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Preface 

At the intuitive level, any practicing mathematician or computer scientist —indeed 
any student of these two fields of study— will have no difficulty at all to recognize a 
computation or an algorithm, as soon as they see one, the latter defining, in a finite 
manner, computations for any given input. It is also an expectation that students of 
computer science (and, increasingly nowadays, of mathematics) will acquire the skill 
to devise algorithms (normally expressed as computer programs) that solve a variety 
of problems. 

But how does one tackle the questions "is there an algorithm that solves such 
and such a problem for all possible inputs?" —a question with a potentially "no" 
answer— and also "is there an algorithm that solves such and such a problem via 
computations that take no more steps than some (fixed) polynomial function of the 
input length?" —this, too, being a question with a, potentially, "no" answer. 

Typical (and tangible, indeed "interesting" and practically important) examples 
that fit the above questions, respectively, are 

• "is there an algorithm which can determine whether or not a given computer 
program (the latter written in, say, the C-language) is correct!"1 

*A "correct" program produces, for every input, precisely the output that is expected by an a priori 
specification. 

XI 
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Xli PREFACE 

and 

• "is there an algorithm that will determine whether or not any given Boolean 
formula is a tautology, doing so via computations that take no more steps than 
some (fixed) polynomial function of the input length?" 

For the first question we have a definitive "no" answer,2 while for the second one 
we simply do not know, at the present state of knowledge and understanding of what 
"computing" means.3 

But what do we mean when we say that "there is no algorithm that solves a given 
problem" —with or without restrictions on the algorithm's computation lengths? 
This appears to be a much harder statement to validate than "there is an algorithm 
that solves such and such a problem" —for the latter, all we have to do is to produce 
such an algorithm and a proof that it works as claimed. By contrast, the former 
statement implies a, mathematically speaking, provably failed search over the entire 
set of all algorithms, while we were looking for one that solves our problem. 

One evidently needs a precise definition of the concept of algorithm that is neither 
experiential, nor technology-dependent in order to assert that we encountered such a 
failed "search". This directly calls for a mathematical theory whose objects of study 
include algorithms (and, correspondingly, computations) in order to construct such 
sets of (all) algorithms within the theory and be able to reason about the membership 
problem of such sets. This theory we call the theory of computation. It contains tools 
which, in principle, can "search"4 the set of all algorithms to see whether a problem 
is solvable by one; or, more ambitiously, to see if it can be solved by an algorithm 
whose computations are "efficient" —under some suitable definition of efficiency. 

The theory of computation is the metatheory of computing. In the field of comput-
ing one computes: that is, develops programs and large scale software that are well-

2There is some interesting "small print" here! As long as the concept of algorithm is identified with that 
of, say, the Shepherdson-Sturgis "machines" of this volume —or for that matter with Turing machines— 
then the answer is definitely a "no": There is a simple mathematical proof that we will see later on, 
that no Shepherdson-Sturgis machine (nor a Turing machine) exists that solves the problem. Now, such 
an identification has been advocated by Alonzo Church as part of his famous belief known as "Church's 
Thesis". If one accepts this identification, then the result about the non-existence of a Shepherdson-Sturgis 
machine that solves the problem is tantamount to the non-existence of an algorithm that does so. However, 
Church's "thesis" is empirical, rather than provable, and is not without detractors; cf. Kalmar (1957). 
Suffice it to say that this statement is mathematically valid: No program, written in any programming 
language, which is equivalent in expressive power to that of our Shepherdson-Sturgis machines, exists that 
solves the problem. 
3There is substantial evidence that the answer, if discovered, will likely be "no". 
4The quotes are necessary since it is not precisely a search that one performs. For example, the unsolvability 
—by any algorithm— of the program correctness problem is based on a so-called reduction technique that 
we will learn in this volume. A reduction basically establishes that a problem A is solvable by algorithmic 
means if we assume that we have a "black-box" algorithmic solution —that we may "call" just as we 
call a built-in function— of another problem, B. We say that "A is reduced (or reducible) to B". If we 
now know (say via a previous mathematical proof of the fact) that A cannot be algorithmically solved, 
then nor can B! We will, as a starting point, show the unsolvability by algorithmic means, certainly not 
by any Shepherdson-Sturgis machine, of a certain "prototype" problem, known as the halting problem, 
"x G KT. This will be done by a technique akin to Cantor's diagonalization. After this, many reduction 
arguments are effected by showing that K is reducible to a problem A. This renders A unsolvable! 
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PREFACE Xiil 

documented, correct, efficient, reliable and easily maintainable. In the (meta)theory 
of computing one tackles the fundamental questions of the limitations of computing, 
limitations that are intrinsic rather than technology-dependent.5 These limitations 
may rule out outright the existence of algorithmic solutions for some problems, while 
for others they rule out efficient solutions. 

Our approach is anchored on the concrete (and assumed) practical knowledge 
about general computer programming attained by the reader in a first year program-
ming course, as well as the knowledge of discrete mathematics at the same level. The 
next natural step then is to develop the metatheory of general computing, building on 
the computing experience that we have assumed the reader attained. This will be our 
chapter on computability, that is, the most general metatheory of computing. We de-
velop this metatheory via the programming formalism known as Shepherdson-Sturgis 
Unbounded Register Machines (URM) —which is a straightforward abstraction of 
modern high level programming languages. Within that chapter we will also explore a 
restriction of the URM programming language, that of the loop programs of A. Meyer 
and D. Ritchie. We will learn that while these loop programs can only compute a 
very small subset of "all the computable functions", nevertheless are significantly 
more than adequate for programming solutions of any "practical", computationally 
solvable, problem. For example, even restricting the nesting of loop instructions to 
as low as two, we can compute —in principle— enormously large functions, which 
with input x can produce outputs such as 

• , X l l 0 3 5 0 0 0 0 2 ' s 
22 J (1) 

The qualification above, "in principle", stems from the enormity of the output dis-
played in (1) —even for the input x = 0— that renders the above function way 
beyond "practical". 

The chapter —after spending considerable care in developing the technique of re-
ductions— concludes by demonstrating the intimate connection between the unsolv-
ability phenomenon of computing on one hand, and the unprovability phenomenon 
of proving within first-order logic (cf. Godel (1931)) on the other, when the latter 
is called upon to reason about "rich" theories such as (Peano's) arithmetic —that is, 
the theory of natural numbers, equipped with: the standard operations (plus, times); 
relations (less than); as well as with the principle of mathematical induction. 

What to include and what not to include in an introductory book on the theory of 
computation is a challenge that, to some extend, is resolved by the preferences of the 
author. But I should like to think that the choices of topics made in this volume are 
more rational than simply being manifestations of "preference". 

The overarching goal is to develop for the reader a "first-order" grounding in the 
fundamentals, that is, the theoretical limitations of computing in its various models 
of computation, from the most general model —the URM— down to the finite 
automaton. 

5However this metatheory is called by most people "theory". Hence the title of this volume. 
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We view the technique of reductions as fundamental in the analysis of limita-
tions of computing, and we spend a good deal of space on this topic, a variant of 
which (polynomial-time reductions) the student of computer science will encounter 
in Subsection 5.1.2 and will re-encounter in later studies as well, for example, in a 
course on algorithms and complexity. On the other hand, we do not hesitate to omit 
combinatorial topics such as "Post's correspondence problem", which only leads 
to specialized results (e.g., the algorithmic unsolvability of detecting ambiguity in 
context free languages) that we feel embody a less fundamental technical interest. 
Our emphasis is on laying the foundational tools and concepts that allow us to carry 
out a mathematical analysis of, and acquire a thorough understanding of, theoretical 
limitations of computing in both their absolute manifestation (uncomputability) and 
also in their relative manifestation (complexity and "intractability"). 

Consistent with our stated goal and emphasis, we purposely give short shrift to 
the area of so-called "positive" results, apart from a few familiarization examples 
of "programming" with URMs, loop programs, FA, NFA, and PDA. This is not a 
course about writing algorithms, but mostly about what algorithms cannot do at all 
and about what they have a lot of trouble doing. For example, results of Chapter 5 
immediately imply that, in general, FORTRAN-like programs that allow nesting of 
the loop instruction equal to just three have highly impractical run times; certainly 
as high as6 

Thus, we leave out "applications" such as lexical scanners via finite automata; 
automata-minimization; parsing of context free languages using LL, LR, recursive-
descend, and other parsers; and defer them to a later course on compiler writing 
tools —these topics do not belong here. We would rather concentrate on what is 
foundationally important and omit what is not. 

Another challenge is where to start building this metatheory. What should be our 
abstraction of a computer program? It should be a straightforward observation that 
since this metatheory, or "theory" as we nickname it, abstracts computing practices 
—in order to analyze and study said abstractions mathematically— the student must 
have encountered in the first instance the concrete counterparts of these abstractions 
for the latter to make any sense. 

It is hardly the case that, prior to the second year of study, students have "pro-
grammed" scanners or parsers. Rather, students have programmed solutions for less 
specialized problems, using a high level general purpose language such as C/C++, 
Java, possibly Pascal, etc. They never programmed an automaton, a push-down 
automaton, or anything like a Turing machine (unless they have taken up machine 
language in the first year). 

Yet the overwhelming majority of the literature develops the "theory of compu-
tation", in a manner of speaking, backwards —invariably starting with the theory of 

6See 5.2.0.47 and 5.2.0.49. L3 programs have run times bounded by Ackermann's A%(x), for some 
k > 0. 
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finite automata, as if automata is precisely what the reader was programming in his7 

first university course on programming. We apply this principle: Before the student 
studies the (meta)theory, he must have attained a good grasp of the practice that this 
theory attempts to dissect and discuss. Thus, it is natural to start our story with the 
(meta)theory of general purpose computer programs. 

Because of these considerations, our first chapter is on URMs and computability. 
The choice of URMs as an abstraction of general-purpose computing —a relative 
latecomer (cf. Shepherdson and Sturgis (1963)) in the search for a good answer 
to "what would be a good technology-independent model of computation?"— also 
connects well with the experience of the student who will come to this course to learn 
what makes things tick in programming, and why some things do not tick at all. He 
most likely learned his programming via a high level language like C or Java rather 
than through machine language. The ubiquitous Turing machine (Turing (1936, 
1937)) is more like machine language, indeed, is rather even less user-friendly.8 It 
offers no advantage at this level of exposition, and rather presents an obscure and 
hard-to-use (and hard to "arithmetize"9) model of computation that one need not use 
as the basis of computability. On the other hand it lends itself well to certain studies 
in complexity theory and is an eminently usable tool in the proof of Cook's theorem 
(cf. Subsection 5.1.3). So we will not totally avoid the Turing machine! 

We turn to the formulaic topics of a book on Automata and Languages — 
Chapter 3— only after we become familiar, to some extent, with the (general) 
computability theory, including the special computability theory of more "practi-
cal" functions, the primitive recursive functions. Automata are introduced as a very 
restricted programming formalism, and their limitations (in expressivity) and their 
associated languages are studied. 

It is often said, with justification, that a course in theory of computation has as side-
effect the firming up of the student's grasp of (discrete) mathematical techniques and 
mathematical reasoning, as well as the ability to apply such techniques in computer 
science and beyond. Of course, it cannot be emphasized enough that the student of a 
theory of computation course must be equipped already with the knowledge expected 
to be acquired by the successful completion of a one-semester course on discrete 
mathematics. This required background knowledge is often encapsulated, retold, 
and aspects of it are emphasized, in the space of a few pages at the front-end of a 
book like this. This is the ubiquitous "Chapter 0" of many books on the subject. In 
the case of the present book I would like, most of all, to retell two stories, logic and 
induction, that I often found being insufficiently developed in the student's "toolbox", 
notwithstanding earlier courses he may have taken. Thus, in Subsection 1.1.1 we 
develop the notational and how-to parts of elementary predicate logic in the space 
of some 20 pages, paying special attention to correctness of exposition. Section 1.4 
presents the induction principle on the natural numbers in two steps: One, how 

7Pronouns such as "he", "his", "him" are, by definition, gender-neutral in this volume and are used solely 
for textual convenience. 
8Machine language can manipulate numbers, whereas a Turing machine can only manipulate digitsl 
9This verb will make sense later. 
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to use its various forms, and a proof of their equivalence to the least (positive) 
integer principle. Two, we argue, at the intuitive level, why induction must be a valid 
principle after all!10 We also go over concepts about sets and related notation, as well 
as relations and functions, very quickly since they do not need much retelling. We will 
also introduce quickly and in an elementary fashion a topic likely not encountered by 
the reader in the typical "discrete math" course: the distinction between two infinities 
—countable and uncountable— so that we can have an excuse to introduce the reader 
to Cantor's ingenious (and simple) diagonalization argument, that recurs in one or 
another shape and form, over and over, in the computabiHty and complexity part of 
the theory of computation. 

On intuitive arguments; i(formalization,y and why a course in theory cannot 
be taught exclusively by hand-waving: The main reason that compels us to teach 
(meta)theory in a computer science curriculum is not so much to prevent the innocent 
from trying to program a solution for the halting problem (cf. 2.5.0.16), just as we 
do not teach courses in geometry just to prevent circle-squaring "research". Rather, 
formal mathematical methods used in a course in the theory of computation, more so 
than the results themselves, are transferable skills that the student becomes endowed 
with, which equip him to model and mathematically analyze concrete phenomena 
that occur in computation, and through a mathematical process of reasoning to be 
able to recognize, understand, and correlate such phenomena. These formal methods, 
skills and results, put the "science" keyword into computer science. 

Intuition, obtained through experience, is invaluable, of course, and we often 
argue intuitively before we offer a proof of a fact. But: one cannot have "proof-by-
intuition". 

We have included in this volume a good amount of complexity theory that will 
likely be mostly skipped whenever the book is called upon to serve a second year 
course on the theory of computation. There are a few "high level complexity" results 
already in Section 2.7 using diagonalization (cf. 2.7.1.9 and 2.7.1.11). Later, quite 
a bit is developed in Chapter 5, including the concept of JY^-completeness and 
Cook's theorem; an account of Cobham's class of feasibly computable functions 
(mostly delegated to the Exercises section, 5.3); and some elements of the hierarchy 
theory of the primitive recursive functions culminating in the rather startling fact that 
we cannot algorithmically solve the correctness problem of FORTRAN-like programs 
even if we restrict the nesting of loops to just two levels. FORTRAN-like languages 
have as abstract counterpart the loop programs of Meyer and Ritchie (1967) that we 
study in the chapters on computabiHty (2nd) and complexity (5th). 

Were I to use this book in a second year course in the theory of computation I 
would skim quickly over the mathematical "prerequisites" chapter, and then cover 
2.1-2.7, parts of 2.10, certainly Godel's incompleteness theorem and its relation to 
uncomputability: 2.11 —but not 2.11.1. I would then cover only as much as time 
permits from Chapter 3 on finite automata; certainly the pumping lemma, consistent 

10In so doing I will be sure to let the student know that I am not squaring the circle: Induction is not a 
provable principle of the arithmetic of Peano, it is an axiom. However, this will not stop us from arguing 
its plausibility, i.e., why it is a reasonable, "natural" axiom. 
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with my view that this is a "course" about what cannot be done, or cannot be done 
"easily", rather than a toolbox for how to do things. The latter is deferred to a course 
and book on algorithms. 

In a more advanced course where one can proceed faster, I would want also to 
cover the sections on creative sets and the recursion theorem, and also as much 
complexity theory as possible from Chapter 5, starting with the material leading to 
Cook's theorem. 

The reader will forgive the many footnotes, which some will assess as bad style! 
There is always a story within a story, the " . . . and another thing . . . ", that is best 
delegated to footnotes. 

The style of exposition that I prefer is informal and conversational and is expected 
to serve well not only the readers who who have the guidance of an instructor, but 
also those readers who wish to learn the elements of the theory of computation on 
their own. I use several devices to promote understanding, such as frequent "pauses" 
that anticipate questions and encourage the reader to rethink an issue that might 
be misunderstood if read but not studied and reflected upon. Additionally, I have 
included numerous remarks, examples and embedded exercises (the latter in addition 
to the end-of-chapter exercises) that reflect on a preceding definition or theorem. All 
pauses are delimited by "Pause." and A ^^ 

The stylized "winding road ahead" warning, JL , that I first saw in Bourbaki's 
books (Bourbaki (1966)) and have used in my other books, delimits a passage that is 
too important to skim over. <£><£> 

On the other hand, I am using JL JL to delimit passages that I could not resist 
including, but, frankly, can be skipped (unless you are curious). 

There are over 200 end-of-chapter exercises and 41 embedded ones. Many have 
hints and thus I refrained from (subjectively) flagging them for level of difficulty. 
After all, as one of my mentors, Alan Borodin, used to say to us (when I was a 
graduate student at the University of Toronto), "attempt all exercises; but definitely 
do the ones you cannot do". 

GEORGE TOURLAKIS 

Toronto 
November 2011 
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CHAPTER 1 

MATHEMATICAL FOUNDATIONS 

In this chapter we will briefly review tools, methods and notation from mathematics 
and logic, which we will directly apply throughout the remaining of this volume. 

1.1 SETS AND LOGIC; NAIVELY 

The most elementary elements from "set theory" and logic are a good starting point 
for our review. The quotes are necessary since the term set theory as it is understood 
today applies to the axiomatic version, which is a vast field of knowledge, methods, 
tools and research [cf. Shoenfield (1967); Tourlakis (2003b)]—and this is not what we 
outline here. Rather, we present the standard notation and the elementary operations 
on sets, on one hand, and take a brief look at infinity and the diagonal method 
of Cantor's, on the other. Diagonalization is a tool of significant importance in 
computability. The tiny fragment of concepts from set theory that you will find in 
this section (and then see them applied throughout this volume) are framed within 
Cantor's original "naive set theory", good expositions of which (but far exceeding 
our needs) can be found in Halmos (1960) and Kamke (1950). 

We will be forced to interweave our exposition of concepts from set theory with 
concepts—and notation—from elementary logic, since all mathematics is based on 

Theory of Computation. By George Tourlakis 
Copyright © 2012 John Wiley & Sons, Inc. 
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2 MATHEMATICAL FOUNDATIONS 

logical deductions, and the vast majority of the literature, from the most elementary 
to the most advanced, employs logical notation; e.g., symbols such as "V" and "3" . 

The term "set" is not defined,11 in either the modern or in the naive Cantorian 
version of the theory. Expositions of the latter, however, often ask the reader to 
think of a set as just a synonym for the words "class",12 "collection", or "aggregate". 
Intuitively, a set is a "container" along with its contents—its elements or members. 
Taken together, contents and container, are viewed as a single mathematical object. 
In mathematics one deals only with sets that contain mathematical objects (so we are 
not interested in sets of mice or fish). 

Since a set is itself an object, a set may contain sets as elements. 

All the reasoning that one does in order to develop set theory—even that of 
the naive variety—or any part of mathematics, including all our reasoning in this 
book, utilizes mathematical logic. Logic is the mathematics of reasoning and its 
"objects" of study are predominantly mathematical "statements" or "assertions"— 
technically known as formulae13—and mathematical proofs. Logic can be applied to 
mathematics either experientially and informally—learned via practice as it were— 
or formally. The predominance of mathematical writings apply logic informally as 
a vehicle toward reaching their objectives.14 Examples of writings where logic is 
formally applied to mathematics are the volumes that Bourbaki wrote, starting here 
[Bourbaki (1966)]. More recent examples at the undergraduate and graduate levels 
are Gries and Schneider (1994) and Tourlakis (2003b) respectively. 

In this volume we apply logic informally. An overview is provided in the next 
subsection. 

1.1.1 A Detour via Logic 

As is customary in mathematics, we utilize letters, upper or lower case, usually 
from near the end of the alphabet (u, v, y, x, z, S, T, V) to denote, that is, to name 
mathematical objects—in particular, sets. 

By abuse of language we say that u,v,y,x,z,S,T,V are (rather than denote or 
name) objects. These letters function just like the variables in algebra do; they are 
object-variables. 

11 The reader who has taken Euclidean geometry in high school will be familiar with this parallel: The 
terms "point", "line", and "plane" are not defined either, but we get to know them intimately through their 
properties that we develop through mathematical proofs, starting from Euclid's axioms. 
12In axiomatic set theory a "class" is a kind of collection that may be so "large" that it technically fails to 
be a set. The axioms force sets to be "small" classes. 
13More accurately, a "statement" and a formula are two different things. However, the latter mathematically 
"encodes" the former. 
14Despite the dangers this entails, as Godel's incompleteness theorems exposed [Godel (1931)], modern 
mathematicians are confident that their subject and tools have matured enough, to the point that one 
can safely apply logic, once again, post-Godel, informally. For example, Kunen states in his article on 
set-theoretic combinatorics, Kunen (1978), "A knowledge of [formal] logic is neither necessary, nor even 
desirable". 
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As is the case in algebra, the variables x, y1 z are not the only objects set theory 
studies. It also studies numbers such as 0,1, —7 and 7r, matrices such as (° *) and 
objects that are the results of function applications such as 723000, xyZ and 2X. 

Unlike axiomatic set theory, which introduces its objects via formal constructions, 
naive set theory allows us to use, "off the shelf", all the mathematical objects such as 
the above, as well as, of course, objects that are sets such as {2,3, {1}} and A U B.15 

Logicians like to call mathematical objects terms. We utilize in this book the generic 
names t and s (with primes or subscripts, whenever we need more than two such 
names) to refer to arbitrary terms that we do not want to be specific about. 

1.1.1.1 Definition. The simplest possible relations of set theory are of just two forms: 
t e s—read "t is a member of s" or "£ belongs to s"—and t — s, read "t is equal to 
s", where, as we indicated above, t and s are any terms whatsoever. 

These relations are the atomic formulae (of set theory). The qualifier "atomic" 
refers to two facts: 

• These two types cannot be expressed (simulated) in terms of simpler relations 
by using the notation and tools of logic. 

• Using these two relations as building blocks we can construct every possible 
formula of set theory as we will explain shortly. □ 

1.1.1.2 Example, x £ y,u = v, z e S and 3 e z and 2Z = y3 are atomic formulae. 
N, the set of all natural numbers (i.e., all the numbers that we obtain by starting 

at 0 and repeatedly adding 1: 0, 1, 2, 3, 4 , . . . ) , is an important constant in naive set 
theory. 

By "N . . . is an important constant" we mean, of course, via the habitual abuse of 
language exercised by mathematicians, the accurate "N . . . denotes (or names) an 
important constant". 

Here is an example that uses N in an atomic formula: — 7 G N. Incidentally, this 
formula makes (i.e., encodes) a false statement; we say the formula is false. 

One may form this basic formula as well, N = \J^0{i}, where the meaning of 
the symbols " { . . . } " and " U ^ o " w ^ ^e introduced later in this section. 

Yet another example is {1} £ {2,1}—a false statement (formula) as we will be 
able to determine soon. □ 

Logic (and mathematics) contain much more complex formulae than those of the 
atomic variety. The added complexity is achieved by repeatedly "gluing" atomic 
formulae together employing as glue the logical, or Boolean, connectives 

- i , A , V , - > , = 

15 Notation for objects such as {...} and xUy will be reviewed shortly. 
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and the quantifiers 
V,3 

As we have noted already, unlike the case of naive set theory—where we take for 
granted the a priori presence of all objects of mathematics, such as 3, — 7, N and 
xy — axiomatic set theory needs no a priori existence of any objects. Starting just 
with the relations x € y and x = y it uses powerful rules, which can be used to build 
not only all formulae of set theory, but also all the objects of mathematics that we are 
familiar with, such as the above-mentioned and many others. 

What about arithmetic? The arithmetical objects of "pure" (Peano) arithmetic are 
the variables, constants, and outputs of functions applied on objects that we have 
already built. What are its formulae? If we are thinking of pure arithmetic, which 
is studied outside set theory, then we may choose as atomic formulae all those that 
can be built from the three start-up relations z = x + y, z = x x y and z = xy: new 
atomic formulae result by substituting arbitrary (arithmetical) objects for variables. 
Note that the equality relation is obtained from z = x + y by substituting 0 for y. 

All formulae of arithmetic can be built, starting from the atomic ones, as ex-
plained in the general Definition 1.1.1.3 below. This assertion is revisited in Subsec-
tion 2.11.1. 

Godel showed in Godel (1931) that the atomic formula z = xy is, well, not atomic: 
It can be simulated (built) within pure arithmetic starting just with z — x + y and 
z — x x y. 

The "practicing mathematician" prefers to work within an "impure" arithmetic, where 
he has access to sets and their notations, operations, and properties. In particular, this 
impure arithmetic employs set variables and, more generally, set objects in addition 
to number variables and number objects. 

Throughout this volume a formula (whether specific to set theory or to any other 
area in mathematics, such as arithmetic—pure or impure) will be denoted by an upper 
case calligraphic letter, such as si, 33, &, <S. 

We now indicate how formulae are put together using brackets, connectives, and 
quantifiers, employing atomic formulae as basic building blocks. The definition be-
low is generic, thus unified: it applies to the structure of all formulae of mathematics. 
The choice of atomic formulae (which presupposes an a priori choice of mathemat-
ical symbols, such as 0, -f, G) and of types of variables is what determines whether 
we build set theory formulae, pure or impure arithmetic formulae, or "other". 

1.1.1.3 Definition. A set theory formula is one of: 

(1) An atomic formula (1.1.1.1). 

(2) (-i&i), where si is known to be16 a formula. 

16I.e., to stand for one. Thus, the expression " ( -u^)" is constructed by writing "(", followed by writing 
"-■", followed by writing in full whatever srf names, and finally writing ")". 
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(3) {si A SS), where si and SS are known to be formulae. 

(4) {si V SS), where si and SS are known to be formulae. 

(5) {si —> SS), where si and SS are known to be formulae. 

(6) {si = SS), where si and SS are known to be formulae. 

(7) {(\fx)si), where si is known to be a formula and x is any variable. 

(8) {{3x)si), where si is known to be a formula and x is any variable. We say in 
the last two cases that "si is the scope of Qx, where Q is V or 3". 

We call V the universal and 3 the existential quantifiers. We will extend the termi-
nology "quantifier" to apply to the compound symbols (Var) or (3). □ 

1.1.1.4 Definition. (Immediate Predecessors) Let & be a formula. By 1.1.1.3 it has 
one of the forms (l)-(8). If it is of type (1), then it has no immediate predecessors— 
i.e., it was not built using connectives or quantifiers from simper formulae. If it has 
the forms (2)-(8), then in each case its immediate predecessors are the formulae si 
and SS [the latter enters in cases (3)-(6)] that were used to build it. We use the 
acronym ip for immediate predecessors. □ 

The presence of brackets guarantees that the decomposition or deconstruction of a 
formula into its immediate predecessors is unique. This fact can be proved, but it is 
beyond our aims so we will not do so here [see Bourbaki (1966); Enderton (1972); 
Tourlakis (2008, 2003a)]. Logicians refer to it as the unique readability of a formula. 

1.1.1.5 Example. Here are some formulae: 
x e y, 3 = z, z = xw—by (1), 
(-*x = y)—by (1), followed by an application of (2); we usually write this more 

simply as "x ^ y", 
(x G yV z = xw)—by (1), followed by an application of (4), 
{{Vx)z = xw)—by (1), followed by an application of (7), 
(x — 0 -» x = 0)—by (1), followed by an application of (5), and 
{x = 0 —>• ((\/x)x = 0))—by (1), followed by an application of (7) to obtain 

((Vx)x = 0), and then by an application of (5). 
The reader should check that we inserted brackets precisely as prescribed by 

Definition 1.1.1.3. □ 

1.1.1.6 Remark. (Building a formula) If & is (stands for, that is) a formula we can 
deconstruct it according to Definition 1.1.1.3 using a natural process. 

Initialize'. Write down &. Flag it pending. 
Repeat this process until it cannot be carried further: 

{ 
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Write down, above whatever you have written so far, the ip of all pending formulae 
(if they have ip); and remove the flag "pending" from the latter. Add the flag to the 
ones you have just written. 

} 
The process is terminating since we write shorter and shorter formulae at every 

step {and remove the flags); we cannot do this forever! 
Clearly, if we now review from top to bottom the sequence that we wrote, we 

realize that it traces forward the process of constructing & by repeated application 
of Definition 1.1.1.3. This top-down view of our "deconstruction" is a formula-
construction sequence for &. 

For example, applying the process to the last formula of the preceding example 
we get: 

x = 0 
x = 0 
((Va?)x = 0) 
(x = 0 -> ((Vx)x - 0)) 

where one copy of x = 0 was contributed by the bottom formula and the other (at 
the top) by ((\/x)x = 0). 

Going forward we can discard copies that we do not need. Thus a valid formula 
construction is also this one: 

x = 0 
((Vx)x = 0) 
[x = 0 -> ((\fx)x = 0)) 
Indeed, we validate the first formula in the sequence via (1) of 1.1.1.3; the second 

using the first and (7); and the last one using the first two and (5). □ 

A term such as x2 has x as its only input variable. An atomic formula such a s z G N 
has z as its only input variable, while the (atomic) formula x + y = yw has x, y and w 
as input variables. Whenever we want to draw attention to the input variables—say, 
x, u, S and z—of a term t or a formula srf we will write t(x, u, S, z) ovsrf{x, -u, S, z), 
respectively. This is entirely analogous to writing " / (# , z) = x2 + sin z" in order to 
name the expression (term) x2 +sin z as a function f{x,z) of the two listed variables. 

1.1.1.7 Definition. (Input Variables—in Terms) All the variables that occur in a 
term—other than an x that occurs in a term of the form {x : . . .} (which is a set 
object that will be introduced shortly)—are input variables. □ 

1.1.1.8 Example. Thus, the term x has x as its only input variable; while the term 3 
has no input variables. xz has x, z, y as its input variables. We will soon introduce 
terms (set objects) such as {x : x = 0}. This object, which the reader may recognize 
as a fancy way to simply write {0}, has no input variables. □ 
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1.1.1.9 Definition. (Input Variables—in Formulae) A variable occurrence17 in an 
atomic formula t e s or t — s is an input occurrence precisely if it is an input 
occurrence in one of the terms t and s. Thus, "0 e {x : x = 0}" has no input 
variables while "x — 0" has one. 

Formation rules (2)-(6) in Definition 1.1.1.3 "preserve" the input occurrences of 
variables in the constituent formulae si and SS that we join together using one of 
-i, A, V, —>►, = as glue. On the other hand, each quantifier (\/z) or (3z) forces each 
occurrence of a variable as described below to become non-input: 

• The occurrence z in the quantifier 

• Any occurrence of z in the scope of said (Vz) or (3z) 

Thus, if we start with s/(x, y, z), of inputs x, y, z, the new formula {(Qy)st{x, y, z)), 
where Q stands here for one of V, 3, has only x and z as input variables. □ 

We have carefully referred to occurrences, rather than variables, in the above defi-
nition. A variable can be both input and non-input. An occurrence cannot be both. 
For example, in (x = 0 —> (\/x)x = 0) the first x-occurrence is input; the last two 
are non-input. The variable x is both. 

Thus "x is an input/non-input variable" (of a formula) means that there are 
occurrences ofx that are input/non-input. 

The standard name utilized in the literature for input variables is free variables. 
Non-input variable occurrences are technically called bound occurrences, but are 
also called apparent occurrences, since even though they are visible, they are not 
allowed—indeed it makes no sense—to receive arguments (input). This is analogous 
to the "S-notation" for sums: J2i=i i means 1 + 2 + 3. While we can "see" the 
variable i, it is not really there!18 It cannot accept inputs. For example, "^2=1 ̂ " *s 

total nonsense. 
The jargon input/non-input is deliberately chosen: We may substitute terms only 

in those variable occurrences that are free (input). 

If & is some formula and x, y, z,... is the complete list of variables that occur 
in it, we can draw attention to this fact by writing &(x, y,z,...). If x, y, z,... is a 
list of variables such that some19 among them occur in &, then we indicate this by 
&[x,y,z,...]. 

In the context of ^ [ x , y, z,...] [or<^(x,y, z,...)], ^"[ t i , t 2 , t 3 , . . . ] [correspond-
ingly &(ti, £2, 3̂> • • •)] stands for the formula obtained from & by replacing each 
original occurrence of x, y, z , . . . in & by the terms £1, £2, £3, . . . respectively. 

Some people call this operation simultaneous or parallel substitution. Thus, if 
J^*[x, y] names "x = y", whereas t\ is y +1, and £2 is 5, then J^"[£i, £2] is "2/ + 1 — 5" 
and not "5 + 1 = 5". The latter result would have been obtained if we first substituted 

17For example, in x = x the variable x has two occurrences. 
18 A fact demonstrated strongly by the explicit form of the sum, 1 + 2 + 3. 
19"Some" includes "none" and "all" as special cases. 
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t\ in x to obtain y + 1 = y, and then substituted £2 in y to obtain 5 + 1 = 5. If we 
are to do this "simultaneous substitution" right, then we must not substitute t<i into 
the y to the left of "="; this y is not "original". 

Observe also that if x does not occur in ^[x]9 then &\b] is just the original &'. 

Before we turn to the meaning (and naming) of the connectives and quantifiers, 
let us agree that we can get away with much fewer brackets than Definition 1.1.1.3 
prescribes. The procedure to do so is to agree on connective and quantifier "priorities" 
so that we know, in the absence of brackets, which of the two connectives/quantifiers 
is supposed to "win" if they both compete to apply on the same part in a formula. 

By analogy, a high school student learns the convention that "x has a higher 
priority than +", thus 2 + 3 x 4 means 2 + (3 x 4)—that is, x rather than + claims 
the part "3". 

Our convention is this: The connective -■ as well as the quantifiers V and 3 have the 
highest priority, equal among the three. In order of decreasing priority, the remaining 
binary connectives20 are listed as A, V, —>, =. If two binary connectives compete to 
glue with a subformula, then the higher-priority one wins. For example, assuming that 
si has already in place all the brackets that are prescribed by Definition 1.1.1.3, then 
. . . —> si V • • • means . . . —> (si V • • •, while . . . ^si A • • • means . . . (^si J A • • •. 

If two instances of the same binary connective compete to glue with a subformula, 
then the one to the right wins. For example, assuming that si has all the brackets 
prescribed by Definition 1.1.1.3 in place, then . . . —>- si —> • • • means ...—>■ (s/-± 

Similarly, if any of ->, V, 3 compete for a part of a formula, again the one to the 

right wins. E.g., . . . ->(yx)(3y)si - • • means . . . I -if (\/x)((3y)si) ) ) • • •> where 

once again we assumed that si has all the brackets prescribed by Definition 1.1.1.3 
already in place. 

How do we "compute" the truth or falsehood of a formula? To begin with, to 
succeed in this we must realize that just as a function gives, in general, different 
outputs for different inputs, in the same way the "output" of a formula, its truth-
value, can only be computed, in general, if we "freeze" the input variables. For each 
such frozen instance of the input side, we can compute the output side: true or false. 

But where do the inputs come from? For areas of study like calculus or arithmetic 
the answers are easy: From the set of real numbers—denoted by R—and the set of 
natural numbers respectively. 

For set theory it sounds easy too: From the set of all sets! 

If it were not for the unfortunate fact that "the set of all sets" does not exist, or, 
to put it differently, it is a non-set class due to its enormity, we could have left it 

'"Binary" since they each glue two subformulae. 
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at that. To avoid paradoxes such as "a set that is not a set"—cf. Section 1.3 on 
diagonalization for an insight into why some collections cannot be sets—we will 
want to take our inputs from a (comfortably large) set in any given set-theoretic 
discussion: the so-called reference set or domain. 

1.1.1.10 Remark. The mathematician's intuitive understanding of the statement "^* 
is true (resp. false)" is that " ^ is true (resp. false) for all the possible values of the 
free (input) variables of &". 

Thus, if we are working in arithmetic, "2n + 1 is odd" means the same thing as 
"it is true that, for all n £ N, 2n 4-1 is odd". "2n > n" again omits an implied prefix 
"it is true that, for all n e N". An example of a false statement with input variables 
is "2n is odd". □ 

1.1.1.11 Definition. An instance of a formula ^ \ in symbols &\ is a formula 
obtained from & by replacing each of its variables by some value from the relevant 
reference set. 

Clearly, &' is variable-free—a so-called closed formula or sentence—and there-
fore it has a well-defined truth-value: exactly one of true or false. 

Sometimes we use more explicit notation: An instance of Sf (x, y,z,...) or of 
Sf [x, y,z,...] is Sf (i, j , fc, . . .) or W[i, j , &,...], respectively, where i, j , k,... are 
objects (constants) from the reference set. 

&' and S?' are consistent or common instances of & and ^ if every free variable 
that appears in both of the latter receives the same value in both instances. □ 

1.1.1.12 Example. Let srf stand for "x(x + 1) is even", 38 stand for "2x + 1 is even" 
and ^ stand for "x is even", where x is a variable over N. Then, 

£? is true, 
^ is false, and 
^ is neither true, nor false. 

The lesson from this is that if the truth-value of a formula depends on variables, then 
not true is not necessarily the same as false. D 

We will not be concerned with how the truth-value of atomic formulae is "com-
puted"; one can think of them as entities analogous to "built-in functions" of computer 
programming: Somehow, the way to compute their true/false output is a matter that 
a hidden procedure (alternatively, our math knowledge and sophistication) can do 
for us. 

Our purpose here rather is to describe how the connectives and quantifiers behave 
toward determining the truth-value of a complex formula. 

In view of Remark 1.1.1.10, the road toward the semantics of srf V 38, ((\/x)^/)9 
etc., passes through the semantics of arbitrary instances of these; namely, we need to 
only define the meaning of srf' V 38', ((Vx)^/)', etc., respectively. 

www.it-ebooks.info

http://www.it-ebooks.info/


10 MATHEMATICAL FOUNDATIONS 

1.1.1.13 Definition. (Computing with Connectives and Quantifiers) Let si and 38 
be any formulae, and si' and 38' be arbitrary common instances (1.1.1.11). 

(1) -^si'—pronounced "not si'"—is true iff21 si' is false. 

(2) si' V ^'—pronounced W or 3%'"—is true iff either si' is true or 38' is true, 
or both (so-called inclusive or). 

(3) si' A ^'—pronounced W and 38'"—is true iff .etf7 is true arcd ^ ' is true. 

(4) si' -> ^'—pronounced "if j * 7 , then ^ '"—is true iff either si' is false or 3$' is 
true, or both?1 

(5) ^ = ^'—pronounced ' V iff <^'"—is true just in case23 si' and 38' are both 
true or both false. 

(6) The instance (\/x)s/(ii,..., im , x, j \ , . . . , jn)—which is pronounced "for all x, 
si(ii,..., im , x, j i , . . . , jn) (holds)"24— is true iff, for all possible values k of 
x from the domain, si{i\,..., i m , k, j \ , . . . , jn) is true. 

(7) The instance (3x)s/(ii,..., im, x, j i , . . . , j n ) —which is pronounced "for some 
x, si(i\,..., im, #, i i , • • •, jn) (holds)"—is true iff, for some value k of x from 
the domain, si(i\,..., im , /c, j i , . . . , jn) is true. D 

1.1.1.14 Remark. (Truth Tables) The content of the preceding definition—cases 
(l)-(5)—is normally captured more visually in table form (we have removed the 
primes for readability): 

si 3$ 
f f 
f t 
t f 
t t 

1 -i si 
t 
t 
f 
f 

s/V 38 
f 
t 
t 
t 

si r\S8 
f 
f 
f 
t 

si"-> & 
t 
t 
f 
t 

si = si 
t 
f 
f 
t 

We read the table as follows: First, the symbols t and f stand for the values "true" 
and "false" respectively. Second, the two columns to the left of the vertical line || give 
all possible pairs of values (outputs) of si and 38. Third, below -^si, si M 38, etc., 
we list the computed truth-values (of the formulae of the first row) that correspond 
to the assumed si and 38 values. 

The odd alignment under —*si is consistent with all the others: It emphasizes the 
placement of the "result" under the "operator"—here -i —that causes it. □ 

21 ifand only if 
22Other approaches to "implication" are possible. For example, the Intuitionists have a different under-
standing for —> than that of the majority of mathematicians, who adopt the classical definition above. 
23 A synonym of "iff". 
24The verb "holds" means "is true". 
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1.1.1.15 Remark. According to Remark 1.1.1.10, 

(Vx)<0%i,..., ym, x, zi,..., zn) is true (f) 

means precisely this: 

For every choice of the i\ and j r from the reference set, 
(Vx)^ ( i i , . . . , i m , x , j i , . . . Jn) is true (*) 

By 6 of Definition 1.1.1.13, (*) means 

For every choice of the i\ and j r from the reference set, 
and 
for all possible values k of x from the domain, 

£/(ii,... ,zm, fc, j f i , . . . , jn) is true 

The above, and hence also (f), translate via Remark 1.1.1.10 as 

J 3 % i , . . . , ym, x, 2 i , . . . , zn) is true (J) 

Iterating this observation yields that (J) is an equivalent statement to the one we 
obtain by quantifying universally any—in particular, all—of the variables y\,..., ym, 
x, z\,..., zn of srf. That is, 

Adding or removing a "(Vx)" at the leftmost end of the formula makes 
no difference to the latter's meaning. 

Hm. This begs the question: Then what do we need the universal quantifier for? □ 

1.1.1.16 Example. We note easily that, say, with R (the reals) as our domain, x = 
0 —>- x = 0 is true (cf. 4 in 1.1.1.13). However, x = 0 -> (Vx)x = 0 is not, since 
its instance 0 = 0—)- (\/x)x = 0 is false: to the left of —> we have true, while to the 
right we have false. 

Thus, adding or removing a "(Vx)" to parts of a formula can make a difference in 
meaning! The universal quantifier is useful after all. □ 

Carrying around the predicate "is true" all the time is annoying. We will adopt im-
mediately the mathematician's jargon: Simply stating li£/(x, y,...)" is synonymous 
to W ( x , y,...) is true" or " J / ( X , 2/,...) holds". 

1.1.1.17 Example. Let N be our domain. Then, 

(3x)y < x (1) 

is true. It says that "for every y, an x exists25 such that y < x". According to 1.1.1.15 
there is an implied (\/y) at the beginning of the formula. 

25That is, "for every value of y, a value of x exists". The mathematician is used to the sloppy language 
that omits "value of". It is clear that he does not refer to the variables themselves, but rather refers to their 
values. 
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Note that there is no single value of x that makes (1) true (because N has no upper 
bound). For each value n of y, n + 1 is an appropriate value of x (so are n -f 2, 
2n + 1, etc.) 

How can we write down the (false) statement that one value of x works for all yl 

(3x)(\/y)y < x 

A final remark: How do we write that "there exists a unique x such that si is true" 
(where si is any formula)? 

(3x)(s/[x] A -,(3z)(s/[z] Ax^z)) 

Fortunately, there is a short form for the above (3! reads "for some unique") 

(3\x)si □ 

1.1.1.18 Example. The reader probably already knows that there is redundancy in 
the chosen set of connectives, that is, some of them can be simulated by the others. 

For example, it is immediate by comparing (4), (1), and (2) in 1.1.1.13, that 
si -» 38 is the same as (has the same meaning as) -^si V 38. Similarly, si = 38 is 
the same as (si -» 38) A {38 -> si). 

Even si l\38 can be expressed via -i and V as -*(-isi V 38). This is easiest to see, 
perhaps, via a truth-table: 

a? m 
f f 
f t 
t f 
t t 

1 -. ( -. #/ v si\ 
(4)f (l)t (3)t (2)t 
(4)f (l)t (3)t (2)f 
(4)f (l)f (3)t (2)t 
(4)t (l)f (3)f (2)f 

srf N8S 

f 
f 
f 
t 

The numbers such as "(l)t" in the first row indicate order of evaluation using the 
operator at the top of the column. Comparison of the column labeled (4) with the last 
column shows that each of si A 38 and -i(->si V 38) yield the same output for any 
given value-pair of si and 38. Thus we proved the equivalence of the si A 38 and 
-i(-><$/ V 38). This result is known as "de Morgan's Law". □ 

1.1.1.19 Exercise. Prove that si' V 38 can be expressed as ->(->£/ A 38). This is the 
"other" (technically dual of) de Morgan's Law. □ 

1.1.1.20 Example. We know [(7) of Definition 1.1.1.13] that (3x)si(z1,..., zm, x, 2/1, 
...,2/n) means 

For every choice of ix,..., im, j i , . . . , j n , (1.1) 
there is a A: such that (1.2) 

^ ( i l , . . . , 2 m , f e , j l , . . . , j n ) (1.3) 
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Now, the negation of "there is a A: such that si{i\,..., i m , fc, j \ , . . . , j n ) " is 

"no k makes s/(iu... , i m , *;, jfi , . . . , jn) true" (1) 

that is, 
all k make ^si(iu..., im , fe, j i , . . . , j n ) true (2) 

(2) says the same thing as 

( V x ) - i ^ ( i i , . . . , i m , x j i , . . . , jn) (3) 

(1.2)-(1.3), (1), and (3) yield (via 1.1.1.13) 

(3x)si(iu... , i m , fc, j i , . . . , j n ) = ->(Vx)-«^(ii,.. . , zm,x, j i , . . . , j n ) 

By (1.1) and 1.1.1.10, we have 

(3x)si(z1,..., zm, x, yi,..., yn) = -i(Va;)-i^(zi, . . . , zm, x, y i , . . . , yn) 

for short 
(3x)si = - .(Vx)-.^ D 

1.1.1.21 Exercise. Prove that (Va;)^ = -i(Ete)-i.c/. D 

1.1.1.22 Remark. We note that si —» ^ is true, in particular, when wo instance of 
j ^ is true, i.e., when si is false—in all its instances, that is. In this case the so-called 
classical or material implication holds "vacuously", even if there is no connection 
between si and 38 at all and even if 2% is not true! For example, if si is 0 ^ 0 and 
38 is "in every Euclidean triangle the sum of the angles equals 97r", then {si —> 38) 
is true. The same holds if 3S stands for "n is even". The latter has both true and 
false instances over N, but that is immaterial. In each chosen instance, si' —> 33' is 
true—that is (1.1.1.10), si -» 3d is true. 

Equally disturbing is the fact that while both sides of the arrow might be true, 
though totally unrelated, the implication will be true, as in ^ —> S where ^ is 0 = 0 
and S is "in every Euclidean triangle the sum of the angles equals 27r". 

The Intuitionists, a school of thought founded on the writings of Kronecker, 
Brouwer and Hey ting, do not like this state of affairs. The intended meaning, or 
intended semantics, for their si —> 3$, connects the hypothesis si strongly to the 
conclusion 38, The meaning, informally speaking, is that, from a/?roo/(intuitionistic 
proof, of course!) of si, a proof for 38 can be constructed, 

We are not going to say what is an intuitionistic "proof", as this is of no concern 
to us. As a matter of fact, "proof" (for classical logic) will be defined only later (see 
1.1.1.34). At present, let the reader think of "proof" as a process used to establish that 
a formula holds. Nevertheless, the above stated intentions regarding (intuitionistic) 
proofs are a clear enough indication of how strongly si and 3S must be related before 
the Intuitionist will agree to write si -> 3&. 
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In particular, in intuitionistic logic —> and V do not relate as in 1.1.1.18 above. In 
fact, in both logics si —> si holds, however, in intuitionistic logic si V -^si does 
not hold! Or as we say, the law of the excluded middle does not hold. Intuitively 
speaking, the reason behind this phenomenon is that the intuitionistic proofs are so 
structured that, to establish that a formula si' V 88 holds, in general you need to 
construct a proof of one of si or 88. 

For example, the following classical proof that there are irrational numbers26 a, b 
such that ab is rational is unacceptable intuitionistically. 

Take a — b — \[2. If this works, done. If not, that means that y/2 is irrational. 
Well, then take a = V2^ and b = y/2. Now ab = (V2^)^ = y/f = 2. A 

rational. End of proof. 

Above, si is "\/2 is rational" and 86 is " v ^ is irrational". We used the 
(classical) fact that si V 88 is true, since one or the other of si and 88 is (classically) 
true. However, classically, we do not need to know which is which! 

A thorough exposition of intuitionistic logic can be found in the advanced book 
ofSchutte([Schu]). □ 

1.1.1.23 Example. Suppose that x does not occur free in si[x\. 
Pause. Ensure that this is consistent with the notation introduced in Defini-

tion 1.1.1.11.^ 
Then 

si\x\ = (\/x)s/[x] (1) 

Indeed, let y, z, w,... be the complete list of free variables of si, where x is not one 
of them. To verify (1) we need to show that for any choice of values /c, /, m , . . . from 
the domain 

si(k, Z, m, . . . ) = (Vx)si[x, k, /, m, . . . ] (2) 

that is, 
both sides of (2) are t or both are f. (3) 

We need to analyze (\/x)si[x, fc, /, ra,...]. It says 

"for all n in the domain, si[n, k, /, m, . . . ] is true" 

But this is true exactly when si(k, /, m, . . . ) is, since n does not affect the output: 
the variable x is non-input in si. □ 

1.1.1.24 Exercise. Suppose we drop the condition "suppose that x does not occur 
free in si[x\" above. Does (1) still hold? You must provide the "why"! □ 

26That is, not rational. A rational number has the form, by definition, p/q where both p and q ^ 0 are 
integers. 
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1.1.1.25 Exercise. In view of 1.1.1.15, "#/[x\ is true" iff "{ix)s^[x\ is true". So, is 
this observation not all that we need to assert (1)? See also the previous exercise. □ 

Atomic formulae contain no Boolean connectives at all. On the other hand, 
formulae with a leading quantifier, V or 3, contain no explicit Boolean connectives: 
any Boolean connectives they may have are "hidden" in the quantifier's scope. Thus, 
one may view these two categories of formulae as ''atomic, but from a Boolean point 
of view", meaning you cannot split them into simpler ones by simply removing a 
Boolean connective. For example, if you start with (\/x){x — 0 Vx — y) and remove 
the V, you get the nonsensical (\/x)(x = 0 x = y). Logicians call these "Boolean 
atomic formulae" prime formulae but also Boolean variables. 

1.1.1.26 Definition. (Prime Formulae; Tautologies) A prime formula or Boolean 
variable is either an atomic formula, or a formula with a leading quantifier. 

If a formula &—when viewed as a Boolean combination of prime formulae, 
that is, as a formula built from prime formulae using only the formation rules (2)-
(6) of 1.1.1.3—evaluates as t according to the truth table 1.1.1.14, for all possible 
assumed truth-values of its Boolean variables, then we call it a tautology and write 
this concisely as \=taut &"• D 

1.1.1.27 Remark. Every formula is built by appropriately applying Boolean glue on 
a number of prime formulae: Indeed, in any formula built according to 1.1.1.3 we can 
identify all its maximal prime subformulae—that is prime subformulae not contained 
in larger prime subformulae. 

For example, in (Vx)(x = 0 -> (3y)x = y) V w — u f\u = 2X we may indicate 
the prime subformulae by "boxing" them as below. 

(Vx)(\x = 0 (3y)\ x = y\ ) V \\w = u A u = 2x (1) 

Double-boundary boxes enclose maximal prime formulae. The Boolean structure of 
(l)is 

V A 

Only maximal prime formulae contribute to the Boolean structure and express the 
original formula as a Boolean combination of prime formulae glued together by 
connectives. The non-maximal prime formulae are hidden inside maximal ones. 

The italicized claim above follows directly from an adaptation of the "deconstruc-
tion" in 1.1.1.6: 

Just replace the step 

Write down, above whatever you have written so far, the ip of depending 
formulae (if they have ip); and remove the flag "pending" from the latter. 

by 
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Write down, above whatever you have written so far, the ip of all non-
prime pending formulae (if they have ip); and remove the flag "pending" 
from the latter. 

Conversely, a Boolean combination of prime formulae is a formula in the sense of 
1.1.1.3: Indeed, a Boolean combination is an expression built by applying (2)-(6) in 
the context of a formula-construction (cf. 1.1.1.6) with starting points prime formulae, 
rather than atomic formulae. Since a prime formula is a formula, the process leads 
to a formula. See Exercise 1.8.1 for a rigorous proof (that you will supply, equipped 
with the induction tool). □ 

The quantifier "(for all possible) assumed" in Definition 1.1.1.26 is significant. It 
means that we do not compute the actual (intrinsic) truth-values of the constituent 
Boolean variables (in the domain that we have in mind)—even if they do have such 
a value; note that x = y does not. 

Rather, we assume for each prime formula, all the—in principle—possible output 
values; that is, both of t and f. 

For example, for the determination of tautologyhood of a formula, where x — x 
enters as a Boolean variable, we assume two possible output values, t and f even 
though we know that its intrinsic value is t. 

In particular, x = x is not SL tautology. 
Pause. Ensure that this last observation fits with 1.1.1.26!-* 
We indicate this fact by writing ty=taut x = x. 
Assuming all possible truth-values of a prime formula (rather than attempting to 

compute "the" value) is tantamount to allowing the Boolean structure and Boolean 
structure alone—that is how the connectives have glued the formula together—to 
determine the truth-value via truth tables (1.1.1.14). 

1.1.1.28 Example. Some tautologies: x = 0 -> x = 0, (Vx)*/ V -i(Vrc)^, x = 
y^x = y\/z = 2z . 
Some non-tautologies: x = 0 —> x — 5, (\/x)x = x V (\/y)y = y, x = y -> 
x — w V z — 22™. For example, looking at the value assumptions below—or value 
assignments, as is the accepted term, 

x = y :=t 
x — w := f, and 
z = 22W := f, 

we see that x = y —> x = w\/ z = 22 evaluates as f, thus it is indeed not a tautology. 
Incidentally, I used ":=" to denote (truth) value assignment. □ 

1.1.1.29 Definition. (Tautological Implication) We say that £/i,...,£/n tautolog-
ically imply 3§ iff {=taut d\ -* ^2 -> • • • -* s&n -> < -̂

We write £/i,...,£/n \=taut 3% m this case. ^ , we say, is (the result of) a 
tautological implication from srf\,..., srfn. □ 
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1.1.1.30 Remark. We note that a tautological implication preserves truth, from left 
to right. See exercise below. □ 

1.1.1.31 Exercise. Let p i , . . . , p m be all the Boolean variables that appear in the 
formulae si\,..., siu, 3S. 

Show that si\,..., sin \=taut & iff every set of values assigned to the Boolean 
variables that makes all the sii t, also makes 381. □ 

1.1.1.32 Example. All of the following are correct: x = 0 \=taut x — 0, x < y, y < 
z \=taut x < y Ay < z, x = y \=taut si V ~^si (no matter what si stands for). 
st \=taut 38 -> si is also correct, since si -> 38 —>> si, that is, si -* [38 —» ̂ O 
can be readily verified as a tautology using either 4 of 1.1.1.13 or the truth table 
(1.1.1.14). A shortcut is to just consider the two assumed values, t and f, for si. 
The second makes the formula true outright, while the first makes the bracketed 
subformula t, hence the whole formula t. 
This is incorrect: x < y,y < z \=taut x < z since choosing 

x < y := t 
y < z := t, and 
x < z := f 

we see that x<y—>y<z-^x<z evaluates as f, so it is not a tautology. □ 

1.1.1.33 Remark. (Capture of a Free Variable) Let si[x) stand for (3y)y ^ x— 
recall that y / x is short for ->?/ = x. It states (i.e., codifies the statement) "for any 
value of x there is a value of y that is different". Assuming that our domain is N, 
this is clearly a true statement. So is si(z), obtained by substituting z for x, or, in 
programming jargon, "calling" si[x) with argument z. 

What about s/(y)l This is (3y)y ^ y which is evidently false: "there is a value 
of y which is different from itself"! 

This is unfortunate because, intuitively, what si[x) says should have nothing to 
do with the name of the input variable! 

What happened here is that when we substituted y for x, the free y was captured— 
i.e., became bound—by a lurking quantifier, (3y): y got into the latter's scope. 

We should never allow such substitutions since, as this example shows, they may 
change the intended meaning of the resulting formula. In general, a substitution 
into &[x] that results into ^[t] should not be allowed, if the term t contains a free 
variable y that will become bound (captured) after the substitution. 

Is there a workaround? Yes! 

Consider an instance (3x)^(ii,..., im , x, j i , . . . , jn) of 

(3x)&(zi ,...,zm,x,w1,...,wn) (1) 

and a consistent instance (cf. 1.1.1.11) (zb)^*(zi , . . . , im, u, j i , . . . , jn) of 

(3u)&(zi, ...,zm,u,wi,..., wn) (2) 
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where u is a new variable. The two instances are equivalent, since if x = k works 
for the first, then u — k works for the second, and vice versa. The instance being 
arbitrary, we get the equivalence of (1) and (2), that is 

(3x)&(zi, ...,zm,x,wi,..., wn) = (3u)&(zi,..., zm, u, wu . . . , wn) 

In view of 1.1.1.20 and 1.1.1.21, or directly using a similar argument as above, one 
sees at once that changing the bound variable of a universal quantifier into a brand 
new variable does not change the meaning either. 

This leads to the so-called "variant theorem" of logic, that 
Changing a bound variable in a formula into a new (i.e., not already used in the 

formula) variable does not change the meaning: the original and the new formulae 
are equivalent. 

But then, given s/[x], we can always effect si[t] with impunity as long as we 
rename out of harm's way, before the substitution takes place, all the original bound 
variables:27 All we need to do in a successful renaming is to ensure that none of 
them is the same as a free variable of t. Strictly speaking, in si[t] we do not have the 
original formula si, but a variant of the original—since we have renamed the latter's 
bound variables. Nevertheless since the old and the new are equivalent, we will use 
the same name for both, si. □ 

We now turn to what a mathematician or computer scientist does with logic: He 
writes proofs. 

1.1.1.34 Definition. (Proofs) A proof is a construction process that builds a finite 
length sequence of true formulae, one at a time. We normally write this sequence 
vertically on the page, with explanatory annotation. Three simple rules regarding 
what formula we may write at each (construction-) step govern the process. We may 
write 

(1) A formula that we know as, or accept as, true. 

(2) A formula that is a tautological implication of formulae already written in the 
course of the proof. 

(3) (\/x)si(..., x , . . . ) provided s/(. . . , # , . . . ) n a s already been written in the 
course of the proof. 

Any formula si that appears in a proof we call a theorem. We say that the proof 
"established" or proved the theorem si. □ 

A theorem follows from certain axioms T. Saying just "theorem" does not indicate 
this dependence, unless what is the relevant set of axioms is clearly understood 
from the context. If in doubt, or if we are discussing theorems of various theories 

27This is a sufficient and straightforward overkill. In principle, we only need to rename those bound 
variables that are referenced in those quantifiers that will capture a variable in t, if we do nothing. 
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simultaneously, then we must name the applicable axiom set in each case by saying 
'T-theorem" or "theorem from F \ 

It is clear from what we have developed so far, that steps (2) and (3) preserve truth 
(cf. 1.1.1.15). An application of step (3) is called application of generalization, or 
rule Gen, as we will say. 

What exactly is going on in step (1)? Well, we know that some formulae are true 
because we recognize them as such outright, without the help of any complicated 
process; they are "initial" truths—or initial theorems—such as x = x, which is true 
in all mathematics, or x + 1 ^ 0, which is true in a specific theory: arithmetic of 
the natural numbers. These initial theorems, whether they are universal or theory-
specific, are called axioms. 

1.1.1.35 Remark. All axioms are "atomic theorems", that is, they are obtained by an 
application of (1)—they are not "results" of the application of (2) or (3) on previous 
theorems written in the course of a proof. 

As indicated in the X-passage above, we have two types of axioms. 

(a) Those that are true because of the way the formulae that express them are put 
together, using connectives and quantifiers. These axioms are not specific to any 
branch of mathematics: They hold for all mathematics. 
We call such axioms logical.2% 

With some ingenuity, a very small set of formulae29 can be chosen, among the 
universally or absolutely true formulae, to serve as logical axioms. Read on! 
For example, x — x and (\Jx)&/[x\ -> srf\b] are such universal truths, and we 
will adopt both as logical axioms. 

(b) A formula ^ is a nonlogical axiom in a mathematical theory provided it is taken 
as an important start-up truth of the theory—an "atomic theorem"— not because 
of its form, but rather because of what it says in connection with the various 
symbols that are peculiar to the theory. 
For example, x + 1 ^ 0 is an important start-up truth—a nonlogical axiom—of 
(Peano) arithmetic over N. There is nothing to render it "universal"; in fact, it is 
not a true statement if our domain is either the reals, R, or the integers, Z (all of 
positive, negative and zero). Another nonlogical axiom, for Euclidean geometry, 
is "Euclid's 5th postulate", which asserts that through a point outside a line we 
can draw precisely one parallel to said line. Again, the existence of so-called 
non-Euclidean geometries shows that this is not a universal truth. 

When we use the term "theory T", we mean somewhat ambiguously, but equivalently, 
either 

28They express universal truths of logic, that is. 
29 Strictly speaking, formula-forms or formula-schemata, since these formulae will contain, as subformulae, 
formula-names of unspecified formulae (such as &/), arbitrary (object) variables, function names, etc. 
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• r is the set all its theorems, that is, the set of all formulae that can be proved 
starting from the axioms of the theory repeatedly applying the proof-tools 
(l)-(3) above. 

Or 

• r is identified with the set of all the postulated nonlogical axioms. Clearly, if 
we have the nonlogical axioms, then using the logical axioms that are common 
to all theories, along with the proof-process (l)-(3) above, we may write down, 
in principle,30 all the theorems of the theory. 

We prefer the viewpoint of the second bullet, as it gives prominence to our start-up 
assumptions; the nonlogical axioms. 

The terminology "& is true in the theory" simply means that & is a theorem of 
the theory. Its truth is relative to the truth of the nonlogical axioms; it is not absolute 
or universal. For example, "the sum of the angles of any triangle equals 180°" is true 
in (is a theorem of) Euclidean geometry. It is not true in (is not a theorem of) either 
Riemann's or Lobachevski's geometries. 

That & is true in a theory £ will be denoted symbolically as £ \- &. 
Note that the logical axioms are not mentioned at the left of "h". Thus, if E is 

empty and we have proved & only using logical axioms, then we will write \- &. 
It is immediate from the foregoing that since a proof is not obliged, in an appli-

cations of step (1) (1.1.1.34), to use any nonlogical axiom, that every theory also 
contains among its theorems all the absolute truths & for which h &?x 

It is clear that h is transitive, that is, if we have E h J ^ for i — 1 , . . . , n, and also 
A\,..., An h 38, then S h ^ . Indeed, we can clearly concatenate the proofs of 
each Ai—in any order—and then append the proof of 38 at the very end. What we 
get is a proof of 38 as required. 

Since at each step of writing a proof we look back rather than forward [steps (2) 
and (3)], it is clear that chopping off the "tail" of a proof at any point leaves us with a 
proof. This observation entails that when we attempt to prove a formula from given 
axioms, we just stop as soon as we have written the formula down. □ 

1.1.1.36 Exercise. Elaborate on the remark above regarding the transitivity of h. □ 

1.1.1.37 Exercise. In mathematical practice we are allowed to use in a proof any 
already proved theorems, in a step of type (1) of 1.1.1.34. Carefully justify this 
practice in the context of Definition 1.1.1.34. □ 

Since rules (2) and Gen on 1.1.1.34 preserve truth, and the logical axioms are 
universally true, then so is any & for which we have h &. Logicians call the content 
of this observation soundness. 

30"In principle": The set of theorems of an interesting theory such as arithmetic, Euclidean geometry, or 
set theory is infinite. 
31 By Godel's completeness theorem, Godel (1930), the hedging "for which h «^" is redundant. 
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1.1.1.38 Definition. (Logical Axioms) The usually adopted logical axioms are (forall 
choices of formulae, variables and terms that appear in them): 

(i) All tautologies 

(ii) (\/x)gf[x] -+ s/[t] (see conclusion of 1.1.1.33) 

(iii) g/[x] -> (Vx) <£/[#], provided x is not free in g/[x] 

(iv) (Vx)(*/[x] -> 3B[x]) -> {\/x)srf[x\ -> (Vx)&[x] 

(v) x — x 

(vi) t = s^ (srf[t\ = &/[s\) (see conclusion of 1.1.1.33). □ 

That the above logical axioms are adequate to prove all universal truths using the 
proof mechanism of 1.1.1.34 is a result of Godel's [completeness theorem; Godel 
(1930)]. 

1.1.1.39 Remark. It is easy to verify that all the logical axioms are indeed universal 
truths. For group (i) and (v) this is trivial. The "truth" expressed (codified) in group 
(ii) is that "if srf[x] is true for all objects in its domain, then it must be true if we take 
x to be a specific object f'. Note that even if t has input variables, then as they vary 
over the domain they generate objects from the domain. The generated objects are 
part of "«// objects in its domain". 

The truth of all formulae in group (iii) follows from a trivial modification of the 
argument in 1.1.1.23. 

Group (vi) is Leibniz's characterization of equality: It states that replacing "equals 
by equals" in an argument slot (x of of g/[x] in our case) produces the same result. 

Finally, let us look at group (iv). For simplicity we assume that x is the only 
variable, so we will show the truth of (\/x)(g/(x) -> 3&(x)) —> (\/x)£/(x) -» 
i^/x)SS{x) in its domain. First off, this means 

(Vx)(sf(x) -+ 3S{x)) -> (NX)^{X) -» (Vx)^(x)) (1) 

Since (1) is an implication, 1.1.1.14 indicates that the only real work for us is if 
(\/x)(£/(x) —> 3§{x)) evaluates as t. If this is so, this means 

For every k in the domain, srf(k) —> SS(k) is t (2) 

We now try to prove that the right hand side of the leftmost —> must evaluate as t. As 
it too is an implication, we will only consider the real work case where (\/x)&/(x) is 
true, that is 

For every k in the domain, srf{k) is t (3) 

and try to obtain that 
^x)3B{x) (4) 
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is true. Now, via 1.1.1.14, (2) and (3) give "For every k in the domain, SS{k) is t", 
which establishes (4). □ 

1.1.1.40 Example. Here are some proofs written in extreme pedantry. 
(I) Establish the (universal) truth of si[t\ —> (3x)si[x]. The proof follows: 

(1) (Vx)-.^[x] -* ~^si[t] (axiom (ii)) 
(2) si[t] -> -^(\Jx)^si[x\ ((1) and rule (2) of proof-writing; 1.1.1.34) 
(3) si[t] -> {3x)s/[x] ((2) and rule (2) of 1.1.1.34, using 1.1.1.20) 

The comments in (...)-brackets explain why we wrote the formula to their left. The 
numbering to the left allows easy reference to previous formulae. The last step is 
"replacing equivalents by equivalents" in a Boolean combination. The result stays 
the same since it is as if we "called" si -> 3£ with inputs, first -i(Vx)-^si[x] and 
then (3x)^[x]. But these inputs have the same (truth) value, so both calls will return 
the same answer. Since step (2) has written a truth (why?), so has step (2). 

(II) Establish that t = t for any term t. The proof follows: 

(1) x — x (axiom (v)) 
(2) (\/x)x = x <(1) + Gen) 
(3) (\/x)x = x ->t = t (axiom (ii)) 
(4) t = t ((2,3) + tautological implication) □ 

1.1.1.41 Remark. In the second proof above we used two important tools explicitly. 
We identify both here so they can be used "off the shelf" in diverse situations in the 
future. 

The step from (2) to (4) via (3) generalizes to the rule "from (the truth of) (Vx)si[x] 
follows (the truth of) si[t\\ This rule is called specialization or Spec. It follows 
from an application of this tautological implication, ^", & —> <£ \=taut & known 
as modus ponens, for short MR The reader can easily verify that indeed MP is a 
tautological implication, so it qualifies as a proof-step of type (2) (1.1.1.34). □ 

1.1.1.42 Exercise. Give a proof that from the truth of si[x\ follows the truth of 
s/[t\. □ 

1.1.1.43 Example. We verify that with an assumption (nonlogical!) of the form 
si —> S8 we can prove si -> (\/x)3&, on the proviso that x is not free in si. That is, 
we verify, under the stated condition, that si —> £8 h si -» (\/x)&. 

(1) si -> SB (hyp) 
(2) ( V x ) ( ^ - > ^ ) ((1) + Gen) 
(3) {Vx){s/ -±3g)-± (Vx)si -> (Vx)^ (axiom (iv)> 
(4) (VxK -> {yx)@ ((2, 3) + MP) 
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(5) si -> (Vx)3S ((*)) 

In step (1) we said "hyp". The formula is a "hypothesis"—a starting point; not 
something that we claim as true; a nonlogical axiom. In step (5) I wrote (*) so 
that I can explain the reasons for the step outside the proof, since the explanation is 
long, namely: (5) follows from (4) by replacing "equivalents for equivalents"—see 
1.1.1.23 and the similar situation in 1.1.1.40. □ 

1.1.1.44 Exercise. Prove that si -> 38 h ^38 ->• -^si. The two sides of h are called 
contrapositives of each other. □ 

1.1.1.45 Exercise. Prove that si -» 3% h (3)si -» 38 as long as x is not free in ^ . 
Hint Rely on 1.1.1.44 and use 1.1.1.43. D 

1.1.1.46 Example. Let us establish the familiar commutativity property of equality 
as a result of the logical axioms [in particular, of (v) and (vi); cf. p. 21]. 

Let si[z] stand for z = x. An instance of Leibniz's axiom is x = y —> (si[x] = 
si[y]) i.e., 

x = y^(x = x = y = x) (1) 

We can now embark on a proof: 

(a) x = y —> (x = x = y — x) (logical axiom (1)) 
(b) x = x->x = y-±y = x (tautological implication of (a)) 
(c) x — x (logical axiom) 
(d) x = y ->- y = x ((b, c) + MP) 

Step (b) takes some doing, but is easy. Recall 1.1.1.29 and 1.1.1.31. We need to 
argue that if line (a) is t, then this forces line (b) 

x = x —> (x = y —>- y = x) (2) 

to be t as well. By the way, the Boolean variables here are x = x, x = y and y = x. 
Well, the real work toward seeing that (2) is t is when x = x and x = y are t. If 

so, the assumption that line (a) is true forces x = x = y = xtobe true (because the 
part to the left of —> in said line is). Since x = x is assumed t,32 then so must y = x, 
which establishes (2). 

Since the above proof contains no nonlogical axioms, we may write h x — y -> 
y = x. 

The reader will note that this is not a tautology, since x — y and y = x are distinct 
Boolean variables. □ 

32The word "assumed" was inserted for emphasis: x — x in this argument is a Boolean variable. We are 
not looking for its intrinsic value, rather we are taking turns to consider each of its "possible" values, f and 
t. The argument skipped the first value because it trivially makes (2) true. 
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1.1.1.47 Exercise. Armed with the commutativity of =, prove the transitivity of =. 
That is, establish the claim \-x = y-^y = z^x = z. □ 

1.1.1.48 Example. There are a couple of trivial, but often-used proof tools. They 
are expressed in the form j?T, ̂ , . . . h si, that is, "if I know that 3C, <3f,... hold— 
either because they are assumptions (e.g., could be nonlogical axioms) or are already 
proved theorems—then I can prove that si holds as well". 

(a) Proof by cases. si -^ SB rf ^> SB \- si V <# ^ SB. 
It states that to prove that SB follows from a disjunction, it suffices to prove 
separately that SB follows from each case—si and ^—of the disjunction. 

(b) Ping pong, si -» SB, S& —> si \- si = SB. It states that to prove an equivalence, 
si = SB, it suffices to prove each direction—si —>• SB and SB —» si—separately, 
since, from the two directions taken as hypotheses jointly, we can prove the 
equivalence. 

Each of (a) and (b) admit immediate proofs: Once we have assumed the hypotheses 
on each side, a tautological implication yields the conclusion at once [cf. 1.1.1.34, 
rule (2) applied]. □ 

A major proof tool of the mathematician and computer scientist is the so-called 
deduction theorem. It is stated without proof here—for us it is its statement that 
matters. 

See Tourlakis (2003a) or Tourlakis (2008) for a proof of the deduction theorem, 
but be warned that the two versions in these references are different, because the 
specific foundations of logic in these two are different! The difference lies in how 
generalization is applied, and that affects the statement, and proof, of the deduction 
theorem. The present volume uses the style of generalization as it is practiced in the 
first cited reference. 

1.1.1.49 Theorem. (Deduction Theorem) If we can prove SB from assumptions V 
and si, then we can prove si —> SB from the assumptions Y alone, on a condition. 
The condition is that during the proof of SB from hypotheses T and si, step (3) of 
1.1.1.34 was never applied with a variable that occurs free in si. 

In other words, the free variables of si during said proof are 'frozen "; they 
behave like constants. 

We can say the above symbolically as "if T, si h SB, then T h si -> SB, on a 
condition, etc." 

What is the deduction theorem good for? Well, for one thing, it tells us that instead 
of proving si —> SB it suffices to prove the less complex—since the glue —> and the 
part si are removed—SB. For another, we have the added bonus of "knowing more" 
before starting the proof. While toward proving si —>• SS we "knew" T, toward 
proving SB we also know si. 
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Is the restriction on g# too limiting? Not really. In practice, say, we want to prove 
that T h s/(x, y) —> 38 (z, y, w). We proceed as follows: 

Fix all the variables of srf, here x and y, to some unspecified values. 
Remember not to use either xory in a rule Gen during the proof! 
Assume now s/(x, y). Proceed to prove 38 {z, y, w)—recall that y is a 
"constant". 
By the deduction theorem, we have proved s/(x, y) —t 38 (z, y, w) from 
just T, because we never performed generalization with the frozen x 
and y. 

In practice we apply less pedantry in the process: 

(1) We only say, "let us fix the values all free variables x, i / , . . . in si". 
We are, of course, obliged to remember that this also fixes these same variables 
in £$, and everywhere else, throughout the proof Thus, we cannot univer-
sally quantify any of these variables during the proof, nor can we (a subsidiary 
operation this; cf. 1.1.1.42) substitute a term into such "frozen" variables. 

(2) The task ends as soon as we prove 38. 
We do not need to repeat this kind of justification every time: "By the deduction 
theorem, we have proved si —> 38 from just T, etc." 

We will see this proof technique applied many times in this book, starting from 
the next subsection. 

We conclude with the ancient technique of proof by contradiction.33 We will define 
a contradiction to be a formula of the form si A -*si. From the truth tables we know 
that this evaluates as f regardless of whether si itself evaluates a t or f. The reader 
can verify at once, that for any Ĵ ", si A ^si \=taut & -

1.1.1.50 Theorem. (Proof by Contradiction) For any closed si, we have V \- s/ 
iff r , - W h <T A ̂ 3£yfor some 9C. 

Proof. Indeed, for the //"-part, let T, - ^ h 3E l\^S£'. By the deduction theorem 
(applicable without hedging as s/ is closed) we get 

r h ^ ^ j A - f (i) 

It is straightforward to see that ->s/ —> 3£ A ->^T \=taut s/9 hence by transitivity of 
h we get r h ^ . 

only if-part. Say, T \- s/. Adding to the assumptions T we can still prove s/ (see 
that you agree! 1.1.1.34). Thus 

r , - W h ^ (2) 

Often used by Euclid, for example. 
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But also (why?) 
r , - . ^ h -..*/ (3) 

The trivial si, -^si \=taut ̂  A -*si along with (2) and (3) above, and transitivity of 
h yield T, ^si h j / A - i ^ . D 

The technique is used as follows: To prove V \- si (closed si) we start by "Assume, 
by way of contradiction, -*si" and then proceed to indeed obtain one. 

1.1.1.51 Definition. A mathematical theory, given by its set of nonlogical axioms, is 
consistent ox free from contradiction, provided it is impossible to prove a contradiction 
from its axioms. Otherwise it is called inconsistent. □ 

Thus we can rephrase 1.1.1.50 as V h si iff (the theory with axioms) 
T, ^si is inconsistent. 

1.1.1.52 Remark. ("Everyday" Proof Style) A few important remarks are in order 
to conclude our digression into logic. 

(1) The proof of truth of a formula using first principles from 1.1.1.13 and working 
directly with a reference set is now for us a thing of the past. The last time 
we utilized the method was to establish that all the logical axioms were indeed 
universal truths (1.1.1.39—see also 1.1.1.33). From then on we will ride on the 
shoulders of our logical axioms 1.1.1.38, and whatever other assumptions we take 
as true from time to time, to prove all our theorems, essentially "syntactically", 
that is, by writing proofs according to 1.1.1.34. 

(2) The practicing mathematician or computer scientist uses a simplified, often 
shorter, and rather conversational version of the proofs with annotation that 
we presented so far (for example, in 1.1.1.43 and 1.1.1.46). We should get used 
to this relaxed style. Here is an example. We will establish that 

h ^x)(st A&) = (\fx)si A (yx)3B 

Proof We employ ping pong. (-») direction: Assume (\/x){si A 38) with all 
its free variables frozen (we are going via the deduction theorem). Remove the 
quantifier (Spec) to obtain si l\3S and apply two tautological implications to 
obtain si and 3&. Apply Gen to each to get (\fx)si and (\/x)33. A tautological 
implication yields what we want. 
For the (<—) direction, assume (Vx)si A (\/x)3§, freezing all free variables of 
the formula. Two tautological implications yield (Vx)si and i^/x)3§. Two 
applications of Spec, followed by tautological implication yield si A 3&. Via 
Gen we get what we want. 

(3) We finally establish that si -> SB h (\fx)si -> (Vx)38. Indeed, the hypothesis 
yields (Vx)(si —> 38) by Gen. We are done via axiom (iv) (1.1.1.38) and modus 
ponens. D 
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1.1.1.53 Exercise. Establish the fact si = SS h (Mx)si = (\/x)&. 
Hint. Use 1.1.1.52. □ 

1.1.1.54 Exercise. Establish the fact si = SS h (3x)<s/ = ( 3 z ) ^ . 
Hrnr. Use 1.1.1.53. □ 

1.1.1.55 Exercise. Establish the fact h (3x)(si V 38) = (3x)si V (3x)3S. 
Hint. Use 1.1.1.52. □ 

1.1.2 Sets and their Operations 

We now return to our brief study of sets. The naive set theory of Cantor is not 
axiomatic. In our very brief and elementary review of it we will deviate only slightly 
and adopt precisely one axiom. First off, consider the formulae x E A and x E B. 
By 1.1.1.38(vi), we obtain34 

A = B-^(XEA = XEB) 

and further, via 1.1.1.43 we get (since x, A, B are distinct variables) 

A = B -> (Vx)(x E A = x E B) (1) 

Suppose next that A and B stand for sets—no such restrictive assumption was made 
above. Then (1) says that if two sets are equal, then every member of one (x) is a 
member of the other, and vice versa; they have precisely the same elements. Is the 
converse35 true? 

That it is so is a fundamental property of sets; a nonlogical axiom. It is the 
so-called axiom of extensionality. 

For any sets A and B, (Vx)(x EA = XEB)-^A = B (Ext) 

Extensionality says that the extension—what sets contain— is what matters to deter-
mine their equality. In particular, "structure" does not matter. Nor does "intention": 
e.g., whether we say outright, "collect 1 and 2 into a set", or, in a roundabout way, 
"collect the roots of the equation x2 — 3x + 2 = 0 into a set" we get the same set. 

Taking (1) and (Ext) together (ping pong) we have [cf. (b) in 1.1.1.48]: 

For any sets A and B, A = B = (\/x)(x E A = x E B) (2) 

Since x E 2 and x E 3 are false, as 2 and 3 are numbers and thus contain no elements, 

(Wx)(x E2 = xE3)-^2 = 3 

is false, since to the left of —> we have a true formula, while to the right a false one. 
Thus, the restriction on the type of A and B in (Ext) and (2) is essential. Of course, 
(1) is valid for any type of variables A,B,x. 

34The mathematician and computer scientist will rather say "we obtain 2£" to indicate he proved so, 
without using the provability symbol K He will also let the context fend for itself as to what the 
assumptions were; here no nonlogical assumptions were made. 
35The converse of the implication si —► ^ is 88 —>■ srf. 
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1.1.2.1 Example. Let us introduce the notation-by-listing of sets, {...}, where the 
" . . ." is in each case replaced by an explicit listing of all the set members. Here 
are two examples: {1,2,1,2,2} and {2,1}. These two sets are equal by inspection, 
according to extensionality, for every element of one appears in the other, and vice 
versa. In particular, neither multiplicity, nor order of listing matter. Only the presence 
of an element matters, not where (in the listing), or how many times. So, we may 
write {1,2,1,2, 2} = {2,1} or indeed {2,1} = {1,2,1,2, 2}. 

It should be clear that only the (intuitively) finite sets (a concept we will soon 
mathematically define) can be depicted by listing; and this only in principle, since 
we may not want to list a set of one trillion elements. By the way, writing N = 
{0,1,2, . . .} is not a by-listing depiction of N, rather, it is a sloppy and abused 
notation (yet surprisingly common). The " . . ." indicates an unending, and understood 
from the context, process whereby the next element is generated by adding one to 
the previous. The notation taken out of context is nonsensical and gives no clue as to 
what " . . ." means. □ 

The notation A C B, read "A is a subset of B", or "B is a superset of A", means 
that every member of A is in B as well. So it is given by the mathematical definition 
below: 

Def 
ACB= (Vx)(x G A -> x G B) (3) 

So how does one prove, given some sets A and B that AC Bl One uses definition (3) 
above, and proves instead (Vx)(x G A —> x G B). But to so prove, it suffices to 
prove instead x G A —» x G B, since an application of Gen to this formula produces 
the preceding one. 

Perfect! One can then proceed as follows: "Fix x and assume x G A\ All that 
one needs to do next is to prove x G B (1.1.1.49). 

At the intuitive level, and from the "word description of equality and subset 
relations", we expect, for sets A and B, that if A = B, then also A C B (and 
by symmetry, also B C A). This can be mathematically proved as well: The 
assumption means (Vx)(x G A — x G B). Dropping (Vx) (Spec) and following up 
with a tautological implication we get x G A —>• x G B. Reintroducing (Vx) (Gen) 
we get A C B (Definition (3)). 

Intuitively, for any to sets A and B, if we know that A C B and B C A, then 
A = B (the vice versa was the content of the preceding paragraph). Indeed, the two 
assumptions and (3) above expand to (Vx)(x G A -» x G B) and (\/x)(x G S - ) 
x G A), respectively. Dropping (Vx) (Spec) we obtain x G A —> x G B and x G 
B —» x G A. Following up with a tautological implication we get x G A = x G B. 
Applying (Vx) we get A — B. 

So, in practice, to prove set equality, A — B, we go about it like this: "(C) 
direction: Fix x G A . . . therefore, x G B is proved". Then we do: "(D) direction: 
Fix x G B . . . therefore, x G A is proved". 

If A C B but A ^ 5 w e say that "A is a proper subset of B" and write A <Z B. 
As is usual in mathematics, negating a relation is informally denoted by the relation 
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symbol superimposed with a "/". So A £ B, A % B and A (f_ B mean -\A G B, 
-»A C B and -^A <z B, respectively. 

1.1.2.2 Definition. (Bounded Quantification) In much of what we do in this volume 
we will find bounded quantifiers very useful. That is, in set theory we will often 
want to says things like "for all x in A, 3£[x] holds". While this can be captured 
by (Vx)(x G A -> 3£\x\), the alternative shorthand is much in use, and preferable: 
(Vx G A)X\x\ or also ( V X ) € A # W 

In arithmetic we will correspondingly often want to say "for all x < y, 3£\x\ 
holds". This is coded directly as (\/x){x < y —» 3£\x\). The preferred shorthand is: 
(VIE < y)3£\x\ or also ^Jx)<y3£\x\. In these two cases, respectively, A and y are 
free variables. □ 

1.1.2.3 Remark. The corresponding "for some x in A, 2£[x] holds" and "for some 
x < y, 2£[x] holds" have the shorthands (3x G A)J&[x] or (3X)^A^[X\ for the 
former and (3x < y)3£\x\ or also (3x)<y 3£[x] for the latter. 

The shorthand (3x G A)3£\x\ and (3x < y)S£[x\ stand for (3x)(x G A A 2£[x\) 
and (3x)(x < y A <5T[x]), respectively. 

Translating to V notation we do not get any nasty surprises. For example, 

(3x){xeAA$r[x}) (*) 

is equivalent to -i(Vx)->(x G A A «3T[x]). Using 1.1.1.53 and an obvious tautology, 
we see that this is the same as ->(Vx)(x G A -» ->X[x]); in shorthand: -i(V# G 
A)-iX[x]. Neat! The original (*) has the bounded-quantifier expression (3x G 
A) 3£ [x], so the "3 = -<V-i" property (1.1.1.20) holds for bounded quantifiers! □ 

1.1.2.4 Exercise. Show that the "V = -G-i" property (1.1.1.21) holds for bounded 
quantifiers. D 

There is a more general way to build sets than by just collecting together and 
listing a finite number of elements; by "defining property". That is, for any formula 
s#{x) we collect into a set all the x (values) for which si(x) is true. We denote this 
set by the term {x : #/(x)}. Of course, srf(x) is the defining property or "entrance 
requirement" that determines membership. To make this precise we define 

1.1.2.5 Definition. S = {x : srf(x)} is shorthand, suggestive, notation for (\/x)(x G 
S = tf{x)). D 

1.1.2.6 Remark. Several remarks are in order. 

(1) The 5 that enters in (\/x)(x e S = £/(x)) is unique, that is, if also (Vx)(x G 
T = gf(x)), then S = T. Indeed, the two imply (Spec) x G S = srf{x) and 
x eT = srf{x), thus, x e S = x eT by tautological implication. Generalizing 
we get (\/x)(x G S = x G T), and hence S = T. 
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Pause. Why not just say "The two mean S = {x : st(x)} and T = {x : srf(x)}, 
hence S — T by transitivity of equality"?^ 

Because the notation "5 = {# : ^ ( x ) } " is only shorthand for something else. 
The symbol of equality "=" is inserted in anticipation, but not due to an a priori 
knowledge, that it will behave correctly, as equality. Now we know—through 
the longer argument and post facto—that it was all right to have written "=" after 
all. 

(2) Renaming the bound variable of (Vx)(x G S = £#{x)) into (a new) z we get 
the equivalent formula (cf. 1.1.1.33) (Vz)(z G S = £?(z)). The latter says 
S = {z : #/(z)}. So, x (and z) in {x : g/(x)} is a bound variable that can be 
renamed without changing the meaning. 

(3) By specializing (Vx)(x G S = £?{x)) we get t G 5 = «ĝ (£) for any term £. 
This says what our intuition wants: To test if an object t is in the set 5, just test 
that it passes the entrance requirement: #/(t). 

Another way to say the same thing is t G {x : srf{x)} iff srf(t). 

(4) It is time to be reminded (this was mentioned in passing earlier) that it is not the 
case that every formula srf(x) leads to a set {x : srf(x)}. To think so leads to 
nasty contradictions, as it did in Cantor's naive set theory. Examples of formulae 
that are not set-builders are x £ x and x — x (cf. Section 1.3). 

(5) The statements {x : g/[x}} = {x : 38[x]} and g#[x\ = &[x] are equivalent. 
Indeed, if we assume the first, then by (1) on p. 27 [which is no more than an 
application of (vi) from 1.1.1.38] we get x G {x : srf[x]} = x G {x : &[x]}, 
which by (3) above is (replacing equivalents by equivalents) #/[x\ = 3§[x\. 
These steps can be reversed [in this direction Ext is invoked rather than (1) on 
p. 27] to prove the converse. 

This is not unexpected at an intuitive level, but it is nice to have it affirmed 
mathematically: If two "defining properties" are equivalent, then they yield the 
same result, true or false, on every object we apply them. Thus, precisely the 
same objects will "pass" each of the two. 

(6) {x : £/(x, y, z,...)} denotes several different sets (modulo the previous warn-
ing), one for each choice of the unspecified values y,z, These y,z,... are 
called parameters. □ 

1.1.2.7 Example. A few paragraphs ago we called the set-building process by defin-
ing property "more general" than the process of building sets by grouping members 
and listing them explicitly between braces { }. Here is why: {a, b} = {x : x — 
a V x = b}. This simple "trick" can be applied to any finite set, to represent it by a 
defining property, namely, the disjunction of atomic formulae of the form x = a for 
every a that we want to include in the set. □ 
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There is nothing in naive set theory that helps us argue that the collection of just 
two objects—the so-called (unordered) pair—is a set (one that does not lead to 
contradictions, that is).36 In the naive approach we take it for granted as a "self 
evident" fact! Equipped with the hindsight of the early (naive) set theory paradoxes 
and their workarounds, we can be content that a pair is so "small" as a collection— 
just two elements—and is not about to cause any problems. In axiomatic approaches 
there is an axiom which says that we can indeed form a set of two elements. 

1.1.2.8 Example, {x : x G N A x > y} consists of all numbers in N greater 
than y. That is: y + 1, y -f 2, y + 3 , . . . We may also use the (abuse of) notation 
{x G N : x > y} for this set. □ 

1.1.2.9 Example. Sometimes we collect more complicated objects than values of 
variables. For example, {x2 : x — 2 V x = 9} is the set {22,92}, i.e., {4,81}. 

A more complicated example is S = {x + y : 0 < x < y}, where x, y are varying 
over N. 

(1) Suppose that y is the only a parameter. Then S = {y + 1, y + 2 , . . . , 2y — 1}. 
(2) Suppose x is the only a parameter. Then S = {2a; + 1,2x + 2 , . . . } . This is 

all of N, except the segment from 0 to 2x. 
(3) Suppose neither of x or y are parameters. Then S = {3 ,4 ,5 , . . .} . 
(4) Finally, suppose that both x and y are parameters. Then what S = {x + y : 

0 < x < y} denotes is an infinite family of one-element sets, using all the elements 
ofN except 0,1,2: {3}, {4}, {5} , . . . □ 

Because of (4) in 1.1.2.6, mathematicians found a way to limit the size of collections 
to ensure they are, technically, sets. An easy (but not the only) way to do this is to 
build any new sets as parts (subsets) of some other set that we have already built. 

Thus all our discussions in set theory will have some—usually unspecified, large 
enough to be useable but not too large to be troublesome; and totally unobtrusive37— 
reference set tucked away somewhere; let us call it U. 

This U is our "resource" where we take our set theory objects from, give values 
to our variables from, and have our quantifiers vary over. Thus, in set naive theory, 
when we write (Vx) or (3x) we really mean (\/x G U) or (3x G U), respectively. 
This reference set that we put aside for a discussion is also called the domain (of 
discourse). 

In other branches of mathematics whose objects can be collected into a set we 
are less vague about the reference set; thus the calculus of one variable has R as its 
domain, while Peano arithmetic has N as its domain. 

It is convenient to have a set with no elements around, the "empty set". This is 
the set S given by the condition 

(\/x)(x G S = x j^ x} (*) 

'Let's face it: naive set theory is not exactly clear as to what a set is, nor does it care. 
We do not pin it down. 
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By (1) in 1.1.2.6, there is just one set S that satisfies (*), and the symbol reserved 
for it is 0. That it is a set is not in question as it is far too small! It contains nothing. 
Indeed, by 3 in 1.1.2.6, 

X G 0 = X 7^ X (**) 

thus no x passes the entrance test, the later being false for all x. Of course, we can 
write 

0 = {x : -ix = x} 

It is useful to note that for any set A, we have 0 C A. Indeed, this means x G 0 —> 
x G A. This is true since, by (**), x G 0 is false. 

If we want to build more complex sets we will do well to devise operations on 
sets. Thus, 

1.1.2.10 Definition. If A and B are sets, then their union, A U B, is the set {x : x G 
AVxeB}. □ 

A U B is formed by emptying the members of A and B in a single {...} "bag". 
The union makes sense even if one or both of A and B stand for atomic elements 

with no set-theoretic structure, such as numbers.38 For example, if B is atomic, then 
x G B is false, and hence x e A\/ x e B = x e Aby 1.1.1.14. That is, A U B = A 
in this case. If both A and B are urelements, then A U B = 0. 

The reader may be wondering: Is it not better to not allow things like x G 2—to 
make it "illegal", rather than false? No. For one thing, that would mean that before 
we build an atomic formula t G s w e would then have to analyze first s to ensure it 
is not an urelement; betraying that syntax has to be determined, well, syntactically! 
Secondly, it would require far too many special cases to be considered in all our 
definitions. 

Thus the following is true [with or without a leading (Vx); cf. 1.1.1.15]: 

x G AUB = x eAWx G B 

We can form the union of three sets as either A U (B U C) or (A U B) U C. Since 
x e AU (BUC) is equivalent to 

xeAv(xeBvxeC\ (l) 

and x G (AU B) U C is equivalent to 

(xe A\/ x e B)VX eC (2) 

The equivalence of (1) and (2) proves that A U (B U C) = {A U B) U C which renders 
brackets irrelevant in a chain of two U—indeed, in any finite chain of U by refining 

Such atomic elements are called urelements in the literature. 
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the previous argument (e.g., using induction39 on the number of U symbols in the 
chain). 

1.1.2.11 Exercise. For any sets A and B, prove AU B = BU A. O 

1.1.2.12 Example. For any set A, we have A U 0 = A. Indeed, this translates to 
[using 1.1.1.15 to eliminate (Vx), and (3) in 1.1.2.6] 

x e Awx ^ x = x e A 

which is clearly true, since x ^ x is false (cf. 1.1.1.14). □ 

The "big U" is a very important generalization of union applied to any collection 
of sets (and/or urelements), not just finitely many. 

1.1.2.13 Definition. (Generalized Union) Let S be a set (may contain sets and/or 
urelements; may be, intuitively, finite or infinite). The symbol |J S denotes the set 
that we build by emptying the contents of every set in S into a new container. 

Mathematically, 
\JSD=f{x:(3AeS)xeA} 

That is, an "x" is put into the new container iff we can spot it inside some A, which 
in turn is in S. □ 

We have some special cases of the \JS: If 5 is a collection of sets A{— 
{Ao, Ai, A2,...}—indexed by i e N we may write alternatively 

oo 

| J Ai or ( J Ai or ( J A{ 
2=0 z>0 iEN 

More generally, we may have a collection of sets Aa indexed by a set / other than 
N—e.g., I = R, I = {2,3}. We indicate (J S in this case by the alternative 

IK 
aei 

1.1.2.14 Example. Ua£{2,3} Aa = A2U A3. □ 

1.1.2.15 Definition. If A and i? are sets, then their intersection, An B, is the set 
{x : x £ AAx e B}. If A n 5 = 0 then we call A and B disjoint. □ 

4̂ D 5 is formed by emptying <?rc/y £/*e common members of A and B in a single 
{...} bag. The intersection makes sense even if one or both of A and B are urelements. 

39Knowledge of induction, as well as of everything else in this review is presupposed; this is only a reviewl 
Induction will be our review-subject in Section 1.4. 
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For example, if B is atomic, then x £ B is false, and hence xeAAxeBis false 
1.1.1.14. That is, An B = 0 in this case. 

1.1.2.16 Definition. (Generalized Intersection) Let S be a set (may contain sets 
and/or urelements; may be, intuitively, finite or infinite). The symbol f] S denotes 
the set that we build by emptying the contents that are common to every member of 
S into a new container. Mathematically, 

f)SD={x:(VAeS)xe A} 

That is, an' V is put into the new container iff we can spot it inside every AinS. □ 

Thus, if a urelement or 0 are members of S, then f] S = 0. 

For this definition too we have some special cases of the p| S: If S is a set of sets 
{AQ, -Ai, A2,. . .} we may write alternatively 

oo 

p) A{ or p | Ai or f] A{ 

i=0 i>0 i£N 

More generally, we may have a collection of sets Aa indexed by a set / other than 
N—e.g., I = R, I = {0,1,2,3,11}. We indicate f| S in this case by the alternative 

aei 

1.1.2.17 Example. flae{o,7} ^ = A0 n A7. □ 

1.1.2.18 Example. What is f |0? By 1.1.2.16 

Xef]^ = (\/Ae9)xe A 

that is 
X G p 0 = ( V A ) ( A £ 0 - ^ x £ A) 

Since A £ 0 is false, the entire right hand side of = is true. That is, the left hand side 
is true precisely for every x. Recalling that "every x" means "every x-value in the 
domain U", we have 

x £ P|0 = x £ U 
hence f| 0 = U. 

Were it not for the "protection" afforded us by the domain, "every x" would mean 
"everything", and we cannot form the set of everything! □ 

1.1.2.19 Definition. If A and B are sets, then their difference, A — B, is the set 
{x : x £ A Ax £ B}. We may also write this as {x £ A : x fi B}. If A = U then 
we write B for U — B and call it the complement of B. □ 
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1.1.2.20Theorem. A-B = AnB. 

Proof, x £ A — B means x e A A x £ B. Given that x £ B = x G B, we are 
done. D 

1.1.2.21 Example. Let us compute {a, b} — {a}. Now, if a = 6, then {a, 6} = {a}, 
hence the difference equals 0. So let a ^ b. We have {a, 6} = {x : x = a V x = 6} 
and {a} — {x : x = a}, thus 

{a, 6} - {a} = {x : (x = a V x = b) A x ^ a} (1) 

The reader will have no trouble verifying that, since both x = a V x — b and ~^x = a 
are true in our context, we have 

(x — a V x — b) A -i# = a = x = 6 (2) 

Indeed, in the context of {a, 6} — {a}, the truth-value of x — a is f and thus the left 
hand side of = in (2) has the same truth-value as the right hand side—cf. 1.1.1.14 and 
note the truth-value of si A SB when srf is t and also the truth-value of si V SS when 
si is f. Therefore the right hand side of (1) simplifies to {x : x = b} [cf. 1.1.2.6, 
item (5)], i.e., {b}. This is the difference. □ 

1.1.2.22 Example. What conclusions may we draw from the following equality? 

{{a},{a,b}} = {{A},{A,B}} (1) 

Well, we get, first off, that 

n{w.{M}}=n{(4{AB}} 
by an application of Exercise 1.8.4 (p. 85). That is, 

W = {̂ 4} 

hence 
a = A (2) 

This time let's apply (J to both sides of (1), We get {a, b} — {A,B}, which, by (2), 
becomes 

{a,b} = {a,B} (3) 

Applying again Exercise 1.8.4 (p. 85), to the function x — {a} this time, we get via (3) 

{a,b}-{a} = {a,B}-{a} (4) 

If a — b, then the left hand side of (4) is 0, so a = B and therefore 

b = B (5) 
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If a ^ b, then, also a ^ B (else the right hand side, and hence the left, is 0). By the 
previous example, (4) yields {b} = {B} in this case, so we obtain (5) once more. 

In summary, (1) implies (2) and (5). □ 

1.1.2.23 Definition. (Kuratowski's Ordered Pair) For any objects x and y (sets or 
not), we reserve the symbol (x, y) as an abbreviation of the set {{x}, {x, y}}. We 
call (x, y) the ordered pair of x and y. □ 

The nomenclature for (x, y) stems from the property established in 1.1.,2.22, that 

If (x, y) = (X, Y), then x — X and y — Y (pair) 

that is, order or position matters in the pair. This property is not shared by {a, b} 
since, by extensionality, {a, b} = {b, a}, as we know. Of course, the converse—that 
x — X and y = Y implies (x, y) = (X, Y)—is not miraculous at all, and simply 
follows by two applications of Exercise 1.8.4, p. 85: First, (x, z) — (X, z) and then 
(x,y) = (X,Y). 

The reader is familiar with ordered pairs from analytic geometry, where ordered 
pairs of real numbers give the coordinates of points on the Cartesian plane. Indeed, 
the concept of Cartesian product relies on the (x, y) objects. 

1.1.2.24 Example. So, (1,2) ± (2,1) lest 1 = 2. Is (1,1) = {1}? To ask explicitly, 
is {{1},{1,1}} = {1}—that is, by extensionality, twice—is {{1}} = {1}? Not 
unless {1} = 1, but this cannot be since 1 is an urelement, it has no set-theoretic 
structure. □ 

How about 
A = {A} (*) 

in general, for some set Al We cannot use here a "type" argument as we did above, 
since both sides of = are of type set. 

Can this be? An unfair question this, since naive set theory cannot resolve it. If 
we grant (*), then we have A e A. Well, can this be? 

Axiomatic foundations disallow this state of affairs, basing it on an intuitive 
concept40 that "sets are formed by stages", so you can't have a set (built) before 
you have (built) its members. A G A requires the left A being available before the 
right A is—an untenable proposition. Thus set theorists have adopted an axiom (of 
foundation) which precludes bottomless (unfounded) chains such as 

... G d e ceb e a 

The impossibility of A G A follows from this, since otherwise it would lead to 
...eAeAeAeA. 
40All reasonable axioms are based on intuitively acceptable concepts. The idea that sets are formed by 
stages led to many nice axioms of axiomatic set theory. 
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Ordered triples, quadruples and beyond can be easily defined using the ordered 
pair as the basic building block: 

1.1.2.25 Definition. (Ordered Tuples) We define the symbol ( # i , . . . , # n ) , pro-
nounced the ordered n-tuple or just—n-tuple—by two recurrence equations: 

(x1,x2) ={xi,x2) 
and, for n > 2, 

\X\, . . . , X n , 3 ? n + l / = v \*^11 • ■ • t •En) i %n-\-l) 

xi is the i-th component of the tuple, (a, b) is also called an 2-tuple (as well as an 
ordered pair). 

We often employ the abbreviation xn for the (ordered) sequence x\,..., xn. The 
presence of ""*" will not permit the confusion between the sequence xn and the 
component xn. If the length n is immaterial or known, we may just write x. □ 

The above is a simple recursive or inductive definition. It compactifies and renders 
finite an infinite-length definition such as: 

(x,y) =(y,y) 
(x,y,z) = ((x,y),z) 
(x,y,z,u) = ((x,y,z),u) 
(x, y, z, u, w)= ((#, 2/, z, u),w) 

In essence, it finitely describes the " : " above. 
This is entirely analogous with loops in programming where a variable-length (and 

therefore syntactically illegal)—it depends on the value of N—program segment is 
correctly implemented as a loop; that is, the following, where X <— X + 1 occurs N 
times 

readiV,X 
X ^ 0 
X ^X + l 

X <r-X + l 

is captured by this 

read N, X 
X ^ 0 
repeat N times 

{ 
X <-X + l 
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} 
The reader has seen recursive definitions similar to the one in 1.1.2.25, for example, 
the one that defines nonnegative (integer) powers of a non zero real number a by two 
equations: 

a0 =1 
and, for n > 0, 

an+1=a-an 

Recursive definitions of this and of more general types are reviewed in Section 1.4. 

1.1.2.26 Exercise. Show that the name ordered (4-) tuple is apt for (x, y, z, w) by 
showing that (x, y, z, w) = (X, Y, Z, W) implies that x = X,y = Y,z = Z and 
w = W. □ 

1.1.2.27 Exercise. Write down explicitly the set for which the tuple (x, y, z, w) is 
compact notation. □ 

1.1.2.28 Definition. (Cartesian Product) Let A\,..., An be sets. Then their Carte-
sian product, in the given order, is the set 

| ( a i , . . . ,a n ) : a* G Ai9foTi = l , . . . , n | 

We will employ the symbols 
n 

X Ai or X Ai 
l<i<n i=l 

as alternative shorthands for this product. 
2 

If A\ —A and A2 = B then we write Ax B rather than X i=1 M- It is all right, 
but sloppy, to write A\ x • • • x An for the general case. If Ai = C, for all i9 then we 
write Cn for X "=1 M- □ 

1.1.2.29 Example. {1} x {2} = {(1,2)} and {2} x {1} = {(2,1)}. Thus {1} x 
{2} ^ {2} x {1}; the Cartesian product is not commutative in general. □ 

n 
X M can be given by a simple recursive (inductive) definition: 
2 = 1 

1 
X M= Ai 
2 = 1 

and, for n > 1, 
n + l n 
X A= (X A{) x An+! 
2 = 1 2 = 1 
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The reader should verify that this is consistent with 1.1.2.28 and 1.1.2.25. 
Similarly, An can be defined inductively (recursively) as 

A1 =A 
and, for n > 1, 

An+1=An xA 

1.1.2.30 Example. A x 0 = 0, since (x, y) G A x 0 is equivalent to x G A A y G 0, 
which is false. Similarly, 0 x A = 0. □ 

We conclude our review of set operations with the power set. 

1.1.2.31 Definition. (Power Set) For any set A, its power set—denoted as V(A) or 
2A—is {x:xCA}. D 

1.1.2.32 Example. Thus,20 = {0};2<0> = {0, {0}};and2^W> - {0, {0}, {{0}}, 
{M0}}}. 

2{°'1> = {0,{O},{1},{O,1}}. 
Since 0 C A and A C A for any set A, we have always 0 G 2A and A G 2A. □ 

1.1.3 Alphabets, Strings and Languages 

A string or expression or a word is just a tuple, all of whose components come from 
the same set, A, the latter being called the alphabet. We say that "a? w a string of 
length n over the alphabet A" meaning x e An. 

Traditionally, strings are written down without separating commas or spaces, nor 
with enclosing angular brackets. So if A — {a, b} we will write aababa rather than 
(a,a,b,a,b,a). 

Concatenation of (a±,..., am) and (b\,..., bn) in that order, denoted as 

( a i , . . . , a m > * <6i,...,6n> 

is the string of length m + n 

( a i , . . . , a m , 6 i , . . . , 6n) 

Clearly, concatenation as defined above is associative, that is, for any strings x, y and 
z we have (x * y) * z — x * (y * z). 

It is convenient to introduce a nw// or empty string, that has no members, and hence 
has length 0. We will denote it by e. We will not attempt to give it a precise tuple 
counterpart, but some people write "()" with nothing between brackets. 

At the intuitive level, and given how concatenation was defined, we see that 
x * e = e * x = xfor any string x. We will distinguish 0 and e since one is an 
"unordered set" will the other is ordered; but both are empty. 
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The set of all strings of non zero length over A is denoted by A+. This is, of 
course, 

oo 

1 = 1 

Adding e to the above we get the unqualified set of all strings over A, denoted by A*; 
that is, A* = A+ U {e}. This set is often called the Kleene star of A. 

A string A is a prefix of a string B if there is a string C such that B = A * C. It 
is a suffix of 5 if for some D, we have i3 = D * A The prefix (suffix) is proper if it 
is not equal to B. 

Just as we use implied multiplication, ab for a x b or a • 6, we also use implied 
concatenation, xy foxx*y —leaving it up to the context to fend off ambiguities. 

1.1.3.1 Example. Not all alphabets are amenable to writing tuples in "string-notation". 
For example, A = {1,11} has a problem. The notation 111 is ambiguous: Do we 
mean (1,1,1), (11,1), or (1,11)? □ 

1.1.3.2 Definition. (Languages) A language, L, over an alphabet A is just a subset 
of A*. □ 

The "interesting" languages are those that are finitely definable. Automata and 
language theory studies the properties of such finitely definable languages and of the 
"machinery" that effects these finite definitions. 

1.1.3.3 Definition. (Concatenation of Languages) If L and M are two languages 
over an alphabet A, then the symbol L * M or simply (implied concatenation) LM 
means the set {xy : x £ L A y G M}. □ 

One can learn to live with * as both a unary (one-argument) operation, A*, and as a 
binary one, L * M, much the same way we can see no ambiguity in uses of minus as 
—x and y — z. 

1.2 RELATIONS AND FUNCTIONS 

Intuitively, a relation is a formula, £/(x,y,z). We say that a,b,c are related according 
to £/(x, y, z) just in case «g (̂a, 6, c) is true. Influenced by the set theorist who wants to 
realize "everything" (even formulae) as some set, the modern mathematician views 
relations extensionally (by what they contain) as sets. For example, £/(x,y,z) 
naturally defines this set, its extension: {(x, y, z) : £/(x, y, z)}. One goes one step 
further and forgets the role of #/. As a result, we give a totally extensional definition 
of a relation as a set of tuples, disregarding how it may have been formed by a 
"defining property". 
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1.2.0.4 Definition. A binary relation —or simply relation—R is a set of 2-tuples. 
We use the notations (x,y) G R, xRy and R(x, y) to mean the same thing. □ 

A relation R, on the other hand, immediately gives rise to an atomic formula — 
variably denoted by one of the forms (x,y) G R, xRy or R{x,y)— just as the 
specific relations < and G lead to the atomic formulae x < y and x G y (cf. 1.1.1.1). 

Pause. So, every formula srf(x,...) defines the relation A = {(x,...) : srf(x,...)}, 
and every (binary) relation R defines the (atomic) formula xRy\ right?-* 

Not exactly. If we have an "enormous"41 supply of symbols for formulae, then we 
could do this, since for every relation we could then introduce a formula symbol (so-
called "predicate")—say, R, 0, -<, or whatever—by a definition, such as "x -< y if and 
only iff (x, y) is a member of the given relation". This fails in most practical cases, 
e.g., in set theory and arithmetic, where our symbol-alphabet is finite or enumerable 
(cf. Definition 1.3.0.40). To write down —that is, to "have"—a formula, we need 
notation for it. As we will see in Section 1.3, we have far "more" binary relations R 
than we have means to "write them down" as formulae xRy, if our symbol-alphabet 
is finite or enumerable. 

Hm. Did I not just write down "xRy"l Well, yes; however, writing one or two 
symbols down, like "i?" or "Q" and saying that they "stand for relations" does not 
equate to having a system of notation to write down all binary relations. 

Intuitively, a relation is a table—possibly infinite in length—of pairs like 

X Z 

a2 
a2 

The head-row names the relation's variables. The entries in each row represent the 
tuples-members of the relation. It is standard convention to think of the left column, 
headed by x as the "input-side", while the right column as the "output-side". This is 
consistent with a "black box" view of the relation 

where we don't know or don't care what makes it tick, but we do know which inputs 
cause which output(s). 

It is not a priori precluded to have the same input produce several outputs. For 
example, think of R = {(1,2), (1,1), (1,7)}. 

Thus, the relation (table) establishes a one-to-many input/output correspondence. 

Contrary to our viewpoint with formulae &/(x, y)—where the input variables are all 
the free variables, here x and y—in the case of relations we are allowed two points 
of view, one being the one presented above, and the other where both x and y are the 
inputs of the relation R(x, y). The context will fend for us! 

See also Section 1.3 to appreciate that not all infinities are equal in size. 
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Of course, when we take all the variables of a relation as input, then the output 
that is implied—just as in the case of formulae—is one of t or f. 

Since (an+i) — ((^n)> &n+i)> there is no loss of generality in focusing mostly on 
binary relations. In other words, the left (input) column may well be a column of 
n-tuple entries a{ = {A{,A32,..., A3

n). The relation is then said to be (n + l)-ary 
and, in table form, would look like 

X\ . . . XJI 

A{ ... K\ 
A\ ... All 

z 

a\ 

The set consisting of the entries in the input column is the relation's domain—that 
is, those inputs that cause some output—while those in the output column constitute 
the range—that is, the set of all outputs. 

1.2.0.5 Definition. Let R be a (binary) relation. Its domain, denoted by dom(ii), is 
the set {x : (3y)xRy}. Its range, denoted by ran(R), is the set {x : (3y)yRx}. D 

1.2.0.6 Example. Let R = {(x, x) : x G N}. Then dom(iJ) = ran(JS) = N. 
Let Q = {(0, x) : x G N}. Then dom(Q) = {0} and ran(Q) = N. 
Let S = {(x, 0) : x G N}. Then ran(S) = {0} and dom(S) = N. 
Let T = {(0,0), (0,7)}. Then dom(T) - {0} and ran(T) = {0, 7}. □ 

An abstract term of logic captures well the intentional aspect of a function—indeed 
a function call—of mathematics and programming: we have a "rule" that defines the 
input/output dependence. For example, the "rule" x + y that tells us how the output 
is to be obtained, once we have the x and y values. 

While, in logic, a term is a totally different type of object from a formula, on the 
other hand, extensionally—i.e., in its set theory realization—a function is a subsidiary 
construct of a relation. Referring back to the black box analogy, a function is simply 
a relation that obeys the restriction that no input can cause more than one output. So 
a function, extensionally, is a single-valued relation. 

1.2.0.7 Definition. A function R is a single-valued relation. That is, whenever we 
have both xRy and xRz, we will also have y — z. 

It is traditional to use, generically, lower case letters from among f,g,h,k to 
denote functions but this is by no means a requirement. □ 

1.2.0.8 Example. The empty set is a relation of course, the empty set of pairs. It is 
also a function since 

(x, y) G 0 A (x, z) G 0 -> y = z 
vacuously, by virtue of the left hand side of —► being false. □ 

It is often the case that we study relations, and functions, that take their inputs from 
a given set A that is fixed throughout the study, and, similarly, produce their outputs 
in a given fixed set B. 
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For example, our work on computability in this volume deals exclusively with 
functions and relations whose inputs and outputs are from N. 

Additional terminology has been invented to name these fixed "input-" and 
"output-spaces" and also to name relations that fully utilize one or the other of 
these spaces. The input space is called the left field while the output space is called 
the right field, 

If A and B are the adopted left and right fields of the function or relation R 
then clearly R C A x B, and, in particular, dom(i?) C A while ran(i2) C B. A 
well-established abbreviation—other than R C A x B— for "R is relation with left 
field A and right field B" is R : A -> J5, read "i? is a relation from A to B". 

If A = B, then we say "i? is a relation on A". 
If dom(iJ) = A, then R is totally defined on A. We just say "JR is total". If 

ran(i?) = B, then R "covers" the entire right field with its outputs. We say "i? is 
onto". 

Pause. Totalness and ontoness are relative to a left field and a right field, respec-
tively; they are not absolute notions.< 

A relation R : A —► B is either total or not (nontotal). An indifference to-
ward which is which will be expressed by calling R partial. Thus "partial" is not 
synonymous with "nontotal". All relations are therefore partial relations. 

All the terminology introduced in this JL -segment applies to the special case of 
functions as well. 

We now turn to notation and concepts specific to functions. Let / be a function. 
First off, f(a) denotes the unique b such that afb or (a, b) G / . Note that such a b 
exists iff a G dom(/). Thus 

b = / (a) iff (a, b) £ f iff afb 

We write f(a) I—pronounced "/(a) is defined" or "/(a) converges"—to mean 
a e dom(f). Otherwise we write f(a) t—pronounced "/(a) is undefined" or " / (a) 
diverges". 

The set of all outputs of a function, when the inputs come from a particular set X, 
is called the image ofX under f and is denoted by f->(X). Thus, 

/_>(*) = {/(*) :xeX} (1) 

Pause. So far we have been giving definitions regarding functions of one variable. 
Or have we?^ 

Not really: We have already said that the multiple-input case is subsumed by 
our notation. If / : A -> B and A is a set of n-tuples, then / is a function of 
"n-variables", essentially. We usually abuse the notation f((xn)) and write instead 
f{xn). 

The inverse image of a set Y under a function is useful as well, that is, the set of 
all inputs the generate /-outputs in Y. It is denoted by f<-(Y) and is defined as 

f^(Y) = {x:f(x)eY} (2) 
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Regarding, say, the definition of /_► : 
What if f(a) t-? How do you "collect" an undefined value into a set? 

Well, you don't. Both (1) and (2) have a rendering that is independent of the notation 

U(X) = {y:(3xeX)(x,y)ef} (1') 

U(Y) = {x:(3yeY)(x,y)ef} (2') 

1.2.0.9 Example. Thus, A ({a}) = {/(x) : x £ {a}} = {/(») : x = a} = 
{/(a)}-

Let now g = {(1,2), ({1,2}, 2), (2,7)}. Thus, g({l, 2}) = 2, but ^ ( { 1 , 2 } ) = 
{2,7}. Also, s (5) t and $_>({5}) = 0. 

On the other hand, g<-({2,7}) = {l,{l,2},2}andp<_({2}) = {1, {1,2}}, while 
<7«-({8}) = 0- □ 

When f(a) J., then / (a) = f(a) as is naturally expected. What about when 
f(a) t? This begs a more general question that we settle as follows: 

First, seeking help from logic. For any formula s/\x\ and term t that does not 
contain the variable x, 

\-*/[t] = {3x)(x = tAs/[x]) (1) 

We settle (1) by a ping pong argument (putting aside an urge to proclaim "but, it is 
obvious!"). 

(-») direction. We want to prove £/[t] —> (3x)(x = t A g/[x\). Note that 

s?/[t] ->t = tA #/[t] 

is true. So is 
t = tA s/[t] -+ (3x)(x = t A &/[x\) 

by 1.1.1.40 since we may view x — t A s/\x\ as (x = t A «e^[x])[x] and thus view 
t = t A &/\t] as (x = t A ̂  [#])[£] due to the absence of x in £. Using this and the 
previous displayed formula along with tautological implication we get what we want. 

(«—) direction. We want to prove (3x)(x — t A &/[x\) —>> g/[t). We will employ 
the deduction theorem, so viz freeze all free variables in (3x)(x = t Ag/[x]), and 
assume it. So, let us call a an x-value that makes the quantification work (cf. 1.1.1.13). 
We have 

a = tA si/[a] (2) 

Since the a = t part of (2) and the Leibniz axiom [(vi) of 1.1.1.38] yield sn/\d\ = &/ [t], 
the remaining part of (2) yields the truth of £/[t], as needed. 
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Transferring the above result to the specific case of substituting terms into input 
variables42 of relations, we have the following. 

1.2.0.10 Remark. For any (m + n + 1-ary) relation R(zi,..., zm, x, y i , . . . , yn), 
function / , and object a, the substitution R(zi, ...,zm, / ( a ) , y i , . . . , yn) is short-
hand for 

(3w) (w = / (a) A R(zi,..., zm, w, yu . . . , yn)j (3) 

Note that w = f(a) entails that f(a) I, so that if no such w exists [the case where 
f(a) t ] , then (3) is false; not undefined! 

This convention is prevalent in the modern literature [cf. Hinman (1978), p. 9]. 
Contrast with the convention in Kleene (1943), where, for example, an expression 
like f(a) = g(b) [and even f(a) = b] is allowed to be undefined! □ 

1.2.0.11 Example. Thus, applying the above twice, f(a) — g(b) means (3u)(3w)(u — 
f(a) A w = g(b)) which simplifies to (3u)(u = f(a) A u = g(b)). In particular, 
f(a) = g(b) entails that f(a) | and g(b) | . □ 

The above is unsettling as it fails to satisfy the reflexivity of equality [axiom (v) 
of 1.1.1.38]: If f{a) t , then -./(a) = f(a). To get around this difficulty, Kleene 
(1943) has extended equality to include the undefined case, restoring reflexivity in this 
"generalized" equality relation. We will use this so-called Kleene-complete-equality 
quite often in the chapter on computability. This version of equality uses a different 
symbol, ~, to avoid confusion with the "standard" equality, =, of Remark 1.2.0.10 
that compares only objects (not "undefined values"). For any two functions / and g, 
we define 

f(a) ~ g(b) °=f(a) f Ag(b) t V(/(o) I Ag(b) I Af(a) = g(b)) 

while f(a)~b means the same thing as afb, that is, f(a) = b. 

1.2.0.12Example. Let g = {(1,2),({1,2},2),(2,7)}. Then, g(l) = <?({1,2}) 
and also g(l) ~ #({1,2}). Also, g(l) ^k g(2) and also y(l) ^ g(2). Moreover, 
y (3)~p(9) . □ 

If / and g are functions and / C g then g is an extension of / while / is a 
restriction of g. If g : A —> B, one way to restrict g to / is to choose for / a 
"smaller" left field, CCA, and take for / only those 2-tuples that have the their first 
component in C. We write this as / = g \ C. Thus, g \ C — g H (C x B). 

Note that every function / extends the totally undefined function 0 since 0 C / . 

1.2.0.13 Definition. A function / is 1-1 if for all x and y, f(x) = f(y) implies 
x = y. □ 

Note that f(x) = f(y) implies that f(x) | and f(y) I (1.2.0.10). 

'Here we view every variable of R as input; output is t or f. Cf. discussion on p. 42. 
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1.2.0.14 Example. {(1,1)} and {(1,1), (2,7)} are 1-1. {(1,0), (2,0)} is not. 0 is 
1-1 vacuously. □ 

1.2.0.15 Definition. (Relational Converse) If R is a relation, then its converse, de-
noted by R~x is the relation {(#, y) : yRx}. D 

1.2.0.16 Exercise. Prove that if / is a 1-1 function, then the relation converse f~x 

is a function (that is, single-valued). □ 

1.2.0.17 Definition. (1-1 Correspondence) A function / : A -> B is called a 7-7 
correspondence iff it is all three: 1-1, total and onto. 

Often we say that A and B are in 1-1 correspondence writing A ~ B, omitting 
mention of the function that is the 1-1 correspondence. □ 

The terminology is derived from the fact that every element of A is paired with 
precisely one element of B and vice versa. 

1.2.0.18 Definition. (Composition of Relations and Functions) Let 7? : A -> B 
and Q : B -> C be two relations. The relation R o Q : A —> C, their relational 
composition, is the relation 

{(x,y):{3z)(xRzAzQz)} (1) 

If 7? and Q are functions, then their functional composition—or composition as 
functions—refers to their relational composition, but has a different notation: (QR) 
(no "o") is an alternative notation for RoQ; note the order reversal. □ 

So xR o Qy iff (3z)(xRz A zQy). Let then xR o Qy and also xR o Qw. For some 
a and 6, guaranteed to exist, we have xRa and aQy on one hand and xRb and frQw 
on the other. Let next R and Q both be functions. Then a = b (from 72) and hence 
y — w (from Q). Thus, 

Tjf 7? <2/z<7 Q are functions, then so is their composition, Ro Q or (QR). 
Let R and Q still be functions. Assume that (QR)(a) I. Then, for some b, 

aR o Qb, and hence, for some c, aRc and cQb. That is, 

72(a) = c and Q(c) = 6. For short, (QR)(a) = Q(R(a)) (2) 

The above justifies the order reversal for the alternative notation of "functional 
composition". 

1.2.0.19 Theorem. Relational composition is associative, that is, R o (Q o S) = 
(Ro Q) o S for any relations R,Q,S. If the relations are functions we may also 
write ((SQ)R) = (S(QR)). 

Proof See Exercise 24 in Section 1.8. □ 

www.it-ebooks.info

http://www.it-ebooks.info/


RELATIONS AND FUNCTIONS 4 7 

1.2.0.20 Definition. The identity function on a set A is 1 A ' A —> A given by 
1A{X) = x for all x e A. □ 

By 1.2.0.19, if R, Q, T, S are relations, then RoQoToSis unambiguous, as it 
means the same thing regardless of how we insert brackets. In particular, 

RoRo-.-oR 
S v ' 

n > l copies of R 

is unambiguous regardless of the absence of brackets. We have the shorthand Rn for 
the above chain of compositions. We can put this into an inductive definition similar 
to the one that defines positive powers of a positive real: 

1.2.0.21 Definition. (Relational Powers) The symbol Rn, for n > 1, is the rela-
tional power of R and is defined as 

R1 =R 
and, forn > 1, 

Rn+l =RoRn 

If R is a relation on A, then we replace the first equation by R° = 1 A and the 
condition for the second becomes "and, for n > 0". □ 

The following interesting result connects the notions of ontoness and 1-lness with 
the "algebra" of composition. 

1.2.0.22 Theorem. Let f : A ->► B and g : B -> A be functions. If(gf) = 1A, 
then g is onto while f is total and 1-1. 

We say that g is a left inverse of / and / is a right inverse of g. 

Proof. About g: Our goal, ontoness, means that, for each xeA,ay exists such that 
g(y) = x. Fix then a n x G A By (gf) — 1A, we have (gf)(x) = 1A(X) — x. But 
(<?/)(*) = <?(/(*)). So take !/ = / ( * ) . 

About / : As seen above, x — g(f(x)) for each x e A. Since this is the same as 
"xf o gx is true", there must be a z such that xfz and zgx. The first of these says 
f(x) = z and therefore f(x) | . This settles totalness. 

For the 1-lness, let f(a) = f(b). Applying g to both sides (that is, using 
Exercise 1.8.4) we get g(f(a)) = g(f(b)). But this says a = b, by (gf) — 1A, and 
we are done. □ 

1.2.0.23 Example. The above is as much as we can be expected to prove. For 
example, say A - {1,2} and B = {3,4,5,6}. Let / : A -» B be {(1,4), (2,3)} 
and g : B -> A be {(4,1), (3, 2), (6,1)}, or in friendlier notation 

/ ( 1 ) = 4 
/ (2 )= 3 
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and 
0(3)= 2 
5(4)= 1 
9(5) t 
5(6)= 1 
Clearly, (gf) = 1 A holds, but note: 

(1) / is not onto. 
(2) g is neither 1-1 nor total. □ 

1.2.0.24 Example. With A = {1,2}, B = {3,4,5,6} andf : A^ B eaidg : B-> 
A as in the previous example, consider also the functions / and g given by 

/ ( 1 ) = 6 
/ (2 )= 3 

and 
0(3)= 2 
5(4)= 1 
5(5)t 
5(6) = 2 

Clearly, (gf) = 1 A and (gf) = \A hold, but note: 
(1) / ¥> /• 
( 2 ) 5 ^ 5 -
Thus, neither left nor right inverses need to be unique. The article "a" in the 

definition of said inverses was well-chosen. □ 

The following two partial converses of 1.2.0.22 are useful. 

1.2.0.25 Theorem. Letf'.A^ B be total and 1-1. Then there is an onto g : B -> A 
such that {gf) = 1A-

Proof Consider the converse relation (1.2.0.15) of / and call it g: 

gD={(x,y):f(y)=x} (1) 

By Exercise 1.2.0.16, g : B —>► A is a (possibly nontotal) function. Note that, for 
any a £ A, there is a b such that f(a) = b (f is total), and, by (1), g(b) = a. That is, 
g(f(a)) = a, or (gf) = 1 A . □ 

1.2.0.26 Remark. By (1) above, dom(#) = {x : (3y) (x,y) G g} = {x : (3y)f(y) = 
x} = ran(/). □ 

1.2.0.27 Theorem. Let f : A -► B be onto. Then there is a total and 1-1 g : B -> A 
such that (fg) = 1B-

Proof. By assumption, 0 ^ f^({b}) C A, for all 6 G B. To define #(6) choose one 
c G /<-({&}) and set g(b) = c. Since f(c) = b, we get f(g(b)) = b for all b e B, 
and hence # is 1-1 and onto by 1.2.0.22. □ 
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The above argument makes potentially infinitely many choices, one from each 
f+-({b}). Of course, these sets are pairwise disjoint. 

Pause. Why is it that f^({x}) n /<-({?/}) = 0 if x ^ y?<« 
Contrast with the case where B = {b, b'}, a set of two elements. Then we can 

define g by simply saying 
Letc G /<_({&}), andsetg(b) = c. Let d G /«_({&'}), and set g(bf) = cf. 

We can contain our (two) choices in the space of a proof. The same is true if B 
had 2350000 elements. We would just have to write a proof that would be, well, a bit 
longer, using a copy of the sentence "Let y G /<_({#}), and set g(x) = y" once for 
each one of the 2350000 members of B that we generically called here "x". 

However, the "Let . . . " approach does not work for an infinite B, since we cannot 
contain infinitely many such sentences in the space of a finite-length proof; unless we 
have a way to codify the infinitely many choices in a finite manner. For example, if 
A is a set of natural numbers then so is /^_({6}) for each b and we can say precisely 
how a c can be chosen in each case: For example, "for each b G B, choose the 
smallest c in /<_({&})" would do just fine. 

Some mathematicians did not accept that one may effect infinitely many choices, 
in the absence of a finitely describable process of how to go about making them; this 
was not mathematically acceptable. They argued that in the absence of some kind 
of known "structure" in the various /«_({6}), all the elements of these sets "look 
the same" and therefore the infinite process of "choosing" cannot be compacted into 
a finite well-defined description. This observation hinges on the number of choices 
one needs to make rather than on the number of elements in a /<_ ({b}). 

An example of the difficulty, in layman's terms, attributed to Russell, contrasts 
two cases: One where we have an infinite set of pairs of shoes, and another, where 
we have an infinite set of pairs of socks. 

In the former case we can finitely define infinitely many choices of one shoe per 
pair by always choosing the left shoe in each pair. In the case of socks this "rule" 
does not define well which sock to pick, because, the two socks in a pair have no 
distinct "left" or "right" members. 

I used past tense above, "Some mathematicians did not accept, etc.", for the 
dissenting opinion. This is because mathematicians nowadays feel comfortable with 
the notion of effecting infinitely many choices without having a finite process to 
describe said choices. They even have an axiom (the Axiom of Choice, or AC) that 
says they can do so [for a thorough discussion of AC, see Tourlakis (2003b)]. 

1.2.0.28 Definition. (Equivalence Relations) Let R be a relation on a set A. We 
call it an equivalence relation iff it has all the three following properties: 

(1) It is reflexive, that is, xRx holds, for all x G A 

(2) It is symmetric, that is, xRy implies yRx, for all x and y 

(3) It is transitive, that is, xRy and yRz imply xRz, for all x, y and z. □ 
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The concept "equivalence relation" does not apply to relations R : A —>• B with 
A^ B. The concept of reflexivity requires reference to the left (and right, since they 
are equal) field. If we make the fields larger, without adding any pairs to the relation, 
a previously reflexive relation will cease being reflexive. 

1.2.0.29 Example. The function 1A ' A —> A is an equivalence relation. 
The relation < on N is transitive, but neither symmetric, nor reflexive; on the other 

hand, < has reflexivity (still fails symmetry). 
The relation R on Z given by: "xRy iff the difference x — y is divisible by 

5" (divisible with 0 remainder, that is) can be easily verified to be an equivalence 
relation. □ 

Given an equivalence relation R on a set A, we define for each x G A the set of 
all its equivalents in A. This is known as an equivalence class of R. We employ the 
symbol [X]R, thus 

[x]R^{yeA:xRy} (1) 
Despite employing the term "class" in this context, which is standard practice in the 
literature, we do not imply at all that these classes are "too large" to technically be 
sets. On the contrary, any such class is a subset of A. 

1.2.0.30 Theorem. Given an equivalence relation R on A. Its equivalence classes 
[x]R satisfy 

(1) [X]R ± 0 

(2) ifxRyiff[x}R = [y}R 

(3) if[x]R n [y]R ^ 0, then [x]R = [y]R 

(4) U € A W « = ^ 
Proof. 

(1) [x]R jL 0: In fact x G [x]R by xRx. 

(2) ifxRyiS[x]R = [y]R: 
First, assume the left hand side of the "iff", which also yields yRx by symmetry. 
For the (C) of the right hand side let z G [X]R. Thus xRz. Transitivity yields 
yRz, hence z G [y]R. 
For the Q ) , let z G [y]Ry i.e., yRz. Along with xRy and transitivity we have 
xRz, that is, z G [X]R. 
Now assume the right hand side of the "iff". By the proof of (1), y G [X]R, thus 
xRy. 

(3) if [X]R C\[y]R 7̂  0, then [X]R = [y\R'. By the assumption, there is a z such 
that z G [X]R and z G [y]#. Thus xRz and yRz, the latter implying zRy. By 
transitivity, xRy; done by (2). 
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(4) U X G A M ^ = A: T h e (Q i s t r i v i a l since [x]R C A for any x e A. For (D), 
let x E A. But x G [x]ie and this meets the entrance requirement for x in 

1.2.0.31 Remark. (Partitions) Thus the equivalence classes of an R on A meet the 
three conditions a partition of A must satisfy, by definition: 

A partition on A is 0 sef of sets P such that 

(a) I f C e P , t h e n C / 0 

(b) (Nonoverlap) If C and D are in P and C n J5 7̂  0, then C = D 

(c) (Coverage) |J 5 = A. 

So equivalence classes furnish an example of partitions. More is true (cf. Exer-
cise 1.8.33): If P is a partition on A, then an equivalence relation on A can be defined 
in a natural way, whose equivalence classes are precisely the members of P. □ 

1.2.0.32 Definition. (Order) A relation R on a set A is called an order or order 
relation iff it is transitive and irreflexive, the latter meaning -^(3x)xRx. 

We normally use the abstract symbol < for orders and let the context fend off 
confusion with concrete usage of the symbol as the order on N or R. □ 

We call all orders partial, since some orders, < on A, are total or linear, while others 
are not. 

Indeed, we will seldom use the qualifier "partial" for orders as it is automatically 
understood. Exception: Often one presents the "package" consisting of the order 
and the underlying set A together, in symbols (A, <), and calls it a partially ordered 
set or POset. 

That an order < on A is total means that every pair of members x and y of A are 
comparable: That is, one of x = y, x < y or y < x holds (this is also know as the 
trichotomy property of linear orders). 

1.2.0.33 Example. A standard example of a total order is < on N. A standard 
example of a nontotal (nonlinear) order is C on 2A. For example, taking as A = 
{0,1}, we see that {0} and {1} are not comparable under C. That the latter is an 
order is trivial to verify (it is irreflexive by definition), a task that we leave to the 
reader. □ 

1.3 BIG AND SMALL INFINITE SETS; DIAGONALIZATION 

Two broad distinctions of sets by size are finite vs. infinite. Intuitively, we can count 
the elements of a finite set and come up with a (natural) number at some distinct 
point in (future) time. No such possibility is open for infinite sets. Just as finite sets 
come in various sizes, a 5-element set, vs. a 0-element set, vs. a 23500000-element set, 

www.it-ebooks.info

http://www.it-ebooks.info/


52 MATHEMATICAL FOUNDATIONS 

Cantor has taught us that infinite sets also come in various sizes. The technique he 
used to so demonstrate is of interest to us, as it applies to computability, and is the 
key topic of this section. 

1.3.0.34 Definition. (Finite sets) A set A is finite iff it is either empty, or is in 1-1 
correspondence with {x G N : x < n}. We prefer to refer to this "normalized" finite 
set by the sloppy notation {0 , . . . , n}. 

In this case we say that "A has n + 1 elements". If A = 0 we say that "A has 0 
elements". If a set is not finite, then it is infinite. □ 

1.3.0.35 Example. I fAandBhaven+l elements, then A ~ B(cf. Exercise 1.8.31). 

□ 
1.3.0.36 Theorem. If X C {0 , . . . , n}, then there is no onto function f : X —> 
{0,. . . , ra}. 

Proof First off, the claim holds if X = 0, since then / = 0 and its range is empty. 
Let us otherwise proceed by way of contradiction, and assume that it is possible to 
have such onto functions, for some n. Suppose then that the smallest n that allows 
this to happen is n0, and let X0 be a corresponding set "X" that works, that is, we 
have an onto / : XQ —> {0 , . . . , no}. Thus Xo ^ 0, by the preceding remark, and 
therefore no > 0, since otherwise Xo = 0. 

Let us set H = /<_({n0}). 0 ^ H C X0; the ^ by ontoness. 
Case L n0 G H. Then f \ (X0- H) is onto, from X0 - H to {0 , . . . , n0 - 1}— 

where Xo — H C {0 , . . . , no — 1}—contradicting minimality of no. 
Case 2. n0 £ H. If no ^ Xo, then we are back to Case 1. Otherwise, 

Xo — H (£_ {0 , . . . , n0 — 1} and we need a bit more work to get a Y c {0 , . . . ,n 0 —1}, 
and an onto function from left to right, to get our contradiction. 

Well, we first look at the subcase where /(no) t- then just ignore n0; that is, take 
Y = X0 - H - {n0}. Our function (onto {0 , . . . , n0 - 1}) isf\Y. 

Finally, consider the subcase where /(no) = m. Take g 
= ( / - ({ (n 0 ,m)}u 

H x {no}) j U (H x {m}). Essentially, g is / ; except that it ensures that (a) we 
get no output no, (b) no ^ dom(g), and yet (c) we do obtain output m—to maintain 
ontoness. Now, taking Y = X0 — {n0} we see that g : Y —> {0 , . . . , no — 1} is 
onto. □ 

1.3.0.37 Corollary. (Pigeon-Hole Principle) Ifm < n, then {0 , . . . , m} / {0 , . . . , n}. 

Proof If the conclusion fails then we have an onto / : {0 , . . . , m} —>> {0 , . . . , n}, 
contradicting 1.3.0.36. □ 

Here is a "quick proof" of 1.3.0.37 that does not utilize 1.3.0.36: Since A ~ A for 
any non-empty set, {0 , . . . , m} has m + 1 elements. If {0 , . . . , m} ~ {0 , . . . , n}, 
then, by 1.3.0.34, it also has n + 1 elements. Impossible! 

Pause. Do you accept this "proof"?^ 
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You shouldn't. "A has n + 1 elements" is just informal jargon for "A ~ 
{0 , . . . , n}". It may well be that this naming was unfortunate, and that it fails 
to uniquely assign a number to a finite set as "the number of its elements". That the 
nomenclature in quotes is apt is the content of Corollary 1.3.0.37, not the other way 
around. 

1.3.0.38 Corollary. There is no onto function from {0 , . . . , n} to N. 

"For all n G N" is, of course, implied (cf. 1.1.1.10). 

Proof Fix an n. By way of contradiction, let g : {0 , . . . , n} —>> N be onto. The 
function / given below is onto from N t o { 0 , . . . , n + 1} 

/(0) = 0 
/ ( I ) = 1 
/(2) = 2 

/ ( n + l ) = n + l 
f(m) = 0, for all m > n + 1 

Thus (cf. Exercise 1.8.34) (fg) : {0 , . . . , n} -> {0 , . . . , n + 1} is onto, contradicting 
1.3.0.36. □ 

Our mathematical definitions have led to what we hoped they would: That N is 
infinite! 

N is a "canonical" infinite set, and sets that can be enumerated using natural 
number indices 

a o , a i , . . . 

have a special name. 

1.3.0.39 Definition. (Countable Sets) A set A is countable, if it is empty or (in the 
opposite case) if there is a way to arrange all its members in an infinite sequence, in 
a "row of locations", utilizing one location for each member of N. It is allowed to 
repeatedly list any element of A, so that finite sets are countable. For example, {1}: 

1 ,1 ,1 , . . . 

Technically, this enumeration is a total and onto function / : N —» A. We say that 
f(n) is the nth element of A in the enumeration / . We often write fn instead of f(n) 
and then call n a "subscript" or "index". □ 

A closely related notion is that of a set that can be enumerated using the elements 
of N as indices, but without repetitions. 
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1.3.0.40 Definition. (Enumerable Sets) A set A is enumerable iff it is in 1-1 corre-
spondence with N. □ 

1.3.0.41 Example. Every enumerable set is countable, but the converse fails. For 
example, {1} is countable but not enumerable due to 1.3.0.38. {2n : n G N} is 
enumerable, with f(n) — 2n effecting the 1-1 correspondence / : N —» {2n : n G 
N}. □ 

1.3.0.42 Theorem. If A is an infinite subset ofN, then A ~ N. 

Proof We will build a 1-1 and total enumeration of A, presented in a finite manner 
as a (pseudo) program below: 

X <-A 
n <-0 
repeat forever: 
pick a, the smallest member of X 
tag a with n as a subscript; print an 
n —̂ n + 1 
X <-X- {an} 

Since A in not finite, this process never ends. In particular, all the members of A will 
be picked (picking always the smallest avoids gaps) and all numbers from N will be 
utilized as indices, considering the non-ending nature of the process, the sequential 
choice of indices, and the starting point n = 0. That is, the function f : N —> A, 
given for all n by f(n) — an, is total and onto. Since / is strictly increasing— 
f(n) < f(n + 1)—it is 1-1 (distinct inputs cause distinct outputs). □ 

See also Exercise 1.8.35. 

1.3.0.43 Theorem. Every infinite countable set is enumerable. 

Proof. Let / : N —> A be onto and total, where A is infinite. Let g : A —> N such 
that (fg) = 1A (1.2.0.27). Let us set B = rm(g). Thus, g is onto B, and by 1.2.0.22 
is also 1-1 and total. Thus it is a 1-1 correspondence g : A -> B, or A ~ B. 

B must be infinite, otherwise (1.3.0.34), for some n, A ~ B ~ {0 , . . . , n} . 
By transitivity of ~ (Exercise 31), this proves that A is finite, contradicting the 
hypothesis. Thus, by 1.3.0.42, A ~ B ~ N, hence (again, Exercise 1.8.31) A is 
enumerable. □ 

So, if we can enumerate an infinite set at all, then we can enumerate it without 
repetitions. It is useful to observe that we can convert a multirow enumeration 

\Ji,j Jfor all i,j in N 

into a single-row enumeration quite easily. This is shown diagrammatically below. 
The "linearization" or "unfolding" of the infinite matrix of rows is effected by walking 
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along the arrows. 

(0,0) 

(1,0) 

(2,0) 

(3,0) 

Technically, the set N x N—the set of "double subscripts" (z, j)—is countable. This 
can be seen by a less informal argument; in fact, N x N ~ N: 

Perhaps the simplest way to see this is to consider the function / : N x N - ^ N 
given by / (m, n) = 2 m 3 n . It is clearly total, and (less) clearly 1-1: For the latter 
just show that 

2 m 3 n = 2 m '3 n ' implies m = m' and n = ri 

But ran(/) is infinite (see Exercise 1.8.36). Thus N x N ~ ran(/) ~ N. 
This unfolding of a matrix into a straight line yields a very useful fact regarding 

strings over countable sets (alphabets): 
If the string alphabet V is countable, then the set of all strings of length 2 over 

V is also countable. Why? Because the arbitrary string of length 2 is of the form 
didj, where di and dj represent the zth and j elements of the enumeration of V, 
respectively. Unfolding the infinite matrix exactly as above we get a single-row 
enumeration of these strings. 

By induction on the length n > 2 of strings we see that the set of strings of any 
length n > 2 is also countable. Indeed, a string of length n + 1 is a string ab, where 
a has length n and b G V. By the induction hypothesis, the set of all strings a can be 
arranged in a single row (is countable), and we are done exactly as in the case of the 
didj above (think of di as an "a" and dj as a "6"). 

Finally, let us collect all the strings over V into a set S. Is S countable? Yes! We 
can arrange S, at first, into an infinite matrix of strings rrtij, that is, the jth string of 
length i. Then we employ our matrix-unfolding trick above. 

Given what we understand as a "string" (cf. subsection 1.1.3), the above argument 
translates as 

(1) If V is countable, then so is Vn for any n > 2. 

(2) If V is countable, then so is V+ 

With little additional effort one can see that if A and B are countable, then so is 
n 

Ax B and generalize to the case of X M-
i=l 

(0,1) (0,2) (0,3) 
S /* /■ 

(1,1) (1,2) 
/* / 

(2,1) 
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1.3,0.44 Remark. Let us collect a few more remarks on countable sets here. Suppose 
now that we start with a countable set A Is every subset of A countable? Yes, because 
the composition of onto functions is onto (Exercise 1.8.34). As a special case, if A 
is countable, then so is A n B for any B, since An B C A. 

In particular, there is only an enumerable set of formulae if we start with a countable 
alphabet V> since the set of formulae is a subset ofV+. This comment relates to the 
discussion under the Pause on p. 41. 

How about A U Bl If both A and B are countable, then so is A U B. Indeed, and 
without inventing a new technique, let 

a 0 , a i , . . . 

be an enumeration of A and 
& o , & i , . - . 

for B. Now form an infinite matrix with the ^-enumeration as the 1st row, while 
every other row is the same as the ^-enumeration. Now unfold this matrix! 

Of course, we may alternatively adapt the unfolding technique to an infinite matrix 
of two rows. □ 

1.3.0.45 Example. Suppose we have a 3 x 3 matrix 

1 
1 
0 

1 
0 
1 

0 
1 
1 

and we are asked: Find a sequence of three numbers, using only 0 orl, that does not 
fit as a row of the above matrix—i.e., is different from all rows. 

Sure, you reply: Take 0 0 0. 
That is correct. But what if the matrix were big, say, 10350000 x io3 5 0 0 0 0 , or even 

infinite! 
Is there a finitely describable technique that can produce an "unfit" row for any 

square matrix, even an infinite one? Yes, Cantor's diagonal method or technique. 
He noticed that any row that fits in the matrix as the, say, i-th row, intersects the 

main diagonal at the same spot that the i-th column does. 
Thus if we take the main diagonal—a sequence that has the same length as any 

row—and change every one of its entries, then it will not fit anywhere as a row! 
Because no row can have an entry that is different than the entry at the location where 
it intersects the main diagonal! 

This idea would give the answer 0 1 0 to our original question. While 
1000 11 3 also follows the principle and works, we were constrained by "us-
ing only 0 or 1". More seriously, in a case of a very large or infinite matrix it is best to 
have a simple technique that works even if we do not know much about the elements 
of the matrix. Read on! □ 
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1.3.0.46 Example. We have an infinite matrix of 0-1 entries. Can we produce an 
infinite sequence of 0-1 entries that does not match any row in the matrix? Yes, take 
the main diagonal and flip every entry (0 to 1; 1 to 0). 

If the diagonal has an a in row i, the constructed row has an 1 — a in column i, so 
it will not fit as row i. So it fits nowhere, i being arbitrary. □ 

1.3.0.47 Example. (Cantor) Let S denote the set of all infinite sequences of 0s and 
Is. 

Pause. What is an infinite sequence*} Our intuitive understanding of the term 
is captured mathematically by the concept of a total function / with left field (and 
hence domain) N. The n-th member of the sequence is f{n).< 

Can we arrange all of S in an infinite matrix—one element per row? No, since 
the preceding example shows that we would miss at least one infinite sequence (i.e., 
we would fail to list it as a row), for a sequence of infinitely many 0s and/or Is can 
be found, that does not match any row! 

But arranging all members of S as an infinite matrix—one element per row—is 
tantamount to saying that we can enumerate all the members of S using members of 
N as indices. 

So we cannot do that. S is not countable/ □ 

1.3.0.48 Definition. (Uncountable Sets) A set that is not countable is called un-
countable. □ 

So, an uncountable set is neither finite, nor enumerable. The first observation 
makes it infinite, the second makes it "more infinite" than the set of natural numbers 
since it is not in 1-1 correspondence with N (else it would be enumerable, hence 
countable) nor with a subset of N: If the latter, our uncountable set would be finite or 
enumerable (which is absurd) according as it is in 1-1 correspondence with a finite 
subset or an infinite subset (cf. 1.3.0.42 and Exercise 1.8.31). 

Example 1.3.0.47 shows that uncountable sets exist. Here is a more interesting 
one. 

1.3.0.49 Example. (Cantor) The set of real numbers in the interval 

(0,1] - f { x e R : 0 < x < 1} 

is uncountable. This is done via an elaboration of the argument in 1.3.0.47. 
Think of a member of (0,1], inform, as an infinite sequence of numbers from 

the set {0,1, 2,3,4, 5, 6, 7, 8, 9} prefixed with a dot; that is, think of the number's 
decimal notation. 

Some numbers have representations that end in 0s after a certain point. We call 
these representations finite. Every such number has also an "infinite representation" 
since the non zero digit d immediately to the left of the infinite tail of 0s can be 
converted to d — 1, and the infinite tail into 9s, without changing the value of the 
number. 
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Disallow all finite representations. 
Assume now by way of contradiction that a listing of all members of (0,1] exists, 

listing them via their infinite representations 

•^00^01^02^03^04 • • • 
.aioaua\2aisai4 ... 
•^20^21^22^23^24 • • • 
•&30a31a32&33a34 . . . 

The argument from 1.3.0.47 can be easily modified to get a "row that does not fit", 
that is, a representation 

.dodid2 • • • 
not in the listing. 

Well, just let 
J2 ifaii = 0\/aii = l 
1 1 otherwise 

Clearly .d§d\d2 • • • does not fit in any row i as it differs from the expected digit 
at the i-th decimal place: should be an, but di ^ an. It is, on the other hand, an 
infinite decimal expansion, being devoid of zeros, and thus should be listed. This 
contradiction settles the issue. □ 

1.3.0.50 Example. (1.3.0.47 Revisited) Consider the set of all total functions from 
N to {0,1}. Is this countable? 

Well, if there is an enumeration of these one-variable functions 

/ o > / l , / 2 , / 3 5 - - - (1) 

consider the function g : N -* {0,1} given by g(x) — 1 — fx(x). Clearly, this must 
appear in the listing (1) since it has the correct left and right fields, and is total. 

Too bad! If g = fi then g(i) = fi(i). By definition, it is also 1 — fi(i). A 
contradiction. 

This is a "mathematized" version of 1.3.0.47; as already noted, an infinite sequence 
of 0s and Is is just a total function from N to {0,1}. □ 

The same argument as above shows that the set of all functions from N to itself is 
uncountable. Taking g(x) = fx (x) + 1 also works here to "systematically change the 
diagonal" /o(0), / i ( l ) , • • • since we are not constrained to keep the function values 
in {0,1}. 

1.3.0.51 Remark. Worth Emphasizing. Here is how we constructed g: We have 
a list of in principle available indices for g. We want to make sure that none 
applies. A convenient method to do that is to inspect each available index, i, and 
using the diagonal method do this: Ensure that g differs from fi at input i, setting 
g(i) = 1 - fi(i). 
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This ensures that g ^ fu period. We say that we cancelled the index i as a possible 
"/-index" of g. 

Since the process is applied for each i, we have cancelled all possible indices for 
g: For no i can we have g = fi. □ 

1.3.0.52 Example. (Cantor) What about the set of all subsets of N —V(N) or 2N? 
Cantor showed that this is uncountable as well: If not, we have an enumeration of 

its members as 
5o,Si,£2, • • • (1) 

Define the set 
DD={xeN:x£Sx} (2) 

So, D C N , thus it must appear in the list (1) as an Si. But then i £ D iff i £ Si 
by virtue of D = Si. However, also i £ D iff i £ Si by (2). This contradiction 
establishes that 2N is uncountable. 

In particular, it establishes that D is not an Si. □ 

1.3.0.53 Example. (Characteristic functions) First a definition: Given a set S in 
the context of a reference set U, the characteristic function of S, denoted by xs> *s 

given by 

**<*> = { l K x e S 
If the reference set is N, the characteristic function of S C N is 

Jo ifxeS 
XsW-\l ifxeN-S 

Note that there is a 1-1 correspondence F between subsets of N and 0-1-valued 
functions from N simply given by F(S) — xs—cf. Exercise 1.8.37. Thus 

The set of 0-1-valued functions from N is in 1-1 correspondence with V(N) 

In particular, the concept of characteristic functions shows that Example 1.3.0.52 fits 
the diagonalization methodology. Indeed, XD{%) = 1 — Xsx(x) f°r an" x- ^n o t n e r 

words, XD is nothing else but the altered "main diagonal" (in bold face type) of the 
infinite matrix 

S0(0) S0(l) S0(2) 50(3) . . . 
5i(0) S i ( l ) Si (2) Si (3) . . . 
S2(0) S2(l) S2(2) S2(3) . . . 

□ 
1.3.0.54 Example. By Exercise 1.8.38 we have that 2 N x N - 2N so that 

The set of all subsets of N x N is uncountable 
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The above can be rephrased to 

The set of all binary relations on N is uncountable 

Thus, if we build our formulae with symbols out of a countable alphabet, then we do 
not have enough symbols to represent (in our notation) all binary relations on N by 
formulae. This observation concludes our discussion that started on p. 41, following 
Definition 1.2.0.4 and continued in 1.3.0.44. □ 

1.3.0.55 Example. (Russell's Paradox is a Diagonalization) Russell formed the col-
lection of sets x given as 

R={x:x(£x} (1) 

He argued that it is contradictory to accept R as a set: For if it is, and given that (1) 
is equivalent to the statement (for all sets x) 

x e R = x £ x (2) 

we can substitute the specific set R into the set variable x to obtain—from the truth 
of (2)—the truth of the special case 

ReR=R^R 

This, of course, is absurd! 
Let us now argue intuitively—taking liberties with working with all sets at once!— 

that the above argument is a diagonalization over all sets. 
Imagine an infinite matrix, M, whose columns and rows are labeled by all sets, 

arranged in the same order along rows and columns. Assume that the matrix has as 
entries only the numbers 0 and 1, entered such that in the location determined by the 
row (named) x and the column (named) y we have a 0 iff y G x is true (we have 1 
otherwise). That is, 

yexiKM{x,y) = 0 (1) 
It follows that each row represents a set as an array ofOs and Is—that is, as the set's 
characteristic function.43 

Thus, the partial depiction of the row for set a informs us that the following are 
true: a £ a, b e a and x £ a. Indeed, any array, X, of 0s and Is whose entries are 
labeled by the column names represents a collection of sets that has y as a member 
iff the y-th entry of X is 0. For example, the diagonal collection 

a b x 

43Recall that this is an intuitive argument showing the (ironic) indebtedness of Russell's argument to 
Cantor's original diagonalization method. Thus we will not be splitting hairs about qualms such as: 
"Hmm, is this characteristic function defined over the collection of all sets? Can we do that?" Yes, 
because this is only a qualitative argument to tease out the diagonal argument that was hidden in Russell's 
proof. 
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contains 6, but neither a, nor x. 

The matrix M 

Let us do Cantor's trick now: We take the main diagonal d and form an array d from 
it, by swapping all Is with Os. This d cannot fit as a row anywhere in the matrix M 
since it will disagree at the diagonal entry in any placement. 

The fact that the collection of sets (named) d does not fit as a row of M means 
that it is not a set—because all sets are accounted for as row labels in M\ 

But which collection does d represent? 
Well, using the analogy of X above, y is in d iff the y-th entry of d is 0 iff the y-th 

entry of d is 1 iff y £ y. Thus, 

d = R, Russell's "paradoxical collection" 

□ 

1.4 INDUCTION FROM A USERS PERSPECTIVE 

In this section we will review the two widely used forms of induction, complete (or 
strong) induction (also called course-of-values induction) and simple induction. We 
will see how they are utilized, and when one is more convenient than the other; relate 
them to each other, but also to another principle that is valid on natural numbers, the 
least (integer) principle. 

1.4.1 Complete, or Course-of-Values, Induction 

Suppose that &(n) is a "property"—that is, a formula of one free variable, n—of 
the natural number n. To prove that &(n) holds for alln 6 N it suffices to prove for 
the arbitrary n that 2?{n) holds. 

What we mean by "arbitrary" is that we do not offer the proof of &(ri) for some 
specific n such as n — 42; or n even; or any n that has precisely 105 digits, etc. If 
the proof indeed has not cheated by using some property of n beyond the generic 
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"n G N", then our proof is equally valid for any n G N; we have succeeded in effect 
to prove ^(n), for all n G N (cf. 1.1.1.10 and 1.1.1.15). 

1.4.1.1 Example. Suppose S?(n) stands for the statement 

0 + l + 2 + 3 + --- + 2n = n(2n + 1) (1) 

One way to prove (1), for all n, is as follows: Fix, but do not specify, n—that lack of 
specification makes it arbitrary. Note the pairs below—separated by semicolons— 
each consisting of two numbers that are equidistant from the two ends of the sequence 
0 , l , 2 , 3 , . . . , 2 n 

0, 2n; 1, 2n - 1; 2, 2n - 2 ; . . . ; n, 2n - n 

The above sequence is (almost) a permutation of the sequence 0 ,1 ,2 ,3 , . . . ,2n , 
hence the sum of its terms is the same as the left hand side of (1), plus n. 

Pause. Why "plus n"?<* 
We have n + 1 pairs, the sum of each being 2n, thus the left hand side of (1) equals 

(n + l)2n — n. An easy calculation shows that (n + l)2n — n — n(2n + 1). □ 

Now the above endeavor—proving some &(n) for the arbitrary n—is not always 
easy. In fact, the above proof—attributed to Gauss—had a rabbit-off-a-hat flavor. 
It would probably come as a surprise to the uninitiated that we can pull an extra 
assumption out of the blue and use it toward proving £?(n), and not only that: When 
all is said and done, this process, with the extra assumption, is as good as if we have 
proved £P(n) without the extra assumption! 

This out-of-the-blue assumption is that 

&>(k) holds for all k <n (I) 

or, put another way, that the history, or the course-of-values, of S?(n), namely, 

^ ( 0 ) , ^ ( l ) , . . . , ^ ( n - l ) (II) 

holds—that is, it is a sequence of valid statements. 
The extra assumption, (/) or (II), goes by the name induction hypothesis (I.H.) 

The technique of proving 

for all n, we have that «^(n) holds (2) 

using an I.H. toward the proof, is called proof by strong (complete, course-of-values) 
induction. 
The application (technique) of the proof by strong induction is: 

(a) Pick an arbitrary n and prove the validity of &(n) having also assumed the 
validity of (I) or (II). 
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(b) Once step (a) is completed, we conclude (2). 

We note that the history, ( / / ) , of @*(ri) is empty if n = 0. Thus every proof by 
strong induction has two cases to consider: the one where the history helps, because 
it exists, i.e., when we have n > 0; and the one where the history does not help, 
because it simply does not exist, i.e., when n — 0. 

Thus, the application of strong induction morphs into a two-step method: 

(A) Pick an arbitrary n > 0 and prove the validity of g?(n), having assumed the 
validity of (I) or (II). 

(B) For n = 0 prove &>(n)— i.e., ^(0)—directly. 

(C) Once steps (A) and (B) are completed, we conclude (2). 

Some jargon: As we noted, (I) or (II) are called the I.H. Step (A) above is called 
the Induction Step (I.S.). Step (B) is called the basis of the induction. The process 
(A)-(C) is proof by induction on n. 

One often sees the basis done first, but it should be clear that it is just one of two 
cases to be considered, and the cases can be taken care of in any order. 

It cannot be emphasized enough that the phrase "Pick an arbitrary n > 0 and 
prove..." is synonymous with ''Fix, but do not specify, an n > 0 and prove . . . " 

Clearly the I.H. is for a fixed but unspecified n—not for all n, as the latter would 
beg the very question we are called to settle by induction! 

1.4.1.2 Example. (Example 1.4.1.1 Revisited) We will prove (1) above, for all n, 
by strong induction, faithfully following the plan (A)-(B) above. Fix an arbitrary n. 
We have two cases: 

Case n > 0. We assume the I.H. and try to prove (1). Well, we calculate as 
follows: 

0 + 1 + 2 + • • • + 2(ra - 1) + 2n - 1 + 2n= (n - 1) (2(n - 1) + l) + 4n - 1 
= ( n - l ) ( 2 n - l ) + 4 n - 1 
= 2n2 - n - 2n + 1 + 4n - 1 
= 2n2 + n 
= n(2n + l) 

Note that the I.H. says 

0 + l + 2 + 3 + --- + 2£;:= k(2k + 1), for k < n (3) 

This, in particular, is true for k = n — 1, a fact we have used in the first calculation 
step above. 

Case n = 0. In this case the statement to prove, namely, (1), becomes 0 = 0, 
which is true. □ 
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Hm. The I.H. (3) above seems to be an overkill given that only the case k = n — 1 
was utilized in the I.S. Good point! We take it up in the next example. 

1.4.1.3 Example. This time we prove, for all n, 

if n > 1, then n has a prime factor (4) 

The reader will recall that a. factor of n is a natural number m such that for some 
natural number k we have n = mk. A natural number p is a prime number (or just a 
prime) if and only if it is greater than 1, and all its factors are p and 1. 

By strong induction, we take up first the case for an arbitrary (but fixed) n that 
allows a non-empty history; thus we assume the I.H. corresponding to (4): 

for all k < n, if k > 1, then k has a prime factor {I-H-) 

The non-empty history case corresponds to n > 3, since 1 < k and k < 2 are 
inconsistent. 

Let then n > 3. If n is a prime, then we are done (n is a factor of n). Alternatively, 
suppose that it is not. Then there exist a and b such that n = ab, where a ^ 1 ^ b— 
else n would be prime! Can a < 1? No, for then a = 0 and hence n = 0, contrary 
to the case we are in. Thus a > 1. Similarly b > 1. The latter yields n = ab > a. 

Therefore the I.H. applies to a, that is, a has a prime factor, p. This means that for 
some m,a— pm. But then, n — pmb, and hence n has a prime factor. 

The "basis" encompasses all the cases that have empty history: n = 0,1,2. For 
the first two the claim is vacuously satisfied as n > 1 is false. For n = 2 it is satisfied 
by virtue of 2 being a prime. □ 

This example shows the value of an I.H. that refers to the entire history below n: 
We have no way of controlling where a falls in the sequence 0 ,1 ,2 , . . . , n — 1. It is 
unreasonable to expect that a = n — 1 in general. For example, if n = 6, then a = 2 
and b = 3, or a = 3 and 6 = 2. But n — 1 = 5. 

1.4.2 Simple Induction 

Since on occasion we will also employ simple induction in this book, let me remind 
the reader that in this kind of induction the I.H. is not the assumption of validity of the 
entire history, but that of just &(n — l). As before, simple induction is carried out 
for the arbitrary n, so we need to work out two cases: when the I.H. exists (n > 0) 
and when it does not (n = 0). The case of proving ^ ( 0 ) directly is still called the 
basis of the (simple) induction. 

The reader will notice that Example 1.4.1.2 can be recast under a simple induction 
proof since in the first step of the n > 0 case we only have used the assumption that 
(1) is true for k — n — 1. 

Common practice has it that in performing simple induction the majority of users 
in the literature take as I.H. «^(n) while the I.S. involves proving S?{n + 1). 
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1.4.3 The Least Principle 

The least principle states that each non-empty subset of natural numbers contains a 
smallest (least) number. 

1.4.3.1 Example. (Euclid) We prove that given a natural number b > 1, each natural 
number n can be expressed as n — bq + r for some natural numbers q and r , where 
0 < r < b. We only argue the case n > 0 since the case n = 0 is trivial: n = 06 + 0. 

So let n > 0. Note that the set S = {bx - n : x e N A bx - n > 0} is not 
empty. For example, since bn > n (by b > 1), it is bn — n > 0. By the least 
principle, S contains a smallest number, which has the form bm — n for some m. 
From m / 0 (since — n is not positive and cannot be in S) we get q = m — 1 £ N. 
Since bq — n < bm — n, it is bq — n £ S. Thus bq — n < 0, i.e., n — bq > 0. 

We set r = n — bq. Now, since bq < n < b(q + 1) (recall, m = # -h 1) we have 
0 < n - bq < b(q + 1) - bq, that is, 0 < r < b. □ 

A related result that does not need the least principle (nor induction) is that the 
quotient q and remainder r are uniquely determined by n and b: Indeed, suppose that 
we have 

n = bq' + rf (5) 

0 < r' < b (6) 

n = bq" + r" (7) 

0 < r" < b (8) 

By (5) and (7) we have 
% ' - g " | = | r , - r " | (9) 

Can it be that \qf - q"\ ^ 0? If so, \qf - q"\ > 1, hence, multiplying both sides by b 
and using (9), 

| r ' - r " | >b (10) 

(6) and (8) tell a different story though! Theyyield[e.g.,thinkof(8)as-6 < -r" < 0 
and add with (6), term by term] —b<r' — r" < b, that is \rf — r"\ < b, which 
contradicts (10). 

We thus must answer the earlier question "Can it be that \q' — q"\ ^ 0?" by "no". 
But then (9) yields also r' = r", as needed. 

1.4.4 The Equivalence of Induction and the Least Principle 

Somewhat surprisingly, all three proof techniques, by least principle, by simple or by 
course-of-values induction, have exactly the same power. 

1.4.4.1 Theorem. The least principle is equivalent to course-of-values induction. 

Proof. This proof requires two directions. 
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One, we can prove the least principle, using strong induction: Indeed, let 0 ^ 
S C N. We will argue, by way of contradiction, that S has a least element. 

So let instead S have no such element. The plan is to use strong induction to 
arrive at a contradiction. We may encounter more than one such contradictions, 
but the "primary" one that we will strive for is to prove that S = 0—contrary to 
hypothesis—which is tantamount to N = N — 5, or in many words: 

for all natural numbers n, n G N — S (1) 

For the basis, we argue that 0 G N - 5. Indeed, if not, then 0 G S will be least in 
S, contradicting what we assumed for S. Let then pick an n > 0 and accept as I.H. 
that for all k < n we have k G N — S. It immediately follows that n G N — S for 
otherwise it is the first n to enter S, which makes it least in SI We have proved (1). 

Two, we prove that strong induction is valid, by assuming that the least principle 
is. That is, we will show the following, for any property @*(n)\ 
If&iO) holds, and if, for any n > 0, ^(n) holds whenever all of'<?(0),..., ^ ( n - 1 ) 
hold; then S?(n) holds for all n. 

So we assume that the if-part of the italicized statement above is valid and prove 
the then-part, that " ^ ( n ) holds for all n". 

Well, assume we are wrong in our conjectured conclusion (then-part). But then 

S = {n : - i ^ ( n ) } is not empty. 

By the least principle, we have a smallest member of S, let us call it m. Now, m / 0 , 
since the italicized statement's if-part includes the validity of ^ ( 0 ) . What about 
0 , l , 2 , . . . , r a — 1 then? (Now that we know that m — 1 > 0, we may ask.) Well, 
none are in S (all being smaller than m), that is, they all satisfy &>. But then, the 
if-part of the italicized statement guarantees that g?(m) must hold as well. This is 
no good because it says m £ S\ 

This contradiction forces us to backtrack over our "assume we are wrong" above. 
So it is, after all, the case that &(n) does hold for all n. □ 

1.4.4.2 Theorem. Simple induction and course-of-values induction have the same 
power. 

Proof. That is, one tool can simulate the other. We need to prove two things: 
One, whatever property ^(n) we can prove (for all n) via simple induction, we 

can also prove it using strong induction. Simple induction achieves this: 
lf&(0) holds, and if, for any n > 0, &(n) holds whenever £?(n — 1) holds; 
then £?{n) holds for all n. 
So assume the if-part of the italicized statement. Can course-of-values induction 

prove the then-part, namely, that "«^(n) holds for all n"? 
Well, strong induction will have to check that &(0) holds: That much is given 

by the if-part above. Now, for the arbitrary n > 0, strong induction's I.H. is that 
«^(0) , . . . , &(n — 1) all hold. Can this assumption produce the truth of &>(ri)7 Yes, 

www.it-ebooks.info

http://www.it-ebooks.info/


INDUCTION FROM A USER'S PERSPECTIVE 6 7 

because this strong I.H. yields the truth of £?{n - 1). By the if-part of the italicized 
statement above, this alone yields the truth of 3*(n). 

Now, by strong induction, we indeed get the then-part: £?{n) holds for all n. 
Two, conversely, we prove that strong induction is valid, by assuming that simple 

induction is. That is, we will show that the following statement is valid, for any 
property 8?{n)\ 

If 3?{n) holds on the assumption that, for all k < n, £P(k) holds; 
then &>{n) holds for all n. (2) 

So we will assume the validity of if-part of (2), and then employ simple induction to 
prove the then-part, that 

&(n) holds for all n (3) 

We will be a bit trickier here, so let us consider the new property £l(m) defined as 
follows: 

for all k < m, &>(k) holds (4) 

So, instead of directly proving (3), 

I will prove that, for all n G N, «S(n) holds (5) 

I deliver on the promise (5) by simple induction, which, by assumption, is the tool at 
my disposal in this part of the proof: First, by (4), i?(0) says "for all k < 0, &(k) 
holds". I need to verify this, my (simple) induction's basis. Fortunately, the statement 
in quotes is vacuously true since it is impossible to refute it since a refutation requires 
a k < 0 [that makes &(k) false]. 

Next, let us fix an n and take the I.H. that i?(n) is true. We proceed to show 
that i?(n + 1) is true too, and this will conclude (5). Now, J2(n + 1) says "for all 
k < n + 1, &(k) holds", or, "for all k < n, &>(k) holds". Another way of putting 
it is: for all k < n, and for k — n, &(h) holds. That is, we want to show that 

£(n) and ^ ( n ) hold (6) 

Now i2(n) is true by the I.H. of our simple induction. That is, for all k < n, &(k) 
is true, by the definition of J2 in (4). But we have assumed the if-part of (2), and this 
yields the truth of &(n). Thus (6) is established, i.e., B{n + 1), is true. Hence we 
have concluded (5). Having moreover just seen that £l(ri) implies ^ ( n ) , for any n, 
(5) implies that &{n) too holds for all n—and this statement is (3). D 

At this point we can "strengthen" our inductions to "start" (basis) at any integer 
n0 > 0. 

Simple induction with non zero basis: To prove that, for all n > n0, 3?(n) holds 
just do: 

(A) Prove the truth of ^ (n0). 

(B) Fix an arbitrary n>n0 and prove the truth of &(n + 1) on the assumption that 
&(n) holds. 

www.it-ebooks.info

http://www.it-ebooks.info/


6 8 MATHEMATICAL FOUNDATIONS 

Strong induction with non zero basis: To prove that, for all n > n0, 2?{n) holds 
just do: 

(a) Prove the truth of & (n0). 

(b) Fix an arbitrary n > n0 and prove the truth of &(n) on the assumption that 
0P(k) holds for all n0 < k < n. 

1.4.4.3 Exercise. Start by the trivial observation that the least principle holds on the 
set Nno = {no, no + 1, no + 2 , . . . } , namely: Every non-empty subset ofNno has a 
least element. Now modify the proof of 1.4.4.1 (using Nno instead of N, judiciously) 
to conclude that the proof schema (a)-(b) above is equivalent to the least principle 
on the set Nn o . 

Conclude that the proof schema (a)-(b) is valid. □ 

1.4.4.4 Exercise. Imitate the proof of 1.4.4.2 to prove that the schemata (a)-(b) and 
(A)-(B) above are equivalent in power. 

Conclude that the proof schema (A)-(B) is valid. □ 

1.5 WHY INDUCTION TICKS 

Induction is neat, but is it a valid principle? Why should we believe such a thing? 
Unfortunately, the previous section does not shed much light other than the somewhat 
surprising equivalence of the two induction principles with the least principle. 

It turns out that we cannot prove either of the three as valid from any substantially 
simpler and therefore more readily believable facts of arithmetic. We can build 
a plausible case, however. Given the equivalence of the three, let us use simple 
induction as the pivot of our plausibility argument. 

Simple induction is, intuitively, a proof generator that, for each given property 
2? (n), certifies the latter's validity for any n that we want: Recall that the combination 
of the I.H. and I.S. establish for the arbitrary n, that if &(n) is valid, then so is 
2?{n + 1). Thus given the starting point, that is, the validity of ^ ( 0 ) , we can certify 
the validity of &(1). And then of ^ ( 2 ) . If we repeat this process—of inferring the 
truth of &(n + 1) from that of ^(n)—for n = 0 ,1 ,2 ,3 , . . . , k - 1, for any k that 
we desire, then we will obtain the validity of &(k) (in k steps). 

Imagine the process running for ever. Then the truth of ^ ( n ) , for n = 0,1, 2 , . . . 
is established! 

This argument is quite plausible, but glosses over two things: A mathematical 
proof has finite length so it cannot be an infinite process running for for n = 0 ,1 ,2 , . . . 
Moreover, we must be sure that "for all n € N" really means the same thing as "for 
n = 0 ,1 ,2 ,3 , . . . " , or that N is the smallest set around with the properties44 

(a) it contains 0 

44Some bigger sets that have the properties (a) and (b) include Z, the set of all integers; Q, the set of all 
rational numbers; R, the set of all real numbers; and more. 
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(b) if it contains n, it also contains n + 1. 

By the way, by "smallest" we mean that any other set T with the properties will 
satisfy N C T. 

Hm. This sounds right! N is the smallest set there is that satisfies (a) and (b), 
is it not? And if we are content with that, then here is a "real" proof of the simple 
induction principle, one that has finite length}. 

Pick any property &{n) and assume that we have performed the steps of simple 
induction, that is, we have already proved that 

(A) ^ ( 0 ) is true. 

(B) On the I.H. that 0*(n) is true we have proved that &(n + 1) is true too. 

Now let us form the set S = {n : &>(ri)}. By (A), we have that 0 G S—that is, S 
satisfies (a) above. By (B), if n G 5, then also n -f- 1 G S—again, S satisfies (b) 
above. Since N is the smallest that satisfies (a) and (b), we have N C S. That is, for 
all n G N we have n G S. Expressing this in terms of £?{n) we have 

for all n G N , ^ ( n ) holds (1) 

That is, performing successfully the steps of simple induction—(A) and (B)—on 
0^{n) we have succeeded in obtaining (1) as induction promises. Induction works! 

Not so fast. Let us pick any set R that satisfies (a) and (b) above. I will show by 
induction that 

for all n G N, n G R holds (2) 

Well, the basis 0 G R is satisfied, since R obeys (a). Let us fix an n now and take 
the I.H. n G R. But, because R obeys (b), we will also have n + 1 G R. By simple 
induction, we have proved (2). But that says NCR. Since R was arbitrary we have 
used induction to prove that N is the smallest set satisfying (a) and (b). 

Thus the validity of induction and the just stated property of N are equivalent 
principles and we are back to square one: We have not succeeded in providing a 
proof of the validity of induction that is based on more primitive, non equivalent to 
induction, principles. 

However, it is expected that our discussion brought some degree of comfort 
to the reader about the plausibility (and naturalness) of the induction principle! 
Mathematicians have long ago stopped worrying about this, and have adopted the 
induction principle as one of the starting points, i.e., nonlogical axioms, of (Peano) 
arithmetic. 

1.6 INDUCTIVELY DEFINED SETS 

One frequently encounters inductive—or, as they are increasingly frequently called, 
recursive—definitions of sets. This starts like this: Suppose that we start with the 
alphabet {0,1} and want to build strings as follows: We want to include e, the empty 
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string. We also want the rule or operation that asks us to include 0A1 if we know 
that the string A is included. So, some strings we might include are e, 01,0011 and 
001. The first was included outright, while the second and third are justified by the 
rule, via the presence of e and 01, respectively. The last one would be legitimate if 
we knew that 0 was included. But is it? That is not a fair question. It becomes fair 
if we consider the smallest—with respect to inclusion C—set of strings that we can 
build, by including e and repeatedly applying the rule. Then it can be proved that 
neither 0 nor 001 can be included in this smallest set. 

There are several examples in mathematics and theoretical computer science of 
"smallest" sets defined from some start-up objects via a set of operations or rules 
whose application on existing objects yields new ones to include. Another one is the 
set of terms, formulae and proofs of logic. Further down we will encounter more 
examples such as the set of partial recursive and primitive recursive functions. But 
why look that far: Perhaps the simplest such smallest set built from initial objects 
and the application of operations is N, as we have noted already: the initial object is 
0 and the operation is " + 1", the successor function. 

The purpose of this section is to offer some unifying definitions and discuss their 
connection to each other. 

1.6.0.5 Definition. (Operations) An n-ary operation or rule is a (binary) relation R 
such that whenever aRb, then a is an n-tuple. We will write R{a\,..., an, b) rather 
than i? ( (a i , . . . , an) , b) or ( a i , . . . , an)Rb. We will call the sequence of objects 
o i , . . . , an inputs, and the object b an output, or a result of R applied to the listed 
inputs. 

It is not required that the relation be single-valued in its outputs. □ 

1.6.0.6 Definition. (Derivations) Given a set of objects, X—the initial objects—and 
a set of operations O. An (X, O)-derivation, or just derivation if the context makes 
clear which X and O we have in mind, is a finite sequence of objects, a\,..., an such 
that every ai is one of 

(1) a member of X 

(2) a result of some fc-ary operation, from the set O, applied on k inputs among the 
dj that appear before ai in the sequence —i.e., j < i for all such inputs aj. 

We call the number n the length of the derivation. □ 

Since the legitimacy of any â  in a derivation never depends on a a^ with k > i, it is 
clear that if a\,..., ar,..., an is a derivation, then so is a\,..., ar. 

Note also that nowhere does the definition ask that the a^ be distinct. Indeed, 
once an â  is placed as the z-th element, for the first time, it can be placed again 
thereafter—as aj = a^ with j > i—any number of times we wish. The same reason 
of legitimacy that applied originally to ai still applies to all the additional placements 
aj. 
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1.6.0.7 Example. Let X = {0} and O contain just the relation (given in atomic 
formula form) x + 1 = y, with y being the output variable. Then the reader can 
readily verify that the sequences 

0,0,1,2,2,2,3,0,0,4 

and 
0,1,2,3,4 

are derivations. □ 

1.6.0.8 Example. Let X — {0} and O contain just the relation (given in atomic 
formula form) x + 1 = y, this time x being the output variable. Then the reader can 
readily verify that the sequences 

0 , 0 , - 1 , - 2 , - 2 , - 2 , - 3 , 0 , 0 , - 4 

and 
0 , - 1 , - 2 , - 3 , - 4 , - 5 , - 6 

are derivations. □ 

1.6.0.9 Definition. A set S is built by steps from a set of initial objects, X, and a set 
of operations O as follows: S = {a : a appears in some (I , O)-derivation}. □ 

If S is a set built by steps, then we can prove properties of its members by induction 
on the lengths of their derivations. 

1.6.0.10 Example. Given the alphabet {0,1}. Let X = {e}, while O contains just 
the operation on strings 0x1 = y—x being the input and y the output variables. We 
will show that the set S built by steps from the given pair (X, O) is {0 n l n : n > 0}, 
where, for any string A, and n > 0, An means 

AA--A 
n copies of A 

while A0 means e. 
We have two directions to establish set equality: 
C. For any a G S we do induction on its derivation length to show a = 0 m l m 

for some m. If the length is 1, then it can only contain e (initial object). Thus 
a = 0°1°. We take as I.H. the truth of the claim when a is in a derivation of length 
< n. 

Forthel.H., suppose that a has a derivation, d\,..., dn. 
If a = ai with i < n, then since a\,..., a* is a shorter derivation, we are done by 

the I.H. If a — an we have two cases: One, a is initial. This has already been dealt 
with. Two, a = Oa^l, for some i < n. 

By the I.H. a* = 0 m l m . Thus, a has the same form. 
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2 . For any n > 0 we prove that 0 n l n must appear in some derivation. This is 
done by (simple) induction on n. For n = 0 (basis) 0 n l n = e; in S. Fix an n and 
assume that 0 n l n G 5 (this is the I.H.) 

For the I.S. note that 0 n + 1 l n + 1 = 0 0 n l n l . The I.H. guarantees a derivation exists 
in which 0 n l n occurs. Without loss of generality (see remark following 1.6.0.6) the 
derivation has the form ai, a<i,..., 0 n l n . This can be extended to the derivation 
a i , a 2 , . . . , 0 n l n , 0 0 n l n l , hence 0 0 n l n l e S. □ 

1.6.0.11 Definition. A set 5 is closed under an n-ary operation iff, for every n-tuple 
of inputs chosen from 5, all the results that the operation produces are also in S. □ 

For example, N is closed under x + y — z (z is output), x x y = z (zis output), 
but not under x — y = z (z is output). For example, 0 — 1 = — 1 ^ N. 

1.6.0.12 Definition. (Closure) Given a set of initial objects, X, and a set of opera-
tions, O. A set S is called the closure ofX under O—in symbols S = C1(X, O)—iff 
it is the smallest set that contains X as a subset and is closed under all of the operations 
of O. 

A set such as C1(X, (9) is also called recursively or inductively defined from the 
initial objects X and rules O. D 

Note that "smallest" means C-smallest, that is, if a set T contains X and is closed 
under O, then S C T. This attribute, smallest, directly leads to the technique of 
(structural) induction over C1(X, O): 

Structural Induction: Let S = C1(X, 0 ) and &>(x) be a property (formula). To 
show that all a G S have the property, do the following: 

(1) Prove &>{a) for all a el. 

(2) Prove that the property propagates with every R e O, that is, whenever the 
inputs of R have the property, then so does the output. 

The part "the inputs of R have the property" above is the I.H. for R. There will be 
one I.H. for each R e O. The I.S. for the R in question is to prove that, based on the 
I.H., the output has the property—i.e., the property propagates from the input side to 
the output side of the "black box" R. 

Why "structural"? Because the induction is with respect to how the set was built. 
The process (l)-(2) is (structural) induction over S, or induction with respect 

toS. 

1.6.0.13 Theorem. Structural Induction works: That is, if (1) and (2) above are 
indeed proved, then, for alia G S, £?(a) holds. 

Proof. Let P = {a : 5*(a) holds}. Now (1) translates into X C P, while, by (2), for 
any R G 0 , whenever all the inputs of R are in P [i.e., they all satisfy &(x)], then 
so is the output, that is, P is closed under all the operations of O. By the "smallest" 
property of S (1.6.0.12), we have S C P, that is, for all ae 5, 5*(a) holds. □ 
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It turns out that not all properties &(x) lead to sets {x : &(x)}—some such 
collections are "too big" to be, technically, "sets" (cf. Section 1.3). 

Our proof above was within Cantor's informal or naive set theory that glosses 
over such small print. However, formal set theory, that is meant to save us from 
our naivete, upholds the "principle" of structural induction, (l)-(2), albeit using a 
slightly more complicated proof. Cf. Tourlakis (2003b). 

1.6.0.14 Theorem. Given a set of initial objects, X, and a set of operations, O. The 
two sets: S—built by steps (1.6.0.9) from X and O—and C1(X, O) are equal. 

Proof For C we do induction on derivation length of a G S. If the length equals 1, 
then a eX. Since X C C1(I, O) by 1.6.0.12, the basis is settled. Assume next (I.H.) 
that for all k < n, if a occurs in a derivation of length k, then a is in the closure. 

I.S.: Let a occur in a derivation of length n. If it does not occur at the right 
end, then the I.H. kicks in and a is in the closure. So let a be the last object in 
the derivation. If it is initial, we have nothing to add to what we said for the basis. 
Suppose instead that a is the result of an operation from O that was applied on inputs 
a,jx,..., ctjr that appeared to the left of a in the derivation. By the I.H. all the ajm 
are in the closure. The later being closed under all operations from O we conclude 
that the result of the operation, a, is in the closure. 

For D we do induction over C1(1,O): For the basis, if a G X then a G S via 
a derivation of length 1. We now show that the property "a G S" propagates with 
every R G O. To unclutter exposition, and without loss of generality, fix an R—and 
pretend without loss of generality that its arity is 3—and let its inputs a, 6, c be all in 
S. Let R(a, 6, c, d). We want d e S. 

Well, by I.H. there are three derivations . . . , a , . . . ; . . . , 6,. . . ; and . . . , c , . . . 
If we concatenate them into one sequence 

. . . , c i , . . . , . . . , ( ? , . . . , . . . , c , . . . 

we have a derivation (why?). Due to the way d is obtained, so is 

But then d G S by the way S is obtained. □ 

1.6.0.15 Remark. The above is a significant theorem: If we want to prove properties 
of C1(X, O) as a whole, the best idea is to do structural induction over the set. If on 
the other hand we want to prove that some a is a member of C1(X, O), then the best 
idea is to provide a derivation for it. 

Compare: If we want to prove a property of all theorems of a theory, then we do 
induction over the theory that is built using 1.1.1.34 (and 1.1.1.38). If on the other 
hand we want to verify that a formula is a theorem, then we produce a proof for it. 
Evidently, by 1.6.0.14 we have that the iterative definition of "theorem" in 1.1.1.34 
is equivalent with the inductive one: The set of all theorems is C1(X, O) where X is 

www.it-ebooks.info

http://www.it-ebooks.info/


74 MATHEMATICAL FOUNDATIONS 

the adopted set of axioms and O is the adopted rules of inference. Cf. also 1.6.0.17 
below. 

Note that since b appears in a derivation iff it is either initial or a result of 
some R G O applied on prior members of the derivation—and the latter 
is tantamount to saying "members of C\(T, 0 ) " because of 1.6.0.14—we 
have the following very useful "membership test": 

b G C1(X, O) iffb G X orb is the result of some rule applied to members 
ofClfaO). 

In words, the theorem says that the inductive approach—forming the closure—and 
the iterative approach, building one element at a time via a derivation, yield the same 
result. □ 

1.6.0.16 Example. Let X — {3} and O consist of just x + y = z and x — y = z9 
where in both cases z is the output variable. We are thinking of Z as our reference 
set here. Let us see why we have 

C1(I, O) = {3k : k G Z} (1) 

For the C we do, of course, induction over C1(X, O). Well, X contains just 3, and 
3 = 3 x 1, hence is in the right hand side (rhs) of (1). 

Let us see that membership to the right propagates with the two rules: So let a 
and b be in the rhs. Then a = 3m and b = 3r for some ra, r in Z. Trivially, each of 
a + b and a — b is a multiple of 3. 

As for D, let a be in the rhs, that is, a = 3k for some k G Z. 
Case 1. k > 0. Let us do induction on k > 0 to show that 3fc in the left hand 

side (lhs). Well, if k = 0, then we are done by the derivation 3,0 (why is this a 
derivation?). 

Take as I.H. the truth of the claim for (fixed) k and go to k + 1. Given that 
3(fc + 1) = 3k H- 3, we are done by the I.H. and since the lhs is closed under 
x + y = z (of course, 3 is in lhs). 

Case 2. k < 0. Well, 0 G C1(I, O): indeed, apply x - y = z to input 3,3. But 
then 3fc G C1(X, O) as well, since 3k = 0 — 3(—fc); now apply the same rule on 
inputs 0 and 3(—k) with the help of Case 1. □ 

1.6.0.17 Example. Let us work within arithmetic (simply for the sake of having a 
fixed alphabet of symbols). We take as X the set of all logical axioms (1.1.1.38), and 
these two rules form O: 

M(&, &, 2?) holds iff & has the form JT -> 2? (MP) 

and 
G(3tr,^) holds iff 9 has the form (Va?)3£ for some x (Gen) 

That is, our familiar MP and Gen. So, what is C1(I, O)! But of course—immediately 
from 1.6.0.14—it is the set of all absolute theorems (provable without nonlogical 
axioms) that we can prove if we employ as our only rules Gen and MP (cf. 1.1.1.34). 
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By induction over this C1(X, O)—or as logicians prefer to say, by induction on 
theorems—we can prove the soundness of this proof system: That every theorem, 
i.e., member of C1(X, G), is true. 

Well, the claim holds for X as we already know (1.1.1.39). 
We only need to show that the claim propagates with the two rules above: Indeed, 

the MP is a special case of tautological implication, and Gen preserves truth by 
1.1.1.15. □ 

In 1.1.1.34 we adopted all tautological implications—not just MP—as rules. This 
was expedient. It suffices to include just one such implication: MP. The interested 
reader can see why in Tourlakis (2008, 2003a). 

Both examples 1.6.0.7 and 1.6.0.16 employ rules that are functions (single valued). 
Example 1.6.0.17 on the other hand has a rule that is not a function: 

input: srf\ output: (\/x)£/ 

since for each of the infinitely many choices of x we have a different output (why 
"infinitely many"?) 

A more crucial—and troublesome—observation is this: In 1.6.0.7 every member 
of the closure has a unique immediate predecessor. Not so in Examples 1.6.0.16 
and 1.6.0.17. In the former, 12 could be 15 - 3 or 6 + 6 or 9 + 3. Indeed, 3 is 
both initial, and something that can be (re)built: 6 — 3, for example. In the latter 
example, if srf, srf —> 38 yield 38 so do infinitely many pairs 3£, 3C -> 38 for all 
possible choices of 3C. This phenomenon is called ambiguity. 

1.6.0.18 Definition. (Ambiguity) A pair X, G is ambiguous if one or more of the 
following hold. Otherwise it is unambiguous. 

(1) For some a G C1(X, O) and some n-ary rule R G G, there are (p i , . . . ,pn) ^ 
(qu . . . , qn) such that R(pi,... ,pn, a) and R(qi,... ,qn, a); 

(2) For some a G C1(X, G) and two distinct n-ary and ra-ary rules R and Q 
in G, there are (p i , . . . ,pn) and (</i,..., qm) such that R(p\,... , p n , a) and 
<2(<7i,..-,9m,a); 

(3) For some element a el, there is an n-ary rule R e O, and a tuple ( p i , . . . , pn) 
such that R(pi,...,pn, a). 

If a G C1(X, G)andR(pi,... ,pn, a) holds for some R G G, we will call (pi,... ,pn) 
a vector (or sequence) of immediate predecessors of a. For short, i.p. □ 

1.6.0.19 Example. Here is why ambiguity is trouble. Let us start with the alphabet of 
symbols A = { l , 2 , 3 , + , x } . We will inductively define a restricted set of arithmetic 
expressions (for example, we employ no variables) as follows. Let X = {1,2,3} and 
let O consist of just two string operations: 

from strings X and Y form X + Y (i) 
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from strings X and Y form X xY (2) 

Some examples are 1 + 1, 2 x 1 and, more interestingly, 1 + 2 x 3 . What do these 
strings mean? Let us assign the "natural" meaning: " 1 " means 1, "2" means 2, and 
"3" means 3. "+" means add (plus) and " x " means multiply. Thus, extending this to 
an arbitrary member of C1(I, O) we will opt for the natural approach: As C1(X, O) 
is defined inductively itself, why not effect a recursive definition of meaning via a 
function "EV" (for "evaluate"), which will compute the value of a member A of 
C1(Z, O) by calling itself recursively on A's i.p. 

Therefore, we define (if you will, we program) EV by: 

EV(1) = 1 
EV{2) = 2 
EV{Z) = 3 
EV(X + Y)= EV(X) + EV(Y) 
EV{X x Y)= EV(X) x EV(Y) 

So what is the value (meaning) of 1 + 2 x 3? Well, 

EV(1 + 2 x 3 ) - EV(1 + 2) x EV(3) 
= (#V(1) + EV(2)) x 3 

= ( l + 2) x 3 
= 9 

No, no, you say. It is 

EV(1 + 2 x 3 ) = EV(1) + EV(2 x 3) 
= W ( l ) + (EV{2) x Ey(3) ) 

= 1 + (2 x 3) 
= 7 

We are both "right", of course. The pair I , O is ambiguous; in particular, the string 
1 + 2 x 3 has two i.p.: (1 + 2,3) on which the first computation is based, and (1,2x3) 
on which we based the second computation. □ 

While we are on the subject of closures, let us look at the very important transitive 
closure of a relation. 

1.6.0.20 Definition. (Transitive Closure) The transitive closure of a relation R is 
the smallest (in the sense of inclusion, C) transitive relation that includes R, that is, 
if Q is a transitive closure of R, then we must have 

( 1 ) # C Q 
(2) Q is transitive, and 
(3) If T is transitive and RCT, then Q QT. □ 

(1) While we have no a priori reason to expect that transitive closures exist just by 
virtue of us coining this term, we can say one thing: 
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A relation R cannot have more than one transitive closure. Indeed, if Q and Q' 
are both transitive closures of i?, then having Q' pose as "T" we get Q C Qf. Next, 
having Q so pose, we have Qf C Q. Thus, Q = Q'. 

(2) Intuitively, we can imagine the (we can now say "the") transitive closure of a 
relation R as the relation that we get from R by step-by-step adding pairs (a, c) to the 
relation that we have built so far, as long as, for some 6, (a, b) and (6, c) are already 
included. We stop this process of adding pairs as soon as we obtain a transitive 
relation via this process. This observation is made precise below. 

1.6.0.21 Theorem. For any relation R, its unique transitive closure exists and equals 
C1(X, O), where X = R—a set of ordered pairs—and O contains just one operation 
on pairs that, for any two input pairs (a, b) and (6, c) (note the common b), the 
operation produces the pair (a, c). 

We will denote the transitive closure of R by i? + . 

Proof We show that C1(I, O) satisfies (l)-(2) of 1.6.0.20, which will confirm that 
R+ = C1(X, O). For (1), we are done by the property X C C1(J, O) of any closure. 
For (2) we are done since C1(X, O) is closed under the operation in (9: If (a, b) and 
(6, c) are in C1(X, (9), then so is (a, c). 

For (3), let T be transitive and RCT.Wc want to show that C1(I, 0 ) C T. Well, 
both T and C1(I, (9) are supersets of R and are closed under the operation "if (a, b) 
and (6, c) are included, then so is (a, c)". But, as a closure, C1(J, (9) is C-smallest 
with these two properties, therefore C1(X, O) C T as needed. □ 

1.6.0.22 Corollary. For any relation R, its transitive closure i?+ w egwfl/ to Un>i ^n-

We also may write 

oo 

n=l 

Proof Let us set Q = IJ^Li Rn anc* prove that Q = C1(X, (9), where J , O are as in 
1.6.0.21. 

For Q C C1(I, (9) it suffices to prove that Rn C C1(I, (9), for n > 1, by induction 
on n: For n = 1, a R1 b means a R b thus (a, 6) E C1(X, (9) since R — X. Taking the 
obvious I.H. for n we next let a i 2 n + 1 b. This means that for some c we have a Re 
and c.Rn 6. By the basis and I.H. respectively we have (a, c) and (c, 6} in C1(X, (9), 
hence (a, 6) is in C1(X, (9) (transitivity). 

For Q 5 C1(X, (9) we do induction on the closure. Since X — R C Q, we only 
need show that Q is transitive. Let then aQc and cQ6, hence, for some m and n, 
a Rm c and c i i n 6. Therefore aRm oRnb and thus a i ? m + n 6 by Exercise 1.8.42. 
Thus aQb. □ 
1.6.0.23 Remark. (1) Thus, we have aR+ b iff, for some n, aRnb iff, for some 
sequence 

&(b • • • i an 
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where ao = a and an = b, we have 

diRdi+i, for i — 0 , 1 , . . . , n — 1 

The notation below is also common. 

a R^ b iff, for some cij, it is a R a\ R a2 Ras • • • aj R a J + i • • • an_2 Ran-\R b 

(2) If R is on A, then its reflexive transitive closure is denoted by R* and is defined 
by 1AUR+. Thatis,aR*biffa = boraR+b. □ 

1.7 RECURSIVE DEFINITIONS OF FUNCTIONS 

We often encounter a definition of a function over the natural numbers such as 

/ ( 0 , m ) = 0 
/ ( n + 1, ra) = /(ra, ra) + ra 

Is this a legitimate definition? That is, is there really a function r/iar satisfies the 
above two equalities for all ra and ra? And if so, is there only one such function, 
or is the definition ambiguous? We address this question in this section through a 
somewhat more general related question. 

1.7.0.24 Example. Let us look at a simpler question than the above and see if we 
can produce a good answer. First off, is there a function g given by the following two 
equalities for all values of n? 

g(0) = i 
g(n + 1) - 29M 

Well, let's see: By induction on n we can show that g(n) I for all n: Indeed, this is 
true for n = 0 by the first equality. Taking the I.H. that g(n) | (for a fixed unspecified 
n) we can compute g(n + 1) so indeed 

g(n) I for all n 

We can say then that the function g exists; right? 

Wrongl A function is a set, in this case an infinite table of pairs (if we take its 
existence for granted). We did not show that it exists as a table of pairs; rather we 
have only shown that 

If a g satisfying the given equalities exists, then it is total.45 

45 The set of texts on the subject of the theory of computation, which seriously propose the above erroneous 
"proof" of existence is non-empty. 
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We can however prove that any two functions satisfying the equalities must be 
equal. That is, if h is another such function, then h = g or, on an input by input basis, 

g(n) — h(n), for all n (1) 

Note that we wrote = in (1), rather than ~ (cf. 1.2.0.11), since we already know that 
if a function satisfies the given equalities, then it is total. 

As for (1), for n = 0 we are done by the first equality. Taking as I.H. the case for 
some fixed n, the case for n + 1 is easily settled: g(n+l) = 29^ = 2h^ — h (n+ l ) , 
where the middle = is due to the I.H. □ 

So how do we settle existence? We build a function / (or g) given as above 
either iteratively, by stages [which is the usual approach in the literature, when 
done correctly; cf. Tourlakis (1984)] or as a closure', a set of the form C1(X, O) for 
appropriate X, O. The latter approach is from Tourlakis (2003b), which also develops 
the iterative approach. Mindful of the example in 1.6.0.19, we will define functions 
recursively on an inductively defined set C1(X, O) that is given via an unambiguous 
pair X, O. 

1.7.0.25 Theorem. (Function definition by recursion) Let X, O be an unambigu-
ous pair and C1(X, O) C A, for some set A. Let h : X —► B and gR : Ax Br —> B, 
for each r-ary R £ O, be given functions.46 

Under these assumptions, there is a unique function f : C1(X, O) —» B such that 

y = f(x) iff { 

y = h(x) and x £ X 

OR, for some ReO, 
y — gji(x,oi,... ,or) andR{a\,... , a r , x ) holds, 

where Oi — f(di),fori — 1 , . . . , r 
(i) 

The reader may wish to postpone studying this proof, but he should become 
thoroughly familiar with the statement of the theorem, and study the examples that 
follow the proof. 

Proof To prove the existence of a "solution" / to the given recursive definition (1), 
we will build a. single-valued binary relation F C A x B, which, when we rewrite 
F(x, y) as "y = F(x)"—with y as the output variable—satisfies (1) above. To build 
it, we will realize it as an appropriate Cl(J, T) , for appropriately chosen initial set 
J and set of rules T. 

For each r-ary rule R £ O, define the r-ary rule R by 

R((auoi),..., (ar, or), (b, gR(b, ou ..., or))) iff R(au ..., ar , b) (2) 

46An r-ary operation (rule) is an (r + l)-ary relation; cf. 1.6.0.5. 
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For any a\,..., ar, b, the above definition of R is effected for all possible choices of 
o i , . . . , or in B for which gFt(b, o i , . . . , or) is defined. 

By the way, there is no mystery in the definition of R (the name chosen to show 
the close association with R): If we anticipate that (1) does have an /-solution, we 
can then view the oi as the /(a*). Then P's job is—once we give it, in the form of 
input/output pairs, where the outputs are those of f on all the i.p. ofb—to compute 
f(b) using gn and to output the input/output pair (6, /(&))). 

Collect now all the rules R as defined, to form the rule-set T. 
As the initial objects-set J, which we will associate with the rule-set T, we take 

J = h—that is, (x, y) E J iff h(x) = y. 
Claim 1. The set F = C\(J, T) is a single-valued binary relation C1(I, O) -> B. 

Proof of Claim 1. First off, that F C C1(I, O) x B is immediate: J C C1(I, C?) x 
5 , and each relation of T has as output a pair in C1(Z, O) x B, by definition (2). 

We next establish that F is single valued in its second component, doing induction 
over C\(J, T) . The claim to prove will be 

if (a, b) e F and (a, c) e F, then 6 = c (*) 

Ztas/s: Suppose that (a, b) £ J and let also (a, c) E F . 
By 1.6.0.15, the latter entails, in principle: 
(i) (a, c) e J. Then c = h(a) = b, 

OR, 
(ii) for some r-ary R e T, we have i? ( (a i ,o i ) , . . . , (a r ,o r ) , (a,c)), where 

jR(a i , . . . , a r , a ) , c = gR(a,oi,.. . ,o r) ,and (a i ,oi ) , . . . , ( a r , o r ) are in F . 
The right hand side of the capitalized "or" cannot be applicable—due to its 

requirement that R{a\,..., a r , a)—given that a € X and (X, 0)is unambiguous. 
We next prove that the property (*) propagates with each Q E T. So, let 

Q((auoi),...,(ar,or),(a,b)) 

Since by the previous argument (a,c) £ J, let also 

P((a /
1 ,o ,

1),.. . ,(aJ,oJ),(a,c)) 

where Q ( a i , . . . , a r , a) and P(a[,..., aj, a), but also [cf. (2)] 

6 = gQ(a, oi,..., or) and c = #P(a, o i , . . . , o[) (3) 

Since (X, (9) is unambiguous, Q = P (hence also Q = P); thus r = I, and 
a* = a-, fori = 1 , . . . ,r. 

By I.H., Oi = o'i9 for i = 1,... ,r, hence 6 = c by (3). F«J of proof: Claim 1. 

Claim 2. F satisfies (1). Now that we know that F is a function we can write 

b = F(a) for (a, b) e F 
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Our task here is to show that if we replace the "(function) variable" / in (1) by the 
constructed F, the "iff stated in (1) will hold. 

(<-) direction: We prove that the right hand side (rhs) of (1) implies the left, if 
the letter / is replaced throughout by F. The rhs is a disjunction, so we have two 
cases to consider [cf. 1.1.1.48(a)]. First, let x G X and y — h{x). Since h — jCF, 
we have that F(x, y) is true, that is, y = F(x). 

Second, consider the complicated side of OR in (1): So let, for some R G O, 
V — 9R(X,OI, . . . , o r ) , where i? (a i , . . . , a r , x ) and Oi — F(a,i), for i = 1 , . . . , r. 

By (2), i i ((ai , o i ) , . . . , (ar, or), (x, y)), thus—F being closed under all the rules 
in R—(x, y) G F\ for short, y — F(x). 

(—») direction Now we assume that F(x, y) holds. We want to infer the right 
hand side (of iff) in (1)—with / replaced by F. 

So let y = F(x). There are two cases according to 1.6.0.15: 

Case 1. (x, y) G J. Thus (by J = h)y — h(x)9 and x G X (definition of J)\ the 
top case of (1). 

Case 2. Suppose next that (x,y) E F because, for some Q G T , the following 
hold (see (2)): 

(a) Q((ai,oi>,. . . ,(ar ,or),(a;,2/)) 

(b) Q(ai,...,ar,x) 

(c) y = 9Q(x,ou...,or) 

(d) All of (ai, o i ) , . . . , (ar, or) are in F 

By (d), Oi — F(ai), for i — 1 , . . . , r. But then the conjunction of the foregoing 
observation with (b) and (c) is the right hand side of the OR; as needed. End of proof: 
Claim 2. 

Uniqueness ofF. Let the function K also satisfy (1). We show by induction over 
C1(I, O) that 

For all x G C1(X, O) and all y G B, y = F(x) iff y = K(x) (4) 

(—>) Let x G X, and y = F(x). By lack of ambiguity, x has no i.p. Thus, 
y = h(x). But then, y = K(x), since iiT satisfies (1). 

Let now Q ( a i , . . . , ar , x) and ?/ = F(x). By (1), there are (unique, as we now 
know) o i , . . . , or such that o^ — F(a,i)9 for i = 1 , . . . , r, and 2/ = #Q(X, 0 1 , . . . , or). 
By the I.H., oi = K(a,i). As if satisfies (1), y = if (x). 

(«—) The roles of the letters F and if in the above argument being symmetric, 
we need say no more. □ 
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The above formulation with the so-called "graphs" of the utilized functions—a 
term applying to the relation y = f(x)47—rather than writing, say, 

( h(x) ifxel 

gQ(x, f(ai),..., f(ar)) if Q(ai, ...,ar,x) holds, 
appears to be unnecessarily cumbersome. Cumbersome, yes, but not "unnecessarily": 

In the used formulation, by keeping an eye on both the input and output sides at 
once, we took care of the partial function case (total or not) without having to worry 
about points of undefinition of the defined function or to use Kleene equality. In fact, 
using "=" above is incorrect in the nontotal case. 

1.7.0.26 Example. Referring back to Example 1.7.0.24, we see that the defined 
by recursion g exists (and is, of course, unique): It is defined over the set N = 
C1({0}, {5}), where I denoted by S the successor rule: 

S ( z , x + l ) , f o r a l l x i n N 

The rule is clearly unambiguous, so Theorem 1.7.0.25 applies. □ 

1.7.0.27 Example. Fix n > 0 from N and consider the rule R below 

R((x, yn), {x + 1, yn)), for all x, yi in N 

and form Nn = Cl(J, {R})9 where I = {(0, yn) : for all ^ in N}. 
The rule R is clearly unambiguous: every (x, yn) is either initial or has the unique 

i.p. (x - 1,2/n)- Thus Theorem 1.7.0.25 applies—Nn = N n + 1 , of course—and 
enables recursive definitions like the following, based on two given functions h and 
g from Nn and N n + 1 x B respectively to some set B, to produce unique /-solutions. 

( KVn) ifx = 0 

(1) 
g(x, yn, f(x - 1, yn)) otherwise 

As is usual, we listed the arguments, e.g., in / , in their proper order, however omitting 
the (...) brackets. 

The above recurrence is the primitive recursion schema of Kleene, and it will play 
quite an active role in the next chapter. It is customary to write the schema in this 
form: 

f(0,Vn) -KVn) 
f(x + 1, yn) ~ g'(x, yn, f(x, yn)) 

7To plot f(x) you plot the pairs (x, y) such that y = f(x); hence the terminology "graph" 
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where g1 is g, but modified to accept input x rather than x + 1 in the first argument 
slot. 

Incidentally, the recursion given at the very opening of this section—taking there 
B = N—fits the primitive recursion schema above, so the function it defines exists 
and is unique. The reader will immediately recognise that the function defined there 
is multiplication, n x m. □ 

1.7.0.28 Exercise. Prove that if h and g are total, then so is / defined by (1) above, 
so we can replace ~ by =. □ 

1.7.0.29 Example. What about a recursion like this, where we still take our inputs 
(off) from N? 

(h(yn) ifx = 0 
f{x,yn)~l ( v 

\Q\X, yn, {/(0,2/n),... , f(x - 2, yn), f(x - 1, yn))j otherwise 

Before we answer this, a few comments on intentions, and notation. We intend that 
the value f(x, yn) is computed based on our knowledge of the entire history of values 
of /—or course-of-values [Kleene (1952)]—at the set of all previous "points" 

| ( 0 , y n ) , ( l , y n ) , ( x - l , y n ) ] (1) 

As we can have no functions of a variable number of arguments, we have tentatively 
grouped the entire history into a single ^-argument. It turns out that it is more 
profitable to use a set of pairs of inputs and outputs (of / ) rather than just outputs in 
the recursive call embedded in g above, since such pairs can naturally handle nontotal 
functions—the pair (a, f(a)) is listed iff f(a) | . 

(0, yn), / (0 , yn)),..., ((x - 2, yn)J(x - 2, yn)), ((x - 1, yn),f(x - 1, yn))j 

/(0,2/n) ^h(yn) 

f(x + 1, yn) ~ g' \x, yn, | ( ( 0 , yn), / (0 , yn)),..., ((x - 1, yn),f(x - l,yn))jj 

The switch to #; from # reflects the modification to the x-argument and to the set-
argument. 

Now, if we call the set (1) " S ^ - i ^ " for the sake of convenience, we may rewrite 
the above recurrence more correctly, and without "...", as 

/ (0,&)~Ji(2/n) (2) 

/(x + l,2/n) ^g'[x,ynj \ Sxrfn) (3) 
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Here is now why the recurrence (2)-(3) has a unique /-solution: Let us write 
H{x,yn) as an abbreviation of / \ SXi$n. We can then have—using (2)-(3)—a 
(simple) primitive recursion (as in 1.7.0.27) for H: 

H(0,yn)~{((0,yn),h(yn))} (4) 

H(x + 1, yn) ~ H(x, yn) U {^(x + 1, yn), #' (x, #n , if (a, # n ) )^ j (5) 

A unique iJ exists that satisfies (4)-(5), by 1.7.0.27. But / (x ,y n ) ~ H(x,yn)(x,yn ] 
for all x,yn;so f exists and is unique.48 

Given that H(x,yn) — f \ Sx$n—a single-valued table of tuples—we 
see that evaluating H(x, yn) at (i, yn), for i = 0 , 1 , . . . , x, we end up 
with the output (if it exists) of / at input (i,yn). That is, the expression 
"H(x,yn)(x,yn)" above makes sense, and, when defined, teases out 
f(x,yn). 

If we work strictly within arithmetic—that is, we allow no set arguments, in 
particular—then one neat way to deal with a sequence of numbers is to code them by 
a single number. Applying this trick reduces once again the original recursion to the 
standard schema of Example 1.7.0.27. This approach has additional important side 
benefits and we will revisit it in the next chapter. □ 

1.7.0.30 Example. Let A = {1,2}. In this example we consider only functions with 
inputs from A* and outputs in A*. Suppose that h, g\ and g2 are such given functions 
of n for the first and n + 2 variables for the other two. The recursion (for fixed n > 0) 

f(e,yn) ~h(yn) 
f(x * 1, yn)~ gi(x, yn, f(x, yn)) 
f(x * 2, yn)~ g2(x, yn, f(x, yn)) 

is called right primitive recursion on notation—"right" since we change x by con-
catenating a 1 or 2 to its right; "on notation" since we are thinking in terms of the 
notation rather than value of x when we increment it. 

Given the h and the gi there is a unique / that satisfies the three equalities above, 
for all x, yn. To apply Theorem 1.7.0.25 we define A*n as C1(X, O) where O has two 
rules, 

Ri((x, yn), (x * 1, yn))9 for all x, yn in A* 

and 
R2((x, yn), (x * 2, yn))9 for all x, yn in A* 

We define X as {(e, yn) : for all yi in A* }. 
Clearly the pair X, O is unambiguous and 1.7.0.25 applies to the recursion on 

notation schema above, proving existence and uniqueness of / . 

48The "^-function" in (5) is G(x, yn, Z) ~ Z U < / (x + 1, yn), g' (#, yn,Z)) \ >, where Z is a set 
argument. If the right field of the original h and g is a set B, then Z takes its values from V(Nn+1 x B). 
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One can similarly utilize left recursion on notation, going from x to i * x, for i = 1 
or i = 2. □ 

1.8 ADDITIONAL EXERCISES 

1. Let us first define: The set of propositional formulae of, say, set theory, denoted 
here by Prop, is the smallest set such that 

(1) Every Boolean variable is in Prop (cf. 1.1.1.26) 

(2) If si and SB are in Prop, then so are (~^si) and (si o SB) —where I used o as 
an abbreviation of any member of {A, V, ->, = } . 

If we call WFF the set of all formulae of set theory as defined in 1.1.1.3, then 
show that WFF = Prop. 
Hint. This involves two structural inductions, one each over WFF and Prop. 

2. Prove the general case of proof by cases (cf. 1.1.1.48): si -» SB^ —► ® \~ 
siy^ -+ SB\/ @. 

3. Let us prove I- x — y. By way of contradiction, let us assume-<x = y(i.Q.,x ^ y). 
Using substitution (1.1.1.42) we obtain -ix = x which along with axiom (v) 
(1.1.1.38) and tautological implication yields the contradiction x — x A -i# = x. 
Done. 

Hm. There is something very wrong here! Clearly, x = y is not true, hence a 
proof of it must be impossible (cf. soundness, p. 20). What exactly went wrong 
with our "proof"? 

4. Verify that for any (formal) function f[x] we have h x = y —>- f[x] = f[y]. 
Hint. Start with (vi) of 1.1.1.38 taking as "si[z]" the formula f[x] = f[z}. 

5. Give the missing details of Example 1.1.2.14. 

6. This is a useful but simple exercise! For all sets A,B,C prove: 

(i) A U A = A and A n A = A 
(ii) AU(AnB) = A and A n (A U B) = A 
(Hi) AU (B n C) = (AU B) n (AU C) md An (B U C) = (AD B) U (AD C) 
(iv) ACB = AUB = B mdACB = AnB = A 

7. Compute |J{2}. 

8. Compute f |0 . 

9. Compute f]{7}. 
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10. Use induction on n > 2 to prove that if (x 1,^2,... ,xn) = (2/1,2/2, • • • ,yn) , then, 
for i — 1 , . . . , n, we have xi — yi. 

11. Can An be also defined as 

A1 =A 
and, for n > 1 

A n + 1 = A x ,4n 

Why? 

12. What is Ax 1? Why? 

13. Prove that A x 0 = 0 x A = 0. 

14. Prove that A x J3 = 0 iff v4 = 0 or £ = 0. 

15. What is V(A) if A is an urelement? 

16. Assume an intuitive understanding of "the set A has n elements". Prove by 
induction on n that 2A has 2n elements. This motivates the notation "2A". 
ffinf. Show carefully that adding one new element to A doubles the number of its 
subsets. 

17. Show that for any function / : A-> B, f(a) t = /_>({a}) = 0; and / is onto iff 
(V* e £)/<_({*}) ^ 0. 

18. Show by an example that function composition is not commutative. That is, in 
general, (gf) ^ (fg). 

19. For any function g and sets X and Y, we have #<- (X — Y) = #<_ (X) — ŷ _ (Y). 

20. Let / : X -> Y be given as well as A C Y and B C Y. Prove that 

• / ^ ( A u B ) = /<_(A)U/<_(B) 

• / ^ ( A n B ) = /<_(A)n/<_(B) 

21. Let / : X -> Y be given as well a s A C I a n d 5 C I . Prove that 

• U(AUB) = U(A)UU(B) 
• A ( A n f l ) c / ^ ) n A ( B ) 
• B U implies that f^(A - B) 2 A (A) - /_> (5) 

22. Let / : X -> Y be given as well a s i C l and B C 7 . Prove that 

• / 4 ( W B ) ) C B 

• /_(yu(,4))D,4 

www.it-ebooks.info

http://www.it-ebooks.info/


ADDITIONAL EXERCISES 8 7 

23. Let the relation R : X Ai —► Ak be given by 

R = { ( (a i , - . . , a f c , . . . , a n ) , a / c ) : a,j e Ajjorj = l , . . . , n } 

(1) Prove that R is a total function. We call it the fc-th Cartesian projection 
n 

function of X A^ and often denote it by pjj. 
i=l 

n 
(2) Prove that if / : B -> X i=1 Ai is a (vector- or tuple-valued) function, then 
we may decompose it into n functions, f, for i = 1 , . . . , n: /$ : i? —>• ^ , so that, 
for all a e dom(/), we have f(a) = ( / i ( a ) , . . . , fn(a)}. 
We say that the /$ is the z-th component or projection of the tuple-valued (vector-
valued) function / . 

Hint. Consider (pff) (i.e., / op?). 

24. Prove Theorem 1.2.0.19. 

25. Suppose that f :A^>B. Then ( 1 B / ) = / and (flA) = f. 

26. Let / : A —» JB be a 1-1 correspondence. Then show that g = f~l : B -^ A is SL 
1-1 correspondence as well and (fg) = 1# while (gf) — 1^. 

27. Consider f : A -+ B, g : B ^ A and h : B ^ A such that (/</) = 1 B and 
(ft/) = 1A hold. 
Show that / is a 1-1 correspondence and that g — h = / ~ 1 . 
/Jwf. Start with expanding (h(fg)) = (his), using associativity and Exercise 25. 

28. Let / : A -> i? be a 1-1 correspondence and # : J5 -» A be a function for which 
(gf) — \A. Then show that g — f~l and therefore (fg) = \B as well. 

29. Let f : A —>► £? be a 1-1 correspondence and g : B —> A be a function for which 
(/g) = 1B. Then show that # = f~l and therefore (#/) = 1A as well. 

JL Exercises 27, 28 and 29 show that if an / has both a left and a right inverse, then 
the two are equal to / _ 1 and in fact / is a 1-1 correspondence. Moreover, a 1-1 
correspondence has a unique left and right inverse, equal in each case to / - 1 . 
This unique inverse is called—for 1-1 correspondences—"the" (two-sided) in-
verse. 

30. Prove that R is transitive iff R2 C R. 

31. Prove that if A ~ B and B ~ C then A~C. 

32. Prove, for any two functions / and g, that / = g (as sets of tuples) iff (\/x) (f(x) ~ 
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33. Prove the claims made in Remark 1.2.0.31. 

34. Let / : A -» B and g : B -* C be onto functions. Show that (gf) : A -> C is 
onto. 
i/mf. An ft, : X -> F is onto iff for any 6 G Y, the "equation" ft (a;) = b has a 
solution. 

35. Revisit Theorem 1.3.0.42 and give it a mathematical proof, using tools from 
Section 1.4. Specifically, if A C N is infinite, define by recursion the function / 
by /(0) = minA and / ( n + 1) = min(A - {/(0), . . . , /(n)}) and prove that 
dom(/) = N, ran(/) = A and / is 1-1. 

36. Prove that the range o f / : N x N - > N given by / (x , y) = 2x3y is infinite. 

37. Prove that there is a 1-1 correspondence that corresponds each S C N to xs-

38. Let A and B be enumerable. Then 2A ~ 2 s . 
i/mf. Let / : N -> A and g : N -» 5 be 1-1 correspondences. Define F : 2A ->> 
2 5 so that F(0) = 0 and F sends the set {/(i0), / ( ^ I ) , /(z2), / f e ) , • • •} to the 
set {g(io), g(i\)i gfo)i g(i>3), • • •}• Argue that F is total, 1-1, and onto. 

39. Refer to 1.6.0.19. Define the simple arithmetic terms of that example differently: 
Let us start with the alphabet of symbols A = {1, 2,3, +, x, (,)}. We let X = 
{1,2,3} and O consist of just two string operations: 

from strings X and Y form (X + Y) (1) 

from strings X and Y form (X x Y) (2) 

Prove that X, O is unambiguous and thus EV, defined as in 1.6.0.19, over C1(X, O) 
exists and is unique. 
Toward a proof of lack of ambiguity you may want to prove a couple of lemmata: 
(a) Every member of C1(X, O) has an equal number of left and right brackets. 
(b) Every proper non-empty string prefix of an A G C1(X, O) has an excess of left 
brackets. 
(c) Every A e C1(X, O) has unique i.p. and 1,2,3 have no i.p. 

40. Prove, as Euclid did, that every natural number n > 1 is a product of primes in a 
unique way, except for permutation of factors. 
Hint. Use strong induction and 1.4.1.3. 

41. Prove that if R : A —> A is reflexive and also satisfies, for all x, y and z, 

xRy A xRz —> yRz 

then it is also symmetric and transitive, hence an equivalence relation. 
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42. Prove, by induction on n, that for any relation R on a set A we have 
(1) Rm o Rn = R™+n 

(2) (Rm)n = Rmn 

43. Suppose that R is on a finite set of n elements. Prove that R+ = UILi ^-
Hint. Cf. 1.6.0.22. Prove the redundancy of all terms beyond Rn in this case. 

44. Suppose that R, defined on a finite set of n elements, is reflexive. Prove that 
R+ = Rn-i 

Hint. Prove the redundancy of all terms but Rn~x in this case. 

45. Let m > 1 be an integer. Prove that any integer n > 0 can be uniquely written as 
n = mq + r, where 0 < r < m. 
Hint. Note the inequalities! Either imitate the proof given in 1.4.3.1, or base a 
proof on the result of 1.4.3.1. 

46. (ra-ary notation.) Prove that every integer n > 0 has a unique representation as 

n = drmr + d r _ 1 m r _ 1 + dr_2rar~2 H h do (1) 

where 0 < di < m for alH = 0 , . . . , r. (1) is called the m-ary notation of n, and 
the d{ are the m-ary digits. 

47. (m-adic notation.) Prove that every integer n > 0 has a unique representation as 

n = drmr + c( r_imr _ 1 + dr-2mr~2 H h d0 (2) 

where 0 < di < m for alH = 0 , . . . , r. (2) is called the m-adic notation of n [cf. 
Smullyan (1961); Bennett (1962)], and the di are the m-adic digits. 

48. Prove that for any set X, we have X ^ 2X. 
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CHAPTER 2 

ALGORITHMS, COMPUTABLE 
FUNCTIONS AND COMPUTATIONS 

2.1 A THEORY OF COMPUTABILITY 

Computability is the part of logic and theoretical computer science that gives a math-
ematically precise formulation to the concepts algorithm, mechanical procedure, and 
calculable function (or relation). Its advent was strongly motivated, in the 1930s, 
by Hilbert's program to found mathematics on a (metamathematically provably) 
consistent (cf. 1.1.1.51) axiomatic basis, in particular by his belief that the Entschei-
dungsproblem, or decision problem, for axiomatic theories, that is, the problem "is 
this formula a theorem of that theory?" was solvable by a mechanical procedure that 
was yet to be discovered. 

Now, since antiquity, mathematicians have invented "mechanical procedures", 
e.g., Euclid's algorithm for the "greatest common divisor",49 and had no problem 
recognizing such procedures when they encountered them. But how do you math-
ematically prove the nonexistence of such a mechanical procedure for a particular 

49That is, the largest positive integer that is a common divisor of two given integers. 

Theory of Computation. By George Tourlakis 91 
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problem? You need a mathematical formulation of what is a "mechanical procedure" 
in order to do that! 

Intensive activity by many [Post (1936, 1944), Kleene (1936), Church (1936b), 
Turing (1936,1937), and, later, Markov (I960)] led in the 1930s to several alternative 
formulations, each purporting to mathematically characterize the concepts algorithm, 
mechanical procedure, and calculable function. All these formulations were soon 
proved to be equivalent; that is, the calculable functions admitted by any one of them 
were the same as those that were admitted by any other. This led Alonzo Church to 
formulate his conjecture, famously known as "Church's Thesis", that any intuitively 
calculable function is also calculable within any of these mathematical frameworks 
of calculability or computability.50 

By the way, Church proved [Church (1936a,b)] that Hilbert's fundamental Entschei-
dungsproblem admits no solution by functions that are calculable within any of the 
known mathematical frameworks of computability. Thus, if we accept his "thesis", 
the Entscheidungsproblem admits no algorithmic solution, period! 

The eventual introduction of computers further fueled the study of and research 
on the various mathematical frameworks of computation, "models of computation" 
as we often say, and "computability" is nowadays a vibrant and very extensive field. 
The model of computation that I will present here, due to Shepherdson and Sturgis 
(1963), is a later model that has been informed by developments in computer science, 
in particular, by the advent of so-called high level51 programming languages. 

2.1.1 A Programming Framework for Computable Functions 

So, what is a computable function, mathematically speaking? There are two main 
ways to approach this question. One is to define a programming formalism—that 
is, a programming language—and say: "a function is computable precisely if it can 
be 'programmed' in the programming language". Such programming languages are 
the Turing Machines (or TMs) of Turing and the unbounded register machines (or 
URMs) of Shepherdson and Sturgis. Note that the term machine in each case is 
a misnomer, as both the TM and the URM formulations are really programming 
languages, the first being very much like assembly language of "real" computers, the 
latter reminding us more of (subsets of) Algol (or Pascal). 

The other main way is to define a set of computable functions inductively, as a 
C1(Z, O)—cf. Section 1.6. To do so we start with some set of initial functions X 
that are immediately recognizable as "intuitively computable", and choose a set O of 
function-building operations that preserve the "computable" property. This approach 
was originally due to Dedekind (1888) for what we nowadays call primitive recursive 

50I will stress that even if this sounds like the "completeness theorem" of logic—that states the provability of 
all universally true formulae—Church's Thesis, existing in the realm of computability, is not a completeness 
result. It is just an empirical belief, rather than a provable result—unlike Godel's completeness theorem. 
For example, Kalmar (1957) and Peter (1967) have argued that it is conceivable that the intuitive concept of 
calculability may in the future be extended so much as to transcend the power of the various mathematical 
models of computation that we currently know. 
51 The level is "higher" the more the programming language is distanced from machine-dependent details. 
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functions. It evolved later [Kleene (1936)] into what we nowadays call partial recur-
sive functions. The definition of computable functions as members of some C1(I, O) 
is very elegant mathematically [cf. Tourlakis (1984)], but is less intuitively immedi-
ate, whereas the programming approach has the attraction of appearing "natural" to 
those who have done some programming. 

We now embark on defining the high level programming language URM. The 
alphabet of the language is 

<-, +, - , : , X, 0,1,2,3,4,5,6, 7,8,9, if, else, goto, s top (1) 

Just like any other high level programming language, URM manipulates the contents 
of variables. However, these are restricted to be of natural number type—i.e., the only 
data type that such variables can denote (or "hold", or "contain", in programming 
jargon) are members of N. Since this programming language is for theoretical 
considerations only—rather than practical implementation—every variable is allowed 
to hold any natural number whatsoever, without limitations to its size, hence the "UR" 
in the language name ("unbounded register", used synonymously with variable of 
unbounded capacity). 

The syntax of the variables is simple: A variable (name) is a string that starts with 
X and continues with one or more 1: 

URM variable set: XI, X l l , X l l l , X l l l l , . . . (2) 

Nevertheless, as is customary for the sake of convenience, we will utilize the bold face 
lower case letters x , y , z , u , v , w , with or without subscripts or primes as metavari-
ables in most of our discussions of the URM, and in examples of specific programs 
(where yet more, convenient metanotations for variables may be employed). 

A URM program is a finite (ordered) sequence of instructions (or commands) of 
the following five types: 

L : x —̂ a 
L : x f - x + 1 
L : x <- x - 1 (3) 
L : s top 
L : if x = 0 goto M else goto R 

where L, M, R, a, written in decimal notation, are in N, and x is some variable. We 
call instructions of the last type if-statements. 

Each instruction in a URM program must be numbered by its position number, 
L, in the program, where ":" separates the position number from the instruction. We 
call these numbers labels. Thus, the label of the first instruction is always " 1 " . The 
instruction s top must occur only once in a program, as the last instruction. 

The semantics of each command is given in the context of a URM computation. 
The latter we will let have its intuitive meaning in this subsection, and we will defer 
a mathematical definition until Section 2.3, where such a definition will be needed. 
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Thus, for now, a computation is the process that cycles along the instructions of 
a program, during which process each instruction that is visited upon—the current 
instruction—causes an action that we usually term "the result of the execution" of 
the instruction. I said "cycles along" because instructions of the last two types (may) 
cause the computation to loop back or cycle, revisiting an instruction that was already 
visited by the computation. 

Every computation begins with the instruction labeled " 1 " as the current instruc-
tion. The semantic action of instructions of each type is defined if and only if they 
are current, and is as follows: 

(i) L : x —̂ a. Action: The value ofx becomes the (natural) number a. Instruction 
L + 1 will be the next current instruction. 

(ii) L : x <— x + 1. Action: This causes the value of x to increase by 1. The 
instruction labeled L + 1 will be the next current instruction. 

(iii) L : x f - x - l . Action: This causes the value of x to decrease by 1, if it was 
originally non zero. Otherwise it remains 0. The instruction labeled L + 1 will 
be the next current instruction. 

(iv) L : s top. Action: No variable (referenced in the program) changes value. The 
next current instruction is still the one labeled L. 

(v) L : if x = 0 goto M else goto R. Action: No variable (referenced in the 
program) changes value. The next current instruction is numbered M if x = 0; 
otherwise it is numbered R. 

This command is syntactically illegal (meaningless) if any of M or R exceed 
the label of the program's s top instruction. 

We say that a computation terminates, or halts, iff it ever makes current (as we 
say "reaches") the instruction stop. Note that the semantics of "L : s top" appear 
to require the computation to continue ad infinitum, but it does so in a trivial manner 
where no variable changes value, and the current instruction remains the same: 
Practically, the computation is over. 

One usually gives names to URM programs, or as we just say, "to URMs", such 
asM,N,P,Q,R,F,H,G. 

2.1.1.1 Definition. (Computing a Function) We say that a URM, M, computes a 
function / : Nn -» N of n arguments provided—for some choice of variables 
x i , . . . , x n of M that we designate as input variables and a choice of one variable y 
that we designate as the output variable—the following precise conditions hold for 
every choice of input sequence (or n-tuple), a\,..., an from N: 

(1) We initialize the computation, by doing two things: 

(a) We initialize the input variables with the input values a\,... , a n . We 
initialize all other variables of M to be 0. 
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(b) We next make the instruction labeled " 1 " current, and thus start the com-
putation. 

(2) The computation terminates iff / ( a i , . . . , an) is defined, or, symbolically, iff 
/ (a i , . . . , a n )4 , (c f . p. 43). 

(3) If the computation terminates, that is, if at some point the instruction stop 
becomes current, then the value of y at that point (and hence at any future point, 
by (iv) above), is f(ai,..., an). □ 

(1) We recall that the notation " / ( a i 5 . . . , an) t " means that f(a\,..., an) is 
undefined (cf. p. 43). 
(2) The function computed by a URM, M, with inputs and output designated as 
above, can also be denoted by the symbol Mx*'•••'Xn. This symbol, with no need for 
comment, makes it clear as to which are the input variables (superscript) of M, and 
which is the output variable (subscript). The variables x i , . . . , x n in M x *' •'Xn are 
"apparent", or not free for substitution, since My1' ,Xn is not a term (in the logic 
sense of the word; cf. p. 3); it does not denote an object value. Note also that any 
attempt to effect such substitutions, for example, My,X2'- ''Xn, would lead, in general, 
to nonsensical situations like "L : 3 <- 3 -f 1", a command that wants to change the 
(standard) value of the symbol "3" (from 3 to 4)! 

Thus, we may write / = M X l ' 'Xn, but not / ( a i , . . . , an) = M^^^y 

Note that / denotes, by name, a function, that is, a potentially infinite table of 
input/output pairs, where the input is always an n-tuple. On the other hand, M X l ' • • •,Xn 

goes a step further: It finitely represents the table f, being able to do so because it 
is a finite set of instructions that can be used to compute the output for each input 
where / is defined. 

2.1.1.2 Definition. (Computable Functions) A function / : Nn -> N of n vari-
ables xi,... ,xn is called partial computable iff for some URM, M, we have 
f — M X l ' - ' X n . The set of all partial computable functions is denoted by V. The set 
of all the total functions in V—that is, those that are defined on all inputs from N—is 
the set of computable functions and is denoted by TZ. The term recursive is used in 
the literature synonymously with the term computable. □ 

2.1.1.3 Remark. Note that since a URM is a theoretical, rather than practical, 
model of computation we do not include human-computer interface considerations 
in the computation. Thus, the "input" and "output" phases just happen during 
initialization—they are not part of the computation. That is why we have dispensed 
with both read and write instructions and speak instead of initialization in (1) of 
2.1.1.1. This approach to input/output is entirely analogous with the input/output 
convention for the other well-known model of computation, the Turing machine [cf. 
Davis (1958); Hopcroft etal (2007); Lewis and Papadimitriou (1998); Sipser (1997); 
Tourlakis (1984)]. □ 
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2.1.1.4 Example. Let M be the program 

1 : x <- x + 1 
2 : s top 

Then M* is the function / given, for all x € N, by f(x) = x + 1, the successor 
function. □ 

2.1.1.5 Remark. (A Notation) To avoid saying verbose things such as "M* is the 
function / given, for all x G N, by f(x) = x + 1", we will often use Church's 
A-notation and write instead "M* = Xx.x + 1". 

In general, the notation "A • • • ." marks the beginning of a sequence of input 
variables "• • •" by the symbol "A", and the end of the sequence by the symbol "." 
What comes after the period "." is the "rule" that indicates how the output relates to 
the input. The template for A-notation thus is 

A"input". "output-rule" 

Relating to the above example, we note that / = Xx.x + 1 = Xy.y + 1 = Xz.f(z) 
is correct—although the rule "y + 1" is more informative than "f(z)". To the left 
and right of each "=" we have (a symbol for) the table of a function, and we are 
saying that all these tables are the same. Note that x, y, z are "apparent" variables 
("dummy" or bound) and are not free (for substitution). In particular, / = f(x) is 
incorrect as we have distinct data types to the left and right of "=", namely, a table 
on one hand and a number on the other (albeit an unspecified number). 

Pause. Why bother with these notational acrobatics?^ 

Because well-chosen notation protects against meaningless statements, such as 

M * = x + 1 (1) 

that one might make in the context of the above example. As remarked before, "M*" 
is not a term, nor are the occurrences of x in it free (for substitution). For example, 
"Mf = 4" [obtained by substituting 3 for x throughout in (1)] is totally meaningless, 
as it says 

1 : 3 ^ 3 + l 
2 : stop ~ 4 

However, M* — Ax.x + 1 does make syntactic and semantic sense; indeed it is true, 
as two tables are compared and are found to be equal! Since Ax.x-h 1 = Xy.y + 1, 
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the following three tables are identical: 

Input 
X 

0 
1 
2 
3 

Output 
x + 1 

1 
2 
3 
4 

Input 
y 
0 
l 
2 
3 

1 Output 
y + i 

l 
2 
3 
4 

x -> 

o 
1 
2 
3 

M M —>> X 

1 
2 
3 
4 

In programming circles, the distinction between function definition or declara-
tion, Xx.f(x), and function invocation (or call, or application, or "use")—what we 
call a term, f(x), in logic parlance—is well established. The definition part, in 
programming, uses various notations depending on the programming language and 
corresponds to writing a program that implements the function, just as we did with 
M here. 

However, there is a double standard in notation when it comes to relations. Exten-
sionally, a relation R is a table (i.e., set) of n-tuples. Its counterpart in formal logic is 
a formula (cf. the discussion following Definition 1.2.0.4). But where in formal logic 
we rather infrequently write a formula A as A[x]—doing so only if we want to draw 
attention to our interest in its (free) variable x—in the metatheory we most frequently 
write a relation R as R(xn), without employing A notation, to draw attention to its 
"input slots", which here are # i , . . . , xn (i.e., its "free variables"). 

Since stating "i?(an) ' \ by convention, is short for stating "(an) G R\ we have 
two notations for a relation: Logical or relational, i.e., R(xn), and set-theoretic, 
i.e., (xn) G R, both without the benefit of A notation. There are exceptions to this 
practice, for example, when we define one relation from another one via the process 
of "freezing" some of the original relation's inputs. For example, writing x < y (the 
standard "less than" on N) means that both x and y are meant to be inputs; we have 
a table of ordered pairs. However, we will write Xx.x < y to convey that y is fixed 
and that the input is just x. Clearly, a different relation arises for each y; we have 
an infinite family of tables: For y = 0 we have the empty table; for y = 1 one that 
contains just 0; for y = 2 one that contains just 0,1; etc. □ 

We wrote on p. 41 

Thus, the relation (table) establishes a one-to-many input/output corre-
spondence. Contrary to our viewpoint with formulae g/(x, y)—where 
the input variables are all the free variables, here x and y—in the case of 
relations we are allowed two points of view, one being the one presented 
above, and the other where both x and y are the inputs of the relation 
R(x, y). The context will fend for us! 

x —>• M means "x is input to M " and \ M —> x indicates "x is output from M". 
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Our attitude in computability—the "context"—will be to view n-ary relations not as 
one-to-many correspondences 

(xn-i) —► R 

with n — 1 input-variables and one output variable, but rather as formulae R(xn) 
of n free variables. This is already implicit in Remark 2.1.1.5 above, where we said 
"writing x < y (the standard "less than" on N) means that both x and y are meant to 
be inputs" and "we will write Xx.x < y to convey that y is fixed and that the input is 
just x". 

2.1.1.6 Example. Let M be the program 

1 : x <- x — 1 
2 : s top 

Then M* is the function Xx.x — 1, the predecessor function. The operation — is 
called "proper subtraction" and is in general defined by 

{ x — y ifx>y 
0 otherwise 

It ensures that subtraction (as modified) does not take us out of the set of the so-called 
number-theoretic functions, which are those with inputs from N and outputs in N. 

□ 
Pause. Why are we restricting computability theory to number-theoretic func-

tions? Surely, in practice we can compute with negative numbers, rational numbers, 
and with nonnumerical entities, such as graphs, trees, etc. Theory ought to reflect, 
and explain, our practices, no?^ 

It does. Negative numbers and rational numbers can be coded by natural number 
pairs. Computability of number-theoretic functions can handle such pairing (and 
unpairing or decoding). Moreover, finite objects such as graphs, trees, and the 
like that we manipulate via computers can be also coded (and decoded) by natural 
numbers. After all, the internal representation of all data in computers is, at the lowest 
level, via natural numbers represented in binary notation. Computers cannot handle 
infinite objects such as (irrational) real numbers. But there is an extensive "higher 
type" computability theory [which originated with the work of Kleene (1943)] that 
can handle such numbers as inputs and also compute with them. However, this theory 
is beyond our scope. 

2.1.1.7 Example. Let M be the program 

1 : x ^ 0 
2 : stop 
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Then M* is the function Ax.O, the zero function. □ 

In Definition 2.1.1.2 we spoke of partial computable and total computable functions. 
We retain the qualifiers partial and total for all number-theoretic functions, even for 
those that may not be computable. Indeed, total vs. nontotal (no hyphen) has been 
defined with respect to some assumed left field for any relation, single-valued or not 
(cf. p. 42). 

The set union of all total and nontotal number-theoretic functions is the set of all 
partial (number-theoretic) functions. Thus partial is not synonymous with nontotal. 

2.1.1.8 Example. The unconditional goto instruction, namely, "L : goto L"', can 
be simulated by L : if x = 0 goto V else goto V. □ 

2.1.1.9 Example. Let M be the program segment 

fc- 1 : x < - 0 
k : x <- x + 1 
fc + l : z f - z - l 
k + 2 : if z = 0 goto k + 3 else goto k 
fc + 3 : . . . 

What it does, by the time the computation reaches instruction k + 3, is to have set 
the value of z to 0, and to make the value of x equal to the value that z had when 
instruction k — 1 was current. In short, the above sequence of instructions simulates 
the following sequence 

L : x «— z 
L + l :z ^ 0 
L + 2 : . . . 

where the semantics of L : x <— z are standard in programming: They require that 
upon execution of the instruction the value of z is copied into x, but the value of z 
remains unchanged. □ 

2.1.1.10 Exercise. Write a program segment that simulates precisely L : x 4- z; 
that is, copy the value of z into x without causing z to change as a side-effect. □ 

Because of the above, without loss of generality, one may assume that any input 
variable, x, of a program M is read-only. This means that its value remains invariant 
throughout any computation of the program. Indeed, if x is not so, a new input 
variable, x', can be introduced as follows to relieve x from its input role: Add at 
the very beginning of M the (derived) instruction 1 : x <<— x' of Exercise 2.1.1.10, 
where x' is a variable that does not occur in M. Adjust all the following labels 
consistently, including, of course, the ones referenced by if-statements—a tedious 
but straightforward task. Call M' the so-obtained URM. Clearly, M ' £ ' ' y i ' - ' y n = 
M*'y i ' •• *,yn, and M' does not change x'. 
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2.1.1.11 Example. (Composing Computable Functions) Suppose that Xxy.f(x, y) 
and Xz.g(z) are partial computable, and say / = F*^ while g = G%.. 

Since we can rewrite any program, renaming its variables at will, we assume 
without loss of generality that x is the only variable common to F and G. Thus, if we 
concatenate the programs G and F in that order, and (1) remove the last instruction 
of G (k : stop, for some k)—call the program segment that results from this G\ and 
(2) renumber the instructions of F as k, k -f 1 , . . . (and, as a result, the references that 
if-statements of F make) in order to give (GfF) the correct program structure, then, 
^yZ'f(g(z)iy) = (G'F)t'S- N o t e t h a t a11 non-input variables of F will still hold 0 
as soon as the execution of {G'F) makes the first instruction of F current for the first 
time. This is because none of these can be changed by G' under our assumption, thus 
ensuring that F works as designed. □ 

Thus, we have, by repeating the above a finite number of times: 

2.1.1.12 Proposition. IfXyn.f(yn) and \z.gi(z),fori = 1 , . . . , n, are partial com-
putable, then so is Xz.f(gi(z),...,gn{z))-

We can rephrase 2.1.1.12, saying simply that V is closed under composition. 
For the record, we will define composition to mean the somewhat rigidly defined 
operation used in 2.1.1.12, that is: 

2.1.1.13 Definition. Given any partial functions (computable or not) Xyn.f(yn) and 
Xz.gi(z), for i = 1 , . . . , n, we say that Xz.f(gi(z),... ,gn(z)) is the result of their 
composition. □ 

We characterized the definition as "rigid". Indeed, note that it requires all the 
arguments of / to be substituted by some gi (z)—unlike Example 2.1.1.11, where we 
substituted a function invocation (cf. terminology in 2.1.1.5) only in one variable of 
/ there, and did nothing with the variables y—and for each application g%{...) the 
argument list, "...", must be the same, for example z. That is, in computability we 
only say, technically, that "we do composition" if—in the sense of 1.2.0.18—we take 
an / : Nn -+ N and the n-tuple-valued function (gu ... ,gn) : Nm -> Nn 53 and 
form(gll...1gn)o f. 

As we will show in examples in the next subsection (2.1.2), this rigidity is only 
apparent. 

Composing a number of times that depends on the value of an input variable—or 
as we may say, a variable number of times—is iteration. The general case of iteration 
is called primitive recursion. 

2.1.1.14 Definition. (Primitive Recursion) A number-theoretic function / is de-
fined by primitive recursion from given functions Xy.h{y) and Xxyz.g(x, y, z) pro-

53For each ra-tuple z,(gi,..., gn)(z) = (gi ( z ) , . . . , gn{z)). 
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vided,/or all x, y, its values are given by the two equations below: 

/(0,tf) ~ h ( y ) 
f(x + l,y)~g(x,y,f(x,y)) 

h is the basis function, while g is the iterator. In 1.7.0.27 we saw that a unique / that 
satisfies the above schema exists. Moreover, if both h and g are total, then so is / 
and the ĉ  in the schema may be replaced by = (cf. the exercise following 1.7.0.27). 

It will be useful to use the notation / = prim(h, g) to indicate in shorthand that 
/ is defined as above from h and g (note the order). □ 

Notethaty(l ,$ ~ g(0,y,h(y)), /(2,£) ~ g(l,y,g(0,y,h(y)))> /(3,j7) ^ 
g(2,yig(l,y,g{0,y,h(y)))), etc. Thus the "x-value", 0, 1, 2, 3, etc., equals the 
number of times we compose g with itself (i.e., the number of times we iterate g). 

2.1.1.15 Example. (Iterating Computable Functions) Suppose that \xyz.g(x, y, z) 
and Xy.h(z) are partial computable, and, say, g = G ^ ' z while h = H%. 

By earlier remarks we may assume: 
(i) The only variables that H and G have in common are z, y. 
(ii) The variables y are read-only in both H and G. 
(iii) i is read-only in G. 
(iv) x does not occur in any of H or G. 
We can now argue that the following program, let us call it F, computes / defined 

as in 2.1.1.14 from h and g, where H' is program H with the s top instruction 
removed, | G' \ is program G that has the s top instruction removed, and instructions 
renumbered (and if-statements adjusted) as needed: 

r : 
r + 1 : 
r + 2 : 

k: 
fe + 1 : 

H' 
i < - 0 
if x = 0 goto k + m + 2 else goto r + 2 
x <- x — 1 
G' 

i ^ i + 1 
w i <- 0 

k + m : w m —̂ 0 
k + m + 1 : goto r + 1 
fc + m + 2 : s top 

The instructions w^ <- 0 set explicitly to zero all the variables of G' other than 
i, z, y to ensure correct behavior of G'. Note that the w^ are implicitly initialized to 
zero only the first time G' is executed. Clearly, / = F** . D 

We have at once: 
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2.1.1.16 Proposition. Iff, g, h relate as in Definition 2.1.1.14 and h and g are in V, 
then so is f. We say that V is closed under primitive recursion. 

2.1.1.17 Example. (Unbounded Search) Suppose that \xy.g(x, y) is partial com-
putable, and, say, g — G*^. By earlier remarks we may assume that y and x are 
read-only in G and that z is not one of them. 

Consider the following program F, where | G' | is program G with the s top instruc-
tion removed, and instructions have been renumbered (and if-statements adjusted) as 
needed so that its first command has label 2. 
1 : x < - 0 

G" 
k : if z = 0 goto k + / + 3 else goto k + 1 
k + 1 : wi «— 0 {Comment. Setting all non-input variables to 0; cf. 2.1.1.15.} 

k + I : wj «- 0 {Comment. Setting all non-input variables to 0; cf. 2.1.1.15.} 
k + I + 1 : x «- x + 1 
k + I + 2 : goto 2 
k + I + 3 : s top 

Let us set f = F£. Note that, for any a, f(a) I precisely if the URM F9 initialized 
with a as the input values in y, ever reaches s top. This condition becomes true as 
long as the two conditions, (1) and (2) below, are fulfilled: 

(1) Instruction A: just found that z holds 0. This value of z is the result of an 
execution of G (i.e., G' with the s top instruction added) with input values a in y 
and, say, b in x, the latter being the iteration counter—0,1,2,...—that indicates how 
many times instruction 2 becomes current. 

(2) In none of the previous iterations (with x-value < b) did G' (essentially, G) 
get into a non-ending computation {infinite loop). 

Correspondingly, the computation of F will never halt for an input a if either G 
loops for ever at some step, or, if it halts in every iteration 6, but nevertheless it never 
exits with a z-value of 0. 

Thus, for all a, 

/(a) = min | z : g(x, a) = 0 A (Vy) (y < x -> g(y, a) | ) | □ 

2.1.1.18 Definition. The operation on partial functions g given for all a by 

min I a; : g(x, a) = 0 A (Vy) (y < x -> g(y, a) | ) j 

is called unbounded search (along the variable x) and is denoted by the symbol 
(fix)g(x, a). The function \y.(/j,x)g(x, y) is defined precisely when the minimum 
exists. □ 

The result of Example 2.1.1.17 yields at once: 
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2.1.1.19 Proposition. V is closed under unbounded search; that is, if\xy.g(x, y) is 
in V, then so is \y.(iix)g(x, y). 

Why "unbounded" search? Because we do not know a priori how many times we 
have to go around the loop. This depends on the behavior of g. 

2.1.1.20 Example. Is the function Xxn.Xi, where 1 < i < n, in VI Yes, and here is 
a program, M, for it: 

1 : wi <r- 0 

i : z ^ - W i {Comment. Cf. Exercise 2.1.1.10} 

n : w n <- 0 
n -f 1 : s top 

Xxn.Xi = M™n. To ensure that M indeed has the w$ as variables we reference them 
in instructions at least once, in any manner whatsoever. □ 

2.1.2 Primitive Recursive Functions 

Exercises 2.1.1.4, 2.1.1.7, and 2.1.1.20 show that the successor, the zero, and the 
generalized identity functions respectively—which we will often name 5, Z and Uf 
respectively—are in V\ thus, not only are they "intuitively computable", but they 
are so in a precise mathematical sense. We have also shown that "computability" 
of functions is preserved by the operations of composition, primitive recursion, and 
unbounded search. In this subsection we will explore the properties of the important 
set of functions known as primitive recursive. Most people introduce them by 
derivations just as one introduces the theorems of logic, as in the definition below. 

Note that the "U" (u = unit) in U™ is suggested by the behavior of the function 
as the identity or unit function54 that, essentially, takes x to x, but has additional 
"non active" or "don't care" inputs. These unit functions are also called projection 
functions and are indeed the the pf of Exercise 1.8.23, but here we employ them 
in the special setting where Aj = N, for j = 1 , . . . , n. Unfortunately, the term 
"projection function" in computability clashes with the names of the specialized K 
and L functions associated with pairing functions (cf. 2.1.4.1). 

2.1.2.1 Definition, (^^-derivations; PTMunctions) A P^-derivation is a finite 
sequence of number-theoretic functions that obeys, in its step-by-step construction, 
the following requirements. At each step we may write: 

54The identity function behaves with respect to composition like the number 1 does with respect to 
multiplication; as a "unit". Cf. 1.8.25. 
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(1) Any one of Z, S, Uf (for any n > 0 and any 0 < i < n). 
(2) Xz.f(gi ( z ) , . . . , gn(z)), provided each of / , g\,..., gn has already been writ-

ten. 
(3) prim(h, g), provided appropriate h and g have already been written. Note that 

h and g are "appropriate" (cf. 2.1.1.14) as long as g has two more arguments than h. 
A function / is primitive recursive, or a P7£-function, iff it occurs in some V1Z-

derivation. The set of functions allowed in step (1) are called initial functions. We 
will denote this set by X. The set of all PT^-functions will be denoted by VIZ. □ 

2.1.2.2 Remark. The above definition defines essentially what Dedekind (1888) 
called "recursive" functions. Subsequently they have been renamed primitive recur-
sive allowing the unqualified term recursive to be synonymous with computable and 
apply to the functions of 1Z (cf. 2.1.1.2). 

The concept of a PT^-derivation is entirely analogous with that of proof. Vis-
a-vis proofs, derivations have the following analogous elements: initial functions 
(vs. axioms) and the operations composition and primitive recursion (vs. the rules of 
inference). 

As it is the case with proofs, we can cut the tail off a derivation and still have a 
derivation. The reason is immediate: If the legitimacy of appearance of a function 
/ in some 'PT^-derivation is based on (2) or (3) of 2.1.2.1, then the presence or 
absence of the "tail" after / in said derivation is totally irrelevant to / ' s legitimacy of 
appearance. Thus, we deduce at once that a PT^-function is one that appears at the 
end of a 'P'ft-derivation. 

Properties of primitive recursive functions can be proved by induction on derivation 
length, just as properties of theorems can be proved by induction on the length of 
proofs. 

That a certain function is primitive recursive can be proved by exhibiting a deriva-
tion for it, just as is done for the certification of a theorem: We exhibit a proof. 
However, in proving theorems we accept the use of known theorems in proofs. Sim-
ilarly, if we know that certain functions are primitive recursive, then we immediately 
infer that so is one obtained from them by an allowed operation (composition, prim-
itive recursion, or yet-to-be-introduced derived operations). For example, if h and 
g are in VIZ and prim(h, g) makes sense according to 2.1.1.14, then the latter is in 
VIZ, too, since we can concatenate derivations of h and g and add prim(h, g) to the 
right end. 

In analogy to the case of theorem proving, where we benefit from powerful derived 
rules, in the same way the certification of functions as primitive recursive is greatly 
facilitated by the introduction of derived operations on functions beyond the two that 
we assumed as given outright {primary operations) in Definition 2.1.2.1. □ 

The reader will recognize at once that Definition 2.1.2.1 is a "concrete" or special 
instance of the abstract (or "general") Definitions 1.6.0.6 and 1.6.0.9. Moreover, we 
must emphasize the fundamental (and practically important) relationship between 
iterative and recursive definitions of sets (cf. 1.6.0.14). The extremely useful principle 
of "induction on (with respect to) a closure" (or structural induction) is based, as 
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the reader will recall from 1.6.0.13, on the characterization of a set of objects as a 
closure. The earlier Remark 1.6.0.15 notes when we benefit from the iterative and 
when from the recursive point of view. It also provides an alternative reason for the 
correctness of the observation above: 

Similarly, if we know that certain functions are primitive recursive, then we 
immediately infer that so is one obtained from them by an allowed operation 

Thus we may state at once: 

2.1.2.3 Theorem. VIZ is the closure of X under primitive recursion and composi-
tion. 

2.1.2.4 Remark. (Induction over V1Z) For the general principle, cf. 1.6.0.13. We 
can do induction over VIZ toward proving a property 0*(f) for all / G VIZ. We 
prove: 

(1) (Basis) All of Z, 5, U™ (for any n > 0 and any 0, i < n) has the property 2?. 

(2) Xz.f(gi(z),..., gn(z)) n a s the property, provided each of / , g\,..., gn do. 

(3) prim(h, g) has the property, provided h and g do. 

The above procedure is more elegant (and more widely used) than induction on the 
length of PT^-derivation. □ 

2.1.2.5 Example. If Xxyw.f(x1 y, w) and Xz.g(z) are in VIZ, how about Xxzw.f(x, 
g(z), w)l It is in VIZ since 

\xzw.f(x, g(z), w) = \xzw.f(Ul(x, z, w),g(U$(x, z, w)), U$(x, z, w)) 

and the U™ are primitive recursive. The reader will see at once that to the right of 
"=" we have correctly formed compositions as expected by 2.1.1.13. 

Similarly, for the same functions above, 

(1) Xyw.f(2, y, w) is in VIZ. Indeed, this function can be obtained by composition, 
since 

\yw.f(2,y,w) = Xyw.f(sSZ(Ul{y,w)),y,w) 

where I wrote "SSZ(...)" as short for S(5(Z(. . . ))) for visual clarity. Clearly, 
using SSZ(U2(y, w)) above works as well. 

(2) Xxyw.f(y, x, w) is in VIZ. Indeed, this function can be obtained by composition, 
since 

\xyw.f(y,x,w) = \xyw.f\U$(x,y,w),U?(x,y,w),U$(x,y,w)) 

X In this connection, note that while Xxy.g(x, y) = Xyx.g(y, x), yet Xxy.g(x,y) ^ 
Xxy.g(y, x) in general. For example, Xxy.x — y asks that we subtract the second 
input (y) from the first (x), but Xxy.y — x asks that we subtract the first input (x) 
from the second (y). 

www.it-ebooks.info

http://www.it-ebooks.info/


106 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS 

(3) Xxy.f(x, y, x) is in VIZ. Indeed, this function can be obtained by composition, 
since 

Xxy.f(x, y, x) = \xy.f(U?(x, y): U$(x, y), U?(x, y)) 

(4) Xxyzwu.f(x, y, w) is in VIZ. Indeed, this function can be obtained by compo-
sition, since 

Xxyzwu.f(x,y,w) = 
Xxyzwu.f(Uf(x, y, z, w, u), £/|(x, y, z, w, u), U%(x, y, z, w, u)) 

D 

The above examples are summarized, named, and generalized in the following 
straightforward exercise: 

2.1.2.6 Exercise. (The Grzegorczyk (1953) Substitution Operations) VIZ is closed 
under the following operations: 

(i) Substitution of a function invocation for a variable: 
From Xxyz.f(x, y, z) and Xw.g(w) obtain Xxwz.f(x, g(w), z). 

(ii) Substitution of a constant for a variable: 
From Xxyz.f(x, y, z) obtain Xxz.f(x, k,z). 

(iii) Interchange of two variables: 
From Xxyzwu.f(x, y,z,w,u) obtain Xxyzwu.f(x, w,z,y,u). 

(iv) Identification of two variables: 
From Xxyzwu.f(x, y,z,w,u) obtain Xxyzu.f{x, y,z,y,u). 

(v) Introduction of "don't care" variables: 
From Xx. f (x) obtain Xxz. f(x). □ 

By 2.1.2.6 composition can simulate the Grzegorczyk operations if the initial 
functions X are present. Of course, (i) alone can in turn simulate composition. With 
these comments out of the way, we see that the "rigidity" of Definition 2.1.1.13 is 
gone. 

2.1.2.7 Example. The definition of primitive recursion is also rigid, but this rigidity 
is removable as well. For example, natural and simple recursions such as p(0) = 0 
and p(x + 1) = x—this one defining p = Xx.x — 1—do not fit the schema of 
Definition 2.1.1.14. This is because it requires the defined function to have one 
more variable than the basis, so no one-variable function can be directly defined! 
We can get around this. Define first p = Xxy.x — 1 as follows: p(0, y) = 0 and 
p(x + 1,2/) = x. Now this can be dressed up according to the syntax of the schema 
in 2.1.1.14, 

my) =Z(y) 
p(x + l,y)= U?(x,y,p(x,y)) 
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that is, p — prim(Z, Uf). Then we can get p by (Grzegorczyk) substitution: p = 
Xx.p(x, 0). Incidentally, this shows that both p and p are in VIZ. 

Another rigidity in the definition of primitive recursion is that, apparently, one 
can use only the first variable as the iterating variable. Consider, for example, 
sub — Xxy.x — y. Clearly, sub(x,0) — x and sub{x,y + 1) — p(sub(x,y)) is 
correct semantically, but the format is wrong: We are not supposed to iterate along 
the second variable! Well, define instead sub = Xxy.y — x: 

^6(0,2/) =Ul(y) _ 
sub(x + 1, y)= p(U$(x, y, sub(x, y))) 

Then, using variable swapping [Grzegorczyk operation (iii)], we can get sub: sub = 
Xxy.sub(y, x). Clearly, both sub and sub are in V1Z. With practice, one gets used 
to accepting at once simplified recursions like the one for p and sub. One needs to 
make them conform to the format of 2.1.1.14 only if the instructor insists! □ 

2.1.2.8 Exercise. Prove that Xxy.x + y and Xxy.x x y are primitive recursive. Of 
course, we will usually write multiplication x x y in "implied notation", xy. □ 

2.1.2.9 Example. The very important "switch" (or "if-then-else") function sw = 
Xxyz.if x = 0 then y else z is primitive recursive. It is directly obtained by primitive 
recursion on initial functions: sw(0, y,z) = y and sw(x -f 1, y, z) — z. D 

2.1.2.10 Exercise. Dress up the recursion sw(0, y,z) = y and sw(x + 1, y, z) = z 
to bring it into the format required by Definition 2.1.1.14. □ 

2.1.2.11 Exercise. Prove by induction first on derivation lengths, and then "over 
VW\ that all functions in VU are total. □ 

2.1.2.12 Proposition. VIZ C 1Z. 

Proof. By 2.1.1.12, 2.1.1.16, and 2.1.2.3, VIZ C V. But all the functions in VIZ are 
total (cf. 2.1.2.11 and Definition 2.1.1.2). □ 

Indeed, the above inclusion is proper, as we will see in Subsection 2.4. We also 
state for the record: 

2.1.2.13 Proposition. 1Z is closed under both composition and primitive recursion. 

Proof. Because V is, and both operations conserve totalness. □ 

2.1.2.14 Example. Consider the function ex given by 

ex(x,0) — 1 
ex(x, y + 1)= ex(x, y)x 

Thus, if x = 0, then ex(x, 0) = 1, but ex(x, y) = 0 for all y > 0. On the other hand, 
if x > 0, then ex(x, y) = xy for all y. 
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Note that xy is "mathematically" undefined when x — y = 0.55 Thus, by 
Exercise 2.1.2.11 the exponential cannot be a primitive recursive function! 

This is rather silly, since the computational process for the exponential is so 
straightforward; thus it is a shame to declare the function non-V1Z. After all, we 
know exactly where and how it is undefined and we can remove this undefinability 
by redefining "xy" to mean ex(x, y)for all inputs. 

Clearly ex G VIZ. In computability we do this kind of redefinition a lot in order 
to remove easily recognizable points of "non definition" of calculable functions. We 
will see further examples, such as the remainder, quotient, and logarithm functions. 
Caution! We cannot always remove points of non definition of a calculable function 
and still obtain a computable function. That is, there are functions / G V that have 
no recursive extensions. This we will show in Subsection 2.7. □ 

2.1.2.15 Definition. A relation R[x) is (primitive) recursive iff its characteristic 
function, 

^ (o ifR(x) 
XR = ^.< 

I I if-iR(x) 

is (primitive) recursive. The set of all primitive recursive (respectively, recursive) 
relations is denoted by V1Z* (respectively, 7£*). □ 

Computability theory practitioners often call relations predicates. It is clear that 
one can go from relation to characteristic function and back in a unique way, since 
R(x) = XR(%) = 0- Thus, we may think of relations as "0-1 valued" functions. 
The concept of relation simplifies the further development of the theory of primitive 
recursive functions. 

The following is useful: 

2.1.2.16 Proposition. R{x) e VIZ* iff some f e VIZ exists such that, for all x, 
R(x) = f(x) = 0. 

Proof For the //-part, I want \R £ VIZ. This is so since \R — ^#-1 ~ (1 ~ /0*0) 
(using Grzegorczyk substitution and Xxy.x — y E V1Z\ cf. 2.1.2.7). For the only 
/f-part, f = XR will do. □ 

2.1.2A7 Corollary. R(x) e 1Z* iff some f e 1Z exists such that, for all x, R(x) = 
f(x) = 0. 

Proof. By the above proof, 2.1.2.12, and 2.1.2.13. □ 

2.1.2.18 Corollary. VIZ* C 1Z*. 

Proof By the above corollary and 2.1.2.12. □ 

55In first-year university calculus we learn that "0°" is an "indeterminate form". 
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2.1.2.19 Theorem. VIZ* is closed under the Boolean operations. 

Proof. It suffices to look at the cases of -■ and V, since R —>• Q = —ijR V Q, 
RAQ = - i( i i? V -.Q) and R = Q is short for (R -> Q) A (Q ->> P) . 

(-i) Say, ii(x) G Pft*. Thus (2.1.2.15), x# G Pft . But then x-^R € VIZ, since 
X^i? = Ax.l — XR{%), by Grzegorczyk substitution and Axt/.a; — y G P7£. 

(V) Let R(x) G PTe* and Q(y) G FK*. Then Xxy.XRvQ(x, y) is given by 

XAVQO?, y) = if R(x) then 0 else XQ(V) 

and therefore is in VIZ. □ 

2.1.2.20 Remark. Alternatively, for the V case above, note that XRvQ^iV) = 
XR{%) x XQ(V) a n d invoke 2.1.2.8. □ 

It is common practice to use R(x) and XR{%) (almost) interchangeably. For example, 
"if R(x) then . . . " is the same as "if XR{%) — 0 m e n • • •"• The latter more directly 
shows that a (Grzegorczyk) substitution was effected into an argument of the if-then-
else (2.1.2.9) function: 

XR{$) 
I 

if x = 0 then . . . 
thus establishing the primitive recursiveness of the resulting function. 

2.1.2.21 Corollary. 1Z* is closed under the Boolean operations. 

Proof. As above, mindful of 2.1.2.12, and 2.1.2.13. □ 

2.1.2.22 Example. The relations x < y, x < y, x = y are in VIZ*. See 2.1.1.5 for 
a refresher on our conventions regarding lambda notation and relations. 

With this out of the way, note that x < y = x — y = 0 and invoke 2.1.2.16. 
Finally invoke Boolean closure and note that x < y = ~^y < x while x = y is 
equivalent to x < y Ay < x. □ 

2.1.2.23 Proposition. IfR(x, y, z) G VIZ* andXw.f(w) G VIZ, thenR(x, f(w), z) 
is in VIZ*. 

Proof. Let Q(x, w, z) denote R(x, f(w),z). Then XQ(X, W, Z) = Xfl(#> / W > z)-
D 

2.1.2.24 Proposition. IfR(x, y, z) G 1Z* and Xw.f(w) G 1Z, then R(x, f(w), z) is 
in 1Z*. 

Proof. Similar to that of 2.1.2.23. □ 

2.1.2.25 Corollary. Iff G VIZ (respectively, in 1Z), then its graph, z — fix) is in 
V7Z* (respectively, in 1Z*). 

Proof. Using the relation z — y and 2.1.2.23. □ 
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The following converse of 2.1.2.25, "if z — f(x) is in VIZ* and / is total, then 
/ G VIZ" is not true. A counterexample is provided by the Ackermann function. 
However, "if z = f(x) is in 7£* and / is total, then / G 71" is true. More on the 
Ackermann function in Section 2.4. 

2.1.2.26 Exercise. Using unbounded search, prove that if z — f(x) is in 1Z* and / 
is total, then / G 1Z. □ 

2.1.2.27 Definition. (Bounded Quantifiers) The abbreviations (Vy)<zR(z,x) and 
(3y)<zR(z,x) stand for {Vy)(y < z -+ #(>,£)) and (By) (2/ < z A R(z,x))9 
respectively, and similarly for the nonstrict inequality "<". □ 

2.1.2.28 Theorem. VIZ* is closed under bounded quantification. 

Proof By 2.1.2.19 it suffices to look at the case of (3y)<z since (\/y)<zR(y, x) = 
-*(3y)<z^R(y,x). 

Let then i?(y, x) G P7£* and let us give the name Q(z, x) to (3y)<zR(y, x). We 
note that Q(0, x) is false (why?) and Q(z + l,x) = Q(z, x) V R(z, x). Thus, 

X Q ( 0 , £ ) = 1 

XQ(^ + 1, £) = XQ(*, £ ) X # ( ^ #) D 

2.1.2.29 Corollary. 7£* w closed under bounded quantification. 

2.1.2.30 Exercise. The operations of bounded summation and bounded multiplica-
tion are quite handy. These are applied on a function / and yield the functions 
^■Z) i<z / (*>£) a n d ^zX'Hi<zf(h%)> respectively, where ^2i<0f(i,x) = 0 
and riz<o /(^ ' #) = 1 fry definition. Prove that P7£ and 7£ are closed under both 
operations; i.e., if / is in V7Z (respectively, in 7Z), then so are Xzx. ^2i<z f(i, x) and 

2.1.2.31 Definition. (Bounded Search) Let / be a total number-theoretic function 
of n + 1 variables. The symbol (/iy)<zf(y, x), for all z, x, stands for 

f min{y :y <zA f(y, x) = 0} if (3y)<zf(y, x) = 0 
1 z otherwise 

We define " ( ^ ) < 2 " to mean li(fiy)<z+i". D 

2.1.2.32 Theorem. P7^ w closed under the bounded search operation (jjJy)<z. That 
is, if\yx.f(y,x) G VIZ, then \zx.(fj,y)<zf(y,x) G VIZ. 

Proof. Set g — \zx.(p,y)<zf(y,x). Then the following primitive recursion settles 
it: 

0(O,x) = l 
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g(z + l ,x) = if g(z,x) < z then g(z, x) 
else if f(z, x) = 0 then z 
else z + 1 □ 

2.1.2.33 Exercise. Mindful of the comment following 2.1.2.19, dress up the primitive 
recursion that defined g above so that it conforms to the Definition 2.1.1.14. □ 

2.1.2.34 Corollary. VIZ is closed under the bounded search operation (/jJy)<z. 

2.1.2.35 Exercise. Prove the corollary. □ 

2.1.2.36 Corollary. 1Z is closed under the bounded search operations {\iy)<z and 
(lJ>y)<z-

Consider now a set of mutually exclusive relations Ri(x), i = 1 , . . . , n, that is, 
Ri(x) A Rj (x) is false for each x as long as i ^ j . 

Then we can define a function / by cases Ri from given functions fj by the 
requirement (for all x) given below: 

/(*) = { 

h{x) ifR1(x) 
f2(x) ifR2{x) 

fn(x) if Rn(x) 
fn+i(x) otherwise 

where, as is usual in mathematics, "if Rj(x)" is short for "if Rj(x) is true" and 
"otherwise" is the condition -<(Ri(x) V • • • V Rn(x)). We have the following result: 

2.1.2.37 Theorem. (Definition by Cases) If the functions fif i = 1 , . . . , n + 1 and 
the relations Ri(x), i = 1 , . . . , n are in VIZ and V7Z*, respectively, then so is f 
above. 

Proof By repeated use (composition) of if-then-else. Alternatively, by noting— 
being mindful of 2.1.2.19—that 

f(x) = h{x){l ^ x*x(aO)+ • ■ ■ + fn(x)(l ^ XRn(x)) + 
/n+lO?)( l - X-(JiiV...Vfln)(£)) □ 

2.1.2.38 Corollary. Same statement as above, replacing VIZ and V7Z* by 1Z and 
1Z*, respectively. 

The tools we now have at our disposal allow easy certification of the primitive 
recursiveness of some very useful functions and relations. But first a definition: 

2.1.2.39 Definition. (fiy)<zR(y, x) means (pJy)<zXR{y, x). □ 
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Thus, if R(y,x) G V1Z* (resp. G K*), then Xzx.(fiy)<zR(y,x) G VIZ (resp. 
G 1Z), since x# G Pf t (resp. G ft). 

2.1.2.40 Example. The following are in VIZ or VIZ* as appropriate: 

(1) Xxy. [x/y\56 (the quotient of the division x/y). This is another instance of 
a nontotal function with an "obvious" way to remove the points where it is 
undefined (cf. 2.1.2.14). Thus the symbol is extended to mean (pz) <x ((z+l)y > 
x) for all x, y. It follows that, for y > 0, [x/y\ is as expected in "normal math", 
while [x/0\ = x + 1. 

(2) Xxy.rem(x, y) (the remainder of the division X/T/). rem(x, y) = x — y[x/y\. 

(3) \xy.x\y (x divides y). x\y = rem(y,x) = 0. Note that if y > 0, we cannot 
have 0\y—a good thing!—since rem(y,0) = y. Our redefinition of [x/y\ 
yields, however, 0|0, but we can live with this in practice. 

(4) Pr(x) (x is a prime). Pr(x) E X > 1 A (\/y)<x(y\x —)■ y = 1 V y = x). 

(5) 7r(#) (the number of primes < x).57 The following primitive recursion certifies 
the claim: 7r(0) = 0, and 7r(x + 1) = if Pr(x + 1) then n(x) + 1 else ir(x). 

(6) Xn.pn (the nth prime). First note that the graph y = pn is primitive recursive: 
y = pn = Pr(y) A 7r(y) = n + 1. Next note that, for all n, p n < 22 (see 
Exercise 2.1.2.42 below), thus pn = {i^y)<2^n {y — Pn), which settles the claim. 

(7) Xnx. exp(n, x) {the exponent of pn in the prime factorization of x). exp(n, x) — 
(W)<x-(PK+ Ik). 

(8) Seq(x) (x's prime number factorization contains at least one prime, but no gaps) 
Seq(x) = x > 1 A (V2/)<a;(Vz)<rE(Pr(y) A Pr(z) A y < z A z\x -> y|x). D 

2.1.2.41 Remark. What makes exp(n, x) "f/ze exponent of p n in the prime factoriza-
tion of rr", rather than an exponent, is Euclid's prime number factorization theorem: 
Every number x > 1 has a unique factorization—within permutation of factors—as 
a product of primes. See Exercise 40 of Section 1.8. □ 

2.1.2.42 Exercise. Prove by induction on n, that for all n we have pn < 22 . 
Hint. Consider, as Euclid did,58 popi • • • p n + 1. If this number is prime, then it is 

greater than or equal to pn+i (why?). If it is composite, then none of the primes up 
to pn divide it. So any prime factor of it is greater than or equal to pn+i (why?). □ 

56The symbol "L#J" is called the floor of #. It succeeds in the literature (with the same definition) the 
so-called "greatest integer function, [x\\ i.e., the integer part of the real number x. 
57The 7r-function plays a central role in number theory, figuring in the so-called prime number theorem. 
See, for example, LeVeque (1956). 
58In his proof that there are infinitely many primes. 
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2.1.2.43 Exercise. Prove that Xx.[\og2x\ e V1Z. Remove the undefinedness at 
x = 0 in some convenient manner. For example, arrange that |_log2 Oj = 0 □ 

2.1.2.44 Definition. (Coding Sequences) Any sequence of numbers, a 0 , . . . , an, 
n > 0, is coded by the number [ao,. •., an] defined as 

IR+1 D 
z<n 

For coding to be useful, we need a simple decoding scheme. By Remark 2.1.2.41 
there is no way to have z = [a 0 , . . . , an] = [60,• • •, bm], unless 

(i) n — m 
and 

(ii) For i = 0 , . . . , n, â  = bi. 

Thus, it makes sense to correspondingly define the decoding expressions: 

(i) lh(z) (pronounced "length of z") as shorthand for (py)<z^(py\z) 

(ii) (z)i as shorthand for exp(i, z) — 1 

Note that 

(a) Ai2.(z)i and Xz.lh(z) are in P7£. 

(b) If Seq(z), then z = [a 0 , . . . , an] for some a o , . . . , an. In this case, lh(z) equals 
the number of distinct primes in the decomposition of z, that is, the length n + 1 
of the coded sequence. Then (z)i, for i < lh(z), equals a .̂ For larger i, (z)i = 0. 
Note that if ^Seq(z) then //i(z) need not equal the number of distinct primes in 
the decomposition of z. For example, 10 has 2 primes, but Zft(10) = 1. 

The symbol [...] for numerical sequence coding is not standard. Usually, (...) is 
used in the literature on theory of computation. But this clashes with the use of the 
same symbol in set theory, used to denote ordered tuples of objects. 

The tools Ih, Seq(z), and Xiz.(z)i are sufficient to perform decoding, primitive 
recursively, once the truth of Seq(z) is established. This coding/decoding scheme is 
essentially that of Godel (1931), and we will use it throughout this volume. 

We conclude this subsection with a flexible extension of primitive recursion on 
total functions. Simple primitive recursion defines a function "at n + 1 " in terms of its 
value "at n". However we also have examples of "recursions" (or "recurrences"), one 
of the best known perhaps being the Fibonacci sequence, 0 ,1 ,1 ,2 ,3 ,5 ,8 , . . . , that 
is given by F0 = 0, Fi = 1 and (for n > 1) Fn+i = Fn + F n _ i , where the value at 
n + 1 depends on both the values at n and n — 1. This generalizes to recursions where 
the value at n + 1 depends, in general, on the entire history, or course-of-values, of 
the function values at inputs n, n — 1, n — 2 , . . . , 1,0. Cf. 1.7.0.29. The easiest way 
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to represent the history of values of a total number-theoretic function / "at (input) 
x"9 namely, {/(0, y), / ( l , y ) , . . . , f(x, y)}, is to code it by a single number! 

2.1.2.45 Definition. (Course-of-Values Recursion) We say that / , of n + 1 argu-
ments, is defined from two total functions—namely, the basis function Xyn.b(yn) 
and the iterator Axynz.g(x, yn, z)—by course-of-values recursion if for all x, yn the 
following equations hold: 

f(0,yn) =Kyn) 
f(x + 1, yn) = g(x, yn, H{x, yn)) 

where \xyn.H(x, yn) is the history function, which is given "at x" (for all yn) by 

[ / ( 0 , y ) J ( l , y ) , . . . J ( x , y ) ] D 

Compare with the general case in 1.7.0.29. Here, totalness allows a neat coding of 
the "history" {/(0, y), / ( l , y ) , . . . , / (# , y)} as a single number that depends on x 
and y.590f course, 1.7.0.29 guarantees the existence of an / satisfying the schema (1) 
above. 

2.1.2.46 Exercise. Prove that / given by (1) is total. 
Hint. Use strong induction on x. D 

The major result here is: 

2.1.2.47 Theorem. VIZ is closed under course-of-values recursion. 

Proof. So, let b and g be in VIZ. We will show that / e V1Z. It suffices to prove that 
the history function H is primitive recursive, for then / = \xyn.(H(x, yn)) and 
we are done by Grzegorczyk substitution. To this end, the following equations—true 
for all x, yn—settle the case: 

H(x + 1, yn) = H(x, ^n)p^^yn)Hi D 

The same proof with trivial adjustments yields: 

2.1.2.48 Corollary. 1Z is closed under course-of-values recursion. 

2.1.2.49 Example. The Fibonacci sequence, (Fn)n>o, is given by 

Fo = 0 
* i = l 

otherwise, 

59The inclusion of f(i,y) in Hi<xp( V renders all of H (x, y) undefined if f(i,y) t- In a set setting, 
the latter condition simply means that f(i, y) is not included in the set {/(0, y), / ( l , y),..., f(x, y)}. 
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Fn+i — Fn + Fn-\ 

It can be viewed as a function Xn.Fn. As such it is in V7Z. Indeed, letting Hn 
be the history of the sequence at n—that is, [ F 0 , . . . , Fn]—we have the following 
course-of-values recursion for Xn.Fn in terms of functions known to be in VIZ. 

F n + i = if n = Othen 1 
e l s e ( f f n ) n + ( i f n ) n ^ □ 

2.1.2.50 Remark. How important is totalness in course-of-values recursion? 
Let us analyze the primitive recursion schema below, where b and g are known to 

be in V. What can we learn from the partial recursive H that is defined as follows? 
(Note the use of "~" this time.) 

H(0,yn)~[b(yn)] 

H(x + 1, yn) ~ H(x, yn)p£Ji^,H(x^))+1 (D 

First off, the domain of \x.H{x, yn) is either N, or a set of the form {i G N : i < k} 
for some k (that depends on the chosen fixed yn). We call this latter set an initial 
segment of N. 

Let us verify this claim. We fixayn. If \x.H(x, yn) is total, then there is nothing 
to prove. Otherwise, let x = xo be smallest such that H(x,yn) t- By induction on 
x we see that H{x,yn) t , for x > XQ. Indeed, the basis is from the choice of XQ. 
On the obvious I.H. let us look at H{x + 1, yn). By the I.H., the product in the right 
hand side of (1) is undefined. 

Next, we note that "if x < XQ then H(x,yn) = [ao,.. . ,ax], for appropriate 
di". Of course, if XQ = 0 then the statement is vacuously true. So assume xo > 0. 
We do induction on x. The basis is settled by H(0, yn) = [b(yn)] (why "="?). If 
H(x, yn) — [ao, . . . , ax] and x + 1 < xo (I.H.), then the second equation of (1) 
yields H(x + 1, yn) = [ a 0 , . . . , ax,g(x, yn, if (x, yn))], as needed. 

Let us now set 
f(x,yn)I~(H(x,jn))x (2) 

Thus we have the validity of the course-of-values recurrence, for all x and yn 

f(0,yn) ~ b(yn) 
f(x + 1, yn) ~ g(x, yn, H(x, yn)) (3) 

By (2) and the earlier remarks, dom(/) = dom(iJ) and in particular, for each fixed 
yn, dom(Ax./(x, yn)) is either N or a set of the form {i e N : i < k} for some k 
(that depends on the chosen fixed yn). 

By definition, (1) is the course-of-values recursion schema for partial functions. 
It defines a function H, but also a function / , the latter satisfying (3). We can now 
summarize: □ 
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2.1.2.51 Theorem. V is closed under the schema of course-of-values recursion, that 
is, (1) of 2.1.2.50. For any fixed yn, the subsidiary function f defined by (2) is either 
total in x or is an initial segment ofN. Moreover it satisfies the recursion (3). 

2.1.3 Simultaneous Primitive Recursion 

Taking B = Nk in 1.7.0.27, and letting h and g be total functions from Nn and 
N n + 1 x Nfe respectively to Nfc, and replacing ~ by =, (1) in said example becomes 

/(0,2/n) =h(yn) 

f(x + 1, yn) = g(x, yn, f(x, yn)) 
(1) 

Now / , h, and g are fc-tuple valued, so they are not number-theoretic functions 
(which must have a right field equal to N, by definition; cf. 2.1.1.6). However, if we 
write them in terms of their components, for example, 

f(x,yn) = (fi(x,yn),...,fk(x,yn)) 

then we can rewrite the recurrence equations (1) componentwise, to obtain the schema 
of simultaneous (primitive) recursion below, which first occurred in Hilbert and 
Bernays (1968). 

/ i (0,2/n) 

fk(0,Vn) 

= hi(yn) 

hk{yn) 

fi(x + 1, yn) = gi{x, yn, / i (x , y n ) , . . . , fk(x, yn)) 

Jk{x + 1, yn) = gk(x, yn, fi(x, y n ) , . . . , fk(x, yn)) 

Hilbert and Bernays proved the following: 

(2) 

2.1.3.1 Theorem. If all the hi and gi are in VIZ (resp. 1Z), then so are all the fi 
obtained by the schema (2) of simultaneous recursion. 

Proof. Define, for all x,yn, and zk, 

F(x,yn) = [fi(x,yn),...,fk(x,yn)] 

, Def H(yn) = [h1{yn),...,hk{yn)\ 

Def 
G(x,yn,zk) = \gi(x,yn,zk),...,gk(x,yn,zk)] 
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We readily have that H G VIZ (resp. G 1Z) and G G VIZ (resp. G 1Z)—and, in 
particular, \xynz.G(x,yn, ( z ) 0 , . . . , (z)k-i) G P7£ (resp. G 1Z)—depending on 
where we assumed the hi and gi to be. We can now rewrite schema (2) as 

(F(0,Vn) H(yn) 

I F(x + 1, yn) =G\x, yn, \F{x, 2/n)) , • ■ •, ( ^ , 2/n)) j 
(3) 

By the above remarks, F G P7£ (resp. G 1Z) depending on where we assumed the 
hi and gi to be. In particular, this holds for each / ; since, for all x,yn, fi(x,yn) = 
{F{x,yn))._r D 

2.1.3.2 Example. We saw one way to justify that \x.rem(x, 2) e VIZ in 2.1.2.40. 
A direct way is the following. Setting f(x) = rem(x, 2), for all x, we notice that 
the sequence of outputs (for x = 0,1,2, . . .) of / is 

0 , 1 ,0 ,1 ,0 ,1 . . . 

Thus, the following primitive recursion shows that / G V1Z\ 

f /(0) = 0 
\ / 0r + l) = l - / ( x ) 

Here is a way, via simultaneous recursion, to obtain a proof that / G VTZ, without 
using any arithmetic! Notice the infinite "matrix" 

0 1 0 1 0 1 . . . 
1 0 1 0 1 0 . . . 

Let us call g the function that has as its sequence outputs the entries of the second 
row—obtained by shifting the first row by one position to the left. The first row still 
represents our / . Now 

|7(o) 
9(0) 
f(x + l) 

- 0 
= 1 
= 9(x) 
= /(*) 

(1) 

□ 
The reader may protest that the above example contains a bit of an overstatement, if 
not sophistry: After all, to legitimize simultaneous recursion as a "V1Z operation" 
not only did we use arithmetic, but quite a bit at that. Didn't we? 

Well yes, but that is irrelevant to the point we are driving at: A very simple 
programming language (formalism), which we will discuss in the next section, is 
intimately connected with simultaneous recursion, and we will see that, within that 
formalism, we indeed can compute rem(x, 2) doing no arithmetic at all! 

How we will do this is precisely reflected by the recursion (1) above. 
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0 
2 

= 0 

x + 1 
2 

X 

. 2 . 

2.1.3.3 Example. We saw one way to justify that Ax. [x/2\ e VU in 2.1.2.40. A 
direct way is the following. 

+ rem(x,2) 

where rent is in VIZ by 2.1.2.40 or by 2.1.3.2. 
Alternatively, here is a way that can do it—via simultaneous recursion—and with 

only the knowledge of how to add 1. Consider the matrix 

0 0 1 1 2 2 3 3 . . . 
0 1 1 2 2 3 3 4 . . . 

The top row represents Xx. [x/2\, let us call it " /" . The bottom row we call g and 
is, again, the result of shifting row one to the left by one position. Thus, we have a 
simultaneous recursion 

(7(0) =o 

»<°> = ° (2) 
{g(x + l) = / ( x ) + l 

□ 

2.1.4 Pairing Functions 

Coding of sequences do, a\,..., an, for n > 1, has a special case; pairing functions, 
that is, the case of n = 2. 

2.1.4.1 Definition. A total, 1-1 function J : N x N -> N is called a pairing function. 
□ 

2.1.4.2 Remark. By 1.2.0.25 there is an onto g : N -* N x N such that g(J(x,y)) = 
(x, y) for all x, yinN. g is pair-valued ("vector"-valued) thus not a number-theoretic 
function. As in the previous subsection, we may write, for all z G dom(#), 

g(z) = (K(z),L(z)) 

that is, decompose g as a pair of functions (AT, L), along the "#-" and "^/-axes". We 
call K and L the first and second projection functions of the pairing function / , 
respectively. We have at once, for all x and y in N, 

and 

K(J(x,y))=x 

L(J(x,y)) =y 

(1) 

(2) 
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One usually encounters the (capital) letters K, L in the literature as (generic) names 
for projection functions of some (generic) pairing function. In turn, the generic 
symbol for the latter is J rather than "/"• We will conform to this notational 
convention in what follows. 

We must emphasize that since Definition 2.1.4.1 does not require a pairing function 
J to be onto N, we cannot expect 

J(K(z),L(z)) = z,fora\\z (3) 

to hold in general. In fact, (3) requires that J is onto (cf. 1.2.0.22). 
Pause. What if in (3) we said "for all z G dom((K, L))" instead?-* 
Hint See Section 1.8, Exercise 26. 
Also note that if the g of this remark is obtained precisely as in 1.2.0.25, then its 

domain equals the range of J—cf. 1.2.0.26. However, we can extend g to a total 
function g, for example, letting, for all z G N, 

q(z) = l9^ ^^Gdom(g) 
1(0,0) otherwise 

Clearly, we still get (gj) = 1NXN> that is, g(J(x, y)) — (x, y) for all x and y in N, 
simply because J(x,y) G dom(g). Of course, by preceding remarks, (Jg) = 1^ 
must fail unless J is onto N. □ 

The set of "tools" consisting of a pairing function J and its two projections K 
and L is a coding/decoding scheme for sequences of length two. We want to have 
computable such schemes and indeed there is an abundance of primitive recursive 
pairing functions that also have primitive recursive projections. Some of those we 
will indicate in the examples below and others we will let the reader to discover in 
the exercises section. 

2.1.4.3 Example. The function J = Xxy. [x, y] is pairing. Its projections are K = 
Xz.(z)o and L — \z.(z)i. All three are already known to us as members of VIZ. 

This J is not onto. For example, 5 ^ ran( J). Nevertheless, K and L are total— 
because Xiz.(z)i is; indeed is in VIZ—and unlike the explicit extension of g in the 
preceding remark, this fact did not require our intervention. □ 

Pause. Does the coincidence of the non ontoness of the J above, and the totalness 
of K and L, contradict our calculation in 1.2.0.26?^ 

2.1.4.4 Example. The function J — \xy.2x3y is pairing. Its projections are K = 
Xz. exp(0, z) and L = Xz. exp(l, z) (cf. 2.1.2.40). All three are already known to 
us as members of VIZ. 

This J is not onto. Again, 5 ^ ran( J ) . Nevertheless, K and L are total—because 
Xiz. exp(z, z) is; indeed is in VIZ—and unlike the explicit extension of g in the 
preceding remark, this fact did not require our intervention either. □ 

Clearly, for any distinct primes pi and pj, the function J = Xxy.p^p^ is pairing, with 
projections Xz. exp(z, z) and Xz. exp(j, z). 
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2.1.4.5 Example. Note that every number n > 1 has a unique representation—i.e., 
the x and y are uniquely determined by n—of the form 2x(2y + 1). This, for 
n > 2 is just an abstraction of the unique factorization theorem, recognizing that 
the 3a5a '7°" • • • part of the factorization is an odd number. On the other hand, 
l = 2°(2-0 + l) . 

Thus, the J = Xxy.2x(2y + 1) of Grzegorczyk (1953) is pairing. This J is not 
onto either; it just misses one member of N! 

Its projections can be easily calculated in a manner that readily establishes their 
primitive recursiveness. Kz = exp(0, z) and 

Lz = 
z 

2 

- 1 

□ 
The preceding example illustrates a notational convention that we will adhere to 
regarding projection functions: We will write "Kz", "Lz", "KLLz", etc., omitting 
brackets from around arguments. This is a visual improvement over "K(z)", "L(z)", 
"K(L(L(z)))", etc. 

2.1.4.6 Example. J = \xy.2x+y+2 + 2y+1 is pairing. That it is in VIZ and hence 
total is trivial. Why is it 1-1? Well, we may prove this directly, but instead, what if I 
can find x and y uniquely in terms of z once I set z = 2 x + 2 / + 2 -f- 2y+1l 

If that succeeds then I have defined two functions Xz.Kz and Xz.Lz that satisfy (1) 
and (2) of 2.1.4.2. This will prove that J is 1-1 by 1.2.0.22! 

Let us do this, and start by setting z — J(x,y). We will "solve" for (natural 
number-values of) x and y:60 Notice that 2y+1 < 2x+*/+2,61 hence, 2x+y+2 < z < 
2x+y+2+ 2x+y+2 = 2 x + 2 / + 3 . Thus, taking logarithms base-2, x + y + 2 < log2 z < 
x + y + 3. We obtain at once 

x + y + 2 = [log2 z\ (1) 

Now, z = 2^°^ A + 2y+\ thus 

y = ]og2(z^ 2^***1) - 1 

We obtain Lz = [log2 (z - 2^°^z^)\ - 1 and, from (1), Kz = [log2z\ -
(Lz + 2). From Exercise 2.1.2.43 we conclude that K and L are indeed in VIZ. D 

2.1.4.7 Example. In 2.1.4.6 we note that J(x, y) > x and J(x, y) > y, for all x, y. 
Thus an alternative way to prove that the related K and L are in VIZ is to compute 
as follows: 

Kz = (fjJx)<z(3y)<z(J(x, y) = z) (1) 

'An equation for which we seek integer solutions only is called a Diophantine equation. 
For example, take the logarithm base-2 for both sides. 
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and 
Lz = (iJJy)<z(3x)<z(J(x, y) = z) (2) 

Equipped with theorems 2.1.2.28 and 2.1.2.32, and Definition 2A.239, we see that 
(1) and (2) establish that K and L are in VIZ. 

But this approach—unlike that in the preceding example—does not prove that K 
and L exist or that the J is 1-1! 

Pause. Why?<« □ 

2.1.4.8 Example. Here is a pairing function that does not require exponentiation. 
Let J O , y) = (x + y)2 + x. Clearly, J e VIZ. 

Let us use the methodology of 2.1.4.6. So let us set z = [x + y)2 + x and solve 
this "equation" for x and y (uniquely, hopefully). Well, (x-\-y)2 < z < (x + y +1) 2 . 
Thus x + y < \fz < x + y + 1 , hence 

x + 2/̂ Lv^J (1) 

Then, z = [x/JJ + x and therefore ifz — z — \\fz\ . By (1), Lz — \yfz\ — Kz. 
As in 2.1.4.7, the J here satisfies J{x,y) > x and J(x,y) > y. Thus, if 

we have an independent proof of the existence of K and L (say, by proving di-
rectly that J is 1-1; cf. Exercise 4 in Section 2.12), then their primitive recur-
siveness follows from the calculations Kz — (/jJx)<z(3y)<z(J(x,y) = z) and 
Lz = (fjJy)<z(3x)<z(J(x, y) = z). □ 

Why bother about pairing functions when we have the coding of sequences scheme 
of the previous subsection? Because prime-power coding is computationally very 
inefficient, while quadratic schemes such as that of the previous example allow us 
to significantly reduce the "computational complexity" of coding/decoding. But can 
we code arbitrary length sequences efficiently? 

Yes, because any J, K, L scheme can lead to a coding/decoding scheme for 
sequences a\,..., an, n > 2, for both the cases of a fixed or variable n. 

2.1.4.9 Definition. Given a primitive recursive pairing scheme J, K, L. 
For any fixed n > 2 we define by recursion on n the symbol [ a i , . . . , an fn . 

[x^l^^J^^^ndlx,^, . . .^^^1 ^^,!! / ! , . . . ,^]^) . D 

2.1.4.10 Remark. It is a trivial exercise to verify that the 1-lness of J implies that of 
[yij • • • > Vn I » for any n > 2. Moreover, if J is onto N, then so is [2 /1 , . . . , yn\ 
(cf. Exercise 34 in Section 1.8). 

The primitive recursive K and L give rise to primitive recursive projections, 
denoted by 11^ for each fixed n, and each 1 < i < n. 

These will satisfy II™ [ yx,..., yn ] ( n ) = yi9 for 1 < i < n. 
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The II are defined by composition from K and L as follows (cf. Exercise 8 in 
Section 2.12). ]f z = [yu . . . ,yn}{n\ then 

ny = K 
U^ = KL 
n£ = KLL 

n? = ia?-1 

where we wrote Lz for 

{LL-- L) 

for any fixed i (i — 1 compositions with itself). □ 

We can also effect coding of variable length sequences, starting with a J, K, L 
primitive recursive scheme. However, we will not take this approach in this volume. 
Here is how: 

2.1.4.11 Definition. Given a primitive recursive pairing scheme J, K, L, with a J 
that is onto. 

A sequence a i , . . . , an, n > 0—n = 0 denoting the empty sequence—is coded 
by the expression [0 ,0 ] ( 2 ) if n = 0; [ 1, a0 ] ( 2 ) if n = 1; and [n, au . . . , an J ( n + 1 ) 

otherwise. We denote by lg(z) the sequence length, thus we set Ig = K. □ 

Ontones of J , and hence of [ a\,..., an l(n),for any n > 2, ensures that every z is a 
valid "code", so it makes sense to decode it once we know the code's length, we do 
not need a predicate analogous to "5eg" (Example 2.1.2.40, item 8). 

The projections, denoted by ((z)){, for non zero lg(z) and 1 < i < lg(z), are 

\KUz ifl<i<lg(z) 
[[Z,,i \l>z if i = lg(z) 

The reader encounters here the symbol "L2", where i is variable (an input), for the 
first time. What does it mean, and is Xiz.Ll(z) primitive recursive? 

This is a special case of primitive recursion, known as iteration (composing a 
function with itself a "variable number of times"), a concept that we will take up in 
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the next subsection. In the present case we note that 

Lx+lz = L(Lxz) 

Brackets were inserted in "LLxz" above to make the iterator (2.1.1.14) "L( . . . )" 
stand out. The above primitive recursion shows that \iz.Uz G VIZ. 

2.1.5 Iteration 

A very natural special case of primitive recursion, that of composing a function 
with itself a number of times that is "read" as an input—a "variable number of 
times"—has been studied by Robinson (1947) in the context of number-theoretic 
functions. In general, if g : A —> A is some function, its (pure) iteration is the 
function Xxy.gx(y) :N x A ^ A given by the following definition: 

2.1.5.1 Definition. (Pure Iteration) We say that \xy.f(x, y) : N x A —>> A—where 
A is some set—is defined from \x.g(x) : A -> A by pure iteration iff, for all x G N 
and y G A, we have 

f(0,y) = y 
f(x+l,y)~g(f(x,y)) 

We write gx{y) for / (x , y), since a trivial induction on k shows that, for any k G N, 
f(k, y) ~ (gg • • • g(y)) , while we adhere to the convention that g° = 1^. □ 

v v ' 
k — 1 compositions 

2.1.5.2 Remark. Of course, we replace ~ above by — if g is total. Thus every 
iteration is a special case of primitive recursion in the style of 2.1.1.14. Indeed, for 
any g e PK, Xxy.gx{y) G PK. □ 

2.1.5.3 Example. Let g : N x N -> N x N be given by g(x, y) = (y, x). What is 
0*(O,1)? It is (rera(^2),rera(z + l,2)). Cf. Example 2.1.3.2. □ 

2.1.5.4 Example. Let g : N x N -)► N x N be given by g(x, y) = (y, x + 1). What 
is #* (0,0)? Consider the diagram below that indicates the values of g°, g1, g2, g3,... 
starting at input (0,0) (depicted as [] below). The arrows, labeled g, indicate the 
input/output relation of g applied to the input at the left of the arrow in each case. 

0 -^L^ o —*-> 1 ^—, 1 — i - > 2 ^ ^ 2 — ^ 3 ^ ^ 3 . . . 

0 — £ - * 1 ^ ^ 1 — ^ 2 —?-► 2 ^ - ^ 3 — ^ - > 3 — g - ^ 4 . . -

Thus, 0*(O,O) = (LfJ> L ^ J ) - Cf. Example 2.1.3.3. D 
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2.1.5.5 Example. Let g : An -> An be such that its first component is the "identity" 
function, in the sense, p7l{g{{a,...))) = a for all (a, . . . ) £ dom(g) (cf. Exer-
cise 1.8.23). In other words, if g = ( # i , . . . , gn) is the decomposition of g into its 
components, then g\ (xn) — x\ for all xn in its domain. 

We will show that the first component of \xn.gz(xn) is also the identity. 
Indeed, we can show this by induction on z: For z — 0, g°(xn) = (xn), hence 

Pi(g°(xn)) — xi, for all xn. For fixed z, assume (I.H.) that 

Pi(gz(xn)) == xi, for all xn on which the left hand side of = is defined (*) 

that is, gz{xn) — (xi,...). Thus, 

gz+1(xn) = g(xi,.. •) = 62 (x1,g2((xu...)),.. .,gn((xu • • •») □ 

2.1.5.6 Remark. The preceding result clearly holds in the special cases on the two 
extremes: 

(1) The induction step above essentially proves that if the first component of each of 
g : An —>• An and f : An -> An is the identity, then this holds for (fg) and (gf) 
as well. Indeed, all that we used about gz in the I.S. above was (*); we might as 
well think of Xxn.gz(xn) as the " / " here. 

(2) With g as in 2.1.5.5, let us set / = \xnz.gz(xn). Then f(xn, z) = (# i , . . . ) 
whenever it is defined. 

It is clear from the arguments presented here and in 2.1.5.5 that x±, the "first" 
variable, is not particularly privileged with respect to the foregoing reasoning, and 
that the results hold no matter which component of g and / is the identity. The 
"general" case starts with g = (gi,-..,gn) [and / = ( / i , . . . , fn) in (1)], where 
gk(xn) = Xk [and fk{xn) — Xk in (1)], for all xn in the respective domains. □ 

The main result in this subsection is Robinson's theorem, that in the presence of 
pairing functions we have a converse of Remark 2.1.5.2: that iteration can simulate 
primitive recursion of number-theoretic functions. 

2.1.5.7 Theorem. If a class of total number-theoretic functions is closed under iter-
ation and composition and includes a pairing scheme J, K, L, then it is closed under 
the full primitive recursion of 2.1.1.14 as well. 

Proof We follow Tourlakis (1984). We are given the number-theoretic g (iterator) 
and h (basis). We will simulate the schema (A) below, using pure iteration. 

(A) M 0 ' ^ =KVn) 

\f(x + 1, yn) = g(x, yni f(x, yn)) 

62Recall that we write g(x, y,...) for g((x, y,...)); cf. p. 43. 
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Using the coding introduced in Definition 2.1.4.9 that is generated by the given here 
J, K, L, we define the function F by 

F(x,yn) = ix,yn,f{x,yn)fn+2) 

We may write a primitive recursion for F: 

\F(x + 1, yn) = I x + 1, yn,g(x, yn, f(x, yn)) ] 

Noting that (omitting bracketing) U^2F(x,yn) = x, TI?+?F(x,yn) = yu for 
1 < i < n\ and n j ^ i ^ x , Vn) — f(x^Vn)^ we see that schema (B) has the form 

, (F(0,yn) =H{yn) 

\F(x + l,yn) =G(F(x,yn)) 

where 

G= Xxynz. [U^2z + 1, n ^ z , . . . , n ? + ^ 

^(n?+2z,n^,...,n?+^n^+^)] 
and^-Afn.[0,^n,M^)l(n+2). 

A trivial induction on x shows that F(x,yn) = GxH(yn). Thus, we have reduced 
the schema (A) to pure iteration Gx and composition and can obtain / as the (n + 2)-
th projection of F , as already indicated. □ 

2.2 A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE 
FUNCTIONS 

Loop programs were introduced by Meyer and Ritchie (1967) as a program-theoretic 
counterpart to the number-theoretic introduction of the set of primitive recursive func-
tions VIZ. This programming formalism is analogous to the URM formalism, but, 
unlike the latter, it corresponds—i.e., is able to "compute"—precisely the primitive 
recursive functions. It also provides a connection between the definitional (or struc-
tural) complexity of primitive recursive functions—that is, the complexity of their 
syntactic definition—with their (run time) computational complexity as we show in 
Chapter 5. 

Loop programs are very similar to programs written in the old programming 
language FORTRAN, but have a number of simplifications—notably, they lack an 
unrestricted do-while instruction (equivalently, they lack a goto instruction). 

While we have an infinite supply of (program) variables, each loop program— 
being a finite string—references (uses) only a finite number of variables. We will 
most often denote variables metamathematically by single letter names (upper or 
lower case is all right) with or without subscripts or primes.63 

63The precise syntax of variables will be given shortly, but even after this fact we will continue using signs 
such as X, A, Z', Y^f

4 to stand for variables—i.e., we will continue using metanotation. 
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Let us define by induction (cf. 1.6.0.12), at first somewhat loosely, the structure 
(syntax) of loop programs. To assist the definition, and our general discussion about 
loop programs, we will be using syntactic variables (or metavariables) P,Q,R (with 
or without primes) to stand for loop programs. 

2.2.0.8 Tentative Definition. (The Set L of Loop Programs) A loop program is one 
of 

(1) A single instruction, that is, a string of type (i)-(iv) below 

(i) X <- 0 
(ii) X <- Y 
(hi) X+-X + 1 
(iv) Loop X\ P ; end 

where P is a loop program and ";" is a separator, just like the semicolon 
used in the C programming language. There is no restriction on whether 
X may or may not occur in P. 

In (i)-(iv), X and Y are metasymbols that denote arbitrary variables, including, 
possibly, two identical variables. 

(2) The superposition or concatenation of a loop program, P , with an instruction, 
Q,64 in that order: That is, P; Q. 

The set of all loop programs we denote by L. □ 

Instruction (iv) is substantial. However, this situation is common in programming 
language definition. For example, an Algol or Pascal "if-then-else" instruction has the 
form "if condition then instruction! else instruction!", where each of instruction! 
and instruction! may be a so-called "begin-end block", which is a self-standing 
program. 

By clause (2) above, a loop program is an ordered sequence of instructions, 
separated by semicolons. In informal discussions we normally write a loop program 
vertically, in which case the separator ";" becomes redundant and is omitted. Thus, 
rather than 

P;Q 
we write 

P 

Q 

Rather than 
Loop X; P ; end 

^Using the letter Q to stand for an instruction is consistent with clause (1). 
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we write 

L o o p X 
P 

end 

The the syntactic construct Loop X\ P\ end is called a loop closure of P. 

We will shortly offer a careful definition of loop program semantics, that is, exactly 
what loop programs "compute". It is instructive to do so informally at first. Thus, 
to begin with, as in the case of the URM formalism, the variables X, Y"', Z23, etc., 
that we utilize in a loop program can hold any natural number. We assume that an 
appropriate "computing agent" (which may be human) understands and performs, or 
executes, a loop program's instructions. 

In the course of this sequential instruction-execution the agent successively points to 
the next instruction that must be executed. Once the agent has completed executing 
the instruction, it will then point to the one immediately following it. It will do so 
for one instruction at a time, from the first toward the last. 

Pause. But will the agent always reach the last instruction?^ 

We will answer this affirmatively, shortly. 
If there is no instruction to point to, then the agent terminates its computation. 

2.2.0.9 Tentative Definition. (Informal Loop Program Semantics) The semantics, 
or prescribed behavior of the computing agent is as follows: 

(1) The effect of executing any one of instructions (i)-(iv) by the agent is to 

(i) make the value of X equal to 0; and then point just below the instruction 
(where the next instruction is located, unless the executed instruction was 
the last one); 

(ii) copy the value of Y into X non destructively—i.e., the value of Y does not 
change—and then point just below the instruction; 

(iii) increment the current value of X by 1, and then point just below the 
instruction; 

(iv) according as X holds the value 0 or k > 0 immediately prior to the 
execution of the instruction: Case where X holds 0. Do nothing toward 
the instruction; then point just below the instruction. Case where X holds 
k > 0. Macro expand instruction (iv) as below, (*), and execute the 
indicated sequence of instructions; then point just below the instruction. 

www.it-ebooks.info

http://www.it-ebooks.info/


128 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS 

Note that by recursion on the (tentative) definition of programs, the agent 
knows how to execute in sequence all the instructions of (each copy of) P: 

k copies < 

P 
P 

(*) 

The semantics of (iv) require that the value of X immediately before the 
execution of instruction (iv) matters in determining the macro expansion. 
Any instructions of the type (i)-(iii) included in P may change X, but not 
the A: in (*). 

(2) The effect of executing the program 

P 

Q 
where P is a program, and Q is an instruction is to let the agent start by pointing 
at the first instruction of P and allowing it to begin execution. By recursion on the 
(tentative) definition of programs, the agent knows how to execute in sequence 
all the instructions of P. 
If the last instruction of P eventually gets executed, then the agent points to 
instruction Q, which we execute according to part (1) of this definition. □ 

As already noted, in a program P all instructions are executed in sequence, starting 
with the first instruction. The program terminates iff its last instruction has eventually 
been executed. The hedging in the preceding definition, "If the last instruction ofP 
eventually gets executed", will now be removed: 

2.2.0.10 Theorem. Every loop program P terminates. 

Proof By induction on the set L, as this is defined recursively in 2.2.0.8. We will 
also use 2.2.0.9. 

First off, the basis looks into the case of programs consisting of a single instruction 
of types (i)-(iii). By 2.2.0.9 such a one-line program terminates, since the execution 
of the instruction can be clearly completed. 

Assuming as I.H. that the claim holds in the case of a program P we prove that 
the execution of an instruction of type (iv)—Loop X; P\ end—terminates. Indeed, 
this is trivial if X holds 0 initially. If, on the other hand, it holds k > 0, then the 
instruction that the agent actually executes from top to bottom is the macro expansion 

k copies < 

P 
P 

P 
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By the I.H., the agent reaches and concludes the last instruction in each copy of P , 
so it eventually does so with the k-th copy. 

The last case to consider is when we have a program 

«={p 

\Q 
where Q is an instruction. Starting the agent at the first instruction of R is the same 
as starting it at the first instruction of P. By the I.H. the agent will eventually point 
to Q. But as we saw, it will be able to conclude the execution of Q under each case 
(i)-(iv) of 2.2.0.8. □ 

2.2.0.11 Example. What does 

Loop X 
I f - I + 1 

end 

do? For any initial value of X, a, the above is computed as 

' X ^ X + 1 
I f - I + 1 

a copies ^ m 

KX ^ X + l 

Thus, the end-value of X is 2a. This is correct for both a = 0 and a > 0; cf. 2.2.0.9. 
□ 

2.2.0.12 Example. What does 

Loop Y 
X ^ - X + l 

end 

do? Assuming that X and Y initially hold a and b, respectively, the final value of X 
is a + 6, while the final value of Y is still b. □ 

2.2.0.13 Example. What does 

Loop Z 
w ^x 
X ^Y 
Y ^W 
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end 

do if X, Y, and W are initially 0, 1 and 1 respectively (cf. 2.1.5.3)? Given that 
the three instructions inside the loop swap the X and Y values, then, if the original 
value of Z is k, the end-values of X, Y, Z, W are, in order, rem(k, 2), rem(k + 
1, 2), A;, rem(fe +1 ,2 ) . 

We could have programmed this also reusing Z in the place of W, not in-
troducing a fourth variable. Then the end-values of X, Y, Z would be, in order, 
rem(k, 2),rem(k + 1,2), if k = 0 then 0 else rem(k + 1,2). □ 

2.2.0.14 Example. What does 

Loop Z 
w ^x 
X<- Y 
Y ^W 
Y <- Y + l 

end 

do if X, Y are both 0, initially 0 (cf. 2.1.5.4)? Given that the four instructions inside 
the loop swap the given X and Y values, but make Y hold a value that is equal to 
X + 1, the effect is 

X y Y 

Y ► X + l 

Thus, if the original value of Z is k, the end-values of X, Y are, in order, |_|J , |_^^ J. 
We could have programmed this also reusing Z in the place of W, not introducing 

a fourth variable. □ 

2.2.0.15 Example. What does the following do if Z = a originally? 

Loop Z 
Y +-X 
X <^X + l 

end 

Notice the result of each "pass" around the loop: 

v #o ^ # i . #2 n #3 0 #4 „ #5 r X ► 0 > 1 ► 2 y 3 ► 4 ► 5 " • 

, , #0 n #1 n #2 , #3 n #4 0 #5 A 

Y > 0 > 0 > 1 )► 2 y 3 )► 4 - • • 
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Thus, the end-value of Y is a — 1, while that of X is a. This is correct also in the 
case where a = 0 initially. □ 

We now present a more careful inductive definition of the syntax of loop pro-
grams. This, in turn, will allow a more mathematical definition of semantics that will 
eventually enable us to prove that loop programs compute precisely the functions of 
VIZ. We start with the finite alphabet of symbols: 

£ = {v, 1, <-, +, 0, Loop, end, ; } (1) 

We next define the exact strings that are the variables: 

2.2.0.16 Definition. (Variables of Loop Programs) The set of all variables used in 
loop programs is the closure of the single-element set65 {vl} under the string opera-
tion that, given a string x, produces xl (x concatenated with 1). □ 

Thus, the variables form the set { i ; l , v l l , r ; l l l , . . . , v l n , . . . } , where l n , for 
n > 0, denotes the string that consists of n 1-symbols. By convention, for any string 
x, x° denotes e, the empty string. 

We will often use a variation on the notation vln, namely, Vi. 

Indeed, even more often, we will use, as we have already done in the preceding 
examples, metasymbols such as x, y, X, Y, Z33, Y'" to stand for variables. Clearly, 
the Vi are also metasymbols, but are closer to the "ontology" of loop program 
variables. We can now see why our earlier statement "X and Y are metasymbols 
that denote arbitrary variables, including, possibly, two identical variables" (p. 126) 
makes sense: For example, both X and Y might actually stand for v 11. 

We can now state the final form of Definition 2.2.0.8: 

2.2.0.17 Definition. The set of loop programs, L, is the closure of the set of strings 
over £[(1), p. 131] below 

{vi 4- 0 : i > 1} U {vi <- Vj : i > 1 A j > 1} U {vi <- v{ + 1 : i > 1} 

under the following string-operations: 

(1) From any string P we may form the string 

Loop Vi]P; end 

for any i > 1. 

(2) From any strings P and Q we may form the following strings,66 for alii > 1 and 
J > 1 : 

65 One calls single-element sets singletons. 
66Of course, P and Q may—but don't have to—name the same string (loop program). The same holds 
for vi and Vj: It is allowed to have i = j . 
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(a) P; Vi < - 0 
(b) P ; ^ <- Vj 

(c) P; ^ <- Vi + 1 
(d) P; Loop fj;Q; end D 

The definitive semantics of loop programs describe what the execution of such 
a program does to the values (or i(contents ") of its list—or tuple under some fixed 
ordering—of variables. Cf. also 2.2.0.9 

2.2.0.18 Definition. (Loop Program Semantics) Let x\,..., xn be a fixed ordering 
of variables that includes all the variables that occur in a program P. Each x^ of 
course, stands for a vlk, for some k > 0. We denote by \xn.p(xn) the vector-valued 
function from Nn -» Nn computed by P . This function is the semantics of P , and is 
defined by recursion on the definition of P (cf. Section 1.7) using 2.2.0.17 as follows: 

For all (values of) X\,..., xn that are in effect immediately prior to executing P : 

If P i s 

(I) xi <-0: Thenp(xn) = (xu . . . , ^ _ i , 0,xi+u ... ,xn). 

(II) Xi <- xf Thenp(£n) = (x i , . . . ,Xi-i,Xj,Xi+u • • • ,Zn). 

(III) ^ <- Xi 4-1: Thenp(xn) = (xi,.. .,Xi-i,Xi H-1 

(IV) Loop Z; Q; end, where Z is, without loss of generality, the variable xi (our 
ordering of the variables was arbitrary): Then p(xn) — qXl (xn). 

(V) P; S, where S is a program of the types encountered in (I)-(IV) above: Then 

p(xi,...,xn) = s(r(x1,...,xn)) D 

We notice that in the case (IV) above we followed precisely the informal semantics 
of 2.2.0.9. The case establishes that if Z = a then the effect of Loop Z\ Q\ end is 
the same as that of the program 

V v / 

a copies of Q 

namely, 

qq- -q (xn), where the xn hold the values in effect before the loop-start. 
a copies of q 

The number of iterations, a, is predetermined before we enter the loop and regardless 
of what may be happening to Z (i.e., x\) inside Q. That is, if Z is changed by Q 
this does not affect the number of copies of Q in the above macro expansion. This 
number depends only on the value that Z held just prior to entering the loop. In 

www.it-ebooks.info

http://www.it-ebooks.info/


A PROGRAMMING FORMALISM FOR THE PRIMITIVE RECURSIVE FUNCTIONS 133 

particular, if Z = 0 the loop is in effect skipped, a fact captured by q°(xn) = (xn), 
for all xn (identity function from Nn —» Nn). 

2.2.0.19 Example. Intuitively, a variable xk that does not occur in a loop program 
P will not have its value changed by the execution of P. This expectation is upheld 
by our loop program semantics. That is, the semantics \xn.p(xn) of P—where 
# i , . . . , xn includes all the variables that occur in P—will, under our assumption, 
satisfy 

P{xn) = ( P l ( ^ n ) , • • • ,Pk-l(xn),Xk,Pk+l(xn) . . . ,pn(xn)) (1) 

for all xn. We can prove (1) by induction on loop programs, with the help of 
Definition 2.2.0.18. 

If P has the forms (I)—(III) (basis), then k is neither i nor j , therefore xk stays 
unchanged. 

If P has the form (IV), then as Xk does not occur in it, it is neither Z, nor occurs 
in Q. By the I.H. we have that the semantics of Q, i.e., q, satisfies for all xn, 

q{£n) = (q\{xn),... ,qk-\(xn) •> Xk > qk+1 \Xn )•••■) qn \Xn ) ) 

By Remark 2.1.5.6, if we set / = Xxn.qXl (xn), where, without loss of generality, Z 
is xi, we will have f(xn) = (. . . , xk, • • •), for all xn. 

Finally, if P is R; S, then the I.H. applies to the semantics s and q, that is, 

r{xn) = (ri(xn),..., rk-i(xn),Xk, rk+i(xn)..., rn(xn)) 

and 
S\%n) = \sl\%n)-) • • • •> ^k — l\xn)i %ki sk+l\xn) • • • j sn\%n)) 

for all xn. Once more, invoking 2.1.5.6, we see that s(r(xn)) = ( . . . , xk,...), for 
al lxn. D 

2.2.0.20 Remark. The preceding example removes any ambiguity in the semantics 
that may be implied by our ability to arbitrarily add (in the definition) variables that 
may not occur in a program. The values of such variables remain invariant in the 
semantics. Or as we say, "during the loop program computation".67 □ 

Let us turn once more to case (IV) of 2.2.0.18. We aim to write the iteration that 
defines p as a primitive recursion, and to this end we consider two cases according 
as x\ occurs, or does not occur, in Q. Thus, for all xn, in the first case we have 

q{xn) = (qi(xn),q2(xn)...,qn(xn)) (1) 

while, by 2.2.0.19, in the second case we have the decomposition 

q(xn) = {xuq2{xn)...,qn(xn)) (2) 

67 We will define URM computations explicitly in Section 2.3. In the case of loop programs we have defined 
semantics that will characterize the set of computed functions without the need to define mathematically 
the concept of "computation" explicitly. 
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The primitive recursion for F = Xayn.qa(yn) is given below (cf. 2.1.5.1): 

\F(0,yu...,yn) = <2/i,...,2/n> ^ 
[F(a + 1,2/1,..., yn) = q(F(a, y\,..., 2/n)) 

One invokes ("calls") F with the argument #i, x\, x2 . . . , xn to obtain the semantics 
p of (IV) above. That is, p = Xxn.F(xi,xn). 

Thus, if we represent F in terms of its components, for all a, yn, 

F(a,yn) = (Fi(a,yn),F2(a,yn)...,Fn(a,yn)} 

the recurrence (3) yields the following simultaneous recursion [in the style of (2) on 
p. 116)], if representation (1) holds for q, 

Fi(0,yn) =y{ 

Fi(a + 1,yn)= qi[F^a,yn),..., F n (a ,y n )J 

while it gives the following, if representation (2) holds. 

Fi(o,yn) =yi 
F1(a-\-l,yn)=F1(a,yn) 

and, for i = 2 , . . . , n, 

Fi(a + 1,2/n) = g» [Fi(a, yn),..., Fn(a, yn)J 

(30 

(3,;) 

Incidentally, a trivial induction on a, using the recurrence for F\ in (3;/), rediscovers 
the result of 2.1.5.6: Fi(a,yn) = y\ for all a,yn. In particular, this confirms our 
intuitive expectation that the variable Z of P remains unchanged by the execution of 
"instruction" (IV), if it does not occur in Q. 

Thus, if all the component-functions, qi9 of q—the Xxn.qi(xn) above—are in V7Z, 
then so are all the F{. It follows at once by identification of variables (cf. 2.1.2.6) 
that all the pi—the components of the semantics of P in (IV), 

Pi = \xn.F(xi,xn) 

are in VIZ as well. 

Similar comments apply to the case (V) above: With the same notation as before, 
it is immediate that expressing the semantics p of P — R; S component-wise 

(A£ n .pi ( f n ) , . . . , Xxn.pn(xn)) 

we have the component-wise identities, for i = 1 , . . . , n: 

Pi = Xxn.Si[ri(xn),... ,rn(xn)) 

Thus, if all the r* and all the Sk are in VIZ, then so are all the pi functions. 
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We have done all the work that allows us now to state 

2.2.0.21 Theorem. For any loop program P whose variables are among xn, each 
of the components of the semantics function p—\xn.pi(vn), for i = 1 , . . . , n—is in 
VTl. 

Proof Induction on programs P. If P corresponds to (I)—(III) in Definition 2.2.0.18, 
then each of Xxn.pi(xn) is initial or is obtained from an initial function by adding 
"don't care" variables (cf. 2.1.2.6). 

For case (IV), we are done by the I.H.—which applies to Q—and the preceding 
analysis of the semantics of the loop-instruction. 

For case (V): 

• If S is of type (I)—(III), then we are done by the basis case, and the remarks 
about (V) made before the theorem statement. We also invoke the I.H. that 
applies to R. 

• If S is of type (IV), then we rely on the remarks made prior to the theorem 
about (IV): Accordingly, Si G VIZ by the I.H. that applies to Q, while the I.H. 
that applies to R concludes the case by remarks regarding (V). □ 

2.2.1 VK vs. C 

We next define what it means for a program P—whose list of variables is (rather 
than "includes") # i , . . . , xn—to compute a number-theoretic function. This will be 
in exact analogy with the corresponding definition for URM programs (cf. 2.1.1.1). 
Of course, here we have no undefined/no-termination cases, since loop programs 
compute only total functions, indeed, exclusively primitive recursive functions as we 
just saw. 

As in the case with the URM, we first decide which ones among the xn we want 
to be the input variables; say,68 

# i , . . . , x r , where r < n (1) 

We also decide on one output variable; say, Xk-
The "agent" that executes a loop program (human, or machine) will first implicitly— 

i.e., not via instructions that are contained in the program—initialize the computation 
as follows: 

(a) Sets the variables in the list (1) to hold the inputs a\,..., ar. 

(b) Sets the variables x r + i , . . . , xn to hold 0. 

The agent will then execute program P according to the semantics of 2.2.0.18. 

68More generally, we could have chosen xi1,..., Xir for input. Since renaming of variables is up to us 
we can avoid the ugly notational acrobatics that this choice entails. 
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The function computed by P with the given input-output choice is (with notation as 
in 2.2.0.18) 

\xn.U£(p(xr,0,0,...,0)) 
n — r zeros 

where U% (p(y)) is short for the composition (2.1.1.13) t/^ (pi (y),..., pn (y)) that is 
written in terms of the components pj of p. 

Intuitively, after "termination" of the the execution of P we read off what Xk 
holds—this is the output caused by input xr. We can thus record: 

2.2.1.1 Definition. For a loop program program P whose variable list is xn—these 
variables are precisely those that occur in P—we define the symbol P^, where 
1 < r, k < n, to mean the computed by P function 

n—r zeros 

The set of all loop program computable functions P*fc
r we denote by J*f. □ 

2.2.1.2 Remark. Note that we have a totally syntactic definition of J*f: 

jjf = {P*r : P e L A the xr and xk occur in P} 

□ 
By 2.2.0.21, we have at once 

2.2.1.3 Theorem. Jgf C VII. 

The converse is true. 

2.2.1.4 Theorem. VK C jgf. 

Prao/ By induction on PT^ and brute-force programming: 
Basis: Ax.x + 1 is P* where P is X —̂ X + 1. Similarly, Xxn.Xi is P ^ n where 

P i s 
Xi —̂ Xi; X2 <— X2;...; X n —̂ Xn 

The case of Ax.O is as easy. 
How does one compute Xx.f(g(x)) if g is G^ and / is i ^ ? One uses 

where Gr is G, but modified to avoid side-effects: One must ensure that all the 
variables of G other than X are set to 0 upon exit from G, because F expects all 
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these variables to be 0 in order to compute / correctly. G' does that by placing at the 
end of G several statements of the type Y —̂ 0. 

The general case \x.f(gi(x),..., gn{x)) is programmed similarly. 
Finally, we indicate in "pseudo code", as we say in programming courses, how to 

compute f{x,yn) where 

/ (0 ,y n ) = KVn) 
f(x + 1, yn) = g{x, yn, f(x, yn)) 

assuming we have loop programs H and G for h and g, rspectively. The pseudo code 
is 

z<- h(yn) 

Loop x 
z <- g(i,yn,z) 
i<-i + l 
end 

Let then h = Hfn and g = Gl$n'z, where we have been careful to ensure that H and 
G do not have side-effects that affect adversely the semantics of the loop. That is, 

(1) yn are not changed by either H or G—they are "read-only". 

(2) Neither H nor G contain the variable x. 

(3) i is read-only in G and does not occur in H. 

(4) H and G have no variables in common, other than z, yn. 
Let G additionally contain the variables Z\,..., Zm and H contain, additionally, 
W i , . . . , W r . 

(5) Program G explicitly sets the Zj to 0 via Zj «- 0 instructions—first thing, up in 
front—rather than wait for the "agent" to do so (cf. 2.2.1.1). 

Thus, the pseudo code above transforms into 

P 

The program P; Q computes / . □ 
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2.2.1.5 Corollary. jSf = VIZ. 

2.2.1.6 Example. It is instructive to follow Definition 2.2.0.18 to actually prove that 
P; Q above indeed computes / of 2.2.1.4 in the sense of 2.2.1.1. Let us (arbitrarily) 
order all the variables of P ; Q as 

z,x,i,yn,Zm,Wr 

Given our assumptions (l)-(5) above, about the variables, and about what H and 
G compute (cf. 2.2.1.1), the semantics (vector-valued function; cf. 2.2.0.18) of H, 
diagrammatically is 

0 , £ , i , f n , Z m , 0 r \ pr°gmm H) (h(yn) Z m , don't care 
program« «— 0 / , , _, N „ _ ^ . , \ ^ ' 

► ^/i(^n), z ,0,?/n ,Zm, don t care^) 

where "don't care" indicates our indifference to what happens to the Wr since they 
do not occur in G, and therefore the computation of G and G' is independent of the 
W^-values. The sequential action from left to right indicated by the above arrows is 
the semantics of P . 

Now, the semantics of G' — (G; i<- i + l) is 

. _> => =♦ \ program G / , . _> x . _ T ^ r 

z,x,2,?/n,Zm,VVr ) ► (g(i,yn,z),x,i,yn,-- ,Wr (2) 
program i ^ - i + 1 / , . _ . _ T=* ^ v 

Recall that G sets the Zj to 0 explicitly, first thing, up in front! The "• • •" just after 
yn indicate what happens to the Z m as a side-effect of executing program G (about 
which variables we do not need to be specific—nor can we possibly know anything 
about, in this general setting). 

The Wr, as well as the x, i, yn remain unchanged under our assumptions. (3) 

The result in the z-coordinate is justified by 2.2.1.1 and the assumption that G 
"programs" g. 

By 2.2.0.18, the semantics of Q is q = (g')x(z, x, i, yn, Z m , Wr) and, therefore, 
that of (P; Q) is [refer to (1) above] 

(g')x(Hyn),x, 0, yn,Zm, don't care) (4) 

The values in the W{ are "don't care" with respect to iterating g' since this function 
does not change the Wi by earlier remarks. 

We now proceed to make some sense out of (4) toward our final goal, which is to 
verify that 

« ) . ( 5 ) 
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The diagram uses a new iteration variable, a, and depicts an inductive proof that the 
arrow labeled "{g')a" is "correct". 

0, x, i, yn, Zm, 0ry cf > (h(yn),x, 0, yn, Z m , don't care^} 

(g'T 4 
I.H. 

($')[<* (2)1 

(/(a, ^ n ) , x, a, yn,••• , don't care) 

is x ^ ( a ^ n , / ( a , y n ) J , ^ , a + l ,^n , --- , don't care 

The induction diagrammed above goes like this: Assume correctness of the arrow 
labeled (g')a for some fixed a > 0 (I.H.) But then the arrow for (gf)a+l is also correct 
for it is precisely the third arrow: Notice that f(a + 1, yn) = g(a, yn, / (a , yn)). Of 
course, a = 0 is the case 

/ i (y n ) ,x ,0 , f n ,Z m , don't care^) ► ^ / (0 ,y n ) ,x ,0 ,^ n , Z m , don't care^) 

which is correct: / (0 , yn) = /i(yn). 
To use the (P; Q) semantics, (4) above, we simply set a — x. By 2.2.1.1, the 

right hand side of (5) is the first projection ("along z") of this semantics, and we have 
proved it to be f(x, yn). We have proved (5). □ 

2.2.2 Incompleteness of VIZ 

We encounter in this subsection our first application of Cantor's diagonalization 
argument to computability. We will argue that VIZ cannot possibly contain all the 
intuitively computable total functions. We say that VIZ is incomplete with respect 
to the notion of "computable total function"—or, it is an incomplete formalism of 
computable functions. 

A fully mathematical version of this fact will be revisited, and proved, first in 
Section 2.4 and later revisited in Section 2.9. The argument is easy in the presence 
of the result of Corollary 2.2.1.5. 

We proceed as follows: 

(A) The reader will readily accept that he can algorithmically tell whether a string 
P over the alphabet E on p. 131 is a well-formed loop program (syntactically 
speaking) or not. 

(B) We can algorithmically build the list, List\, of all strings over E—i.e., E + 

(p. 40). Here is how: We list strings by increasing length, and in each length 
group, we list them lexicographically (alphabetically).69 

(C) Simultaneously with building Listi, we build List2 as follows: For every string 
P generated in List\, we copy it into Listi iff P G L (which we can test 
algorithmically, by (A)). 

69Fix the ordering of E as listed in (1) on p. 131. Lexicographic order is the resulting alphabetic order. 
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(D) Simultaneously with building List2, we build Lists: For every P (necessarily 
a program) copied in List2, we copy all the finitely many strings Py (for all 
choices of X and Y in P) alphabetically—we "linearize" the string Py as 
P;X;Y—into List3. 

At the end of all this we have an algorithmic list of all the functions Xx.f(x) of VIZ, 
listed by their aliases, the Py . Let us call this list 

/ o j / l ? / 2 ? • • • j / x ? • • • 

By Cantor's "diagonalization method" we define a new function d for all x as follows: 

d(x) = fx(x) + l (1) 

Two observations: 

1. of is total (obvious, since each fx is) and intuitively computable. Indeed, to 
compute d(a) we generate the lists long enough until we find the a-th item 
(counting as in 0 ,1 ,2 , . . . , a) in Lists. This item has the format Py—i.e., as a 
loop program with its designated (one) input and output variables. We execute 
this program with input value a (in X). Once it terminates, we add 1 to what 
Y holds and we are done! This is d(a). 

2. The function d is not in the list! For otherwise, d = fa for some i > 0. We get 
a contradiction as in 1.3.0.50: 

... by d=fi . . . by (1) above , . . fail) = d(l) = /tW + 1 

2.2.2.1 Remark. We elaborate somewhat on the claim we made in (A) above: "The 
reader will readily accept... ". There is not much that needs elaboration regarding 
recognition of instructions of types (I)—(III) of Definition 2.2.0.18. A word about 
checking that the words Loop and end balance each other (the reader will likely 
be familiar with this process from first year programming courses, where one often 
is asked to write programs that "recognize arithmetic expressions"): We will use a 
stack, that is, an ordered set of data where we can add or delete new data always at 
the same end of the ordered set, but nowhere else. This end is known as the top of 
the stack. 

Pause. The reader probably already knows about stacks in the programming 
context. Thus, we do not need to define them carefully here [stacks will reappear in 
a formal context when we turn our attention to pushdown automata (PDA) later in 
this volume]. For now we simply observe that, as the word suggests, a stack of data 
acts like a stack of plates in a cafeteria!^ 

Back to the task: We want to verify (or reject, as the case may be) the claim that a 
given string P over the alphabet E of p. 131 is a loop program. 

To this end we scan the string P from left to right. We look for ";" as separators, 
as in 2.2.0.17. Of course, there is no start-separator nor end-separator. 
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Whenever we recognize an instruction among the types (I)—(III), we resume our 
scanning. Whenever we recognize a string of the type "Loop X" (for any X) we add 
it—or as the jargon has it, push it—into the stack. Whenever we recognize a string 
of the type "end" we do: 

• If the top of the stack contains a string of the type "Loop X" (for any X), then 
delete it—or pop it, as we say—and resume scanning. 

• If the condition fails—where clearly the stack is empty, as we push nothing 
else into it—then we stop the process and reject P 

We also stop and reject P if we encounter some string (other than separators) which 
does not fit the categories (I)—(III), Loop X and end. 

Otherwise, once we have scanned all of P, we accept it as a well-formed loop 
program. The push/pop part of the process ensures that the Loop X and end 
strings balance each other like left and right brackets in a well-formed mathematical 
expression. □ 

The reader may wish to experiment with actually programming a loop program 
"parser", using the above ideas. 

2.3 URM COMPUTATIONS AND THEIR ARITHMETIZATION 

We now return to the systematic development of the basic theory of partial recursive 
functions, with a view of gaining an insight in the inherent limitations of the com-
puting processes. Instrumental to this study is a mathematical characterization of 
what is going on during a URM computation as well as a mathematical "coding", 
as a primitive recursive predicate, of the statement "the URM M, when presented 
with input x has a terminating computation, coded by the number y" —the so-called 
Kleene-predicate. We achieve this "mathematization" via a process that Godel (1931) 
invented in his paper on incompleteness of arithmetic, namely, arithmetization. The 
arithmetization of URM computations is our first task in this section. This must begin 
with a mathematically precise definition of "URM computation". 

As an "agent" executes some URM's, M, instructions, it generates at each step 
instantaneous descriptions (IDs)—intuitively, "snapshots"—of a computation. The 
information each such description includes is simply the values of each variable of 
M, and the label (instruction number) of the instruction that is about to be executed 
next—the so-called current instruction. 

In this section we will arithmetize URMs and their computations—just as Godel 
did in the case of formal arithmetic and its proofs (loc. cit.)—and prove a cornerstone 
result of computability, the "normal form theorem" of Kleene that, essentially, says 
that the URM programming language is rich enough to allow us write a universal 
program for computable functions. Such a program, U, receives two inputs: One is 
a URM description, M, and the other is "data", x. U then simulates M on the data, 
behaving exactly as M would on input x. Programmers may call such a universal 
program an interpreter or a compiler. 
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2.3.0.2 Definition. (Codes for Instructions) The instructions are coded—using prime-
power coding as in Definition 2.1.2.44—as follows, where XV is short for 

i ones 

(1) L 

(2) L 

(3) L 

(4) L 

(5) L 

XV <— a has code [1, L, i, a}. 

XV < - i r + l has code [2, L, i). 

XV <- XV - 1 has code [3, L, i}. 

if XV = 0 goto P else goto R has code [4, L, 

stop has code [5,L]. 

i,P,R}. 

The first component of each instruction code z, (z)o, denotes the instruction type, 
the second—(z)i—denotes the label, and the remaining components give enough 
information for us to uniquely know what precise instruction we are talking about. 
For example, in z = [3, L, i] we read that we are talking about the "decrement by 
one" instruction ((2)0 — 3) applied to XV ((2)2 = i\ which is found at label L 
((*)i - L). 

In turn, we code a URM M as an ordered sequence of numbers, each being a 
code for an instruction. Thus given a code z [i.e., z codes something: Seq(z) is true] 
we can determine algorithmically whether z codes some URM. This remark is made 
precise in Theorem 2.3.0.3 below. 

2.3.0.3 Theorem. The relation URM(z) that holds precisely ifz codes a URM is in 
VK*. 

Proof. In what follows we employ shorthand such as (=b, w)<u for (3z)<u(3w)<u, 
and similarly for longer quantifier groupings, as well as for V. 

URM(z) = Seq(z) A {z)lh{z)^ = [5,tt(*)]7° A 

(VL)<,h(a) (seq((z)L) A (L ? lh(z) - 1 -»• ((z)L)0 ^ 5) A 

{(*)i = [5,L + l]V 

(3i,a)<z(z)L = [l,L + l , i + l,a] V 

(3i)<z{(z)L = [2,L+l,i + l]V 

(z)L = [3,L + l,i + l]V 

70Note that z = (z)o, ■ ■ ■, iz)iuz\-i ■ Since labels are positive, the last label is lh(z). A similar 
comment holds about "(3i, a )< z (z ) i , = [1, L + 1, i + 1, o]", etc. Why i + 1? Because the variables 
a r e X l . X l l . X l l l , . . . 
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(3M,R)<lh{z)(z)L 

= [4,L + l,z + l , M + l , i J + l ] } } ) D 

2.3.0.4 Remark. (Normalizing Input/Output:) There is clearly no loss of general-
ity (why?) in assuming that any URM that computes a function of n > 1 inputs 
does so using XI1 through Xln+1 as input variables and XI as the output variable. 
Such a URM will have at least two instructions, since the s top instruction does not 
reference any variables. □ 

2.3.0.5 Definition. An ID of a computation of a URM M is an ordered sequence 
L; a i , . . . , ar, where all of M's variables appear among the XI, X l l , . . . XV— 
the latter denoted in metanotation as x i , . . . , xr—and a* is the current value of 
xi immediately before instruction L is executed. L points precisely to the current 
instruction, meaning the immediately next to be executed. 

All IDs have the same length, and we say that ID Ji = L; a i , . . . , ar yields ID 
I2 — P ; b\,..., 6r, in symbols I\ \~ I2, exactly when 

(i) L labels "xi «— c", and I\ and I2 are identical, except that bi = c and P — L+1. 

(ii) L labels "xi <— Xi + 1", and I\ and I2 are identical, except that bi = ai + 1 
andP = L + l. 

(iii) L labels "xi —̂ x$ — 1", and /1 and I2 are identical, except that bi = a^ — 1 
and P = L + 1. 

(iv) L labels "if xi = 0 goto P else goto Q", and i i and I2 are identical, except that 
P = Rif ai = 0 , while P — Q otherwise. 

(v) L labels "stop", and I\ and /2 are identical. 

A terminating computation of M with input a i , . . . , ajfc is a sequence IQ, ... ,In such 
that for alH < n we have Ii \- Ii+i and for some j < n, Ij has as 0th member the 
label of stop. Moreover, IQ is initial', that is, 

To = l ;0 ,a i , . . . , a f c , 0 , . . . , 0 
r - k - 1 0s 

The above reflects the normalizing convention of 2.3.0.4, and the standard convention 
of implicitly—i.e., not as part of the computation—setting all the non-input variables 
to 0, i.e., the Xk+2,.. •, x r and x i , before the computation "starts". 

The length or run time of the computation is its number of steps Ii \~ Ii+\\ That 
is, n. □ 

We code an ID / = L; a\,..., ar as code(I) = [L, a\,..., ar] and a terminating 
computation IQ, . . . , In by [code(Jo), • • •, code(/n)]. 
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2.3.0.6 Theorem. For any n > 1, the relation Comp(n\z,y), which is true iffy 
codes a terminating computation of the n-input normalized URM coded by z is 
primitive recursive. 

Proof. By the remark on p. 143, which normalizes the input/output convention, it 
must be that lh(y) > 2. In the course of the proof we will want to keep our quantifiers 
bounded by some primitive recursive function so that the placement of Comp^ (z, y) 
in VIZ can be achieved. 

So, how long need an ID be? Given its format (2.3.0.5), it suffices that it is as long 
as the largest index j of of any variable Xj that occurs in the URM; plus one. 

Since the maximum j is max{ ((z)i)2 : i < lh(z)} and ((z)i)2 < z we adopt the 
generous, but simple, bound z + 1. Observe next that 

Comp(z,y) = URM(z) A Seq(y) A (Vi)<i/l(y)(Sreg((y)i) A lh((y)i) = z + l) A 
lh(y) > 1 A {\/j)<lh{y)^iyield(z, (y)h (y)j+1) A 

{Comment. The last ID surely has the label of z's stop.} ((y)ih(y)-i)o = lh(z) A 

{Comment. The initial ID.} ((y)0)0 = 1 A ((y)0)i = 0 A 
(Vi)<^(n + K i - ^ ( ( y ) o ) i = 0) 

The relation "yield(z, (y)j, (y)j+i)" above says "URM z causes (y)j h (y)j+i". 
The notation "yield(z,u,v)" is thus shorthand that expands as follows (cf. 2.3.0.5 
and 2.3.0.2): 

yield(z,u, v) = (3k)<Z{3L)<Ul(yZ) \L + 1 = (u)0 A k > 0 A j 

(3a)<z ((z)L = [1, L + 1, fc, a] A t; = 2p£+1 [ u / p r p ( M ) J 71) V 

((z)L = [2, L + 1, k] A u - 2pfctx) V 

((z)L = [3, L + 1, fc] A v = 2(if (ix)fc = 0 then it else \u/pk\)) V 

( 3 P , i J ) < ^ w ( ( ^ ) L = [4,L + l , f c , P , / i ] A P > 0 A i i > 0 A 

v = if (Tx)fc = 0 then [u/2L+2\ 2 P + 1 

else |u /2L + 2J 2^+ 1) V 

((z)L = [5,L + l]Ai; = ix)}) D 

2.3.0.7 Corollary. (The Kleene T-predicate) For each n > 1, f/ie Kleene predicate 
T(n\z,xn,y) that is true precisely when the n-input URM z with input xn has a 
terminating computation y, is primitive recursive. 

Proof. By earlier remarks, T^n\z^xn,y) = Comp(n\z,y) A ((y)o)2 = x\ A 
((y)o)3 = x2A.../\ ((2/)o)n+1 = »n. □ 

71The effect of "L + 1 : ^ l f c ^~ a" on ID u = (L + 1,...) is to change L + 1 to L + 2 (effected by 
the factor 2) and change the current value of Xlk, i.e., (u)k—stored in the ID as a factor p^. , a 
factor that we remove by dividing u by it—to a, this being stored in v as a factor p £ + 1 . 
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Recalling that for any predicate R(y,x), (fiy)R(y,x) is alternative notation for 
(l^y)XR(y^ %)—°f- 2.1.2.39—we have: 

2.3.0.8 Corollary. (The Kleene Normal Form Theorem) 

(1) For any input/output normalized URM M of code z (2.3.0.2) and n inputs, we 
y - i I -y- -i n-\-1 , ^ 

have that MX1 '"" is defined on the input xn iff (3y)T^ (z,xn, y). 

(2) There is a primitive recursive function d such that for any \xn.f(xn) £ V there 
is a number z and we have for all xn: 

f(a!n)~d((w)TW(z,xn,y)) 

Proof Statement (1) is immediate as "(3?/)T(n) (z, xn , y)" says that there is a termi-
nating computation of M (coded as z) on input xn. 

For (2), let / = M£ 1
1 1 ' " " x i n + \ where M is a normalized URM of code z. The 

role of d is to extract, from a terminating computation's last ID, its 1st component. 
Thus, for all y, we let d{y) = ( ( y ) / M 2 / F l ) r □ 

In what follows, the term computation will stand for terminating computation. Note 
that the "complete" equality (cf. 1.2.0.11) in the corollary, (2), becomes standard 
equality, =, iff we do have a (terminating) computation. 

(n) 
2.3.0.9 Definition. (0-Notation of Rogers (1967)) We denote by (j>z

 } the partial re-
V"i i v-i n + 1 

cursive n-ary function computed by a URM of code z, as MX1 ' "' . That is, 
4>z = Axn.d((/z?/)T(n)(z, xn) y)). We usually write <pz for <jrz ' and T(z, x, y) for 
TW(z,x,y). D 

Pause. Why did I not write "~" above? (Cf. 1.8.32/M 

2.3.0.10 Remark. If / = ^ n ) , for some URM code i, then we call i a 0-index 
of/. D 

We now readily obtain the very important number-theoretic characterization of V, 
a class that was originally defined in 2.1.1.2 via the URM formalism. This result is a 
direct consequence of 2.3.0.8 and is the direct analog of Theorem 2.2.1.5, about VIZ. 

2.3.0.11 Corollary. (Number-Theoretic Characterization of V) V is the closure 
of the same X that we used for VIZ, under composition, primitive recursion, and 
unbounded search. 

Proof. If we temporarily call V the closure that we mentioned in the corollary, then 
since V contains X and is closed under the three stated operations (cf. 2.1.1.12, 
2.1.1.16, and 2.1.1.19), we immediately have V QV. 

Conversely, ignoring closure under (iiy) for a moment, we get VIZ C V. Thus 
\xn.d{(iiy)T(n\z, xn,y)) eV, for all z. This shows P C p . □ 
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The preceding corollary provides an alternative formalism—that is, a syntactic, finite 
description other than via URM programs—for the functions of V: Via P-derivations, 
which can be defined totally analogously with the case of 2.1.2.1, by adding the 
operation of unbounded search. Both types of derivation are special cases of the 
general case of 1.6.0.6. 

2.3.0.12 Remark. (1) The normal form theorem says, in particular, that every unary 
function that is computable in the technical sense of 2.1.1.2—or, equivalently, 
2.3.0.11—can be expressed as an unbounded search followed by a composition, 
using a toolbox of just two primitive recursive functions(I): d and \ZXI/.XT(Z, %,y)-
This representation, or "normal form", is parametrized by z, which denotes a URM 
M that computes the function in a normalized manner: as MJQ 1 1 . Thus what we had 
set out to do at the beginning of this section is now done: The two-input URM U that 
computes \zx.d((/j,y)T(z, x, y))—a computable function by 2.3.0.11—is universal, 
in precise the same way that compilers12 of practical computing are: The universal 
URM U accepts two inputs—a program M, coded as a number z, and data for said 
program, x. It then "interprets" and acts exactly as program z would on x, i.e., as 

(2) From Definition 2.3.0.2 it is clear that not every z 6 N represents a URM. 
Nevertheless, "\x.d((py)T(z,x,y))" in Definition 2.3.0.9 is meaningful for all 
natural numbers z regardless of whether they code a URM or not, 

and is in V, by the latter's closure properties. 

Thus, if z is not a URM code, then T(z,x,y) will simply be false, for all x, and all 
y\ thus we will have <j>z(x) t for all x. This is perfectly finel Indeed, it is consistent 
with the phenomenon where a real-life computer program that is not syntactically 
correct (like our z here) will not be translated by the compiler and thus will not run. 
Therefore, for any input it will decline to offer an output; the corresponding function 
will be totally undefined. 

Due to these considerations we extend the concept of 0-index to all of N, and 
correspondingly remove the hedging from Definition 2.3.0.9: "computed by a URM 
ofcodez,asM^ 1

1 1 , - , x l W + 1" . 
We now say: For all z G N, </>i denotes the function \xn.d{^iiy)T^ (z, xn, y)). 

(3) In view of the above redefinition, Definition 2.1.1.2 can now be rephrased as 
"\xn.f(xn) e V iff, for some z G N, / = <pi —not just "for some z that is a 
URM code". □ 

2.3.0.13 Exercise. Prove that every function of V has infinitely many (^-indices. 
Hint. There are infinitely many ways to modify a program and yet have all 

programs so obtained compute the same function. □ 

72 A "compiler" translates "high level" programs written in C, Pascal, etc., into machine language so they 
can be "understood" by a computer, and therefore be executed on given input data. 
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2.3.0.14 Example. The nowhere-defined function, 0, is in V, as it can be obtained 
from any invalid code. For example, 

9 = Xx.d((iiy)T(0,x,y)) 

Pause. Why is 0 not a URM code?^ 
_ It can, however, also be obtained from a program that compiles all right. Setting 
S — Xyx.x + ljve note: 

(1) \x.(py)S{y, x) e V by 2.1.2.12 and 2.1.1.19. 
(2) By the techniques of 2.1.1.17 we can write a program for 0 = \x.{jiy)S(y, x). 

As a side-effect we have that VIZ ^VmdTZ^V. □ 

2.4 A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE 
RECURSIVE FUNCTION CLASS 

We saw in Subsection 2.2.2 that there are intuitively computable total functions 
that are not in VIZ. This means that this class is an inadequate, or incomplete, 
formalization of the concept "total computable function". While the proof that our 
counterexample function is not in VIZ can be trivially completed into a mathematical 
proof, the part about it being "intuitively" computable was informal by virtue of the 
imprecision in the term "intuitively computable". The current section revisits this 
issue in a totally mathematical fashion. First, we produce a total function that is 
provably not in VIZ. Second, we mathematically establish that this function is a 
member of 1Z, showing therefore that VIZ C 1Z. This says more than "there exists 
an intuitively computable" / £ VIZ, since we produce a provably computable such 
/ , by placing it within our V formalism. 

We should note that it is customary in computability to talk of a "formalism" (such 
as that of VIZ, for example)—and we utilized this jargon several times already. 
The term "formalism" entails a syntactic ( = formal) method of describing our 
(mathematical) objects of study, which are then studied by rigorous mathematical 
methods.73 Thus, either of the approaches, via loop programs, or via derivations (or 
closures; cf. 2.1.2.3) for the definition of VIZ is a formalized approach in this sense. 
The same holds true of either the URM-based or the P-as-a-closure (cf. 2.3.0.11) 
approaches for the introduction of "P. 

We cannot say this for 1Z though! If we could have a syntactic definition of 
1Z, then we could repeat the diagonalization argument of Subsection 2.2.2 to find 
a total "intuitively computable" g £ 1Z. At the present state of knowledge it does 

73 A pure unadulterated formalism also employs the purely syntactic (or formal) application of logic, based 
on appropriately chosen nonlogical axioms. In such mode of application of logic, meaning or semantics is 
redundant, although well-chosen mathematical/logical argot, as in Bourbaki (1966) and Tourlakis (2003a), 
may create the feeling that one argues pretty much as in "everyday mathematics". As we have noted already 
in the Preface, while our use of logic is mathematically rigorous and correct, we do not insist on basing 
our reasoning on nonlogical axioms, e.g., such as those of Peano arithmetic. 
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not appear that such a g exists! Indeed, Church's conjecture—famously known as 
"Church's Thesis"—states categorically that no intuitively computable total function 
exists outside TV. 

Quite apart from the empirical question of whether "Church's Thesis" is correct 
or not, we note that within the formalization ofV, in which the functions <fiz of TZ 
have finite descriptions z G N , it is impossible to have an enumeration of all such 
descriptions via a recursive function ofTZ. 

So, at least, within the P-formalism we cannot diagonalize out of TZ by an 
argument like the one given in 2.2.2. This observation will be proved mathematically 
without invoking any "beliefs". Cf. 2.5.0.29 

Pause. Why can't diagonalization of the type employed in 2.2.2 show the existence 
of partial, intuitively computable functions outside the syntactically defined V, thus 
handily rejecting Church's Thesis?^ 

Because fi(i) ~ fi(i) -f 1 is not necessarily a contradiction! (why?) 

2.4.0.15 Remark. Can we tell, given z, whether (j)z is total (hence in TZ)1 No because 
if we could then we could build an enumeration of all such z—that we promised, 
above, to prove impossible. Indeed, if we could so test (computably), then for each 
z = 0 , 1 ,2 ,3 , . . . , if z defines a total function, then add it to a list "List". This "List" 
would be an enumeration that we said we cannot have. □ 

2.4.1 The Ackermann Function 

The "Ackermann function" was proposed, naturally, by Ackermann. The version 
here is a simplification offered by Robert Ritchie. 

What the function does is to provide us with an example of a number-theoretic 
intuitively computable, total function that is not in VIZ. But this function is more 
than just intuitively computable! It is computable—no hedging—as we will show by 
showing it to be a member of TZ. 

Another thing it does is that it provides us with an example of a function Xx.f(x) 
that is "hard to compute" ( / £ VIZ) but whose graph—that is, the predicate Xyx.y = 
f(x)—is nevertheless "easy to compute" ( £ V1Z*).14 

2.4.1.1 Definition. The Ackermann function, Xnx.An(x), is given, for all n > 
0, x > 0 by the equations 

A0(x) = x + 2 
An+1(x)= A*(2) 

74Here the colloquialisms "easy to compute" and "hard to compute" are aliases for "primitive recursive" 
and "not primitive recursive", respectively. This is a hopelessly coarse rendering of easyI hard and a much 
better gauge for the runtime complexity of a problem is on which side of 0 ( 2 n ) it lies. However, our 
gauge will have to do for now: All I want to leave you with is that for some functions it is easier to 
compute the graph—to the quantifiable extent that it is in V71*—than the function itself, to the extent that 
it fails being primitive recursive. 
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where hx is function iteration (cf. 2.1.5.1). □ 

The A-notation makes it clear that both n and x are arguments of the Ackermann 
function. While we could have written A(n,x) instead, it is notationally less chal-
lenging to use the chosen notation. We refer to the n as the subscript argument, and 
to x as the inner argument. 

2.4.1.2 Remark. An alternative way to define the Ackermann function, extracted 
directly from Definition 2.4.1.1, is as follows: 

A0(x) = x + 2 
An+1{0)= 2 

A ^ x + 1) = An{An+1{x)) □ 

2.4.2 Properties of the Ackermann Function 

We present a sequence of less than earth-shattering—but useful—theorems. So we 
will just call them lemmata. 

2.4.2.1 Lemma. For each n > 0, \x.An(x) G VIZ. 

Proof. Induction on n: For the basis, clearly AQ — Xx.x + 2 G VIZ. Assume now 
the case for (arbitrary, fixed) n—i.e., An G VIZ—and go to that for n 4-1. Immediate 
from Definition 2.4.1.2, last two equations. □ 

It turns out that the function blows up in size far too fast with respect to the 
argument n. We now quantify this remark. 

The following unassuming lemma is the key to proving the growth properties of 
the Ackermann function. It is also the least straightforward to prove, as it requires a 
double induction—at once on n and x—as dictated by the fact that the "recursion" 
of Definition 2.4.1.2 does not leave any argument fixed. 

2.4.2.2 Lemma. For each n > 0 and x > 0, An(x) > x + 1. 

Proof. We start an induction on n: 
n-Basis. n = 0: A0(x) = x + 2> x + l\ true. 
n-I.H.75 For all x and a fixed (but unspecified) n, assume An(x) > x + 1. 
n-I.S.76 For all x and the above fixed (but unspecified) n, we must prove An+\ (x) > 

x + 1. 
We do the n-I.S. by induction on x: 

x-Basis. x = 0: An+i(0) = 2 > 1; true. 

75To be precise, what we are proving is "(Vn)(Vcc)An(;r) > x + 1". Thus, as we start on an induction 
on n, its I.H. is "(V#)An(#) > x + 1" for a fixed unspecified n. 
76To be precise, the step is to prove—from the basis and I.H.—"(Vx) A n + i (x) > x + 1" for the n that 
we fixed in the I.H. It turns out that this is best handled by induction on x. 
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x-l.H. For the above fixed n, we now fix an x (but leave it unspecified) for 
which we assume An+\(x) > x + 1. 

x-I.S. For the above fixed (but unspecified) n and x, prove An+i(x + 1) > 
x + 2. 

Well, 

An+1(x + 1) = An(An+1(x)) by Def. 2.4.1.2 
> An+i(x) -hi byn-I.H. 
> x + 2 by x-I.H. □ 

2.4.2.3 Lemma. Xx.An(x) /*. 

"Xx.f(x) /*" means that the (total) function / is strictly increasing, that is, x < y 
implies f(x) < f{y), for any x and y. Clearly, to establish the property one just 
needs to check for the arbitrary x that f(x)<f(x + l). 

Proof. We handle two cases separately. 
A0: Xx.x + 2 /*; immediate. 
An+i: i4n+i(x+l) = An(i4n+i(a;)) > An + 1(x)+l—the ">" by Lemma 2.4.2.2. 

n 
2.4.2.4 Lemma. Xn.An(x + 1) / \ 

Proof An+i(x + 1) = An(An+i(a?)) > An(x + 1)—the ">" by Lemmata 2.4.2.2 
(left argument > right argument) and 2.4.2.3. □ 

The "x + 1 " in Lemma 2.4.2.4 is important since An (0) = 2 for all n. Thus Xn.An (0) 
is increasing but not strictly (constant). 

2.4.2.5 Lemma. Xy.An(x) / \ 

Proof An
+1 (x) = AniAKx)) > A^x)— the ">" by Lemma 2.4.2.2. D 

2.4.2.6 Lemma. Xx.An(x) /*. 

Proof. Induction on y: For y = 0we want that Xx.An{x) /*, that is, Xx.x / \ which 
is true. We next take as I.H. that 

Al{x + l)>Al{x) (1) 

We want 
Al+\x+l)>Al+\x) (2) 

But (2) follows from (1) and Lemma 2.4.2.3, by applying An to both sides of ">". 
□ 

2.4.2.7 Lemma. Foralln,x,y, An+1(x) > An(x). 
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Proof. Induction on y: For y = 0 we want that A^+1(x) > A^(x), that is, x > x, 
which is true. We now take as I.H. that 

Al+1{x)>Al{x) 

Al+
+\(x)>Al+\x) 

Al+
+\{x) = An+l(Al+l{x)) 

by Lemma 2.4.2.4 
>An(Al+1(x)) 

Lemma 2.4.2.3 and I.H. 
>Al+1(x) D 

2.4.2.8 Definition. Given a predicate P(x), we say that P(x) is true almost every-
where—in symbols "P(x) a.e."—iff the set of (vector) inputs that make the predicate 
false infinite. That is, the set {x : ^P(x)} is finite. 

A statement such as "\xy.Q(x, y, z, w) a.e." can also be stated, less formally, as 
"Q(x,y,z,w) a.e. with respect to x and y". □ 

2.4.2.9 Lemma. An+i(x) > x + 1 a.e. with respect to x. 

Thus, in particular, Ax(x) > x + 10350000 a.e. 

Proof. In view of Lemma 2.4.2 A and the note following it, it suffices to prove 

A\(x) > x -\-l a.e. with respect to x 

Well, since 
cc 2's 

Ax{x) = Ag(2) = (• • • (((y + 2) + 2) + 2) + • • • + 2) ||evaluatedaty = 2 - 2 + 2x 

we ask: Is 2 + 2x > x + / a.e. with respect to xl It is so for all x > I — 2 (only 
x = 0 , 1 , . . . , / - 2 fail). □ 

2.4.2.10 Lemma. An+i(x) > Al
n(x) a.e. with respect to x. 

Proof. If one (or both) of / and n is 0, then the result is trivial. For example, 

ITs 

Al
0(x) = (•.. (((X + 2) + 2) + 2) + • • • + 2) = x + 2/ 

We are done by Lemma 2.4.2.9. 

We want 

This is true because 
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Let us then assume that I > 1 and n > 1. We note that (straightforwardly, via 
Definition 2.4.1.1) 

Al
n(x)=An(Al-l(x)) 

X~\*)^ „4&3(a°(2), 
= ^ ; l w ( 2 ) = A i v v ; ( 2 ) ( 2 ) ^ i v r i ^(2)(2) 

The straightforward observation that we have a "ladder" ofk An-i 's precisely when 
the topmost exponent is I — k can be ratified by induction on k (left to the reader). 
Thus we state 

f A-

In particular, taking k = I, 

J A^{X){2) 
Al

n(x)= U ^ '(2) 

Let us now take x > l. 
Thus, by (*), 

n 
- 1 

__ 

\^ 

lAr. 

'(2) 
X ( 2 ) 

f .<-
U n - l 

-i(2) 
•(2) (*) 

I A 2 . ^ - i ( 2 ) . 
^ n + i ( x ) = ^ ( 2 ) = " " U ; . ! '-(2) (**) 4 .": 

^ n - 1 

By comparing (*) and (**) we see that the first "ladder" is topped (after I An-\ 
"steps") by x and the second is topped by 

, X-i(2) 
x-l A n _ i < 

•(2) 
Thus—in view of the fact that Av

n (x) increases with respect to each of the arguments 
n, x, y—we conclude by asking . . . 

, X-i(2) 
X-l An-!< 

"Is ^ n - i '(2) > x a.e. with respect to xT 
. . . and answering, "Yes", because by (**) this is the same question as "is An+i(x — 
I) > x a.e. with respect to xT\ which we answered affirmatively in 2.4.2.9. □ 

2.4.2.11 Lemma. Foralln,x,y, An+i(x + y) > A^(y). 

Proof. 

An+1(x + y) = AZ+v(2) 
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= Az(An+1(yj) 
> An (y) bY Lemmata 2.4.2.2 and 2.4.2.6 □ 

2.4.3 The Ackermann Function Majorizes All the Functions of VIZ 

We say that a function / majorizes another function, g, iff g (if) < f(x) for all x. The 
following theorem states precisely in what sense "the Ackermann function majorizes 
all the functions ofVTZ". 

2.4.3.1 Theorem. For every function Xx.f(x) G VIZ there are numbers n and k, 
such that for all x we have f(x) < A!^(max(x)). 

Proof The proof is by induction with respect to VIZ. Throughout I use the abbrevi-
ation \x\ for max(f) as this is notationally friendlier. 

For the basis, / is one of: 

• Basis. 

Basis 1. Xx.O. Then AQ(X) works (n = 0, k — 1). 
Basis 2. Xx.x + 1. Again AQ(X) works (n = 0, k = 1). 
Basis 3. Xx.X{. Once more A0(x) works (n = 0, k = 1): xi < \x\ < A0(\x\). 

• Propagation with composition. Assume as I.H. that 

f(xm) < Ak
n(\xm\) (1) 

and 
foti = l,...,m,9i(y)<Ak

r;i(\y\) (2) 
Then 

f{9i{y), ■ ■ -,9m{y)) < Ak
n(\9l(y),.. .,9m(y)\), by (1) 

<Ak
n(\Ak

n\(m,.-.,Ak
nZ(\y\)\), by 2.4.2.6 and (2) 

< Ak
n(\A™lk

n\ (\y\)), by 2.4.2.6 and 2.4.2.7 

<<rK n
f e ; ) ( | y | )> by 2.4.2.7 

• Propagation with primitive recursion. Assume as I.H. that 

Kv) < Ak
nm (3) 

and 
g(x,y,z)<Ar

m(\x,y,z\) (4) 
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Let / be such that 

f(0,y) = h(y) 
/ ( x + l,y) = g(x,y,f(x,y)) 

I claim that 
f(x,y)<A™(Ak

n(\x,y\)) (5) 

I prove (5) by induction on x: 

For x = 0, I want /(0,j/) = h(y) < A%(\0,y\). This is true by (3) since 

As an I.H. assume (5) for fixed x. 

The case for x + 1: 

/(ar + l,y) = g(x,y,f{x,y)) 
<Ar

m(\x,y,f(x,y)\)M(4) 

< A^(\x,y, A%(A$(\x,y\))\),by theI.H. (5), and2.4.2.6 

= ^ ( ^ ( A j ; ( | x ^ ) ) ) , b y 2.4.2.6 a n d ^ ^ d x . j T I ) ) > \x,y\ 

= A^)(Ak
n{\x,y\)) 

With (5) proved, let me set I = max(ra, n). By Lemma 2.4.2.7 I now get 

f(x,y)<A™+k(\x,y\) < Al+1(\x,y\+rx + k) (6) 
Lemma 2.4.2.11 

Now, \x, y| + rx + k < (r + 1) |x, y| + A; thus, (6) and 2.4.2.3 yield 

/ ( x , y ) < ^ + 1 ( ( r + l)|x,y1 + fc) (7) 

To simplify (7) note that there is a number q such that 

(r + l)x + /c< A?(x) (8) 

for all x. Indeed, this is so since (easy induction on y) A\(x) = 2yx + 2y + 2y~x + 
• • • + 2. Thus, to satisfy (8), just take y — q large enough to satisfy r + 1 < 2q 

and/c<2* + 2<?-1 + --- + 2. 

By (8), the inequality (7) yields, via 2.4.2.3, 

f(x,y) < Al+1(A*(\x,iJ\)) < A]+*(\x,y\) 

(by Lemma 2.4.2.7) which is all we want. □ 
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2.4.3.2 Remark. Reading the proof carefully we note that the subscript argument of 
the majorant71 is precisely the maximum depth of nesting of primitive recursion that 
occurs in a derivation of / . 

Pause. In which derivation? There are infinitely many.^ 
Indeed, the initial functions have a majorant with subscript 0; composition has 

a majorant with subscript no more than the maximum subscript of the component 
parts—no increase; primitive recursion has a majorant with a subscript that is bigger 
than the maximum subscript of the h- and g-majorants by precisely 1. □ 

2.4.3.3 Corollary. \nx.An(x) £ VIZ. 

Proof. By contradiction: If Xnx.An(x) e VIZ then also Xx.Ax(x) e VIZ (identi-
fication of variables; cf. 2.1.2.6). By the theorem above, for some Ti) K, J\.xyxj ^ 
A*(x), for all x, hence, by 2.4.2.10 

Ax(x) < An+i(x), a.e. with respect to x (1) 

On the other hand, An+i (x) < Ax (x) a.e. with respect to x—indeed for all x > n + 1 
by 2.4.2.4—which contradicts (1). □ 

2.4.4 The Graph of the Ackermann Function is in VH* 

How does one compute a yes/no answer to the question 

"An{x) = zT (1) 

Thinking "recursively" (in the programming sense of the word), we will look at the 
question by considering three cases, according to the definition in the Remark 2.4.1.2: 

(a) If n — 0, then we will directly check (1) as "is x + 2 = zT\ 

(b) If x = 0, then we will directly check (1) as "is 2 = zT. 

(c) In all other cases, i.e., n > 0 and x > 0, for an appropriate w, we may 
naturally78 ask two questions [both must be answerable "yes" for (1) to be true]: 
"Is A n _ i ( » = zT\ and "is An(x - 1) = wT 

Assuming that we want to pursue this by pencil and paper or some other equivalent 
means, it is clear that the pertinent info that we are juggling are ordered triples of 
numbers such as n, x, z9 or n — 1, w, z, etc. That is, the letter "A", the brackets, the 
equals sign, and the position of the arguments (subscript vs. inside brackets) are just 
ornamentation, and the string "Ai(j) — &", in this section's context, does not contain 
any more information than the ordered triple "(i, j , fe)". 

77The function that does the majorizing. 
™An(x) = An-1(An(x-l)). 
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Thus, to "compute" an answer to (1) we need to write down enough triples, in 
stages (or steps), as needed to justify (1): At each stage we may write a triple (z, j , k) 
down just in case one of (i)-(iii) holds: 

(i) i = 0 and k = j + 2 

(ii) j = 0 and k = 2 

(iii) i > 0 and j > 0, and for some w, we have already written down the two triples 
(i — l,w,k) and (i, j — l,w). 

Pause. Since "(i, j , &)" abbreviates 'VL^(j) = fc", Lemma 2.4.2.2 implies that 
j < k.< 

Our theory is more competent with numbers (than with pairs, triples, etc.) prefer-
ring to code tuples into single numbers. Thus if we were to carry out the pencil and 
paper algorithm within our theory, then we would be well advised to code all these 
triples, which we write down step by step, by single numbers: We will use our usual 
prime-power coding, [i, j , k]. 

We note that our computation is "tree-like",79 since a "complicated" triple such as 
that of case (iii) above requires two similar others to be already written down, each 
of which in turn will require two earlier similar others, etc., until we reach "leaves" 
[cases (i) or (ii)] that can be dealt with directly without passing the buck. 

This "tree", just like the tree of a mathematical proof,80 can be arranged in a 
sequence of coded triples [i,j, k] so that the presence of a "[i, j , A:]" implies that all 
its dependencies appear earlier (to its left). 

We will code such a sequence by a single number, u, using the prime-power coding 
of sequences given in 2.1.2.44: 

[a 0 , . . . , a z _ i ] = Ui<zp^i+1 

In effect, what we are doing is that we arithmetize our pencil-and-paper computation 
of the answer to question (1) above, a technique that we have already employed and 
learned in Section 2.3. 

Now, given any number u, we can primitively recursively check whether or not it 
is a code of an Ackermann function computation: 

2.4.4.1 Theorem. 77**? predicate 

Def 

Comp(u) = u codes an Ackermann function computation 

is in VIZ*. 
79 A term the reader surely is familiar with, from programming and discrete math courses. 
80 Assuming that modus ponens is the only rule of inference, the proof a formula A depends, in general, 
on that of "earlier" formulae X —> A and X, which in turn depend (require) earlier formulae each, and 
so on and so on, until we reach formulae that are axioms. 

www.it-ebooks.info

http://www.it-ebooks.info/


A DOUBLE RECURSION THAT LEADS OUTSIDE THE PRIMITIVE RECURSIVE FUNCTION CLASS 1 5 7 

Proof. We will use some notation that will be useful to make the proof more intuitive. 
Thus we introduce two predicates: Xvu.v G u and Xvwu.v <u w. The first says 

and the second says 
u=[...yv,...,w,...] 

Both are in V7Z* since 

v G u = Seq(u) A (3i)<lh(u)(u)i = v 

and 
v <uw = Seq(u) A (3i, j)<ih(u) ((u)i = v A (u)j = w A i < j) 

We can now define Comp(u) by a formula that makes it clear that it is in VIZ*: 

Comp(u)=Seq(u) A (Vi;)<u ( v G u -» Seq(v) A lh(v) — 3 A 

{Comment: Case (i), p. 156} Uv)0 = 0 A (v)2 = (v)i + 2 V 

{Comment: Case (ii)} ( v ) i = 0 A (v)2 = 2 V 

{Comment: Case (iii)} ((v)0 > 0 A (v)i > 0 A 

(3w)<v([(v)0 - 1, II;, (v)2] <w v A [(v)0, (v)i - 1, w] <u v)J j 

The "Pause" on p. 156 justifies the bound on (3w) above. Indeed, we could have 
used the tighter bound "(^V'- Clearly Comp(u) e VIZ*. □ 

Thus An(x) = z iff [n, x, z] G u for some w that satisfies Comp. For short 

An(x) = z = (3u)(Comp(u) A [n, x, 2;] G tz) (1) 

If we succeed in finding a bound for u that is a primitive recursive function of n.x.z 
then we will have succeeded showing: 

2.4.4.2 Theorem. \nxz.An(x) = z G P £ * . 

Proof. Let us focus on a computation tx that as soon as it verifies An(x) = z quits, 
that is, it only codes [n, x, 2:] and just the needed predecessor triples, but no more. 
How big can such a u be? 

Well, 
w = . . . p [ ^ f c ] + 1 . . . p | n ^ ] + 1 (2) 

for appropriate I (=lh{u) — 1). For example, if all we want is to verify ^4o(3) = 5, 
then u = PQ ' ' J+ . 

Similarly, if all we want to verify is A\(l) = 4, then—since the "recursive 
calls" here are to Ao(2) = 4 and Ai(0) = 2—two possible ^-values work: u = 

[0,2,41 + 1 [1,0,21 + 1 [1,1,41 + 1 [1,0,21 + 1 [0,2,41 + 1 [1,1,41 + 1 
P0 Pi P2 0 r U = P0 Pi P2 • 
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How big need I be? No bigger than needed to provide distinct positions (/ + 1 
such) in the computation, for all the "needed" triples i, j , k. Since z is the largest 
possible output (and larger than any input) that is computed, there are no more than 
(z 4-1)3 triples possible, so / + 1 < (z + l ) 3 . Therefore, (2) yields 

. \z r^l + l [z,z,z] + l 
U < - -pj . ' ' J ^ ' ' -p\ J 

/ s[z,z,z] + l 
= [p-i<lPij 

(l+l)([z,z,z] + l) 
-^ Pi 

(z+l)3([z,z,z} + l) 

Setting g = Xz.p^z
z^As,z,z^ * we have g £ VIZ and we are done by (1): 

An(x) — z = (3u)<g(z}(Comp(u) A [n,x,z] £ u) □ 

Worth saying: If / is total and y = f(x) is in VR*, then it does not necessarily 
follow that / £ VIZ, as 2.4.4.2 exemplifies. On the other hand, if / is total and 
y — f(x) is in 7£*, then, trivially, / £71 since / = \x.{^y){y = / (#)) . 

What is missing from the preceding expression is a primitive recursive bound on 
the search (ny), and this absence does not allow us to conclude that / is primitive 
recursive even when its graph is. For example, such a bound is impossible in the 
Ackermann case as we know from its growth properties. Why is it, qualitatively, 
possible for a graph y — f{x) to be "easier" to compute (say, primitive recursively, 
vs. recursively) than the function itself, at input xl Because the complexity of the 
graph is not expressed in terms of x only; it is also expressed in terms of y\ thus, we 
do not have to compute the "output" before we compare y and f(x). 

Lest the reader thinks that the foregoing justification is just a matter of creative 
accounting, it is not: Not all recursive functions / have an "easy" graph y = f(x), 
as we will see in the Section 2.7. Functions that grow too fast (like the Ackermann 
function), are in a certain sense "honest",81 that is, all the computational effort to 
compute their output goes toward building a very large output. Thus, e.g., having 
z already given and being asked to then test for z = An(x) is a computation saver. 
On the other hand, if it takes an enormous amount of computation time to compute 
g(x), but the output of g is always 0 or 1, then we have no computational benefit in 
knowing, say, y = 0 when being asked to verify (or reject) y = g(x). 

2.5 SEMI-COMPUTABLE RELATIONS; 
UNSOLVABILITY 

We next define a P-counterpart of 1Z* and V1Z* and look into some of its closure 
properties. 

This is actually a technical term due to Blum (1967). See also Tourlakis (1984), Ch. 12. 
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2.5.0.3 Definition. (Semi-computable Relations) A relation P(x) is called semi-
computable or semi-recursive iff for some / G V, we have, for all xn, 

P(xn) = f(xn) I (1) 

The set of all semi-computable relations is denoted by V*. 
If / = (pa in (1) above, then we say that "a is a semi-computable index or just a 

semi-index of P(xn)". If n = 1 (thus P C N) and a is one of the semi-indices of P , 
then we write P = Wa [Rogers (1967)]. D 

We are making the symbol V* up, in complete analogy with the symbols VIZ* and 
7£*. It is not standard in the literature. 

We have at once: 

2.5.0.4 Theorem. (Normal Form Theorem for Semi-computable Relations) 
P{xn) G P* iff, for some a G N, we have (for all xn) P(xn) = (3z)T(n\a,xn, z). 

Proof Only i/-part. Let P{xn) = f(xn) | , with / G V. By Remark 2.3.0.12, 
/ = (j)a

n) for some a G N. We conclude by Corollary 2.3.0.8(1). 
/f-part: By 2.5.0.3 and 2.3.0.12, the given equivalence translates into P(xn) = 

(f)a
n\xn)l. But(f)aeV. D 

Rephrasing the above theorem (hiding the 0-index "a", and remembering that 
VIZ* CK*), we have: 

2.5.0.5 Corollary. (Strong Projection Theorem) P(xn) G V* iff, for some recur-
sive predicate Q(xn, z), we have (for all xn) P(xn) = (3z)Q(xn, z). 

Proof For the only if iak^ Q(xn, z) tobe Xxnz.T^n\a, xn, z) for SLppropviate a G N. 
For the if take / = \xn.(fj,z)Q(xn,z) (cf. 2.1.2.39). Then / G V and P(xn) = 
f(Xn) | . □ 

2.5.0.6 Corollary. P(xn) G V* iff, for some Xxn.g(xn) G V, we have (for all xn) 
P(xn) = g{xn) = 0. 

Proof The only if is immediate from 2.5.0.3: Let / G V such that, for all xn, 
P(xn) = f(xn) I. Take# = Afn.l - (1 - / ( f n ) ) . 

For the if note that / = <j)\ J for some i, thus 

/(jfn) = 0 = (3z) (T ' n ) ( i , f n , z ) A d(z) - 0) 

We are done by 2.5.0.5. D 

The preceding corollary is the analogue of 2.1.2.16 and 2.1.2.17 for V*. It provides, 
among other things, easy proofs for the facts VIZ* C P*and7£* C V*. For example, 
say, Q(x) G VIZ*. Then, for some g G T>7£, Q(£) = g(x) = 0, for all x. Butg eV 
as well, and we can invoke 2.5.0.6. 
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2.5.0.7 Corollary. (Graphs of Partial Recursive Functions) \xn.f(xn) e V iff 
y = f(xn) is semi-recursive. 

Proof. For the only if let / = (jy^ . Then 

y = f(xn) = (3z)(T™(i,xn,z)Ad(z) = y) 

We conclude by 2.5.0.5. For the if part, let (again, 2.5.0.5) 

V = f(xn) = (3z)Q(z,xn,y) 

To compute f(xn)—given xn—we enumerate all pairs (z, y) and stop at the "first", 
if any, that satisfies Q(z, xn,y); we output y. Mathematically, 

f(xn) = ^w)Q((w)0,xn,(w)i)j 

Clearly f eV. D 
Pause. Why not argue the if part more simply, in view of 2.5.0.6? Let g G V 

such that 
y = f(xn) =g{y,xn) = 0 

Then f{xn) = {p>y)g{y, xn), for all xn, and thus / G V.< 
See Exercise 2.12.33. 

2.5.0.8 Remark. (Deciders and Verifiers) A computable relation P(xn) is, by def-
inition, one for which \P € T^\ thus it has an associated URM M that decides 
membership of any an in P both ways: "yes" (output 0) if it is in; "no" (output 1) if 
it is not. Thus this M is a decider for P(xn). 

A semi-computable relation Q(xm), on the other hand, comes equipped only with 
a verifier, i.e., a URM N that verifies am £ Q, if true, by virtue of halting on input 
dm. A verifier gives no tangible information about the non membership cases, which 
cause it to enter a so-called "infinite loop" (it enters a non terminating computation). 

While, mathematically speaking, am ^ Q is also "verified" by virtue of looping 
forever on input am, algorithmically speaking this is no verification at all as we 
do not have a way of knowing whether TV is looping forever as opposed to simply 
being awfully slow, planning perhaps to halt in a couple of trillion years (cf. halting 
problem 2.5.0.16). 

In the algorithmic sense, a verifier (of a semi-computable set of m-tuples) verifies 
only the "yes" instances of questions such as "Is am G QT—hence its name. □ 

Thus, the output of a verifier for a semi-computable relation Q(x), when it halts, is 
irrelevant. It has verified membership of its input to Q simply by virtue of terminating 
its computation. 

2.5.0.9 Definition. (Undecidable Problems) A problem is a question of the form 
x G Q. Synonymously, a question of the form Q(x). 
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A Decider 

x„ * Input 

A Verifier 

xn < Input 

"Yes"; print 0 
and halt 

"No"; print 1 
and halt 

"Yes"; denoted by 
halting. Output is 
irrelevant 

"No"; denoted by 
looping. 

Figure 2.1 A decider and a verifier, pictorially, for handling the query, "xn G AT\ by a 
URM. 

Thus, a problem is a predicate. 
We say that a problem Q(x) is decidable or (recursively)82 solvable, iff there is 

a decider for it, which mathematically is expressed by "Q(x) G 7£*"—i.e., Q is 
recursive. In the opposite case we say that Q(x) is undecidable or (recursively) 
unsolvable. 

A problem Q(x) is semi-decidable iff there is a a verifier for it, that is, iff Q{x) is 
semi-computable. □ 

Intuitively, we see that if we have a verifier for a relation Q(xn) and also have 
a verifier for its complement (negation) -><2(#n), then we can build a decider for 
Q{xn)\ On input an we simply run both verifiers simultaneously. If the one for Q 
halts, then we print 0 and stop the computation. If, on the other hand, the one for 
->Q halts, then we print 1 and stop. Of course, one or the other will halt, since one of 
Q(an) or -iQ(an) is true! 

This process computes XQ^n)- Put more mathematically, 

2.5.0.10 Proposition. IfQ(xn) and ~^Q(xn) are in V*, then both are in 7£*. 

Proof. Let i and j be semi-indices of Q and -iQ respectively, that is (2.5.0.4), 

Q(xn) = (3z)T^(i,xn,z) 
^Q(xn) = (3z)T^n\j,xn,z) 

82The parenthetical qualifier is usually omitted. 
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Define 

Intuitively, g implements (mathematically) the process in which we run the two 
verifiers simultaneously, (coded as) i and j , and look for one that halts, by looking 
for the smallest z that codes a computation83 of i or j as the case may be. 

Trivially, g G V. Hence, g G 7Z, since it is total (why?). We are done by 
noticing that Q(xn) = T^n\i,xn^g(xn))—cf. 2.1.2.24. By closure properties of 
ft* (2.1.2.21), -»Q0?n) is in ft*, too. □ 

2.5.0.11 Proposition, ft* C ft*. 

Proof. Let Q(x) G ft* and y be a new variable (other than any of the x). Since Q 
does not depend on y, we have Q{x) = (3y)Q(x). By 2.5.0.5, Q(x) G ft*. □ 

2.5.0.12 Remark. An intuitive way to see the truth of the preceding proposition is 
this: Given a URM M that decides Q(x), that is, computes XQ, modify it to compute 
instead 

I t i-e-> "ge t m to an infinite loop", otherwise 

How do we do this? Easy: Using M as a subprogram, we build a new URM, G, for 
#that 

(1) Given the input x, G first computes XQO*0—using M. 
(2) If the computed answer is 0, then it halts (jumps to the stop instruction of G). 

If the answer is 1 then it enters an infinite loop. 
How do we enter an infinite loop deliberately? Well, say that the output variable 

of M and G is Y. We just need the following program "logic" (as programmers say): 

: Comment. Above k — 1 we have just M, with its stop removed 
k — 1 : if Y = 0 goto k else goto k — 1 
k : stop 

□ 
2.5.0.13 Remark. (Undecidable Problems and Uncomputable Functions Exist) 

We can readily show, albeit in a somewhat intangible manner, that undecidable 
problems and therefore uncomputable total functions (their characteristic functions) 
exist. 

This readily follows from a so-called cardinality argument: By Kleene's Normal 
Form theorem, we have only a countable set of partial recursive functions 

{</>* : i e N} (1) 

A terminating one; cf. remark following the proof of 2.3.0.8. 
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Thus the subset (recall 1.3.0.44) of total (computable) 0-1-valued functions (and 
hence, decidable problems) is countable. However, by 1.3.0.50, the set of all total 
functions / : N —> {0,1} is uncountable. So there must be many such functions that 
do not belong to the enumeration (1)! Each such function / not only provides an 
example of an uncomputable function, but being 0-1-valued provides an example of 
an undecidable problem, this one: f(x) = 0. 

We called this an "intangible demonstration" of the existence of undecidable 
problems as it produced no specific meaningful problem that is undecidable. We 
remedy this below. □ 

2.5.0.14 Definition. (The Halting Problem) The halting problem has central sig-
nificance in computability. It is the question whether "program x will ever halt if it 
starts computing on input x". That is, if we set K = {x : <j>x{x) | } , then the halting 
problem is x G K. We denote the complement of K by K. □ 

2.5.0.15 Exercise. The halting problem x G K is semi-recursive. 
Hint. The problem is "<j)x{x) i". Now invoke the normal form theorem 

(2.3.0.8(1)). □ 

2.5.0.16 Theorem. (Unsolvability of the Halting Problem) The halting problem is 
undecidable. 

Proof In view of the preceding exercise (and 2.5.0.10), it suffices to show that K 
is not semi-computable. Suppose instead that i is a semi-index of this set. Thus, 
x G K = (3z)T(i, x, z), or, making the part x G K—that is, (j>x{x) t—explicit: 

->(3z)T(x, x, z) = (3z)T(i, x, z) (1) 

Substituting i into x in (1) we get a contradiction. □ 

2.5.0.17 Remark. (1) By 2.5.0.3 a set S C N is semi-recursive iff "it is a W{\ that 
is, for some i,S = Wi. The above proof says that "K is not a Wi". Is this surprising? 
Well, no! 

This goes back to the Cantor diagonalization that shows that D (C N), below, 

D = {x : x i Sx} 

is not an Si (cf. 1.3.0.52), where each Si is a subset of N. Indeed, 

x G Wi2'=3(pi{x) | = (3y)T(i,x,y) 

hence x £ Wi=^(3y)T(i, x, y) and, in particular, i £ Wi=->(3y)T(i, i, y). But the 
right hand side says "0i(i) t ' \ that is, i G K. Thus 

K = {x:x<£Wx} 

and Cantor's diagonalization argument shows that "K is not a Wi". So the proof of 
2.5.0.16 was a well-concealed diagonalization argument! 
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(2) Since K e P*, we conclude that the inclusion 1Z* C P* (2.5.0.11) is proper, 
i.e., 11* C P*. 

(3) The characteristic function of K provides an example of a fota/ uncomputable 
function. 

(4) In 2.1.2.14 we saw an example of how to remove "points of non definition" 
from a function so that it remains computable after it has been extended to a total 
function. Can we always do that? 

No. For example, the function / = Xx.(f)x(x) + 1 cannot be extended to a 
total computable function. Of course, by 2.3.0.8, f € V, since, for all x9 f(x) ~ 
d((/iy)T(a;, x, y)) + 1. Here is why: Suppose that g G 1Z extends / . Thus, g = fa 
for some i. Let us look at g(i): We have 

g{i) = &(*) 7̂  &M + 1 = / (0 8 4 

by 9 = (pi both sides defined def- o f f 

But since f(i) !, we also have g(i) = f(i) as g extends / , a contradiction. □ 

Once we have built a class of functions or predicates, we next look at their closure 
properties. 

2.5.0.18 Theorem. (Closure Properties of V*) V* is closed under V', A, (3y)<z, 
(By), and (Vy)<z. It is not closed under either -> or (Vy). 

Proof. Given semi-computable relations P(xn), Q(ym), and R(y,uk) of semi-
indices p, g, r, respectively. In each case we will express the relation we want to 
prove semi-computable as a strong projection (2.5.0.5): 

V 

P(xn) V Q(ym) = (3z)TW(p,xn,z) V (3z)T^(q,ym,z) 

= (3z)(TM(p,Sn,z)VTM(q,jJmiz)) 

A 

P(^n) A Q(ym) = {3z)T^(p,xn,z) A (3^)T(m)((/,ym,z) 

= (3w)((3z)<wT™(p, £ n , Z) A (3*)<«,r(m)(9, ym , *)) 

(3y)<zR(y,uk) = (3y)<z(3w)T^1\r,y,uk,w) 

= {3w){3y)<zT^l\r,y,uk,w) 

(3y) 

(3y)R(y,uk) = (3y)(3w)T^l\r,y,uk,w) 

= (3z) (3y) < 2 (3^)< , r^ + 1 ) ( r , y, i*, w) 

8 4We have used = rather than ~ throughout, since all expressions used in this display are defined. 
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(Vy)<* 

(Vy)<zR(y,uk) = (\/y)<z(3w)T^+1\r,y,uk,w) 

= (3t;)(V2/)<,(3«;)<ur(fc+1)(r, y, uk, w) 

As for possible closure under -i and Vy, X provides a counterexample to ->: 
K e V* (2.5.0.15) but ~K £ V* (2.5.0.16). Closure under Wy is also untenable 
as -iT(x,x,y) provides a counterexample: Being primitive recursive, it is in P*. 
However, (\/y)^T(x, x, y) is not, since this is -^(3y)T(x, x, y)—that is, x £ K. □ 

2.5.0.19 Remark. The case for V in the proof above is straightforward since 3 
distributes with V—(3x)(gf V SS) = (3x)g/ V (3x)@. 

However, it does not distribute with A, hence the complication in the A case. We 
want to say that P(xn) AQ(ym) is true precisely when two independent computations 
z\ and z2 exist for the machines (coded by) p and q, if the inputs are xn and ym, 
respectively. 

One way to say this is just as we did, by saying that there is a number w, bigger 
than both of z\ and z2—for example w = max(zi, z2) + 1 will do—and then use 
" (3z) < w " in each case. 

Pause. Why not forget about these acrobatics and just rest the case with the first 
line of the A case above?** 

But surely, because we want to express the left hand side as a formula of the 
form (3w)S(w,...)—in order to invoke 2.5.0.5—that is, a formula with a single 
existential quantifier up in front and with a recursive S [confirmed due to bounded 
quantifications, "(3z)<^", being employed]. 

An alternative way of saying "I have two computations z\ and z2" is to use coding: 

P(xn) AQ(ym) = (3z)(T<-n\p,xn,(z)0) AT^iq,^,^)) 

For the (3y)<z
 c a s e w e u s e d the commutativity betwee the two 3. 

Pause. But one is bounded! Can it commute with an unbounded one? (See 
Exercise 2.12.26H 

In the double-3 case we reduce the two quantifiers to one, as needed for a form 
(3w)S(w,...) with recursive S, by using a z > y,w (e.g., z = max(?/, w) + 1 will 
do). Alternatively, we can use z = [y,w] and thus say 

(3y)R(y,uk) = (3z)T^k+1\r,(z)0,uk,(z)i) 

Regarding the (Vy)<z case, commuting 3 and V is not on. 
Pause. Think of (\/x)(3y)x < y vs. (3y)(Vx)x <y.< 
Yet, we wanted to bring 

(Vy)<z(3w)T(k+1Hr,y,uk,w) (1) 

in the form (3w)S(w,...) with a recursive S. Thus, we argued (implicitly) as follows: 
(1) says that for every y = 0 , 1 , . . . , 2 — 1 there is a w-value—possibly dependent on 
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the y—that is, there is a sequence of numbers w$, w\,..., wz-\ that make the predi-
cate T(k+l\r,i,Uk,Wi) true. Ifwesetii = max{u>o,wi,... ,wz-i} + lthenwecan 
capture this observation by making the quantifier prefix of (1) "(3u)(\/y)<z(3w)<u". 
Incidentally, this expresses (1) in the form required: (3w)S(w,...) with a recursive 
S. This is precisely what we did in our proof above. 

An alternative technique, using coding, is often encountered in the literature: (1) 
is equivalent to 

(3«) (Seq(u) A (Vy)<zT(fe+1> (r, y, Sk, («)„)) 

which has the proper form. □ 

2.5.0.20 Proposition. If\x.f(x) e V and Q(z, y) e V*, then Q{f(x), y) e V*. 

Proof. By 1.2.0.10, 

Q(f(x),y) = (3z)(z = f(x)AQ(z,y)) 

By 2.5.0.7 and 2.5.0.18, the right hand side, and hence the left hand side, of = is 
semi-recursive. □ 

For a more direct proof, see Exercise 2.12.32. 

2.5.0.21 Example. This is our first example of a reduction argument, a trivial one. 
We introduce a generalization, KQ, of the halting set K, by 

K0 ={(x,y) : <t>x{y) 1} 

We show that the problem (x,y) G K0 is undecidable, that is, 

K0 i n* (i) 

Suppose that (1) is false. Then the characteristic function, Xxy.XK0 (xi y) °f Ko is in 
1Z. But then so is the function / = \X.\KQ (X, X) obtained from XK0 by identification 
of variables (cf. 2.1.2.6). However, / is the characteristic function of the halting set, 
and we just have shown that the halting problem is decidable! 

This contradiction shows that (1) is correct, after all. 
We have just witnessed an instance of an argument that went like this: If I have 

an algorithm that solves problem B,S5 then I know how to build another algorithm 
that uses the one for B and solves problem A 8 6 

That is, we reduced problem A to problem B (this makes A "more decidable" 
than B; and makes B "more undecidable" than A). 

This reduction shows that if we know that A is undecidable, then so must be B. 

'Here (x,y) G KQ. 
•Here x e K. 
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We will encounter many more reduction arguments in Section 2.7. □ 

2.5.0.22 Example. (A Very Hard Problem) The equivalence problem is: given two 
programs, decide if they compute the same function or not. 

A "program" here can be any finite way of describing a function. This finite way 
could be an actual program, such as a URM or a loop program. Or it could be a 
derivation (cf. 2.1.2.1 and Corollary 2.3.0.11), say, within VIZ or V, which defines a 
function. 

To fix ideas, let us focus attention on primitive recursive functions, finitely defined 
via loop programs. We ask: Is the problem of determining whether two such functions 
are equal decidable? 

Well, if it is, then in particular so will be the special case of determining whether 
Xy.l and \y.XT(z,z, y)—where T is the Kleene predicate—are the same function 
or not, for any given x. The reader may readily imagine—due to the primitive 
recursiveness of both functions—that they are given by loop programs. 

The question, mathematically, is (V?/)(l = XT(X, x,y)). In terms of T this says 
(V2/)-iT(x, x, y), or -i(3y)T(x, x, y). _ 

We recognize the last expression as x € K, which we know that is not semi-
computable (2.5.0.16), let alone recursive! 

Pause. Why "let alone"?-* 
Thus the equivalence problem of primitive recursive functions is incredibly hard: 

There is not even a verifier for it! □ 

2.5.0.23 Remark. (Computably Enumerable Sets) There is an interesting charac-
terization of non-empty semi-computable sets that is found in all introductions to 
the theory of computation. These sets are precisely those that can be "enumerated 
effectively" or "computably", that is, we can prove that 

A non-empty set S C N is semi-computable iff it is the range (cf. Defini-
tion 1.2.0.5) of some f £ VIZ. 

The enumeration is not required to be 1-1, so there may be repetitions. Notice that 
since the enumerating function is total, there will necessarily be repetitions in the 
case when S is finite. 

What is the intuition for this? Well, 

(1) Assume first that we have an algorithmic enumeration of all the members of S. 
Here is then how to verify (semi-decide) the question x € S: Given x9 start the 
algorithmic enumeration and keep an eye on what it "prints". If and when x is 
printed, then stop. We have verified x £ S. What if x £ SI Well, then it will 
never be printed by the enumeration and we will never stop our process. 

(2) Conversely, assume that we have a verifier, M (a URM), for x £ S. We write a 
new program N that behaves as follows: It systematically generates all pairs of 
numbers (#, y), one at a time. 
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For example, one can enumerate all numbers 

0 , 1 , 2 , 3 , . . . , * , . . . 

in turn, and, for each z generated, one can generate the pair ((z)o, (z)i)-
For each pair generated, TV checks whether M, on input x, halts within y 
computation steps*1 If so, x is printed (as it clearly belongs to S). 

Pause. Why make it so complicated and not instead enumerate all numbers x in 
turn, and if M halts on x, then print xl< 

The technique in (2) above is called dovetailing several computations (of M) 
for several inputs "at once". Well, strictly speaking, not "at once". The method 
implements, indeed sequentially simulates, a "poor person's parallelism", because, 
in essence, it simulates the in parallel examination of several questions of the type 
"does M halt on xT. 

The essential feature of parallelism is not the temporal simultaneity of testing the 
questions "does M halt on xT for various x, but rather the fact that if an input x = a 
causes M to run forever, this does not affect, nor block, the testing of other inputs for 
which M halts. A true parallel "environment" allocates one process to each input x. 
On the other hand, dovetailing captures this key property of parallelism and does so 
with a single computation process (or "single processor")! 

The simulation of parallelism is effected by allowing to each question gradually 
more and more time (number of steps) to reach an answer. Notice that since there are 
infinitely many pairs (a, y) with first component a, if M ever halts on a—say, using 
y — b computation steps—then this fact will be eventually verified in the process (2): 
It will happen precisely when we will be testing the pair (a, b). 

An intuitively more immediate rearrangement of the dovetailing process of (2), 
which demonstrates the sense in which dovetailing is approaching true parallelism 
"in the limit", is captured by the matrix below: 

0;1 
0,1; 2 
0,1,2; 3 
0,1,2,3; 4 

0,1,2,3,... ,i;i + l 

The number at the far right in each row is the number of steps that we let M run. 
The other numbers in each row are the inputs we test for said number of steps. In 
the "limit", it is as if we are testing all inputs "simultaneously": input 0 for one step; 
inputs 0 and 1 for two steps; inputs 0, 1 and 2 for three steps; . . . , inputs 0 , 1 , . . . , i 
for i -f 1 steps; and so on. □ 

87Think of a "step" as the passage from one ID to the next. 
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Mathematically, we repeat the above informal argument, (1) and (2), in 2.5.0.24 
below to prove the italicized statement at the beginning of the previous remark. 
Central in our preceding discussion was the concept of "step". But what is a step 
mathematically? We take as "step" to be the entire computation, coded as y in 
the Kleene predicate T(i, x,y). That is, for any fa, its step-counting or complexity 
function is 

$i = Xx.(fiy)T(i,x1y) (*) 

This is reasonable, since the computation y is a strictly increasing function of how 
many ID-to-ID "real steps" took place in the (terminating) computation. 

In fact, Blum (1967) takes as the key, indeed defining, properties of the concept 
of complexity of fa the following two: 

(I) fa(x) I iff $i(x) i; that is, the program i halts on input x iff a complexity of 
computation can be assigned for said input. 

(II) $i(x) < y is recursive; that is, we can decide whether machine i halts within 
y (i.e., in < y) "steps". 

Blum (1967) takes (I)—(II) as the axioms for complexity theory, that is, without 
specifying <I> explicitly. Many concrete choices of $ that satisfy the axioms are 
possible. By the way, for our chosen <I> in (*), (I) is trivially obtained directly 
from 2.3.0.8. As for (II), $i(x) < y = (3z)<yT(i,x,z) which is more than 
recursive: primitive recursive. 

On the other hand y < <f>i(x) = ^®i{y) < y\ also in VIZ*. 

It is important to observe that we bypass (I), above, when we assess 

< 
<bi{x) = y 

> 

We do not compute $i(x) (which may diverge!) to figure out the answer. 

2.5.0.24 Theorem. A non-empty set S C N is semi-computable iff it is the range of 
some f G VIZ. 

Proof. For the part (1), let / be primitive recursive such that ran(/) = S. That is, 

yeS = (3x)f(x) - y 

Given that/(x) = y is in VIZ* (2.1.2.25), y e 5 is semi-computable by the projection 
theorem (2.5.0.5). 

For the dovetailing part, (2) of 2.5.0.23, assume that the non-empty S is semi-
computable. Let i be a semi-index for S, thus, 

xeS = (3y)T{i,x,y) (*) 
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for all x. Following directly on the idea in (2), with the concept of "step" made 
mathematically precise in the preceding remarks, we define the enumerating function 
by: 

/ ( z ) f W o ifr(t ,(z)o,(*)i) 
I a otherwise 

where "a" is some fixed member of S that we keep outputting every time the condition 
"T(z, (2)0, (2)1)" foils*88 ensuring that / is total. Of course / is primitive recursive. 

Is it true that ran(/) = 5? 
Indeed, as ran(/) contains only numbers of the form (2)0 such that T(i, (2)0, (2)1) 

holds, it is immediate by (*) that ran(/) C S. Conversely, let x G S and let b be a 
value of y that makes (*) true. But then /([#, b)) = x, so x G ran(/). □ 

The above result justifies the following nomenclature: 

2.5.0.25 Definition. A set S C N is called computably enumerable (c.e.) or recur-
sively enumerable (r.e.) iff it is either empty, or is the range of a primitive recursive 
function. □ 

There is no loss of generality in presenting the above definition for subsets of N 
since via coding [...] it can be trivially and naturally extended to sets of n-tuples 
for n > 1. A set S C Nn is c.e. iff there is a primitive recursive / such that 
ran(/) = {[*]: £(£)}. 

2.5.0.26 Corollary. A non-empty set S C N is semi-recursive iff it is c.e. (r.e.) 

2.5.0.27 Corollary. A non-empty set S C N n is semi-recursive iff it is c.e. (r.e.) 

Proof. The if is straightforward, while the only if is a direct adaptation of the proof 
of 2.5.0.24: Let 

xneS=(3y)TW(i,xn,y) (**) 

for all x. The enumerator / is given by 

[(2)0, • • •, ( 4 - i l if T<»>(i, (z)0,..., (*)„_!, (*)„) 
otherwise 

where "an" is some fixed member of S. □ 

2.5.0.28 Corollary. A set S C Nn is semi-recursive iff it the range of an f G V. 

Proof. The only if is proved as above, where we just drop the "[an] otherwise". For 
the if suppose that 

yeS= (3x)f(x) = y 

88Condition failed: Either because we did not let the computation </>i(x) to go on long enough, or no 
terminating computation exists. 
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By 2.5.0.7 and 2.5.0.18, the above yields S G TV □ 

2.5.0.29 Example. (Another Very Hard Problem) The set 3t = {x : (px G K}— 
which trivially is the same as {x : (f>x is total}; cf. 2.1.1.2—is very important in 
computability. One certainly wants to know whether or not we can "tell" if a 
program x computes a total function. We can tell in one of two ways: We can fully 
(algorithmically) decide the question x G ^ , or we can just verify it when true. 
Which one is it here? 

Neither. 8% is not semi-recursive, hence nor is it recursive (2.5.0.11). In that sense 
this is another very hard—and very meaningful—problem of which we cannot even 
verify the positive instances. 

We prove the non semi-recursiveness by proving that Si is not c.e. using diagonal-
ization (cf. Subsection 2.2.2 and 1.3.0.50). So, by way of contradiction, let / G VTZ 
be such that 2% = ran(/). This means that {<t>f(x) : % G N} is the set of all total 
computable functions of one variable. Consider the function d = \x.</)f(x)(x) + 1. 

By the preceding remark, and composition with the successor function, d G 1Z. 
Thus, for some i, 

d = <t>f{i) (1) 

since 8$ is the set of all programs that compute total 1-argument functions, thus a 
program m for d must be an f(i). 

What do we know of 4>f(i) (i)? Well, 

<Pf(i)W = dW = 0/WW + 1 

A contradiction, since all sides of = are defined. So no such / exists, and 2% is 
not c.e. □ 

The above example concludes a discussion we have started in the JL-enclosed 
passage on p. 147. 

Quite apart from the empirical question of whether or not "Church's 
Thesis" is correct, we note that within the formalization ofV, in which 
the functions (f)z of 1Z have finite descriptions z G N, it is impossible 
to have an enumeration of all such descriptions via a recursive function 
of ft. 
So, at least, within the P-formalism we cannot diagonalize out of 1Z by 
an argument like the one given in 2.2.2. This observation will be proved 
mathematically without invoking any "beliefs". 

2.5.0.30 Exercise. (Definition by Positive Cases) Consider a set of mutually exclu-
sive relations Ri(x),i = 1 , . . . , n, that is, Ri{x) A Rj(x) is false for each x as long 
as i ^ j . 
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Then we can define a function / by positive cases Ri from given functions fj by 
the requirement (for all x) given below: 

m 
h(x) ifiJi(f) 
f2(x) ifR2(x) 

fn(x) ifRn(x) 
t otherwise 

Prove that if each fa is in V and each of the Ri{x) is in V*, then / eV. 
Hint Use 2.5.0.7 along with closure properties of P* relations to examine y = 

/(*)■ □ 
A semi-recursive predicate is "positive" having the form (3y)Q(y, x) for some re-
cursive Q (2.5.0.5). It is also known as a Ei predicate. 

It is important to note about the last case in the definition: 
(1) The otherwise condition, is the negation of & positive predicate, namely, of 

the semi-recursive Ri V • • • V Rn. A "negative" predicate such as this negation has 
the form (\ly)R{y, x), for some recursive i?, since it is the negation of one of the 
form (3y)Q(y, if), for some recursive Q. Such negative predicates are also called III 
predicates. 

(2) Note that the "output" in the last case is f. This, intuitively, is as much as is 
expected in general, given that, for example, the "otherwise" of some positive cases, 
such as x £ K, are not even semi-recursive so that the obvious "program" for the 
function / will enter into an infinite loop when pondering the condition "otherwise". 

This last observation is firmed up mathematically in Exercise 2.12.35 via two 
examples. 

2.6 THE ITERATION THEOREM OF KLEENE 

Suppose that i codes a URM program, M, that acts on input variables x and y 
to compute a function \xy.f(x,y). It is certainly trivial to modify program M 
to compute \x.f(x, a) instead. In computer programming terms, we replace an 
instruction such as "read y" by one that says "y <— a". 

In URM terms, since the input variables XI1, XI11,... are initialized before the 
computation starts, the way to implement the suggested "decommissioning" of y as 
an input variable—opting rather to initialize it with the number a explicitly, first thing 
during the computation—is to do the following, assuming x and y of f are mapped 
t o X l l a n d X l l l o f M : 

(1) Remove XI11 from the input variables list, XI1, XI11, and 
(2) Modify M into M' by adding the instruction XI11 <- a as the very first 

instruction. 

From the original code, i, a new code (depending on i and a) can be easily calculated. 
This is the intuition of Kleene's iteration or "S-m-n" theorem below. 
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The mathematical details are as follows. 

2.6.0.31 Definition. (Code Concatenation) 

Def -r-,- exp(i,y) i—, 
x * y = x - IU<ih(y)Pi+ih$ D 

2.6.0.32 Remark. Clearly, Xxy.x * y is primitive recursive. The definition's aim is 
to achieve this—which it clearly does: 

[a i , . . . ,an] * [&i,... ,6m] = [a i , . . . , a n , 6 i , . . . ,6m] 

If Seq(x) or Seq(y) fail, then the result of ^ * y is irrelevant to us. □ 

2.6.0.33 Exercise. What is 10 * 5? □ 

2.6.0.34Exercise. Whatis 1 * z? z * 1? □ 

2.6.0.35 Definition. (Concatenating URMs) Given two URMs M and TV of codes 
m and n. We denote their concatenation by MN and m ̂  n in terms of their codes. 
Note that MN means the superposition of the two URMs, in that order, with the 
stop-instruction removed from M and all the instructions of N adjusted to reflect 
that the first label of TV now is lh(m). 

We define m ^ n to be 0 if either of m or n is not a valid URM code. □ 

2.6.0.36 Lemma. Let adj(n, k) ("adjust n") be the expression that codes a URM n 
after k was added to all its instruction numbers (and all if-statements were adjusted 
to still transfer to the same instructions as before). Let also adj{n, k) =0ifn does 
not code a URM. Then the function \nk.adj{n1 k) is primitive recursive. 

Proof. First let us define a less ambitious function, / , that adjusts one instruction due 
to adding k to the instruction number: 

(3kz if(3L,i,a)<z(z — [1,L,i,a] V 

z=[2,L,i]V 

z= [3,L,z] V 

z = [5,L]) 

231kz if (3L, i, P, Q)<zz = [4, L, i, P, Q] 
10 otherwise 

Note that 231 = 3 • 7 • 11. Clearly, / e V7Z. Finally, 

adj(n,k) = ln^^anh'k)+1 iWRM^ 
0 otherwise 

f(z,k) 
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Clearly, adj is primitive recursive. □ 

2.6.0.37 Lemma. Xmn.m ^ n is primitive recursive. 

Proof. 

m ^ n 
m sMiHm^m) I * < * > lh(™) " !) i f URM(m) A CTi2M(n) 

Plh(m)-1 

0 otherwise 

The left hand operand of * above represents the removal of the stop-instruction of 
the URM m prior to concatenation. It is immediate from the above and the preceding 
lemma that Xmn.m ^ n is primitive recursive. □ 

2.6.0.38 Theorem. (Kleene's Iteration or "S-m-n" Theorem) For each m > 1 and 
n > 1, there is a primitive recursive function Aiyn.5^(i,yn) such that, for all 

6{m+n)(x v ) - 6{rn) (x ) 

Proof The construction of S™ is guided by the introductory remarks of this section: 
If i codes a URM M such that 

M^-xirn+n+1 = < ^ + r i ) (1) 

then we remove the n variables X l m + 2 , . . . , X l m + n + 1 from the designated input-
variable list and add the instructions below at the top of program M. 

To avail ourselves of the tools we have developed in this section, we implement the 
above plan by concatenating the following URM, JV, to the left of M. Note that N 
is not normalized, but NM is, since M is. 

1 : X l m + 2 <- j/i 

: (AT) 
n : X l m + n + 1 <- 2/n 
n + 1 : s top 

The code for TV is a function of yn (recall that m,n are constants) which we will 
name init(yn). Referring to 2.3.0.2, 

init(yn) = p[l.l,m+2,Vl] + lp[l,2,m+3,W] + l . . . plhn,m+n+l,yn] + lpls,n+l] + l ( 2 ) 

It is immediate that Xyn.init(yn) is primitive recursive. Thus, S™, given below for 
all i, yn, is too by Lemma 2.6.0.37. 

S™(i, yn) = init(yn) ^ i (3) 
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It is important to note that (by 2.6.0.37) if i fails the URM{i) "test", then so does 
S™(i,yn) (indeed, equals 0; cf. 2.6.0.37) and thus both sides of (1) are (Kleene-) 
completely equal (the empty function is undefined on all inputs). □ 

2.6.0.39 Remark. (1) It is important to note by inspecting (2) and (3) in the proof 
above that if URM(i) holds, then S™ is strictly increasing with respect to each yi 
variable. Of course, if URM(i) fails, then S™ returns 0 no matter what the inputs 
yt may be. 

(2) A note on notation: In S™ the upper index, ra, is a mnemonic tool for how many 
variables stayed "up" (in the </> argument), while the lower index, n, indicates how 
many variables were moved "down", to be hardwired into the "program" S™(i, yn) 
as it were. 

These considerations led to the nickname of the iteration theorem as the "S-m-n 
theorem". 

(3) In practice, the S-m-n theorem is applied as follows: If Axkyzr.f(xk, y, zr) G 
V, then there is a 1-1 h G VIZ, such that, for all x*k, V, zr, we have 

f(xk,y,zr) ~ </>§y)\xk,zr) 

By the assumption on / and 2.3.0.12, there is an i G N, such that f(xk, y, zr) ~ 
^/e+r+i ^ ? zr,y). Note the permutation of variables, where y was moved to the end 
of the argument list of 0^ + r + 1 , to align with requirements of the S-m-n theorem. 
Can we do this? Yes, since we may chose the URM i such that we have mapped the 
variables Xk, y, zr of / to the "formal" variables X l l , . . . Xlk+r+2 so that y's role 
is played by Xlfe+r+2. 

Pause. Is this the same as saying "use 2.1.2.6(iii) to permute variables so that y is 
last"?* 

We take h = Xy.Si+r(i,y). Note that the italicized part, "a 1-1", above is a 
weakening of the observation (1) above. □ 

2.7 DIAGONALIZATION REVISITED; UNSOLVABILITY VIA 
REDUCTIONS 

This section further develops the theory of computability and wracomputability by 
developing tools—in particular, reducibility—that are more sophisticated than the 
ones we encountered so far in this volume, toward discovering undecidable and non 
c.e. problems. We also demonstrate explicitly that diagonalization is at play in a 
number of interesting examples. 

As we mentioned in the Preface and elsewhere already, the aim of computability 
is to "formalize" the concept of "algorithm" and then proceed to classify problems 
as decidable vs. undecidable and verifiable vs. unverifiable. 

We continue taking—by definition—the term "algorithm" to mean URM program, 
and computable (partial) function to mean a URM-computable function, or equiva-
lent^, one that has a P-derivation (cf. 2.3.0.11). Thus proving that such and such 
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a problem x e A does not have an "algorithmic solution", or is not even verifi-
able, becomes mathematically precise: We need to show that A £ ft* or A £ ft*, 
respectively. 

Church has gone a step further, and observing that all known formalisms of 
the concept of algorithm were proved to be equivalent (each produced the same 
computable functions), formulated 

Church's Thesis. Any partial function that can be informally demonstrated to 
be computable by some algorithm, can be mathematically demonstrated to be 
programmable in any one of the known formalisms (such as Turing machines, 
Markov algorithms, Post systems, URMs89). 

Of course, this "thesis" is a belief based on empirical evidence, not a metatheorem. 
The difficulty (toward theoremhood) lies in the fact that in order to, say, demonstrate 
mathematically that the concepts of "algorithm" and URM coincide, we must already 
have a mathematical formulation of algorithm). 

This is why we said above that we take by definition that algorithm means URM. We 
cannot do better than being arbitrary like this. We already mentioned that while the 
"Thesis" is widely adopted—indeed, some advanced books such as Rogers (1967) 
use it to shorten proofs that such and such a function is computable—the adoption is 
not universal; cf. Kalmar (1957). 

This volume will not take the shortcut of relying on Church's Thesis. Whenever 
we want to prove that / is computable we will do so mathematically, invariably 
using 2.3.0.11 and closure properties of ft. Nevertheless, we will often also offer an 
intuitive argument that establishes the desired computability. 

2.7.1 More Diagonalization 

We begin the development of the theory by revisiting the proof (2.5.0.16 and 2.5.0.17) 
of the undecidability of the halting problem. 

2.7.1.1 Theorem. (The Undecidability of the Halting Problem; Again) K £ ft*. 

Proof. We will argue by contradiction, so we assume that K £ ft*, that is, the 
relation <j>x(x) I is recursive. We view a one-argument function / as a sequence of 
values, 

/ ( 0 ) , / ( l ) , . . . 

where (informally), if f(x) t , then we take the symbol "t" as the yielded value. 

89 Actually, the URM formalism postdates the formulation of Church's Thesis but is demonstrably equiv-
alent to all the others. 
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On this understanding we form the infinite matrix below, of which the i-th row 
represents < ,̂ for all i. 

MO) 0o(l) 0o(2) . . . 
0i (0) 0 i ( l ) 0i (2) . . . 

&(0) &(1) <f>i{2) . . . 

We proceed as in 1.3.0.53 to utilize the main diagonal 

0o(O) ,0 i ( l ) , . . . ,0 i ( i ) , . . . 

and build a function that cannot be a row of the above matrix. We simply change 
each entry that is t to | , and vice versa: 

h if</>*(*) t 

The above captures the idea, but it is not a well-defined function since we have 
not said what the output of d is when it is defined. We resolve this "uncertainty" 
arbitrarily as follows: 

(42 i f ^ ) T 
V ' \ t if^(*H 

Indeed, d does not match any row above, as it differs from each row in the spot where 
it intersects the diagonal. Why do we care? Well, since V is closed under definition 
by cases (Exercise 2.12.28), and since by assumption both 4>x(x) I and 4>x(x) t are 
recursive, 

Pause. Why "both"?<« 
it follows that d e V, i.e., d — ^i for some %—i.e., d must be some row in the above 
matrix. We have a contradiction. □ 

An intuitive reason as to why the function d as defined in (1) is computable, is 
presented here by outlining a pseudo algorithm for the computation of d(x): Let M 
be a URM that decides the predicate (f)x (x) | . Given input x, run M on x. If it says 
"no", then print 42 and halt; if it says "yes", then get into a deliberate infinite loop 
(cf. 2.5.0.12). 

Worth repeating. We chose d so that at input x it differs from <f>x(x), and thus it 
differs from (f>x; full stop. We have cancelled x as a possible 0-index of d (cf. 1.3.0.51). 

Given that we have done this for all x, we have cancelled all possible ^-indices 
of d. Thus d is not computable. Since our assumption about (f)x(x) I also forced d 
to be computable, we managed to reject said assumption as it forced a contradiction. 

A version of unbounded search is the following: 
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2.7.1.2 Definition. (Alternate Unbounded Search Operator) For any total func-
tion \yx.g(y, x) the expression (Jly)g(y, x) stands for 

{min{y : g(y, x) — 0} if the minimum exists 
t otherwise 

D 

It is immediate that (fiy) (2.1.1.18) and (fly) coincide on total functions since—in 
g(y, x) = 0 A (\/z)<y(g(z, x) \)—the subformula (\/z)<y(g(z, x) \) is true for such 
g and therefore its presence or absence in the formula is immaterial. 

2.7.1.3 Definition. We say that a class of number-theoretic functions C is closed 
under (Jly) just in case for every total g in the class, \x.(Jly)g(y, x)—which may 
fail to be total—is in the class. □ 

2.7.1.4 Theorem. V is closed under (Jly). 

Proof. By the preceding JL-remark, if g e 1Z, then, for all x, (J!y)g(y,x) ~ 
(py)g(y, x), thus \x.(py)g(y, x) e V. □ 

2.7.1.5 Corollary. In 2.3.0.11 we may replace \x by Jl. 

Proof. We reuse the proof of 2.3.0.11 by simply replacing V by V = C1(X, {com-
position, primitive recursion, Jl}), throughout. In the forward part we use 2.7.1.4. In 
the part of said proof that begins by "Conversely", we replace /J, by Jl. □ 
Immediately after the proof of 2.3.0.11 we noted 

The preceding corollary provides an alternative formalism—that is, a syntactic, 
finite description other than via URM programs . . . 

We cannot say the same here. The requirement that (Jly) apply on total functions 
makes it a semantic rather than a syntactic operator: As we have seen, the problem 
of whether 0Jn + Ms in 1Z or not is undecidable, indeed not even c.e. 

Thus, given i we cannot know whether writing (Jly)(f)^n+1^ (y, xn) makes sense or 
not: For we cannot decide, as Definition 2.7.1.2 requires, whether </^n+ ' is total. 

Pause. Hmm. Why can't we stop worrying about totalness and just allow— 
in defiance of Definition 2.7.1.2—(Jly) to apply to all partial functions, including 
nontotal ones?^ 

Well, a first approximation objection to the suggestion of defiance is that while 
(py)g(y, x) is correctly computed by the pseudo program below (cf. 2.1.1.17) 

while 
^g(y,x) - 0 
y ^y + 1 

end 
the same program does not compute (Jly)g(y,x). 
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For the sake of argument, say, for a given a, we have g(0, a) t , but g(l, a) = 0. 
If so, the above pseudo program correctly computes (py)g(y, a) since the defini-

tion requires —for convergence—that (Vz < l)g(z, a) | . 
This is not the case for (py)g(y,a), which ought to return min{y : g(y,a) = 

0} = 1 (overlooking the nontotal-ness of g) but the program above loops forever, 
since the call to #(0, a) does. 

But wait! What if there is a really clever alternative program that computes 
correctly min{y : g(y, a) — 0}, for any computable g, total or noft 

How can we establish that such a program does not exist (assuming we believe 
that it does not)? By producing a partial recursive, nontotal, \xy.i/j(x, y), for which 
\x.(/ly)ip(x,y) £ VI 

2.7.1.6 Theorem. There is a nontotal \xy.ip(x, y) G V such that Ax.{Jxy)ip(x, y) fi 
V. 

Proof The proof just firms up the "what if" discussion above that cast some initial 
doubt on the appropriateness of applying {Jiy) to nontotal functions. So let us define 
^ b y 

I t otherwise 

Given that the predicate (j)x{x) I is semi-recursive (2.5.0.15), closure properties of 
P* (2.5.0.18) establish the top condition in the definition of ip as semi-recursive. By 
definition by positive cases we have that ^ G P . 

Let us evaluate 
Jiy)^{x,y) (1) 

There are just two possible output values: The search returns 0 if <j)x(x) I, while it 
returns 1 if </>x(x) t- Thus \x.(jiy)ip(x, y) is XK and therefore is not in V). D 

Incidentally, note that \K, being a characteristic function, it is total, even though 
I/J is not. 

2.7.1.7 Proposition. The problem which requires us to determine for a given URM 
program i and input x whether a predetermined output y is attained is undecidable. 

We opted to say the above in English, in the first instance. Mathematically we are 
saying that \ix.(/>i(x) = y is not in 1Z*. 
Proof If the stated predicate is in 1Z* then so is \x.(j)x (x) = y by closure properties. 
We will use a straightforward diagonalization to see that the latter cannot be. 

0o (0) </>o(l) 0o(2) . . . 
0i (0) 0 i ( l ) 0i (2) . . . 

0,(0) 0,(1) 0,(2) 
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Define the new diagonal so that it differs from the one above at every place. 

d{x) = ly + 1 iiM*) = v 
\y otherwise 

Thus, d is not a row above. On the other hand, since we assumed that \x.<frx(x) = y 
is recursive, we have that d G 1Z (it is total) hence d = <j>i for some i and hence must 
be a row. A contradiction. □ 

2.7.1.8 Corollary. \ixy.(/)i(x) = y is not in 1Z*. 

Proof. Otherwise we would contradict the preceding proposition [2.1.2.6(H)]. □ 
The next result, also based on a variant of diagonalization, has a computational 

complexity flavor: There are arbitrarily hard-to-compute recursive functions! Recall 
our concept of complexity of computable functions, $, introduced in the context of 
the dovetailing technique on p. 169. 

2.7.1.9 Theorem. For any a priori chosen recursive function \x.g(x), we can con-
struct an f £1Z such that, for any i,iff = <fiif then g(x) < $i(x)for all x > i. 

Thus, we have a priori arbitrarily chosen a level of computational "difficulty", g. 
We may choose a horrendously "big" g [e.g., Ax(x), where A is the Ackermann 
function of Section 2.4]. Then we show how to find a function / , which no matter 
how we program it (via a URM i), such a program will take more than g(x) "steps" 
to terminate on almost all inputs x, indeed on all x > i. 

Proof We want to build an / that for i < x cannot be computed within < g{x) steps. 
Thus, we need to meet two requirements: 
(1) Ensure that the / we build is recursive. 
(2) Ensure that all (^-indices i that satisfy 

are cancelled. 
Let us thus set 

i < x and <&i(x) < g(x) 

Def 
I(x) — {i : i < x A $i(x) < g(x)} 

Given that &i(x) < y is recursive (cf. p. 169), so is &i(x) < g(x) since g G 1Z, and 
thus we have that Mx.i e I(x) is recursive. So is the predicate I(x) ^ 0, being 
equivalent to (\/i)<x-i$i(x) < g(x). We define / , for all x, as follows: 

/ ( a ; ) = / 1 + £i6/(x)fc(*) if/(*)^0 ( 3 ) 
1 1 otherwise 

It is clear that / G V from Exercise 2.12.28, but we need to work a bit more to show 
it is total, before we show that it has property (2) above. Let us define, for all i, x, 
the function h: 

Def 
h(i, x)=ifie I(x) then (j>i(x) else 1 
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By 2.1.2.9 and the earlier remark on i G I(x) we have that h G V. Since whenever 
i G I(x) holds we have <f>i(x) I (why?), it follows that h elZ. Thus the totalness of 
/ is established as soon as we rewrite (3) as 

1 1 otherwise 

We finally turn to establish property (2) for / . Let then / = (j)k for some k (as it 
must since it is recursive) and pick any x > k. Can it be that $&(#) < g(x)l 

No, for otherwise k G I(x) holds and therefore f(x) = 1 + . . . + (j>k(x) + . . . > 
(j>k{x). A contradiction. D 

The reader will note that the claim that we "can construct" an / with the stated 
properties is apt. 

2.7.1.10 Corollary. There is no Xx.g(x) G 1Z such that every recursive <pi is ex-
pressed as <t>i = \x.d((ti,y)<g(x)T(i,x,y)). 

Proof. See Exercise 2.12.41. □ 

The corollary says that there is no upper bound on the complexities of the recursive 
functions. 

It is noteworthy that there are arbitrarily hard to compute 0-1 valued recursive 
functions, that is, arbitrarily hard to compute recursive predicates. The following and 
its proof is due to Blum (1967). 

2.7.1.11 Theorem. For any a priori chosen recursive function \x.g(x), we can 
construct 0-1 valued f e1Z such that, for any i, iff = 4>i, then g{x) < $i(x) a.e. 

Proof. With a 0-1 valued function we have to employ a more tricky index cancellation 
process, following Blum (1967). Adding all the <\>i —for the i we want to cancel—and 
then adding 1 on top of that will not work. We define instead as follows: 

/(*) = { 
1 — (j>k (x) if k is the smallest uncancelled i in I(x); 

now cancel the k that was employed above; (1) 
l90 if no uncancelled i exists in I(x) 

Let us leave for last the rather dull verification that (1) can be made mathematically 
precise toward showing that / G 1Z. That / is 0-1 valued is obvious. 

For now, we view the description in (1) as a reasonably complete guideline on 
how to "program" / and embark on proving its claimed complexity. 

Let then / = </>r, for some r, and let us argue by contradiction. 

Since / = </>r, the 0-index r is never cancelled. (2) 

90Could have used output 0; either is fine. 
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If the claim is false, then there is an infinite sequence of inputs above r, 

r < xi < x2 < x3 < . . . < xm < . . . < 

on which the complexity of (j)r is < g(xi), for each xc i = 1,2, 
Now, input Xi,for each i, satisfies r < X{ and, by assumption, also &r{xi) < 
g(xi). Moreover, r is uncancelled—that is, there are available indices to 
cancel in I{xi); cf. (1). So we cancel some j < r (why j < r?) at this step, 
and set f(xi) = 1 — 4>j(xi). 
From the above follows that we will have an infinite sequence of indices, ji, that 

we will cancel, one for each xf. 

Ji 
t 

due to xi 

< 
t 

due to X2 

< 33 

t 
due to £3 

< . . . < r 

The inequalities are clear: Since r cannot be cancelled, it must be ji < r, and indeed 
j i is the smallest available. For x2, index j \ is already cancelled, so the next larger 
uncancelled index, j 2 , is cancelled. Always, it must be that the indices we cancel are 
below r, as the latter is never cancelled. 

This leads us to the absurdity that we have an infinite ascending sequence of 
integers between j i and r. We conclude that $r (x) > g(x) a.e. as claimed. 

But why is / recursive? We build / together with Xx.c(x), the latter a function 
that stores, via prime power coding, the cancelled indices i < x, after f(x) has been 
defined. We start with c, but first we recall the notation x G z from 2.4.4.1. The 
function c is given by a primitive recursion. 

fc(0) 
uncancelled 

I 
G c(x + l) =c(x)*\if(3y)<x(yeI(x)A-*y G c(x)) 

then (fiy)<x (y G I(x) A ̂ y G c(x)) else 1 

Xyx.y G I(x) being in 7£*, we conclude that c e1Z. We return to / : 

/(*) = 
1 - <\>, , ( T, x , A(X) tf(By)<x(y€l(x)A-iyec(x)) 

if ->(3y)<x (y G I(x) A^ye c(x)) 

Since \xy.(j)x(y) G V and by Exercise 2.12.28, / G V. It is also defined on any x 
since the index of 4> is in I(x). □ 

The above theorem establishes the existence of arbitrarily hard to compute recursive 
predicates. Does this mean that there are recursive predicates that are not in V1Z*! 
Yes (cf. Exercise 5.3.32). 
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2.7.2 Reducibility via the S-m-n Theorem 

We now turn to the development of the technique of reductions, using the S-m-n 
theorem. 

2.7.2.1 Definition. (Strong Reducibility) We say that the set A (subset of N) is 
strongly reducible to set B, in symbols A <m B, iff there is a recursive function 
/ such that for all x, we have x G A iff f(x) G B. We say that / effects the 
reducibility. □ 

2.7.2.2 Remark. Several remarks are in order: 

(1) The m in the reducibility symbol reflects the fact that / is not required to be 1-1. 
So, strong reducibility, by default, is a many-one reducibility or m-reducibility. 
We also have 1-1 reducibility or 1-reducibility. This is when / i s 1-1. 

(2) The condition x G A iff f{x) G B says that if we know how to decide z G B and 
also know how to compute f(x) for all x, then we know how to decide x G A 
Thus, the symbol < m is apt: Intuitively A is "more solvable" than B since we 
can decide it if we can decide B. Conversely, B is more unsolvable than A. 
We express this technically in the proposition below. 

(3) By definition, A <m B iff A = {x : f(x) G B}. That is, iff A = /<-(£). □ 

2.7.2.3 Proposition. Suppose that A < m B. Then 

(1) A is recursive ifB is. Contrapositively, B £ 1Z* if A £ 7Z*. 

(2) A is semi-computable if B is. Contrapositively, B is not c.e. if A is not c.e. 

Proof 

(1) If z G B is recursive, then so is f(x)eB by the assumption on / and by 2.1.2.24. 

(2) If z G B is semi-recursive, then so is f(x) e B by the assumption on / and 
by 2.5.0.20. □ 

2.7.2.4 Definition. (Complete Index Sets) Given a subset C C ? , w e call {x : <j>x G 
C} SL complete index set (defined by C). □ 

2.7.2.5 Remark. That is, a complete index set A = {x : 4>x G C} is the set of all 
(codes of) URM programs that compute the functions of some given subset C of V. 
Indeed say / G C. As this is computable, take any program i for / , that is, f = fa. 
Now (pi E C yields i e Aby the definition of A. □ 

This subsection deals with the undecidability of membership in several complete 
index sets. Indeed, "several" is an understatement. We will conclude with the rather 
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surprising Theorem of Rice, according to which the only decidable such problems 
involve the two trivial cases: C = 0 or C = V. 

JL 2.7.2.6 Remark. (The General Technique) The technique in general outline goes 
like this: We want to show that some A given as {x : (j>x G C}, for some C C V, is 
not recursive. 

Equipped with 2.7.2.3 we attempt to show either K < m A or K <m A— 
whichever is easier. The latter, of course, yields more information (a stronger result): 
that A is not c.e. 

To this end, we need to demonstrate that there is an h G 1Z that effects one of 
K <m Aor~K <m A. 

To execute this plan, we utilize the S-m-n theorem so that we come up with a 
primitive recursive h such that 

Case of K <m A: 
J some specific / G C if <j>x (x) I 
I some specific g £ C if (j)x (x) t 

Thus, h(x) G A iff the top case holds, iff x G K—that is, <j>x(x) | . For short, 
K <m A via h. 

Case of K <m A: 
J some specific / G C if (j)x (x) t 
I some specific g £ C if (f)x (x) 4-

Thus, h(x) G A iff the top case holds, iff x G K—that is, <j)x{x) t- For short, 
~K <m A via h. D 

The following theorem is important both in content and in regards to the technique 
employed for its proof. 

2.7.2.7 Theorem. The following sets are not recursive. 

(1) A — {x : (j)x is a constant function} 

(2) B = {x : (f)x is total} = {x : (j)x G 71} 

(3) C = {(x,y) :yevm((f)x)} 

(4) D = {(x,y,z):z = <l>x(y)} 

(5) E = {x : dom((^) = 0} 

(6) F = {x : dom((/>rE) is finite} 

(7) G = {x : dom((f)x) is infinite} 

(8) ff = {x : r an (^ ) = 0} 

(9) I — {x : ran(0x) is finite} 
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(10) J = {x : ran((ftx) is infinite} 
Proof. 
(1) A = {x : (f)x is a constant function}. 

We will be more expansive in just this first case. Following 2.7.2.6, we want to 
find an h G 1Z such that 

J some specific constant function if </)x(x) I 
4>h(x) — \ (t) 

I some specific non constant function if <f)x(x) t 

Well, the simplest solution is probably this: Define, for all x and y 
Jo if</>x(x)l mx,y) c± < / x (*) 

We see first at the intuitive level that xjj is computable: Given x, y. We ignore y. 
Next, we fetch the URM M of code x and call it on input x. If it ever halts, then 
we print "0" and halt everything. If M never halts, then our process will never 
return from the call, which is the correct behavior for ip(x, y)—bottom case. 
Intuitively, we cannot expect to yield some output in the bottom case, since, at 
least in the process described above, the call to M for input x will never halt to 
give us an opportunity to print anything. 

Pause. Do you have a mathematical reason as to why defining ip so that, say, it 
yields 42 in the bottom case renders ip non computable (i.e., not in V)l< 

JL Mathematically, ip G V via definition by positive cases (2.5.0.30). Of course, 
"<l>x(%) t " is n o t a positive case, being non c.e. However, reference back 
to 2.5.0.30 shows that the last (bottom) case is the "otherwise" case. 

By the S-m-n theorem, there is an h G VIZ such that, for all x and y, 

This can be rewritten as (note the change from ~ to =) 

4>HM = lXy-° ifMx)i (***) 

where 0 is the empty function—clearly not a constant function! We have achieved 
the setup (f) and we conclude by directly invoking 2.7.2.6. 

(2) B = {x : (j)x is total} = {x : <j>x G 7£}. 
Note that (* * *) can be recast as 

J a specific total / if (f)x (x) I 
0/i(x) = S 

l a specific nontotal g if (j)x{x) t 

Thus, K < m B and therefore B £ K* as in 2.7.2.6. 
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JL This result says less than what we already proved in 2.5.0.29, however, it is 
important to see this alternative technique even if (seemingly) achieves less. 
Seemingly. We will refine the technique in the next theorem, to redidcover the 
non semi-recursiveness of B. 

(3) C = {(x,y) :yevm((t)x)}. 
We have seen this example, and the next, already in Subsection 2.7.1. Let us use 
the present technique. If C is recursive, then so is Co = {x : 0 G ran(</>h(x))} 
(by 2.1.2.6)—where ft is the same as above. 
But 0 G ran(</>h(x)) can happen iff we are in the top case of (* * *), which is in 
the case x G K. Thus K <m Co via ft. 

(4) D = {(x,y,z):z = <l>x{y)}-
If D is recursive, then so is D0 = {x : 0 = <t>h{x) (0)}- The latter is equivalent to 
x G K as above and we conclude exactly as in the case of C above: K <m D0. 

(5) E = {x : dom(^) = 0}. 
We can still mine diverse unsolvability results from the very same setup (* * *) 
above. We rewrite this as 

_ J a g with a non-empty domain if </>x(x) I 
1 an / with an empty domain if (j)x (x) t 

Thus, as in 2.7.2.6, h(x) G E iff we are in the bottom case; iff x G K. That is, 
K <m E via h. We have proved more than what we were asked to: E is not 
even semi-recursive, let alone decidable. 

(6) F — {x : dom((j)x) is finite}. 
We rewrite (* * *) as 

_ J a g with an infinite domain if <f>x (x) I 
1 an / with a finite domain if <\>x (x) t 

Thus, h(x) G F iff we are in the bottom case; iff x G K. That is K <m F via ft. 
Once again we have proved more than we were asked to: F is not semi-recursive. 

(7) G = {x : dom((f)x) is infinite}. 
Yet again, we rely on (* * *). Indeed, see the argument for F above. We have 
that h(x) G G iff we are in the top case; iff x G K. That is, K <m G via ft and 
thus G is not recursive. 

(8) H = {x : ran(0x) = 0}. 
One last time we mine (***), rewriting it as 

J a g with a non-empty range if (j)x (x) I 
} an / with an empty range if <\>x (x) t 
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Thus, h{x) G H iff we are in the bottom case; iff x G K. Thus K <m H and H 
is not semi-recursive. 

(9) I = {x : mn((f)x) is finite}. 

This case needs a fresh start, since neither Xy.O nor 0 have an infinite range, 
as needed for the "dichotomy" infinite vs. finite (range), toward applying the 
technique of 2.7.2.6. So, we define a new function, for all x and y, by 

\j otherwise 

X is computable. Intuitively, given x and y we decode x to get the URM M that 
it codes. We then call M on input x. If it ever halts, we print y and halt all; 
otherwise we keep going. 

Mathematically, \ *s defined by positive cases, since <j>x(x) I is c.e. Thus it is 
in V. The S-m-n theorem allows the existence of a k G 71, such that, for all x 
and?/, 

w*/)-iy itM"n 
Vk(x)\V) ^ o t h e r w i s e 

Put more conveniently, with no reference to inputs, 

4>H*) = lnV'y ifMXU (t) 
10 otherwise 

Note that k(x) £ J iff we are in the bottom case of (J); iff x £ K. Thus K < m / 
via k, rendering / non c.e., which says more than what we set out to prove. 

(10) J = {x : rm((f)x) is infinite}. 

We reuse (J). Here k(x) G J iff we are in the top case of (J); iff x G K. Thus 
K <m J via fc, rendering x G J undecidable. □ 

Worth stating. Since the h and k utilized above are S-m-n functions, they are 
1-1 (cf. 2.6.0.39). Therefore all reducibilities that we have effected above are 1-
reducibilities, < i . 

2.7.2.8 Theorem. None of the sets in 2.7.2.7 are semi-recursive, except C and D. 

Proof. D is semi-recursive by 2.5.0.7. As for C, we see that y G ran(^x) = 
(3z)(f>x(z) = y. Its semi-recursiveness follows from 2.5.0.7 via 2.5.0.18. 

We now turn to those sets listed in 2.7.2.7, which we have not already proved to 
be non c.e. in the proof of said theorem. 

(1) A = {x : 4>x is a constant function}. 
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The obvious approach, that is, badly imitating 2.7.2.6 and modifying (*) to read 

n ,y) \ t if^(*H 
will not work. The intuitive reason is that if we try to compute this new ip in 
the obvious way, given x and y we will ignore y, and will decode x to obtain 
the machine it denotes, M. We will run M on input x and will output and stop 
everything precisely if M is in an infinite loop, which is precisely if 4>x (x) t-
Otherwise (4>x{x) I) we will ensure that the overall computation never halts by 
a technique we have already employed (in 2.5.0.12). 
The catch is that this "obvious" way is doomed, for our program—indeed, no 
program—can test, or even just verify that cf>x (x) t-

The definitive reason that this ip is not computable is this: If it were, 
then so would be \x.ip(x,x). But the domain of the latter is K. 
Impossible, because this set is not the domain of any partial recursive 
function. 

Pause. Why "definitive"? Isn't the intuitive reason (of the uncomputability of 
I/J) enough?^ 

No. The intuition only warns and guides; it does not prove. After all, the 
suggested "program that did not work" was just one suggested, and "obvious", 
program to compute ^ . 
Why can it not be the case that a future programmer might come up with a really 
clever and non obvious URM that computes ip7 
Precisely because we got the definitive answer mathematically: There can be no 
such a URM, now or ever; it does not exist. 
OK, here is how to do it right: We want to build a partial recursive ^ such that 

I not a constant result if <px (x) I 

In view of the above remarks, we cannot use the condition "</>x(x) t " outright as 
the top condition, so we will approximate it with "4>x(x) does not converge in 
< y steps". 
Note that for a "large" (number of steps) y, the casual (and impatient) observer 
will consider a computation for 4>x(x), which is still going, as divergent. 
So we finally define 

I 0 if 6X (x) does not converge in < y steps 
I t if(f)x(x)l 
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This ip is computable! Let us see why, intuitively at first. We program as follows: 
Given inputs x and y. We call the URM M, coded by x, on input x. If M has 
not stopped after y steps of its computation, then we print 0 and stop everything. 
In the contrary case—that is, the call to M with input x stopped within < y 
steps—we deliberately enter an infinite loop as in 2.5.0.12. 
Mathematically, (i) can be rewritten as 

[0(2/) if$x(x)<y 

where Z = Xy.O. Since the conditions are recursive (cf. p. 169), we have, by 
Exercise 2.12.28, that ^ G V?x 

By the S-m-n theorem, we have a primitive recursive a such that, for all x and y, 

[0(2/) if$x(x) <y 

Let us now consider the two cases below: 
Case 1: <j>x(x) t- Then -i$x(x) < y is true; for this x and all y, the top case 
applies. That is: 

<t>a(x) = Ay.O (iv) 

Case 2: <j>x(x) | . Let yo be smallest such that $>x(x) < 2/0• That is 

For y = 0 , 1 , . . . , y0 - 1, we have ~^^x(x) < y 

In this case 
yo zeros 

&,(*) = (0 ,0 , . . . , 0) (v) 

where in (v) we have denoted the finite function 

f(y) = if x = 0Vx = l\/ ---\/x = 2 /0 - I then 0 else 0(y) 

as the finite sequence of its outputs. Of course, / G V. 
We summarize what cases 1 and 2 say in (iv) and (v): 

1><T(X) — < 

Xy.O ifc/)x(x)"t 
(0,0,...,0) i f ^ H (t) 

yo zeros 

Given that the function in the bottom case is not a constant function, we imme-
diately have a(x) G A iff x G K, or if < m 4̂ as needed. 

One is normally less pedantic and rather than explicit function calls Z(y) and 0(y) writes 0 and t 
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(2) B = {x : (j)x is total} = {x : </>x G 11}. 
We may reuse (f) immediately above, since the top case is total while the bottom 
case is nontotal. Thus, a(x) G B iff x G K, or K <m B as needed. 

(3) G = {x : dom(0x) is infinite}. 
We may reuse (f) since the top case has infinite domain while the bottom case 
has finite domain. Thus, a(x) G G iff x G K, or K < m G as needed. 

(4) J = {x : ran(<^) is infinite}. 
We cannot reuse (f) here as both the top and bottom cases have finite ranges. We 
work entirely analogously to (ii) above, and define, for all x, y, 

.y if-$*(ar)<y 
X{X,y)-S9(y) i£*x(x)<y 

As x is defined from partial recursive functions by recursive cases, it is in V. By 
S-m-n we have a primitive recursive r such that, for all x, y, 

, , x \y if--*x(a;) <y 

A similar analysis as above shows readily that 
If </>x(x) t , then 0T(a.) = Aj/.y, while if ^(a:) | , then 

0T(X) = (0,1,...,2/0 - 1) 

a finite function displayed as a sequence of outputs, where y0 is smallest ?/ such 
that $ ^ 0 ) <2/. 
Thus, 

*T(a;) \ ( 0 , l , . . . , y o - l ) i f ^ x W I 

and therefore r(:r) G J iff x G K, or K <m J as needed. □ 

The techniques used so far are unified in the results that we develop below. 

2.7.2.9 Theorem. (The Rice Lemma) Given a complete index set A = {x : <\>x G 
C}—where C C V. If some f G C has an extension g G V — C, then K < m A. 

Proof. Let 0 m G C and 0 n ^ C, where </>m C 0n.92 The plan is to prove that a 
primitive recursive h exists such that 

Um if0a.(x)t m 
<Ph{x) = s , .- , / x , I 1 ; 

92Cf. p. 45. 
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As we have already observed, to avail ourselves of the "definition by positive cases" 
technique, the top case must be the "otherwise". But if so, we cannot allow, in 
general, an "output" other than "t" (cf. the remarks in 2.5.0.30 and the followup in 
Exercise 2.12.35). 

Thus, once again, we will approximate the condition (f>x(x) t-

J fimiy) if <t>x{x) does not converge before <j)m{y) does 
[ 4>n (y) if <Px (x) converges before <pm (y) does 

Is x computable? Intuitively, it is. Here is how: Let H be a URM for verifying 
<px (x) | , M a URM that computes </>m, and N a URM for <\>n. Let x and y be given. 

We run H on input x, and M on input y in parallel. If M halts but H is still 
running, then we print </>m(y) and stop everything. 

Worth noting. If each of H and M loops for ever, then the top condition is valid; 
we correctly output 4>m(y) in this case (we "output" f—that is, nothing). 

If, on the other hand, H halts before M does, then we abort M and call N on 
input y in order to (if convergence is achieved) output 4>n(y)-

The mathematical reason for the computability of \ is based on the above informal 
description. /^. 

The content of the above JL -comment is the "otherwise"; thus we achieve a 
definition by positive cases: 

if (3z) (*m (y) = zA -.** (x) < z) 
Xf{x, y) ~ \ </>n(y) if (3z) (<$>x{x) = zA - ^ m ( y ) < z) 

otherwise 

Since the above is a definition by positive cases—recall that &i(x) = w, $i(x) < w, 
and $i(x) < w are (primitive) recursive—\' ^ V. 

Pause. But is x = x'^< 
Yes. The top condition for x' saYs "0x(^) does not converge before <f>m(y) 

does"—this is the case of 0 m (y) | , where (px (x) may or may not converge. The case 
of 4>m(y) t a nd (j>x{x) t is covered by the "otherwise" as we already have remarked, 
noticing that both the top and middle cases now fail. The middle condition says 
"(j)x(x) converges before (/>m(y) does". 

By the S-m-n theorem there is an h £ VIZ such that, for all x and y, 

4>h{X)(y) 
((pm (y) if (3z) (*m (y) = zA ^<f>x (x) < z) 

</>n{y) if(3z)($x(x) = ^ A n $ m ( y ) < z) 
11 otherwise 

We can now verify that we have (1) above. 

• Let (j)x(x) t- Then $>x(x) < z is false for all z, hence the middle case 
cannot apply. 
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(a) If we have <j>m{y) I, then (3z)$m(y) = z, thus the top condition is true 
and(f)h{x)(y) = </>m(y). 

(b) If we have </>m(y) t> then $m(y) < z is false for all z, thus only the 
"otherwise" applies. We have, once more (j>h(x){y) — 4>m{y) ( n o t e the 

For short, 4>h(x) — fim in this case. 

• Let (px(x) I. Let z be smallest such that $x(x) — z. Now fix a y. 

(i) If $m(y) < z, then the top case holds, thus 4>h(x)(y) — <l>m(y)- But 
0m(y) 4- (why?), thus, by 0 m C 0 n , we have <j>m(y) = </>n(y) (note the 
"="). 
Therefore (j)h{x){y) = </>n(y)>93 

(ii) If -i$m(y) < z, then the middle case holds, and again (f>h(x) (y) — <t>n{y) 
("^" this time is essential, as it may be that (j>n{y) t-) 

For short, 4>h(x) — 0n in this case. 

This establishes (1), and hence the equivalences h{x) G A iff <j>h(x) ^ C iff 0/i(ar) — 
0 m iff x E K That is, !K < m A via h. □ 

2.7.2.10 Corollary. G/ven a complete index set A = {x : c/)x e C}—where C Cp. 
If some f G C /las arc extension g eV — C, then A is not c.e. 

2.7.2.11 Corollary. (The Theorem of Rice) A compete index set A = {x : (j)x G C} 
is recursive iff it is trivial, meaning that either A = 0 or A = N. 

Proof. The if part is immediate since, in fact, 0 and N are primitive recursive. 
As for the only if say A is recursive. Then A and N — A (or A), that is, 

are both c.e. 
We consider two cases. First, let 094 G C. Since A is semi-recursive, 2.7.2.10 

yields that every computable extension of 0 is in C. Thus C = V and hence A = N. 
Second, let 0 G V — C. As above, since N — A is c.e., 2.7.2.10 yields that every 

computable extension of 0 is in V — C. That is, V — C = V and hence N — A = N. 
Therefore, A = 0. □ 

2.7.2.12 Example. We look back to 2.7.2.7. We see at once by application of Rice's 
theorem that each of the sets A, B, and E-J are not recursive. 

Each of them is a nontrivial complete index set. For example, the set of constants 
C is not equal to either 0 or V, for, on one hand, constant functions exist (!), such as 

'Again note the "=" used for emphasis. The more general symbol ~ would also be correct. 
'The empty function in this context 
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Xx.380, or Ax.O, and, on the other hand, not every computable function is a constant; 
for example, Xxy.x + y, Xx.x, etc. Thus, 0 ^ A ^ N. 

Similarly one shows all of E-J to be nontrivial. 
The sets C and D are not complete index sets so the theorem of Rice does not 

help. One can employ either the technique of 2.7.2.7 or direct diagonalization (cf. 
2.7.1.7). □ 

2.7.2.13 Example. Wait a minute! We have not verified that, e.g., set F of 2.7.2.7 is 
a complete index set. 

As a principle we must, in each case prior to the application of Rice's theorem. 
Often it is easy to do so. 

Apropos F = {x : dom(0;r) is finite}, let us set C = {/ G V : dom(/) is finite}. 
Thus F — {x : (j)x e C}. And this is a complete index set in the format defined 
in 2.7.2.4. □ 

2.7.2.14 Example. We have seen already that every computable function has in-
finitely many (^-indices by arguing the case via URM programs. Here is a "high 
level" approach: Let / G V. Then 0 ^ {x : <j>x = / } ^ N. By Rice's theorem, 
{x : c/)x — / } is not recursive, hence must be infinite (every finite set is primitive 
recursive). □ 

2.7.2.15 Example. But how about Kl Is K = {x : <j)x{x) \} a complete index 
set? That is, is there a C C ? such that K = {x : </>x e C}? We will answer this 
negatively in Section 2.9. □ 

The Rice Lemma 2.7.2.9 can help in easily establishing non semi-recursiveness. 
Let us revisit 2.7.2.8. 

2.7.2.16 Example. Look at E — {x : dom((f)x) = 0}. For convenience let us set 

C D ^ f { / 6 ^ : d o m ( / ) = 0} 

Note that dom(0) = 0. However, Xx.O extends 0 but is not in C—its domain is N. 
By 2.7.2.10, E is not c.e. 

A similar argument holds for F, since 0 has a finite domain hence is in F's implied 
"C". Any constant function extends 0 but is not in this "C". Thus, F is not c.e. 

Corollary 2.7.2.10 can similarly show that H and / are not c.e. although we should 
use Xx.x or any other computable infinite-range function—instead of Ax.O—as an 
extension of 0 that lies outside the "C" of these two complete index sets. 

However the corollary does not help the proof of non semi-recursiveness of 
A, B, G, or J. A new general technique is needed. □ 

The following theorem is the contribution of several people (Rice, Myhill, Shapiro, 
McNaughton). First a definition. 

www.it-ebooks.info

http://www.it-ebooks.info/


194 ALGORITHMS, COMPUTABLE FUNCTIONS AND COMPUTATIONS 

2.7.2.17 Definition. (Finite Functions) A number theoretic function / is finite iff 
dom(/) is a finite set. □ 

2.7.2.18 Theorem. Given A = {x : <fix G C}, where C C V. Suppose that some 
f G C has no finite subfunction £—i.e., £ C /—that is a member of C. ThenK <m A. 

Proof. The idea is to find, using the S-m-n theorem, an h G V1Z such that 

*«,) = (* ifMxH a) 
% ( x ) \ / if<^(*)t ^ ' 

If this succeeds, then h{x) G A iff 4>h{x) G C iff (/>h(x) = f iff x e K. Thus, 
K<mA. 

Now to justify (1) we straightforwardly generalize the technique from 2.7.2.8, 
case (4). Thus we define, for all x, y, 

x ( x v ) ~ l f i y ) *-**(*> * » X(,y)-\V(y) x*x(x)<y 

This is a definition by recursive cases, thus x G P . By the S-m-n theorem we have 
an he VU such that 

f/(y) i f - . * x ( * ) < V m 

[0(2/) if $x(x) < y 

Let us now consider the two cases: 

(a) (f>x(x) t- Then the top condition of (2) is true for all y, thus <j>h{x) — f i*1 this 
case. 

(b) 0x(x) | . Let 2/0 be the smallest y-value such that the bottom condition in (2) 
holds. Assume first that yo > 1. Thus, for y = 0 , 1 , . . . , yo — 1, we have that 
^$x(%) < V holds, and therefore 

for y = 0 , 1 , . . . , 2/0 - 1, it is 4>h(x)(y) - f{v\ but </>h(x)(y) t , if 2/ > 2/o (3) 

Let us call £ the finite subfunction of / in (3) above: £ = / f { 0 , 1 , . . . , 2/0 — 1} 
(cf. definitions and notation on p. 45). Thus, 4>h(x) — £ (£ / ) in this case, for 
yo >o. 
If 2/0 = 0, then the bottom condition holds for all y, thus <j>h{x) — 0- But 0 C / . 

We have verified (1). □ 

2.7.2.19 Corollary. Let the complete index set A = {x : <\>x € C} be c.e. Then 
f G C iff some finite subfunction off is in C. 

Proof The only if is by 2.7.2.18, for otherwise K <m A, contradicting the assump-
tion. The if is by 2.7.2.9, for if C 3 £ C / , then f eC. □ 
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2.7.2.20 Example. We return to the concluding comment 
However the corollary does not help the proof of non semi-recursiveness of 
A, B, G, or J. A new general technique is needed. 

from 2.7.2.16. The respective C-sets in each of the index sets A and B contain total 
functions only. Thus no / in such a C can have a finite (nontotal!) subfunction also 
in C. By 2.7.2.19, neither A nor B can be c.e. 

Similarly, the respective C-sets in each of the index sets G and J contain functions 
with infinite domains only. Thus no / in such a C can have a finite subfunction also 
in C. Again, by 2.7.2.19, neither G nor J can be c.e. □ 

2.7.2.21 Remark. A variant of a complete index set has this form 

A = {x:WxeC*} (1) 

where C* C ^ . That indeed this is only a variant of the notation {x : 4>x G V) is 
immediate from (cf. 2.5.0.3) 

Wx = dom{(j)x) 

Thus, setting C = {/ G V : dom(/) G C*}, we may rewrite (1) as 

A = {x:cf)xeC} (2) 

□ 
This new notation is very useful in computability theory. We explore here reword-

ings of the Rice-related theorems that utilize this new notation. 

2.7.2.22 Theorem. Given a complete index set A = {x : Wx G C*}—where 
C* C TV If some S G C* satisfies S C T, where T eV*- C*, then ~K < m A. 

Proof Following the notational translations of 2.7.2.21, we write C = {/ G V : 
dom(/) eC*}. So, 

A = {x : (j)x G C} 

Let S and T be as given. Thus, for some / G C, S — dom(/). The function 
# = Ax.l — (1 — f(x)) satisfies S — dom(#) as well. Let T = dom(h) with h G V 
andran(/i) = {0} [if necessary, we use \xl — (1 — h(x)) instead]. 

Notice that g G C, ̂  C ft, and h ^ C.95 By 2.7.2.9, K < m A □ 

2.7.2.23 Theorem. (Rice's Theorem—VF-Version) A compete index set A — {x : 
Wx € C*} is recursive iff it is trivial, meaning that either A = 0 or A = N. 

Proof This can be proved by invoking 2.7.2.11 after we translate the Wi-notation 
into ^-notation, using 2.7.2.21. It can be proved just as easily, directly from 2.7.2.22. 

;If heC, then dom(h) e C* by definition; hence T EC*. 
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A trivial index set being primitive recursive, we turn to the only if. So let both A 
and A be c.e. 

Case where 0 G C*. Then S G C* for every c.e. subset of N by 0 C S. It follows 
thatC* =P + , i . e . , A = N. _ 

Case where 0 £ C*. We work with the c.e. set A = {x : Wx G ? , - C * } . As 
above, S G V* - C* for every c.e. subset of N. Thus,^* - C* = P*,i.e., A = 0. □ 

2.7.2.24 Theorem. Given A = {x : Wx G C*}, where C* QV*. Suppose that some 
S G C* /ias no finite subset D that is a member ofC*. Then K <m A. 

Proof. We derive this as a corollary of 2.7.2.18, using the notational translations from 
2.7.2.21. We write C = {/ eV: dom(/) G C*}. So, 

A = {x:</>xeC} 

Let 5 be as given. Thus, for some f e C*, S = dom(/). As before, we may assume 
that ran(/) = {0}. If we had a finite £ C / as a member of C, then it would be that 

(a) dom(£) is a finite set D G C*—by the translation—and 
(b) D C S . _ 
(a) and (b) contradict the hypothesis. Thus, no such £ exists, and thus K <m A 

by 2.7.2.18. □ 

2.7.2.25 Example, {x : Wx = 0} is not c.e. by 2.7.2.22. Indeed, C* = {0}. But 
0 C N, yet N ^ {0}. {x : Wx is infinite} is not c.e. by 2.7.2.22. Indeed, the C*-set 
here is the set of all infinite members of V*. This C* fails to contain any finite subset 
of any set that it contains. We are led to K < m {x : Wx is infinite} by 2.7.2.24. □ 

2.7.3 More Dovetailing 

A c.e. set can be given either via a URM that is a verifier—the set is the domain of the 
verifier—or a URM that is an enumerator: the set is the range of the URM-computed 
function. 

Suppose we are given one of these two types of finite description of a set. Can we 
construct the other? Yes! 

Say that a semi-computable set S has been given by a verifier M of code m, that 
is, S = Wm. How do we construct a URM program N, of code n to compute </>n, 
such that 

ran(^n) = Wml (1) 

The idea is that, for each x for which M halts—that is, x G Wm—our new 
program iV must output x. Now, we cannot have N enumerate allx = 0 , l , 2 , 3 , . . . 
and simulate M on each such input in turn, since, on some such inputs, M—and 
therefore N—will be stuck forever; an unfortunate event as there may well be later 
x-values that need outputting. So, we dovetail instead! (Cf. 2.5.0.23.) Thus, N will 
simulate M on all inputs x = 0 , l , 2 ,3 , . . . a s follows: It will simulate one step of M 
on input 0; then two steps on inputs 0 and 1; then . . . then fe + 1 steps on all inputs 
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0 , 1 , . . . , k. It will continue in this pattern, for all k > 0. All inputs which during the 
simulation cause M to halt will be output by N. Note that we have ''constructed" 
N (in outline), using knowledge of M ("subroutine"). Clearly, the set of outputs 
generated by N is precisely the set of inputs on which M halts. 

Mathematically, the fact that the program n is constructed from m is captured by 
the existence of a primitive recursive h such that n = h(m). We state and prove 

2.7.3.1 Theorem. There is a primitive recursive h such that for all x, ran(0/l(a.)) = 
Wx. 

Proof. This is a trivial adaptation of the proof of 2.5.0.24 following the idea in 2.5.0.28: 
Define, for all x and z, 

*{x,z)J{z)* i f r ^) -™ (1) 
11 otherwise 

I/J is trivially partial recursive, hence (by S-m-n) there is a primitive recursive h such 
that 

6 (z)c±l{z)o i f T M * M * ) i ) 
9h{x)K } \ \ otherwise 

By 2.5.0.28, ran(0Ma;)) = W*. □ 
Pause. Can we ensure that whenever Wx ^ 0 we obtain a total </>^(x)?^ 
Yes, if we can replace f in (1) of the above proof by a computed "a", analogous 

to the one employed in 2.5.0.24, where we said 
... where "a" is some fixed member of S that we keep outputting every time the 
condition "T(i, (z)o, (2)1)" fails . . . 

The "some fixed" a can easily be replaced by a computed value (from the verifier 
code x of Wx) via the selection theorem. 

2.7.3.2 Theorem. (Selection Theorem) There is a partial recursive g of one vari-
able such that, for all x, 

(i) Wx ? 0 iffg(x) I 

(ii) IfWx ^ 0, then g{x) e Wx. 

Proof. A familiar dovetailing technique is at play: We compute the first pair [y, w] 
such that T(x, y, w) holds. That is, setting z = [y, to], we let 

g(x)^^z)T(x,(z)0,(z)1))o (1) 

For (i), let Wx 7̂  0. Thus (3y, w)T(x, y, w) is true and the search in (1) succeeds. 
Conversely, if the search succeeds, then (z)o 6 Wx. For (ii), the successful search 
yields a (z)0 G Wx. But #(x) = (z)0. □ 
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The selection theorem is a computable version of the axiom of choice. The axiom 
of choice postulates that if {Sa • a G / } is an indexed collection of sets—indexed 
by /—then there is an / such that Sa ^ 0 implies f(a) G Sa. 

Our "g" does just that for the collection {Wx : x G N}; computablyl 

2.7.3.3 Corollary. There is a primitive recursive h such that for all xf ran(0/l(x)) = 
Wx. Moreover, ifWx ^ 0, then 4>h(x) € H. 

Proof. We use the proof of 2.5.0.24, adding the i as an argument, and using g(i)—the 
selection function at i—rather than the intangible "a". That is, 

^ ( t , z ) ~ { ( z ) o ifT(*'(*)o.(*)i) 
\g(i) otherwise 

ij) is trivially partial recursive, hence (by S-m-n) there is a primitive recursive h such 
that 

'(z)0 i f r ( t , (*) 0 , (z) i ) 
g(z) otherwise 

D 

2.7.3.4 Example. Rogers (1967) offers the following simple proof that obscures the 
dovetailing at work: Let 

(z if</>x(z)l 
T\X,Z) ~ < 

I t otherwise 
Via definition by positive cases, r is partial recursive. Let (by S-m-n) a—primitive 
recursive—be such that (f)a(x)(z) ~ r(#, z), for all x, z. Note that z G ran(0a(x)) iff 
4>x(z) l, that is, iSz eWx. 

Of course, the definition-by-positive-cases theorem (2.5.0.30) already includes a 
dovetailing argument buried in its proof. □ 

Next, say that a semi-computable set S has been given by an enumeration, by 
some URM M of code m. That is, S = ran(0m). How do we construct a URM 
program iV of code n, for <fin, that is a verifier for 5, in other words, 

ran(0m) = Wnl (2) 

If 0 m is total, then all that N need do is this: Given x, N tests "x G 5?" by 

fory = 0 ,1 ,2 , . . . do 
if M on input y outputs x, then halt 

For nontotal <j>m this will fail, since, say, it could be that 0 m ( l ) = x while 0m(O) t-
The call to M on input 0 would go forever, never reaching the computation 0 m ( l ) . 
Once again, one must dovetail: 

f o r T = 1,2,... do 
if M on any input y <T outputs x within T steps, then halt 
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Mathematically, 

2.7.3.5 Theorem. There is a primitive recursive k such that for all x, ran(0x) = 

Proof. Define, for all x and y, 

X(x, y) ~ 1 ° lf {3Z> W) (T(X' *'W) A V = d(w)) 
11 otherwise 

The top predicate is c.e. thus x is defined by positive cases. This makes \ partial 
recursive. By the S-m-n theorem, there is a k 6 V1Z such that <ftk(x) (y) — x(xi 2/)> f°r 

all x, y. The definition of x immediately yields that (f>k{x) (y) I iff 2/ G ran(0x). D 

2.7.3.6 Corollary. There are a and r in VIZ such that, for all x, 

(i) Wx = ran(0o.(a:)) and, moreover, (t>a{x) is 1-1. Ifitisnontotal, thendova{(j)a^) = 
{i G N : i < n}, for some n. 

(ii) ran((fix) = ran(0r(rc)) and, moreover, <j>T^x) is 1-1. If it is nontotal, then 
dom(0T(x)) = {i G N : i < n}, for some n. 

Proof 

(i) We adapt the proof of 2.7.3.3, being careful not to output values that have 
already been output. The technique for generating outputs is dovetailing; the 
technique to avoid repetitions of outputs is to keep a list of "outputs so far", and 
not output a generated value if it is in the list. 
So this time we define a modified ip via a course-of-values recursion following 
the careful approach of 2.1.2.50 and 2.1.2.51, albeit in the present application 
we will not start with, nor write down, the (simple) primitive recursion for the 
history function 

H(i,x) = [^(i ,0), . . . ,^(z,x)] 

In this connection we recall the predicate x e y used in the proof of 2.4.4.1. 

^ ( i , 0 ) ~ # ( i ) 

^( i , x + 1) ~ ((/xz)(T(i, (z)o, (*)i) A -.(*)o G H(i, X ) ) ) Q 

The S-m-n theorem yields a a such that 4>a{x){y) — ^{x,y)i f°r aU x->y-
The claim for dom(0a(:E)) follows from 2.1.2.51. That WX = ran(0CT(x)) is 
immediate. 

(ii) By 2.7.3.5 we get an h such that ran(</>x) = Wh^xy Applying part (i) we get a 
a such that W^x) = r a n ^ ^ ^ ) ) ) . We set r(x) — a(h(x))9 for all x. D 

We continue with a brief exploration of effectively—a synonym of computably— 
obtaining the results of computable set-theoretic operations on c.e. sets. 
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2.7.3.7 Example. There is a primitive recursive h such that Wh(x,y) — Wx D Wy. 
Herein lies the effectiveness of this operation: If we know the verifiers x and y of 
two c.e. sets, then we can construct (via h) a verifier /i(x, y) for their intersection. 
Note that Wx D Wy = dom((f)x + </>y). Fix an i such that, for all x,y and z, we 
have (j)f\x,y,z) ~ </>x(z) + <f>y(z). By S-m-n, </>si(ilXly)(z) - <l>i3)(x,y,z). Take 
h = \xy.S%(i,x,y). □ 

2.7.3.8 Example. (2.7.3.6 Revisited) How about proving 2.7.3.6, case (i), by select-
ing an a in Wf, selecting an a' in W^ - {a}; selecting an a" in (Wi — {a}) — {a'}; 
etc.? 

OK, let us organize this idea. First off, we can find a k £ VIZ such that W^x^ = 
Wi - {x} for all i, x. We do this by noting that Wi - {x} = Wi fl (N - {x}) = 
Wi fl Wr(a;), the last equality by Exercise 2.12.58. Using 2.7.3.7 we have 

W^(i,r(x)) = Wi - {X> 

Our fe is \ix.h(i, r(x)). 
We can now take care of the iteration "etc." above using the selection function g: 
We let a — g{i)\ then remove a to obtain Wk(a,i)\ 

We next let a' = g ( k (a, i) J; then remove a' to obtain Wk(a',k(a,i))» 

We next let a" = g(k(a'\k(a,i)) ] ; then remove a" to obtain W/fc(a//)/c(a/,A:(a,i)))i 
etc. We can define an / by recursion, 

/ (0 , i ) = i 

/ ( x + l , i)^fe(</(/(a: , i)) , /(x,i)) 

/ enumerates the W-sets—verifiers of, that is— 

Wi = Wmi) D Wf{hi) D Wmi) D Wmi) D . . . 

while the sequence 
g(f(0,i)),g(f(l,i)),g(f(2,i)),... 

1-1-enumerates (the members of) Wi, because g{f{x,i))—if defined—is not in 
W/(3/,i)» for y > x, and thus will not be chosen again. 

Indeed, by the second equation for / , f(x -h 1, i) is what g selects in the original 
Wi after the removal of g(f(x,i)) in this very step—the g(f(x — l,i)),g(f(x — 
2 , i ) ) , . . . , #(/((M)) having been removed in the preceding steps (by an obvious 
induction). 

It is also clear that either \x.g(f(x, i)) is total, or an initial segment of N, since 
the enumeration will not get stuck until Wi is depleted. □ 

2.7.3.9 Example. Let A be a c.e. set and / a partial recursive function. What can 
we conclude about the inverse image of A under / , that is, f+-(A)l (Cf. p. 43.) 
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Well, x G f<-{A) = (3y)(/(x) = y A y G A). Thus, by closure properties of P* 
and 2.5.0.7, the inverse image is c.e. 

We can do better than this: From programs for / and A we can construct an 
enumerator for the inverse image. This is done by yet another dovetailing argument! 

Intuitively, we dovetail the "enumeration" / : Enumerate all triples (x,y,z) in 
some systematic way. For example, as ((w)o> (w)i? (w)2), f°r w = 0 ,1 ,2 , . . . 

For each (x, y, z) generated, we do z steps of the verification of f(x) = y A y G A 
using the given program for / and the verifier for "y G AT 

If we get a "yes" then we enumerate x into /«_ (A). 
Mathematically this is even simpler, although the dovetailing is hidden. Note 

that z G (<£*)<-(Wj,) = 0x(z) G Wy. But ^ ( z ) G Wy = </>y(<t>x(z)) | . By 
S-m-n applied to ip = \xyz.<fiy((j)x(z)) we have an /i G 7̂ 7?, such that ^(#, y, 2) — 
(l>h(x,y)(z)> f o r all x,y,z. That is, d o m ^ ^ ) ) = (<f>x)<^(Wy), or W ^ y ) = 
(&>)<-(Wg. D 

2.7.3.10 Example. Let us address the same question as in 2.7.3.9, but for the forward 
image f->(A) = {f(x) : x £ A} for c.e. A and partial recursive / . First off, choose 
a verifier 4>y for A. Then we can dovetail as follows: Enumerate systematically, as 
in the preceding example, all triples (x,w,z). For each triple generated as a number 
u— [x, w, z], check whether in z steps we have f(x) I while we have <py(x) I in w 
steps; if so, print f(x). 

Mathematically, let A — dom(02/) and f = (f>x. Thus, we can enumerate f^(A) 
by 

Mx yu)~ ld^u^ if T(2/' W o ' W l ) A T ( x ' M°' ( w ) 2 ) 

I t otherwise 

By S-m-n, there is a cr in P7J such that for all x, y, u, we have (/>a(x,y) (u) — ^(xi V ->u) • 
Clearly, r a n ^ ^ ) = (<£*)-► (Wy). D 

We have so many times remarked that the "dovetailing is hidden" or "obscured". 
In a way this is a deliberate outcome of the tools of this subsection—2.7.3.1, 2.7.3.5, 
and 2.7.3.2 along with their variants and corollaries—which "hardwire" dovetailing 
arguments into themselves, making it often unnecessary to use such an argument 
explicitly. 

Here is another example that verifies the above point. 

2.7.3.11 Example. Let us revisit the "hard direction"of 2.5.0.7, that is, ify = f(xn) 
is semi-recursive, then f is partial computable. We utilize the selection theorem as 
it was generalized in Exercise 2.12.61. By assumption, for some i, 

V = f(xn) = <£in+1)(2/,£n) I 

Then / = Xxn.Sel^n+1\i,xn). D 
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2.7.4 Recursive Enumerations 

The definition of the term c.e. (r.e.) was via a recursive enumeration / for non-empty 
such sets. It turns out that we can say a bit more if the c.e. set is recursive. 

2.7.4.1 Definition. A total function / : N —> N is increasing iff, for all x and y, we 
have that x < y implies f(x) < f{y). It is strictly increasing iff, for all x and y, we 
have that x < y implies f(x) < f(y). □ 

2.7.4.2 Theorem. A non-empty recursive set A has an increasing recursive enu-
merating function, and conversely: If the c.e. set B has an increasing recursive 
enumerating function, then it is recursive. 

Proof Let A be as stated. If it is finite, with distinct members in the following 
increasing order, 

then 

ao,fli, • • •, a& 

ao if x = 0 
ai if x = 1 

/(*) = { 
ak-i if x = k — 1 
Q>k iix>k 

is primitive recursive, increasing, and ran(/) = A. 
Assume now that A is infinite. Define a function ft by 

ft(0) = a 

h{x + 1) = ( W ) (y G A A 2/ > Ma?)) 

where a is the smallest member of A. Thus, ft G P , and since the search succeeds for 
all x, we have ft G 7£. It is clear that ft is strictly increasing and that ran(ft) C A. Is 
it possible that m G A — ran(ft)? If so, let m be smallest such. Now, m ^ ft(0) = a. 
Let then ft(2/) < m < h(y + 1) for the appropriate y [which is such that y + 1 is 
smallest with ft(2/ + 1) > m, a minimum that exists since ft is strictly increasing 
and thus its outputs increase without bound]. But then, h(y -f-1) is wrongly chosen, 
since it is not the smallest > h{y) in A\ Therefore we can have no such m, and 
A = ran(ft). 

For the converse, let B = ran(/), where / is a recursive increasing function. If 
B is finite, then it is recursive—indeed primitive recursive—since in predicate form 
it is a disjunction of a finite number of elementary formulae of the type x = a, one 
for each a G B. 

Let then B be infinite. We need to show that the predicate x G B is recursive. 
Well, B is the increasing "array" 

/(0),/(!), . . . , /(»),. . . 
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How do we search such an array for x with a view of finding the first i, if any, such 
that x — f(i)l Our programming experience suggests the pseudo program 

i <-0 
while x > f(i) 

i <- i + 1 
end while 
if x = f(i) then print i 

else print "not found" 

This "proves"—modulo rewriting the program as a URM—that B is recursive. We 
can easily turn the above to a mathematical proof. 

xeB = f((fjLi)x<f(i)) =x 

Since B is infinite, the partial recursive function Xx.(/j,i)x < f(i) is recursive. Thus, 
so is \x.f((fii)x < / ( i ) ) . □ 

We have at once: 

2.7.4.3 Corollary. An infinite recursive set A has a strictly increasing recursive 
enumerating function, and conversely: If the c.e. set B has a strictly increasing 
recursive enumerating function, then it is recursive and infinite. 

2.7 AA Corollary. An infinite c.e. set A has an infinite recursive subset. 

Proof Let A = ran(/) for recursive / . We define a strictly increasing (recursive) 
sub-sequence 

g(0),9(l),... 

of 
/ ( 0 ) , / ( l ) , - . . (1) 

and then invoke 2.7.4.3. Note that because A is infinite the sequence (1) is unbounded 
hence, for any x, there is a y such that g(x) < f(y). 

This leads to this primitive recursion for g: 

9(0) = /(0) 
g(x + l) = f((iJ,y)f(y)>g(x)) 

Since the search above always succeeds, the partial recursive g is total, hence recur-
sive. But it is also, by construction, strictly increasing. □ 

Note that the above proof was constructive in that from the knowledge of / we 
"programmed" g. This can be made more precise mathematically as follows. 

2.7.4.5 Corollary. There is a primitive recursive r such that if <\>x is recursive and 
ran(0:r) is infinite, then (f)r(x) is recursive, ran(0r(a:)) is recursive and infinite, and, 
moreover, ran(0r(x)) C ran(0x). 
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Proof. A straightforward adaptation of the proof above. Define instead 

0(O,x)-0 x (O) 
g(y + l,x) c^ <t>x((fjiz)(l)x{z) > g(y,x)) 

As above, the recursiveness and unboundedness of (f>x means that g is recursive and 
strictly increasing with respect to the y variable. S-m-n gives us an r such that, for 
all x, y, we have </>r(x)(y) ^ g(y, x). D 

2.7.4.6 Corollary. There is a primitive recursive h such that if Wx is infinite, then 
Wh(x) Q Wx, and Wh(x) is infinite and recursive. 

Proof A direct consequence of the proof of 2.7.4.5: Employ first 2.7.3.3 to obtain a 
cr G VIZ such that r a n ^ ^ ) ) = Wx and where Wx ^ 0 implies (j)^) G 1Z. Now 
apply Corollary 2.7.4.5 to obtain (t>r(a(x))- Finally, apply 2.7.3.5 to obtain a primitive 
recursive h such that Wh(x) = ran(0r(a(;r))). D 

2.7.4.7 Remark. The "programs" r and h in Corollaries 2.7.4.5 and 2.7.4.6 do not 
simply exist; we demonstrated their existence by constructing them. We say that 
the proofs were constructive. Constructive proofs that "a program exists" are not 
always possible. For example, we know from the proof of 2.7.4.2 that for any finite, 
non-empty set, there is an algorithm that can enumerate it in strict ascending order 
and then it will "taper off" repeating (the enumeration of) the maximum entry forever. 

It turns out that given a finite set we cannot construct said algorithm.96 We will 
demonstrate the particulars of this claim in the following discussion. □ 

Pause. But how is a finite set "given"!< 
Well, a recursive set S can be given by a decider for S—that is, an x, such that 

<ftx = Xs—or by a verifier for S—that is, a z, such that Wz = S. Note that giving 
a set as an enumerator is computably equivalent to giving it as a verifier, since one 
can go back and forth between these two representations computably (cf. 2.7.3.1 and 
2.7.3.5). 

2.7.4.8 Example. We have already seen that we can convert a decider for a set S to 
a verifier for the same set (2.5.0.12). The process described was clearly constructive, 
albeit at an informal level. 

Mathematically, let 

il>(xy)~l° tf^fo) = 0 (l) 
11 otherwise 

96This statement is dependent on how the finite set is "given", as the reader will see shortly (cf. 2.7.4.11-
2.7.4.14). 

www.it-ebooks.info

http://www.it-ebooks.info/


DIAGONALIZATION REVISITED; UNSOLVABILITY VIA REDUCTIONS 2 0 5 

As (1) is an instance of definition by positive cases, tp is computable, so, by S-m-n, 
let h G VIZ be such that ij)(x,y) ~ 4>h(x) (y) f°r aH x-> V- Thus 

Mx){y)i=<l>x(y) = o (2) 

If now cj)x = xs for some S (rendering S recursive), then, by (2), Wh(x) = S. D 

For recursive sets, can we go, computably, from a verifier to a decider repre-
sentation? No, for one way to go about it would be to seek aip E V such that it 
satisfies 

• ip(x) I iff Wx is recursive 
and 

• in case Wx is recursive, </>̂ (a.) = \wx ■ 

The first bullet requires dom(^) = {x : Wx G 7£*}, which cannot be, since the 
left hand side is c.e. but the right hand side is not (cf. Exercise 2.12.48). No such I/J 
exists. 

2.7.4.9 Remark. Hmm. What about weakening ip so that we allow it to converge as 
it pleases outside {x : Wx G 7£*}, yielding irrelevant answers? That is, can we have 
a "new" I/J of which we only ask: 

if Wx is recursive, then ip(x) I and <j>^x) = Xwx (1) 

This is also impossible [Rogers (1967)]. To see this, we go back to Theorem 2.7.2.7 
and reuse (* * *) (reproduced below) 

_ jXy.O if<f>x(x) I 

from the proof of its item (1), rewriting it in this guise: 

Wh{x) = {" ifX€« (2) 

Of course, h is primitive recursive. Suppose now that we have this new, weaker ip 
that we are looking for. Then, 

(a) ip(h(x)) | , for all x, since either way, "top" or "bottom", Wh(x) is recursive. 

(b) Since ran(x^) = {0}, we have that 1 G r a n f ^ ^ ^ ) ) ) iff we have the bottom 
case in (2). 

Thus, 
1 G r a n ^ ^ ) ) ) =x e K 
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This is untenable, since one side of = is c.e. but the other is not. Indeed, 1 € 
ran(<^(/l(a.))) = (3y){3z) ( T ( ^ W x ) ) ,y,z) A d(z) = l) D 

Of course, the foregoing comments also apply to finite sets since these are (primi-
tive) recursive. However, finiteness provides yet another manner to finitely code such 
a set, not coding it via a decider or verifier, but rather coding the set of its elements 
itself by a single number. 

This can be done in any one of the many ways that we have at our disposal for 
coding finite sequences, for example, prime-power coding (allowing 0 to be the code 
for the empty set). As this entails a decision on selecting one of the n!97 orders of a 
set of n elements, the following coding is more elegant. 

2.7.4.10 Definition. (Canonical Indices) The canonical index of a finite set S — 
{a 0 , . . . , an}—where the ai are distinct but not otherwise sorted in any "preferred" 
order—is the number u = 2a° + 2 a i H h 2a™. 

The canonical index of 0 is 0. □ 

u—expressed in binary notation—has a digit ("bit") 1 in precisely the positions a^ 
for i = 0 , . . . , n (where position-0 is the rightmost or "least significant"). 

2.7.4.11 Example. It is rather trivial to see that if we have a canonical index u of 
a finite set 5, then we can construct a program for its characteristic function, and 
therefore —by 2.7.4.8—can also construct a program for a verifier of S. 

Indeed, if u = 0, then the characteristic function is Xx.l. Alternatively, once we 
have recovered from u (by just looking where its binary notation has Is) the members 

{bo,--.,bm} 

of S, the characteristic function—and indeed the enumerator of p. 202—can be 
constructed at once: 

(0 if x = bo 
0 ifx = b1 

Xs{x) = { ] 
0 if X = bjn 

, 1 otherwise 

□ 
The converse will not work: 

2.7.4.12 Example. We cannot (in general) have a computable function ij) such that 
if Wx is finite, then I/J(X) I and I/J(X) equals the canonical index of Wx, while, if Wx 
is not finite, then ip(x) | . 

970! = 1 and (n + 1)! = n\ x (n + 1). 
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Indeed, if we had such a ip, then dom(^) = {x : Wx is finite}. 
This is impossible, as the left hand side is c.e. but the right hand side is not (cf. 

Exercise 2.12.50). □ 

2.7.4.13 Example. If a finite set S is given by its characteristic function, (j)x, then 
we have more information about S than we would have if it were given as a Wz. 
Does this extra information allow us to have a computable function £ such that if 
{y • <t>x{y) — 0} is finite, then £(x) \. and £(x) equals the canonical index of 
{y : </>x(y) = 0}; while, if {y : <j>x(y) = 0} is not finite, then £(x) t ? 

The answer is still negative, for consider the following definition by recursive 
cases 

/<*,»>-{; ,t:*'lI)i" 
10 otherwise 

/ G 1Z and thus, by S-m-n, we have a a G VIZ, such that 
f(x, y) = (/)a(x) (y), for all a, y 

Note that if <j){x) t , then the top condition is always true, thus, using sequence-
notation 

<I><T{X) = i i ^ > 
Is forever 

that is, 
x G K implies that <j>a(x) = x® (1) 

If, on the other hand, <j>x{x) I, let y = yx be smallest such that $x(x) < y. Thus, 

4>cr(x) = 111 . . . 1000 . . . in this case 
yx — 1 1 s 0s forever 

Thus, (j>G(x) is the characteristic function of an infinite set in the x G K case, and 
hence £(a(x)) t- Therefore, assuming we have our £ as stated, we also have 

£{cr(x)) 1= x E ~K 

This will not do, since the left hand side is a c.e. relation, while the right hand side is 
not c.e. □ 

2.7.4.14 Example. Perhaps, if we weaken the requirement on £, we may have a 
computable passage from the program of the characteristic function of a finite set to 
its canonical index. 

Thus, let us relax the requirement that if {y : <j>x{y) = 0} is not finite, then we 
are "informed" of this by "£(#) t"- Since we cannot computably know whether 
{y : (fix(y) = 0} is not finite, we lose nothing if we allow £ to converge for such x 
(cf. the analogous situation in 2.7.4.9). 

So, can we have the validity of the weaker statement below? 
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"A computable £ exists such that if {y : </>x(y) = 0} is finite, then £(#) \. and 
£(x) equals the canonical index of{y : (j)x{y) — 0}." 
Thus, we are willing to live with a much less informative version of "£", where 

the statement "{?/ : (/>x(y) = 0} is not finite" may well coexist with £(x) | . Such 
a £ still would always correctly build the canonical index of a set S if it received as 
input a program x that computes the characteristic function of S, but would produce 
nonsensical outputs for some x that satisfy "{y : <j>x(y) = 0} is not finite". 

It turns out that we cannot have this version of £ either! Indeed, define 

JO ify = mm{z : $x(x) < z) 
9&y) = < . 

I 1 otherwise 

Note that 

y = min{z : $x(x) < z] = $x(x) < y A (Vz)<y^$x(x) < z 

hence both defining conditions (for g) are recursive. Thus g is recursive. Let a in 
V1Z be such that, for all x and y, we have </>a(x) (y) = g(x, y). Thus, 

if 4>x{x) t , then 0 ^ ) = Ax.1—that is, X0 

and 
if 4>x(x) | , say, at the earliest in yx steps, then 0ff(a.) = x ^ } 

Since the canonical index of 0 is 0, we have 

0 = £(<r(x)) =xeK 

contradicting the non semi-recursiveness of K. So, no such £ exists. □ 

We now return to the question that motivated all this discussion. We noted that 
for any finite set there exists an algorithm, that of p. 202, that enumerates the set in 
strict ascending order and once it reaches the maximum element it keeps outputting 
said element forever. 

We claimed that this algorithm's existence cannot be proved constructively, that 
is, there is no computable process that constructs said algorithm for the arbitrarily 
given finite set S. 

Indeed, say, S is given by a program (0-index) for its characteristic function—for 
a decider. If we can construct its enumerator from this information, then we will 
obtain knowledge of all the members of S by running the enumerator. From this we 
can construct the canonical index of S, contradicting the preceding example. 

Next, say, S is given as a Wx. If we can construct from this information its 
enumerator, in the form given on p. 202, then we could also construct it from a 
program for its characteristic function, since the latter can be algorithmically obtained 
from x (2.7.4.8). This cannot be. Trivially, if S is "given" by its canonical index, 
then the enumerator, a verifier, and a decider for 5 can be constructed. 
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Pause. Hmm. In 2.7.3.6 we saw that there is a constructive way, cr, that takes us 
from Wx to a 1-1 0a(;r) such that Wx = ran(0cr(a.)) and, if <t>a(x) is nontotal, then 
its domain is {i : i < n}, for some n. So, why not use this 4>a(x) to determine the 
elements 

0cT(aO(O),---,</VOz)(™- 1) 

of the finite set Wx—if indeed it is finite?^ 

2.8 PRODUCTIVE AND CREATIVE SETS 

Some non r.e. sets S are, in a way of speaking, "effectively non r.e." in that we have 
an algorithmic way to refute their r.e.-ness in the context of any claim of the form 
"Wx = S". That is, we can construct a counterexample m G S — Wx. Such sets 
were called productive by Dekker. 

2.8.0.15 Definition. A set S is productive with a productive function f G 1Z if, for 
all x, whenever we have Wx C S then f(x)eS — Wx. □ 

Clearly, every productive set S is not c.e. for if we think otherwise, then S = Wm 
for some ra. But then f(m) G S — Wm—where / is a given productive function for 
S—and this yields a contradiction. 

2.8.0.16 Example. K is productive with productive function Xx.x. Indeed, let Wx C 
K. Note that this entails that x G Wx is false, for it says 4>x (x) 4,, that is, x G K, 
which is incompatible with the assumption. 

Thus, x £ Wx. But this says x G K so, together, x G K — Wx, □ 

We can discover more productive sets via m-reducibility. 

2.8.0.17 Theorem. If A < m B and A is productive, then so is B. 

Proof Let A <m B be via g and let / be a productive function for A. We will 
construct a productive function for B. 

So let Wx C B. Thus ^ ( W ^ ) C ^^_(J3). By 2.7.3.9, there is an h G VIZ such 
that Wh(x) — 9<-(Wx) for all x. Thus, we have W ^ ) Q A = g^(B). Since / is a 
productive function for A, we have f(h(x)) G g<-(B) — Wh(x), that is, 

/ ( M ^ ) ) € ^ ( 5 ) - ^ ( ^ ) (1) 

S i n c e ^ ( X - r ) = ^ ( X ) - ^ ( y ) ( c f . 1.8.19), (1) yields^(/(^(a;))) G B - W ^ . 
Thus, Xx.g(f(h(x)) is a productive function for B. □ 

2.8.0.18 Example. Thus^since we know that ~K <± {x : (j)x G 11}, ~K < i 
{x : Wx is finite}, and K <\ {x \ Wx is infinite}, all of {x : <f)x G 7£}, {x : 
Wx is finite}, and {x : Wx is infinite} are productive. □ 
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A concept closely related to that of productive sets is that of creative sets, due to 
Post. 

2.8.0.19 Definition. A c.e. set with a productive complement is called creative. □ 

A creative set cannot be recursive, since its complement is not c.e. 

It turns out that the set of theorems of theories such as Peano arithmetic is creative98 

and thus has no deciders. This prompted Post to choose the name "creative" for such 
sets since it takes more than a mechanical process to decide theoremhood for such 
theories. 

2.8.0.20 Example. K is creative, since it is c.e. and K is productive. □ 

2.8.0.21 Corollary. If A is creative and A < m B, then B is productive. 

Proof. Let / effect the reducibility. Then A < B (negating both sides of x G A = 
f{x) € B). Now apply 2.8.0.17. □ 

2.8.0.22 Theorem. For any productive set A and any Wx C A there is an infinite 
Wy such that Wy C A and WxnWy = 0. 

Proof. At the intuitive level this is obvious, for given a productive / for A we can 
build Wy by explicit enumeration: Set a0 = f(x). Assuming that distinct a 0 , . . . , an 
have been enumerated, let z be a semi-index for Wx U {ao , . . . , an}—a c.e. set by 
closure properties. Accepting for now that z can be computed from x and CLQ , . . . , an, 
wese ta n + i = f(z). 

Now for the mathematical formalities: We will organize inductively the above 
loosely described process, building two related sequences 

WZ0,WZl,WZ2,...,WXn,... 

and 
a 0 , a i , a 2 , . . . , a n , . . . 

such that 

• a,i e A-WZi, using ai = f(zi) 

and 

• WZi+1 = WZi U {at}, 

each for all i, where ZQ = x. 

'Where this set is converted to a set of numbers, as we show how in Section 2.11. 
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From Exercises 2.12.59 and 2.12.60 we know that we have primitive recursive q 
and k such that, for all i, 

Thus the recursive function that builds the sequence Z{ (as a function also of x) is 

fg(0,x) = x 
\g(i + 1, x) =k (g(i, x), q(f(g(i, x))j 

Assuming Wx C A, the set "Wy" that we set out to build is 

f(g(0,x))j(g(l,x))j(g(2,x))1...j(g(n,x)),... 

that is, ran (An./ (g(n, #))). Of course, this range is infinite as the enumeration is 
1-1. By the second bullet, Wx C WZi, for all i, thus, by the first bullet, the built set 
is indeed disjoint from Wx. □ 

The above proof is constructive. Given x and the productive function / (the latter 
by a </>-index) we can construct the set Wy of the theorem, i.e., can compute the y 
using 2.7.3.5. 

Also note that if Wx <2 A men> e v e n though g still enumerates a c.e. set 
ran(An./(#(n, #))), this set does not have the described properties. For example, 
f(x) may not even be in A. 

2.8.0.23 Corollary. A productive set has an infinite c.e. subset. Moreover, this subset 
can be constructed from a phi-index of the given productive function. 

Proof. Take Wx = 0. □ 

2.8.0.24 Corollary. A productive set has an infinite recursive subset. Moreover, this 
subset can be constructed from a phi-index of the given productive function. 

Proof By 2.7.4.4. □ 

2.8.0.25 Example. Let A be c.e. and A n B = C, where C is productive. Then B 
is productive. 

To see this let us construct a productive function for B from a productive function 
/ for C and a semi-index e of A. 

So, let Wx C 5 . Thus 
i4nwxcc (i) 

By 2.7.3.7, we have an h in P f t such that AnWx = Wh{x), for all x. By (1), 
Wji(x) C C, thus f(h(x)) eC - Wh(x) and therefore 

/(fe(aO) G A n 5 - i n ^ (2) 

In particular, f(h(x)) £ A, thus, from (2), f(h(x)) G B - Wx. We found a 
productive function for I?. □ 
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2.9 THE RECURSION THEOREM 

The recursion theorem, by that name, is due to Kleene but owes its existence (and 
proof) to the work of Godel (1931) on the incompleteness phenomenon. We look at 
a few versions of this very powerful tool in what follows, and then come back to this 
comment regarding the connection with Godel's work. 

2.9.0.26 Theorem. (Kleene's Recursion Theorem) If \zx.f(z,xn) G V, then for 
some e, we have </>e (xn) ~ / (e , xn), for all xn. 

Proof Let 0a ^ = \zxn.f(Si(z,z),xn). Then 

/ ( S T ( a , a ) , x n ) - 0 i n + 1 ) ( a , x n ) 

- ^ ? ( a , a ) ( ^ ) by 2.6.0.38 

Take e = S?(a, a). □ 

2.9.0.27 Corollary. (Recursion Theorem—Rogers's version) IfXx.g(x) is recur-
sive. then there is an e such that 4>g(e) = <t>e-

This does not say that g(e) — e. Rather, that the two programs g(e) and e compute 
the same function. 

Proof Let / (# , y) ~ 4>g(x)(y)i f° r aU x, V- Since / G V, 2.9.0.26 applies to yield 
an e such that / (e , y) ~ </>e(y)> f° r all V- D 

2.9.0.28 Remark. It is instructive to see Rogers's direct proof for the corollary: 
Define ip by 

ip(x,y)~(f>^x(x)(y) (1) 

By the normal form theorem, ip G V. Let h be obtained by S-m-n such that 
I/J(X,y) ~ 4>h(x)(y)> f° r aU x-> V- Let a be such that (gh) = (f)a. By (1) we now get 
(for all y) 

<t>h(a){y) - V>(a>2/) - <t>4>a(a)(y) - <f>g(h(a))(y) 

e — h(a) works. 
Note that, in (1), (j)x(x) is not a 0-index unless 4>x(x) | , but this is irrelevant 

to the proof, in which we applied the S-m-n theorem to the computable function ip 
given—in detail—by 

\xyAy(iJLz)T\d({iiw)T(x, x, w)) ,y,zjj 

□ 
2.9.0.29 Corollary. (Recursion Theorem with Parameters) 

If XzyTnxn.f{z,yrn,xn) G V, then there is a 1-1 primitive recursive function h 
suchthat / ( / i ( f m ) , ^ m , x n ) ~ $h(#m)(xn),for all ym,xn. 
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Proof. Let F = Xzymxn.f{S^1{z, z, ym), ym, xn) and a £ N be such that F = 
Az^ m x n .0 i n + m + 1 ) (2 ; ,^ m , f n ) . Thus, 

/ ( 5 m + l K f l i m ) , ^ m , 4 ) ~ ( # ^ m + 1 (a, 7/m, £ n ) ^ V s £ + 1 ( a , a , j 7 m ) ( Z n ) 

Just take h = Ay m .S^ + 1 (a, a, ym) and note that the S-m-n functions are 1-1. D 

2.9.0.30 Corollary. (Recursion Theorem with Parameters—Rogers Style) 
For any g£7Zofm + l arguments, there is a 1-1 primitive recursive function h 

such that 0 $ ^ ) ^ ) = ^ r r a ) , far all ym. 

Proof f = *zymxn4{$zjm) (xn) is in V. Now apply 2.9.0.29. □ 

The reader has noted no doubt that the proofs of all versions of the recursion theorem 
are constructive. For example, in the proof of 2.9.0.30, if g is given as <pw \ then 
we use a new / : / = \zwymxn.<l)(m+1) _ (xn) and, correspondingly, the new h 
will be an S-m-n function dependent on w as well, yielding for all w,ym,xn, 

A.71) _ An) 

2.9.0.31 Remark. (Indebtedness to Godel (1931)) The proof that Godel gave in 
loc. cit. to hisyzr^ incompleteness theorem was based on a modification to the liar's 
paradox (the latter due to the Cretan philosopher Epimenides). Epimenides is credited 
with the sentence "All Cretans are liars". But then, him being a Cretan, the statement 
must be false, so there is at least one Cretan who is not a liar. This is rather unsettling 
since by virtue of him simply making this utterance he forced the existence of truthful 
Cretans! A more unsettling version is the statement "I am lying", for, if I am, then 
I am not, for my statement is false; if I am not, then I am, for my statement is true. 
Godel built an analogous sentence 5? within Peano arithmetic, one that states its own 
unprovability: "I am not a theorem" (of Peano arithmetic). 

Intuitively—and based on the fact that Peano arithmetic cannot prove false state-
ments—such a sentence is neither provable, nor is its negation: Indeed, if Peano 
arithmetic can prove ^ , then it has just proved a false statement. So 5? cannot be a 
theorem. But then it is true, as it says just that! This makes -\5? false, therefore it 
cannot be proved either. 

But let us get back on track. Godel built within Peano arithmetic a so-called 
provability predicate, Q(x), analogous to the Kleene predicate. &(x) says "the 
formula coded by the number x is a theorem". 

Pause. By the way, in honor of Godel, we call such formula-codes "Godel 
numbers".^ 

Godel also devised in his paper a primitive recursive substitution function of two 
variables, s(a,b), which computes the (new) Godel number of a formula obtained 
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from &(x)—the latter of Godel number a—if we replace x by b. This is an S-m-n 
function, but in the context of formulae. 

Next, he proved his diagonalization lemma, that for any formula &(x)9 there is 
an e such that e is the Godel number of the sentence ^"(e). 

He did this as follows: Let us consider the new formula &(s(x,x)) of Godel 
number, say, a. But then, the Godel number of J**(s(a, a)) is s(a,a). Take e = 
5(0, a). Now compare with the statement and proof of 2.9.0.26! 

To conclude this discussion, apply the diagonalization lemma to ~>Q(x) to find 
an m such that m is the Godel number of -i0(ra). So the latter says, "m is not a 
theorem", that is, "I am not a theorem". □ 

2.9.1 Applications of the Recursion Theorem 

2.9.1.1 Theorem. (Rice's Theorem—Revisited) A complete index set is recursive 
iff it is trivial 

Proof [The idea of this proof is attributed in Rogers (1967) to G.C. Wolpin.] 
//-part. Immediate, since %0 = A#.l and XN = Aar.O. 
only //-part. By contradiction, suppose that A = {x : (ftx G C} is nontrivial, yet 

A G K*. So, let a G A and b £ A. Define / by 

f( ) - l b ifx e A 

l a if x £ A 

Clearly, 
xeAifff(x) i A, for all x (1) 

By the recursion theorem (e.g., 2.9.0.27), there is an e such that </>/(e) = </>e-
Thus, e G A iff /(e) G A, contradicting (1). □ 

2.9.1.2 Corollary. If A = {x : 0X G C}, fftew A ^ m 3 AJW/ f/ww A ^ m A 

Proo/ Suppose 
xeAifff(x) eA (*) 

where / is recursive. If e is as above, then e £ A iff </>e £ C iff </>/(e) £ C iff 
/(e) G -A, contradicting (*). □ 

2.9.1.3 Example. K is not a complete index set, that is, there is noC CV such that 

K = {x : c/)x G C} (1) 

Suppose such a C exists. Define 

1 ( \ ~ J ^ if # = 2/ 
I f otherwise 
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By definition by positive cases, ip is computable, so let by 2.9.0.26, e be such that 
^(e, y) ~ <fie(y), for all y. It follows that 

but 

By (2), e £ if and, by (1), 

M*) I (2) 

s ( l / ) t , i f y ^ e (3) 

0e G C (4) 

Let now m / e b e another among the infinitely many indices of </>e, that is, 0e = (j)m. 
By (4), </>m e C. By (1) and the original definition of K9 this entails </>m(ra) | 

which also says (f>e(m) I, contradicting (3). We cannot have (1)! □ 

2.9.1.4 Example. A machine that ignores the input and just outputs itself! Define 
i\) as I/J = Xxy.x. By 2.9.0.26 there is an e such that </)e(y) = ip(e, y) = e, for all 
y. □ 

The next application is about self-referential (recursive) definitions of functions 
F that may look arbitrarily complicated as the one below 

F ( £ n ) ~ / ( . . . J p ( . . . F ( . . . ) . . . ) . . . F ( . . . F ( . . . F ( . . . ) . . . ) • • • ) • • • ) ( ^ 

where nesting of occurrences of F is allowed (unlike the case of primitive recursion). 

For example, the Ackermann function Xnx.An(x) involves some nesting of A inside 
A in its definition (2.4.1.2). This function's definition is an instance of (1) as we can 
immediately see if we rephrase it a bit: An(x) is given by 

TxH-2 ifn = 0 
An(x) = < 2 else if x = 0 

I An^1(KAn{x — 1)) otherwise 

We are interested in just those cases that the right hand side of (1), the " / ( . . . ) " 
consists only of "computable operations", meaning that the right hand side can be 
built by a P-derivation modified to utilize F as an initial function. Another way to 
describe the shape of the right hand side of (1) is in terms of closures (cf. 1.6.0.12). 

2.9.1.5 Definition. We say that a function is partial recursive in F iff it is in the 
closure of X U {F} under composition, primitive recursion, and (/xy), where X is the 
already adopted set of initial functions of V. □ 

2.9.1.6 Remark. It follows from 2.9.1.5 that ifFeV, then a function that is partial 
recursive in F is just partial recursive—see Exercise 2.12.70. 
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In particular, if we replace F throughout the right hand side of (1) by a partial 
recursive function <f>e of the same arity as F , then we end up with a partial recursive 
function. D 

In (1) F acts as a. function variable to "solve" for. A solution h for F is a specific 
function that makes (1) true for all xn if we replace all occurrences of F by h. 

We next show that if the right hand side of (1) is partial recursive in F, then 
(1) always has a partial recursive solution for F. That is, 

(3e) (if F in (1) is replaced everywhere by </>(n\ (1) becomes true for all xn) (2) 

Indeed, the function \zxn.G{z,xn) given below by substituting all F in the right 
hand side of (1) by \zxn.<j>z (xn) is partial recursive by 2.9.1.6. 

G(z,xn) (3) 

^ / ( . . . ^ ( . . . ^ 

By the recursion theorem there is an e such that 

G(e, xn) ~ 0^n) (xn), for all xn 

Thus, (3) yields 

That is, setting the function variable F equal to 0e we have solved (1), and with a 
P-solution at that! 

The above technique says nothing about uniqueness of solution for F, or totalness. 
Such issues must be explored separately by methods other than the recursion theorem. 

2.9.1.7 Example. Here is a second solution to the question "is \nx.An(x) e TIT. 
An(x) is given by 

An(x) = < 
x + 2 ifn = 0 
2 else if x = 0 
An_Ll[An{x — 1)) otherwise 

We rewrite the above using F as a function variable and setting F(n, x) — An{x). 
Thus, F is "given" by 

(x + 2 ifn = 0 
F(n,x)=<2 elseifx = 0 (4) 

[ F ( n — l ,F(n , x — 1)) otherwise 
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(4) has the form (1) of the preceding general discussion, and all assumptions are met. 
Thus, for some e, F = <fre * works. But is this cjye ' total? Is it the same as An(x)l 
Yes, provided (4) has a unique total solution! That (4) indeed does have a unique 
total solution is an easy (double) induction exercise that shows F(n, x) = Ff(n, x) 
for all n, x if 

{x + 2 if n = 0 

2 elseifx = 0 
F'(n - l,F'{n,x - 1)) otherwise 

The existence (of a solution), is of course, provided by the recursion theorem. See 
Exercise 2.12.71. □ 
2.9.1.8 Example. Here is a recursion that goes "backwards", that is, defines a func-
tion at input n in terms of its value at input n + 1. Suppose that g is recursive and 
define 

h(n,xk)~ln _ if2(n<^) = ° (1) 
1 h(n + 1, Xk) otherwise 

Replacing the h in the right hand side by (jyz
 + \ we have a partial recursive G: 

n( -+ x j n ifg(n,xk) = 0 
G(z,n,xk)~ < .(fc+i), ( 1 _ , . . (2) 

\<pz J(n + l,Xk) otherwise 

By the recursion theorem, there is an e such that <f>i + ' solves (1): 

€»H„A) =,(" M-.*)-o (3) 
I 0e (n + 1, £fc) otherwise 

What is the import of this example? That we rediscover the computability of 
functions defined by /L Indeed, we see that <pi + (0,x*k) — (Jly)g(y, xk), for all x*k 
(cf. 2.7.1.2 and Exercise 2.12.72). □ 

2.10 COMPLETENESS 

The concept of reducibility has been instrumental toward certifying in the preceding 
papes that several problems were unsolvable or non c.e. culminating to the proof 
of Rice's lemmata and theorem. At the heart of the use of the technique was the 
observation that when A < m B ov A <i B, then B is "more unsolvable" than 
A. Does this ordering, < m (resp. <i) , have a "maximal" element among c.e. sets? 
Indeed, it does have several. Such sets are called m-complete (resp. 1-complete). 

2.10.0.9 Definition, (m- and 1-completeness) A set A is called m-complete (resp. 
1-complete) iff the two conditions below hold 
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(1) ,4 is c.e. 

(2) If S is any c.e. set, then S <m A (resp. S <i A). □ 

2.10.0.10 Example. Kx = {[x,y] : </>x(y) 1} is 1-complete. 
Indeed, first K\ is semi-recursive since 

zeKx = (3y)(3y)(z = [s,2/] A </>x(y) ± ) 

Second, let S be c.e., that is, S = We for some e. Then x E 5 = [e, x] E i^i. Thus, 
S < i Ki , since Xx. [e, x] is 1-1. □ 

2.10.0.11 Example. iT 1-complete. Indeed, first we know that K is semi-recursive. 
Second, let S be semi-recursive. Define 

(o ifxeS 
11 otherwise 

^ is defined by positive cases, so it is computable. By S-m-n, there is an 1-1 h E VIZ 
such that, for all x and y, we have i/;(x,y) ~ 4>h(x) (y)- Hence 

^ ) ( 2 / ) " { t otherwise 

and therefore 
<l>h(x)(Hx)) ±= x e S (l) 

(1) says "5 <i JfiT". D 

2.10.0.12 Proposition. Ace. set A is m-complete iff S < m Aforsomem-completeS. 

Proof. For the //*, let I? be c.e. Then B <m S. Hence (Exercise 2.12.64), 5 < m A 
For the orc/v if the assumption on A and the semi-recursiveness of S will do. □ 

2.10.0.13 Corollary. If A is m-complete, then it is creative. 

Proof. By assumption, K < m A. By 2.8.0.21, A is productive. But A is c.e. □ 

It is clear that all 1-complete sets have the "same difficulty" and the same is true of 
all m-complete sets, for if A and B are 1-complete, then we have both A <i B and 
B <i A—applying the second condition from 2.10.0.9 first for B and then for A. 
This "equal difficulty (or complexity)" concept has a symbol: We write A = i B for 
A <i B A B <i A and A = m £ for ,4 < m 5 A B <m A. 

2.10.0.14 Example. Each of = i and = m are equivalence relations. Cf. Exer-
cise 2.12.65. □ 
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2.10.0.15 Definition. The equivalence classes (cf. 1.2.0.29) of =1 and = m are called 
1-degrees and ra-degrees, respectively. If A =1 5 w e then say that "A and 5 have, 
or belong to, the same 1-degree". If A =m B we then say that "A and B have, or 
belong to, the same ra-degree". □ 

2.10.0.16 Example. Thus, K and K0 belong to the same 1-degree and to the same 
m-degree. By Theorem 1.2.0.30, K e [Ko]^ and also K £ [#o]=m. □ 

2.10.0.17 Example. Since trivially A <i B implies A <m B we also have that 
A = i B implies A =m B. Therefore, for any A, we have [A]- C [A]= (cf. 
1.2.0.30). * m D 

Along with a concept of "having the same complexity" one needs a concept of 
"having strictly less (more) complexity". 

2.10.0.18 Definition. We write A < m B (resp. A < i B) for A <m B A -.B <m A 
(resp. A < i 5 A n 5 < i A). □ 

2.10.0.19 Example. A <m B is equivalent also to A < m B A ->A = m B. A similar 
observation applies to < i . D 

A usual shorthand for denoting the negation of a relation R is to write ft. Thus we 
may write B j£m A for -«B < m A and 5 ^ m A for -^B =m A . 

2.10.0.20 Example. Is there any set A such that A < i Kl Well, yes! Every 
recursive set A satisfies this inequality, since K <i A cannot be; it would render A 
non recursive. □ 

How about c.e. sets? Are all non recursive c.e. sets 1-complete? Post has answered 
this negatively. 

2.10.0.21 Definition. (Simple sets) A set S is called simple if it fits the three follow-
ing conditions: 

(1) S is c.e. 

(2) S is infinite. 

(3) S intersects" every infinite Wx. D 

Thus a simple set is c.e. but not recursive (cf. Exercise 2.12.66). Post proved, 
constructively, that simple sets exist. 

2.10.0.22 Theorem. (Post (1944)) Simple sets exist. 

'That is, for every such Wx, we have S n Wx ^ 0. 
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Proof We construct one! In building (enumerating) a simple set S by stages, we 
will achieve requirement (1) of Definition 2.10.0.21 by enumerating computably the 
set that we are constructing. We achieve requirement (2) by making S have large 
"gaps" in its enumeration, thus ensuring a "large" complement. 

Requirement (3) is met by systematically putting into S at least one member from 
each Wx—and therefore from each infinite Wx.m We meet (3) by modifying the 
selection function (2.7.3.2): For each x, we select a member m of Wx and place it 
in the under construction S as long asm > 2x. This guarantees that our S intersects 
every infinite Wx, as it will have a member such as m. 

This process being computable, makes S c.e. On the other hand, in every interval 
of integers, 0 , . . . , 2m a k will be in S only if k > 2i for some i < m. The largest 
"z" that would contribute a "fc" is m — 1. Thus there are at most m members of S in 
the interval, and hence at least ra 4-1 members in S. m being arbitrary, S is infinite. 

Mathematically, the enumerator / is given, for all x, by 

f{x) ~ (ifJLz)(T(x, (s)o, (s)i) A (z)o > 2 X ) ) Q 

Clearly, / £ V, and thus ran(/) is c.e. □ 

2.10.0.23 Corollary. There is a c.e. set that is not m- nor 1-complete. 

Proof. The simple set S fits the bill, for were it m-complete it would then be also 
creative by 2.10.0.13. But a creative set has a productive complement which contains 
an infinite WE. □ 

From the above: A simple set cannot be creative. 

2.10.0.24 Example. Myhill proved that creative sets are 1-complete. This entails 
that the concepts of 1-complete and m-complete coincide, since, by 2.10.0.13, if 
A is m-complete then it is creative, and therefore 1-complete. But, trivially, 1-
completeness implies m-completeness. 

We show here a less involved and weaker result that creative sets are m-complete. 
So, let A be creative and let / be a productive function for A. Now A is c.e. so 

we only need to show that K < m A (cf. 2.10.0.12). 
Define, for all x, y, z, 

( t otherwise 

ip is defined by positive cases hence is computable. By S-m-n we have a 1-1 primitive 
recursive g of two variables such that ip(x, y, z) ~ (t>g(x,y)(z)i f° r aU x-> 2/>z- Thus, 
by 2.9.0.30, there is a 1-1 (primitive recursive) function h such that 

09(Hy),y) = <t>h(y) (!) 

100We cannot algorithmically focus on infinite Wx only, since {x : Wx is infinite} is not c.e. (cf. Exercise 
2.12.51). 
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for all y. Hence, 

, / , / N x f ° ifz = f(h(y))AyeK , , 
^ ( y ) W ^ 0 , ( M y ) , y ) W ^ ^ ( M y ) , y ^ ) ^ | t o t h e r w i s e

 ( 2 ) 

Taking domains, we have Wg^y)^x) = Wh(y) by (1) and 

Wh™ " \ 0 otherwise ( 3 ) 

by (2). We claim that K < m A via (/h). To see this, let first y e K. Thus, by (3), 

Wh{y) = { / (%) )} (4) 

We argue that f(h(y)) e A. For if not, then f{h(y)) E "A, that is, Wh(x) C A, 
by (4). Since / is a productive function for A we also obtain f(h(x)) e A — Wh(x) 
which is untenable by (4). This settles the claim. 

Conversely, let y £ K. We want f(h(y)) £ A, that_is, f(h(y)) e A This is 
so, since, by (3), in this case we have Wh(y) = 0 C A, thus, by productiveness, 
f(h(y))eA-Wh{y)=A. 

All told, yeK iff f(h(y)) e A. 
Pause. There is a short distance from this result to the full result of Myhill's 

that proves A to be 1-complete. The latter readily would follow if / , the productive 
function, were 1-1—in which case so would be (fh). It turns out that we can prove 
that we can always choose a 1-1 productive function, a proof we will not get into 
here. See Rogers (1967) or Tourlakis (1984).^ □ 

2.11 UNPROVABILITY FROM UNSOLVABILITY 

This section draws from background developed in Section 1.1 and in particular in 
Subsection 1.1.1. Nevertheless, we will need to indulge in some repetition here, 
aiming to make this section self-sufficient on one hand, and, on the other, making 
the underlying logic that we use and discuss here more formal than we managed to 
get away with so far,101 since in the present section logic will not be just a tool, but 
primarily will be an object for study—precision is called for! 

We will prove here a semantic version of Godel's first incompleteness theorem 
that relies on computability techniques. In this form the theorem states that any 
"reasonable" axiomatic system that attempts to have as theorems precisely all the 
"true" (first-order) formulae of formal arithmetic102 will fail to be complete in this 
sense: There will be infinitely many true formulae that are not theorems. Imitating 

101 In this volume we apply logic informally, we announced on p. 2. 
102 What makes arithmetic formal is its foundation on axioms and precise rules of logic, where the form of 
formulae, rules of inference and proofs matters. 
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Cantor's separation of infinities of sets, between "small" (enumerable) and "large" 
(non-enumerable) we will show that the set of true formulae of arithmetic is "com-
putably large" (non c.e., indeed, productive) while the set of provable formulae is 
"computably small" (c.e.). Thus the two cannot coincide. 

The qualifier reasonable could well be replaced by practical. One must be able 
to tell, algorithmically, whether or not a formula is an axiom—how else can one 
check a proof, let alone write one? "True" means true in the standard interpretation 
of the abstract symbols of the formal arithmetic, terminology that we will carefully 
introduce in what follows. 

Now, in order to "do" axiomatic arithmetic we need, first of all, a first-order 
(logical) language, which we use to write down formulae and proofs. Before we get 
to the language—that is, the set of "important" strings, namely, terms and formulae, 
of our axiomatic arithmetic—we need an alphabet. This alphabet has two parts: 
One that is standard in all logical languages {logical symbols) that we employ to do 
mathematics, namely 

(1) Two symbols, v and # , used to generate all the (infinitely many) formal names 
of variables of natural number type. These names are 

v # . . . # v , f o r a l l r c > 1 (A) 

n#'s 

(2) The logical part also contains the following symbols (see also Subection 1.1.1) 

- ,V ,= ,V, ( , ) 

The other part of the alphabet is specific to doing arithmetic. It contains the special 
symbols 

0,5,-h, x,@,< 
These are the nonlogical symbols for arithmetic, which we—in principle—can inter-
pret any way we please, but we will interpret them in the standard (expected) way, 
namely, 

Abstract (language) symbol 
0 

s 
+ 
X 

@ 
< 

Concrete interpretation 
0 (zero) 

Xx.x + 1 
Xxy.x + y 
Xxy.x x y 

Xxy.xy 

Xxy.x < y 
We next turn to the definition of the objects, technically known as terms, which 

the language can express—beyond the obvious objects that are the variables and the 
constant 0. 

2.11.0.25 Definition. A term is a variable or the symbol 0, or—assuming that t and 
s designate terms—any of St, (t + s), (t x s), (t@s). If a term is variable-free it is 
called closed. □ 
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One forms formulae now in the standard way (see also Subsection 1.1.1) start-
ing with the atomic formulae, and then building more complicated ones using the 
connectives and the quantifier. 

2.11.0.26 Definition. An atomic formula has one of the forms t — s or t < s. □ 

2.11.0.27 Definition. A formula, or well-formed-formula (wff) is one of: 

(a) atomic 
or, assuming that &/ and 88 stand for formulae, and x stands for any variable, 

(b) (-*0 
(c) ( J ^ V 9S) 

(d) ((V*K) 
A formula with no free variables is closed', it is also called a sentence. □ 

Unlike the case of Subsection 1.1.1, we adopt here only three logical operators since, 
as we know, all the others, namely, A, —», =, 3, can be introduced by definitions, such 
as "<£/ —► 88 means - W V 88 ", etc. The priorities of p. 8 hold for all these derived 
operators as well. 

In all that follows, t, s will stand for any terms; ^ , 8S, *€, 8ft will stand for any 
formulae; and x, y ,z , in this section and in Subsection 2.11.1, will stand for any 
formal variable—such as v # # ^ , etc. 

They are all metavariables {syntactic variables). 
Each of these may be embellished by subscripts and/or primes, thus we can 

effectively generate infinitely many metavariables of each sort. 

As outlined in Subection 1.1.1, one omits redundant brackets by adopting priorities 
for the various connectives and operations. The priority sequence from highest (least 
scope) to lowest is taken to be 

S,@,x,+ 
for operations. For the logical operations V, -> and V priorities are as in Subsec-
tion 1.1.1, p. 8. 

Pivotal in this (and the next sub-) section is the expression "(f)x(x) t " (cf. 2.3.0.9) 
of computability. We will want to know that it is definable by a formula in the 
language of arithmetic so that its central relevance to the incompleteness problem 
of arithmetic can be established. What "definable" means hinges on what we mean 
when we say that "a closed formula of arithmetic is true". 

Thus we immediately visit the semantics of the language of arithmetic. The 
traditional way to do so is to define the so-called Tarski semantics of any first-order 
language, and then apply it to the special case of the language of arithmetic—as was 
done in Tourlakis (2003a, 2008). Instead we will take a shortcut here, following 
Smullyan (1992). 
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2.11.0.28 Definition. (Interpretation of Closed Terms in N) The meaning or in-
terpretation of any closed term t, in symbols tN, is some member k of N, defined as 
follows (cf. the table on p. 222). We will write tN = k. 

(1) 0N = 0 

(2) (Stf = tN + 1 

(3) (t + sf = tn + sN 

(4) (t x sf = tN-sN 

(5) (ms)N = {tN)sN 

The symbol = above, and the symbols + and • on its right, are the informal equals, 
plus and times over N, respectively. As usual, we will write ab rather than a • b when 
a and b are natural numbers. □ 

2.11.0.29 Definition. (Numerals) For any natural number n the (meta)symbol n is 
a short name for the closed term 

SS--S0 (N) 
n times 

and it is called a numeral (for n). □ 

Clearly, 0 denotes the formal 0, since, in this case, we have an empty S'-prefix 
in (TV) above. Intuitively, n is a formal representation of n in the language of 
arithmetic. Conversely, 

2.11.0.30 Example. (Interpretation of Numerals) For every n, we have nN = n. 
We can see this by induction on n: For n = 0, we have 0N = 0N = 0—the first 
equality by the previous remark, the second by (1) in 2.11.0.28. We next fix n and 
take the I.H. that nN = n. 

For the I.S. we compute as follows: 

r r+lN=2-n- 0 - 2 9 (5n)N 

=2.11-0.28 JJN + 1 

=LH- n + 1 □ 

Lastly, we define when a closed formula in the language of arithmetic is true. This is 
done by induction on the complexity of a formula, that is, the number of occurrences 
(counting repetitions) of the symbols ->, V, V in the formula. 

Recall from Subsection 1.1.1, p. 7, that ^ ( x ) means that x is the only free variable 
of formula srf. 
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2.11.0.31 Definition. (Truth of Formulae) For closed t and s,t < s and t = s are 
true precisely when tN < sN and tN = sN are true over N. 

For closed formulae &/ and 38, -ysrf is true iff srf is not; si V 3% is true iff at least 
one of srf or 3S are. (Vx)«e^(x) is true iff, for all n G N, «e^(n) is true. D 

We embark now on stating and proving Godel's First Incompleteness Theorem. 
As this speaks of any recursive axiomatization of arithmetic, that is, any first-order 
theory that attempts to prove all the true sentences of arithmetic, starting from a 
recognizable set of special axioms, we will outline what such an axiomatic system 
would look like, what its components, (l)-(4) must be. 

(1) A recursive set of strings: The well-formed formulae (wff). 

(2) A recursive subset of wff that characterize the "behavior" of (the symbols of) 
arithmetic: These are the special (or nonlogical) axioms for arithmetic. We will 
leave them unspecified, beyond the requirement of them forming a recursive set, 
so that the requirement that the incompleteness theorem "speaks of any recursive 
axiomatization of arithmetic" is met.103 

(3) The logical axioms (see Subsection 1.1.1) 

(4) The modus ponens rule of inference (see Subsection 1.1.1) 

2.11.0.32 Remark. 

(I) Intuitively, (1) above says that there is an algorithm that, for every string over 
the following alphabet 

- . , V , = , V , ( , ) , t ; , # , 0 , 5 , + , x , < , @ , ; (B) 

will decide the string's membership in wff—i.e., whether or not the string 
parses correctly as a formula. The reader with some programming under his 
belt, who has not skipped over Subection 1.1.1, will not have any trouble 
believing that he can actually write a program that does just that. We will not 
expand at such level of detail here.104 

(II) The symbol ";" in (B) will be justified shortly. 

(Ill) But what do we mean, mathematically, when we say that a set of strings is 
recursive? After all, until now all our recursive sets were sets of numbers (or of 

103 A particularly famous choice of axioms is due to Peano—the so-called Peano Arithmetic, for short 
"PA". It has axioms that give the behavior of every nonlogical symbol, plus the induction axiom schema: 

0>{O) A (Vx) (^ (x ) -> &(Sx)) -+ (Vx)^ (x ) 

This "schema" (or form) gives one axiom for each choice of wff @>. 
104A rigorous mathematical proof of the recursiveness of the set of all formulae over the alphabet (B) 
is not difficult, but is tedious. The reader who would like to see how this is done may refer to Tourlakis 
(2008). 
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tuples of numbers). Well, nothing has changed! Imagine that the symbols in our 
alphabet (B) above, in precisely the order given, are just (strange) symbols for 
the numbers 1 through 15. Then any string over the alphabet denotes a number 
base 16105 (if you are comfortable with hexadecimal numbers like BBC—i.e., 
3004 in decimal—then you have to also be with what I have just said). For 
example, (yv#v)v#v = 0 denotes (in decimal notation) 5804772525881. 
Thus, to speak of a set of strings over (B) is the same as talking about a subset 
ofN. 

Notation. For any string T over the alphabet (B), T" 1 = x means that x is 
the decimal value of the string T. Thus we can recast the concluding example 
above in the notation r(\/v#v)v#v = 0n = 5804772525881. 

(IV) We have said right at the beginning that the set of axioms must be reason-
able, i.e., recognizable. That is precisely what item (2) above asks for, when 
stipulating recursiveness. Since there are in principle infinitely many differ-
ent ways to choose axioms for arithmetic, the correct approach is to "stip-
ulate" recursiveness—as in "let us assume that the axioms are chosen to be 
recursive"—rather than expect it to be an inevitable fact. 

Indeed, the set of all true formulae of arithmetic is a fine set of axioms for 
arithmetic, since from that axiom set precisely all true statements of arithmetic 
are derivable (the tools of Subsection 1.1.1 lead immediately to this obvious 
fact). 
Except for one thing: This set of axioms is not recognizable! See 2.11.0.36. 

But don't we want to be able to recognize all the axioms, including the logical 
ones? Yes, but this latter, fixed, set of axioms that does not change from 
one mathematical theory to another, can be proved to form a recursive (rec-
ognizable) set. Intuitively, a formula can be recognized to be a logical axiom 
just because of its form (cf. 1.1.1). Again the details are elementary but very 
tedious and we will omit them. 

We know that the union of two recursive sets is recursive, thus the full set of 
axioms is recursive once we designed the special axiom set to satisfy (2). 

(V) It is also worth observing that the single rule of inference, modus ponens, 
is recognizable by its form. That is, there is a recursive relation of three 
arguments, MP(x1y,z), which is true precisely when, for some formulae 
3C and ^ , we have either x = r JH, y = r3£ -> ^ ~ \ and z = r ^ n ; 
or x = r$r -> ^ n , y = r i T n , and z = r ^ n , where (see Section 1.1.1) 
3£ -» <& abbreviates -. .T V <&. □ 

105Why not number the symbols in (B) by 0 through 14 and work base 15? Because we will have trouble 
with strings such as ->0 < 0. The "digit" in the most significant position is (of value) 0 and we lose 
information as we pass to a numerical value. I.e., both -ifj < 0 and 0 < 0 denote the same number. 
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2.11.0.33 Lemma. (Informal) The set of all theorems of an axiomatic arithmetic as 
this has been described in (l)-(4) above is c.e. 

Proof (Informal) We will use the symbol ";" of the alphabet (B) as "glue" to 
concatenate all the formulae in any given proof that we may write. I.e., we explicitly 
write ";" once between every pair of consecutive formulae 

of a proof. We thus convert the sequence to a single string (over (B)) 

^ i ; ^ 2 ; . . . ; ^ n ii) 

We can think of any expression (string) like (i) above as a base-16 notation of a 
number. 

Now let us have the relation P(x, y) stand for the statement: For some proof 
&i,&2,..-,&n> it is the case that y = r J ^ # J ^ # . . . #«^n~I and x = r^*n

n . 
It can be proved that P(x,y) is recursive: Intuitively, one first needs to express 

the (given in decimal) numbers x and y in base 16, that is, convert them into strings 
over (B). 

One can now test (algorithmically; being able to tell an axiom from a non axiom 
and to perform modus ponens algorithmically helps here!) whether or not the string 
obtained from y has the form (i) and, if so, whether it is the "glued form" of a proof 
whose last formula is the string extracted from x. If the test succeeds, then P(x, y) 
is true, else it is false. 

Let next @(x) stand for "the representation of x in base 16 is a string that is a 
theorem of arithmetic". Then ©(a;) = (3y)P(x,y) and we are done by the projection 
theorem. □ 

2.11.0.34 Corollary. The set of all closed theorems (theorems that are sentences) of 
an axiomatic arithmetic as this has been described in (l)-(4) above is c.e. 

Proof. Computably build two lists simultaneously: Listl is that of the preceding 
lemma. For each sentence enumerated in Listl, copy it in List2. □ 

Following Smullyan (1992) we will call a recursive axiomatization of arithmetic 
correct iff all the nonlogical axioms are true in the standard interpretation given in 
this subsection. For example, the Peano axiomatization is correct. 

Since the only rule of inference is modus ponens and we have «ê , srf —> S3 \=taut 
88, it follows that all the theorems of a correct axiomatization are true in the standard 
interpretation. But are all truths theorems? 

Let us call Complete Arithmetic, for short CA, the set 

{rSn : S is a true sentence of arithmetic} 

We now have: 
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2.11.0.35 Theorem. (GodePs First Incompleteness Theorem) Every correct and 
recursive axiomatic system for arithmetic that satisfies (l)-(4) above is incomplete 
in the sense that its set of closed theorems cannot equal the set CA. 

Proof In view of Corollary 2.11.0.34, it suffices to prove that CA is not c.e. To this 
end, consider the two sets of sentences below: 

K — {r<fe(S) t n : <fe(S) t is true as interpreted over N} 

and 
Q = {r<fe(5) r : a 6 N} (1) 

Before we proceed, let me note that "(fe(a) -f" is an abbreviation of a formula of 
arithmetic—in other words, it can be written down, in principle, using no more than 
the symbols from the alphabet (B), and this formula will say (i.e, will be true iff) 
"0a(a) t holds" (see next subsection). Thus, 

K = {rfc(S) r:aeK} (2) 

Now, given any a e N, we can construct the formula <j>a(a) t» which, using a 
different abbreviation, is -i(3y)T(a,a,y). That is, the function / that on input a 
outputs r(/>a(S) fn is, intuitively, computable.106 Thus 

K < K (3) 

by (2), since (2) says a e K iff f(a) G K. On the other hand, 

Q = ran(/) (4) 

by (1). Thus, K is not c.e., while Q is c.e. But CA D Q = K, thus CA cannot be c.e. 
by closure properties. □ 

Note the emphasized "every" in the theorem. It draws attention to the fact that we 
have not fixed any particular "reasonable" theory: whatever we have said holds for 
all correct, recursive theories that axiomatize arithmetic. 

The main result in the above proof was that CA is not c.e., a fact derivable irrespective 
of correctness. Thus, that the set of theorems of the axiomatic theory does not equal 
CA holds even without the correctness assumption. On the other hand, it would be 
unreasonable to expect an "incorrect" axiomatization to have all its closed theorems 
in CA anyway. 

2.11.0.36 Corollary. CA is productive. 

Proof By (3) above and 2.8.0.17 we have that K is productive. Then, by 2.8.0.25 
and CA D Q = K, we have that CA is productive. □ 

106If one decides to verify this carefully, he will find that / is in fact even primitive recursive. 
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The corollary and 2.8.0.22 establish that not only we miss infinitely many true 
arithmetic sentences in any recursive axiomatization of arithmetic, but, moreover, we 
can algorithmically list an infinite subset of these missed true sentences. 

Pause. Why "subset"?** 
Indeed, the recursive axiomatization has a c.e. set of closed theorems Wx, by 

2.11.0.34. By correctness, we have that Wx C CA. By 2.8.0.22 we can build an 
infinite c.e. set, Wy—in CA—that avoids all of Wx. 

2.11.1 Supplement: cj)x{x) t is Expressible in the Language of 
Arithmetic 

The title of this subsection means that there is a formula of arithmetic, let us call it 
£^(x), such that, for all n, (f>n(n) t is true iff &/(n) is true—the latter in the sense of 
Definition 2.11.0.31. 

2.11.1.1 Definition. A relation R{x) over the natural numbers—that is, a relation in 
the metatheory of formal arithmetic—is expressed (also called defined) by a formula 
of arithmetic, ^?(x), iff for all n G N, we have 

R(n) is true iff 3§(n) is true 

Suppressing reference to ^ ( x ) we can also say that R(x) is expressible (or 
definable, in the language of arithmetic). 

The definition can be extended in the obvious way in the case of relations of many 
variables. □ 

Let us next define the set of arithmetical relations on the set of natural numbers.107 

2.11.1.2 Definition. The set of arithmetical relations is the smallest set of relations 
over the set of natural numbers that satisfies: 

It contains the "initial" relations (of three variables) z = x + y, z = x • y, and 
z = xy, where the exponentiation is the "ex" of Example 2.1.2.14 but we have 
here reverted to the standard notation. 

Moreover, 

(1) If Q(x) and P{y) are in the set, then so are ~^Q(x) and Q(x) V P(y). 

(2) If R(y, x) is in the set, then so is (\/y)R(y, x). 

(3) If Q(x) is in the set, then so are all its explicit transformations. 

107The arithmetical relations have a lot of tolerance for variations in their definition: Sometimes as much 
as all of 7Z* is taken as the "initial" arithmetical relations. Sometimes as little as z = x + y and z — x-y. 
For technical convenience we have added the graph of exponentiation rather than choosing the most 
minimalist approach. 
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Explicit transformations [Smullyan (1961) and Bennett (1962)] are exactly the 
following: substitution of any constant into a variable, expansion of the variables-
list by "don't care" variables (arguments), permutation of variables, identification 
of variables—that is, Grzegorczyk operations (ii)-(iv) (cf. 2.1.2.6), albeit applied 
to relations. □ 

Clearly the set of arithmetical relations is closed under the remaining Boolean 
connectives and (3y). 

2.11.1.3 Lemma. Every arithmetical relation is expressible in the language of arith-
metic, over the alphabet (B) of p. 225. 

Proof We proceed by induction along the cases of Definition 2.11.1.2. The basis 
contains three cases, z = x + y and z = x • y and z = xy. 

We argue that the metamathematical relation z = x 4- y is expressed by the formal 
z = x + y of arithmetic. 

This requires us (cf. 2.11.1.1) to establish for all m, n, k: 

m = n + k holds iff fh = n + k is true (*) 

Indeed, 

m = n + fcistrue iff (2.11.0.31) raN = (n + A?)N is true 
iff (2.11.0.28) raN = nN + kN is true 
iff (2.11.0.30) m = n + k is true 

The verifications for the relations z — xy and z = xy are omitted being entirely 
analogous. We leave it to the reader to verify that if R(x) and Q(y) are expressed 
by the formulae <s/(x) and 3S(y) respectively, then ->R(x) and R(x) V Q(y) are 
expressed by - ^ ( x ) and s/(x) V 3§{y), respectively. 

Next, we show that (\/y)R(y,xr) is defined by (Vy)^ (y ,x r ) , if R(y,xr) is 
defined by ^/(y, x r ) . We are given, for any c, 6 i , . . . , br in N, that 

R(c,&i,... ,6r) is true iff £/(c,b\,... ,6r) is true (**) 

Now, we fix &i, . . . , br in N. (Vy)R(y, 6 i , . . . , br) holds iff for all c e N we 
have that R(c, &i,... ,6r) holds. By (**) this is equivalent to saying "for all 
c G N we have «^(c, 6 i , . . . , 6r) is true". By 2.11.0.31 the latter says precisely 
(Vx)^(x, &i, . . . , 6r) is true. 

We next look into explicit transformations. Let then Q(y,xr) be defined by the 
formula srf(y, x r ) . Then, for any fixed i £N,Q(i,xr)is clearly defined by si(i, x r ) , 
since for all a, b\,..., br we have Q(a, b\,..., br) is true iff s/(a, b\,..., br) is true; 
in particular, Q(i, b±,..., br) is true iff £/(i, b\,..., br) is true. 

The case of identifying or permuting variables being trivial, we conclude by 
looking at the case of adding one "don't care" variable (a case that is extensible by a 
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trivial induction to any fixed number). So let j ^ ( x r ) define Q(xr) and let z be a new 
informal variable. 

I will argue that «e^(xr) Az = z defines the relation R = Xzxr.Q(xr): 
We have, on one hand, for all b\,..., br: 

Q(&i,... ,6r) is true iff «e^(6i,... ,6r) is true (* * *) 

On the other hand, for all c, 6 1 , . . . , br, Q(6 i , . . . , br) = R(c, 6 1 , . . . , 6r) and, since 
c = cis true (2.11.0.31), 

gf(bu...A) = J ^ ( 6 I , . . . , br) A (c = c) 

Along with (* * *) we get 

R(c, bi,..., br) is true iff ^(fc>i,..., br) A (c = c) is true D 

Thus, to show that ^ ( x ) t is expressible in the language of arithmetic it suffices, 
because of the preceding lemma, to prove that it is arithmetical. In turn, since 
(j)x(x) t = -*(3y)T(x, x, y), it suffices to prove that the Kleene predicate is arithmeti-
cal. 

It will so follow if we can prove that every function / G VIZ has an arithmetical 
graph, for then if XT is the characteristic function of T, we will have that XT (X, y, z) = 
w—and therefore XT{X, y, z) — 0 by explicit transformation—is arithmetical.108 

Items (7)-(10) below are due to Grzegorczyk (1953). 

2.11.1.4 Lemma. The following relations are arithmetical. 

(1) x = 0 (and hence x ^ 0) 

(2) x < y (and hence x < y) 

(3) z = x-y 

(4) x\y 

(5) Pr(x) 

(6) Seq(z) 

(7) Next(x, y) (meaning x < y are consecutive primes) 

(8) pow(z, x, y) (meaning x > 1 and xy is the highest power of x dividing z) 

(9) Q(z) (meaning z has the form p§p\p\ • • ■ Pn+1 for some n) 

(10) y = pn 

108G6del proved all this without the need to have exponentiation as a primitive operation in arithmetic. 
However, adopting this operation makes things considerably easier and, as mentioned earlier (footnote 107 
on p. 229), it does not change the set of arithmetical relations. 
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(11) z = exp(x, y) (cf. 2.1.2.40) 

We need not worry about bounding our quantifications, for it is not our purpose to 
show these relations in VR*. Indeed we know from earlier work that they are in this 
set. This time we simply want to show that they are arithmetical. 

Proof. 

(1) x = 0 (and hence x ^ 0): x = 0 is an explicit transform of x — y + z\ x ^ 0 is 
obtained by negation. 

(2) x < y (and hence x < y): This is equivalent to (3z)(x + z = y). 

(3) z = x — y: This is equivalent toz = 0Ax<yWx = z + y. 

(4) x | y: This is equivalent to (3z)y = xz (I am using "implied multiplication" 
throughout: "xy" rather than "x x y" or "x • y"). 

(5) Pr(x): This is equivalent to x > 1 A (Vy)(y | x ^ ? / = l V y = x). 

(6) Seq(z): This is equivalent to z > 1 A(\/x)(\/y)(Pr(x) APr(y) Ax < yAy\z -> 
x | z ) . 

(7) Next(x,y): This is equivalent to Pr(x) A Pr(y) A x < y A -i(3z)(Pr(z) A 
x < z A z < y). 

(8) pow(z, x, y): This is equivalent to x > 1 A xy | z A -^xy+l \ z. 109 

(9) Q(z): This is equivalent to Seq(z) A - 4 | z A (yx)(yy)(Next(x, y) A y \ z -> 
(3w)(pow(z,x,w) Apow(z,y,w + 1))). 

(10) y = pn: This is equivalent to (3z)(Q(z) A pow(z,y,n + 1)). 

(11) z = exp(x, y): This is equivalent to (3w)(pow(y, w, z) A w — px). D 

We can now prove the following theorem that concludes the business of this 
subsection. 

2.11.1.5 Theorem. For every f G P7Z, its graph y = f(xn) is arithmetical. 

Proof. We do induction over VR (cf. 2.1.2.4): 

(1) Basis. There are three graphs to work with here: y = x + l, y = Q and 
y — x (or, fancily, y = Xi\ or more fancily, y = U^{xn)). They all are explicit 
transforms of y = x + z. 

109 Again recall that ^ is that of 2.1.2.14, and a^ + 1 | 2 = (3u)(u = y + 1 A :ru | 2;). On the other hand, 
xu \z = (3w)(w = xu Aw\z). 
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(2) Composition. Say, the property is true for the graphs of / , # i , . . . , gn. This is 
the I.H. How about y = f(gi(xm),g2(xm),... ,gn(xm))l Well, this graph is 
equivalent to 

(3u1)--(3un)(y = / ( w n ) A u i = gi(xm) A • • • A un = gn(xm)) 

and we are done by the I.H. 

(3) Primitive recursion. This is the part that benefits from the work we put into 
2.11.1.4. Here's why: Assume (I.H.) that the graphs of h and g are arithmetical, 
and let / be given for all x, yby 

f(0,y) = h(y) 
f(x + l,y) =g(x,y,f(x,y)) 

Now, to state z = / (# , y) is equivalent to stating 

(3m0)(3rai) • • • (3mx) (m0 = h(y) A z = mx A 

(\/w)(w < x -+mw+1 = g(w,y,mw))j 
(i) 

The trouble with the "relation" (i) above is that it is not a relation at all, because 
it has a variable-length prefix: (3rao)(3mi) • • • (3mx). We invoke coding to 
salvage the argument. Let us use a single number, 

to represent all the m^, for i = 0 , . . . , x. Clearly, 

mi — exp(i, m), for i = 0 , . . . , x 

We can now rewrite (i) as 

(3m) ( exp(0, m) — h(y) A z = exp(x, m) A 

- \ ( i i ) 

(\/w) (w < x —> exp(w + 1, m) = g(w, y, exp(it;, m))) j 

The above is arithmetical because of the I.H. Some parts of it are more compli-
cated than others. For example, the part 

exp(w + 1, ra) = g(w, y, exp(w, m)) 

is equivalent to 

{3u)(3v)(u = exp(u> + l ,m) A v — exp(w,m) A u — g(w,y,v)) 

The above is arithmetical by the I.H. and the preceding lemma. This completes 
the proof. □ 
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2.12 ADDITIONAL EXERCISES 

1. Prove (without looking up Euclid's proof) that there are infinitely many primes. 
Hint. See Example 2.1.2.40 and Exercise 2.1.2.42. 

2. Modify the pairing function of Grzegorczyk (1953) (2.1.4.5) to make it onto. 

3. Give a direct proof that the J in 2.1 A.6 is 1-1. 

4. Give a direct proof that the J in 2.1.4.8 is 1-1. 

5. Show that J given by 

(£ + S/)(z + 2/ + l) J(x,y) + y 

is an onto pairing function in VIZ. Show that its projections are in VIZ. 
Hint. View N2 is the union of all the finite groups of pairs, for i = 0 ,1 ,2 , . . . , 

Gi = {(x,y) GN2 :x + y = i} 

Now enumerate N2 by listing pairs (x,y), first, by ascending order (with respect 
to i) of their group-number i, and then, within each group Gi, listing them in 
ascending order of the y-component. Show that the position n — 0 ,1 ,2 , . . . of 
(x, y) in this enumeration is precisely J(x, y), which settles onto-ness. Of course, 
projections K and L exist (why?). Now observe that J(x, y) > x and J(x, y) > y 
and use this fact to show that the projections K and L are primitive recursive. 

6. Prove that every finite set is primitive recursive. 

7. Prove that N is primitive recursive. 

8. Verify the claims made in Remark 2.1.4.10. 

9. Prove that \x.x\ (factorial) is primitive recursive. 

10. Without using the if-then-else function or definition by cases, prove that Xxy. max(x, y) 
and Xxy. min(x, y) are primitive recursive. 

11. Prove that if we know that (1) g is primitive recursive; (2) f{x) < g(x), for all x\ 
and (3) Xzx.z = f(y) is in V7Z*, then / is primitive recursive. 

12. Are the conditions (1) and (2) above necessary in order to arrive to the same 
conclusion from just (3)? 

13. What end-values do X, Y, Z, W hold in Example 2.2.0.13 if the variables initially 
hold, in order, a, b, c, dl 

14. Prove by an appropriate induction that the claim regarding the end-values of X 
and Y in 2.2.0.15 are correct. 
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15. Write a loop program that computes Ax. [x/k\. 

16. Write a loop program that computes Xx.rem(x, k). 

17. Redo the previous two problems to ensure that you do not nest the Loop-end 
instructions. 

18. Prove that the function Ax.||x||, where \\x\\ here denotes the number of decimal 
digits of x G N, is in 7 ^ . 

19. Define 

(ww(y,*)™ rn{y: y -zAf{y^]=o} 

0, if the min does not exist 
Prove that VIZ is closed under (iiy)<z. 

20. Prove that if a class of functions C is closed under (fly)<z and substitution, then 
its corresponding class of relations C* = {f(x) — 0 : / G C} is closed under 
(3tf)<*. 

21. Is the result of the previous exercise still valid if we replace (iiy)<z by (fiv)<z^ 

22. Refer to Subsection 2.2.2. Prove that neither of the two relations Xxy.fx(y) — 0 
and Xxy.fx(y) ^ 0 is primitive recursive. 

23. Once again, refer to Subsection 2.2.2 where we constructed the "universal" two-
argument function Xyx.fy(x) that enumerates all one-argument primitive recur-
sive functions. Prove 

• For all Xx.h(x) G VIZ, there is an m such that h(x) < / m (# ) , for all x. 
• Base on the preceding bullet a new proof of the fact that Xyx.fy{x) £ VIZ. 

24. Prove that it is impossible to form VIZ as the closure under substitution of some 
finite set of primitive recursive functions. 

25. Prove that for n > 0, we have An(x) < Ax(2) a.e. Use this fact to show 

• For all Xx.h(x) G VIZ, we have h(x) < Ax{2) a.e. 
• \x.Ax{2) £VK. 

26. Suppose that x,y, z are distinct variables. Show that (3y)(3x)<zQ = (3x)<z(3y)Q. 
Hint. (3x)<zQ = (3x)(x < z /\Q). But unbounded 3 commute. 

27. Show that the set K0 defined as {(x, y) : (j>x{y) 1} is semi-computable. 

28. Prove the counterpart "definition by cases" theorem of 2.1.2.37 for 1Z and V. The 
assumptions are: 
(1) For the 1Z case, all the fi are in 1Z, while for the V case they all are in V. 
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(2) In both cases, the Ri are in 7£*. 
The result to prove is that the defined / is in 1Z and V, respectively. 

29. In 2.5.0.17 we saw that Xx.cj>x(x) + 1 cannot be extended into a recursive (total) 
function. Prove that the same is true for Xx.(/>x(x). 

30. Show that the set K\ defined as {[#, y] : (j)x(y) 1} is semi-computable. 

31. Show that the set K\ defined above is not recursive. 

Hint. Caution: Do not confuse [x,y] with (x,y). K\ is {z : </>(z)0((z)i) 1}—a 

set of numbers, not a set of pairs. 

32. Show 2.5.0.20 directly from 2.5.0.3. 

33. Explain precisely why the alternative "proof" of 2.5.0.7 that was suggested in 
the Pause following the corollary will not work. 

34. Prove that Xixy.$>i(x) = y is primitive recursive. 

35. Prove that neither 
t( , (o ifxeK 
J(x) = < 

142 otherwise 
nor 

JO ifxeK 
1 x otherwise 

are in V. This justifies our remarks in 2.5.0.30 that the best we can suggest as 
"output" in the "otherwise" case is | . In general. 
Why "in general"? 

36. This exercise attempts to contradict 35. So let x G K = I/J(X) = 0 for some 
^eV (cf. 2.5.0.6). 
But then f(x) ~ if ij)(x) = 0 then 0 else 42andg(x) ~ if ij)(x) = 0 then 0 else x, 
which prove—via 2.1.2.6—that / and g are partial recursive. Is there something 
wrong with this, and if so what precisely? 

37. Prove that a non-empty set is c.e. iff it is the range of some recursive function. 
Hint. One direction is trivial. 

38. Is the "proof" below correct? If not, where exactly does it go wrong? 
"Let y = f(xn) be r.e. Then y — f(xn) = ip(y, xn) = 0 for some ip e V. Thus 
g = Xxn.({iy)ip(y, xn) is in V. But g — j \ since the unbounded search finds the 
y that makes y = f(xn) true, if f(xn) I. Thus, / G VT 

39. Prove that if / and g are in V9 then f(x) = g(x) is c.e. 

40. Prove that if / and g are in V, then f(x) ~ g(x) is not necessarily c.e. 
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Hint. Choose carefully specific / and g for a definitive (non c.e.) example. 

41. Prove Corollary 2.7.1.10. 

42. Prove that the set {(x,y) : <px — <py} is not semi-recursive. Thus, as expected 
(given the result 2.5.0.22), the general "equivalence problem" of (URM-) com-
putable functions is also not semi-decidable. 
Hint. Fix (fty to a conveniently simple function. 

43. Prove, via Rice's lemmata, that the set of ^-indices of each computable function 
/ is not c.e. 

Hint. You may want to consider the total and nontotal cases separately. 

JL The invocation of Rice's theorem is not permitted in Exercises 44-54. 

44. Prove that the problem {0,1,5} C ran(0x) is undecidable. 

45. Prove that the set {x : Wx = {0}} is not c.e. 

46. Prove that the set {x : Wx = {0,1,2}} is not c.e. 

47. Prove that the set {x : Wx = N} is not c.e. 

48. Prove that the set {x : Wx G 7£*} is not c.e. 

49. Prove that the set {x : Wx = the set of all even numbers} is not c.e. 

50. Prove that the set {x : Wx is finite} is not c.e. 

51. Prove that the set {x : Wx is infinite} is not c.e. 

52. Prove that the set = {x : dom(</>x) has exactly two elements} is not recursive. Is 
it c.e.? Why? 

53. Explore and prove as needed 

• the set {x : ran((f)x) has exactly five distinct elements} is not recursive. (I.e., 
"x e A is unsolvable"). Is it c.e. ? Why? 

• the set {x : cj)x is the characteristic function of some recursive set} is not 
recursive. Is it c.e. ? Why? 

• the set {x : ran(0x) contains only odd numbers} is not recursive. Is it c.e. ? 
Why? 

54. Prove that {x : <j>x e VIZ} is not c.e. 

55. Can every infinite c.e. set be enumerated in strictly increasing order by a primitive 
recursive function? Why? 
Hint. Bring the Ackermann function into the question. 
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56. Let 

/ = Ax.if JR(X) = 0 then g(x) else if /Q(X) = 0 then h(x) else t 

where R, Q are c.e. (and mutually exclusive), and g, h, JR, JQ are partial recursive, 
where R{x) = JR{X) = 0 and Q(x) = /Q(X) = 0. 
Is / partial recursive? Why? 
Is the f defined below the same as / ? Why? 

/'(*) = { 
g(x) ifR(x) 
h(x) ifQ(x) 
t otherwise 

Suppose you answered "no" to the last question. Supplementary: Is / ' partial 
recursive? Why? 

57. Prove that there is a primitive recursive r such that for all x, we have ran(0x) = 
ran(0r(x)) and, moreover, if ran(0^) ^ 0, then ran(0r(x)) is total. 
Hint. Combine 2.7.3.5 with 2.7.3.3. 

58. There is a primitive recursive function r such that N — {x} = Wr(x), for all x. 
Hint. Consider i/;(x, y) ~ ify^x then 0 else t-

59. There is a primitive recursive function q such that {x} = Wq(x), for all x. 

60. There is a primitive recursive function k such that Wx U Wy = Wk(x,y)> for all x 
and y. 

61. (Selection Theorem) For each n > 1 there is a partial recursive function 
\iyn.Sel^n+1\i, yn) such that 

(a) &x)(fi+1\x,yn) | ) iff S e ^ + 1 ) ( i , y n ) | 

(b) ( 3 z ) ( ^ n + 1 ) ( ^ I 

Hin/. Imitate the dovetailing from the proof of 2.7.3.2. 

62. Is there a partial recursive function Xx.f(x) such that for all i 

Wi + $^ f(i) I A f(i) = min{y : y £ Wi} 

If you think that "yes", then you must give a proof. 
If you think that "no", then you must give a definitive counterexample. 

63. For your amusement: Write a "self-reproducing" program in your favourite pro-
gramming language. This program, on every input, will just print itself—exactly; 
i.e., it prints nothing else—and then halts. 
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64. Prove that < m and <i are transitive relations. 

65. Prove the claims made in 2.10.0.14. 

66. Prove that a simple set is not recursive. 
Hint. You want the set's complement to be c.e. (Why?) Can this be? 

67. If / , of one variable, is recursive then there is an e such that We = W/(e)-

68. If g, of two variables, is recursive then there is an 1-1 primitive recursive Xx.h(x) 
such that Wh{x) = Wg{h{x)iX), for all x. 
Hint. From Wa = dom(0a) and 2.9.0.30. 

69. Let / be recursive. Is any of {x : cf>f^(x) 1} and {x : <j)x(f(x)) 1} a complete 
index set? 
Hint. It depends on / . 

70. Let a F be a computable function. Then the closure of XU {F} under composition, 
primitive recursion and unbounded search is a subset of V (indeed equal to it). 

Hint. Do induction on said closure. 

71. Prove the uniqueness of solution of the recurrence for F in 2.9.1.7. 

72. Settle the unproved claims in Example 2.9.1.8. 

73. Let g be recursive. Show that 

, / - x Jo if g(n,xk) = 0 
h(n,Xk) — \ 

l / i (n+l,#fc) + l otherwise 

has a computable /i-solution (jr™+ ^ that satisfies (j)e \o,Xk) — (jly)g(y,Xk), 
for all Xk-

74. Answer the question in the Pause on p. 229. 

75. Complete the proof given for 2.11.1.3. 
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CHAPTER 3 

A SUBSET OF THE URM LANGUAGE; 
FA AND NFA 

This chapter is presented for enhanced completeness of coverage, but is a mostly 
"how to" chapter, rather than one that poses and answers fundamental questions on 
the limitations of computing,110 the latter being our central theme in this volume. 
Nevertheless, concepts and tools developed here are usable in the theory and practice 
of compiler writing, a principal area of application. 

We will first introduce informally a modified and restricted URM. This new URM 
model will have explicit "read" instructions.111 

Secondly, any specific URM under this model will only have one variable that we 
may call generically "x". This variable will always be of type digit, it cannot hold 
arbitrary integers, rather it can only hold digits as values. It has no stop instruction, 
nor instructions for adding/subtracting. 

Pause. In the absence of a stop instruction, how does a computation halt? We 
postulate that our modified URMs halt simply by reading something unexpected, that 

110However, the pumping lemma, 3.1.3.1, exposes a limitation of the model of computation discussed in 
this chapter. 
m I n 2.1.1.3 we explained why explicit read instructions are theoretically as redundant as explicit write 
instructions are. 

Theory of Computation. By George Tourlakis 241 
Copyright © 2012 John Wiley & Sons, Inc. 
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is, an object that is not a member of the input alphabet of permissible digits. Such 
an illegal symbol serves as an end-marker of the useful stream digitss that constitute 
the input string over the given alphabet. As such it is often called an "end-of-file" 
marker, for short, eof.< 

Thus the modified URM halts if it runs out of input. 
We next modify the permissible instructions of 2.1.1, displayed on p. 93. The only 

permissible instructions now is of the following type that we at first force into a "high 
level" programming language format, not aiming for elegance; we will achieve the 
latter once we formalize this model of computation that we will call a finite automaton 
(plural: automata)—acronym, FA. 
Our insistence on a URM-like model for the automaton will be restricted to this brief 
motivational introduction and is only meant to illustrate the indebtedness of the finite 
automata model to the general URM model of Chapter 2, as promised above. 

The typical instruction of an automaton. 

read 
if x = a then goto M' 
if x = a'then goto M" 

ifx = a<n) then goto M ^ 
I if x = eof then halt 

where L and M ' , . . . , M^ are labels—not necessarily distinct—and a, a ' , . . . , a^ 
are all the possible digit values in the context of a specific URM program, that is, 
{a, a ' , . . . , a^71)} is the input alphabet. 
The empty string, e, will never be part of a FA's input alphabet. 

The labels, in practice, are not restricted to be numerical or even consecutive (if 
numerical). However, one instruction's placement is significant. It is often identified 
by a label such as "0", or "g0", or some such symbol and is placed at the very 
beginning of the program. 

Pause. A finite automaton does not care where its other instructions fall, as they 
will be reachable by the goto-structure as needed, wherever they are.^ 

The semantics of the "typical" instruction of above is first to assign to the variable 
x the just read value from some "external (to the URM) medium", and then to move 
to the next instruction as determined by the a ^ s or the eof in the if-cases above. 

Finally, we partition the instruction-labels—also called states—of any given re-
stricted URM into two types: accepting and rejecting. Their role is as follows: Such 
a URM, when it has halted, 

Pause. When or ifl< 
will have finished scanning a sequence of digits—a string over its alphabet. This 
string is accepted if the program halted while in an accepting state, otherwise the 
input is rejected. 

www.it-ebooks.info

http://www.it-ebooks.info/


DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 2 4 3 

3.1 DETERMINISTIC FINITE AUTOMATA AND THEIR LANGUAGES 

3.1.0.6 Example. Consider the restricted URM below that operates over the input 
alphabet {0,1} 

(read 
if x = 0 then goto 0 
if x = 1 then goto 1 
if x = eof then halt 

read 
if x = 0 then goto 1 
if x = 1 then goto 0 
if x = eo/then halt 

What does this program do? It has scanned a string of parity 0 (sum of its digits is 
even) and halted iff it halted while in state 0. This claim will be revisited after we 
formalize the automaton concept. □ 

3.1.1 The Flow-Diagram Model 

The formalization is achieved by first abstracting a command 

L : read; if x = a then goto M 

as the configuration below: 

(i) 

a 

Figure capturing (1) above 

Thus the "read" part is implicit, while the labeled arrow that connects the states 
L and M denotes exactly the semantics of (1). Therefore, an entire automaton is 
a directed graph—that is, a finite set of (possibly) labeled circles, the states, and a 
finite set of arrows, the transitions, the latter labeled by members of the automaton's 
input alphabet. The arrows or edges interconnect the states. If L = M, then we have 
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the configuration 

where the optional label could be L, or M, L — M (as above), or nothing. 
We depict the partition of states into accepting and rejecting by using two con-

centric circles for each accepting state as below. 

The special start state is denoted by drawing an arrow, that comes from nowhere, 
pointing to the state. 

To summarize and firm up: 

3.1.1.1 Definition. (FA as Flow Diagrams) A finite automaton, for short, FA, over 
the input alphabet E is a finite directed graph of circular nodes—the states— and 
interconnecting edges—the transitions— the latter labeled by members of E. We 
impose a restriction to the automaton's structure: For every state L and every a G E, 
there will be precisely one edge, labeled a, leaving L and pointing to some state M 
(possibly, L = M). 

We say the automaton is fully specified (corresponding to the italics in the part "For 
every state L and every a G A, there will be ... ") and deterministic (corresponding 
to the italics in the part "there will be precisely one edge,. . .") . 

This graph depiction of a FA is called its flow diagram and is akin to a programming 
"flow chart". □ 

3.1.1.2 Remark. (1) Thus, full specification makes the transition function total— 
that is, for any state-input pair (L, a) as argument, it will yield some state as output. 
On the other hand, determinism ensures that the transition function is indeed a function 
(single-valued). 
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(2) Each "legal" input symbol is a member of the alphabet £, and vice versa. 
In the preamble of this chapter we referred to such legal symbols as "digits" in 
the interest of preserving the inheritance from the URM of Section 2.1.1, the latter 
being a number-theoretic programming language. But what is a "digit"? In binary 
notation it is one of 0 or 1. In decimal notation we have the digits 0 , 1 , . . . , 9. In 
hexadecimal notation112 we add the "digits" a, 6, c, d, e, / that have "values", in that 
order, 10,11,12,13,14,15. The objective is to have single-symbol, atomic, digits to 
avoid ambiguities in string notation (cf. 1.1.3.1). Thus, a "digit" is an atomic symbol 
(unlike "10" or "11"). 

We will drop the terminology "digit" from now on. Thus our automata alphabets 
are finite sets of symbols, period. □ 

3.1.1.3 Example. Thus, if our alphabet is A — {0,1}, then we cannot have the 
following configurations be part of a FA. 

Nonototal Transition Function 

Non-determinism 

□ 

'Base 16 notation. 
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3.1.1.4 Example. The FA of the example of 3.1.0.6, in flow diagram form but with 
no decision on which state(s) is/are accepting is given below: 

We wrote go and qi for the states "0" and " 1 " of 3.1.0.6. □ 

Another way to define a FA without the help of flow diagrams is as follows: 

3.1.1.5 Alternative Definition. (FA—Algebraically) A finite automaton, FA, is a 

toolbox M = (Q, A, q0,5, F),U3 where 

(1) Q is a finite set of states. 

(2) A is a finite set of symbols; the input alphabet. 

(3) qo E Q is the distinguished start state. 

(4) 5 : Q x A -* Q is a total function, called the transition function. 

(5) F C Q is the set of accepting states; Q — F is the set of rejecting states. □ 

3.1.1.6 Remark. Let us compare Definitions 3.1.1.1 and 3.1.1.5. 

(1) The set of states corresponds with the nodes of the graph (flow diagram) model. 
It is convenient—but not theoretically necessary in general—to actually name 
(label) the nodes with names from Q. 

(2) The A in the flow diagram model is not announced separately, but can be extracted 
as the set of all edge labels. 

(3) g0—the start state by any name; go being generic—in the graph model is rec-
ognized/indicated as the node pointed at by an arrow that emanates from no 
node. 

(4) 6 : Q x A —> Q in the graph model is given by the arrow structure: Referring to 
the figure at the beginning of 3.1.1, we have S(L, a) = M. 
6 is sometimes given as a (finite) so-called transition matrix, which at row L 
and column a will hold M and nothing else in the illustrated case. 5 being a 

"M" is generic; for "machine". 
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function guarantees determinism, that is, at most one entry in each location in 
the matrix. Totalness guarantees at least one entry, and hence exactly one entry, 
in each location. 

(5) The members of F in the graph model are identified by being concentric circles. 

□ 
How does a FA compute? From the URM analogy, we understand the computation 

of a FA consisting of successive read moves, and attendant changes of state, until the 
program halts (by reading the eof). At that point we proclaim that the string formed 
by the stream of symbols read is accepted or rejected according as the halted machine 
is in an accepting or rejecting state. 

To formalize this we use snapshots or IDs as we did in the full URM model of 
2.1.1. The IDs of the FA are, however, very simple, since the machine (program) is 
incapable of altering the input stream. 

3.1.1.7 Definition. (FA Computations; Acceptance) Let M = (Q, A, qo,5, F) be 
a FA, and x be an input string—that is, a string over A that is presented as a stream 
of input symbols. An M-ID or simply ID related to x is a string of the form tqu, 
where q € Q, and x — tu. 

Intuitively, this means that the computing agent, the FA, is in state q and that the 
next input to process is the first symbol ofu. If u = e—and hence the ID is simplified 
to tq—then M has halted (no more input). 

Formally, an ID of the form tq has no next ID. We call it a terminal ID. However, 
an ID of form tqau', where a E A, has a unique next ID; this one: taqu', provided 
S(q,a) = q. We write 

tqau' \~M taqu' 

or, simply (if M is understood) 

tqau' \- taqv! 

and pronounce it "(ID) tqau' yields (ID) taqu'". 
We say that M accepts the string x iff, for some q G F, we have q0x h*M xq. 
The language accepted by the FA M is denoted generically by L(M) and is the 

subset of A* given by L{M) = {x : (3q e F)q0x h*M xq}. 
An ID of the form q$x is called a start-ID. □ 

3.1.1.8 Remark. (1) Of course, \-*M is the reflexive transitive closure of \~M (cf. 
1.6.0.23) and therefore / \-*M J—where / (not necessarily a start-ID) and J (not 
necessarily terminal) are IDs—means that / = J or, for some IDs 7 m , m = l,...,fc— 
1, we have 

I l"M h ^M h ~̂M 3̂ ^M • • • ^M h-1 t~M J (1) 

We call the disjunction of sequence (1) with "J = J", or the shorthand notation of 
this disjunction, / \-*M J, an M-computation, or simply a computation. 
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We may write (1) more informatively (but still suppressing reference to the Ij) in 
the shorthand I \-k J, since there are exactly k occurrences of the relation h in (1). 

The notations I \--n J and I \-<n J mean / h m J where, respectively, m < n 
and m < n. 

(2) Let x = ai<22 • • • an, where the CLJ are symbols of the input alphabet A = 
{6i, &2> • • • &r} of some FA M. Since 

&1&2 • • -Pm^m • - - an\- a\a2 • ■ - a m p m + i a m + i 

iff 

a m ~(Pm+l\ 

is a transition that belongs to the FA, when viewed as a flow diagram, then the 
existence of a computation that starts at state pi, ends at state p n + i (not necessarily 
halting there114), which consumed (read) an input sequence x while doing so 

Piai . . . an h aip2a2 . . . an h a±... p3«3 • ■ • an h etc 
h ai . . . p m o m . . . a n h a i . . .Pm+iam +i .. . a n h . . . h ai . . . a n p n + i 

is equivalent to the existence of a labeled path—that we will aptly call a computation 
path— in the flow diagram M, frompi to pn+i whose labels, concatenated from left 
to right, form the string x: 

"®~ 

In particular, a string x over the input alphabet belongs to L(M) iff it is formed by 
concatenating the labels of a path such as the above, where p\ — qo (start state) and 
pn+i is accepting. In this case we have an accepting path. 

We see that the flowchart model of a FA is more than a static depiction of an 
automaton's "vital" parameters, Q, A, qo, 5, F. Rather, all computations, including 
accepting computations, are also encoded within the model as certain paths. □ 

I.e., not necessarily meeting eof. 
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3.1.1.9 Proposition. If M is a FA, then e G L(M) iffqo is an accepting state. 

Proof. First, say e G L(M). By 3.1.1.7, we have 

q0e h* eq (1) 

for some q that is accepting. Since (go, e) is not in the domain of S (e is not in the 
input alphabet), the only way to have (1) hold is as equality: That is, q$e = eq; that 
is, q0 = q. 

Conversely, if qo G F, then since goe = qo = ego, we have goe i~* ego and thus 
e G L(M). □ 

3.1.1.10 Example. (Examples 3.1.0.6 and 3.1.1.4 Revisited) We prove here that if 
in 3.1.1.4 only qo is accepting, then L(M) is the set of all 0-1-strings of 0 (even) 
parity, while if only q\ is accepting, then L(M) consists of all strings of parity 1 (odd 
parity). 

We prove a bit more: 

qox h* xqj, for j = 0 or j = 1, iff x has parity j (1) 

only if. We do induction on the length \x\ of x, to show that if 

q0x h* xqj (2) 
then x has parity j . 

For |x| = 0 we have x = e, thus (2) yields j = 0. But indeed, the parity of e is 0 
as we needed to conclude. 

Assume the claim for any x of length n. Let now \x\ = n + 1. 
Case where x = yO. From (2), we have qoy0 h* yqm0 h yO^j. By looking at the 

FA in 3.1.1.4 we see that input 0 does not cause state change, thus m = j . 
By the I.H., y has parity m, but then so does x — yO; hence j — m correctly gives 

this parity. 
Case where x = y\. Once again, we have, from (2), q0yl h* yq^X l~ y^-Qj- By 

the I.H., the parity of y is m, thus the parity of y\ is 1 — m. We will be done if 
j = 1 — m. This indeed is the case from the diagram of 3.1.1.4: Input 1 sends go to 
gi, but sends q\ to go-

Conversely, the if. Suppose that x has parity j . By induction on the length n of x 
we prove that we will have (2). First, if x = e, then (2) becomes g0e h* eg0. Since 
the parity of this x is 0, we have landed on the correct state. 

Assume now that if \x\ — n (fixed) has parity j , then we have (2). 
Consider the case of \x\ — n -f 1, of parity j . 
Case where x = yO. We have go yO h* 2/gm0 h y0qr. Now, the parity of y is j as 

well, so the I.H. yields that m — j . What is r? Well, each of go, gi is sent back to 
itself by input 0. Thus r = m = j . 

Case where x = yl. We have qoyl \~* yq^mX l~ y^Qr- Now, parity of y is 1 — j 
thus the I.H. yields that m = 1 — j . What is r? Well, each of g0, gi is sent to the 
other by input 1. Thus r = 1 — m = j , as needed. □ 
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Of course, if none of the two states is accepting then L(M) = 0, while if both are 
accepting, then L(M) = {0,1}*—the set of all strings over {0,1}. 

3.1.1.11 Example. This example is much simpler than the preceding one. We readily 
see that the following automaton's only accepting paths will follow zero or more times 
the "loop" labeled 0 (attached to the start state), and then the edge labeled 1 to end 
up with an accepting state. Thus, its "L(M)" is the set {0n l : n > 0}, where we are 
reminded that for any string x, we have defined xn by 

x° = e 
xn+1 = xnx 

\ 0° 
o 11 

0,1 

Note that we need not assign state names in this example in order to discuss what 
the FA does. The only purpose of the state below the accepting state is to ensure 
the transition function S is total (the FA must be fully specified) as required by the 
definition. This state is one from which one cannot escape as once in it, all transitions 
lead back to it. For that reason it is often called a trap state. 

The reader should note the use of two shorthand notations in labeling: One, we 
used two labels on the vertical down-pointing edge. This abbreviates the use of two 
edges going from the accepting to the trap state, one labeled 0, the other 1. We 
could also have used the label "0, 1" at the left or right of the arrow, "," serving as a 
separator. This latter notational convention was used in labeling the loop attached to 
the trap state. □ 

3.1.1.12 Example. The two one-state FA over the input alphabet {0,1} pictured here 
accept the languages 0 and {0,1}*, respectively. 

o,i 
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□ 
3.1.2 Some Closure Properties 

When one introduces a class of languages,115 like the sets L(M), one next poses a 
number of interesting and fundamental questions about them. Such as, what (set-
theoretic) closure properties do they have? Is the membership problem of such 
languages decidable? 

The latter has rather a trivial answer for the L(M). Given an L(M)—finitely, via 
a FA M—and a string, x, over the alphabet of M. The question "is x G L(M)T 
has an algorithmic solution: We just run M on input x. Since a FA halts on all inputs 
(by encountering eof), this task terminates. Then x G L(M) iff the state in which 
the computation halted is accepting. 

How about closure under U? Pi? Complement? 

3.1.2.1 Theorem. Sets of the type L(M) over a common input alphabet are closed 
under union. 

Proof The proof is constructive. So let M and N be two FA over the input alphabet 
A — { a i , . . . , dk}. Without loss of generality (since we do not have to name the 
states anyway), the states of M are QM = {(Zo? (Zi> • • • > (7™} while those of N are 
QN = {po,Pi, • • •,Pn} with qo and po being the respective start states. 

We build a new FA, let us call it K, over the same input alphabet A. Its state set 
is QM x QNi thus the states of K are named by pairs {qi,Pj) where qi G QM and 
Pj € QN-

K has a transition 
(qi^^i&ti) (1) 

iff M has the transition 
qi

J^q'i (2) 

and N has the transition 
Vj^p'j (3) 

A state (q,p) of K is accepting, iffq is accepting in M, or p is accepting in N, or 
both. 

Sets of strings over an alphabet; cf. 1.1.3.2. 
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Let now x = aj1 a,j2 ... a,j. . . . ajt be an input string. Since the FA are fully 
specified (their 5 are total), there are M- and TV-paths 

Qo —► Qh —► Qj2 —>• • • • —>• fcw —> ty« (2 ) 

and 
31 30 1 + / i\ PO —>Pix —>Pj2 — > . . . — > Pjt_! —^ft't (3') 

and a corresponding isT-path labeled x, and this—by (1), (2) and (3)—is none other 
than 

(Qo,Po)^1>(qj1,Pj1)^>(qj2,Pj2) —+ ••• —> (<Ut-i,Ph-i)^(<ljtiPjt) (!') 

Thus, we have the labeled paths (2') and (3;) iff we have the labeled path (1'). 
By the italicized sentence above concerning accepting states of K, we have that 

(2') or (3') (or both) are accepting paths iff so is (1'). That is, L(K) = L(M)\JL(N). 
D 

3.1.2.2 Corollary. Sets of the type L(M) over a common input alphabet are closed 
under intersection. 

Proof Modify the proof above so that accepting states of K are those pairs (g, p) 
such that q and p are accepting in M and N, respectively. □ 

3.1.2.3 Proposition. Sets of the type L(M) over an input alphabet A are closed 
under complement. That is, for any M there is an N such that L(N) = A* — L(M). 

Proof. This proof is also constructive. Since x G L(N) iff x £ L(M) we simply 
need N to compute exactly as M—and hence to have structurally the same flow 
diagram as that for M—but have its accepting states be the rejecting states of M and 
vice versa. Indeed, under these circumstances, we have for the arbitrary input x a 
computation q$x \-*N xq with q accepting iff we have q$x \-*M xq with q rejecting. 

Pause. Full specification guarantees a computation for any x.< □ 

3.1.2.4 Example. The automaton that accepts the complement of the language of 
the FA in Example 3.1.1.11 is drawn without comment below. 

□ 
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3.1.3 How to Prove that a Set is Not Acceptable by a FA; Pumping 
Lemma 

Is there a FA M such that L(M) = {0 n l n : n > 0}? No? How can we be sure? 
The following theorem, known as the pumping lemma enables us to establish such 
"negative" results. 

3.1.3.1 Theorem. (Pumping Lemma) IfS = L(M) for some FA M, then there is a 
constant C that we will refer to as a pumping constant such that for any string x G S, 
if\x\ > C, then we can decompose it as x = uvw so that 

(1) v?e 

(2) uvlw e S, for alii > 0 

and 

(3) \uv\ < C. 

A pumping constant is not uniquely determined by S. 

Proof So, let S = L(M) for some FA M of n states. We will show that if we take 
C = n116 this will work. 

Let then x = a\a2 • • • an • • • am be a string of S. As chosen, it satisfies \x\ > C. 
An accepting computation path of M with input x looks like this: 

Say pi repeats as Pj 

where p\, p2,... denotes a (notationally) convenient renaming of the states visited 
after q0 in the computation. In the sequence 

we have named n + 1 states, while we only have n. Thus, at least two names refer to 
the same state. 

116You see why C is not unique, since for any S that is an L{M) we can have infinitely many different 
M that accept S. Can we not? 
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We may redraw the computation above as follows: 

We can now partition x into u, v and w parts from the picture above: We set 

u = ai<22 . . . di 

V = CLi+iCLi+2 • • -Q>j 

and 

Note that 

(1) t j ^ e , since there is at least one edge (o^+i) emanating from pi on the sub-path 
that connects this state to the (identical) state pj. 

(2) We may utilize the loop v zero or more times (along with u in the front and w 
at the tail) to always obtain an accepting path (cf. 3.1.1.8). Thus, all of uvlw 
belong to L(M)—i.e., S. 

(3) Since \uv\ = j < n, we have also verified that \uv\ <C. □ 

The repeating pair pi, pj may occur anywhere between go and pn. 

3.1.3.2 Example. The language S = {0 n l n : n > 0} is not acceptable by any FA. 
By way of contradiction, suppose that it is, and let C be a pumping constant associated 
with it. Let x — 0 C 1 C . This is in S and satisfies |x| > C. By the pumping lemma, 
we have a decomposition x — uvw with \uv\ < C and uvlw in S for all i > 0. This 
cannot be, since uv is composed of 0s only due to its length restriction, and thus, for 
example, for i = 0, the string uw £ S as it has the wrong form: It has at least one 
less zero than it has ones (we miss all the zeros of v). □ 

All proofs by 3.1.3.1 are by contradiction and they prove non acceptability by any 
FA (or, equivalently, NFA). 
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3.1.3.3 Example. We introduced FA as special URMs that cannot write. That in 
itself almost at once implies that they cannot do "arithmetic". For example, they 
cannot compute Xx.x + 1. "Trivially", you say, "how can they add 1 if they cannot 
write?" 

Well, let us press on: How about accepting the language over A = {0,1}, given 
byT = {0n10n + 1 : n > 0 } ? 

We would agree that if this is FA-acceptable, then in a roundabout way FA "know" 
how to add 1 and thus "compute" the graph of Xx.x -f 1. 

Alas, they cannot. Say T is FA-acceptable, and let C be an appropriate pumping 
constant. Choose x = 0 C 10 C + 1 . Splitting x as uvw with \uv\ < C w e see that 1 is 
to the right of v. Thus, uw (using v°) is not in T since the relation between the 0s to 
the left and those to the right of 1 is destroyed. This contradicts the assumption that 
T is FA-acceptable. □ 

3.1.3.4 Remark. Indeed FA cannot even compute the identity function, Xx.x, as it 
should be clear from 3.1.3.2: One can think that we get "n in (0s) and n out (Is)". 

Another way to see that the identity function cannot be "computed" by FA is 
by proving, adapting the argument for T above, that {0n10n : n > 0} is not FA-
acceptable. This coding of the identity uses the same input and output notation. □ 

3.1.3.5 Example. The set over the alphabet {0} given by P = {0q : q is a prime 
number} is not FA-acceptable. 

Assume the contrary, and let C be an appropriate pumping constant. Let Q > C 
be prime. We show that considering the string x = 0^ will lead us to a contradiction. 
Well, as x is longer than C, let us write—according to 3.1.3.1—x — uvw. By said 
theorem, we must have that all numbers \u\ + i\v\ + \w\9 for i > 0 are prime. These 
numbers have the form 

ai + b (1) 

where a = \v| > 1 and b = \u\ + \w\. Can all these numbers in (1) (for all i) be 
prime? 

Here is why not, and hence our contradiction: First, b = 0 is clearly impossible, 
since the numbers have the form ai, and, e.g., a6 is not prime. 

Second, say 6 ^ 0 . Now taking i = b, one of the numbers of the form (1) is 
(a +1)6. So, if b > 1 then this is not prime (recall that a + 1 > 2). If however 6 = 1 , 
then take i = 2 + a to obtain the number (of type (1)) a2 + 2a + 1 = (a + l ) 2 . But 
this is not prime! □ 

The preceding shows that we can have a set that is sufficiently complex and thus fails 
to be FA-acceptable even over a single-symbol alphabet. Here is another such case. 

3.1.3.6 Example. Consider Q = {0n2 : n > 0} over the alphabet A = {0}. It will 
not come as a surprise that Q is not FA-acceptable. 

For suppose it is. Then, if C is an appropriate pumping constant, consider x = 0C . 
Clearly, x € Q and is long enough. So, split it as x = uvw with \uv\ < C and v ^ e. 
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Now, by 3.1.3.1, 
uvvw G Q (1) 

But 

C2 < \uvvw\ < \uvw\ + \uv\ < C2 + C < C2 + 2C + 1 = (C + l ) 2 

Thus, the number |mwit;| is not a perfect square being between two successive ones. 
2 

But this will not do, because by (1), for some n, we have uvvw = 0n and thus 
|mww| = n2—a perfect square after all! □ 
Hmm. Can we do anything useful with FA? Well, yes, for example, compilers of 
programming languages have an automaton front-end that will preprocess the input 
(which is a program written in some high level language) and extract all sorts of 
tokens such as, for example, names of variables. The principle of variable naming 
is captured by the following language (set of names) over A = {L, D}, where we 
chose "L" to suggest "letter" and "D" to suggest "digit": "A name for a variable is a 
string over A that starts with an L and continues with zero or more Ls or Ds". 

This language is V = {L}{L,D}*. An FA that accepts this language is the 
following: 

But remember that this volume is about fundamental limitations of computing, 
not a how-to manual for, say, compiler writing. So we will leave this discussion at 
that. 
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3.2 NONDETERMINISTIC FINITE AUTOMATA 

The FA formalism provides us with tools to finitely define certain languages: Such a 
language—defined as an L(M) over some alphabet A, for some FA M—contains a 
string x iff there is an accepting computation 

q0x h ^ xq (1) 

or, equivalently an accepting path within the FA (given as a flow diagram) whose 
labels from left to right form x. 

(5)v_y —'G5 
The computation (1) above, equivalently, the path labeled x within the FA, are 
uniquely determined by x since the automaton's 8—the transition relation—is a total 
function. 

Much is to be gained in theoretical flexibility if we relax both the requirements 
that 6 is single-valued (a function) and total. 

This gives rise to a nondeterministic model of finite automata, a "NFA", that may 
accept a string in more than one ways, that is, there may be more than one distinct 
paths from q$ to an accepting state g, each labeled by the same string x. 

Indeed, even more flexibility is attained if we also allow "unconditional jumps" 
from one state to another, such as 

which, in the first approximation, will have unlabeled edges as above. However, in 
order to retain the central property that we may "read off" what string is accepted 
by any given accepting path, namely, by simply concatenating the edge labels of the 
path from left to right, we will label all unconditional jumps by a string that is neutral 
with respect to concatenation—that is, by e. For this reason, unconditional jumps 
are also called "e moves". 

3.2.0.7 Example. The displayed flow diagram below, over the alphabet {0,1}, in-
corporates all the liberties in notation and convention introduced in the preceding 
discussion. 

We have two e moves, and the string 1 can be accepted in two distinct ways: One 
is to follow the top e move, and then go once around the loop, consuming input 1. 
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The other is to follow the bottom e move, and then follow the transition labeled 1 to 
the accepting state at the bottom (reading 1 in the process). 

Folklore jargon will have us speak of guessing when we describe what the diagram 
does with an input. For example, to accept the input 00 one would say that the NFA 
guesses that it should follow the upper epsilon, and then it would go twice around 
the top loop, on input 0 in each case. 

This diagram is an example of a nondeterministic finite automaton, or NFA; it has e 
moves, its transition relation—as depicted by the arrows—is not a function (e.g., the 
top accepting state has two distinct responses on input 1), nor is it total. For example, 
the bottom accepting state is not defined on any input, nor is the start state: e is not 
an input! □ 

Returning to the issue of guessing, we emphasize that a NFA simply provides the 
mathematical framework within which we can formulate and verify an existential 
statement of the type 

for some given input x, an accepting path exists 

Given an acceptable input, the NFA does not actually guess "correct" moves (from 
among a set of choices), either in a hidden manner (consulting the Oracle in Delphi, 
for example), or in an explicit computational manner (e.g., parallelism, backtracking) 
toward finding an accepting path for said x. Simply, the NFA formalism allows us to 
state, and provides tools so that we can verify, the statement 

for some given input x an accepting path exists (3.2.0.9) (1) 

just as the language of logic allows us to state statements such as (3y)&(y, x), and 
offers tools for their proof. 

An independent agent, which could be ourselves or a FA—yes, we will see that 
every NFA can be can simulated by some FA!—can effect the verification that indeed 
an accepting path labeled x exists. 

3.2.0.8 Definition. (NFA as Flow Diagrams) A nondeterministic finite automaton, 
or NFA, over the input alphabet E is a finite directed graph of circular nodes—the 
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states—and interconnecting edges, the transitions, the latter labeled by members of 
A. It is specified as in Definition 3.1.1.1 with some amendments: 

• The restriction (for FA) that for every state L and every a E E, there will 
be precisely one edge, labeled a, leaving L and pointing to some state M 
(possibly, L = M) is removed. 

• The NFA need not be fully specified. 

• It is allowed unconditional jumps, that is, edges labeled only by e. 

We will genetically use names such as M, N, or K for NFA, just as we did for the 
case of FA. □ 

The above can be recast in an algebraic formulation, viewing a NFA from an alter-
native point of view as a tuple of ingredients Q, A, etc., just as we did for the FA. 
If one does so, one will relax the requirement that 5 be a single-valued relation, and 
will also relax the requirement of totalness. One will also allow S to have inputs of 
the type (q, e) making sure to view this as an extension of what 5 can deal with (as 
inputs) rather than mistaking this as an extension of the input alphabet. Said alphabet 
cannot have the empty string as a member. 

We will not pursue the algebraic model, as the flow diagram model will do all we 
want it to do. 

It is trivial that since a NFA is defined by relaxing requirements in 3.1.1.1, any FA 
is also a NFA, but not conversely, as the preceding example demonstrates. 

The NFA "computes" as follows: 

3.2.0.9 Definition. (NFA Computations; String Acceptance) LetMbeaNFAover 
the input alphabet E. An accepting path is a path in M from the start state to some 
accepting state. 

A string x over E is accepted by M iff x is obtained by concatenating the path 
labels from left to right in an accepting path. We say that x names, or is the name of, 
said accepting path. L(M) denotes the set of all strings over E accepted by M. We 
say that M accepts L(M). □ 

3.2.0.10 Example. The following is a NFA but not a FA (why?). It accepts the 
language {0}*{1} (cf. notation in 1.1.3.3). 

\ 0' 
□ 
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3.2.0.11 Example. NFA are much easier to construct than FA, partly because of the 
convenience of the e moves, and the lack of concern about single-valuedness of S. 
Also, partly due to lack of concern for totalness: we do not have to worry about 
"installing" a trap state. For example, the following NFA over A = {0,1} accepts its 
alphabet A as we can trivially see that there are just two accepting paths: one named 
"0" and one named " 1 " . 

□ 

3,2.1 From FA to NFA and Back 

We noted earlier that any FA is a NFA (compare Definitions 3.1.1.1 and 3.2.0.8), thus 
the NFA are at least as powerful as the FA. They can do all that the deterministic 
model can do. It is a bit of a surprise that the opposite is also true: For every NFA 
M we can construct a FA N, such that L(M) = L(N). 

Thus, in the case of these very simple machines, nondeterminism ("guessing") 
buys convenience, but not real power. 

How does one simulate a NFA on an input xl The most straightforward idea is 
to trace all possible paths labeled x (due to nondeterminism they may be more than 
one—or none at all) in parallel and accept iff one (or more) of those is accepting. 

www.it-ebooks.info

http://www.it-ebooks.info/


NONDETERMINISTIC FINITE AUTOMATA 261 

The principle of this idea is illustrated below. 

Say the input to the NFA M is x = ab... Suppose that a leads the start state—which 
is at "level 0"—to three states; we draw all three. These are at level 1. We repeat for 
each state at level 1 on input b: Say, for the sake of discussion, that, of the three states 
at level 1, the first leads to one state on input b, the second leads to two and the third 
leads to none. We draw these three states obtained on input b; they are at level 2, etc. 

A FA can keep track of all the states at the various levels since they can be no more 
than the totality of states of the NFA M! The amount of information at each level is 
independent of the input size—i.e., it is a constant—and moreover can be coded as a 
single FA-state (depicted in the figure by an ellipse) that uses a "compound" name, 
consisting of all the NFA state names at that level. This has led to the idea that the 
simulating FA must have as states nodes whose names are sets of state names of the 
NFA. Clearly, for this construction, state names are important through which we can 
keep track of and describe what we are doing. Here are the details: 

3.2.1.1 Definition, (a-successors) Let M be a NFA over an input alphabet E, q be 
a state, and a e E. A state p is an a-successor of q iff there is an edge from q to p, 
labeled a. □ 

In a NFA a-successors need not be unique, nor need to exist (for every pair {q, a)). 
On the other hand, in a FA they exist and are unique. 

3.2.1.2 Definition, (e-closure) Let M be a NFA with state-set Q and let S CQ. The 
e-closure of 5, denoted by e(S), is defined to be the smallest set that includes S but 
also includes all q G Q, such that there is a path, named e, from some p e S to q. 

When we speak of the e-closure of a state a, we mean that of the set {a} and write 
e(g) rather than e({g}). □ 

Note that a path named e will have all its edges named e. 
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3,2.1.3 Example. Consider the NFA below. 

We compute some e-closures: e(a) = {a, b, a7}; e(c) = {c, a, b, a7}. D 

3.2.1.4 Theorem. Let M be a NFA with state set Q and input alphabet E. Then 
there is a FA N that has as state set a subset ofV(Q)—the power set ofQ—and the 
same input alphabet as that ofM. N satisfies L(M) — L(N). 

We say that two automata M and N (whether both are FA or both are NFA, or we 
have one of each kind) are equivalent iff L(M) = L(N). Thus, the above says that 
for any NFA there is an equivalent FA. In fact, this can be strengthened as the proof 
shows: We can construct the equivalent FA. 

Proof. The FA N will have as state set some subset of V(Q), meaning that every 
state of N will have a compound name consisting of the names (in any order, hence 
set rather than sequence) of the members of some subset of Q. Moreover, 

• The start state of N is e(oo), where go is the start state of M. 

• A state of N is accepting iff its name contains at least one accepting state of 
M. 

• Let S be a state of N and let a e E. The unique a-successor of S in N is 
constructed as follows: 
(1) Construct the set of all a-successors in M of all members of S. Call T this 
set of a-successors. 
(2) Construct e(T); this is the a-successor of S in N. 

As an illustration, we compute some O-successors in the FA constructed as above if 
the given NFA is that of Example 3.2.1.3. 

(I) For state {a, b, d} step (1) yields {c}. Step (2) yields the e-closure of {c}: The 
state {c, a, fr, d} is the O-successor. 

(II) For state {c,a,b,d} step (1) yields {c}. Step (2) yields the e-closure of {c}: 
The state {c, a, 6, a7} is the O-successor; that is, the 0-edge loops back to where it 
started. 
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We return to the proof. We will show that this construction of the FA N works. 
So let us prove first that L(M) C L(N). 

Let x — a\d2 • • • an G L{M). Without loss of generality, we have an accepting 
path in M that is labeled as follows: 

ejla1eha2ej3a3 • • • ejnanejn+1 (3) 

where each e-7* depicts ji > 0 consecutive path edges, each labeled e, where ji = 0 in 
this context means that the ji group has no e-moves. We show this M-path graphically 
below as the zig-zag path with horizontal segments alternating with down-sloping 
segments. For easy reference, we assign the level number i to each horizontal part 
labeled eJi+1, which is the one that is followed immediately by a down-sloping edge 
labeled a^+i. 

Now the FA N that is constructed as detailed in the above three bullets will—its 5 
being total—have a unique117 path labeled a\a2 . •. an from its start state to some 
other state, its states being denoted by ellipses in the diagram. 

The diagram implicitly claims that each A^-state at level i, depicted as an ellipse in 
the diagram, 

(A) contains as part of its name all the states that participate in the M-sub-path with 
name eji+1, for i = 0 ,1 ,2 , . . . 

By determinism. 
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(B) the TV-state at level i has the TV-state shown, and partially named, at the next 
level as its a^+i -successor. 

We prove (A) by an easy induction on i and obtain (B) at once (bullet three on p. 262) 
as a side-effect. Indeed, for level i = 0 (basis), all the state names shown (from M) 
are in e(qo) and we are done by the first bullet on p. 262. 

Taking as I.H. the validity of (A) for a fixed unspecified level i—where we have 
an TV-state S—we look next at level i + 1, where we have an TV-state T. 

By definition of "level", level i + 1 is reached by the edge named a^+i. By the 
assumption on how M accepts x, the edge named a^+i bridges the two indicated 
states, q and r. From what we know about the components present in the name of S 
(I.H.), the third bullet that describes the transitions of TV entails that all states in the 
e-path from r to p are in the TV-state T. 

The string will be accepted by TV iff the state pointed at by an—at level n—is 
accepting in TV. This is so by the fact that the last state of the M-computation is 
accepting and—by (A)—is part of the last TV-state in the above TV-path. 

We turn to the converse. So let x = a\a^ .. • an G L(N). We will argue that 
x e L(M). 

We will reuse the above figure. Let us concentrate at first only on the elliptical 
states of the FA TV and the indicated in the figure interconnecting transitions, which 
from top to bottom form the accepting TV-computation path labeled a\(i2 •. • an. We 
will want to produce a corresponding accepting M-path, that we will "fold" and fit 
its "horizontal" (e-moves) parts inside appropriate ellipse states. This time it will be 
most convenient to do so starting at the bottom of the FA path and work backwards. 

Thus the last (bottommost) state of TV is two things: 

(i) accepting', hence must contain an accepting M-state (as illustrated) 

(ii) the an-successor of the preceding TV-state (not illustrated). Therefore (p. 262), 
the latter must contain an M-state from which the an-edge emanates and this 
edge either points to the illustrated accepting M-state, or, more generally, to a 
different M-state, which is part of the last ellipse's name and is connected to the 
accepting M-state by an e-path. We always adopt the general case (illustrated). 

Continuing to build an M-computation path backwards, from an accepting state 
toward the start state—and "folding it" inside the ellipses of TV as we go, leaving 
only the edges labeled aj to connect levels—assume that we have reached the ellipse 
at level i + 1. This TV-state acts on input ai+2 that emanates from the M-state p 
inside the ellipse. By the third bullet on p. 262, this p must have become part of 
the ellipse's name either by directly being pointed to by the a^+i-edge—emanating 
from some M-state, that we will call q, inside the z-level ellipse—or the edge from 
q actually points to a state r inside the level-i + 1 ellipse, this r, in turn, pointing to 
p via an e-path (the "general case"), as illustrated. 

Once we reach level 1 in this way, we have a state p' (of M) as part of the level-1 
ellipse's name, which—as in the general case at level i + 1—is either pointed to 
by the ai-edge (emanating from q') directly, or indirectly via an e-path from r', as 
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illustrated. Finally, at level 0, we have iV's start state. Thus, either q' is the start state 
of M, or, more generally, as illustrated, q1 is reachable from M's start state by an e 
path. We have constructed an accepting path in M, labeled x. D 

In theory, to construct a FA for a given NFA we draw all the states of the latter and 
then determine the interconnections via edges, for each state-pair and each member 
of the input alphabet E. In practice we may achieve significant economy of effort 
if we start building the FA "from the start state down": That is, starting with the 
start state (level 0) we determine all its a-successors, for each a E E. At the end of 
this step we will have drawn all states at "level 1". In the next step for each state at 
level 1, draw its a-successors, for each a £ E. And so on. 

This sequence of steps terminates since there are only a finite number of states in 
the FA and we cannot keep writing new ones; that is, sooner or later we will stop 
introducing new states: edges will point "back" to existing states. See the following 
example. 

3.2.1.5 Example. We convert the NFA of 3.2.1.3 to a FA. See below, and review the 
above comment and the proof of 3.2.1.4, in particular, the three bullets on p. 262, to 
verify that the given is correct, and follows procedure. 

You will notice the aforementioned economy of effort achieved by our process. We 
have only three states in the FA as opposed to the predicted 32 ( = 25) of the proof 
of Theorem 3.2.1.4. But what happened to the other states? Why are they not listed 
by our procedure? 
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Because the procedure only constructs FA states that are accessible by the start 
state via a computation path. These are the only ones that can possibly participate 
in an accepting path. The others are irrelevant to accepting computations—indeed to 
any computations that start with the start state—and can be omitted without affecting 
the set accepted by the FA. □ 

3.2.1.6 Example. Suppose that we have converted a NFA M into a FA N. Let a 
be in the input alphabet. What is the a-successor of the state named 0 in Nl Well, 
there is no M state q that connects some state in 0 to q with label a. Thus, the set 
of a-successors (in M) of states from 0 is itself the empty set. In other words, the 
a-successor of 0 in N is 0. The edge labeled a loops back to it. 

Therefore, in the context of the NFA-to-FA conversion, 0 is a trap state in N. D 

3.3 REGULAR EXPRESSIONS 

There is a very useful alternative (to FA and NFA) way to finitely represent the 
L(M)-sets via a system of notation, or naming, that is called regular expressions. 
Regular expressions are familiar to users of the UNIX operating system. They are 
more than "just names" as they embody enough information—as we will see—to be 
mechanically transformable into a NFA (and via Theorem 3.2.1.4 to a FA). 

3.3.0.7 Definition. (Regular Expressions over E) Given the alphabet E, we form 
the extended alphabet 

£ U { 0 , + , . , * , ( , ) } (1) 

where the symbols 0, +,- ,* ,( , ) (not including the comma separators) are all abstract 
or formal11* and do not occur in E. In particular, "0" in this alphabet is just a symbol, 
and so are "+", "•", "*", and the brackets. All these symbols will be interpreted 
shortly. 

The set of regular expressions over E is a set of strings over the augmented 
alphabet above, given as the closure C1(X, O), where 

X = E U { 0 } 

and O contains three operations 

(1) From strings a and /3 form the string (a + f3) 

(2) From strings a and /3 form the string (a • /3) 

(3) From string a form the string (a*) 

The letters a, /?, 7 are used as metavariables (syntactic variables) in this definition. 
They will stand for arbitrary regular expressions (we may add primes or subscripts 
to increase the number of our metavariables). □ 

'Employed to define form or structure. 
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3.3.0.8 Remark. 

(i) We emphasize that regular expressions are built starting from the objects con-
tained in E U {0}. We also emphasize that we have not talked about semantics 
yet, that is, we did not say what sets these expressions will represent or name, 
nor, what "+", "•", and "*" mean. 

(ii) We will often omit the "dot" in (a • j3) and write simply (af3). 

(iii) We assign the highest priority to *, the next lower to •, and the lowest to +. We 
will let ftoft'o/o a'" group ("associate") from right to left for o e {+, •,* }. 
Given these priorities, we may omit some brackets, as is usual. Thus, a + ,#7* 
means (a + (/3(7*))) and a/3^ means (a(^7)). □ 

We next define what sets these expressions name (semantics). 

3.3.0.9 Definition. (Regular Expression Semantics) We define the semantics of 
any regular expression over E by recursion over the set of all such regular expressions. 
We use the notation L(a) to indicate the set named by a. 

(1) L(0) = 0, where the left "0" is the symbol in the augmented alphabet (1) above, 
while the right "0" is the name of the empty set. 

(2) L(a) = {a}, for each a G E 

(3) L(a + P) = L{a) U L(/3) 

(4) L(a • P) = L(a)L(P)—cf. Definition 1.1.3.3. 

(5) L ( a * ) = ( L ( a ) ) * 

A language over E (cf. 1.1.3.2) obtained as L(a) from some a over E is called a 
regular language. □ 

3.3.0.10 Example. Let E = {0,1}. Then L((0 + 1)*] = E*. Indeed, this is 

because L(Q + l ) = L(0) U 1,(1) = {0} U {1} = {0,1} = E. □ 

3.3.0.11 Example. We note that L(0*) = ( L ( 0 ) ) * = 0* - {e} (cf. p. 40). □ 

Of course, two regular expressions a and f3 over the same alphabet E are equal, 
written a = /?, iff they are so as strings. We also have another, semantic, concept of 
regular expression "equality": 

3.3.0.12 Definition. (Regular Expression Equivalence) We say that two regular 
expressions a and ft over the same alphabet E are equivalent, written a ~ /3, 
iff they name the same language, that is, iff L(a) = L(f3). □ 
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3.3.0.13 Example. Let E = {0,1}. Then (0 + 1)* ~ (0*1*)*. 
Indeed, L((0+1)*) = E*, by 3.3.0.10. It suffices to show that L((0*1*)*) = E* 

as well. To this end, the inclusion L((0*1*)*) C E* is trivial, as the left hand side 
is a set of strings over E. 

We turn to L((0*1*)*) D E*. Now let us write A = L(0*) and B = L(l*). 
Thus the left hand side is (AB)*. Given that A = {0}* = {0n : n > 0} and 
£ = {1}* = {1™ : m > 0 } , 

(AB)* = {0 n l m : n > 0 A m > 0}* (1) 

Let now x E E*. We show by induction on the length, k, of x that x belongs to the 
left hand side. For k = 0 we have x = e and the claim follows from the definition of 
the Kleene star (p. 40) of any set X (here X = AB). 

Assume the claim for a fixed k (this is the I.H.). The case for k -f 1 has two 
sub-cases: First, x = 0?/. By the I.H. and by (1), y, which has length k, has the form 
below. 

nni ^mi QU2-^rri2 Qn3-^1713 r\nr^mr 

But x has the same form, hence is in the left hand side. 
Second, let x = \z. By the I.H. and by (1), z (of length k) has the form above. 

But x has the same form, since it is obtained by adding 00!1 to the left of (1). Hence 
x is in the left hand side. □ 

By the above example, a ~ (3 does not imply a — f3. 

3.3.1 From a Regular Expression to NFA and Back 

There is a mechanical procedure (algorithm), which from a given regular expression 
a constructs a NFA M so that L(a) = L(M), and conversely: Given a NFA M 
constructs a regular expression a so that L(a) = L(M). 

We split the procedure into two directions. First, we go from a regular expression 
to a NFA. 

3.3.1.1 Remark. Every NFA M can be considered, without loss of generality, to 
have exactly one accepting state. This means that, if it does not, we can construct an 
equivalent NFA, M', that does. Indeed, if M has no accepting states at all then we 
just add one accepting state to it, to obtain M'. We add no edges. Thus, just like the 
original, M' has no accepting paths. That is, L(M) = L(M') = 0. 

Suppose now that M has several accepting states, 

Pl,P2,...,Pn (1) 

We form M' by doing this: 

• add a new state, H, and designate it accepting 

• connect each original accepting state to H via an e-move; we add no other 
edges 
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• make all the Pj in (1) rejecting. 

Trivially, M' has just one accepting state. On the other hand, say x G L(M). Then 
there is an accepting path in M that ends, say, with P^, for some k. This path is 
labeled x. But then so is the path that we obtain by following the empty move to H: 
it is labeled xe = x. Thus, x G L(Mf). 

Conversely, let z G L(M'). Thus there is an accepting path that must end with 
H. The label of this path is z. Moreover, the path passes through, say, some P m as 
this is the only way to reach H, and indeed the latter is reached from P m via a single 
e-move. 

Thus, if y is the label of the portion of the path from start state to P m , then 
z = ye = y. In other words, z G L(M), since P m is accepting in M and therefore 
y G L(M). □ 

3.3.1.2 Theorem. (Kleene) For any regular expression a over an alphabet E we can 
construct a NFA M with input alphabet E so that L(a) = L(M). 

Proof. Induction over the closure of Definition 3.3.0.7—that is, on the formation of 
a regular expression a according to the said definition. For the basis we consider the 
cases 

• a = 0; the NFA below works 

• a = a, where a G E; the NFA below works 

Both of the above NFA have the form guaranteed by Remark 3.3.1.1. All the NFA 
we construct in this proof will have that form, namely, 

xo D 
Assume now (the I.H. on regular expressions) that we have built NFA for a and 
f3—M and TV—so that L(a) = L(M) and L(/3) = L(N). Moreover, these M and 
N have the form above. For the induction step we have three cases: 
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To build a NFA for a + /3, that is, one that accepts the language L(M) U L(N). 
The NFA below works since the accepting paths are precisely those from M 
and those from N. However, to maintain the single accepting state form, we 
apply Remark 3.3.1.1 to the NFA below. 

To build a NFA for a/?, that is, one that accepts the language L(M)L(N). The 
NFA below works—since the accepting paths are precisely those formed by 
concatenating an accepting path of M [labeled by some x G L(M)] with an 
e-move and then with an accepting path of N [labeled by some y £ L(N)]9 in 
that left to right order. The e that connects M and N will not affect the path 
name: xey — xy. 
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• To build a NFA for a*, that is, one that accepts the language L(M)*. The NFA 
below, that we call P , works. That is, L(P) = L(M)*. 

Q part) Indeed, let x G L(M)*. Then either x = e, or 

X = ZiZ2...Zk ( 1 ) 

where each Zj e L(M) (2) 

In the former case, since x labels the one-edge path from the start state of P to 
its accepting state, it is in L{P). 
If, on the other hand, x is given by (1), then again P accepts it, since it has 
a path from its start state to the accepting state, labeled x. Here is why: this 
path starts at the start state of P, follows the e-move to the start state of M, 
and then follows a path labeled z\ in M. The path returns to the start state of 
P via the e-move. 

We repeat this path-building process, but this time we will traverse a path in 
M labeled z2. We continue like this until we traverse a path labeled Zk in M 
and then follow the e-move back to the start state of P. From here we move to 
the accepting state of P via an e-move. 

All the paths that we said we traverse in M exist by virtue of (2). 

The entire path traversed via this process—in P—is labeled by 

€Z\€ez2t... ez^ee 

which is equal to x. 
(C) Let now, for the converse inclusion, that y £ L(P). This y labels a path 
from the start state of P to its accepting state. 
There are only two kinds of such paths: One is the one-edge path labeled e 
from the start state of P directly to its accepting state. Thus y — e. But then, 
yeL(M)\ 

www.it-ebooks.info

http://www.it-ebooks.info/


2 7 2 A SUBSET OF THE URM LANGUAGE; FA AND NFA 

The other kind of path is one that follows the loop that contains M one or more 
times, finally to "exit" to the accepting state by following the e-move in the 
figure above. If we denote by Wj the name of the path traversed in M—from 
M's start to its accepting state—the j-th time around the loop, and if y caused 
the computation to enter the loop r times in total, then 

y = ewieew2eews€ ... ewree = W1W2W3 . . . wr 

But each Wj is in L{M) by virtue of what path it names in M. Hence, 
y G L(M)* as we needed to prove. □ 

3.3.1.3 Theorem. (Kleene) For any FA or NFA M with input alphabet E we can 
construct a regular expression a over E so that L{a) — L{M). 

Proof. Given a FA M (if a NFA is given, then we apply 3.2.1.4 first). We will 
construct an a with the required properties. The idea is to express L(M) in terms of 
simple (indeed, finite) sets of strings over E by repeatedly using the operations •, U 
and Kleene star, a finite number of times. It will be clear that a so constructed set can 
be named by a regular expression. 

So let Q = {qi, q2,... ,qn} be the set of states of M, where q\ is the start state. 
We will refer to the transition function of M as 5 and to the set of its accepting states 
a s F . 

We next define several sets of strings (over E)—denoted by R^, for k = 
0 , 1 , . . . , n and each i and j ranging from 1 to n. 

R%j = {x e E* : qix \-*M xqj and every qm in this path, (1) 
other than the the endpoints qi and qj, satisfies m < k} 

A superscript of n removes the restriction on the path qix \-*M xqj since every state 
qm satisfies m <n. 

We first note that for k = 0 we get very small finite sets. Indeed, since state 
numbering starts at 1, the condition m < 0 is false and therefore in i?^, if we have 
i ^ j , then the condition q^x \-*M xqj can hold precisely when x — a e E for some 
a—that is, iff 5(^, a) = qj. The case i = j also allows e in the set, since qie \-*M eqi 
for all i. To summarize, for all i and j we have 

^0 = UaeE:6(qi,a) = qj} ifi^J (2) 
ij [ { e } U { a 6 E : % , a ) = ft} if i = j 

Since every finite set of strings can be named by a regular expression (cf. Exer-
cise 3.5.26), 

there are regular expressions a^ such that L(a®j) = i?^-, for all i, j (3) 

Next note that the i?f • can be given recursively using k as the recursion variable and 
i, j as parameters, and taking (2) as the basis of the recursion. 
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To see this, consider a path labeled x in ijf., for k > 0. It is possible that all gm 

(other than qi and qj) that occur in the path have m < k. Then this x also belongs to 
■fc-i 

If, on the other hand, we have qk appear in the interior of the path labeled x once 
or more times, then we have the picture below: 

where the qk occurrences start immediately after the path named ZQ and are connected 
by paths named Zi, for i — 1 , . . . , t. Thus, x = ZQZ\Z2 . . . ^ t + i - Noting that 
ZQ G Rik1, Zi G ltf£X— for z = l , . . . ,t—and zt+1 G i?£~\ we have that x G 

^St"1 • (̂ fcfc T ' ^t"1-1 1 9 W e h a v e e s t a b l i s h e d> f o r all fc > 1 and all ij, that 

R: k-i i u^Sr1-^*1) -R! ? f c - l (4) 

Now take the I.H. that for k — 1 > 0 (fixed!) and all values of i and j we have regular 
expressions a^1 such that L(a^~x) — i ?^ - 1 . We see that we can construct—from 
the a1*"1—regular expressions a^ for the R^. Indeed, using the I.H. and (4), we 
have, for all i, j and the fixed k, 

a%=a% 1 + a * t
1 ( a j t f c

1 ) * a * j fc-i (5) 

Along with the basis (3) that the R^ sets can be named, this induction proves that 
all the R%j can be named by regular expressions, which we may construct, from the 
basis up. 

Finally, the set L(M) can be so named. Indeed, 

L(M) U Hti 

The above is a finite union (F is finite!) of sets named by a^j with qj G F. Thus 
we may construct its name as the "sum" (using "+", that is) of the names a^ with 
qj G F. □ 

119If there is just one qk in the figure, then this is captured by the (Rkk ) in the (Rkk )* = 

U ~ o (Rkk )*'» cf- Subsection 1.1.3. 
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Because of the two Kleene theorems, every language that is accepted by a FA or NFA 
is a regular language. 

3.3.1.4 Example. Consider the FA of Example 3.1.1.4, reproduced below. 

We will rename its states qo, q\ to q\, #2 respectively (not shown), so that we can 
conform with the notation in the proof of Theorem 3.3.1.3. 

We will compute regular expressions for: 

• all sets R% 

• all sets R), 

• all sets Rf-

Recall the definition of the i?^ here for k — 0,1, 2 and i,j ranging in {1, 2} (cf. 
proof of 3.3.1.3): 

{x : qix h* xqj, where no state in this computation, 
other than possibly the end-points qi and qj, has index higher than k} 

This leads to the recurrence: 

Hij - Hij u Hik \Hkk ) Kkj 

Below I employ the abbreviated (regular expression) name "e" for 0*. 

-#11 

^ 1 2 

•#21 

^22 | 

e + 0 
1 
1 

e + 0 

Superscript 1 now: 
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pi _ pO i i DO /DO \*pO 
•̂ 11 - *Mi U ^ l l l ^ l l J ^11 

^12 = ^12 U ^ 1 1 ( ^ 1 1 ) * ^ 1 2 
p i _ pO i i pO / p O \ * p O 
^ 2 1 - -^21 U ^ 2 1 ( ^ 1 1 ; - "11 
p i _ pO 1 1 pO / pO \ * pO I 
^ 2 2 ~~ xx22 u - r L 2 1 v r L l l / • f l12 1 

Direct Substitution 
e + 0 + (e + 0)(e + 0)*(e + 0) 

l + (e + 0)(e + 0)*l 
l + l(e + 0)*(e + 0) 
e + 0 + l ( e + 0)*l 

Using the previous table, the reader will have no difficulty to fill in the regular 
expressions under the heading "Direct Substitution" in the next table. To make things 
easier it is best to simplify the regular expressions of the previous table, meaning, 
finding simpler, equivalent ones. For example, L(e + 0 + (e + 0)(e + 0)*(e + 0)) = 
{e, 0} U {e, 0}{e, 0}*{e, 0} = {0}*, thus 

e + 0 + ( e + 0)(e + 0)*(e + 0 ) ~ 0 * 

Superscript 2: 

^ 1 1 — -^11 U ^12(^22)*^21 

Rl2 — R12 U ̂ 12(^22) ^22 
p 2 pO 1 1 pO / p i N* p i 
• ^ l ~~ ^ 2 1 u IX22\IX22) IX2\ 

-^22 = = -"^22 ^ ^ 2 2 V - ^ 2 2 ) ^ 2 2 1 

1 Direct Substitution 

□ 
3.3.1.5 Remark. We have the tools now to tackle the following question: Is there a 
converse to the pumping lemma (3.1.3.1)? 

That is, if a language L "can be pumped", must it be regular? 
Of course, we can certify the regularity of a language L by verifying one of 

L — L(M) or L — L(a), for some FA or NFA M, or some regular expression a\ 
but is pump-ability an alternative tool for such certification? 

First off, the colloquialism "can be pumped" means exactly this: For the given L 
there is a positive integer C—a pumping constant—such that, if z G L and \z\ > C, 
then z can be decomposed as z — uvw and all of (a)-(c) hold 

(a) v ^ e 
(b) \uv\ < C 
(c) uvlw e L, for all i > 0. 

No. The pumping lemma goes "one way "! 
Here is why. 

(i) First, we prove that the language L over E = {a, 6, c} given below 

L = {aibjck :i >0J > 0, k > 0 and if i = l t h e n j = /c} (1) 

"can be pumped" in the sense above. 
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Proof. 
To settle the part that a C with the required properties exists, we make an 
educated guess:120 we pick C — 3, and show that this C works for the given 
L. That is, we prove the existential claim " there is a positive integer C, etc." 
constructively. 

Pause. In earlier proofs by pumping lemma—cf. examples following 3.1.3.1— 
that a given language is not regular, we did not take care to hand-pick a C. We 
just said, "let C be an associated pumping constant". How come we now need 
to pick one that works ?^ 

We show now that all z G L, where \z\ > 3, "pump" in the sense (c) above. 
Let then z be arbitrary in L, and longer than 3. 

(I) Case: z = axWcK Take^ = e, v — a. Pumping up or down—i.e., k > 0 
or k = 0 in uvkw—we are still producing strings in L by the condition 
to the left of "and" in (1). 

(II) Case: z = alVck, i > 2. Take u = aa, v the first symbol after the 
second a (recall \z\ > 3). 

(Ill) Case: z contains no a (i = 0). Take u = e, v the first symbol in the 
string. □ 

Pause. Will either of the choices C = 1 or C — 2 work?^ 

(ii) We next prove that L, notwithstanding that "it pumps", is not regular. 
Pause. Hmm. How does one prove that L is not regular if the pumping lemma 
does not helpl All the non regular languages in our earlier examples were 
proved as such by showing that "they cannot pump".-* 

There are are a number of alternative techniques, that go like "if L is regular, 
then so is this Z/, obtained from L, by such and such operations that preserve 
regularity." We try to make V such that its non regularity is amenable to a 
proof by pumping lemma. 
This idea works here. If L is regular, then so is 

L nL(ab*c*) = {abncn : n > 0} 

by 3.1.2.2, using also Kleene's theorems. Now the standard pumping lemma 
proof shows that it is not; cf. Exercise 3.5.28. □ 

Worth emphasizing. The pumping lemma is used for "negative" results of the type 
"L is not regular". It is used as follows: 

120"Educated guesses" usually hide a lot of preliminary work and trial and error attempts; this kind of 
"preprocessing" is almost always omitted from proofs so that the argument is not obscured. They are not 
"guesses" at all. 
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"If L is regular, then it pumps". The lemma has no expectations or opinion on 
whether non regular languages are allowed to pump (or not). So, the existence of a 
non regular language L "that pumps" is fine, but the lemma cannot show via direct 
application the non regularity of this L. 

3.4 REGULAR GRAMMARS AND LANGUAGES 

There is yet another way to finitely represent a regular set: by a grammar—which will 
naturally be called a regular grammar. To motivate the core idea behind grammars, 
consider, for example, the (inductive) definition of formulae (2.11.0.27). Moreover, 
to simplify matters, let us stay in the Boolean domain—that is, we will include 
only the connectives -> and V but no quantifiers—and we will also adopt as atomic 
formulae the set of Boolean variables,121 generated by the symbol p with or without 
primes. Thus, the atomic formulae include 

p,p',P'",p{n) 

where p^ indicates p with n primes 
n primes 

// / 

V 

The alphabet over which we build these simplified well-formed (Boolean) formulae 

In the inductive clauses of 2.11.0.27 we have included "if 8% and ^ are formulae, 
then so is ( ^ V ^ ) " . In words this says that 

One way to get a " complicated" formula is to take two formulae, and join them 
via a " V ", adding outermost brackets after that. 
This generates this idea: Why not use a metavariable, named "(formula)", to 

stand for any formula, genetically, and retell the above italicized sentence as 

(formula) ::— ((formula) V (formula)) 

The above is an instance of a grammar rule (or grammar production) in so-called 
Backus-Naur Form (or BNF). The symbol "::=" we read as "is defined as". The 
syntactic variable (formula) that names any formula is also called a nonterminal 
symbol or just a nonterminal. Symbols such as (,), and V that name themselves are 
called terminal symbols, or just terminals. 

A grammar is a finite set of BNF productions. Our entire grammar for the set of 
formulae has the structure below. 

121A variable that, intuitively, assumes only the values true or false, the so-called Boolean values. Cf. also 
1.1.1.26. 
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• (formula) 

• (formula) 

• (formula) 

• (formula) 

• (formula) 

• (formula) 

:= ((formula) V (formula)) 

:= (-1 (formula)) 

:=p 

:=p> 

: = p " 

:= p"' 

Hmm. The above listing of rules is infinite. How can we make it finite? By finitely 
generating the variables, rather than taking them from a ready to use, off-the-shelf in-
finite set! So let us use the nonterminal (var) to name any variable. A straightforward 
recursive definition, expressed as BNF rules, for this new metavariable is 

(var) ::= p 

(var) ::= (var) 

BNF offers another notational convenience: We can group rules with the same left 
hand side—that is, rules for the same nonterminal—using the separator to separate 

right hand side alternatives. " " is pronounced "or". 

The final grammar therefore is over the alphabet 

( , ) , - ,V ,p , ' (*) 

and its rules are 

(1) (formula) ::= (var) ((formula) V (formula)) (-i (formula)) 

(2) (var) ::=p\ (var)7 

Every one of the two (grouped) rules defines a class of objects in the order listed: 
formulae, and variables. Since the "primary" object we are interested in defining is 
a formula, the nonterminal (formula) is the "important one". It is called the start 
(nonterminal) symbol of the grammar. 

"Statically", the rules (l)-(2) recast Definition 2.11.0.27 (after the adopted above 
simplifications) in a new notation. Clearly, (1) says that a formula is either a variable, 
or is formed by using simpler (shorter) formulae. Option one is to use two simpler 
formulae, concatenate them so that we "sandwich" a "V" between them, and then 
enclose the result in brackets. Option two is to use one simpler formula, prefix it 
with a "->", and attach outermost brackets to the result. The subsidiary rule tells us 
how to finitely generate (define) variables. 
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Grammars do more than "statically" recasting in new notation inductive definitions 
such as 2.11.0.27, as we detail below. 

Suppose we want to verify that a string over (*) is a formula. We call such 
verification parsing. To fix ideas, say, that we are checking, specifically, 

( p V ( V ) ) (3) 

We start by assuming that it is a formula and proceed to verify this assumption using 
the rules (l)-(2). 

To begin with, we view that the string (3) is "covered" by the nonterminal 
(formula). At this highest level of abstraction (lowest level of detail), we just echo 
our working assumption. 

We next refine this "covering" using a well-chosen rule from group (1). The choice 
is dictated here by the first couple of symbols in (3): The refinement or expansion of 
the original covering cannot be either (var) or the right hand side of the third rule in 
group (1), for the former requires the string to start with a "p" and the latter with a 

The refinement yields the covering 

((formula) V (formula)) (4) 

We next, say, refine the left occurrence of "(formula)" in (4), and the "goal", (3), 
suggests that we use the first rule of group (1), to obtain 

((var) V (formula)) (5) 

Let us refine "(var)". The goal suggest we choose the first rule in group (2) to obtain 

(pV (formula)) (6) 

We have uncovered quite a bit of (3)! 
Next we use the third rule of (1) to refine "(formula)" in (7). Again, the context 

"(->" helps us to choose. We obtain 

(pV(n (formula))) (7) 

This time we use group (1)—(formula) ::= (var)—to refine the above into 

(pV(-<var») (8) 

and then 
( p V H v a r ) ' ) ) (9) 

using (2), second rule. One more application of (2), first rule, allows us to uncover 
our entire goal! So, indeed, (3) is a formula. 

These refinements involved, in each case, the rewriting (replacing) of some oc-
currence of a nonterminal in some string by a right hand side of a rule for said 
nonterminal. For that reason we also call grammar rules rewriting rules. 
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We have a better, symbolic, way to depict the several acts of rewriting (refinement): 
Let us first introduce the relation "=>" , pronounced yields, between strings over the 
mixed alphabet 

G )> "^ V>P> G (formula), (var) (**) 

defined for all a, a' over the alphabet (**) by 

aRa' = > a(3a' iff R e {(formula), (var)} and R ::= /3 is a rule (f) 

Then we can summarize our rewriting sequence, from (formula) to (3), via (9), as 

(formula) ==> ((formula) V (formula)) =>* ((var) V (formula)) = > 
(p V (formula)) => (p V (-. (formula))) = > (p V (-. (var))) => 

( p V ( - . ( v a r ) / ) ) = > ( p V ( V ) ) 

The sequence above is a derivation. 

While our goal-driven choices worked deterministically in this example, it is not 
guaranteed that an arbitrary grammar allows us the luxury of deterministic choices 
during every derivation that attempts to verify that a given string is derivable (parsing). 
In general, we may have to "guess" which rule to apply in each step in order to reach 
our goal. Such guessing will usually be implemented by backtracking, that is, every 
time we make a choice that further down gets us stuck (a "bad" choice), then we 
go all the way back to said bad choice and make a different choice from among the 
available options, until we get it right—or until we have verified that the string is not 
derivable. 

While BNF is very helpful in the definition of specific programming languages 
via a grammar, in particular, allowing us to utilize mnemonics for nonterminals, such 
as (if stmt), (begin block), etc.,122 the metatheory of grammars benefits from a more 
abstract, and simpler, notational convention as detailed in the definition below. 

3.4.0.6 Definition. (Grammars) A grammar G = (V, E, 5, TV) is a toolbox where 
V is a finite set of nonterminals, E is a finite set of terminals, where V fl E = 0. 

S £ V is the start symbol, and TZ is the set of rewriting rules or productions. The 
symbols in V are denoted by upper case (single) Latin letters. The symbols of E 
are single-character symbols that are not Latin capital letters. The rules are of the 
form A —y a, where a 6 (V U E)*. Note that in the domain of the metatheory of 
grammars we have simplified the BNF notation "::=" to "—>". 

Strings over V U E will have the generic names a, /3,7, S with or without primes, 
while strings over E will have the generic names x,y,z,u,v,w with or without 
primes. Consistent with this convention, symbols of E—if they are not non-letters, 
such as 0,1,9, f, # , etc.—will be denoted by a, 6, c, d with or without primes. 

122BNF also allows multi-character mnemonics for terminals, using a variety of notations. For example, 
the terminal "then" of Algol might be denoted by then, or then, or then. 
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We define a relation = > on (V U E)*, pronounced yields, by a =^> f3 iff, for 
some 7 and 7', we have a = 7 ^ 7 ' and (3 — 7^7' where A —̂  J is in 1Z. 

The language generated by G—in symbols L(G)—is the set {x G E* : S = > * 
x}.123 

An a such that S = > * a is called a sentential form. A chain 

A = > a i = > a2 = > as • • • = > CK 

is a derivation of a from A. If ̂ 4 is the start symbol, then we just say "a derivation". 
If a G E*—in which case we prefer to write something like x instead of a—then 

it is called a sentence (of G). Thus, L(G) is the set of all sentences of G. □ 

In metatheoretical discussions we will feel free to use the BNF " 
rules with the same left hand side. 

" to group together 

3.4.0.7 Definition. The grammar defined above is called a type-2 or context free 
grammar, for short, CFG. The corresponding language L(G) is said to be a type-2 or 
context free language, for short CFL. The type of grammar is determined by the fact 
that the left hand side of every rule is a single nonterminal. 

If the right hand side of every rule of a CFG is restricted to be of any of the four 
forms e, a, B, or aB, where- a G E and B £ V, then the grammar is said to be a 
type-3 or regular grammar. □ 

CFGs and CFLs will be studied further in Section 4.3. 

3.4.0.8 Example. Let V = {#}, E = {;} and the rules are S ->'\'S. This grammar 
is regular. L(G) is clearly 

S + = {',",'",...} 

that is, the set of all non-empty strings of primes. 
How "clearly"? Well, by L(G)'s definition, L(G) C E*, but no rule can lead to 

the generation of e (the length of right hand sides of the two rules is > 1). Thus 
L(G) C E+. 

For the converse inclusion, E + C L(G), we do induction on the length of strings 
x G E + . For the basis, \x\ = 1, we are looking at x = '. But S = > '. Assume 
now (I.H.) that if \x\ — n, then we have S = > * x. What about a y of length n + 1? 
Well, 2/ = '#, with I a; I = n. Thus, 

rule S-> 'S I.H. 
5 =>> /5=>*/a: □ 

123Cf. 1.6.0.20 and 1.6.0.23. 
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3.4.1 From a Regular Grammar to a NFA and Back 

In this section we, post facto, justify the terminology regular grammar and regular 
language by proving the two theorems below, which relate the descriptive powers of 
NFA and type-3 grammars. 

3.4.1.1 Lemma. A sentential form a £ E* of a regular grammar G = (V, E, S, TZ) 
has the form xA where x G S * and A is a nonterminal 

Proof Induction on the length n of the derivation S = > n a (cf. 1.2.0.21). The basis, 
for n = 0, is immediate since then S = a. We take the obvious I.H. and consider 

S ^ n + 1 a (1) 

Now, (1) can be rewritten, using the I.H., as 

S = > n xA = > xaB 

where a G E U {e} and B is a nonterminal. 
Pause. Why can it not be that the (n + l)-st step used a rule of the type A —> a, 

where a G E U {t}l< 
We are done. □ 

3.4.1.2 Theorem. For any regular grammar G = (V, E, S, 11) we can construct a 
NFA M = (Q, E, q0,6, F) such that L(G) = L(M). 

Proof We take Q — V U { / } , where the "checkmark", / , is a new symbol (not in 
V U E) that names the unique accepting state of M—that is, F = { / } . We take 
qQ — S. The transitions (the S) are chosen as follows. We have a transition 

(1) 

iff A -» a is a rule, where a e E U {e} 

(2) 
A^B 

iff A -> B is a rule 

(3) 
A-^B 

iff A —» aB is a rule, where a € E 

We will show that L(G) — L(M). First we address C. We will assume that x G L(G) 
and prove that x G L(M). As it is natural to do induction on the derivation length of 
x, it is more convenient to show instead (cf. preceding lemma) that, for any y G E* 
and A G V, 

if S = > n yA, then there is a path in M, labeled 2/, from S to A (4) 

www.it-ebooks.info

http://www.it-ebooks.info/


REGULAR GRAMMARS AND LANGUAGES 2 8 3 

The case for n = 1 means that we have a grammar rule S —> yA, where y G £ U {e} 
and A is a nonterminal. If y is a terminal then we have a NFA move of type (3) 
above, else we have one of type (2). We have settled the basis since in either case we 
have a one-edge path from S to A labeled y. 

We now fix n and take (4) as the I.H. Let us next consider a derivation of length 
n + 1: 

S =>n yA = » yaB 

By the I.H. there is a path in M, labeled y, from S to A. This path continues from A 
to B, with an edge labeled a ((2) or (3) above). Overall, we have a path from S to B 
labeled ya. We are done in our task. 

If now S = > * x G £*, then (as 5 7̂  x) we must have 

5 = > * yA = > 2/a 

where x = ya and a G £ U {e}. The last step of the derivation must be due to the 
rule A —> a. By what we proved above we have a path labeled y in M from S to 
A. The rule A —» a contributes to the tail-end of the path the edge (1) above. The 
augmented path is labeled x and it ends at the accepting state. Done. 

For the other direction, let 
x e L(M) (5) 

We want to show that x G L(G). Correspondingly with the previous direction, we 
will prove the following converse of (4), by induction on computation path length in 
M, for all y G £* and A G Q - F. 

if there is a path of length n in M labeled y, from S to A, then S = > * yA (6) 

For n — 1, there is one edge in M 

S ^ A 

thus y — a G £ or y = e. By (2) and (3) above, 5 —»2/̂ 4 is a rule, thus 5 = ^ yA. 
We next fix the n and take (6) as the I.H. Suppose now that there is a path of length 
n + 1 from 5 to 4̂ in M, labeled #. Let a be the label of the rightmost edge of the 
path, connecting B to A, where a G £ U {e}. By (2) and (3), 

B -1+ A is a rule (7) 

and, by I.H., we have S = > * yB, where x — ya. Since by (7) we have B ==> aA, 
we get a derivation 

S = > * 2/£ = > yaA 

as needed. 
With the induction completed, let us return to the hypothesis (5). It means that we 

have a path from S to / , labeled x. If the path has just one edge, then we have S —>■ x 
as a rule [cf. (1) above]. Hence S = > x as needed. If the path has length at least 2, 
then its nodes are 5 , . . . , A, / , for some A e Q — F. Say, the edge from A to / is 
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labeled a G E U {e}—thus A -> a is a rule. By what we just proved by induction, 
it is S = > * yA, where x — ya, and, of course, yA => ya. Thus 5 = > * x and we 
are done. □ 

3.4.1.3 Theorem. For any NFA M = (Q,Y,,qo,5,F) we can construct a regular 
grammar G = (V, E, S,11) such that L(G) = L(M). 

Proof. First off, without loss of generality the names of the rejecting states are 
capital Latin letters, with S as the start state that was generically denoted as "g0" 
in the toolbox of M above. We also assume that we have "preprocessed" the given 
NFA by adding a new, unique accepting state that we name / (cf. Remark 3.3.1.1). 
We do so even if the original NFA had a unique accepting state. 

The construction of G and the proof that it behaves as stated is entirely analogous 
to that of 3.4.1.2. Thus, we take V = Q-F. 

The rules of G are chosen exactly as in (l)-(3) in the preceding proof, reordering 
the two sides of each "iff to emphasize that it is the NFA that is given this time: We 
have a rule 

(1) A -» a is a rule, where a G E U {e}, iff 

is a transition 

(2) , 4 - > £ is a rule iff 
A ^ B 

is a transition 

(3) A —> aB is a rule, where a G E, iff 

A ^ B 

is a transition 

The proof that L(G) = L(M) can now be read off the proof of 3.4.1.2. □ 

Since every NFA is also a FA, the above construction, 3.4.1.3, works if we start with 
a FA. 

3.4.1.4 Example. Let us construct a regular grammar for the FA of Example 3.1.1.4, 
which we reproduce below: 
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To fix ideas, let us assume that we have designated qo as accepting and q\ is rejecting. 
Preprocessing gives the NFA below: 

The proof of 3.4.1.3 gives us the rules 

S -» e I OS I \A and A -> OA 115 D 

3.4.2 Epilogue on Regular Languages 

We look at some ad hoc additional results on regular languages, now that we have 
three equivalent ways to finitely define them: automata, regular expressions, and 
regular grammars. We will present these in the format of examples and will make no 
effort to be "complete" given our philosophy that was outlined in the Preface of this 
volume. The reader who wants to explore more on automata and their languages may 
wish to refer to any of Sipser (1997), Lewis and Papadimitriou (1998), and Hopcroft 
etal (2007). 

3.4.2.1 Example. Every regular language L over an alphabet E is closed under taking 
prefixes of its members. That is, the language 

Init(L) = {x : for some y, xy G L} (i) 

is also regular. To show regularity, we will look for an a or an M or a G and show 
that the language in (1) is finitely defined by one of these. Which one we choose is 
simply a matter of conveniewnce! 

So let us take the regular expression avenue toward the proof, and translate the 
assumption to 

For some a over E, we have L = L(a) 

By induction on the formation of a (cf. 3.3.0.7 and 1.6.0.13) we argue that we can 
find (for any) a such that L = L(a) a a such that Init(L) — L(a). 
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Basis. 

1. a = aeE. Then 5 = a + 0*.124 

2. a = 0. Then 5 = a. 

Induction steps. If a = /? + 7, then 5 = /? + 7. 
If a — /? • 7, then 5 = /H- /? • 7. 
I fa = £*,then5 = /3*/3. D 

Another closure property is left as an exercise (Exercise 3.5.30). 

3.4.2.2 Example. Given a regular language in one of the three ways that we know 
of, can we check algorithmically whether it is equal to 0? Yes! We use the FA 
formalism to describe it (if it is not given that way we can certainly convert to this 
representation) and then check to see if there is any path from the start state to any 
accepting state. The language is empty iff no such path exists. □ 

3.4.2.3 Example. Given a regular language, L, can we check algorithmically whether 
it is finite or not? 

Yes! We assume without loss of generality that the language has been given as 
L = L(M) for some FA M. This allows us to determine a pumping constant C (it 
equals the number of states in M; cf. proof of 3.1.3.1). 

The language is infinite iff it contains strings with lengths greater than or equal 
to C. But how can we tell whether it does? 

Well, if we have infinitely many strings in L, then L must have strings of arbi-
trarily large lengths, hence, in particular, a string z of smallest possible length, but 
nevertheless \z\ > 2C. By 3.1.3.1, we can write this z as uvw with \uv\ < C and 
such that uvlw G L for i > 0. In particular, uw G L. 

As z had least length above 2C, we have that 

\uw\ < 2C (1) 

Now, adding to 2C < \uvw\ the inequality — C < —\v\ [cf. 3.1.3.1, (3)] we get 

C < \uw\ (2) 

So, if L is infinite, then we will be able to find an x G L of length—by (1) and (2) 

C < \x\ < 2C (3) 

Of course we will have to examine only finitely many strings, those in the length-
range (3), to find such an x. 

But is finding an x in the language L, in the length-range (3), sufficient in order 
for us to proclaim that L is infinite? Yes, because the left inequality of (3) and 3.1.3.1 

124The set of prefixes of members of {a} is {e, a}. But {e} is given by the name 0*—cf. 3.3.0.11. 
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imply that this x "pumps"; it leads to infinitely many strings in L. So this is the 
algorithm: 

Using the FA M, check all strings in the range (3) for membership in L. If any is 
found, then L is infinite; otherwise it is finite. □ 

3.5 ADDITIONAL EXERCISES 

1. Describe in set-theoretic notation the language of the automaton in 3.1.2.4. Inde-
pendently, describe set-theoretically the complement {0nl : n > 0} and verify 
that your two answers are equivalent. 

2. Construct a FA M over A = {0,1} such that L(M) = {e}. 

3. Construct a FA M over A = {0,1} such that L(M) = {0,1}+ , that is, L(M) = 
A* - {e}. 

4. Construct a FA that accepts L = {00,11,10} over A = {0,1}. 

5. Let E = {0}. Which of the following languages over E is regular, and whyl 

(a) {x : \xx\ is odd} 
(b) {x : \x\ is odd} 
(c) {x : |xx | is not a prime} 
(d) {x : \x\ is not a prime} 
(e) {x : \x\ is a perfect cube} 

6. Find a finite automaton that accepts the language over A = {0,1} that contains 
precisely the strings that have no three consecutive 0s. 

7. Find a finite automaton that accepts the language over A — {0,1} that contains 
precisely the strings that end in precisely three consecutive 0s. 

8. Find a finite automaton that accepts the language over A = {0,1} that contains 
precisely the strings that end in at least three consecutive 0s. 

9. Design a FA over {0,1} that accepts exactly all the strings of length 3/c + 1 for 
some natural number k. 
E.g., 0, 0110, 0000 are all in. 00, 000, 01101 are not. 

10. Build a NFA that accepts precisely all the strings over {0,1} of length > 5 that 
contain at least one " 1 " among their last five symbols. 
You should argue the correctness of your design in general terms, not by example. 

11. Design a FA over {0,1} that accepts exactly all the strings whose digits have sum 
equal to 3k + 1 for some natural number k. 
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For example, 1, 100, 1111 are in. 11, 0, 111 are not. 
You must prove that your automaton works! 

12. Convert to NFA (all are over {0,1}) without comment: 

• 01* 
• (0+1)01 
• 00(0+1)* 

13. Convert the previous last two NFA to a FA. 

14. For any string x over E = {0,1}, let xR mean its reversal (i.e., xR reads right-to-
left exactly as x does left-to-right), or, mathematically, 

R _ J x if £ = e 
1 yRa, for all a £ E if x = ay 

Is {xwxR : x e E* A w e E*} regular? 
A proof should be provided in support of either of the two possible answers. 

15. This is a different question than the previous one! 
Let L over E = {0,1} be given by L = {xyxR : x e E* A y G E}. 
Prove or disprove: L is regular. 

16. Prove that the language over {0,1}, 

L = {w : w contains an equal number of occurrences of the substrings 01 and 10} 

is regular. 
Overlaps are allowed in the occurrences of 01 and 10. E.g., 010 is in. 0110 is in 
too, but 1010 is not. 

"Prove" is not fulfilled by just writing down a NFA (or FA or a regular expression). 
The question remains: Why does the proposed finite description represent LI 
Put positively, you need first to prove that L, as given above, can be redefined by 
some much simpler description. Then it will be easy to give a NFA or FA or a 
regular expression that can readily be seen to "work"! 

17. Prove that the language A below, over the alphabet E = {0 ,1 ,+ ,=} , 

A = {x + y = z : x, y, z are binary integers, and z is the sum of x and y} 

is not regular. 
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18. A counterexample to the Pumping Lemma: "We know that L — {00,01} over 
A — {0,1} is regular. Let then C > 0 be a pumping constant for L, and take a 
z G L with \z\ > C. Then we can write z = uvw—where \v\ ^ 0—so that all 
the strings uvlw, for i > 0, are in L. But this is impossible! L is finite!" 

The reasoning in quotes invalidates the pumping lemma! Do you believe this? 

(i) We said "We know that L = {00,01} over E = {0,1} is regular". How do 
we know this? Explain precisely. 

(ii) Explain precisely where (and why) the counterexample argument is wrong. 

19. Is the language L = {a2n : n > 3} over {a} regular? Why? 

20. Is the language L = {a2™ : n > 3} over {a} regular? Why? 

21. Is the language L — {axbycz : x >yV y > z} regular? Why? 

22. Is the language L = {an(6V)fc&n : i, j , k > 0 A n > 1} regular? Why? 

23. Let M be a NFA. "To get a NFA that accepts the complement of L(M) it suffices 
to swap accepting and rejecting states". 
If you believe this prove it. If not, find a counterexample, that is, a NFA M 
on which the above suggested swapping does not work: It produces a NFA that 
accepts something other than the complement of L(M). 

24. Define a new type of a nondeterministic automaton exactly as in Section 3.2, 
except that the new model—in general—has more than one start state. 
A string x is accepted by this model iff there is a path with label x from some 
initial state to some state in F. 

Prove that this model still recognizes exactly the regular languages. 

25. For any regular expressions a and f3 over the alphabet E, we have (a + ft)* ~ 
(a*/3*)*. 

26. Prove that every finite set of strings over some alphabet A can be named by a 
regular expression. 

27. There were a number of "pauses" in 3.3.1.5 posing questions to the reader. Provide 
all needed answers. 

28. Prove that {abncn : n > 0} over E = {a, 6, c} is not regular. 

29. Prove the result in Example 3.4.2.1 using the NFA, rather than regular expressions, 
as the formalism. 

30. Prove that regular languages are closed under reversal. This is understood as 
follows: The reversal of a string x over E, denoted by xR, is defined in Exercise 14 
above. 
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For any language L, its reversal, denoted by LR is defined as LR = {xR : x G L}. 

The exercise asks to prove that if L is regular, then so is LR. 

Hint. A technique similar to that used in 3.4.2.1 is recommended. 

31. Prove that a CFG G over E, whose rules are of the types A —> B, A —> a, and 
A —> Ba—where a G E U {e}—is regular. 

Hint. This means that an a, or a FA M, or a regular grammar G exist, such that 
the generated language equals L(a) [or L(M), orL(Gf)]. 

32. Prove (by an appropriate example) that we cannot normally mix rules of the types 
A —> Ba and A —>> aB and expect to generate a regular language. More precisely, 
find a CFG over E with rules of types A -» a (where a G E U {e}), A —>> B, 
A —> aB, and A ^ Ba that generates a language that we know is not regular. 

33. Provide an algorithm that checks whether or not 

(3x)(x^L1 UL2) 

for any given regular languages L\, L2 and string x, all over some fixed E. 

34. We know that if L and V are regular languages over E then so is L U V. 
By induction on n prove that this extends to any number of regular languages 
Li,..., Ln. 

35. Does the above extend to infinitely many regular languages Lp. Will U S i Li be 
regular? 

Thoroughly justify your answer (a proof, if you said "yes"; a counterexample if 
you say "no"). 

36. Prove that the equivalence problem of regular expressions, that is the question, 
"a ~ /3?", for any two a and (5 over some E, is decidable (algorithmically 
solvable). 

Hint. Start by thinking set-theoretically. 

37. Prove that universal FA do not exist. Let us make the preceding statement precise. 

We can easily see that all possible FA with tape alphabet {0,1} can be coded as 
strings over a fixed alphabet to be specified below: 

Indeed, let us code a FA M: Each instruction 5(qi, a) = qj is represented by the 
string qi * a * qj, where a G {0,1} and i is the decimal representation of the 
number i. Thus, adding ";" to the alphabet as a new symbol, we represent the 
automaton by "gluing" the instruction-representations, one after the other, using 
";" as inter-instruction glue, and appending at the end of the sequence the string 
"; qm; qn\...; qh" which indicates that qm is the initial state and qn,..., q^ are 
the accepting states. 
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Any automaton, such as M, has more than one string representation (due to the 
fact that permutations of states and/or instructions are possible) over the alphabet 
E = {0 , l ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,g ,* , ;} . 
R(M) will denote all the representations of M. End of the description of how to 
code a FA. 

Thus, you are asked to prove that the language 

L = {x;y: (3M) (M is a FA and x £ R(M) A y e L(M))} 

is not regular, or, in plain English, "there is no FA U that can faithfully simulate 
an arbitrary FA M (the latter coded as x) on arbitrary input y over {0,1}". 
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CHAPTER 4 

ADDING A STACK TO A NFA: 
PUSHDOWN AUTOMATA 

FA, and therefore NFA, accept some reasonably nontrivial languages over some 
alphabet E, yet they fail decisively on certain simple languages, such as L = {0 n l n : 
n > 0} over E = {0,1}, as we showed in 3.1.3.2. This language is an abstraction of 
a special case of "the set of strings of balanced brackets",125 that is, LB = {( n ) n : 
n > 0} over A = {(,)}. Balanced brackets play an important role in the definition of 
syntax, and subsequently in the syntactic analysis of formulae, and of programming 
language constructs. In the latter domain, the result of 3.1.3.2, for example, makes it 
impossible for an automaton to recognize and pass string constants to the language 
translator of Algol 60. The reason is that such strings have a balanced bracket 
structure—where the brackets in this context are left and right quotes, " and ". This 
does not happen with other major programming languages that do not define strings 
this way. 

In this chapter we will add slightly to the power of the NFA, without going all 
the way back to the full-fledged URM, so that languages such as L and LB are 
acceptable. 

125This special case includes strings such as ((())) but not ((()))(()). 
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4.0.0.4 Remark. Translating the notation of 1.6.0.10 to grammar notation, we see at 
once that L = L(G), where G is the CFG over £ = {0,1} with just two rules: 

051 

That is, this language is context free (type-2). □ 

We will see that the augmented NFA of this chapter accept precisely the CFL. 

4.1 THE PDA 

Computer science students almost certainly become familiar with the concept of a 
stack by the time they enroll in a course on the (meta)theory of computation. Let us 
think of a stack as a string 7, over some alphabet T, whose length we are allowed to 
vary by adding to it or deleting from it exactly one symbol at a time. We have some 
restrictions to our access to the stack 7: 

(1) Adding takes place only at the left end of 7. This end is called the top of the 
stack. Thus, if A G I \ we can perform a Push operation and go from 7 to Aj. 
We say that we pushed A into the stack. One often writes 7 \. A to indicate that 
we pushed A into 7. 

(2) The reverse operation, deleting, is called a Pop operation and it also takes place 
only at the left end of 7. It is defined only if 7 ^ e. Say then 7 = B^'. Then a 
pop operation on this 7 yields the string 7'. One often writes 7 f to indicate that 
we popped the top of 7 (assuming we knew 7 ^ e). 

(3) Read access is allowed only at the top of 7. 

(1) We endanger no confusion between the notations 7 \. and f(a) I as one is about 
a string (stack) and the other about a function (cf. p. 43). One often encounters the 
notations 7 <= and <= 7 for 7 I and 7 t> respectively. The danger of confusing 
this symbol is greater in this context, where we are using its long form, = > , for the 
yields-relation in (grammar) derivations. 

(2) A so-augmented NFA in essence has the ability—additionally to the NFAs 
ability to read input, one symbol at a time, as well as the ability to make an e-move 
without reading input—to record an unbounded, that is, dependent on input size, 
amount of information 7 in a stack variable. In the preamble of Chapter 3 we 
introduced the FA as a restricted URM with only one variable that can hold a single 
digit at a time. The PDA model of this section will additionally have another variable 
that can hold any string (equivalently, any natural number, just as the variables of 
the unrestricted URM do), but we will put restrictions on the modes of access to this 
string-variable. In what follows we will not refer to this variable explicitly any more 
than we do so for the "input variable" of an NFA. 
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Are we deviating from our "program" to introduce only subsidiary formalisms to 
that of the URM? What of "string variables" and, especially, "restricted access" to 
them? Notwithstanding the comment that we often make that strings and natural 
numbers are interchangeable objects since the latter are coded as strings anyway 
(e.g., decimal notation) and, conversely, they can code strings, can we claim that a 
URM can perform those string-specific operations, such as "push" and "pop"? Yes. 
However, we do not want to digress on this issue here. See Chapter 5. 

4.2 PDA COMPUTATIONS 

4.2.0.5 Definition. (PDA) A pushdown automaton or PDA, M, is a NFA equipped 
with a stack variable whose contents we will generically denote by lowercase Greek 
letters from the beginning of the alphabet (a, /3,7) with or without primes. 

Algebraically speaking, M is a toolbox 

M=(Z,r,Q,6,q0,F) 

where the finite set £ is the input alphabet; Q is a finite set of states; 5 is the "program", 
that is, the transition relation; q0 (generic name!) is a distinguished member of Q, 
the start state; F is a finite set of accepting states. 

T is new: It is a finite alphabet of stack symbols. The stack variable takes values 
from T*. It is allowed to have E n T ^ 0. 

The set of instructions (program) is encoded into the relation 5. A PDA has only 
four types of possible instructions, given below in flow-diagram form: 

a,e->A 
q 

Semantics 
q: Read a, Push A; goto q' 

tf ) — ►( qf J q: Push A; goto q' 

(7 ) ►( Q j q- Read a, Pop A; goto q' 

e,A-
(J ) q: Pop A; goto q' 
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where, generically, an "^4" denotes a member of T and an "a" denotes a member 
of the input alphabet £.126 The first and third are "mixed" instructions (both input 
and stack activity), while the second and fourth are "pure" (stack activity only). The 
second is a "pure push instruction". 

Mixed instructions "consume input" while pure instructions do not. For the latter 
note the analogy with a NFA's e-moves. 

Note that instructions of type 3 and 4 are constrained by what is the leftmost 
("top") symbol of the stack: A must be the symbol at the top of the stack; otherwise 
the instruction is not applicable. □ 

Very important. Jargon such as "consume input", and "push" into or "pop" from 
a stack, help our intuition and guide us toward the next definition, which details 
how PDAs compute. Such terminology has no formal status nor is it needed, except 
to serve pedagogy. At the end of the day, a PDA, just like a NFA, is a string 
transformation formalism—we are given a set of rules and a methodology on how 
to construct certain sequences of strings. Such formalisms allow us to "correctly" 
write down finite sequences such as 

which we have seen before (FA and NFA). We also met such formalisms under a 
different guise—that of grammars— which led to a mechanism that allows us to write 
down derivations a = > a' ==> a" = > • • •. Above all, we have met such string 
transformation formalisms way before all this: mathematical proofs (cf. 1.1.1.34). 

Thus the above "semantics" embodies only stated intentions and guidelines no 
more. Once we define "computations" the above semantics will become formal. 

4.2.0.6 Example. We often allow, for the sake of convenience, the following derived 
(simulated) types of moves that were not among the primitive (primary) moves of 
Definition 4.2.0.5. Let us adopt in what follows that a e £ U {e}. 

The first is an "ignore-the-stack" move (and it will also ignore the input, if 
a = e). In the simulation, A is a new stack symbol and qa new state. This means 
that if I "program" a PDA, M, with a "macro" like a, e -» e, then the expansion 
(implementation) of the macro is done by adding a new state q and a new stack 
symbol A to the respective alphabets (Q and T) of my original M and by using the 

126If instead we opted for the understanding that a G E U {e}, then we could conflate instructions one 
and two, and three and four. 
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three-state sequence below to implement the derived move. 

a, e^e 

Simulated by 

a,6-^A e,A^> e 

The next is also very useful when programming PDAs, e.g., when constructing 
examples. The suggested implementation takes care of the general case in a compact 
(recursive) manner. It says that "if you know how to macro expand (simulate) 'a, A -> 
ft\ then here is how to do 'a, A —>• Bft" ". The "basis" of the recursive construction 
is when ft = e, which is covered by one of our basic moves (Definition 4.2.0.5). 

Note that a.A^ft means to read input a (if a ^ e) and also to pop A, provided it 
is the top-of-stack symbol, and then to push all of ft into the stack—without consuming 
any more input. More precisely, if 7, the stack contents, is the string A^' before the 
effect of the instruction, it will change to ftjf after the instruction is performed. 

a9A->Bft 

Simulated by 

<?' 

□ 
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4.2.0.7 Example. Specifically, we simulate "a, A -> B" as follows 

Simulated by 

/ ^ \ a>A^e S7\ e,e^5 ^ - ^ 

\D \ i) <V) 
D 

There are a number of concepts we need towards defining a computation of a 
pushdown automaton, and eventually string acceptance. 

4.2.0.8 Definition. (Configurations or IDs) A configuration is a snapshot in "time", 
also called an instantaneous description, for short, ID, of a PDA computation? It is 
a £np/e (g, w, 7), where q denotes the current state, w is the unspent ("unexpended" 
or unprocessed, or, unread-so-far) input, and 7 is the total contents of the stack, read 
from top to bottom (recall that the leftmost symbol of 7 is the topmost symbol of the 
stack). 

From the description of w follows that the next input that will be read, if we 
perform an instruction of types 1 or 2 (4.2.0.5) on this configuration, will be the 
leftmost symbol of w. □ 

4.2.0.9 Definition. (Moves) If I and J are configurations of a PDA M, then / \-M J 
or simply / h J if M is understood from the context—pronounced " / yields J"— 
means that there is a move121 of M that transforms the ID I into J, in one step. 
The foregoing is "English" for the following mathematically precise specification by 
cases: 

For all a G E U {e}, y € E* and 7 G T*, 

(g,a2/,A7) h (q',y,j) 

iff instruction 3 (Def. 4.2.0.5, case a G S), or 4 (Def. 4.2.0.5, case a = e) is available. 

2The reader should not overlook the fact that we do not need to ATIOW what a "computation" is before we 
know what an "ID" is! Indeed, we will define a computation as an appropriate sequence of IDs. 
127Note the there is. I am not saying that it is the only move, or that I uniquely determines J. 
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For all a G £ U {e}, y e E* and 7 e T*, 

(q,ay,j) h (g ' , ? / , ^ ) 

iff instruction 1 (Def. 4.2.0.5, case a G £), or 2 (Def. 4.2.0.5, case a = e) is available. 

□ 
4.2.0.10 Definition. (Initial, Terminal IDs) A configuration is initial iff it has the 
form (q0,x,e). This captures the intended semantics that computations with input x 
start at state "#0" (generic initial state) and with an empty stack. 

A configuration (g, e, 7) is terminal or final (I did not say "accepting!) iff there is 
no defined next move. That is, 

-n (3J ) ( (« ,e ,7 ) l - j ) n 

4.2.0.11 Definition. (PDA Computations) A PDA computation is a sequence of 
IDs, Jo 5 • • • 5 ^n such that 

(1) Jo is initial 

(2) 7n is terminal (final) 

(3) For i = 0 , . . . , n - 1,1{ \- Ii+1. 

As usual, we write Jo l~* ^n (denoting 0 or more occurrences of "h") and say 
"Jo l~* ^n is a computation", which is a slight abuse of language: We should have 
said—if we do not want to mention I\,..., In-\—that "there is a computation with 
J0 as initial and In as terminal IDs". 

In this context it is sometimes best to write more specifically Jo l~n n̂> which 
is explicit that there were n steps (applications of h) in the computation, or that the 
computation has length n, as we say. □ 

4.2.0.12 Remark. Thus, we require our computations to be terminating. This is 
implicit in PDA models that one sees in the literature. For example, in the approach 
taken in Hopcroft et al. (2007), a stack move of the type e —> A (push) is not allowed. 
Instead, the only stack moves allowed are of the type A -> a (that is, "the stack must 
always be consulted before moving ahead"). 

The PDAs in loc. cit., which simulate e —> A by an instruction of the type 
X —¥ AX and accept their input by "empty stack" (see below), end up in a terminating 
configuration, since no move is permitted without consulting the stack.128 

4.2.0.13 Definition. (Modes of Acceptance: ES, AS, and ES+AS) The string x is 
ES-accepted 129 by a PDA, M, iff there is a computation (q0l x, e) h* (</, e, e) for 
some q G Q. 

128To allow such PDAs to begin SL computation, the stack is "externally"—i.e., not by a PDA instruction— 
initialized with a special "bottom of the stack 'initial' symbol". 
129By Empty Stack. 
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For ES-acceptance, the set F of accepting states is irrelevant, and is often 
taken to be 0. 

The string x is AS-accepted 13° by a PDA, M, iff there is a computation (q0,x,e) h* 
(q, e, 7) for some q G F. The stack contents, 7, at computation's end are irrelevant 
to AS-acceptance. 

The string x is ES+AS'-accepted131 by a PDA, M, iff there is a computation 
(go, x, e) h* (q, e, e) for some q G F. 

If the context helps, we may simply say M accepts x, without having to say in 
what mode (ES, AS, or ES+AS). □ 

4.2.0.14 Definition. (Acceptance of Languages) If M is a PDA, then L(M) de-
notes the set {x G £* : x is accepted by M} (by ES, AS, or ES+AS acceptance, as 
the case may be). 

L is ES- (AS-, or ES+AS-) accepted 

iff there is a PDA M that accepts by ES (respectively, AS or ES+AS) such that 
L = L(M). □ 

4.2.1 ES vs AS vs ES+AS 

4.2.1.1 Theorem. (AS Can Simulate ES) If M is a PDA accepting by ES, then we 
can construct a PDA N that accepts by AS, so that L(M) = L(N). 

Proof We refer to the figure below. Let 

M=(i:,r,Q,5,qo,F) 

where F = 0, be our ES-PDA. We build Af as it is (partially) suggested in the figure 
below. 

N = (X,T,Q,6,q5,F) 

where Q = Q U {5o, q}, F = {q}, and r = T U {$}. The symbols %, q and $ are 
new and 5 is 6, augmented by the new instructions pictured below. The one involving 
5o is self-explanatory. The "pure pop" instructions that lead to q 

are only defined on states q that have no pure push moves (1) 

Such states exist, unless M has no terminating computations, in which case L(M) = 
0 and the result is trivial. 

'By Accepting State. 
By Empty Stack and Accepting State. We may also say "AS+ES-accepted". 
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Pause. Why "trivial"?** 

M accepts by ES 

N accepts by AS 

We now proceed to prove that 

L(M) = L(N) (2) 

For C: Let x G L(M). Then we have an M-computation 

(g0,£,e) ^* (g,e,e) 

Thus, 

(go, x, e) h (go? #? $) l~* (<Z> e, $) h (g, 6, e) is an TV-computation 

Clearly the last ID is terminating, since, by construction of Nt q has no moves at all. 
Let us justify the last "h": Since (g, 6, e) is terminal in M, g cannot have pure push 

moves, else the computation could continue from (g, e, e), a fact that would render 
this ID nonterminal; not possible (cf. Definition 4.2.0.10). Thus, this g is connected 
to g as shown in the figure above. For short, x 6 L(N). 

For D: Let x G L(N). Then 

(go, x, e) h* (g, e, 7) is an TV-computation (3) 

The only way to reach g is to reach it—in one move—from some g (of the original 
M) that has no pure push moves (in M) (see figure above). Thus, (3), in some more 
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detail, is the TV-computation below, where the first step is obvious (and inevitable) 
due to the construction of N: 

(5b, x, e) h (q0,x, $) h* (q, e, 7') h (q, e, 7) (4) 

Now, the only way for the last h to be valid (see Definition 4.2.0.9 and the construction 
of N) is that 7' = $7. Moreover, since N can only write $ once, in the very first 
move (and the M-part cannot write $ at all), we conclude that 7 = 6. 

Now we see (4) more clearly: 

(5b, x, e) h (g0, z, $) h* (q, e, $) h (g, c, e) 

Thus, forgetting the first and last moves, we obtain (qo, x, $) h* (q, e, $) and hence132 

(go, #, e) h* (g, e, e) is an M-computation (5) 

Note that the ID (q, e, e) is terminal in M. Thus, since M is an ES machine, 
x e L(M). D 

4.2.1.2 Theorem. (ES Can Simulate AS) If M is a PDA accepting by AS, then we 
can construct a PDA N that accepts by ES, so that L(M) = L(N). 

Proof We refer to the figure below. Let 

M = (E,r ,g,<j ,g0 , i r ) 

be our AS-PDA. Without loss of generality we assume that F — {q} and that q has 
no moves. Indeed, if it is not so designed, then we modify the original as follows: 

(i) we add a new a state q and we designate it as accepting. 
(ii) for each (original) accepting state qf, we add a move "e, e —> e" (recall our 

macros in 4.2.0.6) from q' to q. 
(iii) we give no moves to q. 

We build N as it is (partially) suggested in the figure below. 

N=p,T,Q,6,qo,F) 

where Q = Q U {qo^q}, F = 0 (thus, we have removed accept-status from q), and 
r = T U {$}. The symbols 5o, q and $ are new and ~5 is 6, augmented by the new 
instructions pictured below. 

132In (q0, x, $) h* (g, e, $), that is, in (q0, x, $) h h h I2 h ■ ■ - h 7r h (9, e, $) each / i has $ at the 
bottom of its stack. In (5) we left all else the same, but we removed all the $'s. 
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M accepts by AS 

N accepts by ES 

e ,pop 

We now prove that L(M) = L(N). 
For C: Let x G L(M). Then 

(go, x, e) h* (g, e, 7) is an M-computation 

Then, trivially, 

(go, x, e) h (go, #, $) I"* (<Z> e, 7$) h* (g, 6, e) is an ^computation133 

Thus, xeL(N). 
For D: Let x G L(iV). Then 

(go, x, e) h* (g, e, e) is an ^-computation (1) 

Pause. Wait a minute! Why is q the state in the last ID of (1)? Well, because no 
other state can contemplate an empty stack. The only states that can erase $ are g 
and g, each by a move that leads to q.M 

Terminating, since q has no pure push moves. 
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As in the proof of the previous theorem, let us work back from the end: q 
consumes no input and is only accessible from state q (see figure). Thus, when q sent 
the computation to q (by popping once), the input must have been already consumed. 
This, coupled with the inevitable first move that places a $ in the stack—a symbol 
which cannot be erased by "internal" M-moves—gives a more "detailed picture" of 
(1), below: 

(5o~,£,e) h (q0,x,$) h* (g,e,7$) h* (g, e, e) 

Now the part (go, x, $) l~* (#, e, 7$), after we strip it, throughout, of the bottom $ 
stack symbol becomes the (terminating—remember the fact that q has no moves in 
M) computation 

(qo,x,e) h* (g,e,7) 

Since q e F, it follows that x G L(M). D 

4.2.1.3 Corollary. All three acceptance modes are equivalent. 

Proof. By Theorems 4.2.1.1 and 4.2.1.2, ES and AS acceptance modes are equivalent. 
What about ES+AS? 

Well, if M is ES, then an N that accepts by ES+AS can be build that simulates 
M. We achieved this (without drawing attention to the fact, until now) in the proof 
of Theorem 4.2.1.1. 

Conversely, let M accept by ES+AS. We can then build an ES-PDA simulator, 
N. The construction and proof is exactly as in Theorem 4.2.1.2 since neither the 
construction nor the proof there made any assumptions whatsoever on what precisely 
was the 7 that was left in the stack at the end of the computation. □ 

4.2.1.4 Example. Here is how to accept {0 n l n : n > 0} by ES. 

o,e — 0 

Indeed, for n > 0, 

(q0, 0"1", 6) h" (q0,1", 0") h (q, l n " \ O""1) h"" 1 (q, e, e) 

where h° is equality. Clearly, (q, e, e) is terminal. We also note that (go, e, e) h* 
(go, e, e), and (go, e, e) is terminal. Thus e is accepted. 
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On the other hand, if the input x is "illegal"—i.e., not of the form 0klk—then it 
is not accepted. Here is why: Such an input starts with aO or it starts with a 1: 

(1) x = 0nln2/, where y ^ e. Then (q0,0nlny,e) h* (q,y,e). But (q,y,e) 
is terminal, and the input has not been consumed (for acceptance, the middle 
coordinate of the last ID must be e). 

(2) x = 0mln2/, where m> n and y = Oz, for some z G {0,1}*. Then (g0, x, e) h* 
(q, Oz, 0 m _ n ) . We ran out of moves and did not reach (qy e, e)! 

(3) x = lz, where z G {0,1}*, clearly is not acceptable either; it gets the PDA stuck 
at qo before it can make any move at all! □ 

4.3 THE PDA-ACCEPTABLE LANGUAGES ARE THE CONTEXT FREE 
LANGUAGES 

We have defined grammars, in particular, CFG in 3.4.0.7. We will see in this section 
that CFG are an alternative formalism to that of PDA. They define exactly the same 
languages. First off we note that for any CFG, G — (V, E, S, TZ), we can assume 
without loss of generality that its instructions have two possible forms: A —¥ a, 
where a G E U {e}, and A -^ X\X2- - • Xn—the right hand side being a string of 
Xi, each of which is a nonterminal. 

Indeed, if G does not already have the desired rule structure, we add new non-
terminals, y W , one for each a G E. We then replace each rule A —> a—where a 
contains at least one nonterminal—with A —>• a', where a' is the result of replacing 
each a occurring in a (a G E) by Y^a\ Finally, we add the rules Y^ —>- a, for all 
ae E. 

We will prove that if the so constructed grammar is G', then L(G) = L(Gf), which 
justifies the "without loss of generality" above. Indeed, let x = a\a2 • • • a^ G L(G), 
where k = 0 means that x = e. Thus we have 

S = > * a\a2 --ah (1) 

in G. Let us replace, everywhere, every a* that occurs in the derivation (1), by its 
"alias" Y(ai\ This will transform the G-derivation (1) to a G'-derivation 

g ^* y(ai)y(a2) . . . y(ak) (2) 

Utilizing the rules of the type Y ^ -» a that we have placed in Gf we obtain 

yOi)y(a2) .. . y(a^ —K a\Y^a2^ • • • y(afc) —> didoY^^ • • • y(afc) 

=> / c aia2 •••afe 

Along with (2), this says that x G L(G'). 
Conversely, let y G L(G'). Thus, we have a G'-derivation 

5 ^ * V (3) 
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We will show that we also have a G-derivation of y. In order to use induction on 
derivation length, we prove a somewhat more general statement: 

if A =>n y in G', where y G E* and A G V, then A = > * y in G (4) 

For n — 1, the G'-derivation in (4) can only be A =>> y, where y G E U {e}. But 
this is also a G-derivation, since A eV. We take as I.H. that the statement (4) holds 
for all derivation lengths < n. Note that the G'-derivation in (4) can be elaborated 
as: 

A = > XXX2 --Xm =^n~1
 Ulu2 '--Um = y (5) 

where for i — 1 , . . . , m, we have 

Xi =>ni
 Ui (6) 

and Y^iLi rii = n — 1. Thus 

Ui < n, for i — 1 , . . . , m (7) 

Every Xi in (6) that is in V obeys the I.H. due to (7), thus 

for all such Xi, (6) implies Xi =^>* Ui in G (8) 

On the other hand, any Xj in (5) that is not in V is a YaJ. We replace each such Xj 
in (5) by cij. Thus the corresponding Uj is cij. 

Let us call X[... X'm the so modified X\... Xm. By the construction of G', 
A —> X[... X^ is a rule of G. This observation and (8) transform (5) into a 
G-derivation 

A => X[X'2 --X'm = ^ * um2 >.>um=y 

We can now apply what we just proved to (3). 
We these preliminaries out of the way, we can now turn to the equivalence of the 

CFG and PDA formalisms. 

4.3.0.5 Theorem. For any CFG G = (V, E, 5,11) we can construct a PDA M = 
(Q, E, T, qo, 5, F) that accepts by ES such that L(G) = L(M). 

Proof. Given the discussion preceding the theorem, without loss of generality, the 
rules of G are of either the type A —» XiX2 • • • X m or A —»> a, where capital Latin 
letters denote, as usual, nonterminals and a G E U {e}. We have drawn below the 
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PDA that we claim will work. We note that in the diagram below 6 G E . 

e , A -* a 

The idea of how M "parses" an input string x is already embodied in the preamble 
of Section 3.4. The stack is used to, well, stack "to do" items on top of each other 
in the proper sequence. The first "to do", given the input x, is to attempt to show 
that S—the start symbol—"covers" x, in the jargon used in the discussion of said 
preamble, or, technically, derives it. Now, if S —> ABC is the right rule to use 
(nondeterminism!) next, we replace and refine the task for S by the subtasks that 
A, B, and C will have to cover appropriate parts of x: a prefix, a middle part, and 
the remaining tail. Note that A, appropriately, will be on top of the stack. Note that 
these tasks do not allow us to consume input. Input is consumed once a "&" (from 
E) is found on top of the stack; it is something we uncovered, and it better match the 
input symbol scanned at that point! 

Technically, we will prove that, for any z G E*, 7 G T*, A G V, and x G E*, we 
have 

( p , x z , ^ 7 ) h * (p ,* ,7) i f fA=»*a; (1) 

For the (—>) in (1) we do induction on n of 

(p, xz, Ay) h n (p, z, 7) (2) 

For the basis, let n = 1. The only way for (2) to happen in one move is if the move 
involved is e, A —> x where x — e. But then A ==> x, as needed. Assume the claim 
for all values less than n. For n > 1 (the n = 1 case was done) we have two cases, 
one that does not need the I.H. and one that does. 

• n = 2: The first move is "e, A —> a", where x — a G E. Then the corre-
sponding IDs are connected as follows: (p, az, Ay) h (p, az, a^) h (p, z, 7). 
The first move requires A -> a to be a rule of G, hence we have .A = > a, as 
needed. 

• n > 2: We elaborate on (2) above: (p, xz, Ay) h (p ,xz,XiX2 • • •A'm7) h n _ 1 

(p, 2,7). We further elaborate on " | - n - 1" : There is a decomposition of x as 
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x = U\U2 . . . um, such that 

(p, ui... umz, A*y) h (p, u i . . . umz, XXX2 • • • Xm^) \-kl 

(p, W2 • • • ^m^, ^2 • • • ^m7) ^ 2 (P, ̂ 3 • • • UmZ, X3 • • • X m 7) h^3 

(p, W4 - - . UmZ, XA-> Xm<y) hfc4 . . . hfc—1 

( p , ^ m z , X m 7 ) h / c - (p,2:,7) 

For each i it takes ki < n steps (cf. 4.2.0.11) to lose Xi from the stack top and 
to consume the portion Ui of the input, that is, we have 

(p,uiw,XiTf)\-ki {p,w,i) (3) 

By the I.H., we must conclude that 

Xi = ^ * m (30 

Coupling (3') with the fact the first h in the second bullet above requires that 
A —> X\ - ■ • Xm is a G-rule, we obtain A = > X\ • • • Xm = > * u\... um = 
x, as needed. 

For the («—) in (1) we do induction on n of 

A =>n x (4) 

For n = 1 we have two cases: 

• x = e. Then we have 4̂ —» e is a rule, thus we have (p, xz, -A7) h (p, z, 7) 
using the move pictured at the top of the loop of the PDA (p. 307). 

• x = a. Then we have that A —> a is a rule, thus we have (p, az, A7) h 
(p, az, 07) h (p, z, 7), using the moves pictured at the top and top right of the 
loop of the PDA. 

For n > 1 we take the obvious I.H. and elaborate on (4): 

A => X\X2 -"Xr =^n~1 uiu2 ...um=x (5) 

where each Xj is responsible for the substring Uj of x. More precisely, 

fQri = l , . . . , r , X i =><nUi (6) 

where = > < n means =>k, for some k < n. The I.H. is applicable to (6), thus, from 
(5) we get 

(6)+I.H. 
(p, ^ 1 . . . zzrz, Aj) (- (p, i^i. . . wrz, Xi • • • Xr7) h* 

(6)+J.iJ. (6)+/.//. (6)+/.//. 
( p , ^ 2 - - . ^ r ^ , ^ 2 '"Xrj) h* (p ,W 3 . . . 'U r Z,X3-- -X r 7) h* . . . h* 

(6)+/.#. 
(p,wrz,Xr7) h* (p,z,7) 
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With (1) proved, let S = ^ * x. Then 

by(D 
(<?,£, e) h (p,£,S) h* (p,e,e) 

Note that (p, e, e) is terminal as all moves from p require a non-empty stack. Next, let 
(g, x, e) h* (p, e, e). The only move for q is (q, x, e) h (p, x, 5), thus our assumption 
implies (p, £, 5) h* (p, e, e). By (1), S = > * x holds. □ 

4.3.0.6 Theorem. For any PDA M = (Q, E, T, g0, ^ -F) *&** accepts by ES+AS we 
can construct a CFG G — (V, E, 5,7?) SMC/Z f/zatf L(G) = L(M). 

Proof. Withoutloss of generality, F = {qaCc}> The nonterminals of G will be ordered 
pairs of states of M: (q,p) for all q,p in Q (think of them as BNF nonterminals!). 
We aim to design G so that we can prove 

(<2, p) = > * x e E* iff, for all 7 e T* and all z, we have 

a subcomputation (#, #2,7) h* (p, 2,7) that never pops from 7 (1) 

To achieve this we include the rules 

(i) (q, q) -» e, for all q <E Q 
(ii) (g,p) -> (<?, r) (r,p), for all <?,p, and r in Q 

(iii) (g,p) —> a (r, 5) b, for all g,p, r, and s in Q and a, 6 in E U {e},for all pairs 
of moves such as the ones below. The first pushes some X eT to the stack on 
input a and the second, later, pops the same X, on input b. 

(iv) The start symbol, S, is (go, <7acc)« 

Let us prove (1), splitting it into two directions: 
(—>>): Assume (q,p) =>n x and conclude the right hand side of "iff". We use 

induction on n. Given the kinds of rules that we adopted for G, the only string (over 
E) that can be produced for n = 1 is x = e. That means (<?, p) = > e, (g, p) —» e 
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being the responsible rule. Therefore p = q. But (g, ez, 7) h* (g, z, 7) holds since 
h* includes equality. Of course, this subcomputation never pops 7. 

Let n > 1. We assume the claim (1) for all derivation lengths k < n (the I.H.) 
Now (q,p) = > n x can be elaborated under two cases: 

• For some r G Q, we have 

(q, P) => {Q, r) (r, p) =><n u (r, p) = > < n uv = x (2) 

With reference to (2), the I.H. gives us the subcomputation 

(q,uvz,j) h* (r,vz,j) h* (p,z,7) 

where (still under the I.H.) none of the two "h*" pop from 7, hence nor does 
the entire subcomputation (g, uvz, 7) h* (p, z, 7). 

• 2; = a?/6—{a, fr} C X U {e}—and, for some r and 5 in Q, we have 

(g, p) = > a (r, s) 6 = > < n aw6 (3) 

The first =^> entails that (g,p) —> a (r, 5) fr is a rule in G, and this in turn 
means that, for some X G I\ we have the two moves in M, depicted in the 
preceding figure. On the other hand, by the I.H. we have, for any 7, z, and the 
X mentioned above, 

(r,ubz,Xj)\-* (s,bz,X>y) 

where the stack X7 was never popped. Combining with the moves involving 
X, we obtain 

(<?,xz,7) = (q,aubz,j) h (r,ubz,Xj) h* (s,bz,X^y) h (p,2,7) 

Clearly, since X7 was never popped in the above, nor was 7. 

This completes what we set out to do. 
For the («—) direction of (1), 

we assume that we have (q, xz, 7) \~n (p, z, 7)—where we never popped 7 (4) 

and prove (q,p) =>* x. 
For n = 0 the assumption is (q,xz^) h° (p, 2,7). But h° is the identity, 

therefore q = p and x = e. Since (q, q) -» e is a rule, we have (g, g) = > e( = x), 
as it was needed. 

We next fix n > 0, adopt the I.H. that the claim is true for all k < n, and address 
the case for n. We have two subcases 

• Case where the computation in (4)—while it never pops 7—nevertheless "dips 
down" to (stack contents) 7 in at least one intermediate instance (that is, it 
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pops from stack (contents) Y7, for some Y). Say this happens for the first 
time after a prefix u of x has been consumed: 

(q,xz,j) = (q,uvz,>y) h < n (r,vz,j) h < n (p,z,j) 

By the I.H. we have (q,r) =^>* u and (r,p) = > * v. Since (q,p) —> 
(QI r) (riP) is a m l e a nd thus (g,p) => (q, r) (r,p), we conclude (q,p) = > * 
x, as was needed. 

• Case where the computation in (4)—not only it never pops 7—but also never 
"dips down" to (stack contents) 7 in any instance except at the end of the very 
last move that leads to ID (p, z, 7). Thus the first move must push in the stack 
some symbol X, and the last move of (4) must pop that very same X. 

JL We are proving this metatheoretical result for the formal PDA model as this 
was defined in 4.2.0.5. As such, this type of PDA has only push or pop moves; 
it does not have "ignore the stack" moves—e —> e—that we introduced post 
facto as derived moves or macros in Example 4.2.0.6. Thus, pop being ruled 
out in the first move, by the conditions of this case, push it isl 

Thus, in (4), x = aub for some a and b in E U {e} and we refine (4) as 

(q,aubz,'y) h (r,ubz,X<y) h < n (s,bz,Xj) h (p,2,7) 

By I.H. we have (r, s) = > * u. Since the first and last move put the rule 
(#> P) ~* a (r>s) b m G, we have (q, p) = > * x and we are done with the proof 
of(l). 

With (1) settled, we have in particular 

(qo,x,e) h* (qacc,e,e) iff (qo,qacc) ^ * x 

and this concludes the proof that L(M) = L(G). □ 
The convenience stemming from Theorems 4.3.0.6 and 4.3.0.5 is significant as 

they allow us two distinct tools to use toward proving properties of PDA-acceptable 
languages: PDA and CFG. 

4.3.0.7 Example. If L = L(M) for some PDA M, then there is a PDA N such that 
L* = L(N). That is, "PDA-acceptable languages are closed under Kleene star". 

We prove so (in outline) for CFLs instead! 
Let then G be a CFG such that L = L(G). We built—rather than building N—a 

CFG G' such that L* = L(G'). In going from G to G' we just add a new nonterminal 
Z and make it the (new) start symbol. If S is the start symbol of G, we add the rules 

Z -> 6 I SZ 

to G to finalize the construction of G'. 
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The reader can easily show that Z = ^ * 5 n , for all n > 0, from which the result 
follows. The details are left to the reader. □ 

4.3.0.8 Example. Are CFL closed under intersection? It turns out that they are 
not. Consider L = {0nln2 fc : n > 0 A k > 0} over {0,1,2}. Also consider 
Lf = {0nlk2k :n>0Ak>0}. 

It is easily seen that they are CFL. 
For L either give explicit rules, or, alternatively, note that it is the concatenation 

of two context free languages, L\ and L2 over {0,1,2}, and invoke Exercise 4.5.11. 

Li = {0 n l n : n > 0} 

and 

L2 = {2fc : k > 0} 

(L2 is actually regular, being L(2*)) 
One similarly sees that V is a CFL. However, L n 1/ = {0 n l n 2 n : n > 0} and 

we will see in the next section that this language is not context free. □ 

4.4 NON CONTEXT FREE LANGUAGES; ANOTHER PUMPING LEMMA 

In this section we prove a pumping lemma for CFL that is similar, but as expected from 
the richer structure of the PDA, more complex than the one for regular languages. 
We will benefit in our proof from the concept of parse tree for a CFG. The reader 
has most likely encountered trees in courses on discrete mathematics, data structures, 
etc. A tree is a structure like the one drawn below: 

Since by default all edges point "downwards", one does not need to emphasize so by 
drawing them as arrows. The round nodes may or may not have names. Our parse 
trees will have all their nodes named. The precise angle or slope of the edges does 
not matter—meaning, we allow variation in drawings without changing the tree we 
want to depict. However, left to right order matters, thus the following is a different 
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tree from the one above. Our trees are ordered. 

Of course, the reader has encountered many aspects of discrete mathematics before, 
but this did not stop me from reintroducing some such concepts in Chapter 1. So, 
let us revisit the definition of trees. A tree has both a "data" component (the node 
"contents", whatever they may be) and a structural component or geometry, that is, 
how the nodes are interconnected. This motivates us to opt for an abstraction toward 
a mathematical definition that wants a tree to be an ordered pair of a "data" part 
and a "structure" part, (5, T), where S is a set of objects and T is the "geometry" 
imposed upon them. To get quickly to our pumping lemma we present only as much 
dendrology134 as necessary, thus we will rather define directly those trees that matter 
to us: labeled trees that are parse trees of some CFG G. 

4.4.0.9 Definition. (Parse Trees) Given a CFG G = (V, S, S, TV). The set of all 
parse trees for G, and the associated concepts of root, support, and yield, are defined 
inductively. 

In what follows we assume an infinite supply of (unspecified) objects, a set N of 
nodes. We may visualize N as an infinite supply of "circles", such as the ones 
employed in the two illustrations above. 

Basis—"smallest" parse trees. T = n is a parse tree, if n £ N. This n is labeled 
by either some A £ V or some a £ £ U {e}. 
We say that n is the root of T, sp(T) = {n} is its support, and the string A 
(respectively a) is the yield of the tree. 

Note that we use the labels in the definition of yield, but use the node name in the 
definition of root! 
As the recursive definition unfolds, we will note at once that the support of a tree 
is simply the set of all nodes from N that we utilized to build it. 

(2) Suppose that % are all parse trees, for i = 1 , . . . , k, where for each i ^ j we 
have sp(Ti) H sp(Tj) — 0135—i.e., the trees do not "share nodes". 

134The study of (in our case, mathematical) trees. 
135We say that the sp(Tj) arepairwise disjoint. 

(i) 
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They may share labels though! 

Assume further that % has as root r», and yield c^ e (V U £)*. 

Let r E iV be rcew relative to the % [i.e., r ^ Ui=i SP(7I)]- Then we can build 
a new parse tree T = (r, T \ , . . . , Tfc) with sp(T) = {r} U (J*=1 «p(7i)— this 
updates sp recursively and verifies the claim that we made about it above. 

Building T has a restriction: if we want to use a % with root r* that is labeled e, 
then it must be that this is the only tree we use to build T. 

We can label the root r with any A e V, provided the rule A —>► /3 is in the 
grammar, where /3 is formed by concatenating the labels of the r^ in the left to 
right order i — 1 ,2,3, . . . , k. 

The yield of the new parse tree is a\a2 ■.. a&. 

The 7i are called (the) subtrees of r but also subtrees of T. □ 

In what follows we will often say tree, meaning parse tree. Parse trees are the only 
trees of interest in this volume. The root of any parse tree which has more than 
one node (in its support) must be labeled by a nonterminal, since only construction 
step (2) of the preceding inductive definition applies. 

The following connects Definition 4.4.0.9 with the usual depiction of trees as 
drawings of nodes connected by edges ("graphs"). 

4.4.0.10 Informal Definition. We will draw a "physical" tree that corresponds to 
the inductive Definition 4.4.0.9. Via a recursive construction we associate a. figure 
composed of nodes (circles) and edges (straight lines sloping downwards), the latter 
connecting pairs of nodes. 

(1;) A parse tree of type (1) in Definition 4.4.0.9 has no edges. It is drawn as a single 
circle, labeled by the root label (written normally close to, or inside the circle). 

(2') Assuming that we have associated a (labeled) drawing with each of the subtrees 
% occurring in case (2) of Definition 4.4.0.9, we draw the parse tree for T as 
follows: 

(a) We draw a circle for r and label it A [cf. 4.4.0.9, (2)] 

(b) We introduce precisely k edges from the circle representing r (and named 
A) to each of the roots of the subtrees 71, which are drawn below r and from 
left to right in the order i — 1, 2 , 3 , . . . , k. □ 
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4.4.0.11 Example. Here are some parse trees for the CFG in 4.0.0.4. 

All three have roots labeled S. The yields of the trees, from left to right, are S, e, and 
00511. □ 

4.4.0.12 Example. Often we want to discuss a parse tree without drawing a specific 
one. We draw generic trees by essentially drawing a root and then connecting it to its 
subtrees, the latter drawn as triangles with or without names (below we have called 
the subtrees 71, T2 and T3). We gave label A to the root. 

□ 
The following is easy but fundamental. 

4.4.0.13 Proposition. IfT is a (parse) tree, then the root node is the only one pointed 
to by no edges. Every other node in T—that is, sp(T)—is pointed to by precisely 
one edge. 

Proof. We do induction over the set of parse trees (4.4.0.9)—or induction on trees. 
IfT — neN, then the validity of the claim is immediate, since there is just a root 
node and nothing else. Let then T — (r, 7 i , . . . , Tk) and assume the claim (I.H.) 
for all the %. By 4.4.0.9, the root, r, of T will have no edges "coming in", and the 
only edges added are those from r to the Ti—roots of the % (4.4.0.10). Viewed from 
within T, each of the ri will now have precisely one edge pointing to them by I.H. 
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Moreover, since there have been no other edges added, the I.H. covers the case for 
all other non root nodes as well. □ 

4.4.0.14 Definition. We introduce some standard terminology from graph theory: 
The number of edges pointing to a node in a tree is called the indegree of the node. 

We say that a node n in a tree is a child of a node m iff there is an edge from m to 
n. Distinct children of m are called sibling nodes. We call m the parent node of n. 

By 4.4.0.13, every non root node in a tree T has precisely one parent. 

A sequence of nodes ai , a 2 , . . . , an in a tree is a path or a chain iff, for all 
i = l , 2 , . . . , n — 1, we have an edge from ai to ai+i. We say that this is a path from 
a\ to an, and that an is a descendant of a\ while ai is an ancestor of an. The path is 
said to have length n — 1, that is, one less than the number of its nodes. This number 
coincides with the number of edges along the path. 

A node is a leaf iff it has no children. A non leaf node is called an internal 
node. □ 

We note that case (2) in Definition 4.4.0.9 dictates that every internal node must 
be labeled by a nonterminal. 

We have the following corollaries of 4.4.0.13: 

4.4.0.15 Corollary. The root of a tree is an ancestor of every non root node of the 
tree. 

Proof. Induction on trees. For the basis, let T = n G N. The result is vacuously 
true. 

Let us look at the case of T = (r, 7 1 , . . . , Tk), where we take as I.H. the truth of 
the claim for all Ti. Let n be an arbitrary non root node in T, and say, without loss of 
generality, that it is in 7i. By the I.H. there is a path from r\ (notation as in 4.4.0.9) 
to n within 7i. The case rests since there is an edge from r to r i . □ 

4.4.0.16 Remark. (1) The path from r to n that establishes the above mentioned 
ancestry is unique, for if a\,..., aq and bi,..., bm are two distinct such paths where 
ai — b\ — r and aq = bm = n, then the paths have a maximal common part at the 
tail-end—they certainly share n— say, c\,..., cp where cp = n and each Cj is both 
an aq and a bt. Now, by assumption, c\ ^ r. Thus (by maximality), it has indegree 
equal to > 2. A contradiction. 

(2) More generally, for a non root ai, there is at most one path a i , . . . , an that 
connects any a\ to any an. Indeed, if there are two, we augment each by the path that 
connects the root r to a\ and thus have contradicted what we just established above. 

(3) A path a\,..., an cannot contain points in more than one subtree, Tu °f r> f°r> 
say, that distinct â  and aj are in distinct Tq and Tp, in that order. But then we have 
two distinct paths from r to an, one via â  and the other via aj. These paths differ 
already in their first edge: One is from r to rq while the other is from r to rp. 

(4) A cycle is a path a\,..., an of at least two distinct nodes such that a\ — an. 
A tree can have no cycles. By way of contradiction: If the above path is a cycle, then 
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it cannot contain the root, since there can be no edge pointing to the root. Consider 
then a path from r to an: 

& i , . . . , 6 m (*) 

where b\ = r and bm = an. Without loss of generality, the node 6m_i is not one of 
the ^—otherwise, we just walk backwards along the path (*) until we find the first 
bj that is not an a^—such a bj exists (why?)—and use this bj instead. But then the 
indegree of an (respectively, of frj+i) is at least 2. □ 

4.4.0.17 Definition. (Levels) We define levels for every node in a tree sequentially 
(iteratively): The root is assigned level 0. If b is any child of a and a has level i 
assigned, then b is assigned level i + 1. □ 

Remark 4.4.0.16 ensures that in the process of assigning levels every node is 
processed, and hence assigned a level, only once, and therefore levels are uniquely 
determined. 

4.4.0.18 Remark. The length of a path from the root of a parse tree to a leaf equals 
the maximum level possible along this path, for the path cannot be extended at the leaf, 
and hence this is the node with the the maximum possible level along the path. □ 

4.4.0.19 Definition. (Height) The one-node tree of case (1) in 4.4.0.9 has height 
equal to 0. If the root of the tree T has subtrees % of heights hi respectively, then 
the height of T is 1 + maxj/^ : i = 1 , . . . , k} [cf. 4.4.0.9, (2)]. □ 

4.4.0.20 Proposition. The height of a tree equals the maximum level observed in the 
tree. 

The maximum level observed in the tree is the length of the longest path (from the 
root to a leaf) in the tree (cf. 4.4.0.18). Despite "the", a path that scores maximum 
length is not unique. For example, in 4.4.0.11, the third tree has three longest paths; 
all have length 2: (a) S, S,0; (b) S, 5, S; and (c) S, S, 1. 

Thus, another way to state the proposition is that the height of a tree equals the 
maximum path length among all paths from the root to a leaf 

Proof. Induction on trees. A one-node tree has height 0 and the maximum observed 
level in it is 0. 

Assume now the claim for the "small" trees %, for i = 1 , . . . , k, of heights hi, 
respectively, for i = 1 , . . . , k. Consider T = (r, 7 i , . . . , Tk) of height h. Let I be 
the length of the longest path in T. We want to show that h = I. 

Now the maximum among all longest path lengths observed in the %—of a path 
from Ti to a leaf—is one less that / since all r* are children of r. Since this I — 1 
equals m a x { ^ : i = 1 , . . . , fc} by the I.H., we have that I = 1 + max{/^ : i = 
! , . . . ,*;} = h. □ 
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4.4.0.21 Proposition. Given a CFG G whose rules have right hand sides with length 
bounded by the number n. Then any parse tree of height h has a yield of length at 
most nh. 

Proof Induction on trees. For a one-node tree the height is 0. The yield has length 
0 or 1 according as the label is e or a G E. That is, at most n°. 

Assume the claim for all subtrees 71, i = 1 , . . . , k of the root. By assumption on 
the grammar rules, k < n. The yields of these subtrees satisfy 

H <nhi, fori = l , . . . , fc (1) 

The yield of the entire tree is a\a2 - -oik and the tree height is 1 + max(/^). Let, 
without loss of generality, h\ = max(/^). Notice that 

| a i a 2 - - -a f e | = 5 ^ | a i | < ^ n * * < k(nhl) < n(nhl) = n^1 + 1 = nh □ 
2 = 1 i=l 

4.4.0.22 Remark. What if n = 1 in 4.4.0.21? The analysis above works, noting 
k = 1 = n. In particular, the result means that such a grammar generates a finite set, 
indeed, a subset of E U {e}. □ 

4.4.0.23 Corollary. Given a CFG G whose rules have right hand sides with length 
bounded by the number n. If the yield a of a parse tree ofG has length > nc, then 
the height of the parse tree is > C. 

Proof A height h < C leads to yields of length at most nh, but nh <nc. □ 
Here is the import of parse trees: they depict derivations in a two-dimensional 

manner and help to simplify the analysis of derivations. 

4.4.0.24 Theorem. Let a CFG G be given. Then we have a parse tree with root 
label A and yield a iff we have A = > * a in G. 

Proof For the only if let us have a parse tree as described. We proceed by induction 
on parse trees (cf. 4.4.0.9). The one-node case, combined with the assumption, gives 
us a tree with just one node labeled A. The yield is A. On the other hand, A = > * A. 

By taking the I.H. on subtrees, let our parse tree have subtrees Ti, i = 1, • •., k, 
with root labels E^, i = 1 , . . . k, where each 5* is in VUEU{e}.136 Let the respective 
yields be a*. By 4.4.0.9, 

a = aia2---^fc (1) 

By the I.H. we have 
£• =^>* a i j i = l , . . . , f c (2) 

136This explains the specific to this proof, and "nonstandard", choice of a non Latin capital letter, to allow 
this level of "inclusivity" in the notation. 
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where if S$ G E U {e}, then (2) holds as equality without needing any help from the 
I.H. 

By 4.4.0.9, G contains the rule A—> Ei • • - S&, hence, from (1) and (2), we obtain 

For the if we do induction on n in the hypothesis A = > n a. For n — 0 we have 
a — A. Thus the one-node parse tree with root label A will do. We assume the claim 
(I.H.) for all m < n. Thus we look at 

A=>S1---Ek=^<na ( 3 ) 

We have from above 
Ei^<nau i = l , . . . , fc (4) 

where a = a± • • • ak. Note that if k > 1, then no Ei can be e—we just don't write 
rules like this: A —> eBa; we simply write A —> Ba [cf. also the restriction in 
case (2) of 4.4.0.9]. 

With this understanding noted, we analyze (4) to see what kinds of parse subtrees 
we can obtain with root labels Ef. If k = 1 and Si = e, then we have a tree such as 
the first one in 4.4.0.11 with root label e—that is, Si , and hence yield e = a\\ the 
I.H. was not needed in this subcase. Similarly, if S^ = a G E, then again, without 
invoking the I.H., we have at once a two-node parse tree with root label a (this is S$) 
and with yield a — a*. 

The I.H. implies that, in general, we have k parse trees %, with roots labeled S* 
and yields ctu for i = 1 , . . . , k. By 4.4.0.9 and the first => in (3), we select a new 
root node, we label it A, and we connect this root, from left to right, with the roots of 
the 7 1 , . . •, Tk. The yield of the tree we have just built is a\... ak (4.4.0.9). We are 
done. □ 

We now turn to the main result of this section, a pumping lemma for the CFL. 

4.4.0.25 Theorem. (The uvwxy-ThzoYem) For any infinite CFL, L, there is a con-
stant C (not uniquely determined by L\) such that ifztL and \z\ > C then we can 
partition z as z — uvwxy so that the following hold 

(1) uvlwxly G L for alii > 0 

(2) vx 7̂  e 

(3) \vwx\ < C 

Proof First, let us fix a CFG G = (V, E, 5,11) such that L = L(G). Let n represent 
the maximum length of the right hand side of any rule of G. The assumption that L is 
infinite implies n > 2 (4.4.0.22). We will take C = n | v | + 1 , where by the symbol |V| 
we denote the number of nonterminals in V. We next fix a z G L such that \z\ > C. 
By the choice of z, we have S = > * z. By Theorem 4.4.0.24, there is a parse tree 
with root S and yield z. 

Of all such parse trees we pick one with the least number of nodes. (*) 
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We depict this parse tree—in a stylized manner, cf. 4.4.0.12—in the figure below. 
We have denoted some of its nodes (one labeled S and two labeled A) by big dots 
rather than by circles. The node labels are near these dots. Now, by 4.4.0.23, the 
height h of the tree that we have chosen satisfies h > \V\. Moreover, by 4.4.0.20, 
there is a path of longest possible length that has length precisely equal to the height 
of the tree. We depict this path by the wavy line that goes from S, through the two 
A-labels, to the unlabeled dot that is part of the yield of the bottom "triangle" with 
root A. This unlabeled dot is labeled by a terminal, since the entire yield, z, is in S*. 

The longest path that we are referring to thus has length greater than |V|, and 
therefore has more than |V| + 1 nodes on it. Since only the dot in the yield is 
labeled by a terminal, this path has utilized more than |V| nonterminal labels. Thus 
a nonterminal label repeats. 

We depict label A as repeating. Moreover, we assume that there is no label B, 
between the bottommost A and the last dot (on the yield) on the wavy path, that also 
repeats. That is, the pair of the two As is bottommost. 

With these preliminaries out of the way, we draw attention to the substrings of 
z marked on the yield. Notice that if we remove the middle parse tree—of root 
(labeled) A and yield vAx— and join the first and last tree at A we obtain a parse tree 
with root S and yield uwy. Thus S = ^ * uwy and we have proved (1), case i = 0. 

w 

Let us next form a chain of triangles (parse trees), 7 i , . . . , Tk using a copy of the 
middle triangle k > 1 times. For each i, we join % with 7i+i, using as connecting 
point the node labeled A in the yield of the former with the root (also labeled A) of 
the latter. By 4.4.0.9, the chain is a parse tree with yield vkAxk. We can now replace 
the single copy of the middle triangle of the preceding figure by the fc-long triangle 
chain that we have just constructed. The root of the chain is glued to the A-node in 
the yield of the top triangle. The bottom triangle's root is attached to the bottom A 
of the chain (the one in the yield of the chain). By 4.4.0.9 we obtained a parse tree 
with a root labeled S and yield uvkwxky. Thus S = > * uvkwxky, and have just 
proved (1) for i > 1. For i = 1, of course, we need do nothing. 
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Regarding (2), if vx = e, then the tree we got for i — 0 still has yield z. Since this 
has at least one node less than the original, we have contradicted our stipulation (*). 
Thus, at least one of v or x is not e. 

Finally, the wavy path from the first A, via the second A that ends on the yield 
of the bottom triangle, has the longest length in the parse tree, T7, formed by the 
last two triangles (root labeled A, yield equal to vwy). If not, then there is a longer 
path in T\ from the root, labeled A, to the tree's yield. Appending this path to the 
path in the top triangle that goes from S to A, we get an overall path in the original 
tree—from S to the yield z—that is longer than the original, and this contradicts our 
assumptions! 

Now, omitting the first A, the resulting truncated path has length / < |V|— 
otherwise we have a repeating nonterminal on it;137 impossible by the way we 
chose the pair of A. Since / + 1 is the longest path length in T7, it equals the 
height of V (4.4.0.20). Thus, / + 1 < |V| + 1 and hence the yield, vwx, satisfies 
\vwx\ < nl+1 < n ' v l + 1 = C—that is, (3) is true. □ 

The condition "For any infinite CFL, L, etc." in the statement of the theorem was 
used to guarantee that a CFG for the grammar cannot have all its rules have right 
hand sides of length one. The proof is applicable for any CFL L that can be obtained 
as L = L(G) where the CFG G has rules with right hand sides of length > 2. 

4.4.0.26 Example. We show that L = {0 n l n 2 n : n > 0} is not a CFL. If it is, 
then the uvwxy-theorem applies. Let then C be as in the 4.4.0.25, and consider 
z — 0 C 1 C 2 C . This z must pump, i.e., there must be a partition as z — uvwxy, so 
that vx 7̂  e, and the uvlwxly are in L for all i. Seeing that \vwx\ < C, we have two 
cases: v contains a 0. Then vwx contains no 2, hence pumping leaves 2C invariant 
and the pumped string cannot possibly be in L. On the other hand, if v contains no 
0, then the part 0C remains invariant during pumping, and again the string cannot be 
inL. □ 

4.4.0.27 Example. The language L = {zz: zeE*} over S = {0,1} is not a CFL 
either. 

Assume by way of contradiction that it is. So let C be chosen as in the uvwxy-
theorem. We will show that certain strings of L that are longer than C "cannot pump", 
contradicting 4.4.0.25 (we do not expect this contradiction to be demonstrated for all 
strings of LI). 

"Cannot pump" means that if we do pump them as in (1) of 4.4.0.25, then we end up 
with strings outside L. 

So look at t = 0C1C0C lc. Indeed, if we went along with the italicized hypothesis, 
then we should be able to write t = uvwxy with \vwx\ < C, and uv%wxly would all 
be in L, for % > 0. The latter cannot happen: 

The last node on the path is a terminal in w. A path of length I has I + 1 nodes. 
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In view of the maximum length of vwx, this string can have three general positions 
as a substring of t: 

(1) It has no overlap with the last 0 C 1 C . This is inconsistent with the specification 
of L, since pumping t down (i = 0) will change at least one of the leftmost 0C 

or the leftmost lc but will leave the the last 0 C 1 C invariant. 

(2) It has no overlap with either the first 0C or the last lc. This is again inconsistent 
with the specification of L, since pumping t down will change at least one of the 
leftmost l c or the second 0C but will leave the first 0C and the last lc invariant. 

(3) It has no overlap with the first 0 C 1 C . For one last time, this clashes with the 
specification of L, since pumping t down will change at least one of the rightmost 
0C or the last lc but will leave the first 0 C 1 C invariant. 

These being the only possible placements of vwx we showed that t "cannot pump", 
hence L is not a CFL. □ 

The following is analogous to 3.4.2.3. 

4.4.0.28 Example. The CFL version of the pumping lemma gives us a characteriza-
tion of infinite (and hence of finite) CFL: Let L be a CFL given by some CFG G. 
If all the rules of G have right hand side lengths equal to one, then the language is 
finite, as we have already observed. 

Let then this not be the case, and let C be the constant used in the proof of 4.4.0.25. 
Then if there is a string z G L such that C < \z\ < 2C, L will be infinite. 

This is hardly surprising, as it directly follows from "pumping" the string. How-
ever, we have a converse! If L is infinite, then there will be a z' G L such that 
C < \z'\ < 2C. 

So, let L be infinite, and let z—no prime—be in L, such that its length is smallest 
such that \z\ > 2C. Let z = uvwxy as in 4.4.0.25. We have that uwy G L. By 
smallest length property of z, we obtain (recall, vx ^ e) 

\uwy\ < 2C (1) 

Moreover, 
\uwy\ = \z\ - \vx\ > \z\ - \vwx\ > 2C - C = C 

We set z' = uwy and we are done. The contrapositive of the characterization says 
that L is finite iff there are no z G L in the length-range C < • • • < 2C. D 

4.5 ADDITIONAL EXERCISES 

1. Modify the PDA in 4.2.1.4 to accept {0 n l n : n > 1} by ES. 

2. Modify the PDA in 4.2.1.4 to accept {0 n l n : n > 3} by ES. 
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3. Build a PDA over an input alphabet E that accepts strings by ES, and (provably) 
accepts {xxR : x G E*}. 

4. Build a PDA for the language {0 n l 5 n : n > 0}. You are free to choose the mode 
of acceptance. 

5. Repeat the above task, but now do it in this way: First get a CFG for the language, 
and then construct a PDA for the language that accepts by empty stack (cf. 4.3.0.5). 

6. Give a CFG G over E = {0,1} such that L(G) = {xxR : x e E*}. 

7. Give a CFG G over E = {(,)} such that L(G) is the full set of balanced brackets— 
that is, not only those of the form ((())) but also those like ((()))(()). 

8. Provide a complete proof for the claims in Example 4.3.0.7. 

9. By induction on regular expression length prove: "For every a, there is a CFG, 
G, such that L{G) = L(a)". 

10. Prove that CFL are closed under union, that is, if L and V are CFL, then so is 
LUL'. 

11. Prove that CFL are closed under concatenation, that is, if L and L' are CFL, then 
so is LLf. 

12. Prove that CFL are closed under reversal, that is, if L is a CFL, then so is LR. 

13. Prove that CFL are not closed under complement. That is, if L is a CFL over E, 
then it is not necessarily the case that L, that is, E* — L is a CFL. 
Hint. Toward your counterexample begin by thinking set-theoretically. 

2 

14. Prove that the language over {a, b} given by L = {anban : n > 0} is not a CFL. 

15. The language L — { P : p is a prime}, over E = {1}, is not regular. Is it a CFL? 
Why? 

16. The language L = { l n 3 : n > 0}, over E = {1}, is not regular. Is it a CFL? 
Why? 

17. Prove that the intersection of a CFL L and a regular language V is a CFL. 
Hint. Let M be a PDA for L and iV a FA for V. Assume that the PDA accepts by 
accepting state. Now imitate the construction of 3.1.2.2. 

18. Prove that the language L of strings over {0,1,2} that have an equal number of 
zeros, ones and twos is not a CFL. 
Hint. The pumping lemma will not work directly. However, 0*1*2* defines a 
regular language. 

19. Prove that the language over {0,1, # } given by { z # x # y : {x, y, z) C {0,1}* A 
z — x + y in binary} is not a CFL. 
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CHAPTER 5 

COMPUTATIONAL COMPLEXITY 

What do we mean by saying "this problem, x E A, has no algorithmic solution"? 
And why is it that some problems do not have such solutions? How can we classify 
(compare) such undecidable problems? These are the fundamental questions of 
computability theory that we studied in Chapter 2. 

Among the problems x G A that do have algorithmic solutions (decidable or solv-
able problems), why is it that some require enormous computational resources toward 
obtaining the answer? And how can we classify decidable problems according to 
their demand on computational resources? This is the domain of computational com-
plexity, or just complexity, theory. This chapter discusses a few topics in complexity 
theory. 

5.1 ADDING A SECOND STACK; TURING MACHINES 

We introduced the PDA as a special case (albeit nondeterministic) of the URM, with a 
single number-type read/write variable—the stack variable. Actually, we viewed this 
variable as a string-type variable suppressing a detailed look into how a URM can 
effect string operations such as "pop" and "push", until now. As in Section 2.11, we 
can identify strings over a finite alphabet of m symbols with natural numbers—the 
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latter written in notation base-(ra + 1). The correct way to do this (cf. 2.11.0.32, III) 
is to fix an order of the alphabet and identify its members {a±, a 2 , . . . , a m } with the 
"digits" 1,2,. . . , ra (i.e., a* with i). Thus a non-empty string 

a3r<*>3r-l "^JO ( 1 ) 

is uniquely represented by (and represents) the number 

j r ( m + l ) r + jr-i(m + ly1 + • • • + j i (m + 1) + jo 

0 corresponds to the string e. 
Assume now that the stack variable is x, and that its contents is the string 7, 

which, in detail, is the string in (1). Moreover, let us have the stack top located at the 
right end of 7 rather than the left end. 

Pause. Why is this not an about face of any significance vis a vis our earlier 
conventions?^ 

Then we can do a pop—and assign the popped symbol in the variable z, if we 
wish—as follows 

z <- rera(x, m + 1)—cf. 2.1.2.40 (2) 

The stack (contents) change corresponds to the effect of 

(3) X < -
ra + 1 

Both operations can be simulated by simpler URM operations (as the right hand sides 
are calls to primitive recursive functions). 

To push the one-digit contents of a variable w into x one simply does 

x <- (ra + l )x + w (4) 

That is, a URM, despite being inherently a "number-processing" device (read: pro-
gram), can perform all the string operations that are associated with stacks. Clearly, 
a URM can be written to handle several stack variables. 

The converse is an important question: Is it possible to simulate any URM with 
one that only has stack variables and its primary instructions1^ are restricted to be 
"push" and "pop" (and checking for empty stack)? And if so, how many stacks are 
needed? 

Suppose now that we add a second stack to a PDA. What more can such a turbo-
charged PDA do with its two stacks? 

Well, we will show that a URM with just two stacks—of string type—can simulate 
the operation of any number-processing URM! Here is how [cf. Minsky (1967) and 
Tourlakis(1984)]: 

138 In the standard URM the instructions x <— x + 1 and x <- a are primary. The instructions x —̂ y 
and g o t o L are derived. 
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5.1.0.29 Example. To prepare for the justification of the above claim, let us see first 
that we can perform x <r- ax in a URM, using just one extra variable y, where a > 0. 
The following fits the specification: 

l : y < - 0 
2 : x ^ x - 1 
3 : y <- y + a {NB. This is y <- y + 1, a times} 
4 : if x = 0 goto 7 else goto 2 
5 : y < - y - 1 
6 : x ^ x + 1 
7 : if y = 0 goto 8 else goto 5 
8 : stop 

□ 
5.1.0.30 Example. We next see how to do 

x <— if rem(x, a) = 0 then |_x/aJ e^se x 

in a URM with just two variables, where a > 0. Below we present a pseudo URM 
program for the task. For the simulation of "goto L" see 2.1.1.8. 

y + - o 
Loop : if x = 0 goto Lo {case of rem = 0} 

x <- x — 1 
if x = 0 goto L\ {case of rem — 1} 

x —̂ x — 1 
if x = 0 goto La-i {case of rem = a — 1} 
x «- x — 1 
y < - y + i 
goto Loop 

At this point 
I original value of x I 

L0 : x 4- ay 
goto L 

Cases where rem{yi) a) ^ 0; we need to restore x. 
Li : y <- ay 

y < - y + i 
x < - y 
gotoL 
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Lk : y <- ay 
y i-y + k 

goto L 

La_i : y <r- ay 
y <-y + a- 1 
x < - y 

L : stop 

a 

5.1.0.31 Example. We can now show how two number-type variables are sufficient 
to simulate the function of a URM M that contains more than two variables, 

z 0 , . . . , z m (1) 

where m > 1. We build (in outline) a URM N that employs just two variables, x 
and y. The first stores the values of all the variables in (1) using a modified prime 
power coding, 

x - Po° x . . . x p^ (2) 

where p\ =2,p2 = 3, etc. 
To simplify matters, assume that M has only zo as its input/output variable. The 

simulator TV will have x as its only input variable, but it will "read" an input a encoded 
as the number 2a—this means that the coding phase, going from a to 2a is not part 
of the simulation. By our conventions on non-input variables, all of z i , . . . , z m 
are "implicitly" set to 0, that is why the correct initial value of x is indeed just 2a. 
Furthermore, without loss of generality, we restrict M so that it has no instructions 
of the type w «— s. 

Pause. Why "without loss of generality"?^ 
Once (2) has been initialized, an instruction such as ẑ  —̂ z$ + 1 is simu-

lated by N doing x «- p$x. On the other hand, ẑ  —̂ z» — 1 will require N 
d o x f- if rera(x, pi) = 0 then [x/p^J else x. Finally, the instruction if ẑ  = 
0 goto V else goto L" of M is simulated by iV by, in a first approximation, the 
instruction if rem(*, pi) = 0 goto 1/ else goto L". This can be implemented by a 
modification of the URM in 5.1.0.30, where the instructions under labels L\,..., LPi 
transfer to L" (rather than to the label of stop), and the instructions under label Lo 
transfer to V rather than to L. □ 

5.1.0.32 Remark. We can easily do what the previous three examples did with two 
string-type stack variables—"two stacks" as we say. Let us call these variables L 
and R. They will be utilized as a simple counters. This means that the length of the 
stored string represents the number stored—no matter what the actual symbols in the 
stack may be. 
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Pause. Therefore a stack alphabet V of any one symbol, say, F = { # } , will 
work.^ 

Thus, "L I (push)" implements L —̂ L + 1 and "if L ^ e139 t h e n L t (pop)" 
implements L «— L — 1. We also note that in the simulation in Examples 5.1.0.29, 
5.1.0.30, and 5.1.0.31 we employed the variables x and y in what can be termed 
push-pulluo mode, that is, when one popped ("pulled"), the other pushed—since we 
paired instructions 

x + l 

with 

y t i 
We have abstracted in the above observation the detail that sometimes we had 
a " + a" paired with a " — 1", e.g., simulation ofxHr- ax. This is legitimate 
since a "push" like " - f a " can be thought of as one push, rather than a 
consecutive pushes, if we allow groups of symbols to be pushed at once. In the 
context of this simulation this can be "hardwired" into the simulating program 
since there are only a finite number of different "a": 2 ,3 ,5 , . . . , p m . 

Thus two string-type stacks—even if they are restricted to not work independently but 
rather are constrained to work in push-pull mode—give the 2-stack PDA formalism 
at least as much power as that of the URM. 

Conversely, and rather trivially, a URM can simulate any deterministic program 
written in this new formalism, since as we know (e.g., preamble of Section 5.1) 
the number-theoretic URM can pop, push, and check for empty stack (equal to 0, 
number-theoretically). □ 

What about nondeterminism? Does it give more computing power to the 2-stack 
PDA formalism vs. that of the URM? 

It turns out that it does not. 
This can be seen in at least one straightforward way. On one hand, a nondeter-

ministic URM—which we will not define formally—is one that allows choice for 
next instruction. By preceding remarks, such a URM subsumes the new formalism 
completely. 

On the other hand, a nondeterministic URM can be simulated by a deterministic 
URM—by one of our standard URM, that is. Why? Because we can do this: 

• Recast Definition 2.3.0.5 for nondeterministic URM. 

139If L were a numeric variable, then, of course, one could test for the condition L ^ 0 (non-emptiness) 
since the number 0 corresponds to the string e. On the other hand, a "string stack"—like the described 
here "counter"—will not know when it is empty. We can get around this by initializing the stacks with a 
special "bottom" symbol. For example, $. Emptiness then is equivalent with $ being the top symbol. 
140A term that I borrowed from circuit design where two transistors are connected in push-pull mode if, 
in operation, and at any given instance in time, when one's current goes down by a certain amount, the 
other's increases by the same amount, and vice versa. 
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Define acceptance of an input xn to be equivalent to input xn leads to at least 
one terminating computation. 

Define that a relation R(x) is URM-acceptable iff, for some nondeterministic 
URM M, "J?(f)" is equivalent to "x is accepted by M". 

Do the arithmetization of the nondeterministic URM, by trivially modifying all 
the work that we did following 2.3.0.5, which led to the normal form theorem. 

Prove a new "Kleene Normal Form Theorem" for nondeterministic URM, 
namely: 

For any nondeterministic URM M of code z, we have that M accepts input 
xn iff (3y)T^p(2, xn, y)—where, for every n, T^p is a primitive recursive 
"Kleene predicate "for nondeterministic URMs. 

After all this work, which is tedious but easy, we have that the sets that are (nonde-
terministic) URM-acceptable are precisely the c.e. sets. Therefore, nondeterminism 
bought us nothing in terms of power in the URM formalism.141 This is analogous 
with the situation of FA vs. NFA. 

5.1.1 Turing Machines 

Let us now carefully define the Turing machine—acronym TM—formalism of Turing 
(1936, 1937), since we want to prove a metatheorem about it. We will essentially 
identify the Turing machine with the 2-stack PDA but will offer some simplifications 
in the eventual definition—in particular, we will join the two stacks into a single 
variable of type "string". Let us make a few additional observations before we 
embark on definitions. 

First, we adhere to the traditional point of view according to which "automata"— 
whether these are FA, NFA, PDA, or the 2-stack PDA—are string-processing pro-
grams where concatenation rather than "4-1" or "— 1" are the primitive operations 
in the formalism. Each such automaton has an input alphabet £ over which its string 
inputs are formed. For the 2-stack PDA, an instantaneous description of its compu-
tation is partly determined by the contents of the two stacks, L and R, by the current 
instruction number or state that the program is at, and by the symbol on top of the 
stack. 

Pause. Which one of the two stacks?^ 
Since the stacks operate in push-pull, we imagine the ID as the quadruple 

(l,q,a,r) 

where 1 and r are the contents of L and R, respectively, q is the current state, and a 
is the current symbol, which we arrange always to be the top symbol of R. 

The top ofL is its rightmost symbol, while the top ofH is its leftmost symbol. 

141 It turns out that deterministic (1-stack) PDA are strictly less powerful than the (1-stack) PDA. 

330 
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This ID ignores the input stream that is read via the input, read-only, variable of 
digit-type (single-symbol-type). The reason is that it turns out that the presence or 
absence of a read-only input variable, provably, does not add or subtract to the power 
of the model. Thus, without loss of generality we will henceforth assume that there 
is no input variable and that the input appears in the stack R initially. 

We will not offer the proof that this simplification of the model indeed is "without 
loss of generality". It is well known that the TM (the 2-stack PDA) is quite oblivious to 
large variations in its definition, including the one we mentioned. Several startlingly 
different but equipotent variants of the TM are presented in, for example, Hopcroft 
et al. (2007). In particular, the reader can find in Tourlakis (1984) a full account 
of how the TM that we outlined earlier—that is, the PDA with two stacks that are 
implemented as counters—can be modified, still within the TM model as it is defined 
in 5.1.1.1 below, to simulate a URM, including the part of transforming the input 
from a to 2a (the "input format" 2a was used in 5.1.0.31), this being done explicitly 
this time as part of the computation. 

At long last, we collect what we have said so far in this chapter, and define the TM 
by actually "gluing" together the two stacks, top to top, an operation that makes sense 
due to their push-pull operation: Thus we have just one read-write string variable in 
a TM, to which the literature most often refers as the "tape" [a notable exception is 
Papadimitriou (1994)]. 

5.1.1.1 Definition. (The T\iring Machine) A Turing machine (abbreviation TM) is 
a collection of tools, M = (Q, T, E, T, go, F, X), as follows: Q is a finite set of states, 
that is, instruction labels. T is the only variable, a string-type variable with special 
access mode (cf. 5.1.1.2 below). Most of the literature refers to is as "the tape" of 
the TM. 

r = {B,...} is a finite alphabet over which the contents of the tape are formed. 
The symbol B occurs in all TM alphabets, is called the blank symbol, and is special. 
More on it later (5.1.1.2). 

E is the input alphabet, it satisfies E C Y — {B}. go is the label of the instruction 
that must be executed first—the start state. F is a possibly empty, finite set of 
accepting states. 

Finally, X is a finite set of instructions of the forms (l)-(3) below, where our 
notation adheres to the rules that a,b,c, possibly with primes or subscripts, denote 
generically members of T; p, g, r, possibly with primes or subscripts, denote members 
of Q. The TM can access at any one step of the computation ("computation" to be 
defined in 5.1.1.2) one symbol of the string stored in T—any one symbol—which is 
referred to as the "current" symbol. 

(1) "qabq' —>"; this instruction is applicable only if the current instruction is (labeled) 
q and the current symbol is a. The execution of the instruction causes the symbol 
a to change to b. Note that a and b may denote the same symbol! 
It also causes q' to be the next instruction. Note that q and q' may denote the 
same state! The new scanned symbol will be the one immediately to the right of 
a (which has changed to b). 
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(2) "qabq' <-"; this instruction is applicable only if the current instruction is q and 
the current symbol is a. The execution of the instruction causes the symbol a to 
change to b. It also causes q' to be the next instruction. The new scanned symbol 
will be the one immediately to the left of a (which has changed to b). 

(3) "qabq'"\ this instruction is applicable only if the current instruction is q and the 
current symbol is a. The execution of the instruction causes the symbol a to 
change to b. It also causes qf to be the next instruction. The new scanned symbol 
will be the b, which is in the place of the original a. 

If there are no two distinct instructions in X that start with the same state and symbol 
pair, "ga", then the TM is deterministic, otherwise, it is nondeterministic. □ 

It is immediate that every deterministic TM is also nondeterministic, but not vice 
versa. (This does not mean that we cannot simulate any nondeterministic TM by a 
deterministic TM. This is only a comment about the structure of Turing machines.) 

5.1.1.2 Definition. (IDs and Computations) Given a TM M as in 5.1.1.1. An in-
stantaneous description or ID of a computation of M142 is a string 

tqau 

where a is the scanned symbol, q is the current instruction label (state) and tau is the 
string stored in the variable T—the total "tape contents". 

Connecting with the discussion that led us here, t is the content of the stack variable 
L (top at the right end of t) and au is the content of the stack variable R (top at the 
left end of au). 

Two IDs, tqau and t'q'a'u' are related via the relation h, 

tqau \~M t'q'a'u', where M is omitted if it is understood from the context (1) 

in words, tqau yields t'q'a'u', iff one of (i)-(iii) holds: 

(i) t = t',u = u',a' — b and qabq' is an instruction 

(ii) This is "push in L, pull (pop) from R" 
• t' — tb,u — a'u', with a' e T, and qabq' -» is an instruction 
• t' — tb,u = e, v! = e, a' = B, and qabq' —> is an instruction 

(iii) This is "push in R, pull from L" 
• t = t'a', u' = bu, with a' € I \ and qabq' —̂ is an instruction 

• t' = B,t = e,a' = B,u' = bu, and qabq' <— is an instruction 

:Again, no circularity here! 

www.it-ebooks.info

http://www.it-ebooks.info/


ADDING A SECOND STACK; TURING MACHINES 3 3 3 

The second bullet in each of (ii) and (iii) shows the special nature of the blank 
symbol B. Intuitively each bullet formalizes how each half of the "tape"—that was 
obtained by joining two stacks, top to top, as you recall—can be extended when the 
computation reaches either of the two extremes and "wants" to go further. In stack 
terms, the two stacks never "underflow". 143 

An ID of the form q0x, where x G S + is the input string, is called initial. An ID 
tqau that has no next IDs, that is, ->(3 J) (tqau \~M J), is called terminal or final. An 
ID tqau is called accepting iff it is terminal and q £ F. 

A computation of M—an M-computation—is a finite sequence of IDs J^, for 
i = 0 , . . . , m, such that 

(1) Jo is initial 

(2) J m is terminal 

(3) Ji \~M Ji+i, for i = 0 , . . . , m - 1 

A subsequence (Jz)^Lr is a subcomputation iff it satisfies (3) for all pairs of consec-
utive terms. 

A computation accepts the input x iff its initial ID is q$x and its terminal ID is 
accepting. The symbol L(M), where M is a TM, denotes the language accepted by 
M, that is, {x e U+ : x is accepted by M}. 

The complexity or run time of a computation J o , . . . , J m is the number m—which 
equals the number of "steps", h M , applied in (3) above. □ 

Since TMs can write on their tape (string variable) they do not need accepting states 
to indicate acceptance of a string—for example, just prior to halting, they may erase 
the contents of the variable, and replace them with the word "accept", or the word 
"true", or the number 1, to indicate that the input was accepted. Nevertheless, the 
presence of accepting states makes arguments about the behavior of TMs—such as 
the proof of Cook's theorem in this section—easier. 

Turing machines can do more than produce yes/no output. They can compute func-
tions just like the URM does. Indeed, the two formalisms have the same computing 
power (Examples 5.1.0.31 and 5.1.0.32). 

However, we will not explore the Turing machine in its function-computer role. 
All our Turing machines will be acceptors. 

The reader who wants to see how computability can be founded on the TM 
formalism may consult Davis (1958) and Tourlakis (1984). 

5.1.1.3 Definition. (The Classes JV'& and &) Given a function \n.T{n). We say 
that the language L has deterministic T(n)-time complexity iff there is a deterministic 
TM M such that L — L(M) and the run time of every computation of M is bounded 
by T(\x\), where \x\ is the length of the input x. 

A stack "underflow" is the state where a stack is empty and yet we attempt to pop. 
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We say that the language L' has nondeterministic T(n)-time complexity iff there 
is a nondeterministic TM TV such that V — L(N) and every acceptable input x ofN 
has at least one computation of run time <T(\x\). 

We often use the terminology "M (respectively, N) accepts x within time T(\x\)". 
We say that L has deterministic polynomial-time (or poly-time) complexity iff it 
has deterministic T(n)-time complexity for some polynomial T(n). We say that 
V has nondeterministic poly-time complexity iff it has nondeterministic T(ri) -time 
complexity for some polynomial T(n). 

The class of all languages that have deterministic poly-time complexity is denoted 
by &. The class of all languages that have nondeterministic poly-time complexity 
is denoted by JV &. □ 

What the nondeterministic machine does when it does not accept x—it might even 
compute forever for some rejected x—has no bearing on the complexity of V. 

In essence, a nondeterministic machine recognizes just the positive instances of a 
relation of the form 

(3y)R(x,y) (i) 

by accepting all x that make (1) true—but no other inputs. We may imagine that this 
is done as follows: 

• It first nondeterministically "writes down" ("guesses") a value of y that works 
for the given x 

• It then deterministically verifies the truth of i?(x, y). 

In other words, the machine works precisely as a mathematician does, when the latter 
approaches the task of proving (1) for a given y. 

The run time of the task described by the two bullets equals the time it takes to 
write down y, plus the time it takes for the verification. 

Pause. But surely deterministic and nondeterministic steps in a computation are 
in general intertwined? How can (1) be the "general" case?^ 

It is. Every set S G N that is acceptable by a nondeterministic URM (or TM) 
is c.e. <^><^> 

Cf. the discussion in the X JL-passage on p. 329. Thus the relation x e S is 
equivalent to (3y)Q(x, y) for some primitive recursive Q, by the projection theorem. 
Thus, XQ c a n be computed by a a loop program. 

Consider two examples: 
Suppose first that we want to (nondeterministically144) prove that some given x is 

a composite number. 
If such a claim about x is true, then we would probably want to guess a factor y 

and then verify that it works, by computing rem(x, y) and making sure that its value 
isO. 

^The reader no doubt has noted that most proofs are nondeterministic! 
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The next example addresses the question of how the "problem-template" (1) can 
represent a problem where multiple "guessed values" are needed: Suppose that we 
want to prove that a given Boolean formula 9E—whose Boolean variables are (in 
metanotation) v\,..., vn—is satisfiable. We can use as a single guessed value y an 
appropriate coding of n appropriate truth values, which—when assigned into the 
Vi—will make 3£ true. Of course, if we hope to "solve" the problem in poly-time 
with respect to the input size, 12£ |, we will need to use a coding/decoding scheme 
that can pack/unpack the truth-values into/from a single y, and do so within time 
that is a polynomial function of \3C\—the length of the formula. One such fast 
coding/decoding scheme is to form a string formed by concatenating all the guessed 
truth-values together. See also 5.1.2.13 below. 

5.1.1.4 Remark. In 5.1.1.3 we have quoted run time as a function of input length. 
This is a natural choice in complexity theory that deals with a large variety of problems 
that involve non-numerical inputs. For example, problems about graphs—such as 
the clique problem: "given a graph G and a number fc; does G have a clique of size 
fc?"—and problems about formulae—such as the SAT problem: "given a Boolean 
formula srf\ is it satisfiable?" 

Of course, every set of strings over an alphabet E of fc elements can be viewed as 
a set of numbers, written base-fc, as we already have remarked (e.g., Section 2.11). 
However, quoting run time in terms of input value is not, in general, the same as 
quoting time in terms of input length, unless fc = 1. Here is why: 

Each language L discussed in this and the next subsection is assumed to be over 
some alphabet E L of fc > 2 elements. The length of a string x over EL—viewed as 
a number base-fc—essentially equals the logarithm base-fc of x. Indeed, if 

x = ankn + an_ifcn _ 1 H \- a0 

then 
kn < x < (k - l)kn + (fc - l)kn~l + • • • + (fc - 1) 

therefore, 

kn < x < {k - I)—,—^ = fcn+1 - 1 < fcn+1 (1) 
fc — 1 

Now, n+1 = \x\ and, by (1), \x\ — 1 < logfc x < \x\. That is, \x\ = [logfc x~\. 
Often we take our time bound functions T(n) from some class of functions, C, 

e.g., the class of polynomials, or the class V7Z. Obviously, if a TM runs within time 
nc for some constant c (a polynomial run time) it makes a world of difference if we 
are quoting run time as a function of the input value or of the input size, when fc > 2: 
because x (the input value) is equal to about fclx' and thus a TM that runs within 
time xc—a polynomial bound with respect to input value—runs within time (fclx')c, 
which is an exponential bound with respect to input size (length). 

Therefore, for time bounds from the class of polynomials we must be clear how 
we quote run time! In this case we invariably do so with respect to input length. 
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On the other hand, if T(n) comes from a class that contains exponentials, e.g., T 
is in VIZ or in the class j£?2 of Section 5.2, then it is irrelevant how we quote run time, 
whether with respect to input value or input size, since Xn.kT^ e VIZ as well. □ 

5.1.1.5 Remark. Since every deterministic TM is also a nondeterministic TM, Def-
inition 5.1.1.3 yields at once 

The converse inclusion, and therefore the question "JVS? — g?V of Cook (1971) 
is a major open problem of complexity theory. In words, it asks: can we eliminate 
guessing from a program that accepts in polynomial time to obtain a new, equivalent, 
program that also runs in polynomial time? We turn now to concepts on which this 
question hinges. □ 

5.1.1.6 Definition. (Feasible Computations) That the computations of a TM are 
feasible means that they are poly-time bounded, the bound being quoted with respect 
to input length. □ 

5.1.1.7 Remark. (I) Thus, unfeasible or intractable—these are technical terms!— 
computations are those that require exponential run time or more. The distinc-
tion is fairly natural, but not totally. It leads to a nice theory, however. From a 
practical standpoint, a TM that runs within time n350000 has no computations 
that are any more "feasible" than one that runs within time 2n. The former is 
as bad with an input of length 2 as the latter is with an input of length 350000. 

Cobham (1964) has given a machine-independent characterization of the class 
of feasibly computable functions. 

(II) Machine-independent! How can this be possible? Are all machines as "fast" 
(or as "slow")? Do the URM and the TM, for example, spend the same amount 
of time for every problem that one throws at them and for every input thereof? 

Well, not the same, and "all machines" is a rather loose concept. However, 
it is a known fact that if we equip the URM with the proper set of primitive 
instructions and choose the concept of "step" carefully, so that it is mindful of 
the length of the number stored in a variable x, then any URM that has compu-
tations running within time t(n) (n being the length of input) can be simulated 
by some TM within time p(t(n))9 for some polynomial p of very small degree. 
That the converse simulation, TM by URM, also entails negligible run time 
loss—a multiplicative constant overall, in fact—is rather immediate, once one 
notes that the TM is essentially a a 2-variable URM (Subsection 5.1.1) with the 
instructions x <- m x x and x 4- [x/m\ built in as primitives, and executable 
in one step each.145 Thus, 

145Cf. also Papadimitriou (1994), where it is shown that a TM can simulate in polynomial time even an 
"augmented" URM that can access an unbounded number of registers via indirect addressing. Such a 
URM is called a random access machine in the literature, a RAM. 
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for polynomial time bounds it does not matter if we compute with URMs or 
with TMs 

as long as the URM programming language that is called upon to compute 
functions / : £ * - * £ * , for some fixed £ of m > 1 elements, is properly 
equipped—in the interest of efficiency of computations—as follows: We add 
to the basic model of 2.1.1, the instructions x <— x * d,ue where d G £, and 
x —̂ [x/raj as primitives (cf. also the preamble of Section 5.1). Failing to 
do so would result in "charging" an inordinate amount of steps to just add or 
delete a single digit at the right end of the number (string!) stored in a variable 
(least significant location) despite the obvious fact that such a string operation 
ought not to depend on the size of the stored number. 

Thus, for a string-processing URM one will charge |x| steps for each of 

x <- x + 1 

X < - X - 1 

x «— a 
and will charge one step for each of 

if x = 0 goto M else goto R 

x f - x * d , where d G £ 

x —̂ |_x/raj 
The wisdom for the assigned charge, for example, to the first instruction above 
stems from the fact that to add 1 to 2n — 1 will necessitate to flip n binary 
digits, from 1 to 0. 

(Ill) Cobham's main theorem is that the class of functions, %»that can be computed 
feasibly is the closure of the set below, 

{Xx.x * d (for all d G £) , Xxy.x^} (1) 

under substitutions (2.1.2.6)—including the case of substituting any constant 
into a variable—and bounded (right) recursion on m-adic notation, the latter 
meaning the schema 

f(0,Vn) =h(yn) 
f(x * d, yn)= gd(x, yn, f(x, yn))9 for all d G £ 
\f(x,yn)\ < \B(x,yn)\ 

where the functions h, (gd)de^^ a nd B are given. Cf. 1.7.0.30. 

Cobham prefers m-adic (Exercise 1.8.47) [over the more common (m + 1)-
ary] notation for integers n > 0, which—unlike the latter that allows digits 

146The symbol * denotes concatenation. 
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0 , . . . , m—only allows the digits 1 , . . . , m. Wherever concatenation is used in 
his paper, it is concatenation ofm-adic notations of numbers. 

The notation in (1) and in the bounded recursion schema above should be 
read number-theoreticallyl Thus, x^ in (1) is ordinary (number-theoretic) 
exponentiation but the exponent is the m-adic length of the y-argument, while 
x * d—a right successor of x—has value the number m x x -f d and length 
| a; | + 1. The base m of the m-adic notation is the number of elements in £. 
Note that we identify e with 0, as m-adic notation does not apply to 0. 

Cobham 's theorem is independent of the choice of alphabet £ as long as the 
latter has at least two elements—thus his class can be unambiguously named 

As an example, notice the simple recursion on notation that defines \x\: 

0| = 0 
x * d\= \x\ + 1, for all d e E 

< \x\ 

Pause. "Simple", yes; but only if we know that Xx.x and Xx.x + 1 are in ^\< 

Well, here is how to obtain Xx.x + 1 by bounded recursion in terms of functions 
known to be in c€\ 

0 + 1 = 1 
x * d + 1 = x * (d + 1), for d — 1,2,. . . , m — 1 
x * m + 1= (x + 1) * 1 
\x + l | < \x * l | 

For more on Cobham's feasibly computable functions (and relations) see Ex-
ercises 5.3.1-5.3.11, where you are asked to verify the membership in ^ of 
Ax.l, Ax.0, and Xx.x as well as that of many other more complex functions. 

Cobham's result is retold (and proved147) in full detail in Tourlakis (1984). □ 

5.1.2 Jf ^-Completeness 

There are some languages (sets)148 in JV & that have maximal complexity, just as 
there are maximally complex c.e. sets, such as K. 

5.1.2.1 Definition. G/f^-Hard and ^K^-Complete Sets) A set L is Jf^-hard 
iff for every L' e JV2? we have V <m L, where the reduction is effected by a 

147As far as I know, Cobham never published the complete proof. 
148"Sets" is the habitual term used for sets of numbers. "Languages" is preferred for sets of strings 
over some alphabet. The two concepts, as we know, are equivalent, and the nomenclature only reflects 
(momentarily) a point of view, not a difference of any import. 
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function that is computable by some URM in a number of steps that is a polynomial 
function of input length. 

We say that we have a polynomial-time or poly-time reduction and write 
L' <p L (p for polynomial). 

A language L is called JV 3?-complete iff it is ,/K^-hard and, moreover, is a member 
otjr&. □ 
5.1.2.2 Remark. The Turing formalism, as we have already noted, is well positioned 
to be used in the proof of Cook's theorem. Thus we have introduced it here as an 
acceptor device. 

On the other hand, we have not developed the very primitive Turing machine 
formalism as a basis of computability. Thus our reduction functions are computed 
by URMs. 

Another way to state this, in a machine-independent manner, is that these poly-
time reductions are effected using feasibly computable functions from Cobham's 
class ^ (cf. discussion in 5.1.1.7). □ 

5.1.2.3 Definition. (Big-O Notation) Given g : N -► N. 0(g(n)) is the set of all 
/ : N -> N such that, for some constant C, we have f(ri) < Cg(n) a.e. (cf. 2.4.2.8). 
The notation f(n) = 0(g(n)), introduced by the number-theorist E. Landau, means 
f(ri) G 0(g(n)) and is called big-0 notation. 

Expressions in big-0 notation are read from left to right. In particular, 0(h(n)) = 
0(g(n)) is abuse of notation for 0(h(n)) C 0(g(ri)). Thus, it means that "for every 
/ , if / (n) = 0(h(n)), then it is also the case that f(ri) = 0(g(n))". 

Some operations defined: f(n) G 0(h(n)) + 0(g(n)) iff f(n) < f{n) + f"(n) 
a.e., with f(n) G 0{h{n)) and /" (n) G 0(g(n)). 

f(n) G 0(h(n))xO((/(n))iff/(n) < / > ) x / > ) a.e., with/ '(n) G 0(h(n)) 
and/"(rc) eO(g(n)). 

f(n) G 0(/i(n))°^(™)) iff f(n) < f'(n)f"W a.e., with f'(n) G 0(h(n)) and 
f'(n) G 0(g(n)). D 

5.1.2.4 Example. It is readily verifiable that 0(n) = 0(n2). But it is not true that 
0(n2) — 0(ri). Recall, "Expressions in big-0 notation are read from left to right". 
Also, 0(n) + 0(n2) = 0(n2) and 0(n)0(n2) = 0(n3). Incidentally, writing 
f{n) — 0{l) means that f(n) is bounded a.e. by a constant. D 

5.1.2.5 Exercise. It is immediate that 0(nn2) = 0{n)°^2\ Is it also 0(n)0^ = 
0(nn2)l D 

5.1.2.6 Example. If p(n) is a polynomial of degree k, then p(n) = 0(nk). The 
reader will recall that the degree of a polynomial in the variable n is the highest 
exponent of n that occurs in the polynomial. Indeed, let 

p(n) = aknk + dk-in^1 H h a0,, where ak > 0 
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Without loss of generality, all the integer coefficients ai are natural numbers; if not, 
we replace them all by their absolute values and work instead with the so obtained 
p'{n) that obviously satisfies p(ri) < p'(n) for all n. We next note that 

/ \ k ( , ak-l , ak-2 . « 0 \ 

p(n) = n
K [ak + + —~2 +-r 

Taking n > max{a^ : i = 0 , . . . , k — 1} we get ai/nk~l < 1, for i = 0 , . . . , k — 1. 
Thus, if we set C = ak + k we have p(n) < Cnk, a.e. □ 

5.1.2.7 Remark. In view of 5.1.2.6, we replace every statement of the form " . . . 
within poly-time T(n) . . ." by " . . . within time 0(nk), for some k . . .", where 
"within time 0(nk)" means "within time f(n) in 0(nk)". □ 

5.1.2.8 Remark. We note here that if \x.f(x) is computable by a URM—as this 
was modified in 5.1.1.7—within time t(\x\), then \f(x)\ < t(\x\) + |x|. For in the 
worst case, all instructions (besides stop) are x <— x * d. In one step we have the 
length of x increase by 1 in such an instruction. Thus, in t(\x\) steps the length of 
any variable increases by t(|x|), at most. □ 

The following is fundamental but easy. It is the counterpart of Proposition 2.7.2.3. 

5.1.2.9 Proposition. IfL'<pL and L e 8?, then also V e 3?. 

Proof. Let x G V iff f(x) E L, where / is polynomial-time computable—say, 
within time 0(nm), for some m—where n = \x\. By assumption on L, z £ L is 
verified or rejected by a deterministic TM within 0(nk) steps, for some k, where 
n = \z\. 

The polynomial-time algorithm for the verification or rejection of the claim x G V 
then is: 

(1) we compute f(x). As this runs within time 0(nm), we have that 

| / 0 ) | = 0 ( n m ) , where n = \x\ (*) 

cf. 5.1.2.8 and note that n + 0(nm) = Oin™)', 
(2) we run the algorithm for "z G L"\ using z — f(x). This will conclude the 

verification/rejection of x G V within time 

Oin^+O^™) =0(nkrn) □ 
for/(x) for f(x)eL 

The proof outline above should suffice. The suppressed (tedious) details include 
"reprogramming" the computation of / in the TM "language", and then composing 
(combining) this TM with the one that deterministically solves "z G LT 

5.1.2.10 Corollary. & — JV & iff' £? contains some JV £?-complete language L. 
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Proof We will see soon that JV ^-complete languages exist. 
The only if is trivial, since every ^V ^-complete language is'mjV 2?. The if part 

is just as trivial: If L e 2* is ^^ -comple t e , then consider an arbitrary L' G <JY 2?. 
By definition, V <p L. Thus, by 5.1.2.9, V e &, proving JV@> C ^ . D 

The following is the counterpart of 2.10.0.12. 

5.1.2.11 Proposition. A sef L in JV'2? is JY 2?-complete iff S <p L, where S is 
known to be JV 2?-complete. 

Proof. For the if let B be in JY 2?. Then B <p S\ say, via f(x) that runs within 
time 0(nk) (n = \x\) on some URM M. Let also g effect S <p L within time 0(nr) 
(computed by some URM N). Thus, 

x e B iff f(x) e 5 iff g(f(x)) e L 
Note that g(f(x)) is computed by the concatenation of M and N (in that order) within 
time 0{nk) + 0 ( | / ( ^ ) | r ) . By 5.1.2.8, | / (x) | = 0(nk). Thus the concatenation of 
M and TV runs within time 0(nk) + 0 ( | / (x ) | r ) = 0(nkr). 

The only ifis immediate since L is c/K^-complete and 5 is in Jf 2?. □ 
At the beginning of Section 3.4 we (re)defined—via BNF—the set of Boolean 

formulae over the variables-set 

P,P',P",P"\... 

employing only two connectives, -i and V. Their semantics was given in Defi-
nition 1.1.1.26—a point where we circumvented an explicit definition of Boolean 
formulae, and defined instead the concept of tautology directly, for any mathematical 
formula. For the record, 

5.1.2.12 Definition. (Satisfiable Boolean Formulae; SAT) A Boolean formula, si, 
as defined in Section 3.4, is satisfiable iff there is at least one truth assignment to its 
variables that renders si true (t; cf. 1.1.1.14). 

si is a tautology iff every truth assignment to its variables renders it true. 
We denote by SAT the set of all Boolean formulae—as defined in Section 3.4— 

that are satisfiable. We denote by TAUT the set of all Boolean formulae that are 
tautologies. □ 

5.1.2.13 Proposition. SAT G JVP. 

Proof. [Outline; cf. the discussion surrounding (1) on p. 334.] A nondeterministic 
TM that will accept precisely all the x G SAT will operate as follows: 

(1) It will "guess" and write down a string y (over {t, f}) of truth assignments to 
the variables 

149For rii — 0, p(n^) means p. 
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of x—these truth assignments are guessed so that they will work! As we have no 
more variables than \x\, writing down y is doable within 0( |x |) steps. 

(2) Deterministically, the TM will verify that the "guess" indeed works by evalu-
ating x for said truth assignment. It is easy to see that this verification is doable in 
0(nc) steps, for a very small c (n = \x\). The timing of the overall computation, (1) 
plus (2), is thus 0{nc). D 

The reader will recall—from first year programming courses, for example—the 
nomenclature infix notation meaning that non-atomic formulae are written as (-<^) 
or (&/ V SS). An important alternative notation is postfix notation, also named reverse 
Polish notation. An easy way to define it is to do so recursively: 

Let us denote the postfix notation of a formula srf by post(g/). Then, for atomic 
formulae srf (these are the Boolean variables!), post(^/) is just $4'. On the other 
hand, 

posting/)} ispost(^/)-^ 

and 
post((^'V 3S)\ is post(£/)post(3§)V 

For example, post(p"f) is p'"\ post{{{~^p"f) V p)) is pf"^p\J. 
Postfix notation neither utilizes (nor needs) brackets. 
Another folklore item from a first year programming course is how to program 

algorithms, one designed to convert an infix formula to its postfix equivalent, the 
other to evaluate a postfix expression, given a set of values for all its variables. Both 
of these algorithms, which we will not describe here, use a stack and, in a URM-like 
language (like Pascal, Algol, C, etc.) they will run in 0(n) steps each, where n is the 
length of the given infix input. A TM then can do almost as well, that is, finish the 
task within time 0(nc) for a very small (integer) c > 0 (cf. 5.1.1.7). 

5.1.3 Cook's Theorem 

Cook's theorem [cf. Cook (1971)] is that SAT is Jf ^-complete. He proved this 
by simulating nondeterministic poly-time bounded accepting TM computations by 
Boolean formulae, which were satisfiable iff the TM accepted its input. Before we 
embark on details, we will assume some restrictions—without loss of generality, to 
be sure!—for our TM model. 

Restriction 1. The nondeterministic TMs of this subsection have a "I-way infinite 
tape", which is folkloric jargon for: "the TM will never extend its 
string variable contents to the left by adding a B symbol"—that is, 
the second bullet of (iii) in 5.1.1.2 will never apply. This can be 
accommodated simply by modifying the TM, if necessary, so that if it 
need to so add, it will rather first shift the contents of its string variable 
to the right, and add a B as a leftmost symbol. This is legitimate and 
only "adds" a polynomial number of steps, by Cobham's theorem and 
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the fact that Xx.B * x is in Cobham's class ^ r (cf. 5.3.1)—Y being 
the TMs total tape alphabet. 

Restriction 2. Once the TM reaches the unique accepting state, qf, the TM com-
putation continues forever without changing the ID\ This is entirely 
analogous with the behavior of URM computations once the stop 
instruction has been reached. 
Both the uniqueness and the trivial continuation of the computation 
upon acceptance can be easily incorporated in a given TM. For exam-
ple, starting with an accepting state qf that has no moves, we modify 
the TM by adding the moves qfaaqf, for all a G T. 

5.1.3.1 Theorem. (Cook's Theorem; Cook (1971)) SAT is JY &-complete. 

Proof. So, let L G JV' £?, accepted by a nondeterministic TM, M, which is restricted 
as above. The TM is accepting within time p(n), where p is a polynomial and n is 
the length of input w. Our task is to construct the function / that effects the reduction 

L<pSAT 

Thus, f(w) must be a formula in SAT iff w is acceptable. We must make sure that 
f(w) is constructed in 0(nr) time, for some r—which will result in \f{w) | = 0{nr). 

L e t M = (Q,T,E,r,q0,F,T),whereQ = {q0,qi, •..,<?/}, T = { a i , a 2 , . . . , a m } 
with F = {qf} ana B — a\. We proceed as follows: 

(1) Consider the (accepting) computation 

/0 h h r- h I- • • ' \~ II (1) 

where / < p(ri), n — \w\, Io = #0^ and // contains qf. 
By the second restriction adopted for our TMs, we may assume I = pin). 

(2) In p{n) steps, and starting the computation with the ID q0w, no ID—of the 
form tqau (cf. 5.1.1.2)—can be longer than pin) + 1. Thus, we will let all 
IDs, Ij, have the same length, equal to p{n) + 1, since we can pad them with 
jB-symbols as needed. This allows us to utilize an ID-template, that is, an array 
of pin) + 1 locations—0,1,... ,p(n)—and also several Boolean variables, one 
for each location, that will "say" something characteristic about these locations 
for every point in "time" as the latter is measured by i. 

We will construct, for each ID U, a Boolean formula J^ that will be satisflable 
iff Ii has the correct structure as the z-th ID. 

The formula J^ "knows" that it refers to time step i by virtue of the fact that all 
its Boolean variables have i as their first subscript—see below. This subscript 
denotes "time" as it is measured along the computation (1). 

(3) 
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(4) We define several mnemonic names that will be the Boolean variables of f(w): 

(a) Sf —for j = 1 , . . . , m and 0 < i, s < p{n)—is a variable that is true (it 
is assigned t) iff the 5-th location of Ii holds dj. 
We have m(p(n) -f l ) 2 = 0(p(n)2) 5-variables. 

(b) QJ
is—for j = 0 , . . . , / , 0 < i < p(n) and 0 < s < p(n) -1—is a variable 

that is true (it is assigned t) iff the 5-th location of Ii holds qj. 
Note that a state cannot be in the last location (p(n)) since the ID must have 
the form tqau, with a e T. We have ( / + l)p(n)(p(n) + 1) = 0(p(n)2) 
Q-variables. 

Thus, J?i that says "1$ has the correct form at time i, namely, tqau" is the formula 
that "says", specifically: 

(i) The ID-template has no empty locations. 

(ii) Only one location, s, contains a state qj—i.e., Q\ s is t—all other locations, t, 
containing some a/~ from T—i.e., S^t is t. 

(iii) No location holds more than one Q-symbol or one T-symbol. 

(iv) The p(n)-th location contains a T-symbol. 

Thus, the abbreviation J^ stands for the following Boolean forifiula that we divide 
into four parts that implement (i)-(iv), respectively. 

Below we are using the notation 

s<i<t 

and 
/ \ tfiD= (tf8 A ^ + i A--- AM) 

s<i<t 

Note the brackets! We will also use more complicated ranges, such as 

V *s 
s<i<t 

an expression that expands into an V-chain of formulae 3S%^ for all j G T and all i 
such that s < i < t. The order of participating formulae in V- and A-chains is, of 
course, immaterial. For exposition purposes, we use 2£ A & as an abbreviation for 
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this is (i)l A 0 < S < p ( n ) ( V l < j < m Sls V V 0 < fc< / Qi,s) 
A 

this is (ii): V 0 < S < p ( n ) ( Vo<k<f Qi,s A At*s V l < i < m SU) 
A 

this is (hi): Ao<s<P(n) /\0<k,t<f H # f , V ^(Ql, V Si.)) 

l < j < m 

A Ao<s<P(n) A1<fcit<m (-S& V -(Sjia V Q*,)) 
k^t 

0<j<f 
A 

this is ( i v ^ V l ^ m ^ n ) 

We next define subformulae ^ of /(u>). For each i, satisfiability of % will be 
tantamount to Ii h Ii+\. Thus, ^ stands for the formula 

J?i A J^+ i A 

Vqjaxayqkel V 0<s<p(n) \Qi,s A ^i,s+l A ^ + 1 , S + 1 A Q i + l , s 

^0<t<p(n)^Si^ = Si+ht)) 
s ^ t ^ s + 1 
l<fc<m 

s + l A ( 3 

s ^ t ^ s + 1 
l<fc<m 

v i5 , .̂ 
yqjaxayqk^eX V l < s < p ( n ) (^2i,s A ^ \ s + l A ^ + l , s + l A Q i + l , s - l A 

A l < K m W i , 5 - l = ^ + l , s ) A A o<t<p(n) ^ > * ^ ^ i + l , t ) J 

t g { s - l , s , s + l } 
l<fc<ra 

In the above A(^t* = ^+i , t ) s ays t n a t f°r a ^ ^ anc* ^ m e t w o symbols in location t 
before and after the move are the same (= is "Boolean equality"). Of course, SC = <3f 
is short for (-.^T V # 0 A ( - .^ V .T) . 

]qk cannot occupy location p(n). 
qk cannot occupy a location to the left of 0. 
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Putting all this together, f(w) is the formula below, where w = a^a^ • • • ain. 

initial ID 
/ * s 

blanks: a\ = B 
, s 

Ao<i<p(n) ^ A #0 ,0 A S%Q,l A ' ' ' A Sln
n A £ 0 , n + l A So,n+2 A • • • A #o,p(n) 

AVo< s<p(n) ^p(n),s 

The structure of f(w) is straightforward and thus the formula f(w) can be constructed 
("written down") in time that is a polynomial function of its length. Note that p(n) 
itself is an important parameter of the formula structure, as it determines the range of 
certain subscripts and the ID-template length. By 5.1.2.6, p(n) is in 0(na), where a 
is its degree. Thus, we can assume without loss of generality that p(ri) is Cna + C", 
for appropriate constants C and C. 

In the most unsophisticated manner Cna + C can be computed by a — 1 multi-
plications each operating with operands of length O(logn).152 This requires a total 
time of 0((logn)2) = 0(n) steps, using the standard "school method", digit by 
digit, multiplication algorithm. On the other hand, n = \w\ can be obtained from w 
in polynomial time with respect to \w\, for example, due to the fact that \w.\w\ eft 
(5.1.1.7). 

Next, by inspection, the length of f(w) is estimated as follows: 

(a) A subformula J^ has length 0(p(n)2)—due to case (ii) 

(b) A subformula % has length 0(p(n)2) 

(c) Thus \f(w)\=0(p(n)3) 
The above estimate is based on a simplifying first-order approximation that all the 
Boolean variables S% and Q\ each have length equal to one. If the super/subscripts 
are displayed in base-2 notation, then each variable needs space 0(log2(p(n))) = 
0(log2n) = 0{n) to be written down.153 Thus \f(w)\ = 0(np(n)3) = 0(p{n)4). 
It flows directly from the construction of f(w) that w e L iff f(w) e SAT. □ 

5.1.3.2 Example. (CSAT) In preparation for identifying our next ,/K^-complete 
problem we review the concept of conjunctive normal form (CNF). A formula is in 
conjunctive normal form iff it has the form below. 

t Si 

A V ^ ' w n e r e e a c n 4 *s a boolean variable p^ or a negation thereof 

We call each conjunct VjLi H a clause of the CNF. We call each l\ a literal. 
152Since logarithms of different bases are equal within a constant multiplier, there is no point to indicate 
the base. 
153On the other hand, if they are written in unary (k written as a string of k 1-symbols), then each variable 
needs space 0(p(n)) to be written down. 
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It is easy to see that for every Boolean formula si there is another one, S%, that is 
in CNF and they are either both in SAT or neither is. We outline how to construct 
SB given si. 

This can be seen by induction on the number of occurrences of V and A connectives 
in the formula. We assume that Boolean formulae are defined as at the onset of 
Section 3.4, but this time we will allow all three of ->, V, and A as primitives. 

Prior to the induction, we preprocess si by "pushing" all negations as close to 
variables as possible. We then replace any maximal odd-length string of -> symbols 
by a single one; we eliminate any maximal even-length string of -■ symbols. This is 
achieved by repeated use of the two de Morgan laws (1.1.1.18) and of the well-known 
provable identity -i-i^T = 3£. Once this is done, in every subformula of the (fully 
parenthesized) form (->^), & is a variable. 

For the basis, if si is a literal, then it is already in CNF. 
For the induction step, let first si be SS A <€. The I.H. yields that SB and ^ have 

associated CNF formulae SB' and c€' as above. A CNF associated with si then is 
SB1 A cgl\ If si is satisfiable, then so are SB and <*? and hence SB1 and <€' by the I.H. 
The same is true of SB' A c€'. The converse is as easy. 

The other induction step deals with the case where si \s SBV *€. Again, by the 
I.H. we have associated CNF formulae S&' and c€'. Let us invoke Exercise 1.8.2: 

f 4 f , f - > f h ! V f 4 f V f (1) 

The special case where 2£ and J? are literals is of import for our I.S. Let p be a new 
variable—i.e., not occurring in SB1 or c£'. Then we have, by (1), 

- i p V J ' ^ V ^ h J ' V ^ (2) 

where "p V ->p —> " is eliminated from the right hand side of h in (2) since p V -ip is 
a tautology. It follows that 

{^p V SB1) A (p V #') V-SS'Vtf' (3) 

Note that, conversely, whenever we satisfy SB' V c€' with some array of truth 
assignments s to its variables, then there is a truth assignment to p that when we 
append it to the array s yields a truth assignment that satisfies the left hand side of h 
in (3). 

This appending can happen without conflicts because p is new! 

Indeed, if SB' V CS" is t due to SB' being t, then we extend s by letting p to be t. 
If we know instead that *€' is t, then we extend s by letting p to be f. 

This can be summarized as 

SB1 V ^ is satisfiable iff {^p V SB') A(pV <*?') is 

Distributing the two V over the CNF forms SB' and c€' above we get the required 
CNF and we are done with the proof. 
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The reader can propose an algorithm that implements the above on a string-
processing URM and verify that going from si to a CNF, tracking the above proof, 
can be done within time 0(\s/\a) for some a > 0 (cf. Exercise 5.3.12). 

With these preliminaries out of the way, we can now show that CSAT, that is, 
the set of all satisfiable formulae in CNF, is J^^-complete. To this end, note that 
to prove that CSAT e JV'& we argue exactly as in the case of SAT (5.1.3.1). For 
the JV^-hardness part we show that 

SAT <p CSAT 

(cf. 5.1.2.11). But this is achieved by the algorithm of Exercise 5.3.12. □ 

5.1.3.3 Example. Here is a problem, CP, that we can show JV ^-complete by 
effecting the reduction CSAT <p CP. 

The reader has encountered the concept of a graph in discrete math courses. For 
completeness, let us recall that a directed graph, or digraph, is, mathematically, a 
relation E : V —> V. We call the members of V nodes or vertices, and the members 
of E—the pairs (a, b) where {a, b] C V—edges. A digraph is finite iff V is finite. It 
is habitual to identify a finite digraph with & physical object, a drawing, where each 
node is depicted by a dot or a small circle and each edge (a, b) is depicted by an arrow 
that starts on the (physical depiction of) node a and ends (that is where the arrowhead 
touches) on the node b. Flow-diagrams of FA and PDA are (labeled) digraphs. 

A digraph is complete iff all possible edges are present, except those of the type 
(a, a). That is, E : V ->- V is complete, iff E = V x V - l v , where l v is the 
identity (or diagonal) relation on V, namely, {(a, a) : a e V} (cf. 1.2.0.20). 

If the relation E is symmetric, that is, whenever aEb it is also true that bEa, then 
the graph is called undirected. One usually says "graph" implying undirected graph 
and says "digraph" otherwise. In the physical depiction, we draw 

o—o 
rather than 

A digraph C : A -► A is a subgraph of E : V -► V iff A C 1/ and C = 
E f l ( F x V)—that is, C uses some of the nodes of E and all the edges that E uses 
to interconnect said nodes. 

A graph (undirected)) C is a c//g«e in i£ iff it is a complete subgraph of E1. The 
clique C is a k-clique if it has fc nodes. 

The clique problem, CP, is the question "given a graph (undirected!) E and 
a number k; does E have a k-clique?" 
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Before we discuss the reduction, let us settle that CP G JV £?. We need to 
establish that given a graph E : V -» V and a number k, every instance where there 
is a positive answer to the question "does E have a fc-clique?" can be verified as 
follows: 

(I) We "correctly" choose (nondeterministically) a set of k nodes, A, from V; this 
is accomplished in 0(k) steps, and hence in linear time with respect to input 
length—the input being (fc, E). 

We then proceed deterministically to verify that 

(II) These nodes define a complete subgraph of E (one checks that Ax A — 1 A £ 
E)\ to do so we check k2 — k pairs of (distinct) nodes. 

Pause. How is a graph (and a number) givenl< 
We can code (fc, E) "linearly" as a sequence k, e i , . . . , er where the e$ are the 

edges—(a, 6)—of E. Of course, the edges implicitly include the node information 
(set V). Without loss of generality, since V is finite, we assume that F C N . 

A particularly efficient coding that does not involve exponentiation and can be 
easily decoded using string operations is the Quine-Smullyan coding [cf. Smullyan 
(1961), Tourlakis (1984)]: Given the alphabet £ = {1 ,2 ,3 , . . . , ra}, where m > 1. 
A sequence of strings (which can be viewed as integers written in ra-adic notation) 
in£+ , 

a i , < 2 2 , . . . ,as 

can be coded as follows: 
First, locate the maximum length string over the alphabet {1}—tally of ones—that 

occurs as a substring in some of the a .̂ Say it is 

x = 11 . . . 1 
r ones 

Then form the "glue"-string g = 2*x*l*2. Finally, code the sequence by gluing 
the a,i in order: 

c — g^a\ * ^ * a 2 * ^ * a 3 * ^ - - - ^ * a s * ^ 

Decoding is easy: Find the maximum length tally of ones in c—this will be x * 1. 
Now the glue # = 2 * x * l * 2 i s known, and the ai can easily be recovered. 

Let us now establish the reduction CSAT <p CP, which proves that CP is 
,/K^-hard and along with the preceding discussion settles its JV^-completeness. 

We need to find a poly-time computable function / that converts the question 
w e CSAT to f(w) G CP. So, we are given a Boolean CNF formula w: 

t 

A ( * i v " - v O 
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We build an undirected graph, f(w), that will have a fc-clique (for appropriate k) 
iff w E CSAT. The graph has nodes arranged in t rows. Row i has nodes labeled 

There are no horizontal edges, that is, edges connecting nodes that have the same 
first component, i, in their labels. An edge connects nodes (i, I]) and / j , l{\ where 

i y^ j , iff the literals ll
a and Vh are compatible, that is, one is not the negation of the 

other. 
It is immediate that the constructed undirected graph has a t-clique iff at least one 

literal in each row can be assigned t, without conflicts; and this is so iff w is satisfiable. 
On the other hand, it is also easy to see that the graph, f(w), is constructible within 
poly-time with respect to | w |. □ 

There is a huge library of known JV^-complete problems. A good start point 
for the reader who wants to explore it is Papadimitriou (1994). 

5.2 AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 

Computable functions can have some quite complex definitions. For example, a loop 
programmable function might be given via a loop program that has depth of nesting 
of the loop-end pair, say, equal to 200. Now this is complex! Or a function might be 
given via an arbitrarily complex sequence of primitive recursions, with the restriction 
that the computed function is majorized by some known function, for all values of 
the input (for the concept of majorization see Subsection 2.4.3). 

But does such definitional—and therefore, "static"—complexity have any bearing 
on the computational—dynamic—complexity of the function? We will see that it 
does, and we will connect definitional and computational complexities quantitatively. 

Our study will be restricted to the class VTZ that we will subdivide into an infinite 
sequence of increasingly more inclusive subclasses, Si. A so-called hierarchy of 
classes of functions. 

5.2.0.4 Definition. A sequence (Si)i>o of subsets of VTZ is a. primitive recursive 
hierarchy provided all of the following hold: 

(I) Si C Si+i,foralH > 0 

The hierarchy is proper or nontrivial iff Si ^ S$+i, for all but finitely many i. 
If / G Si then we say that its level in the hierarchy is < i. If / £ Si+i — Si, then 

its level is equal to i + 1. □ 

The first hierarchy that we will define is due to Axt and Heinermann [Heinermann 
(1961) and Axt (1965)]. 
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5.2.0.5 Definition. (The Axt-Heinermann Hierarchy) We define the class /Cn for 
each n > 0 by recursion on n. We let /Co stand for the closure of {Ax.x, Xx.x -f 1} 
under substitution (2.1.2.6). 

For n > 0, /Cn+i is the closure under substitution of Kn U {prim(h, g) : h G 
/Cn Ag G /Cn}, whereprim(h, g) is the function defined by primitive recursion from 
the basis function h and the iterator function g (cf. 2.1.1.14). □ 

Thus, primitive recursion is the "expensive" operation, an application of which takes 
us out of a given /Cn. On the other hand, as the classes are defined (the n + 1 case), it 
follows that any finite number of substitution operations keeps us in the same class; 
all /Cn, that is, are closed under substitution. 

We list a number of straightforward properties. 

5.2.0.6 Proposition. (/Cn)n>o is a hierarchy, that is, 

(1) Kn C JCn+1,forn > 0, 
and 

(2) Vn = \J^Ki. 

Proof. 

(1) Immediate from the definition of /Cn+i in 5.2.0.5. 

(2) This is straightforward, from 5.2.0.5 and 2.1.2.3. The part D is rather trivial, 
while the C part can be done by induction on VIZ. □ 

5.2.0.7 Proposition. Xx.An{x) G /Cn, for all n > 0, where Xnx.An(x) is the 
Ackermann function of Subsection 2.4.1. 

Proof. Induction on n. For n = 0, we note that A0 = Xx.x + 2 6 /Co. By 5.2.0.5 
and 2.4.1.2, if Xx.An(x) G /Cn, then Xx.An+i(x) G /Cn+i—since Ax.2 G /Co by 
substitution, and /Co C /Cn— and this concludes the induction. □ 

5.2.0.8 Proposition. For every f G /Cn J/j£re w a fc G N SMC/I rfotf / (x) < 
At^ (max(x)), for all x. 

Proof In 2.4.3.1 we proved that the Ackermann function majorizes every primitive 
recursive function. The induction proof over V1Z demonstrated that composing 
finitely many functions fa—each majorized by A^ using the same fixed n—produces 

V A;-
a function that is majorized by An1 l. Thus, in the present context, and to settle the 
proposition by induction on n, we will only need to show that every initial function 
of /Co is majorized by some AQ and each initial function of /Cn+i, namely, 

/ G Kn U {prim(h, g) : h G Kn A g G /Cn} (1) 

is majorized by some appropriate Ar
n 
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Well, each of x and x + 1 are less than x + 2 = A0(x) and this settles the basis. 
Assume the claim (I.H.) for /Cn—fixed n > 0—and tackle that for /Cn+i. By our 
plan, we need to show the initial function are majorized by some Ar

nJrl. For those 
/ G /Cn[cf.(l)]this is the result ofLemmata 2.4.2.7 and 2.4.2.10. Iff = prim(h,g), 
then, by the I.H. on n, we have, for all x, z and y, 

and 
g{x, y, z) < Ar

n
2 (max(x, y, z)) 

By 2.4.3.1 we have some r such that f(x,y) < A7
n+1[max(x^y)), for all x and 

£ D 

5.2.0.9 Corollary. The Axt-Heinermann hierarchy is proper. 

Proof. Indeed, \x.An+i G /Cn+i - /Cm for all n > 0. By 5.2.0.7, we only need to 
see that \x.An+\ £ Kn. Indeed, otherwise, we would have, for all x, and some r, 
An+1(x)<Ar

n(x)(cf.2A.2.lO). D 
We can also base the definition of classes similar to /Cn on simultaneous recursion: 

5.2.0.10 Definition. We define the class /C^m for each n > 0 by recursion on n. We 
iet/qfm = /c0. 

For n > 0, /C^ i is the closure under substitution of /C*zm U {/ : / is obtained 
by simultaneous primitive recursion from functions in K^171}. □ 

The following are straightforward (see Exercises 5.3.15, 5.3.16). 

5.2.0.11 Proposition. For n>0,we have Kn C /C^m. 

Thus, VIZ = Un>0 ^n C Un>0 K™ C P7J. 

Thus, by 5.2.0.7, 

5.2.0.12 Corollary. For n > 0, we have Xx.An(x) e K,sn
i7n. 

5.2.0.13 Proposition. For every f e JC^m there is a k G N such that f(x) < 
A*^ ( max(f)), for all x. 

Proof. A straightforward modification of the proof of 5.2.0.8. □ 

5.2.0.14 Corollary. The (/C^m)n>o hierarchy is proper. 

Proof Exactly as in the proof of 5.2.0.9. □ 
A closely related hierarchy—that is once again defined in terms of how complex 

a function's definition is—is based on loop programs [Ritchie (1965)]. 
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5.2.0.15 Definition. (A Hierarchy of Loop Programs) Cf. Section 2.2. We denote 
by LQ the class of all loop programs that do not employ the Loop-end instruction 
pair. 

Assuming that Ln has been defined, then Ln+i is the set of programs that is the 
closure under program concatenation of this initial set: 

Ln U < LoopX; P ; end : for any variable X and P E Ln> □ 

Trivially, Ln C Ln+i and the maximum nesting depth of the Loop-end pair increases 
by one as we pass from Ln to Ln+i- Of course, by virtue of Ln C Ln+i, not every 
P e Ln+i nests the Loop-end pair as deep as n + 1. Thus, R G Ln iff the depth 
of nesting of the Loop-end instruction pair is at most n. Nesting depth equal to 0 
means the absence of a Loop-end instruction pair. 

The following is immediate. 

5.2.0.16 Proposition. Cf. 2.2.0.8. (Ln)n>o is a proper L-hierarchy. That is, 

(1) Ln C Ln+1,forn > 0 
and 

(2) L = \Jn>0Ln 

We are more interested in the induced (by the Ln sets) hierarchy of primitive 
recursive classes: 

5.2.0.17 Definition. Cf. 2.2.1.2. We denote by j£fn, for n > 0, the class 

{Pxl • P € Ln A the xr and Xk occur in P} □ 

5.2.0.18 Proposition. For n > 0, we have that K,%m = jSfn. 

Proof. In outline, the instruction pair Loop-end implements one simultaneous re-
cursion. On the other hand, by the definition of /Qz m, this class contains functions 
obtained from those of JCQ1771 = /C0 by n nested simultaneous recursions (and possibly 
some substitutions). 

In detail, one can do induction on n and imitate the proofs of 2.2.1 A and 2.2.1.3. 
See Exercise 5.3.17. □ 

Thus, everything we said about the (/C^m)n>o hierarchy carries over to the 
(j£fn)n>o hierarchy—after all, it is the same hierarchy under two different definitions. 
In particular, by 5.2.0.14, 

5.2.0.19 Proposition. The VIZ- (or Jt?-)hierarchy, (j£?n)n>o> is proper. 

5.2.0.20 Example. Here are some functions and predicates in the "lower" (small n) 
classes of the (/C^m)n>o hierarchy. 
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The following are in /Ci and hence in /Cf m = J^i. 

(1) Xxy.x + y. Indeed, 

0 + y = y 
(x + 1) + y = (x + y) + 1 

and Ay.y and Az.z + 1 are in /Co = /Qfm. 

(2) A#y.#(l — y). Indeed, 

x(l -0)=x 
x ( l - ( 2 / + l)) = 0 

and Ay.y and Az.O are in /Co = /Cjfm. 

(3) Xx.l — x. By substitution operations from the previous function. 

(4) Xx.x — 1. Indeed, 

0 - 1 = 0 
(x + 1) - 1 = x 

and Ay.y and Az.O are in /C0 = /Cg2771. 

(5) Ax. [x/2j e /Cfm. Indeed, see 2.1.3.3. 
This example shows that /Ci 7̂  /Cfm, since Ax. |_^/2J ^ /Ci as follows from 
results of Ritchie (1965) and Tsichritzis (1970) that were retold in Tourlakis 
(1984). 

(6) switch = Xxyz.ifx — 0 then y else z. Indeed, we have the recursion 

switch(0, y,z) — y 
switch(x + 1,2/, 2) — z 

where Xy.y is in /Co = /Cjfm. 

The following are in /C2 and hence in /Crpm = J£?2-

(a) Xxy.x — y. Indeed, 

x — 0 = x 

x - (y + 1) = (x - 2/) - 1 

and Ay.y and Xz.z — 1 are in K\ C /Cf m . 

(b) Xxy.xy. Indeed, 

x0 = 0 
x(y -f 1) = xy + x 
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and Xy.O and Xwz.w + z are in K\ C /Cf m . 

(c) Xx.2x. Indeed, 

2° = 1 
2y+i = 22/ + 2^ 

and Ay.l and Xwz.w + 2 are in /Ci C /Cf m . D 

5.2.0.21 Definition. As is usual, the predicate classes /Cn>* and /C*z™—the latter 
being the same as Jz?n5*—are defined for all n > 0 as {/(£) = 0 : / G /Cn} and 
{/(f) = 0 : / G JCs

n
im}, respectively. D 

5.2.0.22 Proposition. For n > 1, we have that Kn,* and K^7* are closed under -1 
and V—and hence under A, —», «nJ = as w /̂Z. 

Proo/ Let Q(x) G /Cn?*. Then, for some g G /Cn, Q(x) = q(x) = 0. Since 
r = Ax.l — g(x) G /Cn if n > 1 by 5.2.0.20, we are done, noting -iQ(a?) = 
r(x) = 0. Next, let also S(y) = s(y) = 0 with s G /Cn. Then Q(x) V 5(y) = 
switch(q(x),0, r(y)) = 0; but switch G /Cn, forn > 1 (cf. 5.2.0.20). 

The cases for /Ĉ z™ are argued identically with the preceding two. □ 

5.2.0.23 Corollary. The relations Xx.x < a, Xx.x < a and Xx.x = a are in /Ci?* 
and hence in /Cfl™. 

Proof. By 5.2.0.20(4) and substitution, we have that Xx.x — a G K\. But x < a = 
x — a = 0. On the other hand, x<a = x-\-\ — a = 0. Thus the claim about 
Xx.x < a is true. Noting that Ax.a < x is in /Ci?* due to 

a < x = -tx < a 

and 5.2.0.22, we have that Xx.x = a is in /Ci,* by 5.2.0.22 and the observation 
x = a = x<aAa<x. D 

5.2.0.24 Proposition. For n > 1, we have that /Cn «wJ /C*zm «r^ closed under 
definition by cases. 

Proof. This is immediate from either of the suggested proofs for 2.1.2.37, noting 
5.2.0.20, (1), (2) and (6). □ 

The three hierarchies that we introduced include increasingly complex classes, 
using as a yardstick of complexity the nesting depth of primitive recursion. The 
next hierarchy, due to Grzegorczyk (1953), gauges complexity of definition by the 
(numerical) size of the function it produces—and, correspondingly, the class com-
plexity at level n by the size of the functions it contains. As the definition does 
not necessarily force a function such as prim(h, g) to exit from a given level, the 
Grzegorczyk hierarchy is much more amenable to mathematical analysis. 
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5.2.0.25 Definition. (The Grzegorczyk Hierarchy) We are given a fixed sequence 
of functions, (gn)n>o by 

go = Xx.x + 1 
gi = Xxy.x + y 
g2 = Xxy.xy 

and, for n > 2, 
gn+i = \xy.An(ma,x(x,y)) 

where \ny.An(x) is the Ackermann function of Subsection 2.4.1. 
The hierarchy (£n)n>o is defined as follows: £n is the closure of 

{Xx.x + 1, \x.x,gn} 

under substitution and bounded primitive recursion, the latter being the schema below 

f(0,y) = h(y) 
f(x+l,y) =q{x,yj(x,y)) 

f(x,y) < B(x,y) 

where h, q and B are given functions. □ 

A class C is closed under bounded primitive recursion iff whenever /i, q, and B are 
in C, then so is the / produced as above. 

We note that the bounded recursion is not on notation. Rather, it is an ordinary 
number-theoretic primitive recursion along with a condition that the function / has 
actually been "produced" only if its values are bounded everywhere by those of the 
given B. 

The #n-function included among the initial functions at each level, which gauges 
the (numerical) size of functions included in each £n is (a version of) the Ackermann 
function. Grzegorczyk used a different version than we do here. Our choice to use 
the function of Subsection 2.4.1 was partly dictated by ease-of-use considerations, 
but mostly because we know quite a bit about the An already. The reader may consult 
Tourlakis (1984) to read a proof that the version we use here produces the same £n 

classes as in Grzegorczyk (1953). 

The class of relations at level n of the Grzegorczyk hierarchy is defined as usual. 

5.2.0.26 Definition. £™, for n > 0, denotes the class of relations { / ( # ) = 0 : / € 
£n}. □ 

5.2.0.27 Example. Here are some examples of functions and relations in £° and £*: 

(1) \xy.x(l - y). 
(x(l -0)=x 
lx(l-(y + l)) = 0 
[x(l - y) <x 
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(2) Xx.l — x. By (1) and substitution. 

(3) Xx.x — 1. 
(0- 1 = 0 
< (x + 1) - 1 = x 
I x — 1 < x v. — 

(4) Xxy.x - y. 
I x — 0 = x 
< x - (y + 1) = (x - y) - 1 
\x — y <x 

(5) Xxy.x < y and Ax /̂.x < y are in £°. Indeed, x < y = x — y = 0 and 
re < y EE (x + 1) - ?/ = 0. □ 

5.2.0.28 Lemma. For all n>0,£°C £n. 

Proof. £n contains the initial functions of £° and is closed under the same operations. 

□ 
5.2.0.29 Theorem. For n > 0, £™ is closed under Boolean operations and also 
under bounded quantification, namely, (3y)<z, (3y)<z, (V^)<2;, (yy)<z. 

Proof. We implicitly use 5.2.0.28. For Boolean operations it suffices to consider -« 
and V only. So, let R{x) = r(x) = 0 and Q(y) = q(y) — 0, where r and q are in 
£n. Now, -iR(x) = 1 - r(x) = 0 and we are done by 5.2.0.27(2). On the other 
hand, R(x) V Q(y) = r(x) (l - (1 - q(y))) = 0 and we are done by 5.2.0.27(1). 

For closure under bounded quantification, let P(y, x) = p(y, x) = 0, where 
p G £n. Let X3 be the characteristic function (cf. 2.1.2.15) of (3y)<zP(y1x). 
Noting that 

(3y)<0P(y, x) is false, and {3y)<z+1P(y, x) = P(z, x) V (3y)<zP(y, x) 

we have that X3 satisfies the bounded recursion below: 

rX3(o,f) = i 
< Xi(z + hx) =X3(z,x)(l - (1 -p(z,x))) 
[XB(Z,X) < 1 

and we are done. The " 1 " in the inequality above is the output of Xx.l which is in 
£°. Clearly XB belongs wherep does, and (3y)<zP(y, x) = X3{z> %) — 0-

To conclude the proof for the remaining cases of quantification, note that (3y)<zR = 
R V (3y)<zR; moreover, the universal quantifier cases follow from the closure of £™ 
under negation. □ 
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Note that if a class C contains Xx. 1 - x and is closed under substitution, then 2.1.2.16 
applies to its class of predicates C*. 

The following result is, modulo choice of Ackermann function, from Grzegorczyk 
(1953). 

5.2.0.30 Lemma. (Bounding Lemma) (1) For each f e £°, there are i and k such 
that f(x) < Xi + k everywhere. 

(2) For each f G £ \ there are C and k such that f(x) < C max(f) + k everywhere. 

(3) For each f £ £2, there are C,n, and k such that f(x) < Cmax(x)n + k 
everywhere. 

(4) For each f e £n+1, n > 2, there is a k such that f(x) < A^(msix(x)) 
everywhere. 

Proof. 

All proofs are by induction over the appropriate £n. 

(1) The claim trivially holds for the initial functions and propagates with bounded 
recursion since the I.H. applies to whichever bounding function B was employed. 
Let then / be obtained by substitution, 

J yX\, . . . , Xi—i, Xi-^-i, . . . , Xn, y) = Q[X\, . . . , X{ , . . . , Xn) 

t 

The I.H. applies to g. Now, if g(x) < Xj + k everywhere, for j ^ i, then also 

f(xu..., Xi-u aJi+i, • • •, xni y) < Xj + k, everywhere. 

If, on the other hand, j = i, then f(x\,..., X{-\, Xi+i,..., xn, y) < h(y) + k, 
everywhere. By the I.H. on h, f(x\,..., £ i - i , xi+i,..., xn, y) <ym + k + kf, 
everywhere, for some m and kf. 
The other cases of substitution are as easy. 

(2) The basis and the propagation of the claim with bounded recursion are as above 
[note, incidentally, that x + y < 2 max(:r, y)]. Let us now look at a substitution 
h(y, g(x), z). We have, by the I.H. applied to h, 

h(y,g(x),z) < Cmax(y,g(x),z) + k 
I.H. for g 

< C max(^, C' max(f) + k',z) + k 
< CC max(y, x, z) + Ck' + k 

(3) Left as an exercise (see Exercise 5.3.20). 
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(4) The claim is true for the initial functions and propagates with bounded recursion 
for the reason named earlier. As for substitution, we know that the subscript n 
will not change (cf. 2.4.3.1) and thus if A^ majorize the component-functions 
of the substitution, then An l majorizes the result. □ 

We can now prove that £n C £ n + 1 for all n. 

5.2.0.31 Theorem. (£n)n>o is a proper primitive recursive hierarchy. 

Proof. First, £n C £n+1, for all n, since every bounded recursion in £n can use 
as bounding functions the bounds xi + k, Cmax(f) + k, and Cmax(f ) n + k if 
n = 0,1,2, respectively—cf. (l)-(3) in 5.2.0.30—or An__x if n > 3. 

I am implying an induction over £n in the above remark. But is An-\ G £n+1? Yes, 
if we assume that An-2 is. See Exercise 5.3.21. 

Reverting to the unified notation "#n" and noting that gn+1 G £n+1 — £n by 
5.2.0.30, we promote C above to c : 

£ n c £ n + 1 , f o r a l l n . 

Now, trivially, £n C VIZ, for all n. On the other hand, by 2.4.3.1, every primitive 
recursion is a bounded recursion with bounding function An for some k, so VIZ C 
Un>0 f a s well. D 

5.2.0.32 Exercise. In view of 5.2.0.30, prove that switch (the "full" if-then-else) 
and max arenonnf0 . □ 

We defined bounded summation and multiplication in 2.1.2.30 and saw that, as 
operations, they do not take us out of VIZ. More interesting is this: 

5.2.0.33 Proposition. For n>2,£n is closed under bounded summation. 

Proof. By reference to 2.1.2.30, we only need a bounding function for Yli<z /(^> ^) 
m£n. 

For n — 2, / ( i , x) — 0(max(z, x)r), for some r, due to 5.2.0.30. But then, 

2_]f(i,%) = / ^Q(max( i ,£ ) r ) = 0(zmdL,x(z,x)r) 
i<z i<z 

Since, for any constants C and D, Xzx.Cz max(z, x)r + D is in £2, our bounding 
function is obtained by choosing the right C and D. 

For n > 2, let, by 5.2.0.30, r be such that f(i,x) < Ar
n_l (max(z, x)), for all i, x. 

Then 
^ f(h X)<^2 An~l ( m a X ( ^ £)) < zAn-l ( m a x ( ^ £)) (1) 

But Xxy.xy and Xzx.An_x (max(^, x)) are in fn for n > 2. We have obtained the 
required bounding function in (1). □ 
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5.2.0.34 Proposition. For n>3,£n is closed under bounded multiplication. 

Proof. We proceed as in the proof of 5.2.0.33 above. 
Let, by 5.2.0.30, r be such that /(£, x) < A^_x (max(i, x)), for all i, x. Then 

Yltthtf) < f ] ^ - i ( n i a x ( i , f ) ) < ( ^ ( m ^ f ) ) ) ' (2) 
i<z i<z 

But Xxy.xy and Xzx.Af^i_1[mdix(z,x)) are in £n, for n > 3. We obtained the 
required bounding function in (2). □ 

A definition of bounded search that is used in Grzegorczyk (1953) [cf. also Peter 
(1967)] is the following: 

5.2.0.35 Definition. (Alternative Bounded Search) For any total number-theoretic 
function \yx.f(y, x) we define 

,o Defjmm{y:y< zAf(y,x) = 0} if (3y)<zf(y,x) = 0 
10 otherwise 

(w)<zf(y, x) means (fiy)<z+if(y, x), and (jly)<zR(y, x) means (?iy)<zXR(y, x), 
where x# is the characteristic function of R. D 

5.2.0.36 Theorem. For n > 0, £n is closed under {Jiy)<z. 

Proof. Let / e £n. We set p(z, x) = (fiy)<zf{y, x). Notice that 

(0(0, a?) = 0 
<?(z + l ,x) = if (Vy)<zf(y,x) ^ 0 A / (* ,£) = 0 then z 

else g(z,x) 
{g{z,x) <z 

The above bounded recursion works for n > 1, but will not work for n = 0 due to 
5.2.0.32; some acrobatics will be necessary: 

We note that the right hand side of the second equation is obtained by substituting 
g(z,x) into w and x(z>x)—the value at (z,x) of the characteristic function of 
(Vy)<zf(y, x) ^ 0 A f(z, x) = 0—into x in 

if x — 0 then z else w 

Noting that g{z,x) < z, we can replace the troublesome full if-then-else by the 
expression sw(x,z,w) given by 

if x = 0 then z 
else ifw<z then it; else 0 
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Note that sw € £° because of the bounded recursion below. 

sw(0,z,w) = z 
sw(x + 1, z, w) = if w - z — 0 then w else 0 

\sw(x,z,w) < z 

Moreover, note that g(z + 1, x) = sw(x(z1 x), z, g(z, x)). O 
The absence of the full switch from £° qualifies the result about closure under 

definition by cases: 

5.2.0.37 Corollary. For n > 1, £n is closed under definition by cases 2.1.2.37. 
£° is closed under definition by cases provided the produced function f satisfies 

f(x) < X{ + k everywhere, for some i and k. 

Proof For n > 1 the proof of 2.1.2.37 works. For £°, if / is given as in 2.1.2.37, 
where the fa are in £° and the R{ in £®, then 

f(x) = (jj,y)<Xi+k(y = fi(x) A i?i(x) V . . . V y = fn+i{x) A # n + i ( £ ) ) (1) 

where we wrote Rn+i for the "otherwise" relation. The reader should carefully 
identify all the results that we proved so far about the Grzegorczyk classes that 
make (1) work. □ 

5.2.0.38 Theorem. £2 is closed under simultaneous bounded recursion, that is, 
under the schema of Subsection 2.1.3, where, additionally, k bounding functions Bi, 
for i = 1 , . . . , k, are given, and the functions fa resulting from the schema must 
satisfy fa(x,y) < Bi(x,y) everywhere. 

Proof. Consider the schema below, where the hi, gi and Bi are in £2. 

Vi(0,2/n) =h1(yn) 

fk(0,yn) =hk(yn) 

fa 0 + 1, yn) = gi (x, ynj fa (x, yn),---, fk{x, yn)) 

fk(x + 1, yn) = gk{x, yn, fa(x, yn), ...Jk(x, yn)) 
fi(x,yn) <B1(x,yn) 

(1) 

fk{x,yn) < Bk(x,yn) 

The pairing function J — Xxy. (x + y)2 + x (cf. 2.1.4.8) is in £2, and so are its projec-
tions K = \z.(lix)<z(3y)<zJ(x,y) = z and L = Xz.(pJy)<z(3x)<zJ(x1y) = z. 
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Thus, we have the coding-decoding scheme—Xzk. [ z i , . . . ,zk]^ and 11*—of 
2.1.4.9 in £2. 

The proof of 2.1.3.1—that shows how to simulate a simultaneous recursion by a 
single recursion—goes through unchanged if we replace the used there prime power 
coding/decoding by the alternative [... ]/Ilf adopted here. Noting that 

[ / ! (*,&), . . .J*(a^ 

and that the right hand side of the above < is in £2 (as a function of x, yn) by 
substitution, we obtain that 

Axyn.[ / i(x,2/n) , . . . , / f e (a: ,^n)] ( f c ) e £2 

and therefore, for i = 1 , . . . , k, f{ = Xxyn.Il^ ( [ / i (a , j / n ) , . . . , fk(x, yn) ]{k)) is in 
£2. D 

5.2.0.39 Corollary. £n, for n > 2, is closed under simultaneous bounded recursion. 

We have introduced four primitive recursive hierarchies—of Axt-Hienermann, Den-
nis Ritchie, and Grzegorczyk—the yardstick of "complexity" of a class at each level 
n being that of its definition, whether the measure was numerical size of produced 
functions (Grzegorczyk) or nesting depth of primitive recursion (in all the others). 

We conclude this subsection by showing that this definitional complexity tracks 
very accurately the computational complexity of the primitive recursive functions. 
The URM formalism will be the computing model to which the computational com-
plexity will related. 

The "main lemma" toward connecting the four hierarchies to each other on one 
hand, and with the computational complexity of their functions on the other, will be 
the Ritchie154-Cobham property of the Grzegorczyk classes, that 

for n > 0, / e £n iff / is computable by some URM within time t e £n (RC) 

We will need a simulation tool, namely, we will show that the computation of 
a URM can be simulated by a very simple simultaneous primitive recursion. The 
reader is referred to 2.3.0.5, which defines the computation-related concepts that we 
need. 

Important! Unlike our practice in Section 5.1, where run time was expressed as a 
function of input length, in the present section we will gauge run time as function of 
input (numerical) value. 

Thus, for the record: 

5.2.0.40 Definition. Consider the function / = M*n, where M is a URM—whether 
M is normalized or not is immaterial for the purpose of this definition. A function 

154Dennis Ritchie. 
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Xxn.t(xn) majorizes the run time complexity of M*n iff, for all an, if f(an) 4. with 
an M-computation of length I, then I < t(an); else if f(an) t , then also t(an) t-

We say that Xxn.f(xn) is computable within time Xxn.t(xn). D 

5.2.0.41 Simulation lemma. Let M be a normalized URM (23.0.4) with vari-
ables Vi, V2, ••• V^+i, KJ+2, • • • ? V^, of which Vi is the output variable and the 
Vi, for i=2y..., n+I, are input variables. With reference to 2.3.0.5 we define m + 1 
simulating functions—;for all y, an—as follows: 

Vi(y,an) = the value of variable Vi in the y-th ID of a (possibly non terminating) 
computation with input an 

I(y,an) = instruction number in the y-th ID of a (possibly non terminating) 
computation with input an 

All the simulating functions are in K\im. 

In view of (v) in 2.3.0.5, all the simulating functions are total, since once the instruc-
tion stop is reached the computation continues forever "trivially", that is, without 
changing either the Vi or the instruction number. 

Proof. We have the following simultaneous recursion that defines the simulating 
functions: 

vi(0,an) = 0 
Vi(0,an) = di-i,fori = 2 , . . . ,n + 1 
^i(0, an) = 0, for i — n + 2 , . . . , m 
J(0,3n) = l 

For y > 0 and i — 1 , . . . , m, we have 

Vi(y+l,an) = < 

c if I(y, an) = k where "fc : Vi —̂ c" is in M 
Vi(y, an) + 1 if I(y, an) = A: where "fc : Vi «- V* + 1" is in M 
^(?/5 Sn) — 1 if I(y, an) = k where "k : Vi <—V> — 1" is in M 

[ ^i (2/, an) otherwise 

J(s/+l,an) 

r l\ if /(y, an) = k where "fc : if VJ = 0 goto /1 else 
goto fa" is in M and Vi(y> an) = 0 

l2 if /(?/, an) = k where "fc : if Vi = 0 goto /1 else 
goto /2" is in M and ^(y , an) > 0 

k if J(y, an) = k where "fc : stop" is in M 
[ 7(2/, an) + 1 otherwise 

Since the iterator functions only utilize the functions Ax.a, Xx.x -f- 1, Ax.x — 1, 
Xx.x, and predicates Ax.x = a, and Ax.x > a—all in /Cfm and /Cf*™—it follows 
that all the simulating functions are in /Cf™, as claimed. □ 
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5.2.0.42 Example. Let M be the program below 

1 : Vi <- Vi + 1 
2 : V2 4r- V2 - 1 
3 : if V2 = 0 goto 4 else goto 1 
4 : stop 

Let us assume that V2 is the input variable and V\ is the output variable. The 
simulating equations take the concrete form below, where a denotes the input value: 

vi(0,a) = 0 
v2(0,a) = a 

For y > 0 we have 

vi(y + l,a) 

v2(y + l,a) 

I(y + l,a) = { 

v1(y,a)-\-l ifl(y,a) = 1 
vi(y,a) otherwise 

a) = 

'4 
1 
4 

J(y, 

\v2{y, 

a) + l 

a) - 1 
a) 

if/fcM 
if /(!/,( 
i f%, 

if /(y,a) = S 
otherwise 

x) = 3A^2(2/, 
2) = 3Av2(y, 
a) = 4 

otherwise 

) 

a) = 0 
a) > 0 

a 
5.2.0.43 Corollary. 77ze simulating functions are in /C4. 

Proo/ The above mentioned predicates and functions that are part of the iterator are 
in /Ci and /Ci?*. Moreover, K\ is closed under definition by cases (5.2.0.24). To 
convert the simultaneous recursion to a single recursion and back, we need pairing 
functions and their projections. 

The quadratic pairing function J = \xy.(x + y)2+x is appropriate. Immediately, 
J e KL2 by 5.2.0.20. Now, let us place its projections, K and L, in the Axt hierarchy. 
We know that (2.1.4.8) Kz = z - \_^/zf and Lz = [^/z\ - Kz. By the results of 
5.2.0.20 we need only locate Xz. [^/z\ in the hierarchy. 

We start by noting that if z + 1 is a perfect square, that is, z + 1 = (k + 1 ) 2 for 
some k, then z + l = k2 + 2k + l hence z = k2 + 2k, thus 

fc2 < z < (k + l ) 2 

hence k — [\/z\. This yields 

[Vz~Ti\ =fc + i = |_>/*J + 1 (i) 
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Suppose next that z + 1 is not a perfect square. That is, 

m2 <z+l< (m + 1)2 (2) 

for some m, and hence m2 < z < m2 + 2m < (m + 1)2. This entails m < ^J~z < 
m + 1 , thus m = [y/z\. But m = \_\Jz + lj as well, by (2). 

At the end of all this we obtain the following recursion: 

f|yo] =o 

1 Lv^J otherwise 

By reference to 5.2.0.20—and noting that x = y = {x — y) + {y — x) — 0, thus 
Xxy.x = y G /C2,*—we see that Az. [v^J £ /C3, and thus so are K and L. But then, 
the coding/decoding scheme that is based on this J, K, L (2.1.4.9) is in /C3. Referring 
to 2.1.3.1, we see that, due to the presence of the II™^1 in the iterator part, the single 
recursion that simulates the simultaneous recursion of the simulation lemma yields 
the function 

Xyan.ll(y,an),v1(y, (y,an)]{rn 

in /C4. This guarantees that 

Xyan.U^+1 [\I(y,an),v1(y,an),...,vm(y,an)](m+1) J 

are in /C4, for i = 1 , . . . , m + 1. □ 

5.2.0.44 Corollary. The simulating functions are in £2. 
Proof Given that the iterators in the simultaneous recursion employed in 5.2.0.41 
are trivially in £2, we only need to provide £2-bounds for all the produced functions 
(5.2.0.38). Well, I(y, an) < k, where k is the label of the stop instruction of M. 
On the other hand, since all we do with the iterators can at most add 1 in each step, 
we also have the bounds v(y,an) < max an + y + C, a bound which is in £2 as a 
function of y and an, seeing that max(x, y) = x — y-\-y. The " + C" accounts for all 
the constants that may be assigned to a variable during the computation (instructions 
of type Vi 4- a). □ 

We can now prove (the nontrivial) half of the Ritchie-Cobham property: 

5.2.0.45 Lemma. If f — M*n runs on M within time t G £n, for some n > 2, then 
fe£n-
Proof Let the simulating functions of M be as in 5.2.0.41, where z is "Vi", the 
output variable. Then, for all an, we have f(an) = v\ (t(an), a n ) , and this settles 
the claim by 5.2.0.44. □ 

The "easy" half of the Ritchie-Cobham property is proved by doing a bit of 
programming. 
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5.2.0.46 Lemma. For n > 2, any Xx.f(x) G £n is URM-computable within time 
Xx.t(x) e £n. 

Proof. Induction over £n. 
We settle the case of the initial functions first (cf. 5.2.0.25). Xx.x is computable, 

as M^2, within O(x) steps by the normalized URM M below 

1 : Vi *- Vi + 1 
2 : V2 <r- V2 - 1 
3 : if V2 = 0 goto 4 else goto 1 
4 : stop 

while Xx.x + 1 is computable, as Nv*, also within 0(x) steps by the normalized 
URM TV below: 

1 : Vi «- Vi + 1 
2:V2<-V2-1 
3 : if V2 = 0 goto 4 else goto 1 
4 : Vi <- Vi + 1 

5 : stop 

The non normalized URM P below 

1 : Vi <- Vi + 1 
2 : stop 

computes Xx.x -h 1 as Py1 in 0(1) steps. 

Xxy.xy is computable by the following loop-program, R, within time O(xy), as 
r>XY. rig 

Loop X 
LoopF 

end 
end 

A straightforward URM simulation of the above is 

1 : goto 7 
2 : goto 5 
3 : Z <- Z + l 
4 : F ^ - r - 1 
5 : if y = 0 goto 6 else goto 3 
6: X+-X - 1 
7 : if X = 0 goto 8 else goto 2 
8 : stop 

This still runs within 0(xy) time. With the case of n = 2 done, we now turn to the 
initial functions of £n+1 for n > 2. 

The only new case is An. We show that it is computable by some URM M within 
time A* for some k. 
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We know that An G Cn. So let An = P£, where the program P G Ln terminates 
within 0{A^(x)) steps (cf. Exercise 5.3.22). 

But how about computing P£ on a URM? We can efficiently translate any loop 
program into a URM program! 

To this end, note that loop program instructions, other than those of type X <- Y 
and the Loop-end pair, occur also in URM programs and thus can be the translated 
as themselves. On the other hand, X <<— Y can be simulated by a URM (cf^2.1.1.10). 

Recursively, assume that we know how to translate R into a URM R and con-
sider Q: 

{LoopX 
R 
end 

This is simulated by the URM 

B <- X {A new B is associated with each instruction "Loop X"155} 
goto L { L labels the "end" that matches the simulated "Loop X"} 

M : 
R 
B+-B-1 

L: ifB = 0 goto L + 1 else goto M 
L + l: 

Let next the run time of a loop program be 0(t). If an instruction of type "B <— X " 
were to take 1 step in a URM, then the above described simulating URM would also 
run within time 0(t). But this is not a primitive instruction of a URM! It takes time 
0(X) to perform it (cf. 2.1.1.10). 

For the P above in particular, and since t = 0(A^(x)), it follows that for any 
variable X of P , we have 0(X) = 0(Ak

n(x))}56 and thus the URM runs within 
timeO((^(x))2) = 0(A^\x)) due to x2 = 0(A2{x)) = 0(An(x)). 

We have concluded the basis case for all n > 2. To conclude the induction over 
En (n > 2) we show that the property propagates with substitution and bounded 
recursion. 

Let then / and g from £n, n > 2, be URM-computable (by programs Mf and 
Mg) with run times bounded by tf and tg—both in £n. Consider 

\xy.f(x,g(y)) (*) 

We can (essentially) concatenate Mg and Mf in that order (cf. 2.1.1.11) to com-
pute (*). The run time of this program is bounded by \xy.tg(y)+tf(x, g(y)), which 
is in £n, just as \xy.f(x, g(y)) is. The other cases of substitution are trivial and are 
omitted. 

155For a given X the instruction "Loop X" may appear several times. Each occurrence is associated with 
a new "£?". 
156To see this think of X as the output variable! 
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Finally, let \xy.f(x, y) be obtained by a bounded recursion from basis h, iterator 
g and bound B, all in £n, and all programmable in respective URMs within time 
bounds th, tg and tB, all in £n. A URM program for / , in "pseudo code", is 

z <- h(y) 

R : if x = 0 goto L else goto V 
z<r- g(i,y,z) 
i *- i + 1 
x «— x — 1 
goto R 

L : stop 

Its run time is 
th(y) + 0^tg(i,y,f(i,y)))^ (1) 

i<x 

Since t^, t^ and / are all in £n, then so is the function given by expression (1), due 
to 5.2.0.33. □ 

The simulation of a loop program by a URM given on p. 367 represents the general-
purpose, "faithful" simulation that, in particular, is true to the fact that the number of 
iterations of a loop, Loop X, depend only on the value of X upon entry in the loop. 
That is the purpose of the new variable B. 

The simulation on p. 366 is expedient but acceptable since neither X nor Y are 
present inside the "scope" of either loop. 

By virtue of Lemmata 5.2.0.45 and 5.2.0.46 we have now proved: 

5.2.0.47 Theorem. (The Ritchie-Cobham Property of £n) Forn > 2, a function 
f is in £n iff it can be computed on some URM within time tf G £n. 

The Ritchie-Cobham property shows the extremely close relationship between static 
and computational complexity of primitive recursive functions: The run time com-
plexity of a function / in fn+1—as it is measured by the amount of time it takes 
to compute it, namely, A^—is exactly predicted by the definitional complexity of 
the function: its level in the hierarchy. And conversely! The run time predicts the 
definitional complexity. Very accurately. 

We can now compare all the hierarchies that we introduced: 

5.2.0.48 Corollary. For n>2,we have JCs
n

im = £ n + 1 . 

Proof. The D is immediate by 5.2.0.47: Let / G £ n + 1 and let it run on some M 
within time tf G £n+1. Now tf(x) < A^(maxx), everywhere, by 5.2.0.30. If v\ 
is, as before (5.2.0.41), the simulating function for the output variable of M, then 

/ = \x.vi(Ar
n(mBxx),x) 

157Of course, this denotes, for some C and D, the expression th(y) + C ^2i<x tg(i, y, f(i, y)) + D. 
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But Ar
n G ICs

n
irn (5.2.0.12), thus, / G JCs

n
im. 

For the C we do induction on n > 2. For n = 2 note that, trivially, JCQ1171 C £3. 
Now—by varying r— we can make A\ majorize every function of /Cfm (5.2.0.13), 
thus every simultaneous recursion that produces functions in /Cfm (from functions 
in /Cjfm) is a bounded recursion within £3 (A-y — \x.2x + 2 G £3). Therefore, 
/Cfm C £3. Repeating this argument we have that 

every simultaneous recursion that produces functions in IC^1171 (from functions 
in /Cfzm) is a bounded recursion within £3 (since A2 G £3). 

thus, /Cfm C £3. 
Taking as an I.H. the validity of the claim for some fixed n > 2, the case for n -f 1 

is repeating the idea we employed in the basis: recursions taking us from /C^m to 
/C££i are bounded recursions performed within £n+2 ( D £n+1 D , by I.H., K,sn

im), 
with bounding function some Ar

n+1—since Ar
nJtl G /C^+i ̂  ^n + 2« □ 

By 5.2.0.18 we have at once 

5.2.0.49 Corollary. For n > 2, we have Cn = £n+l. 

5.2.0.50 Corollary. Forn > 4, we have Kn =£n+l. 
Proof The proof follows very closely that of 5.2.0.48. The C goes through un-
changed, but the 2 "starts" later, n > 4, due to the fact that the simulating function 
vi is in if4;cf. 5.2.0.43. □ 

Schwichtenberg has improved 5.2.0.50 by proving the case forn = 3 [H. Schwicht-
enberg (1969)]. This is retold in Tourlakis (1984). H. Muller (1973) gives a proof 
for the case n = 2. 

5.2.0.51 Remark. (A Very Hard Problem—Revisited) Corollary 5.2.0.49 adversely 
impacts a problem of practical significance: That of program correctness. The prob-
lem "program correctness" is an instance of the equivalence problem of programs, 
since it tasks us to determine whether a program follows faithfully a specification, 
the latter being, of course, given by a finite description, just as the program is. 

We strengthen here the observation we made in 2.5.0.22 about the equivalence 
problem of primitive recursive functions, that is, the equivalence problem of loop 
programs: 

Given loop programs P and Q, is it the case that Py — Qy? 

We saw that the equivalence problem for VIZ is unsolvable—indeed, worse: not 
even c.e.—as a consequence of the fact Ax.l and Xy.xri^, x, y) are in V1Z. 

As these functions are also in £3—a fact that can be readily verified by looking 
at the proof of the normal form theorem (Corollary 2.3.0.8)—it follows that the 
equivalence problem for £3 functions is not c.e. either. By virtue of 5.2.0.49, this 
yields the rather disappointing alternative formulation: 
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The equivalence problem for programs in L2—i.e., those that have loop depth 
equal to two—is not c.e. 
Thus the various techniques employed to tackle loop correctness can be suc-

cessful in all instances of the problem only when we have un-nested loops—L\-
programs. This holds true even though the loops are "FOTRAN-like", that is, they 
always terminate and the number of iterations of any such loop is known at the 
time the loop is entered. It should be noted that Tsichritzis (cf. Tsichritzis (1970) 
and Tourlakis (1984)) has shown that programs in L\ have a solvable equivalence 
problem, but, on the other hand, the corresponding set of functions, S£\ is rather 
trivial: it is the closure under substitution of {Xxy.x + y, Xx.x — 1, Xxyz. if x = 
0 then y else z, Ax, [x/k\ , Xx.rem(x, k)}. That is, all "looping" can be eliminated 
if we adopt this enlarged set of initial functions. □ 

5.3 ADDITIONAL EXERCISES 

1. Fix an alphabet E with m > 1 elements. Show that the following functions are in 
Cobham's class ^ (cf. 5.1.1.7): 

(i) Xx.x 
(ii) Xx.O 

(iii) The left successors: Xx.d * x, for all d e E 
(iv) Xx.xR, where xR is the number whose m-adic notation is the reverse of that 

of x. 

2. Fix an alphabet E with m > 1 elements. Show that Cobham's class % is closed 
under bounded left recursion on notation, that is, under the schema below, where 
the h, (gd)dex, and B are in # E . 

/(0,2/n) =h(yn) 
f(d * x, yn)= gd(x, yn, f(x, yn)), for all d £ E 
\f(x,yn)\ < \B(x,yn)\ 

Hint, (iv) of the preceding exercise helps. 

3. Fix an alphabet E with m > 1 elements. Show that the following functions are in 
Cobham's class % • 

(i) init = Xx.y, if x = y * d, for some d G E. We define init(0) = 0. 
(ii) last — Xx.d, if x = y * d, for some d G E. We define last(0) = 0. 

(iii) first = Xx.d, if x = d * y, for some d e E. We define first(0) = 0. 
(iv) tail = Xx.y, if x = d * y, for some d e E. We define tail(0) — 0. 
(v) Xxyz.if x = 0 then y else z. 

(vi) Xx.l — x. 
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(vii) Ax.x — 1. 
\x\ ones 

(viii) ones = Ax.if x = 0 then 0 else the numerical value of 11 • • • 1. 
|a;| — \y\ ones 

(ix) sub = Xxy.if \x\ < \y\ then 0 else the numerical value of 11 • • • 1 . 
(x) Xxy.x * y (that is, the numerical value of the string x * y). 

4. For any E we define ^* to be the class of relations {/(a?) = 0 : / e &}. 
Now, fix an alphabet E with m > 1 elements. We define 

5.3.0.52 Definition. We define the predicates xBy ("x begins y")9 xEy ("x ends 
y") and xPy ("x is part of?/") by (3z)y = x*z, (3z)y = z*x, (ELz, w)y = w*x*z 
respectively. 

If R is a relation, then the notations (3y)BZR, (3y)EzR, (^y)pzR, mean, respec-
tively, (3y)(yBz A R), (3y)(yEz A R), (3y)(yPz A R). They are read in the 
obvious way, e.g., "there is a y that begins z such that R holds". The quantifiers 
(Vy)BzR, (Vy)EzR, (Vy)pzR are defined similarly. D 

With these concepts in mind, prove 

(i) ^* is closed under Boolean operations. 

(ii) ^ is closed under {3y)BZR-
(iii) ^ is closed under (3y)EZR-
(iv) ^* is closed under (Vy)BzR-
(v) ^* is closed under (Vy)EzR. 

Hint. We do not know yet whether either of the relations xBy or x — y are in ^*. 
For (ii) you should offer a proof by direct bounded recursion on notation to define 
a function / £ ^ such that / (z , x) = 0 = (3y)BZR(y, x). Your assumption will 
be that a function r E ^ exists such that r(y, x) = 0 = R(y, x). 

5. Fix an alphabet E with m > 1 elements. Show that the following relations are in 
&*. 

(i) Ax.x = d, for all d £ E. 
n 

(ii) Xx.tallyd(x), for all d £ E, where tallyd(x) is true iff x = d . . . d, for 
n > 0 . 

(iii) Ax?/.|x| < \y\. 
(iv) Xxy.x = y. 

Hint. This is true iff x and y have the same length, and every prefix of x is 
also a prefix of y. 
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(v) Xxy.xBy, Xxy.xEy. 
(vi) Xxyz.z = x * y. 

(vii) Xxy.xPy. 

6. Fix an alphabet E with m > 1 elements. Show that % is closed under (3y)PzR 
and {Vy)PzR. 

7. 5.3.0.53 Definition. Let Q be a relation. We define the notation (max y)BzQ(y,x) 
and ( m a x ^ ^ Q ^ x ) by 

j max{y : j/Bz A Q(j/, x)} 
10 it the max does not exist 

and 

(max{y : j/JEs A Q(2/, £)} 
(maxy)^Q(y,x) = <{ 

10 if the max does not exist 

□ 
Prove that if Q is in ^*, then Xzx.(max y)BzQ{y, x) and Azx.(max y)EzQ(y, x) 
are in ^ \ 

8. Fix an alphabet E with m > 1 elements. Let the expression maxtaldix) denote f/ze 
maximum length tally of d-symbols that is a substring of x. We let maxtald(0) = 
0. 
Prove that Xxy.y — maxtald(x) is in ^*. 

9. Fix an alphabet E with m > 1 elements. 
Prove that the function Xx.maxtald{x) is in ^ . 

10. Fix an alphabet E with m > 1 elements. 
Define a pairing function J(x,y) as 

J(x, y) = x * 2 * 1 * maxtali ( x*2*? / )*2*? / 

Prove that we have projections AT and L in ^ . For all x and y, these satisfy 
K(J(x, y)) = x and L(J(x, 2/)) = y. 

11. Use 5.3.9 to devise, for any fixed n > 1, a coding/decoding scheme [... ] ^ and 
n f in # . Cf. 2.1.4.9 and 2.1.4.10. Conclude that # is closed under simultaneous 
bounded (left and right) recursion on notation. 

12. Devise, in (string-processing) URM pseudo code, an algorithm that will construct 
a CNF for any given formula srf in poly-time with respect to \s£\. Your algorithm 
will do the preprocessing and will then track the steps of the induction proof. 
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13. 3SAT is the set of all satisfiable Boolean formulae written in CNF with clauses 
that each have length equal to 3 literals. Show that 3SAT is ./K^-complete by 
showing xi'mJf @> and also showing that CSAT <p 3 SAT. 
Hint. Explore the last case of the I.S. of the induction presented in 5.1.3.2, and see 
how it can be employed to transform any clause of n > 3 literals, /i V Z2 V • • • V Zn, 
in CNF with clause-length equal to 3, without affecting satsfiability. 

14. Complete the proof in 5.2.0.6. 

15. Prove 5.2.0.11. 

16. Prove 5.2.0.13. 

17. Carry out the suggested induction proof in 5.2.0.18. 

18. Prove that the relations Xxy.x < y, Xxy.x < y and Xxy.x = y are in /C2,* and 
hence in / C ^ -

19. Prove that Xxy.x = y and Xxy.x ^ y art in £®. 

20. Prove the case (3) of 5.2.0.30. 

21. Prove that all of go, # 1 , . . . , gn are in £n+1, for n > 0. 

22. Prove that every loop program in Ln with input variables X, has run time 
0(An(X)) for some k that depends on the program. 
Hint. There is a trivial "trick" to measure the run time of a loop program, using a 
new variable. Then refer to 5.2.0.13 and note 5.2.0.18. 

23. Prove that the Kleene predicate T^ (for any n) is in £%, and that the decoding 
function d is also in £3. 
Hint. Systematically scan the proof that T^ e VIZ* and d G VU given in 
2.3.0.7 and modify it to obtain this sharper result. 

JL In fact, 

24. Prove that T^ e £° and de£°. 

25. The restricted bounded summation of a function / is defined [Grzegorczyk (1953)] 
to be 

A2x.]T(l - f(i,x)) 
i<z 

Prove that £° is closed under restricted bounded summation. 

26. [Grzegorczyk (1953)] Prove that every c.e. set can be enumerated by an £°-
function. 
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27. [L. Kalmar (1943)] The class of elementary functions, £, was defined by Kalmar 
as the closure of {Xxy.x + y, Xxy.x — y} under substitution, bounded summation 
and bounded product (2.1.2.30). 

Prove that £ = £3. 

Hint. The C direction is practically trivial. For D you need a few tools: 

• £ contains Xxy.xy (use sum) and Xxy.xy (use product). 

• £ contains Xxy.x(1 — y). 

• £* is closed under Boolean operations. 

• £ is closed under (/jJy)<z. Use the observation that (Vi)<zf(h%) ^ 0 iff 
Yli<z /(* ' %) ̂  ®- Using ^2<z you can now compute the smallest y that 
makes f(y,x) zero. 

• £* is closed under bounded quantification (use product for the existential 
quantifier). 

• £ is closed under definition by cases. 

• Simulate primitive recursion (bounded!) using the techniques from 2.11.1. 

28. Prove that 
2 • 1 

> x 2's 2. , ~ - s 

is not in £. 

29. Prove that Xxy.x + T/, Xxy.x — y and Xxy.xy are in Cobham's # \ 

#mr. Use the digit-by-digit "school method". 

30. Prove that an alternative definition off is this: the closure of {Xxy.x+y, Xxy.x -
y, Xxy.xy} under substitution and bounded summation. 

31. Prove that / G VIZ iff / is programmable on some URM that runs within time 
teVK. 

32. Prove that TK* C K*. 

374 
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elements in an order, 51 
compiler, 141 
complement 

of a relation, 161 
Complete Arithmetic, 227 
complete equality, 45, 145 
complete graph, 348 
complete index set, 183 

trivial, 192, 195 
complexity, 325 

computational, 362 
definitional, 362 
of a TM computation, 333 

complexity function, 169 
* i , 169 
component 

of vector-valued function, 87 
composition, 46, 100 

closed under, 100 
functional, 46 
We write (RQ) for Q o R, 46 
relational, 46 
Q o R, 46 

computability, 91 
computable function 

</>-index of, 145 
computably enumerable set, 170 
computably enumerable sets, 167 
computation, 93 

arithmetization of, 141 
feasible, 336 
intractable, 336 
of a FA, 247 
M-computation, 247 
of a PDA, 299 

www.it-ebooks.info

http://www.it-ebooks.info/


INDEX 381 

of a TM, 333 
ofURM, 145 
steps (of a PDA), 299 
terminating, 143 

ofURM, 145 
computation length (of a PDA), 299 
computation path, 248 
computational complexity, 125, 180, 

325, 362 
concatenation 

of languages, 40 
configuration 

initial, 299 
of a PDA computation, 298 
terminal, 299 

conjunct, 346 
conjunctive normal form, 346 
constructive proof, 211 
converse, 27 
correct 

axiomatization of arithmetic, 227 
countable set, 53 
counter, 328 
course-of- values, 113 

recursion, 114 
course-of-values recursion 

for partial functions, 115 
creative set, 210 
current instruction, 94 
current symbol 

on TM tape, 331 
cycle, 316 

decidable problem, 161 
decider, 160 
decision problem, 91 
Dedekind, 92 
deduction theorem, 24 
definable by a formula, 223 
definition 

by cases, 111 
by positive cases, 171 

definition by positive cases, 179 
definition by recursion, 79 
definitional complexity, 125, 362 

degree of a polynomial, 339 
derivation, 70, 280, 281 
determinism, 244 
deterministic, 244 

poly-time complexity, 334 
T(n)-time complexity, 333 

diagonal method, 56 
diagonal relation, 348 
diagonaliaztion lemma, 214 
diagonalization, xii 
digraph, 348 
Diophantine equation, 120 
directed graph, 348 
directed labeled graph, 243 
disjoint sets, 33 
domain, 9,31 

of discourse, 31 
of relation, 42 

dovetail, 196 
dovetailing, 168 

=i ,218 
= m , 218 
e-closure, 261 
e(S), 261 
edge, 243 
edges, 348 
effectively, 199 
elementary functions, 374 
empty set, 31 
end-of-file, 242 
Entscheidungsproblem, 91 
enumerable set, 54 
eof, 242 
Epimenides, 213 
e move, 257 
equivalence class, 50 

of x: [x], 50 
equivalence problem, 167, 237, 369 

of partial recursive functions, 237 
equivalence relation, 49 
equivalent automata, 262 
equivalent regular expressions, 267 
Euclid, 112 
explicit transformations, 229 
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expression, 39 
extension 

of formula, 40 

FA, 244 
accepts input, 247 
computation path of, 248 
trap state of, 250 
universal, 290 

factor, 64 
prime, 64 

feasible computations, 336 
Fibonacci 

sequence, 113 
finite automaton, 242, 244 

nondeterministic, 258 
finite function, 193 
flow diagram, 244 
formula 

atomic, 3 
Boolean, 341 

satisfiable, 341 
tautology, 341 

closed, 9, 223 
instance of, 9 
of arithmetic, 223 
prime, 15 
true in a theory, 20 

formula-form, 19 
formula-schema, 19 
function, 42 

1-1,45 
Ackermann, 148 
application, 97 
calculable, 91 
call, 97 
characteristic, 59, 108 
composition, 100 
computable, 95 

set of: K, 95 
computation of, 94 
computed by URM M, 95 

symbol for: M*1-"'X n,95 
converges at an input, 43 
converges at an input: f(a) 4-, 43 

declaration of, 97 
definition of, 97 
diverges at an input, 43 
diverges at an input: f(a) t , 43 
extension, 45 
g is an extension of / : / C g, 45 
finite, 193 
generalized identity, 103 
history, 114 
identity, 47 
Xx.f(x) / \ 150 
increasing, 202 
inverse of 

two sided, 87 
invocation, 97 
left inverse of, 47 
loop program computable, 136 
majorant of, 155 
majorized by, 350 
majorizes another function, 153 
nontotal, 99 
number-theoretic, 98 
pairing, 118 
partial, 99 
partial computable, 95 

set of: V, 95 
partial recursive, 93 
primitive recursive, 92 
productive, 209 
projection, 103 
recursive, 95 
restriction, 45 
/ is a restriction of g on C: f — 

<?fC,45 
/ is a restriction of g: f C g, 45 
right inverse of, 47 
step-counting, 169 
strictly increasing, 150, 202 
successor, 70 
total, 99 
totally undefined, 45 
tuple-valued, 87 
vector-valued, 87 

component of, 87 
projection of, 87 
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function invocation 
defined, 95 

symbol for: / ( a i , . . . ,o n ) | , 
95 

undefined, 95 
symbol for: / ( a i , . . . , a n ) t , 

95 
function variable, 216 

generalization, 19 
generalized identity function, 103 
Godel, 113 
Godel number, 213 
goto, 125 
goto, 99 
grammar, 277, 280 

context free, 281 
regular, 281 
type-2, 281 
type-3, 281 

grammar production, 277 
grammar rule, 277 
graph, 335, 348 

complete, 348 
directed, 348 
edges, 348 
finite, 348 
nodes, 348 
undirected, 348 
vertices, 348 

Grzegorczyk, 106, 114 
substitution, 106 

Grzegorczyk operations, 230 
guessing, 258 

halting problem, 163, 176 
hierarchy 

Axt-Heinerman, 351 
based on simultaneous recur-

sion, 352 
Grzegorczyk's, 356 
of loop programable functions, 

353 
of loop programs, 353 
primitive recursive, 350 

proper, 350 
high level programming language, 92 
HUbert, 92 
Hilbert's program, 91 
history function, 114 

I.H., 62 
i.p., 75 
I.S., 63 
ID, 141, 247 

accepting, 333 
final, 333 
initial, 143, 333 
of a FA, 247 

start-ID, 247 
q0x, 247 
terminal, 247 

of a PDA computation, 298 
terminal, 333 

identity function, 47 
if-statement, 93 
iff, 10 
image 

inverse, 43 
of a set, 43 

immediate predecessors, 75 
implication 

vacuous, 13 
implied concatenation, 40 

of languages, 40 
LM for L * M, 40 

xy for x * y, 40 
implied multiplication, 40 
ab for a x b or a • b, 40 
incomplete formalism, 139 
incompleteness 

first theorem, 227 
incompleteness theorem, 213 
indegree, 316 
index 

semi-computable, 159 
inductio 

step, 63 
induction, 61 

basis, 63 
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hypothesis, 62 
on VIZ, 105 
on theorems, 75 
on trees, 315 
simple, 64 
structural, 72 

inductive definition, 69 
infinite, 53 
infinite loop, 102, 160 
infinite sequence, 57 
infix notation, 342 
initial function, 104 
initial segment of N, 115 
input acceptance 

by TM, 333 
input accepted, 242 
input alphabet, 242 
input rejected, 242 
input string 

of modified URM, 242 
instantaneous description, 141 
instruction, 93 

current, 141 
execution, 127 
of a loop program, 126 

internal node 
in a tree, 316 

interpretation, 224 
standard, 222 

interpreter, 141 
intersection, 33 
intractable computation, 336 
Intuitionists, 10 
inverse 

two sided, 87 
inverse image, 43 
irreflexive relation, 51 
iteration, 100, 123 

pure, 123 
iteration theorem, 174 
iterator, 114 
iterator function, 101 

/c-clique, 348 
Kleene normal form theorem, 145 

Kleene predicate, 144 
TW(z,Sn,y), 144 

Kleene star of a set A: A*, 40 
Kleene T-predicate, 144 

label 
in a URM, 93 

A notation, 96 
language, 40, 251 

accepted by a FA, 247 
L(M), 247 
accepted by a PDA, 300 
accepted by a TM, 333 
context free, 281 
finitely definable, 40 
regular, 267, 274 
type-2, 281 

language concatenation, 40 
leaf node, 316 
left field, 43 
left inverse, 47 
left successor, 370 
level 

in a hierarchy, 350 
levels in a tree, 317 
lexicographic order, 139 
liar's paradox, 213 
literal, 346 
loop closure, 127 
loop program, 125 

input variables, 135 
instruction, 126 
output variables, 135 
terminates, 128 

loop program semantics, 132 

m-adic digits, 89 
m-adic notation, 89 
m-ary digits, 89 
m-ary notation, 89 
m-completeness, 217 
m-degree, 219 
M-ID, 247 
m-reducibility, 183 
machine, 92 
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macro expansion, 127 
mathematical theory, 19 
mechanical procedure, 91 
metavariable, 223, 277 
model of computation, 95 
modus ponens, 22 

n-tuple, 37 
next instruction, 127 
NFA, 257 
node 

ancestor, 316 
descendant, 316 
internal, 316 
level of, 317 

nodes, 348 
nondeterministic, 257 

poly-time complexity, 334 
T(n)-time complexity, 334 

nondeterministic finite automaton, 258 
nonterminal, 277, 280 
nonterminal symbol, 277 
normal form theorem, 145 
notation base-(m -f-1), 326 
J/^-complete, 339 
^K^-hard, 338 
numeral, 224 

symbol for: n, 224 

object 
initial, 70 

operation, 70 
order, 51 

comparable elements, 51 
linear, 51 
partial, 51 
total, 51 

order relation, 51 
ordered n-tuple, 37 
ordered pair, 36 

pairing function, 118 
first projection, 118 
second projection, 118 

pairwise disjoint, 313 
parallelism, 168 

parent node, 316 
parse tree, 313 

root of, 313 
support of, 313 
yield of, 313 

parsing, 279 
partial 

relation, 43 
partial recursive 

in F, 215 
partition, 51 
Pascal, 92 
path in a tree, 316 
path length 

in a tree, 316 
PDA 

AS + ES-acceptance, 300 
AS-acceptance, 300 
ES-acceptance, 299 

PDA computation, 299 
phi-index 

<t>(?\ 145 
</>-index, 145 
pigeon-hole principle, 52 
poly-time reduction, 339 
pop data from a stack, 141 
pop operation, 294 
POset, 51 
postfix notation, 342 
power set, 39 
Pft-derivation, 103 
Pft-function, 104 
predecessor function, 98 
predicate, 108 

semi-computable, 159 
semi-recursive, 159 
truea.e., 151 
true almost everywhere, 151 

prime, 64 
prime number factorization, 112 
primitive recursion, 82, 100 

bounded, 356 
closed under, 101 
defined function: prim{h,g), 101 
on notation, 84 
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simultaneous, 116 
primitive recursive hierarchy, 350 
problem, 160 

decidable, 161 
equivalence, 167 
semi-decidable, 161 
solvable, 161 
undecidable, 161 
unsolvable, 161 

productions, 280 
productive, 222 
productive function, 209 
productive set, 209 
program correctness, 369 
projection 

of vector-valued function, 87 
projection function, 103, 118 
projection theorem, 159 
proof, 18 

by induction, 62 
constructive, 204, 211 

proper subtraction, 98 
symbol for: x — y, 98 

property propagates, 72 
provability predicate, 213 
pumping constant, 253 
pumping lemma, 253 
pure iteration, 123 
push data in a stack, 141 
push operation, 294 
push-pull, 329 
pushdown automaton, 295 

quantifier, 5 
bounded, 29 
existential, 5 

part of, 371 
{3y)BzR,(3y)EzR,(3y)PzR, 

371 
3,5 
V,5 
universal, 5 

part of, 371 
(3y)BzR, (3y)EzR, (3y)PzR, 

371 

r.e., 170 
RAM, 336 
random access machine, 336 
range 

of relation, 42 
recurrence, 113 
recursion 

course-of-values, 83 
primitive, 82 
simultaneous, bounded, 361 

recursion on m-adic notation 
bounded, 337, 370 

recursion on notation 
bounded, 337, 370 

recursion theorem, 212 
Rogers's version, 212 
with parameters, 212 

recursion course-of-values 
for partial functions, 115 

recursive axiomatization, 225 
recursive definition, 69 
recursively enumerable set, 170 
reducibility, 183 

1-reducibility, 183 
m-reducibility, 183 
many-one, 183 
one-one, 183 
A < i 5,219 
A < m £ , 2 1 9 
strong, 183 
A <m B, 183 

reduction 
poly-time, 339 

reduction argument, 166 
reflexive transitive closure, 78, 247 
iT ,78 
regular expression, 266 

semantics, 267 
semantics: L(a), 267 

regular expressions 
equivalent, 267 
equivalent: a ~ (3, 267 

regular language, 267, 274 
relation 

arithmetical, 229 
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binary, 41 
converse of, 46 
definable 

in arithmetic, 229 
diagonal, 348 
equivalence, 49 
expressed in arithmetic, 229 
expressible 

in arithmetic, 229 
from A to B, 43 
in the Grzegorczyk hierarchy, 356 
irreflexive, 51 
nontotal, 43 
on A, 43 
onto, 43 
order, 51 

linear, 51 
total, 51 

partial, 43 
primitive recursive, 108 

set of: VR*, 108 
recursive, 108 

set of: 11*, 108 
reflexive, 49 
reflexive transitive closure of, 78 
semi-computable, 159 

set of: V*, 159 
semi-recursive, 159 
single-valued, 42 
symmetric, 49 
total, 43 
transitive, 49 
transitive closure of, 76 

relational power, 47 
i T , 4 7 
restricted bounded summation, 373 
result 

of an operation, 70 
reversal, 289 

closed under, 289 
of a language, 290 
of a string, 288 

reverse Polish, 342 
rewriting rules, 279, 280 
Rice's lemma, 190 

Rice's theorem, 192, 214 
right field, 43 
right inverse, 47 
right successor, 338 
Ritchie-Cobham property, 362 
Rogers, 145 
Rogers's ^-notation, 145 
root 

of a parse tree, 313 
rule, 70 
run time, 125, 143 

of a TM computation, 333 

S-m-n theorem, 174 
SAT, 335 
satisfiable Boolean formula, 341 
schema 

primitive recursion, 82 
selection function, 220 
selection theorem, 197, 201, 238 
semantics, 127, 131 

of loop programs, 132 
semi-computable, 159 
semi-decidable problem, 161 
semi-index, 159 
semi-recursive, 159 
sentence, 9, 223, 281 
sentential form, 281 
sequence 

infinite, 57 
set 

1-complete, 217 
built by steps, 71 
c.e., 167 
closed under an operation, 72 
closure, 72 
complement, 34 
complete index, 183 
computably enumerable, 167,170 
countable, 53 
creative, 210 
difference, 34 
enumerable, 54 
finite, 52 
inductively defined, 72 
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infinite, 52 
m-complete, 217 
notation-by-listing, 28 
of all non-empty strings over a 

set A yl+,40 
of all strings over a set A: A*, 

40 
partially ordered, 51 
power, 39 
productive, 209, 222 
r.e., 170 
recursively enumerable, 170 
reference, 9,31 
simple, 219 
uncountable, 57 

sets in 1-1 correspondence, 46 
Shepherdson, 92 
sibling nodes, 316 
simple sets, 219 
simultaneous (primitive) recursion, 116 
simultaneous bounded recursion, 361 
single-valued, 46 
singleton, 131 
solution 

of a recurrence, 216 
solvable problem, 161 
specialization, 22 
stack, 140, 294 

pop from, 294 
pop from 7; symbol 7 t, 294 
push into, 294 
push A into 7; symbol 7 I A, 

294 
top of, 140, 294 

stack variable, 294 
standard equality, 45 
start state, 246 
start symbol, 278, 280 
start-ID, 247 
state 

accepting, 244 
rejecting, 244 

step-counting function, 169 
$i, 169 
strictly increasing function, 150 

string, 39 
concatenation, 39 
empty, 39 
null, 39 
prefix, 40 

proper, 40 
suffix, 40 

proper, 40 
strong projection theorem, 159 
strong reducibility, 183 
structural complexity, 125 
Sturgis, 92 
subcomputation, 333 
subfunction, 194 
subgraph, 348 
subset, 28 

proper, 28 
substitution function, 213 
subtree, 314 
superset, 28 
syntactic variable, 223, 277 

tally, 349 
tape, 331 

ofaTM,331 
term 

closed, 222 
terminal ID, 247 
terminal symbol, 277 
terminals, 280 
terminating computation, 143 
the class JV@>, 334 
the class &>, 334 
theorem, 73 
theory, 19 

consistent, 26 
free from contradiction, 26 
inconsistent, 26 

TM, 92, 330,331 
blank symbol of, 331 
deterministic, 332 
nondeterministic, 332 
with a 1-way infinite tape, 342 

TM computation, 333 
TM tape, 331 
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totally defined, 43 
transition, 243 
transition function, 244, 246 
transition relation, 257 
transitive closure, 76 

of J?: Symbol i?+, 77 
trap state, 250, 260, 266 
tree height, 317 
trees, 312 

ordered, 313 
parse, 313 

trichotomy, 51 
truth in arithmetic, 224 
Turing machine, 92, 330, 331 
TWM 

applicable instruction, 331 
two sided inverse, 87 

unbounded register machine, 92 
unbounded search, 102 

alternate, 177 
(W). 177 

(W). 102 
unconditional jump, 257 
undecidable problem, 161 
underflow, 333 
undirected graph, 348 
union, 32 
universal FA, 290 
universal program, 141 
unsolvable problem, 161 
urelements, 32 
URM, 92 

instruction 
current, 94 

commands, 93 
computation, 93 

halting, 94 
of a function, 94 
terminating, 94 

computations of, 141 
concatenation of, 173 
m ^ n, 173 
instructions, 93 
simulating functions, 363 

string processing, 337 
variable, 93 

variable 
input, 135 
output, 135 
syntactic, 223 
type, 241 

variables 
of loop programs, 131 

variant theorem, 18 
verifier, 160 
vertices, 348 

Wi, 159 
word, 39 

yield 
in Turing machines, 332 

yield relation, 280 
= ^ , 2 8 0 
yields, 247 
hif, 247 
yields relation, 281 

zero function, 99 
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