

Android SQLite Essentials

Develop Android applications with one of the most
widely used database engines, SQLite

Sunny Kumar Aditya

Vikash Kumar Karn

BIRMINGHAM - MUMBAI

Android SQLite Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1200814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-295-1

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

Credits

Authors
Sunny Kumar Aditya

Vikash Kumar Karn

Reviewers
Amey Haldankar

Gaurav Maru

Commissioning Editor
Pramila Balan

Acquisition Editor
Nikhil Karkal

Content Development Editor
Ruchita Bhansali

Technical Editors
Dennis John

Gaurav Thingalaya

Copy Editors
Roshni Banerjee

Gladson Monteiro

Adithi Shetty

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Joanna McMahon

Indexers
Mariammal Chettiyar

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

About the Authors

Sunny Kumar Aditya has been working on the Android platform for the past 4
years. His tryst with Android began with his college project, and he continued with
his work in R&D at HCL Infosystems Ltd. Sunny loves to stay up to date with the
latest trends and practices in Android development. Apart from building Android
applications, he writes at www.deadmango.com. He is currently the head of Android
development at Yamunix.

I would like to thank Packt Publishing for this opportunity and my
family as well as friends for their support.

Vikash Kumar Karn is an IIIT Allahabad alumnus and an ECE student whose
love for code drove him towards the software development field. He has worked
with leading multinationals and is currently working at Samsung Research Institute,
Bangalore, exploring Android.

Vikash likes to learn the intricacies of the Android framework and help newcomers
in this field. Some of his applications, such as Movtan Fishing and Compare Pictures,
can be found on the Play Store.

I would like to thank my friends and family for their support during
the course of writing this book.

About the Reviewers

Amey Haldankar is an Android enthusiast hooked on the platform since its early
days. Equipped with a degree in Computer Science Engineering from GIT, Belgaum,
he is working for HCL Infosystems Ltd. as a Senior Software Engineer.

Amey has been working on the platform for the past 3 years developing several
applications for major clients such as Domino's, Galatsaray, HCL, and Nokia.

A note of thanks to the publishing house for considering me for the
role of a reviewer for Android SQLite Essentials.

Gaurav Maru has a Bachelor's degree in Computers from Shah & Anchor Kutchhi
Engineering College. Since 2011, he has been working as an Android application
developer at various organizations, including India's largest retail sector company.
Gaurav has developed various apps, including the one developed for the USA's
largest bookseller (a Fortune 500 company). He drinks, eats, and sleeps Android.
You can contact him at gaurav1maru@gmail.com.

I would like to thank my family, friends, colleagues, and Packt
Publishing, who helped me pull this one off successfully. Cheers!

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Enter SQLite	 5

Why SQLite?	 6
The SQLite architecture	 8

The SQLite interface	 8
The SQL compiler	 8
The virtual machine	 9
The SQLite backend	 9

A quick review of database fundamentals	 9
What is an SQLite statement?	 10
The SQLite syntax	 12
Datatypes in SQLite	 12

Storage classes	 12
The Boolean datatype	 13
The Date and Time datatype	 13

SQLite in Android	 14
SQLite version	 15
Database packages	 16

APIs	 16
The SQLiteOpenHelper class	 16
The SQLiteDatabase class	 19
ContentValues	 22
Cursor	 22

Summary	 23
Chapter 2: Connecting the Dots	 25

Building blocks	 26
A database handler and queries	 30

Building the Create query	 32
Building the Insert query	 35

Table of Contents

[ii]

Building the Delete query	 40
Building the Update query	 41

Connecting the UI and database	 43
Summary	 48

Chapter 3: Sharing is Caring	 49
What is a content provider?	 50

Using existing content providers	 51
What is a content resolver?	 51

Creating a content provider	 54
Understanding content URIs	 55
Declaring our contract class	 56
Creating UriMatcher definitions	 58

Implementing the core methods	 59
Initializing the provider through the onCreate() method	 59
Querying records through the query() method	 59
Adding records through the insert() method	 61
Updating records through the update() method	 61
Deleting records through the delete() method	 62
Getting the return type of data through the getType() method	 63
Adding a provider to a manifest	 64

Using a content provider	 64
Summary	 72

Chapter 4: Thread Carefully	 73
Loading data with CursorLoader	 73

Loaders	 74
Loader API's summary	 75
Using CursorLoader	 75

Data security	 80
ContentProvider and permissions	 80
Encrypting critical data	 82

General tips and libraries	 85
Upgrading a database	 86
Database minus SQL statements	 87
Shipping with a prepopulated database	 90

Summary	 93
Index	 95

Preface
Android is probably the buzzword of this decade. In a short span, it has taken over
the majority of the handset market. Android is staged to take over wearables, our TV
rooms, as well as our cars this autumn with the Android L release. With the frantic
pace at which Android is growing, a developer needs to up his or her skill sets as well.
Database-oriented application development is one of the key skills every developer
should have. SQLite database in applications is the heart of a data-centric product and
key to building great products. Understanding SQLite and implementing the Android
database can be a steep learning curve for some people. Concepts such as content
providers and loaders are more complex to understand and implement. Android SQLite
Essentials equips developers with tools to build database-based Android applications
in a simplistic manner. It is written keeping in mind the current needs and best
practices being followed in the industry. Let us start our journey.

What this book covers
Chapter 1, Enter SQLite, provides an insight into SQLite architecture, SQLite basics,
and its Android connection.

Chapter 2, Connecting the Dots, covers how to connect your database to Android
views. It also covers some of the best practices one should follow in order to build
a database-centric/database-enabled application.

Chapter 3, Sharing is Caring, will reflect on how to access and share data in Android
via content providers and how to construct a content provider.

Chapter 4, Thread Carefully, will guide you on how to use loaders and ensure security of
database and data. It will also provide you with tips to explore alternate approaches to
building and using databases in Android applications.

Preface

[2]

What you need for this book
To efficiently use this book, you will require a working system with Windows, Ubuntu,
or Mac OS preinstalled. Download and set up the Java environment; we require this
for the IDE of our choice, Eclipse, to run. Download Android SDK from the Android
developer's site and Android ADT plugin for Eclipse. Alternatively, you can download
the Eclipse ADT bundle that contains Eclipse SDK and the ADT plugin. You can
also try Android Studio; this IDE, which just moved to beta, is also available on the
developer site. Make sure your operating system, JDK, and IDE are all of either 32 bit
or 64 bit.

Who this book is for
Android SQLite Essentials is a guide book for Android programmers who want to
explore SQLite database-based Android applications. The reader is expected to have
a little bit of hands-on experience of Android fundamental building blocks and the
know-how of IDE and Android tools.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To close the Cursor object, the close() method call will be used."

A block of code is set as follows:

ContentValues cv = new ContentValues();
cv.put(COL_NAME, "john doe");
cv.put(COL_NUMBER, "12345000");
dataBase.insert(TABLE_CONTACTS, null, cv);

Any command-line input or output is written as follows:

adb shell SQLite3 --version

SQLite 3.7.11: API 16 - 19

SQLite 3.7.4: API 11 - 15

SQLite 3.6.22: API 8 - 10

SQLite 3.5.9: API 3 - 7

Preface

[3]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
Android Virtual Device Manager from the Windows menu to start the emulator."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Enter SQLite
Dr. Richard Hipp, the architect and primary author of SQLite, explains how it all
began in his interview with The Guardian published in June 2007:

"I started on May 29 2000. It's just over seven years old," he says. He was working
on a project which used a database server, but from time to time the database went
offline. "Then my program would give an error message saying that the database
isn't working, and I got the blame for this. So I said, this is not a demanding
application for the database, why don't I just talk directly to the disk, and build an
SQL database engine that way? That was how it started."

Before we begin our journey exploring SQLite in the context of Android, we would
like to inform you of some prerequisites. The following are very basic requirements
and will require little effort from you:

•	 You need to ensure that the environment for building Android applications
is in place. When we say "environment," we refer to the combination of JDK
and Eclipse, our IDE choice, ADT plugins, and Android SDK tools. In case
these are not in place, the ADT bundle, which consists of IDE, ADT plugins,
Android SDK tools, and platform tools, can be downloaded from http://
developer.android.com/sdk/index.html. The steps mentioned in the
link are pretty self-explanatory. For JDK, you can visit Oracle's website
to download the latest version and set it up at http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Enter SQLite

[6]

•	 You need to have a basic knowledge of Android components and have run
more than "Hello World" programs on an Android emulator. If not, a very
apt guide is present on the Android developer site to set up an emulator. We
would suggest you become familiar with basic Android components: Intent,
Service, Content Providers, and Broadcast Receiver. The Android developer
site has good repositories of samples along with documentation. Some of
these are as follows:

°° Emulator: http://developer.android.com/tools/devices/
index.html

°° Android basics: http://developer.android.com/training/
basics/firstapp/index.html

With these things in place, we can now start our foray into SQLite.

In this chapter, we will cover the following:

•	 Why SQLite?
•	 The SQLite architecture
•	 A quick review of database fundamentals
•	 SQLite in Android

Why SQLite?
SQLite is an embedded SQL database engine. It is used by prominent names such as
Adobe in Adobe Integrated Runtime (AIR); Airbus, in their flight software; Python
ships with SQLite; PHP; and many more. In the mobile domain, SQLite is a very
popular choice across various platforms because of its lightweight nature. Apple
uses it in the iPhone and Google in the Android operating system.

It is used as an application file format, a database for electronic gadgets, a database
for websites, and as an enterprise RDBMS. What makes SQLite such an interesting
choice for these and many other companies? Let's take a closer look at the features
of SQLite that make it so popular:

•	 Zero-configuration: SQLite is designed in such a manner that it requires no
configuration file. It requires no installation steps or initial setup; it has no
server process running and no recovery steps to take even if it crashes. There
is no server and it is directly embedded in our application. Furthermore,
no administrator is required to create or maintain a DB instance, or set
permissions for users. In short, this is a true DBA-less database.

Chapter 1

[7]

•	 No-copyright: SQLite, instead of a license, comes with a blessing. The source
code of SQLite is in the public domain; you are free to modify, distribute,
and even sell the code. Even the contributors are asked to sign an affidavit to
protect from any copyrights warfare that may occur in future.

•	 Cross-platform: Database files from one system can be moved to a system
running a different architecture without any hassle. This is possible because
the database file format is binary and all the machines use the same format.
In the following chapters, we will be pulling out a database from an Android
emulator to Windows.

•	 Compact: An SQLite database is a single ordinary disk file; it comes without
a server and is designed to be lightweight and simple. These attributes lead
to a very lightweight database engine. SQLite Version 3.7.8 has a footprint
of less than 350 KiB (kibibyte) compared to its other SQL database engines,
which are much larger.

•	 Fool proof: The code base is well commented, easy to understand, and
modular. The test cases and test scripts in SQLite have approximately 1084
times more code than the source code of SQLite library and they claim 100
percent branch test coverage. This level of testing reaffirms the faith instilled
in SQLite by developers.

Interested readers can read more about branch test coverage
from Wikipedia at http://en.wikipedia.org/wiki/Code_
coverage.

Enter SQLite

[8]

The SQLite architecture
The core, SQL compiler, backend, and database form the SQLite architecture:

Interface

SQL Command
Processor

Virtual Machine

C
or

e
B

ac
ke

nd

B-Tree

Pager

OS Interface

Tokenizer

Parser

Code Generator

S
Q

L
C

om
pi

le
r

The SQLite interface
At the top of the SQLite library stack, according to documentation, much of the
public interface to the SQLite library is implemented by the wen.c, legacy.c,
and vdbeapi.c source files. This is the point of communication for other programs
and scripts.

The SQL compiler
Tokenizer breaks the SQL string passed from the interface into tokens and hands
the tokens over to the parser, one by one. Tokenizer is hand-coded in C. The parser
for SQLite is generated by the Lemon parser generator. It is faster than YACC and
Bison and, at the same time, is thread safe and prevents memory leaks. The parser
builds a parse tree from the tokens passed by the tokenizer and passes the tree to the
code generator. The generator produces virtual machine code from the input and
passes it to the virtual machine as executables. More information about the Lemon
parser generator can be found at http://en.wikipedia.org/wiki/Lemon_Parser_
Generator.

Chapter 1

[9]

The virtual machine
The virtual machine, also known as Virtual Database Engine (VDBE), is the heart of
SQLite. It is responsible for fetching and changing values in the database. It executes
the program generated by the code generator to manipulate database files. Each SQL
statement is first converted into virtual machine language for VDBE. Each instruction
of VDBE contains an opcode and up to three additional operands.

The SQLite backend
B-trees, along with Pager and the OS Interface, form the backend of the SQLite
architecture. B-trees are used to organize the data. The pager on the other hand
assists B-tree by caching, modifying, and rolling back data. B-tree, when required,
requests particular pages from the cache; this request is processed by the pager in
an efficient and reliable manner. The OS Interface, as the name suggests, provides
an abstraction layer to port to different operating systems. It hides the unnecessary
details of communicating with different operating systems from SQLite calls and
handles them on behalf of SQLite.

These are the internals of SQLite and an application developer in Android need not
worry about the internals of Android because the SQLite Android libraries have
effectively used the concept of abstraction and all the complexities are hidden. One
just needs to master the APIs provided, and that will cater to all the possible use
cases of SQLite in an Android application.

A quick review of database fundamentals
A database, in simple words, is an organized way to store data in a continual
fashion. Data is saved in tables. A table consists of columns with different datatypes.
Every row in a table corresponds to a data record. You may think of a table as an
Excel spreadsheet. From the perspective of object-oriented programming, every table
in a database usually describes an object (represented by a class). Each table column
illustrates a class attribute. Every record in a table represents a particular instance of
that object.

Enter SQLite

[10]

Let's look at a quick example. Let's assume you have a Shop database with a table
called Inventory. This table might be used to store the information about all the
products in the shops. The Inventory table might contain these columns: Product
name (string), Product Id (number), Cost (number), In stock (0/1), and Numbers
available (number). You could then add a record to the database for a product
named Shoe:

ID Product
name

Product Id Cost In stock Numbers
available

1 Carpet 340023 2310 1 4
2 Shoe 231257 235 1 2

Data in the database is supposed to be checked and influenced. The data within
a table can be as follows:

•	 Added (with the INSERT command)
•	 Modified (with the UPDATE command)
•	 Removed (with the DELETE command)

You may search for particular data within a database by utilizing what is known as
a query. A query (using the SELECT command) can involve one table, or a number of
tables. To generate a query, you must determine the tables, data columns, and values
of the data of interest using SQL commands. Each SQL command is concluded with
a semicolon (;).

What is an SQLite statement?
An SQLite statement is written in SQL, which is issued to a database to retrieve data
or to create, insert, update, or delete data in the database.

All SQLite statements start with any of the keywords: SELECT, INSERT, UPDATE, DELETE,
ALTER, DROP, and so on, and all the statements end with a semicolon (;). For instance:

CREATE TABLE table_name (column_name INTEGER);

The CREATE TABLE command is used to create a new table in an SQLite database.
A CREATE TABLE command describes the following attributes of the new table that
is being created:

•	 The name of the new table.
•	 The database in which the new table is created. Tables may be generated in

the main database, the temp database, or in any database attached.
•	 The name of each column in the table.

Chapter 1

[11]

•	 The declared type of each column in the table.
•	 A default value or expression for each column in the table.
•	 A default relation sequence to be used with each column.
•	 Preferably, a PRIMARY KEY for the table. This will support both single-column

and composite (multiple-column) primary keys.
•	 A set of SQL constraints for each table. Constraints such as UNIQUE, NOT

NULL, CHECK, and FOREIGN KEY are supported.
•	 In some cases, the table will be a WITHOUT ROWID table.

The following is a simple SQLite statement to create a table:

String databaseTable = "CREATE TABLE "
 + TABLE_CONTACTS +"("
 + KEY_ID
 + " INTEGER PRIMARY KEY,"
 + KEY_NAME + " TEXT,"
 + KEY_NUMBER + " INTEGER"
 + ")";

Here, CREATE TABLE is the command to create a table with the name TABLE_
CONTACTS. KEY_ID, KEY_NAME and KEY_NUMBER are the column IDs. SQLite requires
a unique ID to be provided for each column. INTEGER and TEXT are the datatypes
associated with the corresponding columns. SQLite requires the type of data to be
stored in a column to be defined at the time of creation of the table. PRIMARY KEY is
the data column constraint (rules enforced on data columns in the table).

SQLite supports more attributes that can be used for creating a table, for instance,
let us create a create table statement that inputs a default value for empty
columns. Notice that for KEY_NAME, we are providing a default value as xyz
and for the KEY_NUMBER column, we are providing a default value of 100:

String databaseTable =
 "CREATE TABLE "
 + TABLE_CONTACTS + "("
 + KEY_ID + " INTEGER PRIMARY KEY,"

 + KEY_NAME + " TEXT DEFAULT xyz,"

 + KEY_NUMBER + " INTEGER DEFAULT 100" + ")";

Here, when a row is inserted in the database, these columns will be preinitialized
with the default values as defined in the CREATE SQL statement.

Enter SQLite

[12]

There are more keywords, but we don't want you to get bored with a huge list. We
will be covering other keywords in the subsequent chapters.

The SQLite syntax
SQLite follows a unique set of rules and guidelines called syntax.

An important point to be noted is that SQLite is case-insensitive, but there are
some commands that are case-sensitive, for example, GLOB and glob have different
meaning in SQLite. Let us look at the SQLite DELETE statement's syntax for instance.
Although we have used capital letters, replacing them with lowercase letters will
also work fine:

DELETE FROM table WHERE {condition};

Datatypes in SQLite
SQLite uses a dynamic and weakly typed SQL syntax, whereas most of the SQL
databases use static, rigid typing. If we look at other languages, Java is a statically
typed language and Python is a dynamically typed language. So what do we mean
when we say dynamic or static? Let us look at an example:

a=5
a="android"

In statically typed languages, this will throw an exception, whereas in a dynamically
typed language it will work. In SQLite, the datatype of a value is not associated with
its container, but with the value itself. This is not a cause of concern when dealing with
statically typed systems, where a value is determined by a container. This is because
SQLite is backwards compatible with the more common static type systems. Hence,
the SQL statements that we use for static systems can be used seamlessly here.

Storage classes
In SQLite, we have storage classes that are more general than datatypes.
Internally, SQLite stores data in five storage classes that can also be referred
to as primitive datatypes:

•	 NULL: This represents a missing value from the database.
•	 INTEGER: This supports a range of signed integers from 1, 2, 3, 4, 6, or 8 bytes

depending on the magnitude of the value. SQLite handles this automatically
based on the value. At the time of processing in the memory, they are
converted to the most general 8-byte signed integer form.

Chapter 1

[13]

•	 REAL: This is a floating point value, and SQLite uses this as an 8-byte IEEE
floating point number to store such values.

•	 TEXT: SQLite supports various character encodings, such as UTF-8, UTF-16BE,
or UTF-16LE. This value is a text string.

•	 BLOB: This type stores a large array of binary data, exactly how it was
provided as input.

SQLite itself does not validate if the types written to the columns are actually of the
defined type, for example, you can write an integer into a string column and vice
versa. We can even have a single column with different storage classes:

 id col_t
------ ------
1 23
2 NULL
3 test

The Boolean datatype
SQLite does not have a separate storage class for Boolean and uses the Integer class
for this purpose. Integer 0 represents the false state whereas 1 represents a true state.
This means that there is an indirect support for Boolean and we can create Boolean
type columns only. The catch is, it won't contain the familiar TRUE/FALSE values.

The Date and Time datatype
As we saw for the Boolean datatype, there is no storage class for the Date and Time
datatypes in SQLite. SQLite has five built-in date and time functions to help us with
it; we can use date and time as integer, text, or real values. Moreover, the values are
interchangeable, depending on the need of the application. For example, to compute
the current date, use the following code:

SELECT date('now');

Enter SQLite

[14]

SQLite in Android
The Android software stack consists of core Linux kernel, Android runtime, Android
libraries that support the Android framework, and finally Android applications that
run on top of everything. The Android runtime uses Dalvik virtual machine (DVM)
to execute the dex code. In newer versions of Android, that is, from KitKat (4.4),
Android has enabled an experimental feature known as ART, which will eventually
replace DVM. It is based on Ahead of Time (AOT), whereas DVM is based on Just in
Time (JIT). In the following diagram, we can see that SQLite provides native database
support and is part of the libraries that support the application framework along
with libraries such as SSL, OpenGL ES, WebKit, and so on. These libraries, written in
C/C++, run over the Linux kernel and, along with the Android runtime, forms the
backbone of the application framework, as shown in the following diagram:

Surface Manager

OpenGL | ES

SGL

Media
Framework

FreeType

SSL

SQLite

Webkit

libc

Display
Driver

Keypad Driver

Camera Driver

WiFi Driver

Flash Memory
Driver

Audio
Drivers

Blinder (IPC)
Driver

Power
Management

LINUX KERNEL

LIBRARIES

Core Libraries

Dalvik Virtual
Machine

ANDROID RUNTIME

APPLICATION FRAMEWORK

Activity Manager

Package Manager

Window
Manager

Telephony
Manager

Resource
Manager

Content
Provider

Location
Manager

View
System

Notification
Manager

Home Contacts Phone Browser ...

APPLICATIONS

Before we start exploring SQLite in Android, let's take a look at the other persistent
storage alternatives in Android:

•	 Shared preference: Data is stored in a shared preference in the key-value
form. The file itself is an XML file containing the key-value pairs. The file
is present in the internal storage of an application, and access to it can be
public or private as needed. Android provides APIs to write and read shared
preferences. It is advised to use this in case we have to save a small collection
of such data. A general example would be saving the last read position in a
PDF, or saving a user's preference to show a rating box.

Chapter 1

[15]

•	 Internal/external storage: This terminology can be a little misleading;
Android defines two storage spaces to save files. On some devices, you might
have an external storage device in form of an SD card, whereas on others,
you will find that the system has partitioned its memory into two parts, to
be labeled as internal and external. Paths to the external as well as internal
storage can be fetched by using Android APIs. Internal storage, by default,
is limited and accessible only to the application, whereas the external storage
may or may not be available in case it is mounted.

android:installLocation can be used in the manifest to specify
the internal/external installation location of an application.

SQLite version
Since API level 1, Android ships with SQLite. At the time of writing this book, the
current version of SQLite was 3.8.4.1. According to the documentation, the version
of SQLite is 3.4.0, but different Android versions are known to ship with different
versions of SQLite. We can easily verify this via the use of a tool called SQLite3
present in the platform-tools folder inside the Android SDK installation folder
and Android Emulator:

adb shell SQLite3 --version

SQLite 3.7.11: API 16 - 19

SQLite 3.7.4: API 11 - 15

SQLite 3.6.22: API 8 - 10

SQLite 3.5.9: API 3 - 7

We need not worry about the different versions of SQLite and should stick to 3.5.9
for compatibility, or we can go by the saying that API 14 is the new minSdkVersion
and switch it with 3.7.4. Until and unless you have something very specific to a
particular version, it will hardly matter.

Some additional handy SQLite3 commands are as follows:

•	 .dump: To print out the contents of a table
•	 .schema: To print the SQL CREATE statement for

an existing table
•	 .help: For instructions

Enter SQLite

[16]

Database packages
The android.database package contains all the necessary classes for working
with databases. The android.database.SQLite package contains the
SQLite-specific classes.

APIs
Android provides various APIs to enable us to create, access, modify, and delete
a database. The complete list can be quite overwhelming; for the sake of brevity,
we will cover the most important and used ones.

The SQLiteOpenHelper class
The SQLiteOpenHelper class is the first and most essential class of Android to work
with SQLite databases; it is present in the android.database.SQLite namespace.
SQLiteOpenHelper is a helper class that is designed for extension and to implement
the tasks and actions you deem important when creating, opening, and using a
database. This helper class is provided by the Android framework to work with
the SQLite database and helps in managing the database creation and version
management. The modus operandi would be to extend the class and implement
tasks and actions as required by our application. SQLiteOpenHelper has
constructors defined as follows:

SQLiteOpenHelper(Context context, String name, SQLiteDatabase.
CursorFactory factory, int version)

SQLiteOpenHelper(Context context, String name, SQLiteDatabase.
CursorFactory factory, int version, DatabaseErrorHandler errorHandler)

The application context permits access to all the shared resources and assets for the
application. The name parameter consists of the database filename in the Android
storage. SQLiteDatabase.CursorFactory is a factory class that creates cursor
objects that act as the output set for all the queries you apply against SQLite under
Android. The application-specific version number for the database will be the
version parameter (or more particularly, its schema).

The constructor of SQLiteOpenHelper is used to create a helper object to create,
open, or manage a database. The context is the application context that allows
access to all the shared resources and assets. The name parameter either contains
the name of a database or null for an in-memory database. The SQLiteDatabase.
CursorFactory factory creates a cursor object that acts as the result set for all the
queries. The version parameter defines the version number of the database and
is used to upgrade/downgrade the database. The errorHandler parameter in the
second constructor is used when SQLite reports database corruption.

Chapter 1

[17]

SQLiteOpenHelper will trigger its onUpgrade() method if our database version
number is not at default 1. Important methods of the SQLiteOpenHelper class are
as follows:

•	 synchronized void close()

•	 synchronized SQLiteDatabase getReadableDatabase()

•	 synchronized SQLiteDatabase getWritableDatabase()

•	 abstract void onCreate(SQLiteDatabase db)

•	 void onOpen(SQLiteDatabase db)

•	 abstract void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion)

The synchronized close() method closes any open database object. The
synchronized keyword prevents thread and memory consistency errors.

The next two methods, getReadableDatabase() and getWriteableDatabase(),
are the methods in which the database is actually created or opened. Both
return the same SQLiteDatabase object; the difference lies in the fact that
getReadableDatabase() will return a readable database in case it cannot return a
writable database, whereas getWriteableDatabase() returns a writable database
object. The getWriteableDatabase() method will throw an SQLiteException if
a database cannot be opened for writing. In case of getReadableDatabase(), if a
database cannot be opened, it will throw the same exception.

We can use the isReadOnly() method of the SQLiteDatabase class on the database
object to know the state of the database. It returns true for read-only databases.

Calling either methods will invoke the onCreate() method if the database doesn't
exist yet. Otherwise, it will invoke the onOpen() or onUpgrade() methods,
depending on the version number. The onOpen() method should check the
isReadOnly() method before updating the database. Once opened, the database is
cached to improve performance. Finally, we need to call the close() method to close
the database object.

The onCreate(), onOpen(), and onUpgrade() methods are designed for the subclass
to implement the intended behavior. The onCreate() method is called when the
database is created for the first time. This is the place where we create our tables
by using SQLite statements, which we saw earlier in the example. The onOpen()
method is triggered when the database has been configured and after the database
schema has been created, upgraded, or downgraded as necessary. Read/write status
should be checked here with the help of the isReadOnly() method.

Enter SQLite

[18]

The onUpgrade() method is called when the database needs to be upgraded
depending on the version number supplied to it. By default, the database version
is 1, and as we increment the database version numbers and release new versions,
the upgrade will be performed.

A simple example illustrating the use of the SQLiteOpenHelper class is present in the
code bundle for this chapter; we would be using it for explanation:

class SQLiteHelperClass
 {
 ...
 ...
 public static final int VERSION_NUMBER = 1;

 sqlHelper =
 new SQLiteOpenHelper(context, "ContactDatabase", null,
 VERSION_NUMBER)
 {

 @Override
 public void onUpgrade(SQLiteDatabase db,
 int oldVersion, int newVersion)
 {

 //drop table on upgrade
 db.execSQL("DROP TABLE IF EXISTS "
 + TABLE_CONTACTS);
 // Create tables again
 onCreate(db);

 }

 @Override
 public void onCreate(SQLiteDatabase db)
 {
 // creating table during onCreate
 String createContactsTable =
 "CREATE TABLE "
 + TABLE_CONTACTS + "("
 + KEY_ID + " INTEGER PRIMARY KEY,"
 + KEY_NAME + " TEXT,"
 + KEY_NUMBER + " INTEGER" + ")";

 try {
 db.execSQL(createContactsTable);
 } catch(SQLException e) {
 e.printStackTrace();

Chapter 1

[19]

 }
 }

 @Override
 public synchronized void close()
 {
 super.close();
 Log.d("TAG", "Database closed");
 }

 @Override
 public void onOpen(SQLiteDatabase db)
 {
 super.onOpen(db);
 Log.d("TAG", "Database opened");
 }

};

...

...

//open the database in read-only mode
SQLiteDatabase db = SQLiteOpenHelper.getWritableDatabase();

...

...

//open the database in read/write mode
SQLiteDatabase db = SQLiteOpenHelper.getWritableDatabase();

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

The SQLiteDatabase class
Now that you are familiar with the helper class that kick-starts the use of SQLite
databases within Android, it's time to look at the core SQLiteDatabase class.
SQLiteDatabase is the base class required to work with an SQLite database in
Android and provides methods to open, query, update, and close the database.

Enter SQLite

[20]

More than 50 methods are available for the SQLiteDatabase class, each with its own
nuances and use cases. Rather than an exhaustive list, we'll cover the most important
subsets of methods and allow you to explore some of the overloaded methods at
your leisure. At any time, you can refer to the full online Android documentation
for the SQLiteDatabase class at http://developer.android.com/reference/
android/database/sqlite/SQLiteDatabase.html.

Some methods of the SQLiteDatabase class are shown in the following list:

•	 public long insert (String table, String nullColumnHack,
ContentValues values)

•	 public Cursor query (String table, String[] columns, String
selection, String[] selectionArgs, String groupBy, String
having, String orderBy)

•	 public Cursor rawQuery(String sql, String[] selectionArgs)

•	 public int delete (String table, String whereClause, String[]
whereArgs)

•	 public int update (String table, ContentValues values, String
whereClause, String[] whereArgs)

Let us see these SQLiteDatabase classes in action with an example. We will insert
a name and number in our table. Then we will use the raw query to fetch data back
from the table. After this, we will go through the delete() and update() methods,
both of which will take id as a parameter to identify which row of data in our
database table we intend to delete or update:

public void insertToSimpleDataBase()
{
 SQLiteDatabase db = sqlHelper.getWritableDatabase();

 ContentValues cv = new ContentValues();
 cv.put(KEY_NAME, "John");
 cv.put(KEY_NUMBER, "0000000000");
 // Inserting values in different columns of the table using
 // Content Values
 db.insert(TABLE_CONTACTS, null, cv);

 cv = new ContentValues();
 cv.put(KEY_NAME, "Tom");
 cv.put(KEY_NUMBER, "5555555");
 // Inserting values in different columns of the table using
 // Content Values
 db.insert(TABLE_CONTACTS, null, cv);
}
...

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

Chapter 1

[21]

...

public void getDataFromDatabase()
{
 int count;
 db = sqlHelper.getReadableDatabase();
 // Use of normal query to fetch data
 Cursor cr = db. query(TABLE_CONTACTS, null, null,
 null, null, null, null);

 if(cr != null) {
 count = cr.getCount();
 Log.d("DATABASE", "count is : " + count);
 }

 // Use of raw query to fetch data
 cr = db.rawQuery("select * from " + TABLE_CONTACTS, null);
 if(cr != null) {
 count = cr.getCount();
 Log.d("DATABASE", "count is : " + count);
 }

}
...
...

public void delete(String name)
 {
 String whereClause = KEY_NAME + "=?";
 String[] whereArgs = new String[]{name};
 db = sqlHelper.getWritableDatabase();
 int rowsDeleted = db.delete(TABLE_CONTACTS, whereClause,
whereArgs);
 }
...
...

public void update(String name)
 {
 String whereClause = KEY_NAME + "=?";
 String[] whereArgs = new String[]{name};
 ContentValues cv = new ContentValues();
 cv.put(KEY_NAME, "Betty");
 cv.put(KEY_NUMBER, "999000");
 db = sqlHelper.getWritableDatabase();
 int rowsUpdated = db.update(TABLE_CONTACTS, cv, whereClause,
whereArgs);
 }

Enter SQLite

[22]

ContentValues
ContentValues is essentially a set of key-value pairs, where the key represents the
column for the table and the value is the value to be inserted in that column. So, in
the case of values.put("COL_1", 1);, the column is COL_1 and the value being
inserted for that column is 1.

The following is an example:

ContentValues cv = new ContentValues();
cv.put(COL_NAME, "john doe");
cv.put(COL_NUMBER, "12345000");
dataBase.insert(TABLE_CONTACTS, null, cv);

Cursor
A query recovers a Cursor object. A Cursor object depicts the result of a query
and fundamentally points to one row of the result of the query. With this method,
Android can buffer the results of the query in a productive manner; as it doesn't
need to load all of the data into memory.

To obtain the elements of the resulting query, you can use the getCount() method.

To navigate amid individual data rows, you can utilize the moveToFirst()
and moveToNext() methods. The isAfterLast() method permits you to analyze
whether the end of the output has arrived.

The Cursor object provides typed get*() methods, for example, the
getLong(columnIndex) and getString(columnIndex) methods to gain entry
to the column data for the ongoing position of the result. columnIndex is the
number of the column you will be accessing.

The Cursor object also provides the getColumnIndexOrThrow(String) method
that permits you to get the column index for a column name of the table.

To close the Cursor object, the close() method call will be used.

A database query returns a cursor. This interface provides random read-write access
to the result set. It points to a row of the query result that enables Android to buffer
the results effectively since now it is not required to load all the data in the memory.

The pointer of the returned cursor points to the 0th location, which is known as
the first location of the cursor. We need to call the moveToFirst() method on the
Cursor object; it takes the cursor pointer to the first location. Now we can access
the data present in the first record.

Chapter 1

[23]

Cursor implementations, if from multiple threads, should perform their own
synchronization when using the cursor. A cursor needs to be closed to free the
resource the object holds by calling the close() method.

Some other support methods we will encounter are as follows:

•	 The getCount() method: This returns the numbers of elements in the
resulting query.

•	 The get*() methods: These are used to access the column data for the
current position of the result, for example, getLong(columnIndex) and
getString(columnIndex).

•	 The moveToNext() method: This moves the cursor to the next row. If the
cursor is already past the last entry in the result set, it will return false.

Summary
We covered in this chapter the know-how of SQLite features and its internal
architecture. We started with a discussion on what makes SQLite so popular
by looking at its salient features, then we covered the underlying architecture
of SQLite and went over database fundamentals such as syntax and datatypes,
and finally moved on to SQLite in Android. We explored the Android APIs for
using SQLite in Android.

In the next chapter, we will focus on carrying forward what we have learned in this
chapter and apply it to build Android applications. We will focus on the UI elements
and connecting UI to the database components.

Connecting the Dots
"You don't understand anything until you learn it more than one way."

-Marvin Minsky

In the previous chapter, we learned the two important Android classes and their
corresponding methods in order to work with an SQLite database:

•	 The SQLiteOpenHelper class
•	 The SQLiteDatabase class

We also saw code snippets explaining their implementation. Now, we are ready
to use all these concepts in an Android application. We will be leveraging what
we learned in the previous chapter to make a functional application. We will further
look into the SQL statements to insert, query, and delete data from a database.

In this chapter, we will be building and running an Android application on
an Android emulator. We will also be building our own full-fledged contacts
database. We will encounter Android UI components, such as Buttons and
ListView, while progressing through this chapter. In case a revisit of UI components
in Android is required, please visit the link http://developer.android.com/
design/building-blocks/index.html.

Before we begin, the code in this chapter is meant to explain the concepts related to
an SQLite database in Android and is not production ready; in a lot of places, you
will find lack of proper exception handling or lack of proper null checks and similar
practices to reduce verbosity in the code. You can download the complete code from
Packt's website for the current and following chapters. For best results, we recommend
downloading the code and referring to it as we move along the chapter.

Connecting the Dots

[26]

In this chapter, we will cover:

•	 Building blocks
•	 Database handler and queries
•	 Connecting the UI and database

Building blocks
Android is known to run on a variety of devices with different hardware and
software specifications. At the time of writing this book, 1 billion activation marks
have been crossed. The number of devices running Android is staggering, providing
users with a rich variety of options in different form factors and on different
hardware bases. This adds a roadblock when it comes to testing your application
on different devices, because it is humanly impossible to get hold of them all, not to
forget the time and capital needed to be invested in it. Emulator in itself is a great
tool; it enables us to circumvent this problem by giving us the flexibility to mimic
different hardware features, such as CPU architecture, RAM, and camera, and
different software versions ranging from early Cupcake to KitKat. We will also try
to leverage this to our advantage in our project and try to run our application on the
emulator. An added benefit of using the emulator is that we will be running a rooted
device that will allow us to perform some actions. We will not be able to achieve
these actions on a normal device.

Let's start by setting up an emulator in Eclipse:

1.	 Go to Android Virtual Device Manager from the Window menu to start
the emulator.
We can set different hardware properties such as the CPU type, front/back
camera, RAM preferably less than 768 MB on a Windows machine, internal,
and external storage size.

2.	 While launching the app, enable Save to snapshot; this will reduce the launch
time the next time we are launching an emulator instance from the snapshot:

Chapter 2

[27]

Interested readers who want to try out a faster emulator can give
Genymotion a try at http://www.genymotion.com/.

Let's start building our Android application now.

3.	 We will start by creating a new project PersonalContactManager. Go to
File | New | Project. Now, navigate to Android and then select Android
Application Project. This step will give us an activity file and a corresponding
XML file.

Connecting the Dots

[28]

We will come back to these components after we have all the blocks we need in
place. For our application, we will create a database called contact, which will
contain one table, ContactsTable. In the previous chapter, we went over how to
create a database using a SQL statement; let's construct a database schema for our
project. This is a very important step that is based on our application's requirements;
for example, in our case, we are building a personal contact manager and will require
fields such as name, number, e-mail, and a display picture.

The database schema for ContactsTable is outlined:

Column Data type
Contact_ID Integer / primary key/ autoincrement
Name Text
Number Text
Email Text
Photo Blob

An Android application can have more than one database and each
database can have more than one table. Each table stores data in the
2D (rows and columns) format.

The first column is Contact_ID. Its datatype is integer and its column constraint is
the primary key. Also, the column is autoincremented, which means for each row it
will be incremented by one when data is inserted in that row.

The primary key uniquely identifies each row and cannot be null. Each table in a
database can have one primary key at the most. The primary key of one table can act
as the foreign key for another table. The foreign key serves as a connection between
two related tables; for instance, our current ContactsTable schema is:

ContactsTable (Contact_ID,Name, Number, Email, Photo)

Let's say we have another table ColleagueTable with the following schema:

ColleagueTable (Colleague_ID, Contact_ID, Position, Fax)

Here, the primary key of ContactTable, that is, Contact_ID can be termed as a
foreign key for ColleagueTable. It serves the purpose of linking two tables in a
relational database and hence allows us to perform operations on ColleagueTable.
We will explore this concept in detail in the chapters and examples ahead.

Chapter 2

[29]

Column constraint
Constraints are the rules enforced on data columns in a table. This ensures
the accuracy and reliability of data in the database.
Unlike most SQL databases, SQLite does not restrict the type of data that
may be inserted into a column based on the declared type of columns.
Instead, SQLite uses dynamic typing. The declared type of a column is used
to determine the affinity of the column only. There is a type conversion also
(automatically) when one type of variable is stored in the other.
Constraints can be column level or table level. Column-level constraints
are applied only to one column, whereas table-level constraints are
applied to the whole table.
The following are the commonly used constraints and keywords available
in SQLite:

•	 The NOT NULL constraint: This ensures that a column does not
have a NULL value.

•	 The DEFAULT constraint : This provides a default value for a
column when none is specified.

•	 The UNIQUE constraint: This ensures that all the values in a
column are different.

•	 The PRIMARY key: This uniquely identifies all rows/records in a
database table.

•	 The CHECK constraint: The CHECK constraint ensures that all the
values in a column satisfy certain conditions.

•	 The AUTO INCREMENT keyword: AUTOINCREMENT is a keyword
used to autoincrement a value of a field in the table. We can
autoincrement a field value by using the AUTOINCREMENT
keyword when creating a table with a specific column name to
autoincrement it. The keyword AUTOINCREMENT can be used
with the INTEGER field only.

The next step is to prepare our data model; we will use our schema to frame the data
model class. The ContactModel class will have Contact_ID, Name, Number, Email, and
Photo as fields, they are represented as id, name, contactNo, email, and byteArray
respectively. The class will consist of a getter/setter method to set and fetch property
values as needed. The use of a data model will facilitate in the communication of the
activity used to show/process data and our database handler, which we are going to
define later in this chapter. We will create a new package and a new class in it called
the ContactModel class. Please note that creating a new package is not a necessary
step; it is used to organize our classes in a logical and easily accessible manner. This
class can be described as follows:

public class ContactModel {
 private int id;

Connecting the Dots

[30]

 private String name, contactNo, email;
 private byte[] byteArray;

 public byte[] getPhoto() {
 return byteArray;
 }
 public void setPhoto(byte[] array) {
 byteArray = array;
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 ……………
}

Eclipse provides a lot of helpful shortcuts but not for generating
getter and setter methods. We can bind generating getter and
setter methods to any key binding as per our liking. In Eclipse, go
to Window | Preferences | General | Keys, search for getter, and
add your bindings. We are using Alt + Shift + G; you are free to set
any other key combination.

A database handler and queries
We will build our support class that will contain methods to read, update, and delete
data as per our database requirements. This class will enable us to create and update
the database and will act as our hub for data management. We will use this class to
run SQLite queries and send across data to the UI; in our case, a listview to display
the results:

public class DatabaseManager {

 private SQLiteDatabase db;
 private static final String DB_NAME = "contact";

 private static final int DB_VERSION = 1;
 private static final String TABLE_NAME = "contact_table";
 private static final String TABLE_ROW_ID = "_id";
 private static final String TABLE_ROW_NAME = "contact_name";
 private static final String TABLE_ROW_PHONENUM = "contact_number";
 private static final String TABLE_ROW_EMAIL = "contact_email";
 private static final String TABLE_ROW_PHOTOID = "photo_id";

}

Chapter 2

[31]

We will create an object of the SQLiteDatabase class, which we will initialize later
with either getWritableDatabase() or getReadableDatabase(). We will define
the constants that we will be using through the class.

By convention, constants are defined in capitals but use of static
final in defining a constant is bit more than the convention. To
know more, refer to http://goo.gl/t0PoQj.

We will define the name of our database as contact and define the version as 1. If
we look back to the previous chapter, we will recall the importance of this value. A
quick recap of this enables us to upgrade the database from the current version to
the new version. The use case will become clear with this example. Let's say in future
there is a new requirement, that is, we need to add a fax number to our contact
details. We will modify our current schema to incorporate this change and our
contact database will correspondingly change. If we are installing the application on
new devices, there will be no issue; but in case of a device where we already
have a running instance of the application, we will face problems. In this situation,
DB_VERSION will come in handy and help us replace the old version of the database
with the current version. Another approach would be to uninstall the application
and install it again, but that is not encouraged.

The table name and important fields such as table columns will be defined now.
TABLE_ROW_ID is a very important column. This will serve as the primary key for
the table; it will also autoincrement and cannot be null. NOT NULL is again a column
constraint, which may only be attached to a column definition and is not specified
as a table constraint. Not surprisingly, a NOT NULL constraint dictates that the
associated column may not contain a NULL value. Attempting to set the column value
to NULL when inserting a new row or updating an existing one, causes a constraint
violation. This will be used to find a particular value in the table. The uniqueness of
the ID guarantees that we do not have any conflicts with data in the table, since each
row is uniquely identified by the key. The rest of the table columns are pretty
self-explanatory. The constructor for the DatabaseManager class is as follows:

public DatabaseManager(Context context) {
 this.context = context;
 CustomSQLiteOpenHelper helper = new CustomSQLiteOpenHelper(conte
xt);
 this.db = helper.getWritableDatabase();
 }

Notice that we are using a class called CustomSQLiteOpenHelper. We will come
back to this later. We will use the class object to get our SQLitedatabase instance.

Connecting the Dots

[32]

Building the Create query
To create a table with the desired columns, we will build a query statement and
execute it. The statement will contain the table name, different table columns, and
respective datatype. We will now look at methods for creating a new database
and also upgrading an existing database according to the needs of the application:

private class CustomSQLiteOpenHelper extends SQLiteOpenHelper {
 public CustomSQLiteOpenHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
String newTableQueryString = "create table "
+ TABLE_NAME + " ("
+ TABLE_ROW_ID
+ " integer primary key autoincrement not null,"
+ TABLE_ROW_NAME
+ " text not null,"
+ TABLE_ROW_PHONENUM
+ " text not null,"
+ TABLE_ROW_EMAIL
+ " text not null,"
+ TABLE_ROW_PHOTOID
+ " BLOB" + ");";
 db.execSQL(newTableQueryString);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion) {

 String DROP_TABLE = "DROP TABLE IF EXISTS " +
TABLE_NAME;
 db.execSQL(DROP_TABLE);
 onCreate(db);
 }
}

CustomSQLiteOpenHelper extends SQLiteOpenHelper and provides us with the key
methods onCreate() and onUpgrade(). We have defined this class as the inner class
of our DatabaseManager class. This enables us to manage all the database-related
functions, namely CRUD (Create,Read,Update, and Delete), from one place.

Chapter 2

[33]

In our CustomSQLiteOpenHelper constructor, which is responsible for creating an
instance of our class, we will pass a context, which in turn will be passed to the super
constructor with the following parameters:

•	 Context context: This is the context we passed to our constructor
•	 String name: This is the name of our database
•	 CursorFactory factory: This is the cursor factory object, which can be

passed as null
•	 int version: This is the database version of the database

The next important method is onCreate(). We will build our SQLite query string,
which will create our database table:

"create table " + TABLE_NAME + " ("
+ TABLE_ROW_ID
+ " integer primary key autoincrement not null,"
….....
+ TABLE_ROW_PHOTOID + " BLOB" + ");";

The previous statement is based on the following syntax diagram:

CREATE TABLE
EXISTSNOTIFTEMP

TEMPORARY

column-def

select-stmt

table-constraint WITHOUT ROWID

database-name . table-name

()

,

AS

,

Here, the keyword create table is used to create a table. This is followed by the
table name, the declaration of columns, and their datatype. After preparing our SQL
statement, we will execute it using the execSQL() method of the SQLite database.
In case something is wrong with the query statement that we built earlier, we will
encounter the exception, android.database.sqlite.SQLiteException. By default,
the database is formed in the internal memory space allocated to the application. The
folder can be found at /data/data/<yourpackage>/databases/.

Connecting the Dots

[34]

We can easily verify whether our database is formed while running this piece of
code on an emulator or a rooted phone. In Eclipse, go to the DDMS perspective and
then go to the file manager. We can easily navigate to the given folder if we have
sufficient permission, that is, a rooted device. We can also pull up our database with
the help of the file explorer, and with the help of a standalone SQLite manager tool,
we can view our database and perform CRUD operations on it as well. What makes
the Android application's database readable through another tool? Remember how
we discussed cross-platform in SQLite features in the last chapter? In the following
screenshot, notice the table name, the SQL statement used to build it, and the column
names along with their datatype:

The SQLite Manager tool can be downloaded either in the Chrome
or Firefox browser. The following is the link for Firefox extension:
http://goo.gl/NLu8JT.

Another handy way of pulling up our database or any other file is by using the adb
pull command:

adb pull /data/data/your package name/databases /file location

Another interesting point to note is that the datatype of TABLE_ROW_PHOTOID is BLOB.
BLOB stands for binary large object. It is different from other datatype, such as text
and integer, as it can store binary data. The binary data can be an image, audio,
or any other type of multimedia object.

Chapter 2

[35]

It is not advisable to store large images in a database; we can store filenames or
locations, but storing images is bit of overkill. Imagine a situation like this where
we store contact images. To amplify this situation, instead of a few hundred contacts,
make it a few thousand contacts. The size of the database will become large and the
access time will also increase. We want to demonstrate the use of BLOBs by storing
contact images.

The onUpgrade() method is called when the database is upgraded. The database is
upgraded by changing the version number of the database. Here, the implementation
depends on the need of the application. In some cases, the whole table may have to
be deleted and a new one may need to be created, and in some applications, only
slight modification is needed. How to migrate from one version to another is covered
in Chapter 4, Thread Carefully.

Building the Insert query
To insert a new row of data in the database table, we need to use either the
insert() method or we can make an insert query statement and use the
execute() method:

public void addRow(ContactModel contactObj) {
 ContentValues values = prepareData(contactObj);
 try {
 db.insert(TABLE_NAME, null, values);
 } catch (Exception e) {
 Log.e("DB ERROR", e.toString());
 e.printStackTrace();
 }
}

In case our table name is wrong, SQLite will give a log no such table message
and the exception, android.database.sqlite.SQLiteException. The addRow()
method is used to insert contact details in the database row; notice that the parameter
of the method is an object of ContactModel. We have created an additional method
prepareData() to construct a ContentValues object from the ContactModel object's
getter methods:

.......................
values.put(TABLE_ROW_NAME, contactObj.getName());
values.put(TABLE_ROW_PHONENUM, contactObj.getContactNo());
....................

Connecting the Dots

[36]

After the preparation of the ContentValues object, we are going to use the insert()
method of the SQLiteDatabase class:

public long insert (String table, String nullColumnHack, ContentValues
values)

The parameters of the insert() method are as follows:

•	 table: The database table to insert the row into.
•	 values: This key-value map contains the initial column values for the table

row. Column names act as keys. Values as the column values.
•	 nullColumnHack: This is as interesting as its name. Here's a quote from the

Android documentation website:

"optional; may be null. SQL doesn't allow inserting a completely empty row
without naming at least one column name. If your provided values are empty, no
column names are known and an empty row can't be inserted. If not set to null,
the nullColumnHack parameter provides the name of nullable column name to
explicitly insert NULL into the case where your values are empty."

In short, in cases where we are trying to pass an empty ContentValues to be
inserted, SQLite needs some column that is safe to be assigned NULL.

Alternatively, instead of the insert() method, we can prepare the SQL statement
and execute it as shown:

public void addRowAlternative(ContactModel contactObj) {

 String insertStatment = "INSERT INTO " + TABLE_NAME
 + " ("
 + TABLE_ROW_NAME + ","
 + TABLE_ROW_PHONENUM + ","
 + TABLE_ROW_EMAIL + ","
 + TABLE_ROW_PHOTOID
 + ") "
 + " VALUES "
 + "(?,?,?,?)";

 SQLiteStatement s = db.compileStatement(insertStatment);
 s.bindString(1, contactObj.getName());
 s.bindString(2, contactObj.getContactNo());
 s.bindString(3, contactObj.getEmail());
if (contactObj.getPhoto() != null)
 {s.bindBlob(4, contactObj.getPhoto());}
 s.execute();
}

Chapter 2

[37]

We will be covering alternatives for a lot of the methods we mentioned here. The
idea is to make you comfortable with other possible ways to build and execute
queries. The explanation of the alternative part is left as an exercise for you. The
getRowAsObject() method will return the fetched row from the database in the
form of a ContactModel object, as shown in the following code. It will require rowID
as a parameter to uniquely identify which row in the table we want to access:

public ContactModel getRowAsObject(int rowID) {
 ContactModel rowContactObj = new ContactModel();
 Cursor cursor;
 try {
 cursor = db.query(TABLE_NAME, new String[] {
TABLE_ROW_ID, TABLE_ROW_NAME, TABLE_ROW_PHONENUM, TABLE_ROW_EMAIL,
TABLE_ROW_PHOTOID },
 TABLE_ROW_ID + "=" + rowID, null,
 null, null, null, null);
 cursor.moveToFirst();
 if (!cursor.isAfterLast()) {
 prepareSendObject(rowContactObj, cursor); }
 } catch (SQLException e) {
 Log.e("DB ERROR", e.toString());
 e.printStackTrace();
 }
 return rowContactObj;
}

This method will return the fetched row from the database in the form of a
ContactModel object. We are using the SQLiteDatabase() query method
to fetch the row from our contact table against the provided rowID parameter.
The method returns a cursor over the result set:

public Cursor query (String table, String[] columns, String selection,
String[] selectionArgs, String groupBy, String having, String orderBy,
String limit)

The following are the parameters of the previous code:

•	 table: This denotes the database table against which the query will be run.
•	 columns: This is a list of the columns that are returned; if we pass null, it

will return all the columns.
•	 selection: This is where we define which rows are to be returned and

framed as a SQL WHERE clause. Passing null will return all the rows.

Connecting the Dots

[38]

•	 selectionArgs: We can pass null for this parameter or we may include
question marks in the selection, which will be replaced by the values from
selectionArgs.

•	 groupBy: This is a filter framed as a SQL GROUP BY clause declaring how to
group rows. Passing null will cause the rows to not be grouped.

•	 Having: This is a filter that tells which row groups are to be made part of the
cursor, framed as a SQL HAVING clause. Passing null will cause all the row
groups to be included.

•	 OrderBy: This tells the query how to order the rows framed as an SQL ORDER
BY clause. Passing null will use the default sort order.

•	 limit: This will limit the number of rows returned by the query framed as
the LIMIT clause. Passing null denotes a no LIMIT clause.

Another important concept here is moving the cursor around to access data.
Notice the following methods: cursor.moveToFirst(), cursor.isAfterLast(),
and cursor.moveToNext().

When we try to retrieve data-building SQL query statements, the database will
first create an object of the cursor object and return its reference. The pointer of this
returned reference is pointing to the 0th location, which is also known as "before
first location" of the cursor. When we want to retrieve data, we have to first move to
the first record; hence, the use of cursor.moveToFirst().Talking about the rest of
the two methods, cursor.isAfterLast() returns whether the cursor is pointing to
the position after the last row and cursor.moveToNext() moves the cursor to the
next row.

Readers are advised to go through more of the cursor methods at the
Android developer site: http://goo.gl/fR75t8.

Alternatively, we can use the following method:

public ContactModel getRowAsObjectAlternative(int rowID) {

 ContactModel rowContactObj = new ContactModel();
 Cursor cursor;

 try {
 String queryStatement = "SELECT * FROM "
 + TABLE_NAME + " WHERE " + TABLE_ROW_ID + "=?";

Chapter 2

[39]

 cursor = db.rawQuery(queryStatement,
 new String[]{String.valueOf(rowID)});
 cursor.moveToFirst();

 rowContactObj = new ContactModel();
 rowContactObj.setId(cursor.getInt(0));
 prepareSendObject(rowContactObj, cursor);

 } catch (SQLException e) {
 Log.e("DB ERROR", e.toString());
 e.printStackTrace();
 }

 return rowContactObj;
}

The update statement is based on the following syntax diagram:

SELECT
DISTINCT

ALL

,

result-column

FROM

,

table-or-subquery

join-clause

WHERE expr

GROUP BY expr

,

HAVING expr

VALUES (expr

,

,

)

Connecting the Dots

[40]

Before we move to other methods in the datamanager class, let's have a look at
fetching data from a cursor object in the prepareSendObject() method:

rowObj.setContactNo(cursor.getString(cursor.
getColumnIndexOrThrow(TABLE_ROW_PHONENUM)));
rowObj.setEmail(cursor.getString(cursor.getColumnIndexOrThrow(TABLE_
ROW_EMAIL)));

Here cursor.getstring() takes the column index as a parameter and returns
the value of the requested column, whereas cursor.getColumnIndexOrThrow()
takes the column name as a parameter and returns the zero-based index for the
given column name. Instead of this chaining approach, we can directly use cursor.
getstring(). If we know the column number of the required column to fetch data
from, we can use the following notation:

cursor.getstring(2);

Building the Delete query
To delete a particular row of data from our database table, we need to provide the
primary key to uniquely identify the data set to be removed:

public void deleteRow(int rowID) {
 try {
 db.delete(TABLE_NAME, TABLE_ROW_ID
 + "=" + rowID, null);
 } catch (Exception e) {
 Log.e("DB ERROR", e.toString());
 e.printStackTrace();
 }
}

This method uses the SQLiteDatabase delete() method to delete the row of the
given ID in the table:

public int delete (String table, String whereClause, String[]
whereArgs)

The following are the parameters of the preceding code snippet:

•	 table: This is the database table against which the query will be run
•	 whereClause: This is a clause to be applied when deleting a row; passing

null in this clause will delete all the rows
•	 whereArgs: We may include question marks in the where clause, which will

be replaced by the values that will be bound as strings

Chapter 2

[41]

Alternatively, we can use the following method:

public void deleteRowAlternative(int rowId) {

 String deleteStatement = "DELETE FROM "
 + TABLE_NAME + " WHERE "
 + TABLE_ROW_ID + "=?";
 SQLiteStatement s = db.compileStatement(deleteStatement);
 s.bindLong(1, rowId);
 s.executeUpdateDelete();
}

The delete statement is based on the following syntax diagram:

with-clause
DELETE FROM qualified-table-name

WHERE expr

Building the Update query
To update an existing value, we need to use the update() method with the required
parameters:

public void updateRow(int rowId, ContactModel contactObj) {

 ContentValues values = prepareData(contactObj);

 String whereClause = TABLE_ROW_ID + "=?";
 String whereArgs[] = new String[] {String.valueOf(rowId)};

 db.update(TABLE_NAME, values, whereClause, whereArgs);

}

Generally, we need the primary key, in our case the rowId parameter, to identify
the row to be modified. An SQLiteDatabase update() method is used to modify
the existing data of zero or more rows in a database table:

public int update (String table, ContentValues values, String
whereClause, String[] whereArgs)

Connecting the Dots

[42]

The following are the parameters of the preceding code snippet:

•	 table: This is the qualified database table name to be updated.
•	 values: This is a mapping from the column names to the new column values.
•	 whereClause: This is the optional WHERE clause to be applied when updating

a value/row. If the UPDATE statement does not have a WHERE clause, all the
rows in the table are modified.

•	 whereArgs: We may include question marks in the where clause, which will
be replaced by the values that will be bound as strings.

Alternatively, you can use the following code:

public void updateRowAlternative(int rowId, ContactModel contactObj) {
 String updateStatement = "UPDATE " + TABLE_NAME + " SET "
 + TABLE_ROW_NAME + "=?,"
 + TABLE_ROW_PHONENUM + "=?,"
 + TABLE_ROW_EMAIL + "=?,"
 + TABLE_ROW_PHOTOID + "=?"
 + " WHERE " + TABLE_ROW_ID + "=?";

 SQLiteStatement s = db.compileStatement(updateStatement);
 s.bindString(1, contactObj.getName());
 s.bindString(2, contactObj.getContactNo());
 s.bindString(3, contactObj.getEmail());
 if (contactObj.getPhoto() != null)
 {s.bindBlob(4, contactObj.getPhoto());}
 s.bindLong(5, rowId);

 s.executeUpdateDelete();
}

The update statement is based on the following syntax diagram:

with-clause
UPDATE qualified-table-name

SET

OR ROLLBACK

OR ABORT

OR

OR

OR

REPLACE

FAIL

IGNORE

column-name = expr WHERE expr

,

Chapter 2

[43]

Connecting the UI and database
Now that we have our database hooks in place, let's connect our UI with the data:

1.	 The first step would be to get the data from the user. We can use the
existing contact data from the Android's contact application by means
of the content provider.
We will be covering this approach in the next chapter. For now, we will be
asking the user to add a new contact, which we will insert into the database:

2.	 We are using standard Android UI widgets, such as EditText, TextView,
and Buttons to collect the data provided by the user:
private void prepareSendData() {
 if (TextUtils.isEmpty(contactName.getText().toString())
 || TextUtils.isEmpty(
 contactPhone.getText().toString())) {

 } else {
 ContactModel contact = new ContactModel();
 contact.setName(contactName.getText().toString());

 DatabaseManager dm = new DatabaseManager(this);

Connecting the Dots

[44]

 if(reqType == ContactsMainActivity
.CONTACT_UPDATE_REQ_CODE) {
 dm.updateRowAlternative(rowId, contact);
 } else {
 dm.addRowAlternative(contact);
 }

 setResult(RESULT_OK);
 finish();
 }
}

prepareSendData() is the method that is responsible for bundling data into
our object model and later inserting it in our database. Notice that instead of
using null check and length check on contactName, we are using TextUtils.
isEmpty(), which is a very handy method. This returns true if the string is
null or of zero length.

3.	 We prepare our ContactModel object from the data received by the user
filling the form. We create an instance of our DatabaseManager class and
access our addRow() method passing our contact object to be inserted in the
database, as we discussed earlier.
Another important method is getBlob(), which is used to get the image data
in the BLOB format:

private byte[] getBlob() {

 ByteArrayOutputStream blob = new ByteArrayOutputStream();
 imageBitmap.compress(Bitmap.CompressFormat.JPEG, 100, blob);
 byte[] byteArray = blob.toByteArray();

 return byteArray;
}

4.	 We create a new ByteArrayOutputStream object blob. Bitmap's compress()
method will be used to write a compressed version of the bitmap to our
outputstream object:
public boolean compress (Bitmap.CompressFormat format, int
quality, OutputStream stream)

The following are the parameters of the preceding code:

°° format: This is the format of a compressed image, in our case, JPEG.
°° quality: This is a hint to the compressor, which ranges from 0 to

100. The value 0 means to compress to a smaller size and low quality,
while 100 is for maximum quality.

Chapter 2

[45]

°° stream: This is the output stream to write the compressed data to.

5.	 Then, we create our byte[] object, which will be constructed from the
ByteArrayOutputStream toByteArray() method.

You will notice that we are not covering all the methods; only those
that are relevant to data operations and some methods or calls that
might cause confusion. There are a few more methods that are used to
invoke the camera or gallery to pick a photo to be used as the contact
image. You are advised to explore the methods in the code provided
along with the book.

Let's move on to the presentation part where we use a custom listview to
display our contact information in a presentable and readable manner.
We are going to skip a bulk of the code related to the presentation and
concentrate on the parts where we fetch and provide data to our listview.
We will also implement a context menu in order to provide a user with
the functionality of deleting a particular contact. We will be touching base
on the database manager methods such as getAllData() to fetch all our
added contacts. We will use deleteRow() in order to remove any unwanted
contacts from our contacts database. The final outcome will be something like
the following screenshot:

Connecting the Dots

[46]

6.	 To make a custom listview similar to the one shown in the preceding screenshot,
we create CustomListAdapter extending BaseAdapter and using the custom
layout for the listview rows. Notice in the following constructor we have
initialized a new array list and will use our database manager to fetch values
by using the getAllData() method to fetch all the database entries:
public CustomListAdapter(Context context) {

 contactModelList = new ArrayList<ContactModel>();
 _context = context;
 inflater = (LayoutInflater)context.getSystemService(
Context.LAYOUT_INFLATER_SERVICE);
 dm = new DatabaseManager(_context);
 contactModelList = dm.getAllData();
}

Another very important method is the getView() method. This is where we
inflate our custom layout in a view:
convertView = inflater.inflate(R.layout.contact_list_row, null);

We will use the view holder pattern to improve the listview scrolling
smoothness:

vHolder = (ViewHolder) convertView.getTag();

7.	 And finally, set the data to the corresponding views:
vHolder.contact_email.setText(contactObj.getEmail());

Holding view objects in a view holder improves the performance
by reducing calls to findViewById(). You can read more about
this and how to make listview scrolling smooth at http://
developer.android.com/training/improving-layouts/
smooth-scrolling.html.

8.	 We will also be implementing a way to delete a listview entry. We will use
the context menu for this purpose. We will first create a menu item in the
menu folder under res of our application structure:
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/delete_item"
 android:title="Delete"/>
<item
 android:id="@+id/update_item"
 android:title="Update"/>
</menu>

Chapter 2

[47]

9.	 Now, in our main activity where we will display our listview, we will use
the following call to register our listview with the context menu. In order
to launch the context menu, we need to perform a long press action on the
listview item:
registerForContextMenu(listReminder)

10.	 There are a few more methods that we need to implement in order to achieve
the delete functionality:
@Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 MenuInflater m = getMenuInflater();
 m.inflate(R.menu.del_menu, menu);
 }

This method is used to inflate the context menu with the menu we defined
earlier in XML. The MenuInfater class generates menu objects from the
menu XML files. Menu inflation relies heavily on the preprocessing of XML
files that is done at build time; this is done to improve performance.

11.	 Now, we will implement a method to capture the click on the context menu:
 @Override
 public boolean onContextItemSelected(MenuItem item) {
..............
 case R.id.delete_item:

 cAdapter.delRow(info.position);
 cAdapter.notifyDataSetChanged();
 return true;
 case R.id.update_item:

 Intent intent = new Intent(
ContactsMainActivity.this, AddNewContactActivity.class);

 }

12.	 Here, we will find the position ID of the clicked listview item and invoke the
delRow() method of the CustomListAdapter, and in the end, we will notify
the adapter that the dataset has changed:

public void delRow(int delPosition) {
 dm.deleteRowAlternative(contactModelList.
get(delPosition).getId());
 contactModelList.remove(delPosition);

Connecting the Dots

[48]

The delRow() method is responsible for connecting our database's
deleteRowAlternative() method to our context menu's delete() method.
Here, we fetch the ID of the object set on the particular listview item and pass
it to the deleteRowAlternative() method of databaseManager in order to
delete the data from the database. After removing the data from the database,
we will instruct our listview to remove the corresponding entry from our
contact list.

In the onContextItemSelected() method, we can also see the update_item in case
the user has clicked on the update button. We will launch the activity to add a new
contact and add the data we already have in case the user wants to edit some fields.
The catch is to know from where the call has been initiated. Is it to add a new entry
or update an existing one? We take the help of the following code to tell the activity
that this action is used to update rather than add a new entry:

intent.putExtra(REQ_TYPE, CONTACT_UPDATE_REQ_CODE);

Summary
In this chapter, we covered the steps of building up a database-based application,
from scratch and then from schema to object model and then from object model
to building actual databases. We underwent the process of building our database
manager and finally implemented the UI database connect to achieve a fully
functional application. The topics covered ranged from the building blocks of the
model class, database schema to our database handler, and CRUD methods. We
also covered the important concept of connecting a database to the Android views
with proper hooks in place to pick up user data, add data to the database, and show
relevant information after picking up data from the database.

In the next chapter, we will focus on building upon the groundwork we have done
here. We will explore ContentProviders. We will also learn how to fetch data
from ContentProviders, how to make our own content provider, the best practices
associated while building them, and much more.

Sharing is Caring
"Data really powers everything that we do."

 – Jeff Weiner, LinkedIn

In the last chapter, we started programming our very own contact manager. We
came across various building blocks of a database-centric application; we covered
database handlers and building queries in order to get meaningful data from our
database. We also explored how to make a connection between our UI and database
and present it in a consumable manner for the end user.

In this chapter, we will learn how to access other application's data via means of
content providers. We will also learn how to build our very own content provider
in order to share our data with other applications. We will look into Android's
providers such as contactprovider. To wrap things up, we will construct a test
application to use our newly constructed content provider.

In this chapter, we will cover the following topics:

•	 What is a content provider?
•	 Creating a content provider
•	 Implementing the core methods
•	 Using a content provider

Sharing is Caring

[50]

What is a content provider?
A content provider is the fourth component of an Android application. It is used
to manage access to a structured set of data. Content providers encapsulate the
data, and provide abstraction and the mechanism to define data security. However,
content providers are primarily intended to be used by other applications that access
the provider using a provider's client object. Together, providers and provider
clients offer a consistent, standard interface for data, which also handles interprocess
communication and secure data access.

A content provider allows one app to share data with other applications. By design,
an Android SQLite database created by an application is private to the application;
it is excellent if you consider the security point of view, but troublesome when you
want to share data across different applications. This is where a content provider
comes to the rescue; you can easily share data by building your content provider. It
is important to note that although our discussion will focus on a database, a content
provider is not limited to it. It can also be used to serve file data that normally goes
into files, such as photos, audio, or videos:

Process A

Application A

Content Resolver

Method1()
Method2()

...
Methodn()

Inter Process Communication

Process B

Application B

Content Provider

Method1()
Method2()

...
Methodn()

Database

Chapter 3

[51]

In the preceding diagram, notice how the interaction between Applications A and
B happens while exchanging data. Here, we have an Application A whose activity
needs to access the database of Application B. As we have already seen, the database
of Application B is stored in the internal memory and cannot be directly accessed by
Application A. This is where Content Provider comes into the picture; it allows us to
share data and modify access to other applications. The content provider implements
methods to query, insert, update, and delete data in databases. Application A now
requests the content provider to perform some desired operations on behalf of it.
We will explore both sides of the coin, but we will first use Content Provider to
fetch contacts from a phone's contact database, and then we will build our very own
content provider for others to pick data from our database.

Using existing content providers
Android lists a lot of standard content providers that we can use. Some of them are
Browser, CalendarContract, CallLog, Contacts, ContactsContract, MediaStore,
userDictionary, and so on.

In our current contact manager application, we will add a new feature. In the UI of
the AddNewContactActivity class, we will add a small button to fetch contacts from
a phone's contact list with help from the system's existing ContentProvider and
ContentResolver providers. We will be using the ContactsContract provider
for this purpose.

What is a content resolver?
The ContentResolver object in the application's context is used to communicate
with the provider as a client. The ContentResolver object communicates with the
provider object—an instance of a class that implements ContentProvider. The
provider object receives data requests from clients, performs the requested action,
and returns the results.

Sharing is Caring

[52]

ContentResolver is a single, global instance in our application that provides access
to other application's content providers; we do not need to worry about handling
interprocess communication. The ContentResolver methods provide the basic
CRUD (create, retrieve, update, and delete) functions of persistent storage; it has
methods that call identically named methods in the provider object but does not
know the implementation. We will cover ContentResolver in more detail as we
progress through this chapter.

In the preceding screenshot, notice the new icon on the right-hand side to add
contacts directly from the phone contacts; we modified the existing XML to add the
icon. The corresponding class AddNewContactActivity will also be modified:

public void pickContact() {
 try {
 Intent cIntent = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 startActivityForResult(cIntent, PICK_CONTACT);
 } catch (Exception e) {
 e.printStackTrace();
 Log.i(TAG, "Exception while picking contact");
 }
 }

We added a new method pickContact() to prepare an intent in order to pick
contacts. Intent.ACTION_PICK allows us to pick an item from a data source; in
addition, all we need to know is the Uniform Resource Identifier (URI) of the
provider, which in our case is ContactsContract.Contacts.CONTENT_URI. This
functionality is also provided by Messaging, Gallery, and Contacts. If you look into
the code from Chapter 2, Connecting the Dots, you will find we have used the same
code to pick images from Gallery. The Contacts screen will pop up allowing us to
browse or search for contacts we require to migrate to our new application. Notice
onActivityResult, that is, our next stop we will modify this method to handle our
corresponding request to handle contacts. Let us look at the code we have to add to
pick contacts from an Android's contact provider:

Chapter 3

[53]

{
.
.
.

else if (requestCode == PICK_CONTACT) {
 if (resultCode == Activity.RESULT_OK)

 {
 Uri contactData = data.getData();
 Cursor c = getContentResolver().query(contactData, null,
null, null, null);
 if (c.moveToFirst()) {
 String id = c
 .getString(c
 .getColumnIndexOrThrow(ContactsContract.
Contacts._ID));

 String hasPhone = c
 .getString(c
 .getColumnIndex(ContactsContract.Contacts.
HAS_PHONE_NUMBER));

 if (hasPhone.equalsIgnoreCase("1")) {
 Cursor phones = getContentResolver()
 .query(ContactsContract.CommonDataKinds.Phone.
CONTENT_URI,
 null,
 ContactsContract.CommonDataKinds.Phone.
CONTACT_ID
 + " = " + id, null, null);
 phones.moveToFirst();
 contactPhone.setText(phones.getString(phones
 .getColumnIndex("data1")));

 contactName
 .setText(phones.getString(phones
 .getColumnIndex(ContactsContract.Contacts.
DISPLAY_NAME)));

 }
…..

Sharing is Caring

[54]

To add a little flair to your application, download the entire set of
stencils, sources, the action bar icon pack, color swatches, and the
Roboto font family from the Android developer site, http://goo.
gl/4Msuct. Designing a functional application is incomplete without
a consistent UI that follows Android guidelines.

We start by checking whether the request code matches ours. Then, we
cross-check resultcode. We get the ContentResolver object by making
a call to getcontentresolver on the Context object; it is a method of the android.
content.Context class. As we are in an activity that inherits from Context, we do
not need to be explicit in making a call to it. The same goes for services. We will now
verify whether the contact we picked has a phone number or not. After verifying the
necessary details, we pull the data that we require, such as contact name and phone
number, and set them in relevant fields.

Creating a content provider
A content provider provides access to data in two ways: one is structured data that
goes in the form of a database, as the example we are working on currently, or in the
form of file data, that is, data that goes in the form of pictures, audio, video, and so
on stored in the private space of the application. Before we begin digging into how
to create a content provider, we should also retrospect whether we need one. If we
want to offer data to other applications, allow users to copy data from our app to
another, or use the search framework in our application, then the answer is yes.

Just like other Android components (Activity, Service, or BroadcastReceiver),
a content provider is created by extending the ContentProvider class. Since
ContentProvider is an abstract class, we have to implement the six abstract
methods. These methods are as follows:

Method Usage

void onCreate() Initializes the provider

String getType(Uri) Returns the MIME type of data in the content
provider

int delete(Uri uri,
String selection,
String[] selectionArgs)

Deletes data from the content provider

Chapter 3

[55]

Method Usage

Uri insert(Uri uri,
ContentValues values)

Inserts new data into the content provider

Cursor query(Uri uri,
String[] projection,
String selection,
String[] selectionArgs,
String sortOrder)

Returns data to the caller

int update(Uri uri,
ContentValues values,
String selection,
String[] selectionArgs)

Updates the existing data in the content provider

These methods will be dealt with in more detail later as we progress through the
chapter and build our application.

Understanding content URIs
Every data access method of ContentProvider has a content URI, as an argument
that allows it to determine the table, row, or file
to access. It generally follows the following structure:

content://authority/Path/Id

Let's analyze the breakdown of the components of the content:// URI. The scheme
for content providers is always content. The colon and double-slash (://) act as
a separator from the authority part. Then, we have the authority part. By rule,
authorities have to be unique for every content provider. The naming convention the
Android documentation recommends using is the fully qualified class name of your
content provider subclass. Generally, it is built as a package name plus a qualifier for
each content provider we publish.

The remaining part is optional, also referred to as path, and is used for segregation
between different types of data our content provider can provide. A very good
example is the MediaStore provider which needs to distinguish between audio,
video, and image files.

Another optional part is id, which points to a specific record; depending on whether
id is present or not, the URI becomes ID-based or directory-based, respectively.
Another way to understand it would be that an ID-based URI enables us to interact
with data individually at row level, whereas a directory-based URI enables us to
interact with multiple rows of a database.

Sharing is Caring

[56]

For example, consider content://com.personalcontactmanager.provider/
contacts; we will encounter this soon enough as we move ahead with the chapter
where we define how to access the content provider we are currently building.

On a side note, the package name for applications should always be
unique; this is because all the applications on Play Store are identified
by their package name. All the updates for an application on Play Store
need to have the same package name and be signed with the same
keystore used initially. For instance, the following is the Play Store link
of a Gmail application; notice that at the end of URL, we will find the
package name of the application:
play.google.com/store/apps/details?id=com.google.
android.gm

Declaring our contract class
Declaring a contract is a very important part of building our content provider. This
class, as the name suggests, will act as a contract between our content provider and
the application that is going to access our content provider. It is a public final class,
which contains constant definitions for URIs, column names, and other metadata. It
can also contain Javadoc, but the biggest advantage is that the developer using it
need not worry about the names of tables, columns, and constants, leading to less
error-prone code.

The contract class provides us with the necessary abstraction; we can change
the underlying operations as and when required and we can also change the
corresponding data manipulation affecting other dependent applications. An
important thing to note is that we need to be careful while changing the contract
in future; if we are not careful, we might break the other applications that are using
our contract class.

Our contract class looks like the following:

public final class PersonalContactContract {

 /**
 * The authority of the PersonalContactProvider
 */
 public static final String AUTHORITY = "com.personalcontactmanager.
provider";

 public static final String BASE_PATH = "contacts";

 /**

Chapter 3

[57]

 * The Uri for the top-level PersonalContactProvider
 * authority
 */
 public static final Uri CONTENT_URI = Uri.parse("content://" +
AUTHORITY
 + "/" + BASE_PATH);

 /**
 * The mime type of a directory of items.
 */
 public static final String CONTENT_TYPE =
ContentResolver.CURSOR_DIR_BASE_TYPE +
 "/vnd.com.personalcontactmanager.provider.table";
 /**
 * The mime type of a single item.
 */
 public static final String CONTENT_ITEM_TYPE =
ContentResolver.CURSOR_ITEM_BASE_TYPE +
 "/vnd.com.personalcontactmanager.provider.table_
item";

 /**
 * A projection of all columns
 * in the items table.
 */
 public static final String[] PROJECTION_ALL = { "_id",
 "contact_name", "contact_number",
 "contact_email", "photo_id" };

 /**
 * The default sort order for
 * queries containing NAME fields.
 */
 //public static final String SORT_ORDER_DEFAULT = NAME + " ASC";

 public static final class Columns {
 public static String TABLE_ROW_ID = "_id";
 public static String TABLE_ROW_NAME = "contact_name";
 public static String TABLE_ROW_PHONENUM = "contact_number";
 public static String TABLE_ROW_EMAIL = "contact_email";
 public static String TABLE_ROW_PHOTOID = "photo_id";
 }
}

Sharing is Caring

[58]

AUTHORITY is the symbolic name that identifies the provider among many other
providers registered as part of an Android system. BASE_PATH is the path of the table.
CONTENT_URI is the URI of the table encapsulated by the provider. CONTENT_TYPE is
the Android platform's base MIME type for content URI containing a cursor of zero
or more items. CONTENT_ITEM_TYPE is the Android platform's base MIME type for
content URIs containing a cursor of a single item. PROJECTION_ALL and Columns
contain the column IDs of the table.

Without this information, other developers will not be able to access your provider
even though it is open for access.

There can be many tables inside a provider and each should have a
unique path; the path is not a real physical path but an identifier.

Creating UriMatcher definitions
UriMatcher is a utility class, which aids in matching URIs in content providers. The
addURI() method takes the content URI patterns that the provider should recognize.
We add a URI to match, and the code to return when this URI is matched:

addURI(String authority, String path, int code)

We pass authority, a path pattern, and an integer value to the addURI() method of
UriMatcher; it returns the int value, which we defined as constant when we tried to
match patterns.

Our UriMatcher looks like the following:
private static final int CONTACTS_TABLE = 1;
private static final int CONTACTS_TABLE_ITEM = 2;

private static final UriMatcher mmURIMatcher = new
UriMatcher(UriMatcher.NO_MATCH);
 static {
 mmURIMatcher.addURI(PersonalContactContract.AUTHORITY,
 PersonalContactContract.BASE_PATH, CONTACTS_TABLE);
 mmURIMatcher.addURI(PersonalContactContract.AUTHORITY,
 PersonalContactContract.BASE_PATH+ "/#",
 CONTACTS_TABLE_ITEM);
 }

Notice that it also supports the use of wildcards; we have used hashtag (#) in the
preceding code snippet, we can also use wildcards such as *. In our case, with the
hashtag, " content://com.personalcontactmanager.provider/contacts/2"
this expression matches, but using * "content://com.personalcontactmanager.
provider/contacts it doesn't.

Chapter 3

[59]

Implementing the core methods
In order to build our content provider, the next step will be to prepare our core
database access and data modifying methods, better known as CRUD methods. This
is where the core logic of how we want to interact with our data depending on the
insert, query, or delete calls received is specified. We will also implement the Android
architecture's life cycle methods such as onCreate().

Initializing the provider through the
onCreate() method
We create an object of our database manager class in onCreate(). There should
be minimum operations in oncreate() as it runs on the Main UI thread, and it
may cause lag for some users. It is good practice to avoid long-running tasks in
oncreate() as it increases the startup time of the provider. It is even recommended
to defer database creation and data loading until our provider actually receives a
request for the data, that is, to move long-lasting actions to the CRUD methods:

@Override
Public Boolean onCreate() {
 dbm = new DatabaseManager(getContext());
 return false;
}

Querying records through the query() method
The query() method will return a cursor over the result set. The URI is passed to our
UriMatcher to see whether it matches any patterns we defined earlier. In our switch case
statement, if it is a table-item-related case, we check whether the selection statement
is empty; in case it is, we build our selection statement up to the lastpathsegment, else
we append the selection to the lastpathsegment statement. We use a DatabaseManager
object to a run query on the database and get a cursor as a result. It is expected of the
query() method to throw an IllegalArgumentException to inform of an unknown
URI; it is also good practice to throw a nullPointerException in case we encounter
an internal error during the query process:

@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 int uriType = mmURIMatcher.match(uri);

Sharing is Caring

[60]

 switch(uriType) {

 case CONTACTS_TABLE:
 break;
 case CONTACTS_TABLE_ITEM:
 if (TextUtils.isEmpty(selection)) {
 selection = PersonalContactContract.Columns.TABLE_ROW_ID
 + "=" + uri.getLastPathSegment();
 } else {
 selection = PersonalContactContract.Columns.TABLE_ROW_ID
 + "=" + uri.getLastPathSegment() +
 " and " + selection;
 }
 break;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }

 Cursor cr = dbm.getRowAsCursor(projection, selection,
 selectionArgs, sortOrder);

 return cr;
}

Remember that an Android system must be able to communicate
the exception across process boundaries. Android can do this for the
following exceptions that may be useful in handling query errors:

•	 IllegalArgumentException: You may choose to throw
this if your provider receives an invalid content URI

•	 NullPointerException: This is thrown when the object is
null and we try to access its field or method

Chapter 3

[61]

Adding records through the insert() method
As the name suggests, the insert() method is used to insert a value in our database.
It returns the URI of the inserted row and, while checking the URI, we need to
remember that an insertion can happen at the table level, hence the operations in
the method are processed at the URI that matches the table. After matching, we use
the standard DatabaseManager object to insert our new value into the database. The
content URI for the new row is constructed by appending the new row's _ID value to
the table's content URI:

@Override
public Uri insert(Uri uri, ContentValues values) {

 int uriType = mmURIMatcher.match(uri);
 long id;

 switch(uriType) {
 case CONTACTS_TABLE:
 id = dbm.addRow(values);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }

 Uri ur = ContentUris.withAppendedId(uri, id);
 return ur;
}

Updating records through the update()
method
The update() method updates an existing row in the appropriate table, using the
values in the ContentValues argument. First, we identify the URI, whether it is
directory-based or ID-based, then we build our selection statement as we did in
the query() method. Now, we will execute the standard updateRow() method of
DatabaseManager that we defined earlier while building this application in Chapter
2, Connecting the Dots, which returns the number of affected rows.

The update() method returns the number of rows updated. Based on the selection
clause, one or more rows can be updated:

@Override
public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

Sharing is Caring

[62]

 int uriType = mmURIMatcher.match(uri);

 switch(uriType) {
 case CONTACTS_TABLE:
 break;
 case CONTACTS_TABLE_ITEM:
 if (TextUtils.isEmpty(selection)) {
 selection = PersonalContactContract.Columns.TABLE_ROW_ID
 + "=" + uri.getLastPathSegment();
 } else {
 selection = PersonalContactContract.Columns.TABLE_ROW_ID
+ "=" + uri.getLastPathSegment()
+ " and " + selection;
 }
 break;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }

 int count = dbm.updateRow(values, selection, selectionArgs);

 return count;
}

Deleting records through the delete() method
The delete() method is very similar to the update() method and the process of
using it is similar; here, the call is made to delete a row instead of updating it. The
delete() method returns the number of rows deleted. Based on the selection clause,
one or more rows can be deleted:

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

 int uriType = mmURIMatcher.match(uri);

 switch(uriType) {
 case CONTACTS_TABLE:
 break;
 case CONTACTS_TABLE_ITEM:
 if (TextUtils.isEmpty(selection)) {
 selection = PersonalContactContract.Columns.TABLE_ROW_ID
 + "=" + uri.getLastPathSegment();
 } else {

Chapter 3

[63]

 selection = PersonalContactContract.Columns.TABLE_ROW_ID
 + "=" + uri.getLastPathSegment()
 + " and " + selection;
 }
 break;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }

 int count = dbm.deleteRow(selection, selectionArgs);

 return count;
}

Getting the return type of data through
the getType() method
The signature of this simple method takes a URI and returns a string value; every
content provider must return the content type for its supported URIs. A very
interesting fact is that no permissions are needed for an application to access this
information; if our content provider requires permissions, or is not exported, all
the applications can still call this method regardless of their access permissions to
retrieve MIME types.

All these MIME types should be declared in the contract class:

@Override
public String getType(Uri uri) {

 int uriType = mmURIMatcher.match(uri);
 switch(uriType) {
 case CONTACTS_TABLE:
 return PersonalContactContract.CONTENT_TYPE;
 case CONTACTS_TABLE_ITEM:
 return PersonalContactContract.CONTENT_ITEM_TYPE;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }

}

Sharing is Caring

[64]

Adding a provider to a manifest
Another important step is to add our content provider to a manifest, like we do with
other Android components. We can register multiple providers here. The important
bit here, other than android:authorities, is android:exported; it defines whether
the content provider is available for other applications to use. In case of true, the
provider is available to other applications; if it is false, the provider is not available
to other applications. If applications have the same user ID (UID) as the provider,
they will have access to it:

<provider
 android:name="com.personalcontactmanager.provider.
PersonalContactProvider"
 android:authorities="com.personalcontactmanager.provider"
 android:exported="true"
 android:grantUriPermissions="true" >
 </provider>

Another important concept is permissions. We can add additional security by
adding read and write permissions, which the other application has to add in their
manifest XML file and, in turn, automatically inform a user that they are going to use
a particular application's content provider either to read, write, or both. We can add
permissions in the following manner:

android:readPermission="com.personalcontactmanager.provider.READ"

Using a content provider
The main reason we built a content provider was to allow other applications to
access the complex data store in our database and perform CRUD operations.
We will now build one more application in order to test our newly built content
provider. The test application is very simple, comprising of only one activity class
and one layout file. It has standard buttons to perform actions. Nothing fancy, just
the tools for us to test the functionality we just implemented. We will now delve into
the TestMainActivity class and look into its implementation:

public class TestMainActivity extends Activity {

public final String AUTHORITY = "com.personalcontactmanager.provider";
public final String BASE_PATH = "contacts";
private TextViewqueryT, insertT;

public class Columns {

Chapter 3

[65]

 public final static String TABLE_ROW_ID = "_id";
 public final static String TABLE_ROW_NAME = "contact_name";
 public final static String TABLE_ROW_PHONENUM =

"contact_number";
 public final static String TABLE_ROW_EMAIL = "contact_email";
 public final static String TABLE_ROW_PHOTOID = "photo_id";
 }

To access a content provider, we need details such as AUTHORITY and BASE_PATH
and the names of the columns of database tables; we need to access the public class
Columns for this purpose. We have more tables and we will see more of these classes.
Generally, all this necessary information will be taken from the published contract
class of the content provider. Some content providers also require implementing read
or write permissions in the manifest:

<uses-permissionandroid:name="AUTHORITY.permission.WRITE_TASKS"/>

In some cases, the content provider we need to access can ask us to add permissions
in our manifest. When the users install the application, they will see an added
permission in their permission list:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_test_main);
 queryT = (TextView) findViewById(R.id.textQuery);
 insertT = (TextView) findViewById(R.id.textInsert);
 }

To try out some other app's content provider, refer to
http://goo.gl/NEX2hN.
It lists how you can use the Any.do's content provider—a
very famous task application.

We will set our layout and initialize the views we require in onCreate() of activity.
To query, we first need to prepare the URI object that matches the table.

Content resolver now comes into play; it acts as a resolver for the content URI we
prepared. Our getContentResolver.query() method, in this case, will fetch all the
columns and rows. We will now move the cursor to the first position in order to read
the result. For testing purposes, it's read as a string:

public void query(View v) {

Sharing is Caring

[66]

 Uri contentUri = Uri.parse("content://" + AUTHORITY
 + "/" + BASE_PATH);

 Cursor cr = getContentResolver().query(contentUri, null,
 null, null, null);

 if (cr != null) {
 if (cr.getCount() > 0) {
 cr.moveToFirst();
 String name = cr.getString(cr.getColumnIndexOrThrow(
Columns.TABLE_ROW_NAME));
 queryT.setText(name);
 }
 }

}

Now, we build a URI to read a particular row instead of a complete table. We already
mentioned that to make URI ID-based, we need to add the ID part to our existing
contenturi. Now, we build our projection string array to be passed as a parameter
in our query() method:

public void query(View v) {

 ...
 ...

 Uri rowUri = contentUri = ContentUris.withAppendedId
 (contentUri, getFirstRowId());

 String[] projection = new String[] {
 Columns.TABLE_ROW_NAME, Columns.TABLE_ROW_PHONENUM,
 Columns.TABLE_ROW_EMAIL, Columns.TABLE_ROW_PHOTOID };

 cr = getContentResolver().query(contentUri, projection,
 null, null, null);

 if (cr != null) {
 if (cr.getCount() > 0) {
 cr.moveToFirst();
 String name = cr.getString(cr.getColumnIndexOrThrow(
 Columns.TABLE_ROW_NAME));

Chapter 3

[67]

 queryT.setText(name);

 }
 }

}

The getFirstRowId() method gets the ID of the first row in the table. It is done
because the ID of the first row will not always be 1. It changes when the rows are
deleted. If the first item in the table with row ID 1 is deleted, then the second item
with row ID 1 becomes the first item:

private int getFirstRowId() {

 int id = 1;
 Uri contentUri = Uri.parse("content://" + AUTHORITY + "/"
 + "contacts");
 Cursor cr = getContentResolver().query(contentUri, null,
 null, null, null);
 if (cr != null) {
 if (cr.getCount() > 0) {
 cr.moveToFirst();
 id = cr.getInt(cr.getColumnIndexOrThrow(
 Columns.TABLE_ROW_ID));
 }
 }
return id;

}

Let's take a closer look at the query() method:

public final Cursor query (Uri uri, String[] projection, String
selection, String[] selectionArgs, String sortOrder)

Present in API level 1, the query() method returns a cursor over the result set
against the parameters we supplied. The following are the parameters of the
preceding code:

•	 uri: This is contentURI in our case, using the content:// scheme for the
content to be retrieved. It can be ID-based or directory-based.

•	 projection: This is a list of the columns to be returned as we have prepared
using the column names. Passing null will return all the columns.

•	 selection: Formatted as a SQL WHERE clause, excluding the WHERE itself,
this acts as a filter declaring which rows to return.

Sharing is Caring

[68]

•	 selectionArgs: We may include ? parameter markers in selection. Android
SQL query builder will replace the ? parameter markers by the values bound
as string from selectionArgs, in the order that they appear in the selection.

•	 sortOrder: This tells us how to order the rows, formatted as an SQL ORDER
BY clause. A null value will use the default sort order.

According to official documentation, there are a few guidelines we
should follow for optimum performance:

•	 Provide an explicit projection to prevent reading data from
storage that isn't going to be used.

•	 Use question mark parameter markers such as phone=?
instead of explicit values in the selection parameter, so that
queries that differ only by those values will be recognized as
the same for caching purposes.

The same process we used earlier to check for null values and an empty cursor is
performed, and finally, a required value is extracted from the cursor.

Now, let us look at the insert method for our test application.

We start by building our content value object and relevant key-value pairs, for
instance, putting a phone number in the relevant Columns.TABLE_ROW_PHONENUM
field. Notice that because details such as a column's name were shared with us in
the form of a class, we need not worry about details such as the actual column name.
We just need to access it via means of the Columns class. This ensures that we only
need to update the relevant values. If in future the content provider undergoes some
change and changes the table names, the rest of the functionality and implementation
remains the same. We build our projection string array with the column names we
required, as we did earlier in the case of querying the content provider for data.

We also build our content URI; notice that it matches the table and not individual
rows. The insert() method also returns a URI unlike the query() method, which
returned a cursor over the result set:

public void insert(View v) {

 String name = getRandomName();
 String number = getRandomNumber();

 ContentValues values = new ContentValues();
 values.put(Columns.TABLE_ROW_NAME, name);
 values.put(Columns.TABLE_ROW_PHONENUM, number);
 values.put(Columns.TABLE_ROW_EMAIL, name + "@gmail.com");
 values.put(Columns.TABLE_ROW_PHOTOID, "abc");

Chapter 3

[69]

 String[] projection = new String[] {
 Columns.TABLE_ROW_NAME, Columns.TABLE_ROW_PHONENUM,
 Columns.TABLE_ROW_EMAIL, Columns.TABLE_ROW_PHOTOID };

 Uri contentUri = Uri.parse("content://" + AUTHORITY + "/"
 + BASE_PATH);

 Uri insertedRowUri = getContentResolver().insert(
 contentUri, values);

 //checking the added row
 Cursor cr = getContentResolver().query(insertedRowUri,
 projection, null, null, null);

 if (cr != null) {
 if (cr.getCount() > 0) {
 cr.moveToFirst();
 name = cr.getString(cr.getColumnIndexOrThrow(
 Columns.TABLE_ROW_NAME));
 insertT.setText(name);
 }
 }

}

The getRandomName() and getRandomNumber() methods generate a random name
and number to insert in the table:

private String getRandomName() {

 Random rand = new Random();
 String name = "" + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26))
 + (char) (122-rand.nextInt(26)) ;

 return name;
}

public String getRandomNumber() {

Sharing is Caring

[70]

 Random rand = new Random();
 String number = rand.nextInt(98989)*rand.nextInt(59595)+"";

 return number;
}

Let's take a closer look at the insert() method:

public final Uri insert (Uri url, ContentValues values)

The following are the parameters of the preceding line of code:

•	 url: The URL of the table to insert the data into
•	 values: The values for the newly inserted row in the form of a

ContentValues object, the key is the column name for the field

Notice that after inserting, we are running the query() method again with the
URI that was returned by the insert() method. We run this to see that the value
we intended to insert has been inserted; this query will return columns as per the
projection of the row whose ID is appended.

So far, we have covered the query() and insert() methods; now, we will cover the
update() method.

We progressed in the insert() method by preparing the ContentValues object.
Similarly, we will prepare an object that we will use in the update() method of
ContentResolver to update an existing row. We will build our URI in this case up to
the ID, as this operation is ID based. Update the row as pointed by the rowUri object
and it will return the number of rows updated, which will be the same as the URI;
in this case, it is rowUri that points to only a single row. An alternate method could
be using a combination of contentUri (which points to the table) and selection/
selectionArgs. In this case, the rows updated could be more than one as per the
selection clause:

public void update(View v) {

 String name = getRandomName();
 String number = getRandomNumber();

 ContentValues values = new ContentValues();
 values.put(Columns.TABLE_ROW_NAME, name);
 values.put(Columns.TABLE_ROW_PHONENUM, number);
 values.put(Columns.TABLE_ROW_EMAIL, name + "@gmail.com");
 values.put(Columns.TABLE_ROW_PHOTOID, " ");

 Uri contentUri = Uri.parse("content://" + AUTHORITY
 + "/" + BASE_PATH);

Chapter 3

[71]

 Uri rowUri = ContentUris.withAppendedId(
 contentUri, getFirstRowId());
 int count = getContentResolver().update(rowUri, values, null, null);

}

Let's take a closer look at the update() method:

public final int update (Uri uri, ContentValues values, String where,
String[] selectionArgs)

The following are the parameters of the preceding line of code:

•	 uri: This is the content URI we wish to modify
•	 values: This is similar to the values we used earlier with other methods;

passing a null value will remove an existing field value
•	 where: A SQL WHERE clause that acts as a filter to rows before updating them

We can run the query() method again to see whether the change is reflected; this
activity has been left as an exercise for you.

The last method is delete(), which we require in order to complete our arsenal
of CRUD methods. The delete() method begins in a similar fashion as the rest of
the methods do; first, prepare our content URI at the directory level and then build
it for the ID level, that is, at the individual row level. After that, we pass it to the
delete() method of ContentResolver. Unlike the query() and insert() methods
that return an integer value, the delete() method deletes a row as pointed by our
ID-based content URI object rowUri and returns the number of rows deleted. This
will be 1 in our case as our URI points to only one row. An alternate method could
be using a combination of contentUri, which points to the table, and selection/
selectionArgs. In this case, the rows deleted could be more than 1 as per the
selection clause:

public void delete(View v) {

 Uri contentUri = Uri.parse("content://" + AUTHORITY
 + "/" + BASE_PATH);
 Uri rowUri = contentUri = ContentUris.withAppendedId(
 contentUri, getFirstRowId());
 int count = getContentResolver().delete(rowUri, null,
 null);
}

Sharing is Caring

[72]

The UI and output look like the following:

If you want to dive in a little more into how an Android content
provider actually manages various write and read calls between
various tables (hint: it uses CountDownLatch), you can check out the
video at Coursera by Dr. Douglas C. Schmidt for more information.
The video can be found at https://class.coursera.org/posa-
002/lecture/49.

Summary
In this chapter, we covered the basics of content providers. We learned how to access
system-provided content providers and even our own version of a content provider.
We went from creating a basic contact manager to evolving it into a fully-fledged
citizen of the Android ecosystem by implementing ContentProvider in order to
share data across other applications.

In the following chapter, we will cover Loaders, CursorAdapters, nifty hacks and
tips, and some open source libraries to make our life easier while working with the
SQLite database.

Thread Carefully
"Premature optimization is the root of all evil."

 -Donald Knuth

We covered a very important concept in the previous chapter: content provider.
We progressed in a step-by-step manner, covering essential questions such as how
to create a content provider and how to use an existing system with a content
provider in detail. We also covered how to use the content provider we created
by means of creating a test application to access it.

In this chapter, we will explore how to use loaders, in particular, a loader
called cursor loader. We will look at how to interact with a content provider
asynchronously with the help of an example. We will discuss the important topic
of security in the Android database and how we can ensure that data is secured
in an Android model. Last but not least, we will also see some code snippets that
will cover topics such as how to upgrade a database and how to ship a preloaded
database with our application.

In this chapter, we will cover the following topics:

•	 Loading data with CursorLoader

•	 Data security
•	 General tips and libraries

Loading data with CursorLoader
CursorLoader is part of the loader family. Before we dive deep into an example
explaining how to use CursorLoader, we will explore a bit about loaders and
why it is important in the current scenario.

Thread Carefully

[74]

Loaders
Introduced in HoneyComb (API level 11), loaders serve the purpose of asynchronously
serving data in an activity or fragment. The need to have loaders arose from many
things: calls to various time-consuming methods on the main UI thread in order to
fetch data that leads to a clunky UI, and even in some cases, the dreaded ANR box.
This is demonstrated in the following screenshot:

For example, the managedQuery() method, which was deprecated in API 11,
was a wrapper around the ContentResolver'squery() method.

In the previous chapter, while highlighting how to fetch data from a content
provider inside the query method, we used getContentResolver.query() instead
of managedQuery(). Using deprecated methods can lead to problems with future
releases and should be avoided.

Loaders provide asynchronous loading of data for an activity of fragment on a
non-UI thread. The loader or the subclasses of a loader perform their work in a
separate thread and deliver their results to the main thread. The segregation of
calls from the main thread and the posting of results on the main thread while
working in a separate thread ensure that we have a responsive application.

Post the loader era, we were faced with problems such as when an
activity should be recreated due to a configuration change, for instance,
rotation of a device's orientation. We had to worry about data and
refetch data while creating a new instance. But with loaders, we don't
have to worry about all these as loaders automatically reconnect to the
last loader's cursor when being recreated after a device configuration
change and refetch the data. As an added bonus, loaders monitor the
data source and deliver new results when the content changes. In
other words, loaders automatically get updated, and hence, there is no
need to requery the cursor. Read more about keeping your Android
application responsive and avoiding application not responding (ANR)
messages at the Android developer website, http://developer.
android.com/training/articles/perf-anr.html.

Chapter 4

[75]

Loader API's summary
Let's look at the loader API that consists of various classes and interfaces. In this
section, we will look at the implementation aspect of loader API's classes/interfaces:

Class/interface Description
LoaderManager This is an abstract class associated with

an activity or fragment to manage a
loader. Although there can be one or more
loader instances, only one instance of
LoaderManager per activity or fragment
is permitted. It is responsible for dealing
with the activity or fragment's life cycle and
particularly helpful when running long-
running tasks.

LoaderManager.LoaderCallbacks This is a callback interface we
must implement to interact with
LoaderManager.

Loader This is the base class for a loader. It's an
abstract class that performs asynchronous
loading of data. We can implement our own
subclass instead of using subclasses such as
CursorLoader.

AsyncTaskLoader This is an abstract loader that provides
AsyncTask to perform the work in the
background, that is, on a separate thread;
however, the result is delivered on the main
thread. According to the documentation, it
is advised to subclass AsyncTaskLoader
instead of directly subclassing the Loader
class.

CursorLoader This is a subclass of AsyncTaskLoader
that queries ContentResolver on the
background thread in a non-blocking
manner and returns a cursor.

Using CursorLoader
Loaders provide us with a lot of handy features; one of them is that once our activity
or fragment implements a loader, it need not worry about refreshing the data. A
loader monitors the data source for us, reflects any changes, and even performs
new loads; all of this is done asynchronously. Hence, we do not need to take care of
implementing and managing threads, offloading queries on the background thread,
and retrieving results once the query is completed.

Thread Carefully

[76]

A loader can be in any one of the following three distinct states:

•	 Started state: Once started, loaders remain in this state until stopped or reset.
It executes loads, monitors any change, and reflects the same to the listeners.

•	 Stopped state: Here, loaders continue to monitor changes but do not pass the
result to the clients.

•	 Reset state: In this state, loaders release any resources they have held and do
not perform the process of executing, loading, or monitoring data.

We will now relook at our personal contact manager application and make
the corresponding changes to implement CursorLoader in our application.
CursorLoader, as the name suggests, is a loader that queries ContentResolver
and returns a cursor. This is a subclass of AsyncTaskLoader and performs the cursor
query on the background thread so that it does not block the application's UI. In
the diagram, you can see the various methods of a loader callback and how they
communicate with CursorLoader and CursorAdapter.

For implementing a cursor loader, we need to perform the following steps:

1.	 To begin with, we need to implement the LoaderManager.
LoaderCallbacks<Cursor> interface:

public class ContactsMainActivity extends Activity implements
OnClickListener, LoaderManager.LoaderCallbacks<Cursor> {…}

Then, implement the methods that reflect the distinct states of a loader:
onCreateLoader(), onLoadFinished(), and onLoaderReset().

Chapter 4

[77]

2.	 To initiate a query, we will make a call to the LoaderManager.initLoader()
method; this initializes the background framework:
getLoaderManager().initLoader(CUR_LOADER, null, this);

The CUR_LOADER value is passed on to the onCreateLoader() method,
which acts as an ID for the loader. A call to initloader() invokes
onCreateLoader(), passing the ID we used to call initloader():

@Override
public Loader<Cursor> onCreateLoader(int loaderID,
Bundle bundle)
{
 switch (loaderID) {
 case CUR_LOADER:
 return new CursorLoader(this, PersonalContactContract.CONTENT_
URI,
 PersonalContactContract.PROJECTION_ALL, null, null, null);
 default: return null;
 }
}

3.	 We use a switch case to take the loader based on its ID and return null
for an invalid ID. We create a URI object contentUri and pass it as a
parameter to the CursorLoader constructor. A point to note is that we
can implement a cursor loader using either this constructor or an empty
unspecified cursor loader, CursorLoader(Context context). Also, we
can set values via methods such as setUri(Uri), setSelection(String),
setSelectionArgs(String[]), setSortOrder(String), and
setProjection(String[]):
public CursorLoader (Context context, Uri uri, String[] projection,
String selection, String[] selectionArgs, String sortOrder)

The following are the parameters of the previous code:
°° context: This is the parent activity context.
°° uri: We employ contentURI, using the content:// scheme,

to retrieve the content. It can be based on an ID or directory.
°° projection: This is a list of columns to be returned as we are prepared

with the column names. Passing null will return all the columns.
°° selection: This is formatted as a SQL WHERE clause, excluding the

WHERE itself, acting as a filter declaring which rows to return.

Thread Carefully

[78]

°° selectionArgs: We may include question marks in the selection,
which will be replaced by the values bound as a string from
selectionArgs, and they will appear in the order of their selection.

°° sortOrder: This tells us how to order rows, formatted as a SQL
ORDER BY clause. A null value will use the default sort order.

4.	 onCreateLoader starts the query in the background, and when the query is
finished, the cursor loader object is passed to the background's framework,
which calls onLoadFinished(), where we provide our adapter instance with
the cursor object data:
@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor data)
{
 this.mAdapter.changeCursor(data);
}

5.	 The adapter is a subclass of CursorAdapter. Instead of the traditional
getView() method, which we get by extending BaseAdapter, we have the
bindView() and newView() methods. We inflate our listview row layout in
the view object in newView, and in bind view, we perform an action similar
to the getView() method. We define our layout elements and associate
theme with the relevant data:

public class CustomCursorAdapter extends CursorAdapter
{
 ...
 public void bindView(View view, Context arg1, Cursor cursor)
 {
 finalImageView contact_photo = (ImageView) view
 .findViewById(R.id.contact_photo);
 ...
 ...
 contact_email.setText(cursor.getString(cursor
 .getColumnIndexOrThrow(DatabaseConstants.TABLE_ROW_
EMAIL)));
 setImage(cursor.getBlob(cursor
 .getColumnIndex(DatabaseConstants.TABLE_ROW_PHOTOID)),
 contact_photo);
 }

 @Override
 public View newView(Context arg0, Cursor arg1, ViewGroup arg2)
 {
 final View view = LayoutInflater.from(context).inflate(

Chapter 4

[79]

 R.layout.contact_list_row, null, false);
 return view;
 }
...
}

6.	 This method is invoked when the cursor loader is being reset. We clear out
any reference to the cursor by passing null to the changeCursor() method.
Whenever the data associated with a cursor changes, the cursor loader calls
this method before it reruns the query to clear any past references, thereby
preventing memory leaks. Once onLoaderReset() is set, the cursor loader
will rerun its query:
@Override
public void onLoaderReset(Loader<Cursor> loader)
{
 this.mAdapter.changeCursor(null);

 }

7.	 Now we move on to our content provider where we have to make small
changes to ensure that any changes we make to the database are reflected
in our application's list view:
cr.setNotificationUri(getContext().getContentResolver(),uri);

8.	 We need to register observer in ContentResolver through the cursor in the
query method of ContentProvider. We do this to watch the content URI for
any changes, which can be the URI of a specific data row or table in our case:
getContext().getContentResolver().notifyChange(ur,null);

9.	 In the insert() method, we use the notifyChange() method to inform
registered observers that a row was updated. By default, the CursorAdapter
objects will get this notification. So, now when we add a new row of data
by inserting a new contact in our application, the insert() method of
contentProvider is invoked via a call:
resolver.insert(PersonalContactContract.CONTENT_URI,
prepareData(contact));

10.	 A similar action needs to be performed for the delete() and update()
methods, both of which have been left as an exercise for the reader as most
of the boilerplate code is present. Implementing a loader is simple and saves
us from a lot of headache when it comes to threading, and a jarring UI is
highly recommended to perform this task.

Thread Carefully

[80]

loadInBackground() is another important method; this returns
a cursor instance for a load operation and is called on the worker
thread. Ideally, loadInBackground()should not directly return
the result of the load operation, but we can achieve this by overriding
the deliverResult(D) method. To cancel, we need to check the
value of isLoadInBackgroundCanceled() as we do in the case of
AsyncTask, where we check isCancelled()periodically.

Data security
Security is the latest buzzword in town. The Android ecosystem ensures that our
database is exposed to prying eyes; however, a rooted device can leave our database
exposed, as we saw in Chapter 2, Connecting the Dots. With the help of a rooted
device, an emulator and the adb pull command in our case, we pulled our database
for inspection with the SQLite manager tool. Another important aspect is content
providers; we need to be careful while setting permissions. We should make the
process of applying appropriate permissions compulsory in order to inform users
about the control that an app establishes over data, using the contract class.

ContentProvider and permissions
In Chapter 3, Sharing is Caring, we briefly covered the topic of permissions in the
Adding a provider to a manifest section. Let's elaborate a little more on this:

1.	 As mentioned earlier, while adding the content provider to the manifest,
we will also add our custom permissions. This will ensure two things,
namely, stop an unauthorized action in an application and inform the
users about permissions:
<provider
android:name="com.personalcontactmanager.provider.
PersonalContactProvider"
android:authorities="com.personalcontactmanager.provider"
android:readPermission="com.personalcontactmanager.provider.read"
android:exported="true"
android:grantUriPermissions="true"
>

2.	 Additionally, we will add the permissions tag to the manifest to indicate the
set of permissions that other applications will require:
<permission
android:name="com.personalcontactmanager.provider.read"
android:icon="@drawable/ic_launcher"

Chapter 4

[81]

android:label="Contact Manager"
android:protectionLevel="normal" >
</permission>

3.	 Now, in the application in which we want to access the content provider we
use the permission tag, in our case, Ch4-TestApp in code bundle:

<uses-permission android:name="com.personalcontactmanager.
provider.read" />

When users install this application, they will get our custom permission
message along with other permissions required by the application. For this
step, instead of directly running the application from Eclipse, export an apk
and install it:

If you have not defined the permission in the application and if the application tries
to access the content provider, it will get the SecurityException: Permission
Denial message.

If the content provider we created is not meant to be shared, we will need to change
the android:exported="true" property to false. This will make our content
provider secure, and if someone tries to run a malicious query on it, they will
encounter a security exception.

Thread Carefully

[82]

If we want to share data only between our applications, Android provides a solution;
we can use android:protectionLevel and set the permission to signature instead
of normal. For this, both the apps, the one that implements the content provider
and the one that wants to access it, have to be signed by the same key while they
are exported. This is because a bonus signature permission does not require user
confirmation. This does not confuse the user as it is done internally and also does
not obstruct the user experience.

Encrypting critical data
We have already discussed what kind of access rights other applications have on
our database and how to efficiently share our content providers, and we also briefly
discussed why we should not believe that the system is foolproof. In the most
foolproof method, sensitive data will not be kept on the device but on the server
instead, and it will use tokens to give access. If you have to store the data on the
device's database, use encryption. Use a user-defined key to encrypt and decrypt
sensitive data.

We will explore a way to use an encrypted database, which will not be readable if
someone is able to extract it via means of a root or via exploiting backups. If someone
tries to read it using SQLite Manager or some other tool, they will receive a friendly
message, such as the one shown in the following screenshot; this is the database file
that we will create in a moment with a library known as SQLCipher.

SQLCipher is an open source extension to SQLite that provides a transparent 256-bit
AES encryption of database files, as mentioned on their website. It is very easy to
deploy SQLCipher. Now we'll look at the steps to build a sample application:

1.	 First, we will download the necessary files from http://sqlcipher.net/
open-source. Here, they have listed a community edition of the Android-
based SQLCipher; download it.

2.	 Now we will create a new Android project in our eclipse environment.

Chapter 4

[83]

3.	 Inside the downloaded folder, we will find the libs folder; inside it, are a
set of jars that we will need to work with SQLCipher. We will also notice
that folders are named as armeabi, armeabi-v7a, and x86, and all of these
contain the .so files. If you are familiar with Android NDK, this will not
seem new. The .so file is a shared object file, which is a component of
dynamic libraries. For different architectures, we require different .so files,
hence the three folders. If you are running an x86 emulator, you will need
the x86 folder in your libs folder. For simplicity, we will copy all the folders
to the libs folder. Copy the asset folder's content into our project's asset
folder and navigate to the project's properties. It will look something like
the following screenshot. You can also see these JAR files in the project's
class path. The initial setup for this project is now complete.

After completing the necessary setup part, let's move to writing code to make
a small test application:
public class MainActivity extends Activity
{
 TextView showResult;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 showResult = (TextView) findViewById(R.id.showResult);
 InitializeSQLCipher();
 }

 private void InitializeSQLCipher()

Thread Carefully

[84]

 {
SQLiteDatabase.loadLibs(this);
 File databaseFile = getDatabasePath("test.db");
 databaseFile.mkdirs();
 databaseFile.delete();
 SQLiteDatabase database = SQLiteDatabase
 .openOrCreateDatabase(databaseFile, "test123", null);
 database.execSQL("create table t1(a, b)");
 database.execSQL("insert into t1(a, b) values(?, ?)",
 new Object[] {"I am ", "Encrypted" });
 }

 public void runQuery(View v)
 {
 File databaseFile = getDatabasePath("test.db");
 SQLiteDatabase database = SQLiteDatabase.openOrCreateDatabase(
 databaseFile, "test123", null);
 String selection = "select * from t1";
 Cursor c = database.rawQuery(selection, null);
 c.moveToFirst();
 showResult.setText(c.getString(c.getColumnIndex("a")) +
c.getString(c.getColumnIndex("b")));
 }
}

The preceding code has two main methods: InitializeSQLCipher() and
runQuery(). Inside InitializeSQLCipher(), we load our .so library files
by invoking the loadLibs() method.

4.	 Now we find the absolute path to the database and create a missing parent
folder if any. With openOrCreateDatabase(), we will make a call to open an
existing database or create one if the database is nonexistent. We will execute
standard database calls to create a table with columns a and b and insert
values in a row.
Now we will perform a simple query to fetch the values back to the
runQuery() method. You will notice that apart from loading the library,
all the core methods we used are pretty much standard, so where is the
major change? Go to the Ch4-PersonalContactManager example in the
code bundle and notice the packages we have used:
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;

We have SQLCipher packages:

Chapter 4

[85]

import net.sqlcipher.Cursor;
import net.sqlcipher.database.SQLiteDatabase;

The implementation is simple, familiar, and easy to implement. If you pull the
database out and try to read it, you will find the error message, as we displayed earlier
in a screenshot. The user will find no change, and even our app's logic remains the
same. In the screenshot, you can see the application screen we just built which encrypts
the database:

OAuth is an open standard for authorization. It provides client
applications with a secure delegated access to server resources on behalf
of a resource owner. It specifies a process for resource owners to
authorize third-party access to their server resources without sharing
their credentials, as explained in Wikipedia; read more about OAuth at
http://oauth.net/2/.

General tips and libraries
We will cover some general and not so general workarounds and practices, which can
be put to good use depending on the situation. For instance, in some cases, we need
to have a prepopulated database of values that we will make use of in our Android
application or upgrading a database, which seems trivial but can break our application.

Thread Carefully

[86]

Upgrading a database
In Chapter 2, Connecting the Dots, we used onUpgrade() to show how a database
is updated. If we go back to the example, you will notice that it executes a Drop
Table command. What will happen here is that the original table will be dropped
and a new table will be created by the call, onCreate(). This will lead to a loss of
the existing data and hence is not suitable if we need to alter our database. The
onUpgrade() function can be defined as follows:

public void onUpgrade(SQLiteDatabase db, int oldVersion,int
newVersion)
{
 String DROP_TABLE = "DROP TABLE IF EXISTS " + TABLE_NAME;
 db.execSQL(DROP_TABLE);
 onCreate(db);
}

One more challenge is to identify the version we are using here. The user might be
running older versions of the application, so we have to keep in mind the different
versions that an application has and whether those versions would bring about any
changes in the database. For a new user, we need not worry because if the database
does not exist, onCreate() will be called.

To make sure we have a proper upgrade, we will use the DB_VERSION constant in our
CustomSQLiteOpenHelper class to tell our onUpgrade() method about the action to
be taken:

private static final int DB_VERSION = 1;

We will change the DB_VERSION constant to 3 to reflect the upgrade:

private static final int DB_VERSION = 3;

The constructor will take care of the rest:

public CustomSQLiteOpenHelper(Context context)
{
 super(context, DB_NAME, null, DB_VERSION);
}

When the super class constructor is run, it compares the DB_VERSION constant of the
stored SQLite .db file against the DB_VERSION we passed as a parameter and calls the
onUpgrade() method if needed:

public void onUpgrade(SQLiteDatabase db, int oldVersion,int
newVersion)

Chapter 4

[87]

{
switch(oldVersion) {
 case 1: db.execSQL(DATABASE_CREATE_MAIN_TABLE);
 case 2: db.execSQL(DATABASE_CREATE_MAIN_TABLE);
 case 3: db.execSQL(DATABASE_CREATE_DEL_TABLE);
 }
}

Inside our onUpgrade() method, we have a switch case to make changes. Notice
that we do not use the break statement because the user can be on an older version
and may not have updated the application, as explained earlier. For instance, let's
consider that a user is on a particular version of an application that is running DB_
VERSION =1 and he or she skips the next update that contained DB_VERSION =2, and
eventually, a new version of the application with DB_VERSION =3 is released. Now,
we have a case where the user is still using an older version of the application and
has not installed the new updates we have released. So, in this case, when the user
installs the application, the onUpgrade() method will first execute case 1 and then
go to case 2 to install updates that the user missed; finally, the user will install the
updates of the third version, ensuring that all the database changes are reflected.
Notice that there is no break statement. This is because we want to run all the cases
where the switch statement obtains the value 1 and the last two statements where
the switch case obtains the value 2.

Alternatively, we can also use the if statement. This will also behave as we intended
as our test DB_VERSION constant was 1, which will satisfy both the conditions and
reflect the changes:

if (oldVersion<2) {db.execSQL(DATABASE_CREATE_MORE_TABLE); }
if (oldVersion<3) {db.execSQL(DATABASE_CREATE_DEL_TABLE); }

Database minus SQL statements
In most parts of the book, we looked around for nooks and corners of Android and
SQLite. For some, writing SQL statements would be just another day in the office,
while for some, it will come across as a roller-coaster ride. This section will cover a
library that enables us to save and retrieve SQLite database records without writing
a single SQL statement. ActiveAndroid is an active record-style SQLite persistence
for Android. According to the documentation, each database record is wrapped
neatly into a class with methods such as save() and delete(). We will be using the
example in the ActiveAndroid documentation and build a working sample based on
it. Let's look at the steps required to get it up and running.

Have a look at the official site, http://www.activeandroid.com/, for an overview
and download the files from http://goo.gl/oW2kod.

Thread Carefully

[88]

Once you download the file, run ant on the root folder to build the JAR file. Once
you run ant, you will find your JAR file in the dist folder. In Eclipse, make a new
project, add the JAR file to the libs folder of the project, and then add the JAR file
to the Java Build Path in the project properties.

ActiveAndroid looks out for some global settings configured by performing the
following steps:

1.	 We will start by creating a class, extending the application class:
public class MyApplication extends com.activeandroid.app.
Application
{
 @Override
public void onCreate()
{
 super.onCreate();
 ActiveAndroid.initialize(this);
 }

 @Override
public void onTerminate()
{
 super.onTerminate();
 ActiveAndroid.dispose();
 }

}

2.	 Now we will add this application class to our manifest file and add metadata
corresponding to our application:
<application
 android:name="com.active.android.MyApplication">
 <meta-data
 android:name="AA_DB_NAME"
 android:value="test.db" />
 <meta-data
 android:name="AA_DB_VERSION"
 android:value="1" />
………..
</application>

3.	 With this basic setup complete, we will now proceed on to creating our data
model. The ActiveAndroid library supports annotation and we will use it in
the following model classes:

Chapter 4

[89]

// Category class

@Table(name = "Categories")
public class Category extends Model
{
@Column(name = "Name")
public String name;
}

// Item class

@Table(name = "Items")
public class Item extends Model
{
 // If name is omitted, then the field name is used.
@Column(name = "Name")
public String name;

@Column(name = "Category")
public Category category;

public Item()
{
 super();
 }

 public Item(String name, Category category)
 {
 super();
 this.name = name;
 this.category = category;
 }
 }

If you want to explore annotations and use them in your project
and reduce boilerplate code, you can check out the following
libraries for Android: Android Annotations, Square's Dagger,
and ButterKnife.

Thread Carefully

[90]

4.	 To add a new category or item, we need to make a call to save(). In the
code segment, we can see that an item object is created and associated with
a particular category, and in the end, save() is called:

public void insert(View v)
{
 Item testItem = new Item();
 testItem.category = testCategory;
 testItem.name = editTextItem.getText().toString();
 testItem.save();
}

To delete an item, we can call item.delete(). Similarly, to fetch values, we
have relevant methods as well. The following is a call to fetch all of the data
for a particular category:

 List<Item>getall = new Select().from(Item.class)
 .where("Category = ?", testCategory.getId())
 .orderBy("Name ASC").execute();

There is lot more to be explored in ActiveAndroid. They have schema migration
and type serialization; in addition to this, you can ship a prepopulated database by
placing the database in the asset folder, and you can use content providers as well.
In short, it is a well-built library for people looking for indirect ways to communicate
with the database and perform database operations. It helps in accessing the
database in the familiar form of Java methods instead of preparing SQL statements
to perform the same action. The complete sample code is bundled in the chapter 4
code bundle.

Shipping with a prepopulated database
We will build a database and put it inside our asset folder, which is a read-only
directory. At runtime, we will check whether a database exists. If not, we will copy
our database from the asset folder to /data/data/yourpackage/databases. In
Chapter 2, Connecting the Dots, we used a tool called SQLite Manager; have a look at
the third screenshot of the chapter. We are going to use the same tool to build our
database now. If you pull your database as explained in that section or look at that
screenshot, you will notice a few more tables along with your database table:

Chapter 4

[91]

The steps to be followed to create a prepopulated database are as follows:

1.	 To make a prepopulated database, we need to create a table named
android_metadata apart from the table we require. Using the SQLite
Manager tool, we will create a new database named contact, then we
will create the android_metdata table:
CREATE TABLE "android_metadata"("locale" TEXT DEFAULT 'en_US')

2.	 We will insert a row in the table:
INSERT INTO "android_metadata" VALUES ('en_US')

3.	 Now we will create the tables we require, in our case, contact_table
using the SQL query we used in Chapter 2, Connecting the Dots. In the
DatabaseManager class, we will just replace the constants with the
actual values:
CREATE TABLE "contact_table" ("_id" integer primary key
autoincrement not null,"contact_name" text not null,"contact_
number" text not null,"contact_email" text not null,"photo_id"
BLOB)

It is necessary to rename the primary ID field of our tables to _id if it is not
already defined. This helps Android in identifying where to bind the ID
field of our tables.

4.	 Let us fill a few rows of data. We can do this by running the Insert query
or manually typing in the values using the tool. Now, copy the database
file into the asset folder.

5.	 Now, in our original personal contact manager, we will modify our
DatabaseManager class. The good part is that this is the only class
we need to modify and the rest of the system will work as intended.

6.	 When the application runs and creates a new DatabaseManager class by
passing the context, we will make a call to createDatabase() in which
first of all we will check whether the database already exists:
Private Boolean checkDataBase()
{
 SQLiteDatabase checkDB = null;
 try {
 String myPath = DB_PATH + DB_NAME;
 checkDB = SQLiteDatabase.openDatabase(myPath, null,
 SQLiteDatabase.OPEN_READONLY);
 } catch (SQLiteException e) {
 // database doesn't exist yet.
 }

Thread Carefully

[92]

 if (checkDB != null) {
 checkDB.close();
 }
 return checkDB != null ? true : false;
}

7.	 If it doesn't, we will create an empty database that we will replace with our
database, which we copied into our asset folder. After copying the database
from the asset folder, we will create a new SQLiteDatabase object:

private void copyDataBase() throws IOException
{
 InputStream myInput = myContext.getAssets().open(DB_NAME);
 String outFileName = DB_PATH + DB_NAME;
 OutputStream myOutput = new FileOutputStream(outFileName);
 byte[] buffer = new byte[1024];
 int length;
 while ((length = myInput.read(buffer)) > 0) {
 myOutput.write(buffer, 0, length);
 }

 myOutput.flush();
 myOutput.close();
 myInput.close();
}

Another point to note is that the onCreate() method of our CustomSQLiteOpenHelper
class will be empty as we are not creating a database and tables, but we are copying
one. The sample code is bundled in the chapter 4 code bundle. If this process looks
tedious, don't worry; the Android developers' community has a solution for you.
SQLiteAssetHelper is an Android library that will help you in managing database
creation and version management, using an application's raw asset files.

To implement this, we have to follow a few simple steps:

1.	 Copy the JAR file into our project's libs folder.
2.	 Add a library to Java Build Path.
3.	 Copy our zipped database file into the asset folder of projectassets/

databases/your_database.db.zip.
4.	 The ZIP file should contain only one db file.
5.	 Instead of extending the framework's SQLiteOpenHelper class, we will

extend the SQLiteAssetHelper class.

Chapter 4

[93]

6.	 They also provide you with assistance to upgrade the database file,
which needs to be placed in assets/databases/<database_name>_
upgrade_<from_version>-<to_version>.sql.

7.	 The library, documentation, and its corresponding sample can be found at
http://goo.gl/8XSSmR.

Summary
We covered a myriad of advanced topics in this chapter, ranging from loaders to
the security of data. We implemented our cursor loader to understand how a loader
works magic for our applications, and we delved into securing our database and
understanding the concept of permissions while exposing our content provider to
other applications. We also covered some tips such as shipping with a prepopulated
database, upgrading a database without breaking the system, and using database
queries without using SQL commands. This is in no way the only set of things we
can achieve with database and Android. This chapter only serves as a nudge towards
the vast programming possibilities out there.

Index
A
ActiveAndroid

about 87
global settings, configuring 88-90
URL 87

addRow() method 35
addURI() method 58
ADT bundle

URL, for downloading 5
Ahead of Time (AOT) 14
Android

storage 14
android.database.SQLite package 16
Android developer website

URL 74
APIs 16
application not responding (ANR) 74
architecture, SQLite

backend 9
interface 8
SQL compiler 8
virtual machine 9

ART 14
AsyncTaskLoader 75
AUTO INCREMENT keyword 29

B
backend, SQLite

about 9
B-trees 9
OS Interface 9
Pager 9

BLOB class 13
Boolean datatype 13

B-trees 9
building blocks, Android 26

C
classes/interfaces, Loader API

AsyncTaskLoader 75
Loader 75
LoaderManager 75
LoaderManager.LoaderCallbacks 75

close() method 17
column constraint, SQLite

about 28
AUTO INCREMENT keyword 29
CHECK constraint 29
DEFAULT constraint 29
NOT NULL constraint 29
PRIMARY key 29
UNIQUE constraint 29
URL 29

constraint 11
content provider

about 50, 51, 80, 82
adding, to manifest 64
ContentResolver object 51, 54
content URI 55, 56
contract class, declaring 56-58
creating 54, 55
initializing, onCreate() method used 59
URIMatcher, creating 58
using 64-72

ContentResolver object 51, 54
content URI 55, 56
ContentValues 22
context 16

[96]

contract class
declaring 56-58

create query
building 32-35

CREATE TABLE command
about 10
attributes 10

critical data, data security
encrypting 82-85

CursorLoader
about 77
implementing 76-79
reset state 76
started state 76
stopped state 76
used, for loading data 73
using 75

D
Dalvik virtual machine (DVM) 14
data

loading, with CursorLoader 73
database

about 9
prepopulated database, creating 91, 92
SQLite statement 10, 11
SQLite syntax 12
UI, connecting with 43-48
upgrading 86

database handler 30, 31
database packages

about 16
APIs 16
ContentValues 22
Cursor object 22, 23
SQLiteDatabase class 19, 20
SQLiteOpenHelper class 16, 17

data, loading with CursorLoader
loader API 75
loaders, using 74

data security
about 80
content provider 80, 81
critical data, encrypting 82-85
permissions 80, 81

datatypes, SQLite
about 12
Boolean datatype 13
Date datatype 13
storage classes 12
Time datatype 13

Date datatype 13
DEFAULT constraint 29
DELETE command 10
delete() method

about 20
used, for deleting records 62

delete query
building 40, 41

deleteRow() method 45
delRow method 48
dynamic typing 29

E
Eclipse

emulator, setting up 26- 30
emulator, Eclipse

setting up, steps 26, 27
external storage 15

F
features, SQLite

compact 7
cross-platform 7
fool proof 7
no-copyright 7
zero-configuration 6

G
Genymotion

URL 27
getBlob() method 44
getCount() method 23
get*() methods 23
getRandomName() method 69
getRandomNumber() method 69
getReadableDatabase() method 17
getType() method

used, for getting content return type 63
getView() method 46

[97]

I
IllegalArgumentException 60
INSERT command 10
insert() method

url parameter 70
used, for adding records 61
values parameter 70

insert query
building 35-40

INTEGER class 12
interface, SQLite 8
internal storage 15
isAfterLast() method 22
isReadOnly() method 17

J
JDK

URL, for downloading 5
Just in Time (JIT) 14

L
Loader API

classes/interfaces 75
Loader class 75
LoaderManager class 75
LoaderManager.LoaderCallbacks

interface 75
loaders 74
loadInBackground method 80

M
moveToFirst() method 22
moveToNext() method 23

N
NOT NULL constraint 29
NULL class 12
NullPointerException 60

O
OAuth

URL 85
onContextItemSelected() method 48

onCreate() method
about 17, 33
used, for initializing content provider 59

onOpen() method 17
onUpgrade() method 35 17

P
path, content URIs 55
permissions 64, 80, 81
prepopulated database

creating 91, 92
shipping 90

PRIMARY key 29
primitive datatypes. See storage classes

Q
query

about 10, 30, 31
create query, building 32-35
delete query, building 40, 41
insert query, building 35-40
update query, building 41, 42

query() method
projection parameter 67
selectionArgs parameter 68
selection parameter 67
sortOrder parameter 68
uri parameter 67
used, for querying records 59, 60

R
REAL class 13
reset state, CursorLoader 76

S
SELECT command 10
shared preference 14
SQLCipher

about 82
sample application, steps 82-84
URL 82

SQL compiler 8
SQLite

about 6

[98]

architecture 8
datatypes 12
features 6
using 6

SQLite3 command
.dump command 15
.help command 15
.schema command 15

SQLiteDatabase class
about 19, 20
URL, for documentation 20

SQLiteDatabase() query method 37
SQLite, in Android

about 14
database packages 16
prerequisites 5, 6
version 15

SQLite Manager tool
URL 34

SQLiteOpenHelper class 16, 17
SQLite statement

about 10, 11
ALTER 10
DELETE 10
DROP 10
INSERT 10
SELECT 10
UPDATE 10

SQL statements
tips 87

started state, CursorLoader 76
stopped state, CursorLoader 76
storage, Android

external storage 15
internal storage 15
shared preference 14

storage classes
about 12
BLOB 13
INTEGER 12
NULL 12
REAL 13
TEXT 13

String getType(Uri) method 54
syntax, SQLite 12

T
TEXT class 13
Time datatype 13
tips, prepopulated database 85

U
UI

connecting, with database 43-47
Uniform Resource Identifier (URI) 55
UNIQUE constraint 29
UPDATE command 10
update() method

about 20
uri parameter 71
used, for updating records 61
values parameter 71
WHERE clause 71

update query
building 41, 42

V
version, SQLite 15
Virtual Database Engine (VDBE) 9
virtual machine 9
void onCreate() method 54

Thank you for buying
Android SQLite Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android Database Programming
ISBN: 978-1-84951-812-3 Paperback: 212 pages

Exploit the power of data-centric and data-driven
Android applications with this practical tutorial

1.	 Master the skills to build data-centric Android
applications.

2.	 Go beyond just code by challenging yourself
to think about practical use cases with SQLite
and others.

3.	 Focus on flushing out high level design
concepts before drilling down into different
code examples.

Learning Android Intents
ISBN: 978-1-78328-963-9 Paperback: 318 pages

Explore and apply the power of intents in Android
application development

1.	 Understand Android Intents to make
application development quicker and easier.

2.	 Categorize and implement various kinds
of Intents in your application.

3.	 Perform data manipulation within
Android applications.

Please check www.PacktPub.com for information on our titles

Instant Spring for Android Starter
ISBN: 978-1-78216-190-5 Paperback: 72 pages

Leverage Spring for Android to create RESTful and
OAuth Android apps

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Learn what Spring for Android adds to the
Android developer toolkit.

3.	 Learn how to debug your Android
communication layer observing HTTP
requests and responses.

Android Application Security
Essentials
ISBN: 978-1-84951-560-3 Paperback: 218 pages

Write secure Android applications using the most
up-to-date techniques and concepts

1.	 Understand Android security from kernel
to the application layer.

2.	 Protect components using permissions.

3.	 Safeguard user and corporate data from
prying eyes.

4.	 Understand the security implications of
mobile payments, NFC, and more.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Enter SQLite
	Why SQLite?
	The SQLite architecture
	The SQLite interface
	The SQL compiler
	The virtual machine
	The SQLite backend

	A quick review of database fundamentals
	What is an SQLite statement?
	The SQLite syntax
	Datatypes in SQLite
	The storage classes
	The Boolean datatype
	The Date and Time datatype

	SQLite in Android
	SQLite version
	Database packages
	APIs
	The SQLiteOpenHelper class
	The SQLiteDatabase class
	ContentValues
	Cursor

	Summary

	Chapter 2: Connecting the Dots
	Building blocks
	Database handler and queries
	Building the Create query
	Building the Insert query
	Building the Delete query
	Building the Update query

	Connecting the UI and database
	Summary

	Chapter 3: Sharing is Caring
	What is a content provider?
	Using existing content providers
	What is a content resolver?

	Creating a content provider
	Understanding content URIs
	Declaring our contract class
	Creating UriMatcher definitions

	Implementing the core methods
	Initializing the provider through the onCreate() method
	Querying records through the query() method
	Adding records through the insert() method
	Updating records through the update() method
	Deleting records through the delete() method
	Getting the return type of the data through
the getType() method
	Adding a provider to a manifest

	Using a content provider
	Summary

	Chapter 4: Thread Carefully
	Loading data with CursorLoader
	Loaders
	Loader API's summary
	Using CursorLoader

	Data security
	ContentProvider and permissions
	Encrypting critical data

	General tips and libraries
	Upgrading a database
	Database minus SQL statements
	Shipping with a prepopulated database

	Summary

	Index

