notation (max y) g, Q(y, T)

and (max y) g.Q(y, T) by

max{y : yBz A Q(y, %)}
0 if the max does not exist

(maxy) . Q(y,) = {
and

(maxy)EzQ(y, f) = {max{y : yEz A Q(yw’f)}

0 if the max does not exist
O

Prove that if @ is in b, then A2Z.(max y) 5. Q(y, £) and AzZ.(max y) g, Q(y, T)
are in 4.

. Fix analphabet 3 withm > 1elements. Letthe expression maztaly(z) denote the

maximum length tally of d-symbols that is a substring of . We let mazxtalyg(0) =
0.

Prove that A\zy.y = maztaly(x) is in ..

. Fix an alphabet ¥ with m > 1 elements.

Prove that the function A\z.maxtaly(x) is in €.
Fix an alphabet 3 with m > 1 elements.
Define a pairing function J(z, y) as
Def
J(x,y) = % 2x 1 xmaztal(z+*2%y) x2xy

Prove that we have projections K and L in . For all z and y, these satisfy
K(J(z,y)) = zand L(J(z,y)) = y.

Use 5.3.9 to devise, for any fixed n > 1, a coding/decoding scheme [. . .]](") and
II7in ¥. Cf. 2.1.4.9 and 2.1.4.10. Conclude that ¥ is closed under simultaneous
bounded (left and right) recursion on notation.

Devise, in (string-processing) URM pseudo code, an algorithm that will construct
a CNF for any given formula & in poly-time with respect to |</|. Your algorithm
will do the preprocessing and will then track the steps of the induction proof.

www.it-ebooks.info

http://www.it-ebooks.info/

13.

14.
15.
16.
17.
18.

19.
20.
21.
22.

23.

24,
25.

26.

ADDITIONAL EXERCISES 373

3S AT is the set of all satisfiable Boolean formulae written in CNF with clauses
that each have length equal to 3 literals. Show that 3SAT is A4 Z-complete by
showing it in 4" &2 and also showing that CSAT <, 35AT.

Hint. Explore the last case of the 1.S. of the induction presented in 5.1.3.2, and see
how it can be employed to transform any clause of n > 3 literals, {; Vig V- --Vi,,
in CNF with clause-length equal to 3, without affecting satsfiability.

Complete the proof in 5.2.0.6.

Prove 5.2.0.11.

Prove 5.2.0.13.

Carry out the suggested induction proof in 5.2.0.18.

Prove that the relations Azy.z < y, Azy.xz < y and Azy.z = y are in K2 , and
hence in K57,

Prove that Azy.xz = y and Azy.z # y are in £C.
Prove the case (3) of 5.2.0.30.
Prove that all of gg, g1, ..., gn are in E™11, forn > 0.

Prove that every loop program in L, with input variables X, has run time
O(AE (X)) for some k that depends on the program.

Hint. There is a trivial “trick” to measure the run time of a loop program, using a
new variable. Then refer to 5.2.0.13 and note 5.2.0.18.

Prove that the Kleene predicate T) (for any) is in £3, and that the decoding
function d is also in £3.

Hint. Systematically scan the proof that 7™ € PR, and d € PR given in
2.3.0.7 and modify it to obtain this sharper result.

In fact,

Prove that T(™ ¢ £% and d € £°.

The restricted bounded summation of a function f is defined [Grzegorczyk (1953)]

to be
Az Y (1= £(,E))

i<z

Prove that £9 is closed under restricted bounded summation.

[Grzegorczyk (1953)] Prove that every c.e. set can be enumerated by an £°-
function.

www.it-ebooks.info

http://www.it-ebooks.info/

27.

28.

29.

30.

31.

32,

{L. Kdlmar (1943)] The class of elementary functions, £, was defined by Kélmar
as the closure of {A\zy.z +y, Azy.2 ~ y} under substitution, bounded summation
and bounded product (2.1.2.30).

Prove that £ = £3.

Hint. The C direction is practically trivial. For D you need a few tools:

o & contains Azy.zy (use sum) and Azy.z¥ (use product).

e & contains Azy.z(l = y).

£, is closed under Boolean operations.

£ is closed under (ﬁy)<z. Use the observation that (Vi) f(i,Z) # 0 iff
Il;c, f(i,2) # 0. Using 3 _, you can now compute the smallest y that
makes f(y, T) zero.

e £, is closed under bounded quantification (use product for the existential
quantifier).

e £ is closed under definition by cases.

e Simulate primitive recursion (bounded!) using the techniques from 2.11.1.

Prove that
2 }
. x2’s
Az.22
isnotin £,
Prove that Azy.z + y, Azy.z — y and Azy.zy are in Cobham’s €.

Hint. Use the digit-by-digit “school method”.

Prove that an alternative definition of £ is this: the closure of { A\zy.x+y, Azy.z -
y, Azy.z¥} under substitution and bounded summation.

Prove that f € PR iff f is programmable on some URM that runs within time
te PR

Prove that PR, C R,.

374

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHY 375

Bibliography

P. Axt, Iteration of Primitive Recursion. Zeitschrift fiir math. Logik, 11:253-255,
1965.

J. Bennett. On Spectra. PhD thesis, Princeton University, 1962.

E. Blum. A machine-independent theory of the complexity of recursive functions.
ACM, 14:322-336, 1967.

N. Bourbaki. Eléments de Mathématique; Théorie des Ensembles. Hermann, Paris,
1966.

A. Church. A note on the Entscheidungsproblem. J. Symbolic Logic, 1:40-41,
101-102, 1936a.

A. Church. An unsolvable problem of elementary number theory. Amer. Journal of
Math., 58:345-363, 1936b. [Also in Davis (1965), 89-107].

A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel,
editor, International Congress for Logic, Methodology and Philosophy of Science,
pp. 24-30. North-Holland, Amsterdam, 1964.

S. Cook. The complexity of theorem-proving procedures. In Proceedings, 3rd ACM
Symposium on Theory of Computing, pp. 151-158, 1971.

Theory of Computation. By George Tourlakis
Copyright (©) 2012 John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

376 BIBLIOGRAPHY

M. Davis. Computability and Unsolvability. McGraw-Hill, New York, 1958.
M. Davis. The Undecidable. Raven Press, Hewlett, NY, 1965.

R. Dedekind. Was sind und was sollen die Zahlen? Vieweg, Braunschweig, 1888.
[In English translation by W.W. Beman; cf. Dedekind (1963)].

R. Dedekind. Essays on the Theory of Numbers. Dover Publications, New York,
1963. [First English edition translated by W.W. Beman and published by Open
Court Publishing, 1901].

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York,
1972.

K. Gdodel. Die Vollstdndigkeit der Axiome des logischen Funktionen-kalkiils. Monat-
shefte fiir Mathematik und Physik, 37:349-360, 1930.

K. Godel. Uber formal unentscheidbare Sitze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte fiir Math. und Physik, 38:173-198, 1931. [Also
in English in Davis (1965), 5-38].

D. Gries and F. B. Schneider. A Logical Approach to Discrete Math. Springer-Verlag,
New York, 1994,

A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematyczne, 4:
1-45, 1953.

H. Miiller. Characterization of the Elementary Functions in Terms of Nesting of
Primitive Recursions. Recursive Function Theory: Newsletter, (5):14-15, April
1973.

H. Schwichtenberg. Rekursionszahlen und die Grzegorczyk-Hierarchie. Arch. math.
Logik, 12:85-97, 1969.

P. Halmos. Naive Set Theory. Van Nostrand, New York, 1960.

W. Heinermann. Untersuchungen iiber die Rekursionszahlen rekursiven Funktionen.
PhD thesis, Miinster, 1961.

D. Hilbert and P. Bernays. Grundlagen der Mathematik I and II. Springer-Verlag,
New York, 1968.

P. G. Hinman. Recursion-Theoretic Hierarchies. Springer-Verlag, New York, 1978.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Boston, 3rd edition, 2007.

L. Kalmér. An argument against the plausibility of Church’s thesis. In Constructivity
in Mathematics, pp. 72-80. Proc. of the Colloguium, Amsterdam, 1957.

www.it-ebooks.info

http://www.it-ebooks.info/

BIBLIOGRAPHY 377
E. Kamke. Theory of Sets. Dover Publications, Inc., New York, 1950. [Translated
from the 2nd German edition by F. Bagemihl].

S. Kleene. General recursive functions of natural numbers. Math. Annalen, 112:
727-742, 1936.

S. Kleene. Recursive predicates and quantifiers. Transactions of the Amer. Math.
Soc., 53:41-73, 1943. [Also in Davis (1965), 255-287].

S. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952.

K. Kunen. Combinatorics. In J. Barwise, editor, Handbook of Mathematical Logic,
chapter B.3, pp. 371-401. North-Holland, Amsterdam, 1978.

L. Kélmar. A Simple Example of an Undecidable Arithmetical Problem. Matematikai
és Fizikai Lapok, 50:1-23, 1943,

W. J. LeVeque. Topics in Number Theory, Volumes I and II. Addison-Wesley,
Reading, MA, 1956.

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, Englewood Cliffs, NJ, 1998.

A. A. Markov. Theory of algorithms. Transl. Amer. Math. Soc., 2(15), 1960.

A. R. Meyer and D. M. Ritchie. Computational complexity and program structure.
Technical Report RC-1817, IBM, 1967.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1967.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA,
1994.

R. Péter. Recursive Functions. Academic Press, New York, 1967.
E. L. Post. Finite combinatory processes. J. Symbolic Logic, 1:103-105, 1936.

E. L. Post. Recursively enumerable sets of positive integers and their decision
problems. Bull. Amer. Math. Soc., 50:284-316, 1944,

D. Ritchie. Complexity Classification of Primitive Recursive Functions by their
Machine Programs. Term paper for Applied Mathematics 230, Harvard University,
1965.

M. Robinson, Raphael. Primitive recursive functions. Bull. Amer. Math. Soc., 53:
925942, 1947.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York, 1967.

www.it-ebooks.info

http://www.it-ebooks.info/

378 BIBLIOGRAPHY

J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217-255, 1963.

J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing, Boston,
1997.

R. M. Smullyan. Theory of Formal Systems. Number 47 in Annals of Math. Studies.
Princeton University Press, Princeton, 1961.

R. M. Smullyan. Gddel’s Incompleteness Theorems. Oxford University Press, Ox-
ford, 1992.

G. Tourlakis. Computability. Reston Publishing, Reston, VA, 1984.

G. Tourlakis. Lectures in Logic and Set Theory, Volume 1: Mathematical Logic.
Cambridge University Press, Cambridge, 2003a.

G. Tourlakis. Lectures in Logic and Set Theory, Volume 2: Set Theory. Cambridge
University Press, Cambridge, 2003b.

G. Tourlakis. Mathematical Logic. John Wiley & Sons, Hoboken, NJ, 2008.

D. Tsichritzis. The Equivalence Problem of Simple Programs. JACM, 17:729-738,
1970.

A.M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math Soc., 2(42, 43):230-265, 544-546, 1936, 1937. [Also in
Davis (1965), 115-154].

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

1-1 correspondence, 46
1-completeness, 217
1-degree, 219
1-reducibility, 187
1-reducibility, 183
1-way infinite tape, 342
3S AT, 372

a-successor, 261
a.e., 151
acceptance by FA, 247
accepting ID, 333
accepting path, 248, 259
Ackermann, 110
function, 110
Ackermann function, 148
inner argument of, 149
subscript argument of, 149
Algol, 92
algorithm, 91

Theory of Computation. By George Tourlakis
Copyright (©) 2012 John Wiley & Sons, Inc.

alphabet, 39
of URM, 93
ambiguity, 75
arithmetical relation, 229
arithmetization, 141
of a URM computation, 141
automata, 242
equivalent, 262
automaton, 242
deterministic, 244
finite, 244
deterministic, 244
nondeterministic, 258
pushdown, 295
state of, 242
axiom
logical, 19
nonlogical, 19
axiom of choice, 198
computable, 198

www.it-ebooks.info

http://www.it-ebooks.info/

380 INDEX

axiomatic system, 221
reasonable, 222

Backus-Naur Form, 277
basis
of induction, 63
basis function, 101
big-O notation, 339
f(n) = O(g(n)), 339
blank symbol, 331
BNEF, 277
Boolean
operations, 109
variables, 15
Boolean variable, 277
bounded multiplication, 110
bounded primitive recursion, 356
bounded quantifiers, 29
bounded recursion
simultaneous, 361
bounded search, 110
alternative, 360
alternative symbol: (y) <, 360
symbol: (py)<., 110
bounded summation, 110
restricted, 373

ce., 167, 170
CA, 227
calculable function, 91
cancelling indices, 58
canonical index, 206
cardinality argument, 162
Cartesian product, 38
Cartesian projection, 87
CFG, 281
CFL, 281
chain in a tree, 316
characteristic function, 59, 108
child node, 316
Church’s Thesis, 92, 148, 171, 176
class

equivalence, 50
clique, 335, 348
clique problem, 348

closed, 72
closed under

unbounded search, 103
CNEF, 346

clause of, 346
Cobham’s relation class &, 371
coding

Quine-Smullyan, 349
coding sequences, 113
comparable

elements in an order, 51
compiler, 141
complement

of a relation, 161
Complete Arithmetic, 227
complete equality, 45, 145
complete graph, 348
complete index set, 183

trivial, 192, 195
complexity, 325

computational, 362

definitional, 362

of a TM computation, 333
complexity function, 169
d;, 169
component

of vector-valued function, 87
composition, 46, 100

closed under, 100

functional, 46

We write (RQ) for Q) o R, 46

relational, 46

QoR,46
computability, 91
computable function

¢-index of, 145
computably enumerable set, 170
computably enumerable sets, 167
computation, 93

arithmetization of, 141

feasible, 336

intractable, 336

of aFA, 247

M-computation, 247

of a PDA, 299

www.it-ebooks.info

http://www.it-ebooks.info/

of a TM, 333

of URM, 145

steps (of a PDA), 299

terminating, 143

of URM, 145
computation length (of a PDA), 299
computation path, 248
computational complexity, 125, 180,
325, 362

concatenation

of languages, 40
configuration

initial, 299

of a PDA computation, 298

terminal, 299
conjunct, 346
conjunctive normal form, 346
constructive proof, 211
converse, 27
correct

axiomatization of arithmetic, 227
countable set, 53
counter, 328
course-of-values, 113

recursion, 114
course-of-values recursion

for partial functions, 115
creative set, 210
current instruction, 94
current symbol

on TM tape, 331
cycle, 316

decidable problem, 161
decider, 160
decision problem, 91
Dedekind, 92
deduction theorem, 24
definable by a formula, 223
definition

by cases, 111

by positive cases, 171
definition by positive cases, 179
definition by recursion, 79
definitional complexity, 125, 362

INDEX 381

degree of a polynomial, 339
derivation, 70, 280, 281
determinism, 244
deterministic, 244
poly-time complexity, 334
T'(n)-time complexity, 333
diagonal method, 56
diagonal relation, 348
diagonaliaztion lemma, 214
diagonalization, xii
digraph, 348
Diophantine equation, 120
directed graph, 348
directed labeled graph, 243
disjoint sets, 33
domain, 9, 31
of discourse, 31
of relation, 42
dovetail, 196
dovetailing, 168

=,,218
=, 218
e-closure, 261
(5), 261
edge, 243
edges, 348
effectively, 199
elementary functions, 374
empty set, 31
end-of-file, 242
Entscheidungsproblem, 91
enumerable set, 54
eof, 242
Epimenides, 213
€ move, 257
equivalence class, 50
of z: [z], 50
equivalence problem, 167, 237, 369
of partial recursive functions, 237
equivalence relation, 49
equivalent automata, 262
equivalent regular expressions, 267
Euclid, 112
explicit transformations, 229

www.it-ebooks.info

http://www.it-ebooks.info/

382 INDEX

expression, 39
extension
of formula, 40

FA, 244
accepts input, 247
computation path of, 248
trap state of, 250
universal, 290
factor, 64
prime, 64
feasible computations, 336
Fibonacci
sequence, 113
finite automaton, 242, 244
nondeterministic, 258
finite function, 193
flow diagram, 244
formula
atomic, 3
Boolean, 341
satisfiable, 341
tautology, 341
closed, 9, 223
instance of, 9
of arithmetic, 223
prime, 15
true in a theory, 20
formula-form, 19
formula-schema, 19
function, 42
1-1,45
Ackermann, 148
application, 97
calculable, 91
call, 97
characteristic, 59, 108
composition, 100
computable, 95
set of: R, 95
computation of, 94
computed by URM M, 95
symbol for: Mg*»*=, 95
converges at an input, 43

converges at an input: f(a) |, 43

declaration of, 97
definition of, 97
diverges at an input, 43
diverges at an input: f(a) 1, 43
extension, 45
gis anextension of f: f C g, 45
finite, 193
generalized identity, 103
history, 114
identity, 47
Az.f(z) 7, 150
increasing, 202
inverse of
two sided, 87
invocation, 97
left inverse of, 47
loop program computable, 136
majorant of, 155
majorized by, 350
majorizes another function, 153
nontotal, 99
number-theoretic, 98
pairing, 118
partial, 99
partial computable, 95
set of: P, 95
partial recursive, 93
primitive recursive, 92
productive, 209
projection, 103
recursive, 95
restriction, 45
fisarestrictionof gon C: f =
gl C,h45
J is arestriction of g: f C g, 45
right inverse of, 47
step-counting, 169
strictly increasing, 150, 202
successor, 70
total, 99
totally undefined, 45
tupie-valued, 87
vector-valued, 87
component of, 87
projection of, 87

www.it-ebooks.info

http://www.it-ebooks.info/

function invocation
defined, 95
symbol for: f(ay,...,an) |,
95
undefined, 95
symbol for: f(ai,...,a,) T,
95
function variable, 216

generalization, 19
generalized identity function, 103
Godel, 113
Godel number, 213
goto, 125
goto, 99
grammar, 277, 280
context free, 281
regular, 281
type-2, 281
type-3, 281
grammar production, 277
grammar rule, 277
graph, 335, 348
complete, 348
directed, 348
edges, 348
finite, 348
nodes, 348
undirected, 348
vertices, 348
Grzegorczyk, 106, 114
substitution, 106
Grzegorczyk operations, 230
guessing, 258

halting problem, 163, 176
hierarchy
Axt-Heinerman, 351
based on simuitaneous recur-
sion, 352
Grzegorczyk’s, 356
of loop programable functions,
353
of loop programs, 353
primitive recursive, 350

INDEX 383

proper, 350
high level programming language, 92
Hilbert, 92
Hilbert’s program, 91
history function, 114

ILH, 62
ip., 75
LS., 63
ID, 141, 247
accepting, 333
final, 333
initial, 143, 333
of a FA, 247
start-ID, 247
qox, 247

terminal, 247
of a PDA computation, 298
terminal, 333
identity function, 47
if-statement, 93

iff, 10
image
inverse, 43
of aset, 43
immediate predecessors, 75
implication
vacuous, 13

implied concatenation, 40

of languages, 40

LM for L x M, 40
xy for x x y, 40
implied multiplication, 40
abforax bora-b,40
incomplete formalism, 139
incompleteness

first theorem, 227
incompleteness theorem, 213
indegree, 316
index

semi-computable, 159
inductio

step, 63
induction, 61

basis, 63

www.it-ebooks.info

http://www.it-ebooks.info/

384 INDEX

hypothesis, 62

on PR, 105

on theorems, 75

on trees, 315

simple, 64

structural, 72
inductive definition, 69
infinite, 53
infinite loop, 102, 160
infinite sequence, 57
infix notation, 342
initial function, 104
initial segment of N, 115
input acceptance

by TM, 333
input accepted, 242
input alphabet, 242
input rejected, 242
input string

of modified URM, 242
instantaneous description, 141
instruction, 93

current, 141

execution, 127

of a loop program, 126
internal node

in a tree, 316
interpretation, 224

standard, 222
interpreter, 141
intersection, 33
intractable computation, 336
Intuitionists, 10
inverse

two sided, 87
inverse image, 43
irreflexive relation, 51
iteration, 100, 123

pure, 123
iteration theorem, 174
iterator, 114
iterator function, 101

k-clique, 348

Kleene normal form theorem, 145

Kleene predicate, 144

TM (2, 2, y), 144
Kleene star of a set A: A*, 40
Kleene T-predicate, 144

label
in a URM, 93

) notation, 96

language, 40, 251
accepted by a FA, 247
L(M), 247
accepted by a PDA, 300
accepted by a TM, 333
context free, 281
finitely definable, 40
regular, 267, 274
type-2, 281

language concatenation, 40

leaf node, 316

left field, 43

left inverse, 47

left successor, 370

level
in a hierarchy, 350

levels in a tree, 317

lexicographic order, 139

liar’s paradox, 213

literal, 346

loop closure, 127

loop program, 125
input variables, 135
instruction, 126
output variables, 135
terminates, 128

loop program semantics, 132

m-adic digits, 89
m-adic notation, 89
m-ary digits, 89
m-ary notation, 89
m-completeness, 217
m-degree, 219
M-ID, 247
m-reducibility, 183
machine, 92

www.it-ebooks.info

http://www.it-ebooks.info/

macro expansion, 127
mathematical theory, 19
mechanical procedure, 91
metavariable, 223, 277
model of computation, 95
modus ponens, 22

n-tuple, 37
next instruction, 127
NFA, 257
node
ancestor, 316
descendant, 316
internal, 316
level of, 317
nodes, 348
nondeterministic, 257
poly-time complexity, 334
T'(n)-time complexity, 334
nondeterministic finite automaton, 258
nonterminal, 277, 280
nonterminal symbol, 277
normal form theorem, 145
notation base-(m + 1), 326
N P-complete, 339
N P-hard, 338
numeral, 224
symbol for: n, 224

object
initial, 70
operation, 70
order, 51
comparable elements, 51
linear, 51
partial, 51
total, 51
order relation, 51
ordered n-tuple, 37
ordered pair, 36

pairing function, 118
first projection, 118
second projection, 118
pairwise disjoint, 313
parallelism, 168

INDEX 385

parent node, 316
parse tree, 313
root of, 313
support of, 313
yield of, 313
parsing, 279
partial
relation, 43
partial recursive
in F, 215
partition, 51
Pascal, 92
path in a tree, 316
path length
in a tree, 316
PDA
AS + ES-acceptance, 300
AS-acceptance, 300
ES-acceptance, 299
PDA computation, 299
phi-index
o™, 145
¢-index, 145
pigeon-hole principle, 52
poly-time reduction, 339
pop data from a stack, 141
pop operation, 294
POset, 51
postfix notation, 342
power set, 39
PR-derivation, 103
PR-function, 104
predecessor function, 98
predicate, 108
semi-computable, 159
semi-recursive, 159
true a.e., 151
true almost everywhere, 151
prime, 64
prime number factorization, 112
primitive recursion, 82, 100
bounded, 356
closed under, 101
defined function: prim(h, g), 101
on notation, 84

www.it-ebooks.info

http://www.it-ebooks.info/

386 INDEX

simultaneous, 116
primitive recursive hierarchy, 350
problem, 160

decidable, 161

equivalence, 167

semi-decidable, 161

solvable, 161

undecidable, 161

unsolvable, 161
productions, 280
productive, 222
productive function, 209
productive set, 209
program correctness, 369
projection

of vector-valued function, 87
projection function, 103, 118
projection theorem, 159
proof, 18

by induction, 62

constructive, 204, 211
proper subtraction, 98

symbol for: z = y, 98
property propagates, 72
provability predicate, 213
pumping constant, 253
pumping lemma, 253
pure iteration, 123
push data in a stack, 141
push operation, 294
push-pull, 329
pushdown automaton, 295

quantifier, 5
bounded, 29
existential, 5

part of, 371

(3Y) R, (Fy) =11, (Fy) p= R,

371
4,5
v, 5
universal, 5
part of, 371

(ay)BzR» (ay)EzRa (Ely)PzR,

371

re., 170
RAM, 336
random access machine, 336
range
of relation, 42
recurrence, 113
recursion
course-of-values, 83
primitive, 82
simultaneous, bounded, 361
recursion on m-adic notation
bounded, 337, 370
recursion on notation
bounded, 337, 370
recursion theorem, 212
Rogers’s version, 212
with parameters, 212
recursion course-of-values
for partial functions, 115
recursive axiomatization, 225
recursive definition, 69
recursively enumerable set, 170
reducibility, 183
1-reducibility, 183
m-reducibility, 183
many-one, 183
one-one, 183
A<y B,219
A<, B,219
strong, 183
A<, B, 183
reduction
poly-time, 339
reduction argument, 166
reflexive transitive closure, 78, 247
R*,78
regular expression, 266
semantics, 267
semantics: L(a), 267
regular expressions
equivalent, 267
equivalent: o ~ 3, 267
regular language, 267, 274
relation
arithmetical, 229

www.it-ebooks.info

http://www.it-ebooks.info/

binary, 41
converse of, 46
definable
in arithmetic, 229
diagonal, 348
equivalence, 49
expressed in arithmetic, 229
expressible
in arithmetic, 229
from A to B, 43
in the Grzegorczyk hierarchy, 356
irreflexive, 51
nontotal, 43
on A, 43
onto, 43
order, 51
linear, 51
total, 51
partial, 43
primitive recursive, 108
set of: PR, 108
recursive, 108
set of: R., 108
reflexive, 49
reflexive transitive closure of, 78
semi-computable, 159
set of: P,, 159
semi-recursive, 159
single-valued, 42
symmetric, 49
total, 43
transitive, 49
transitive closure of, 76
relational power, 47
R™, 47
restricted bounded summation, 373
result
of an operation, 70
reversal, 289
closed under, 289
of a language, 290
of a string, 288
reverse Polish, 342
rewriting rules, 279, 280
Rice’s lemma, 190

INDEX 387

Rice’s theorem, 192, 214
right field, 43

right inverse, 47

right successor, 338
Ritchie-Cobham property, 362

Rogers, 145
Rogers’s ¢-notation, 145
root

of a parse tree, 313
rule, 70

run time, 125, 143
of a TM computation, 333

S-m-n theorem, 174
SAT, 335
satisfiable Boolean formula, 341
schema
primitive recursion, 82
selection function, 220
selection theorem, 197, 201, 238
semantics, 127, 131
of loop programs, 132
semi-computable, 159
semi-decidable problem, 161
semi-index, 159
semi-recursive, 159
sentence, 9, 223, 281
sentential form, 281
sequence
infinite, 57
set
1-complete, 217
built by steps, 71
c.e., 167
closed under an operation, 72
closure, 72
complement, 34
complete index, 183
computably enumerable, 167, 170
countable, 53
creative, 210
difference, 34
enumerable, 54
finite, 52
inductively defined, 72

www.it-ebooks.info

http://www.it-ebooks.info/

388 INDEX

infinite, 52

m-complete, 217
notation-by-listing, 28

of all non-empty strings over a

set A1 AT, 40

of all strings over a set A: A*,
40

partially ordered, 51

power, 39

productive, 209, 222

re., 170

recursively enumerable, 170
reference, 9, 31
simple, 219
uncountable, 57
sets in 1-1 correspondence, 46
Shepherdson, 92
sibling nodes, 316
simple sets, 219
simultaneous (primitive) recursion, 116
simultaneous bounded recursion, 361
single-valued, 46
singleton, 131
solution
of a recurrence, 216
solvable problem, 161
specialization, 22
stack, 140, 294
pop from, 294
pop from «; symbol v 1, 294
push into, 294
push A into y; symbol v | A,
294
top of, 140, 294
stack variable, 294
standard equality, 45
start state, 246
start symbol, 278, 280
start-1D, 247
state
accepting, 244
rejecting, 244
step-counting function, 169
®;, 169
strictly increasing function, 150

string, 39

concatenation, 39

empty, 39

null, 39

prefix, 40

proper, 40
suffix, 40
proper, 40

strong projection theorem, 159
strong reducibility, 183
structural complexity, 125
Sturgis, 92
subcomputation, 333
subfunction, 194
subgraph, 348
subset, 28

proper, 28
substitution function, 213
subtree, 314
superset, 28
syntactic variable, 223, 277

tally, 349
tape, 331
of a TM, 331
term
closed, 222
terminal ID, 247
terminal symbol, 277
terminals, 280
terminating computation, 143
the class .4 &2, 334
the class &2, 334
theorem, 73
theory, 19
consistent, 26
free from contradiction, 26
inconsistent, 26
TM™, 92, 330, 331
blank symbol of, 331
deterministic, 332
nondeterministic, 332
with a 1-way infinite tape, 342
TM computation, 333
TM tape, 331

www.it-ebooks.info

http://www.it-ebooks.info/

totally defined, 43
transition, 243
transition function, 244, 246
transition relation, 257
transitive closure, 76

of R: Symbol R, 77
trap state, 250, 260, 266
tree height, 317
trees, 312

ordered, 313

parse, 313
trichotomy, 51
truth in arithmetic, 224
Turing machine, 92, 330, 331
TWM

applicable instruction, 331
two sided inverse, 87

unbounded register machine, 92
unbounded search, 102
alternate, 177
(ny), 177

(ny). 102
unconditional jump, 257

undecidable problem, 161
underflow, 333
undirected graph, 348
union, 32
universal FA, 290
universal program, 141
unsolvable problem, 161
urelements, 32
URM, 92
instruction
current, 94
commands, 93
computation, 93
halting, 94
of a function, 94
terminating, 94
computations of, 141
concatenation of, 173
m —~n, 173
instructions, 93
simulating functions, 363

INDEX

string processing, 337
variable, 93

variable

input, 135

output, 135

syntactic, 223

type, 241
variables

of loop programs, 131
variant theorem, 18
verifier, 160
vertices, 348

W;, 159
word, 39

yield
in Turing machines, 332
yield relation, 280
=, 280
yields, 247
Far, 247
yields relation, 281

zero function, 99

www.it-ebooks.info

389

http://www.it-ebooks.info/

	Cover
	Title Page
	Contents
	Preface
	1 Mathematical Foundations
	1.1 Sets and Logic; Naïvely
	1.1.1 A Detour via Logic
	1.1.2 Sets and their Operations
	1.1.3 Alphabets, Strings and Languages

	1.2 Relations and Functions
	1.3 Big and Small Infinite Sets; Diagonalization
	1.4 Induction from a User's Perspective
	1.4.1 Complete, or Course-of-Values, Induction
	1.4.2 Simple Induction
	1.4.3 The Least Principle
	1.4.4 The Equivalence of Induction and the Least Principle

	1.5 Why Induction Ticks
	1.6 Inductively Defined Sets
	1.7 Recursive Definitions of Functions
	1.8 Additional Exercises

	2 Algorithms, Computable Functions and Computations
	2.1 A Theory of Computability
	2.1.1 A Programming Framework for Computable Functions
	2.1.2 Primitive Recursive Functions
	2.1.3 Simultaneous Primitive Recursion
	2.1.4 Pairing Functions
	2.1.5 Iteration

	2.2 A Programming Formalism for the Primitive Recursive Functions
	2.2.1 PR vs. L
	2.2.2 Incompleteness of PR

	2.3 URM Computations and their Arithmetization
	2.4 A Double Recursion that Leads Outside the Primitive Recursive Function Class
	2.4.1 The Ackermann Function
	2.4.2 Properties of the Ackermann Function
	2.4.3 The Ackermann Function Majorizes All the Functions of PR
	2.4.4 The Graph of the Ackermann Function is in PR_*

	2.5 Semi-computable Relations; Unsolvability
	2.6 The Iteration Theorem of Kleene
	2.7 Diagonalization Revisited: Unsolvability via Reductions
	2.7.1 More Diagonalization
	2.7.2 Reducibility via the S-m-n Theorem
	2.7.3 More Dovetailing
	2.7.4 Recursive Enumerations

	2.8 Productive and Creative Sets
	2.9 The Recursion Theorem
	2.9.1 Applications of the Recursion Theorem

	2.10 Completeness
	2.11 Unprovability from Unsolvability
	2.11.1 Supplement: ϕ_x(x)↑ is Expressible in the Language of Arithmetic

	2.12 Additional Exercises

	3 A Subset of the URM Language; FA and NFA
	3.1 Deterministic Finite Automata and their Languages
	3.1.1 The Flow-Diagram Model
	3.1.2 Some Closure Properties
	3.1.3 How to Prove that a Set is Not Acceptable by a FA; Pumping Lemma

	3.2 Nondeterministic Finite Automata
	3.2.1 From FA to NFA and Back

	3.3 Regular Expressions
	3.3.1 From a Regular Expression to NFA and Back

	3.4 Regular Grammars and Languages
	3.4.1 From a Regular Grammar to a NFA and Back
	3.4.2 Epilogue on Regular Languages

	3.5 Additional Exercises

	4 Adding a Stack to a NFA: Pushdown Automata
	4.1 The PDA
	4.2 PDA Computations
	4.2.1 ES vs AS vs ES+AS

	4.3 The PDA-acceptable Languages are the Context Free Languages
	4.4 Non Context Free Languages; Another Pumping Lemma
	4.5 Additional Exercises

	5 Computational Complexity
	5.1 Adding a Second Stack; Turing Machines
	5.1.1 Turing Machines
	5.1.2 NP-Completeness
	5.1.3 Cook's Theorem

	5.2 Axt, Loop Program, and Grzegorczyk hierarchies
	5.3 Additional Exercises

	Bibliography
	Index

