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Начните работу с Apache Flink, фреймворком с от-
крытым исходным кодом, на котором основаны 
многие крупнейшие в мире системы для обработки 
потоковых данных. В данной книге вы изучите фун-
даментальные понятия параллельной потоковой 
обработки и узнаете, чем эта технология отличается 
от традиционной пакетной обработки данных.
Ф. Уэске и В. Калаври, занятые в проекте Apache 
Flink с первых дней, покажут вам, как создавать мас-
штабируемые потоковые приложения с помощью 
API Flink DataStream, а также непрерывно выполнять 
и поддерживать эти приложения в операционных 
средах. 
Потоковая обработка идеально подходит для мно-
гих задач: подготовка данных с малой задержкой, 
потоковая аналитика и информационные панели в 
реальном времени, раннее оповещение и обнаруже-
ние мошенничества. Вы можете обрабатывать пото-
ковые данные любого типа, включая взаимодействия 
с пользователем, финансовые транзакции и данные 
интернета вещей, немедленно после получения.
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«Отличная книга для всех, от 

старожилов до начинающих 

программистов и инженеров 

по обработке данных, выпол-

няющих свои первые задания по 

потоковой обработке. В книге 

не только рассматривается 

Flink, в ней также преподают-

ся основы потоковой обработ-

ки, которые помогут читате-

лям повысить уровень знаний и 

развить навыки технического 

мышления. Рекомендую всем 

читателям».

Тед Маласка,

директор по IT-архитектуре 

предприятия в Capital One
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•  Концепции и проблемы распределенной потоковой обработки данных  
     с учетом состояния.
•  Системная архитектура Flink, включая режим обработки по времени  
     событий и принципы отказоустойчивости.
•  Идеология и стандартные компоненты API DataStream, включая операторы  
     с привязкой ко времени и с учетом состояния.
•  Чтение и запись данных во внешние системы с гарантией согласованности  
     «ровно один раз».
•  Развертывание и настройка кластеров Flink.
•  Обслуживание непрерывно работающих потоковых приложений.
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Предисловие

Что вы узнаете из этой книги

Эта книга научит вас всему, что вам нужно знать о  потоковой обработке 
с помощью Apache Flink. Она состоит из 11 глав, которые, как мы надеемся, 
расскажут вам связную историю. В то время как одни главы являются опи-
сательными и знакомят с концепциями проектирования высокого уровня, 
другие главы более прикладные и содержат много примеров кода.

Хотя при написании книги мы предполагали, что ее будут читать в порядке 
следования глав, читатели, знакомые с содержанием главы, могут пропустить 
ее. Другие читатели, более заинтересованные в написании кода Flink прямо 
сейчас, могут сначала прочитать практические главы. Далее мы кратко опи-
шем содержание каждой главы, чтобы вы могли сразу перейти к тем, которые 
вас интересуют больше всего.

�� В главе 1 приводится обзор потоковой обработки с учетом состояния, 
архитектур приложений для обработки данных, подходов к разработ-
ке приложений и  преимуществ потоковой обработки по сравнению 
с традиционными подходами. Мы также коротко расскажем о том, как 
можно запустить ваше первое потоковое приложение на локальном 
экземпляре Flink.

�� В главе 2 обсуждаются фундаментальные концепции и проблемы по-
токовой обработки в целом, независимо от Flink.

�� Глава 3 описывает системную архитектуру и  внутреннее устройство 
Flink. В ней обсуждается распределенная архитектура, обработка со-
бытий, зависящих от времени и состояния в потоковых приложениях, 
а также механизмы отказоустойчивости Flink.

�� Глава 4 объясняет, как настроить среду для разработки и отладки при-
ложений Flink.

�� Глава 5 знакомит вас с основами API DataStream Flink. Вы узнаете, как 
реализовать приложение DataStream и какие потоковые преобразова-
ния, функции и типы данных оно поддерживает.

�� В главе 6 обсуждаются операторы с привязкой ко времени события API 
DataStream. Сюда входят операторы оконной обработки и привязки ко 
времени, а также функции процессов, которые обеспечивают макси-
мальную гибкость при работе со временем в потоковых приложениях.

�� В главе 7 мы объясняем, как реализовать функции с учетом состояния, 
и обсуждаем все, что связано с этой темой, например быстродействие, 
надежность и эволюцию функций с учетом состояния. Здесь также по-
казано, как использовать запрашиваемое состояние Flink.

�� В главе 8 представлены наиболее часто используемые соединители 
источника и приемника данных Flink. В ней обсуждается подход Flink 
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к  сквозной согласованности приложений и  способы реализации на-
страиваемых коннекторов для приема и передачи данных во внешние 
системы.

�� Глава 9 рассказывает, как устанавливать и настраивать кластеры Flink 
в различных средах.

�� Глава 10 посвящена работе, мониторингу и обслуживанию потоковых 
приложений, работающих круглосуточно и без выходных.

�� Наконец, глава 11 рассказывает о ресурсах, которые вы можете исполь-
зовать, чтобы задавать вопросы, посещать мероприятия, связанные 
с Flink, и узнавать о способах применения Flink в настоящее время.

Соглашения, принятые в этой книге

В книге используются следующие типографские соглашения.
Курсив – используется для смыслового выделения важных положений, но-

вых терминов, URL-адресов и адресов электронной почты в интернете, имен 
команд и утилит, а также имен и расширений файлов и каталогов.

Моноширинный шрифт – используется для листингов программ, а также в обыч-
ном тексте для обозначения имен переменных, функций, типов, объектов, 
баз данных, переменных среды, операторов, ключевых слов и других про-
граммных конструкций и элементов исходного кода.

Моноширинный полужирный шрифт – используется для обозначения команд или 
фрагментов текста, которые пользователь должен ввести дословно без из-
менений.

Моноширинный курсив – используется для обозначения в исходном коде или 
в командах шаблонных меток-заполнителей, которые должны быть замене-
ны соответствующими контексту реальными значениями.

	 Совет. Такая пиктограмма обозначает совет или рекомендацию.

	 Примечание. Такая пиктограмма обозначает указание или примечание общего характера.

	 Предупреждение. Эта пиктограмма обозначает предупреждение или особое внимание 
к потенциально опасным ситуациям.
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Колофон

Животное на обложке книги – евразийская рыжая белка (Sciurus vulgaris). 
Большинство древесных белок в Азии, Европе и Америке в местностях с уме-
ренным климатом относятся к  роду sciurus. Vulgaris в  переводе с  латыни 
означает «обычный», а евразийские рыжие белки – обычное явление для всей 
Европы и Северной Азии.

У евразийских рыжих белок белое кольцо вокруг глаз, пушистый хвост 
и пучок меха над ушами. Их окраска на голове и спине варьируется от светло-
красной до черной. Мех на животе кремового или белого цвета. Зимой мех 
белки вырастает немного выше и длиннее над ушами и вокруг лап, чтобы 
защитить их от холода. Большую часть зимы они проводят, свернувшись 
клубочком в гнездах.

Гнезда евразийской рыжей белки предназначены для содержания одного 
животного, за исключением спаривания или выращивания детенышей. Хотя 
они живут поодиночке, их ареалы часто пересекаются из-за большой числен-
ности. В среднем самки рожают по пять детенышей на помет дважды в год. 
Молодые белки покидают материнское гнездо примерно через два месяца. 
За бельчатами охотятся многие хищники, включая птиц, змей и млекопита-
ющих, поэтому только четверть молодняка достигает возраста одного года.

Евразийские рыжие белки питаются семенами, желудями и орехами. Их 
также замечали за слизыванием древесного сока, но они нечасто экспери-
ментируют с  новой едой. Эти белки вырастают от 23 до 26 см в  длину от 
головы до задней части, и примерно такой же длины у них хвост. Они весят 
от 230 до 280 г и могут жить до 12 лет. Ожидаемая продолжительность жизни 
в дикой природе составляет всего 4–7 лет.

Евразийские рыжие белки обладают отличной ловкостью и балансом. Со-
четание острых изогнутых когтей и длинных пушистых хвостов позволяет 
этим обитателям деревьев взбираться по стволам, спускаться вниз головой 
и прыгать через нависающие ветки. 

Многие животные на обложках O’Reilly находятся под угрозой исчезно-
вения; все они важны для мира. Чтобы узнать больше о том, чем вы можете 
помочь, перейдите на сайт animals.oreilly.com. 



Глава 1
Введение 

в потоковую обработку 
с учетом состояния

Apache Flink – это распределенный потоковый процессор с интуитивно по-
нятными и четко структурированными API для реализации приложений по-
токовой обработки данных с учетом состояния. Он предоставляет надежную 
среду для выполнения крупномасштабных защищенных от сбоев приложе-
ний. Flink присоединился к Apache Software Foundation в качестве инкубаци-
онного проекта в апреле 2014 года и стал проектом высшего уровня в январе 
2015 года. С самого начала Flink имел очень активное и постоянно растущее 
сообщество пользователей и участников. На сегодняшний день участниками 
разработки Flink стало более пятисот человек, и он превратился в один из 
самых сложных механизмов обработки потоковых данных с открытым ис-
ходным кодом – репутация, подкрепленная повсеместным распространени-
ем. Flink лежит в основе крупномасштабных критически важных для бизнеса 
приложений во многих компаниях и  предприятиях в  различных отраслях 
и по всему миру.

Технология потоковой обработки данных становится все более популяр-
ной среди больших и малых компаний, потому что она не только предлага-
ет превосходные передовые решения для многих традиционных сценариев 
использования, таких как аналитика данных, ETL1 и транзакционные при-
ложения, но и облегчает реализацию новых приложений, архитектур про-
граммного обеспечения и бизнес-возможностей. В этой главе мы обсудим, 
почему потоковая обработка с  учетом состояния (stateful stream process-
ing) становится такой популярной, и оценим ее потенциал. Мы начнем с об-
зора традиционных архитектур приложений обработки данных и  укажем 
на их ограничения. Затем мы представим читателю проекты приложений, 
основанные на потоковой обработке с отслеживанием состояния и демон-
стрирующие множество интересных свойств и преимуществ по сравнению 
с традиционными подходами. Наконец, мы кратко обсудим эволюцию по-

1	 Extract, transform, load – основные этапы переноса информации из одного при-
ложения в другое. – Прим. перев.
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токовых процессоров с открытым исходным кодом и поможем вам запустить 
потоковое приложение на локальном экземпляре Flink.

1.1. Традиционные инфраструктуры данных

Данные и их обработка повсеместно используются на предприятиях на про-
тяжении многих десятилетий. С  годами сбор и использование данных не-
уклонно росли, и компании спроектировали и построили инфраструктуры 
для управления этими данными. Традиционная архитектура, которую ре-
ализует большинство предприятий, различает два типа обработки данных: 
транзакционная обработка (transactional processing) и аналитическая обра-
ботка (analytical processing). Ниже мы обсудим оба типа и связанные с ними 
подходы к управлению и обработке.

1.1.1. Транзакционная обработка
В своей повседневной деятельности компании используют всевозможные 
приложения, такие как системы планирования ресурсов предприятия (enter-
prise resource planning, ERP), программное обеспечение для управления вза-
имодействием с клиентами (customer relationship management, CRM) и веб-
приложения. В таких системах обычно предусмотрены отдельные уровни для 
обработки данных (само приложение) и хранения данных (система транзак-
ционной базы данных), как показано на рис. 1.1.

События 
контакта Отклик Отклик Отклик

События 
заказа

События 
нажатия

Вычисление

Хранение

Транзакционная 
DBMS

CRM Система  
заказов

Веб-
приложение

Рис. 1.1   Традиционная структура транзакционных приложений,  
хранящих данные в удаленной системе баз данных

Приложения обычно связаны с внешними службами или взаимодействуют 
с  пользователями и  непрерывно обрабатывают входящие события, такие 
как заказы, электронные письма или клики на веб-сайте. Когда происходит 
обработка события, приложение считывает или обновляет его состояние, 
выполняя транзакции с удаленной системой баз данных. Часто система баз 
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данных обслуживает несколько приложений, которые иногда обращаются 
к одним и тем же базам данных или таблицам.

Если со временем приложениям приходится развиваться или масштаби-
роваться, такой подход может вызвать проблемы. Поскольку несколько при-
ложений может работать с одним и тем же представлением данных или со-
вместно использовать одну и ту же инфраструктуру, изменение схемы таблиц 
или масштабирование системы баз данных требует тщательного планиро-
вания и больших усилий. Новый подход к преодолению тесного связывания 
приложений – это идея проектирования микросервисов. Микросервисы пред-
ставляют собой небольшие, автономные и  независимые приложения. Они 
следуют философии UNIX: делать что-то одно и делать это хорошо. Более 
сложные приложения создаются соединением нескольких микросервисов, 
которые взаимодействуют друг с другом только через стандартизованные 
интерфейсы, такие как HTTP-соединения RESTful. Поскольку микросервисы 
строго отделены друг от друга и обмениваются данными только через четко 
определенные интерфейсы, каждый микросервис может быть реализован 
с использованием собственного технологического стека, включая язык про-
граммирования, библиотеки и хранилища данных. Микросервисы и все необ-
ходимое программное обеспечение и услуги обычно объединяются и развер-
тываются в независимых контейнерах. На рис. 1.2 изображена архитектура 
микросервисов.

REST

REST RESTПриложение

Приложение Приложение

Служба 1

Служба 2

Служба 3

БД БД

Рис. 1.2   Архитектура микросервисов

1.1.2. Аналитическая обработка
Данные, хранящиеся в  различных системах транзакционных баз данных 
компании, могут дать ценную информацию о бизнес-операциях предпри-
ятия. Например, можно проанализировать данные системы обработки зака-
зов, чтобы через какое-то время получить рост продаж, определить причины 
задержки отгрузки или спрогнозировать будущие продажи, чтобы скоррек-
тировать запасы. Однако транзакционные данные часто распределяются по 
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нескольким разрозненным системам баз данных и более полезны, когда их 
можно анализировать совместно. Более того, данные часто необходимо пре-
образовать в общий формат.

Вместо выполнения аналитических запросов непосредственно к транзак-
ционным базам данных эти сырые данные обычно реплицируются в храни-
лище данных (data warehouse) – выделенную базу данных, оптимизированную 
под рабочие нагрузки аналитических запросов. Чтобы заполнить хранилище 
данных, в него необходимо скопировать данные, которыми оперируют систе-
мы транзакционных БД. Процесс копирования данных в хранилище состоит 
из трех стадий: извлечение – преобразование – загрузка (extract–transform–
load, ETL). Процесс ETL извлекает данные из транзакционной БД, преобразует 
их в общее представление, которое может включать проверку, нормализацию 
значений, кодирование, удаление повторов и преобразование схемы, и на-
конец загружает их в аналитическую базу данных. Процессы ETL могут быть 
довольно сложными и часто требуют технически сложных решений для удов-
летворения требований к  производительности. Эти процессы необходимо 
запускать регулярно, чтобы синхронизировать данные в хранилище.

Как только данные окажутся в хранилище, их можно запросить и проана-
лизировать. Обычно в хранилище данных выполняются два типа запросов. 
Первый тип – это запросы периодических отчетов, которые вычисляют реле-
вантную для бизнеса статистику, такую как доход, рост числа пользователей 
или объем производства. Эти показатели объединяются в отчеты, которые 
помогают руководству оценить общее состояние бизнеса. Второй тип – это 
специальные запросы, которые предназначены для получения ответов на 
конкретные вопросы и поддержку важных для бизнеса решений, например, 
запрос на сбор данных о доходах и расходах на радиорекламу для оценки 
эффективности маркетинговой кампании. Оба типа запросов выполняются 
хранилищем данных в  режиме пакетной обработки (batch processing), как 
показано на рис. 1.3.

Транзакционная 
DBMS

Процесс 
ETL

Хранилище 
данных

Отчеты

Текущие 
запросы

Рис. 1.3   Традиционная архитектура хранилища данных  
для аналитической обработки

Сегодня компоненты экосистемы Apache Hadoop являются неотъемлемы-
ми частями информационных инфраструктур многих предприятий. Вме-
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сто того, чтобы загружать все данные в систему реляционной базы данных, 
значительные объемы данных, такие как файлы журналов, социальные сети 
или журналы веб-кликов, записываются в  распределенную файловую си-
стему Hadoop (HDFS), S3 или другие хранилища массовых данных, напри-
мер Apache HBase, которые обеспечивают огромную емкость хранилища по 
доступной цене. Данные, находящиеся в таких системах хранения, могут 
запрашиваться и  обрабатываться механизмом SQL-on-Hadoop, например 
Apache Hive, Apache Drill или Apache Impala. Однако инфраструктура остается 
в основном такой же, как и в традиционной архитектуре хранилища данных.

1.2. Обработка потоков с учетом состояния

Практически все данные создаются как непрерывные потоки событий. Вспом-
ните о взаимодействиях c пользователями на веб-сайтах или в мобильных 
приложениях, размещении заказов, журналах серверов или измерениях дат-
чиков – все это потоки событий. На самом деле трудно найти примеры полных 
наборов данных конечного размера, которые были бы созданы сразу. Обра-
ботка потоков с учетом состояния – это подход к проектированию приложе-
ний для обработки неограниченно длинных потоков событий, который при-
меним во множестве различных способов использования IT-инфраструктуры 
компании. Но прежде чем обсуждать варианты использования, мы кратко 
объясним, как работает потоковая обработка с учетом состояния.

Любое приложение, которое обрабатывает поток событий, а  не просто 
выполняет тривиальные преобразования по одной записи за раз, должно 
учитывать состояния с  возможностью хранения промежуточных данных 
и  доступа к  ним. Когда приложение получает событие, оно может выпол-
нять произвольные вычисления, которые включают чтение или запись со-
стояния. В принципе, состояние может быть сохранено и доступно в разных 
местах, включая программные переменные, локальные файлы, встроенные 
или внешние базы данных.

Apache Flink сохраняет состояние приложения в локальной памяти или во 
встроенной базе данных. Поскольку Flink является распределенной систе-
мой, локальное состояние необходимо защитить от сбоев, чтобы избежать 
потери данных в случае сбоя приложения или машины. Flink обеспечивает 
такую защиту, периодически записывая согласованную контрольную точку 
состояния приложения в удаленное и надежное хранилище. Состояние, со-
гласованность состояний и механизм контрольных точек Flink будут обсуж-
даться более подробно в  следующих главах, а  пока на рис.  1.4 вы можете 
увидеть схему потокового приложения Flink с учетом состояния.

Приложения потоковой обработки с  учетом состояния часто получают 
свои входящие события из журнала событий (event log). Журнал событий хра-
нит и распределяет потоки событий (event stream). События записываются 
в долговременный журнал, доступный только для добавления, что означает 
невозможность изменить порядок событий. Поток, записанный в  журнал 
событий, может быть прочитан много раз одним и тем же или разными по-
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требителями. Благодаря тому, что журнал работает только на добавление, 
события всегда публикуются для всех потребителей в  одном и том же по-
рядке. Существует несколько систем журналов событий, доступных как про-
граммное обеспечение с открытым исходным кодом, наиболее популярным 
из которых является Apache Kafka, или как интегрированные услуги, пред-
лагаемые поставщиками облачных вычислений.

Логика приложения

Периодическая 
контрольная точка

Локальное 
состояние

Удаленное хранилище

Рис. 1.4   Приложение для потоковой обработки  
с учетом состояния

Подключение потокового приложения, запущенного на Flink, к журналу 
событий интересно по нескольким причинам. В  этой архитектуре журнал 
событий сохраняет входные события и может воспроизводить их в детерми-
нированном порядке. В случае сбоя Flink восстанавливает потоковое прило-
жение, извлекая его состояние из предыдущей контрольной точки и сбрасы-
вая позицию чтения в журнале событий. Приложение будет воспроизводить 
(и  быстро перематывать) входные события из журнала событий, пока не 
достигнет хвоста потока. Этот метод используется для восстановления после 
сбоев, но также может применяться для обновления приложения, исправ-
ления ошибок и исправления ранее выданных результатов, переноса при-
ложения в другой кластер или выполнения A/B-тестов с разными версиями 
приложения.

Как мы говорили выше, потоковая обработка с  учетом состояния – это 
универсальная и гибкая архитектура, которую можно применить во множе-
стве различных сценариев. Далее мы представляем три класса приложений, 
которые обычно реализуются с использованием потоковой обработки с уче-
том состояния: (1) приложения, управляемые событиями, (2) приложения 
конвейера данных и (3) приложения для анализа данных.

	 Практические примеры использования и развертывания потоковой обработки

	
Если вы хотите узнать больше о реальных примерах использования и развертывания 
потоковой обработки, посетите страницу https://flink.apache.org/usecases.html, а также 
записи выступлений и слайд-шоу презентаций Flink Forward.

https://flink.apache.org/usecases.html
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Мы разделили приложения на отдельные классы, чтобы подчеркнуть уни-
версальность потоковой обработки с учетом состояния, но большинство ре-
альных приложений обладает свойствами более чем одного класса.

1.2.1. Событийно-ориентированные приложения 
Событийно-ориентированные приложения (event-driven application) – это по-
токовые приложения, которые принимают потоки событий и  обрабатыва-
ют события с помощью бизнес-логики конкретного приложения. Далее для 
краткости мы будем называть их просто событийными приложениями. В за-
висимости от бизнес-логики событийное приложение может инициировать 
такие действия, как отправка предупреждения или электронного письма или 
запись событий в исходящий поток событий, которые будут использоваться 
другим событийным приложением.

Типичные варианты использования событийных приложений включают:

�� рекомендации в режиме реального времени (например, для рекомен-
дации продуктов, когда покупатели просматривают веб-сайт продав-
ца);

�� обнаружение шаблонов поведения или сложная обработка событий 
(например, для обнаружения мошенничества при транзакциях с кре-
дитными картами);

�� обнаружение аномалий (например, для обнаружения попыток про-
никновения в компьютерную сеть).

Событийные приложения – это эволюция микросервисов. Они обменива-
ются данными через журналы событий вместо вызовов REST и хранят дан-
ные приложения в виде локального состояния вместо обращения для чтения 
и  записи ко внешнему хранилищу данных, такому как реляционная база 
данных или хранилище значений ключей. На рис. 1.5 показана архитектура 
сервиса, состоящая из событийных потоковых приложений.

Рис. 1.5   Архитектура событийного приложения

Приложения на рис. 1.5 связаны журналами событий. Одно приложение 
отправляет свои выходные данные в журнал событий, а другое использует 
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события, созданные первым приложением. Журнал событий разделяет от-
правителей и получателей и обеспечивает асинхронную неблокирующую пере-
дачу событий. Каждое приложение может иметь учет состояния и локально 
управлять своим собственным состоянием без доступа к внешним храни-
лищам данных. Приложения также можно независимо обновлять и масшта-
бировать.

Событийные приложения обладают несколькими преимуществами по 
сравнению с транзакционными приложениями или микросервисами. Доступ 
к локальному состоянию обеспечивает очень хорошую производительность 
по сравнению с запросами чтения и записи к удаленным хранилищам дан-
ных. Масштабирование и  отказоустойчивость обеспечиваются потоковым 
процессором, а за счет использования журнала событий в качестве источни-
ка ввода полный набор входных данных приложения надежно сохраняется 
и  может быть детерминированно воспроизведен. Кроме того, Flink может 
сбрасывать состояние приложения до предыдущей точки сохранения, что 
делает возможным развитие или масштабирование приложения без потери 
его состояния.

Событийные приложения предъявляют довольно высокие требования к по-
токовому процессору, который их запускает. Не все потоковые процессоры 
одинаково хорошо подходят для запуска таких приложений. Выразительная 
возможность1 API, качество обработки состояний и привязка ко времени со-
бытий определяют бизнес-логику, которую можно реализовать. Этот аспект 
зависит от API потокового процессора, от того, какие типы примитивов со-
стояния он поддерживает, и от качества обработки критических во времени 
событий. Более того, гарантия согласованности состояния «ровно один раз» 
и возможность масштабирования приложения являются фундаментальны-
ми требованиями для событийных приложений. Apache Flink удовлетворяет 
всем этим требованиям и  является очень хорошим выбором для запуска 
приложений этого класса.

1.2.2. Конвейеры данных
Сегодняшние IT-архитектуры включают в  себя множество различных хра-
нилищ данных, таких как системы реляционных и специализированных баз 
данных, журналы событий, распределенные файловые системы, кеши в па-
мяти и индексы поиска. Все эти системы хранят данные в разных форматах 
и  структурах данных, которые обеспечивают наилучшее быстродействие 
для их конкретного шаблона доступа. Часто компании хранят одни и те же 
данные в  нескольких разных системах, чтобы повысить скорость доступа 
к данным. Например, информация о продукте, который предлагается в ин-
тернет-магазине, может храниться в транзакционной базе данных, веб-кеше 
и поисковом индексе. Из-за подобной репликации данных хранилища долж-
ны быть синхронизированы.

1	 Выразительная возможность – мера готовности API или языка программирования 
реализовать идеи и потребности пользователя. – Прим. перев.
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Традиционный подход к  синхронизации данных в  различных системах 
хранения – периодический запуск заданий ETL. Однако они не соответствуют 
требованиям к минимальной задержке синхронизации во многих современ-
ных сценариях использования данных. Альтернативой является использо-
вание журнала событий для распространения обновлений. Обновления за-
писываются и распространяются в журнале событий. Пользователи журнала 
сами вносят обновления в затронутые хранилища данных. В зависимости от 
варианта использования переданные данные, возможно, потребуется норма-
лизовать, дополнить внешними данными или агрегировать перед их записью 
в целевое хранилище данных.

Получение, преобразование и запись данных с малой задержкой синхро-
низации – еще один распространенный вариант использования приложений 
потоковой обработки с учетом состояния. Этот тип приложения называется 
конвейером данных. Конвейеры данных должны иметь возможность обраба-
тывать большие объемы данных за короткое время. Потоковый процессор, 
который управляет конвейером данных, также должен иметь широкий выбор 
соединителей (переходных интерфейсов) источника и приемника для чтения 
и записи данных в различные системы хранения. Опять же, все эти задачи 
решает Flink.

1.2.3. Потоковая аналитика
Задания ETL периодически импортируют данные в хранилище данных, а за-
тем эти данные обрабатываются индивидуальными или регулярными запро-
сами. В любом случае это пакетная обработка независимо от того, основана 
ли архитектура на хранилище данных или на компонентах экосистемы Ha-
doop. Хотя периодическая загрузка данных в систему анализа данных уже 
много лет является общепринятым подходом, она значительно увеличивает 
задержку в конвейере аналитики.

В зависимости от интервалов запуска заданий ETL может пройти несколько 
часов или дней, прежде чем точка данных будет включена в отчет. В некото-
рой степени задержку можно уменьшить, импортируя данные в хранилище 
с помощью приложения конвейера данных. Однако даже при непрерывном 
запуске ETL всегда будет существовать задержка до обработки события за-
просом. Хотя в  прошлом такая задержка могла быть приемлемой, совре-
менные приложения должны иметь возможность собирать данные в режиме 
реального времени и немедленно реагировать на них (например, приспоса-
бливаясь к изменяющимся условиям в мобильной игре или персонализируя 
взаимодействие с новым пользователем в интернет-магазине).

Вместо того чтобы бездействовать от запуска до запуска, приложение по-
токовой аналитики постоянно принимает потоки событий и обновляет вы-
ходные данные, добавляя в них последние события с минимальной задерж-
кой. Это похоже на методы, которые применяются в  системах баз данных 
для обновления материализованных представлений. Как правило, потоко-
вые приложения сохраняют свой результат во внешнем хранилище данных, 
которое поддерживает быстрые обновления, например в  базе данных или 
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хранилище пар «ключ–значение». Обновляемые в  реальном времени ре-
зультаты приложения потоковой аналитики можно использовать в  работе 
приложений панели мониторинга, как показано на рис. 1.6.

Журнал 
событий

Состояние

РезультатАналитическое 
приложение

База данных

Панель

Панель

Рис. 1.6   Приложение потоковой аналитики

Помимо гораздо более короткого времени, необходимого для включения 
события в результат аналитики, есть еще одно, менее очевидное преимуще-
ство приложений потоковой аналитики. Традиционные конвейеры анали-
тики состоят из нескольких отдельных компонентов, таких как процесс ETL, 
система хранения, и – в случае среды на основе Hadoop – обработчика данных 
и планировщика для запуска заданий или запросов. Напротив, потоковый 
процессор, который запускает потоковое приложение с  учетом состояния, 
берет на себя все эти этапы обработки, включая прием событий, непрерыв-
ные вычисления с поддержкой состояния и обновление результатов. Более 
того, потоковый процессор может восстанавливаться после сбоев с  гаран-
тией согласованности состояния «ровно один раз» и  способен управлять 
вычислительными ресурсами приложения. Потоковые процессоры, такие 
как Flink, также поддерживают обработку критических по времени событий 
для получения правильных и детерминированных результатов и способны 
обрабатывать большие объемы данных за короткое время.

Приложения потоковой аналитики обычно используются для следующих 
целей:

�� мониторинг качества сотовых сетей;
�� анализ поведения пользователей в мобильных приложениях;
�� специальный анализ данных в реальном времени в потребительских 

технологиях.

Хотя мы не рассматриваем здесь этот аспект, Flink также обеспечивает 
поддержку потоковых аналитических SQL-запросов.

1.3. Эволюция потоковой обработки 
с открытым исходным кодом

Потоковая обработка данных не новая технология. Некоторые из первых 
исследовательских прототипов и коммерческих продуктов относятся к кон-
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цу 1990-х годов. Однако растущее распространение технологии потоковой 
обработки в недавнем прошлом в значительной степени было обусловлено 
появлением достаточно развитых потоковых процессоров с открытым ис-
ходным кодом. Сегодня распределенные потоковые процессоры с открытым 
исходным кодом обеспечивают работу критически важных бизнес-прило-
жений на многих предприятиях в различных отраслях, таких как розничная 
торговля (включая онлайн-торговлю), социальные сети, телекоммуникации, 
игры и банковское дело. Программное обеспечение с открытым исходным 
кодом является движущей силой этой тенденции в основном по двум при-
чинам:

1)	� программное обеспечение для потоковой обработки с открытым ис-
ходным кодом – это ресурс, который может оценить и  использовать 
каждый;

2)	� технология масштабируемой потоковой обработки быстро развивается 
и совершенствуется благодаря усилиям множества сообществ откры-
того исходного кода.

Один лишь фонд Apache Software Foundation поддерживает в своем инве-
стиционном инкубаторе более десятка проектов, связанных с потоковой об-
работкой. Новые проекты распределенной потоковой обработки постоянно 
переходят на стадию открытого исходного кода и бросают вызов современ-
ным технологиям, предлагая новые функции и  возможности. Сообщества 
с открытым исходным кодом постоянно улучшают возможности своих про-
ектов и расширяют технические границы потоковой обработки. Мы кратко 
заглянем в  прошлое, чтобы увидеть, откуда пришла потоковая обработка 
с открытым исходным кодом и где она находится сегодня.

1.3.1. Немного истории
Первое поколение распределенных потоковых процессоров с открытым ис-
ходным кодом (2011 г.) было ориентировано на обработку событий с милли-
секундными задержками и предоставляло гарантии от потери событий в слу-
чае сбоев. Эти системы имели довольно низкоуровневые API-интерфейсы 
и не обладали встроенной поддержкой точности и целостности результатов 
потоковых приложений, поскольку результаты зависели от времени и  по-
рядка поступления событий. Более того, даже если события не были потеря-
ны, их можно было обрабатывать более одного раза. В отличие от пакетных 
процессоров первые потоковые процессоры с  открытым исходным кодом 
жертвовали точностью результатов ради меньшей задержки. Ситуация, ког-
да системы обработки данных (на тот момент) могли предоставлять либо 
быстрые, либо точные результаты, привела к  разработке так называемой 
лямбда-архитектуры, которая изображена на рис. 1.7.

Лямбда-архитектура дополняет традиционную архитектуру периодиче-
ской пакетной обработки за счет высокой скорости, которую обеспечивает 
потоковый процессор с малой задержкой. Данные, поступающие в лямбда-
архитектуру, принимаются потоковым процессором, а также записываются 
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в пакетное хранилище. Потоковый процессор вычисляет приблизительные 
результаты почти в реальном времени и записывает их в «быструю» табли-
цу. Пакетный процессор периодически обрабатывает данные в  пакетном 
хранилище, записывает точные результаты в «пакетную» таблицу и удаляет 
соответствующие неточные результаты из быстрой таблицы. Приложения 
используют совокупные результаты обработки, объединяя приблизительные 
результаты из быстрой таблицы и точные результаты из пакетной таблицы.
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Рис. 1.7   Лямбда-архитектура

Лямбда-архитектура фактически уже устарела, но все еще используется во 
многих местах. Первоначальной целью этой архитектуры было уменьшение 
задержки выдачи результатов, свойственной исходной архитектуре пакет-
ной аналитики. Однако у нее есть несколько заметных недостатков. Прежде 
всего она требует двух семантически эквивалентных реализаций логики при-
ложения для двух отдельных систем обработки с разными API. Во-вторых, 
результаты, полученные потоковым процессором, являются приблизитель-
ными. В-третьих, лямбда-архитектуру сложно настраивать и поддерживать.

Следующее поколение распределенных потоковых процессоров с откры-
тым исходным кодом (2013 г.), усовершенствованное по сравнению с первым 
поколением, обеспечивало более высокую отказоустойчивость и  гаранти-
ровало, что в случае сбоя каждая входная запись влияет на результат толь-
ко один раз. Кроме того, программные интерфейсы эволюционировали от 
низкоуровневых интерфейсов на основе операторов к высокоуровневым API 
с большим количеством встроенных примитивов. Однако некоторые улучше-
ния, такие как более высокая пропускная способность и отказоустойчивость, 
были достигнуты за счет увеличения задержек обработки с миллисекунд до 
секунд. Более того, результаты все еще зависели от времени и порядка на-
ступления событий.

Третье поколение распределенных потоковых процессоров с  открытым 
исходным кодом (2015 г.) решило проблему зависимости результатов от вре-
мени и порядка поступления событий. Системы этого поколения стали пер-
выми потоковыми процессорами с открытым исходным кодом, способными 
вычислять согласованные и точные результаты в  сочетании с  семантикой 
«ровно один раз». Вычисляя результаты только на основе фактических дан-
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ных, эти системы могут обрабатывать исторические данные точно так же, 
как «живые» данные. Другим усовершенствованием стало устранение ком-
промисса между задержкой и пропускной способностью. В то время как пре-
дыдущие потоковые процессоры обеспечивали либо высокую пропускную 
способность, либо низкую задержку, системы третьего поколения способны 
обеспечить и то и другое. Потоковые процессоры этого поколения оконча-
тельно сделали лямбда-архитектуру устаревшей.

В дополнение к давно учитываемым параметрам, таким как отказоустой-
чивость, быстродействие и  точность результатов, потоковые процессоры 
также постоянно добавляли новые возможности, например высокую до-
ступность, тесную интеграцию с диспетчерами ресурсов, такими как YARN 
или Kubernetes, и возможность динамического масштабирования потоковых 
приложений. К дополнительным, но важным функциям можно отнести под-
держку обновления кода приложения или переноса задания в другой кластер 
или на новую версию потокового процессора без потери текущего состояния.

1.4. Обзорное знакомство с Flink

Apache Flink – это распределенный потоковый процессор третьего поколения 
с конкурентоспособным набором функций. Он обеспечивает точную пото-
ковую обработку с  высокой пропускной способностью и  малой задержкой 
в масштабных системах. В частности, Flink обладает следующими характер-
ными особенностями:

�� поддержкой семантики времени события и  времени обработки. Се-
мантика времени события обеспечивает последовательные и точные 
результаты, несмотря на неупорядоченные события. Семантика време-
ни обработки может использоваться для приложений с очень низкими 
требованиями к задержке;

�� гарантией обработки «ровно один раз»;
�� миллисекундными задержками при обработке миллионов событий 

в  секунду. Приложения Flink можно масштабировать для работы на 
тысячах ядер;

�� многоуровневыми API с различными компромиссами между вырази-
тельностью и простотой использования. В этой книге описывается API 
DataStream и функции обработки, которые предоставляют примитивы 
для обычных операций обработки потоков, таких как оконные и асин-
хронные операции, а также интерфейсы для точного управления со-
стоянием и временем. Реляционные API Flink, SQL и API таблиц в стиле 
LINQ в этой книге не обсуждаются;

�� соединителями с наиболее распространенными системами хранения, 
такими как Apache Kafka, Apache Cassandra, Elasticsearch, JDBC, Kinesis, 
и распределенными файловыми системами, такими как HDFS и S3;

�� возможностью запускать потоковые приложения в режиме 24/7 с ми-
нимальным временем простоя благодаря высокой отказоустойчивости 
Flink (без единой точки отказа), тесной интеграции с Kubernetes, YARN 
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и Apache Mesos, быстрому восстановлению после сбоев и возможности 
динамического масштабирования заданий;

�� возможностью обновлять код заданий приложения и переносить за-
дания в разные кластеры Flink без потери состояния приложения;

�� подробным и  настраиваемым набором показателей системы и  при-
ложений для заблаговременного выявления проблем и реагирования 
на них;

�� и последнее, но не менее важное: Flink также является полноценным 
пакетным процессором1.

В дополнение к этим возможностям Flink – очень удобный для разработчи-
ков фреймворк благодаря простым в использовании API. Режим встроенного 
выполнения запускает приложение и  всю систему Flink в  одном процес-
се JVM, который можно использовать для запуска и отладки заданий Flink 
в  среде IDE. Эта возможность пригодится при разработке и тестировании 
приложений Flink.

1.4.1. Запуск вашего первого приложения Flink
Далее мы пройдем с вами через процесс запуска локального кластера и вы-
полнения потокового приложения, чтобы вы впервые познакомились с Flink. 
Приложение, которое мы собираемся запустить, конвертирует и усредняет 
случайно сгенерированные показания датчиков температуры по времени. 
Для работы с этим примером в вашей системе должна быть установлена Java 
8. Мы описываем шаги для среды UNIX, но, если вы работаете с Windows, мы 
рекомендуем настроить виртуальную машину с Linux – Cygwin (среда Linux 
для Windows) или подсистемой Windows для Linux, представленной в Win-
dows 10. Следующие шаги демонстрируют, как запустить локальный кластер 
Flink и отправить заявку на выполнение.

1.	� Перейдите на веб-страницу Apache Flink и  загрузите бинарный дис-
трибутив Apache Flink 1.7.1 для Scala 2.12 без поддержки Hadoop.

2.	 Распакуйте архивный файл:

$ tar xvfz flink-1.7.1-bin-scala_2.12.tgz

3.	 Запустите локальный кластер Flink:

$ cd flink-1.7.1
$ ./bin/start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host xxx.
Starting taskexecutor daemon on host xxx.

1	 API пакетной обработки Flink, API DataSet и его операторы отделены от их соот-
ветствующих потоковых аналогов. Однако подход сообщества Flink состоит в том, 
чтобы рассматривать пакетную обработку как частный случай потоковой обра-
ботки – обработку ограниченных потоков. Постоянные усилия сообщества Flink 
направлены на то, чтобы превратить Flink в систему с действительно унифициро-
ванным пакетным и потоковым API и средой выполнения.
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4.	� Откройте веб-интерфейс Flink, введя URL-адрес http://localhost:8081 
в своем браузере. Как показано на рис. 1.8, вы увидите статистику толь-
ко что запущенного локального кластера Flink. Она говорит о том, что 
подключен один TaskManager (процесс-воркер Flink) и  что доступен 
один слот задачи (единица ресурсов, которые предоставляет TaskMa
nager).

Рис. 1.8   Снимок экрана веб-панели управления Apache Flink

5.	 Загрузите файл JAR, содержащий примеры из этой книги:

$ wget https://streaming-with-flink.github.io/examples/download/examples-scala.jar

	 Вы также можете создать файл JAR самостоятельно, выполнив действия, описанные 
в файле README репозитория.

6.	� Запустите пример на локальном кластере, указав класс записи при-
ложения и файл JAR:

$ ./bin/flink run \
  -c io.github.streamingwithflink.chapter1.AverageSensorReadings \
  examples-scala.jar
Starting execution of program
Job has been submitted with JobID cfde9dbe315ce162444c475a08cf93d9 

7.	� Посмотрите на веб-панель. Вы должны увидеть задание в разделе Run-
ning Jobs (Выполняемые задания). Если вы нажмете на это задание, вы 
увидите поток данных и текущие параметры операторов выполняемо-
го задания, как показано на снимке экрана на рис. 1.9.

8.	� Вывод задания записывается в  стандартный рабочий процесс Flink, 
который по умолчанию перенаправляется в  файл в  папке ./log. Вы 
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можете отслеживать состояние вывода, используя команду tail сле
дующим образом:

$ tail -f ./log/flink-<user>-taskexecutor-<n>-<hostname>.out

Вы должны увидеть, как в файл записываются строки наподобие сле-
дующих:

SensorReading(sensor_1,1547718199000,35.80018327300259)
SensorReading(sensor_6,1547718199000,15.402984393403084)
SensorReading(sensor_7,1547718199000,6.720945201171228)
SensorReading(sensor_10,1547718199000,38.101067604893444) 

Первое поле SensorReading – это sensorId, второе – это отметка време-
ни в миллисекундах с 1970-01-01-00:00:00.000, а третье – это средняя 
температура, вычисленная за 5 с.

Рис. 1.9   Снимок экрана веб-панели Apache Flink,  
показывающий выполняемую задачу

9.	� Поскольку у вас запущено потоковое приложение, оно будет работать 
до тех пор, пока вы его не отмените. Вы можете сделать это, выбрав 
задание на веб-панели управления и  нажав кнопку Отмена вверху 
страницы.

10.	 Наконец, вы должны остановить локальный кластер Flink:

$ ./bin/stop-cluster.sh

Да, это так просто. Вы только что установили и  запустили свой первый 
локальный кластер Flink и выполнили свою первую программу Flink с API 
DataStream! Конечно, вам предстоит еще многое узнать о потоковой обра-
ботке с помощью Apache Flink, и именно об этом рассказывает наша книга.
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1.5. Заключение

В этой главе вы познакомились с потоковой обработкой с учетом состояния, 
обсудили варианты ее использования и впервые встретились с Apache Flink. 
Мы начали с обзора традиционных инфраструктур данных – того, как обычно 
проектируются бизнес-приложения и как данные собираются и анализиру-
ются сегодня в большинстве компаний. Затем мы представили идею потоко-
вой обработки с учетом состояния и объяснили, как она работает в широком 
спектре сценариев использования, от бизнес-приложений и микросервисов 
до ETL и анализа данных. Мы рассказали, как развивались системы потоко-
вой обработки с открытым исходным кодом с момента их создания в начале 
2010-х гг. и как потоковая обработка стала жизнеспособным решением для 
многих задач современных предприятий. Наконец, мы рассмотрели Apache 
Flink и его обширный набор функций, а также показали, как установить ло-
кальный кластер Flink и запустить первое приложение для обработки потока 
данных.



Глава 2
Основы 

потоковой обработки

Вы уже знаете, как потоковая обработка устраняет некоторые ограничения 
традиционной пакетной обработки и как она помогать создавать новые при-
ложения и архитектуры. Вы также немного знаете об эволюции приложений 
потоковой обработки с  открытым исходным кодом и  о том, как выглядит 
потоковое приложение Flink. В этой главе вы окончательно войдете в мир 
потоковой обработки.

Цель этой главы – познакомить вас с фундаментальными концепциями по-
токовой обработки и требованиями к фреймворкам. Надеемся, что, прочитав 
эту главу, вы сможете оценить возможности современных систем обработки 
потоковых данных.

2.1. Введение в потоковое 
программирование

Прежде чем мы углубимся в основы потоковой обработки, давайте рассмо-
трим предысторию потокового программирования и освоим терминологию, 
которую мы будем использовать в этой книге.

2.1.1. Графы потока данных
Как следует из ее названия, потоковая программа (dataflow program) опи-
сывает, как потоки данных перемещаются между операциями. Потоковые 
программы обычно представлены в виде ориентированных графов, где узлы 
называются операторами и представляют вычисления, а ребра представляют 
зависимости данных. Операторы – это основные функциональные единицы 
потокового приложения. Они получают данные из входов, выполняют над 
ними вычисления и выдают данные на выходы для дальнейшей обработки. 
Операторы без портов ввода называются источниками данных (data source), 
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а операторы без портов вывода – приемниками1 данных (data sink). Граф по-
тока данных должен иметь по крайней мере один источник данных и один 
приемник данных. На рис. 2.1 показана потоковая программа, которая из-
влекает и подсчитывает хештеги из входного потока твитов.

Источник 
твитов

Извлечение 
хештегов Подсчет

Приемник 
популярных 

топиков

Я написал первое 
приложение 

#Apache #Flink!

Кто-нибудь 
собирается  

на #Flink #meetup?

Flink
Apache

Flink, 1
Apache, 1

Flink
meetup

Flink, 2
meetup, 1

Рис. 2.1   Логический граф потока данных для непрерывного подсчета хештегов  
(узлы представляют операторы, а ребра обозначают зависимости данных)

Графы потоков данных, подобные изображенному на рис. 2.1, называют-
ся логическими, поскольку они отражают высокоуровневое представление 
логики вычислений. Для выполнения потоковой программы ее логический 
граф преобразуется в  граф физического потока данных, который подробно 
определяет, как выполняется программа. Например, если мы используем 
механизм распределенной обработки, у каждого оператора может быть не-
сколько параллельных задач, выполняемых на разных физических машинах. 
На рис. 2.2 показан граф физического потока данных для логического графа 
на рис.  2.1. В то время как в логическом графе потока данных узлы пред-
ставляют операторы, в физическом потоке данных узлы представляют собой 
задачи. Операторы «Извлечь хештеги» и «Счетчик» имеют по две параллель-
ные задачи, каждая из которых выполняет вычисление над подмножеством 
входных данных.

Источник 
твитов

Извлечение 
хештегов

Извлечение 
хештегов

Подсчет

Подсчет
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#Apache #Flink!
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на #Flink #meetup? meetup

Apache

meetup, 1
Apache, 1

Flink, 2
Flink, 1

Flink

Flink

Рис. 2.2   Схема физического потока данных для подсчета хештегов  
(узлы представляют задачи)

1	 В контексте потоковой обработки с переводом этого термина возникает небольшая 
путаница, потому что data sink стоит в конце логического потока данных, то есть 
на выходе, и называть его приемником кажется слегка нелогичным. Но если пред-
ставить data sink как корзинку, в которую с конвейера падают готовые изделия, 
становится ясно, что это действительно приемник. – Прим. перев.
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2.1.2. Параллелизм данных и параллелизм задач
Вы можете по-разному использовать параллелизм в графах потоков данных. 
Во-первых, вы можете разделить свои входные данные и параллельно выпол-
нять задачи одной и той же операции над подмножествами данных. Этот тип 
параллелизма называется параллелизмом данных. Параллелизм данных по-
лезен, поскольку он позволяет обрабатывать большие объемы данных и рас-
пределять вычислительную нагрузку между несколькими вычислительными 
узлами. С другой стороны, у вас могут быть задачи от разных операторов, 
параллельно выполняющих вычисления с одними и теми же или разными 
данными. Этот тип параллелизма называется параллелизмом задач. Исполь-
зуя параллелизм задач, вы можете эффективнее использовать вычислитель-
ные ресурсы кластера.

2.1.3. Стратегии обмена данными
Стратегии обмена данными определяют, как элементы данных назначаются 
задачам в  графе физического потока данных. Стратегии обмена данными 
могут быть автоматически выбраны механизмом выполнения в зависимости 
от семантики операторов или явно назначены программистом потоковых 
приложений. Здесь мы кратко рассмотрим некоторые общие стратегии об-
мена данными, показанные на рис. 2.3.

Прямая

На основе ключа

Широковещательная

Случайная

Рис. 2.3   Стратегии обмена данными

�� Стратегия передачи отправляет данные от задачи к задаче-получате-
лю. Если обе задачи расположены на одной физической машине (что 
часто обеспечивается планировщиками задач), эта стратегия обмена 
позволяет избежать сетевого взаимодействия.
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�� Стратегия широковещания отправляет каждый элемент данных всем 
параллельным задачам оператора. Поскольку эта стратегия реплици-
рует данные и  включает сетевое взаимодействие, она обходится до-
вольно дорого.

�� Стратегия на основе ключей разделяет данные по ключевому атрибуту 
и гарантирует, что элементы данных с одинаковым ключом будут об-
рабатываться одной и той же задачей. На рис.  2.2 выходные данные 
оператора «Извлечь хештеги» разделены по ключу (хештегу), так что 
задачи оператора счетчика могут правильно вычислить вхождения 
каждого хештега.

�� Стратегия случайного выбора равномерно распределяет элементы дан-
ных по задачам оператора, чтобы равномерно распределять нагрузку 
по вычислительным задачам.

2.2. Параллельная обработка потоков

Теперь, когда вы знакомы с основами потокового программирования, пора 
узнать, как эти концепции применяются к параллельной обработке потоков 
данных. Но сначала давайте определим главный термин нашей книги: поток 
данных – это потенциально неограниченная последовательность событий.

События в потоке данных могут представлять данные мониторинга, из-
мерения датчиков, транзакции по кредитным картам, наблюдения метео-
станции, интерактивные взаимодействия пользователей, поиск в интернете 
и т. д. В этом разделе вы узнаете, как параллельно обрабатывать бесконечные 
потоки, используя парадигму потокового программирования.

2.2.1. Задержка и пропускная способность
В главе 1 вы узнали, что к потоковым приложениям предъявляют иные опе-
рационные требования, чем к традиционным пакетным программам. Тре-
бования также различаются, когда дело доходит до оценки быстродействия. 
В  случае пакетных приложений мы обычно заботимся об общем времени 
выполнения задачи или о том, сколько времени требуется нашему меха-
низму обработки, чтобы прочитать ввод, выполнить вычисление и записать 
результат. Поскольку потоковые приложения работают непрерывно и вход 
потенциально бесконечен, при обработке потока данных нет понятия обще-
го времени выполнения. Вместо этого потоковые приложения должны пре-
доставлять результаты для входящих данных как можно быстрее, сохраняя 
при этом возможность принимать новые события, поступающие с высокой 
скоростью. Мы выражаем эти требования к производительности в терминах 
задержки и пропускной способности.

2.2.1.1. Задержка
Задержка (latency) указывает, сколько времени требуется для обработки со-
бытия. По сути, это временной интервал между получением события и по-
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явлением эффекта обработки этого события в выходных данных. Чтобы ин-
туитивно понять, что такое задержка, представьте ежедневное посещение 
любимой кофейни. Когда вы входите в кофейню, внутри уже могут быть дру-
гие покупатели. Итак, вы стоите в очереди, а когда наступает ваша очередь, 
вы делаете заказ. Кассир принимает оплату и передает ваш заказ бариста, 
который готовит вам напиток. Когда ваш кофе будет готов, бариста называет 
ваше имя, и вы можете забрать свой кофе со стойки. Задержка обслужива-
ния – это время, которое вы проводите в кафе с момента входа до первого 
глотка кофе.

При потоковой передаче данных задержка измеряется в  единицах вре-
мени, например в миллисекундах. В зависимости от приложения вас может 
интересовать средняя задержка, максимальная задержка или процентильная 
задержка. Например, среднее значение задержки 10 мс означает, что собы-
тия обрабатываются в среднем в течение 10 мс. С другой стороны, значение 
95-процентильной задержки в 10 мс означает, что 95 % событий обрабаты-
ваются в течение 10 мс. Средние значения скрывают истинное распреде-
ление задержек обработки и могут затруднить обнаружение проблем. Если 
у  бариста заканчивается молоко прямо перед приготовлением капучино, 
вам придется подождать, пока его принесут из кладовой. Хотя эта задержка 
может вас раздражать, большинство других клиентов останутся довольны.

Обеспечение низкой задержки критически важно для многих потоковых 
приложений, таких как обнаружение мошенничества, системные предупреж-
дения, мониторинг сети и  предоставление услуг со строгими соглашения-
ми об уровне обслуживания. Низкая задержка – ключевая характеристика 
потоковой обработки, она позволяет работать с  приложениями реального 
времени. Современные потоковые процессоры, такие как Apache Flink, могут 
предлагать задержки до нескольких миллисекунд. Напротив, традиционные 
задержки при пакетной обработке обычно составляют от нескольких минут 
до нескольких часов. При пакетной обработке вам сначала нужно собрать 
события в пакеты, и только затем вы можете их обработать. Таким образом, 
задержка ограничена временем прибытия последнего события в каждом па-
кете и, естественно, зависит от размера пакета. Правильная потоковая обра-
ботка не нуждается в подобных искусственных задержках на входе и поэтому 
может обеспечить действительно низкие задержки на выходе. В потоковой 
модели события могут обрабатываться, как только они поступают в систему, 
а задержка более точно отражает фактическую работу, которую необходимо 
выполнить для каждого события.

2.2.1.2. Пропускная способность
Пропускная способность (throughput) – это мера вычислительной мощности 
системы. То есть пропускная способность говорит нам, сколько событий си-
стема может обработать за единицу времени. Вернемся к примеру с кофей-
ней: если она открыта с 7 утра до 7 вечера и способна обслужить 600 клиентов 
за один день, тогда ее средняя пропускная способность составит 50 клиентов 
в час. Обычно мы хотим, чтобы задержка была как можно меньше, а про-
пускная способность была как можно больше.
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Пропускная способность измеряется в событиях или операциях в едини-
цу времени. Важно отметить, что скорость обработки зависит от скорости 
поступления данных; низкая пропускная способность не обязательно ука-
зывает на плохую производительность. Как владелец или клиент потоковой 
системы, вы обычно хотите иметь уверенность, что ваша система способна 
обработать максимально ожидаемую частоту событий. То есть вас в первую 
очередь интересует определение пиковой пропускной способности – предела 
производительности, когда ваша система работает с максимальной нагруз-
кой. Чтобы лучше понять концепцию пиковой пропускной способности, 
давайте рассмотрим приложение потоковой обработки, которое не прини-
мает никаких входящих данных и,  следовательно, не потребляет никаких 
системных ресурсов. Когда приходит первое событие, оно будет немедленно 
обработано с минимально возможной задержкой. Например, если вы пер-
вый клиент, пришедший в кофейню сразу после того, как она открыла свои 
двери утром, вас сразу обслужат. В идеале вы хотели бы, чтобы эта задерж-
ка оставалась постоянной и  независимой от скорости входящих событий. 
Однако, как только мы достигнем такой скорости входящих событий, при 
которой системные ресурсы будут полностью исчерпаны, нам придется на-
чать буферизацию событий. В примере с кофейней вы, вероятно, увидите, 
что это происходит сразу после обеда. Многие люди приходят одновременно 
и  вынуждены стоять в  очереди. На этот момент система достигла макси-
мальной пропускной способности, и  дальнейшее увеличение частоты со-
бытий приведет только к ухудшению задержки. Если система продолжает 
получать данные с большей скоростью, чем она может обработать, буферы 
могут переполниться, что приведет к потере данных. Эта проблема известна 
как противодавление (backpressure), и для ее решения существуют разные 
стратегии.

2.2.1.3. Как связаны задержка и пропускная способность?
На этом этапе вам должно быть ясно, что задержка и пропускная способность 
не являются независимыми показателями. Если событиям требуется много 
времени для прохождения по конвейеру обработки данных, мы не сможем 
обеспечить высокую пропускную способность. Точно так же, если емкость 
системы мала, события буферизируются и должны ждать, прежде чем они 
будут обработаны.

Вернемся к  примеру с  кофейней, чтобы выяснить, как задержка и  про-
пускная способность влияют друг на друга. Во-первых, должно быть ясно, 
что существует оптимальная задержка при отсутствии нагрузки. То есть вы 
получите самое быстрое обслуживание, если будете единственным покупа-
телем в кофейне. Однако в часы пик клиентам придется ждать в очереди, 
и задержка будет увеличиваться. Другим фактором, влияющим на задержку 
и, следовательно, на пропускную способность, является время, необходимое 
для обработки события, или время, необходимое для обслуживания каждого 
клиента в кофейне. Представьте, что во время рождественских праздников 
бариста должны нарисовать Санта-Клауса на каждой чашке кофе, который 
они подают. Это означает, что время, необходимое для приготовления одно-
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го напитка, увеличится, в результате чего каждый человек будет проводить 
больше времени в очереди, что снизит общую пропускную способность.

Итак, можно ли получить одновременно низкую задержку и высокую про-
пускную способность или это безнадежная попытка? Вы можете уменьшить 
задержку в нашей кофейне, наняв более опытного бариста – того, кто быстрее 
готовит кофе. При высокой нагрузке это изменение также увеличит пропуск-
ную способность, потому что за то же время будет обслужено больше кли-
ентов. Другой способ добиться того же результата – нанять второго бариста 
и использовать параллелизм. Главный вывод здесь заключается в том, что 
уменьшение задержки увеличивает пропускную способность. Естественно, 
если система может выполнять операции быстрее, она будет выполнять боль-
ше операций за то же время. Фактически именно это и происходит, когда вы 
используете параллелизм в  конвейере потоковой обработки. Обрабатывая 
несколько потоков параллельно, вы уменьшаете задержку при одновремен-
ной обработке большего количества событий.

2.2.2. Операции с потоками данных
Механизмы потоковой обработки обычно предоставляют набор встроенных 
операций для приема, преобразования и  вывода потоков. Эти операторы 
могут быть объединены в графы обработки потоков данных для реализации 
логики потоковых приложений. В этом разделе мы расскажем про наиболее 
распространенные операции потоковой обработки.

Потоковые операции можно разделить на два типа: без учета состояния 
(stateless) и с учетом состояния (stateful). Операции без учета состояния не 
поддерживают никакого внутреннего состояния. То есть обработка события 
не зависит от каких-либо событий, наблюдаемых в прошлом, и история не 
сохраняется. Операции без учета состояния легко распараллелить, посколь-
ку события могут обрабатываться независимо друг от друга и  от порядка 
их поступления. Более того, в случае сбоя оператор, который не учитыва-
ет состояние, можно просто перезапустить и продолжить обработку с того 
места, где он был остановлен. Напротив, операторы с  учетом состояния 
могут сохранять информацию о  событиях, которые они получили ранее. 
Это состояние может обновляться входящими событиями и впоследствии 
использоваться в  логике обработки следующих событий. Для потоковых 
приложений с учетом состояния труднее обеспечивать параллелизм и отка-
зоустойчивость, потому что состояние должно быть эффективно разделено 
и  надежно восстановлено в  случае сбоев. Вы узнаете больше о  потоковой 
обработке с отслеживанием состояния, сценариях сбоев и согласованности 
в конце этой главы.

2.2.2.1. Получение и выдача данных
Операции получения и выдачи данных позволяют потоковому процессору 
взаимодействовать с  внешними системами. Получение данных (data inges-
tion) – это операция получения необработанных данных из внешних ис-
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точников и их преобразования в формат, подходящий для обработки. Опе-
раторы, реализующие логику получения (извлечения) данных, называются 
источниками данных. Источник данных может извлекать данные из TCP-
сокета, файла, топика Kafka или интерфейса данных датчика. Выгрузка дан-
ных (data egress) – это операция по созданию вывода в  форме, пригодной 
для потребления внешними системами. Операторы, выполняющие выгрузку 
данных, называются приемниками данных (data sink) и включают файлы, базы 
данных, очереди сообщений и интерфейсы мониторинга.

2.2.2.2. Операции преобразования
Операции преобразования (transformation operation) – это однопроходные 
операции, которые обрабатывают каждое событие независимо. Эти опе-
рации используют одно событие за другим и  применяют некоторые пре-
образования к данным события, создавая новый выходной поток. Логика 
преобразования может быть либо интегрирована в оператор, либо предо-
ставлена пользовательской функцией, как показано на рис.  2.4. Функции 
пишутся прикладным программистом и реализуют настраиваемую логику 
вычислений.

Рис. 2.4   Оператор потоковой передачи с функцией,  
которая превращает каждое входящее событие в событие,  

обозначенное более темным цветом

Операторы могут принимать несколько входных данных и создавать не-
сколько выходных потоков. Они также могут изменять структуру графа по-
тока данных, разделяя поток на несколько потоков или объединяя их в один. 
Мы обсудим семантику всех операторов, доступных во Flink, в главе 5.

2.2.2.3. Скользящее агрегирование
Скользящее агрегирование (rolling aggregation) – это агрегирование, такое как 
сумма, минимум и максимум, которое постоянно обновляется для каждого 
входного события. Операции агрегирования учитывают состояние и объеди-
няют текущее состояние с входящим событием для получения обновленного 
агрегированного значения. Обратите внимание, что, для того чтобы иметь 
возможность эффективно комбинировать текущее состояние с  событием 
и выдавать одно значение, функция агрегирования должна быть ассоциатив-
ной и коммутативной. В противном случае оператору пришлось бы хранить 
всю историю потоковой передачи. Рисунок 2.5 показывает агрегирование 
скользящего минимума. Оператор сохраняет текущее минимальное значение 
и соответственно обновляет его для каждого входящего события.
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Рис. 2.5   Операция агрегирования  
скользящего минимума

2.2.2.4. Оконные операции
Операции преобразования и  скользящего агрегирования обрабатывают 
одно событие за раз для создания выходных событий и, возможно, обнов-
ления состояния. Однако некоторые операции должны собирать и  буфе-
ризовать определенное количество записей для вычисления результата на 
их основе. Рассмотрим, например, операцию потокового объединения или 
целостный агрегат (holistic aggregate), такой как медианная функция. Чтобы 
правильно выполнять подобные операции в неограниченных потоках, вам 
необходимо ограничить объем данных, которые охватывают эти операции. 
В этом разделе мы обсуждаем оконные операции, которые предоставляют 
такую услугу.

Помимо практического значения, окна также позволяют выполнять семан-
тически интересные запросы к потокам. Вы видели, как операция скольз-
ящего агрегирования кодирует историю всего потока в единственное агре-
гированное значение и предоставляет нам результат с малой задержкой для 
каждого события. Это нормально для некоторых приложений, но что, если 
вас интересует только ограниченный набор самых свежих данных? Рассмо-
трим приложение, которое предоставляет водителям информацию о дорож-
ной обстановке в  режиме реального времени, чтобы они могли избегать 
перегруженных маршрутов. В  этом сценарии вы хотите знать, произошла 
ли авария в  определенном месте в течение последних нескольких минут. 
С  другой стороны, вам вряд ли интересно знать обо всех происшествиях, 
которые когда-либо происходили на этом месте. Более того, сводя историю 
потоков к единому агрегату, вы теряете информацию о том, как ваши данные 
меняются с течением времени. Например, вы хотите узнать, сколько транс-
портных средств пересекает данный перекресток каждые 5 мин.

Оконные операции непрерывно создают конечные наборы событий, на-
зываемые корзинами данных (data bucket), из неограниченного потока со-
бытий и позволяют нам выполнять вычисления на этих конечных наборах. 
События обычно назначаются сегментам на основе свойств данных или вре-
мени. Чтобы правильно определить семантику оконного оператора, нам не-
обходимо определить, как события назначаются сегментам и как часто окно 
дает результат. Поведение окон определяется набором политик. Политики 
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окна решают, когда создаются новые сегменты, какие события назначают-
ся каким сегментам и когда оценивается содержимое сегмента. Последнее 
решение основано на условии запуска. Когда условие триггера выполнено, 
содержимое корзины отправляется в функцию оценки, которая применяет 
логику вычислений к элементам корзины. Функции вычислений могут пред-
ставлять собой агрегаты, такие как сумма или минимум, или настраиваемые 
операции, применяемые к собранным элементам корзины. Политики могут 
быть основаны на времени (например, события, полученные за последние 
пять секунд), количестве (например, последние сто событий) или свойстве 
данных. Далее мы описываем семантику общих типов окон.

�� Шагающие окна (tumbling window) помещают события в неперекрыва-
ющиеся сегменты фиксированного размера. После достижения грани-
цы окна все события отправляются в функцию оценки для обработки. 
Шагающие окна на основе подсчета определяют, сколько событий со-
бирается перед запуском оценки. На рис. 2.6 показано шагающее окно 
на основе подсчета, которое разбивает входной поток на сегменты 
из четырех элементов. Шагающие окна на основе времени определя-
ют временной интервал, в течение которого события буферизируются 
в сегменте. На рис. 2.7 показано шагающее окно на основе времени, 
в котором события собираются в сегменты и обрабатываются каждые 
10 мин.

Постоянная длина

Рис. 2.6   Шагающее окно на основе подсчета

Постоянный интервал времени

t = 21:00 t = 21:10 t = 21:20

Рис. 2.7   Шагающее окно на основе времени

�� Скользящие окна (sliding window) назначают события в перекрывающи-
еся сегменты фиксированного размера. Таким образом, событие мо-
жет принадлежать нескольким сегментам. Мы определяем скользящие 
окна, указывая их длину и  сдвиг (slide). Значение сдвига определяет 
интервал, через который создается новый сегмент. Скользящее окно 
на основе подсчета на рис. 2.8 имеет длину четыре события и сдвиг на 
три события.
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СдвигПостоянная длина

Рис. 2.8   Скользящее окно на основе подсчета  
с длиной четыре события и сдвигом на три события

�� Окна сеанса (session window) полезны в обычных сценариях реального 
мира, где нельзя применить ни шагающие, ни скользящие окна. Рас-
смотрим приложение, которое анализирует поведение пользователей 
в  интернете. В таких приложениях мы хотели бы сгруппировать со-
бытия, происходящие из одного периода активности или сеанса поль-
зователя. Сеансы состоят из серии событий, происходящих в смежные 
периоды времени, за которыми следует период бездействия. Напри-
мер, взаимодействие пользователя с серией новостных статей одна за 
другой можно рассматривать как сеанс. Поскольку продолжительность 
сеанса не определяется заранее, но зависит от фактических данных, 
в этом сценарии нельзя применять шагающие и скользящие окна. Вме-
сто этого нам нужна оконная операция, которая назначает события, 
принадлежащие одному сеансу, в одном сегменте. Окна сеанса группи-
руют события в сеансах на основе промежутка между сеансами, кото-
рый определяет время бездействия, достаточное, чтобы считать сеанс 
закрытым. На рис. 2.9 показано окно сеанса.

Интервал сессий

Рис. 2.9   Окно сеанса

Все типы окон, рассмотренные до сих пор, являются окнами, которые ра-
ботают с полным потоком. Но на практике вы можете разделить поток на 
несколько логических потоков и определить параллельные окна. Например, 
если вы получаете измерения от разных датчиков, вы, вероятно, захотите 
сгруппировать поток по идентификатору датчика перед применением окон-
ной операции. В параллельных окнах каждый раздел применяет оконные по-
литики независимо от других разделов. На рис. 2.10 показано параллельное 
шагающее окно на основе подсчета длиной 2 с разделением потока по цвету 
событий.

Оконные операции тесно связаны с двумя основными концепциями пото-
ковой обработки: семантикой времени и учетом состояния. Время, пожалуй, 
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является самым важным аспектом потоковой обработки. Несмотря на то что 
низкая задержка является привлекательным свойством потоковой обработ-
ки, ее истинная ценность выходит за рамки простой аналитики. Реальные 
системы, сети и каналы связи далеки от совершенства, и потоковая передача 
данных часто может прерываться, а события могут поступать не по порядку. 
Крайне важно понимать, как получить точные и детерминированные резуль-
таты в таких условиях. Более того, потоковые приложения, обрабатывающие 
события по мере их создания, также должны иметь возможность обрабаты-
вать исторические события аналогичным образом, что позволяет проводить 
автономную аналитику или даже анализ с путешествием во времени (time-
travel analysis). Конечно, все это не имеет значения, если ваша система не 
может защитить состояние от сбоев. Все типы окон, которые вы видели до 
сих пор, требуют буферизации данных перед получением результата. Фак-
тически, если вы хотите вычислить что-либо интересное в потоковом при-
ложении, даже простой подсчет, вам необходимо поддерживать состояние. 
Учитывая, что потоковые приложения могут работать в течение нескольких 
дней, месяцев или даже лет, вам необходимо убедиться, что состояние может 
быть надежно восстановлено при сбоях и что ваша система может гаранти-
ровать точные результаты, даже если что-то сломается. В оставшейся части 
этой главы мы более подробно рассмотрим концепции времени и гарантий 
состояния при сбоях обработки потока данных.

Рис. 2.10   Параллельное шагающее окно длиной 2  
на основе подсчета с разделением потока по цвету событий

2.3. Семантика времени

В этом разделе мы вводим семантику времени и описываем различные нота-
ции времени в потоковой передаче. Мы обсудим, как потоковый процессор 
добивается точных детерминированных результатов с  неупорядоченными 
событиями и  как вы можете выполнять обработку исторических событий 
и путешествия во времени при потоковой передаче данных.
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2.3.1. Что означает одна минута 
в потоковой обработке?
При работе с потенциально неограниченным потоком постоянно прибыва-
ющих событий время становится центральным аспектом приложений. Пред-
положим, вы хотите вычислять результаты непрерывно, возможно, каждую 
минуту. Что на самом деле будет означать одна минута в контексте вашего 
потокового приложения?

Рассмотрим программу, которая анализирует события пользователей, 
играющих в мобильную онлайн-игру. Пользователи организованы в коман-
ды, и  приложение собирает данные об активности команды и  раздает на-
грады в игре, такие как дополнительные жизни и повышение уровня, в за-
висимости от того, насколько быстро участники команды достигают целей 
игры. Например, если все пользователи в  команде лопают 500 пузырьков 
в течение одной минуты, они переходят на следующий уровень. Алиса – пре-
данный игрок, который играет в эту игру каждое утро по дороге на работу. 
Проблема в том, что Алиса живет в  Берлине и  на работу ездит на метро. 
И все знают, что мобильный интернет в берлинском метро, мягко говоря, так 
себе. Рассмотрим случай, когда Алиса начинает лопать пузырьки, когда ее 
телефон подключен к сети, и отправляет события в приложение анализа. За-
тем поезд въезжает в туннель, и ее телефон отключается. Алиса продолжает 
играть, и игровые события сохраняются в ее телефоне. Когда поезд выезжает 
из туннеля, телефон снова подключается к сети, и ожидающие события от-
правляются в приложение. Что должно делать приложение? Что в этом случае 
означает одна минута? Включает ли она время, когда Алиса была офлайн или 
нет? Рисунок 2.11 иллюстрирует эту проблему.
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Рис. 2.11   Приложение, получающее события мобильных онлайн-игр в метро,  
столкнется с разрывом потока при потере сетевого подключения,  

но события сохраняются в памяти телефона игрока  
и доставляются при восстановлении соединения
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Онлайн-игры – это простой сценарий, показывающий, что семантика опе-
ратора должна зависеть от времени, когда события действительно происхо-
дят, а не от времени, когда приложение получает события. В случае мобиль-
ной игры самым неприятным следствием неправильной семантики будет 
разочарование Алисы и ее команды, которые больше никогда не будут играть 
в эту игру. Но есть гораздо более критичные ко времени приложения, пра-
вильность семантики которых мы обязаны гарантировать. Если мы будем 
учитывать только то, сколько данных мы получаем в течение одной минуты, 
наши результаты будут отличаться и зависеть от скорости сетевого подклю-
чения или скорости обработки. На самом деле что действительно определяет 
количество событий в одной минуте, так это время самих данных.

 В примере игры Алисы потоковое приложение может работать с двумя 
разными понятиями времени: время обработки или время события. Мы рас-
смотрим оба понятия в следующих разделах.

2.3.2. Время обработки
Время обработки (processing time) – это время локальных часов на маши-
не, которая обрабатывает поток. Окно с  привязкой к  времени обработки 
включает в себя все события, которые произошли в оконном операторе за 
период времени, измеренный часами его машины. Как показано на рис. 2.12, 
в случае Алисы такое окно продолжает отсчет времени, когда ее телефон от-
ключается, и не учитывает ее игровую активность в это время.

Окно по времени обработки
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Рис. 2.12   Окно с привязкой к времени обработки  
продолжает отсчитывать время даже после отключения телефона Алисы

2.3.3. Время события
Время события (event time) – это время, когда событие в потоке действи-
тельно произошло. Время события основано на метке времени (timestamp), 
которая прикреплена к  событию потока. Метки времени обычно суще-
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ствуют внутри данных события до того, как они попадают в конвейер об-
работки (например, время создания события). На рис. 2.13 показано, что 
окно с  привязкой ко времени события правильно объединяет события 
в  соответствии с  их реальным порядком, даже если некоторые события 
были отложены.

Окно по времени события
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Рис. 2.13   Время события правильно помещает события в окно,  
отражая реальное положение дел

Время события полностью отделяет скорость обработки от результатов. 
Операции, основанные на времени события, предсказуемы, а их результаты 
детерминированы. Обработка окна с привязкой к времени события даст один 
и тот же результат независимо от того, насколько быстро обрабатывается по-
ток или когда события поступают к оператору.

Обработка отложенных событий – это только одна из проблем, которую 
вы можете преодолеть с помощью времени события. С его помощью также 
может быть решена распространенная проблема неупорядоченных данных. 
Возьмем Боба, еще одного игрока в мобильной онлайн-игре, который оказал-
ся в одном поезде с Алисой. Боб и Алиса играют в одну игру, но у них разные 
операторы мобильной связи. Пока телефон Алисы теряет связь, находясь 
внутри туннеля, телефон Боба остается подключенным и передает события 
в игровое приложение.

Опираясь на время события, мы можем гарантировать правильность ре-
зультата даже в  случае неупорядоченных данных. Более того, в  сочетании 
с  воспроизводимыми потоками детерминизм временных меток дает вам 
возможность перемещаться в прошлое. То есть вы можете воспроизводить 
поток и анализировать исторические данные, как если бы события проис-
ходили в реальном времени. Кроме того, вы можете ускорить вычисление 
до настоящего момента, чтобы после того, как ваша программа догнала со-
бытия, происходящие сейчас, она могла продолжить работу как приложение 
реального времени, используя неизменную логику программы.
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2.3.4. Водяные знаки
В нашем обсуждении окон и времени событий до сих пор мы упускали из 
виду один очень важный аспект: как мы решаем, когда запускать окно с при-
вязкой к времени события? То есть как долго нам нужно ждать, прежде чем 
мы сможем быть уверены, что получили все события, которые произошли до 
определенного момента времени? И откуда мы вообще знаем, что данные 
будут задержаны? Учитывая непредсказуемое поведение распределенных 
систем и произвольные задержки, которые могут быть вызваны внешними 
факторами, мы не можем дать однозначно правильные ответы на эти во-
просы. В этом разделе вы узнаете, как использовать водяные знаки для на-
стройки поведения окна с привязкой к времени события.

Водяной знак (watermark) – это глобальный показатель прогресса, который 
указывает момент времени, когда мы уверены, что больше не осталось отло-
женных событий. По сути, водяные знаки образуют логические часы, которые 
информируют систему о текущем времени события. Когда оператор получает 
водяной знак со временем T, он может предположить, что больше никогда не 
поступят события с меткой времени меньше T. Водяные знаки необходимы 
как для окон с привязкой к времени событий, так и для операторов, обра-
батывающих неупорядоченные события. После поступления водяного знака 
операторы получают сигнал о том, что все метки времени для определенного 
временного интервала были учтены, и  либо запускают вычисление, либо 
упорядочивают полученные события.

Водяные знаки обеспечивают настраиваемый компромисс между досто-
верностью результатов и  задержкой. Частые водяные знаки обеспечивают 
низкую задержку, но не дают уверенности в  точности. В  этом случае за-
поздавшие события могут появиться после водяного знака, и  мы должны 
предусмотреть код для их обработки. С другой стороны, если водяные знаки 
слишком неторопливы, у вас высокая уверенность в точности, но вы можете 
увеличить задержку обработки без реальной необходимости.

Во многих реальных приложениях системе не хватает знаний для точного 
определения водяных знаков. В примере с мобильными играми практически 
невозможно угадать, как долго пользователи могут оставаться отключенны-
ми; они могут проезжать через туннель, лететь в самолете или никогда боль-
ше не играть. Независимо от того, задаются ли водяные знаки пользователем 
или создаются автоматически, при наличии отложенных задач отслеживание 
глобального прогресса в распределенной системе остается проблематичным. 
Следовательно, слепая надежда на водяные знаки не всегда может быть хоро-
шей идеей. Вместо этого крайне важно, чтобы система потоковой обработки 
обеспечивала механизм для работы с событиями, которые могут появиться 
после водяного знака. В зависимости от требований к приложению вы мо-
жете игнорировать такие события, регистрировать их или использовать для 
исправления предыдущих результатов.
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2.3.5. Время обработки по сравнению 
со временем события
На этом этапе вам может быть интересно, зачем нам вообще беспокоить-
ся о  времени обработки, если время события решает все наши проблемы. 
На самом деле в  некоторых случаях может пригодиться и  время обработ-
ки. Окна с привязкой к времени обработки обеспечивают минимально воз-
можную задержку. Поскольку вы не принимаете во внимание опоздавшие 
и  неупорядоченные события, окно просто должно буферизовать события 
и немедленно запускать вычисление по достижении указанного промежутка 
времени. Таким образом, для приложений, где скорость важнее точности, 
время обработки оказывается кстати. Иногда вам нужно периодически вы-
давать результаты в режиме реального времени, независимо от их точности. 
Примером такого приложения может быть панель мониторинга в реальном 
времени, отображающая агрегированные данные о  событиях по мере их 
поступления. Наконец, окна с привязкой ко времени обработки предлагают 
точное представление самих потоков, что желательно для некоторых случаев 
использования. Например, вам может быть интересно наблюдать за потоком 
и подсчитывать количество событий в секунду для обнаружения сбоев. На-
помним, что время обработки обеспечивает низкую задержку, но результаты 
зависят от скорости обработки и не являются детерминированными. С дру-
гой стороны, время события гарантирует детерминированные результаты 
и  позволяет вам иметь дело с  событиями, которые опаздывают или даже 
нарушают порядок следования.

2.4. Модели состояния и согласованности

Теперь перейдем к другому чрезвычайно важному аспекту потоковой об-
работки – состоянию (state). Состояние широко применяется в  обработке 
данных. Оно требуется для любых нетривиальных вычислений. Для полу-
чения результата функция накапливает состояние в течение определенно-
го периода времени или количества событий (например, для вычисления 
агрегирования или обнаружения шаблона). Операторы с учетом состояния 
для вычисления своих выходных данных используют как входящие собы-
тия, так и внутреннее состояние. Возьмем, к примеру, оператор скользящего 
агрегирования, выводящий текущую сумму всех событий, которые он полу-
чил до сих пор. Оператор сохраняет текущее значение суммы в  качестве 
внутреннего состояния и обновляет его каждый раз, когда получает новое 
событие. Точно так же ведет себя оператор, выдающий предупреждение, 
когда обнаруживает событие «высокая температура», за которым в течение 
ближайших 10 мин следует событие «задымление». Оператору необходи-
мо сохранить событие «высокая температура» во внутреннем состоянии 
до тех пор, пока он не увидит событие «задымление» или пока не истечет  
10-минутный период времени.
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Важность состояния становится еще более очевидной, если мы рассмотрим 
случай использования системы пакетной обработки для анализа неограни-
ченного набора данных. До появления современных потоковых процессо-
ров распространенным подходом к обработке неограниченных данных было 
многократное планирование заданий для небольших пакетов входящих со-
бытий в системе пакетной обработки. Когда задание завершается, результат 
записывается в постоянное хранилище, и все состояние оператора теряет-
ся. Задание, запланированное для обработки следующего пакета, не может 
получить доступ к состоянию предыдущего задания. Эта проблема обычно 
решается путем делегирования управления состоянием внешней системе, 
например базе данных. Напротив, при непрерывном выполнении потоковых 
заданий состояние сохраняется на протяжении всей вереницы событий, и мы 
можем считать его важнейшим компонентом модели программирования. 
В принципе, мы могли бы использовать внешнюю систему для управления 
состоянием и в случае потоковой обработки, даже несмотря на то что такая 
архитектура может привести к дополнительной задержке.

Поскольку потоковые операторы обрабатывают потенциально неограни-
ченные данные, следует проявлять осторожность, чтобы не допустить беско-
нечного роста внутреннего состояния. Чтобы ограничить размер состояния, 
операторы обычно поддерживают некоторую сводку или синопсис (synop-
sis) событий, наблюдаемых до сих пор. Такая сводка может быть подсчетом, 
суммой, выборкой наблюдаемых до сих пор событий, буфером окна или на-
страиваемой структурой данных, которая сохраняет некоторые свойства, 
представляющие интерес для запущенного приложения.

Как вы можете догадаться, поддержка операторов с учетом состояния со-
пряжена с несколькими проблемами реализации.

Управление состоянием
Системе необходимо эффективно управлять состоянием и гарантировать, 
что оно защищено от конкурентных обновлений.

Разделение состояний
Учет состояния усложняет распараллеливание, поскольку результаты за-
висят как от состояния, так и от входящих событий. К счастью, во многих 
случаях вы можете разделить состояния по ключу и независимо управлять 
состоянием каждой ветви. Например, если вы обрабатываете поток изме-
рений от набора датчиков, вы можете использовать разделенное состоя-
ние, чтобы независимо поддерживать состояние каждого датчика.

Восстановление состояния
Третья и  самая большая проблема, с  которой сталкиваются операторы 
с учетом состояния, – это обеспечение возможности восстановления со-
стояния и гарантии правильности результатов даже при наличии сбоев.

Далее мы подробно обсудим сбои заданий и гарантии результата.
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2.4.1. Сбои заданий
Состояние оператора в потоковых заданиях очень ценно, и его следует защи-
щать от сбоев. Если состояние потеряно во время сбоя, после восстановления 
мы получим неправильные результаты. Задания потоковой передачи выпол-
няются в течение длительных периодов времени, поэтому состояние может 
формироваться в течение нескольких дней или даже месяцев. Повторная 
обработка всего ввода для воспроизведения потерянного состояния в случае 
сбоев обходится очень дорого и требует много времени.

В начале этой главы вы узнали, как можно моделировать потоковые про-
граммы в виде графов потоков данных. Перед выполнением они преобра-
зуются в  графы физических потоков данных связанных параллельных за-
дач, каждая из которых выполняет некоторую логику оператора, потребляет 
входные потоки и создает выходные потоки для других заданий. В типичных 
реальных архитектурах могут запускаться сотни таких задач, выполняемых 
параллельно на многих физических машинах. В случае длительной работы 
системы каждая такая задача может завершиться ошибкой в любой момент. 
Как обеспечить прозрачную обработку таких сбоев, чтобы общее задание по-
токовой обработки могло продолжать выполняться? Фактически нам нужно, 
чтобы потоковый процессор не только продолжал обработку в случае сбоя 
задачи, но также предоставлял гарантии достоверности результата и сохран-
ности состояния оператора. Мы обсудим эти вопросы ниже.

2.4.1.1. Что такое сбой задачи?
Для каждого события во входном потоке задача – это этап обработки, ко-
торый выполняет следующие шаги: (1) принимает событие, сохраняя его 
в локальном буфере; (2) возможно, обновляет внутреннее состояние; (3) вы-
полняет выходную запись. Сбой может произойти на любом из этих шагов, 
и система должна иметь четко определенное поведение для каждого сцена-
рия сбоя. Если сбоем завершился первый этап, событие потеряно? Если сбой 
случился после обновления внутреннего состояния, обновит ли его система 
после восстановления?

	 Мы предполагаем, что сетевые соединения надежны, что никакие записи не удаляются 
и не дублируются, и все события в конечном итоге доставляются в место назначения 
в порядке FIFO. Обратите внимание, что Flink использует TCP-соединения, поэтому эти 
требования гарантированно соблюдаются. Мы также предполагаем, что детекторы отка-
зов являются совершенными и что ни одна задача не будет действовать злонамеренно, 
то есть все задачи, которые не завершились ошибкой, выполняются в соответствии с вы-
шеуказанными шагами.

В сценарии пакетной обработки на все эти вопросы есть ответы, потому 
что пакетное задание можно просто перезапустить с самого начала. Следо-
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вательно, никакие события не теряются, и состояние полностью создается 
с нуля. Однако в мире потоковой обработки устранение сбоев – нетривиаль-
ная проблема. Потоковые системы определяют свое поведение при сбоях, 
исходя из гарантии результата. Далее мы рассмотрим типы гарантий, пред-
лагаемых современными потоковыми процессорами, и некоторые механиз-
мы, на которых основаны эти гарантии.

2.4.2. Гарантии результата
Прежде чем мы опишем различные типы гарантий, нам нужно прояснить 
несколько моментов, которые часто являются источником путаницы при 
обсуждении сбоев задач в потоковых процессорах. В оставшейся части этой 
главы, когда мы говорим о  «гарантиях результата», мы имеем в  виду не-
противоречивость внутреннего состояния потокового процессора. То есть 
нас беспокоит то, что код приложения видит как значение состояния после 
восстановления после сбоя. Обратите внимание, что гарантировать согла-
сованность состояния приложения – это не то же самое, что гарантировать 
согласованность его вывода. Трудно гарантировать правильность результата 
после того, как данные были отправлены в приемник, если система прием-
ника не поддерживает формат транзакции, не так ли?

2.4.2.1. Не более одного раза
Самое простое, что можно сделать в случае сбоя задания, – ничего не делать 
для восстановления потерянного состояния и воспроизведения потерянных 
событий. «Не более одного раза» (at-most-once) – это тривиальный подход, 
который гарантирует обработку каждого события не более одного раза. Дру-
гими словами, события можно просто отбросить, и ничего не будет сделано 
для обеспечения правильности результата. Этот тип гарантии также известен 
как «отсутствие гарантии», поскольку такую гарантию может предоставить 
даже система, теряющая каждое событие. Отсутствие каких-либо гарантий 
звучит ужасно, но на самом деле это неплохо, если вы согласны жить с при-
близительными результатами и все, о чем вы заботитесь, – это обеспечить 
минимально возможную задержку.

2.4.2.2. Хотя бы один раз
В большинстве реальных приложений ожидается, что события не должны те-
ряться. Этот тип гарантии называется «хотя бы один раз» (at-least-once), и это 
означает, что все события будут обработаны, однако есть вероятность, что 
некоторые из них будут обработаны более одного раза. Повторная обработка 
может быть приемлемой, если правильность результата зависит только от 
полноты информации. Например, с такой гарантией правильно реализуется 
обнаружение конкретного события во входном потоке. В худшем случае вы 
обнаружите событие более одного раза. Однако подсчет того, сколько раз 
происходит конкретное событие во входном потоке, может вернуть непра-
вильный результат.
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Чтобы гарантировать правильность результата при такой гарантии, вам 
необходимо иметь способ воспроизвести события – либо из источника, либо 
из некоторого буфера. В непрерывных журналах событий все события запи-
сываются в долговременное хранилище, чтобы их можно было воспроизвести 
в случае сбоя задания. Другой способ достижения эквивалентной функцио-
нальности – использование подтверждений записи. Этот метод сохраняет 
каждое событие в буфере до тех пор, пока его обработка не будет подтверж-
дена всеми заданиями в конвейере, после чего событие можно отбросить.

2.4.2.3. Ровно один раз
«Ровно один раз» – это самая строгая гарантия, и  ее трудно достичь. Эта 
гарантия означает, что не только не будет потери события, но и обновления 
внутреннего состояния для каждого события будут происходить ровно один 
раз. По сути, гарантия «ровно один раз» означает, что наше приложение 
предоставит правильный результат, как будто сбоя никогда не было.

Для предоставления данной гарантии требуется соблюдение гарантии 
«хотя бы один раз», и,  следовательно, снова необходим механизм воспро-
изведения данных. Кроме того, потоковый процессор должен обеспечивать 
согласованность внутреннего состояния. То есть после восстановления он 
должен знать, было ли обновление события уже отражено в состоянии или 
нет. Одним из способов достижения этого результата могут быть постоянные 
транзакции обновлений, но они могут привести к значительным накладным 
расходам и снижению быстродействия. Вместо этого Flink использует легкий 
механизм моментальных снимков. Мы обсуждаем алгоритм отказоустойчи-
вости Flink в разделе 3.5.

2.4.2.4. Сквозная гарантия «ровно один раз»
Типы гарантий, с которыми вы уже познакомились, относятся к состоянию 
приложения, которым управляет потоковый процессор. Однако в  реальном 
потоковом приложении помимо потокового процессора будет по крайней 
мере один источник и один приемник. Сквозные гарантии относятся к пра-
вильности результатов по всему конвейеру обработки данных. Каждый ком-
понент предоставляет свои собственные гарантии, и сквозная гарантия всего 
конвейера будет самым слабым местом. Важно отметить, что иногда вы може-
те улучшить семантику приложения с более слабыми гарантиями. Распростра-
ненный случай – когда задача выполняет идемпотентные операции, такие как 
поиск максимума или минимума. В этом случае для достижения результата 
семантики «ровно один раз» достаточно гарантии «хотя бы один раз».

2.5. Заключение

В этой главе вы изучили основы потоковой обработки данных. Вы рассмо-
трели модель программирования потока данных и  узнали, как потоковые 
приложения могут быть представлены в виде распределенных графов пото-
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ков данных. Затем вы узнали о требованиях к параллельной обработке бес-
конечных потоков и увидели важность задержки и пропускной способности 
для потоковых приложений. Мы рассмотрели основные операции потоковой 
передачи и то, как вычислить значимые результаты для неограниченных 
входных данных с помощью оконных операторов. Вы оценили значение вре-
мени в потоковой обработке и сравнили понятия времени события и време-
ни обработки. Наконец, вы узнали, почему потоковым приложениям важно 
хранить состояние и как защитить его от сбоев и гарантировать правильные 
результаты.

До этого момента мы рассматривали концепции потоковой обработки 
независимо от Apache Flink. В  оставшейся части книги мы расскажем, как 
Flink реализует эти концепции на практике, и как вы можете использовать 
его API DataStream для написания приложений, использующих все функции, 
которые мы уже представили.



Глава 3
Архитектура 
Apache Flink

В главе 2 обсуждались важные концепции распределенной потоковой об-
работки, такие как распараллеливание, время и состояние. В этой главе мы 
даем общее представление об архитектуре Flink и рассказываем, как Flink 
реализует аспекты потоковой обработки, которые обсуждались ранее. В част-
ности, мы объясняем распределенную архитектуру Flink, показываем, как 
она обрабатывает время и состояние в потоковых приложениях, и обсуждаем 
его механизмы отказоустойчивости. В этой главе представлена справочная 
информация по успешной реализации и последующей работе с расширенны-
ми потоковыми приложениями при помощи Apache Flink. Это поможет вам 
понять внутреннее устройство Flink и обоснованно судить о быстродействии 
и поведении потоковых приложений.

3.1. Архитектура системы

Flink – это распределенная система для параллельной обработки потоков 
данных с учетом состояния. Обычно Flink состоит из нескольких процессов, 
которые выполняются на нескольких машинах. Обычные проблемы, с кото-
рыми сталкиваются распределенные системы, – это распределение вычисли-
тельных ресурсов в кластере и управление ими, координация процессов, на-
дежное и высокодоступное хранилище данных и восстановление после сбоев.

Flink не решает все эти проблемы самостоятельно. Вместо этого он фо-
кусируется на своей основной функции – распределенной обработке по-
токов данных – и  использует существующую кластерную инфраструктуру 
и службы. Flink хорошо интегрирован с диспетчерами кластерных ресурсов, 
такими как Apache Mesos, YARN и Kubernetes, но также может быть настроен 
для работы в качестве автономного кластера. Flink не обеспечивает надеж-
ное распределенное хранилище. Вместо этого он использует преимущества 
распределенных файловых систем, таких как HDFS, или хранилищ объектов, 
таких как S3. Для выбора лидера в  высокодоступных конфигурациях Flink 
использует Apache ZooKeeper.

В этом разделе мы опишем различные компоненты набора Flink и то, как 
они взаимодействуют друг с другом для выполнения приложения. Обсудим 



Архитектура системы   57

два разных стиля развертывания приложений Flink и то, как каждый из них 
распределяет и выполняет задачи. Наконец, мы объясним, как работает ре-
жим высокой доступности Flink.

3.1.1. Компоненты набора Flink
Набор Flink состоит из четырех различных компонентов, которые вместе 
обеспечивают выполнение потоковых приложений. Эти компоненты назы-
ваются JobManager, ResourceManager, TaskManager и  Dispatcher. Поскольку 
Flink реализован на Java и Scala, все компоненты работают на виртуальных 
машинах Java (Java Virtual Machine, JVM). Каждый компонент имеет следую-
щие обязанности:

�� JobManager – это главный процесс, который контролирует выполне-
ние одного приложения: каждое приложение управляется отдельным 
экземпляром JobManager. JobManager получает заявку на исполнение. 
Приложение состоит из так называемого JobGraph – логического графа 
потока данных (см. главу 1) и файла JAR, который объединяет все необ-
ходимые классы, библиотеки и другие ресурсы. JobManager преобразу-
ет JobGraph в физический граф потока данных, называемый Execution-
Graph, состоящий из задач, которые могут выполняться параллельно. 
JobManager запрашивает необходимые ресурсы (слоты TaskManager) 
для выполнения задач из ResourceManager. Как только он получает до-
статочно слотов TaskManager, он распределяет задачи ExecutionGraph 
между TaskManager, которые их выполняют. Во время выполнения Job-
Manager отвечает за все действия, требующие централизованной коор-
динации, такие как координация контрольных точек (см. раздел 3.5);

�� ResourceManager отвечает за управление слотами TaskManager, еди-
ницей обработки ресурсов Flink. Существует несколько вариантов 
ResourceManager для разных сред и поставщиков ресурсов, таких как 
YARN, Mesos, Kubernetes и автономные развертывания. Когда JobMan-
ager запрашивает слоты TaskManager, ResourceManager дает распоря-
жение TaskManager с незанятыми слотами, чтобы тот предоставил свои 
слоты в работу. Если ResourceManager не имеет достаточно слотов для 
выполнения запроса JobManager, он может обратиться к поставщику 
ресурсов для получения контейнеров, в которых запускаются процессы 
TaskManager. ResourceManager также заботится о завершении бездей-
ствующих TaskManager для освобождения вычислительных ресурсов;

�� TaskManager – это рабочий процесс Flink. Как правило, в системе Flink 
работает несколько экземпляров TaskManager. Каждый TaskManager 
предоставляет определенное количество слотов. Количество слотов 
ограничивает количество заданий, которые может выполнить Task-
Manager. После запуска TaskManager регистрирует свои слоты в  Re-
sourceManager. По указанию ResourceManager TaskManager предлагает 
один или несколько своих слотов для JobManager. Затем JobManager 
может назначить задания слотам для их выполнения. Во время вы-
полнения TaskManager обменивается данными с другими TaskManager, 
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которые запускают задания того же приложения. Выполнение заданий 
и концепция слотов обсуждаются в разделе 3.1.3;

�� Dispatcher управляет работой и предоставляет интерфейс REST для от-
правки приложений на выполнение. После того как приложение отправ-
лено на выполнение, он запускает JobManager и передает ему приложе-
ние. Интерфейс REST позволяет диспетчеру служить точкой входа HTTP 
для кластеров, находящихся за брандмауэром. Диспетчер также запус
кает веб-панель управления для предоставления информации о выпол-
нении заданий. В зависимости от того, как приложение отправлено на 
выполнение (см. раздел 3.1.2), диспетчер может и не потребоваться.

На рис. 3.1 показано, как компоненты Flink взаимодействуют друг с дру-
гом, когда приложение отправляется на выполнение.

Приложение

1. Отправка 
приложения

Dispatcher
2. Запуск  

и передача 
приложения

ResourceManager

ResourceManager3. Запрос 
слота

JobManager

4. Старт
5. Регистрация слотов
6. Распределение слотов

7. Предложение слотов
8. �Рассылка задач 

по слотам

9. �Обмен 
данными

Рис. 3.1   Выполнение приложения и взаимодействие компонентов

	 Этот рисунок представляет собой наиболее общий набросок, и предназначен для визу-
ализации ответственности и взаимодействия компонентов приложения. В зависимости 
от среды (YARN, Mesos, Kubernetes, автономный кластер) некоторые шаги могут быть 
пропущены, либо некоторые компоненты могут выполняться в одном процессе JVM. На-
пример, в автономном варианте – установке без поставщика ресурсов – ResourceMan-
ager может распределять только слоты доступных компонетов TaskManager и не может 
запускать новые TaskManager самостоятельно. В разделе 9.1 мы обсудим, как установить 
и настроить Flink для различных сред.

3.1.2. Развертывание приложений
Приложения Flink можно развертывать в двух разных режимах.

Фреймворк
В этом режиме приложения Flink упаковываются в файл JAR и отправля-
ются клиентом в работающую службу. Этой службой может быть Flink Dis-
patcher, Flink JobManager или YARN ResourceManager. В любом случае есть 
работающая служба, которая принимает приложение Flink и обеспечивает 
его выполнение. Если приложение было отправлено в JobManager, он не-
медленно начинает выполнение приложения. Если приложение было от-
правлено в Dispatcher или YARN ResourceManager, он запустит JobManager 
и передаст приложение, а JobManager начнет выполнение.
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Библиотека
В этом режиме приложение Flink упаковано в зависящий от задания об-
раз контейнера, например образ Docker. Образ также содержит код для 
запуска JobManager и ResourceManager. Когда контейнер запускается из 
образа, он автоматически запускает ResourceManager и JobManager и от-
правляет связанное задание на выполнение. Второй образ, не зависящий 
от задания, используется для развертывания контейнеров TaskManager. 
Контейнер, который запускается из этого образа, автоматически запуска-
ет TaskManager, который подключается к ResourceManager и регистрирует 
свои слоты. Как правило, внешний менеджер ресурсов, такой как Kuber-
netes, заботится о запуске образов и обеспечивает перезапуск контейне-
ров в случае сбоя.

Режим фреймворка следует традиционному подходу к  отправке прило-
жения (или запроса) через клиента в работающую службу. В библиотечном 
режиме нет службы Flink. Вместо этого Flink объединен как библиотека вме-
сте с приложением в одном образе контейнера. Этот режим развертывания 
является общим для архитектур микросервисов. Мы обсуждаем тему раз-
вертывания приложений более подробно в разделе 10.1.

3.1.3. Выполнение задачи
TaskManager может выполнять несколько задач одновременно. Эти задачи 
могут быть подзадачами одного и того же оператора (параллелизм данных), 
другого оператора (параллелизм задач) или даже из другого приложения 
(параллелизм заданий). TaskManager предлагает определенное количество 
слотов обработки для управления количеством задач, которые он может вы-
полнять одновременно. Слот обработки может выполнять один фрагмент 
приложения – по одной параллельной задаче каждого оператора приложе-
ния. На рис.  3.2 показаны отношения между экземплярами TaskManager, 
слотами, задачами и операторами.

Слот 1.1 Слот 2.1Слот 1.2 Слот 2.2

LogGraph TaskManager1 TaskManager2
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Рис. 3.2   Операторы, задачи и слоты обработки
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В левой части рис.  3.2 вы видите JobGraph – непараллельное представ-
ление приложения, состоящее из пяти операторов. Операторы A и C явля-
ются источниками, а оператор E – выход. Операторы C и E распараллелены 
на два потока каждый. Остальные операторы разделены на четыре потока 
каждый. Поскольку максимальный параллелизм оператора равен четырем, 
приложению требуется по крайней мере четыре доступных слота обработки. 
Это требование выполняется при наличии двух экземпляров TaskManager 
с двумя слотами обработки каждый. JobManager преобразует JobGraph в Ex-
ecutionGraph и назначает задачи четырем доступным слотам. Каждому слоту 
назначаются задачи операторов с параллелизмом четыре. Две задачи опе-
раторов C и E назначены на слоты 1.1 и 2.1 и слоты 1.2 и 2.2 соответственно. 
Планирование задач в виде срезов по слотам имеет то преимущество, что 
многие задачи размещены в TaskManager и могут эффективно обмениваться 
данными в рамках одного процесса и без доступа к сети. Однако слишком 
большое количество одновременных задач также может перегрузить Task-
Manager и привести к снижению быстродействия. В разделе 10.2 мы расска-
жем, как управлять расписанием задач.

TaskManager выполняет свои задачи в  многопоточном режиме в  одном 
и том же процессе JVM. Потоки легче, чем отдельные процессы, и требуют 
меньших затрат на связь, но не обеспечивают строгую изоляцию задач друг 
от друга. Следовательно, одна некорректная задача может убить весь процесс 
TaskManager и все выполняемые в нем задачи. Установив ограничение в один 
слот для каждого процесса TaskManager, вы можете изолировать приложения 
по диспетчерам задач. Используя параллелизм потоков внутри TaskMan-
ager и развертывая несколько процессов TaskManager на каждом хосте, Flink 
предлагает большую гибкость в достижении компромисса между произво-
дительностью и  изоляцией ресурсов при развертывании приложений. Мы 
подробно обсудим конфигурацию и настройку кластеров Flink в главе 9.

3.1.4. Высокодоступная конфигурация
Потоковые приложения обычно предназначены для круглосуточной работы 
без перерыва. Следовательно, важно, чтобы их выполнение не прекраща-
лось даже в  случае сбоя задействованного процесса. Для восстановления 
после сбоев системе сначала необходимо перезапустить отказавшие процес-
сы, а во-вторых, перезапустить приложение и восстановить его состояние. 
В этом разделе вы узнаете, как Flink перезапускает сбойные процессы. Вос-
становление состояния приложения описано в разделе 3.5.2.

3.1.4.1. Сбои TaskManager
Как обсуждалось ранее, Flink нуждается в достаточном количестве слотов 
обработки для выполнения всех задач приложения. При настройке Flink с че-
тырьмя экземплярами TaskManager, каждый из которых предоставляет по 
два слота, потоковое приложение может выполняться с максимальным па-
раллелизмом до восьми. Если один из экземпляров TaskManager выходит из 
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строя, количество доступных слотов уменьшается до шести. В этой ситуации 
JobManager попросит ResourceManager предоставить больше слотов обработ-
ки. Если это невозможно – например, потому что приложение работает в ав-
тономном кластере, – JobManager не может перезапустить приложение, пока 
не станет доступно достаточное количество слотов. Стратегия перезапуска 
приложения определяет, как часто JobManager перезапускает приложение 
и как долго он ждет между попытками перезапуска1.

3.1.4.2. Сбои JobManager
Более серьезной проблемой, чем сбои TaskManager, являются сбои JobMa
nager. JobManager контролирует выполнение потокового приложения и хра-
нит метаданные о  его выполнении, такие как указатели на завершенные 
контрольные точки. Потоковое приложение не может продолжить обработку, 
если ответственный процесс JobManager внезапно пропадет из системы. Это 
делает JobManager единственной точкой отказа для приложений во Flink. 
Чтобы решить эту проблему, Flink поддерживает режим высокой доступно-
сти, который переносит ответственность и метаданные задания на другой 
экземпляр JobManager в случае, если исходный JobManager пропадает.

Режим высокой доступности Flink основан на Apache ZooKeeper, системе 
для распределенных сервисов, требующих координации и консенсуса. Flink 
использует ZooKeeper для выборов лидера и  в  качестве высокодоступного 
и надежного хранилища данных. При работе в режиме высокой доступности 
JobManager записывает JobGraph и все необходимые метаданные, такие как 
JAR-файл приложения, в удаленную систему постоянного хранения. Кроме 
того, JobManager записывает указатель на место хранения в хранилище дан-
ных ZooKeeper. Во время выполнения приложения JobManager получает де-
скрипторы состояния (места хранения) отдельных контрольных точек задач. 
По завершении контрольной точки – когда все задачи успешно записали свое 
состояние в  удаленное хранилище – JobManager записывает дескрипторы 
состояния в удаленное хранилище и указатель на это местоположение в Zoo-
Keeper. Следовательно, все данные, необходимые для восстановления после 
сбоя JobManager, хранятся в  удаленном хранилище, а  ZooKeeper содержит 
указатели на места хранения. Рисунок 3.3 иллюстрирует эту конфигурацию.

Когда JobManager выходит из строя, все задачи, относящиеся к его при-
ложению, автоматически отменяются. Новый JobManager, который берет на 
себя работу отказавшего экземпляра, выполняет следующие шаги:

1)	� запрашивает у ZooKeeper места хранения для получения JobGraph, фай-
ла JAR и дескрипторов состояния последней контрольной точки при-
ложения из удаленного хранилища;

2)	� запрашивает слоты обработки у ResourceManager для продолжения вы-
полнения приложения;

3)	� перезапускает приложение и сбрасывает состояние всех его задач до 
последней завершенной контрольной точки.

1	 Стратегии перезапуска более подробно обсуждаются в главе 10.
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Рис. 3.3   Высокодоступная конфигурация Flink

При запуске приложения по типу развертывания библиотеки в  контей-
нерной среде, такой как Kubernetes, отказавшие контейнеры JobManager или 
TaskManager обычно автоматически перезапускаются службой оркестров-
ки контейнеров. При работе в YARN или Mesos оставшиеся процессы Flink 
инициируют перезапуск процессов JobManager или TaskManager. Flink не 
предоставляет инструменты для перезапуска сбойных процессов при работе 
в автономном кластере. Следовательно, было бы полезно запускать резерв-
ные диспетчеры заданий и диспетчеры задач, которые могут взять на себя 
работу отказавших процессов. Мы обсудим высокодоступную конфигурацию 
Flink позже в разделе 9.2.

3.2. Передача данных во Flink

Задачи работающего приложения постоянно обмениваются данными. 
Процессы TaskManager заботятся о доставке данных от передающих задач 
к принимающим задачам. Сетевой компонент TaskManager собирает записи 
в  буферах перед их отправкой, то есть записи не отправляются по одной, 
а группируются в буферы. Это фундаментальный подход для эффективного 
использования сетевого ресурса и достижения высокой пропускной способ-
ности. Данный механизм аналогичен методам буферизации, используемым 
в сетевых протоколах или протоколах дискового ввода/вывода.

	 Обратите внимание, что доставка записей через буферы подразумевает, что модель об-
работки Flink основана на микропакетах.

Каждый TaskManager имеет пул сетевых буферов (по умолчанию размером 
32 Кб) для отправки и получения данных. Если задачи отправителя и полу-
чателя выполняются в  разных процессах TaskManager, они обмениваются 
данными через сетевой стек операционной системы. Потоковым приложе-
ниям необходимо обмениваться данными в конвейерном режиме – каждая 



Передача данных во Flink   63

пара процессов TaskManager поддерживает постоянное TCP-соединение для 
обмена данными1. При перекрестной схеме подключения каждая задача-от-
правитель должна иметь возможность отправлять данные каждой принима-
ющей задаче. TaskManager нуждается в одном выделенном сетевом буфере 
для каждой принимающей задачи, в  которую любая из его задач должна 
отправлять данные. На рис. 3.4 показана эта архитектура.

Слот 1.1 Слот 2.1Слот 1.2 Слот 2.2

TaskManager1 TaskManager2

Приемник 1 Приемник 3Приемник 2 Приемник 4

Передатчик 1 Передатчик 3Передатчик 2 Передатчик 4

Рис. 3.4   Передача данных между TaskManager

Как показано на рис. 3.4, каждой из четырех задач-отправителей требу-
ется по крайней мере четыре сетевых буфера для отправки данных каждой 
из задач-получателей, а каждой задаче-получателю требуется как минимум 
четыре буфера для приема данных. Буферы, которые необходимо отправить 
другому TaskManager, мультиплексируются через одно и то же сетевое со-
единение. Чтобы обеспечить неразрывный конвейерный обмен данными, 
TaskManager должен иметь возможность предоставлять достаточно буферов 
для одновременного обслуживания всех исходящих и входящих соединений. 
При перекрестном или широковещательном соединении каждой задаче-
отправителю требуется буфер для каждой задачи-получателя; количество 
требуемых буферов равно квадрату количества задач задействованных опе-
раторов. Конфигурация Flink по умолчанию для сетевых буферов достаточна 
для систем малого и среднего размера. Для более крупных систем вам не-
обходимо настроить конфигурацию, как описано в разделе 9.5.3.

Когда задача-отправитель и  задача-получатель выполняются в  одном 
и том же процессе TaskManager, отправитель сериализует исходящие записи 
в байтовый буфер и помещает буфер в очередь сразу после его заполнения. 
Принимающая задача берет буфер из очереди и  десериализует входящие 
записи. Следовательно, передача данных между задачами, выполняемыми 
в одном TaskManager, не вызывает сетевого взаимодействия.

1	 Пакетные приложения могут – помимо конвейерной связи – обмениваться данными, 
собирая исходящие данные у отправителя. После завершения задачи отправителя 
данные отправляются в виде пакета по временному TCP-соединению к получателю.
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Flink предлагает различные методы для снижения затрат на связь между 
задачами. В следующих разделах мы кратко обсудим кредитное управление 
потоком и цепочку задач.

3.2.1. Кредитное управление потоком
Отправка отдельных записей через сетевое соединение неэффективна и вы-
зывает значительные накладные расходы. Буферизация необходима для пол-
ного использования пропускной способности сетевых подключений. В кон-
тексте потоковой обработки одним из недостатков буферизации является то, 
что она увеличивает задержку, поскольку записи собираются в буфере, а не 
отправляются сразу.

Flink реализует механизм кредитного управления потоком (credit-based 
flow control), который работает следующим образом. Задача-получатель 
предоставляет задаче-отправителю некоторый кредит – количество сетевых 
буферов, зарезервированных для приема ее данных. Как только отправитель 
получает уведомление о  кредите, он отправляет столько буферов, сколько 
ему было предоставлено в кредите, и размер своего неисполненного журна-
ла – количество сетевых буферов, которые заполнены и готовы к отправке, 
но не уместились в кредит. Получатель обрабатывает отправленные данные 
с помощью зарезервированных буферов и учитывает размер неисполненно-
го журнала отправителя для определения приоритета следующих кредитов 
для всех подключенных отправителей.

Управление потоком на основе кредита уменьшает задержку, поскольку 
отправители могут отправлять данные, как только у получателя будет доста-
точно ресурсов для их приема. Более того, это эффективный механизм для 
распределения сетевых ресурсов в  случае неравномерного распределения 
данных, поскольку кредит предоставляется в зависимости от размера отста-
вания отправителей. Следовательно, управление потоком на основе кредита 
является важным компонентом Flink для достижения высокой пропускной 
способности и низкой задержки.

3.2.2. Цепочка задач
Flink предлагает метод оптимизации, называемый цепочкой задач (task chain-
ing), который снижает накладные расходы на локальную связь при опре-
деленных условиях. Чтобы успешно сформировать цепочку задач, два или 
более операторов должны быть настроены на одинаковый параллелизм 
и  соединены локальными прямыми каналами. Конвейер операторов, по-
казанный на рис. 3.5, удовлетворяет этим требованиям. Он состоит из трех 
операторов, которые настроены на параллельное выполнение двух задач 
и связаны локальными прямыми соединениями.

На рис. 3.6 показано, как выполняется конвейер в случае цепочки задач. 
Функции операторов объединены в  единую задачу, которая выполняется 
одним потоком. Записи, создаваемые функцией, по отдельности передаются 
следующей функции с  помощью простого вызова метода. Следовательно, 
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при передаче записей между функциями практически отсутствуют затраты 
на сериализацию и связь.

Создание цепочки задач может значительно снизить затраты на обмен 
данными между локальными задачами, но также есть случаи, когда имеет 
смысл выполнить конвейер без цепочки. Например, имеет смысл разбить 
длинный конвейер связанных задач или разбить цепочку на две задачи, что-
бы запланировать дорогостоящую функцию для разных слотов. На рис. 3.7 
показан тот же конвейер, выполняемый без объединения задач. Все функции 
реализуются отдельной задачей, выполняемой в выделенном потоке.

Op1 Op2 Op3Func1 Func2 Func3

Локальная 
пересылка

Локальная 
пересылка

Параллелизм 2 Параллелизм 2 Параллелизм 2

Рис. 3.5   Конвейер операторов,  
соответствующий требованиям цепочки задач
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Рис. 3.6   Выполнение цепочки задач с функциями,  
объединенными в один поток, и передача данных через вызовы методов
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Рис. 3.7   Несвязанное выполнение задач с выделенными потоками  
и транспортировкой данных через буферные каналы и сериализацию
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По умолчанию в Flink включен режим цепочки задач. В разделе 10.2.1 мы 
покажем, как отключить цепочку задач для приложения и  как управлять 
цепочкой действий отдельных операторов.

3.3. Обработка на основе времени события

В разделе 2.3 мы подчеркнули важность семантики времени для приложе-
ний потоковой обработки и объяснили разницу между временем обработки 
и временем события. Хотя время обработки легко понять, поскольку оно ос-
новано на местном времени обрабатывающей машины, оно дает несколько 
произвольные, непоследовательные и невоспроизводимые результаты. На-
против, семантика времени события дает воспроизводимые и согласованные 
результаты, что является жестким требованием для многих случаев исполь-
зования потоковой обработки. Однако приложения с привязкой к времени 
события требуют дополнительной настройки по сравнению с приложениями, 
привязанными ко времени обработки. Кроме того, внутренние компоненты 
потокового процессора, поддерживающего время события, более нагружены, 
чем внутренние компоненты системы, которая задействована исключитель-
но во время обработки.

Flink предоставляет интуитивно понятные и  простые в  использовании 
примитивы для распространенных операций обработки событий с привяз-
кой ко времени, а также выразительные API-интерфейсы для реализации 
более сложных приложений с привязкой к времени событий с настраивае-
мыми операторами. Для таких сложных приложений часто полезно, а иногда 
и  необходимо хорошее понимание внутренней обработки времени Flink. 
В предыдущей главе были представлены две концепции, которые Flink ис-
пользует для обеспечения семантики времени события: отметки времени 
записи и водяные знаки. Далее мы расскажем про внутреннюю реализацию 
и  обработку меток времени и  водяных знаков для поддержки потоковых 
приложений с семантикой времени события.

3.3.1. Метки времени
Все записи, которые обрабатываются потоковым приложением Flink с при-
вязкой ко времени событий, должны сопровождаться меткой времени. Мет-
ка времени связывает запись с определенным моментом времени, обычно 
с моментом времени, когда произошло событие, представленное записью. 
Однако приложения могут свободно выбирать значение меток времени до 
тех пор, пока метки времени записей потока примерно возрастают по мере 
продвижения потока. Как следует из раздела 2.3, некоторая степень неупо-
рядоченности меток времени является неизбежной данностью практически 
во всех реальных случаях использования.

Когда Flink обрабатывает поток данных в режиме событийного времени, 
он выполняет зависящие от времени операторы на основе меток времени. 
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Например, оператор временного окна назначает записи окнам в  соответ-
ствии с их метками времени. Flink кодирует метки времени как 16-байтовые 
значения Long и прикрепляет их как метаданные к записям. Его встроенные 
операторы интерпретируют значение Long как метку времени Unix с точно-
стью до миллисекунды – количество миллисекунд с 1970-01-01-00:00:00.000. 
Однако пользовательские операторы могут иметь собственную интерпрета-
цию и, например, оперировать точностью до микросекунд.

3.3.2. Водяные знаки
В дополнение к записи меток времени приложение событийного времени 
Flink также должно предоставлять водяные знаки (watermark). Водяные знаки 
используются для определения текущего времени события для каждой зада-
чи в приложении событийного времени. Операторы, зависящие от времени, 
используют это время для запуска вычислений и  выполнения следующих 
шагов. Например, задача временного окна завершает вычисление окна и вы-
дает результат, когда время события задачи проходит границу конца окна.

Во Flink водяные знаки реализованы как специальные записи, содержа-
щие метку времени в виде значения Long. Водяные знаки плывут в потоке 
обычных записей с аннотированными отметками времени, как показано на 
рис. 3.8.

Водяной знак Метка времени 
записи

Запись

Рис. 3.8   Поток записей с метками времени и водяными знаками

Водяные знаки обладают двумя основными свойствами:

1)	� они должны монотонно увеличиваться, чтобы часы выполнения задач 
шли вперед, а не откатывались в обратном направлении;

2)	� они связаны с метками времени записи. Водяной знак с меткой вре-
мени T указывает, что все последующие записи должны иметь метки 
времени > T.

Второе свойство используется для обработки потоков с неупорядоченны-
ми метками времени записи, такими как записи с метками времени 3 и 5 на 
рис. 3.8. Задачи операторов, основанных на времени, собирают и обрабаты-
вают записи с возможно неупорядоченными метками времени и завершают 
вычисление, когда их часы времени события, которые опережают получен-
ные водяные знаки, показывают, что больше не ожидается записей с соот-
ветствующими отметками времени. Когда задача получает запись, которая 
нарушает ограничение водяного знака и  имеет меньшую метку времени, 
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чем ранее полученный водяной знак, возможно, вычисление, которому она 
принадлежит, уже завершено. Такие записи называются просроченными. 
Flink предоставляет различные способы работы с просроченными записями, 
которые обсуждаются в разделе 6.5. 

Интересным свойством водяных знаков является то, что они позволяют 
приложению контролировать полноту результатов и задержку. Очень стро-
гие водяные знаки – близкие к меткам времени записи – приводят к низкой 
задержке обработки, потому что задача лишь на короткое время ожидает 
поступления новых записей перед завершением вычисления. В то же время 
может пострадать полнота результата, потому что соответствующие записи 
могут не попасть в результат и будут считаться просроченными. И наоборот, 
очень консервативные водяные знаки увеличивают задержку обработки, но 
улучшают полноту результата.

3.3.3. Распространение водяного знака 
и время события
В этом разделе мы обсудим, как операторы обрабатывают водяные знаки. 
Flink реализует водяные знаки как специальные записи, которые принима-
ются и отправляются задачами оператора. Задачи имеют внутреннюю службу 
времени, которая поддерживает таймеры и  активируется при получении 
водяного знака. Задачи могут регистрировать таймеры в  службе таймера 
для выполнения вычислений в определенный момент времени в будущем. 
Например, оконный оператор регистрирует таймер для каждого активного 
окна, который очищает состояние окна, когда время события превышает 
время окончания окна.

Когда задача получает водяной знак, выполняются следующие действия:

1)	� задача обновляет свои внутренние часы времени событий на основе 
метки времени водяного знака;

2)	� служба времени задачи выделяет все таймеры со временем, меньшим, 
чем обновленное время события. Для каждого истекшего таймера за-
дача вызывает функцию обратного вызова, которая может выполнять 
вычисления и выдавать записи;

3)	� задача выдает водяной знак с обновленным временем события.

	 Flink ограничивает доступ к  отметкам времени или водяным знакам через API 
DataStream. Функции не могут читать или изменять метки времени записи и водяные 
знаки, за исключением функций процесса, которые могут считывать метку времени те-
кущей обрабатываемой записи, запрашивать текущее время события у оператора и ре-
гистрировать таймеры1. Ни одна из функций не предоставляет API для установки метки 
времени отправленных записей, манипулирования часами времени события задачи или 
выпуска водяных знаков. Вместо этого задачи оператора DataStream с  привязкой ко 
времени настраивают временные метки отправляемых записей, чтобы гарантировать, 
что они правильно совмещены с отправляемыми водяными знаками. Например, зада-

1	 Функции процесса более детально рассмотрены в главе 6.
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ча оператора временного окна прикрепляет время окончания окна в качестве метки 
времени ко всем записям, выдаваемым вычислением окна, прежде чем она выпускает 
водяной знак с меткой времени, которая инициировала вычисление окна.

Теперь давайте более подробно объясним, как задача генерирует водяные 
знаки и обновляет свои часы времени события при получении нового водя-
ного знака. Как вы видели в разделе 2.1.2, Flink разбивает потоки данных на 
разделы (partition) и обрабатывает каждый раздел параллельно с помощью от-
дельной задачи оператора. Каждый раздел представляет собой независимый 
поток записей с  метками времени и  водяными знаками. В  зависимости от 
того, как оператор связан со своими предшественниками или преемниками, 
его задачи могут получать записи и водяные знаки из одного или нескольких 
входных разделов и передавать записи и водяные знаки в один или несколько 
выходных разделов. Далее мы подробно расскажем, как задача передает водя-
ные знаки нескольким задачам вывода и как она производит отсчет времени 
события по водяным знакам, которые она получает от своих задач ввода.

Задача поддерживает водяной знак раздела для каждого входного раздела. 
Когда она получает водяной знак от раздела, она обновляет водяной знак 
соответствующего раздела, чтобы он был максимальным из полученного 
значения и текущего значения. Впоследствии задача обновляет свои часы 
времени событий до минимума всех водяных знаков раздела. Если часы вре-
мени события продвигаются вперед, задача обрабатывает все сработавшие 
таймеры и наконец транслирует свое новое время события всем последую-
щим задачам, отправляя соответствующий водяной знак всем подключен-
ным выходным разделам.

На рис. 3.9 показано, как задача с четырьмя входными разделами и тремя 
выходными разделами получает водяные знаки, обновляет водяные знаки 
своего раздела и часы времени событий и выпускает водяные знаки.

Задачи операторов с двумя или более входными потоками, таких как Union 
или CoFlatMap (см. раздел 5.2.3), также вычисляют свои часы, определяемые 
временем события, как минимум всех водяных знаков разделов – они не раз-
личают водяные знаки разделов разных входных потоков. Следовательно, за-
писи обоих входов обрабатываются на основе одних и тех же часов события. 
Такое поведение может вызвать проблемы, если время событий отдельных 
входных потоков приложения не выровнено.

Алгоритм обработки водяных знаков и  распространения Flink гаранти-
рует, что задачи оператора будут выдавать правильно выровненные записи 
с метками времени и водяные знаки. Однако он основан на том факте, что 
все разделы непрерывно предоставляют увеличивающиеся водяные знаки. 
Как только один из разделов перестанет отправлять свои водяные знаки или 
станет полностью бездействующим, часы задачи не возрастут и таймеры 
задачи не сработают. Эта ситуация может быть проблематичной для опера-
торов, зависящих от времени, которые полагаются на возрастающие часы 
для выполнения вычислений и  очистки своего состояния. Следовательно, 
задержки обработки и размер состояния операторов, зависящих от време-
ни, могут значительно увеличиться, если задача не получает новые водяные 
знаки от всех задач ввода через равные промежутки времени.
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Рис. 3.9   Обновление времени события задачи с помощью водяных знаков

Аналогичный эффект появляется для операторов с двумя входными по-
токами, водяные знаки которых значительно расходятся. Часы времени со-
бытия задачи с двумя входными потоками будут соответствовать водяным 
знакам более медленного потока, и обычно записи или промежуточные ре-
зультаты более быстрого потока хранятся в состоянии до тех пор, пока часы 
времени события не позволят их обработать.

3.3.4. Назначение метки времени 
и создание водяных знаков
Итак, мы объяснили, что такое метки времени и водяные знаки и как они 
обрабатываются внутри Flink. Однако мы еще не обсуждали их происхожде-
ние. Метки времени и водяные знаки обычно назначаются и генерируются, 
когда поток загружается потоковым приложением. Поскольку выбор метки 
времени зависит от приложения, а водяные знаки зависят от меток времени 
и характеристик потока, приложения должны явно назначать метки времени 
и создавать водяные знаки. Приложение Flink DataStream может назначать 
метки времени и создавать водяные знаки для потока тремя способами.

1.	� У источника: метки времени и водяные знаки могут быть назначены 
и  сгенерированы функцией SourceFunction, когда поток загружается 
в приложение. Функция источника генерирует поток записей. Записи 
могут быть сгенерированы вместе с соответствующей меткой време-
ни, а водяные знаки могут быть сгенерированы в любой момент вре-
мени как специальные записи. Если функция источника (временно) 
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больше не генерирует водяные знаки, она может объявить себя без-
действующей. Flink будет исключать разделы потока, созданные про-
стаивающими функциями источника, из вычисления водяных знаков 
последующих операторов. Механизм бездействия источников можно 
использовать для решения проблемы отсутствия продвижения водя-
ных знаков, как обсуждалось ранее. Функции источника более под-
робно обсуждаются в разделе 8.3.

2.	� Периодическое присваивание: API DataStream предоставляет определя-
емую пользователем функцию AssignerWithPeriodicWatermarks, которая 
извлекает метку времени из каждой записи и периодически запраши-
вает текущий водяной знак. Извлеченные метки времени назначаются 
соответствующей записи, а запрошенные водяные знаки вставляются 
в поток. Эта функция будет рассмотрена в разделе 6.1.1. 

3.	� Прерывистое присваивание: AssignerWithPunctuatedWatermarks – еще одна 
определяемая пользователем функция, которая извлекает метку вре-
мени из каждой записи. Ее можно использовать для создания водяных 
знаков, которые закодированы в специальных входных записях. В от-
личие от функции AssignerWithPeriodicWatermarks эта функция может – 
но не обязательно – извлекать водяной знак из каждой записи. Мы 
подробно обсуждаем эту функцию в разделе 6.1.1.

Пользовательские функции присвоения меток времени обычно приме-
няются как можно ближе к  оператору-источнику, потому что может быть 
очень сложно определить порядок записей и их метки времени после того, 
как они были обработаны оператором. Это также причина того, почему не 
рекомендуется переопределять существующие метки времени и  водяные 
знаки в середине потокового приложения, хотя это реализуемо с помощью 
пользовательских функций.

3.4. Управление состоянием

В главе 2 мы говорили о том, что большинство потоковых приложений под-
держивают состояние. Многие операторы постоянно читают и  обновляют 
какое-либо состояние, такое как записи, собранные в окне, позиции чтения 
источника ввода или настраиваемые состояния операторов для конкретного 
приложения, например модели машинного обучения. Flink обрабатывает все 
состояния – независимо от встроенных или определяемых пользователем 
операторов – одинаково. В  этом разделе мы обсуждаем различные типы 
состояний, которые поддерживает Flink. Мы расскажем, как состояние хра-
нится и поддерживается бэкендами состояния и как приложения с учетом со-
стояния можно масштабировать с помощью перераспределения состояния.

В общем, все данные, поддерживаемые задачей и используемые для вы-
числения результатов функции, относятся к состоянию задачи. Вы можете 
воспринимать состояние как локальную переменную или переменную эк-
земпляра, к которой обращается бизнес-логика задачи. На рис. 3.10 показано 
типичное взаимодействие между задачей и ее состоянием.
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1. Получение ввода

2. Получение состояния 3. Обновление состояния

4. Выдача результата

Состояние

Задача

Рис. 3.10   Задача обработки потока с учетом состояния

Задача получает некоторые входные данные. При обработке данных зада-
ча может считывать и обновлять свое состояние и вычислять свой результат 
на основе входных данных и состояния. Простой пример – задача, которая 
постоянно считает, сколько записей она получает. Когда задача получает но-
вую запись, она обращается к состоянию, чтобы получить текущий счетчик, 
увеличивает счетчик, обновляет состояние и выдает новый счетчик.

Логика приложения для чтения и записи в состояние часто проста. Однако 
эффективное и надежное управление состоянием является более сложной за-
дачей. Оно включает в себя обработку очень больших состояний, возможно, 
превышающих объем памяти и обеспечение сохранности состояния в случае 
сбоев. Flink берет на себя все вопросы, связанные с  согласованностью со-
стояния, обработкой сбоев, эффективным хранением и  доступом, так что 
разработчики могут сосредоточиться на логике своих приложений.

Во Flink состояние всегда связано с  определенным оператором. Чтобы 
среда выполнения Flink знала о состоянии оператора, оператор должен за-
регистрировать свое состояние. Существует два типа состояния – состояние 
оператора (operator state) и состояние с ключевым доступом (keyed state), 
которые доступны из разных областей и  обсуждаются в  следующих раз-
делах.

3.4.1. Состояние оператора
Состояние оператора привязано к задаче оператора. Это означает, что все за-
писи, обрабатываемые одной параллельной задачей, имеют доступ к одному 
и тому же состоянию. Состояние оператора не может быть доступно другой 
задаче того же или другого оператора. На рис. 3.11 показано, как задачи по-
лучают доступ к состоянию оператора.

Flink предлагает три примитива для состояния оператора.

Списочное состояние (list state)
Представляет состояние в виде списка записей.

Каталожное состояние (union list state)
Также представляет состояние в виде списка записей. Но оно отличается от 
обычного списочного состояния тем, как оно восстанавливается в случае 
сбоя или когда приложение запускается из точки сохранения. Мы обсудим 
это различие позже в этой главе.
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Широковещательное состояние (broadcast state)
Предназначено для особого случая, когда состояние каждой задачи опера-
тора идентично. Это свойство можно использовать во время обслуживания 
контрольных точек и  при изменении масштаба оператора. Оба аспекта 
обсуждаются в следующих разделах этой главы.

Задача 1

Задача 1

Рис. 3.11   Задачи с состоянием оператора

3.4.2. Состояние с ключевым доступом
Обращение к состоянию с ключевым доступом осуществляется с использо-
ванием ключа, определенного в  записях входного потока оператора. Flink 
поддерживает один экземпляр состояния для каждого значения ключа и раз-
деляет все записи с одним и тем же ключом для задачи оператора, которая 
поддерживает состояние для этого ключа. Когда задача обрабатывает запись, 
она автоматически связывает доступ состояния с ключом текущей записи. 
Следовательно, все записи с одним и тем же ключом обращаются к одному 
и тому же состоянию. На рис.  3.12 показано, как задачи взаимодействуют 
с ключевым доступом к состоянию.

Вы можете думать о состоянии с ключевым доступом как о карте «ключ–
значение», которая разделена (или сегментирована) по ключу для всех па-
раллельных задач оператора. Flink предоставляет различные примитивы для 
состояния с ключевым доступом, которые определяют тип значения, храни-
мого для каждого ключа в этой распределенной карте «ключ–значение». Мы 
кратко обсудим наиболее распространенные примитивы.

Одиночное значение (value state)
Хранит одно значение произвольного типа для каждого ключа. Сложные 
структуры данных также могут быть сохранены как состояние значения.

Список значений (list state)
Хранит список значений для каждого ключа. Записи в списке могут быть 
произвольного типа.
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Карта значений (map state)
Хранит карту «ключ–значение» для каждого ключа. Ключ и значение кар-
ты могут быть произвольного типа.

Задача 1

Задача 1

Записи разделены 
по цвету

Доступ к состоянию  
по ключу текущей записи

Рис. 3.12   Задачи с ключевым доступом к состоянию

Примитивы состояния открывают структуру состояния для Flink и  обе-
спечивают более эффективный доступ к состоянию. Они обсуждаются далее 
в разделе 7.1.1. 

3.4.3. Бэкенд состояния
Задача оператора с учетом состояния обычно считывает и обновляет свое 
состояние для каждой входящей записи. Поскольку эффективный доступ 
к состоянию имеет решающее значение для обработки записей с малой за-
держкой, каждая параллельная задача локально поддерживает свое состоя-
ние для обеспечения быстрого доступа к состоянию. Как именно состояние 
сохраняется, к  которому осуществляется доступ и  поддерживается, опре-
деляется подключаемым компонентом, который называется бэкендом со-
стояния (state backend). Бэкенд состояния отвечает за две вещи: управление 
локальным состоянием и состояние контрольной точки в удаленном месте.

Что касается управления локальным состоянием, бэкенд состояния хра-
нит все состояния с ключевым доступом и гарантирует, что все обращения 
правильно привязаны к текущему ключу. Flink предоставляет бэкенды состо-
яния, которые управляют состоянием с ключом как объектом, хранящимся 
в  структурах данных в  памяти в  куче (heap) JVM. Другой вариант бэкенда 
состояния сериализует объекты состояния и помещает их в RocksDB, которая 
записывает их на локальные жесткие диски. Хотя первый вариант обеспечи-
вает очень быстрый доступ к состоянию, он ограничен размером памяти. До-
ступ к состоянию, сохраненному бэкендом RocksDB, происходит медленнее, 
но зато это состояние может стать очень большим.
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Контрольные точки состояния важны, потому что Flink – это распределен-
ная система, и  состояние поддерживается только локально. Процесс Task-
Manager (а  вместе с  ним и  все выполняемые в  нем задачи) может выйти 
из строя в любой момент времени. Следовательно, его хранилище следует 
считать уязвимым. Бэкенд состояния заботится о том, чтобы контрольные 
точки состояния задачи передавались в удаленное и надежное хранилище. 
Удаленное хранилище для контрольных точек может быть распределенной 
файловой системой или системой баз данных. Бэкенды состояния различа-
ются по способу проверки состояния. Например, бэкенд состояния RocksDB 
поддерживает инкрементные контрольные точки, что может значительно 
снизить накладные расходы при установке контрольных точек для состояний 
очень большого размера.

Мы обсудим различные бэкенды состояния, их преимущества и недостат-
ки более подробно в разделе 7.4.1.

3.4.4. Масштабирование операторов 
с учетом состояния
Обычным требованием для потоковых приложений является подстройка 
параллелизма операторов при увеличении или уменьшении скорости вво-
да. В то время как масштабирование операторов без состояния тривиаль-
но, изменение параллелизма операторов с сохранением состояния намного 
сложнее, поскольку их состояние необходимо перераспределить и назначить 
большему или меньшему количеству параллельных задач. Flink поддержива-
ет четыре шаблона масштабирования различных типов состояния.

Операторы с  ключевым доступом к  состоянию масштабируются путем 
перераспределения ключей на меньшее или большее количество задач. Од-
нако для повышения эффективности передачи необходимого состояния 
между задачами Flink не перераспределяет отдельные ключи. Вместо этого 
Flink объединяет ключи в так называемые группы ключей. Группа ключей 
(key group) – это раздел ключей и способ Flink назначать ключи задачам. На 
рис. 3.13 показано, как состояние с ключевым доступом перераспределяется 
по группам ключей.

Операторы со списком состояний масштабируются путем перераспре-
деления записей списка. По идее, записи списка всех параллельных задач 
оператора собираются и равномерно перераспределяются между меньшим 
или большим количеством задач. Если записей в списке меньше, чем новый 
параллелизм оператора, некоторые задачи начнутся с  пустого состояния. 
На рис. 3.14 показано перераспределение списочного состояния оператора.

Операторы с  каталожным состоянием масштабируются путем широко-
вещательной рассылки полного списка записей состояния каждой задаче. 
Затем задача может выбрать, какие записи использовать, а какие отбросить. 
На рис. 3.15 показано, как перераспределяется каталожное состояние опе-
ратора.
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Задача 1
Задача 1

Задача 1Задача 2

Задача 3

Задача 2

Группа ключей

Разделение  
для увеличения  

масштаба

Разделение  
для уменьшения   

масштаба

Рис. 3.13   Масштабирование оператора  
с ключевым доступом к состоянию

Задача 1

Задача 1

Задача 1

Задача 2

Задача 2

Задача 3

Разделение  
для увеличения  

масштаба

Разделение  
для уменьшения   

масштаба
Списочное состояние

Рис. 3.14   Масштабирование оператора со списочным состоянием

Задача 1

Задача 1

Задача 1

Задача 2

Задача 2

Задача 3

Состояние ската 
ложным списком

Каталожный список  
для увеличения  

масштаба

Каталожный список  
для уменьшения   
масштаба

Рис. 3.15   Масштабирование оператора с каталожным состоянием
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Операторы с  широковещательным состоянием масштабируются путем 
копирования состояния в новые задачи. Это работает, потому что широко-
вещательное состояние гарантирует, что все задачи имеют одинаковое со-
стояние. В случае масштабирования избыточные задачи просто отменяются, 
поскольку состояние уже реплицировано и не будет потеряно. На рис. 3.16 
показано перераспределение широковещательного состояния оператора.

Задача 1

Задача 1

Задача 1

Задача 2

Задача 2

Задача 3

Широковещательное 
состояние оператора

Копирование 
для увеличения 

масштаба

Копирование 
для уменьшения  

масштаба

Рис. 3.16   Масштабирование оператора  
с широковещательным состоянием

3.5. Контрольные точки, точки сохранения 
и восстановление состояния

Flink – это распределенная система обработки данных, и поэтому она име-
ет дело со сбоями, такими как остановленные процессы, сбойные машины 
и  прерванные сетевые соединения. Поскольку задачи поддерживают свое 
состояние локально, Flink должен гарантировать, что это состояние не будет 
потеряно и останется неизменным в случае сбоя.

В этом разделе мы представляем механизм контрольных точек и восста-
новления Flink, гарантирующий согласованность состояния «ровно один раз». 
Мы также расскажем про уникальную функцию точки сохранения Flink – 
инструмент, похожий на «швейцарский армейский нож», который решает 
многие проблемы работы с потоковыми приложениями.

3.5.1. Согласованные контрольные точки
Механизм восстановления Flink основан на сохранении состояния прило-
жения в контрольных точках. Согласованная контрольная точка (consistent 
checkpoint) приложения потоковой передачи с учетом состояния – это со-
гласованная копия состояния каждой из его задач в момент, когда все задачи 
обработали один и тот же ввод. Это понятие можно объяснить на примере 
шагов наивного алгоритма, который использует согласованную контрольную 
точку приложения. Шаги этого наивного алгоритма будут следующими.
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1.	 Приостановите прием всех входных потоков.
2.	� Подождите, пока все задействованные данные будут полностью обра-

ботаны, то есть все задачи обработают все свои входные данные.
3.	� Создайте контрольную точку, скопировав состояние каждой задачи 

в удаленное постоянное хранилище. Контрольная точка считается соз-
данной, когда все задачи завершили свои копии.

4.	 Возобновите прием всех потоков.

Имейте в  виду, что Flink не реализует этот наивный механизм. Позже 
в этом разделе мы представим более сложный алгоритм контрольной точки 
Flink.

На рис. 3.17 показана согласованная контрольная точка простого прило-
жения.

Входной поток Входной сдвиг Сумма

Источник sum_even

sum_odd

5

5
6

9

667

9

Контрольная 
точка

Хранилище

JobManager

Рис. 3.17   Согласованная контрольная точка  
потокового приложения

Приложение имеет единую исходную задачу, которая потребляет поток 
возрастающих чисел – 1, 2, 3 и т. д. Поток чисел делится на поток четных 
и нечетных чисел. Две задачи оператора суммы вычисляют текущие суммы 
всех четных и нечетных чисел. Исходная задача хранит текущее смещение 
входного потока как состояние. Суммирующие задачи сохраняют текущее 
значение суммы как состояние. На рис. 3.17 Flink создал контрольную точку, 
когда входное смещение было 5, а суммы были 6 и 9.

3.5.2. Восстановление из сохраняющей 
контрольной точки
Во время выполнения потокового приложения Flink периодически созда-
ет согласованные контрольные точки состояния приложения. В случае сбоя 
Flink использует последнюю контрольную точку для согласованного вос-
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становления состояния приложения и перезапускает обработку. На рис. 3.18 
показан процесс восстановления.

Источник

Источник

Источник

Источник

sum_even

sum_even

sum_even

sum_even

sum_odd

sum_odd

sum_odd

sum_odd

7

7

5

12

12

6

8

8

6

8

7

9

9

7

9

9

16

9

Отказ: сбой задачи sum_odd

Отказ: сбой задачи sum_odd

Восстановление 2: Сброс приложения до контрольной точки

Восстановление 1: Перезапуск приложения

5

6

9

Контрольная 
точка

Хранилище

JobManager

Рис. 3.18   Восстановление приложения  
из согласованной контрольной точки

Приложение восстанавливается в три этапа.

1.	 Перезапуск всех приложений.
2.	� Сброс состояния всех задач, учитывающих состояние, до последней 

контрольной точки.
3.	 Возобновление обработки всех задач.
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Этот механизм расстановки контрольных точек и последующего восста-
новления обеспечивает выполнение приложения «ровно один раз», посколь-
ку все операторы сохраняют и  восстанавливают все свои состояния, а  все 
входные потоки сбрасываются в положение, до которого они были исполь-
зованы при установке контрольной точки. Может ли источник данных сбро-
сить свой входной поток, зависит от его реализации и внешней системы или 
интерфейса, из которого поток потребляется. Например, журналы событий, 
такие как Apache Kafka, могут предоставлять записи потока со сдвигом назад. 
Напротив, поток, потребляемый из сокета, не может быть сброшен, потому 
что сокеты удаляют данные сразу после того, как они были использованы. 
Следовательно, приложение может реализовать обработку «ровно один раз» 
только в том случае, если все входные потоки предоставлены сбрасываемы-
ми (отматываемыми назад) источниками данных.

После перезапуска приложения из контрольной точки его внутреннее со-
стояние точно такое же, как и в момент установки контрольной точки. Затем 
приложение начинает потреблять и обрабатывать все данные, которые были 
обработаны между контрольной точкой и моментом сбоя. Хотя фактически 
Flink обрабатывает некоторые сообщения дважды (до и после сбоя), меха-
низм по-прежнему обеспечивает обработку «ровно один раз», потому что 
состояние всех операторов было сброшено до точки, для которой эти данные 
еще не существовали.

Мы должны отметить, что механизм контрольных точек и  восстановле-
ния Flink сбрасывает только внутреннее состояние потокового приложения. 
В зависимости от операторов приемника приложения во время восстанов-
ления некоторые записи результатов могут быть отправлены несколько раз 
в нижестоящие системы, такие как журнал событий, файловая система или 
база данных. Для некоторых систем хранения Flink предоставляет функции 
приемника, которые обеспечивают вывод типа «ровно один раз», например, 
путем фиксации отправленных записей при завершении контрольной точки. 
Другой подход, который работает для многих систем хранения, – это идемпо-
тентные обновления. Проблемы сквозных приложений с обработкой «ровно 
один раз» и подходы к их решению подробно обсуждаются в разделе 8.1.

3.5.3. Алгоритм создания контрольной точки Flink
Механизм восстановления Flink основан на согласованных контрольных 
точках приложения. Наивный подход к  созданию контрольной точки из 
потокового приложения – приостановка, запись контрольной точки и воз-
обновление работы приложения – неприемлем для приложений, которые 
имеют даже умеренные требования к задержке из-за его поведения в стиле 
«остановите мир, я сойду». Вместо этого Flink реализует контрольную точку 
на основе алгоритма Ченди–Лампорта (Chandy-Lamport algorithm) для рас-
пределенных снимков. Алгоритм не приостанавливает работу всего при-
ложения, а  отделяет контрольную точку от обработки, так что некоторые 
задачи продолжают обработку, а другие сохраняют свое состояние. Далее мы 
объясним, как работает этот алгоритм.
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Алгоритм контрольной точки Flink использует специальный тип записи, 
называемый барьером контрольной точки (checkpoint barrier). Подобно во-
дяным знакам, барьеры контрольных точек вводятся операторами источника 
в обычный поток записей, и другие записи не могут обогнать или преодолеть 
этот барьер. Барьер контрольной точки содержит идентификатор контроль-
ной точки для определения контрольной точки, которой он принадлежит, 
и логически разделяет поток на две части. Все изменения состояния из-за 
записей, которые предшествуют барьеру, включаются в контрольную точку 
текущего барьера, а все изменения из-за записей, следующих за барьером, 
включаются в более позднюю контрольную точку.

Для пошагового объяснения алгоритма мы воспользуемся примером про-
стого потокового приложения. Приложение состоит из двух входных задач, 
каждая из которых потребляет поток возрастающих чисел. Вывод входных 
задач разделяется на потоки четных и нечетных чисел. Каждый раздел об-
рабатывается задачей, которая вычисляет сумму всех полученных чисел 
и  пересылает обновленную сумму в  приемник. Приложение схематически 
изображено на рис. 3.19.

Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

35

6

4

4

2 2

2

3

5 5

2

4 5

Входной поток
Состояние:  

смещение потока Четные числа Состояние: сумма

Нечетные числа

Рис. 3.19   Потоковое приложение с двумя источниками с сохранением состояния,  
двумя задачами с сохранением состояния и двумя приемниками  

без сохранения состояния

Контрольная точка инициируется процессом JobManager путем отправки 
сообщения с  новым идентификатором контрольной точки каждой задаче 
источника данных, как показано на рис. 3.20.

Когда задача источника данных получает сообщение, она приостанавлива-
ет отправку записей, запускает запись контрольную точку своего локального 
состояния на бэкенде состояния и транслирует барьеры контрольной точки 
с идентификатором контрольной точки через все разделы исходящего по-
тока. Бэкенд состояния уведомляет задачу, когда ее контрольная точка со-
стояния завершена, а задача подтверждает контрольную точку в JobManager. 
После того как все барьеры обработаны, источник продолжает свою обычную 
работу. Внедряя барьер в свой выходной поток, функция источника опреде-
ляет позицию потока, на которой ставится контрольная точка. На рис. 3.21 
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показано потоковое приложение после того, как обе входные задачи уста-
новили контрольные точки своего локального состояния и  сгенерировали 
барьеры контрольных точек.

Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

35

6

4

4

2

2

2
3

5 5

2

4 5

Инициация  
контрольной точки 2JonManager

Рис. 3.20   JobManager инициирует создание контрольной точки,  
отправляя сообщение всем источникам

Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

35

6

4

4

2

2

2

4

4

2 2

2
3

3

5 8

4

4 8

Удаленное 
хранилище

Состояние источника 
в контрольной точке

Запрос завершения 
контрольной точки 2 JobManager

Текущий барьер  
для контрольной точки 2

Рис. 3.21   Источники проверяют свое состояние  
и создают барьер контрольной точки

Барьеры контрольных точек, создаваемые входными задачами, достав-
ляются подключенным задачам. Подобно водяным знакам, барьеры кон-
трольных точек транслируются на все подключенные параллельные задачи, 
чтобы гарантировать, что каждая задача получит барьер из каждого из своих 
входных потоков. Когда задача получает барьер для новой контрольной точ-
ки, она ожидает прибытия барьеров со всех своих входных разделов для кон-
трольной точки. Во время ожидания она продолжает обрабатывать записи из 
потоковых разделов, которые еще не создали барьер. Записи, поступающие 
в разделы, которые уже передали барьер, теперь не могут быть обработаны 
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и  помещаются в  буфер. Процесс ожидания прибытия всех барьеров назы-
вается выравниванием барьера (barrier alignment) и изображен на рис. 3.22.

Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

57

8

6

4

2

2

2

24

5

5

6

8

3

7

8

6 8

Источник 
продолжает 

обработку после 
контрольной точки

Буферизованные 
записи  

для выравнивания 
барьера

Входы, чей барьер  
не достигнут,  

обрабатываются

Барьер контрольной точки 
поступает в задачу

Рис. 3.22   Задачи ожидают получения барьера на каждом входном разделе;  
записи из входных потоков, для которых уже достигнут барьер, буферизуются;  

все остальные записи обрабатываются как обычно

Как только задача получила барьеры от всех входных разделов, она ини-
циирует запись контрольной точки на бэкенде состояния и транслирует ба-
рьер контрольной точки на все связанные с  ней нижестоящие задачи, как 
показано на рис. 3.23.

Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

68 7

4

8

6

6

5

2

2

4

57

8

8

3

8

9

8

8 8

Состояние задачи  
в контрольной 
точке Состояние задачи  

по прибытии  
всех барьеров ввода

Барьер пересылается, 
когда прибыли  
все барьеры ввода

Рис. 3.23   Задачи сохраняют в контрольную точку свое состояние  
после получения всех барьеров, затем они пересылают барьер контрольной точки

После того как все барьеры контрольной точки были переданы дальше, 
задача начинает обработку буферизованных записей. Завершив обработ-
ку буфера записей, задача продолжает обработку своих входных потоков 
в обычном режиме. На рис. 3.24 показано приложение на этом этапе.
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Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

8 89

4

8

8

6 2

218 137

7

9

1218

3

8

10

18

9 18

Процесс буферизует запись 
после отправки барьера

Рис. 3.24   Задачи продолжают обычную обработку  
после пересылки барьера контрольной точки

В конце концов барьеры контрольных точек достигают задачи выходного 
лотка. Когда задача лотка получает барьер, она выполняет выравнивание 
барьера, записывает свое состояние в  контрольную точку и  подтверждает 
обработку барьера в  JobManager. JobManager помечает контрольную точку 
приложения как завершенную после того, как он получил подтверждение 
контрольной точки от всех задач приложения. На рис. 3.25 показан послед-
ний шаг алгоритма контрольной точки. Завершенную контрольную точку 
можно использовать для восстановления приложения после сбоя, как опи-
сано ранее.

Источник 1 Сумма чет. Приемник 1

Источник 2 Сумма нечет. Приемник 2

8 89

4

8

8

6

2

1325 187

7
2

1218

3

8

10

18

9 18

JobManager

Запрос контрольной точки 2

Контрольная точка 2 
завершена

Рис. 3.25   Выходные лотки подтверждают прием барьера контрольной точки  
в JobManager, и контрольная точка помечается как завершенная,  

когда все задачи подтвердили успешное создание  
контрольной точки своего состояния
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3.5.4. Значение контрольных точек 
для производительности
Алгоритм контрольных точек Flink создает согласованные распределенные 
контрольные точки из потоковых приложений без остановки всего приложе-
ния. Однако это может увеличить задержку приложения. Flink содержит на-
стройки, которые при определенных условиях могут уменьшить негативное 
влияние на быстродействие.

Пока задача сохраняет свое состояние, она блокируется, а ее ввод буфери-
зируется. Поскольку состояние может стать довольно большим, а контроль-
ная точка требует записи данных по сети в  удаленную систему хранения, 
создание контрольной точки запросто может занять от нескольких секунд 
до минут – слишком долго для приложений, чувствительных к задержкам. 
В архитектуре Flink ответственность за выполнение контрольной точки воз-
лагается на бэкенд состояния. Как именно копируется состояние задачи, за-
висит от реализации бэкенд-части хранилища состояния. Например, бэкенд 
состояния FileSystem и  RocksDB поддерживают асинхронные контрольные 
точки. Когда срабатывает контрольная точка, создается локальная копия 
состояния. Как только создание локальной копии завершено, задача про-
должает свою обычную обработку. Фоновый поток асинхронно копирует ло-
кальный моментальный снимок в удаленное хранилище и уведомляет задачу 
после завершения контрольной точки. Механизм асинхронной контрольной 
точки значительно сокращает время простоя, пока задача не продолжит об-
работку данных. Кроме того, бэкенд-часть RocksDB также поддерживает ин-
крементные контрольные точки, что уменьшает объем данных для передачи.

Еще один способ уменьшить влияние алгоритма контрольной точки на за-
держку обработки – настроить шаг выравнивания барьера. Для приложений, 
которым требуется очень низкая задержка и которым достаточно гарантии 
обработки «хотя бы один раз», Flink можно настроить для обработки всех по-
ступающих записей во время выравнивания буфера вместо буферизации тех 
записей, для которых барьер уже достигнут. После того как все барьеры для 
данной контрольной точки достигнуты, оператор сохраняет в контрольную 
точку состояние, которое теперь может также включать изменения, вызван-
ные записями, которые фактически принадлежат следующей контрольной 
точке. В случае восстановления после сбоя эти записи будут обработаны сно-
ва, что означает, что контрольная точка предоставляет гарантию обработки 
типа «хотя бы один раз», а не «ровно один раз».

3.5.5. Точки сохранения
Алгоритм восстановления Flink основан на контрольных точках состояния. 
Контрольные точки периодически создаются и  автоматически удаляются 
в  соответствии с  настраиваемой политикой. Поскольку назначением кон-
трольных точек является обеспечение возможности перезапуска приложения 
в случае сбоя, они удаляются, когда работу приложения сознательно останав-
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ливают1. Однако согласованные снимки состояния приложения могут исполь-
зоваться для многих других целей, чем просто восстановление после сбоя.

Одна из наиболее ценных и  уникальных функций Flink – это точки со-
хранения (savepoint). В принципе, точки сохранения создаются с использо-
ванием того же алгоритма, что и контрольные точки, и в основном являют-
ся контрольными точками с некоторыми дополнительными метаданными. 
Flink не создает точки сохранения автоматически, поэтому пользователь 
(или внешний планировщик) должен явно инициировать их создание. Flink 
также не удаляет точки сохранения автоматически. В  главе 10 рассказано, 
как создавать и удалять точки сохранения.

3.5.5.1. Использование точек сохранения
Имея приложение и совместимую точку сохранения, вы можете запустить 
приложение из точки сохранения. Это инициализирует состояние приложе-
ния до состояния точки сохранения и запустит приложение с момента, когда 
была создана точка сохранения. Хотя такое поведение кажется в точности та-
ким же, как восстановление приложения после сбоя с помощью контрольной 
точки, восстановление после сбоя на самом деле является просто частным 
случаем, когда вы запускаете то же самое приложение с такой же конфигура-
цией в том же кластере. Запуск приложения из точки сохранения позволяет 
делать гораздо больше:

�� вы можете запустить другое, но совместимое приложение из точки 
сохранения. Следовательно, вы можете исправить ошибки в  логике 
своего приложения и повторно обработать столько событий, сколько 
может предоставить источник потоковой передачи, чтобы исправить 
свои результаты. Модифицированные приложения также можно ис-
пользовать для запуска A/B-тестов или сценариев «что, если»2 с другой 
бизнес-логикой. Обратите внимание, что приложение и точка сохра-
нения должны быть совместимы – приложение должно иметь возмож-
ность загружать состояние точки сохранения;

�� вы можете запустить одно и то же приложение с разным параллелиз-
мом и масштабировать приложение по мере увеличения или умень-
шения нагрузки;

�� вы можете запустить одно и то же приложение в другом кластере. Это 
позволяет вам перенести приложение на более новую версию Flink или 
в другой кластер или центр обработки данных;

�� вы можете использовать точку сохранения, чтобы приостановить при-
ложение и возобновить его позже. Это дает возможность высвободить 
ресурсы кластера для приложений с более высоким приоритетом или 
в ситуациях, когда входные данные не поступают непрерывно;

1	 Можно настроить приложение таким образом, чтобы оно сохраняло свою послед-
нюю контрольную точку при остановке.

2	 Сценарий «что, если» – это один из приемов так называемого хаос-инжиниринга – 
передовой технологии обеспечения устойчивости масштабных систем. Издатель-
ство «ДМК Пресс» выпустило отдельную книгу про эту технологию: «Хаос-инжи-
ниринг. Революция в разработке устойчивых систем». – Прим. перев.
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�� вы также можете просто создать точку сохранения для текущей версии 
и заархивировать состояние приложения.

Поскольку точки сохранения – это очень мощная функция, многие пользо-
ватели периодически создают точки сохранения, чтобы иметь возможность 
вернуться в прошлое. Одно из самых интересных применений точек сохра-
нения, которое мы встречали на практике, – это безразрывная миграция 
потокового приложения в центр обработки данных, который обеспечивает 
самые низкие цены на экземпляры машин.

3.5.5.2. Запуск приложения из точки сохранения
Все ранее упомянутые варианты использования точек сохранения следуют 
одному шаблону. Сначала берется точка сохранения работающего приложе-
ния, а затем она используется для восстановления состояния в запущенном 
приложении. В этом разделе мы описываем, как Flink инициализирует со-
стояние приложения, запущенного из точки сохранения.

Приложение состоит из нескольких операторов. Каждый оператор может 
определять одно или несколько состояний с ключом и состояний операторов. 
Операторы выполняются параллельно одной или несколькими задачами 
операторов. Следовательно, типичное приложение состоит из нескольких 
состояний, распределенных между несколькими задачами, которые могут 
выполняться в разных процессах TaskManager.

На рис. 3.26 показано приложение с тремя операторами, каждый из кото-
рых выполняет две задачи. Один оператор (OP-1) имеет одно состояние опе-
ратора (OS-1), а другой оператор (OP-2) имеет два состояния с ключом (KS-1 
и KS-2). Когда создается точка сохранения, состояния всех задач копируются 
в постоянное хранилище.

Приложение

OP-3

OP-2

OP-2

OP-1

OP-1

KS-1

KS-1

ОS-1

ОS-1

KS-2

KS-2KS-1
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Ключевое состояние

Создание 
точки 

сохранения
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из точки  

сохранения

Задача оператора Состояние оператора

Точка сохранения

ID оператора

Имя состояния

Рис. 3.26   Создание точки сохранения в приложении  
и восстановление приложения из точки сохранения
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Копии состояний в точке сохранения организованы по идентификатору 
оператора и имени состояния. Идентификатор оператора и имя состояния 
необходимы, чтобы иметь возможность отображать данные состояния точки 
сохранения в состояния операторов запускаемого приложения. Когда при-
ложение запускается из точки сохранения, Flink перераспределяет данные 
точки сохранения для задач соответствующих операторов.

	 Обратите внимание, что точка сохранения не содержит информации о задачах опера-
тора. Это связано с тем, что количество задач может измениться, когда приложение за-
пускается с другим параллелизмом. Ранее в этом разделе мы обсуждали стратегии Flink 
для масштабирования операторов с отслеживанием состояния.

Если измененное приложение запускается из точки сохранения, состоя-
ние в точке сохранения может быть сопоставлено приложению, только если 
оно содержит оператор с  соответствующим идентификатором и  именем 
состояния. По умолчанию Flink присваивает уникальные идентификаторы 
операторов. Однако идентификатор оператора детерминировано генериру-
ется на основе идентификаторов предшествующих ему операторов. Следо-
вательно, идентификатор оператора изменяется при изменении одного из 
его предшественников, например при добавлении или удалении оператора. 
Как следствие, приложение с идентификаторами операторов по умолчанию 
очень ограничено в способах развития без потери состояния. Поэтому мы 
настоятельно рекомендуем вручную назначать уникальные идентификаторы 
операторам и не полагаться на присвоение Flink по умолчанию. Мы подроб-
но рассказываем, как назначать идентификаторы операторов в разделе 7.3.1.

3.6. Заключение

В этой главе мы обсудили высокоуровневую архитектуру Flink и внутреннее 
устройство его сетевого стека, режим обработки с привязкой ко времени со-
бытий, управление состоянием и механизм восстановления после сбоев. Эта 
информация пригодится при разработке сложных потоковых приложений, 
настройке и конфигурировании кластеров и эксплуатации потоковых при-
ложений, а также при оценке их быстродействия.



Глава 4
Настройка 

рабочей среды 
для Apache Flink

Теперь, когда вы получили столько новых знаний, пришло время заняться 
разработкой приложений Flink! В этой главе вы узнаете, как настроить ра-
бочую среду для разработки, запуска и отладки приложений Flink. Мы нач-
нем с обсуждения необходимого программного обеспечения и того, где вы 
можете получить примеры кода из этой книги. Используя эти примеры, мы 
покажем, как приложения Flink выполняются и отлаживаются в среде IDE. 
Наконец, мы покажем, как запустить проект Flink Maven – отправную точку 
для нового приложения.

4.1. Необходимое ПО
Прежде всего давайте обсудим программное обеспечение, необходимое для 
разработки приложений Flink. Вы можете разрабатывать и запускать прило-
жения Flink в Linux, macOS и Windows. Однако среда на основе UNIX обладает 
богатейшей инструментальной поддержкой, потому что эту ОС предпочи-
тает большинство разработчиков Flink. В оставшейся части этой главы мы 
будем подразумевать использование среды на основе UNIX. Как пользова-
тель Windows, вы можете использовать подсистему Windows для Linux (WSL), 
Cygwin или виртуальную машину Linux для запуска Flink в среде UNIX.

API Flink DataStream доступен для Java и Scala. Следовательно, для реали-
зации приложений Flink DataStream требуется Java JDK версии 8 (или выше). 
Java JRE недостаточно.

Мы предполагаем, что на вашем компьютере также установлено следую-
щее программное обеспечение, хотя оно не является строго обязательным 
для разработки приложений Flink:

�� Apache Maven 3.x. Примеры кода в книге используют сборщик проектов 
Maven. Более того, Flink предоставляет архетипы Maven для запуска 
новых проектов Flink Maven;
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�� IDE для разработки на Java и/или Scala. Обычно разработчики пред-
почитают IntelliJ IDEA, Eclipse или Netbeans с соответствующими под-
ключаемыми модулями (например, для поддержки Maven, Git и Scala). 
Мы рекомендуем использовать IntelliJ IDEA. Для загрузки и установки 
IntelliJ IDEA вы можете воспользоваться инструкциями на веб-сайте.

4.2. Запуск и отладка приложений Flink 
в среде IDE
Несмотря на то что Flink является системой распределенной обработки дан-
ных, вы обычно разрабатываете и запускаете начальные тесты на своем ло-
кальном компьютере. Это упрощает разработку приложения и развертыва-
ние кластера, поскольку вы можете запускать тот же код в кластерной среде 
без каких-либо изменений. Далее мы расскажем, как получить примеры кода, 
которые мы используем в книге, как импортировать их в IntelliJ, как запу-
стить пример приложения и как его отладить.

4.2.1. Импорт примеров книги в IDE
Примеры кода из этой книги размещены на GitHub. На странице книги на 
GitHub вы найдете один репозиторий с  примерами на языке Scala и  один 
репозиторий с примерами на языке Java. Мы будем использовать репозито-
рий Scala для установки, но вы сможете следовать тем же инструкциям, если 
предпочитаете Java.

Откройте терминал и выполните следующую команду Git, чтобы клониро-
вать репозиторий examples-scala на ваш локальный компьютер1:

> git clone https://github.com/streaming-with-flink/examples-scala

Вы также можете скачать исходный код примеров в  виде zip-архива 
с GitHub:

> wget https://github.com/streaming-with-flink/examples-scala/archive/master.zip
> unzip master.zip 

Примеры книг представлены как проект Maven. Вы найдете исходный код 
в каталоге src/, сгруппированном по главам:

.
└── main
    └── scala
        └── io
            └── github

1	 Мы также предлагаем читателям репозиторий examples-Java с примерами на языке 
Java.
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                └── streamingwithflink
                    ├── chapter1
                    │   └── AverageSensorReadings.scala
                    ├── chapter5
                    │   └── ...
                    ├── ...
                    │   └── ...
                    └── util
                        └── ...

Теперь откройте свою среду IDE и импортируйте проект Maven. Шаги им-
порта аналогичны для большинства IDE. Далее мы подробно объясняем этот 
шаг для IntelliJ.

Перейдите из Existing Sources (существующие источники) в  меню File 
 New  Project, выберите папку примеров книг examples-scala и нажмите 
ОК. Убедитесь, что выбраны опции Import project from external model (Им-
портировать проект из внешней модели) и Maven, и нажмите кнопку Next.

Мастер импорта проекта проведет вас через следующие шаги, такие как 
выбор проекта Maven для импорта (должен быть только один проект), выбор 
SDK и присвоение имени проекту. На рис. 4.1–4.3 показан процесс импорта.

Рис. 4.1   Импортируйте репозиторий примеров книги в IntelliJ
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Рис. 4.2   Выберите проект Maven для импорта

Рис. 4.3   Дайте вашему проекту имя и нажмите Finish

Готово! Теперь вы можете просматривать и проверять код примеров книг.

4.2.2. Запуск приложений Flink в среде IDE
Теперь давайте запустим в вашей среде IDE один из примеров приложений 
из книги. Найдите класс AverageSensorReadings и откройте его. Как было ска-
зано в разделе 1.4, программа генерирует события чтения для нескольких 
термодатчиков, конвертирует температуру событий из градусов Фаренгейта 
в градусы Цельсия и вычисляет среднюю температуру каждого датчика каж-
дую секунду. Результаты программы отправляются на стандартный вывод. 
Как и во многих приложениях DataStream, источник, приемник и операторы 
программы собраны в методе main() класса AverageSensorReadings.

Чтобы выполнить приложение, запустите метод main(). Вывод программы 
записывается в стандартное окно вывода (или консоль) вашей IDE. Вывод на-
чинается с нескольких строк журнала о состояниях, через которые проходят 
задачи параллельных операторов, таких как SCHEDULING, DEPLOYING и RUNNING. 
После того как все задачи будут извлечены и запущены, программа начинает 
выдавать свои результаты, которые должны выглядеть примерно так:
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2> SensorReading(sensor_31,1515014051000,23.924656183848732)
4> SensorReading(sensor_32,1515014051000,4.118569049862492)
1> SensorReading(sensor_38,1515014051000,14.781835420242471)
3> SensorReading(sensor_34,1515014051000,23.871433252250583)

Программа будет продолжать генерировать новые события, обрабатывать 
их и выдавать новые результаты каждую секунду, пока вы не завершите ее.

Теперь давайте бегло обсудим, что происходит под капотом. Как мы го-
ворили в разделе 3.1.1, приложение Flink отправляется в JobManager (руко-
водитель), который распределяет задачи выполнения между одним или не-
сколькими процессами TaskManager (исполнители). Поскольку Flink является 
распределенной системой, JobManager и TaskManager обычно запускаются 
как отдельные процессы JVM на разных машинах.

Обычно метод main() программы собирает поток данных и  отправляет 
его удаленному JobManager при вызове метода StreamExecutionEnvironment.
execute().

Однако существует также режим, в котором вызов метода execute() запу-
скает JobManager и TaskManager (по умолчанию с таким количеством слотов, 
сколько доступных потоков ЦП) как отдельные потоки в  одной JVM. Сле-
довательно, все приложение Flink является многопоточным и выполняется 
в одном процессе JVM. Этот режим используется для выполнения программы 
Flink в среде IDE.

4.2.3. Отладка приложений Flink в среде IDE
Благодаря одиночному режиму выполнения JVM приложения Flink можно 
отлаживать в среде IDE почти как любую другую программу. Вы можете опре-
делять точки остановки в коде и отлаживать приложение, как обычно.

Однако при отладке приложения Flink в среде IDE следует учитывать не-
сколько моментов:

�� если вы не укажете параллелизм, программа будет выполняться таким 
количеством потоков, сколько потоков ЦП доступно в вашей рабочей 
машине. Следовательно, вы должны быть готовы к отладке многопо-
точной программы;

�� в отличие от выполнения программы Flink путем отправки ее удален-
ному JobManager при отладке программа выполняется в одной JVM. По-
этому некоторые проблемы, такие как проблемы с загрузкой классов, 
не могут быть должным образом отлажены;

�� хотя программа выполняется в одной JVM, записи сериализуются для 
межпоточного взаимодействия и, возможно, сохранения состояния.
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4.3. Развертывание проекта Flink 
для сборщика Maven

Импорт репозитория examples-scala в  вашу среду IDE для экспериментов 
с Flink – хороший первый шаг. Однако вы также должны знать, как создать 
новый проект Flink с нуля.

Flink предоставляет архетипы Maven для создания проектов Maven для 
приложений Flink на Java или Scala. Откройте терминал и выполните следу-
ющую команду, чтобы создать проект Flink Maven Quickstart Scala в качестве 
отправной точки для вашего приложения Flink:

mvn archetype:generate \
   -DarchetypeGroupId=org.apache.flink \
   -DarchetypeArtifactId=flink-quickstart-scala \
   -DarchetypeVersion=1.7.1 \
   -DgroupId=org.apache.flink.quickstart \
   -DartifactId=flink-scala-project \
   -Dversion=0.1 \
   -Dpackage=org.apache.flink.quickstart \
   -DinteractiveMode=false

Эта длинная команда создаст проект Maven для Flink 1.7.1 в папке с име-
нем flink-scala-project. Вы можете изменить версию Flink, идентификаторы 
группы и артефакта, версию и сгенерированный пакет, изменив соответству-
ющие параметры указанной выше команды mvn. Созданная папка содержит 
папку src/ и файл pom.xml. Папка src/ имеет следующую структуру:

src/
└── main
    ├── resources
    │   └── log4j.properties
    └── scala
        └── org
            └── apache
                └── flink
                    └── quickstart
                        ├── BatchJob.scala
                        └── StreamingJob.scala

Проект содержит два файла-скелета, BatchJob.scala и  StreamingJob.scala, 
в  качестве отправной точки для ваших собственных программ. Вы также 
можете удалить их, если они вам не нужны.

Вы можете импортировать проект в свою среду IDE, выполнив шаги, опи-
санные в предыдущем разделе, или выполнить следующую команду для соз-
дания файла JAR:

mvn clean package -Pbuild-jar
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Если команда выполнена успешно, вы найдете новую папку target в папке 
вашего проекта. В папке находится файл flink-scala-project-0.1.jar, кото-
рый является файлом JAR вашего приложения Flink. Сгенерированный файл 
pom.xml также содержит инструкции о том, как добавить новые зависимости 
в ваш проект.

4.4. Заключение

В этой главе вы узнали, как настроить среду для разработки и отладки при-
ложений Flink DataStream и как создать проект Maven с использованием ар-
хетипа Maven Flink. Следующий очевидный шаг – узнать, как на практике 
реализовать программу DataStream.

Глава 5 познакомит вас с основами API DataStream, а главы 6, 7 и 8 рас-
скажут обо всем, что нужно знать об операторах, основанных на времени, 
функциях с учетом состояния и соединителях источника и приемника.



Глава 5
API DataStream (v1.7)

В этой главе мы рассказываем об основах API DataStream. Мы продемон-
стрируем структуру и компоненты типичного потокового приложения Flink, 
обсудим системы типов Flink и поддерживаемые типы данных, а также пред-
ставим функции преобразования данных и разделения потоков. Операторы 
окна, преобразования на основе времени, операторы с  учетом состояния 
и соединители обсуждаются в следующих главах. Прочитав эту главу, вы уз-
наете, как реализовать приложение потоковой обработки с базовыми функ-
циями. В  наших примерах кода для краткости используется Scala, но API 
Java в основном аналогичен (исключения или особые случаи будут указаны 
отдельно). Мы также предоставляем полные примеры приложений, реали-
зованных на Java и Scala, в наших репозиториях GitHub.

5.1. Hello, Flink!
Начнем с простого примера, чтобы получить первое впечатление о написа-
нии потоковых приложений с помощью API DataStream. Мы будем использо-
вать этот пример, чтобы продемонстрировать базовую структуру программы 
Flink и представить некоторые важные функции API DataStream. Наш при-
мер приложения принимает поток измерений температуры от нескольких 
датчиков.

Во-первых, давайте посмотрим на тип данных, который мы будем исполь-
зовать для представления показаний датчика:

case class SensorReading(
  id: String,
  timestamp: Long,
  temperature: Double)

Программа в примере 5.1 преобразует температуру из Фаренгейта в Цель-
сия и каждые 5 с вычисляет среднюю температуру для каждого датчика.

Пример 5.1  � Вычисление средней температуры каждые 5 с  
для потока данных от датчиков

// Объект Scala, который определяет программу DataStream в методе main().
object AverageSensorReadings {
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  // main() определяет и выполняет программу DataStream.
  def main(args: Array[String]) {

    // Определяем среду потокового выполнения.
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    // Используем в приложении время события.
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

    // Создаем DataStream[SensorReading] из источника потока.
    val sensorData: DataStream[SensorReading] = env
      // Загружаем данные датчиков при помощи экземпляра SourceFunction.
      .addSource(new SensorSource)
      // Устанавливаем метки времени и водяные знаки (нужны для времени события).
      .assignTimestampsAndWatermarks(new SensorTimeAssigner)
    val avgTemp: DataStream[SensorReading] = sensorData
      // Конвертируем шкалу Фаренгейта в шкалу Цельсия.
      .map( r => {
          val celsius = (r.temperature - 32) * (5.0 / 9.0)
          SensorReading(r.id, r.timestamp, celsius)
        } )
       // Упорядочиваем измерения по ID датчика.
       .keyBy(_.id)
       // Группируем измерения по 5 секунд при помощи шагающего окна.
       .timeWindow(Time.seconds(5))
       // Вычисляем среднюю температуру при помощи определяемой пользователем функции.
       .apply(new TemperatureAverager)

     // Направляем поток результатов в стандартный вывод.
     avgTemp.print()

     // Выполняем приложение.
     env.execute("Compute average sensor temperature")
 }
} 

Вы, наверное, уже заметили, что программы Flink определяются и отправ-
ляются на выполнение в обычные методы Scala или Java. Чаще всего это де-
лается в статическом методе main(). В нашем примере мы определяем объект 
AverageSensorReadings и включаем большую часть логики приложения в main().

Структура алгоритма типичного потокового приложения Flink выглядит 
следующим образом.

1.	 Настройка среды выполнения.
2.	 Считывание одного или нескольких потоков из источников данных.
3.	� Применение потоковых преобразований для реализации логики при-

ложения.
4.	� При необходимости вывод результата в один или несколько приемни-

ков данных.
5.	 Запуск программы.

Теперь рассмотрим эти части подробнее.
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5.1.1. Настройка среды выполнения
Первое, что нужно сделать приложению Flink, – это настроить среду выполне-
ния. Среда выполнения определяет, выполняется ли программа на локальном 
компьютере или в кластере. В API DataStream среда выполнения приложения 
представлена как StreamExecutionEnvironment. В нашем примере мы получаем 
среду выполнения, вызывая статический метод getExecutionEnvironment(). 
Этот метод возвращает локальную или удаленную среду в зависимости от 
контекста, в котором вызывается метод. Если метод вызывается из клиента 
отправки с подключением к удаленному кластеру, возвращается среда уда-
ленного выполнения. В противном случае он возвращает локальную среду.

Также можно явно создать локальную или удаленную среду выполнения 
следующим образом:

// Создаем локальную среду потокового выполнения.
val localEnv: StreamExecutionEnvironment.createLocalEnvironment()

// Создаем удаленную среду потокового выполнения.
val remoteEnv = StreamExecutionEnvironment.createRemoteEnvironment(
  "host", // Имя хоста JobManager.
  1234, // Порт процесса JobManager.
  "path/to/jarFile.jar") // Файл JAR для отправки в JobManager.

Затем мы используем env.setStreamTimeCharacteristic (TimeCharacteristic.
EventTime), чтобы указать нашей программе использовать семантику време-
ни с использованием времени события. Среда выполнения предлагает и дру-
гие параметры конфигурации, такие как настройка параллелизма программ 
и включение отказоустойчивости.

5.1.2. Чтение входного потока
После того как среда выполнения настроена, пора приступить к  реальной 
работе и начать обработку потоков. StreamExecutionEnvironment предоставляет 
методы для создания источников потока, которые принимают потоки дан-
ных в приложение. Потоки данных могут быть получены из таких источни-
ков, как очереди сообщений или файлы, а также могут быть созданы на лету.

В нашем примере мы используем

val sensorData: DataStream[SensorReading] =
  env.addSource(new SensorSource)

для подключения к источнику измерений датчика и создания начально-
го потока данных типа SensorReading. Flink поддерживает множество типов 
данных, которые мы опишем в  следующем разделе. Здесь мы используем 
case-класс Scala в  качестве типа данных, который мы определили ранее. 
SensorReading содержит идентификатор датчика, метку времени, обозначаю-
щую, когда было выполнено измерение, и измеренную температуру. Метод 
assignTimestampsAndWatermarks(new SensorTimeAssigner) назначает метки време-
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ни и водяные знаки, необходимые для времени события. Детали реализации 
SensorTimeAssigner сейчас нас не интересуют.

5.1.3. Применение преобразований
Как только у нас появился DataStream, мы можем применить к нему преоб-
разование. Есть разные типы преобразований. Одни преобразования могут 
создавать новый поток данных, возможно, другого типа, в то время как дру-
гие преобразования не изменяют записи потока данных, а  реорганизуют 
его путем разделения или группировки. Логика приложения определяется 
цепочкой преобразований.

В нашем примере мы сначала применяем преобразование map(), которое 
преобразует температуру каждого показания датчика в  градусы Цельсия. 
Затем мы используем преобразование keyBy(), чтобы разделить показания 
датчиков по их идентификаторам. Затем мы определяем преобразование 
timeWindow(), которое группирует показания каждого раздела по идентифи-
катору датчика в шагающие окна по 5 с:

val avgTemp: DataStream[SensorReading] = sensorData
     .map( r => {
           val celsius = (r.temperature - 32) * (5.0 / 9.0)
           SensorReading(r.id, r.timestamp, celsius)
        } )
     .keyBy(_.id)
     .timeWindow(Time.seconds(5))
     .apply(new TemperatureAverager)

Оконные преобразования подробно описаны в разделе 6.3. Наконец, мы 
применяем пользовательскую функцию, которая вычисляет среднюю темпе-
ратуру в каждом окне. Мы обсудим реализацию пользовательской функции 
в следующем разделе этой главы.

5.1.4. Вывод результата
Потоковые приложения обычно отправляют свои результаты в какую-либо  
внешнюю систему, такую как Apache Kafka, файловую систему или базу дан-
ных. Flink предоставляет хорошо поддерживаемый набор приемников по-
тока, которые можно использовать для записи данных в разные системы. 
Также возможно реализовать свои собственные приемники потоковой пере-
дачи. Встречаются приложения, которые не выдают результаты, а  хранят 
их внутри, чтобы обслуживать их с помощью функции запросов состояния 
Flink.

В нашем примере результатом является запись DataStream[SensorReading]. 
Каждая запись содержит среднюю температуру датчика за 5 с. Поток резуль-
татов записывается в стандартный вывод с помощью вызова print():

avgTemp.print ()
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	 Обратите внимание, что выбор приемника потоковой передачи влияет на сквозную со-
гласованность приложения независимо от того, обеспечивается ли результат приложе-
ния семантикой хотя бы один или ровно один раз. Сквозная согласованность приложе-
ния зависит от интеграции выбранных приемников потока с алгоритмом контрольной 
точки Flink. Мы обсудим эту тему более подробно в разделе 8.1.

5.1.5. Выполнение
Когда приложение полностью определено, его можно запустить, вызвав 
StreamExecutionEnvironment.execute(). Это последний вызов в нашем примере:

env.execute("Compute average sensor temperature")

Программы Flink выполняются лениво. То есть вызовы API, которые соз-
дают источники потоков и преобразования, не сразу запускают какую-ли-
бо обработку данных. Вместо этого вызовы API создают план выполнения 
в среде выполнения, который состоит из источников потока, созданных из 
среды, и всех преобразований, которые были транзитивно применены к этим 
источникам. Только при вызове метода execute() система запускает выпол-
нение программы.

Построенный план переводится в JobGraph и передается в JobManager для 
выполнения. В зависимости от типа среды выполнения JobManager запускает-
ся как локальный поток (локальная среда выполнения) или JobGraph отправ-
ляется удаленному процессу JobManager. Если JobManager работает удаленно, 
JobGraph должен поставляться вместе с файлом JAR, который содержит все 
классы и необходимые зависимости приложения.

5.2. Преобразования

В этом разделе мы даем обзор основных преобразований API DataStream. 
Операторы, связанные со временем, такие как оконные операторы и другие 
специализированные преобразования, описаны в следующих главах. Преоб-
разование потока применяется к одному или нескольким потокам и преоб-
разует их в один или несколько выходных потоков. Написание программы 
API DataStream по существу сводится к объединению таких преобразований 
для создания графа потока данных, реализующего логику приложения.

Большинство потоковых преобразований основано на пользовательских 
функциях. Функции инкапсулируют логику пользовательского приложения 
и  определяют, как элементы входного потока преобразуются в  элементы 
выходного потока. Функции, такие как MapFunction, в дальнейшем опреде-
ляются как классы, реализующие интерфейс функции, зависящий от пре-
образования:

class MyMapFunction extends MapFunction[Int, Int] {
  override def map(value: Int): Int = value + 1
}
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Интерфейс функции определяет метод преобразования, который должен 
быть реализован пользователем, например метод map() в приведенном выше 
примере.

Большинство интерфейсов функций разработаны как интерфейсы SAM 
(single abstract method, «единый абстрактный метод») и могут быть реали-
зованы как лямбда-функции Java 8. API DataStream Scala также имеет встро-
енную поддержку лямбда-функций. При представлении преобразований API 
DataStream мы показываем интерфейсы для всех классов функций, но для 
краткости в примерах кода в основном используются лямбда-функции вме-
сто функциональных классов.

API DataStream предоставляет преобразования для наиболее распростра-
ненных операций преобразования данных. Если вы знакомы с API пакетной 
обработки данных, функциональными языками программирования или SQL, 
вам будет очень легко понять концепции API. Мы представляем преобразо-
вания API DataStream в четырех категориях.

1.	 Базовые преобразования – это преобразования отдельных событий.
2.	� Преобразования KeyedStream – это преобразования, которые применя-

ются к событиям в контексте ключа.
3.	� Многопоточные преобразования объединяют несколько потоков 

в один или разделяют один поток на несколько потоков.
4.	 Преобразования распределения реорганизуют потоковые события.

5.2.1. Основные преобразования
Основные преобразования обрабатывают отдельные события, то есть каждая 
выходная запись создается из одной входной записи. Примерами распро-
страненных основных функций являются простое преобразование значений, 
разделение записей или фильтрация записей. Далее мы объясним их семан-
тику и покажем примеры кода.

5.2.1.1. Map
Преобразование map определяется путем вызова метода DataStream.map() 
и создает новый экземпляр DataStream. Он передает каждое входящее собы-
тие определенному пользователем преобразователю, который возвращает 
ровно одно выходное событие, возможно, другого типа. На рис. 5.1 показано 
преобразование map, при котором каждый квадрат превращается в круг.

Рис. 5.1   Операция map,  
превращающая каждый квадрат в круг того же цвета
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Функция MapFunction типизирована для типов входных и выходных собы-
тий и может быть указана с помощью интерфейса MapFunction. Он определяет 
метод map(), который преобразует входное событие ровно в одно выходное 
событие:

// T: тип входных элементов.
// O: тип выходных элементов.
MapFunction[T, O]
    > map(T): O 

Ниже показан простой преобразователь, который извлекает первое поле 
(id) каждого SensorReading во входном потоке:

val readings: DataStream[SensorReading] = ...
val sensorIds: DataStream[String] = readings.map(new MyMapFunction)

class MyMapFunction extends MapFunction[SensorReading, String] {
  override def map(r: SensorReading): String = r.id
}

При использовании Scala API или Java 8 преобразователь также может быть 
выражен как лямбда-функция:

val readings: DataStream[SensorReading] = ...
val sensorIds: DataStream[String] = readings.map(r => r.id)

5.2.1.2. Filter
Преобразование фильтра отбрасывает или пересылает события потока, про-
веряя логическое условие для каждого входного события. Возвращаемое зна-
чение true сохраняет входное событие и перенаправляет его на выход, а false 
приводит к  отбрасыванию события. Преобразование фильтра указывается 
путем вызова метода DataStream.filter() и создает новый DataStream того же 
типа, что и входной DataStream. На рис. 5.2 показана операция фильтрации, 
при которой сохраняются только белые квадраты.

Рис. 5.2   Операция filter,  
сохраняющая только белые значения

Логическое условие реализуется как функция с  использованием интер-
фейса FilterFunction или лямбда-функции. Интерфейс FilterFunction типи-
зирован для типа входного потока и  определяет метод filter(), который 
вызывается с входным событием и возвращает логическое значение:
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// Т: тип элементов.
FilterFunction[T]
    > filter(T): Boolean 

В следующем примере показан фильтр, который сбрасывает все показания 
датчика при температуре ниже 25 °F:

val readings: DataStream[SensorReadings] = ...
val filteredSensors = readings
    .filter( r => r.temperature >= 25 )

5.2.1.3. FlatMap
Преобразование flatMap похоже на map, но может генерировать ноль, одно или 
несколько выходных событий для каждого входящего события. Фактически 
преобразование flatMap является обобщением преобразований filter и map 
и  может использоваться для реализации обеих этих операций. На рис.  5.3 
показана операция flatMap, которая меняет свой вывод в  зависимости от 
цвета входящего события. Если вход представляет собой белый квадрат, она 
выводит событие без изменений. Черные квадраты дублируются, а  серые 
отфильтровываются.

Рис. 5.3   Операция flatMap, которая выводит белые квадраты,  
дублирует черные и отбрасывает серые 

Преобразование flatMap применяет функцию к каждому входящему собы-
тию. Соответствующая функция FlatMapFunction определяет метод flatMap(), 
который может возвращать ноль, одно или несколько событий в  качестве 
результатов, передав их объекту Collector:

// T: тип входных элементов.
// O: тип выходных элементов.
FlatMapFunction[T, O]
    > flatMap(T, Collector[O]): Unit

В этом примере показано преобразование flatMap, которое обычно встре-
чается в  учебниках по обработке данных. Функция применяется к  потоку 
предложений, разделяет каждое предложение символом пробела и выдает 
каждое полученное слово как отдельную запись:

val sentences: DataStream[String] = ...
val words: DataStream[String] = sentences
   .flatMap(id => id.split(" "))
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5.2.2. Преобразования KeyedStream
Общим требованием многих приложений является обработка групп событий, 
которые вместе имеют определенное свойство. В API DataStream реализова-
на абстракция KeyedStream, которая представляет собой DataStream, логиче-
ски разделенный на непересекающиеся подпотоки событий, имеющих один 
и тот же ключ.

Преобразования с учетом состояния, которые применяются к KeyedStream, 
читают из состояния и записывают в состояние в контексте ключа текущего 
обрабатываемого события. Это означает, что все события с одним и тем же 
ключом обращаются к одному и тому же состоянию и, следовательно, могут 
обрабатываться вместе.

	 Обратите внимание, что преобразования с учетом состояния и агрегаты с ключами сле-
дует использовать с осторожностью. Если занятая ключами область непрерывно растет – 
например, потому что ключ является уникальным идентификатором транзакции, – вам 
необходимо очистить состояние ключей, которые больше не активны, чтобы избежать 
проблем с памятью. Обратитесь к разделу 7.1, где подробно рассматриваются функции 
с учетом состояния.

KeyedStream можно обрабатывать с помощью преобразований map, flatMap 
и filter, которые вы видели ранее. В дальнейшем мы будем использовать 
преобразование keyBy для конвертации DataStream в KeyedStream и преобразо-
ваний с ключом, таких как скользящее агрегирование и сокращение.

5.2.2.1. keyBy
Преобразование keyBy преобразует DataStream в KeyedStream путем назначения 
ключа. События потока назначаются разделам на основе ключа, поэтому все 
события с одним и тем же ключом обрабатываются одной и той же задачей 
последующего оператора. События с разными ключами тоже могут обраба-
тываться одной и той же задачей, но доступ к ключевому состоянию функции 
задачи всегда осуществляется в области действия ключа текущего события.

Принимая во внимание цвет входного события в качестве ключа, на рис. 5.4 
события черного цвета назначаются одному разделу, а все остальные собы-
тия – другому разделу.

Рис. 5.4   Операция keyBy,  
разделяющая события по цвету
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Метод keyBy() получает аргумент, указывающий ключ (или ключи) для 
группировки, и возвращает KeyedStream. Есть разные способы указать ключи. 
Мы рассмотрим их в разделе 5.5. Следующий код объявляет поле id как ключ 
потока записей SensorReading:

val readings: DataStream[SensorReading] = ...

val keyed: KeyedStream[SensorReading, String] = readings

  .keyBy(r => r.id) 

Лямбда-функция r => r.id извлекает поле id датчика, считывающего r.

5.2.2.2. Скользящее агрегирование
Преобразования скользящего агрегирования применяются к  KeyedStream 
и создают поток данных агрегатов, таких как сумма, минимум и максимум. 
Оператор скользящего агрегирования сохраняет агрегированное значение 
для каждого наблюдаемого ключа. Для каждого входящего события оператор 
обновляет соответствующее агрегированное значение и генерирует событие 
с обновленным значением. Скользящее агрегирование не требует написания 
пользовательской функции, но получает аргумент, указывающий, по какому 
полю вычисляется агрегат. API DataStream предоставляет следующие методы 
скользящего агрегирования:

sum()
Скользящая сумма входящего потока по указанному полю.

min()
Скользящий минимум входного потока по указанному полю.

max()
Скользящий максимум входного потока по указанному полю.

minBy()
Скользящий минимум входного потока, который возвращает событие 
с наименьшим наблюдаемым значением.

maxBy()
Скользящий максимум входящего потока, который возвращает событие 
с наибольшим наблюдаемым значением.

Невозможно комбинировать несколько методов скользящего агрегирова-
ния – за один раз можно вычислить только один скользящий агрегат.

Рассмотрим следующий пример кортежа Tuple3[Int, Int, Int] с  ключом 
в первом поле и вычислением скользящей суммы по второму полю:

val inputStream: DataStream[(Int, Int, Int)] = env.fromElements(

  (1, 2, 2), (2, 3, 1), (2, 2, 4), (1, 5, 3))

val resultStream: DataStream[(Int, Int, Int)] = inputStream

  .keyBy(0) // Ключ в первом поле кортежа.

  .sum(1) // Сумма значений второго поля в текущей позиции.
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 В  этом примере входной поток кортежа привязан к  первому полю, 
а  скользящая сумма вычисляется по второму полю. Результатом примера 
будет (1,2,2), за которым следует (1,7,2) для ключа «1» и (2,3,1), за которым 
следует (2,5,1) для ключа «2». Первое поле – это общий ключ, второе поле – 
сумма, а третье поле не определено.

	 Используйте скользящие агрегаты только для ограниченных ключевых пространств

	
Оператор скользящего агрегата сохраняет состояние для каждого обрабатываемого 
ключа. Поскольку это состояние никогда не очищается, вам следует применять оператор 
скользящего агрегирования только к потоку с ограниченным пространством ключей.

5.2.2.3. Reduce
Преобразование reduce – это обобщение скользящего агрегирования, опе-
ратор скользящего сокращения. Он применяет ReduceFunction к KeyedStream, 
который объединяет каждое входящее событие с текущим уменьшенным 
значением и создает DataStream. Преобразование reduce не изменяет тип по-
тока. Тип выходного потока такой же, как и тип входного потока.

Функцию можно определить с помощью класса, реализующего интерфейс 
ReduceFunction. ReduceFunction определяет метод reduce(), который принимает 
два входных события и возвращает событие того же типа:

// T: тип элемента.
ReduceFunction[T]
  > reduce(T, T): T

В приведенном ниже примере ключом потока является язык, и в резуль-
тате получается постоянно обновляемый список слов для каждого языка:

val inputStream: DataStream[(String, List[String])] = env.fromElements(
  ("en", List("tea")), ("fr", List("vin")), ("en", List("cake")))

val resultStream: DataStream[(String, List[String])] = inputStream
  .keyBy(0)
  .reduce((x, y) => (x._1, x._2 ::: y._2))

Лямбда-функция reduce пересылает первое поле кортежа (ключевое поле) 
и объединяет значения List[String] второго поля кортежа.

	 Используйте скользящее уменьшение только для ограниченных ключевых пространств

	
Оператор скользящего сокращения сохраняет состояние для каждого обрабатываемого 
ключа. Поскольку это состояние никогда не очищается, вам следует применять оператор 
скользящего сокращения только к потоку с ограниченным набором ключей.

5.2.3. Многопоточные преобразования
Многие приложения принимают несколько потоков, которые необходимо 
совместно обрабатывать или разделять, чтобы применить разную логику 
к разным подпотокам. Далее мы обсуждаем преобразования API DataStream, 
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которые обрабатывают несколько входных потоков или генерируют несколь-
ко выходных потоков.

5.2.3.1. Union
Метод DataStream.union() объединяет два или более DataStream одного типа 
и создает новый DataStream того же типа. Последующие преобразования об-
рабатывают элементы всех входных потоков. На рис. 5.5 показана операция 
union, которая объединяет черные и серые события в один выходной поток.

Рис. 5.5   Операция union,  
объединяющая два входных потока в один

События объединяются в  стиле FIFO – оператор не формирует опреде-
ленный порядок событий. Более того, оператор объединения не устраняет 
повторы. Каждое событие ввода передается следующему оператору.

Ниже показано, как объединить три потока типа SensorReading в один:

val parisStream: DataStream[SensorReading] = ...
val tokyoStream: DataStream[SensorReading] = ...
val rioStream: DataStream[SensorReading] = ...
val allCities: DataStream[SensorReading] = parisStream
  .union(tokyoStream, rioStream)

5.2.3.2. Connect, coMap и coFlatMap
Объединение событий двух потоков – очень распространенное требование 
при потоковой обработке. Рассмотрим приложение, которое контролирует 
лесной массив и  выдает предупреждение, когда есть высокий риск пожа-
ра. Приложение получает поток показаний датчиков температуры, который 
вы видели ранее, и дополнительный поток измерений уровня дыма. Когда 
температура превышает заданный порог и уровень задымленности высок, 
приложение выдает сигнал пожарной тревоги.

Для поддержки таких вариантов использования1 API DataStream обеспечи-
вает преобразование connect. Метод DataStream.connect() получает DataStream 
и возвращает объект ConnectedStreams, который представляет два связанных 
потока:

1	 Flink предлагает специальные операторы для объединения потоков по времени, 
которые обсуждаются в главе 6. Преобразование объединения и совместные функ-
ции, обсуждаемые в этом разделе, носят более общий характер.
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// Первый поток.
val first: DataStream[Int] = ...
// Второй поток.
val second: DataStream[String] = ...

// Объединение потоков.
val connected: ConnectedStreams[Int, String] = first.connect(second)

Объект ConnectedStreams предоставляет методы map() и flatMap(), которые 
ожидают CoMapFunction и  CoFlatMapFunction в  качестве аргумента соответ-
ственно1.

Обе функции типизированы для типов первого и второго входного потока 
и для типа выходного потока и определяют два метода – по одному для каж-
дого входа. Методы map1() и flatMap1() вызываются для обработки события 
первого ввода, а map2() и flatMap2() – для обработки события второго ввода:

// IN1: Тип первого входного потока.
// IN2: Тип второго входного потока.
// OUT: Тип выходных элементов.
CoMapFunction[IN1, IN2, OUT]
    > map1(IN1): OUT
    > map2(IN2): OUT

// IN1: Тип первого входного потока.
// IN2: Тип второго входного потока.
// OUT: Тип выходных элементов.
CoFlatMapFunction[IN1, IN2, OUT]
    > flatMap1(IN1, Collector[OUT]): Unit
    > flatMap2(IN2, Collector[OUT]): Unit

	 Функция не может выбирать, какие ConnectedStreams читать

	
Невозможно контролировать порядок, в котором вызываются методы CoMapFunction или 
CoFlatMapFunction. Вместо этого метод вызывается, как только событие поступает через 
соответствующий вход.

Совместная обработка двух потоков обычно требует, чтобы события обо-
их потоков детерминированно маршрутизировались на основе некоторого 
условия, которое должно быть обработано одним и тем же параллельным 
экземпляром оператора. По умолчанию connect() не устанавливает связи 
между событиями обоих потоков, поэтому события обоих потоков случай-
ным образом назначаются экземплярам операторов. Такое поведение дает 
недетерминированные результаты и  обычно нежелательно. Для достиже-
ния детерминированных преобразований ConnectedStreams, connect() можно 
комбинировать с keyBy() или broadcast(). Сначала мы покажем пример для 
keyBy():

val one: DataStream[(Int, Long)] = ...
val two: DataStream[(Int, String)] = ...

1	 Вы также можете применить к  ConnectedStreams функцию CoProcessFunction. Мы 
обсуждаем функцию CoProcessFunction в главе 6.
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// Применяем keyBy к двум связанным потокам.
val keyedConnect1: ConnectedStreams[(Int, Long), (Int, String)] = one
  .connect(two)
  .keyBy(0, 0) // Ключ обоих входных потоков в первом атрибуте.

// Альтернативный вариант: применяем connect к обоим потокам с ключом.
val keyedConnect2: ConnectedStreams[(Int, Long), (Int, String)] = one.keyBy(0)
  .connect(two.keyBy(0)) 

Независимо от того, применяете ли вы keyBy() к ConnectedStreams или con-
nect() к  двум потокам с  ключом, преобразование connect() направит все 
события из обоих потоков с одним и тем же ключом в один и тот же экзем-
пляр оператора. Обратите внимание, что ключи обоих потоков должны от-
носиться к одному и тому же классу сущностей, как и предикат соединения 
в запросе SQL. Оператор, который применяется к связанному и ключевому 
потоку, имеет доступ к состоянию с ключом1.

В следующем примере показано, как связать DataStream (без ключа) с транс-
лируемым потоком:

val first: DataStream[(Int, Long)] = ...
val second: DataStream[(Int, String)] = ...

// Связывание потоков с транслированием.
val keyedConnect: ConnectedStreams[(Int, Long), (Int, String)] = first
  // Транслирование второго входного потока.
  .connect(second.broadcast())

Все события вещаемого потока реплицируются и отправляются всем эк-
земплярам параллельного оператора последующей функции обработки. Со-
бытия невещаемого потока просто перенаправляются. Следовательно, эле-
менты обоих входных потоков могут обрабатываться совместно.

	 Вы можете использовать состояние широковещания для соединения ключевого и ши-
роковещательного потоков. Состояние широковещания – это улучшенная версия пре-
образования broadcast() – connect(). Она также поддерживает соединение ключевого 
и широковещательного потоков и сохранение широковещательных событий в состоя-
нии с  доступом по ключу. Это позволяет вам реализовать операторы, которые дина-
мически настраиваются через поток данных (например, для добавления или удаления 
правил фильтрации или обновления моделей машинного обучения). Состояние широко-
вещательной передачи подробно обсуждается в разделе 7.1.3.

5.2.3.3. Split и select
Split (разделение) – это преобразование, обратное преобразованию union 
(объединение). Оно делит входной поток на два или более выходных потока 
того же типа, что и входной поток. Каждое входящее событие может быть 
направлено в ноль, один или несколько выходных потоков. Следовательно, 
split также можно использовать для фильтрации или репликации событий. 

1	 См. главу 8 для получения подробной информации о  состоянии с  доступом по 
ключу.
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На рис. 5.6 показан оператор split, который направляет все белые события 
в отдельный поток от остальных.

Рис. 5.6   Операция split, разделяющая входной поток  
на поток белых событий и поток остальных событий

Метод DataStream.split() получает OutputSelector, который определяет, как 
элементы потока назначаются именованным выходам. OutputSelector опре-
деляет метод select(), который вызывается для каждого входного события 
и возвращает java.lang.Iterable[String]. Значения String, возвращаемые для 
записи, определяют потоки вывода, в которые направляется запись.

// IN: тип разделяемых элементов.
OutputSelector[IN]
    > select(IN): Iterable[String] 

Метод DataStream.split() возвращает SplitStream, который предоставляет 
метод select() для выбора одного или нескольких потоков из SplitStream 
путем указания имен вывода.

Код примера 5.2 разделяет поток чисел на поток больших чисел и поток 
маленьких чисел.

Пример 5.2  � Разделение кортежа входного потока на поток больших чисел 
и поток маленьких чисел 

val inputStream: DataStream[(Int, String)] = ...

val splitted: SplitStream[(Int, String)] = inputStream
  .split(t => if (t._1 > 1000) Seq("large") else Seq("small"))

val large: DataStream[(Int, String)] = splitted.select("large")
val small: DataStream[(Int, String)] = splitted.select("small")
val all: DataStream[(Int, String)] = splitted.select("small", "large")

	 Одним из ограничений преобразования split является то, что все исходящие потоки 
имеют тот же тип, что и входной тип. В разделе 6.2.2 мы представляем опцию побочного 
вывода функций обработки, которая позволяет выдавать несколько потоков разных ти-
пов из одной функции.

5.2.4. Преобразования распределения
Преобразования распределения (секционирования) соответствуют стратеги-
ям обмена данными, которые мы представили в разделе 2.1.3. Эти операции 
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определяют, как события назначаются задачам. При создании приложений 
с помощью API DataStream система автоматически выбирает стратегии раз-
деления данных и направляет данные в правильное место назначения в за-
висимости от семантики операции и настроенного параллелизма. Иногда не-
обходимо или желательно управлять стратегиями распределения на уровне 
приложения или определять собственные распределители. Например, если 
мы знаем, что нагрузка параллельных разделов DataStream перекошена, мы 
можем принять решение повторно сбалансировать данные, чтобы равномер-
но распределить вычислительную нагрузку последующих операторов. В ка-
честве альтернативы логика приложения может требовать, чтобы все задачи 
операции получали одни и те же данные или чтобы события распределялись 
в соответствии с настраиваемой стратегией. В этом разделе мы представляем 
методы DataStream, которые позволяют пользователям управлять стратеги-
ями распределения или определять свои собственные.

	 Обратите внимание, что keyBy() отличается от преобразований распределения, обсуж-
даемых в этом разделе. Все преобразования в этом разделе создают DataStream, тогда 
как keyBy() приводит к KeyedStream, к которому можно применить преобразование с до-
ступом к ключевому состоянию.

Случайный обмен
Стратегия случайного обмена данными реализуется методом DataStream.
shuffle(). Метод распределяет записи случайным образом в соответствии 
с  равномерным распределением по параллельным задачам следующего 
оператора.

Круговой обход (ребаланс)
Метод rebalance() разделяет входной поток таким образом, чтобы события 
равномерно распределялись между последующими задачами в цикличе-
ском режиме. На рис. 5.7 показано преобразование циклического распре-
деления.

Масштабирование
Метод масштабирования rescale() также распределяет события цикличе-
ски, но только для подмножества последующих задач. По сути, стратегия 
разделения масштабирования предлагает способ выполнить упрощенную 
перебалансировку нагрузки, когда количество задач отправителя и полу-
чателя неодинаково. Преобразование изменения масштаба более эффек-
тивно, если количество задач-получателей является множеством задач-
отправителей, или наоборот.
Основное различие между rebalance() и rescale() заключается в способе 
формирования связей между задачами. В то время как rebalance() будет 
создавать каналы связи между всеми отправляющими задачами и всеми 
принимающими задачами, rescale() будет создавать только каналы от 
каждой задачи к некоторым задачам нижестоящего оператора. Схема под-
ключения преобразования масштабирования распределения показана на 
рис. 5.7.
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(а) Круговой обход (ребаланс) (б) Масштабирование

Рис. 5.7   Преобразования ребаланса и масштабирования

Широковещание
Метод broadcast() реплицирует поток входных данных, так что все события 
отправляются во все параллельные задачи нижестоящего оператора.

Глобальное распределение
Метод global() отправляет все события потока входных данных в первую 
параллельную задачу нижестоящего оператора. Эту стратегию разделения 
необходимо использовать с осторожностью, поскольку перенаправление 
всех событий одной и той же задаче может повлиять на быстродействие 
приложения.

Пользовательское распределение
Если ни одна из встроенных стратегий распределения не подходит, вы 
можете определить свою собственную стратегию с помощью метода par-
titionCustom(). Этот метод получает объект Partitioner, который реализует 
логику разделения, и поле или позицию ключа, по которой поток должен 
быть разделен. В следующем примере поток целых чисел разбивается на 
части, так что все отрицательные числа отправляются в  первую задачу, 
а все остальные – в случайную задачу:

val numbers: DataStream[(Int)] = ...
numbers.partitionCustom(myPartitioner, 0)

object myPartitioner extends Partitioner[Int] {
  val r = scala.util.Random
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  override def partition(key: Int, numPartitions: Int): Int = {
    if (key < 0) 0 else r.nextInt(numPartitions)
  }
}

5.3. Настройка параллельной обработки

Приложения Flink выполняются параллельно в распределенной среде, такой 
как кластер машин. Когда программа DataStream отправляется в JobManager 
для выполнения, система создает граф потока данных и подготавливает опе-
раторы к  выполнению. Каждый оператор распараллеливается на одну или 
несколько задач. Каждая задача будет обрабатывать подмножество входного 
потока оператора. Количество параллельных задач оператора называется па-
раллелизмом оператора. Он определяет, насколько могут быть распределены 
усилия оператора по обработке, а также сколько данных он может обработать.

Параллелизмом оператора можно управлять на уровне среды выполнения 
или для отдельного оператора. По умолчанию параллелизм всех операто-
ров приложения установлен как параллелизм среды выполнения приложе-
ния. Параллелизм среды (и, следовательно, параллелизм всех операторов по 
умолчанию) автоматически инициализируется в зависимости от контекста, 
в котором запускается приложение. Если приложение выполняется в локаль-
ной среде выполнения, параллелизм устанавливается в соответствии с ко-
личеством ядер ЦП. При отправке приложения в работающий кластер Flink 
для параллелизма среды устанавливается значение параллелизма кластера 
по умолчанию, если это не указано в явном виде через клиент отправки (см. 
раздел 10.1 для получения дополнительных сведений).

В целом рекомендуется определять параллелизм ваших операторов отно-
сительно параллелизма среды по умолчанию. Это позволяет легко масшта-
бировать приложение, регулируя его параллелизм через программу-клиент 
отправки. Вы можете получить доступ к параллелизму среды по умолчанию, 
как показано в следующем примере:

val env: StreamExecutionEnvironment.getExecutionEnvironment
// Получение параллелизма по умолчанию, настроенного в конфигурации кластера
// или явно указанного через программу-клиент отправки.
val defaultP = env.env.getParallelism

Вы также можете переопределить параллелизм среды по умолчанию, но вы 
больше не сможете контролировать параллелизм вашего приложения через 
программу-клиент отправки:

val env: StreamExecutionEnvironment.getExecutionEnvironment
// Устанавливаем параллелизм окружения.
env.setParallelism (32)

Параллелизм по умолчанию для оператора можно изменить, указав его 
явно. В  следующем примере оператор источника будет выполняться с  па-
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раллелизмом среды по умолчанию, преобразование map имеет вдвое больше 
задач, чем источник, а операция приемника всегда будет выполняться двумя 
параллельными задачами:

val env = StreamExecutionEnvironment.getExecutionEnvironment

// Получение параллелизма по умолчанию.
val defaultP = env.getParallelism

// Источник выполняется с параллелизмом по умолчанию.
val result: = env.addSource(new CustomSource)
  // Параллелизм map равен удвоенному параллелизму по умолчанию.
  .map(new MyMapper).setParallelism(defaultP * 2)
  // Параллелизм приемника print равен фиксированному значению 2.
  .print().setParallelism(2)

Когда вы отправляете приложение через программу-клиент отправки 
и указываете параллелизм равным 16, источник будет работать с паралле-
лизмом 16, преобразователь будет работать с 32 задачами, а приемник будет 
работать с двумя задачами. Если вы запустите приложение в локальной сре-
де – или, например, из своей IDE – на машине с 8 ядрами, исходная задача 
будет выполняться с 8 задачами, преобразователь map – с 16 задачами, а при-
емник – с двумя задачами.

5.4. Типы

Приложения DataStream обрабатывают потоки событий, которые представ-
лены в  виде объектов данных. Функции вызываются с  объектами данных 
и  выдают объекты данных. Flink должен уметь обрабатывать эти объекты. 
Их необходимо сериализовать и десериализовать, чтобы отправлять их по 
сети, записывать в них или считывать их из бэкендов состояния, контроль-
ных точек и точек сохранения. Для того чтобы делать это эффективно, Flink 
нуждается в детальных знаниях о типах данных, обрабатываемых приложе-
нием. Flink использует концепцию информации о типах для представления 
типов данных и  создания конкретных сериализаторов, десериализаторов 
и компараторов для каждого типа данных.

Flink также имеет систему извлечения типов, которая анализирует вход-
ные и возвращаемые типы функций для автоматического получения инфор-
мации о типе и, следовательно, сериализаторов и десериализаторов. Однако 
в определенных ситуациях, таких как лямбда-функции или универсальные 
типы, необходимо явно предоставить информацию о типе, чтобы заставить 
приложение работать или улучшить его быстродействие.

В этом разделе мы расскажем о типах, поддерживаемых Flink, как создать 
информацию о типе для типа данных и как помочь системе типов Flink с под-
сказками, если она не может автоматически определить возвращаемый тип 
функции.
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5.4.1. Поддерживаемые типы данных
Flink поддерживает все распространенные типы данных, доступные в  Java 
и Scala. Наиболее широко используемые типы можно сгруппировать в сле-
дующие категории:

�� примитивы;
�� кортежи Java и Scala;
�� классы Scala;
�� POJO1, включая классы, созданные Apache Avro;
�� некоторые особые типы.

Типы, которые не обрабатываются специальным образом, рассматривают-
ся как универсальные типы и сериализуются с использованием фреймворка 
сериализации Kryo.

	 Используйте Kryo только в качестве запасного решения

	
Обратите внимание, что вам следует избегать использования Kryo, если это возможно. 
Поскольку Kryo – сериализатор общего назначения, он обычно не очень эффективен. 
Flink предоставляет параметры конфигурации для повышения эффективности за счет 
предварительной регистрации классов в Kryo. Более того, Kryo не предоставляет хоро-
ший способ миграции для развития типов данных.

Давайте рассмотрим каждую категорию типов.

Примитивы
Поддерживаются все примитивные типы Java и Scala, такие как Int (или 
Integer для Java), String и Double. Вот пример, который обрабатывает поток 
длинных значений и увеличивает каждый элемент:

val numbers: DataStream[Long] = env.fromElements(1L, 2L, 3L, 4L)
numbers.map( n => n + 1)

Кортежи Java и Scala
Кортежи – это составные типы данных, которые состоят из фиксирован-
ного числа типизированных полей.
В API DataStream для Scala используются обычные кортежи Scala. Следую-
щий пример фильтрует DataStream кортежей с двумя полями:

// DataStream Tuple2[String, Integer] для Person(name, age).
val persons: DataStream[(String, Integer)] = env.fromElements(
  ("Adam", 17),
  ("Sarah", 23))

// Фильтр персон с возрастом > 18.
persons.filter(p => p._2 > 18)

1	 Plain Old Java Object – простой объект языка Java, не унаследованный от какого-
то специфического объекта и не реализующий никаких служебных интерфейсов, 
кроме тех, которые нужны для модели предметной области. – Прим. перев.
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Flink предоставляет эффективные реализации кортежей Java. Кортежи Java 
в Flink могут иметь до 25 полей, каждая длина которых реализована как 
отдельный класс – Tuple1, Tuple2, вплоть до Tuple25. Классы кортежей строго 
типизированы.
Мы можем переписать пример фильтрации в API DataStream на языке Java 
следующим образом:

// DataStream Tuple2<String, Integer> для Person(name, age).
DataStream<Tuple2<String, Integer>> persons = env.fromElements(
  Tuple2.of("Adam", 17),
  Tuple2.of("Sarah", 23));

// Фильтр для персон с возрастом > 18.
persons.filter(p -> p.f1 > 18);

Доступ к полям кортежей можно получить по имени их общедоступных 
полей – f0, f1, f2 и т. д., как показано ранее – или по позиции с помощью 
метода getField(int pos), где индексы начинаются с 0:

Tuple2<String, Integer> personTuple = Tuple2.of("Alex", "42");
Integer age = personTuple.getField(1); // Возраст = 42.

В отличие от своих коллег на языке Scala кортежи Flink на языке Java яв-
ляются изменяемыми, поэтому значения полей можно переназначать. 
Функции могут повторно использовать кортежи Java, чтобы снизить на-
грузку на сборщик мусора. В следующем примере показано, как обновить 
поле кортежа Java:

personTuple.f1 = 42; // Устанавливаем второе поле в 42.
personTuple.setField(43, 1); // Устанавливаем второе поле в 43. 

Case-классы Scala
Flink поддерживает case-классы Scala. Доступ к полям case-класса осущест-
вляется по имени. Далее мы определяем case-класс Person с двумя полями: 
name и age. Что касается кортежей, мы фильтруем DataStream по возрасту:

case class Person(name: String, age: Int)

val persons: DataStream[Person] = env.fromElements(
  Person("Adam", 17),
  Person("Sarah", 23))

// Фильтр для персон с возрастом > 18.
persons.filter(p => p.age > 18)

POJO
Flink анализирует каждый тип, который не попадает ни в одну категорию, 
и  проверяет, можно ли его идентифицировать и  обрабатывать как тип 
POJO. Flink принимает класс как POJO, если он удовлетворяет следующим 
условиям:

�� это публичный класс;
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�� он имеет открытый конструктор без аргументов  – конструктор по 
умолчанию;

�� все поля являются общедоступными или доступны через геттеры и сет-
теры. Функции геттера и сеттера должны соответствовать схеме име-
нования по умолчанию: Y getX() и setX(Y x) для поля x типа Y.

Все поля имеют типы, поддерживаемые Flink.
Например, следующий класс Java будет идентифицирован Flink как POJO:

public class Person {
  // Оба поля публичные.
  public String name;
  public int age;

  // Конструктор по умолчанию.
  public Person() {}

  public Person(String name, int age) {
      this.name = name;
      this.age = age;
  }
}

DataStream<Person> persons = env.fromElements(
   new Person("Alex", 42),
   new Person("Wendy", 23));

Сгенерированные Avro классы автоматически идентифицируются Flink 
и обрабатываются как POJO.

Array, List, Map, Enum и другие специальные типы
Flink поддерживает несколько специализированных типов, таких как при-
митивы и типы объекта Array; типы Java ArrayList, HashMap и Enum; а также 
типы Writable Hadoop. Кроме того, он предоставляет информацию о типах 
для типов Scala Either, Option и Try, а также типа Either для Java-версии 
Flink.

5.4.2. Создание информации о типах 
для типов данных
Центральный класс в системе типов Flink – TypeInformation. Он предоставляет 
системе необходимую информацию для создания сериализаторов и компа-
раторов. Например, когда вы соединяете данные или группируете их по ка-
кому-либо ключу, TypeInformation позволяет Flink выполнять семантическую 
проверку допустимости полей, используемых в качестве ключей.

Когда приложение отправлено на выполнение, система типов Flink пы-
тается автоматически получить TypeInformation для каждого типа данных, 
который обрабатывается платформой. Так называемый экстрактор типов 
анализирует универсальные типы и возвращаемые типы всех функций для 
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получения соответствующих объектов TypeInformation. Следовательно, вы 
можете какое-то время использовать Flink, не беспокоясь о TypeInformation 
для ваших типов данных. Однако иногда экстрактор типов не работает, или 
вы можете определить свои собственные типы и сообщить Flink, как эффек-
тивно с ними обращаться. В таких случаях вам необходимо сгенерировать 
TypeInformation для определенного типа данных.

Flink предоставляет два служебных класса для Java и Scala со статическими 
методами для генерации TypeInformation. Для Java вспомогательным классом 
является org.apache.flink.api.common.typeinfo.Types, и  он используется, как 
показано в следующих примерах:

// TypeInformation для примитивов.
TypeInformation<Integer> intType = Types.INT;

// TypeInformation для кортежей Java.
TypeInformation<Tuple2<Long, String>> tupleType =
  Types.TUPLE(Types.LONG, Types.STRING);

// TypeInformation для POJO.
TypeInformation<Person> personType = Types.POJO(Person.class);

Вспомогательный класс TypeInformation для API на языке Scala  – org.
apache.flink.api.scala.typeutils.Types, и он используется, как показано ниже:

// TypeInformation для примитивов.
val stringType: TypeInformation[String] = Types.STRING

// TypeInformation для кортежей Scala.
val tupleType: TypeInformation[(Int, Long)] = Types.TUPLE[(Int, Long)]

// TypeInformation для case-классов.
val caseClassType: TypeInformation[Person] = Types.CASE_CLASS[Person]

	 Информация о типе в API Scala 

	
В API на языке Scala применяются макросы компилятора Scala, которые генерируют 
объекты TypeInformation для всех типов данных во время компиляции. Чтобы получить 
доступ к функции макроса createTypeInformation, всегда добавляйте в приложение Scala 
следующий оператор импорта:

	
import org.apache.flink.streaming.api.scala

5.4.3. Явное предоставление информации о типе
В большинстве случаев Flink может автоматически определять типы и гене-
рировать правильную информацию о типе. Средство извлечения типов Flink 
использует отражение и  анализирует сигнатуры функций и  информацию 
о  подклассах, чтобы получить правильный тип вывода для определяемой 
пользователем функции. Однако иногда необходимая информация не может 
быть извлечена (например, из-за того, что Java стирает информацию общего 
типа). Более того, в некоторых случаях Flink может не выбирать TypeInforma-
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tion, который генерирует наиболее эффективные сериализаторы и десериа-
лизаторы. Следовательно, вам может потребоваться явное предоставление 
объектов TypeInformation для Flink для некоторых типов данных, используе-
мых в вашем приложении.

Есть два способа предоставить TypeInformation. Во-первых, вы можете рас-
ширить класс функции, чтобы явно предоставить TypeInformation его воз-
вращаемого типа, реализовав интерфейс ResultTypeQueryable. В следующем 
примере показана функция MapFunction, которая предоставляет свой воз-
вращаемый тип:

class Tuple2ToPersonMapper extends MapFunction[(String, Int), Person]
    with ResultTypeQueryable[Person] {

  override def map(v: (String, Int)): Person = Person(v._1, v._2)

  // Предоставляет TypeInformation для типа выходных данных.
  override def getProducedType: TypeInformation[Person] = Types.CASE_CLASS[Person]
}

В API DataStream на языке Java вы также можете использовать метод re-
turns(), чтобы явно указать тип возвращаемого значения оператора при 
определении потока данных, как показано ниже:

DataStream<Tuple2<String, Integer>> tuples = ...
DataStream<Person> persons = tuples
   .map(t -> new Person(t.f0, t.f1))
   // Предоставляет TypeInformation для вывода лямбда-функции map.
   .returns(Types.POJO(Person.class));

5.5. Определение ключей и полей ссылок

Некоторые из преобразований, которые вы видели в предыдущем разделе, 
требуют спецификации по ключу или ссылки на поле типа входного потока. 
Во Flink ключи не предопределены в типах входных данных, как в системах, 
которые работают с парами «ключ–значение». Вместо этого ключи определе-
ны как функции над входными данными. Следовательно, нет необходимости 
определять типы данных для хранения ключей и значений, что позволяет 
избежать использования большого количества стереотипного кода.

Далее мы обсудим различные методы ссылки на поля и определения клю-
чей для типов данных.

5.5.1. Позиции поля
Если тип данных является кортежем, ключи можно определить, просто ис-
пользуя позицию поля соответствующего элемента кортежа. В  следующем 
примере входной поток задается вторым полем входного кортежа:
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val input: DataStream[(Int, String, Long)] = ...
val keyed = input.keyBy(1)

Также можно определить составные ключи, состоящие из более чем одного 
поля кортежа. В этом случае позиции представлены в виде списка, одна за 
другой. Мы можем указать входной поток по второму и третьему полю сле-
дующим образом:

val keyed2 = input.keyBy(1, 2)

5.5.2. Выражения поля
Другой способ определения ключей и выбора полей – использование стро-
ковых выражений полей. Выражения полей работают для кортежей, POJO 
и case-классов. Они также поддерживают выбор вложенных полей.

Во вводном примере этой главы мы определили следующий case-класс:

case class SensorReading(
  id: String,
  timestamp: Long,
  temperature: Double)

Чтобы управлять потоком по идентификатору датчика, мы можем пере-
дать имя поля id функции keyBy():

val sensorStream: DataStream[SensorReading] = ...
val keyedSensors = sensorStream.keyBy("id")

Поля POJO или case-класса выбираются по имени поля, как в приведенном 
выше примере. На поля кортежей ссылаются либо по их имени поля (смеще-
ние 1 для кортежей Scala, смещение 0 для кортежей Java), либо по индексу 
их поля со смещением 0:

val input: DataStream[(Int, String, Long)] = ...
val keyed1 = input.keyBy("2") // Ключ по 3-му полю.
val keyed2 = input.keyBy("_1") // Ключ по 1-му полю.
DataStream<Tuple3<Integer, String, Long>> javaInput = ...
javaInput.keyBy("f2") // Ключ кортежа Java по 3-му полю.

Вложенные поля в POJO и кортежах выбираются путем обозначения уровня 
вложенности знаком «.» (символ точки). Рассмотрим следующие case-классы:

case class Address(
  address: String,
  zip: String
  country: String)

case class Person(
  name: String,
  birthday: (Int, Int, Int), // Год, месяц, день.
  address: Address)
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Если мы хотим сослаться на почтовый индекс человека, мы можем ис-
пользовать выражение поля:

val persons: DataStream[Person] = ...
persons.keyBy("address.zip") // Ключ по вложенному полю POJO.

Также можно вкладывать выражения в смешанные типы. Следующее вы-
ражение обращается к полю кортежа, вложенного в POJO:

persons.keyBy("birthday._1") // Ключ по полю вложенного кортежа.

Полный тип данных можно выбрать с помощью выражения поля с под-
становочным знаком «_» (символ подчеркивания):

persons.keyBy("birthday._") // Ключ по всем полям вложенного кортежа.

5.5.3. Ключевые селекторы
Третий вариант указания ключей – это функции KeySelector. Функция KeySe-
lector извлекает ключ из события ввода:

// T: тип входных элементов.
// KEY: тип ключа.
KeySelector[IN, KEY]
  > getKey(IN): KEY

Вводный пример фактически использует простую функцию KeySelector 
в методе keyBy():

val sensorData: DataStream[SensorReading] = ...
val byId: KeyedStream[SensorReading, String] = sensorData
  .keyBy(r => r.id)

Функция KeySelector получает элемент ввода и возвращает ключ. Ключ не-
обязательно должен быть полем входного события, но может быть получен 
с помощью произвольных вычислений. Далее функция KeySelector возвра-
щает максимум полей кортежа в качестве ключа:

val input : DataStream[(Int, Int)] = ...
val keyedStream = input.keyBy(value => math.max(value._1, value._2))

По сравнению с позициями полей и выражениями полей преимущество 
функций KeySelector заключается в том, что результирующий ключ строго 
типизирован универсальными типами класса KeySelector.

5.6. Реализация функций

Вы уже видели пользовательские функции в действии в примерах кода в этой 
главе. В  этом разделе мы более подробно объясняем различные способы 
определения и параметризации функций в API DataStream.
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5.6.1. Функциональные классы
Flink предоставляет все интерфейсы для пользовательских функций, таких 
как MapFunction, FilterFunction и ProcessFunction, как интерфейсы или абст
рактные классы.

Функция реализуется путем реализации интерфейса или расширения 
абстрактного класса. В  следующем примере мы реализуем FilterFunction, 
которая фильтрует строки, содержащие слово «flink»:

class FlinkFilter extends FilterFunction[String] {
  override def filter(value: String): Boolean = {
    value.contains("flink")
  }
} 

Затем экземпляр класса функции может быть передан в качестве аргумен-
та преобразованию фильтра:

val flinkTweets = tweets.filter(new FlinkFilter)

Функции также могут быть реализованы как анонимные классы:

val flinkTweets = tweets.filter(
  new RichFilterFunction[String] {
    override def filter(value: String): Boolean = {
      value.contains("flink")
    }
  }) 

Функции могут получать параметры через свой конструктор. Мы можем 
параметризовать приведенный выше пример и передать String "flink" в ка-
честве параметра конструктору KeywordFilter, как показано ниже:

val tweets: DataStream[String] = ???
val flinkTweets = tweets.filter(new KeywordFilter("flink"))

class KeywordFilter(keyWord: String) extends FilterFunction[String] {
  override def filter(value: String): Boolean = {
    value.contains(keyWord)
  }
} 

Когда программа отправляется на выполнение, все объекты функций се-
риализуются с использованием сериализации Java и отправляются на все па-
раллельные задачи соответствующих операторов. Следовательно, после де-
сериализации объекта все значения конфигурации остаются неизменными.

	 Функции должны быть сериализуемыми для Java
Flink сериализует все функциональные объекты с сериализацией Java, чтобы отправить 
их рабочим процессам. Все, что содержится в пользовательской функции, должно быть 
Serializable.
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Если вашей функции требуется экземпляр несериализуемого объекта, вы можете либо 
реализовать его как расширенную функцию и инициализировать несериализуемое поле 
в методе open(), либо переопределить методы сериализации и десериализации Java.

5.6.2. Лямбда-функции
Большинство методов API DataStream принимает лямбда-функции. Лямбда-
функции доступны для Scala и  Java и  предлагают простой и  лаконичный 
способ реализации логики приложения, когда не требуются дополнитель-
ные операции, такие как доступ к состоянию и конфигурации. В следующем 
примере показана лямбда-функция, которая фильтрует твиты, содержащие 
слово «flink»:

val tweets: DataStream[String] = ...
// Фильтрующая лямбда-функция, которая проверяет, содержит ли твит слово "flink".
val flinkTweets = tweets.filter(_.contains("flink"))

5.6.3. Расширенные функции
Часто возникает необходимость инициализировать функцию перед обработ-
кой первой записи или получить информацию о контексте, в котором она 
выполняется. API DataStream предоставляет расширенные функции, которые 
предоставляют больше возможностей, чем обычные функции, обсуждаемые 
до сих пор.

Существуют расширенные версии всех функций преобразования API 
DataStream, и вы можете использовать их там же, где вы можете использо-
вать обычную функцию или лямбда-функцию. Расширенные функции можно 
параметризовать так же, как обычные классы функций. Имя расширенной 
функции начинается с Rich, за которым следует имя преобразования – Rich-
MapFunction, RichFlatMapFunction и т. д.

При использовании расширенной функции вы можете реализовать два 
дополнительных метода жизненного цикла функции:

�� метод open() – это метод инициализации расширенной функции. Он 
вызывается один раз для каждой задачи перед вызовом метода преоб-
разования, такого как фильтр или карта. Метод open() обычно исполь-
зуется для настройки, которую нужно выполнить только один раз. Об-
ратите внимание, что параметр Configuration используется только API 
DataSet, а не API DataStream. Следовательно, его следует игнорировать;

�� метод close() является методом завершения для функции и  вызы-
вается один раз для каждой задачи после последнего вызова метода 
преобразования. Таким образом, он обычно используется для очистки 
и освобождения ресурсов.

Кроме того, метод getRuntimeContext() обеспечивает доступ к  контексту 
времени выполнения функции. RuntimeContext может использоваться для по-
лучения такой информации, как параллелизм функции, индекс ее подзадачи 
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и имя задачи, которая выполняет функцию. Кроме того, он включает методы 
для доступа к разделенному состоянию. Обработка потока с сохранением со-
стояния в Flink подробно обсуждается в разделе 7.11 В примере 5.3 показано, 
как использовать методы функции RichFlatMapFunction. 

Пример 5.3   Методы open() и close() функции RichFlatMapFunction
class MyFlatMap extends RichFlatMapFunction[Int, (Int, Int)] {
  var subTaskIndex = 0

  override def open(configuration: Configuration): Unit = {
    subTaskIndex = getRuntimeContext.getIndexOfThisSubtask
    // Выполнение инициализации,
    // т.е. установление связи с внешней системой.
  }

  override def flatMap(in: Int, out: Collector[(Int, Int)]): Unit = {
    // Подзадачи индексируются по 0.
    if(in % 2 == subTaskIndex) {
      out.collect((subTaskIndex, in))
    }
    // Остальная обработка.
  }

  override def close(): Unit = {
    // Очистка, т.е. закрытие связей с внешними системами.
  }
}

5.7. Добавление внешних 
и Flink-зависимостей

Добавление внешних зависимостей – обычное требование при реализации 
приложений Flink. Существует множество популярных библиотек, таких как 
Apache Commons или Google Guava, для различных случаев использования. 
Более того, большинство приложений Flink зависит от одного или нескольких 
коннекторов Flink для приема или передачи данных во внешние системы, 
такие как Apache Kafka, файловые системы или Apache Cassandra. Некоторые 
приложения также используют библиотеки Flink для конкретных предмет-
ных областей, такие как Table API, SQL или CEP. Следовательно, большинство 
приложений Flink зависит не только от зависимостей Flink API DataStream 
и Java SDK, но и от дополнительных сторонних и внутренних зависимостей 
Flink.

Когда приложение выполняется, все его зависимости должны быть до-
ступны приложению. По умолчанию кластер Flink загружает только основные 
зависимости API (API DataStream и  DataSet). Все остальные зависимости, 
необходимые приложению, должны быть явно указаны.
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Причина этого состоит в том, чтобы поддерживать на низком уровне коли-
чество зависимостей по умолчанию1. Большинство коннекторов и библиотек 
полагается на одну или несколько библиотек, которые обычно имеют не-
сколько дополнительных транзитивных зависимостей. Зачастую это широко 
используемые библиотеки, такие как Apache Commons или Google Guava. 
Многие проблемы возникают из-за несовместимости между разными верси-
ями одной и той же библиотеки, которые извлекаются из разных соедините-
лей или непосредственно из пользовательского приложения.

Есть два способа гарантировать, что все зависимости доступны приложе-
нию при его выполнении:

1)	� объединение всех зависимостей в JAR-файл приложения. В результате 
получается автономный, но обычно довольно большой JAR-файл при-
ложения;

2)	� JAR-файл зависимости можно добавить в  папку ./lib в  среде Flink. 
В этом случае зависимости подключаются в путь к классам при запус
ке процессов Flink. Зависимость, которая добавляется в путь к классам 
данным способом, доступна (и может мешать) всем приложениям, за-
пускаемым в среде Flink.

Создание так называемого толстого JAR-файла – предпочтительный спо-
соб поддержки зависимостей приложения. Архетипы Flink Maven, которые 
мы представили в разделе 4.3, генерируют проекты Maven, настроенные для 
создания файлов JAR с расширенным набором функций, включая все необ-
ходимые зависимости. Зависимости, включенные в путь к классам процессов 
Flink по умолчанию, автоматически исключаются из файла JAR. Файл pom.
xml сгенерированного проекта Maven содержит комментарии, объясняющие, 
как добавить дополнительные зависимости.

5.8. Заключение

В этой главе мы познакомились с  основами API DataStream. Мы изучили 
структуру программ Flink и узнали, как объединить операторы преобразова-
ния данных и распределения для создания потоковых приложений. Мы также 
рассмотрели поддерживаемые типы данных и различные способы указания 
ключей и определяемых пользователем функций. Если вы сделаете шаг на-
зад и еще раз прочитаете вводный пример, вы, надеюсь, лучше поймете, что 
происходит. В главе 6 все станет еще интереснее – вы узнаете, как обогатить 
наши программы оконными операторами и семантикой времени.

1	 Flink также стремится свести к минимуму свои собственные внешние зависимости 
и скрывает большинство из них (включая транзитивные зависимости) от пользо-
вательских приложений, чтобы предотвратить конфликты версий.



Глава 6
Операторы 

на основе времени 
и оконные операторы

В этой главе мы рассмотрим методы API DataStream для обработки времени 
и основанные на времени операторы, такие как окна. Как вы узнали из раз-
дела 2.3, операторы Flink, основанные на времени, могут работать с различ-
ными понятиями времени.

Сначала мы узнаем, как определять временные характеристики, метки 
времени и водяные знаки. Затем мы рассмотрим функции обработки – низ-
коуровневые преобразования, которые обеспечивают доступ к меткам вре-
мени и водяным знакам и могут регистрировать таймеры. Затем мы восполь-
зуемся оконным API Flink, который предоставляет встроенные реализации 
наиболее распространенных типов окон. Вы также получите введение в на-
страиваемые, определяемые пользователем оконные операции и основные 
оконные конструкции, такие как назначители, триггеры и вытеснители. На-
конец, мы расскажем, как присоединяться к потокам в нужное время и что 
делать с опоздавшими событиями.

6.1. Настройка показателей времени

Чтобы определить зависящие от времени операции в приложении для об-
работки распределенного потока, важно понимать значение времени. Когда 
вы указываете окно для сбора событий в  одноминутные сегменты, какие 
именно события будет содержать каждый сегмент? В API DataStream вы мо-
жете использовать показатель времени (time characteristic), чтобы сообщить 
Flink, как определять время при создании окон. Показатель времени является 
свойством StreamExecutionEnvironment и принимает следующие значения.

ProcessingTime
Указывает, что операторы определяют текущее время потока данных в со-
ответствии с системными часами машины, на которой они выполняются. 
Окна, привязанные ко времени обработки, запускаются в  зависимости 
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от машинного времени и  включают в  себя все элементы, которые слу-
чайно были доставлены оператору до этого момента времени. В  целом 
использование времени обработки для оконных операций приводит к не-
детерминированным результатам, потому что содержимое окон зависит от 
скорости, с которой прибывают элементы. Этот параметр предлагает очень 
низкую задержку, поскольку задачам обработки не нужно ждать водяных 
знаков, чтобы продвинуть время события.

EventTime
Указывает, что операторы определяют текущее время, используя инфор-
мацию из самих данных. Каждое событие имеет отметку времени, а логи-
ческое время системы определяется водяными знаками. Как вы узнали из 
раздела 3.3.1, метки времени либо существуют в данных до входа в кон-
вейер обработки данных, либо назначаются приложением в источниках. 
Временнòе окно события запускается, когда водяные знаки объявляют, что 
все метки времени для определенного временнòго интервала уже получе-
ны. Окна, привязанные ко времени событий, вычисляют детерминирован-
ные результаты, даже когда события прибывают не по порядку. Результат 
окна не будет зависеть от скорости чтения или обработки потока.

IngestionTime
Указывает время обработки исходного оператора в  виде отметки вре-
мени события для каждой принятой записи и  автоматически создает 
водяные знаки. Это гибрид EventTime и ProcessingTime. Время поступления 
события (ingestion time) – это время, когда оно поступило в потоковый 
процессор. Время поступления не имеет большого практического зна-
чения по сравнению со временем события, поскольку оно не дает детер-
минированных результатов и  обеспечивает такое же быстродействие, 
как время события.

В примере 6.1 показано, как настроить показатель времени в коде при-
ложения потоковой передачи датчика, с  которым вы ознакомились в  раз-
деле 5.1.

Пример 6.1  � Настройка показателя времени для использования  
времени события

object AverageSensorReadings {

  // main() определяет и выполняетпрограмму DataStream.
  def main(args: Array[String]) {
    // Настройка среды выполнения. 
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    // Используем в приложении время события.
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

    // Входящий поток данных датчика.
    val sensorData: DataStream[SensorReading] = env.addSource(...)
  }
}
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Установка для показателя времени значения EventTime включает обработку 
отметок времени и водяных знаков и, как следствие, операции с привязкой 
к времени события. Конечно, вы все равно можете использовать временные 
окна обработки и таймеры, если выберете показатель EventTime.

Чтобы использовать время обработки, замените TimeCharacteristic.Event-
Time на TimeCharacteristic.ProcessingTime.

6.1.1. Назначение меток времени 
и создание водяных знаков
Как было сказано в разделе 3.3, чтобы работать с привязкой ко времени со-
бытия, ваше приложение должно предоставить Flink важную информацию. 
Каждое событие должно быть связано с  меткой времени, которая обычно 
указывает, когда событие действительно произошло. Потоки, привязанные 
ко времени событий, также должны нести водяные знаки, по которым опе-
раторы определяют текущее время события.

Метки времени и  водяные знаки указаны в  миллисекундах с  эпохи 
1970-01-01T00:00:00Z. Водяной знак сообщает операторам, что больше со-
бытий с меткой времени, меньшей или равной водяному знаку, не ожидает-
ся. Метки времени и водяные знаки могут быть назначены и сгенерированы 
функцией SourceFunction или с помощью явного определяемого пользовате-
лем назначителя меток времени и генератора водяных знаков. Назначение 
меток времени и  создание водяных знаков в  функции SourceFunction об-
суждается в разделе 8.3.2. Здесь мы объясняем, как это сделать с помощью 
пользовательской функции.

	 Переопределение меток времени и водяных знаков, созданных источником

	
Если используется назначитель меток времени, все существующие метки времени и во-
дяные знаки будут перезаписаны.

API DataStream предоставляет интерфейс TimestampAssigner для извлечения 
меток времени из элементов после того, как они были загружены в приложе-
ние потоковой передачи. Как правило, назначитель метки времени вызыва-
ется сразу после входной функции, потому что большинство назначителей 
при создании водяных знаков делают предположения о порядке элементов 
относительно их меток времени. Поскольку элементы обычно загружаются 
параллельно, любая операция, которая заставляет Flink перераспределять 
элементы по разделам параллельного потока, например изменения паралле-
лизма, keyBy() или другие явные перераспределения, перемешивает порядок 
меток времени элементов.

Лучше всего назначать метки времени и  создавать водяные знаки как 
можно ближе к источникам или даже внутри SourceFunction. В зависимости 
от варианта использования приложения перед назначением меток времени 
к входному потоку можно применить начальную фильтрацию или преобра-
зование, если такие операции не вызывают перераспределения элементов.
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Чтобы гарантировать, что операции с привязкой ко времени события ве-
дут себя должным образом, назначитель должен быть вызван перед любым 
преобразованием, зависящим от времени события (например, перед первым 
окном с привязкой к времени события).

Назначители меток времени работают так же, как и  другие операторы 
преобразования. Они вызываются в потоке элементов и создают новый по-
ток элементов с метками времени и водяными знаками. Назначители меток 
времени не изменяют тип данных DataStream.

Код в примере 6.2 показывает, как использовать назначитель меток вре-
мени. В этом примере после чтения потока мы сначала применяем преоб-
разование фильтра, а затем вызываем метод assignTimestampsAndWatermarks(), 
в котором мы определяем назначитель метки времени MyAssigner().

Пример 6.2   Использование назначителя меток времени
val env = StreamExecutionEnvironment.getExecutionEnvironment

// Настройка параметра привязки ко времени события.
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

// Входящий поток данных.
val readings: DataStream[SensorReading] = env
  .addSource(new SensorSource)
  // Назначение метки времени и генерация водяного знака.
  .assignTimestampsAndWatermarks(new MyAssigner())

В приведенном выше примере MyAssigner может иметь тип AssignerWith-
PeriodicWaterMarks или AssignerWithPunctuatedWatermarks. Эти два интерфейса 
расширяют интерфейс TimestampAssigner, предоставляемый API DataStream. 
Первый интерфейс определяет назначители, которые периодически гене-
рируют водяные знаки, а второй вводит водяные знаки на основе свойства 
входных событий. Далее мы подробно опишем оба интерфейса.

6.1.1.1. Назначитель с периодическими водяными знаками
Периодическое назначение водяных знаков означает, что мы даем системе 
указание выдавать водяные знаки и увеличивать время события с фиксиро-
ванными интервалами машинного времени. По умолчанию установлен ин-
тервал в 200 мс, но его можно настроить с помощью метода ExecutionConfig.
setAutoWatermarkInterval ():

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// Генерация водяного знака каждые 5 секунд.
env.getConfig.setAutoWatermarkInterval(5000) 

В предыдущем примере вы указываете программе выпускать водяные зна-
ки каждые 5 с. Фактически каждые 5 с Flink вызывает метод getCurrentWater-
mark() класса AssignerWithPeriodicWatermarks. Если метод возвращает ненуле-
вое значение с меткой времени, превышающей метку времени предыдущего 
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водяного знака, пересылается новый водяной знак. Эта проверка необходима 
для обеспечения непрерывного увеличения времени события; в противном 
случае водяной знак не создается.

В примере 6.3 показан назначитель с периодическими метками времени, 
который создает водяные знаки, отслеживая максимальную метку времени 
элемента, которую он видел до сих пор. При запросе нового водяного знака 
назначитель возвращает водяной знак с максимальной отметкой времени 
минус одноминутный интервал допуска.

Пример 6.3   Периодический назначитель водяных знаков
class PeriodicAssigner
    extends AssignerWithPeriodicWatermarks[SensorReading] {

  val bound: Long = 60 * 1000 // 1 минута в миллисекундах.
  var maxTs: Long = Long.MinValue // Наибольшая наблюдаемая метка времени.

  override def getCurrentWatermark: Watermark = {
    // Метка времени с 1-минутным допуском.
    new Watermark(maxTs - bound)
  }

  override def extractTimestamp(
      r: SensorReading,
      previousTS: Long): Long = {
    // Обновление максимальной метки времени.
    maxTs = maxTs.max(r.timestamp)
    // Возвращает записанную метку времени.
    r.timestamp
  }
}

API DataStream предоставляет реализации для двух распространенных 
случаев назначителей меток времени с периодическими водяными знаками. 
Если ваши элементы ввода имеют метки времени, которые монотонно уве-
личиваются, вы можете использовать метод быстрого вызова assignAscend-
ingTimeStamps. Этот метод использует текущую метку времени для создания 
водяных знаков, поскольку более ранние метки времени недоступны. Ниже 
показано, как создавать водяные знаки для возрастающих отметок времени:

val stream: DataStream[SensorReading] = ...
val withTimestampsAndWatermarks = stream
  .assignAscendingTimestamps(e => e.timestamp)

Другой распространенный случай периодической генерации водяных зна-
ков – это когда вы знаете максимальную задержку, с которой столкнетесь во 
входном потоке, – максимальную разницу между меткой времени элемента 
и  самой большой меткой времени из всех ранее загруженных элементов. 
Для таких случаев Flink предоставляет BoundedOutOfOrdernessTimeStampExtrac-
tor, который принимает в  качестве аргумента максимальную ожидаемую 
задержку:
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val stream: DataStream[SensorReading] = ...
val output = stream.assignTimestampsAndWatermarks(
new BoundedOutOfOrdernessTimestampExtractor[SensorReading](
  Time.seconds(10))(e =>.timestamp)

В этом коде элементы могут опаздывать до 10 с. Это означает, что, если 
разница между временем события элемента и максимальной отметкой вре-
мени всех предыдущих элементов превышает 10 с, элемент может поступить 
на обработку после завершения соответствующего вычисления и  выдачи 
результата. Flink предлагает различные стратегии для обработки таких опоз-
давших событий, и мы обсудим их позже в разделе 6.5.

6.1.1.2. Назначитель прерывистых водяных знаков
Иногда входной поток содержит специальные кортежи или маркеры, ука-
зывающие на прогресс потока. Flink предоставляет интерфейс AssignerWith-
PunctuatedWatermarks для таких случаев или когда водяные знаки могут быть 
определены на основе какого-либо другого свойства входных элементов. 
Он определяет метод checkAndGetNextWatermark(), который вызывается для 
каждого события сразу после extractTimestamp(). Этот метод может решить, 
создавать новый водяной знак или нет. Новый водяной знак создается, если 
метод возвращает ненулевой водяной знак, размер которого превышает раз-
мер последнего отправленного водяного знака.

В примере 6.4 показан назначитель прерывистых водяных знаков (punctu-
ated watermark), который выпускает водяной знак при каждом считывании, 
полученном от датчика с идентификатором "sensor_1".

Пример 6.4   Назначитель прерывистых водяных знаков
class PunctuatedAssigner
    extends AssignerWithPunctuatedWatermarks[SensorReading] {

  val bound: Long = 60 * 1000 // 1 минута в миллисекундах.

  override def checkAndGetNextWatermark(
      r: SensorReading,
      extractedTS: Long): Watermark = {
    if (r.id == "sensor_1") {
      // Выпускаем водяной знак, если данные с датчика sensor_1.
      new Watermark(extractedTS - bound)
    } else {
      // Не выпускаем водяной знак.
      null
    }
  }

  override def extractTimestamp(
      r: SensorReading,
      previousTS: Long): Long = {
    // Назначаем метку времени записи.
    r.timestamp
  }
}
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6.1.2. Водяные знаки, задержка и полнота
До сих пор мы обсуждали, как создавать водяные знаки с помощью Timestamp
Assigner. Что мы еще не обсуждали, так это влияние водяных знаков на ваше 
потоковое приложение.

Водяные знаки используются для достижения баланса задержки и полноты 
результата. Они определяют, как долго ждать прибытия данных перед вы-
полнением вычислений, таких как завершение вычисления окна и выдача 
результата. Оператор, основанный на времени события, использует водяные 
знаки для определения полноты полученных записей и  хода выполнения 
операции. На основе полученных водяных знаков оператор вычисляет мо-
мент времени, до которого он ожидает получить соответствующие входные 
записи.

Однако реальность такова, что у  нас никогда не может быть идеальных 
водяных знаков, потому что это означало бы нашу уверенность в отсутствии 
отложенных записей. На практике для создания водяных знаков в  ваших 
приложениях нужно сделать обоснованное предположение и использовать 
эвристику. Вам необходимо использовать любую имеющуюся у вас инфор-
мацию об источниках, сети и разделах для оценки прогресса и верхней гра-
ницы задержки ваших входных записей. Оценки означают, что есть место 
для ошибок, и  в  этом случае вы можете создать неточные водяные знаки, 
что приведет к задержке данных или ненужному увеличению задержки при-
ложения. Имея это в виду, вы можете использовать водяные знаки, чтобы 
сбалансировать задержку и полноту результата.

Если вы генерируете разреженные водяные знаки (loose watermarks), когда 
водяные знаки намного отстают от меток времени обработанных записей, 
вы увеличиваете задержку получаемых результатов. Возможно, вы могли бы 
получить результат раньше, но пришлось дождаться водяного знака. Более 
того, размер состояния обычно увеличивается, потому что приложению не-
обходимо буферизовать больше данных, пока оно не сможет выполнить вы-
числение. Однако вы можете быть уверены, что при выполнении вычислений 
доступны все соответствующие данные.

С другой стороны, если вы создаете очень жесткие водяные знаки – водя-
ные знаки, которые могут быть больше, чем метки времени некоторых более 
поздних записей, – вычисления на основе времени могут быть выполнены 
до того, как будут получены все соответствующие данные. Хотя это может 
привести к неполным или неточным результатам, эти результаты выдаются 
своевременно и с меньшими задержками.

В отличие от пакетных приложений, которые построены на предполо-
жении, что все данные доступны, компромисс между задержкой и  полно-
той является фундаментальной характеристикой приложений потоковой 
обработки, которые обрабатывают неограниченные данные по мере их по-
ступления. Водяные знаки – мощный способ контролировать поведение при-
ложения во времени. Помимо водяных знаков, Flink имеет множество опций 
для настройки точного поведения операций, зависящих от времени, таких 
как функции обработки и триггеры окон, и предлагает различные способы 
обработки опоздавших данных, которые обсуждаются в разделе 6.5.
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6.2. Функции процесса

Несмотря на то что информация о времени и водяные знаки имеют решаю-
щее значение для многих потоковых приложений, вы могли заметить, что мы 
не можем получить к ним доступ с помощью основных преобразований API 
DataStream, которые мы видели до сих пор. Например, функция MapFunction 
не имеет доступа к меткам времени или времени текущего события.

API DataStream предоставляет семейство низкоуровневых преобразова-
ний, функций обработки (process function), которые также могут получать 
доступ к отметкам времени и водяным знакам записи и регистрировать тай-
меры, срабатывающие в определенное время в будущем. Более того, функ-
ции обработки имеют боковые выходы для передачи записей в  несколько 
выходных потоков. Функции обработки обычно используются для создания 
приложений, управляемых событиями, и для реализации пользовательской 
логики, для которой предопределенные окна и  преобразования могут не 
подходить. Например, большинство операторов Flink для поддержки SQL 
реализовано с использованием функций обработки.

В настоящее время Flink предоставляет восемь различных функций про-
цессов: ProcessFunction, KeyedProcessFunction, CoProcessFunction, ProcessJoin-
Function, BroadcastProcessFunction, KeyedBroadcastProcessFunction, ProcessWin-
dowFunction и ProcessAllWindowFunction. Как видно из названий, эти функции 
применимы в разных контекстах. Однако у них очень похожий набор опций. 
Мы продолжим обсуждение этих общих опций, подробно рассмотрев функ-
цию KeyedProcessFunction.

KeyedProcessFunction – это очень универсальная функция, которая может 
применяться к KeyedStream. Функция вызывается для каждой записи потока 
и возвращает ноль, одну или несколько записей. Все функции процесса реа-
лизуют интерфейс RichFunction и, следовательно, предлагают методы open(), 
close() и  getRuntimeContext(). Кроме того, cessFunctionKeyedPro[KEY, IN, OUT] 
предоставляет следующие два метода:

1)	� processElement (v: IN, ctx: Context, out: Collector [OUT]) вызывается для 
каждой записи потока. Как правило, записи результатов передают-
ся в Collector. Объект Context – это характерная особенность именно 
функций обработки. Он дает доступ к метке времени и ключу текущей 
записи, а также к TimerService. Более того, контекст может отправлять 
записи на побочные выходы;

2)	� onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector [OUT]) – это 
функция обратного вызова, которая вызывается при срабатывании 
ранее зарегистрированного таймера. Аргумент timestamp дает метку 
времени сработавшего таймера, а Collector разрешает выпуск записей. 
OnTimerContext предоставляет те же услуги, что и объект Context метода 
processElement(), а также возвращает область времени (время обработ-
ки или время события) запускающего триггера.



134   Операторы на основе времени и оконные операторы

6.2.1. TimerService и таймеры
TimerService объектов Context и OnTimerContext предлагает следующие методы:

�� currentProcessingTime(): Long: возвращает текущее время обработки;
�� currentWatermark(): Long: возвращает метку времени текущего водяного 

знака;
�� registerProcessingTimeTimer(timestamp: Long): регистрирует таймер вре-

мени обработки для текущего ключа. Таймер сработает, когда время 
обработки исполняющей машины достигнет указанной отметки вре-
мени;

�� registerEventTimeTimer(timestamp: Long): регистрирует таймер времени 
события для текущего ключа. Таймер срабатывает, когда водяной знак 
обновляется до отметки времени, которая равна отметке времени тай-
мера или превышает ее;

�� deleteProcessingTimeTimer(timestamp: Long): модуль удаляет таймер вре-
мени обработки, который был ранее зарегистрирован для текущего 
ключа. Если такого таймера нет, метод не действует;

�� deleteEventTimeTimer(timestamp: Long): модуль удаляет таймер времени 
события, который был ранее зарегистрирован для текущего ключа. 
Если такого таймера нет, метод не действует.

Когда срабатывает таймер, вызывается функция обратного вызова onTi
mer(). Методы processElement() и onTimer() синхронизируются для предотвра-
щения одновременного доступа и манипулирования состоянием.

	 Таймеры в потоках без ключа

	
Таймеры могут быть зарегистрированы только для потоков с ключом. Обычным вари-
антом использования таймеров является очистка состояния с ключом после некоторо-
го периода бездействия или реализация настраиваемой логики управления окнами на 
основе времени. Чтобы использовать таймеры в потоке без ключа, вы можете создать 
поток с ключом, используя KeySelector с постоянным фиктивным ключом. Обратите вни-
мание, что это переместит все данные в одну задачу, так что оператор будет фактически 
выполняться с параллелизмом 1.

Для каждого ключа и метки времени может быть зарегистрирован ровно 
один таймер, что означает, что каждый ключ может иметь несколько тайме-
ров, но только по одному для каждой метки времени. По умолчанию Keyed-
ProcessFunction хранит метки времени всех таймеров в очереди приоритетов 
в куче. Однако вы можете настроить бэкенд состояния RocksDB так, чтобы 
она также сохраняла таймеры.

Таймеры сохраняются в контрольной точке вместе с любым другим состо-
янием функции. Если приложению необходимо восстановиться после сбоя, 
все таймеры времени обработки, истекшие во время перезапуска прило-
жения, сработают немедленно, когда приложение возобновит работу. Это 
также верно для таймеров времени обработки, которые сохраняются в точке 
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сохранения. Таймеры всегда устанавливаются асинхронно, за одним исклю-
чением. Если вы используете бэкенд состояния RocksDB с инкрементными 
контрольными точками и хранением таймеров в куче (настройка по умолча-
нию), они устанавливаются синхронно. В этом случае рекомендуется исполь-
зовать таймеры не слишком активно, чтобы избежать длительного времени 
установки контрольных точек.

	 Таймеры, зарегистрированные для отметки времени в  прошлом, не отбрасываются, 
а также обрабатываются. Таймеры времени обработки срабатывают сразу после воз-
врата из метода регистрации. Таймеры времени события срабатывают при обработке 
следующего водяного знака.

В следующем коде показано, как применить KeyedProcessFunction к Keyed-
Stream. Функция контролирует температуру датчиков и выдает предупреж-
дение, если температура датчика монотонно увеличивается в течение 1 с во 
время обработки:

val warnings = readings
  // Ключ по id датчика.
  .keyBy(_.id)
  // Используем ProcessFunction для мониторинга температуры.
  .process(new TempIncreaseAlertFunction)

Реализация TempIncreaseAlterFunction показана в примере 6.5.

Пример 6.5  � Функция KeyedProcessFunction, которая выдает предупреждение, 
если температура датчика монотонно увеличивается в течение 1 с 
во время обработки

/** Выдает предупреждение, если температура датчика 
монотонно увеличивается в течение 1 секунды (во время обработки).
*/
class TempIncreaseAlertFunction
    extends KeyedProcessFunction[String, SensorReading, String] {
  // Сохранение последнего считанного значения температуры.
  lazy val lastTemp: ValueState[Double] = getRuntimeContext.getState(
      new ValueStateDescriptor[Double]("lastTemp", Types.of[Double]))
  // Сохранение метки времени текущего активного таймера.
  lazy val currentTimer: ValueState[Long] = getRuntimeContext.getState(
      new ValueStateDescriptor[Long]("timer", Types.of[Long]))

  override def processElement(
      r: SensorReading,
      ctx: KeyedProcessFunction[String, SensorReading, String]#Context,
      out: Collector[String]): Unit = {
    // Получение предыдущей температуры.
    val prevTemp = lastTemp.value()
    // Обновление последнего значения температуры.
    lastTemp.update(r.temperature)

    val curTimerTimestamp = currentTimer.value();
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    if (prevTemp == 0.0 || r.temperature < prevTemp) {
    // Температура уменьшилась; удаляем текущий таймер.
    ctx.timerService().deleteProcessingTimeTimer(curTimerTimestamp)
    currentTimer.clear()
  } else if (r.temperature > prevTemp && curTimerTimestamp == 0) {
    // Температура увеличилась, а у нас еще не установлен таймер.
    // Устанавливаем таймер времени обработки на сейчас + 1 секунда.
    val timerTs = ctx.timerService().currentProcessingTime() + 1000
    ctx.timerService().registerProcessingTimeTimer(timerTs)
    // Запоминаем текущий таймер.
    currentTimer.update(timerTs)
  }
}

override def onTimer(
    ts: Long,
    ctx: KeyedProcessFunction[String, SensorReading, String]#OnTimerContext,
    out: Collector[String]): Unit = {
  out.collect("Температура датчика '" + ctx.getCurrentKey +
    "' непрерывно возрастает в течение 1 секунды.")
  currentTimer.clear()
 }
}

6.2.2. Передача потоков на боковые выходы
Большинство операторов API DataStream имеют один выход – они создают 
один поток результатов с  определенным типом данных. Только оператор 
split позволяет разделить поток на несколько потоков одного типа. Боковые 
выходы (side outputs) – это особая возможность функций процесса, позволя-
ющая выводить несколько потоков из функции, возможно, разных типов. 
Боковой выход идентифицируется объектом OutputTag[X], где X – тип резуль-
тирующего бокового выходного потока. Функции процесса могут отправлять 
запись на один или несколько боковых выходов через объект Context.

В примере 6.6 показано, как передавать данные из ProcessFunction через 
DataStream бокового выхода.

Пример 6.6  � Применение ProcessFunction, которая передает поток  
на боковой выход

val monitoredReadings: DataStream[SensorReading] = readings
  // Отслеживание потока на элементы с температурой замерзания.
  .process(new FreezingMonitor)

// Получение и печать сигнал о замерзании на боковом выходе.
monitoredReadings
  .getSideOutput(new OutputTag[String]("freezing-alarms"))
  .print()

// Печать главного выхода.
readings.print()
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В примере 6.7 показана функция FreezingMonitor, которая отслеживает по-
ток показаний датчика и выдает предупреждение на боковой выход для по-
казаний с температурой ниже 32 °F.

Пример 6.7  � Функция ProcessFunction, которая передает записи  
на боковой выход

/** Передает сигнал о замерзании при появлении измерения 
  * с температурой ниже 32F. */
class FreezingMonitor extends ProcessFunction[SensorReading, SensorReading] {

  // Определяем тег побочного выхода.
  lazy val freezingAlarmOutput: OutputTag[String] =
    new OutputTag[String]("freezing-alarms")

  override def processElement(
      r: SensorReading,
      ctx: ProcessFunction[SensorReading, SensorReading]#Context,
      out: Collector[SensorReading]): Unit = {
    // Передаем сигнал о замерзании, если температура ниже 32 °F.
    if (r.temperature < 32.0) {
      ctx.output(freezingAlarmOutput, s"Freezing Alarm for ${r.id}")
    }
    // Пересылаем все измерения на обычный выход.
    out.collect(r)
  }
}

6.2.3. CoProcessFunction
Для низкоуровневых операций с двумя входами API DataStream также предо-
ставляет CoProcessFunction. Подобно CoFlatMapFunction, CoProcessFunction пред-
лагает метод преобразования для каждого ввода, processElement1() и  pro-
cessElement2(). Подобно ProcessFunction, оба метода вызываются с объектом 
Context, который предоставляет доступ к метке времени элемента или тай-
мера, TimerService и боковым выходам. CoProcessFunction также предоставляет 
метод обратного вызова onTimer(). В примере 6.8 показано, как применить 
функцию CoProcessFunction для объединения двух потоков.

Пример 6.8   Применение CoProcessFunction
// Входной поток датчика.
val sensorData: DataStream[SensorReading] = ...

// Управляемая пересылка данных от датчиков.
val filterSwitches: DataStream[(String, Long)] = env
  .fromCollection(Seq(
    ("sensor_2", 10 * 1000L), // Перенаправление sensor_2 в течение 10 секунд.
    ("sensor_7", 60 * 1000L)) // Перенаправление sensor_7 в течение 1 минуты.
  )
val forwardedReadings = readings
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  // Соединение датчиков и переключателя.
  .connect(filterSwitches)
  // Ключ по индексам датчиков.
  .keyBy(_.id, _._1)
  // Применяем фильтрующую CoProcessFunction.
  .process(new ReadingFilter)

Реализация функции ReadingFilter, которая динамически фильтрует поток 
показаний датчиков на основе потока переключателей фильтров, показана 
в примере 6.9.

Пример 6.9  � Реализация функции CoProcess, которая динамически фильтрует 
поток показаний датчиков

class ReadingFilter
    extends CoProcessFunction[SensorReading, (String, Long), SensorReading] {

  // Разрешаем перенаправление.
  lazy val forwardingEnabled: ValueState[Boolean] = getRuntimeContext.getState(
      new ValueStateDescriptor[Boolean]("filterSwitch", Types.of[Boolean]))

  // Удерживаем метку времени для текущего активного disableTimer.
  lazy val disableTimer: ValueState[Long] = getRuntimeContext.getState(
      new ValueStateDescriptor[Long]("timer", Types.of[Long]))

  override def processElement1(
      reading: SensorReading,
      ctx: CoProcessFunction[SensorReading, (String, Long), SensorReading]#Context,
      out: Collector[SensorReading]): Unit = {
  // Проверяем, можно ли перенаправить данные.
  if (forwardingEnabled.value()) {
    out.collect(reading)
  }
}

override def processElement2(
    switch: (String, Long),
    ctx: CoProcessFunction[SensorReading, (String, Long), SensorReading]#Context,
    out: Collector[SensorReading]): Unit = {
  // Разрешаем пересылку данных.
  forwardingEnabled.update(true)
  // Устанавливаем disableTimer.
  val timerTimestamp = ctx.timerService().currentProcessingTime() + switch._2
  val curTimerTimestamp = disableTimer.value()
    if (timerTimestamp > curTimerTimestamp) {
    // Удаляем текущий таймер и регистрируем новый таймер.
    ctx.timerService().deleteEventTimeTimer(curTimerTimestamp)
    ctx.timerService().registerProcessingTimeTimer(timerTimestamp)
    disableTimer.update(timerTimestamp)
  }
}

  override def onTimer(
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      ts: Long,
      ctx: CoProcessFunction[SensorReading, (String, Long), SensorReading]
                             #OnTimerContext,
      out: Collector[SensorReading]): Unit = {
    // Удаляем состояние; пересылка будет отключена по умолчанию.
    forwardingEnabled.clear()
    disableTimer.clear()
  }
}

6.3. Оконные операторы

Окна – это обычные операции в  потоковых приложениях. Они позволяют 
выполнять преобразования, такие как агрегирование на ограниченных ин-
тервалах неограниченного потока. Обычно эти интервалы определяются 
с использованием временнòй логики. Оконные операторы позволяют груп-
пировать события в сегменты конечного размера и применять вычисления 
к ограниченному содержимому этих сегментов. Например, оконный опера-
тор может сгруппировать события потока в окна по 5 мин и подсчитать для 
каждого окна, сколько событий было получено.

API DataStream предоставляет встроенные методы для наиболее распро-
страненных оконных операций, а также очень гибкий механизм управления 
окнами для определения пользовательской логики работы с окнами. В этом 
разделе мы покажем вам, как определять оконные операторы, представим 
встроенные типы окон API DataStream, обсудим функции, которые могут 
быть применены к окну, и наконец объясним, как определить пользователь-
скую логику работы с окнами.

6.3.1. Определение оконных операторов
Оконные операторы могут применяться как к потоку с ключом, так и к по-
току без ключа. Оконные операторы в окнах с ключами выполняются парал-
лельно, а окна без ключей обрабатываются в одном потоке.

Чтобы создать оконный оператор, вам необходимо указать два оконных 
компонента.

1.	� Назначитель окна, определяющий, как элементы входного потока груп-
пируются в окна. Назначитель окна создает WindowedStream (или AllWin-
dowedStream, если применяется к потоку данных без ключа).

2.	� Оконная функция, которая применяется к  WindowedStream (или AllWin-
dowedStream) и обрабатывает элементы, назначенные окну.

В следующем коде показано, как указать назначитель окна и  оконную 
функцию для потока с ключом и без ключа:

// Определяем оконный оператор с ключом.
stream
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.keyBy(...)

.window(...) // Определяем назначитель окна.

.reduce/aggregate/process(...) // Определяем оконную функцию.
// Определяем оконный оператор без ключа.
stream
.windowAll(...) // Определяем назначитель окна.
.reduce/aggregate/process(...) // Определяем оконную функцию.

В оставшейся части главы мы сосредоточимся только на окнах с ключами. 
Окна без ключей (так называемые all-windows в DataStream API) ведут себя 
точно так же, за исключением того, что они собирают все данные и не оце-
ниваются параллельно.

	 Обратите внимание, что вы можете настроить оконный оператор, предоставив настра-
иваемый триггер или вытеснитель и  объявив стратегии для работы с  опоздавшими 
элементами. Пользовательские оконные операторы окна подробно рассмотрены ниже 
в этом разделе.

6.3.2. Встроенные средства назначения окон
Flink предоставляет встроенные средства назначения окон для наиболее рас-
пространенных случаев использования окон. Все обсуждаемые здесь назна-
чители основаны на времени и были представлены в разделе 2.2.2. Данные 
назначители окон назначают элемент на основе его метки времени события 
или текущего времени обработки для окон. Временные окна имеют отметку 
времени начала и конца.

Все встроенные средства назначения окон предоставляют триггер по умол-
чанию, который запускает оценку окна после того, как время (обработки 
или события) доходит до конца окна. Важно отметить, что окно создается, 
когда ему назначается первый элемент. Flink никогда не будет обрабатывать 
пустые окна.

	 Окна на основе подсчета

	
В дополнение к окнам, основанным на времени, Flink также поддерживает окна, осно-
ванные на подсчете, – окна, которые группируют фиксированное количество элементов 
в том порядке, в котором они прибывают к оператору окна. Поскольку они зависят от 
порядка приема, окна на основе подсчета не являются детерминированными. Более 
того, они могут вызывать проблемы, если используются без настраиваемого триггера, 
который в какой-то момент отбрасывает неполные и устаревшие окна.

Встроенные средства назначения окон Flink создают окна типа TimeWindow. 
Этот тип окна по существу представляет собой временной интервал между 
двумя временными метками, где начало включено, а конец – исключен. Он 
предоставляет методы для получения границ окна, проверки пересечения 
окон и объединения перекрывающихся окон.

Далее мы покажем различные встроенные средства назначения окон в API 
DataStream и способы их использования для определения оконных опера-
торов.
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6.3.2.1. Шагающие окна
Назначение шагающего окна помещает элементы в  неперекрывающиеся 
окна фиксированного размера, как показано на рис. 6.1.

Ключ 1

Ключ 2

Ключ 3

Размер окна

12:00 12:10 12:20

Рис. 6.1   Назначение шагающего окна помещает элементы  
в неперекрывающиеся окна фиксированного размера 

API DataStream предоставляет два назначителя  – TumblingEventTimeWin-
dows и TumblingProcessingTimeWindows – для шагающих окон времени события 
и времени обработки соответственно. Назначитель шагающего окна полу-
чает один параметр – размер окна в единицах времени; это можно указать 
с  помощью метода назначителя of(Time size). Временной интервал может 
быть установлен в миллисекундах, секундах, минутах, часах или днях.

В следующем коде показано, как определить окна с привязкой ко времени 
события и времени обработки в потоке данных измерений датчика:

val sensorData: DataStream[SensorReading] = ...

val avgTemp = sensorData
  .keyBy(_.id)
    // Групповые данные в окне времени события.
  .window(TumblingEventTimeWindows.of(Time.seconds(1)))
  .process(new TemperatureAverager)

val avgTemp = sensorData
  .keyBy(_.id)
    // Групповые данные в окне времени обработки.
  .window(TumblingProcessingTimeWindows.of(Time.seconds(1)))
  .process(new TemperatureAverager)

Определение окна выглядело немного иначе в  нашем первом примере 
API DataStream в разделе 2.2.2. Там мы определили шагающее окно времени 
события, используя метод timeWindow(size), который является ярлыком для 
любого window.(TumblingEventTimeWindows.of(size)) или для window.(Tumbling-
ProcessingTimeWindows.of(size)) в зависимости от настройки показателя вре-
мени. В следующем коде показано, как использовать этот ярлык:
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val avgTemp = sensorData
  .keyBy(_.id)
    // Ярлык для window.(TumblingEventTimeWindows.of(size)).
  .timeWindow(Time.seconds(1))
  .process(new TemperatureAverager)

По умолчанию шагающие окна отсчитываются от времени эпохи 1970-01-
01-00:00:00.000. Например, назначитель размером один час будет определять 
окна в 00:00:00, 01:00:00, 02:00:00 и т. д. В качестве альтернативы вы можете 
указать смещение в качестве второго параметра назначителя. Следующий 
код показывает окна со смещением 15 мин, которые начинаются в 00:15:00, 
01:15:00, 02:15:00 и т. д.

val avgTemp = sensorData
  .keyBy (_. id)
    // Группируем показания окна размером 1 час со смещением 15 минут.
  .window (TumblingEventTimeWindows.of (Время.часы (1), Время.минуты (15)))
  .process (новый TemperatureAverager)

6.3.2.2. Скользящие окна
Назначитель скользящего окна назначает элементы окнам фиксированного 
размера, которые сдвигаются на заданный интервал скольжения, как пока-
зано на рис. 6.2.

Ключ 1

Ключ 2

Ключ 3

Постоянная длина

12:00 12:10 12:20
Сдвиг

Рис. 6.2   Назначитель скользящего окна помещает элементы  
в окна фиксированного размера, возможно, в перекрывающиеся окна

Для скользящего окна вы должны указать размер окна и интервал сдви-
га, который определяет, как часто запускается новое окно. Когда интервал 
сдвига меньше, чем размер окна, окна перекрываются, и  элементы могут 
быть назначены более чем одному окну. Если сдвиг больше, чем размер окна, 
некоторые элементы могут оказаться между окнами и, следовательно, будут 
отброшены.

Следующий код показывает, как сгруппировать показания датчика 
в скользящих окнах размером 1 ч с 15-минутным интервалом сдвига. Каждый 
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результат измерения будет добавлен в четыре окна. API DataStream предо-
ставляет назначители по времени события и времени обработки, а также ме-
тоды быстрого доступа; величина сдвига может быть установлена в качестве 
третьего параметра назначителя окна:

// Назначитель скользящего окна времени события.
val slidingAvgTemp = sensorData
  .keyBy(_.id)
    // Создаем окно времени событий длиной 1 час каждые 15 минут.
  .window(SlidingEventTimeWindows.of(Time.hours(1), Time.minutes(15)))
  .process(new TemperatureAverager)

// Назначитель скользящего окна времени обработки.
val slidingAvgTemp = sensorData
  .keyBy(_.id)
    // Создаем окно времени обработки длиной 1 час каждые 15 минут.
  .window(SlidingProcessingTimeWindows.of(Time.hours(1), Time.minutes(15)))
  .process(new TemperatureAverager)

// Назначение скользящего окна с использованием ярлыка.
val slidingAvgTemp = sensorData
  .keyBy(_.id)
    // Ярлык для window.(SlidingEventTimeWindow.of(size, slide)).
  .timeWindow(Time.hours(1), Time(minutes(15)))
  .process(new TemperatureAverager)

6.3.2.3. Окна сеанса
Назначитель окна сеанса помещает элементы в  неперекрывающиеся окна 
активности различного размера. Границы окон сеанса определяются проме-
жутками бездействия –интервалами времени, когда не поступают записи. На 
рис. 6.3 показано, как элементы входных данных назначаются окнам сеанса.

Ключ 1

Ключ 2

Ключ 3

Интервал сеансов

Рис. 6.3   Назначитель окна сеанса помещает элементы  
в окна различного размера, определяемые промежутком между сеансами

В следующих примерах показано, как сгруппировать показания датчиков 
в окна сеансов, где каждый сеанс определяется 15-минутным периодом без-
действия:

// Назначитель окна сеанса по времени события.
val sessionWindows = sensorData
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  .keyBy(_.id)
    // Создаем окно сеанса по времени события с разрывом 15 минут.
  .window(EventTimeSessionWindows.withGap(Time.minutes(15)))
  .process(...)

// Назначитель окна сеанса по времени обработки.
val sessionWindows = sensorData
  .keyBy(_.id)
    // Создаем окно сеанса по времени события с разрывом 15 минут.
  .window(ProcessingTimeSessionWindows.withGap(Time.minutes(15)))
  .process(...)

Поскольку начало и конец окна сеанса зависят от полученных элементов, 
назначитель окна не может сразу назначить все элементы правильному окну. 
Вместо этого назначитель SessionWindows изначально сопоставляет каждый 
входящий элемент с  его собственным окном с  меткой времени элемента 
в качестве времени начала и промежутком времени в сеансе в качестве раз-
мера окна. Впоследствии он объединяет все окна с перекрывающимися диа-
пазонами.

6.3.3. Применение функций в окнах
Оконные функции определяют вычисления, которые выполняются над эле-
ментами окна. К окну можно применить два типа функций.

1.	� Функции инкрементного агрегирования применяются непосредственно, 
когда элемент добавляется к  окну, а также удерживает и  обновляет 
одно значение как состояние окна. Эти функции обычно занимают 
очень мало места и в итоге выдают агрегированное значение. Reduce-
Function и AggregateFunction – это функции инкрементного агрегирова-
ния.

2.	� Функции полного окна собирают все элементы окна и перебирают спи-
сок всех собранных элементов при вычислениях. Такие функции обыч-
но требуют больше места, но допускают более сложную логику, чем 
функции инкрементного агрегирования. ProcessWindowFunction – это 
функция полного окна.

В этом разделе мы обсуждаем различные типы функций, которые могут 
применяться к окну для выполнения агрегирования или произвольных вы-
числений над содержимым окна. Мы также покажем, как совместно при-
менять функции инкрементного агрегирования и  функции полного окна 
в оконном операторе.

6.3.3.1. ReduceFunction
Функция ReduceFunction была представлена в разделе 5.2.2 при обсуждении 
выполнения агрегирования в потоках с ключами. ReduceFunction принимает 
два значения одного типа и  объединяет их в  одно значение того же типа. 
Применительно к  разбитому на окна потоку ReduceFunction инкрементно 
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агрегирует элементы, назначенные окну. В окне хранится только текущий ре-
зультат агрегирования – одно значение входного (и выходного) типа Reduce-
Function. При получении нового элемента функция ReduceFunction вызывается 
с новым элементом и текущим значением, считываемым из состояния окна. 
Состояние окна заменяется результатом функции ReduceFunction.

Преимущества применения ReduceFunction к окну – постоянный и неболь-
шой размер состояния для каждого окна и  простой интерфейс функций. 
Однако приложения для ReduceFunction обычно ограничиваются простыми 
агрегатами, поскольку типы ввода и вывода должны быть одинаковыми.

В примере 6.10 показана лямбда-функция reduce, которая вычисляет ми-
нимальную температуру для каждого датчика каждые 15 с.

Пример 6.10   Применение лямбда-функции reduce к WindowedStream
val minTempPerWindow: DataStream[(String, Double)] = sensorData
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .timeWindow(Time.seconds(15))
  .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

6.3.3.2. AggregateFunction
Подобно ReduceFunction, AggregateFunction также инкрементно применяется 
к элементам, которые назначены окну. Более того, состояние оконного опе-
ратора с AggregateFunction также состоит из одного значения.

Хотя интерфейс AggregateFunction намного более гибкий, его также сложнее 
реализовать по сравнению с интерфейсом ReduceFunction. В следующем коде 
показан интерфейс AggregateFunction:

public interface AggregateFunction<IN, ACC, OUT> extends Function, Serializable {

  // Создаем новый аккумулятор для запуска новой агрегации.
  ACC createAccumulator();

  // Добавляем входной элемент в аккумулятор и возвращает аккумулятор.
  ACC add(IN value, ACC accumulator);

  // Вычисляем результат из аккумулятора и возвращаем его.
  OUT getResult(ACC accumulator);

  // Объединяем два аккумулятора и возвращаем результат.
  ACC merge(ACC a, ACC b);
}

Интерфейс определяет тип ввода IN, тип аккумулятора ACC и тип результата 
OUT. В отличие от ReduceFunction промежуточный тип данных и тип вывода не 
зависят от типа ввода.

В примере 6.11 показано, как использовать функцию AggregateFunction для 
вычисления средней температуры показаний датчика для каждого окна. Ак-
кумулятор поддерживает текущую сумму и подсчет, а метод getResult() вы-
числяет среднее значение.
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Пример 6.11   Применение AggregateFunction к WindowedStream
val avgTempPerWindow: DataStream[(String, Double)] = sensorData
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .timeWindow(Time.seconds(15))
.aggregate(new AvgTempFunction)

// AggregateFunction для вычисления средней температуры по датчику.
// Аккумулятор хранит сумму температур и счетчик событий.
class AvgTempFunction
    extends AggregateFunction
  [(String, Double), (String, Double, Int), (String, Double)] {

  override def createAccumulator() = {
  ("", 0.0, 0)
  }

  override def add(in: (String, Double), acc: (String, Double, Int)) = {
  (in._1, in._2 + acc._2, 1 + acc._3)
  }

  override def getResult(acc: (String, Double, Int)) = {
  (acc._1, acc._2 / acc._3)
  }

  override def merge(acc1: (String, Double, Int), acc2: (String, Double, Int)) = {
  (acc1._1, acc1._2 + acc2._2, acc1._3 + acc2._3)
  }
}

6.3.3.3. ProcessWindowFunction
ReduceFunction и AggregateFunction итеративно применяются к событиям, ко-
торые назначены окну. Однако иногда нам нужен доступ ко всем элементам 
окна для выполнения более сложных вычислений, таких как вычисление ме-
дианы значений в окне или поиск наиболее часто встречающегося значения. 
Для таких приложений не подходят ни ReduceFunction, ни AggregateFunction. 
API DataStream предлагает функцию ProcessWindowFunction для выполнения 
произвольных вычислений над содержимым окна.

	 API DataStream в Flink 1.7 имеет интерфейс WindowFunction. Впоследствии WindowFunction 
была заменена функцией ProcessWindowFunction и здесь не обсуждается.

В следующем коде показан интерфейс функции ProcessWindowFunction:

public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window>
    extends AbstractRichFunction {

  // Обработка окна.
  void process(
    KEY key, Context ctx, Iterable<IN> vals, Collector<OUT> out) throws Exception;
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  // Удаление любого оконного состояния, если окно очищено.
  public void clear(Context ctx) throws Exception {}

  // Контекст хранит метаданные окна.
  public abstract class Context implements Serializable {

    // Возвращает метаданные окна.
    public abstract W window();

    // Возвращает текущее время обработки.
    public abstract long currentProcessingTime();

    // Возвращает текущий водяной знак с привязкой к событию.
    public abstract long currentWatermark();

    // Сссылка на пооконное состояние.
    public abstract KeyedStateStore windowState();

    // Ссылка на глобальное состояние.
    public abstract KeyedStateStore globalState();

    // Отправка записи в боковой выход, определенный в OutputTag.
    public abstract <X> void output(OutputTag<X> outputTag, X value);
  }
}

Метод process() вызывается с ключом окна Iterable для доступа к элемен-
там окна и Collector для выдачи результатов. Более того, этот метод имеет 
параметр Context, как и  другие методы процесса. Объект Context функции 
ProcessWindowFunction предоставляет доступ к  метаданным окна, текущему 
времени обработки и водяному знаку, хранилищам состояний для управле-
ния глобальными состояниями для каждого окна и ярлыкам, а также боковым 
выходам для выдачи результатов.

Мы уже обсуждали некоторые возможности объекта Context при представ-
лении функций процесса, такие как доступ к текущей обработке и  выход-
ным данным во время события и боковым выходам. Однако объект Context 
функции ProcessWindowFunction также предлагает уникальные возможности. 
Метаданные окна обычно содержат информацию, которая может использо-
ваться в качестве идентификатора для окна, например метки времени на-
чала и окончания в случае временного окна.

Еще одна опция – глобальные состояния для каждого окна и для каждого 
ключа. Глобальное состояние (global state) для каждого ключа относится 
к  ключевому состоянию, которое не привязано к  какому-либо окну, в то 
время как состояние каждого окна относится к экземпляру окна, который 
в настоящее время оценивается. Состояние каждого окна полезно для хра-
нения информации, которая должна совместно использоваться несколь-
кими вызовами метода process() в одном окне, что может произойти из-за 
настройки допустимой задержки или использования настраиваемого триг-
гера. Функция ProcessWindowFunction, которая использует состояние кон-
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кретного окна, должна реализовать свой метод clear() для очистки любого 
состояния этого окна перед очисткой окна. Глобальное состояние можно 
использовать для обмена информацией между несколькими окнами с од-
ним и тем же ключом.

В примере 6.12 поток данных датчика сгруппирован в шагающие окна про-
должительностью 5 с, а для вычисления самой низкой и самой высокой темпе-
ратуры, встреченной в окне, используется функция ProcessWindowFunction. Она 
выдает по одной записи для каждого окна, состоящей из отметки времени на-
чала и окончания окна, а также минимальной и максимальной температуры.

Пример 6.12  � Вычисление минимальной и максимальной температуры 
для каждого датчика и окна с помощью функции 
ProcessWindowFunction

// Выводим наименьшую и наибольшую температуру каждые 5 секунд.
val minMaxTempPerWindow: DataStream[MinMaxTemp] = sensorData
  .keyBy(_.id)
  .timeWindow(Time.seconds(5))
  .process(new HighAndLowTempProcessFunction)

case class MinMaxTemp(id: String, min: Double, max:Double, endTs: Long)
/**
* Функция ProcessWindowFunction, которая вычисляет наименьшую и наибольшую температуру
* в каждом окне и передает их вместе с конечной меткой времени окна. 
*/
class HighAndLowTempProcessFunction
    extends ProcessWindowFunction[SensorReading, MinMaxTemp, String, TimeWindow] {

  override def process(
      key: String,
      ctx: Context,
      vals: Iterable[SensorReading],
      out: Collector[MinMaxTemp]): Unit = {

    val temps = vals.map(_.temperature)
    val windowEnd = ctx.window.getEnd
    out.collect(MinMaxTemp(key, temps.min, temps.max, windowEnd))
  }
}

Внутри окно, которое обрабатывается функцией ProcessWindowFunction, со-
храняет все назначенные события в ListState1. Собирая все события и предо-
ставляя доступ к метаданным окна и другим функциям, ProcessWindowFunction 
может реализовать гораздо больше вариантов использования, чем Reduce-
Function или AggregateFunction. Однако состояние окна, которое собирает все 
события, может стать значительно больше, чем состояние окна, элементы 
которого агрегируются постепенно.

1	 ListState и его характеристики быстродействия подробно обсуждаются в главе 7.
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6.3.3.4. Инкрементное агрегирование 
и функция ProcessWindowFunction
ProcessWindowFunction – очень мощная оконная функция, но вы должны ис-
пользовать ее с осторожностью, поскольку она обычно содержит больше дан-
ных в состоянии, чем функции с инкрементным агрегированием. Довольно 
часто логика, которую необходимо применить к окну, может быть выражена 
как инкрементное агрегирование, но для этого также требуется доступ к ме-
таданным или состоянию окна.

Если у вас есть логика инкрементного агрегирования, но вам также нужен 
доступ к метаданным окна, вы можете объединить ReduceFunction или Aggre-
gateFunction, которые выполняют инкрементное агрегирование, с ProcessWin-
dowFunction, которая предоставляет дополнительные возможности. Элемен-
ты, назначенные окну, будут немедленно агрегированы, и при срабатывании 
триггера окна агрегированный результат будет передан ProcessWindowFunc-
tion. Параметр Iterable метода ProcessWindowFunction.process() предоставит 
только одно значение – результат с инкрементным агрегированием.

В API DataStream это делается путем передачи ProcessWindowFunction в ка-
честве второго параметра методам reduce() или aggregate(), как показано 
в следующем коде:

input
  .keyBy(...)
  .timeWindow(...)
  .reduce(
    incrAggregator: ReduceFunction[IN],
    function: ProcessWindowFunction[IN, OUT, K, W])

input
  .keyBy(...)
  .timeWindow(...)
  .aggregate(
    incrAggregator: AggregateFunction[IN, ACC, V],
    windowFunction: ProcessWindowFunction[V, OUT, K, W])

Код в примерах 6.13 и 6.14 показывает, как решить ту же задачу, что и код 
в примере 6.12, с комбинацией функций ReduceFunction и ProcessWindowFunc-
tion, генерирующих каждые 5 с минимальную и максимальную температуру 
для каждого датчика и метку времени окончания каждого окна.

Пример 6.13  � Применение ReduceFunction для инкрементного агрегирования 
и ProcessWindowFunction для финализации результата окна

case class MinMaxTemp(id: String, min: Double, max:Double, endTs: Long)

val minMaxTempPerWindow2: DataStream[MinMaxTemp] = sensorData
  .map(r => (r.id, r.temperature, r.temperature))
  .keyBy(_._1)
  .timeWindow(Time.seconds(5))
  .reduce(
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    // Инкрементное вычисление минимальной и максимальной температуры.
    (r1: (String, Double, Double), r2: (String, Double, Double)) => {
      (r1._1, r1._2.min(r2._2), r1._3.max(r2._3))
    },
    // Финализация результата в ProcessWindowFunction.
    new AssignWindowEndProcessFunction()
  )

Как вы можете видеть в примере 6.13, функции ReduceFunction и Process-
WindowFunction определены в  вызове метода reduce(). Поскольку агрегиро-
вание выполняется функцией ReduceFunction, функции ProcessWindowFunction 
остается лишь добавить отметку времени окончания окна к  инкрементно 
вычисляемому результату, как показано в примере 6.14.

Пример 6.14  � Реализация функции ProcessWindowFunction,  
которая назначает временную метку конца окна  
инкрементально вычисляемому результату

class AssignWindowEndProcessFunction
  extends
  ProcessWindowFunction[(String, Double, Double), MinMaxTemp, String, TimeWindow] {

  override def process(
      key: String,
      ctx: Context,
      minMaxIt: Iterable[(String, Double, Double)],
      out: Collector[MinMaxTemp]): Unit = {

    val minMax = minMaxIt.head
    val windowEnd = ctx.window.getEnd
    out.collect(MinMaxTemp(key, minMax._2, minMax._3, windowEnd))
  }
}

6.3.4. Настройка оконных операторов
Оконные операторы, определенные с помощью встроенных средств назна-
чения окон Flink, могут использоваться во многих типичных случаях. Од-
нако по мере того, как вы начинаете писать более продвинутые потоковые 
приложения, вы можете столкнуться с необходимостью реализовать более 
сложную логику работы с окнами, например с окнами, которые выдают ран-
ние результаты и обновляют свои результаты, если встречаются опоздавшие 
элементы, или с окнами, которые начинаются и заканчиваются, когда полу-
чены определенные записи.

API DataStream предоставляет интерфейсы и  методы для определения 
пользовательских оконных операторов, позволяя вам реализовать свои соб-
ственные назначители, триггеры и вытеснители. Наряду с ранее обсуждав-
шимися оконными функциями эти компоненты работают вместе в оконном 
операторе, группируя и обрабатывая элементы в окнах.
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Когда элемент поступает к оконному оператору, он передается в WindowAs-
signer. Назначитель определяет, в какие окна нужно направить элемент. Если 
окно еще не существует, оно создается.

Если оконный оператор сконфигурирован с  функцией инкрементного 
агрегирования, такой как ReduceFunction или AggregateFunction, вновь добав-
ленный элемент немедленно агрегируется, а результат сохраняется как со-
держимое окна. Если оконный оператор не имеет функции инкрементного 
агрегирования, новый элемент добавляется к списку ListState, который со-
держит все назначенные элементы.

Каждый раз, когда элемент добавляется в окно, он также передается триг-
геру окна. Триггер определяет (срабатывает), когда окно считается готовым 
к обработке и когда окно освобождается и его содержимое очищается. Триг-
гер может принять решение на основе назначенных элементов или заре-
гистрированных таймеров (аналогично функции процесса) обработать или 
очистить содержимое своего окна в определенные моменты времени.

Что происходит при срабатывании триггера, зависит от настроенных 
функций оператора окна. Если оператор сконфигурирован только с  функ-
цией инкрементного агрегирования, выдается текущий результат агрегиро-
вания. Этот случай показан на рис. 6.4.
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Рис. 6.4   Оператор окна с функцией инкрементного агрегирования  
(единственный кружок в каждом окне представляет  

его агрегированное состояние окна)

Если у оператора есть только функция полного окна, функция применяется 
ко всем элементам окна, и результат выдается, как показано на рис. 6.5.
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Рис. 6.5   Оператор окна с функцией полного окна  
(кружки в каждом окне представляют собранные необработанные входные записи)

Наконец, если у  оператора есть функция инкрементного агрегирования 
и  функция полного окна, функция полного окна применяется к  агрегиро-
ванному значению, и выдается результат. На рис. 6.6 показан этот случай.
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Рис. 6.6   Оператор окна с функцией  
инкрементального агрегирования и полного окна  

(единственный кружок в каждом окне представляет  
его агрегированное состояние окна)
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Вытеснитель (evictor) – это необязательный компонент, который может 
быть введен до или после вызова функции ProcessWindowFunction. Вытесни-
тель может удалить собранные элементы из содержимого окна. Поскольку он 
должен перебирать все элементы, его можно использовать, только если не 
применяется функция инкрементного агрегирования.

В следующем коде показано, как определить оконный оператор с настра-
иваемым триггером и вытеснителем:

stream
.keyBy(...)
.window(...) // Назначитель окна.
[.trigger(...)] // Опционально: определяем триггер.
[.evictor(...)] // Опционально: определяем вытеснитель.
.reduce/aggregate/process(...) // Определяем оконную функцию.

И если вытеснители являются необязательными компонентами, то каж-
дый оператор окна нуждается в триггере, чтобы решить, когда обрабатывать 
окна. Чтобы предоставить более краткий API оконного оператора, каждый 
WindowAssigner имеет триггер по умолчанию, который используется, если нет 
явно определенного триггера.

	 Обратите внимание, что явно определенный триггер переопределяет существующий 
триггер, а не дополняет его – окно будет обрабатываться только на основе последнего 
определенного триггера.

В следующих разделах мы обсудим жизненный цикл окон и представим 
интерфейсы для определения настраиваемых назначителей окон, триггеров 
и средств выселения.

6.3.4.1. Жизненный цикл окна
Оператор окна создает и  обычно также удаляет окна во время обработки 
входящих элементов потока. Как обсуждалось ранее, элементы назначают-
ся окнам с помощью WindowAssigner, триггер решает, когда оценивать окно, 
а оконная функция выполняет фактическую оценку окна. В этом разделе мы 
обсуждаем жизненный цикл окна – когда оно создается, из какой информа-
ции оно состоит и когда удаляется.

Окно создается, когда WindowAssigner назначает ему первый элемент. Сле-
довательно, не существует окна, которое не содержит хотя бы один элемент. 
Окно состоит из следующих частей состояния.

Содержимое окна
Содержимое окна содержит элементы, которые были назначены окну, или 
результат инкрементной агрегации в  случае, если оператор окна имеет 
ReduceFunction или AggregateFunction.

Объект окна
WindowAssigner возвращает ноль, один или несколько оконных объектов. 
Оператор окна группирует элементы на основе возвращаемых объектов. 
Следовательно, объект окна содержит информацию, используемую для 
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различения окон друг от друга. Каждый объект окна имеет отметку време-
ни окончания, которая определяет момент времени, после которого окно 
и его состояние могут быть удалены.

Таймеры триггера
Триггер может регистрировать таймеры для обратного вызова в опреде-
ленные моменты времени – например, для обработки окна или очистки 
его содержимого. Эти таймеры обслуживаются оператором окна.

Настраиваемое состояние в триггере
Триггер может определять и использовать настраиваемое состояние для 
каждого окна и для каждого ключа. Это состояние полностью контролиру-
ется триггером и не поддерживается оператором окна.

Оператор окна удаляет окно, когда достигается время окончания окна, 
определяемое меткой времени окончания объекта окна. Произойдет ли это 
с семантикой времени обработки или времени события, зависит от значения, 
возвращаемого методом WindowAssigner.isEventTime().

Когда окно удаляется, оператор окна автоматически очищает содержимое 
окна и аннулирует объект окна. Настраиваемое состояние триггера и заре-
гистрированные таймеры триггера не очищаются, потому что это состояние 
непрозрачно для оператора окна. Следовательно, триггер должен очистить 
все свое состояние в  методе Trigger.clear(), чтобы предотвратить утечку 
состояния.

6.3.4.2. Назначители окон
WindowAssigner определяет окно назначения для каждого поступающего эле-
мента. Элемент можно добавить в ноль, одно или несколько окон. Ниже по-
казан интерфейс WindowAssigner:

public abstract class WindowAssigner<T, W extends Window>
    implements Serializable {

  // Возвращает коллекцию окон, которым назначен элемент.
  public abstract Collection<W> assignWindows(
    T element,
    long timestamp,
    WindowAssignerContext context);

  // Возвращает триггер WindowAssigner по умолчанию. 
  public abstract Trigger<T, W> getDefaultTrigger(
    StreamExecutionEnvironment env);

  // Возвращает TypeSerializer для окон этого WindowAssigner.
  public abstract TypeSerializer<W> getWindowSerializer(
    ExecutionConfig executionConfig);

  // Сообщает, создает ли назначитель окно времени события.
  public abstract boolean isEventTime();

  // Контекст, предоставляющий доступ к текущему окну обработки.
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  public abstract static class WindowAssignerContext {

    // Возвращает текущее время обработки.
    public abstract long getCurrentProcessingTime();
  }
}

WindowAssigner типизирован для типа входящих элементов и типа окон, 
которым эти элементы назначаются. Также необходимо предоставить триг-
гер по умолчанию, который используется, если явный триггер не указан. 
Код в примере 6.15 создает настраиваемый назначитель для 30-секундных 
шагающих окон времени событий.

Пример 6.15   Назначитель для шагающих окон времени событий
/** Пользовательское окно, которое группирует события в 30-секундные окна */
class ThirtySecondsWindows
    extends WindowAssigner[Object, TimeWindow] {

  val windowSize: Long = 30 * 1000L
  override def assignWindows(
      o: Object,
      ts: Long,
      ctx: WindowAssigner.WindowAssignerContext): java.util.List[TimeWindow] = {

  // Округление в меньшую сторону каждые 30 секунд.
  val startTime = ts - (ts % windowSize)
  val endTime = startTime + windowSize
  // Выпуск соответствующего TimeWindow.
  Collections.singletonList(new TimeWindow(startTime, endTime))
  }

  override def getDefaultTrigger(
      env: environment.StreamExecutionEnvironment): Trigger[Object, TimeWindow] = {
    EventTimeTrigger.create()
  }

  override def getWindowSerializer(
      executionConfig: ExecutionConfig): TypeSerializer[TimeWindow] = {
    new TimeWindow.Serializer
  }
  override def isEventTime = true
}

	 Назначение GlobalWindows

	
Назначитель GlobalWindows отображает все элементы в одно и то же глобальное окно. Его 
триггер по умолчанию – NeverTrigger, который, как следует из названия, никогда не сра-
батывает. Следовательно, назначителю GlobalWindows требуется настраиваемый триггер 
и, возможно, вытеснитель для выборочного удаления элементов из состояния окна.

	
Метка времени окончания GlobalWindows имеет тип Long.MAX_VALUE. Следовательно, Glo-
balWindows никогда не будет полностью очищен. При использовании KeyedStream с нарас-
тающим пространством ключей Global Windows будет хранить некоторое состояние для 
каждого ключа. Его следует использовать только с осторожностью.
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В дополнение к  интерфейсу WindowAssigner существует также интерфейс 
MergingWindowAssigner, расширяющий WindowAssigner. Интерфейс MergingWindo-
wAssigner используется для оконных операторов, которым необходимо объ-
единить существующие окна. Одним из примеров такого назначителя явля-
ется назначитель EventTimeSessionWindows, который мы обсуждали ранее, он 
работает путем создания нового окна для каждого поступающего элемента 
и последующего объединения перекрывающихся окон.

При объединении окон необходимо убедиться, что состояние всех объ-
единяемых окон и их триггеров также соответствующим образом объедине-
но. Интерфейс Trigger имеет метод обратного вызова, который вызывается, 
когда происходит слияние окон, и выполняет слияние состояний, связанных 
с окнами. Более подробно слияние окон обсуждается в следующем разделе.

6.3.4.3. Триггеры
Триггеры определяют, когда выполняется обработка окна и  выдаются его 
результаты. Триггер может принять решение о  срабатывании в  зависимо-
сти от выполнения условий, зависящих от времени или данных, таких как 
количество элементов или определенные наблюдаемые значения элементов. 
Например, триггеры по умолчанию для ранее упомянутых временных окон 
срабатывают, когда время обработки или водяной знак превышают отметку 
времени конечной границы окна.

Триггеры имеют доступ к свойствам времени и таймерам и могут работать 
с состоянием. Следовательно, они столь же мощны, как и функции процесса. 
Например, вы можете реализовать логику запуска, которая срабатывает, ког-
да окно получает определенное количество элементов, когда в окно добавля-
ется элемент с определенным значением или после обнаружения заданного 
паттерна среди добавленных элементов, например «два события одного типа 
в  пределах 5 с». Пользовательский триггер также может применяться для 
вычисления и выдачи ранних результатов из окна времени событий, до того 
как водяной знак достигнет отметки времени окончания окна. Это обычная 
стратегия получения (неполных) результатов с малой задержкой, несмотря 
на использование консервативной стратегии водяных знаков.

Каждый раз, когда вызывается триггер, он создает TriggerResult, который 
определяет, что должно произойти с окном. TriggerResult может принимать 
одно из следующих значений.

CONTINUE
Никаких действий не предпринимается.

FIRE
Если оконный оператор имеет ProcessWindowFunction, эта функция вызыва-
ется и выдает результат. Если в окне есть только функция инкрементного 
агрегирования (ReduceFunction или AggregateFunction), выдается текущий 
результат агрегирования. Состояние окна не меняется.

PURGE
Содержимое окна полностью отбрасывается, а само окно, включая все ме-
таданные, удаляется. Кроме того, вызывается метод ProcessWindowFunction.
clear() для очистки всего пользовательского состояния для каждого окна.
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FIRE_AND_PURGE
Cначала обрабатывает окно (FIRE), а затем удаляет все состояние и мета-
данные (PURGE).

Возможные значения TriggerResult позволяют реализовать сложную окон-
ную логику. Пользовательский триггер может срабатывать несколько раз, 
вычисляя новые или обновленные результаты или очищая окно без выдачи 
результата, если выполняется определенное условие. Следующий блок кода 
демонстрирует API Trigger:

public abstract class Trigger<T, W extends Window> implements Serializable {

  // Вызывается для каждого элемента, добавляемого к окну.
  TriggerResult onElement(
  T element, long timestamp, W window, TriggerContext ctx);

  // Вызывается при срабатывании таймера времени обработки.
  public abstract TriggerResult onProcessingTime(
  long timestamp, W window, TriggerContext ctx);

  // Вызывается при срабатывании таймера времени события.
  public abstract TriggerResult onEventTime(
  long timestamp, W window, TriggerContext ctx);

  // Возвращает true, если этот триггер поддерживает слияние состояний триггеров.
  public boolean canMerge();

  // Вызывается, когда несколько окон объединены в одно окно
  // и необходимо объединить состояния триггеров.
  public void onMerge(W window, OnMergeContext ctx);

  // Очищает каждое состояние, которое триггер мог удерживать для данного окна.
  // Этот метод вызывается, когда очищается окно.
  public abstract void clear(W window, TriggerContext ctx);
}

// Контекстный объект, передаваемый методу Trigger, чтобы позволить ему
// регистрировать обратные вызовы и работать с состоянием.
public interface TriggerContext {

  // Возвращает текущее время обработки.
  long getCurrentProcessingTime();

  // Возвращает текущее время водяного знака.
  long getCurrentWatermark();

  // Регистрирует таймер времени обработки.
  void registerProcessingTimeTimer(long time);

  // Регистрирует таймер времени событий.
  void registerEventTimeTimer(long time);

  // Удаляет таймер времени обработки.
  void deleteProcessingTimeTimer(long time);
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  // Удаляет таймер времени событий.
  void deleteEventTimeTimer(long time);

  // Запрашивает объект состояния, связанного с окном, и ключ триггера.
  <S extends State> S getPartitionedState(StateDescriptor<S, ?> stateDescriptor);
}

// Расширение TriggerContext, переданное методу Trigger.onMerge().
public interface OnMergeContext extends TriggerContext {

  // Объединение состояний соответствующих окон.
  // Эти состояния должны поддерживать объединение.
  void mergePartitionedState(StateDescriptor<S, ?> stateDescriptor);
}

Как видите, API Trigger можно использовать для реализации сложной ло-
гики, предоставляя доступ ко времени и состоянию. Особого внимания тре-
буют два аспекта триггеров: очистка состояния и объединение триггеров.

При использовании оконного состояния в триггере необходимо убедить-
ся, что это состояние правильно удаляется при удалении окна. В против-
ном случае оконный оператор со временем будет накапливать все больше 
и  больше состояний, и  ваше приложение, вероятно, в  какой-то момент 
выйдет из строя. Чтобы очистить все состояние при удалении окна, метод 
триггера clear() должен удалить все настраиваемые состояния для каждого 
окна и удалить все таймеры времени обработки и времени события с по-
мощью объекта TriggerContext. Невозможно очистить состояние в  методе 
обратного вызова таймера, поскольку эти методы не вызываются после 
удаления окна.

Если триггер применяется вместе с MergingWindowAssigner, он должен иметь 
возможность обрабатывать случай, когда два окна объединяются. В этом слу-
чае необходимо объединить любые пользовательские состояния триггеров. 
Метод canMerge() объявляет, что триггер поддерживает слияние, а метод on-
Merge() должен реализовать логику для выполнения слияния. Если триггер 
не поддерживает слияние, его нельзя использовать в  сочетании с Merging-
WindowAssigner.

Когда триггеры объединяются, все дескрипторы настраиваемых состояний 
должны быть переданы методу mergePartitionedState() объекта OnMergeCon-
text.

	 Обратите внимание, что объединяемые триггеры могут использовать только примитивы 
состояния, которые могут быть объединены автоматически, – ListState, ReduceState или 
AggregatingState.

В примере 6.16 показан триггер, который срабатывает раньше, чем на-
ступит время окончания окна. Триггер регистрирует таймер, когда первое 
событие назначается окну, на одну секунду раньше текущего водяного знака. 
Когда таймер срабатывает, регистрируется новый таймер. Таким образом, 
триггер срабатывает не чаще, чем каждую секунду.
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Пример 6.16   Триггер с ранним срабатыванием
/** Триггер с ранним срабатыванием. Триггер срабатывает не чаще, чем раз в секунду. */
class OneSecondIntervalTrigger
    extends Trigger[SensorReading, TimeWindow] {

  override def onElement(
      r: SensorReading,
      timestamp: Long,
      window: TimeWindow,
      ctx: Trigger.TriggerContext): TriggerResult = {

  // firstSeen возвращает false если еще не установлен.
  val firstSeen: ValueState[Boolean] = ctx.getPartitionedState(
    new ValueStateDescriptor[Boolean]("firstSeen", classOf[Boolean]))

  // Регистрируем начальный таймер только для первого элемента.
  if (!firstSeen.value()) {
    // Вычисляем время следующего раннего срабатывания округлением водяного знака до секунд.
    val t = ctx.getCurrentWatermark + (1000 - (ctx.getCurrentWatermark % 1000))
    ctx.registerEventTimeTimer(t)
    // Регистрируем таймер конца окна.
    ctx.registerEventTimeTimer(window.getEnd)
    firstSeen.update(true)
  }
  // Продолжаем. Не обрабатываем поэлементно.
  TriggerResult.CONTINUE
}

override def onEventTime(
    timestamp: Long,
    window: TimeWindow,
    ctx: Trigger.TriggerContext): TriggerResult = {
  if (timestamp == window.getEnd) {
    // Финальная обработка и очистка состояния окна.
    TriggerResult.FIRE_AND_PURGE
  } else {
    // Регистрация следующего раннего таймера.
    val t = ctx.getCurrentWatermark + (1000 - (ctx.getCurrentWatermark % 1000))
    if (t < window.getEnd) {
      ctx.registerEventTimeTimer(t)
    }
    // Срабатывание триггера для обработки окна.
    TriggerResult.FIRE
  }
}

override def onProcessingTime(
    timestamp: Long,
    window: TimeWindow,
    ctx: Trigger.TriggerContext): TriggerResult = {
  // Продолжаем. Мы не используем таймеры по времени обработки.
  TriggerResult.CONTINUE
}
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override def clear(
    window: TimeWindow,
    ctx: Trigger.TriggerContext): Unit = {

  // Очистка состояния таймера.
    val firstSeen: ValueState[Boolean] = ctx.getPartitionedState(
      new ValueStateDescriptor[Boolean]("firstSeen", classOf[Boolean]))
    firstSeen.clear()
  }
}

Обратите внимание, что триггер использует настраиваемое состояние, 
которое очищается с  помощью метода clear(). Поскольку мы используем 
простое необъединяемое ValueState, триггер не может быть объединен.

6.3.4.4. Вытеснители
Evictor (вытеснитель) – это дополнительный компонент оконного механиз-
ма Flink. Он может удалять элементы из окна до или после срабатывания 
оконной функции.

В примере 6.17 показан интерфейс Evictor.

Пример 6.17   Интерфейс Evictor
public interface Evictor<T, W extends Window> extends Serializable {
  // Избирательно удаляет элементы. Вызывается перед оконной функцией.
  void evictBefore(
    Iterable<TimestampedValue<T>> elements,
    int size,
    W window,
    EvictorContext evictorContext);

  // Избирательно удаляет элементы. Вызывается перед оконной функцией.
  void evictAfter(
    Iterable<TimestampedValue<T>> elements,
    int size,
    W window,
    EvictorContext evictorContext);

// Объект контекста, передаваемый в методы Evictor.
interface EvictorContext {

  // Возвращает текущее время обработки.
  long getCurrentProcessingTime();

  // Возвращает текущую метку времени события.
  long getCurrentWatermark();
}

Методы evictBefore() и evictAfter() вызываются до и после применения 
оконной функции к содержимому окна соответственно. Оба метода вызыва-
ются с помощью Iterable, который обслуживает все элементы, добавленные 
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в  окно, количество элементов в  окне (size), объект окна и  EvictorContext, 
обеспечивающий доступ к текущему времени обработки и  водяному зна-
ку. Элементы удалены из окна вызовом метода remove() в Iterator, который 
можно получить из Iterable.

	 Преагрегация и вытеснение

	
Вытеснители перебирают список элементов в окне. Они могут применяться только в том 
случае, если окно собирает все добавленные события и не применяет ReduceFunction или 
AggregateFunction для постепенного агрегирования содержимого окна.

Вытеснители часто применяются в  GlobalWindow для частичной очистки 
окна – без очистки всего состояния окна.

6.4. Объединение потоков по времени

Распространенным требованием при работе с потоками является соедине-
ние или объединение событий двух потоков. В API DataStream есть два встро-
енных оператора для объединения потоков по условию времени: интерваль-
ное объединение и оконное объединение. В этом разделе мы описываем оба 
оператора.

Если вы не можете выразить требуемую семантику объединения с помо-
щью встроенных операторов соединения Flink, вы можете реализовать соб-
ственную логику объединения как CoProcessFunction, BroadcastProcessFunction 
или KeyedBroadcastProcessFunction.

	 Обратите внимание, что вы должны разработать оператор с эффективными шаблонами 
доступа к состоянию и эффективными стратегиями очистки состояния.

6.4.1. Интервальное объединение
Интервальное объединение объединяет события из двух потоков, которые 
имеют общий ключ и временные метки которых находятся на расстоянии 
не более заданных интервалов друг от друга.

На рис.  6.7 показано интервальное объединение двух потоков, A и  B, 
которое объединяет событие из A с событием из B, если метка времени со-
бытия B не менее чем на час раньше и не более чем на 15 мин позже, чем 
метка времени события A. Интервал объединения является симметричным, 
то есть событие из B соединяется со всеми событиями из A, которые про-
исходят не более чем на 15 мин раньше и не более чем на час позже, чем 
событие B.

В настоящее время интервальное объединение поддерживает только вре-
мя события и работает с семантикой INNER JOIN (события, для которых нет со-
впадающего события, не будут перенаправлены). Интервальное объединение 
определяется, как показано в примере 6.18.
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Рис. 6.7   Интервальное объединение, объединяющее два потока A и B

Пример 6.18   Использование интервального объединения
input1
  .keyBy(…)
  .between(<lower-bound>, <upper-bound>) // Границы исходя из input1.
  .process(ProcessJoinFunction) // Обработка пар совпавших событий.

Пары объединенных событий передаются в ProcessJoinFunction. Нижняя 
и  верхняя границы определяются как отрицательные и  положительные 
интервалы времени, например как between(Time.hour(-1), Time.minute(15)). 
Нижняя и верхняя границы могут быть выбраны произвольно, если нижняя 
граница меньше верхней; вы можете присоединиться ко всем событиям A со 
всеми событиями B, метки времени которых больше, чем у события A в ин-
тервале от одного до двух часов.

При интервальном объединении необходимо буферизовать записи с одно-
го или обоих входов. Для первого входа буферизируются все записи с мет-
ками времени, превышающими текущий водяной знак – верхнюю границу. 
Для второго входа буферизируются все записи с метками времени больше 
текущего водяного знака плюс нижняя граница. Обратите внимание, что обе 
границы могут быть отрицательными. Объединение на рис. 6.7 хранит все за-
писи с отметками времени, превышающими текущий водяной знак – 15 мин 
от потока A, – и все записи с отметками времени больше текущего водяного 
знака – через час от потока B. Вы должны знать, что требования к хранению 
для интервального объединения могут значительно увеличиться, если время 
события обоих входных потоков не синхронизировано, поскольку водяной 
знак определяется «более медленным» потоком.

6.4.2. Оконное объединение
Как следует из названия, оконное объединение основано на оконном меха-
низме Flink. Элементы обоих входных потоков назначаются общим окнам 
и объединяются (или группируются), когда создается окно.

В примере 6.19 показано, как определить оконное объединение.

Пример 6.19   Оконное объединение двух потоков
input1.join(input2)
.where(...) // Атрибут ключа для input1.
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.equalTo(...) // Атрибут ключа для input2.

.window(...) // Определяем WindowAssigner.
[.trigger(...)] // Не обязательно: определяем Trigger.
[.evictor(...)] // Не обязательно: определяем Evictor.
.apply(...) // Определяем JoinFunction.

На рис. 6.8 показано, как работает оконное объединение API DataStream.

WindowAssigner

Окно Окно Окно

Триггер Триггер Триггер

Ввод 1

Ввод 2

Функция объединения

Рис. 6.8   Операция оконного объединения

Оба входных потока привязаны к своим ключевым атрибутам, и средство 
назначения общего окна сопоставляет события обоих потоков с общими ок-
нами, то есть окно хранит события обоих входов. Когда срабатывает таймер 
окна, функция JoinFunction вызывается для каждой комбинации элементов 
из первого и второго потока входных данных – перекрестное произведение. 
Также можно указать настраиваемый триггер и вытеснитель. Поскольку со-
бытия обоих потоков отображаются в одних и тех же окнах, триггеры и вы-
теснители ведут себя точно так же, как в обычных оконных операторах.

В дополнение к  объединению двух потоков также можно группировать 
два потока в окне, начав определение оператора с coGroup() вместо join(). 
В  целом логика такая же, но вместо вызова JoinFunction для каждой пары 
событий из обоих входов CoGroupFunction вызывается один раз для каждого 
окна с итераторами по элементам из обоих входов.

	 Следует отметить, что оконное объединение потоков может иметь неожиданную семан-
тику. Например, предположим, что вы объединяете два потока с оператором объедине-
ния, для которого настроено одночасовое временное окно. Элемент первого входа не 
будет объединен с элементом второго входа, даже если они находятся всего в одной 
секунде друг от друга, но назначены двум разным окнам.
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6.5. Обработка опоздавших данных

Как уже говорилось, водяные знаки могут использоваться для баланса пол-
ноты и  задержки результата. Если вы не выберете очень консервативную 
стратегию водяных знаков, которая гарантирует, что все соответствующие 
записи будут включены за счет высокой задержки, вашему приложению, 
скорее всего, придется обрабатывать опоздавшие элементы.

Опоздавший элемент (late element) – это элемент, который поступает к опе-
ратору, когда вычисление, в которое он должен был бы внести свой вклад, уже 
было выполнено. В  контексте оператора окна времени событие считается 
опоздавшим, если оно доходит до оператора, и  назначитель сопоставляет 
его с окном, которое уже было вычислено, поскольку водяной знак оператора 
передал метку времени окончания окна.

API DataStream предоставляет различные варианты обработки поздних 
событий:

�� опоздавшие события можно просто отбросить;
�� опоздавшие события могут быть перенаправлены в отдельный поток;
�� результаты вычислений могут быть обновлены на основе опоздавших 

событий, и необходимо отправить обновления.

Ниже мы подробно обсудим эти параметры и покажем, как они применя-
ются для функций процессов и оконных операторов.

6.5.1. Отбрасывание опоздавших событий
Самый простой способ справиться с поздними событиями – просто отбро-
сить их. Отбрасывание опоздавших событий является поведением по умол-
чанию для операторов окна времени события. Следовательно, опоздавший 
элемент не создаст новое окно.

Функция процесса может легко отфильтровать опоздавшие события, срав-
нивая их метки времени с текущим водяным знаком.

6.5.2. Перенаправление опоздавших событий
Опоздавшие события также можно перенаправить в другой поток данных 
с  помощью функции бокового вывода. Затем эти события могут быть об-
работаны или отправлены с помощью обычной функции приемника. В за-
висимости от бизнес-требований далее данные могут быть интегрированы 
в результаты потокового приложения при помощи периодического процесса 
обратной загрузки.

В примере 6.20 показано, как указать оконный оператор с побочным вы-
водом для опоздавших событий.
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Пример 6.20  � Определение оконного оператора с боковым выводом  
для опоздавших событий

val readings: DataStream[SensorReading] = ???

val countPer10Secs: DataStream[(String, Long, Int)] = readings
  .keyBy(_.id)
  .timeWindow(Time.seconds(10))
  // Отправляем опоздавшие данные в боковой вывод.
  .sideOutputLateData(new OutputTag[SensorReading]("late-readings"))
  // Считаем записи в окне.
  .process(new CountFunction())

// Запрашиваем опоздавшие события из бокового вывода как поток.
val lateStream: DataStream[SensorReading] = countPer10Secs
  .getSideOutput(new OutputTag[SensorReading]("late-readings"))

Функция процесса может идентифицировать поздние события, сравнивая 
метки времени событий с текущим водяным знаком и выдавая их с помощью 
обычного API бокового вывода. В примере 6.21 показана функция Process-
Function, которая отфильтровывает опоздавшие показания датчика со своего 
входа и перенаправляет их в боковой выходной поток.

Пример 6.21  � Функция ProcessFunction, которая фильтрует опоздавшие 
показания датчика и перенаправляет их на боковой выход

val readings: DataStream[SensorReading] = ???
val filteredReadings: DataStream[SensorReading] = readings
  .process(new LateReadingsFilter)

// Запрашиваем опоздавшие данные.
val lateReadings: DataStream[SensorReading] = filteredReadings
  .getSideOutput(new OutputTag[SensorReading]("late-readings"))

/** Функция ProcessFunction, которая фильтрует опоздавшие данные датчика
* и перенаправляет их в боковой вывод */
class LateReadingsFilter
    extends ProcessFunction[SensorReading, SensorReading] {

  val lateReadingsOut = new OutputTag[SensorReading]("late-readings")

  override def processElement(
      r: SensorReading,
      ctx: ProcessFunction[SensorReading, SensorReading]#Context,
      out: Collector[SensorReading]): Unit = {

    // Сравниваем время записи с текущим водяным знаком.
    if (r.timestamp < ctx.timerService().currentWatermark()) {
       // Это опоздавшие данные => направляем их в боковой вывод.
       ctx.output(lateReadingsOut, r)
    } else {
      out.collect(r)
    }
  }
}
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6.5.3. Обновление результатов путем включения 
опоздавших событий
Опоздавшие события поступают к оператору после завершения вычисления, 
в  которое они должны были внести свой вклад. Следовательно, оператор 
выдает неполный или неточный результат. Вместо того чтобы отбрасывать 
или перенаправлять поздние события, другая стратегия состоит в повторном 
вычислении неполного результата и выпуске обновления. Однако есть не-
сколько проблем, которые необходимо принять во внимание, чтобы иметь 
возможность повторно вычислять и обновлять результаты.

Оператор, поддерживающий пересчет и обновление выданных результа-
тов, должен сохранять все состояния, необходимые для вычисления после 
того, как был выдан первый результат. Однако, поскольку обычно оператор 
не может сохранять полное состояние навсегда, ему необходимо в какой-то 
момент очистить состояние. После очистки состояния для определенного 
результата результат больше не может быть обновлен, а  поздние события 
можно только отбросить или перенаправить.

Помимо сохранения состояния, нижестоящие операторы или внешние 
системы, которые следуют за оператором, обновляющим ранее выданные 
результаты, должны иметь возможность обрабатывать эти обновления. На-
пример, оператор приемника, который записывает результаты и обновления 
оператора окна с ключом в хранилище «ключ–значение», мог бы сделать это, 
переопределив неточные результаты с последним обновлением с помощью 
обновления записи. В некоторых случаях может также потребоваться явно 
различать первый результат и обновление из-за опоздавшего события.

API оконного оператора предоставляет метод явного объявления о том, 
что вы ожидаете опоздавшие элементы. При использовании окон с  при-
вязкой ко времени событий вы можете указать дополнительный период 
времени, называемый допустимым опозданием (allowed lateness). Оператор 
окна с допустимым опозданием не удалит окно и его состояние после того, 
как водяной знак пройдет отметку времени окончания окна. Вместо этого 
оператор продолжает поддерживать полное окно в течение допустимого пе-
риода опоздания. Если опоздавший элемент прибывает в течение допусти-
мого периода, он обрабатывается как своевременный элемент и передается 
триггеру. Когда водяной знак проходит отметку времени окончания окна 
плюс интервал опоздания, окно окончательно удаляется, а все последующие 
опоздавшие элементы отбрасываются.

Допустимое опоздание можно задать с помощью метода allowedLateness(), 
как показано в примере 6.22.

Пример 6.22   Определение оконного оператора с допустимым опозданием 5 с
val readings: DataStream[SensorReading] = ???

val countPer10Secs: DataStream[(String, Long, Int, String)] = readings
  .keyBy(_.id)
  .timeWindow(Time.seconds(10))
  // Обработка опоздавших записей в течение 5 дополнительных секунд.
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  .allowedLateness(Time.seconds(5))
  // Подсчет элементов и обновление результата с учетом опоздавших данных.
  .process(new UpdatingWindowCountFunction)

/** Функция подсчета WindowProcessFunction, которая различает первые 
результаты и обновления.*/
class UpdatingWindowCountFunction
    extends ProcessWindowFunction[
            SensorReading, (String, Long, Int, String), String, TimeWindow] {
  override def process(
      id: String,
      ctx: Context,
      elements: Iterable[SensorReading],
      out: Collector[(String, Long, Int, String)]): Unit = {
    // Подсчет числа элементов.
    val cnt = elements.count(_ => true)
    // Проверка, является ли эта обработка окна первой.
    val isUpdate = ctx.windowState.getState(
      new ValueStateDescriptor[Boolean]("isUpdate", Types.of[Boolean]))
    if (!isUpdate.value()) {
      // Первая обработка, выпуск первого результата.
      out.collect((id, ctx.window.getEnd, cnt, "first"))
      isUpdate.update(true)
    } else {
      // Не первая обработка, выпуск обновления.
      out.collect((id, ctx.window.getEnd, cnt, "update"))
    }
  }
}

Функции обработки также могут быть реализованы для поддержки опоз-
давших данных. Поскольку управление состоянием всегда настраивается 
и выполняется вручную в функциях обработки, Flink не предоставляет встро-
енный API для поддержки опоздавших данных. Вместо этого вы можете реа-
лизовать необходимую логику, используя стандартные блоки меток времени 
записи, водяных знаков и таймеров.

6.6. Заключение

В этой главе вы узнали, как реализовать потоковые приложения, которые ра-
ботают в заданное время. Мы объяснили, как настроить временные характе-
ристики потокового приложения и как назначать метки времени и водяные 
знаки. Вы узнали об операторах с привязкой ко времени, включая функции 
обработки Flink, встроенные и настраиваемые окна. Мы также обсудили се-
мантику водяных знаков, то, как найти компромисс между полнотой резуль-
тата и задержкой выдачи, а также стратегии обработки опоздавших событий.



Глава 7
Операторы и приложения 

с учетом состояния

Операторы с учетом состояния и пользовательские функции являются общи-
ми строительными блоками приложений потоковой обработки. Фактически 
для большинства нетривиальных операций необходимо запоминать записи 
или промежуточные результаты, потому что данные передаются в потоковом 
режиме и поступают постепенно1. Многие из встроенных в Flink операторов 
DataStream, источников и  приемников используют состояние и  буферные 
записи или поддерживают частичные результаты или метаданные. Напри-
мер, оконный оператор собирает входные записи или результат применения 
ReduceFunction для ProcessWindowFunction; функция обработки ProcessFunction 
запоминает запланированные таймеры, а некоторые функции-приемники 
поддерживают состояние транзакций для обеспечения функциональности 
«ровно один раз». В дополнение к встроенным операторам и предоставляе-
мым источникам и приемникам API DataStream предоставляет интерфейсы 
для регистрации, поддержки и доступа к состоянию в определяемых поль-
зователем функциях.

Потоковая обработка с учетом состояния влияет на многие аспекты по-
токового процессора, такие как восстановление после сбоев и  управление 
памятью, а также обслуживание потоковых приложений. В главах 2 и 3 обсуж-
дались основы потоковой обработки с учетом состояния и связанные детали 
архитектуры Flink соответственно. В главе 9 мы поясним, как настроить Flink 
для надежной обработки приложений с учетом состояния. В главе 10 дается 
руководство по работе с  приложениями с  учетом состояния – получение 
и  восстановление из точек сохранения приложений, изменение масштаба 
приложений и выполнение обновлений приложений.

В этой главе основное внимание уделяется реализации определяемых 
пользователем функций с учетом состояния и обсуждается производитель-
ность и надежность приложений с учетом состояния. В частности, мы объ-
ясняем, как определять различные типы состояний и  взаимодействовать 
с ними в пользовательских функциях. Мы также обсуждаем аспекты быстро-

1	 В этом состоит отличие от пакетной обработки, когда пользовательские функции, 
такие как GroupReduceFunction, вызываются после того, как собраны все данные для 
обработки.
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действия и способы управления размером состояния функции. Наконец, мы 
покажем, как настроить доступность для запроса состояния с ключом и как 
получить к нему доступ из внешнего приложения.

7.1. Реализация функций 
с сохранением состояния

В разделе 3.4 мы объяснили, что функции могут работать с двумя типами состо-
яния: ключевое состояние и состояние оператора. Flink предоставляет несколь-
ко интерфейсов для определения функций, использующих состояние. В этом 
разделе мы покажем, как реализованы функции с тем и другим состоянием.

7.1.1. Объявление ключевого состояния 
в RuntimeContext
Пользовательские функции могут использовать ключевое состояние для хра-
нения состояния и доступа к состоянию в контексте ключевого атрибута. Для 
каждого отдельного значения ключевого атрибута Flink поддерживает один 
экземпляр состояния. Экземпляры ключевого состояния функции распре-
деляются по всем параллельным задачам оператора функции. Это означает, 
что каждый параллельный экземпляр функции отвечает за поддиапазон про-
странства ключей и поддерживает соответствующие экземпляры состояния. 
Следовательно, состояние с ключом очень похоже на распределенную карту 
«ключ–значение». Обратитесь к разделу 3.4 для получения более подробной 
информации о ключевом состоянии.

Ключевое состояние может использоваться только функциями, которые 
применяются к KeyedStream. В свою очередь KeyedStream создается путем вы-
зова метода DataStream.keyBy(), который определяет ключ в потоке. KeyedStream 
разделяется на указанный ключ и запоминает определение ключа. Оператор, 
применяемый к KeyedStream, применяется в контексте его определения ключа.

Flink предоставляет несколько примитивов для ключевого состояния. При-
митив состояния определяет структуру состояния отдельного ключа. Выбор 
правильного примитива состояния зависит от того, как функция взаимо-
действует с  состоянием. Выбор также влияет на быстродействие функции, 
поскольку каждый бэкенд состояния предоставляет свои собственные реа-
лизации для этих примитивов. Flink поддерживает следующие примитивы 
состояния:

�� ValueState[T] содержит единственное значение типа T. Значение можно 
прочитать с помощью ValueState.value() и обновить с помощью ValueS-
tate.update(value: T);

�� ListState[T] содержит список элементов типа T. Новые элементы мо-
гут быть добавлены к списку путем вызова ListState.add(value: T) или 
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ListState.addAll(value: java.util.List[T]). Доступ к элементам состо-
яния можно получить, вызвав ListState.get(), который возвращает 
Iterable[T] по всем элементам состояния. Невозможно удалить от-
дельные элементы из ListState, но список можно обновить, вызвав 
ListState.update(value: java.util.List[T]). Вызов этого метода заменит 
существующие значения заданным списком значений;

�� MapState[K, V] содержит карту ключей и значений. Примитив состояния 
предлагает многие методы обычной карты Java, такие как get(key: K), 
put(key: K, value: V), contains(key: K), remove(key: K) и итераторы поверх 
содержащихся записей, ключей и значений;

�� ReducingState[T] предлагает те же методы, что и ListState[T] (за исклю-
чением addAll() и update()), но вместо добавления значений в список, 
ReducingState.add(value: T) немедленно агрегирует значение с помощью 
функции ReduceFunction. Итератор, возвращаемый get(), возвращает It-
erable с одной записью, которая является редуцированным значением;

�� AggregatingState[I, O] ведет себя аналогично ReducingState. Однако для 
агрегирования значений он использует более общую функцию Aggre-
gateFunction. AggregatingState.get() вычисляет окончательный резуль-
тат и возвращает его как Iterable с одним элементом.

Все примитивы состояния можно очистить, вызвав State.clear().
В примере 7.1 показано, как применить FlatMapFunction с ключевым зна-

чением ValueState к потоку измерений датчика. Пример приложения выдает 
предупреждение, если температура, измеренная датчиком, изменяется более 
чем на пороговое значение с момента последнего измерения.

Пример 7.1   Применение FlatMapFunction с ключевым значением ValueState
val sensorData: DataStream[SensorReading] = ???
// Разделение потока по ключу, которым служит ID датчика.
val keyedData: KeyedStream[SensorReading, String] = sensorData
  .keyBy(_.id)

// Применяем к потоку с ключом функцию FlatMapFunction, которая
// сравнивает показатели температуры и выдает предупреждение.
val alerts: DataStream[(String, Double, Double)] = keyedData
  .flatMap(new TemperatureAlertFunction(1.7))

К KeyedStream должна применяться функция с ключевым состоянием. Но, 
прежде чем мы применим функцию, нам нужно указать ключ, вызвав метод 
keyBy() во входном потоке. Когда вызывается метод функции обработки клю-
чевого потока, среда выполнения Flink автоматически помещает все объекты 
состояния функции с ключами в контекст ключа записи, которая передается 
при вызове функции. Следовательно, функция может получить доступ только 
к состоянию, принадлежащему записи, которую она в настоящее время об-
рабатывает.

Пример 7.2 показывает реализацию функции FlatMapFunction с ключевым 
ValueState, которая проверяет, изменилась ли измеренная температура боль-
ше чем на заданную пороговую величину.
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Пример 7.2   Реализация FlatMapFunction с ключевым значением ValueState
class TemperatureAlertFunction(val threshold: Double)
    extends RichFlatMapFunction[SensorReading, (String, Double, Double)] {

  // Объект состояния.
  private var lastTempState: ValueState[Double] = _

  override def open(parameters: Configuration): Unit = {
    // Создаем дескриптор состояния.
    val lastTempDescriptor =
      new ValueStateDescriptor[Double]("lastTemp", classOf[Double])
    // Получаем состояние.
    lastTempState = getRuntimeContext.getState[Double](lastTempDescriptor)
  }

  override def flatMap(
      reading: SensorReading,
      out: Collector[(String, Double, Double)]): Unit = {
    // Извлекаем последнюю температуру из состояния.
    val lastTemp = lastTempState.value()
    // Проверяем, надо ли выдавать сигнал тревоги.
    val tempDiff = (reading.temperature - lastTemp).abs
    if (tempDiff > threshold) {
      // Температура изменилась больше, чем заданное пороговое значение.
      out.collect((reading.id, reading.temperature, tempDiff))
    }
    // Обновляем состояние lastTemp.
    this.lastTempState.update(reading.temperature)
  }
}

Чтобы создать объект состояния, мы должны зарегистрировать StateDe-
scriptor в среде выполнения Flink через RuntimeContext, который предостав-
ляется RichFunction (см. раздел 5.6, где рассказано про интерфейс RichFunc-
tion). StateDescriptor специфичен для примитива состояния и включает имя 
состояния и типы данных состояния. Дескрипторам для ReducingState и Aggre-
gatingState также требуется объект ReduceFunction или AggregateFunction для 
агрегирования добавленных значений. Имя состояния привязано к операто-
ру, так что функция может иметь более одного объекта состояния путем реги-
страции нескольких дескрипторов состояния. Типы данных, обрабатываемые 
состоянием, указаны как объекты Class или TypeInformation (см. раздел 5.4, 
где говорится про обработку типов Flink). Тип данных должен быть указан, 
потому что Flink необходимо создать подходящий сериализатор. В качестве 
альтернативы также можно явно указать TypeSerializer для управления за-
писью состояния в бэкенд состояния, контрольную точку и точку сохранения1.

Обычно объект дескриптора состояния создается в методе open() функции 
RichFunction. Метод open() вызывается перед вызовом любых методов обработ-
ки, таких как flatMap() в случае FlatMapFunction. Объект дескриптора состояния 
(lastTempState в примере 7.2) – это обычная переменная-член класса функции.

1	 Формат сериализации состояния является важным аспектом при обновлении при-
ложения и обсуждается далее в этой главе.
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	 Объект дескриптора состояния предоставляет доступ только к состоянию, которое хра-
нится и поддерживается в бэкенде состояния. Сам дескриптор не хранит состояние.

Когда функция регистрирует StateDescriptor, Flink проверяет, имеются ли 
в хранилище состояния данные для функции и состояния с заданным именем 
и типом. Это может произойти, если функция с учетом состояния перезапус
кается для восстановления после сбоя или когда приложение запускается из 
точки сохранения. В обоих случаях Flink связывает вновь зарегистрирован-
ный объект дескриптора состояния с существующим состоянием. Если бэк
енд состояния не содержит состояния для данного дескриптора, состояние, 
связанное с дескриптором, инициализируется как пустое.

API DataStream на языке Scala предлагает синтаксические сокращения для 
определения функций map и flatMap с одним ValueState. В примере 7.3 показа-
но, как реализовать предыдущий пример с помощью ярлыка.

Пример 7.3  � Ярлык API DataStream на языке Scala для FlatMap 
с ключевым значением ValueState

val alerts: DataStream[(String, Double, Double)] = keyedData
  .flatMapWithState[(String, Double, Double), Double] {
    case (in: SensorReading, None) =>
      // Предыдущая температура не определена; обновляем текущую температуру.
      (List.empty, Some(in.temperature))
    case (r: SensorReading, lastTemp: Some[Double]) =>
      // Сравниваем перепад температуры с пороговым значением.
      val tempDiff = (r.temperature - lastTemp.get).abs
      if (tempDiff > 1.7) {
        // Порог превышен; выдаем сигнал тревоги и обновляем значение температуры.
        (List((r.id, r.temperature, tempDiff)), Some(r.temperature))
      } else {
        // Порог не превышен; просто обновляем значение температуры.
      (List.empty, Some(r.temperature))
      }
  }

Метод flatMapWithState() ожидает функцию, которая принимает Tuple2. 
Первое поле кортежа содержит входную запись для flatMap, а  второе поле 
содержит Option извлеченного состояния для ключа обработанной записи. 
Опция не определена, если состояние еще не инициализировано. Функция 
также возвращает Tuple2. Первое поле – это список результатов flatMap, а вто-
рое поле – новое значение состояния.

7.1.2. Реализация списочного состояния 
с помощью интерфейса ListCheckpointed
Состояние оператора управляется каждым параллельным экземпляром опе-
ратора. Все события, которые обрабатываются в одной и той же параллель-
ной задаче оператора, имеют доступ к одному и тому же состоянию. В раз-
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деле 3.4 мы говорили, что Flink поддерживает три типа состояния оператора: 
списочное, каталожное и широковещательное.

Функция может работать с  оператором списочного состояния, реализуя 
интерфейс ListCheckpointed. Интерфейс ListCheckpointed не работает с  де-
скрипторами состояния, такими как ValueState или ListState, которые зареги-
стрированы в бэкенде состояния. Вместо этого функции реализуют состояние 
оператора как обычные переменные-члены и взаимодействуют с бэкендом 
состояния через функции обратного вызова интерфейса ListCheckpointed. 
Интерфейс предоставляет два метода:

// Возвращает снимок состояния функции в виде списка.
snapshotState(checkpointId: Long, timestamp: Long): java.util.List[T]

// Восстанавливает состояние функции из предоставленного списка.
restoreState(java.util.List[T] state): Unit

Метод snapshotState() вызывается, когда Flink запускает контрольную точку 
функции с учетом состояния. Этот метод имеет два параметра: checkpointId, 
который представляет собой уникальный, монотонно увеличивающийся 
идентификатор для контрольных точек, и timestamp, который представляет 
собой время «настенных часов» системы, когда была инициирована кон-
трольная точка. Метод должен возвращать состояние оператора в виде спи-
ска сериализуемых объектов состояния.

Метод restoreState() всегда вызывается, когда необходимо инициализи-
ровать состояние функции – когда задание запускается (с точки сохранения 
или нет) или в случае сбоя. Метод вызывается со списком объектов состояния 
и должен восстанавливать состояние оператора на основе этих объектов.

В примере 7.4 показано, как реализовать интерфейс ListCheckpointed для 
функции, которая подсчитывает измерения температуры, превышающие 
пороговое значение для каждой секции, для каждого параллельного экзем-
пляра функции.

Пример 7.4   Функция RichFlatMap с оператором списочного состояния
class HighTempCounter(val threshold: Double)
    extends RichFlatMapFunction[SensorReading, (Int, Long)]
    with ListCheckpointed[java.lang.Long] {

  // Индекс подзадачи.
  private lazy val subtaskIdx = getRuntimeContext
    .getIndexOfThisSubtask
  // Переменная локального счетчика.
  private var highTempCnt = 0L

  override def flatMap(
      in: SensorReading,
      out: Collector[(Int, Long)]): Unit = {
    if (in.temperature > threshold) {
      // Инкремент счетчика, если превышен порог.
      highTempCnt += 1
      // Выпуск обновления с индексом подзадачи и счетчиком.
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      out.collect((subtaskIdx, highTempCnt))
    }
  }

  override def restoreState(
      state: util.List[java.lang.Long]): Unit = {
    highTempCnt = 0
    // Восстановление состояния добавлением всех значений в список.
    for (cnt <- state.asScala) {
      highTempCnt += cnt
    }
  }

  override def snapshotState(
      chkpntId: Long,
      ts: Long): java.util.List[java.lang.Long] = {
    // Снимок состояния как снимок со счетчиком.
    java.util.Collections.singletonList(highTempCnt)
  }
}

Функция в  приведенном выше примере подсчитывает для каждого па-
раллельного экземпляра, сколько измерений температуры превысило уста-
новленный порог. Функция использует состояние оператора и имеет един-
ственную переменную состояния для каждого экземпляра параллельного 
оператора, для которого устанавливается контрольная точка и который вос-
станавливается с помощью методов интерфейса ListCheckpointed. Обратите 
внимание, что интерфейс ListCheckpointed реализован на Java и ожидает java.
util.List вместо собственного списка Scala.

Глядя на этот пример, вы можете задаться вопросом, почему состояние 
оператора обрабатывается как список объектов состояния. Как обсуждалось 
в разделе 3.4.4, списочная структура поддерживает изменение параллелизма 
функций с  учетом состояния оператора. Чтобы увеличить или уменьшить 
параллелизм функции с учетом состояния оператора, это состояние необхо-
димо перераспределить на большее или меньшее количество экземпляров 
задачи. Это требует разделения или слияния объектов состояния. Поскольку 
логика разделения и слияния состояния настраивается для каждой функции 
с учетом состояния, это не может быть выполнено автоматически для про-
извольных типов состояния.

Предоставляя список объектов состояния, функции с  учетом состояния 
оператора могут реализовать эту логику с помощью методов snapshotState() 
и  restoreState(). Метод snapshotState() разделяет состояние оператора на 
несколько частей, а метод restoreState() собирает состояние оператора, воз-
можно, из нескольких частей. Когда состояние функции восстанавливается, 
части состояния распределяются между всеми параллельными экземпляра-
ми функции и передаются методу restoreState(). Если параллельных подза-
дач больше, чем объектов состояния, некоторые подзадачи запускаются без 
состояния, а метод restoreState() вызывается с пустым списком.

Снова посмотрев на функцию HighTempCounter в примере 7.4, мы увидим, 
что каждый параллельный экземпляр оператора представляет свое состоя-
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ние в виде списка с одной записью. Если мы увеличим параллелизм этого 
оператора, некоторые из новых подзадач будут инициализированы с пустым 
состоянием и начнут отсчет с нуля. Чтобы добиться лучшего поведения рас-
пределения состояний при масштабировании функции HighTempCounter, мы 
можем реализовать метод snapshotState(), чтобы он разбивал свой счетчик 
на несколько частичных счетчиков, как показано в примере 7.5.

Пример 7.5  � Разделение списочного состояния для лучшего распределения  
во время масштабирования

override def snapshotState(
    chkpntId: Long,
    ts: Long): java.util.List[java.lang.Long] = {
  // Делим счетчик на 10 частичных подсчетчиков.
  val div = highTempCnt / 10
  val mod = (highTempCnt % 10).toInt
  // Возвращаем счетчик из 10 частей.
  (List.fill(mod)(new java.lang.Long(div + 1)) ++
    List.fill(10 - mod)(new java.lang.Long(div))).asJava
}

	 Интерфейс ListCheckpointed использует сериализацию Java

	
Интерфейс ListCheckpointed использует сериализатор Java для сериализации и  десе-
риализации списка объектов состояния. Это может быть проблемой, если вам нужно 
обновить приложение, потому что сериализация Java не позволяет переносить или на-
страивать пользовательский сериализатор. Реализуйте CheckpointedFunction вместо ин-
терфейса ListCheckpointed, если вам нужно обеспечить возможность переноса состоя-
ния оператора функции.

7.1.3. Использование широковещательного 
состояния
Распространенным требованием для потоковых приложений является рас-
пределение одной и той же информации на все параллельные экземпляры 
функции и поддержание ее как восстанавливаемого состояния. Примером 
может служить поток правил и  поток событий, к  которым применяются 
правила. Функция, применяющая правила, принимает два входных потока, 
поток событий и поток правил. Она запоминает правила в состоянии опе-
ратора, чтобы применить их ко всем событиям потока событий. Поскольку 
каждый параллельный экземпляр функции должен содержать все правила 
в своем состоянии оператора, поток правил должен транслироваться, чтобы 
гарантировать, что каждый экземпляр функции получает все правила.

Во Flink такое состояние называется широковещательным. Широко-
вещательное состояние можно комбинировать с  обычным DataStream или 
KeyedStream. В примере 7.6 показано, как реализовать приложение для пред-
упреждения об изменении температуры с пороговыми значениями, которые 
можно динамически настраивать через широковещательный поток.
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Пример 7.6  � Подключение широковещательного потока  
и ключевого потока событий

val sensorData: DataStream[SensorReading] = ???
val thresholds: DataStream[ThresholdUpdate] = ???
val keyedSensorData: KeyedStream[SensorReading, String] = sensorData.keyBy(_.id)

// Дескриптор широковещательного состояния.
val broadcastStateDescriptor =
  new MapStateDescriptor[String, Double](
    "thresholds", classOf[String], classOf[Double])

val broadcastThresholds: BroadcastStream[ThresholdUpdate] = thresholds
  .broadcast(broadcastStateDescriptor)

// Соединяем ключевой поток данных и поток правил.
val alerts: DataStream[(String, Double, Double)] = keyedSensorData
  .connect(broadcastThresholds)
  .process(new UpdatableTemperatureAlertFunction())

Функция с широковещательным состоянием применяется к двум потокам 
в три этапа.

1.	� Создаем BroadcastStream, вызывая DataStream.broadcast() и предостав-
ляя один или несколько объектов MapStateDescriptor. Каждый дескрип-
тор определяет отдельное состояние широковещательной передачи 
функции, которое позже применяется к BroadcastStream.

2.	� Соединяем BroadcastStream с DataStream или KeyedStream. BroadcastStream 
необходимо указать в качестве аргумента в методе connect().

3.	� Применяем функцию к подключенным потокам. В зависимости от того, 
является ли другой поток ключевым или нет, может применяться функ-
ция KeyedBroadcastProcessFunction или BroadcastProcessFunction.

В примере 7.7 показана реализация функции KeyedBroadcastProcessFunc-
tion, которая поддерживает динамическую настройку пороговых значений 
датчиков во время выполнения.

Пример 7.7   Реализация функции KeyedBroadcastProcessFunction
class UpdatableTemperatureAlertFunction()
    extends KeyedBroadcastProcessFunction
      [String, SensorReading, ThresholdUpdate, (String, Double, Double)] {

  // Дескриптор широковещательного состояния.
  private lazy val thresholdStateDescriptor =
    new MapStateDescriptor[String, Double](
      "thresholds", classOf[String], classOf[Double])

  // Переменная ключевого состояния.
  private var lastTempState: ValueState[Double] = _

  override def open(parameters: Configuration): Unit = {
    // Создаем дескриптор ключевого состояния.
    val lastTempDescriptor = new ValueStateDescriptor[Double](
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      "lastTemp", classOf[Double])
    // Получаем ключевое состояние.
    lastTempState = getRuntimeContext.getState[Double](lastTempDescriptor)
  }

  override def processBroadcastElement(
      update: ThresholdUpdate,
      ctx: KeyedBroadcastProcessFunction
        [String, SensorReading, ThresholdUpdate, (String, Double, Double)]#Context,
      out: Collector[(String, Double, Double)]): Unit = {
    // Переменная широковещательного ключевого состояния.
    val thresholds = ctx.getBroadcastState(thresholdStateDescriptor)

    if (update.threshold != 0.0d) {
      // Настраиваем новое пороговое значение для датчика.
      thresholds.put(update.id, update.threshold)
    } else {
    // Удаляем пороговое значение датчика.
    thresholds.remove(update.id)
  }
 }

 override def processElement(
     reading: SensorReading,
     readOnlyCtx: KeyedBroadcastProcessFunction
       [String, SensorReading, ThresholdUpdate,
       (String, Double, Double)]#ReadOnlyContext,
     out: Collector[(String, Double, Double)]): Unit = {
    // Получаем широковещательное состояние только для чтения.
    val thresholds = readOnlyCtx.getBroadcastState(thresholdStateDescriptor)
    // Проверяем, установлен ли порог.
    if (thresholds.contains(reading.id)) {
      // Получаем порог для датчика.
      val sensorThreshold: Double = thresholds.get(reading.id)
      // Извлекаем последнюю температуру из состояния.
      val lastTemp = lastTempState.value()
      // Проверяем, нужно ли передавать сигнал тревоги.
      val tempDiff = (reading.temperature - lastTemp).abs
      if (tempDiff > sensorThreshold) {
        // Температура изменилась больше чем на пороговое значение.
        out.collect((reading.id, reading.temperature, tempDiff))
      }
     }
     // Обновляем состояние lastTemp.
     this.lastTempState.update(reading.temperature)
   }
  }

BroadcastProcessFunction и  KeyedBroadcastProcessFunction отличаются от 
обычной CoProcessFunction, потому что методы обработки элементов несим-
метричны. Методы processElement() и processBroadcastElement() вызываются 
с разными объектами контекста. Оба объекта контекста предлагают метод ge
tBroadcastState(MapStateDescriptor), который обеспечивает доступ к дескрип-
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тору состояния широковещательной передачи. Однако дескриптор состояния 
широковещания, который возвращается в методе processElement(), обеспечи-
вает доступ только для чтения к состоянию широковещания. Это механизм 
безопасности, гарантирующий, что состояние широковещательной передачи 
содержит одинаковую информацию во всех параллельных экземплярах. Кро-
ме того, оба объекта контекста также предоставляют доступ к отметке вре-
мени события, текущему водяному знаку, текущему времени обработки и бо-
ковым выводам, аналогично объектам контекста других функций процесса.

	 Функции BroadcastProcessFunction и KeyedBroadcastProcess также отличаются друг от дру-
га. BroadcastProcessFunction не предоставляет службу таймера для регистрации тайме-
ров и, следовательно, не предлагает метод onTimer(). Обратите внимание, что вам не сле-
дует обращаться к ключевому состоянию из метода processBroadcastElement() функции 
KeyedBroadcastProcessFunction. Поскольку широковещательный ввод не указывает ключ, 
бэкенд состояния не может получить доступ к значению с ключом и вызовет исключе-
ние. Вместо этого контекст метода KeyedBroadcastProcessFunction.processBroadcastEle-
ment() предоставляет метод applyToKeyedState(StateDescriptor, KeyedStateFunction) для 
применения KeyedStateFunction к значению каждого ключа в ключевом состоянии, на 
которое ссылается StateDescriptor.

	 Трансляция событий может происходить не в детерминированном порядке

	
Порядок, в котором транслируемые события поступают в разные параллельные задачи 
оператора состояния вещания, может быть разным, если оператор, который передает 
транслируемые сообщения, работает с параллелизмом больше 1.

	
Следовательно, вы должны либо убедиться, что значение состояния широковещательной 
передачи не зависит от порядка, в котором принимаются широковещательные сообще-
ния, либо убедиться, что параллелизм оператора широковещательной передачи уста-
новлен на 1.

7.1.4. Использование интерфейса 
CheckpointedFunction
Интерфейс CheckpointedFunction – это интерфейс самого низкого уровня для 
определения функций с учетом состояния. Он предоставляет перехватчики 
для регистрации и поддержания ключевого состояния и состояния операто-
ра и является единственным интерфейсом, который предоставляет доступ 
к  каталожному состоянию оператора – состоянию, которое полностью ре-
плицируется в случае восстановления или перезапуска точки сохранения1.

Интерфейс CheckpointedFunction определяет два метода, initializeState() 
и snapshotState(), которые работают аналогично методам интерфейса List-
Checkpointed для списочного состояния операторов. Метод initializeState() 
вызывается при создании параллельного экземпляра CheckpointedFunction. 
Это происходит при запуске приложения или при перезапуске задачи из-за 
сбоя. Метод вызывается с  объектом FunctionInitializationContext, который 

1	 См. главу 3 для получения подробной информации о том, как распределяется ка-
таложное состояние.
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обеспечивает доступ к OperatorStateStore и объекту KeyedStateStore. Хранили-
ща состояний отвечают за регистрацию состояния функции во время выпол-
нения Flink и возвращают объекты состояния, такие как ValueState, ListState 
или BroadcastState. Каждое состояние регистрируется под именем, которое 
должно быть уникальным для функции. Когда функция регистрирует со-
стояние, хранилище состояний пытается его инициализировать, проверяя, 
хранит ли бэкенд состояние для функции, зарегистрированной под данным 
именем. Если задача перезапущена из-за сбоя или из точки сохранения, со-
стояние будет инициализировано из сохраненных данных. Если приложение 
не запускается из контрольной точки или точки сохранения, состояние из-
начально будет пустым.

Метод snapshotState() вызывается непосредственно перед взятием кон-
трольной точки и получает объект FunctionSnapshotContext в качестве параме-
тра. FunctionSnapshotContext дает доступ к уникальному идентификатору кон-
трольной точки и метке времени, когда JobManager инициирует контрольную 
точку. Цель метода snapshotState() – обеспечить обновление всех объектов 
состояния до того, как будет выполнена контрольная точка. Более того, в со-
четании с интерфейсом CheckpointListener метод snapshotState() может ис-
пользоваться для последовательной записи данных во внешние хранилища 
данных путем синхронизации с контрольными точками Flink.

В примере 7.8 показано, как интерфейс CheckpointedFunction используется 
для создания функции с ключевым состоянием, которая подсчитывает для 
каждого ключа и экземпляра оператора, сколько показаний датчика превы-
шает указанный порог.

Пример 7.8   Функция, реализующая интерфейс CheckpointedFunction
class HighTempCounter(val threshold: Double)
    extends FlatMapFunction[SensorReading, (String, Long, Long)]
    with CheckpointedFunction {

  // Локальная переменная для оператора счетчика высокой температуры.
  var opHighTempCnt: Long = 0
  var keyedCntState: ValueState[Long] = _
  var opCntState: ListState[Long] = _

  override def flatMap(
      v: SensorReading,
      out: Collector[(String, Long, Long)]): Unit = {
    // Проверяем, высокая ли температура.
    if (v.temperature > threshold) {
      // Обновляем локальный оператор счетчика высокой температуры.
      opHighTempCnt += 1
      // Обновляем счетчик высокой температуры с ключом.
      val keyHighTempCnt = keyedCntState.value() + 1
      keyedCntState.update(keyHighTempCnt)
      // Выпускаем новый счетчик.
      out.collect((v.id, keyHighTempCnt, opHighTempCnt))
    }
  }
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  override def initializeState(initContext: FunctionInitializationContext): Unit = {
    // Инициализируем ключевое состояние.
    val keyCntDescriptor = new ValueStateDescriptor[Long]("keyedCnt", classOf[Long])
    keyedCntState = initContext.getKeyedStateStore.getState(keyCntDescriptor)
    // Инициализируем состояние оператора.
    val opCntDescriptor = new ListStateDescriptor[Long]("opCnt", classOf[Long])
    opCntState = initContext.getOperatorStateStore.getListState(opCntDescriptor)
    // Инициализируем локальные переменные состояния.
    opHighTempCnt = opCntState.get().asScala.sum
  }

  override def snapshotState(
      snapshotContext: FunctionSnapshotContext): Unit = {
    // Обновляем состояние оператора локальным значением.
    opCntState.clear()
    opCntState.add(opHighTempCnt)
  }
}

7.1.5. Получение уведомлений 
о пройденных контрольных точках
Частая синхронизация – основная причина ограничений быстродействия 
в распределенных системах. Архитектура Flink направлена на уменьшение 
количества точек синхронизации. Контрольные точки реализуются на основе 
барьеров, которые проходят вместе с данными и, следовательно, позволяют 
избежать глобальной синхронизации между всеми операторами приложе-
ния.

Благодаря своему механизму контрольных точек Flink может достичь 
очень хорошей производительности. Однако обратная сторона медали со-
стоит в том, что состояние приложения никогда не является согласованным, 
за исключением логических моментов времени, когда устанавливается кон-
трольная точка. Для некоторых операторов может быть важно знать, прой-
дена контрольная точка или нет. Например, функции приемника, которые 
стремятся записать данные во внешние системы с гарантией «ровно один 
раз», должны выдавать только те записи, которые были получены до успеш-
ной контрольной точки, чтобы гарантировать, что полученные данные не 
будут заново пересчитаны в случае сбоя.

Как обсуждалось в  разделе 3.5, контрольная точка является успешной 
только в том случае, если все задачи оператора успешно записали свои со-
стояния в хранилище контрольных точек. Следовательно, только JobManager 
может определить, успешна контрольная точка или нет. Операторы, которые 
должны быть уведомлены о выполненных контрольных точках, могут реа-
лизовать интерфейс CheckpointListener. Этот интерфейс предоставляет метод 
notifyCheckpointComplete(long chkpntId), который может быть вызван, когда 
JobManager регистрирует контрольную точку как завершенную – когда все 
операторы успешно скопировали свое состояние в удаленное хранилище.
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	 Обратите внимание, что Flink не гарантирует, что метод notifyCheckpointComplete() вы-
зывается для каждой завершенной контрольной точки. Возможно, задача пропустила 
уведомление. Это нужно учитывать при реализации интерфейса.

7.2. Включение восстановления после сбоя 
для приложений с учетом состояния

Предполагается, что потоковые приложения работают непрерывно и долж-
ны восстанавливаться после сбоев, таких как отказы машин или процессов. 
Большинство потоковых приложений требует, чтобы сбои не влияли на пра-
вильность вычисленных результатов.

В разделе 3.5 мы рассказали про механизм Flink для создания согласован-
ных контрольных точек приложения с  учетом состояния, моментального 
снимка состояния всех встроенных и определяемых пользователем функций 
с учетом состояния в момент времени, когда все операторы обрабатывали 
все события до определенной позиции во входных потоках приложения. 
Чтобы обеспечить отказоустойчивость приложения, JobManager инициирует 
контрольные точки через регулярные промежутки времени.

Приложениям необходимо явно включить механизм периодического соз-
дания контрольной точки через StreamExecutionEnvironment, как показано 
в примере 7.9.

Пример 7.9   Включение контрольной точки для приложения
val env = StreamExecutionEnvironment.getExecutionEnvironment

// Устанавливаем интервал контрольных точек 10 секунд (10000 миллисекунд).
env.enableCheckpointing(10000L)

Интервал контрольных точек – важный параметр, который влияет на на-
кладные расходы механизма контрольных точек во время регулярной об-
работки и  время, необходимое для восстановления после сбоя. Более ко-
роткий интервал контрольной точки приводит к  увеличению накладных 
расходов при регулярной обработке, но может обеспечить более быстрое 
восстановление, поскольку требуется повторная обработка меньшего коли-
чества данных.

Flink предоставляет возможность точной настройки поведения контроль-
ных точек, таких как выбор гарантий согласованности («ровно один раз» 
или «хотя бы один раз»), количество одновременных контрольных точек 
и тайм-аут для отмены длительных контрольных точек, а также несколько 
параметров, предназначенных для бэкенда. Мы обсуждаем эти варианты 
более подробно в разделе 10.3.
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7.3. Обеспечение работоспособности 
приложений с учетом состояния

Повторное вычисление состояний приложения, которое работало несколько 
недель, может обойтись очень дорого или вообще оказаться невозможным. 
В  то же время необходимо поддерживать долгоработающие приложения. 
Необходимо исправлять ошибки, настраивать, добавлять или удалять функ-
циональные возможности или настраивать параллелизм оператора с  уче-
том более высоких или низких скоростей передачи данных. Следовательно, 
важно, чтобы состояние приложения можно было перенести в новую версию 
приложения или перераспределить для большего или меньшего числа опе-
раторских задач.

Flink имеет точки сохранения для поддержки приложений и их состояний. 
Однако для этого требуется, чтобы все операторы с учетом состояния в на-
чальной версии приложения указывали два параметра, чтобы обеспечить 
надлежащее обслуживание приложения в  будущем. Эти параметры пред-
ставляют собой уникальный идентификатор оператора и максимальный па-
раллелизм (для операторов с ключевым состоянием). Далее мы опишем, как 
установить эти параметры.

	 Уникальные идентификаторы оператора и максимальный параллелизм  
встроены в точки сохранения

	
Уникальный идентификатор и максимальный параллелизм операторов встроены в точку 
сохранения и  не могут быть изменены. Невозможно запустить приложение из ранее 
взятой точки сохранения, если были изменены идентификаторы или максимальный па-
раллелизм операторов.

	
После изменения идентификаторов операторов или максимального параллелизма вы 
не сможете запустить приложение из точки сохранения, а должны будете запускать его 
с нуля без какой-либо инициализации состояния.

7.3.1. Указание уникальных идентификаторов 
оператора
Для каждого оператора приложения должны быть указаны уникальные 
идентификаторы. Идентификаторы записываются в точку сохранения как 
метаданные с  фактическими данными о  состоянии оператора. Когда при-
ложение запускается из точки сохранения, идентификаторы используются 
для отображения состояния в точке сохранения на соответствующий опе-
ратор запущенного приложения. Состояние точки сохранения может быть 
передано оператору запущенного приложения только при совпадении их 
идентификаторов.
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Если вы не зададите явно уникальные идентификаторы операторам ваше-
го приложения с учетом состояния, вы столкнетесь со значительными огра-
ничениями, когда придется развивать приложение. Мы обсуждали важность 
уникальных идентификаторов операторов и отображение состояния точки 
сохранения более подробно в разделе 3.5.5.

Мы настоятельно рекомендуем назначать уникальные идентификаторы 
каждому оператору приложения. Вы можете установить идентификатор с по-
мощью метода uid(), как показано в примере 7.10.

Пример 7.10   Установка уникального идентификатора оператора
val alerts: DataStream[(String, Double, Double)] = keyedSensorData
  .flatMap(new TemperatureAlertFunction(1.1))
  .uid("TempAlert")

7.3.2. Определение максимального параллелизма 
операторов ключевого состояния
Параметр максимального параллелизма оператора определяет количество 
групп ключей, на которые разбивается ключевое состояние оператора. Ко-
личество групп ключей ограничивает максимальное количество параллель-
ных задач, до которых можно масштабировать ключевое состояние. В раз-
деле 3.4.4 мы рассказывали о группах ключей и о том, как масштабируется 
состояние с  ключом. Максимальный параллелизм может быть установлен 
для всех операторов приложения с помощью StreamExecutionEnvironment или 
для каждого оператора с помощью метода setMaxParallelism(), как показано 
в примере 7.11.

Пример 7.11   Назначение максимального параллелизма операторов
val env = StreamExecutionEnvironment.getExecutionEnvironment

// Устанавливаем максимальный параллелизм для этого приложения.
env.setMaxParallelism(512)

val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(1.1))
// Устанавливаем максимальный параллелизм для этого оператора
// и переписываем значение.
.setMaxParallelism(1024)

Максимальный параллелизм оператора по умолчанию зависит от парал-
лелизма оператора в первой версии приложения:

�� если параллелизм меньше или равен 128, максимальный параллелизм 
равен 128;

�� если параллелизм оператора больше 128, максимальный параллелизм 
вычисляется как минимум из nextPowerOfTwo(parallelism + (parallel-
ism/2)) и 2^15.
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7.4. Производительность и надежность 
приложений с учетом состояния

То, как операторы взаимодействуют с  состоянием, влияет на надежность 
и производительность приложения. Есть несколько аспектов, которые влия-
ют на поведение приложения, такие как выбор архитектуры для хранения со-
стояния, которая локально поддерживает состояние и выполняет контроль-
ные точки, конфигурация алгоритма контрольных точек и размер состояния 
приложения. В  этом разделе мы обсуждаем аспекты, которые необходимо 
принимать во внимание, чтобы гарантировать надежное выполнение и ста-
бильную производительность долгоработающих приложений.

7.4.1. Выбор бэкенда состояния
В разделе 3.4.3 мы говорили, что Flink хранит состояние приложения в бэк
енде состояния. Бэкенд состояния отвечает за сохранение локального со-
стояния каждого экземпляра задачи и отправку его в удаленном хранилище 
при установке контрольной точки. Поскольку локальное состояние может 
поддерживаться и  проверяться по-разному, бэкенды состояния являются 
подключаемыми – два приложения могут использовать разные реализации 
внутреннего состояния для хранения своих состояний. Выбор бэкенда для 
хранения состояния влияет на надежность и быстродействие приложения. 
Каждый бэкенд состояния предоставляет реализации для различных при-
митивов состояния, таких как ValueState, ListState и MapState.

В настоящее время Flink предлагает три бэкенда состояния: MemoryState-
Backend, FsStateBackend и RocksDBStateBackend:

�� MemoryStateBackend сохраняет состояние как обычные объекты в  куче 
процесса JVM TaskManager. Например, MapState поддерживается объ-
ектом Java HashMap. Хотя этот подход обеспечивает очень низкие за-
держки для чтения или записи состояния, он влияет на надежность 
приложения. Если состояние экземпляра задачи становится слишком 
большим, JVM и все экземпляры задач, запущенные на нем, могут быть 
уничтожены из-за OutOfMemoryError. Более того, этот подход может стра-
дать от пауз при сборке мусора, поскольку он помещает в кучу много 
долгоживущих объектов. Когда контрольная точка установлена, Memo-
ryStateBackend отправляет состояние в JobManager, который сохраняет 
его в  своей динамической памяти. Следовательно, общее состояние 
приложения должно умещаться в  памяти JobManager. Поскольку его 
память изменчива, состояние теряется в случае сбоя JobManager. Из-за 
этих ограничений MemoryStateBackend рекомендуется только для целей 
разработки и отладки;

�� FsStateBackend сохраняет локальное состояние в куче JVM TaskManager, 
как и MemoryStateBackend. Однако вместо того, чтобы содержать состоя-
ние в энергозависимой памяти JobManager, FsStateBackend записывает 
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состояние в удаленную и постоянную файловую систему. Следователь-
но, FsStateBackend обеспечивает скорость за счет локальной памяти 
и отказоустойчивость в случае сбоев. Однако он ограничен размером 
памяти TaskManager и может страдать от пауз при сборке мусора;

�� RocksDBStateBackend сохраняет все состояние в локальных экземплярах 
RocksDB. RocksDB – это встроенное хранилище ключей и  значений, 
которое сохраняет данные на локальном диске. Для чтения и записи 
данных из RocksDB и в RocksDB их необходимо, соответственно, десе-
риализовать и сериализовать. RocksDBStateBackend также указывает со-
стояние удаленной и постоянной файловой системы. Поскольку он за-
писывает данные на диск и поддерживает инкрементные контрольные 
точки (подробнее об этом см. раздел 3.5), RocksDBStateBackend – хороший 
выбор для приложений с  очень большим состоянием. Пользователи 
сообщали о приложениях с размером состояния в несколько терабайт, 
использующих RocksDBStateBackend. Однако чтение и запись данных на 
диск и накладные расходы на десериализацию/сериализацию объектов 
приводят к снижению производительности чтения и записи по срав-
нению с сохранением состояния в куче.

Поскольку StateBackend является общедоступным интерфейсом, также воз-
можно реализовать собственный бэкенд состояния. В примере 7.12 показано, 
как настроить бэкенд состояния (здесь RocksDBStateBackend) для приложения 
и всех его функций с учетом состояния.

Пример 7.12   Настройка RocksDBStateBackend для приложения
val env = StreamExecutionEnvironment.getExecutionEnvironment

val checkpointPath: String = ???
// Настройка пути сохранения контрольных точек в удаленной файловой системе.
val backend = new RocksDBStateBackend(checkpointPath)
// Настройка бэкенда состояния.
env.setStateBackend(backend)

В разделе 10.3 мы обсудим, как использовать и настраивать бэкенды со-
стояния в вашем приложении.

7.4.2. Выбор примитива состояния
Производительность оператора с учетом состояния (встроенного или опре-
деляемого пользователем) зависит от нескольких аспектов, включая типы 
данных состояния, бэкенд состояния приложения и выбранные примитивы 
состояния.

Для бэкендов состояния, которые десериализуют/сериализуют объекты 
состояния при чтении или записи, таких как RocksDBStateBackend, выбор при-
митива состояния (ValueState, ListState или MapState) может оказать большое 
влияние на производительность приложения. Например, ValueState полно-
стью десериализуется при доступе к нему и сериализуется при обновлении. 
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Реализация RocksDBStateBackend в ListState десериализует все записи списка 
перед созданием Iterable для чтения значений. Однако добавление одного 
значения в ListState – добавление его в конец списка – является дешевой 
операцией, поскольку сериализуется только добавленное значение. MapState 
в RocksDBStateBackend позволяет читать и записывать значения для каждого 
ключа – де-/сериализуются только те ключи и значения, которые считывают-
ся или записываются. При итерации по набору записей MapState сериализо-
ванные записи предварительно выбираются из RocksDB и десериализуются 
только при фактическом доступе к ключу или значению.

Например, с RocksDBStateBackend более эффективно использовать MapState 
[X, Y] вместо ValueState[HashMap[X, Y]]. ListState[X] имеет преимущество пе-
ред ValueState[List[X]], если элементы часто добавляются к списку, а к эле-
ментам списка реже обращаются.

Еще одна хорошая практика – обновлять состояние только один раз за 
вызов функции. Поскольку контрольные точки синхронизируются с вызова-
ми функций, множественные обновления состояния не дают никаких пре-
имуществ, но могут вызвать дополнительные издержки сериализации при 
обновлении состояния несколько раз за один вызов функции.

7.4.3. Предотвращение утечки состояния
Продолжительность непрерывной работы потоковых приложений часто 
измеряется месяцами или годами. Если состояние приложения постоянно 
увеличивается, в какой-то момент оно станет слишком большим и вынудит 
приложение завершить работу, если не будут предприняты действия по мас-
штабированию приложения для выделения дополнительных ресурсов. Чтобы 
предотвратить увеличение потребления ресурсов приложением с течением 
времени, важно контролировать размер состояния оператора. Поскольку об-
работка состояния напрямую влияет на семантику оператора, Flink не может 
автоматически очищать состояние и свободное хранилище. Вместо этого все 
операторы, использующие состояние, должны контролировать размер своего 
состояния и следить за тем, чтобы оно не увеличивалось бесконечно.

Распространенной причиной роста состояния является размещение клю-
чевого состояния в  постоянно растущем пространстве значений ключа. 
В этом сценарии функция с учетом состояния получает записи с ключами, ко-
торые активны только в течение определенного периода времени и никогда 
не принимаются после этого. Типичным примером является поток событий 
кликов мышью, в котором у кликов есть атрибут идентификатора сеанса, срок 
действия которого истекает через некоторое время. В таком случае функция 
с ключевым состоянием будет накапливать состояния для нарастающего ко-
личества ключей. По мере роста ключевого пространства ключи с истекшим 
сроком действия становятся устаревшими и  бесполезными. Решение этой 
проблемы – удалить состояния, ключи которых утратили актуальность. Од-
нако функция с ключевым состоянием может получить доступ к состоянию 
только в том случае, если она получила запись с соответствующим ключом. 
Во многих случаях функция не знает, будет ли текущая запись последней для 
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ключа. Следовательно, она не сможет отбросить ключевое состояние, потому 
что теоретически для этого ключа может поступить новая запись.

Эта проблема существует не только для настраиваемых функций с учетом 
состояния, но и для некоторых встроенных операторов API DataStream. На-
пример, вычисление выполняемых агрегатов в KeyedStream либо с помощью 
встроенных функций агрегирования, таких как min, max, sum, minBy или maxBy, 
либо с помощью настраиваемой функции ReduceFunction или AggregateFunc-
tion сохраняет состояние для каждого ключа и никогда не отбрасывает его. 
Следовательно, эти функции нужно использовать только в том случае, если 
ключевые значения взяты из постоянной и ограниченной области. Другими 
примерами являются окна с триггерами на основе подсчета, которые обраба-
тывают и очищают свое состояние при получении определенного количества 
записей. На окна с триггерами, основанными на времени (время обработки 
и время события), это не влияет, поскольку они запускают и очищают свое 
состояние в зависимости от времени.

Это означает, что вы должны принимать во внимание требования к прило-
жению и свойства его входных данных, такие как пространство ключей, при 
разработке и реализации операторов с учетом состояния. Если вашему при-
ложению требуется ключевое состояние для растущего пространства ключей, 
оно должно гарантировать своевременную очистку устаревших ключевых 
состояний. Это может быть сделано путем регистрации таймеров на опреде-
ленный момент времени в будущем1. Подобно состоянию, таймеры регистри-
руются в  контексте текущего активного ключа. По срабатыванию таймера 
вызывается метод обратного вызова и загружается контекст ключа таймера. 
Следовательно, метод обратного вызова имеет полный доступ к ключевому 
состоянию, а также может его очистить. Функции, которые предлагают под-
держку регистрации таймеров, – это интерфейс Trigger для окон и функция 
обработки. Оба были рассмотрены в главе 6.

В примере 7.13 показана функция KeyedProcessFunction, которая сравнивает 
два последующих измерения температуры и выдает предупреждение, если 
разница превышает определенный порог. Это тот же вариант использования, 
что и  в  предыдущем примере ключевого состояния, но функция KeyedPro-
cessFunction также очищает состояние для ключей (то есть идентификаторов 
датчиков), которые не предоставили никаких новых измерений температуры 
в течение одного часа по времени события.

Пример 7.13  � Функция KeyedProcessFunction с учетом состояния,  
которая очищает свое состояние по таймеру

class SelfCleaningTemperatureAlertFunction(val threshold: Double)
    extends KeyedProcessFunction[String, SensorReading, (String, Double, Double)] {

  // Ключевое состояние, сохраненное для последней температуры.
  private var lastTempState: ValueState[Double] = _
  // Ключевое состояние, сохраненное для последнего зарегистрированного таймера.
  private var lastTimerState: ValueState[Long] = _

1	 Таймеры могут основываться на времени события или времени обработки.



188   Операторы и приложения с учетом состояния

  override def open(parameters: Configuration): Unit = {
    // Регистрация состояния для последней температуры.
    val lastTempDesc = new ValueStateDescriptor[Double]("lastTemp", classOf[Double])
    lastTempState = getRuntimeContext.getState[Double](lastTempDescriptor)
    // Регистрация состояния для последнего таймера.
    val lastTimerDesc = new ValueStateDescriptor[Long]("lastTimer", classOf[Long])
    lastTimerState = getRuntimeContext.getState(timestampDescriptor)
  }

  override def processElement(
      reading: SensorReading,
      ctx: KeyedProcessFunction
        [String, SensorReading, (String, Double, Double)]#Context,
      out: Collector[(String, Double, Double)]): Unit = {

    // Вычисление метки времени нового таймера как метка времени записи плюс 1 час.
    val newTimer = ctx.timestamp() + (3600 * 1000)
    // Получение метки времени текущего таймера.
    val curTimer = lastTimerState.value()
    // Удаление предыдущего таймера и регистрация нового таймера.
    ctx.timerService().deleteEventTimeTimer(curTimer)
    ctx.timerService().registerEventTimeTimer(newTimer)
    // Обновление состояния таймера с его меткой времени. 
    lastTimerState.update(newTimer)

    // Извлечение последней температуры из состояния.
    val lastTemp = lastTempState.value()
    // Проверка, надо ли выдать предупреждение.
    val tempDiff = (reading.temperature - lastTemp).abs
    if (tempDiff > threshold) {
      // Температура возросла больше, чем на пороговое значение.
      out.collect((reading.id, reading.temperature, tempDiff))
    }

    // Обновляем состояние lastTemp.
    this.lastTempState.update(reading.temperature)
  }

  override def onTimer(
      timestamp: Long,
      ctx: KeyedProcessFunction
        [String, SensorReading, (String, Double, Double)]#OnTimerContext,
      out: Collector[(String, Double, Double)]): Unit = {

    // Очищаем состояние с данным ключом.
    lastTempState.clear()
    lastTimerState.clear()
  }
}

Механизм очистки состояния, реализованный вышеупомянутой функцией 
KeyedProcessFunction, работает следующим образом. Для каждого события 
ввода вызывается метод processElement(). Перед сравнением измерений тем-
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пературы и обновлением последней температуры метод обновляет таймер 
очистки, удаляя предыдущий таймер и регистрируя новый. Время очистки 
вычисляется путем добавления одного часа к метке времени текущей записи. 
Чтобы иметь возможность удалить текущий зарегистрированный таймер, его 
временная метка сохраняется в дополнительном ValueState[Long], называе-
мом lastTimerState. После этого метод сравнивает температуры, возможно, 
выдает предупреждение и обновляет свое состояние.

Поскольку наша функция KeyedProcessFunction всегда обновляет зарегистри-
рованный таймер, удаляя текущий таймер и регистрируя новый, для каждого 
ключа регистрируется только один таймер. Как только этот таймер срабаты-
вает, вызывается метод onTimer(). Метод очищает все состояния, связанные 
с ключом, последней температурой и последним состоянием таймера.

7.5. Развитие приложений с учетом состояния

Часто бывает необходимо исправить ошибку или доработать бизнес-логику 
долгоработающего потокового приложения, учитывающего состояние. Сле-
довательно, работающее приложение необходимо заменить на обновленную 
версию, как правило, без потери состояния приложения.

Flink поддерживает такие обновления, выбирая точку сохранения работа-
ющего приложения, останавливая его и запуская новую версию приложения 
из точки сохранения1. Однако обновление приложения с  сохранением его 
состояния возможно только при определенных изменениях приложения – 
исходное приложение и его новая версия должны быть совместимы с точкой 
сохранения. Далее мы расскажем, как можно развивать приложения, сохра-
няя совместимость с точками сохранения.

В разделе 3.5.5 мы говорили, что к каждому состоянию в точке сохранения 
можно обращаться с помощью составного идентификатора, состоящего из 
уникального идентификатора оператора и имени состояния, объявленного 
дескриптором состояния.

	 При разработке приложений не забывайте о развитии

	
Важно понимать, что первоначальная архитектура приложения определяет, можно ли 
его изменить позже совместимым с точкой сохранения способом. Многие изменения 
будут невозможны, если исходная версия не была разработана с учетом обновлений. 
Назначение операторам уникальных идентификаторов обязательно для большинства 
изменяемых приложений.

Когда приложение запускается из точки сохранения, операторы запущен-
ного приложения инициализируются путем поиска соответствующих состо-
яний из точки сохранения с использованием идентификаторов операторов 
и имен состояний. С точки зрения совместимости с точкой сохранения это 
означает, что приложение можно развивать тремя способами.

1	 В главе 10 объясняется, как создавать точки сохранения запущенных приложений 
и как запускать новое приложение из существующей точки сохранения.
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1.	� Обновление или расширение логики приложения без изменения или 
удаления существующего состояния. Обновление включает добавление 
в приложение операторов с учетом состояния или без него.

2.	 Удаление состояния из приложения.
3.	� Изменение состояния существующего оператора путем изменения 

примитива состояния или типа данных состояния.

В следующих разделах мы обсудим эти три случая.

7.5.1. Обновление приложения без изменения 
существующего состояния
Если приложение обновляется без удаления или изменения существующего 
состояния, оно всегда совместимо с точкой сохранения и может быть запу-
щено из точки сохранения более ранней версии.

Если вы добавляете новый оператор с учетом состояния в приложение или 
новое состояние в существующий оператор, состояние будет инициализиро-
вано как пустое при запуске приложения из точки сохранения.

	 Изменение типа входных данных встроенных операторов с учетом состояния
	 Обратите внимание, что изменение типа входных данных встроенных операторов с уче-

том состояния, таких как агрегирование окон, объединение с привязкой ко времени или 
асинхронные функции, часто изменяет тип их внутреннего состояния. Следовательно, 
такие изменения несовместимы с точками сохранения, даже если они выглядят незна-
чительными.

7.5.2. Удаление состояния из приложения
Вместо добавления новых состояний в приложение вы также можете дора-
ботать приложение, удалив состояние – либо путем полного удаления опе-
ратора, учитывающего состояние, либо просто состояния из функции. Когда 
новая версия приложения запускается из точки сохранения предыдущей вер-
сии, точка сохранения содержит состояние, которое не может быть сопостав-
лено с перезапущенным приложением. То же самое происходит и в случае 
изменения уникального идентификатора оператора или имени состояния.

По умолчанию Flink не запускает приложения, которые не восстанавлива-
ют все состояния, содержащиеся в точке сохранения, чтобы избежать потери 
состояния в этой точке. Однако можно отключить эту проверку безопасности, 
как описано в разделе 10.1. Следовательно, нетрудно обновить приложение, 
удалив операторы, учитывающие состояние или состояние из существую-
щего оператора.

7.5.3. Изменение состояния оператора
Хотя добавить или удалить состояние из приложения довольно просто и это 
не влияет на совместимость точек сохранения, изменить состояние сущест
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вующего оператора немного труднее. Состояние можно изменить двумя спо-
собами:

1)	� изменяя тип данных состояния, например изменяя ValueState[Int] на 
ValueState[Double];

2)	� путем изменения типа примитива состояния, например путем изме-
нения ValueState[List[String]] на ListState[String].

Изменение типа данных состояния возможно в нескольких особых случаях. 
Однако в настоящее время Flink не поддерживает изменение примитива (или 
структуры) состояния. Сообщество предложило несколько идей для решения 
этой задачи, например автономный инструмент для преобразования точек 
сохранения. Однако, начиная с Flink 1.7, такого инструмента не существует. 
Далее мы сосредоточимся на изменении типа данных состояния.

Чтобы понять проблему изменения типа данных состояния, мы должны 
понять, как данные состояния представлены в точке сохранения. Точка со-
хранения состоит в основном из сериализованных данных состояния. Сери-
ализаторы, преобразующие JVM-объекты состояния в байты, генерируются 
и  настраиваются системой типов Flink. Это преобразование основано на 
типе данных состояния. Например, если у вас есть ValueState[String], система 
типов Flink генерирует StringSerializer для преобразования объектов String 
в байты. Сериализатор также используется для преобразования необрабо-
танных байтов обратно в  объекты JVM. В  зависимости от того, хранит ли 
бэкенд состояния сериализованные данные (например, RocksDBStateBackend) 
или как объекты в куче (например, FSStateBackend), это происходит, когда со-
стояние считывается функцией или когда приложение перезапускается из 
точки сохранения.

Поскольку система типов Flink генерирует сериализаторы в зависимости 
от типа данных состояния, сериализаторы, вероятно, изменятся при измене-
нии типа данных состояния. Например, если вы изменили ValueState[String] 
на ValueState[Double], Flink создаст DoubleSerializer для доступа к состоянию. 
Неудивительно, что использование DoubleSerializer для десериализации 
двоичных данных, сгенерированных путем сериализации String с помощью 
StringSerializer, завершится ошибкой. Следовательно, изменение типа дан-
ных состояния поддерживается только в очень редких случаях.

В Flink 1.7 изменение типа данных состояния поддерживается, если тип 
данных был определен как тип Apache Avro и если новый тип данных также 
является типом Avro, который произошел от исходного типа в соответствии 
с правилами эволюции схемы Avro. Система типов Flink автоматически ге-
нерирует сериализаторы, которые могут читать предыдущие версии типа 
данных.

Изменение состояния и миграция – важная тема в сообществе Flink, ко-
торой уделяется много внимания. Вы можете рассчитывать на улучшенную 
поддержку этих сценариев в  будущих версиях Apache Flink. Несмотря на 
все эти усилия, мы рекомендуем всегда дважды проверять, можно ли раз-
вивать приложение в соответствии с вашим планом, прежде чем запускать 
его в производство.
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7.6. Запрашиваемое состояние

Многим приложениям потоковой обработки необходимо делиться своими 
результатами с другими приложениями. Распространенным подходом яв-
ляется запись результатов в базу данных или хранилище значений ключей 
и получение другими приложениями результатов из этого хранилища дан-
ных. Такая архитектура подразумевает, что необходимо настроить и  под-
держивать отдельную систему хранения, что может потребовать больших 
усилий, особенно если это тоже должна быть распределенная система.

Apache Flink поддерживает так называемое запрашиваемое состояние (que-
ryable state) для ситуаций, в которых обычно требуется внешние хранилища 
данных для обмена данными. Во Flink любое ключевое состояние может быть 
представлено внешним приложениям как состояние, доступное для запроса, 
и действует как хранилище значений ключей только для чтения. Приложение 
потоковой обработки с учетом состояния обрабатывает события как обычно, 
а также сохраняет и обновляет свои промежуточные или конечные результа-
ты в запрашиваемом состоянии. Внешние приложения могут запрашивать 
ключевое состояние во время работы потокового приложения.

	 Обратите внимание, что поддерживаются только запросы по одиночному ключу. Невоз-
можно запросить диапазоны ключей или даже выполнить более сложные запросы.

Запрашиваемое состояние не перекрывает все варианты использования, 
требующие внешнего хранилища данных. Например, запрашиваемое состоя-
ние доступно только во время работы приложения. Оно недоступно во время 
перезапуска приложения из-за ошибки, для изменения масштаба приложе-
ния или для его миграции в другой кластер. Однако оно значительно упро-
щает реализацию многих приложений, таких как информационные панели 
реального времени или другие приложения для мониторинга.

Далее мы обсуждаем архитектуру службы запрашиваемых состояний Flink 
и объясняем, как внешние приложения могут запрашивать, а потоковые при-
ложения в свою очередь передавать запрашиваемое состояние.

7.6.1. Архитектура и обслуживание запросов 
состояния
Служба запрашиваемых состояний Flink состоит из трех процессов:

1)	� QueryableStateClient используется внешним приложением для отправ-
ки запросов и получения результатов;

2)	� QueryableStateClientProxy принимает и обслуживает клиентские запро-
сы. Каждый TaskManager запускает клиентский прокси-сервер. По-
скольку состояние с  ключом распределяется по всем параллельным 
экземплярам оператора, прокси-сервер должен идентифицировать 
TaskManager, который поддерживает состояние запрошенного ключа. 
Эта информация запрашивается у JobManager, который управляет на-
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значением группы ключей, и  кешируется после получения1. Клиент-
ский прокси извлекает состояние из бэкенда состояний соответствую-
щего TaskManager и передает результат клиенту;

3)	� QueryableStateServer обслуживает запросы клиентского прокси. Каждый 
TaskManager запускает бэкенд состояний, который извлекает состоя-
ние запрошенного ключа из локальной части бэкенда состояния и воз-
вращает его запрашивающему клиентскому прокси.

На рис. 7.1 показана архитектура службы запрашиваемых состояний.

JobManager

1. Получение состояния по ключу 6. Получение состояния по ключу

2. Получение TaskManager для ключа 
(если не кешировано) 3. Ключ       обслуживает TaskManager 1

4. Получение состояния для ключа 
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Рис. 7.1   Архитектура службы запрашиваемых состояний Flink

Чтобы включить службу запрашиваемого состояния в настройке Flink – для 
запуска клиентского прокси и серверных потоков в процессах TaskManager, – 
вам необходимо добавить JAR-файл flink-queryable-state-runtime в  путь 
к  классам процесса TaskManager. Это делается путем копирования его из 
папки ./opt вашей установки в папку ./lib. Когда JAR-файл находится в пути 
к классам, запрошенные потоки состояния запускаются автоматически и мо-
гут обслуживать запросы клиента состояния. При правильной настройке вы 
найдете следующее сообщение журнала в журналах TaskManager:

Started the Queryable State Proxy Server @ …

Порты, используемые прокси-сервером и сервером клиента, а также до-
полнительные параметры можно настроить в файле ./conf/flink-conf.yaml.

1	 Группы ключей обсуждаются в главе 3.
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7.6.2. Отображение состояния запроса
Реализовать потоковое приложение с  запрашиваемым состоянием про-
сто. Все, что вам нужно сделать,  – это определить функцию с  ключевым 
состоянием и  сделать состояние доступным для запроса, вызвав метод 
setQueryable(String) в StateDescriptor перед получением дескриптора состо-
яния. В примере 7.14 показано, как сделать lastTempState доступным для за-
проса, чтобы проиллюстрировать использование состояния с ключом.

Пример 7.14   Настройка ключевого состояния для обработки запросов
override def open(parameters: Configuration): Unit = {

  // Создаем дескриптор состояния.
  val lastTempDescriptor =
    new ValueStateDescriptor[Double]("lastTemp", classOf[Double])
  // Включаем обработку запросов и задаем внешний идентификатор.
  lastTempDescriptor.setQueryable("lastTemperature")
  // Получаем обработчик состояния.
  lastTempState = getRuntimeContext
    .getState[Double](lastTempDescriptor)
}

Внешний идентификатор, который передается с методом setQueryable(), 
может быть выбран произвольно и используется только для настройки кли-
ента запрашиваемого состояния.

В дополнение к универсальному способу включения запросов для любого 
типа ключевого состояния Flink также предлагает ярлыки для определения 
приемников потока, которые хранят события потока в запрашиваемом со-
стоянии. В примере 7.15 показано, как использовать приемник запрашива-
емого состояния.

Пример 7.15   Запись DataStream в приемник запрашиваемого состояния
val tenSecsMaxTemps: DataStream[(String, Double)] = sensorData
// Отображение на ID датчика и температуру.
.map(r => (r.id, r.temperature))
// Вычисляем каждые 10 секунд максимальную температуру каждого датчика.
.keyBy(_._1)
.timeWindow(Time.seconds(10))
.max(1)

// Сохранаяем максимальную температуру за последние 10 секунд 
// для каждого датчика в запрашиваемом состоянии.
tenSecsMaxTemps
  // Ключ по ID датчика.
  .keyBy(_._1)
  .asQueryableState("maxTemperature")

Метод asQueryableState() добавляет в поток приемник запрашиваемого 
состояния. Тип запрашиваемого состояния – ValueState, который содержит 
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значения типа входного потока – наш пример (String, Double). Для каждой 
полученной записи запрашиваемый приемник состояния вставляет запись 
в ValueState, так что последнее событие для каждого ключа всегда сохра
няется.

Приложение с функцией, имеющей запрашиваемое состояние, выполня-
ется так же, как и любое другое приложение. Вам нужно только убедиться, 
что диспетчеры задач настроены для запуска своих служб запрашиваемого 
состояния, как обсуждалось в предыдущем разделе.

7.6.3. Запрос состояния из внешних приложений
Любое приложение на основе JVM может запросить состояние работающего 
приложения Flink с  помощью QueryableStateClient. Этот класс предостав-
ляется зависимостью flink-queryable-state-client-java, которую вы можете 
добавить в свой проект следующим образом:

<dependency>
  <groupid>org.apache.flink</groupid>
  <artifactid>flink-queryable-state-client-java_2.12</artifactid>
  <version>1.7.1</version>
</dependency>

QueryableStateClient инициализируется именем хоста любого TaskManager 
и портом, который прослушивает прокси-сервер запрашиваемого состояния. 
По умолчанию клиентский прокси прослушивает порт 9067, но порт можно 
настроить в файле ./conf/flink-conf.yaml:

val client: QueryableStateClient =
  new QueryableStateClient(tmHostname, proxyPort)

После получения клиента состояния вы можете запросить состояние при-
ложения, вызвав метод getKvState(). Метод принимает несколько параме-
тров, таких как JobID запущенного приложения, идентификатор состояния, 
ключ, для которого должно быть выбрано состояние, TypeInformation для клю-
ча и StateDescriptor запрашиваемого состояния. JobID можно получить через 
REST API, веб-интерфейс или файлы журнала. Метод getKvState() возвращает 
CompletableFuture[S], где S – это тип состояния (например, ValueState[_] или 
MapState[_, _]). Следовательно, клиент может отправлять несколько асин-
хронных запросов и ждать их результатов. В примере 7.16 показана простая 
консольная панель управления, которая запрашивает состояние приложения, 
показанного в предыдущем разделе.

Пример 7.16  � Простое приложение панели управления,  
которое запрашивает состояние приложения Flink

object TemperatureDashboard {

  // Считаем, что консоль и приложение запущены на одной локальной машине.
  val proxyHost = "127.0.0.1"
  val proxyPort = 9069
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  // jobId запущенного QueryableStateJob
  // может быть найдено в журнале или в списке задач в веб-интерфейсе.
  val jobId = "d2447b1a5e0d952c372064c886d2220a"

  // Количество датчиков в запросе.
  val numSensors = 5
  // Частота запросов состояния.
  val refreshInterval = 10000

  def main(args: Array[String]): Unit = {
    // Настраиваем приложение-клиент с хостом и портом запрашиваемого прокси-сервера.
    val client = new QueryableStateClient(proxyHost, proxyPort)

    val futures = new Array[
      CompletableFuture[ValueState[(String, Double)]]](numSensors)
    val results = new Array[Double](numSensors)

    // Печатаем заголовок таблицы консольного вывода.
    val header =
      (for (i <- 0 until numSensors) yield "sensor_" + (i + 1))
       .mkString("\t| ")
    println(header)

    // Бесконечный цикл.
    while (true) {
      // Отправка асинхронных запросов.
      for (i <- 0 until numSensors) {
        futures(i) = queryState("sensor_" + (i + 1), client)
      }
      // Ожидание результата.
      for (i <- 0 until numSensors) {
        results(i) = futures(i).get().value()._2
      }
      // Печать результата.
      val line = results.map(t => f"$t%1.3f").mkString("\t| ")
      println(line)

      // Ожидание отправки следующего запроса.
       Thread.sleep(refreshInterval)
    }
    client.shutdownAndWait()
  }

  def queryState(
    key: String,
    client: QueryableStateClient)
  : CompletableFuture[ValueState[(String, Double)]] = {

  client
    .getKvState[String, ValueState[(String, Double)], (String, Double)](
      JobID.fromHexString(jobId),
      "maxTemperature",
      key,
      Types.STRING,
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      new ValueStateDescriptor[(String, Double)](
        "", // Имя состояния здесь не имеет значения.
        Types.TUPLE[(String, Double)]))
  }
}

Чтобы запустить код примера, вы должны сначала запустить потоковое 
приложение с  запрашиваемым состоянием. После запуска найдите JobID 
в файле журнала или в веб-интерфейсе; пропишите этот JobID в коде панели 
управления и также запустите его. После этого панель управления начнет 
запрашивать состояние запущенного потокового приложения.

7.7. Заключение

Практически каждое нетривиальное потоковое приложение использует со-
стояние. API DataStream предоставляет мощные, но простые в использова-
нии инструменты для доступа и обработки состояния оператора. Он предла-
гает различные типы примитивов состояния и поддерживает подключаемые 
бэкенды состояния. Хотя разработчики обладают большой свободой во вза-
имодействии с состоянием, среда выполнения Flink управляет терабайтами 
состояния и обеспечивает семантику «ровно один раз» в случае сбоя. Комби-
нация вычислений на основе времени, описанных в главе 6, и масштабируе-
мого управления состоянием дает разработчикам возможность реализовать 
сложные потоковые приложения. Запрашиваемое состояние – это простая 
в  использовании функция, которая может избавить вас от необходимости 
настраивать и поддерживать базу данных или хранилище ключей и значений 
для передачи результатов потокового приложения внешним приложениям.



Глава 8
Чтение и запись 

при работе 
с внешними системами

Данные могут храниться во множестве различных систем, таких как фай-
ловые системы, хранилища объектов, системы реляционных баз данных, 
хранилища пар «ключ–значение», поисковые индексы, журналы событий, 
очереди сообщений и т. д. Каждый класс систем был разработан под строго 
определенные цели и  отлично справляется с  задачей. Поэтому современ-
ные инфраструктуры часто включают в  себя несколько различных систем 
хранения. Прежде чем добавлять в этот салат новый компонент, следует за-
дать очевидный вопрос: «Насколько хорошо он будет сочетаться с другими 
компонентами в моей инфраструктуре?»

Внедрение системы обработки данных, такой как Apache Flink, требует 
тщательного обсуждения, поскольку она не содержит собственную подси-
стему хранения, а полагается на внешние системы. Следовательно, для про-
цессоров данных, таких как Flink, важно обеспечить хорошую библиотеку 
соединителей для чтения и  записи данных во внешние системы, а также 
API для реализации настраиваемых соединителей. Однако для потокового 
процессора, который хочет предоставить значимые гарантии целостности 
данных в случае сбоя, недостаточно просто иметь возможность читать или 
записывать данные во внешние хранилища данных.

В этой главе мы обсудим, как соединители источника и приемника влияют 
на гарантии согласованности и сохранности данных потоковых приложений 
Flink, и представим самые популярные соединители Flink для чтения и за-
писи данных. Вы узнаете, как реализовать настраиваемые соединители ис-
точника и приемника, а также функции, которые отправляют асинхронные 
запросы на чтение или запись во внешние хранилища данных.

8.1. Гарантии согласованности приложений

В разделе 3.5 вы узнали, что механизм контрольных точек и восстановления 
Flink периодически устанавливает согласованные контрольные точки состо-
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яния приложения. В случае сбоя состояние приложения восстанавливается 
с  последней завершенной контрольной точки, и  обработка продолжается. 
Однако возможности сбросить состояние приложения до согласованного 
значения недостаточно для достижения удовлетворительных гарантий об-
работки для приложения. Соединители источника и приемника приложения 
должны быть интегрированы с механизмом контрольных точек и восстанов-
ления Flink и  обеспечивать определенные свойства, чтобы иметь возмож-
ность давать значимые гарантии.

Чтобы обеспечить согласованность состояния «ровно один раз»1, каждый 
соединитель источника приложения должен иметь возможность устанав-
ливать свои позиции чтения в положение, ранее отмеченное контрольной 
точкой. При установке контрольной точки оператор источника сохраняет 
свои позиции чтения и восстанавливает эти позиции во время восстанов-
ления. Примерами соединителей источника, поддерживающих контроль-
ную точку позиций чтения, являются файловые источники, которые хранят 
смещения чтения в  байтовом потоке файла, или источник Kafka, который 
хранит смещения чтения в разделах тем, используемых им. Если приложение 
принимает данные из соединителя, который не может сохранять и сбрасы-
вать позицию чтения, оно может пострадать от потери данных в случае сбоя 
и предоставить гарантии лишь «не более одного раза».

Комбинация механизма контрольной точки и восстановления Flink и сбра-
сываемых соединителей источника гарантирует, что приложение не потеряет 
данные. Однако приложение может выдать результаты дважды, потому что 
все результаты, которые были созданы после последней успешной контроль-
ной точки (той, к которой приложение возвращается в случае восстановле-
ния), будут отправлены снова. Следовательно, сбрасываемых источников 
и механизма восстановления Flink недостаточно для обеспечения гарантии 
сквозной согласованности «ровно один раз», даже если состояние приложе-
ния согласовано «ровно один раз».

Приложение, целью которого является предоставление сквозной гарантии 
«ровно один раз», требует специальных соединителей приемника. Есть два 
метода, которые соединители приемника могут применять в разных ситу-
ациях для достижения гарантии «ровно один раз»: идемпотентная запись 
и транзакционная запись.

8.1.1. Идемпотентные записи
Идемпотентная операция (idempotent operation) может выполняться не-
сколько раз, но приведет только к  одному изменению. Например, много-
кратная вставка одной и той же пары «ключ–значение» в хеш-карту является 
идемпотентной операцией, потому что первая операция вставки добавляет 
значение для ключа в  карту, и  все последующие вставки не изменят кар-
ту, поскольку она уже содержит пару «ключ–значение». С другой стороны, 

1	 Согласованность состояния «ровно один раз» – это условие для обеспечения сквоз-
ной согласованности «ровно один раз», но это не одно и то же.



200   Чтение и запись при работе с внешними системами

операция добавления не является идемпотентной операцией, потому что 
добавление элемента несколько раз приводит к  нескольким добавлениям. 
Операции идемпотентной записи интересны для потоковых приложений, 
поскольку их можно выполнять несколько раз без изменения результатов. 
Следовательно, они могут до некоторой степени смягчить эффект повторе-
ния результатов, присущий механизму контрольных точек Flink.

Следует отметить, что приложение, которое полагается на идемпотентные 
приемники для достижения ровно однократных результатов, должно гаран-
тировать, что оно переопределяет ранее записанные результаты во время 
воспроизведения. Например, приложение с  приемником, выполняющим 
вставку-обновление в хранилище «ключ–значение», должно гарантировать, 
что оно детерминированно вычисляет ключи, которые используются для 
обновления. Более того, приложения, считывающие данные из системы при-
емника, могут получить неожиданные результаты во время восстановления 
приложения. Когда начинается воспроизведение, уже выданные результаты 
могут быть отменены более ранними результатами. Следовательно, прило-
жение, которое потребляет выходные данные восстанавливающегося при-
ложения, может испытать скачок во времени, например считывать меньший 
счетчик, чем раньше. Кроме того, общий результат потокового приложения 
будет в несогласованном состоянии во время воспроизведения, потому что 
некоторые результаты будут отменены, а другие – нет. После того как вос-
произведение завершится и  приложение преодолеет точку, в  которой оно 
ранее потерпело сбой, результат снова будет согласованным.

8.1.2. Транзакционные записи
Второй подход к достижению сквозной согласованности «ровно один раз» 
основан на транзакционной записи. Идея здесь состоит в том, чтобы запи-
сывать во внешнюю систему приемника только те результаты, которые были 
вычислены до последней успешной контрольной точки. Такое поведение 
гарантирует сквозное выполнение ровно один раз, потому что в случае сбоя 
приложение сбрасывается до последней контрольной точки, и  после этой 
контрольной точки в систему приемника не поступало никаких результатов. 
За счет записи данных только после того, как контрольная точка завершена, 
транзакционный подход не страдает от несогласованности воспроизведе-
ния идемпотентных записей. Однако это увеличивает задержку, потому что 
результаты становятся видимыми только после завершения контрольной 
точки.

Flink предоставляет два строительных блока для реализации транзакцион-
ных соединителей приемника – журнал с упреждающей записью (write ahead 
log, WAL) и двухфазную фиксацию транзакций (two phase commit, 2PC). Прием-
ник WAL записывает все данные результатов в состояние приложения и от-
правляет их системе приемника после получения уведомления о завершении 
контрольной точки. Поскольку приемник буферизует записи в бэкенде со-
стояния, приемник WAL может использоваться с любой системой приемника. 
Однако он не может предоставить безукоризненные гарантии «ровно один 
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раз»1, увеличивает размер состояния приложения, и  системе-приемнику 
приходится иметь дело с нестандартным шаблоном записи.

Напротив, приемнику 2PC требуется система приемника, которая предла-
гает поддержку транзакций или предоставляет модули для эмуляции тран-
закций. Для каждой контрольной точки приемник запускает транзакцию 
и добавляет все полученные записи к транзакции, записывая их в систему 
приемника, но не фиксирует ее. Когда он получает уведомление о  завер-
шении контрольной точки, он фиксирует транзакцию и материализует за-
писанные результаты. Механизм основан на способности приемника после 
восстановления зафиксировать транзакцию, которая была открыта до за-
вершения контрольной точки.

Протокол 2PC совмещен с существующим механизмом контрольных то-
чек Flink. Барьеры контрольной точки – это уведомления для начала новой 
транзакции; уведомления всех операторов об успехе их отдельной контроль-
ной точки – это их голоса за фиксацию, а сообщения JobManager, которые 
уведомляют об успехе контрольной точки, – это инструкции для фиксации 
транзакций. В отличие от приемников WAL приемники 2PC могут обеспечить 
вывод «ровно один раз» в  зависимости от потоковой системы и  ее реали-
зации. Более того, приемник 2PC непрерывно вносит записи в систему по 
сравнению с пиковой записью приемника WAL.

В табл. 8.1 показаны гарантии сквозной согласованности для различных 
типов соединителей источника и приемника, которые могут быть достигну-
ты в лучшем случае; в зависимости от реализации приемника фактическая 
согласованность может быть хуже.

Таблица 8.1. Гарантия сквозной согласованности для различных комбинаций 
источников и приемников

Несбрасываемый источник Сбрасываемый источник
Любой приемник Не более одного раза Хотя бы один раз
Идемпотентный 
приемник

Не более одного раза Ровно один раз (временное нарушение 
целостности во время восстановления)

Приемник WAL Не более одного раза Хотя бы один раз
Приемник 2PC Не более одного раза Ровно один раз

8.2. Соединители Apache Flink

Apache Flink предоставляет соединители для чтения и записи данных в раз-
личные системы хранения. Очереди сообщений и журналы событий, такие 
как Apache Kafka, Kinesis или RabbitMQ, являются общими источниками вхо-
дящих потоков данных. В средах с преобладанием пакетной обработки пото-
ки данных также часто загружаются путем мониторинга каталога файловой 
системы и чтения файлов по мере их появления.

1	 Мы обсуждаем гарантии согласованности приемника WAL более подробно в раз-
деле 8.4.2.
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На стороне приемника потоки данных часто создаются в  очередях со-
общений, чтобы сделать события доступными для последующих потоковых 
приложений, записываются в  файловые системы для архивирования или 
предоставления данных для автономной аналитики или пакетных приложе-
ний или вставляются в хранилища пар «ключ–значение» или в реляционную 
базу данных, такую как Cassandra, ElasticSearch или MySQL, чтобы сделать 
данные доступными для поиска и запросов или для обслуживания приложе-
ний панели мониторинга.

К сожалению, для большинства этих систем хранения нет стандартных ин-
терфейсов, кроме JDBC для реляционных СУБД. Вместо этого каждая система 
имеет собственную библиотеку соединителей с  собственным протоколом. 
Как следствие, системы обработки, такие как Flink, должны поддерживать 
несколько специальных соединителей, чтобы иметь возможность считывать 
события и  записывать события в  наиболее распространенные очереди со-
общений, журналы событий, файловые системы, хранилища пар «ключ–зна-
чение» и системы баз данных.

Flink предоставляет соединители для Apache Kafka, Kinesis, RabbitMQ, 
Apache Nifi, различных файловых систем, Cassandra, ElasticSearch и  JDBC. 
Кроме того, проект Apache Bahir предоставляет дополнительные коннекторы 
Flink для ActiveMQ, Akka, Flume, Netty и Redis.

Чтобы использовать один из этих соединителей в  вашем приложении, 
необходимо добавить его зависимость в  файл сборки вашего проекта. Мы 
объяснили, как добавить зависимости соединителя в разделе 5.7.

В следующем разделе мы обсудим соединители для Apache Kafka, файловых 
источников и приемников, а также Apache Cassandra. Это наиболее широко 
используемые соединители, также они представляют важные типы систем 
источников и приемников. Вы можете найти дополнительную информацию 
о других соединителях в документации для Apache Flink или Apache Bahir.

8.2.1. Соединитель источника Apache Kafka
Apache Kafka – это распределенная потоковая платформа. Ее ядро – это рас-
пределенная система обмена сообщениями «публикация–подписка», кото-
рая широко применяется для приема и  распределения потоков событий. 
Мы кратко объясним основные концепции Kafka, прежде чем углубиться 
в детали коннектора Kafka Flink.

Kafka организует потоки событий как так называемые темы. Тема – это 
журнал событий, который гарантирует, что события читаются в том же по-
рядке, в котором они были записаны. Чтобы масштабировать запись и чте-
ние из темы, ее можно разделить на разделы, которые распределены по кла-
стеру. Гарантия упорядочения ограничена разделом – Kafka не предоставляет 
гарантий упорядочивания при чтении из разных разделов. Позиция чтения 
в разделе Kafka называется смещением (offset).

Flink предоставляет соединители источника для всех распространенных 
версий Kafka. Начиная с Kafka 0.11, API клиентской библиотеки постоянно 
развивается с добавлением новых функций. Например, в Kafka 0.10 добав-



Соединители Apache Flink   203

лена поддержка меток времени записи. Начиная с версии 1.0, API оставался 
стабильным. Flink предоставляет универсальный соединитель Kafka, кото-
рый работает для всех версий Kafka, начиная с 0.11. Flink также имеет специ-
альные соединители для версий Kafka 0.8, 0.9, 0.10 и 0.11. В оставшейся части 
этого раздела мы сосредоточимся на универсальном соединителе, а для со-
единителей, зависящих от версии, мы отсылаем вас к документации Flink.

Зависимость для универсального коннектора Flink Kafka добавляется 
в проект Maven, как показано ниже:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_2.12</artifactId>
    <version>1.7.1</version>
</dependency>

Соединитель Flink для Kafka принимает потоки событий параллельно. 
Каждая параллельная задача источника может считывать данные из одного 
или нескольких разделов. Задача отслеживает для каждого раздела его те-
кущее смещение чтения и включает его в данные контрольной точки. При 
восстановлении после сбоя смещения восстанавливаются, и исходный экзем-
пляр продолжает чтение со смещения контрольной точки. Соединитель Flink 
для Kafka не полагается на собственный механизм отслеживания смещения 
Kafka, который основан на так называемых группах потребителей. На рис. 8.1 
показано назначение разделов экземплярам источника.

Смещение раздела

Раздел 1

Раздел 2

Раздел 3

Раздел 4

Раздел 5

Источник 1

Источник 2

Рис. 8.1   Чтение смещения разделов темы Kafka

Соединитель источника Kafka создается, как показано в примере 8.1.

Пример 8.1   Создание источника Flink-Kafka
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "test")

val stream: DataStream[String] = env.addSource(
  new FlinkKafkaConsumer[String](
    "topic",
    new SimpleStringSchema(),
    properties))
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Конструктор принимает три аргумента. Первый аргумент определяет темы 
для чтения. Это может быть отдельная тема, список тем или регулярное вы-
ражение, которое охватывает все темы для чтения. При чтении из нескольких 
тем соединитель Kafka обрабатывает все разделы всех тем одинаково и муль-
типлексирует их события в один поток.

Второй аргумент – это DeserializationSchema или KeyedDeserializationSche-
ma. Сообщения Kafka хранятся в виде необработанных байтовых сообщений 
и должны быть десериализованы в объекты Java или Scala. SimpleStringSchema, 
который используется в примере 8.1, представляет собой встроенный интер-
фейс DeserializationSchema, который просто десериализует байтовый массив 
в строку. Кроме того, Flink предоставляет реализации для кодировок Apache 
Avro и текстовых JSON. DeserializationSchema и  KeyedDeserializationSchema – 
это общедоступные интерфейсы, поэтому вы всегда можете реализовать на-
страиваемую логику десериализации.

Третий параметр – это объект Properties для настройки клиента Kafka, 
который используется внутри для подключения к  Kafka и  чтения из него. 
Минимальная конфигурация свойств состоит из двух записей: "bootstrap.
servers" и "group.id". Обратитесь к документации Kafka для ознакомления 
с дополнительными параметрами конфигурации.

Чтобы извлечь метки времени событий и создать водяные знаки, вы мо-
жете предоставить AssignerWithPeriodicWatermark или AssignerWithPunctuated-
Watermark потребителю Kafka, вызвав назначитель FlinkKafkaConsumer.assignT
imestampsAndWatermark()1. Назначитель применяется к каждому разделу, чтобы 
использовать гарантии упорядочения по разделам, а  исходный экземпляр 
объединяет водяные знаки раздела в соответствии с протоколом распростра-
нения водяных знаков (см. раздел 3.3.3).

	 Обратите внимание, что водяные знаки исходного экземпляра не могут работать, если 
раздел становится неактивным и не предоставляет сообщения. Как следствие, один не-
активный раздел вызывает остановку всего приложения, потому что водяные знаки при-
ложения не работают.

Начиная с версии 0.10.0, Kafka поддерживает метки времени сообщений. 
При чтении из Kafka версии 0.10 или более поздней потребитель автома-
тически извлекает метку времени сообщения как метку времени события, 
если приложение работает в режиме времени события. В этом случае вам по-
прежнему необходимо сгенерировать водяные знаки и следует применить 
AssignerWithPeriodicWatermark или AssignerWithPunctuatedWatermark, который 
пересылает ранее назначенную метку времени Kafka.

Есть еще несколько заслуживающих внимания опций конфигурации. Вы 
можете настроить начальную позицию, с которой будут считываться разделы 
темы. Допустимые варианты:

�� последняя позиция чтения, известная Kafka для группы потребителей, 
которая была настроена с помощью параметра group.id. Это поведение 
по умолчанию: 

1	 См. главу 6 для получения подробной информации об интерфейсах назначителя 
временных меток.
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FlinkKafkaConsumer.setStartFromGroupOffsets()

�� самое раннее смещение каждого отдельного раздела:

FlinkKafkaConsumer.setStartFromEarliest()

�� последнее смещение каждого отдельного раздела:

FlinkKafkaConsumer.setStartFromLatest()

�� все записи с меткой времени больше заданной (требуется Kafka 0.10.x 
или новее):

FlinkKafkaConsumer.setStartFromTimestamp (long)

�� определенные позиции чтения для всех разделов, предоставляемые 
объектом Map:

FlinkKafkaConsumer.setStartFromSpecificOffsets(Map)

	 Обратите внимание, что эта конфигурация влияет только на начальные позиции чтения. 
В случае восстановления или при запуске из точки сохранения приложение начнет чте-
ние со смещений, сохраненных в контрольной точке или точке сохранения.

Потребитель связки Flink–Kafka может быть настроен на автоматическое 
обнаружение новых тем, соответствующих регулярному выражению, или 
новых разделов, которые были добавлены в тему. Эти функции отключены 
по умолчанию и могут быть включены путем добавления параметра flink.
partition-discovery.interval-millis с неотрицательным значением к объекту 
Properties.

8.2.2. Соединитель приемника Apache Kafka
Flink предоставляет соединители для приемников для всех версий Kafka, 
начиная с 0.8. Благодаря Kafka 0.11 API клиентской библиотеки был усовер-
шенствован – туда добавлены новые функции, такие как поддержка меток 
времени записи в Kafka 0.10 и транзакционная запись в Kafka 0.11. Начиная 
с версии 1.0, API оставался стабильным. Flink предоставляет универсальный 
коннектор Kafka, который работает для всех версий Kafka, начиная с  0.11. 
Flink также имеет соединители для конкретных версий Kafka 0.8, 0.9, 0.10 
и  0.11. В  оставшейся части этого раздела мы сосредоточимся на универ-
сальном соединителе и  отсылаем вас к документации Flink, чтобы узнать 
о  соединителях для конкретных версий. Зависимость для универсального 
соединителя Kafka Flink добавляется в проект Maven, как показано ниже:

<dependency>
   <groupId>org.apache.flink</groupId>
   <artifactId>flink-connector-kafka_2.12</artifactId>
   <version>1.7.1</version>
</dependency>



206   Чтение и запись при работе с внешними системами

Приемник Kafka добавляется в  приложение DataStream, как показано 
в примере 8.2.

Пример 8.2   Создание приемника Flink-Kafka
val stream: DataStream[String] = ...

val myProducer = new FlinkKafkaProducer[String](
  "localhost:9092", // Список брокеров.
  "topic", // Тема назначения.
  new SimpleStringSchema) // Схема сериализации.

stream.addSink(myProducer)

Конструктор, используемый в примере 8.2, получает три параметра. Пер-
вый параметр – это разделенная запятыми строка адресов брокера Kafka. 
Второй – это имя темы, в которую записываются данные, а последний – это 
SerializationSchema, которая преобразует входные типы приемника (String 
в примере 8.2) в байтовый массив. SerializationSchema – это аналог Deserial-
izationSchema, который мы обсуждали в разделе источников Kafka.

FlinkKafkaProducer предоставляет больше конструкторов с  различными 
комбинациями аргументов, а именно:

�� подобно соединителю источника Kafka, вы можете передать объект 
Properties для предоставления настраиваемых параметров внутренне-
му клиенту Kafka. При использовании свойств список брокеров должен 
быть указан как свойство bootstrap.servers. Ознакомьтесь с документа-
цией Kafka для получения полного списка параметров;

�� вы можете указать FlinkKafkaPartitioner, чтобы контролировать, как за-
писи отображаются на разделы Kafka. Мы обсудим эту функцию более 
подробно позже в этом разделе;

�� вместо использования SerializationSchema для преобразования записей 
в байтовые массивы вы также можете указать KeyedSerializationSchema, 
который сериализует запись в два байтовых массива – один для ключа, 
а другой для значения сообщения Kafka. Более того, KeyedSerialization-
Schema также предоставляет больше функций, специфичных для Kafka, 
таких как переопределение целевой темы для записи в несколько тем.

8.2.2.1. Гарантия «хотя бы один раз» для приемника Kafka
Гарантия согласованности приемника Kafka зависит от его конфигурации. 
На приемник Kafka предоставляется гарантия «хотя бы один раз» при сле-
дующих условиях:

�� механизм контрольной точки Flink включен, и все источники прило-
жения могут быть сброшены;

�� соединитель приемника выдает исключение, если запись не удалась, 
что приводит к сбою и восстановлению приложения. Это поведение по 
умолчанию. Внутренний клиент Kafka может быть настроен на повтор-
ные попытки записи до объявления их неудачными, если для свойства 
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retries установлено значение больше нуля (по умолчанию). Вы также 
можете настроить приемник на регистрацию только сбоев записи, вы-
звав setLogFailuresOnly(true) для объекта приемника. Обратите внима-
ние, что это аннулирует любые гарантии вывода приложения;

�� соединитель приемника ожидает, пока Kafka подтвердит записи «на 
лету», прежде чем завершить свою контрольную точку. Это поведение 
по умолчанию. Вызвав метод setFlushOnCheckpoint(false) для объекта-
приемника, вы можете отключить это ожидание. Однако это также 
отключит любые гарантии вывода.

8.2.2.2. Гарантия «ровно один раз» для приемника Kafka
В Kafka 0.11 появилась поддержка транзакционной записи. Благодаря этой 
функции приемник Kafka в  среде Flink также может обеспечивать гаран-
тированный вывод «ровно один раз», при условии, что приемник и  Kafka 
правильно настроены. Опять же, приложение Flink должно поддерживать 
контрольные точки и  использовать данные из сбрасываемых источников. 
Кроме того, FlinkKafkaProducer предоставляет конструктор с параметром Se-
mantic, который контролирует гарантии согласованности, предоставляемые 
приемником. Возможные значения согласованности:

�� Semantic.NONE, который не дает никаких гарантий, – записи могут быть 
потеряны или записаны несколько раз;

�� Semantic.AT_LEAST_ONCE, который гарантирует, что запись не будет по-
теряна, но может быть дублирована. Это значение по умолчанию;

�� Semantic.EXACTLY_ONCE, который основан на механизме транзакций Kafka 
для записи ровно один раз.

Есть несколько вещей, которые следует учитывать при запуске прило-
жения Flink с приемником Kafka, работающим в режиме «ровно один раз», 
и это помогает примерно понять, как Kafka обрабатывает транзакции. Вкрат-
це транзакции Kafka работают, добавляя все сообщения в  журнал раздела 
и  помечая сообщения открытых транзакций как незафиксированные. Как 
только транзакция зафиксирована, маркеры меняются на зафиксирован-
ные. Для потребителя, который читает из темы, можно настроить уровень 
изоляции (через свойство isolation.level), чтобы объявить, может ли он чи-
тать незафиксированные сообщения (read_uncommitted по умолчанию) или 
нет (read_committed). Если потребителю установлен уровень read_committed, 
он прекращает чтение из раздела, когда обнаруживает незафиксированное 
сообщение, и возобновляет работу, когда сообщение зафиксировано. Следо-
вательно, открытые транзакции могут блокировать чтение раздела потре-
бителями и вызывать значительные задержки. Kafka защищает от этого, от-
клоняя и закрывая транзакции по истечении интервала тайм-аута, который 
настраивается с помощью свойства transaction.timeout.ms.

В контексте приемника Kafka это важно, потому что просрочка транзак-
ций, например из-за длительных циклов восстановления, приводит к потере 
данных. Итак, очень важно правильно настроить свойство тайм-аута транз
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акции. По умолчанию приемник Kafka устанавливает для параметра trans-
action.timeout.ms значение одного часа, следовательно, вам вероятно по-
требуется настроить свойство transaction.max.timeout.ms вашего экземпляра 
Kafka, которое по умолчанию установлено на 15 мин. Более того, видимость 
зафиксированных сообщений зависит от интервала между контрольными 
точками приложения Flink. Обратитесь к документации Flink, чтобы узнать 
о некоторых других важных ситуациях при использовании согласованности 
«ровно один раз».

	 Проверьте конфигурацию вашего кластера Kafka
Конфигурация кластера Kafka по умолчанию может привести к потере данных даже по-
сле подтверждения записи. Вам следует внимательно проверить конфигурацию вашего 
экземпляра Kafka, обращая особое внимание на следующие параметры:
•  acks;
•  log.flush.interval.messages;
•  log.flush.interval.ms;
•  log.flush.*.
Мы отсылаем вас к документации Kafka за подробной информацией о параметрах кон-
фигурации и рекомендациями по настройке подходящей конфигурации.

8.2.2.3. Пользовательское разбиение на разделы 
и запись меток времени сообщений
При написании сообщений в тему Kafka задача приемника Kafka может вы-
бирать, в какой раздел темы писать. В некоторых конструкторах приемника 
Kafka можно определить FlinkKafkaPartitioner. Если не указано иное, разде-
литель по умолчанию сопоставляет каждую задачу приемника с одним раз-
делом Kafka – все записи, созданные одной задачей приемника, записывают-
ся в один и тот же раздел, и один раздел может содержать записи нескольких 
задач приемника, если задач больше, чем разделов. Если количество разде-
лов превышает количество подзадач, конфигурация по умолчанию приводит 
к появлению пустых разделов, что может вызвать проблемы для приложений 
Flink, использующих раздел в режиме времени события.

Используя настраиваемый FlinkKafkaPartitioner, вы можете управлять 
пересылкой записей в разделы темы. Например, вы можете создать разде-
литель на основе ключевого атрибута записей или циклический разделитель 
для равномерного распределения. Существует также возможность делеги-
ровать разделение Kafka на основе ключа сообщения. Для этого нужно ис-
пользовать KeyedSerializationSchema, чтобы извлечь ключи сообщений и на-
значить параметру FlinkKafkaPartitioner нулевое значение, чтобы отключить 
разделитель по умолчанию.

Наконец, приемник Kafka может быть настроен для записи меток времени 
событий, начиная с Kafka 0.10. Запись метки времени события в Kafka вклю-
чается путем вызова метода setWriteTimestampToKafka(true) для объекта-при-
емника.
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8.2.3. Соединитель файлового источника
Файловые системы обычно используются для экономичного хранения боль-
ших объемов данных. В  архитектурах больших данных они часто служат 
источником и  приемником данных для приложений пакетной обработки. 
В сочетании с расширенными форматами файлов, такими как Apache Parquet 
или Apache ORC, файловые системы могут эффективно обслуживать меха-
низмы аналитических запросов, такие как Apache Hive, Apache Impala или 
Presto. Поэтому файловые системы обычно используются для «соединения» 
потоковых и пакетных приложений.

Apache Flink имеет сбрасываемый соединитель источника для получе-
ния данных из файлов в виде потоков. Файловый источник является частью 
модуля flink-streaming-java. Следовательно, вам не нужно добавлять какие-
либо другие зависимости для использования этой функции. Flink поддер-
живает различные типы файловых систем, такие как локальные файловые 
системы (включая локально смонтированные общие ресурсы NFS или SAN, 
Hadoop HDFS, Amazon S3 и OpenStack Swift FS). Обратитесь к разделу 9.4 что-
бы узнать, как настроить файловые системы в Flink. В примере 8.3 показано, 
как принимать поток, считывая текстовые файлы построчно.

Пример 8.3   Создание файлового источника
val lineReader = new TextInputFormat(null)

val lineStream: DataStream[String] = env.readFile[String](
  lineReader,                // FileInputFormat.
  "hdfs:///path/to/my/data", // Путь для чтения.
  FileProcessingMode
    .PROCESS_CONTINUOUSLY,   // Режим обработки.
  30000L)

Аргументы метода StreamExecutionEnvironment.readFile():

�� FileInputFormat, который отвечает за чтение содержимого файлов. Мы 
обсудим детали этого интерфейса ниже в этом разделе. Нулевой пара-
метр TextInputFormat в примере 8.3 определяет путь, который задается 
отдельно;

�� путь, который следует прочитать. Если путь относится к файлу, чита-
ется отдельный файл. Если путь ведет к каталогу, FileInputFormat ска-
нирует каталог на наличие файлов для чтения;

�� режим, в котором следует читать путь. Режим может быть PROCESS_ONCE 
или PROCESS_CONTINUOUSLY. В режиме PROCESS_ONCE путь чтения сканирует-
ся один раз при запуске задания, и считываются все соответствующие 
файлы. В PROCESS_CONTINUOUSLY путь периодически сканируется (после 
начального сканирования), а новые и измененные файлы постоянно 
читаются;

�� интервал в миллисекундах, в течение которого путь периодически ска-
нируется. Параметр игнорируется в режиме PROCESS_ONCE.
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FileInputFormat – это специальный InputFormat для чтения файлов из фай-
ловой системы1. FileInputFormat считывает файлы в два этапа. Сначала он 
сканирует путь к  файловой системе и  создает так называемые разделения 
ввода для всех совпадающих файлов. Разделение ввода определяет диапа-
зон в файле, обычно через начальное смещение и длину. После разделения 
большого файла на несколько частей эти части можно распределить между 
несколькими задачами чтения для параллельного чтения файла. В зависи-
мости от кодировки файла может потребоваться создание только одного 
раздела для чтения файла целиком. Второй шаг FileInputFormat – получить 
разделение ввода, прочитать диапазон файлов, который определяется раз-
делением, и вернуть все соответствующие записи.

FileInputFormat, используемый в приложении DataStream, также должен ре-
ализовывать интерфейс CheckpointableInputFormat, который определяет мето-
ды для контрольной точки и сбрасывает текущую позицию чтения InputFor-
mat в разделенном файле. Соединитель файлового источника обеспечивает 
лишь гарантию «хотя бы один раз» при включении контрольной точки, если 
FileInputFormat не реализует интерфейс CheckpointableInputFormat, потому что 
формат ввода начнет чтение с начала разделения, которое было обработано, 
когда была установлена последняя завершенная контрольная точка.

В версии 1.7 Flink предоставляет несколько классов, которые расширяют 
FileInputFormat и реализуют CheckpointableInputFormat. TextInputFormat считы-
вает текстовые файлы построчно (разделенные символами новой строки), 
подклассы CsvInputFormat читают файлы со значениями, разделенными за-
пятыми, а AvroInputFormat читает файлы с записями в кодировке Avro.

В режиме PROCESS_CONTINUOUSLY соединитель файлового источника опре-
деляет новые файлы на основе их отметки времени модификации. Это оз-
начает, что файл полностью повторно обрабатывается, если изменилась 
метка времени его модификации. Сюда входят модификации, связанные 
с  добавлением записей. Следовательно, распространенный метод непре-
рывного приема файлов – записать их во временный каталог и  атомарно 
переместить в  отслеживаемый каталог после их завершения. Когда файл 
полностью загружен и контрольная точка завершена, его можно удалить из 
каталога. Мониторинг загруженных файлов путем отслеживания метки вре-
мени изменения также имеет значение, если вы читаете из распределенных 
файловых хранилищ с фиксацией списка операций, таких как S3. Поскольку 
файлы могут отображаться не в порядке их отметок времени модификации, 
они могут игнорироваться соединителем файлового источника.

Обратите внимание, что в режиме PROCESS_ONCE контрольные точки не вы-
ставляются после сканирования пути файловой системы и  создания всех 
разделений.

Если вы хотите использовать соединитель файлового источника в  при-
ложении с  привязкой к  времени событий, вы должны знать, что создание 
водяных знаков может оказаться сложной задачей, поскольку входные раз-
делы генерируются в одном процессе и циклически распределяются среди 

1	 InputFormat – это интерфейс Flink для определения источников данных в DataSet 
API.
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всех параллельных считывателей, которые обрабатывают их в порядке метки 
времени модификации файла. Чтобы создать удовлетворительные водяные 
знаки, вам необходимо определить наименьшую метку времени записи, 
включающуюся в разделение, которое позже обрабатывается задачей.

8.2.4. Соединитель файлового приемника
Запись потока в файлы является обычным требованием, например, для под-
готовки данных с  низкой задержкой для автономного анализа «на лету». 
Поскольку большинство приложений могут читать файлы только после того, 
как они завершены, а потоковые приложения работают в течение длитель-
ного времени, соединители потоковых приемников обычно разбивают свой 
вывод на несколько файлов. Более того, записи обычно организуются в так 
называемые корзины (bucket), чтобы приложения-потребители могли лучше 
следить за тем, какие данные следует читать.

Как и  соединитель файлового источника, соединитель Flink Streaming-
FileSink содержится в модуле flink-streaming-java. Следовательно, вам не 
нужно добавлять зависимость к  вашему файлу сборки, чтобы использо-
вать его.

StreamingFileSink обеспечивает сквозные гарантии «ровно один раз» для 
приложения при условии, что приложение настроено на использование кон-
трольных точек «ровно один раз» и все его источники сбрасываются в случае 
сбоя. Мы обсудим механизм восстановления более подробно дальше в этом 
разделе. Пример 8.4 показывает, как создать StreamingFileSink с минималь-
ной конфигурацией и добавить его в поток.

Пример 8.4   Создание StreamingFileSink в режиме построчного кодирования
val input: DataStream[String] = …
val sink: StreamingFileSink[String] = StreamingFileSink
  .forRowFormat(
    new Path("/base/path"),
    new SimpleStringEncoder[String]("UTF-8"))
  .build()
input.addSink(sink)

Когда StreamingFileSink получает запись, она назначается корзине. Кор-
зина – это подкаталог базового пути, который настраивается с  помощью 
построителя StreamingFileSink – "/base/path" в примере 8.4.

Корзину выбирает BucketAssigner, который является публичным интер-
фейсом и возвращает для каждой записи BucketId, определяющий каталог, 
в который будет помещена запись. BucketAssigner можно настроить в постро-
ителе с помощью метода withBucketAssigner(). Если BucketAssigner не указан 
явно, используется DateTimeBucketAssigner, который назначает записи поча-
совым сегментам на основе времени обработки, когда они записываются.

Каждый каталог корзины содержит несколько файлов частей, которые 
одновременно записываются несколькими параллельными экземплярами 
StreamingFileSink. Более того, каждый параллельный экземпляр разбивает 
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свой вывод на несколько файлов частей. Путь к файлу части имеет следую-
щий формат:

[base-path]/[bucket-path]/part-[task-idx]-[id]

Например, для базового пути "/johndoe/demo" и префикса части "part" путь 
"/johndoe/demo/2018-07-22-17/part-4-8" указывает на восемь файлов, которые 
были записаны пятой (отсчет с 0) задачей приемника в корзину "2018-07-22-
17", – корзина от 17:00 часов 22 июля 2018 г.

	 Идентификаторы зафиксированных файлов могут не быть последовательными

	
Непоследовательность идентификаторов файлов – последнего числа в имени зафикси-
рованного файла – не указывает на потерю данных. StreamingFileSink просто увеличи-
вает идентификаторы файлов. При удалении ожидающих файлов он не использует их 
идентификаторы повторно.

RollingPolicy определяет, когда задача создает новый файл части. Вы мо-
жете настроить RollingPolicy с  помощью метода withRollingPolicy() в  по-
строителе. По умолчанию StreamingFileSink использует DefaultRollingPolicy, 
который настроен на завершение файлов частей, когда они превышают 128 
Мб или старше 60 с. Вы также можете настроить интервал бездействия, по 
истечении которого файл части будет завершен.

StreamingFileSink поддерживает два режима записи данных в  файлы ча-
стей: построчное кодирование и массовое кодирование. В режиме построч-
ного кодирования каждая запись индивидуально кодируется и добавляется 
к  файлу части. При массовом кодировании записи собираются и  записы-
ваются партиями. Apache Parquet, который организует и  сжимает записи 
в  формате столбцов, представляет собой формат файла, который требует 
массового кодирования.

В примере 8.4 создается StreamingFileSink с кодировкой строк при помощи 
Encoder, который вносит отдельные записи в файл части. В примере 8.4 мы 
используем SimpleStringEncoder, вызывающий метод toString() записи и за-
писывающий строковое представление записи в файл. Encoder – это простой 
интерфейс с одним легко реализуемым методом.

StreamingFileSink с массовым кодированием создается, как показано в при-
мере 8.5.

Пример 8.5   Создание StreamingFileSink в режиме массового кодирования
val input: DataStream[String] = …
val sink: StreamingFileSink[String] = StreamingFileSink
  .forBulkFormat(
    new Path("/base/path"),
    ParquetAvroWriters.forSpecificRecord(classOf[AvroPojo]))
    .build()
input.addSink(sink)

Для StreamingFileSink в режиме массового кодирования требуется BulkWrit-
er.Factory. В примере 8.5 мы используем Parquet для файлов Avro. Обратите 
внимание, что Parquet реализован в модуле flink-parquet, который необхо-
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димо добавить в качестве зависимости. BulkWriter.Factory – это интерфейс, 
который можно реализовать для пользовательских форматов файлов, таких 
как Apache Orc.

	 StreamingFileSink в  режиме массового кодирования не может выбрать RollingPolicy. 
Форматы массового кодирования можно комбинировать только с OnCheckpointRolling-
Policy, который завершает файлы частей на каждой контрольной точке.

StreamingFileSink обеспечивает гарантию вывода «ровно один раз». Прием-
ник достигает этого с помощью протокола фиксации, который перемещает 
файлы через разные этапы – в обработке, в ожидании и завершении – и осно-
ван на механизме контрольных точек Flink. Пока приемник записывает дан-
ные в файл, этот файл находится в состоянии обработки. Когда RollingPolicy 
решает свернуть файл, он закрывается и переводится в состояние ожидания 
путем его переименования. Ожидающие файлы переводятся в завершенное 
состояние (снова путем переименования), когда завершается следующая 
контрольная точка.

	 Ожидающие файлы, возможно, никогда не будут зафиксированы
В некоторых ситуациях ожидающий файл никогда не фиксируется. StreamingFileSink 
гарантирует, что это не приведет к  потере данных. Однако эти файлы не очищаются 
автоматически.
Перед тем как вручную удалить ожидающий файл, вам необходимо проверить, задержи-
вается ли он или вот-вот будет зафиксирован. Как только вы найдете зафиксированный 
файл с тем же индексом задачи и более высоким идентификатором, вы можете безопас-
но удалить ожидающий файл.

В случае сбоя задача приемника должна сбросить свой текущий исполняе-
мый файл на его смещение записи в последней успешной контрольной точке. 
Это делается путем закрытия текущего незавершенного файла и удаления 
недопустимой части в конце файла, например с помощью операции усечения 
файловой системы.

	 StreamingFileSink требует включения контрольной точки

	
StreamingFileSink никогда не будет перемещать файлы из ожидающего в завершенное 
состояние, если приложение не использует контрольную точку.

8.2.5. Соединитель приемника Apache Cassandra
Apache Cassandra  – это популярная масштабируемая и  высокодоступная 
система управления колоночными (столбцовыми) базами данных. Cassan-
dra моделирует наборы данных как таблицы строк, которые состоят из не-
скольких типизированных столбцов. Один или несколько столбцов должны 
быть определены как (составные) первичные ключи. Каждую строку можно 
однозначно идентифицировать по ее первичному ключу. Среди других API 
Cassandra поддерживает язык запросов Cassandra Query Language (CQL), по-
хожий на SQL язык для чтения и записи, а также создания, изменения и уда-
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ления объектов базы данных, таких как пространства ключей и таблицы.
Flink предоставляет соединитель для записи потоков данных в  Cassan-

dra. Модель данных Cassandra основана на первичных ключах, и все записи 
в  Cassandra происходят с  семантикой upsert (обновление/вставка). В  соче-
тании с  механизмом контрольной точки «ровно один раз», сбрасываемы-
ми источниками и детерминированной логикой приложения upsert-записи 
в конечном итоге обеспечивают выход «ровно один раз». Выходные данные 
являются согласованными с гарантией «ровно один раз» только в конечном 
итоге, потому что во время восстановления результаты сбрасываются до 
предыдущей версии, а  это означает, что потребители могут читать более 
старые результаты, чем полученные недавно. Кроме того, версии значений 
для нескольких ключей могут быть несинхронизированы.

Чтобы предотвратить временные несоответствия во время восстановле-
ния и обеспечить гарантию вывода «ровно один раз» для приложений с неде-
терминированной логикой приложения, соединитель Flink Cassandra может 
быть настроен для использования режима WAL. Мы обсудим более подробно 
режим WAL ниже в этом разделе. Следующий код показывает зависимость, 
которую необходимо добавить в файл сборки вашего приложения, чтобы ис-
пользовать соединитель приемника Cassandra:

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-cassandra_2.12</artifactId>
  <version>1.7.1</version>
</dependency>

Чтобы проиллюстрировать использование соединителя приемника Cas-
sandra, мы возьмем простой пример таблицы Cassandra, которая содержит 
данные о показаниях датчиков и состоит из двух столбцов: sensorId и tem-
perature. Операторы CQL в примере 8.6 создают пространство ключей example 
и таблицу sensors в этом пространстве ключей.

Пример 8.6   Определение примера таблицы Cassandra
CREATE KEYSPACE IF NOT EXISTS example
  WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};

CREATE TABLE IF NOT EXISTS example.sensors (
  sensorId VARCHAR,
  temperature FLOAT,
  PRIMARY KEY(sensorId)
);

Flink предоставляет различные реализации приемника для записи пото-
ков данных разных типов в Cassandra. Кортежи Java Flink и тип Row, а также 
встроенные в Scala кортежи и case-классы обрабатываются иначе, чем типы 
POJO, определяемые пользователем. Обсудим оба случая отдельно. В  при-
мере 8.7 показано, как создать приемник, который записывает поток дан-
ных кортежей, case-классов или строк в таблицу Cassandra. В этом примере 
DataStream[(String, Float)] записывается в таблицу sensors.
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Пример 8.7   Создание приемника Cassandra для кортежей
val readings: DataStream[(String, Float)] = ???

val sinkBuilder: CassandraSinkBuilder[(String, Float)] =
  CassandraSink.addSink(readings)
sinkBuilder
  .setHost("localhost")
  .setQuery(
    "INSERT INTO example.sensors(sensorId, temperature) VALUES (?, ?);")
  .build()

Приемники Cassandra создаются и настраиваются с помощью построителя, 
который получается путем вызова метода CassandraSink.addSink() с объектом 
DataStream, который должен быть сгенерирован. Метод возвращает правиль-
ный построитель для типа данных DataStream. В примере 8.7 он возвращает 
построитель приемника Cassandra, который обрабатывает кортежи Scala.

Построители приемников Cassandra для кортежей, case-классов и  строк 
требуют спецификации запроса CQL INSERT1. Запрос настраивается с помо-
щью метода CassandraSinkBuilder.setQuery(). Во время выполнения приемник 
регистрирует запрос как подготовленный оператор и преобразует поля кор-
тежей, case-классов или строк в параметры для подготовленного оператора. 
Поля сопоставляются с параметрами в зависимости от их положения; первое 
значение преобразуется в первый параметр и т. д.

Поскольку поля POJO не имеют естественного порядка, их нужно обраба-
тывать по-другому. В примере 8.8 показано, как настроить приемник Cas-
sandra для POJO типа SensorReading.

Пример 8.8   Создание приемника Cassandra для POJO
val readings: DataStream[SensorReading] = ???

CassandraSink.addSink(readings)
  .setHost("localhost")
  .build()

Как вы можете видеть в  примере  8.8, мы не указываем запрос INSERT. 
Вместо этого POJO передаются в Cassandra Object Mapper, который автома-
тически сопоставляет поля POJO с полями таблицы Cassandra. Для того чтобы 
это работало, класс POJO и его поля должны быть снабжены аннотациями 
Cassandra и предоставлять сеттеры и геттеры для всех полей, как показано 
в  примере  8.9. Flink требует конструктор по умолчанию, как упоминалось 
в разделе 5.4.1 при обсуждении поддерживаемых типов данных.

Пример 8.9   Класс POJO с аннотациями Cassandra Object Mapper
@Table(keyspace = "example", name = "sensors")
class SensorReadings(
  @Column(name = "sensorId") var id: String,

1	 В отличие от операторов SQL INSERT операторы CQL INSERT ведут себя как запросы 
upsert – они заменяют существующие строки с тем же первичным ключом.
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  @Column(name = "temperature") var temp: Float) {

  def this() = {
      this("", 0.0)
  }
    def setId(id: String): Unit = this.id = id
    def getId: String = id
    def setTemp(temp: Float): Unit = this.temp = temp
    def getTemp: Float = temp
  }

В дополнение к параметрам конфигурации, показанным в примерах 8.7 
и 8.8, построитель приемника Cassandra предоставляет еще несколько мето-
дов для настройки соединителя приемника:

�� setClusterBuilder(ClusterBuilder): ClusterBuilder создает Cluster, кото-
рый управляет подключением к  Cassandra. Среди прочего, он может 
настроить имена хостов и порты одной или нескольких точек контакта; 
определить политики балансировки нагрузки, повторных попыток и по-
вторного подключения; и предоставить учетные данные для доступа;

�� setHost(String, [Int]): этот метод представляет собой ярлык для про-
стого построителя кластеров, настроенного с использованием имени 
хоста и порта единственной точки контакта. Если порт не настроен, по 
умолчанию используется порт 9042;

�� setQuery(String): указывает запрос CQL INSERT для записи кортежей, 
case-классов или строк в Cassandra. Запрос не должен быть настроен 
на выдачу POJO;

�� setMapperOptions(MapperOptions): предоставляет параметры для Object 
Mapper Cassandra, такие как конфигурации для согласованности, вре-
мени жизни (TTL) и обработки пустых полей. Параметры игнорируют-
ся, если приемник выдает кортежи, case-классы или строки;

�� enableWriteAheadLog([CheckpointCommitter]): позволяет WAL предостав-
лять гарантии вывода «ровно один раз» в случае недетерминированной 
логики приложения. CheckpointCommitter используется для хранения 
информации о  выполненных контрольных точках во внешнем хра-
нилище данных. Если CheckpointCommitter не настроен, информация 
записывается в конкретную таблицу Cassandra.

Соединитель приемника Cassandra с WAL реализован на основе операто-
ра Flink GenericWriteAheadSink. В разделе 8.4.2 более подробно описано, как 
работает этот оператор, включая роль CheckpointCommitter, и какие гарантии 
согласованности он обеспечивает.

8.3. Реализация пользовательской 
исходной функции

API DataStream предоставляет два интерфейса для реализации исходных сое-
динителей вместе с соответствующими абстрактными классами RichFunction:
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�� SourceFunction и RichSourceFunction могут использоваться для определе-
ния непараллельных соединителей источника – источников, которые 
запускаются с одной задачей;

�� ParallelSourceFunction и RichParallelSourceFunction могут использовать-
ся для определения соединителей источника, которые работают с не-
сколькими параллельными экземплярами задач.

За исключением непараллельного и параллельного, оба интерфейса иден-
тичны. Как и  в  случае с  богатыми вариантами функций обработки1, под-
классы RichSourceFunction и RichParallelSourceFunction могут переопределять 
методы open() и close() и получать доступ к RuntimeContext, который, помимо 
прочего, предоставляет количество экземпляров параллельных задач и ин-
декс текущего экземпляра.

SourceFunction и ParallelSourceFunction определяют два метода:

1)	 void run(SourceContext<T> ctx);
2)	 void cancel().

Метод run() выполняет фактическую работу по чтению или получению 
записей и  загрузке их в  приложение Flink. В  зависимости от системы, из 
которой получены данные, данные могут быть отправлены или извлечены. 
Метод run() вызывается Flink один раз и запускается в выделенном исходном 
потоке, обычно считывая или получая данные и создавая записи в бесконеч-
ном цикле (бесконечный поток). Задача может быть явно отменена в какой-
то момент времени или завершена в  случае конечного потока, когда ввод 
полностью израсходован.

Метод cancel() вызывается Flink, когда приложение отменяется и закры-
вается. Чтобы выполнить плавное завершение работы, метод run(), который 
выполняется в отдельном потоке, должен завершаться, как только вызыва-
ется метод cancel(). В примере 8.10 показана простая функция источника, 
которая считает от 0 до Long.MaxValue.

Пример 8.10   SourceFunction, которая считает до Long.MaxValue
class CountSource extends SourceFunction[Long] {
  var isRunning: Boolean = true

  override def run(ctx: SourceFunction.SourceContext[Long]) = {

    var cnt: Long = -1
    while (isRunning && cnt < Long.MaxValue) {
      cnt += 1
      ctx.collect(cnt)
    }
  }

  override def cancel() = isRunning = false
}

1	 Богатые функции обсуждались в главе 5.
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8.3.1. Сбрасываемые функции источника
Ранее в этой главе мы говорили, что Flink может обеспечить удовлетвори-
тельные гарантии согласованности только для приложений, использующих 
соединители источника, которые могут воспроизводить свои выходные дан-
ные. Функция источника может воспроизвести свой вывод, если внешняя си-
стема, предоставляющая данные, предоставляет API для получения и сброса 
смещения позиции чтения. Примерами таких систем являются файловые 
системы, которые предоставляют смещение файлового потока и метод поис-
ка для перемещения файлового потока в определенную позицию, или Apache 
Kafka, который предоставляет смещения для каждого раздела темы и может 
устанавливать позицию чтения раздела. Контрпример – это соединитель 
источника, который считывает данные из сетевого сокета, немедленно от-
брасывающего доставленные данные.

Функция источника, которая поддерживает воспроизведение вывода, 
должна быть интегрирована с механизмом контрольной точки Flink и сохра-
нять все текущие позиции чтения при установке контрольной точки. Когда 
приложение запускается из точки сохранения или восстанавливается после 
сбоя, смещения чтения извлекаются из последней контрольной точки или 
точки сохранения. Если приложение запускается без существующего состоя-
ния, смещения чтения должны быть установлены на значение по умолчанию. 
Сбрасываемая исходная функция должна реализовывать интерфейс Check-
pointedFunction и сохранять смещения чтения и всю связанную метаинфор-
мацию, такую как пути к файлам или идентификатор раздела, в списочном 
состоянии операторов или каталожном состоянии в  зависимости от того, 
как смещения должны распределяться на параллельные экземпляры зада-
чи в случае масштабируемого приложения (см. раздел 3.4.4 для получения 
подробной информации о распределении списочного состояния операторов 
и каталожного состояния).

Кроме того, важно убедиться, что метод SourceFunction.run(), который вы-
полняется в отдельном потоке, не увеличивает смещение чтения и не пере-
дает данные, пока выполняется контрольная точка; другими словами, пока 
вызывается метод CheckpointedFunction.snapshotState(). Это делается путем 
защиты кода в run(), который продвигает позицию чтения и генерирует за-
писи в блоке. В свою очередь блок синхронизируется с объектом блокировки, 
получаемым из метода SourceContext.getCheckpointLock(). В примере 8.11 про-
изводится сбрасывание CountSource из примера 8.10.

Пример 8.11   Сбрасываемая функция SourceFunction
class ResettableCountSource
    extends SourceFunction[Long] with CheckpointedFunction {

  var isRunning: Boolean = true
  var cnt: Long = _
  var offsetState: ListState[Long] = _

  override def run(ctx: SourceFunction.SourceContext[Long]) = {
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    while (isRunning && cnt < Long.MaxValue) {
      // Синхронизация выдачи данных и контрольной точки.
      ctx.getCheckpointLock.synchronized {
        cnt += 1
        ctx.collect(cnt)
      }
    }
  }

  override def cancel() = isRunning = false

  override def snapshotState(snapshotCtx: FunctionSnapshotContext): Unit = {
    // Удаление предыдущего указателя.
    offsetState.clear()
    // Добавление текущего указателя.
    offsetState.add(cnt)
  }

  override def initializeState(
      initCtx: FunctionInitializationContext): Unit = {

    val desc = new ListStateDescriptor[Long]("offset", classOf[Long])
    offsetState = initCtx.getOperatorStateStore.getListState(desc)
    // Инициализация переменной счетчика.
    val it = offsetState.get()
    cnt = if (null == it || !it.iterator().hasNext) {
      -1L
    } else {
      it.iterator().next()
    }
  }
}

8.3.2. Функции источника, метки времени 
и водяные знаки
Другой важный аспект функций источника – это метки времени и водяные 
знаки. Как указано в разделах 3.3 и 6.1.1, API DataStream предоставляет два 
способа назначения меток времени и создания водяных знаков. Метки вре-
мени и водяные знаки могут быть назначены и сгенерированы с помощью 
специального TimestampAssigner (подробности в разделе 6.1.1) или назначены 
и сгенерированы функцией источника.

Функция источника назначает метки времени и отправляет водяные знаки 
через свой текстовый объект SourceCon.SourceContext, который предоставляет 
следующие методы:

�� def collectWithTimestamp(T record, long timestamp): Unit;
�� def emitWatermark(Watermark watermark): Unit.

Первый метод генерирует запись со связанной с  ней меткой времени, 
а второй – водяной знак предоставляемого типа.
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Помимо устранения необходимости в дополнительном операторе, назна-
чение меток времени и создание водяных знаков в исходной функции мо-
жет пригодиться, если один параллельный экземпляр функции источника 
потребляет записи из нескольких потоковых разделов, таких как разделы 
темы Kafka. Обычно внешние системы, такие как Kafka, гарантируют порядок 
сообщений только внутри потокового раздела. Учитывая случай оператора 
функции источника, который работает с параллелизмом 2 и считывает дан-
ные из темы Kafka с шестью разделами, каждый параллельный экземпляр 
функции источника будет читать записи из трех разделов темы Kafka. Следо-
вательно, каждый экземпляр функции источника мультиплексирует записи 
трех потоковых разделов, чтобы передать их. Мультиплексирование записей, 
скорее всего, вносит дополнительную неупорядоченность по отношению 
к меткам времени событий, так что нисходящий назначитель меток времени 
может создавать больше опоздавших записей, чем ожидалось.

Чтобы избежать такого поведения, функция источника может генериро-
вать водяные знаки для каждого раздела потока независимо и всегда выпу-
скать наименьший водяной знак своих разделов в качестве окончательно-
го водяного знака. Таким образом, она может гарантировать, что гарантии 
порядка используются для каждого раздела и  не генерируются ненужные 
опоздавшие записи.

Еще одна проблема, с которой приходится иметь дело функциям источни-
ка, – это экземпляры, которые бездействуют и больше не отправляют дан-
ные. Это весьма актуальная проблема, поскольку она может помешать все-
му приложению обновлять свои водяные знаки и, следовательно, привести 
к  зависанию приложения. Поскольку водяные знаки должны управляться 
данными, генератор водяных знаков (либо интегрированный в функцию ис-
точника, либо в назначитель меток времени) не будет генерировать новые 
водяные знаки, если он не получает входные записи. Если вы посмотрите, 
как Flink распространяет и обновляет водяные знаки (см. раздел 3.3.3), вы 
можете увидеть, что один оператор, который не обновляет водяные знаки, 
может остановить все водяные знаки приложения, если приложение вклю-
чает в себя операцию перемешивания (keyBy(), rebalance() и т. д.).

Flink содержит механизм, который позволяет избежать таких ситуаций, 
отмечая функции источника как временно неактивные. В режиме ожидания 
механизм распространения водяных знаков Flink игнорирует неиспользу-
емый раздел потока. Источник автоматически становится активным, как 
только он снова начинает отправлять записи. Функция источника может 
решить, когда пометить себя как неактивную, и  делает это путем вызова 
метода SourceContext.markAsTempoporaryIdle().

8.4. Реализация пользовательской функции 
приемника

В API DataStream любой оператор или функция может отправлять данные во 
внешнюю систему или приложение. DataStream необязательно должен в ко-
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нечном итоге приходить в оператор приемника. Например, вы можете реа-
лизовать FlatMapFunction, которая передает каждую входящую запись через 
вызов HTTP POST, а  не через свой Collector. Тем не менее API DataStream 
предоставляет специальный интерфейс SinkFunction и  соответствующий 
абстрактный класс RichSinkFunction1. Интерфейс SinkFunction предоставляет 
единственный метод:

void invoke (значение IN, контекст ctx)

Объект Context функции SinkFunction обеспечивает доступ к текущему вре-
мени обработки, текущему водяному знаку (то есть текущему времени со-
бытия в приемнике) и метке времени записи.

В примере 8.12 показана простая функция SinkFunction, которая записы-
вает показания датчика в  сокет. Обратите внимание, что перед запуском 
программы вам необходимо запустить процесс, который прослушивает со-
кет. В противном случае программа завершится с ошибкой ConnectException, 
потому что не удалось открыть соединение с сокетом. Выполните команду 
nc -l localhost 9191 в Linux, чтобы прослушивать localhost:9191.

Пример 8.12   Простая функция SinkFunction, которая записывает данные в сокет
val readings: DataStream[SensorReading] = ???

// Записываем показания датчика в сокет.
readings.addSink(new SimpleSocketSink("localhost", 9191))
  // Устанавливаем параллелизм 1, т.к. только один поток может писать в сокет.
  .setParallelism(1)

// -----

class SimpleSocketSink(val host: String, val port: Int)
    extends RichSinkFunction[SensorReading] {

  var socket: Socket = _
  var writer: PrintStream = _

  override def open(config: Configuration): Unit = {
    // Открываем сокет и записыватель.
    socket = new Socket(InetAddress.getByName(host), port)
    writer = new PrintStream(socket.getOutputStream)
  }

  override def invoke(
      value: SensorReading,
      ctx: SinkFunction.Context[_]): Unit = {
    // Записываем данные датчика в сокет.
    writer.println(value.toString)

1	 Обычно используется интерфейс RichSinkFunction, поскольку функциям приемника 
обычно требуется установить соединение с внешней системой в методе RichFunc-
tion.open() (см. главу 5 для получения подробной информации об интерфейсе 
RichFunction).
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    writer.flush()
  }

  override def close(): Unit = {
    // Закрываем записыватель и сокет.
    writer.close()
    socket.close()
  }
}

Как уже говорилось, гарантии сквозной согласованности приложения за-
висят от свойств его соединителей приемников. Для достижения сквозной 
семантики «ровно один раз» приложению требуются идемпотентные или 
транзакционные соединители приемника. Функция SinkFunction в  приме-
ре  8.12 не выполняет идемпотентную запись и  не поддерживает транзак-
ционную запись. Из-за того, что сокет имеет свойство «только добавление», 
невозможно выполнять идемпотентную запись. Поскольку сокет не имеет 
встроенной поддержки транзакций, транзакционная запись может выпол-
няться только с использованием стандартного приемника WAL Flink. В сле-
дующих разделах вы узнаете, как реализовать идемпотентные или транзак-
ционные соединители приемников.

8.4.1. Идемпотентные соединители приемника
Для многих приложений интерфейса SinkFunction достаточно для реализации 
идемпотентного соединителя приемника. Это возможно, если выполняются 
следующие два условия:

1)	� данные результата имеют детерминированный (составной) ключ, по 
которому могут выполняться идемпотентные обновления. Для при-
ложения, которое вычисляет среднюю температуру на датчик в мину-
ту, детерминированным составным ключом может служить сочетание 
идентификатора датчика и метки времени для каждой минуты. Детер-
минированные ключи важны для обеспечения правильной перезаписи 
всех операций записи в случае восстановления;

2)	� внешняя система, например реляционная база данных или хранилище 
значений ключей, поддерживает обновления для каждого ключа.

В примере 8.13 показано, как реализовать и использовать идемпотентную 
функцию SinkFunction, которая выполняет запись в базу данных JDBC, в дан-
ном случае во встроенную базу данных Apache Derby.

Пример 8.13  � Идемпотентная функция SinkFunction,  
которая записывает в базу данных JDBC

val readings: DataStream[SensorReading] = ???

// Запись показаний датчика в таблицу Derby.
readings.addSink(new DerbyUpsertSink)

// -----
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class DerbyUpsertSink extends RichSinkFunction[SensorReading] {
  var conn: Connection = _
  var insertStmt: PreparedStatement = _
  var updateStmt: PreparedStatement = _

  override def open(parameters: Configuration): Unit = {
    // Соединение со встроенной таблицей Derby локальной памяти.
    conn = DriverManager.getConnection(
       "jdbc:derby:memory:flinkExample",
       new Properties())
    // Подготовка операторов вставки и обновления.
    insertStmt = conn.prepareStatement(
      "INSERT INTO Temperatures (sensor, temp) VALUES (?, ?)")
    updateStmt = conn.prepareStatement(
      "UPDATE Temperatures SET temp = ? WHERE sensor = ?")
  }

  override def invoke(r: SensorReading, context: Context[_]): Unit = {
    // Настройка параметров и выполнение оператора обновления.
    updateStmt.setDouble(1, r.temperature)
    updateStmt.setString(2, r.id)
    updateStmt.execute()
    // Выполнение оператора вставки, если оператор обновления не обновил ни одной строки.
    if (updateStmt.getUpdateCount == 0) {
      // Настройка параметров оператора вставки.
      insertStmt.setString(1, r.id)
      insertStmt.setDouble(2, r.temperature)
      // Выполнение оператора вставки.
      insertStmt.execute()
    }
  }

  override def close(): Unit = {
    insertStmt.close()
    updateStmt.close()
    conn.close()
  }
}

Поскольку Apache Derby не предоставляет встроенного оператора UPSERT, 
приемник из примера выше выполняет запись по типу UPSERT, сначала пыта-
ясь обновить строку и вставляя новую строку, если строки с данным ключом 
не существует. Соединитель приемника Cassandra следует тому же подходу, 
когда WAL не включен.

8.4.2. Соединители транзакционных приемников
Когда идемпотентный соединитель приемника не подходит из-за характери-
стик вывода приложения, свойств требуемой системы приемника или из-за 
более строгих требований согласованности, альтернативой могут служить 
соединители транзакционного приемника. Как мы говорили ранее, соеди-
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нители транзакционных приемников должны быть интегрированы с меха-
низмом контрольных точек Flink, поскольку они могут отправлять данные во 
внешнюю систему только после успешного завершения контрольной точки.

Чтобы упростить реализацию транзакционных приемников, API DataStream 
предоставляет два шаблона, которые можно расширить для реализации поль-
зовательских операторов приемников. Оба шаблона реализуют интерфейс 
CheckpointListener для получения уведомлений от JobManager о завершенных 
контрольных точках (подробности об интерфейсе см. в разделе 7.1.5):

�� GenericWriteAheadSink собирает все исходящие записи для каждой конт
рольной точки и сохраняет их в состоянии оператора задачи прием-
ника. Состояние хранится в  контрольной точке и  восстанавливается 
в случае сбоя. Когда задача получает уведомление о завершении кон-
трольной точки, она передает записи о  завершенных контрольных 
точках во внешнюю систему. Этот интерфейс реализует соединитель 
приемника Cassandra с включенным WAL;

�� TwoPhaseCommitSinkFunction использует транзакционные функции внеш-
ней системы приемника. Для каждой контрольной точки он запускает 
новую транзакцию и  отправляет все последующие записи в  систему 
приемника в  контексте текущей транзакции. Приемник фиксирует 
транзакцию, когда получает уведомление о завершении соответству-
ющей контрольной точки.

Далее мы описываем оба интерфейса и гарантии их согласованности.

8.4.2.1. GenericWriteAheadSink
GenericWriteAheadSink упрощает реализацию операторов приемника с улуч-
шенными качествами согласованности. Оператор интегрирован с механиз-
мом контрольных точек Flink и  стремится отправлять каждую запись во 
внешнюю систему ровно один раз. Однако вы должны знать, что существуют 
сценарии сбоя, в которых приемник журнала упреждающей записи создает 
записи более одного раза. Следовательно, GenericWriteAheadSink не предо-
ставляет абсолютную гарантию «ровно один раз», а  предоставляет только 
гарантию «хотя бы один раз». Мы обсудим эти сценарии более подробно 
дальше в этой главе.

GenericWriteAheadSink добавляет все полученные записи в журнал упрежда-
ющей записи, который сегментирован по контрольным точкам. Каждый раз, 
когда оператор приемника получает барьер контрольной точки, он запускает 
новый раздел, и все последующие записи добавляются в новый раздел. WAL 
сохраняется в контрольную точку как состояние оператора. Поскольку жур-
нал будет восстановлен в случае сбоя, записи не будут потеряны.

Когда GenericWriteAheadSink получает уведомление о  завершенной конт
рольной точке, он отправляет все записи, которые хранятся в WAL в сегменте, 
соответствующем успешной контрольной точке. В зависимости от конкретной 
реализации оператора приемника записи могут быть записаны в любое хра-
нилище или систему сообщений. Когда все записи были успешно отправлены, 
соответствующая контрольная точка должна быть внутренне зафиксирована.
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Контрольная точка фиксируется в  два этапа. Во-первых, приемник по-
стоянно хранит информацию о том, что контрольная точка была зафикси-
рована, а во-вторых, он удаляет записи из WAL. Информацию о фиксации 
невозможно сохранить в  состоянии приложения Flink, потому что оно не 
является постоянным и будет сброшено в случае сбоя. Вместо этого Generic-
WriteAheadSink использует подключаемый компонент CheckpointCommitter для 
хранения и поиска информации о зафиксированных контрольных точках во 
внешнем постоянном хранилище. Например, соединитель приемника Cas-
sandra по умолчанию использует CheckpointCommitter, который записывает 
информацию о контрольных точках в Cassandra.

Благодаря встроенной логике GenericWriteAheadSink нетрудно реализовать 
приемник, использующий WAL. Операторам, расширяющим GenericWriteA-
headSink, необходимо предоставить три параметра конструктора:

�� CheckpointCommitter, как обсуждалось ранее;
�� TypeSerializer для сериализации входных записей;
�� идентификатор задания, который передается в CheckpointCommitter для 

различения информации о фиксации при перезапуске приложения.

Более того, оператор упреждающей записи должен реализовать един-
ственный метод:

boolean sendValues(Iterable<IN> values, long chkpntId, long timestamp) 

GenericWriteAheadSink вызывает метод sendValues() для передачи записей 
завершенной контрольной точки во внешнюю систему хранения. Метод по-
лучает Iterable по всем записям контрольной точки, ID контрольной точки 
и метку времени, когда контрольная точка была установлена. Метод должен 
возвращать true, если все записи обработаны успешно, и false, если запись 
не удалась.

В примере 8.14 показана реализация приемника с упреждающей записью, 
который записывает в стандартный вывод. Он использует FileCheckpointCom-
mitter, который мы здесь не обсуждаем. Вы можете найти его реализацию 
в репозитории, содержащем примеры книги.

	 Обратите внимание, что GenericWriteAheadSink не реализует интерфейс функции приема. 
Таким образом, приемники, расширяющие GenericWriteAheadSink, не могут быть добавле-
ны с помощью DataStream.addSink(), но присоединяются с помощью метода DataStream.
transform().

Пример 8.14   Приемник WAL, который отправляет данные в стандартный вывод
val readings: DataStream[SensorReading] = ???

// Запись показаний датчика в стандартный вывод через журнал опережающей записи.
readings.transform(
  "WriteAheadSink", new SocketWriteAheadSink)

// -----

class StdOutWriteAheadSink extends GenericWriteAheadSink[SensorReading](
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    // CheckpointCommitter, который фиксирует контрольные точки 
    // в локальной файловой системе.
    new FileCheckpointCommitter(System.getProperty("java.io.tmpdir")),
    // Сериализатор записей.
    createTypeInformation[SensorReading]
      .createSerializer(new ExecutionConfig),
    // Случайный идентификатор JobID, применяемый в CheckpointCommitter.
    UUID.randomUUID.toString) {

  override def sendValues(
      readings: Iterable[SensorReading],
      checkpointId: Long,
      timestamp: Long): Boolean = {

  for (r <- readings.asScala) {
    // Запись данных в стандартный вывод.
    println(r)
    }
    true
  }
}

Репозиторий примеров содержит приложение, которое выходит из строя 
и регулярно восстанавливается, чтобы продемонстрировать поведение Std-
OutWriteAheadSink и обычного приемника DataStream.print() в случае сбоев.

Как упоминалось ранее, GenericWriteAheadSink не может предоставить аб-
солютную гарантию «ровно один раз». Есть два случая сбоя, которые могут 
привести к повторной отправке записей:

1)	� программа терпит сбой, пока задача выполняет метод sendValues(). 
Если внешняя система-приемник не дает гарантию атомарной записи – 
или все, или ни одной, – может случиться так, что некоторые данные 
могли быть записаны, а другие – нет. Поскольку контрольная точка еще 
не была зафиксирована, приемник снова запишет все записи во время 
восстановления;

2)	� все записи внесены правильно, и метод sendValues() возвращает true; 
однако программа завершается ошибкой до вызова CheckpointCommitter 
или CheckpointCommitter не может зафиксировать контрольную точку. Во 
время восстановления все записи еще не зафиксированных контроль-
ных точек будут отправлены заново.

	 Обратите внимание, что эти сценарии сбоя не влияют на гарантии использования соеди-
нителя приемника Cassandra «ровно один раз», поскольку он выполняет запись UPSERT. 
Соединитель приемника Cassandra выигрывает от WAL, потому что он защищает от не-
детерминированных ключей и предотвращает несогласованные записи в Cassandra.

8.4.2.2. TwoPhaseCommitSinkFunction
Flink предоставляет интерфейс TwoPhaseCommitSinkFunction, чтобы упростить 
реализацию функций приемника, которые обеспечивают сквозные гаран-
тии «ровно один раз». Однако то, предоставляет ли функция приемника 2PC 
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такие гарантии или нет, зависит от деталей реализации. Мы начинаем об-
суждение этого интерфейса с  вопроса: «Не слишком ли дорого обходится 
протокол 2PC?»

Короче говоря, 2PC – дорогостоящий подход к обеспечению согласован-
ности в распределенной системе. Однако в контексте Flink протокол запу-
скается только один раз для каждой контрольной точки. Более того, протокол 
TwoPhaseCommitSinkFunction совмещен с  обычным механизмом контрольных 
точек Flink и добавляет лишь небольшие накладные расходы. Функция Two-
PhaseCommitSinkFunction работает очень похоже на приемник WAL, но не со-
бирает записи о состоянии приложения Flink; напротив, она записывает их 
в открытой транзакции во внешнюю систему приемника.

TwoPhaseCommitSinkFunction реализует следующий протокол. Прежде чем за-
дача-приемник выдаст свою первую запись, она запускает транзакцию во 
внешней системе-приемнике. Все полученные впоследствии записи обра-
батываются в контексте транзакции. Фаза голосования протокола 2PC начи-
нается, когда JobManager инициирует контрольную точку и вводит барьеры 
в источники приложения. Когда оператор получает барьер, он проверяет его 
состояние и отправляет сообщение подтверждения в JobManager, как только 
это будет сделано. Когда задача-приемник получает барьер, она сохраня-
ет свое состояние, подготавливает текущую транзакцию к фиксации и под-
тверждает контрольную точку в JobManager. Сообщения подтверждения для 
JobManager аналогичны голосованию за фиксацию протокола 2PC. Задача 
приемника на этот момент еще не должна зафиксировать транзакцию, по-
тому что нет уверенности, что все задачи завершили свои контрольные точ-
ки. Задача приемника также запускает новую транзакцию для всех записей, 
поступающих до следующего барьера контрольной точки.

Когда JobManager получает уведомления об успешных контрольных точ-
ках от всех экземпляров задач, он отправляет уведомление о  завершении 
контрольных точек всем заинтересованным задачам. Это уведомление со-
ответствует команде фиксации протокола 2PC. Когда задача-приемник по-
лучает уведомление, она фиксирует все открытые транзакции предыдущих 
контрольных точек1. После того как задача-приемник подтверждает свою 
контрольную точку, она должна иметь возможность зафиксировать соответ-
ствующую транзакцию даже в случае сбоя. Если транзакция не может быть 
зафиксирована, приемник теряет данные. Итерация протокола 2PC завер-
шается успешно, когда все задачи-приемники фиксируют свои транзакции.

Обобщим требования к системе внешнего приемника:

�� система внешнего приемника должна обеспечивать поддержку тран-
закций, или приемник должен иметь возможность имитировать тран-
закции во внешней системе. Следовательно, приемник должен иметь 
возможность записи в систему приемника, но записанные данные не 
должны быть видимыми до того, как они будут зафиксированы;

�� транзакция должна быть открытой и принимать записи в течение ин-
тервала контрольной точки;

1	 Задаче может потребоваться совершить несколько транзакций, если сообщение 
подтверждения потеряно.
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�� транзакция должна дождаться подтверждения, пока не будет получено 
уведомление о  завершении контрольной точки. В  случае цикла вос-
становления это может занять некоторое время. Если система-прием-
ник закрывает транзакцию (например, с тайм-аутом), незавершенные 
данные будут потеряны;

�� приемник должен иметь возможность восстанавливать транзакцию 
после сбоя процесса. Некоторые системы-приемники предоставляют 
идентификатор транзакции, который можно использовать для фикса-
ции или отмены открытой транзакции;

�� фиксация транзакции должна быть идемпотентной операцией – при-
емник или внешняя система должны иметь возможность заметить, что 
транзакция уже зафиксирована, или повторная фиксация не должна 
иметь никакого эффекта.

Возможно, вам будет легче понять протокол и требования системы при-
емника после конкретного примера. В примере 8.15 показана функция Two-
PhaseCommitSinkFunction, которая выполняет запись в файловую систему с га-
рантией «ровно один раз». По сути, это упрощенная версия BucketingFileSink, 
о которой говорилось ранее.

Пример 8.15   Транзакционный приемник, записывающий данные в файлы
class TransactionalFileSink(val targetPath: String, val tempPath: String)
    extends TwoPhaseCommitSinkFunction[(String, Double), String, Void](
      createTypeInformation[String].createSerializer(new ExecutionConfig),
      createTypeInformation[Void].createSerializer(new ExecutionConfig)) {

  var transactionWriter: BufferedWriter = _
  /** Создаем временный файл для транзакции, в которую будем помещать записи. 
    */
  override def beginTransaction(): String = {
    // Путь к файлу транзакции включает текущее время и индекс задачи.
    val timeNow = LocalDateTime.now(ZoneId.of("UTC"))
      .format(DateTimeFormatter.ISO_LOCAL_DATE_TIME)
    val taskIdx = this.getRuntimeContext.getIndexOfThisSubtask
    val transactionFile = s"$timeNow-$taskIdx"

    // Создаем файл транзакции и записыватель.
    val tFilePath = Paths.get(s"$tempPath/$transactionFile")
    Files.createFile(tFilePath)
    this.transactionWriter = Files.newBufferedWriter(tFilePath)
    println(s"Creating Transaction File: $tFilePath")
    // Возвращаем имя файла транзакции для последующего использования.
    transactionFile
  }

  /** Запись данных в текущий файл транзакции */
  override def invoke(
      transaction: String,
      value: (String, Double),
      context: Context[_]): Unit = {
    transactionWriter.write(value.toString)
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    transactionWriter.write('\n')
  }

  /** Выгрузка и закрытие текущего файла транзакции */
  override def preCommit(transaction: String): Unit = {
    transactionWriter.flush()
    transactionWriter.close()
  }

  /** Фиксируем транзакцию путем переноса предварительного файла транзакции
    * в целевой каталог.
    */
  override def commit(transaction: String): Unit = {
    val tFilePath = Paths.get(s"$tempPath/$transaction")
    // Проверяем наличие файла, чтобы гарантировать идемпотентность фиксации.
    if (Files.exists(tFilePath)) {
      val cFilePath = Paths.get(s"$targetPath/$transaction")
      Files.move(tFilePath, cFilePath)
    }
  }

  /** Прерываем транзакцию удалением файла транзакции */
  override def abort(transaction: String): Unit = {
    val tFilePath = Paths.get(s"$tempPath/$transaction")
    if (Files.exists(tFilePath)) {
      Files.delete(tFilePath)
    }
  }
}

TwoPhaseCommitSinkFunction[IN, TXN, CONTEXT] имеет три параметра типа:

1)	� IN определяет тип входных записей. В примере 8.15 это Tuple2 с полями 
типа String и Double;

2)	� TXN определяет идентификатор транзакции, который может использо-
ваться для идентификации и восстановления транзакции после сбоя. 
В примере 8.15 это строка, содержащая имя файла транзакции;

3)	� CONTEXT определяет необязательный настраиваемый контекст. Trans-
actionalFileSink в примере 8.15 не нуждается в контексте, поэтому он 
устанавливает тип как Void.

Конструктору TwoPhaseCommitSinkFunction требуются два TypeSerializer – 
один для типа TXN, а другой для типа CONTEXT.

Наконец, TwoPhaseCommitSinkFunction определяет пять функций, которые 
необходимо реализовать:

1)	� beginTransaction(): TXN запускает новую транзакцию и  возвращает 
идентификатор транзакции. TransactionalFileSink в примере 8.15 соз-
дает новый файл транзакции и возвращает его имя в качестве иденти-
фикатора;

2)	� invoke(txn: TXN, value: IN, context: Context[_]): модуль записывает зна-
чение в  текущую транзакцию. Приемник в  примере  8.15 добавляет 
значение в виде строки в файл транзакции;
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3)	� preCommit(txn: TXN): модуль предварительно фиксирует транзакцию. 
Предварительно зафиксированная транзакция может не получать 
дальнейшие записи. Наша реализация в примере 8.15 выгружает и за-
крывает файл транзакции;

4)	� commit(txn: TXN): модуль фиксирует транзакцию. Эта операция должна 
быть идемпотентной – записи не должны записываться в систему вы-
вода дважды, даже если этот метод вызывается дважды. В примере 8.15 
мы проверяем, существует ли еще файл транзакции, и перемещаем его 
в целевой каталог, если это так;

5)	� abort(txn: TXN): модуль прерывает транзакцию. Этот метод также может 
вызываться дважды для транзакции. Наш TransactionalFileSink в при-
мере 8.15 проверяет, существует ли еще файл транзакции, и удаляет 
его, если это так.

Как видите, реализация интерфейса не слишком сложна. Однако гаран-
тии сложности и  согласованности реализации зависят, среди прочего, от 
функций и  возможностей системы приемника. Например, производитель 
Kafka Flink реализует интерфейс TwoPhaseCommitSinkFunction. Как упоминалось 
ранее, соединитель может потерять данные, если транзакция откатывается 
из-за тайм-аута1. Следовательно, он не предлагает окончательных гарантий 
«ровно один раз», даже если он реализует интерфейс TwoPhaseCommitSinkFunc-
tion.

8.5. Асинхронный доступ 
к внешним системам

Помимо приема или передачи потоков данных, еще одним распространен-
ным вариантом использования, который требует взаимодействия с внешней 
системой хранения, является обогащение потока данных путем поиска ин-
формации в удаленной базе данных. Примером может служить хорошо из-
вестный эталонный тест потоковой обработки Yahoo!, основанный на потоке 
кликов по рекламе, которые необходимо дополнить подробностями о соот-
ветствующей кампании, размещенными в хранилище пар «ключ–значение».

Простой подход для таких случаев использования – реализовать функ-
цию MapFunction, которая запрашивает в  хранилище данных каждую обра-
ботанную запись, ожидает, пока запрос вернет результат, обогащает запись 
и выдает результат. Хотя этот подход легко реализовать, он страдает серьез-
ной проблемой: каждый запрос к внешнему хранилищу данных добавляет 
значительную задержку (запрос/ответ состоит из двух сетевых сообщений), 
и MapFunction тратит бòльшую часть своего времени на ожидание результатов 
запроса.

Для уменьшения задержки удаленных вызовов ввода/вывода Apache Flink 
предоставляет асинхронный механизм AsyncFunction, который одновременно 

1	 См. подробности в разделе 8.2.2.
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отправляет несколько запросов и асинхронно обрабатывает их результаты. 
Функцию можно настроить для сохранения порядка записей (запросы могут 
возвращаться в порядке, отличном от порядка, в котором они были отправ-
лены) или возвращать результаты в  порядке поступления результатов за-
проса для дальнейшего уменьшения задержки. Эта функция также должным 
образом интегрирована с  механизмом контрольных точек Flink: входные 
записи, которые в настоящее время ожидают ответа, помечаются контроль-
ными точками, а запросы повторяются в случае восстановления. Более того, 
AsyncFunction правильно работает с обработкой по времени события, потому 
что она гарантирует, что записи не «перескочат» водяные знаки, даже если 
разрешены неупорядоченные результаты.

Чтобы воспользоваться преимуществами AsyncFunction, внешняя система 
должна предоставить клиента, который поддерживает асинхронные вызовы, 
что характерно для многих систем. Если система предоставляет только син-
хронного клиента, вы можете создавать потоки для отправки запросов и их 
обработки. Интерфейс AsyncFunction показан ниже:

trait AsyncFunction[IN, OUT] extends Function {
  def asyncInvoke(input: IN, resultFuture: ResultFuture[OUT]): Unit
} 

Параметры типов функции определяют ее типы ввода и  вывода. Метод 
asyncInvoke() вызывается для каждой входной записи с двумя параметрами. 
Первый параметр – это входная запись, а второй – объект обратного вызова, 
возвращающий результат функции или исключение. В примере 8.16 мы по-
казываем, как применять AsyncFunction к DataStream.

Пример 8.16   Применение AsyncFunction
val readings: DataStream[SensorReading] = ???

val sensorLocations: DataStream[(String, String)] = AsyncDataStream
  .orderedWait(
    readings,
    new DerbyAsyncFunction,
    5, TimeUnit.SECONDS, // Запрос тайм-аута спустя 5 с.
    100)                 // Минимум 100 конкурентных запросов.

Асинхронный оператор, применяющий AsyncFunction, настраивается с по-
мощью объекта AsyncDataStream1, который предоставляет два статических 
метода: orderedWait() и unorderedWait(). Оба метода перегружены для разных 
комбинаций параметров. Метод orderedWait() применяет асинхронный опе-
ратор, который выдает результаты в порядке входных записей, в то время 
как оператор метода unorderedWait() только обеспечивает выравнивание во-
дяных знаков и барьеров контрольных точек. Дополнительные параметры 
указывают, когда истечет время ожидания асинхронного вызова записи 
и  сколько одновременных запросов нужно запустить. В  примере  8.17 по-

1	 API Java предоставляет класс AsyncDataStream с соответствующими статическими 
методами.
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казана функция DerbyAsyncFunction, которая запрашивает встроенную базу 
данных Derby через интерфейс JDBC.

Пример 8.17   Функция AsyncFunction, которая обращается к Derby через JDBC
class DerbyAsyncFunction
    extends AsyncFunction[SensorReading, (String, String)] {

  // Получение контекста выполнения, применяемого в запросах.
  private lazy val cachingPoolExecCtx =
    ExecutionContext.fromExecutor(Executors.newCachedThreadPool())
  // Прямой контекст выполнения для передачи будущего результата объекту обратного вызова.
  private lazy val directExecCtx =
    ExecutionContext.fromExecutor(
      org.apache.flink.runtime.concurrent.Executors.directExecutor())

  /**
    * Выпонение запроса JDBC в потоке и обработка результата 
    * с асинхронным обратным вызовом.
    */
  override def asyncInvoke(
      reading: SensorReading,
      resultFuture: ResultFuture[(String, String)]): Unit = {
  val sensor = reading.id
  // Получение раздела таблицы Derby как Future.
  val room: Future[String] = Future {
     // Новое соединение и оператор для каждой записи.
     // Примечание: это НЕ лучшая практика!
     // Подключения и подготовленные операторы следует кешировать.
     val conn = DriverManager
       .getConnection(
          "jdbc:derby:memory:flinkExample",
          new Properties())
      val query = conn.createStatement()

      // Отправляем запрос и ждем результат; это синхронный вызов.
      val result = query.executeQuery(
        s"SELECT room FROM SensorLocations WHERE sensor = '$sensor'")

      // Получаем room (если есть).
      val room = if (result.next()) {
        result.getString(1)
      } else {
        "UNKNOWN ROOM"
      }

      // Закрываем результат, оператор и соединение.
      result.close()
      query.close()
      conn.close()
      // Возвращаем room.
      room
    }(cachingPoolExecCtx)
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    // Применяем к результату обратный вызов.
    room.onComplete {
      case Success(r) => resultFuture.complete(Seq((sensor, r)))
      case Failure(e) => resultFuture.completeExceptionally(e)
    }(directExecCtx)
  }
}

Метод asyncInvoke() функции DerbyAsyncFunction в примере 8.17 обертывает 
блокирующий запрос JDBC в Future, который выполняется через CachedThread-
Pool. Чтобы пример был кратким, мы создаем новое соединение JDBC для 
каждой записи, что, конечно, довольно неэффективно, и этого следует из-
бегать. Future[String] содержит результат запроса JDBC.

Наконец, мы применяем обратный вызов onComplete() к Future и передаем 
результат (или возможное исключение) обработчику ResultFuture. В отличие 
от JDBC-запроса Future обратный вызов onComplete() обрабатывает DirectEx-
ecutor, поскольку передача результата в ResultFuture – это легкая операция, 
не требующая выделенного потока. Обратите внимание, что все операции 
выполняются неблокирующим образом.

Важно отметить, что экземпляр AsyncFunction последовательно вызыва-
ется для каждой из входных записей – экземпляр функции не вызывается 
в многопоточном режиме. Следовательно, метод asyncInvoke() должен быстро 
вернуться, запустив асинхронный запрос и обработав результат с помощью 
обратного вызова, который пересылает результат в ResultFuture. Следует из-
бегать использования следующих распространенных неудачных приемов:

�� отправка запроса, блокирующего метод asyncInvoke();
�� отправка асинхронного запроса, но ожидание внутри метода asyncIn-
voke() завершения запроса.

8.6. Заключение

В этой главе вы узнали, как приложения Flink DataStream могут считывать 
данные и записывать данные во внешние системы, а также познакомились 
с требованиями к приложению для достижения различных гарантий сквоз-
ной согласованности. Мы представили наиболее часто используемые встро-
енные соединители источника и  приемника Flink, которые также служат 
представителями различных типов систем хранения, таких как очереди со-
общений, файловые системы и хранилища пар «ключ–значение».

Затем мы показали вам, как реализовать настраиваемые соединители ис-
точника и приемника, включая соединители приемника WAL и 2PC, предо-
ставив подробные примеры. Наконец, вы узнали о функции Flink AsyncFunc-
tion, которая может значительно улучшить быстродействие взаимодействия 
с внешними системами за счет асинхронного выполнения и обработки за-
просов.



Глава 9
Настройка Flink 
для потоковых 

приложений

Сегодняшние инфраструктуры данных разнообразны. Структуры распреде-
ленной обработки данных, такие как Apache Flink, должны быть настроены 
для взаимодействия с несколькими компонентами, такими как менеджеры 
ресурсов, файловые системы и службы распределенной координации.

В этой главе мы обсудим различные способы развертывания кластеров 
Flink и  способы их безопасной настройки и  обеспечения высокой доступ-
ности. Мы расскажем про настройки Flink для различных версий Hadoop 
и файловых систем и обсудим наиболее важные параметры конфигурации 
главного и рабочих процессов Flink. Прочитав эту главу, вы узнаете, как уста-
новить и настроить кластер Flink.

9.1. Режимы развертывания

Flink можно развернуть в различных средах, таких как локальная машина, 
кластер без операционной системы, кластер Hadoop YARN или кластер Kuber-
netes. В разделе 3.1.1 мы представили различные компоненты системы Flink: 
JobManager, TaskManager, ResourceManager и Dispatcher. Далее мы объясним, 
как настроить и запустить Flink в различных средах, включая автономные 
кластеры, Docker, Apache Hadoop YARN и Kubernetes, и какое сочетание ком-
понентов Flink применяется в каждом варианте.

9.1.1. Автономный кластер
Автономный кластер Flink состоит как минимум из одного главного про-
цесса и как минимум одного процесса TaskManager, которые выполняются 
на одной или нескольких машинах. Все процессы выполняются как обычные 
процессы Java JVM. На рис. 9.1 показан автономный вариант Flink.
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Главный процесс

ResourceManager
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TaskManager

TaskManager

(1) Запуск главного процесса

(2) Регистрация

(3) Запуск рабочего процесса

Рис. 9.1   Запуск автономного кластера Flink

Главный процесс запускает Dispatcher и  ResourceManager в  отдельных 
потоках. После запуска TaskManager регистрируется в ResourceManager. На 
рис. 9.2 показано, как задание передается в автономный кластер.
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(6) Выполнение 
задачи

TaskManager

TaskManager

Рис. 9.2   Отправка приложения в автономный кластер Flink

Клиент отправляет задание диспетчеру Dispatcher, который изнутри за-
пускает поток JobManager и предоставляет JobGraph для выполнения. Job-
Manager запрашивает необходимые слоты обработки у  ResourceManager 
и  развертывает задание для выполнения после получения запрошенных 
слотов.

В автономном варианте главный процесс и  рабочие процессы (ворке-
ры) не перезапускаются автоматически в случае сбоя. Задание может вос-
становиться после сбоя воркера, если доступно достаточное количество 
слотов обработки. Это можно обеспечить, запустив один или нескольких 
резервных воркеров. Восстановление задания после сбоя главного про-
цесса требует настройки режима высокой доступности, как описано далее 
в этой главе.

Чтобы настроить автономный кластер Flink, загрузите двоичный дистри-
бутив с веб-сайта Apache Flink и извлеките tar-архив с помощью команды:

tar xfz ./flink-1.7.1-bin-scala_2.12.tgz
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Извлеченный каталог содержит папку ./bin со сценариями bash1 для запу-
ска и остановки процессов Flink. Сценарий ./bin/start-cluster.sh запускает 
главный процесс на локальном компьютере и один или несколько диспетче-
ров задач на локальном или удаленном компьютере.

Flink предварительно настроен для запуска локальной установки и запуска 
одного мастера и одного TaskManager на локальном компьютере. Сценарии 
запуска должны иметь возможность запускать процесс Java. Если путь к ис-
полняемому файлу java не находится в PATH, базовую папку установки Java 
можно указать, экспортировав переменную среды JAVA_HOME или установив 
параметр env.java.home в  файле ./conf/flink-conf.yaml. Локальный кластер 
Flink запускается путем вызова ./bin/start-cluster.sh. Вы можете посетить 
веб-интерфейс Flink по адресу http://localhost:8081 и проверить количество 
подключенных диспетчеров задач и доступных слотов.

Чтобы запустить распределенный кластер Flink, который работает на не-
скольких машинах, вам необходимо настроить конфигурацию по умолчанию 
и выполнить еще несколько шагов:

�� имена хостов (или IP-адреса) всех машин, на которых должны работать 
диспетчеры задач, должны быть перечислены в файле ./conf/slaves;

�� сценарий start-cluster.sh требует конфигурации SSH без пароля на 
всех машинах, чтобы иметь возможность запускать процессы Task-
Manager;

�� дистрибутивный общий ресурс Flink должен находиться на всех маши-
нах по одному и тому же пути. Распространенный подход – смонтиро-
вать общий сетевой каталог с дистрибутивом Flink на каждой машине;

�� имя хоста (или IP-адрес) машины, на которой запущен главный про-
цесс, необходимо настроить в файле ./conf/flink-conf.yaml с ключом 
конфигурации jobmanager.rpc.address.

После того как все настроено, вы можете запустить кластер Flink, выполнив 
сценарий ./bin/start-cluster.sh. Сценарий запустит локальный JobManager 
и один TaskManager для каждой записи в файле подчиненных устройств. Вы 
можете проверить, был ли запущен главный процесс и все ли TaskManager 
были успешно зарегистрированы, обратившись к  веб-интерфейсу на ком-
пьютере, на котором запущен главный процесс. Локальный или распреде-
ленный автономный кластер останавливается вызовом скрипта ./bin/stop-
cluster.sh.

9.1.2. Docker
Docker – популярная платформа, применяемая для упаковки и запуска прило-
жений в контейнерах. Контейнеры Docker запускаются ядром операционной 
системы хост-машины и поэтому более легкие, чем виртуальные машины. 

1	 Чтобы запустить Flink в Windows, вы можете использовать готовый сценарий bat 
или обычные сценарии bash в подсистеме Windows для Linux (WSL) или Cygwin. Все 
скрипты работают только для локальных настроек.
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Более того, они изолированы и общаются только через строго определенные 
каналы. Контейнер запускается из образа, который определяет программное 
обеспечение в контейнере.

Члены сообщества Flink настраивают и создают образы Docker для Apache 
Flink и  загружают их в  Docker Hub, общедоступный репозиторий образов 
Docker1. В репозитории хранятся образы Docker для самых последних версий 
Flink.

Запуск Flink в Docker – это простой способ настроить кластер Flink на ва-
шем локальном компьютере. Для локальной установки Docker вам необходи-
мо запустить два типа контейнеров: главный контейнер, который запускает 
Dispatcher и ResourceManager, и один или несколько рабочих контейнеров, 
которые запускают TaskManager. Контейнеры работают вместе как автоном-
ный кластер (см. раздел 9.1.1). После запуска TaskManager регистрируется 
в  ResourceManager. Когда задание отправляется диспетчеру Dispatcher, он 
порождает поток JobManager, запрашивающий слоты обработки у Resource-
Manager. ResourceManager в ответ назначает процессы TaskManager для Job-
Manager, который развертывает задание после того, как будут доступны все 
необходимые ресурсы.

Главный и  рабочий контейнеры запускаются из одного образа Docker 
с разными параметрами, как показано в примере 9.1.

Пример 9.1   Запуск главного контейнера и рабочего контейнера в Docker
// Запуск главного процесса.
docker run -d --name flink-jobmanager \
  -e JOB_MANAGER_RPC_ADDRESS=jobmanager \
  -p 8081:8081 flink:1.7 jobmanager

// Запуск рабочего процесса (предоставьте имена для запуска более одного TaskManager).
docker run -d --name flink-taskmanager-1 \
  --link flink-jobmanager:jobmanager \
  -e JOB_MANAGER_RPC_ADDRESS=jobmanager flink:1.7 taskmanager

Docker загрузит запрошенный образ и его зависимости из Docker Hub и за-
пустит контейнеры с  Flink. Внутреннее имя хоста Docker для JobManager 
передается в контейнеры через переменную JOB_MANAGER_RPC_ADDRESS, которая 
используется в точке входа контейнера для настройки конфигурации Flink.

Параметр -p 8081:8081 первой команды сопоставляет порт 8081 главного 
контейнера с портом 8081 хост-компьютера, чтобы сделать веб-интерфейс 
доступным с хоста. Вы можете получить доступ к веб-интерфейсу, открыв 
в  браузере http://localhost:8081. Веб-интерфейс можно использовать для 
загрузки файлов JAR приложения и запуска приложения. Порт также предо-
ставляет REST API Flink. Следовательно, вы также можете отправлять при-
ложения с помощью клиента CLI Flink по адресу ./bin/flink, управлять за-
пущенными приложениями или запрашивать информацию о кластере или 
запущенных приложениях.

1	 Образы Flink Docker не являются частью официального выпуска Apache Flink.
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	 Обратите внимание, что в настоящее время невозможно передать пользовательскую кон-
фигурацию в образы Docker. Вам необходимо создать свой собственный образ Docker,  
если вы хотите настроить некоторые параметры. Скрипты сборки доступных образов 
Docker для Flink – хорошая отправная точка для создания настроенных образов.

Вместо того чтобы вручную запускать два (или более) контейнера, вы также 
можете создать сценарий конфигурации Docker Compose, который автома-
тически запускает и настраивает кластер Flink, работающий в контейнерах 
Docker и, возможно, других службах, таких как ZooKeeper и Kafka. Мы не бу-
дем вдаваться в подробности этого режима, но, среди прочего, конфигурация 
Docker Compose должна указывать конфигурацию сети, чтобы процессы Flink, 
выполняемые в изолированных контейнерах, могли взаимодействовать друг 
с другом. За подробностями обращайтесь к документации Apache Flink.

9.1.3. Apache Hadoop YARN
YARN – это компонент диспетчера ресурсов Apache Hadoop. Он управляет 
вычислительными ресурсами кластерной среды – ЦП и памятью машин кла-
стера – и предоставляет их приложениям, запрашивающим ресурсы. YARN 
предоставляет ресурсы в виде контейнеров1, которые распределены в кла-
стере и в которых приложения запускают свои процессы. Благодаря своему 
происхождению из экосистемы Hadoop YARN обычно используется в средах 
обработки данных.

Flink может работать на YARN в двух режимах: режиме задания и режиме 
сеанса. В режиме задания кластер Flink запускается на ограниченное время 
для выполнения одного задания. После завершения задания кластер Flink 
останавливается и все ресурсы освобождаются. На рис. 9.3 показано, как за-
дание Flink отправляется в кластер YARN.
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Рис. 9.3   Запуск кластера Flink на YARN в режиме задания

1	 Обратите внимание, что концепция контейнера в YARN отличается от контейнера 
в Docker.
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Когда клиент отправляет задание на выполнение, он подключается к YARN 
ResourceManager, чтобы запустить новый главный процесс приложения 
YARN, который состоит из потока JobManager и ResourceManager. JobManager 
запрашивает необходимые слоты у ResourceManager для выполнения зада-
ния Flink. Затем ResourceManager Flink запрашивает контейнеры у Resource-
Manager YARN и запускает процессы TaskManager. После запуска TaskManager 
регистрирует свои слоты в ResourceManager Flink, который предоставляет их 
JobManager. Наконец, JobManager отправляет задачи задания в TaskManager 
для выполнения.

В режиме сеанса запускается долгоработающий кластер Flink, который 
может запускать несколько заданий и должен быть остановлен вручную. При 
запуске в режиме сеанса Flink подключается к ResourceManager YARN, чтобы 
запустить главный процесс приложения, который запускает поток Dispatcher 
и поток Flink ResourceManager. На рис. 9.4 показана схема сеанса Flink YARN 
в режиме ожидания.

ResourceManager

YARN ResourceManager

Dispatcher

(2) Запуск главного 
процесса приложения Flink

Главный процесс Flink

(1) Запрос контейнера

Рис. 9.4   Запуск кластера Flink на YARN в режиме сеанса

Когда задание отправлено на выполнение, Dispatcher запускает поток 
JobManager, который запрашивает слоты у  ResourceManager Flink. Если 
слотов недостаточно, ResourceManager Flink запрашивает дополнительные 
контейнеры у ResourceManager YARN для запуска процессов TaskManager, 
которые регистрируются в  Flink ResourceManager. Когда доступно доста-
точно слотов, ResourceManager Flink назначает их JobManager и запускает 
выполнение задания. На рис. 9.5 показано, как выполняется задание в ре-
жиме сеанса YARN.

Для обоих вариантов – режима задания и  сеанса – отказавшие диспет-
черы задач будут автоматически перезапущены силами ResourceManager 
Flink. В файле конфигурации ./conf/flink-conf.yaml есть несколько параме-
тров, которые вы можете использовать для управления поведением Flink 
при восстановлении в YARN. Например, вы можете настроить максимальное 
количество отказавших контейнеров до завершения работы приложения. 
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Для восстановления после сбоев главного процесса необходимо настроить 
высокодоступную конфигурацию, как описано в следующем разделе.
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Рис. 9.5   Отправка задания в кластер сеанса Flink YARN

Независимо от того, запускаете ли вы Flink в режиме задания или сеанса 
в YARN, он должен иметь доступ к зависимостям Hadoop в правильной вер-
сии и путь к конфигурации Hadoop. Раздел 9.3 подробно описывает необхо-
димую конфигурацию.

Итак, вы правильно настроили рабочую конфигурацию YARN и HDFS. Те-
перь задание Flink может быть отправлено для выполнения в YARN посред-
ством клиента командной строки Flink с помощью следующей команды:

./bin/flink run -m yarn-cluster ./path/to/job.jar 

Параметр -m определяет хост, на который отправляется задание. Если при-
сутствует ключевое слово yarn-cluster, клиент отправляет задание в кластер 
YARN, как это определено конфигурацией Hadoop. Клиент командной строки 
Flink поддерживает множество других параметров, таких как возможность 
управления памятью контейнеров TaskManager. Обратитесь к документации, 
чтобы узнать о доступных параметрах. Веб-интерфейс запущенного кластера 
Flink обслуживается главным процессом, запущенным на каком-либо узле 
в кластере YARN. Вы можете получить к нему доступ через веб-интерфейс 
YARN, который содержит ссылку на странице обзора приложения в разделе 
Tracking URL: ApplicationMaster.

Сеанс Flink в YARN запускается с помощью сценария ./bin/yarn-session.sh, 
который также использует различные параметры для управления размером 
контейнеров, именем приложения YARN или для предоставления динами-
ческих свойств. По умолчанию сценарий печатает информацию о подклю-
чении кластера сеанса и ожидает ввод. Сеанс останавливается, и все ресурсы 
освобождаются, когда сценарий прекращает работу. Также можно запустить 



Режимы развертывания   241

сеанс YARN в автономном режиме, используя флаг -d. Отсоединенный сеанс 
Flink можно завершить с помощью служебных программ YARN.

После запуска сеанса Flink в YARN вы можете отправлять задания в сеанс 
с помощью команды ./bin/flink run ./path/to/job.jar.

	 Обратите внимание, что вам не нужно предоставлять информацию о соединении, так как 
Flink запомнил детали соединения сеанса Flink, запущенного на YARN. Как и в режиме 
работы, веб-интерфейс Flink связан с обзором приложений веб-интерфейса YARN.

9.1.4. Kubernetes
Kubernetes – это платформа с открытым исходным кодом, которая позволяет 
пользователям развертывать и масштабировать контейнерные приложения 
в распределенной среде. Имея кластер Kubernetes и приложение, упакован-
ное в  образ контейнера, вы можете создать развертывание приложения, 
которое сообщает Kubernetes, сколько экземпляров приложения нужно за-
пустить. Kubernetes будет запускать запрошенное количество контейнеров 
в любом месте на своих ресурсах и перезапускать их в случае сбоя. Kuber-
netes также может позаботиться об открытии сетевых портов для внутренней 
и внешней связи и может предоставлять сервисы для обнаружения процессов 
и балансировки нагрузки. Kubernetes работает локально, в облачных средах 
или в гибридной инфраструктуре.

Развертывание фреймворков и приложений для обработки данных на Ku-
bernetes стало очень популярным. Apache Flink также можно развернуть на 
Kubernetes. Прежде чем углубляться в детали того, как настроить Flink на 
Kubernetes, нам нужно кратко объяснить несколько терминов Kubernetes:

�� кокон1 (pod) – это контейнер, который запускается и управляется Ku-
bernetes2;

�� развертывание (deployment) определяет заданное количество запу-
скаемых модулей или контейнеров. Kubernetes гарантирует, что за-
прошенное количество модулей постоянно работает, и автоматически 
перезапускает отказавшие модули. Развертывания можно увеличивать 
или уменьшать.

Kubernetes может запускать кокон в любом месте своего кластера. Когда 
модуль перезапускается после сбоя или при изменении масштаба разверты-
вания IP-адрес может измениться. Очевидно, что это проблема, если коконы 
должны взаимодействовать друг с другом. Kubernetes предоставляет сервисы 
для решения этой проблемы. Сервис определяет политику доступа к опреде-
ленной группе модулей. Он заботится об обновлении маршрутизации, когда 
модуль запускается на другом узле в кластере.

1	 К сожалению, в русском языке почему-то прижилась калька «под», хотя английское 
слово pod переводится как «кокон, стручок», что звучит ничуть не хуже, чем «кон-
тейнер» Docker, и хорошо отражает суть изолированного запуска. – Прим. перев.

2	 Kubernetes также поддерживает коконы, состоящие из нескольких тесно связанных 
контейнеров.



242   Настройка Flink для потоковых приложений

	 Запуск Kubernetes на локальной машине
Kubernetes предназначен для кластерных операций. Однако проект Kubernetes предо-
ставляет Minikube – среду для запуска одноузлового кластера Kubernetes локально на 
одной машине для тестирования или повседневной разработки. Мы рекомендуем на-
строить Minikube, если вы хотите попробовать запустить Flink на Kubernetes и у вас нет 
кластера Kubernetes под рукой.
Чтобы успешно запускать приложения в кластере Flink, развернутом на Minikube, перед 
развертыванием Flink необходимо выполнить следующую команду:

minikube ssh 'sudo ip link set docker0 promisc on'

Настройка Flink для Kubernetes определяется двумя развертываниями: 
одно для модуля, на котором выполняется главный процесс, а другое – для 
модулей рабочего процесса. Также существует служба, которая предоставля-
ет порты основного модуля рабочим модулям. Два типа модулей – главный 
и  рабочий – ведут себя так же, как процессы автономного развертывания 
или развертывания Docker, которые мы описали ранее. Конфигурация раз-
вертывания главного модуля показана в примере 9.2.

Пример 9.2   Развертывание Kubernetes для главного модуля Flink
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: flink-master
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: flink
        component: master
    spec:
containers:
- name: master
  image: flink:1.7
  args:
  - jobmanager
  ports:
  - containerPort: 6123
    name: rpc
  - containerPort: 6124
    name: blob
  - containerPort: 6125
    name: query
  - containerPort: 8081
    name: ui
  env:
  - name: JOB_MANAGER_RPC_ADDRESS
    value: flink-master

Это развертывание указывает, что должен быть запущен один главный 
контейнер (replicas: 1). Главный контейнер запускается из образа Docker 
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Flink 1.7 (image: flink:1.7) с  аргументом, который запускает главный про-
цесс (args: - jobmanager). Кроме того, развертывание указывает, какие пор-
ты контейнера открывать для RPC, диспетчер больших двоичных объектов 
(для обмена большими файлами), запрашиваемый сервер состояний, а также 
веб-интерфейс и  интерфейс REST. В  примере  9.3 показано развертывание 
рабочих модулей.

Пример 9.3   Развертывание Kubernetes для двух рабочих модулей Flink
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: flink-worker
spec:
  replicas: 2
  template:
    metadata:
      labels:
        app: flink
        component: worker
    spec:
      containers:
      - name: worker
        image: flink:1.7
        args:
        - taskmanager
        ports:
        - containerPort: 6121
        name: data
        - containerPort: 6122
        name: rpc
        - containerPort: 6125
        name: query
      env:
      - name: JOB_MANAGER_RPC_ADDRESS
        value: flink-master

Развертывание рабочего модуля выглядит почти идентично развертыва-
нию главного модуля с некоторыми отличиями. Прежде всего в развертыва-
нии рабочего модуля указаны две реплики, что означает запуск двух рабочих 
контейнеров. Рабочие контейнеры основаны на одном и том же образе Flink 
Docker, но запускаются с другим аргументом (args: -taskmanager). Более того, 
развертывание также открывает несколько портов и передает имя службы 
развертывания главного модуля Flink, чтобы рабочие модули могли получить 
доступ к нему. Определение службы, которое раскрывает главный процесс 
и делает его доступным для рабочих контейнеров, показано в примере 9.4.

Пример 9.4   Служба Kubernetes для главного модуля Flink
apiVersion: v1
kind: Service
metadata:
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  name: flink-master
spec:
  ports:
  - name: rpc
    port: 6123
  - name: blob
    port: 6124
  - name: query
    port: 6125
  - name: ui
    port: 8081
  selector:
    app: flink
    component: master

Вы можете создать развертывание Flink для Kubernetes, сохранив каждое 
определение в отдельном файле, например master-deployment.yaml, worker-de-
ployment.yaml или master-service.yaml. Файлы также находятся в нашем репо-
зитории. Когда у вас есть файлы определений, вы можете зарегистрировать 
их в Kubernetes с помощью команды kubectl:

kubectl create -f master-deployment.yaml
kubectl create -f worker-deployment.yaml
kubectl create -f master-service.yaml

При выполнении этих команд Kubernetes начинает развертывание запро-
шенных контейнеров. Вы можете показать статус всех развертываний, вы-
полнив следующую команду:

kubectl get deployments

Когда вы создаете развертывания в  первый раз, потребуется некоторое 
время, прежде чем будет загружен образ контейнера Flink. Когда все коконы 
будут запущены, у вас будет кластер Flink, работающий на Kubernetes. Однако 
с данной конфигурацией Kubernetes не экспортирует порт во внешние среды. 
Следовательно, вы не можете получить доступ к главному контейнеру для 
отправки приложения или доступа к  веб-интерфейсу. Сначала вам нужно 
указать Kubernetes создать перенаправление портов из главного контейнера 
на ваш локальный компьютер. Это делается с помощью следующей команды:

kubectl port-forward deployment/flink-master 8081:8081

Когда работает переадресация портов, вы можете получить доступ к веб-
интерфейсу по адресу http://localhost: 8081.

Теперь вы можете загружать и  отправлять задания в  кластер Flink, ра-
ботающий на Kubernetes. Кроме того, вы можете отправлять приложения 
с помощью клиента Flink CLI (./bin/flink) и получать доступ к интерфейсу 
REST, чтобы запрашивать информацию о кластере Flink или управлять за-
пущенными приложениями.

Когда рабочий кокон выходит из строя, Kubernetes автоматически переза-
пускает его, и приложение будет восстановлено (при условии, что контроль-
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ная точка была активирована и правильно настроена). Для восстановления 
после сбоя главного кокона вам необходимо настроить высокодоступную 
конфигурацию.

Вы можете выключить кластер Flink, работающий в Kubernetes, выполнив 
следующие команды:

kubectl delete -f master-deployment.yaml
kubectl delete -f worker-deployment.yaml
kubectl delete -f master-service.yaml

С помощью образов Flink Docker, которые мы использовали в этом разде-
ле, вы не сможете создать пользовательские конфигурации развертываний 
Flink. Вам нужно будет создать собственные образы Docker с  настроенной 
конфигурацией. Сценарий сборки для предоставляемого образа – хорошая 
отправная точка для создания пользовательского образа.

9.2. Режим высокой доступности

Большинство потоковых приложений идеально работает непрерывно 
с  минимальным временем простоя. Следовательно, многие приложения 
должны иметь возможность автоматически восстанавливаться после сбоя 
любого процесса, вовлеченного в выполнение. В то время как сбои рабочих 
процессов обрабатываются ResourceManager, обработка сбоев компонента 
JobManager требует работы в  режиме высокой доступности (highly avai
lable, HA).

JobManager Flink хранит метаданные о  приложении и  его выполнении, 
такие как файл JAR приложения, JobGraph и указатели на завершенные кон-
трольные точки. Эта информация должна быть восстановлена в случае отказа 
главного процесса. Режим высокой доступности Flink основан на Apache Zoo-
Keeper, службе для распределенной координации и согласованного хранения, 
а также на постоянном удаленном хранилище, таком как HDFS, NFS или S3. 
JobManager сохраняет все соответствующие данные в постоянном хранили-
ще и записывает указатель на информацию – путь хранения – в ZooKeeper. 
В  случае сбоя новый JobManager ищет указатель в  ZooKeeper и  загружает 
метаданные из постоянного хранилища. Мы рассказали о принципе работы 
и внутреннем устройстве режима высокой доступности Flink в разделе 3.1.4. 
В этом разделе мы настроим режим HA для различных вариантов разверты-
вания.

Для установки Flink HA требуется работающий кластер Apache ZooKeeper 
и постоянное удаленное хранилище, такое как HDFS, NFS или S3. Чтобы по-
мочь пользователям быстро запустить кластер ZooKeeper в целях тестиро-
вания, Flink предоставляет вспомогательный сценарий для начальной за-
грузки. Во-первых, вам необходимо настроить хосты и порты всех процессов 
ZooKeeper, участвующих в кластере, настроив файл ./conf/zoo.cfg. Как только 
это будет сделано, вы можете вызвать ./bin/start-zookeeper-quorum.sh, чтобы 
запустить процесс ZooKeeper на каждом настроенном узле.
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	 Не используйте start-zookeeper-quorum.sh для производственных сред

	
Вам не следует использовать скрипт Flink ZooKeeper для производственных сред. Вме-
сто этого тщательно настройте и разверните кластер ZooKeeper самостоятельно.

Режим Flink HA настраивается в файле ./conf/flink-conf.yaml путем уста-
новки параметров, как показано в примере 9.5.

Пример 9.5   Настройка кластера Flink HA
# НЕОБХОДИМО: включить режим HA через ZooKeeper.
high-availability: zookeeper

# НЕОБХОДИМО: предоставить список всех серверов ZooKeeper , занятых в кворуме.
high-availability.zookeeper.quorum: address1:2181[,...],addressX:2181

# НЕОБХОДИМО: указать расположение метаданных задания в удаленном хранилище.
high-availability.storageDir: hdfs:///flink/recovery

# РЕКОМЕНДУЕТСЯ: задать базовый путь для всех кластеров Flink в ZooKeeper.
# Это изолирует Flink от других платформ, использующих кластер ZooKeeper.
high-availability.zookeeper.path.root: /flink

9.2.1. Высокая доступность в автономном режиме
Автономное развертывание Flink не зависит от поставщика ресурсов, такого 
как YARN или Kubernetes. Все процессы запускаются вручную, и  нет ком-
понента, который отслеживает эти процессы и  перезапускает их в  случае 
сбоя. Следовательно, для автономного кластера Flink требуются резервные 
процессы Dispatcher и TaskManager, которые могут взять на себя работу от-
казавших процессов.

Помимо запуска резервных процессов TaskManager, автономное разверты-
вание не требует дополнительной настройки для восстановления после сбоев 
диспетчера задач. Все запущенные процессы TaskManager регистрируются 
в активном ResourceManager. Приложение может восстановиться после сбоя 
TaskManager, пока достаточно слотов обработки находится в режиме ожи-
дания, чтобы компенсировать потерянный TaskManager. ResourceManager 
выделяет ранее бездействующие слоты обработки, и  приложение переза-
пускается.

В случае высокодоступной конфигурации все процессы Dispatcher реги-
стрируются в ZooKeeper, который в свою очередь выбирает процесс-лидер, 
ответственный за выполнение приложений. Когда приложение отправлено 
на выполнение, ответственный Dispatcher запускает поток JobManager, ко-
торый сохраняет свои метаданные в настроенном постоянном хранилище 
и указатель в ZooKeeper, как обсуждалось ранее. Если главный процесс, за-
пускающий активный Dispatcher и JobManager, выходит из строя, ZooKeeper 
выбирает новый Dispatcher в качестве лидера. Лидирующий Dispatcher вос-
станавливает отказавшее приложение, запустив новый поток JobManager, 
который ищет указатель метаданных в ZooKeeper и загружает метаданные 
из постоянного хранилища.
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В дополнение к ранее описанной конфигурации для автономного высо-
кодоступного варианта требуются следующие изменения конфигурации. 
В ./conf/flink-conf.yaml вам нужно установить идентификатор кластера для 
каждого работающего кластера. Это необходимо, если несколько кластеров 
Flink полагаются на один и тот же экземпляр ZooKeeper для восстановления 
после сбоя:

# РЕКОМЕНДУЕТСЯ: задать базовый путь для кластера Flink в ZooKeeper.
# Это изолирует кластеры Flink друг от друга.
# Для получения метаданных отказавшего кластера требуется идентификатор кластера.
high-availability.cluster-id: /cluster-1

Если у вас работает кворум ZooKeeper и правильно настроен Flink, вы мо-
жете использовать обычный сценарий ./bin/start-cluster.sh для запуска ав-
тономного кластера высокой доступности, добавив дополнительные имена 
хостов и порты в файл ./conf/masters.

9.2.2. Высокодоступная конфигурация YARN
YARN – это менеджер ресурсов и контейнеров кластера. По умолчанию он 
автоматически перезапускает отказавший главный контейнер и контейнеры 
TaskManager. Следовательно, для достижения высокой доступности вам не 
нужно запускать резервные процессы в конфигурации YARN.

Главный процесс Flink запускается как YARN ApplicationMaster1. YARN ав-
томатически перезапускает отказавший ApplicationMaster, но отслеживает 
и ограничивает количество перезапусков, чтобы предотвратить бесконечные 
циклы восстановления. Вам необходимо настроить максимальное количе-
ство перезапусков ApplicationManager в  файле конфигурации YARN yarn-
site.xml, как показано ниже:

<property>
  <name>yarn.resourcemanager.am.max-attempts</name>
  <value>4</value>
  <description>
    Максимальное количество попыток выполнения мастера приложения. 
    Значение по умолчанию - 2, т.е. приложение перезапускается не более одного раза.
  </description>
</property>

Кроме того, вам необходимо настроить файл конфигурации Flink ./conf/
flink-conf.yaml и настроить количество попыток перезапуска приложения:

# Перезапустить приложение не более 3 раз (+ первоначальный запуск).
# Должно быть меньше или равно настроенному максимальному количеству попыток. 
yarn.application-attempts: 4

1	 ApplicationMaster – это главный процесс приложения YARN.
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YARN подсчитывает только количество перезапусков из-за сбоев приложе-
ния – перезапуски из-за вытеснения, сбоев оборудования или перезагрузки 
не учитываются при подсчете количества попыток перезапуска приложения. 
Если вы запускаете Hadoop YARN версии 2.6 или новее, Flink автоматически 
настраивает интервал действия неудачной попытки. Этот параметр указыва-
ет, что приложение полностью отменяется только в том случае, если оно пре-
вышает количество попыток перезапуска в пределах заданного интервала, 
то есть попытки, предшествующие этому интервалу, не учитываются. Flink 
настраивает интервал на то же значение, что и  параметр akka.ask.timeout  
в ./conf/flink-conf.yaml, со значением по умолчанию 10 с.

Имея работающий кластер ZooKeeper и правильно настроенные настрой-
ки YARN и Flink, вы можете запустить кластер Flink в режиме задания или 
режиме сеанса, как если бы режим высокой доступности не был включен – 
с помощью команд ./bin/flink run -m yarn-cluster и ./bin/yarn-session.sh.

	 Обратите внимание, что вы должны настроить разные идентификаторы кластера для 
всех кластеров сеанса Flink, которые подключаются к одному кластеру ZooKeeper. При 
запуске кластера Flink в режиме задания идентификатор кластера автоматически уста-
навливается равным идентификатору запущенного приложения и поэтому является уни-
кальным.

9.2.3. Высокодоступная конфигурация Kubernetes
При запуске Flink в Kubernetes с главным и рабочим развертыванием, как 
описано в  разделе 9.1.4, Kubernetes автоматически перезапускает отка-
завшие контейнеры, чтобы обеспечить правильное количество коконов. 
Этого достаточно для восстановления после сбоев рабочих процессов, кото-
рые обрабатываются ResourceManager. Однако восстановление после сбоев 
главного процесса требует дополнительной настройки, как мы говорили 
ранее.

Чтобы включить режим высокой доступности Flink, вам необходимо на-
строить конфигурацию Flink и предоставить такую информацию, как имена 
хостов узлов кворума ZooKeeper, путь к постоянному хранилищу и иденти-
фикатор кластера для Flink. Все эти параметры необходимо добавить в файл 
конфигурации Flink (./conf/flink-conf.yaml).

	 Пользовательская конфигурация в образах Flink

	
К сожалению, образ Flink Docker, который мы использовали ранее в примерах Docker 
и Kubernetes, не поддерживает установку пользовательских параметров конфигурации. 
Следовательно, образ нельзя использовать для настройки высокодоступного кластера 
Flink в Kubernetes. Вместо этого вам нужно создать собственный образ, который содер-
жит необходимые параметры непосредственно в коде либо будет достаточно гибким, 
чтобы динамически настраивать конфигурацию с помощью параметров или перемен-
ных среды. Стандартные образы Flink Docker – хорошая отправная точка для настройки 
ваших собственных образов Flink.
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9.3. Интеграция с компонентами Hadoop

Apache Flink можно легко интегрировать с Hadoop YARN и HDFS и другими 
компонентами экосистемы Hadoop, такими как HBase. Во всех этих случаях 
Flink требует наличия зависимостей Hadoop.

Есть три способа предоставить Flink зависимости от Hadoop.

1.	� Используйте двоичный дистрибутив Flink, созданный для конкретной 
версии Hadoop. Flink предоставляет сборки для наиболее часто исполь-
зуемых базовых версий Hadoop.

2.	� Соберите Flink для конкретной версии Hadoop. Это полезно, если ни 
один из двоичных дистрибутивов Flink не работает с версией Hadoop, 
развернутой в вашей среде; например, если вы используете доработан-
ную версию Hadoop или версию Hadoop от дистрибьютора, такого как 
Cloudera, Hortonworks или MapR.

	� Чтобы собрать Flink для конкретной версии Hadoop, вам понадобится 
исходный код Flink, который можно получить, загрузив исходный дис-
трибутив с веб-сайта или клонировав ветку стабильного выпуска из ре-
позитория Git проекта, Java JDK не ниже версии 8, и Apache Maven 3.2. 
Войдите в базовую папку с исходным кодом Flink и выполните одну из 
следующих команд:

// Сборка Flink для заданной версии Hadoop.
mvn clean install -DskipTests -Dhadoop.version=2.6.1

// Сборка Flink для версии Hadoop от дистрибьютора.
mvn clean install -DskipTests -Pvendor-repos \
-Dhadoop.version=2.6.1-cdh5.0.0

Завершенная сборка находится в папке ./build-target.
3.	� Используйте дистрибутив Flink без Hadoop и вручную настройте путь 

к классам для зависимостей Hadoop. Этот подход полезен, если ни одна 
из предоставленных сборок не подходит для вашей конфигурации. 
Путь к  классам зависимостей Hadoop должен быть объявлен в  пере-
менной окружения HADOOP_CLASSPATH. Если переменная не настроена, вы 
можете автоматически настроить ее с помощью следующей команды: 
export HADOOP_CLASSPATH = `hadoop classpath`.
Параметр classpath команды hadoop выводит настроенный путь  
к классам.

Помимо настройки зависимостей Hadoop, вам необходимо указать распо-
ложение каталога конфигурации Hadoop. Это нужно сделать путем экспорта 
переменной среды HADOOP_CONF_DIR (предпочтительно) или HADOOP_CONF_PATH. 
Как только Flink получит конфигурацию Hadoop, он сможет подключиться 
к ResourceManager YARN и HDFS.
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9.4. Конфигурация файловой системы

Apache Flink использует файловые системы для различных задач. Прило-
жения могут считывать свой ввод из файлов и записывать свои результаты 
в  файлы (см. раздел 8.2.3), контрольные точки приложений и  метаданные 
сохраняются в удаленных файловых системах для восстановления (см. раз-
дел 3.5), а некоторые внутренние компоненты используют файловые системы 
для распределения данных по задачам, например, файлы JAR приложений.

Flink поддерживает широкий спектр файловых систем. Поскольку Flink 
является распределенной системой и выполняет процессы в кластерной или 
облачной среде, файловые системы обычно должны быть доступны глобаль-
но. По этой причине обычно используемыми файловыми системами явля-
ются Hadoop HDFS, S3 и NFS.

Подобно другим системам обработки данных, Flink смотрит на схему URI 
пути, чтобы идентифицировать файловую систему, к  которой относится 
путь. Например, путь file:///home/user/data.txt указывает на файл в локаль-
ной файловой системе, а hdfs:/// namenode:50010/home/user/data.txt – на 
файл в указанном кластере HDFS.

Файловая система представлена в  Flink реализацией класса org.apache.
flink.core.fs.FileSystem. Класс FileSystem реализует операции файловой си-
стемы, такие как чтение из файлов и запись в них, создание каталогов или 
файлов и  перечисление содержимого каталога. Процесс Flink (JobManager 
или TaskManager) создает один объект FileSystem для каждой настроенной 
файловой системы и  совместно использует его для всех локальных задач, 
чтобы гарантировать соблюдение настроенных ограничений, таких как огра-
ничения на количество открытых подключений.

Flink предоставляет следующие реализации для наиболее часто использу-
емых файловых систем.

Локальная файловая система
Flink имеет встроенную поддержку локальных файловых систем, включая 
локально смонтированные сетевые файловые системы, такие как NFS или 
SAN, и  не требует дополнительной настройки. На локальные файловые 
системы ссылается схема URI file://.

Hadoop HDFS
Коннектор Flink для HDFS всегда находится в пути к классам Flink. Однако 
для работы требуются зависимости Hadoop от пути к классам. Раздел 9.3 
объясняет, как обеспечить загрузку зависимостей Hadoop. Пути HDFS име-
ют префикс схемы hdfs://.

Amazon S3
Flink предоставляет два альтернативных соединителя файловой системы 
для подключения к S3, основанные на Apache Hadoop и Presto. Оба соеди-
нителя полностью автономны и не имеют никаких зависимостей. Чтобы 
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установить любой из этих соединителей, переместите соответствующий 
файл JAR из папки ./opt в папку ./lib. Документация Flink предоставляет 
более подробную информацию о конфигурации файловых систем S3. Пути 
S3 указываются по схеме s3://.

OpenStack Swift FS
Flink предоставляет соединитель для Swift FS, основанного на Apache Ha-
doop. Соединитель полностью автономен и не имеет никаких зависимо-
стей. Он устанавливается путем перемещения файла JAR быстрого соеди-
нения из ./opt в папку ./lib. Пути Swift FS идентифицируются по схеме 
swift://.

В случае работы с  файловыми системами, для которых отсутствует спе-
циальный коннектор, Flink может делегировать полномочия соединителю 
файловой системы Hadoop, если он правильно настроен. Вот почему Flink 
поддерживает все файловые системы HCFS.

Flink предоставляет несколько параметров конфигурации в ./conf/flink-
conf.yaml, чтобы указать файловую систему по умолчанию и ограничить ко-
личество подключений к файловой системе. Вы можете указать схему фай-
ловой системы по умолчанию (fs.default-scheme), которая автоматически 
добавляется в  качестве префикса, если путь не предоставляет схему. Если 
вы, например, укажете префикс fs.default-scheme: hdfs://nnode1:9000, путь /
result будет расширен до hdfs://nnode1:9000/result.

Вы можете ограничить количество соединений, которые читают (вводят) 
и записывают (выводят) данные. Конфигурация может быть определена для 
схемы URI. Соответствующие ключи конфигурации:

fs.<scheme>.limit.total: (число, 0 / -1 означает отсутствие ограничения) 
fs.<scheme>.limit.input: (число, 0 / -1 означает отсутствие ограничения) 
fs.<scheme>.limit.output: (число, 0 / -1 означает отсутствие ограничений) 
fs.<scheme>.limit.timeout: (миллисекунды, 0 означает бесконечность) 
fs.<scheme>.limit.stream-timeout: (миллисекунды, 0 означает бесконечность)

Количество подключений отслеживается для каждого процесса TaskMana
ger и полномочий пути – hdfs://nnode1:50010 и hdfs://nnode2:50010 отсле-
живаются отдельно. Пределы подключений можно настроить по отдельности 
для входных и выходных подключений или как общее количество подклю-
чений. Когда файловая система достигает предела количества подключе-
ний и  пытается открыть новое подключение, она блокируется и  ожидает 
закрытия другого подключения. Параметры тайм-аута определяют, как долго 
ждать, пока запрос на соединение не завершится неудачно (fs.<scheme>.lim-
it.timeout), и как долго ждать, пока не будет закрыто простаивающее соеди-
нение (fs.<scheme>.limit.stream-timeout).

Вы также можете предоставить настраиваемый соединитель файловой си-
стемы. Ознакомьтесь с документацией Flink, чтобы узнать, как реализовать 
и зарегистрировать пользовательскую файловую систему.
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9.5. Конфигурация системы

Apache Flink предлагает множество параметров для настройки его поведения 
и  улучшения быстродействия. Все параметры можно определить в  файле  
./conf/flink-conf.yaml, который организован как плоский файл YAML, состоя-
щий из пар «ключ–значение». Файл конфигурации считывается различными 
компонентами, такими как стартовые сценарии, главный и  рабочий про-
цессы JVM и клиент CLI. Например, сценарии запуска, такие как ./bin/start-
cluster.sh, анализируют файл конфигурации для извлечения параметров 
JVM и настроек размера кучи, а клиент CLI (./bin/flink) извлекает инфор-
мацию о подключении для доступа к мастер-процессу. Изменения в файле 
конфигурации не вступят в силу до перезапуска Flink.

Для облегчения запуска сразу после установки Flink предварительно на-
строен на локальную работу. Вам придется настроить конфигурацию для 
успешного запуска Flink в  распределенных средах. В  этом разделе мы об-
суждаем различные аспекты, которые обычно необходимо настроить при 
настройке кластера Flink. Мы отсылаем вас к официальной документации за 
исчерпывающим списком и подробным описанием всех параметров.

9.5.1. Java и загрузка классов
По умолчанию Flink запускает процессы JVM, используя исполняемый файл 
Java, связанный с  помощью переменной среды PATH. Если Java отсутствует 
в PATH или, если вы хотите использовать другую версию Java, вы можете ука-
зать корневую папку установки Java с помощью переменной среды JAVA_HOME 
или ключа env.java.home в файле конфигурации. Процессы JVM Flink можно 
запускать с настраиваемыми параметрами Java – например, для точной на-
стройки сборщика мусора или для включения удаленной отладки с помощью 
ключей env.java.opts, env.java.opts.jobmanager и env.java.opts.taskmanager.

При выполнении заданий с внешними зависимостями нередко встреча-
ются проблемы с загрузкой классов. Чтобы запустить приложение Flink, все 
классы в файле JAR приложения должны быть загружены загрузчиком клас-
сов. Flink регистрирует классы каждого задания в отдельном загрузчике клас-
сов пользовательского кода, чтобы гарантировать, что зависимости задания 
не связаны с зависимостями времени выполнения Flink или зависимостями 
других заданий. Загрузчики классов пользовательского кода удаляются после 
завершения соответствующего задания. Загрузчик системных классов Flink 
загружает все файлы JAR в папку ./lib, а загрузчики классов пользователь-
ского кода являются производными от системного загрузчика классов.

По умолчанию Flink сначала ищет классы пользовательского кода в дочер-
нем (пользовательском) загрузчике классов, а затем в родительском (систем-
ном) загрузчике классов, чтобы предотвратить конфликты версий в случае, 
если задание использует ту же зависимость, что и Flink. Однако вы также мо-
жете инвертировать порядок поиска с помощью конфигурационного ключа 
classloader.resolve-order.
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	 Обратите внимание, что некоторые классы всегда разрешаются первыми в родитель-
ском загрузчике классов (classloader.parent-first-patterns.default). Вы можете рас-
ширить список, предоставив белый список шаблонов имен классов, которые сначала 
разрешаются из родительского загрузчика классов (classloader.parent-first-patterns.
additional).

9.5.2. Процессор
Flink не занимается активным ограничением количества потребляемых ре-
сурсов ЦП. Однако он использует слоты обработки (см. подробности в разде-
ле 3.1.3) для управления количеством задач, которые могут быть назначены 
рабочему процессу (TaskManager). TaskManager предоставляет определенное 
количество слотов, которые зарегистрированы в ResourceManager и управля-
ются им. JobManager запрашивает один или несколько слотов для выполнения 
приложения. Каждый слот может обрабатывать один фрагмент приложения, 
одну параллельную задачу каждого оператора приложения. Следовательно, 
JobManager должен получить как минимум количество слотов, равное мак-
симальному параллелизму операторов приложения1. Задачи выполняются 
как потоки в рабочем процессе (TaskManager) и занимают столько ресурсов 
ЦП, сколько им необходимо.

Количество слотов, предлагаемых TaskManager, контролируется ключом 
taskmanager.numberOfTaskSlots в файле конфигурации. По умолчанию – один 
слот на каждый диспетчер задач. Количество слотов обычно нужно настраи-
вать только для автономных конфигураций, поскольку запуск Flink в диспет-
чере ресурсов кластера (YARN, Kubernetes, Mesos) позволяет легко запускать 
несколько диспетчеров задач (каждый с одним слотом) на вычислительный 
узел.

9.5.3. Основная память и сетевые буферы
Главный и рабочий процессы Flink имеют разные требования к памяти. Глав-
ный процесс в основном управляет вычислительными ресурсами (Resource-
Manager) и координирует выполнение приложений (JobManager), в то время 
как рабочий процесс берет на себя тяжелую работу и обрабатывает потенци-
ально большие объемы данных.

Обычно главный процесс занимает умеренный объем памяти. По умол-
чанию он запускается с  динамической памятью JVM объемом 1 Гб. Если 
главному процессу необходимо управлять несколькими приложениями или 
приложением с большим количеством операторов, вам может потребовать-
ся увеличить размер кучи JVM с помощью ключа конфигурации jobmanager.
heap.size.

Настройка памяти рабочего процесса немного сложнее, потому что есть 
несколько компонентов, связанных с разными типами памяти. Самый важ-

1	 Можно назначить операторы разным группам с разделением слотов и, таким об-
разом, назначить их задачи отдельным слотам.
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ный параметр – это размер кучи JVM, который задается ключом taskmanager.
heap.size. Память кучи используется для всех объектов, включая среду вы-
полнения TaskManager, операторы и функции приложения, а также актуаль-
ные рабочие данные. Состояние приложения, которое использует бэкенд 
состояния в памяти или файловой системе, также сохраняется в JVM. Обра-
тите внимание, что одна задача потенциально может потреблять всю память 
кучи JVM, на которой она выполняется. Flink не гарантирует наличие и не 
предоставляет динамическую память для каждой задачи или слота. Конфи-
гурации с одним слотом для каждого TaskManager обеспечивают лучшую изо-
ляцию ресурсов и могут предотвратить влияние некорректно работающего 
приложения на несвязанные приложения. Если вы запускаете приложения 
с множеством зависимостей, объем памяти JVM вне кучи также может зна-
чительно увеличиться, поскольку в  ней хранятся все классы TaskManager 
и пользовательского кода.

Помимо JVM, существуют два других основных потребителя памяти, сете-
вой стек Flink и RocksDB, когда она используется в качестве бэкенда состояния. 
Сетевой стек Flink основан на библиотеке Netty, которая выделяет сетевые бу-
феры из собственной памяти (вне кучи). Flink требуется достаточное количе-
ство сетевых буферов, чтобы иметь возможность отправлять записи от одного 
рабочего процесса к другому. Количество буферов зависит от общего количе-
ства сетевых соединений между задачами оператора. Для двух операторов, 
связанных раздельным или широковещательным соединителем, количество 
сетевых буферов определяется произведением параллелизма передающего 
и принимающего операторов. Для приложений с несколькими шагами разде-
ления эта квадратичная зависимость может быстро привести к поглощению 
значительного объема памяти, необходимой для передачи по сети.

Конфигурация Flink по умолчанию подходит только для распределенного 
развертывания в небольшом масштабе и требует корректировки для более 
масштабных систем. Если количество буферов не настроено должным обра-
зом, отправка задания завершится ошибкой java.io.IOException: Insufficient 
number of network buffers (недостаточное количество сетевых буферов). В этом 
случае вам следует выделить больше памяти для сетевого стека.

Объем памяти, выделяемой для сетевых буферов, настраивается с помо-
щью ключа taskmanager.network.memory.fraction, который определяет долю 
размера кучи JVM, выделенную для сетевых буферов. По умолчанию исполь-
зуется 10 % размера кучи JVM. Поскольку буферы выделяются как память вне 
кучи, размер кучи JVM уменьшается на эту величину. Ключ конфигурации 
taskmanager.memory.segment-size определяет размер сетевого буфера, кото-
рый по умолчанию составляет 32 Кб. Уменьшение размера сетевого буфера 
увеличивает количество буферов, но может снизить эффективность сетевого 
стека. Вы также можете указать минимальный (taskmanager.network.memory.
min) и максимальный (taskmanager.network.memory.max) объем памяти, который 
используется для сетевых буферов (по умолчанию 64 Мб и 1 Гб соответствен-
но), чтобы установить абсолютный пределы для относительного значения 
конфигурации.

RocksDB – еще один потребитель памяти, который необходимо учитывать 
при настройке памяти рабочего процесса. К  сожалению, выяснить потре-
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бление памяти RocksDB непросто, потому что оно зависит от количества 
ключевых состояний в приложении. Flink создает отдельный (встроенный) 
экземпляр RocksDB для каждой задачи оператора с  ключом. В  каждом эк-
земпляре каждое отдельное состояние оператора хранится в отдельном се-
мействе столбцов (или таблице). В конфигурации по умолчанию для каждого 
семейства столбцов требуется от 200 до 240 Мб памяти вне кучи. Вы можете 
настроить RocksDB и улучшить быстродействие с помощью множества па-
раметров.

При настройке параметров памяти TaskManager вы должны определить 
размер кучи JVM, чтобы оставалось достаточно памяти вне кучи JVM (классы 
и метаданные) и RocksDB, если она настроена как бэкенд состояния. Сетевая 
память автоматически вычитается из настроенного размера кучи JVM. Имей-
те в виду, что некоторые диспетчеры ресурсов, такие как YARN, немедленно 
уничтожают контейнер, если он превышает выделенный бюджет памяти.

9.5.4. Дисковое хранилище
Рабочий процесс Flink по нескольким причинам хранит данные в локаль-
ной файловой системе, включая получение JAR-файлов приложения, запись 
файлов журнала и сохранение состояния приложения, если настроен бэкенд 
состояния RocksDB. С  помощью конфигурационного ключа io.tmp.dirs вы 
можете указать один или несколько каталогов (разделенных двоеточиями), 
которые используются для хранения данных в локальной файловой системе. 
По умолчанию данные записываются во временный каталог по умолчанию, 
как это определено системным свойством Java java.io.tmpdir или /tmp в Linux 
и MacOS. Параметр io.tmp.dirs используется как значение по умолчанию для 
локального пути хранения большинства компонентов Flink. Однако эти пути 
также можно настроить индивидуально.

	 Убедитесь, что временные каталоги не очищаются автоматически

	
Некоторые дистрибутивы Linux периодически очищают временный каталог /tmp. Обя-
зательно отключите это поведение или настройте другой каталог, если вы планируете 
постоянно запускать приложения Flink. В противном случае восстановление задания мо-
жет остаться без метаданных, которые хранились во временном каталоге, и завершиться 
ошибкой.

Ключ blob.storage.directory настраивает каталог локального хранилища 
на сервере больших двоичных объектов, который используется для обмена 
файлами большого размера, такими как файлы JAR приложения. Ключ env.
log.dir настраивает каталог, в который TaskManager записывает свои файлы 
журнала (по умолчанию каталог ./log в  настройке Flink). Наконец, бэкенд 
состояния RocksDB хранит состояние приложения в локальной файловой си-
стеме. Каталог настраивается с помощью ключа state.backend.rocksdb.local-
dir. Если каталог хранилища не настроен явно, RocksDB использует значение 
параметра io.tmp.dirs.
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9.5.5. Контрольные точки и бэкенды состояния
Flink предлагает несколько опций для настройки того, как бэкенды состояния 
создают контрольные точки. Все параметры могут быть явно указаны в коде 
приложения, как описано в разделе 10.3. Однако вы также можете указать 
через файл конфигурации Flink настройки по умолчанию для кластера Flink, 
которые применяются, если не объявлены параметры для конкретного за-
дания.

Важный выбор, влияющий на быстродействие приложения, – это бэкенд, 
который поддерживает его состояние. Вы можете определить бэкенд состоя-
ния по умолчанию для кластера с помощью ключа state.backend. Кроме того, 
вы можете включить асинхронную контрольную точку (state.backend.async) 
и инкрементную контрольную точку (state.backend.incremental). Некоторые 
бэкенды не поддерживают все параметры и могут игнорировать их. Вы также 
можете настроить корневые каталоги в удаленном хранилище, в которые за-
писываются контрольные точки (state.checkpoints.dir) и точки сохранения 
(state.savepoints.dir).

Некоторые параметры контрольных точек зависят от конкретного бэкен-
да. Для бэкенда состояния RocksDB вы можете определить один или несколь-
ко путей, по которым RocksDB хранит свои локальные файлы (state.backend.
rocksdb.localdir), и будет ли состояние таймера храниться в куче (по умолча-
нию) или в RocksDB (state.backend.rocksdb.timer-service.factory).

Наконец, вы можете включить и настроить локальное восстановление для 
кластера Flink по умолчанию1. Чтобы включить локальное восстановление, 
установите для параметра state.backend.local-recovery значение true. Так-
же можно указать место хранения локальной копии состояния (taskmanager.
state.local.root-dirs).

9.5.6. Безопасность
Платформы обработки данных являются чувствительными компонентами 
ИТ-инфраструктуры компании и должны быть защищены от несанкциони-
рованного использования и доступа к данным. Apache Flink поддерживает 
аутентификацию Kerberos и  может быть настроен для шифрования всего 
сетевого обмена данными с помощью SSL.

Flink поддерживает интеграцию Kerberos с  Hadoop и  его компонентами 
(YARN, HDFS, HBase), ZooKeeper и Kafka. Вы можете включить и настроить под-
держку Kerberos для каждой службы отдельно. Flink поддерживает два режима 
аутентификации – keytabs и токены делегирования Hadoop. Keytabs являются 
предпочтительным подходом, потому что токены истекают через некото-
рое время, что может вызвать проблемы для долгоработающих приложений 
потоковой обработки. Обратите внимание, что учетные данные привязаны 
к кластеру Flink, а не к работающему заданию; все приложения, работающие 

1	 См. «Настройка восстановления» для получения подробной информации об этой 
функции.
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в одном кластере, используют один и тот же токен аутентификации. Если вам 
нужно работать с другими учетными данными, вам следует запустить новый 
кластер. Обратитесь к документации Flink для получения подробных инструк-
ций по включению и настройке аутентификации Kerberos.

Flink поддерживает взаимную аутентификацию коммуницирующих пар-
тнеров и шифрование внутреннего и внешнего сетевого обмена с помощью 
SSL. Для внутренней связи (вызовы RPC, передача данных и связь службы 
BLOB-объектов для распространения библиотек или других артефактов) все 
процессы Flink (Dispatcher, ResourceManager, JobManager и TaskManager) вы-
полняют взаимную аутентификацию – отправители и получатели проверяют 
друг друга с помощью сертификата SSL. Сертификат действует как общий се-
крет и может быть встроен в контейнеры или прикреплен к настройке YARN.

Весь внешний обмен со службами Flink – отправка и управление приложе-
ниями и доступ к интерфейсу REST – происходит через конечные точки REST/
HTTP1. Вы также можете включить шифрование SSL для этих подключений. 
Также можно включить взаимную аутентификацию. Однако рекомендуемый 
подход – установка и настройка выделенной прокси-службы, которая кон-
тролирует доступ к конечной точке REST. Причина в том, что прокси-сервисы 
предлагают больше вариантов аутентификации и конфигурации, чем Flink. 
Шифрование и  аутентификация для связи с  запрашиваемым состоянием 
пока не поддерживаются.

По умолчанию проверка подлинности и шифрование SSL отключены. По-
скольку для установки требуется несколько шагов, таких как создание сер-
тификатов, настройка TrustStores и  KeyStores, а также настройка наборов 
шифров, мы отсылаем вас к  официальной документации Flink. Докумен-
тация также включает инструкции и советы для различных сред, таких как 
автономные кластеры, Kubernetes и YARN.

9.6. Заключение

В этой главе мы обсудили конфигурацию Flink в различных средах, включая 
настройку параметров высокой доступности. Мы объяснили, как включить 
поддержку различных файловых систем и  как интегрировать их с  Hadoop 
и его компонентами. Наконец, обсудили наиболее важные параметры кон-
фигурации. Мы не предоставили исчерпывающего руководства по настрой-
ке; вместо этого отсылаем вас к  официальной документации Apache Flink 
для получения полного списка и подробных описаний всех параметров кон-
фигурации.

1	 В главе 10 обсуждается отправка заданий и интерфейс REST.



Глава 10
Работа с Flink 
и потоковыми 

приложениями

Потоковые приложения работают длительное время, а их рабочие нагрузки 
зачастую непредсказуемы. Задачи потоковой передачи нередко выполня-
ются непрерывно в течение нескольких месяцев, поэтому их операционные 
потребности сильно отличаются от потребностей краткосрочных пакетных 
заданий. Рассмотрим сценарий, в котором вы обнаруживаете ошибку в раз-
вернутом приложении. Если ваше приложение является пакетным заданием, 
вы можете легко исправить ошибку в автономном режиме, а затем повторно 
развернуть новый код приложения после завершения текущего экземпляра 
задания. Но что, если ваша работа связана с длительной потоковой обработ-
кой? Как выполнить реконфигурацию с минимальными усилиями, гаранти-
руя при этом правильность результатов?

Если вы используете Flink, вам не о чем беспокоиться. Flink выполнит за 
вас всю тяжелую работу, чтобы вы могли легко контролировать и перенастра-
ивать свои задания с минимальными усилиями, сохраняя при этом семанти-
ку состояния «ровно один раз». В этой главе мы представляем инструменты, 
которые Flink предлагает для работы и поддержки постоянно действующих 
потоковых приложений. Мы покажем вам, как собирать метрики и отслежи-
вать ваши приложения, а также как сохранять согласованность результатов, 
когда вы хотите обновить код приложения или настроить ресурсы вашего 
приложения.

10.1. Запуск и управление 
потоковыми приложениями

Как и  следовало ожидать, обслуживание потоковых приложений является 
более сложной задачей, чем обслуживание пакетных приложений. В то время 
как потоковые приложения сохраняют состояние и  работают непрерывно, 
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пакетные приложения выполняются периодически. Перенастройку, масшта-
бирование или обновление пакетного приложения можно выполнять между 
выполнениями, что намного проще, чем обновление приложения, которое 
непрерывно принимает, обрабатывает и отправляет данные.

Однако Apache Flink имеет множество функций, которые значительно 
упрощают обслуживание потоковых приложений. Большинство этих функ-
ций основано на точках сохранения1. Flink предоставляет следующие интер-
фейсы для мониторинга и управления своими главными и рабочими про-
цессами и приложениями:

�� клиент командной строки – это инструмент, используемый для отправ-
ки приложений и управления ими;

�� REST API – это базовый интерфейс, который используется клиентом 
командной строки и веб-интерфейсом. Доступ к нему могут получить 
пользователи и сценарии, и он обеспечивает доступ ко всем системным 
показателям и показателям приложений, а также к конечным точкам 
для отправки приложений и управления ими;

�� Web UI – это веб-интерфейс, который предоставляет подробную ин-
формацию и показатели о кластере Flink и запущенных приложени-
ях. Он также предлагает базовые функции для отправки приложений 
и управления ими. Веб-интерфейс описан в разделе 10.4.1.

В этом разделе мы объясняем практические аспекты точек сохранения 
и обсуждаем, как запускать, останавливать, приостанавливать и возобнов-
лять, масштабировать и обновлять потоковые приложения с отслеживанием 
состояния с помощью клиента командной строки и REST API Flink.

10.1.1. Точки сохранения
Точка сохранения в основном идентична контрольной точке – это согласо-
ванный и полный снимок состояния приложения. Однако жизненные циклы 
контрольных точек и точек сохранения различаются. Контрольные точки 
создаются автоматически, загружаются в случае сбоя и автоматически уда-
ляются Flink по истечении срока давности (в зависимости от конфигурации 
приложения). Более того, контрольные точки автоматически удаляются при 
отмене приложения, если сохранение контрольных точек не задано в явном 
виде. Напротив, точки сохранения должны запускаться вручную пользовате-
лем или внешней службой и никогда не удаляются автоматически.

Точка сохранения  – это каталог в  постоянном хранилище данных. Он 
состоит из подкаталога, в  котором хранятся файлы данных, содержащие 
состояния всех задач, и  двоичного файла метаданных, который включает 
абсолютные пути ко всем файлам данных. Поскольку пути в файле метадан-
ных являются абсолютными, перемещение точки сохранения на другой путь 
сделает ее непригодной для использования. Вот структура точки сохранения:

1	 См. главу 3, чтобы узнать о точках сохранения и о том, что с ними можно делать.
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# Путь к корневому каталогу.
/savepoints/

# Путь к отдельной точке сохранения.
/savepoints/savepoint-:shortjobid-:savepointid/

# Двоичные метаданные точки сохранения.
/savepoints/savepoint-:shortjobid-:savepointid/_metadata

# Сохраненное состояние оператора.
/savepoints/savepoint-:shortjobid-:savepointid/:xxx

10.1.2. Управление приложениями 
с помощью клиента командной строки
Клиент командной строки Flink предоставляет возможности запуска, оста-
новки и управления приложениями Flink. Он считывает свою конфигурацию 
из файла ./conf/flink-conf.yaml (см. раздел 9.5). Вы можете вызвать его из 
корневого каталога установки Flink с помощью команды ./bin/flink.

При запуске без дополнительных параметров клиент выводит справочное 
сообщение.

	 Клиент командной строки в Windows

	
Клиент командной строки основан на сценарии bash. Поэтому он не работает с команд-
ной строкой Windows. Сценарий ./bin/flink.bat для командной строки Windows предо-
ставляет лишь очень ограниченную функциональность. Если вы пользователь Windows, 
мы рекомендуем использовать обычный клиент командной строки и запускать его на 
WSL или Cygwin.

10.1.2.1. Запуск приложения
Вы можете запустить приложение с помощью следующей команды для кли-
ента командной строки:

./bin/flink run ~/myApp.jar

Приведенная выше команда запускает приложение из метода main() клас-
са, на который имеется ссылка в свойстве program-class файла META-INF/MANI-
FEST.MF, без передачи каких-либо аргументов приложению. Клиент отправля-
ет файл JAR главному процессу, который распространяет его на рабочие узлы.

Вы можете передать аргументы методу main() приложения, добавив их 
в конце команды:

./bin/flink run ~/myApp.jar my-arg1 my-arg2 my-arg3

По умолчанию клиент не закрывается после отправки приложения, а ожи-
дает его завершения. Вы можете отправить приложение в автономном режи-
ме с флагом -d, как показано здесь:
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./bin/flink run -d ~/myApp.jar

Вместо того чтобы ждать завершения приложения, клиент возвращает-
ся в терминал и выводит JobID отправленного задания. JobID используется 
для указания задания при создании точки сохранения, отмене или измене-
нии масштаба приложения. Вы можете указать параллелизм приложения по 
умолчанию с помощью флага -p:

./bin/flink run -p 16 ~/myApp.jar

Приведенная выше команда устанавливает параллелизм среды выполне-
ния по умолчанию равным 16. Параллелизм среды выполнения по умолча-
нию перезаписывается всеми настройками, явно указанными в  исходном 
коде приложения, – параллелизмом, который определяется путем вызова 
setParallelism() в StreamExecutionEnvironment или оператором, который имеет 
приоритет над значением по умолчанию.

Если в файле манифеста JAR-файла вашего приложения не указан класс 
записи, вы можете указать этот класс с помощью параметра -c:

./bin/flink run -c my.app.MainClass ~/myApp.jar

Клиент попытается запустить статический метод main() класса my.app.Main-
Class.

По умолчанию клиент отправляет приложение мастеру Flink, указанно-
му в файле ./conf/flink-conf.yaml (см. раздел 9.5). Вы можете подать заявку 
в конкретный главный процесс, используя флаг -m:

./bin/flink run -m myMasterHost:9876 ~/myApp.jar

Эта команда отправляет приложение главному процессу, который работа-
ет на хосте myMasterHost, порт 9876.

	 Обратите внимание, что состояние приложения будет пустым, если вы запустите его 
в первый раз или не предоставите точку сохранения или контрольную точку для иници-
ализации состояния. В этом случае некоторые операторы с сохранением состояния запу-
скают специальную логику для инициализации своего состояния. Например, источнику 
Kafka необходимо выбрать смещения разделов, из которых он потребляет тему, если 
восстановленные позиции чтения недоступны.

10.1.2.2. Список запущенных приложений
Для любого действия, которое вы хотите применить к работающему зада-
нию, вам необходимо предоставить идентификатор JobID, указывающий на 
приложение. Идентификатор задания можно получить из веб-интерфейса, 
REST API или с помощью клиента командной строки. Клиент распечатывает 
список всех запущенных заданий, включая их JobID, когда вы запускаете 
следующую команду:

./bin/flink list -r
Waiting for response...
------------------ Running/Restarting Jobs -------------------
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17.10.2018 21:13:14 : bc0b2ad61ecd4a615d92ce25390f61ad :
Socket Window WordCount (RUNNING)
-------------------------------------------------------------- 

В этом примере JobID – bc0b2ad61ecd4a615d92ce25390f61ad.

10.1.2.3. Создание и сброс точки сохранения
Точку сохранения для работающего приложения можно установить при по-
мощи клиента командной строки следующим образом:

./bin/flink savepoint <jobId> [savepointPath]

Команда запускает создание точки сохранения для задания с указанным 
JobID. Если вы явно укажете путь к точке сохранения, она будет сохранена 
в указанном каталоге. В противном случае используется каталог точки со-
хранения по умолчанию, настроенный в файле flink-conf.yaml.

Чтобы активировать точку сохранения для задания bc0b2ad61ecd4a615d92ce-
25390f61ad и сохранить ее в каталоге hdfs:///xxx:50070/savepoints, мы вызы-
ваем клиент командной строки:

./bin/flink savepoint bc0b2ad61ecd4a615d92ce25390f61ad \
hdfs:///xxx:50070/savepoints
Triggering savepoint for job bc0b2ad61ecd4a615d92ce25390f61ad.
Waiting for response...
Savepoint completed.
Path: hdfs:///xxx:50070/savepoints/savepoint-bc0b2a-63cf5d5ccef8
You can resume your program from this savepoint with the run command.

Точки сохранения могут занимать значительный объем места и  не уда-
ляются автоматически. Их необходимо удалить вручную, чтобы освободить 
занимаемое хранилище. Точка сохранения удаляется командой:

./bin/flink savepoint -d <savepointPath>

Чтобы удалить точку сохранения, сработавшую ранее, вызовите команду:

./bin/flink savepoint -d \
hdfs:///xxx:50070/savepoints/savepoint-bc0b2a-63cf5d5ccef8
Disposing savepoint 'hdfs:///xxx:50070/savepoints/savepoint-bc0b2a-63cf5d5ccef8'.
Waiting for response...
Savepoint 'hdfs:///xxx:50070/savepoints/savepoint-bc0b2a-63cf5d5ccef8' disposed.

	 Удаление точки сохранения

	
Вы не должны удалять точку сохранения до завершения другой контрольной точки или 
точки сохранения. Поскольку точки сохранения обрабатываются системой аналогично 
обычным контрольным точкам, операторы также получают уведомления о завершении 
контрольных точек, включая точки сохранения, и выполняют соответствующие действия. 
Например, приемники транзакций фиксируют изменения во внешних системах после 
завершения точки сохранения. Чтобы гарантировать вывод «ровно один раз», Flink дол-
жен восстановиться с последней завершенной контрольной точки или точки сохранения. 
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Восстановление после сбоя завершится ошибкой, если Flink попытается восстановиться 
из удаленной точки сохранения. После завершения новой контрольной точки (или точки 
сохранения) вы можете безопасно удалить предыдущую точку сохранения.

10.1.2.4. Отмена приложения
Работу приложения можно прекратить двумя способами: с точкой сохране-
ния или без нее. Чтобы отменить запущенное приложение, не создавая точку 
сохранения, выполните следующую команду:

./bin/flink cancel <jobId>

Чтобы получить точку сохранения перед отменой работающего приложе-
ния, добавьте флаг -s к команде отмены:

./bin/flink cancel -s [savepointPath] <jobId>

Если вы не укажете путь к точке сохранения, будет использоваться каталог 
точки сохранения по умолчанию, настроенный в  файле ./conf/flink-conf.
yaml (см. раздел 9.5). Команда не выполняется, если папка точки сохранения 
не указана явно в команде и не доступна из конфигурации. Например, чтобы 
отменить приложение с  JobID bc0b2ad61ecd4a615d92ce25390f61ad и  сохранить 
точку сохранения в hdfs:///xxx:50070/savepoints, выполните команду:

./bin/flink cancel -s \
hdfs:///xxx:50070/savepoints d5fdaff43022954f5f02fcd8f25ef855
Cancelling job bc0b2ad61ecd4a615d92ce25390f61ad
with savepoint to hdfs:///xxx:50070/savepoints.
Cancelled job bc0b2ad61ecd4a615d92ce25390f61ad.
Savepoint stored in hdfs:///xxx:50070/savepoints/savepoint-bc0b2a-d08de07fbb10.

	 При отмене приложения возможен сбой

	
Обратите внимание, что задание будет продолжать выполняться, если не удалось соз-
дать точку сохранения. Вам нужно будет сделать еще одну попытку отменить задание.

10.1.2.5. Запуск приложения из точки сохранения
Запустить приложение из точки сохранения довольно просто. Все, что вам 
нужно сделать, – это запустить приложение с помощью команды run и до-
полнительно указать путь к точке сохранения с параметром -s:

./bin/flink run -s <savepointPath> [options] <jobJar> [arguments]

Когда задание запускается, Flink сопоставляет отдельные снимки состоя
ния точки сохранения со всеми состояниями запущенного приложения. Это 
сопоставление выполняется в два этапа. Сначала Flink сравнивает уникаль-
ные идентификаторы операторов точки сохранения и  операторов прило-
жения, а  затем сопоставляет для каждого оператора идентификаторы со-
стояния точки сохранения и приложения (подробности см. в разделе 3.5.5).
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	 Вы должны определить уникальные идентификаторы оператора

	
Если вы не назначаете своим операторам уникальные идентификаторы с  помощью 
метода uid(), Flink назначает идентификаторы по умолчанию, представляющие собой 
хеш-значения, которые зависят от типа оператора и всех предыдущих операторов. По-
скольку невозможно изменить идентификаторы в точке сохранения, у вас будет меньше 
возможностей для обновления и развития вашего приложения, если вы не назначите 
вручную идентификаторы операторов с помощью uid().

Как уже упоминалось, приложение может быть запущено из точки со-
хранения, только если оно совместимо с точкой сохранения. Немодифици-
рованное приложение всегда можно перезапустить с его точки сохранения. 
Однако, если перезапущенное приложение не идентично приложению, из 
которого была взята точка сохранения, следует рассмотреть три случая:

1)	� если вы добавили новое состояние в  приложение или изменили уни-
кальный идентификатор оператора с учетом состояния, Flink не найдет 
соответствующий снимок состояния в точке сохранения. В этом случае 
новое состояние инициализируется как пустое;

2)	� если вы удалили состояние из приложения или изменили уникальный 
идентификатор оператора с учетом состояния, в точке сохранения есть 
состояние, которое не может быть сопоставлено с приложением. В этом 
случае Flink не запускает приложение, чтобы не потерять состояние 
в точке сохранения. Вы можете отключить эту проверку безопасности, 
добавив параметр -n к команде запуска;

3)	� если вы изменили состояние в приложении – изменили примитив со-
стояния или изменили тип данных состояния – приложение не запу-
стится. Это означает, что вы не сможете легко развивать тип данных 
состояния в своем приложении, если только вы не спроектируете свое 
приложение с учетом эволюции состояния с самого начала. Сообще-
ство Flink в  настоящее время работает над улучшением поддержки 
эволюции состояния. (см. раздел 7.5.3).

10.1.2.6. Увеличение и уменьшение масштаба приложения
Вы можете без труда уменьшить или увеличить параллелизм приложения. 
Вам нужно создать точку сохранения, отменить приложение и перезапустить 
его с  настроенным параллелизмом из точки сохранения. Состояние при-
ложения автоматически перераспределяется между большим или меньшим 
количеством параллельных операторских задач. В  разделе 3.4.4 подробно 
рассказано о том, как масштабируются различные типы состояния оператора 
и ключевые состояния. Однако следует учитывать несколько моментов.

Если вам требуются результаты «ровно один раз», вы должны создать точ-
ку сохранения и остановить приложение с помощью встроенной команды 
savepoint-and-cancel. Это предотвращает завершение другой контрольной 
точки после точки сохранения, что приведет к срабатыванию приемников 
ровно один раз для передачи данных после точки сохранения.

Как говорилось в разделе 5.3, параллелизм приложения и его операторов 
можно указать по-разному. По умолчанию операторы работают с паралле-
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лизмом их среды выполнения StreamExecutionEnvironment. Параллелизм по 
умолчанию можно указать при запуске приложения (например, с помощью 
параметра -p в  клиенте командной строки). Если вы реализуете приложе-
ние так, что параллелизм его операторов зависит от параллелизма среды по 
умолчанию, вы можете просто масштабировать приложение, запустив его 
из того же файла JAR и указав новый параллелизм. Однако, если вы жестко 
запрограммировали параллелизм в StreamExecutionEnvironment или в некото-
рых операторах, вам может потребоваться скорректировать исходный код, 
перекомпилировать и  переупаковать приложение перед его отправкой на 
выполнение.

Если параллелизм вашего приложения зависит от параллелизма среды по 
умолчанию, Flink предоставляет атомарную команду изменения масштаба, 
которая берет точку сохранения, останавливает приложение и перезапускает 
его с новым параллелизмом по умолчанию:

./bin/flink modify <jobId> -p <newParallelism>

Чтобы изменить масштаб приложения с  jobId bc0b2ad61ecd4a615d92ce-
25390f61ad до параллелизма 16, выполните команду:

./bin/flink modify bc0b2ad61ecd4a615d92ce25390f61ad -p 16
Modify job bc0b2ad61ecd4a615d92ce25390f61ad.
Rescaled job bc0b2ad61ecd4a615d92ce25390f61ad. Its new parallelism is 16.

Как сказано в разделе 3.4.4, Flink распределяет ключевое состояние с де-
тализацией по так называемым группам ключей. Следовательно, количество 
таких групп оператора с  отслеживанием состояния определяет его макси-
мальный параллелизм. Количество групп ключей настраивается для каждого 
оператора с помощью метода setMaxParallelism() (см. раздел 7.3.2).

10.1.3. Управление приложениями 
с помощью REST API
REST API доступен напрямую пользователям или скриптам и предоставля-
ет информацию о  кластере Flink и  его приложениях, включая показатели, 
а также конечные точки для отправки и  управления приложениями. Flink 
обслуживает REST API и веб-интерфейс с одного и того же веб-сервера, кото-
рый работает как часть процесса Dispatcher. По умолчанию оба компонента 
доступны на порту 8081. Вы можете настроить другой порт в файле ./conf/
flink-conf.yaml с помощью ключа конфигурации rest.port. Значение -1 от-
ключает REST API и веб-интерфейс.

Распространенным инструментом командной строки для взаимодействия 
с REST API является curl. Типичная команда REST curl выглядит так:

curl -X <HTTP-Method> [-d <parameters>] http://hostname:port/v1/<REST-point>

Здесь v1 указывает версию REST API. Flink 1.7 предоставляет первую вер-
сию (v1) API. Предположим, что вы запускаете локальную версию Flink, ко-
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торая предоставляет свой REST API на порт 8081. Следующая команда от-
правляет запрос GET в конечную точку REST /overview:

curl -X GET http://localhost:8081/v1/overview

Команда возвращает некоторую базовую информацию о кластере, такую 
как версия Flink, количество диспетчеров задач, слотов и запущенных, за-
вершенных, отмененных или неудачных заданий:

{
 "taskmanagers":2,
 "slots-total":8,
 "slots-available":6,
 "jobs-running":1,
 "jobs-finished":2,
 "jobs-cancelled":1,
 "jobs-failed":0,
 "flink-version":"1.7.1",
 "flink-commit":"89eafb4"
}

Далее мы перечисляем и  кратко описываем наиболее важные вызовы 
REST. Обратитесь к официальной документации Apache Flink для получения 
полного списка поддерживаемых вызовов. Раздел 10.1.2 предоставляет более 
подробную информацию о некоторых операциях, таких как обновление или 
масштабирование приложения.

10.1.3.1. Управление и мониторинг кластера Flink
REST API предоставляет конечные точки для запроса информации о работа-
ющем кластере и для завершения его работы. В табл. 10.1, 10.2 и 10.3 пока-
заны запросы REST для получения информации о кластере Flink, например 
количество слотов задач, запущенные и завершенные задания, конфигура-
ция JobManager или список всех подключенных процессов TaskManager.

Таблица 10.1. Запрос REST для получения базовой информации о кластере
Запрос GET /overview
Ответ Базовая информация о кластере, как показано выше

Таблица 10.2. Запрос REST для получения конфигурации JobManager
Запрос GET /jobmanager/config
Ответ Возвращает конфигурацию JobManager, как описано в ./conf/flink-conf.yaml

Таблица 10.3. Запрос REST для вывода списка всех подключенных  
диспетчеров задач
Запрос GET /taskmanagers
Ответ Возвращает список всех процессов TaskManagwer, включая их идентификаторы 

и основную информацию, такую как статистика памяти и порты подключения
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В табл. 10.4 показан запрос REST для перечисления всех показателей, со-
бранных для JobManager.

Таблица 10.4. Запрос REST для вывода списка доступных метрик JobManager
Запрос GET /jobmanager/metrics
Ответ Возвращает список доступных метрик JobManager

Чтобы получить одну или несколько метрик JobManager, добавьте в запрос 
параметр get с перечислением нужных метрик:

curl -X GET http://hostname:port/v1/jobmanager/metrics?get=metric1,metric2

В табл. 10.5 показан запрос REST для перечисления всех метрик, собранных 
для процессов TaskManager.

Таблица 10.5. Запрос REST для вывода списка доступных метрик TaskManager
Запрос GET /taskmanagers/<tmId>/metrics
Параметры tmId: идентификатор связанного процесса TaskManager
Ответ Возвращает список метрик для выбранного процесса TaskManager

Чтобы получить одну или несколько метрик TaskManager, добавьте в за-
прос параметр get со всеми запрошенными метриками:

curl -X GET http://hostname:port/v1/taskmanagers/<tmId>/metrics?get=metric1

Вы также можете завершить работу кластера с  помощью вызова REST, 
который показан в табл. 10.6.

Таблица 10.6. Запрос REST на выключение кластера
Запрос GET /jobmanager/metrics
Действие Завершает работу кластера Flink. Обратите внимание, что в автономном режиме 

будет завершен только главный процесс, а рабочие процессы продолжат работу

10.1.3.2. Управление и мониторинг приложений Flink
REST API также можно использовать для управления и  мониторинга при-
ложений Flink. Чтобы запустить приложение, сначала необходимо загрузить 
файл JAR приложения в кластер. В табл. 10.7, 10.8 и 10.9 показаны конечные 
точки REST для управления этими файлами JAR.

Таблица 10.7. Запрос REST для загрузки файла JAR
Запрос POST /jars/upload
Параметры Файл должен быть отправлен как составные данные
Действие Загрузка JAR-файла в кластер
Ответ Место хранения загруженного JAR-файла

Команда curl для загрузки файла JAR:
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curl -X POST -H "Expect:" -F "jarfile=@path/to/flink-job.jar" \

http://hostname:port/v1/jars/upload

Таблица 10.8. Запрос REST для вывода списка всех загруженных файлов JAR
Запрос GET /jars
Ответ Список всех загруженных файлов JAR. Список включает внутренний  

идентификатор файла JAR, его исходное имя и время, когда он был загружен

Таблица 10.9. Запрос REST на удаление файла JAR
Запрос DELETE /jars/<jarId>
Параметры jarId: идентификатор JAR-файла, предоставленный командой вывода списка 

JAR-файлов
Действие Удаление JAR-файла, на который ссылается идентификатор

Приложение запускается из загруженного файла JAR с помощью вызова 
REST, показанного в табл. 10.10.

Таблица 10.10. Запрос REST для запуска приложения
Запрос DELETE /jars/<jarId>
Параметры jarId: идентификатор JAR-файла, из которого запускается приложение.  

Вы можете передать дополнительные параметры, такие как аргументы  
задания, класс входа, параллелизм по умолчанию, путь к точке сохранения 
и флаг allow-nonrestored-state в виде объекта JSON

Действие Запускает приложение, определенное файлом JAR (и классом записи)  
с предоставленными параметрами. Если указан путь к точке сохранения,  
состояние приложения инициализируется из точки сохранения

Ответ Идентификатор задания запущенного приложения

Команда curl для запуска приложения с параллелизмом по умолчанию 4:

curl -d '{"parallelism":"4"}' -X POST \

http://localhost:8081/v1/jars/43e844ef-382f-45c3-aa2f-00549acd961e_App.jar/run

Таблицы 10.11, 10.12 и  10.13 показывают, как управлять запущенными 
приложениями с помощью REST API.

Таблица 10.11. Запрос REST для вывода списка всех приложений
Запрос GET /jobs
Ответ Перечисляет идентификаторы заданий всех запущенных приложений  

и идентификаторы заданий последних неудачных, отмененных и завершенных 
приложений

Таблица 10.12. Запрос REST для отображения деталей приложения
Запрос GET /jobs/<jobId>
Ответ Базовая статистика, такая как имя приложения, время начала (и время окончания),  

а также информация о выполненных задачах, включая количество принятых  
и отправленных записей и байтов
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Таблица 10.13. Запрос REST для отмены приложения
Запрос PATCH /jobs/<jobId>
Параметры jobId: идентификатор задания, предоставленный командой вывода списка 

приложений
Действие Прекращение работы приложения

REST API также предоставляет более подробную информацию о следую-
щих аспектах приложения:

�� плане выполнения операторов приложения;
�� конфигурации приложения;
�� собранных метриках приложения на разных уровнях детализации;
�� метриках контрольных точек;
�� показателях противодавления;
�� исключениях, которые привели к сбою приложения.

Ознакомьтесь с официальной документацией, чтобы узнать, как получить 
доступ к этой информации.

Вы также можете создать точку сохранения работающего приложения 
с помощью вызова REST, который показан в табл. 10.14.

Таблица 10.14. Запрос REST для создания точки сохранения приложения
Запрос POST /jobs/<jobId>/savepoints
Параметры jobId: идентификатор задания, предоставленный командой вывода списка 

приложений
Действие Создает точку сохранения приложения
Ответ Идентификатор запроса, чтобы проверить, сработал ли триггер точки  

сохранения

Команда curl для запуска точки сохранения без отмены:

curl -d '{"target-directory":"file:///savepoints", "cancel-job":"false"}'\
-X POST http://localhost:8081/v1/jobs/e99cdb41b422631c8ee2218caa6af1cc/savepoints 
{"request-id":"ebde90836b8b9dc2da90e9e7655f4179"}

	 При отмене приложения с помощью точки сохранения возможен сбой

	
Запрос на отмену приложения будет успешным только в том случае, если была успешно 
создана точка сохранения. Приложение продолжит работу, если команда точки сохране-
ния не удалась.

Чтобы проверить, был ли успешным запрос с  идентификатором eb-
de90836b8b9dc2da90e9e7655f4179, и получить путь к точке сохранения, выпол-
ните команду:

curl -X GET http://localhost:8081/v1/jobs/e99cdb41b422631c8ee2218caa6af1cc/\
savepoints/ebde90836b8b9dc2da90e9e7655f4179
{"status":{"id":"COMPLETED"}
"operation":{"location":"file:///savepoints/savepoint-e99cdb-34410597dec0"}}
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Для удаления точки сохранения используйте вызов REST, показанный 
в табл. 10.15.

Таблица 10.15. Запрос REST на удаление точки сохранения
Запрос POST /savepoint-disposal
Параметры Путь к удаляемой точке сохранения должен быть предоставлен в качестве 

параметра в объекте JSON
Действие Удаляет точку сохранения
Ответ Идентификатор запроса для проверки, успешно ли была удалена точка  

сохранения

Чтобы удалить точку сохранения с помощью curl, запустите:

curl -d '{"savepoint-path":"file:///savepoints/savepoint-e99cdb-34410597"}'\
-X POST http://localhost:8081/v1/savepoint-disposal
{"request-id":"217a4ffe935ceac2c281bdded76729d6"}

В табл. 10.16 показан вызов REST для изменения масштаба приложения.

Таблица 10.16. Запрос REST для изменения масштаба приложения
Запрос PATCH /jobs/<jobID>/rescaling
Параметры Идентификатор задания, предоставленный командой получения списка 

приложений. Кроме того, вам необходимо предоставить новый параллелизм 
приложения в качестве параметра URL

Действие Принимает точку сохранения, отменяет приложение и перезапускает его 
с новым параллелизмом по умолчанию из точки сохранения

Ответ Идентификатор запроса, чтобы проверить, был ли запрос изменения  
масштаба успешным или нет

Чтобы изменить масштаб приложения с помощью curl до нового паралле-
лизма по умолчанию, равного 16 потокам, выполните команду:

curl -X PATCH
http://localhost:8081/v1/jobs/129ced9aacf1618ebca0ba81a4b222c6/rescaling\
?parallelism=16
{"request-id":"39584c2f742c3594776653f27833e3eb"}

	 Приложение может не масштабироваться

	
Приложение продолжит работу с исходным параллелизмом, если точка сохранения не 
создана. Вы можете проверить статус запроса на изменение масштаба, используя иден-
тификатор запроса.

10.1.4. Объединение и развертывание 
приложений в контейнерах
До сих пор мы говорили о том, как запустить приложение на работающем 
кластере Flink. Мы называем это развертыванием в  режиме фреймворка. 
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В разделе 3.1.2 мы кратко упомянули альтернативу – режим библиотеки, ко-
торый не требует наличия запущенного кластера Flink для отправки задания.

В режиме библиотеки приложение объединяется в образ Docker, который 
также содержит необходимые двоичные файлы Flink. Образ можно запустить 
двумя способами – как контейнер JobMaster или как контейнер TaskManager. 
Когда образ развертывается как JobMaster, контейнер запускает главный 
процесс Flink, который немедленно выбирает связанное приложение для 
запуска. Контейнер TaskManager регистрируется в  JobMaster и  предлагает 
свои слоты обработки. Как только становится доступно достаточно слотов, 
контейнер JobMaster развертывает приложение для выполнения.

Библиотечный стиль запуска приложений Flink напоминает развертыва-
ние микросервисов в контейнерной среде. При развертывании на платформе 
оркестровки контейнеров, такой как Kubernetes, платформа перезапускает 
отказавшие контейнеры. В этом разделе мы описываем, как создать образ 
Docker для конкретного задания и  как развернуть связанное приложение 
библиотечного типа на Kubernetes.

10.1.4.1. Создание образа Flink Docker  
для конкретного задания
Apache Flink предоставляет сценарий для создания образов Flink Docker для 
конкретных заданий. Сценарий включен в набор исходного кода и размещен 
в репозитории Git. Он не является частью двоичных дистрибутивов Flink.

Вы можете либо загрузить и  распаковать исходный код Flink, либо кло-
нировать репозиторий Git. Начиная с базовой папки дистрибутива, скрипт 
находится по адресу ./flink-container/docker/build.sh.

Сценарий сборки создает и регистрирует новый образ Docker, основанный 
на образе Java Alpine, минимальном базовом образе, предоставляющем Java-
машину. Для скрипта требуются следующие параметры:

�� путь к архиву Flink;
�� путь к JAR-файлу приложения;
�� название нового изображения.

Чтобы создать образ с Flink 1.7.1, который содержит примеры приложений 
из этой книги, выполните следующий сценарий:

cd ./flink-container/docker
./build.sh \
    --from-archive <path-to-Flink-1.7.1-archive> \
    --job-jar <path-to-example-apps-JAR-file> \
    --image-name flink-book-apps

Если вы запустите команду Docker images после завершения скрипта сбор-
ки, вы должны увидеть новый образ Docker под названием flink-book-apps.

Каталог ./flink-container/docker также содержит файл docker-compose.yml 
для развертывания приложения Flink с помощью docker-compose.

Если вы запустите следующую команду, на одном главном и трех рабочих 
контейнерах в Docker будет развернут пример приложения из раздела 1.4:
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FLINK_DOCKER_IMAGE_NAME=flink-book-jobs \
FLINK_JOB=io.github.streamingwithflink.chapter1.AverageSensorReadings \
DEFAULT_PARALLELISM=3 \
docker-compose up -d 

Вы можете отслеживать приложение и  управлять им при помощи веб-
интерфейса, доступного по адресу http://localhost:8081.

10.1.4.2. Запуск образа Docker для определенного задания 
в Kubernetes
Запуск образа Docker для определенного задания в Kubernetes очень похож 
на запуск кластера Flink в Kubernetes, как описано в разделе 9.1.4. В прин-
ципе, вам нужно только настроить файлы YAML, которые описывают ваши 
развертывания, чтобы использовать образ, содержащий код задания, и на-
строить его для автоматического запуска задания при запуске контейнера.

Flink предоставляет шаблоны для файлов YAML, представленных в дис-
трибутиве исходного кода или размещенных в репозитории Git проекта. На-
чиная с базового каталога, шаблоны находятся в ./flink-container/kubernetes.

В каталоге находятся два файла шаблона:

1)	� job-cluster-job.yaml.template настраивает главный контейнер как за-
дание Kubernetes;

2)	� task-manager-deployment.yaml.template настраивает рабочий контейнер 
как развертывание Kubernetes.

Оба файла шаблона содержат заполнители, которые необходимо заменить 
фактическими значениями:

�� $ {FLINK_IMAGE_NAME}: имя образа для конкретного задания;
�� $ {FLINK_JOB}: основной класс запускаемого задания;
�� $ {FLINK_JOB_PARALLELISM}: степень параллелизма для задания. Этот па-

раметр также определяет количество запущенных рабочих контейне-
ров.

Как видите, это те же параметры, что мы использовали при развертывании 
образа для конкретного задания с помощью docker-compose. В каталоге также 
находится YAML-файл job-cluster-service.yaml, который определяет службу 
Kubernetes. После того как вы скопировали файлы шаблонов и  настроили 
необходимые значения, можете развернуть приложение в  Kubernetes, как 
и раньше, с помощью kubectl:

kubectl create -f job-cluster-service.yaml
kubectl create -f job-cluster-job.yaml
kubectl create -f task-manager-deployment.yaml

	 Запуск образов для определенных заданий на Minikube
Запуск образа для определенного задания в кластере Minikube требует на несколько 
шагов больше, чем описано в  разделе 9.1.4. Проблема в  том, что Minikube пытается 
получить пользовательский образ из общедоступного реестра образов Docker, а не из 
локального реестра Docker вашей машины.
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Однако вы можете настроить Docker для развертывания его образов в собственном ре-
естре Minikube, выполнив следующую команду:

eval $(minikube docker-env)

Все образы, которые вы создаете впоследствии в этой оболочке, развертываются в рее-
стре образов Minikube. Minikube должен быть запущен.
Более того, вам необходимо присвоить параметру ImagePullPolicy в файлах YAML зна-
чение Never, чтобы гарантировать, что Minikube извлекает изображение из собственного 
реестра.

После запуска контейнеров для определенных заданий вы можете рас-
сматривать кластер как обычный кластер Flink, как описано в разделе 9.1.4.

10.2. Управление планированием задач

Приложения Flink выполняются параллельно за счет распараллеливания опе-
раторов на задачи и распределения этих задач по рабочим процессам в кла-
стере. Как и  во многих других распределенных системах, быстродействие 
приложения Flink во многом зависит от того, как запланированы задачи. 
Быстродействие приложения может в значительной степени зависеть от ра-
бочего процесса, которому назначена задача, от расположенных рядом с этой 
задачей других задач и количества задач, назначенных рабочему процессу.

В разделе 3.1.3 мы описали, как Flink назначает задачи слотам и как он 
использует цепочку задач для снижения затрат на локальный обмен дан-
ными. В этом разделе мы обсудим, как вы можете настроить поведение по 
умолчанию и управлять цепочкой задач и назначением задач по слотам для 
повышения быстродействия ваших приложений.

10.2.1. Управление цепочкой задач
Цепочка задач объединяет параллельные задачи двух или более операторов 
в одну задачу, которая выполняется одним потоком. Объединенные задачи 
обмениваются записями посредством вызовов методов и, таким образом, 
практически не требуют затрат на связь. Поскольку цепочка задач улучша-
ет быстродействие большинства приложений, она включена по умолчанию 
в Flink.

Однако некоторые приложения не получают выгоду от цепочки задач. 
Одна из причин – иногда лучше разорвать цепочку вычислительно доро-
гостоящих функций, чтобы выполнять их на разных слотах обработки. Вы 
можете полностью отключить цепочку задач для приложения через Stream
ExecutionEnvironment:

StreamExecutionEnvironment.disableOperatorChaining()

Помимо отключения цепочки для всего приложения, вы также можете 
управлять цепочкой отдельных операторов. Чтобы отключить цепочку для 
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определенного оператора, вы можете вызвать его метод disableChaining(). 
Это предотвратит привязку задач оператора к предыдущим и последующим 
задачам (пример 10.1).

Пример 10.1   Отключение цепочки задач для оператора
val input: DataStream[X] = ...
val result: DataStream[Y] = input
  .filter(new Filter1())
  .map(new Map1())
  // Отключение цепочки для Map2.
  .map(new Map2()).disableChaining()
  .filter(new Filter2())

Код в примере 10.1 приводит к трем задачам – связанной задаче для Fil-
ter1 и Map1, отдельной задаче для Map2 и задаче для Filter2, которую нельзя 
связывать с Map2.

Также можно начать новую цепочку с  помощью оператора, вызвав его 
метод startNewChain() (пример 10.2). Задачи оператора не будут привязаны 
к предыдущим задачам, но будут привязаны к последующим задачам, если 
выполнены требования для объединения.

Пример 10.2   Начать новую цепочку задач с оператором
val input: DataStream[X] = ...
val result: DataStream[Y] = input
  .filter(new Filter1())
  .map(new Map1())
  // Запуск новой цепочки для Map2 и Filter.
  .map(new Map2()).startNewChain()
  .filter(new Filter2())

В примере 10.2 созданы две связанные задачи: одна задача для Filter1 
и  Map1, а  другая задача для Map2 и  Filter2. Обратите внимание, что новая 
связанная задача начинается с оператора, для которого вызывается метод 
startNewChain() – в нашем примере это Map2.

10.2.2. Определение групп совместного 
использования слотов
Стратегия планирования задач Flink по умолчанию назначает полный фраг-
мент программы – до одной задачи каждого оператора приложения в один 
слот обработки1. В зависимости от сложности приложения и вычислительных 
затрат операторов эта стратегия по умолчанию может перегружать слот об-
работки. Механизм Flink для ручного управления назначением задач сло-
там – это группы с разделением слотов.

1	 Поведение расписания по умолчанию было объяснено в главе 3.
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Каждый оператор является членом группы совместного использования 
слотов. Все задачи операторов, входящих в  одну группу, обрабатываются 
одними и теми же слотами. В группе с совместным использованием слотов 
задачи назначаются слотам, как описано в разделе 3.1.3, – каждый слот об-
рабатывает до одной задачи каждого оператора, который является членом 
группы. Следовательно, группе с совместным использованием слотов требу-
ется столько слотов обработки, сколько составляет максимальный паралле-
лизм ее операторов. Задачи операторов, находящихся в разных группах, не 
выполняются одними и теми же слотами.

По умолчанию каждый оператор входит в группу разделения слотов de-
fault. Для каждого оператора вы можете явно указать его группу разделения 
слотов с помощью метода slotSharingGroup(String). Оператор наследует груп-
пу совместного использования слота своих операторов ввода, если все они 
являются членами одной группы. Если операторы ввода находятся в разных 
группах, оператор находится в группе default. В примере 10.3 показано, как 
указать группы с разделением слотов в приложении Flink DataStream.

Пример 10.3  � Управление планированием задач с помощью групп 
с разделением слотов

// Слотовая группа "зеленая" ("green").
val a: DataStream[A] = env.createInput(...)
  .slotSharingGroup("green")
  .setParallelism(4)
val b: DataStream[B] = a.map(...)
  // Слотовая группа "green" унаследована от a.
  .setParallelism(4)

// Слотовая группа "желтая" ("yellow").
val c: DataStream[C] = env.createInput(...)
  .slotSharingGroup("yellow")
  .setParallelism(2)

// Слотовая группа "синяя" ("blue").
val d: DataStream[D] = b.connect(c.broadcast(...)).process(...)
  .slotSharingGroup("blue")
  .setParallelism(4)
val e = d.addSink()
  // Слотовая группа "blue" унаследована от d.
  .setParallelism(2)

Приложение в примере 10.3 состоит из пяти операторов, двух источников, 
двух промежуточных операторов и оператора приемника. Операторы рас-
пределены по трем группам с разделением слотов: зеленой, желтой и синей. 
На рис. 10.1 показан JobGraph приложения и то, как его задачи отображаются 
в слоты обработки.

Приложению требуется 10 слотов обработки. Для синих и зеленых групп 
с совместным использованием слотов требуется по четыре слота для каждой 
из-за максимального параллелизма назначенных им операторов. Для желтой 
группы с разделением слотов требуется два слота.



276   Работа с Flink и потоковыми приложениями

Слот 
1.1

Слот 
2.1

Слот 
1.2

Слот 
2.2

Слот 
1.3

Слот 
2.3

Слот 
1.4

Слот 
2.4

Слот 
1.5

Слот 
2.5

JobGraph
TaskManager1 TaskManager2

E2 E E

D4 D DD D

В В

А А

В ВC C

А А

B4

A4

C2

Рис. 10.1   Управление планированием задач  
с помощью групп с разделением слотов

10.3. Настройка контрольных точек 
и восстановления

Приложение Flink, работающее в режиме высокой доступности, периоди-
чески создает контрольную точку своего состояния. Создание контрольных 
точек может быть дорогостоящей операцией, поскольку объем данных, 
которые необходимо скопировать в постоянное хранилище, иногда быва-
ет довольно большим. Увеличение интервала контрольных точек снижает 
накладные расходы на отказоустойчивость при обычной работе. Однако 
это также увеличивает объем данных, которые задание должно обработать 
при восстановлении после сбоя, прежде чем оно догонит хвостовую часть 
потока.

Flink предоставляет несколько параметров для настройки контрольных 
точек и бэкендов состояния. Настройка этих параметров важна для обеспе-
чения надежной и бесперебойной работы потоковых приложений в произ-
водственной среде. Например, сокращение накладных расходов на каждую 
контрольную точку может способствовать более высокой частоте контроль-
ных точек, что приводит к более быстрым циклам восстановления. В этом 
разделе мы описываем параметры, используемые для управления установ-
кой контрольных точек и восстановлением приложений.

10.3.1. Настройка контрольных точек
Когда вы включаете контрольные точки для приложения, вы должны указать 
интервал контрольных точек – интервал, через который JobManager будет 
инициировать контрольные точки в источниках приложения.
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Контрольные точки включены в StreamExecutionEnvironment:

val env: StreamExecutionEnvironment = ???

// Разрешаем установку контрольных точек с интервалом 10 секунд.
env.enableCheckpointing(10000);

Дополнительные параметры для настройки поведения контрольных точек 
доступны в CheckpointConfig, который можно получить из StreamExecutionEn-
vironment:

// Получаем CheckpointConfig из StreamExecutionEnvironment.
val cpConfig: CheckpointConfig = env.getCheckpointConfig

По умолчанию Flink создает контрольные точки, чтобы гарантировать со-
гласованность состояния «ровно один раз». Однако его также можно настро-
ить для предоставления гарантии «хотя бы один раз»:

// Установить режим "хотя бы один раз".
cpConfig.setCheckpointingMode(CheckpointingMode.AT_LEAST_ONCE);

В зависимости от характеристик приложения, размера его состояния, 
а также бэкенда состояния и его конфигурации запись контрольной точки 
может занять до нескольких минут. Более того, размер состояния может со 
временем меняться, возможно, из-за изменения длительности окон. Поэто-
му завершение контрольной точки нередко занимает больше времени, чем 
заданный интервал между точками. По умолчанию Flink позволяет одно-
временно выполнять только одну контрольную точку, чтобы механизм кон-
трольных точек не забирал слишком много ресурсов у  штатного процесса 
обработки. Если – в соответствии с настроенным интервалом контрольной 
точки – пришло время запустить контрольную точку, но есть незавершенная 
контрольная точка, вторая контрольная точка будет приостановлена до за-
вершения первой контрольной точки.

Если для многих или всех контрольных точек требуется больше времени, 
чем интервал между контрольными точками, такое поведение может быть 
неоптимальным по двум причинам. Во-первых, это означает, что регуляр-
ная обработка данных приложением всегда будет конкурировать за ресур-
сы с контрольными точками. Следовательно, обработка потоковых данных 
замедляется и  может не успевать за поступающими данными. Во-вторых, 
контрольная точка может быть отложена, потому что нам нужно дождаться 
завершения другой контрольной точки, что приведет к более длительному 
наверстыванию во время восстановления. Flink располагает параметрами 
настройки для решения этих ситуаций.

Чтобы приложение работало без помех, вы можете настроить минималь-
ную паузу между контрольными точками. Если вы настроите минималь-
ную паузу на 30 с, то новая контрольная точка не будет запущена в течение 
первых 30 с после завершения контрольной точки. Это также означает, что 
эффективный интервал между контрольными точками составляет не менее 
30 с и одновременно выполняется не более одной контрольной точки.
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// Работать не менее 30 секунд без контрольных точек.
cpConfig.setMinPauseBetweenCheckpoints(30000);

В определенных ситуациях может потребоваться уверенность, что конт
рольные точки создаются строго с заданной периодичностью, даже если соз-
дание контрольной точки превышает интервал между точками. Одним из 
примеров может быть ситуация, когда контрольные точки занимают много 
времени на создание, но не потребляют много ресурсов; например, если об-
ращения ко внешним системам происходят с большой задержкой. На этот 
случай предусмотрена настройка максимального количества одновремен-
ных контрольных точек.

// Разрешить выполнение не более трех контрольных точек одновременно.
cpConfig.setMaxConcurrentCheckpoints(3);

	 Точки сохранения создаются одновременно с контрольными точками. Flink не задержи-
вает явно запущенные точки сохранения из-за операций с контрольными точками. Точка 
сохранения будет запускаться всегда независимо от того, сколько контрольных точек 
выполняется.

Чтобы ограничить длительность создания контрольной точки, вы можете 
настроить интервал тайм-аута, по истечении которого контрольная точка 
отменяется. По умолчанию контрольные точки отменяются через 10 мин.

// Контрольные точки должны быть завершены в течение 5 минут, иначе они будут отменены.
cpConfig.setCheckpointTimeout(300000);

Наконец, вы также можете настроить, что произойдет в случае сбоя конт
рольной точки. По умолчанию сбой контрольной точки вызывает исключе-
ние, которое приводит к  перезапуску приложения. Вы можете отключить 
это поведение и позволить приложению продолжить работу после ошибки 
контрольной точки.

// Не перезапускать задание из-за ошибки контрольной точки.
cpConfig.setFailOnCheckpointingErrors(false);

10.3.1.1. Сжатие контрольной точки
Flink поддерживает сжатые контрольные точки и  точки сохранения. До 
версии Flink 1.7 единственным поддерживаемым алгоритмом сжатия был 
Snappy. Вы можете включить сжатие контрольных точек и точек сохранения 
следующим образом:

val env: StreamExecutionEnvironment = ???

// Включить сжатие контрольной точки.
env.getConfig.setUseSnapshotCompression(true)

	 Обратите внимание, что сжатие контрольных точек не поддерживается для инкремент-
ных контрольных точек RocksDB.
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10.3.1.2. Сохранение контрольных точек  
после остановки приложения
Назначение контрольных точек – восстановить приложение после сбоя. Сле-
довательно, они не создаются, когда задание перестает выполняться из-за 
сбоя или явной отмены. Однако вы также можете включить функцию, на-
зываемую внешними контрольными точками, чтобы сохранять контрольные 
точки после остановки приложения.

// Включение внешних контрольных точек.
cpConfig.enableExternalizedCheckpoints(
  ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)

Есть два варианта внешних контрольных точек:

1)	� RETAIN_ON_CANCELLATION сохраняет контрольную точку как после полного 
отказа приложения, так и при отмене приложения;

2)	� DELETE_ON_CANCELLATION сохраняет контрольную точку только после пол-
ного отказа приложения. Если приложение отменено, внешняя кон-
трольная точка удаляется.

	 Внешние контрольные точки не заменяют точки сохранения. Они используют формат 
хранения, зависящий от бэкенда состояния, и не поддерживают изменение масштаба. 
Следовательно, их достаточно для перезапуска приложения после сбоя, но они обе-
спечивают меньшую гибкость, чем точки сохранения. Как только приложение снова за-
пустится, вы можете записать точку сохранения.

10.3.2. Настройка бэкендов состояния
Бэкенд состояния приложения отвечает за поддержание локального состоя-
ния, выполнение контрольных точек и точек сохранения, а также восстанов-
ление состояния приложения после сбоя. Следовательно, выбор и конфигу-
рация бэкенда состояния приложения во многом определяет быстродействие 
механизма контрольных точек. Различные бэкенды состояния подробно 
описаны в разделе 7.4.1.

По умолчанию в приложении используется бэкенд состояния MemoryState-
Backend. Поскольку он хранит все состояние в памяти, а контрольные точки 
полностью хранятся в энергозависимом хранилище кучи JobManager с огра-
ниченным размером JVM, не рекомендуется использовать его для производ-
ственных сред. Тем не менее он хорошо подходит для локальной разработки 
приложений Flink. Раздел 9.5.5 описывает настройку бэкенда состояния по 
умолчанию для кластера Flink.

Вы также можете явно выбрать бэкенд состояния приложения:

val env: StreamExecutionEnvironment = ???

// Создаем и настраиваем бэкенд состояния по вашему выбору.
val stateBackend: StateBackend = ???
// Назначаем бэкенд состояния.
env.setStateBackend(stateBackend)
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Различные бэкенды состояния можно запустить с  минимальными на-
стройками, как показано ниже. MemoryStateBackend вообще не требует никаких 
параметров. Однако есть конструкторы, которые принимают параметры для 
включения или отключения асинхронной контрольной точки (включено по 
умолчанию) и ограничивают размер состояния (по умолчанию 5 Мб):

// Создаем MemoryStateBackend.
val memBackend = new MemoryStateBackend()

FsStateBackend требует только путь к месту хранения контрольных точек. 
Также есть варианты конструктора для включения или отключения асин-
хронной контрольной точки (по умолчанию включено):

// Создаем FsStateBackend, который указывает на папку /tmp/ckp.
val fsBackend = new FsStateBackend("file:///tmp/ckp", true)

RocksDBStateBackend требует только путь к  месту хранения контрольных 
точек и принимает необязательный параметр для включения инкрементных 
контрольных точек (по умолчанию отключен). RocksDBStateBackend всегда за-
писывает контрольные точки асинхронно:

// Создаем RocksDBStateBackend, который записывает инкрементные контрольные точки
// в папку /tmp/ckp.
val RockBackend = new RocksDBStateBackend ("file:///tmp/ckp", true)

В разделе 9.5.5 мы обсудили параметры конфигурации для бэкендов со-
стояния. Конечно, вы также можете настроить бэкенд состояния в своем при-
ложении, переопределив значения по умолчанию или конфигурацию всего 
кластера. Для этого вам необходимо создать новый объект бэкенда, передав 
объект Configuration в бэкенд состояния, см. раздел 9.5.5, где приведено опи-
сание доступных параметров конфигурации:

// Все встроенные бэкенды Flink настраиваются.
val backend: ConfigurableStateBackend = ???

// Создаем конфигурацию и устанавливаем значения параметров.
val sbConfig = new Configuration() 
sbConfig.setBoolean("state.backend.async", true) 
sbConfig.setString("state.savepoints.dir", "file:///tmp/svp")

// Создаем настроенную копию бэкенда.
val configureBackend = backend.configure(sbConfig)

Поскольку RocksDB является внешним компонентом, он содержит собст
венный набор параметров настройки, который также можно сконфигури-
ровать под ваше приложение. По умолчанию RocksDB оптимизирован для 
хранения на SSD и не обеспечивает большое быстродействие, если состояние 
хранится на механических жестких дисках. Flink предоставляет несколько 
предустановленных настроек для повышения быстродействия при работе 
с обычным оборудованием. Описание доступных настроек приведено в до-
кументации Flink. Вы можете применить предустановленные параметры 
к RocksDBStateBackend следующим образом:
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val backend: RocksDBStateBackend = ???

// Установить предустановленные параметры для хранилища на механических дисках.
backend.setPredefinedOptions (PredefinedOptions.SPINNING_DISK_OPTIMIZED)

10.3.3. Настройка восстановления
Когда приложение с контрольной точкой выходит из строя, оно перезапуска-
ется, вызывает свои задачи, восстанавливает их состояния, включая смеще-
ния чтения исходных задач, и продолжает обработку. Сразу после перезапу-
ска приложение находится в стадии наверстывания упущенного. Поскольку 
исходные задачи приложения были сброшены на более раннюю позицию 
ввода, ему приходится обрабатывать данные, которые обрабатывались до 
сбоя, а также данные, накопленные во время простоя приложения.

Чтобы иметь возможность догнать поток – достичь его хвоста, – прило-
жение должно обрабатывать накопленные данные быстрее, чем поступают 
новые данные. Пока приложение догоняет поток, увеличивается задержка 
обработки – интервал времени между моментом доступности ввода и мо-
ментом фактической обработки.

Следовательно, приложение нуждается в  дополнительных свободных 
ресурсах для фазы наверстывания после перезапуска приложения, чтобы 
успешно возобновить свою обычную обработку. Это означает, что приложе-
ние не должно занимать 100 % доступных ресурсов во время обычной об-
работки. Чем больше свободных ресурсов доступно для восстановления, тем 
быстрее завершается фаза наверстывания и тем быстрее время ожидания 
обработки возвращается к норме.

Помимо соображений, касающихся ресурсов для восстановления, мы об-
судим еще две темы, связанные с восстановлением: стратегии перезапуска 
и локальное восстановление.

10.3.3.1. Стратегии перезапуска
В зависимости от сбоя, который привел к отказу приложения, сразу после 
перезапуска приложение может снова остановиться из-за того же сбоя. Ти-
пичный пример – недопустимые или поврежденные входные данные, ко-
торые приложение не может обработать. В такой ситуации приложение по-
падет в бесконечный цикл восстановления, потребляя много ресурсов, без 
возможности когда-либо вернуться к обычной обработке. Flink предлагает 
три стратегии перезапуска для решения этой проблемы:

1)	� с фиксированной задержкой – перезапускает приложение фиксирован-
ное количество раз и  ждет заданное время перед попыткой переза
пуска;

2)	� по частоте отказов – перезапускает приложение, пока не превышает-
ся настраиваемая частота отказов. Частота отказов определяется как 
максимальное количество отказов в  пределах заданного интервала 
времени. Например, вы можете настроить перезапуск приложения, 
если оно не дает сбоев более трех раз за последние десять минут;
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3)	� без перезапуска – не перезапускает приложение, а немедленно завер-
шает его работу.

Стратегия перезапуска приложения настраивается через StreamExecutionEn-
vironment, как показано в примере 10.4.

Пример 10.4   Настройка стратегии перезапуска приложения
val env = StreamExecutionEnvironment.getExecutionEnvironment 

env.setRestartStrategy(
  RestartStrategies.fixedDelayRestart (
    5,                             // Количество попыток перезапуска.
    Time.of (30, TimeUnit.SECONDS) // Задержка между попытками.
))

Стратегия перезапуска по умолчанию представляет собой перезапуск 
с фиксированной задержкой с количеством попыток, указанном в Integer.
MAX_VALUE и 10-секундной задержкой.

10.3.3.2. Локальное восстановление
Бэкенды состояния Flink (кроме MemoryStateBackend) хранят контрольные точ-
ки в удаленной файловой системе. Это гарантирует, во-первых, что состояние 
сохраняется и является постоянным, а во-вторых, его можно перераспреде-
лить в случае потери рабочего узла или масштабирования приложения. Од-
нако чтение состояния из удаленного хранилища во время восстановления 
не очень эффективно. Более того, в большинстве случаев после восстанов-
ления приложение удается запустить на тех же рабочих машинах, которые 
применялись до сбоя.

Flink поддерживает функцию, называемую локальным восстановлением, 
чтобы значительно ускорить восстановление, если приложение можно пере-
запустить на тех же машинах. Если этот параметр включен, бэкенды состоя-
ния также сохраняют копию данных контрольной точки на локальном диске 
своего рабочего узла в дополнение к  записи данных в  удаленную систему 
хранения. Когда приложение перезапускается, Flink первым делом пытается 
запланировать прежние задачи для прежних рабочих узлов. Если это удается, 
задачи сначала пытаются загрузить данные контрольной точки с локального 
диска. В случае возникновения каких-либо проблем они обращаются к уда-
ленному хранилищу.

Локальное восстановление реализовано так, что критерием надежности 
восстановления является наличие копии состояния в  удаленной системе. 
Задача подтверждает контрольную точку, только если удаленная запись про-
шла успешно.

Благодаря этому контрольная точка не выйдет из строя из-за потери копии 
в локальном хранилище. Поскольку данные контрольной точки записывают-
ся дважды, локальное восстановление увеличивает накладные расходы на 
создание контрольной точки.

Локальное восстановление можно включить и  настроить для кластера 
в файле flink-conf.yaml или для каждого приложения, включив следующее 
в конфигурацию бэкенда состояния:



Мониторинг кластеров и приложений Flink   283

�� state.backend.local-recovery: этот флаг включает или отключает локаль-
ное восстановление. По умолчанию локальное восстановление отклю-
чено;

�� taskmanager.state.local.root-dirs: этот параметр указывает один или 
несколько локальных путей, по которым хранятся копии локального 
состояния.

	 Локальное восстановление относится только к состоянию с ключом, которое всегда раз-
бито на разделы и обычно составляет большую часть размера состояния. Состояние опе-
ратора не будет храниться локально, и его необходимо получить из удаленной системы 
хранения. Однако обычно оно намного меньше, чем состояние с ключом. Более того, 
локальное восстановление не поддерживается MemoryStateBackend, который в  любом 
случае не поддерживает большое состояние.

10.4. Мониторинг кластеров 
и приложений Flink

Мониторинг вашего потокового задания необходим для уверенности в его 
нормальной работе и  раннего выявления потенциальных симптомов не-
правильной конфигурации, недостаточного выделения ресурсов или неожи-
данного поведения. Это особенно важно, когда задание потоковой обработки 
является частью более крупного конвейера обработки данных или управля-
емой событиями службы в приложении, ориентированном на пользователя. 
Вероятно, вы захотите как можно точнее отслеживать его быстродействие 
и убедиться, что оно соответствует определенным целевым показателям за-
держки, пропускной способности, использования ресурсов и т. д.

Flink собирает набор заданных метрик во время выполнения, а  также 
предоставляет структуру, которая позволяет вам определять и отслеживать 
собственные метрики.

10.4.1. Веб-интерфейс Flink
Самый простой способ получить обзор вашего кластера Flink, а также взгля-
нуть на то, что происходит внутри задания, – использовать веб-интерфейс 
Flink. Вы можете получить доступ к панели управления, перейдя по адресу 
http://<jobmanager-hostname>:8081.

На главном экране вы увидите обзор конфигурации вашего кластера, 
включая количество диспетчеров задач, количество настроенных и доступ-
ных слотов задач, а также запущенные и завершенные задания. На рис. 10.2 
показан пример главного экрана приборной панели. Меню слева содержит 
ссылки на более подробную информацию о заданиях и параметрах конфигу-
рации, а также позволяет отправлять задания путем загрузки JAR.

Если вы щелкнете по запущенному заданию, вы сможете быстро просмот
реть статистику по выполняемой задаче или подзадаче, как показано на 
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рис. 10.3. Вы можете проверить продолжительность работы, обмен в байтах 
и записях, и, если хотите, агрегировать их для каждого TaskManager.

Рис. 10.2   Главный экран веб-интерфейса Apache Flink

Рис. 10.3   Статистика по запущенному заданию

Если вы щелкнете по вкладке Task Metrics (метрики задачи), вы може-
те выбрать другие метрики из раскрывающегося меню, как показано на 
рис.  10.4. Метрики представляют более детальную статистику о  ваших за-
дачах, такую как использование буфера, водяные знаки и  скорость ввода/
вывода.

Рис. 10.4   Выбор метрик  
для построения графика
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На рис. 10.5 показано, как выбранные метрики отображаются в виде по-
стоянно обновляемых графиков.

Рис. 10.5   Графики выбранных метрик в реальном времени

На вкладке Checkpoints (рис. 10.3) отображается статистика о предыдущих 
и текущих контрольных точках. На вкладке Overview (Обзор) вы можете уви-
деть, сколько контрольных точек было запущено, сколько из них выполняет-
ся, выполнено успешно или провалено. Если вы нажмете на вкладку History 
(История), вы сможете получить более подробную информацию, такую как 
статус, время срабатывания, размер состояния и количество байтов, буфе-
ризованных во время фазы выравнивания контрольной точки. Обзор сводки 
объединяет статистику контрольных точек и предоставляет минимальные, 
максимальные и средние значения по всем завершенным контрольным точ-
кам. Наконец, в разделе Configuration (Конфигурация) вы можете проверить 
свойства конфигурации контрольных точек, такие как интервал и установ-
ленные значения тайм-аута.

Точно так же на вкладке Back Pressure (Противодавление) отображается 
статистика противодавления для каждого оператора и подзадачи. Если щел-
кнуть строку, запускается отбор измерений противодавления, и вы увидите 
сообщение Sampling in progress… (Выполняется отбор измерений) в тече-
ние примерно пяти секунд. По завершении отбора измерений вы увидите 
статус противодавления во втором столбце. Задачи, испытывающие высокое 
противодавление, будут помечены значком HIGH; в  противном случае вы 
должны увидеть сообщение ОК зеленого цвета.

10.4.2. Система метрик
При запуске системы обработки данных, такой как Flink, в производственной 
среде важно отслеживать ее поведение, чтобы иметь возможность обнару-
живать снижение быстродействия и диагностировать причину этого. Flink 
по умолчанию собирает несколько метрик системы и приложений. Метрики 
собираются для каждого оператора и процесса TaskManager или JobManager. 
Здесь мы описываем некоторые из наиболее часто используемых метрик 
и отсылаем вас к документации Flink для получения полного списка доступ-
ных метрик.
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Категории метрик включают использование ЦП, занятую память, количе-
ство активных потоков, статистику сборки мусора, сетевые метрики, такие 
как количество помещенных в очередь буферов ввода/вывода, общие метри-
ки кластера, такие как количество запущенных заданий или доступные ре-
сурсы, метрики заданий, включая время выполнения, количество повторных 
попыток и  информацию о  контрольных точках, статистику ввода/вывода, 
включая количество обменов записями локально и удаленно, информацию 
о водяных знаках, метрики для конкретных соединителей и т. д.

10.4.2.1. Регистрация и использование метрик
Чтобы зарегистрировать метрики, вы должны получить MetricGroup, вызвав 
getMetrics() в RuntimeContext, как показано в примере 10.5.

Пример 10.5   Регистрация и использование показателей в FilterFunction
class PositiveFilter extends RichFilterFunction[Int] {

  @transient private var counter: Counter = _

  override def open(parameters: Configuration): Unit = {
    counter = getRuntimeContext
      .getMetricGroup
      .counter("droppedElements")
    }

    override def filter(value: Int): Boolean = {
    if (value > 0) {
      true
    }
    else {
      counter.inc()
      false
    }
  }
}

10.4.2.2. Группы метрик
Метрики Flink регистрируются и доступны через интерфейс MetricGroup, ко-
торый предоставляет способы создания вложенных именованных иерархий 
метрик и методы для регистрации следующих типов показателей.

Counter (cчетчик)
Метрика org.apache.flink.metrics.Counter получает показания счетчика 
и  предоставляет методы для инкремента и  декремента. Вы можете за-
регистрировать метрику счетчика, используя метод counter(String name, 
Counter counter) в MetricGroup.

Gauge (индикатор)
Метрика Gauge вычисляет значение любого типа в определенный момент 
времени. Чтобы использовать Gauge, вы реализуете интерфейс org.apache.
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flink.metrics.Gauge и  регистрируете его с  помощью метода gauge(String 
name, Gauge gauge) в MetricGroup. Код в примере 10.6 показывает реализацию 
метрики WatermarkGauge, которая показывает текущий водяной знак.

Пример 10.6  � Реализация метрики WatermarkGauge,  
которая показывает текущий водяной знак

public class WatermarkGauge implements Gauge<Long> {
  private long currentWatermark = Long.MIN_VALUE;

  public void setCurrentWatermark(long watermark) {
    this.currentWatermark = watermark;
    }

  @Override
  public Long getValue() {
    return currentWatermark;
  }
}

	 Метрики представлены в виде строк

	
Репортеры показателей превратят значение Gauge в строку, поэтому убедитесь, что вы 
предоставили соответствующую реализацию toString(), если она не предоставляется 
используемым типом.

Histogram (гистограмма)
Вы можете использовать гистограмму для представления распределения 
числовых данных. Гистограмма Flink специально реализована для соз-
дания отчетов о  показателях длинных значений. Интерфейс org.apache.
flink.metrics.Histogram позволяет собирать значения, получать текущее 
количество собранных значений и создавать статистику, такую как мини-
мальное, максимальное, стандартное отклонение и среднее значение, для 
значений, которые встречались до текущего момента.

Помимо создания вашей собственной реализации гистограммы, Flink 
также позволяет использовать гистограмму DropWizard после добав-
ления следующих зависимостей:

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-metrics-dropwizard</artifactId>
  <version>flink-version</version>
</dependency>

Затем вы можете зарегистрировать гистограмму DropWizard в  своей 
программе Flink, используя DropwizardHistogramWrapper, как показано 
в примере 10.7.

Пример 10.7   Использование DropwizardHistogramWrapper
// Создаем и регистрируем гистограмму.
DropwizardHistogramWrapper histogramWrapper =
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  new DropwizardHistogramWrapper(
    new com.codahale.metrics.Histogram(new SlidingWindowReservoir(500)))
metricGroup.histogram("myHistogram", histogramWrapper)

// Обновляем гистограмму.
histogramWrapper.update(value)

Meter (измеритель)
Вы можете использовать метрику Meter для измерения скорости (в собы-
тиях в секунду), с которой происходят определенные события. Интерфейс 
org.apache.flink.metrics.Meter предоставляет методы для пометки возник-
новения одного или нескольких событий, получения текущей частоты со-
бытий в секунду и получения текущего количества событий, отмеченных 
измерителем.
Как и  в  случае с  гистограммами, вы можете использовать измерители 
DropWizard, добавив зависимость flink-metrics-dropwizard в ваш файл pom.
xml и обернув измеритель в класс DropwizardMeterWrapper.

10.4.2.3. Метрики области и форматирования
Метрики Flink относятся к области действия, которая может быть либо об-
ластью системы для метрик, предоставляемых системой, либо областью 
пользователя для настраиваемых, определяемых пользователем метрик. На 
метрики ссылается уникальный идентификатор, который может содержать 
до трех частей:

1)	 имя, которое пользователь указывает при регистрации метрики;
2)	 необязательная область пользователя;
3)	 область системы.

Например, имя "myCounter", пользовательская область "MyMetrics" и систем-
ная область "localhost.taskmanager.512" вместе дают нам идентификатор "lo-
calhost.taskmanager.512.MyMetrics.myCounter". Вы можете изменить значение 
разделителя по умолчанию ".", задав параметр конфигурации metrics.scope.
delimiter.

Область системы определяет, к  какому компоненту системы относится 
метрика и какую контекстную информацию она должна включать. Метрики 
могут быть привязаны к JobManager, TaskManager, заданию, оператору или 
задаче. Вы можете настроить, какую контекстную информацию должна со-
держать метрика, установив соответствующие параметры метрики в файле 
flink-conf.yaml. Мы перечисляем некоторые из этих параметров конфигура-
ции и их значения по умолчанию в табл. 10.17.

Ключи конфигурации содержат постоянные строки, такие как taskmanager, 
и  переменные, показанные в  угловых скобках. Последние будут заменены 
во время выполнения фактическими значениями. Например, область по 
умолчанию для метрик TaskManager может создать область localhost.taskman-
ager.512, где localhost и 512 – значения параметров. В табл. 10.18 показаны 
все переменные, доступные для настройки областей метрик.
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Таблица 10.17. Параметры конфигурации области системы  
и их значения по умолчанию

Область Ключ конфигурации Значение по умолчанию
JobManager metrics.scope.jm <host>.jobmanager
JobManager 
и задание

metrics.scope.jm.job <host>.jobmanager.<job_name>

TaskManager metrics.scope.tm <host>.taskmanager.<tm_id>
TaskManager 
и задание

metrics.scope.tm.job <host>.taskmanager.<tm_id>.<job_name>

Задача metrics.scope.task <host>.taskmanager.<tm_id>.<job_name>.<task_
name>.<subtask_index>

Оператор metrics.scope.operator <host>.taskmanager.<tm_id>.<job_name>.<operator_
name>.<subtask_index>

Таблица 10.18. Доступные переменные для настройки форматирования 
областей метрик

Область Допустимые значение
JobManager: <host>
TaskManager: <host>, <tm_id>
Job: <job_id>, <job_name>
Task: <task_id>, <task_name>, <task_attempt_id>, <task_attempt_num>,  

<subtask_index>
Operator: <operator_id>, <operator_name>, <subtask_index>

	 Идентификаторы области действия для задания должны быть уникальными

	
Если несколько копий одного и того же задания выполняются одновременно, метрики 
могут быть неточными из-за конфликтов строк. Чтобы избежать такого риска, вы долж-
ны убедиться, что идентификаторы области действия для каждого задания уникальны. 
С этим легко справиться, включив в идентификатор <job_id>.

Вы также можете определить пользовательскую область для метрик, вы-
звав метод addGroup() объекта MetricGroup, как показано в примере 10.8.

Пример 10.8   Определение области действия пользователя «MyMetrics»
counter = getRuntimeContext
  .getMetricGroup
  .addGroup ("MyMetrics")
  .counter ("myCounter")

10.4.2.4. Доступ к метрикам
Теперь, когда вы узнали, как регистрировать, определять и  группировать 
метрики, вам может быть интересно, как получить к ним доступ из внешних 
систем. В конце концов, вы, вероятно, собираете метрики, потому что хоти-
те создать информационную панель, отображающую параметры системы 
в реальном времени, или передать результаты измерений в другое приложе-
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ние. Вы можете предоставлять метрики внешним серверным модулям через 
репóртеры (reporter), и  Flink предоставляет реализацию для некоторых из 
них (см. табл. 10.19).

Таблица 10.19. Список доступных репортеров метрик
Репортер Реализация

JMX org.apache.flink.metrics.jmx.JMXReporter
Graphite org.apache.flink.metrics.graphite.GraphiteReporter
Prometheus org.apache.flink.metrics.prometheus.PrometheusReporter
PrometheusPushGateway org.apache.flink.metrics.prometheus. 

PrometheusPushGatewayReporter
StatsD org.apache.flink.metrics.statsd.StatsDReporter
Datadog org.apache.flink.metrics.datadog.DatadogHttpReporter
Slf4j org.apache.flink.metrics.slf4j.Slf4jReporter

Если вы хотите использовать бэкенд метрик, который не включен в при-
веденный выше список, вы также можете определить своей собственный 
репòртер, реализовав интерфейс org.apache.flink.metrics.reporter.MetricRe-
porter.

Репортеры нужно настроить в файле flink-conf.yaml. Добавление следую-
щих строк в вашу конфигурацию определит JMX-репортер my_reporter, кото-
рый прослушивает порты 9020-9040:

metrics.reporters: my_reporter
Metrics.reporter.my_jmx_reporter.class: org.apache.flink.metrics.jmx.JMXReporter
metrics.reporter.my_jmx_reporter.port: 9020-9040

Обратитесь к документации Flink для получения полного списка параме-
тров конфигурации для каждого поддерживаемого репортера.

10.4.3. Мониторинг задержки
Задержка, вероятно, является одной из первых метрик, которую вы захо-
тите отслеживать для оценки быстродействия вашего потокового задания. 
В то же время это также одна из самых сложных метрик для определения 
в  распределенном потоковом движке с  богатой семантикой, таком как 
Flink. В разделе 2.2.1 мы определили задержку в широком смысле как вре-
мя, необходимое для обработки события. Вы можете себе представить, на-
сколько проблематичной может стать на практике точная реализация этого 
определения, если мы попытаемся отследить задержку каждого события 
в  высокоскоростной потоковой передаче со сложным потоком данных. 
Учитывая, что оконные операторы еще больше усложняют отслеживание 
задержки, если событие влияет на несколько окон, нужно ли нам сообщать 
о задержке первого вызова или нам нужно ждать, пока мы оценим все окна, 
которым может принадлежать событие? А что, если окно запускается не-
сколько раз?
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Flink следует простому подходу с низкими накладными расходами, чтобы 
обеспечить полезное значение метрики задержки. Вместо того чтобы пы-
таться строго измерить задержку для каждого события, он аппроксимирует 
задержку, периодически генерируя специальную запись в источниках и по-
зволяя пользователям отслеживать, сколько времени требуется, чтобы эта 
запись прибыла в приемники. Эта специальная запись называется маркером 
задержки (latency marker), и  она содержит метку времени, указывающую, 
когда она была отправлена.

Чтобы включить отслеживание задержки, вам необходимо настроить, как 
часто маркеры задержки отправляются из источников. Вы можете сделать 
это, задав значение latencyTrackingInterval в ExecutionConfig, как показано 
здесь:

env.getConfig.setLatencyTrackingInterval(500L)

Интервал указывается в  миллисекундах. Получив маркер задержки, все 
операторы, кроме приемников, направляют его вниз по потоку. Маркеры 
задержки используют те же каналы и очереди потока данных, что и обычные 
записи потока, поэтому их отслеживаемая задержка отражает время ожида-
ния обработки для записей. Однако они не измеряют время, необходимое 
для обработки записей.

Операторы хранят статистику задержки в индикаторе задержки, который 
содержит минимальные, максимальные и средние значения, а также значе-
ния 50, 95 и 99 процентилей. Операторы приемника хранят статистику по 
маркерам задержки, полученным для каждого экземпляра параллельного 
источника; таким образом, проверка маркера задержки в приемниках мо-
жет использоваться, чтобы приблизительно определить, сколько времени 
требуется записи для прохождения потока данных. Если вы хотите настроить 
обработку маркера задержки в операторах, вы можете переопределить метод 
processLatencyMarker() и получить соответствующую информацию с помощью 
методов getMarkedTime(), getVertexId() и getSubTaskIndex() из LatencyMarker.

	 Остерегайтесь перекоса часов

	
Если вы не используете службу автоматической синхронизации часов, такую как NTP, 
часы ваших компьютеров могут страдать от перекоса часов. В этом случае оценка отсле-
живания задержки не будет надежной, поскольку ее текущая реализация предполагает 
синхронизированные часы.

10.5. Настройка журналирования

Журналирование или ведение журнала – еще один важный инструмент для 
отладки и  понимания поведения ваших приложений. По умолчанию Flink 
использует абстракцию журналирования SLF4J вместе с фреймворком жур-
налирования log4j.

В примере 10.9 показана функция MapFunction, которая регистрирует каж-
дое преобразование входной записи.
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Пример 10.9   Использование журналирования в MapFunction
import org.apache.flink.api.common.functions.MapFunction
import org.slf4j.LoggerFactory
import org.slf4j.Logger

class MyMapFunction extends MapFunction[Int, String] {

  Logger LOG = LoggerFactory.getLogger(MyMapFunction.class)

  override def map(value: Int): String = {
    LOG.info("Converting value {} to string.", value)
    value.toString
  }
}

Чтобы изменить свойства логгеров log4j, измените файл log4j.properties 
в папке conf/. Например, в следующей строке для корневого уровня ведения 
журнала устанавливается значение «предупреждение»:

log4j.rootLogger=WARN 

Чтобы установить собственное имя файла и местоположение этого файла, 
передайте в JVM параметр -Dlog4j.configuration=. Flink также предоставля-
ет файл log4j-cli.properties, используемый клиентом командной строки, 
и  файл log4j-yarn-session.properties, используемый клиентом командной 
строки при запуске сеанса YARN.

Альтернативой log4j является logback, и Flink также предоставляет файлы 
конфигурации по умолчанию для этого бэкенда. Чтобы использовать logback 
вместо log4j, вам нужно удалить log4j из папки lib/. Мы отсылаем вас к до-
кументации Flink и руководству по logback для получения подробной инфор-
мации о том, как установить и настроить бэкенд журналирования.

10.6. Заключение

В этой главе мы обсудили запуск, управление и отслеживание приложений 
Flink в  производственной среде. Мы рассказали про компонент Flink, ко-
торый собирает и  предоставляет метрики системы и  приложений, как на-
строить систему ведения журнала, а также как запускать, останавливать, 
возобновлять и масштабировать приложения с помощью клиента командной 
строки и REST API.



Глава 11
Что дальше?

Позади остался долгий путь, и вы добрались до конца этой книги! Но ваше 
путешествие по Flink только началось, и в этой главе пойдет речь о путях, 
которые вы можете выбрать. Мы кратко расскажем о дополнительных воз-
можностях Flink, не рассмотренных в  этой книге, и  дадим вам несколько 
ссылок на дополнительные ресурсы Flink. Вокруг Flink существует активное 
сообщество, и мы рекомендуем вам начать общаться с другими пользовате-
лями, вносить свой вклад в сообщество и узнать, какие компании создают 
продукты и  решения с  помощью Flink, чтобы найти источники идей для 
своей работы.

11.1. Остальная часть экосистемы Flink

Хотя в этой книге особое внимание уделяется потоковой обработке, на са-
мом деле Flink представляет собой универсальную платформу распределен-
ной обработки данных, которую можно использовать и  для других типов 
анализа данных. Кроме того, Flink предлагает доменные библиотеки и API 
для реляционных запросов, а также для обработки сложных событий (CEP) 
и графов.

11.1.1. API DataSet для пакетной обработки
Flink – это полноценный пакетный процессор, который можно использо-
вать для реализации сценариев использования, требующих однократных 
или периодических запросов к ограниченным входным данным. Программы 
DataSet строятся как серия преобразований, как и программы DataStream, 
с той разницей, что DataSet – это ограниченный набор данных. API DataSet 
предоставляет операторы для выполнения фильтрации, сопоставления, вы-
бора, объединения и группировки, а также соединители для чтения и запи
си наборов данных из внешних систем, и  во внешние системы, такие как 
файловые системы и базы данных. Используя API DataSet, вы также можете 
определять итерационные программы Flink, которые выполняют функцию 
цикла для фиксированного количества шагов или до тех пор, пока не будет 
выполнен критерий сходимости.
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Пакетные задания внутренне представлены как программы потока данных 
и выполняются по тому же принципу, что и задания потоковой обработки. 
В настоящее время два API используют разные среды выполнения и не могут 
быть смешаны. Однако сообщество Flink уже работает над их объединением, 
и предоставление единого API для анализа ограниченных и неограниченных 
потоков данных в  одной программе является приоритетом в  будущей до-
рожной карте Flink.

11.1.2. Table API и SQL для реляционного анализа
Несмотря на то что базовые API DataStream и DataSet разделены, вы може-
те реализовать унифицированную потоковую и пакетную аналитику Flink, 
используя его высокоуровневые реляционные API-интерфейсы: Table API 
и SQL.

Table API – это API на языке интегрированных запросов (LINQ) для Scala 
и Java. Запросы могут без изменений выполняться как для пакетного, так 
и для потокового анализа. LINQ предлагает общие операторы для написа-
ния реляционных запросов, включая выбор, проекцию, агрегацию и объ-
единение, а также поддерживает IDE для автозаполнения и проверки син-
таксиса.

Flink SQL следует стандарту ANSI SQL и использует Apache Calcite для син-
таксического анализа и оптимизации запросов. Flink предоставляет унифи-
цированный синтаксис и  семантику для пакетных и  потоковых запросов. 
Благодаря обширной поддержке пользовательских функций SQL может охва-
тывать самые разные варианты использования. Вы можете встраивать SQL-
запросы в обычные программы Flink DataSet и DataStream или напрямую от-
правлять SQL-запросы в кластер Flink с помощью клиента командной строки 
для SQL. Клиент командной строки позволяет извлекать и визуализировать 
результаты запросов в командной строке, что делает его отличным инстру-
ментом для опробования и отладки запросов Flink SQL или выполнения ис-
следовательских запросов к потоковым или пакетным данным. Кроме того, 
вы можете использовать клиент командной строки для отправки отдельных 
запросов, которые напрямую записывают свои результаты во внешние си-
стемы хранения.

11.1.3. FlinkCEP для обработки сложных событий 
и сопоставления с образцом
FlinkCEP – это высокоуровневый API и библиотека для обнаружения сложных 
шаблонов событий. Он реализован поверх API DataStream и позволяет вам 
указывать шаблоны, которые вы хотите обнаружить в своем потоке. Обыч-
ные примеры использования CEP включают финансовые приложения, об-
наружение мошенничества, мониторинг и оповещение в сложных системах, 
а также обнаружение сетевых вторжений или подозрительного поведения 
пользователей.
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11.1.4. Gelly для обработки графов
Gelly – это API и библиотека обработки графов Flink. Он основан на DataSet 
API и  поддержке Flink для эффективных пакетных итераций. Gelly предо-
ставляет высокоуровневые программные абстракции как в Java, так и в Scala 
для выполнения преобразований графов, агрегирования и итеративной об-
работки. Он также включает набор общих графовых алгоритмов, готовых 
к использованию.

	 Высокоуровневые API и интерфейсы Flink хорошо интегрированы друг с другом и с API 
DataStream и DataSet, так что вы можете легко смешивать их и переключаться между 
библиотеками и API в одной программе. Например, вы можете извлекать шаблоны из 
DataStream с помощью библиотеки CEP, а затем использовать SQL для анализа извле-
ченных шаблонов, или вы можете использовать API таблиц для фильтрации и проеци-
рования таблиц в графы перед их анализом с помощью алгоритма из библиотеки Gelly.

11.2. Присоединяйтесь к сообществу Flink

Apache Flink имеет непрерывно растущее гостеприимное сообщество, в ко-
торое входят участники и пользователи со всего мира. Вот несколько ресур-
сов, которые вы можете использовать, чтобы задавать вопросы, посещать 
мероприятия, связанные с Flink, и знакомиться с конкретными примерами 
использования Flink:

Подписка на рассылки
�� user@flink.apache.org: поддержка пользователей и вопросы;
�� dev@flink.apache.org: разработка, релизы и обсуждения в сообществе;
�� community@flink.apache.org: новости сообщества и встречи.

Блоги
�� https://flink.apache.org/blog;
�� https://www.ververica.com/blog.

Встречи и конференции
�� https://flink-forward.org;
�� https://www.meetup.com/topics/apache-flink.

Мы надеемся, что, прочитав на эту книгу, вы лучше поймете всю мощь 
и возможности Apache Flink. Мы призываем вас стать активной частью его 
сообщества.

mailto:user@flink.apache.org
mailto:dev@flink.apache.org
mailto:community@flink.apache.org
https://flink.apache.org/blog
https://www.ververica.com/blog
https://flink-forward.org
https://www.meetup.com/topics/apache-flink
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