Android SQLite
Essentials

Develop Android applications with one of the most widely used
database engines, SQLite

PACKT 2

Android SQLite Essentials

Develop Android applications with one of the most
widely used database engines, SQLite

Sunny Kumar Aditya

Vikash Kumar Karn

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Android SQLite Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1200814

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-295-1
www . packtpub.com

Cover image by Pratyush Mohanta (tysoncinematicsegmail.com)

Credits

Authors
Sunny Kumar Aditya

Vikash Kumar Karn

Reviewers
Amey Haldankar

Gaurav Maru

Commissioning Editor
Pramila Balan

Acquisition Editor
Nikhil Karkal

Content Development Editor
Ruchita Bhansali

Technical Editors
Dennis John

Gaurav Thingalaya

Copy Editors
Roshni Banerjee

Gladson Monteiro

Adithi Shetty

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Joanna McMahon

Indexers
Mariammal Chettiyar

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

About the Authors

Sunny Kumar Aditya has been working on the Android platform for the past 4
years. His tryst with Android began with his college project, and he continued with
his work in R&D at HCL Infosystems Ltd. Sunny loves to stay up to date with the
latest trends and practices in Android development. Apart from building Android
applications, he writes at www . deadmango . com. He is currently the head of Android
development at Yamunix.

I would like to thank Packt Publishing for this opportunity and my
family as well as friends for their support.

Vikash Kumar Karn is an IIIT Allahabad alumnus and an ECE student whose
love for code drove him towards the software development field. He has worked
with leading multinationals and is currently working at Samsung Research Institute,
Bangalore, exploring Android.

Vikash likes to learn the intricacies of the Android framework and help newcomers
in this field. Some of his applications, such as Movtan Fishing and Compare Pictures,
can be found on the Play Store.

I would like to thank my friends and family for their support during
the course of writing this book.

About the Reviewers

Amey Haldankar is an Android enthusiast hooked on the platform since its early
days. Equipped with a degree in Computer Science Engineering from GIT, Belgaum,
he is working for HCL Infosystems Ltd. as a Senior Software Engineer.

Amey has been working on the platform for the past 3 years developing several
applications for major clients such as Domino's, Galatsaray, HCL, and Nokia.

A note of thanks to the publishing house for considering me for the
role of a reviewer for Android SQLite Essentials.

Gaurav Maru has a Bachelor's degree in Computers from Shah & Anchor Kutchhi
Engineering College. Since 2011, he has been working as an Android application
developer at various organizations, including India's largest retail sector company.
Gaurav has developed various apps, including the one developed for the USA's
largest bookseller (a Fortune 500 company). He drinks, eats, and sleeps Android.
You can contact him at gauravimaruegmail . com.

I would like to thank my family, friends, colleagues, and Packt
Publishing, who helped me pull this one off successfully. Cheers!

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub . com for more details.

Atwww.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[@PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Enter SQLite 5
Why SQLite? 6
The SQLite architecture 8
The SQLite interface 8
The SQL compiler 8
The virtual machine 9
The SQLite backend 9

A quick review of database fundamentals 9
What is an SQLite statement? 10
The SQLite syntax 12
Datatypes in SQLite 12
Storage classes 12

The Boolean datatype 13

The Date and Time datatype 13
SQLite in Android 14
SQLite version 15
Database packages 16
APls 16

The SQLiteOpenHelper class 16

The SQLiteDatabase class 19
ContentValues 22
Cursor 22
Summary 23
Chapter 2: Connecting the Dots 25
Building blocks 26
A database handler and queries 30
Building the Create query 32
Building the Insert query 35

Table of Contents

Building the Delete query 40
Building the Update query 41
Connecting the Ul and database 43
Summary 48
Chapter 3: Sharing is Caring 49
What is a content provider? 50
Using existing content providers 51
What is a content resolver? 51
Creating a content provider 54
Understanding content URIs 55
Declaring our contract class 56
Creating UriMatcher definitions 58
Implementing the core methods 59
Initializing the provider through the onCreate() method 59
Querying records through the query() method 59
Adding records through the insert() method 61
Updating records through the update() method 61
Deleting records through the delete() method 62
Getting the return type of data through the getType() method 63
Adding a provider to a manifest 64
Using a content provider 64
Summary 72
Chapter 4: Thread Carefully 73
Loading data with CursorLoader 73
Loaders 74
Loader API's summary 75
Using CursorLoader 75
Data security 80
ContentProvider and permissions 80
Encrypting critical data 82
General tips and libraries 85
Upgrading a database 86
Database minus SQL statements 87
Shipping with a prepopulated database 90
Summary 93
Index 95

Lii]

Preface

Android is probably the buzzword of this decade. In a short span, it has taken over
the majority of the handset market. Android is staged to take over wearables, our TV
rooms, as well as our cars this autumn with the Android L release. With the frantic
pace at which Android is growing, a developer needs to up his or her skill sets as well.
Database-oriented application development is one of the key skills every developer
should have. SQLite database in applications is the heart of a data-centric product and
key to building great products. Understanding SQLite and implementing the Android
database can be a steep learning curve for some people. Concepts such as content
providers and loaders are more complex to understand and implement. Android SQLite
Essentials equips developers with tools to build database-based Android applications
in a simplistic manner. It is written keeping in mind the current needs and best
practices being followed in the industry. Let us start our journey.

What this book covers

Chapter 1, Enter SQLite, provides an insight into SQLite architecture, SQLite basics,
and its Android connection.

Chapter 2, Connecting the Dots, covers how to connect your database to Android
views. It also covers some of the best practices one should follow in order to build
a database-centric/database-enabled application.

Chapter 3, Sharing is Caring, will reflect on how to access and share data in Android
via content providers and how to construct a content provider.

Chapter 4, Thread Carefully, will guide you on how to use loaders and ensure security of
database and data. It will also provide you with tips to explore alternate approaches to
building and using databases in Android applications.

Preface

What you need for this book

To efficiently use this book, you will require a working system with Windows, Ubuntu,
or Mac OS preinstalled. Download and set up the Java environment; we require this
for the IDE of our choice, Eclipse, to run. Download Android SDK from the Android
developer's site and Android ADT plugin for Eclipse. Alternatively, you can download
the Eclipse ADT bundle that contains Eclipse SDK and the ADT plugin. You can

also try Android Studio; this IDE, which just moved to beta, is also available on the
developer site. Make sure your operating system, JDK, and IDE are all of either 32 bit
or 64 bit.

Who this book is for

Android SQLite Essentials is a guide book for Android programmers who want to
explore SQLite database-based Android applications. The reader is expected to have
a little bit of hands-on experience of Android fundamental building blocks and the
know-how of IDE and Android tools.

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"To close the cursor object, the close () method call will be used."

A block of code is set as follows:

ContentValues cv = new ContentValues() ;
cv.put (COL_NAME, "john doe") ;

cv.put (COL_NUMBER, "12345000");
dataBase.insert (TABLE CONTACTS, null, cv);

Any command-line input or output is written as follows:

adb shell SQLite3 --version
SQLite 3.7.11: API 16 - 19
SQLite 3.7.4: API 11 - 15
SQLite 3.6.22: API 8 - 10
3

SQLite 3.5.9: API 3 - 7

[2]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
Android Virtual Device Manager from the Windows menu to start the emulator."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

[31]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

Enter SQLite

Dr. Richard Hipp, the architect and primary author of SQLite, explains how it all
began in his interview with The Guardian published in June 2007:

"I started on May 29 2000. It's just over seven years old," he says. He was working
on a project which used a database server, but from time to time the database went
offline. "Then my program would give an error message saying that the database
isn't working, and I got the blame for this. So I said, this is not a demanding
application for the database, why don't I just talk directly to the disk, and build an
SQL database engine that way? That was how it started."

Before we begin our journey exploring SQLite in the context of Android, we would
like to inform you of some prerequisites. The following are very basic requirements
and will require little effort from you:

* You need to ensure that the environment for building Android applications
is in place. When we say "environment," we refer to the combination of JDK
and Eclipse, our IDE choice, ADT plugins, and Android SDK tools. In case
these are not in place, the ADT bundle, which consists of IDE, ADT plugins,
Android SDK tools, and platform tools, can be downloaded from http://
developer.android.com/sdk/index.html. The steps mentioned in the
link are pretty self-explanatory. For JDK, you can visit Oracle's website
to download the latest version and set it up at http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Enter SQLite

You need to have a basic knowledge of Android components and have run
more than "Hello World" programs on an Android emulator. If not, a very
apt guide is present on the Android developer site to set up an emulator. We
would suggest you become familiar with basic Android components: Intent,
Service, Content Providers, and Broadcast Receiver. The Android developer
site has good repositories of samples along with documentation. Some of
these are as follows:

o

Emulator: http://developer.android.com/tools/devices/
index.html

Android basics: http://developer.android.com/training/
basics/firstapp/index.html

With these things in place, we can now start our foray into SQLite.

In this chapter, we will cover the following:

Why SQLite?

The SQLite architecture

A quick review of database fundamentals
SQLite in Android

Why SQLite?

SQLite is an embedded SQL database engine. It is used by prominent names such as
Adobe in Adobe Integrated Runtime (AIR); Airbus, in their flight software; Python
ships with SQLite; PHP; and many more. In the mobile domain, SQLite is a very
popular choice across various platforms because of its lightweight nature. Apple
uses it in the iPhone and Google in the Android operating system.

It is used as an application file format, a database for electronic gadgets, a database
for websites, and as an enterprise RDBMS. What makes SQLite such an interesting
choice for these and many other companies? Let's take a closer look at the features

of SQLite that make it so popular:

Zero-configuration: SQLite is designed in such a manner that it requires no
configuration file. It requires no installation steps or initial setup; it has no
server process running and no recovery steps to take even if it crashes. There
is no server and it is directly embedded in our application. Furthermore,

no administrator is required to create or maintain a DB instance, or set
permissions for users. In short, this is a true DBA-less database.

[6]

Chapter 1

No-copyright: SQLite, instead of a license, comes with a blessing. The source
code of SQLite is in the public domain; you are free to modify, distribute,
and even sell the code. Even the contributors are asked to sign an affidavit to
protect from any copyrights warfare that may occur in future.

Cross-platform: Database files from one system can be moved to a system
running a different architecture without any hassle. This is possible because
the database file format is binary and all the machines use the same format.
In the following chapters, we will be pulling out a database from an Android
emulator to Windows.

Compact: An SQLite database is a single ordinary disk file; it comes without
a server and is designed to be lightweight and simple. These attributes lead
to a very lightweight database engine. SQLite Version 3.7.8 has a footprint
of less than 350 KiB (kibibyte) compared to its other SQL database engines,
which are much larger.

Fool proof: The code base is well commented, easy to understand, and
modular. The test cases and test scripts in SQLite have approximately 1084
times more code than the source code of SQLite library and they claim 100
percent branch test coverage. This level of testing reaffirms the faith instilled
in SQLite by developers.

Interested readers can read more about branch test coverage
% from Wikipedia athttp://en.wikipedia.org/wiki/Code

coverage.

[71

Enter SQLite

The SQLite architecture

The core, SQL compiler, backend, and database form the SQLite architecture:

Interface b Tokenizer
| vd | B
Q | SQLC d g
o omman
3 Processor Parser 3
—
2 N 2 o
17}
Virtual Machine N Code Generator
A4
B-Tree
© 2
S
§ Pager
-]
0S Interface

The SQLite interface

At the top of the SQLite library stack, according to documentation, much of the
public interface to the SQLite library is implemented by the wen.c, legacy.c,

and vdbeapi . c source files. This is the point of communication for other programs
and scripts.

The SQL compiler

Tokenizer breaks the SQL string passed from the interface into tokens and hands

the tokens over to the parser, one by one. Tokenizer is hand-coded in C. The parser
for SQLite is generated by the Lemon parser generator. It is faster than YACC and
Bison and, at the same time, is thread safe and prevents memory leaks. The parser
builds a parse tree from the tokens passed by the tokenizer and passes the tree to the
code generator. The generator produces virtual machine code from the input and
passes it to the virtual machine as executables. More information about the Lemon
parser generator can be found at http://en.wikipedia.org/wiki/Lemon_Parser
Generator.

[8]

Chapter 1

The virtual machine

The virtual machine, also known as Virtual Database Engine (VDBE), is the heart of
SQLite. It is responsible for fetching and changing values in the database. It executes

the program generated by the code generator to manipulate database files. Each SQL
statement is first converted into virtual machine language for VDBE. Each instruction
of VDBE contains an opcode and up to three additional operands.

The SQLite backend

B-trees, along with Pager and the OS Interface, form the backend of the SQLite
architecture. B-trees are used to organize the data. The pager on the other hand
assists B-tree by caching, modifying, and rolling back data. B-tree, when required,
requests particular pages from the cache; this request is processed by the pager in
an efficient and reliable manner. The OS Interface, as the name suggests, provides
an abstraction layer to port to different operating systems. It hides the unnecessary
details of communicating with different operating systems from SQLite calls and
handles them on behalf of SQLite.

These are the internals of SQLite and an application developer in Android need not
worry about the internals of Android because the SQLite Android libraries have
effectively used the concept of abstraction and all the complexities are hidden. One
just needs to master the APIs provided, and that will cater to all the possible use
cases of SQLite in an Android application.

A quick review of database fundamentals

A database, in simple words, is an organized way to store data in a continual
fashion. Data is saved in tables. A table consists of columns with different datatypes.
Every row in a table corresponds to a data record. You may think of a table as an
Excel spreadsheet. From the perspective of object-oriented programming, every table
in a database usually describes an object (represented by a class). Each table column
illustrates a class attribute. Every record in a table represents a particular instance of
that object.

[o]

Enter SQLite

Let's look at a quick example. Let's assume you have a shop database with a table
called Inventory. This table might be used to store the information about all the
products in the shops. The Inventory table might contain these columns: Product
name (string), Product Id (number), Cost (number), In stock (0/1), and Numbers
available (number). You could then add a record to the database for a product
named Shoe:

ID Product Product Id Cost In stock Numbers
name available
Carpet 340023 2310 1 4

2 Shoe 231257 235 1 2

Data in the database is supposed to be checked and influenced. The data within
a table can be as follows:
* Added (with the INSERT command)
* Modified (with the UPDATE command)
* Removed (with the DELETE command)
You may search for particular data within a database by utilizing what is known as
a query. A query (using the SELECT command) can involve one table, or a number of
tables. To generate a query, you must determine the tables, data columns, and values

of the data of interest using SQL commands. Each SQL command is concluded with
a semicolon (;).

What is an SQLite statement?

An SQLite statement is written in SQL, which is issued to a database to retrieve data
or to create, insert, update, or delete data in the database.

All SQLite statements start with any of the keywords: SELECT, INSERT, UPDATE, DELETE,
ALTER, DROP, and so on, and all the statements end with a semicolon (;). For instance:

CREATE TABLE table name (column_name INTEGER) ;

The cREATE TABLE command is used to create a new table in an SQLite database.
A crREATE TABLE command describes the following attributes of the new table that
is being created:

* The name of the new table.

* The database in which the new table is created. Tables may be generated in
the main database, the temp database, or in any database attached.

¢ The name of each column in the table.

[10]

Chapter 1

The declared type of each column in the table.

A default value or expression for each column in the table.

A default relation sequence to be used with each column.

Preferably, a PRIMARY KEY for the table. This will support both single-column
and composite (multiple-column) primary keys.

A set of SQL constraints for each table. Constraints such as UNIQUE, NOT
NULL, CHECK, and FOREIGN KEY are supported.

In some cases, the table will be a WITHOUT ROWID table.

The following is a simple SQLite statement to create a table:

String databaseTable = "CREATE TABLE "

+

+ o+ + o+ o+

TABLE_CONTACTS +" ("

KEY ID

" INTEGER PRIMARY KEY,"
KEY NAME + " TEXT,"
KEY NUMBER + " INTEGER"
"

Here, CREATE TABLE is the command to create a table with the name TABLE
CONTACTS. KEY_ID, KEY NAME and KEY NUMBER are the column IDs. SQLite requires
a unique ID to be provided for each column. INTEGER and TEXT are the datatypes
associated with the corresponding columns. SQLite requires the type of data to be
stored in a column to be defined at the time of creation of the table. PRIMARY KEY is
the data column constraint (rules enforced on data columns in the table).

SQLite supports more attributes that can be used for creating a table, for instance,
let us create a create table statement that inputs a default value for empty
columns. Notice that for KEY_NAME, we are providing a default value as xyz

and for the KEY NUMBER column, we are providing a default value of 100:

String databaseTable =
"CREATE TABLE "
+ TABLE CONTACTS + " ("

+

+

+

KEY ID + " INTEGER PRIMARY KEY,"

KEY NAME + " TEXT DEFAULT xyz,"

KEY NUMBER + " INTEGER DEFAULT 100" + ")";

Here, when a row is inserted in the database, these columns will be preinitialized
with the default values as defined in the cREATE SQL statement.

[11]

Enter SQLite

There are more keywords, but we don't want you to get bored with a huge list. We
will be covering other keywords in the subsequent chapters.

The SQLite syntax

SQLite follows a unique set of rules and guidelines called syntax.

An important point to be noted is that SQLite is case-insensitive, but there are
some commands that are case-sensitive, for example, GLOB and glob have different
meaning in SQLite. Let us look at the SQLite DELETE statement's syntax for instance.
Although we have used capital letters, replacing them with lowercase letters will
also work fine:

DELETE FROM table WHERE {condition};

Datatypes in SQL.ite

SQLite uses a dynamic and weakly typed SQL syntax, whereas most of the SQL
databases use static, rigid typing. If we look at other languages, Java is a statically
typed language and Python is a dynamically typed language. So what do we mean
when we say dynamic or static? Let us look at an example:

a=5h

a="android"

In statically typed languages, this will throw an exception, whereas in a dynamically
typed language it will work. In SQLite, the datatype of a value is not associated with
its container, but with the value itself. This is not a cause of concern when dealing with
statically typed systems, where a value is determined by a container. This is because
SQLite is backwards compatible with the more common static type systems. Hence,
the SQL statements that we use for static systems can be used seamlessly here.

Storage classes

In SQLite, we have storage classes that are more general than datatypes.
Internally, SQLite stores data in five storage classes that can also be referred
to as primitive datatypes:

* NULL: This represents a missing value from the database.

* INTEGER: This supports a range of signed integers from 1, 2, 3, 4, 6, or 8 bytes
depending on the magnitude of the value. SQLite handles this automatically
based on the value. At the time of processing in the memory, they are
converted to the most general 8-byte signed integer form.

[12]

Chapter 1

* REAL: This is a floating point value, and SQLite uses this as an 8-byte IEEE
floating point number to store such values.

* TEXT: SQLite supports various character encodings, such as UTF-8, UTF-16BE,
or UTF-16LE. This value is a text string.

* BLOB: This type stores a large array of binary data, exactly how it was
provided as input.

SQLite itself does not validate if the types written to the columns are actually of the
defined type, for example, you can write an integer into a string column and vice
versa. We can even have a single column with different storage classes:

The Boolean datatype

SQLite does not have a separate storage class for Boolean and uses the Integer class
for this purpose. Integer 0 represents the false state whereas 1 represents a true state.
This means that there is an indirect support for Boolean and we can create Boolean
type columns only. The catch is, it won't contain the familiar TRUE/FALSE values.

The Date and Time datatype

As we saw for the Boolean datatype, there is no storage class for the Date and Time
datatypes in SQLite. SQLite has five built-in date and time functions to help us with
it; we can use date and time as integer, text, or real values. Moreover, the values are
interchangeable, depending on the need of the application. For example, to compute
the current date, use the following code:

SELECT date('now') ;

[13]

Enter SQLite

SQLite in Android

The Android software stack consists of core Linux kernel, Android runtime, Android
libraries that support the Android framework, and finally Android applications that
run on top of everything. The Android runtime uses Dalvik virtual machine (DVM)
to execute the dex code. In newer versions of Android, that is, from KitKat (4.4),
Android has enabled an experimental feature known as ART, which will eventually
replace DVM. It is based on Ahead of Time (AOT), whereas DVM is based on Just in
Time (JIT). In the following diagram, we can see that SQLite provides native database
support and is part of the libraries that support the application framework along
with libraries such as SSL, OpenGL ES, WebKit, and so on. These libraries, written in
C/C++, run over the Linux kernel and, along with the Android runtime, forms the
backbone of the application framework, as shown in the following diagram:

LIBRARIES ANDROID RUNTIME

Dalvik Virtual
Machine

LINUX KERNEL
Display . Flash Memory Blinder (IPC)
[Driver] [IR BT] [Driver] [Driver]
[Keypad Driver] [WiFi Driver] [e,] [Ma::g‘?n:em]

Before we start exploring SQLite in Android, let's take a look at the other persistent
storage alternatives in Android:

* Shared preference: Data is stored in a shared preference in the key-value
form. The file itself is an XML file containing the key-value pairs. The file
is present in the internal storage of an application, and access to it can be
public or private as needed. Android provides APIs to write and read shared
preferences. It is advised to use this in case we have to save a small collection
of such data. A general example would be saving the last read position in a
PDF, or saving a user's preference to show a rating box.

[14]

Chapter 1

* Internal/external storage: This terminology can be a little misleading;
Android defines two storage spaces to save files. On some devices, you might
have an external storage device in form of an SD card, whereas on others,
you will find that the system has partitioned its memory into two parts, to
be labeled as internal and external. Paths to the external as well as internal
storage can be fetched by using Android APIs. Internal storage, by default,
is limited and accessible only to the application, whereas the external storage
may or may not be available in case it is mounted.

1
‘Q android:installLocation can be used in the manifest to specify

the internal/external installation location of an application.

SQLite version

Since API level 1, Android ships with SQLite. At the time of writing this book, the
current version of SQLite was 3.8.4.1. According to the documentation, the version
of SQLite is 3.4.0, but different Android versions are known to ship with different
versions of SQLite. We can easily verify this via the use of a tool called SQLite3
present in the platform-tools folder inside the Android SDK installation folder
and Android Emulator:

adb shell SQLite3 --version
SQLite 3.7.11: API 16 - 19
SQLite 3.7.4: API 11 - 15
SQLite 3.6.22: API 8 - 10
SQLite 3.5.9: API 3 - 7

We need not worry about the different versions of SQLite and should stick to 3.5.9
for compatibility, or we can go by the saying that API 14 is the new minSdkVersion
and switch it with 3.7.4. Until and unless you have something very specific to a
particular version, it will hardly matter.

Some additional handy SQLite3 commands are as follows:

e .dump: To print out the contents of a table
L * .schema: To print the SQL. CREATE statement for
an existing table
* _.help: For instructions

[15]

Enter SQLite

Database packages

The android.database package contains all the necessary classes for working
with databases. The android.database.SQLite package contains the
SQLite-specific classes.

APls

Android provides various APIs to enable us to create, access, modify, and delete
a database. The complete list can be quite overwhelming; for the sake of brevity,
we will cover the most important and used ones.

The SQLiteOpenHelper class

The sQLiteOpenHelper class is the first and most essential class of Android to work
with SQLite databases; it is present in the android.database . SQLite namespace.
SQLiteOpenHelper is a helper class that is designed for extension and to implement
the tasks and actions you deem important when creating, opening, and using a
database. This helper class is provided by the Android framework to work with

the SQLite database and helps in managing the database creation and version
management. The modus operandi would be to extend the class and implement
tasks and actions as required by our application. SQLiteOpenHelper has
constructors defined as follows:

SQLiteOpenHelper (Context context, String name, SQLiteDatabase.
CursorFactory factory, int version)

SQLiteOpenHelper (Context context, String name, SQLiteDatabase.
CursorFactory factory, int version, DatabaseErrorHandler errorHandler)

The application context permits access to all the shared resources and assets for the
application. The name parameter consists of the database filename in the Android
storage. SQLiteDatabase.CursorFactory is a factory class that creates cursor
objects that act as the output set for all the queries you apply against SQLite under
Android. The application-specific version number for the database will be the
version parameter (or more particularly, its schema).

The constructor of SQLiteOpenHelper is used to create a helper object to create,
open, or manage a database. The context is the application context that allows
access to all the shared resources and assets. The name parameter either contains
the name of a database or null for an in-memory database. The sQLiteDatabase.
CursorFactory factory creates a cursor object that acts as the result set for all the
queries. The version parameter defines the version number of the database and
is used to upgrade/downgrade the database. The errorHandler parameter in the
second constructor is used when SQLite reports database corruption.

[16]

Chapter 1

SQLiteOpenHelper will trigger its onUpgrade () method if our database version
number is not at default 1. Important methods of the SQLiteOpenHelper class are
as follows:

® synchronized void close()

* synchronized SQLiteDatabase getReadableDatabase ()
® synchronized SQLiteDatabase getWritableDatabase ()
®* abstract void onCreate (SQLiteDatabase db)

® void onOpen (SQLiteDatabase db)

® abstract void onUpgrade (SQLiteDatabase db, int oldVersion, int
newVersion)

The synchronized close () method closes any open database object. The
synchronized keyword prevents thread and memory consistency errors.

The next two methods, getReadableDatabase () and getWriteableDatabase (),
are the methods in which the database is actually created or opened. Both

return the same SQLiteDatabase object; the difference lies in the fact that
getReadableDatabase () will return a readable database in case it cannot return a
writable database, whereas getWriteableDatabase () returns a writable database
object. The getWriteableDatabase () method will throw an sQLiteException if
a database cannot be opened for writing. In case of getReadableDatabase (), if a
database cannot be opened, it will throw the same exception.

We can use the isReadonly () method of the sQLiteDatabase class on the database
object to know the state of the database. It returns true for read-only databases.

Calling either methods will invoke the oncreate () method if the database doesn't
exist yet. Otherwise, it will invoke the onOpen () or onUpgrade () methods,
depending on the version number. The onopen () method should check the
isReadonly () method before updating the database. Once opened, the database is
cached to improve performance. Finally, we need to call the close () method to close
the database object.

The oncreate (), onopen (), and onUpgrade () methods are designed for the subclass
to implement the intended behavior. The onCreate () method is called when the
database is created for the first time. This is the place where we create our tables

by using SQLite statements, which we saw earlier in the example. The onopen ()
method is triggered when the database has been configured and after the database
schema has been created, upgraded, or downgraded as necessary. Read/write status
should be checked here with the help of the isReadonly () method.

[17]

Enter SQLite

The onupgrade () method is called when the database needs to be upgraded
depending on the version number supplied to it. By default, the database version
is 1, and as we increment the database version numbers and release new versions,
the upgrade will be performed.

A simple example illustrating the use of the SQLiteOpenHelper class is present in the
code bundle for this chapter; we would be using it for explanation:

class SQLiteHelperClass

{

public static final int VERSION NUMBER = 1;

sqglHelper =
new SQLiteOpenHelper (context, "ContactDatabase", null,
VERSION_NUMBER)

{

@Override
public void onUpgrade (SQLiteDatabase db,
int oldVersion, int newVersion)

//drop table on upgrade
db.execSQL ("DROP TABLE IF EXISTS "
+ TABLE_CONTACTS) ;

// Create tables again
onCreate (db) ;

@Override
public void onCreate (SQLiteDatabase db)
{
// creating table during onCreate
String createContactsTable =
"CREATE TABLE "
+ TABLE CONTACTS + "
+ KEY ID + " INTEGER PRIMARY KEY,"
+ KEY NAME + " TEXT,"
+ KEY NUMBER + " INTEGER" + "y,

try {
db.execSQL (createContactsTable) ;

} catch(SQLException e) {
e.printStackTrace () ;

[18]

Chapter 1

}

@Override
public synchronized void close()
{
super.close() ;
Log.d("TAG", "Database closed");

}

@Override
public void onOpen (SQLiteDatabase db)
{

super.onOpen (db) ;

Log.d("TAG", "Database opened") ;

//open the database in read-only mode
SQLiteDatabase db = SQLiteOpenHelper.getWritableDatabase() ;

//open the database in read/write mode
SQLiteDatabase db = SQLiteOpenHelper.getWritableDatabase() ;

Downloading the example code

You can download the example code files for all
Al
~ Packt books you have purchased from your account
athttp://www.packtpub. com. If you purchased
this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the
L files e-mailed directly to you. -

The SQLiteDatabase class

Now that you are familiar with the helper class that kick-starts the use of SQLite
databases within Android, it's time to look at the core SQLiteDatabase class.
SQLiteDatabase is the base class required to work with an SQLite database in
Android and provides methods to open, query, update, and close the database.

[19]

Enter SQLite

More than 50 methods are available for the sQLiteDatabase class, each with its own
nuances and use cases. Rather than an exhaustive list, we'll cover the most important
subsets of methods and allow you to explore some of the overloaded methods at
your leisure. At any time, you can refer to the full online Android documentation

for the sQLiteDatabase class at http://developer.android.com/reference/
android/database/sglite/SQLiteDatabase.html.

Some methods of the sQLiteDatabase class are shown in the following list:

®* public long insert (String table, String nullColumnHack,
ContentValues values)

® public Cursor query (String table, Stringl[] columns, String
selection, String[] selectionArgs, String groupBy, String
having, String orderBy)

® public Cursor rawQuery(String sqgl, String[] selectionArgs)

®* public int delete (String table, String whereClause, Stringl]
whereArgs)

®* public int update (String table, ContentValues values, String
whereClause, String[] whereArgs)

Let us see these sQLiteDatabase classes in action with an example. We will insert
a name and number in our table. Then we will use the raw query to fetch data back
from the table. After this, we will go through the delete () and update () methods,
both of which will take id as a parameter to identify which row of data in our
database table we intend to delete or update:

public void insertToSimpleDataBase ()

{

SQLiteDatabase db = sglHelper.getWritableDatabase() ;

ContentValues cv = new ContentValues() ;

CV.put(KEY_NAME, "John") ;

cv.put (KEY NUMBER, "0000000000");

// Inserting values in different columns of the table using
// Content Values

db.insert (TABLE CONTACTS, null, cv);

cv = new ContentValues() ;

CV.put(KEY_NAME, "Tom") ;

cv.put (KEY NUMBER, "5555555");

// Inserting values in different columns of the table using
// Content Values

db.insert (TABLE CONTACTS, null, cv);

[20]

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

Chapter 1

public void getDataFromDatabase ()

{

int count;

db = sglHelper.getReadableDatabase () ;

// Use of normal query to fetch data

Cursor cr = db. query(TABLE CONTACTS, null, null,
null, null, null, null);

if(cr != null) {
count = cr.getCount () ;
Log.d ("DATABASE", "count is : " + count);

// Use of raw query to fetch data

cr = db.rawQuery ("select * from " + TABLE CONTACTS, null);

if(cr != null) {
count = cr.getCount () ;
Log.d ("DATABASE", "count is : " + count);

public void delete(String name)

{

String whereClause = KEY NAME + "=?";
String[] whereArgs = new Stringl[] {name};
db = sglHelper.getWritableDatabase() ;

int rowsDeleted = db.delete (TABLE CONTACTS, whereClause,

whereArgs) ;

}

public void update (String name)

{

}

String whereClause = KEY NAME + "=2?";
String[] whereArgs = new Stringl[] {name};
ContentValues cv = new ContentValues() ;
cv.put (KEY NAME, "Betty");

cv.put (KEY_NUMBER, "999000") ;

db = sglHelper.getWritableDatabase () ;

int rowsUpdated = db.update (TABLE CONTACTS, cv, whereClause,
whereArgs) ;

[21]

Enter SQLite

ContentValues

ContentValues is essentially a set of key-value pairs, where the key represents the
column for the table and the value is the value to be inserted in that column. So, in
the case of values.put ("COL_1", 1) ;, the columnis coL_1 and the value being
inserted for that column is 1.

The following is an example:

ContentValues cv = new ContentValues() ;
cv.put (COL_NAME, "john doe") ;

cv.put (COL_NUMBER, "12345000") ;
dataBase.insert (TABLE CONTACTS, null, cv);

Cursor

A query recovers a Cursor object. A Cursor object depicts the result of a query
and fundamentally points to one row of the result of the query. With this method,
Android can buffer the results of the query in a productive manner; as it doesn't
need to load all of the data into memory.

To obtain the elements of the resulting query, you can use the getCount () method.

To navigate amid individual data rows, you can utilize the moveToFirst ()
and moveToNext () methods. The isAfterLast () method permits you to analyze
whether the end of the output has arrived.

The cursor object provides typed get* () methods, for example, the

getLong (columnIndex) and getString (columnIndex) methods to gain entry
to the column data for the ongoing position of the result. columnIndex is the
number of the column you will be accessing.

The cursor object also provides the getColumnIndexOrThrow (String) method
that permits you to get the column index for a column name of the table.

To close the cursor object, the close () method call will be used.

A database query returns a cursor. This interface provides random read-write access
to the result set. It points to a row of the query result that enables Android to buffer
the results effectively since now it is not required to load all the data in the memory.

The pointer of the returned cursor points to the Oth location, which is known as
the first location of the cursor. We need to call the moveToFirst () method on the
Cursor object; it takes the cursor pointer to the first location. Now we can access
the data present in the first record.

[22]

Chapter 1

Cursor implementations, if from multiple threads, should perform their own
synchronization when using the cursor. A cursor needs to be closed to free the
resource the object holds by calling the close () method.

Some other support methods we will encounter are as follows:

* The getcount () method: This returns the numbers of elements in the
resulting query.

* The get* () methods: These are used to access the column data for the
current position of the result, for example, getLong (columnIndex) and
getString (columnIndex).

* The moveToNext () method: This moves the cursor to the next row. If the
cursor is already past the last entry in the result set, it will return false.

Summary

We covered in this chapter the know-how of SQLite features and its internal
architecture. We started with a discussion on what makes SQLite so popular
by looking at its salient features, then we covered the underlying architecture
of SQLite and went over database fundamentals such as syntax and datatypes,
and finally moved on to SQLite in Android. We explored the Android APIs for
using SQLite in Android.

In the next chapter, we will focus on carrying forward what we have learned in this
chapter and apply it to build Android applications. We will focus on the Ul elements
and connecting Ul to the database components.

[23]

Connecting the Dots

"You don't understand anything until you learn it more than one way."

-Marvin Minsky

In the previous chapter, we learned the two important Android classes and their
corresponding methods in order to work with an SQLite database:

* The sQLiteOpenHelper class

¢ The sQLiteDatabase class

We also saw code snippets explaining their implementation. Now, we are ready

to use all these concepts in an Android application. We will be leveraging what

we learned in the previous chapter to make a functional application. We will further
look into the SQL statements to insert, query, and delete data from a database.

In this chapter, we will be building and running an Android application on

an Android emulator. We will also be building our own full-fledged contacts
database. We will encounter Android Ul components, such as Buttons and
ListView, while progressing through this chapter. In case a revisit of Ul components
in Android is required, please visit the link http://developer.android.com/
design/building-blocks/index.html.

Before we begin, the code in this chapter is meant to explain the concepts related to

an SQLite database in Android and is not production ready; in a lot of places, you

will find lack of proper exception handling or lack of proper null checks and similar
practices to reduce verbosity in the code. You can download the complete code from
Packt's website for the current and following chapters. For best results, we recommend
downloading the code and referring to it as we move along the chapter.

Connecting the Dots

In this chapter, we will cover:

* Building blocks
* Database handler and queries

* Connecting the Ul and database

Building blocks

Android is known to run on a variety of devices with different hardware and
software specifications. At the time of writing this book, 1 billion activation marks
have been crossed. The number of devices running Android is staggering, providing
users with a rich variety of options in different form factors and on different
hardware bases. This adds a roadblock when it comes to testing your application

on different devices, because it is humanly impossible to get hold of them all, not to
forget the time and capital needed to be invested in it. Emulator in itself is a great
tool; it enables us to circumvent this problem by giving us the flexibility to mimic
different hardware features, such as CPU architecture, RAM, and camera, and
different software versions ranging from early Cupcake to KitKat. We will also try
to leverage this to our advantage in our project and try to run our application on the
emulator. An added benefit of using the emulator is that we will be running a rooted
device that will allow us to perform some actions. We will not be able to achieve
these actions on a normal device.

Let's start by setting up an emulator in Eclipse:
1. Go to Android Virtual Device Manager from the Window menu to start
the emulator.

We can set different hardware properties such as the CPU type, front/back
camera, RAM preferably less than 768 MB on a Windows machine, internal,
and external storage size.

2. While launching the app, enable Save to snapshot; this will reduce the launch
time the next time we are launching an emulator instance from the snapshot:

[26]

Chapter 2

Edit Android Virtual Device (AVD)

AVD Name: |mEmulator
Device: Nexus 4 (4.7", 768 = 1280: xhdpi) 2
Target: Android 4.1.2 - API Level 16 =
CPU/ABI:
Keyboard: & Hardware keyboard present
skin: | No skin =2
Front Camera: Emulated =
Back Camera: | None =
Memory Options: RAM: | 1024 VM Heap: | 64
Internal Storage: 1200 MiB 2
SD Card:

@® size: MiB :

() File:
Emulation Options: Snapshot "] Use Host GPU

Cancel | oK

Interested readers who want to try out a faster emulator can give
s Genymotion a try at http://www.genymotion.com/.

Let's start building our Android application now.

3. We will start by creating a new project PersonalContactManager. Go to
File | New | Project. Now, navigate to Android and then select Android

Application Project. This step will give us an activity file and a corresponding
XML file.

[27]

Connecting the Dots

We will come back to these components after we have all the blocks we need in
place. For our application, we will create a database called contact, which will
contain one table, ContactsTable. In the previous chapter, we went over how to
create a database using a SQL statement; let's construct a database schema for our
project. This is a very important step that is based on our application's requirements;
for example, in our case, we are building a personal contact manager and will require
fields such as name, number, e-mail, and a display picture.

The database schema for contactsTable is outlined:

Column Data type

Contact_ID Integer / primary key/ autoincrement
Name Text

Number Text

Email Text

Photo Blob

An Android application can have more than one database and each
database can have more than one table. Each table stores data in the
2D (rows and columns) format.

The first column is Contact_1ID. Its datatype is integer and its column constraint is
the primary key. Also, the column is autoincremented, which means for each row it
will be incremented by one when data is inserted in that row.

The primary key uniquely identifies each row and cannot be null. Each table in a
database can have one primary key at the most. The primary key of one table can act
as the foreign key for another table. The foreign key serves as a connection between
two related tables; for instance, our current ContactsTable schema is:

ContactsTable (Contact ID,Name, Number, Email, Photo)
Let's say we have another table colleagueTable with the following schema:
y g
ColleagueTable (Colleague ID, Contact ID, Position, Fax)

Here, the primary key of ContactTable, thatis, Contact_ID can be termed as a
foreign key for colleagueTable. It serves the purpose of linking two tables in a
relational database and hence allows us to perform operations on ColleagueTable.
We will explore this concept in detail in the chapters and examples ahead.

[28]

Chapter 2

Column constraint

Constraints are the rules enforced on data columns in a table. This ensures
the accuracy and reliability of data in the database.

Unlike most SQL databases, SQLite does not restrict the type of data that
may be inserted into a column based on the declared type of columns.
Instead, SQLite uses dynamic typing. The declared type of a column is used
to determine the affinity of the column only. There is a type conversion also
(automatically) when one type of variable is stored in the other.

Constraints can be column level or table level. Column-level constraints
are applied only to one column, whereas table-level constraints are
applied to the whole table.

The following are the commonly used constraints and keywords available

in SQLite:
y e The NOT NULL constraint: This ensures that a column does not
%j@‘\ have a NULL value.

e The DEFAULT constraint : This provides a default value for a
column when none is specified.

e The UNIQUE constraint: This ensures that all the values in a
column are different.

* The PRIMARY key: This uniquely identifies all rows/records in a
database table.

* The CHECK constraint: The CHECK constraint ensures that all the
values in a column satisfy certain conditions.

* TheAUTO INCREMENT keyword: AUTOINCREMENT is a keyword
used to autoincrement a value of a field in the table. We can
autoincrement a field value by using the AUTOINCREMENT
keyword when creating a table with a specific column name to
autoincrement it. The keyword AUTOINCREMENT can be used

L with the INTEGER field only. -

The next step is to prepare our data model; we will use our schema to frame the data
model class. The ContactModel class will have Contact ID, Name, Number, Email, and
Photo as fields, they are represented as id, name, contactNo, email, and byteArray
respectively. The class will consist of a getter/setter method to set and fetch property
values as needed. The use of a data model will facilitate in the communication of the
activity used to show/process data and our database handler, which we are going to
define later in this chapter. We will create a new package and a new class in it called
the ContactModel class. Please note that creating a new package is not a necessary
step; it is used to organize our classes in a logical and easily accessible manner. This
class can be described as follows:

public class ContactModel {
private int id;

[29]

Connecting the Dots

private String name, contactNo, email;
private bytel[] byteArray;

public byte[] getPhoto() {
return byteArray;

}

public void setPhoto(byte[] array) {
byteArray = array;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

Eclipse provides a lot of helpful shortcuts but not for generating
getter and setter methods. We can bind generating getter and
~ setter methods to any key binding as per our liking. In Eclipse, go
Q to Window | Preferences | General | Keys, search for getter, and
add your bindings. We are using Alt + Shift + G; you are free to set
any other key combination.

A database handler and queries

We will build our support class that will contain methods to read, update, and delete
data as per our database requirements. This class will enable us to create and update
the database and will act as our hub for data management. We will use this class to
run SQLite queries and send across data to the UL in our case, a listview to display
the results:

public class DatabaseManager

private SQLiteDatabase db;
private static final String DB NAME = "contact";

private static final int DB VERSION = 1;

private static final String TABLE NAME = "contact table";

private static final String TABLE ROW ID = " id";

private static final String TABLE ROW NAME = "contact name";
private static final String TABLE ROW PHONENUM = "contact number";
private static final String TABLE ROW EMAIL = "contact email";
private static final String TABLE ROW_PHOTOID = "photo id";

[30]

Chapter 2

We will create an object of the sQLiteDatabase class, which we will initialize later
with either getWritableDatabase () or getReadableDatabase (). We will define
the constants that we will be using through the class.

By convention, constants are defined in capitals but use of static
@’@‘\ final in defining a constant is bit more than the convention. To
’ know more, refer to http://goo.gl/t0PoQ].

We will define the name of our database as contact and define the version as 1. If
we look back to the previous chapter, we will recall the importance of this value. A
quick recap of this enables us to upgrade the database from the current version to
the new version. The use case will become clear with this example. Let's say in future
there is a new requirement, that is, we need to add a fax number to our contact
details. We will modify our current schema to incorporate this change and our
contact database will correspondingly change. If we are installing the application on
new devices, there will be no issue; but in case of a device where we already

have a running instance of the application, we will face problems. In this situation,
DB_VERSION will come in handy and help us replace the old version of the database
with the current version. Another approach would be to uninstall the application
and install it again, but that is not encouraged.

The table name and important fields such as table columns will be defined now.
TABLE_ROW_ID is a very important column. This will serve as the primary key for
the table; it will also autoincrement and cannot be null. NOT NULL is again a column
constraint, which may only be attached to a column definition and is not specified
as a table constraint. Not surprisingly, a NOT NULL constraint dictates that the
associated column may not contain a NULL value. Attempting to set the column value
to NULL when inserting a new row or updating an existing one, causes a constraint
violation. This will be used to find a particular value in the table. The uniqueness of
the ID guarantees that we do not have any conflicts with data in the table, since each
row is uniquely identified by the key. The rest of the table columns are pretty
self-explanatory. The constructor for the DatabaseManager class is as follows:

public DatabaseManager (Context context) {
this.context = context;

CustomSQLiteOpenHelper helper = new CustomSQLiteOpenHelper (conte
xt);

this.db = helper.getWritableDatabase() ;

}

Notice that we are using a class called customsQLiteOpenHelper. We will come
back to this later. We will use the class object to get our sQLitedatabase instance.

[31]

Connecting the Dots

Building the Create query

To create a table with the desired columns, we will build a query statement and
execute it. The statement will contain the table name, different table columns, and
respective datatype. We will now look at methods for creating a new database
and also upgrading an existing database according to the needs of the application:

private class CustomSQLiteOpenHelper extends SQLiteOpenHelper
public CustomSQLiteOpenHelper (Context context) {
super (context, DB NAME, null, DB _VERSION) ;

}

@Override
public void onCreate (SQLiteDatabase db) {
String newTableQueryString = "create table "

TABLE NAME + " ("
TABLE_ROW_ID
" integer primary key autoincrement not null,"
TABLE_ROW_NAME
" text not null,"
TABLE_ROW_PHONENUM
" text not null,"
TABLE _ROW_EMAIL
" text not null,"
TABLE_ROW_PHOTOID
" BLOB" + ");";
db.execSQL (newTableQueryString) ;

+ o+ + + o+ o+ o+ + o+ 4+ o+

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion,
int newVersion)

String DROP_TABLE = "DROP TABLE IF EXISTS " +
TABLE NAME;

db.execSQL (DROP_TABLE) ;

onCreate (db) ;

}

CustomSQLiteOpenHelper extends SQLiteOpenHelper and provides us with the key
methods onCreate () and onUpgrade (). We have defined this class as the inner class
of our DatabaseManager class. This enables us to manage all the database-related
functions, namely CRUD (Create,Read,Update, and Delete), from one place.

[32]

Chapter 2

In our CustomSQLiteOpenHelper constructor, which is responsible for creating an
instance of our class, we will pass a context, which in turn will be passed to the super
constructor with the following parameters:

Context context: This is the context we passed to our constructor
String name: This is the name of our database

CursorFactory factory: This is the cursor factory object, which can be
passed as null

int version: This is the database version of the database

The next important method is oncreate (). We will build our SQLite query string,
which will create our database table:

"create table " + TABLE NAME + " ("
+ TABLE ROW_ID
+ " integer primary key autoincrement not null,"

+ TABLE ROW_PHOTOID + " BLOB" + ");";

The previous statement is based on the following syntax diagram:

TABLE > >
)

WITHOUT)-»(ROWID

Here, the keyword create table is used to create a table. This is followed by the
table name, the declaration of columns, and their datatype. After preparing our SQL
statement, we will execute it using the execSQL () method of the SQLite database.

In case something is wrong with the query statement that we built earlier, we will
encounter the exception, android.database.sglite.SQLiteException. By default,
the database is formed in the internal memory space allocated to the application. The
folder can be found at /data/data/<yourpackage>/databases/.

[33]

Connecting the Dots

We can easily verify whether our database is formed while running this piece of
code on an emulator or a rooted phone. In Eclipse, go to the DDMS perspective and
then go to the file manager. We can easily navigate to the given folder if we have
sufficient permission, that is, a rooted device. We can also pull up our database with
the help of the file explorer, and with the help of a standalone SQLite manager tool,
we can view our database and perform CRUD operations on it as well. What makes
the Android application's database readable through another tool? Remember how
we discussed cross-platform in SQLite features in the last chapter? In the following
screenshot, notice the table name, the SQL statement used to build it, and the column
names along with their datatype:

X — O sQLite Manager- /home/sunwicked/Desktop/fcontact

XK OB L£mw B F o (Select Profile Database) 7 Go
contact 4| Structure | Browse & Search Execute SQL DB Settings
>Master Table (1) TABLE: contact_table
v
Tal‘t;ll:r(ji)d_metadata Drop Empty Rename Reindex Copy Export
contact_table Create statement
>eali
v sqlite_sequence CREATE TABLE contack_table (_id integer primary key autoincrement not null,contact_name text not
Views (0) null, contact_number text not null,contact_email text not null,photo_id BLOB)
PIndexes (0)
BTriggers (0)
More Info
No. of Records: |0 No. of Indexes: @ No. of Triggers: @
Columns (5)
Column ID Name Type Not Null Default value Primary Key
] id integer 1 null 1
1 contact_name text 1 null 1]
2 contackt_nu... text 1 null 1]
3 contact_email text 1 null 1]
4 photo_id BLOB 0 null 1]
Name Type Nokt Null Default
v Add Column

SQLite 3.8.3.1 Gecko30.0 0.8.1 Exclusive Number of files inselected directory: 8

+ The SQLite Manager tool can be downloaded either in the Chrome
or Firefox browser. The following is the link for Firefox extension:
g http://goo.gl/NLu8JT.

Another handy way of pulling up our database or any other file is by using the adb
pull command:

adb pull /data/data/your package name/databases /file location

Another interesting point to note is that the datatype of TABLE_ROW_PHOTOID is BLOB.
BLOB stands for binary large object. It is different from other datatype, such as text
and integer, as it can store binary data. The binary data can be an image, audio,

or any other type of multimedia object.

[34]

Chapter 2

It is not advisable to store large images in a database; we can store filenames or
locations, but storing images is bit of overkill. Imagine a situation like this where

we store contact images. To amplify this situation, instead of a few hundred contacts,
make it a few thousand contacts. The size of the database will become large and the
access time will also increase. We want to demonstrate the use of BLOBs by storing
contact images.

The onupgrade () method is called when the database is upgraded. The database is
upgraded by changing the version number of the database. Here, the implementation
depends on the need of the application. In some cases, the whole table may have to
be deleted and a new one may need to be created, and in some applications, only
slight modification is needed. How to migrate from one version to another is covered
in Chapter 4, Thread Carefully.

Building the Insert query

To insert a new row of data in the database table, we need to use either the
insert () method or we can make an insert query statement and use the
execute () method:

public void addRow (ContactModel contactObj) {
ContentValues values = prepareData (contactObj) ;
try {
db.insert (TABLE NAME, null, values);
} catch (Exception e) ({
Log.e ("DB ERROR", e.toString());
e.printStackTrace() ;

}
}

In case our table name is wrong, SQLite will give alog no such table message

and the exception, android.database.sqlite.SQLiteException. The addrow ()
method is used to insert contact details in the database row; notice that the parameter
of the method is an object of contactModel. We have created an additional method
prepareData () to construct a ContentValues object from the ContactModel object's
getter methods:

values.put (TABLE ROW NAME, contactObj.getName ()) ;
values.put (TABLE ROW_PHONENUM, contactObj.getContactNo()) ;

[35]

Connecting the Dots

After the preparation of the ContentValues object, we are going to use the insert ()
method of the sQLiteDatabase class:

public long insert (String table, String nullColumnHack, ContentValues
values)

The parameters of the insert () method are as follows:

* table: The database table to insert the row into.

* values: This key-value map contains the initial column values for the table
row. Column names act as keys. Values as the column values.

* nullColumnHack: This is as interesting as its name. Here's a quote from the
Android documentation website:

"optional; may be null. SQL doesn't allow inserting a completely empty row
without naming at least one column name. If your provided values are empty, no
column names are known and an empty row can't be inserted. If not set to null,
the nullColumnHack parameter provides the name of nullable column name to
explicitly insert NULL into the case where your values are empty."

In short, in cases where we are trying to pass an empty ContentValues to be
inserted, SQLite needs some column that is safe to be assigned NULL.

Alternatively, instead of the insert () method, we can prepare the SQL statement
and execute it as shown:

public void addRowAlternative (ContactModel contactObj) {

String insertStatment = "INSERT INTO " + TABLE NAME
4+ " (n

TABLE ROW_NAME + ", "

TABLE _ROW_PHONENUM + " ,6"

TABLE ROW_EMAIL + ","

TABLE_ROW_PHOTOID

n) n

" VALUES "

n <?’?’?’?) n,.

+ 4+ + + o+ 4+ o+

SQLiteStatement s = db.compileStatement (insertStatment) ;
s.bindString (1, contactObj.getName()) ;
s.bindString (2, contactObj.getContactNo()) ;
s.bindString (3, contactObj.getEmail()) ;
if (contactObj.getPhoto() != null)
{s.bindBlob (4, contactObj.getPhoto()) ;}
s.execute () ;

[36]

Chapter 2

We will be covering alternatives for a lot of the methods we mentioned here. The
idea is to make you comfortable with other possible ways to build and execute
queries. The explanation of the alternative part is left as an exercise for you. The
getRowAsObiject () method will return the fetched row from the database in the
form of a ContactModel object, as shown in the following code. It will require rowID
as a parameter to uniquely identify which row in the table we want to access:

public ContactModel getRowAsObject (int rowID)
ContactModel rowContactObj = new ContactModel () ;
Cursor cursor;
try {
cursor = db.query (TABLE NAME, new String[] {
TABLE_ROW_ID, TABLE ROW NAME, TABLE ROW PHONENUM, TABLE ROW EMAIL,
TABLE ROW_PHOTOID },
TABLE ROW_ID + "=" + rowID, null,
null, null, null, null);
cursor.moveToFirst () ;
if (!cursor.isAfterLast())
prepareSendObject (rowContactObj, cursor) ; }
} catch (SQLException e) ({
Log.e ("DB ERROR", e.toString());
e.printStackTrace () ;

}

return rowContactObj;

}

This method will return the fetched row from the database in the form of a
ContactModel object. We are using the sQLiteDatabase () query method

to fetch the row from our contact table against the provided rowID parameter.
The method returns a cursor over the result set:

public Cursor query (String table, String[] columns, String selection,
String[] selectionArgs, String groupBy, String having, String orderBy,
String limit)

The following are the parameters of the previous code:

* table: This denotes the database table against which the query will be run.

* columns: This is a list of the columns that are returned; if we pass null, it
will return all the columns.

* selection: This is where we define which rows are to be returned and
framed as a SQL WHERE clause. Passing null will return all the rows.

[37]

Connecting the Dots

* selectionArgs: We can pass null for this parameter or we may include
question marks in the selection, which will be replaced by the values from
selectionArgs.

* groupBy: This is a filter framed as a SQL Groupr BY clause declaring how to
group rows. Passing null will cause the rows to not be grouped.

* Having: This is a filter that tells which row groups are to be made part of the
cursor, framed as a SQL HAVING clause. Passing null will cause all the row
groups to be included.

* orderBy: This tells the query how to order the rows framed as an SQL ORDER
BY clause. Passing null will use the default sort order.

* limit: This will limit the number of rows returned by the query framed as
the LIMIT clause. Passing null denotes a no LIMIT clause.

Another important concept here is moving the cursor around to access data.
Notice the following methods: cursor.moveToFirst (), cursor.isAfterLast (),
and cursor.moveToNext ().

When we try to retrieve data-building SQL query statements, the database will

first create an object of the cursor object and return its reference. The pointer of this
returned reference is pointing to the Oth location, which is also known as "before
first location" of the cursor. When we want to retrieve data, we have to first move to
the first record; hence, the use of cursor.moveToFirst ().Talking about the rest of
the two methods, cursor.isAfterLast () returns whether the cursor is pointing to
the position after the last row and cursor.moveToNext () moves the cursor to the
next row.

A\l

~ Readers are advised to go through more of the cursor methods at the
Android developer site: http://goo.gl/fR75t8.

Alternatively, we can use the following method:

public ContactModel getRowAsObjectAlternative (int rowlID)

ContactModel rowContactObj = new ContactModel () ;
Cursor cursor;

try {
String queryStatement = "SELECT * FROM "

+ TABLE NAME + " WHERE " + TABLE ROW_ID + "=?";

[38]

Chapter 2

cursor = db.rawQuery (queryStatement,
new String[]{String.valueOf (rowID) }) ;
cursor.moveToFirst () ;

rowContactObj = new ContactModel () ;
rowContactObj.setId(cursor.getInt (0)) ;
prepareSendObject (rowContactObj, cursor) ;

} catch (SQLException e) ({

Log.e("DB ERROR",

e.toString()) ;

e.printStackTrace () ;

}

return rowContactObj;

}

The update statement is based on the following syntax diagram:

DISTINGT e

A

l table-or-subquery l

<

A 4

A

<

[39]

Connecting the Dots

Before we move to other methods in the datamanager class, let's have a look at
fetching data from a cursor object in the preparesendobject () method:

rowObj .setContactNo (cursor.getString (cursor.
getColumnIndexOrThrow (TABLE ROW PHONENUM))) ;

rowObj.setEmail (cursor.getString (cursor.getColumnIndexOrThrow (TABLE
ROW_EMAIL)));

Here cursor.getstring() takes the column index as a parameter and returns

the value of the requested column, whereas cursor.getColumnIndexOrThrow ()
takes the column name as a parameter and returns the zero-based index for the
given column name. Instead of this chaining approach, we can directly use cursor.
getstring (). If we know the column number of the required column to fetch data
from, we can use the following notation:

cursor.getstring(2) ;

Building the Delete query

To delete a particular row of data from our database table, we need to provide the
primary key to uniquely identify the data set to be removed:

public void deleteRow(int rowID)

try {
db.delete (TABLE NAME, TABLE ROW_ID
+ "=" + rowID, null);

} catch (Exception e) {
Log.e ("DB ERROR", e.toString());
e.printStackTrace () ;

}
}

This method uses the SQLiteDatabase delete () method to delete the row of the
given ID in the table:

public int delete (String table, String whereClause, Stringl]
whereArgs)

The following are the parameters of the preceding code snippet:

* table: This is the database table against which the query will be run

* whereClause: This is a clause to be applied when deleting a row; passing
null in this clause will delete all the rows

* whereArgs: We may include question marks in the where clause, which will
be replaced by the values that will be bound as strings

[40]

Chapter 2

Alternatively, we can use the following method:

public void deleteRowAlternative (int rowId) {

String deleteStatement = "DELETE FROM "
+ TABLE NAME + " WHERE "
+ TABLE ROW _ID + "=?2";
SQLiteStatement s = db.compileStatement (deleteStatement) ;
s.bindLong (1, rowId) ;
s.executeUpdateDelete () ;

}

The delete statement is based on the following syntax diagram:

ﬁ DELETE >—’< FROM H qualified-table-name

ith-clause

<
<

> »O

Building the Update query
To update an existing value, we need to use the update () method with the required
parameters:

public void updateRow(int rowId, ContactModel contactObj) {
ContentValues values = prepareData (contactObj) ;

String whereClause = TABLE ROW_ID + "=?";
String whereArgs[] = new Stringl[] {String.valueOf (rowId)};

db.update (TABLE NAME, values, whereClause, whereArgs) ;

}

Generally, we need the primary key, in our case the rowId parameter, to identify
the row to be modified. An SQLiteDatabase update () method is used to modify
the existing data of zero or more rows in a database table:

public int update (String table, ContentValues values, String
whereClause, String[] whereArgs)

[41]

Connecting the Dots

The following are the parameters of the preceding code snippet:

* table: This is the qualified database table name to be updated.
* values: This is a mapping from the column names to the new column values.

* whereClause: This is the optional WHERE clause to be applied when updating
a value/row. If the UPDATE statement does not have a WHERE clause, all the
rows in the table are modified.

* whereArgs: We may include question marks in the where clause, which will
be replaced by the values that will be bound as strings.

Alternatively, you can use the following code:

public void updateRowAlternative (int rowId, ContactModel contactObj)
String updateStatement = "UPDATE " + TABLE NAME + " SET "

+ TABLE ROW_NAME
TABLE_ROW_PHONENUM
TABLE _ROW_EMAIL
TABLE _ROW_PHOTOID + "=?2"

" WHERE " + TABLE ROW_ID + "=?";

+ o+ o+
I
J

+ o+ o+ o+

SQLiteStatement s = db.compileStatement (updateStatement) ;
s.bindString (1, contactObj.getName()) ;
s.bindString (2, contactObj.getContactNo()) ;
s.bindString (3, contactObj.getEmail()) ;
if (contactObj.getPhoto() != null)

{s.bindBlob (4, contactObj.getPhoto()) ;}
s.bindLong (5, rowId) ;

s.executeUpdateDelete () ;

}

The update statement is based on the following syntax diagram:

UPDATE qualified-table-name

L ot dause)+

column-name

[42]

Chapter 2

Connecting the Ul and database

Now that we have our database hooks in place, let's connect our UI with the data:

1. The first step would be to get the data from the user. We can use the
existing contact data from the Android's contact application by means
of the content provider.

We will be covering this approach in the next chapter. For now, we will be
asking the user to add a new contact, which we will insert into the database:

& 5 il 90% @ 11:25

John Rambo
me

0000000000
Phone

.. | john@gmail.com
Emall.J @9

Pick Photo I I : I

Done

2. We are using standard Android UI widgets, such as EditText, TextView,
and Buttons to collect the data provided by the user:
private void prepareSendData()

if (TextUtils.isEmpty (contactName.getText () .toString())
|| TextUtils.isEmpty (

contactPhone.getText () .toString())) {
} else {
ContactModel contact = new ContactModel () ;
contact.setName (contactName.getText () .toString()) ;

DatabaseManager dm = new DatabaseManager (this) ;

[43]

Connecting the Dots

if (reqType == ContactsMainActivity
.CONTACT_ UPDATE_REQ CODE) {
dm.updateRowAlternative (rowId, contact) ;
} else {
dm.addRowAlternative (contact) ;

}

setResult (RESULT OK) ;
finish() ;
}
}

prepareSendData() is the method that is responsible for bundling data into
our object model and later inserting it in our database. Notice that instead of
using null check and length check on contactName, we are using TextUtils.
isEmpty (), which is a very handy method. This returns true if the string is
null or of zero length.

3. We prepare our ContactModel object from the data received by the user
filling the form. We create an instance of our DatabaseManager class and
access our addrow () method passing our contact object to be inserted in the
database, as we discussed earlier.

Another important method is getBlob (), which is used to get the image data
in the BLOB format:

private byte[] getBlob() {

ByteArrayOutputStream blob = new ByteArrayOutputStream() ;
imageBitmap.compress (Bitmap.CompressFormat .JPEG, 100, blob);
byte[] byteArray = blob.toByteArray() ;

return byteArray;

}

4. We create a new ByteArrayOutputStream object blob. Bitmap's compress ()
method will be used to write a compressed version of the bitmap to our
outputstream object:

public boolean compress (Bitmap.CompressFormat format, int
quality, OutputStream stream)

The following are the parameters of the preceding code:

° format: This is the format of a compressed image, in our case, JPEG.

° quality: This is a hint to the compressor, which ranges from o to
100. The value 0 means to compress to a smaller size and low quality,
while 100 is for maximum quality.

[44]

Chapter 2

[e]

stream: This is the output stream to write the compressed data to.

Then, we create our byte [1 object, which will be constructed from the
ByteArrayOutputStream toByteArray () method.

You will notice that we are not covering all the methods; only those
. that are relevant to data operations and some methods or calls that
Q might cause confusion. There are a few more methods that are used to
L invoke the camera or gallery to pick a photo to be used as the contact
image. You are advised to explore the methods in the code provided
along with the book.

Let's move on to the presentation part where we use a custom listview to
display our contact information in a presentable and readable manner.

We are going to skip a bulk of the code related to the presentation and
concentrate on the parts where we fetch and provide data to our listview.

We will also implement a context menu in order to provide a user with

the functionality of deleting a particular contact. We will be touching base

on the database manager methods such as getAllpata () to fetch all our
added contacts. We will use deleteRow () in order to remove any unwanted
contacts from our contacts database. The final outcome will be something like
the following screenshot:

= & . 90% & 11:29

ADD NEW

John Rambo 0000000000
john@gmail.com
1 James Bond TITTTTI7777
James(@gmail.com
Batman 33333333
JE batman@gmail.com

[45]

Connecting the Dots

6.

To make a custom listview similar to the one shown in the preceding screenshot,
we create CustomListAdapter extending BaseAdapter and using the custom
layout for the listview rows. Notice in the following constructor we have
initialized a new array list and will use our database manager to fetch values

by using the getAllData() method to fetch all the database entries:

public CustomListAdapter (Context context) {

contactModelList = new ArrayList<ContactModels () ;
_context = context;
inflater = (LayoutInflater)context.getSystemService (
Context .LAYOUT INFLATER_ SERVI CE) ;
dm = new DatabaseManager (_context) ;
contactModelList = dm.getAllDatal() ;

}

Another very important method is the getview () method. This is where we
inflate our custom layout in a view:

convertView = inflater.inflate(R.layout.contact list row, null);

We will use the view holder pattern to improve the listview scrolling
smoothness:

vHolder = (ViewHolder) convertView.getTag() ;

And finally, set the data to the corresponding views:

vHolder.contact email.setText (contactObj.getEmail()) ;

Holding view objects in a view holder improves the performance
* by reducing calls to £indvViewById (). You can read more about
% this and how to make listview scrolling smooth at http://
’~ developer.android.com/training/improving-layouts/
smooth-scrolling.html.

We will also be implementing a way to delete a listview entry. We will use
the context menu for this purpose. We will first create a menu item in the
menu folder under res of our application structure:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item
android:id="@+id/delete item"
android:title="Delete"/>
<item
android:id="@+id/update item"
android:title="Update"/>
</menus>

[46]

Chapter 2

10.

11.

12.

Now, in our main activity where we will display our listview, we will use
the following call to register our listview with the context menu. In order
to launch the context menu, we need to perform a long press action on the
listview item:

registerForContextMenu (listReminder)

There are a few more methods that we need to implement in order to achieve
the delete functionality:
@Override
public void onCreateContextMenu (ContextMenu menu, View v,
ContextMenuInfo menuInfo)
super .onCreateContextMenu (menu, v, menulnfo) ;
MenuInflater m = getMenulInflater();
m.inflate(R.menu.del menu, menu) ;

}

This method is used to inflate the context menu with the menu we defined
earlier in XML. The MenuInfater class generates menu objects from the
menu XML files. Menu inflation relies heavily on the preprocessing of XML
files that is done at build time; this is done to improve performance.

Now, we will implement a method to capture the click on the context menu:

@Override
public boolean onContextItemSelected (Menultem item) {

case R.id.delete item:

cAdapter.delRow (info.position) ;
cAdapter.notifyDataSetChanged() ;
return true;

case R.id.update item:

Intent intent = new Intent (
ContactsMainActivity.this, AddNewContactActivity.class);

}

Here, we will find the position ID of the clicked listview item and invoke the
delRow () method of the CustomListAdapter, and in the end, we will notify
the adapter that the dataset has changed:

public void delRow(int delPosition)
dm.deleteRowAlternative (contactModellList.
get (delPosition) .getId()) ;
contactModelList.remove (delPosition) ;

[47]

Connecting the Dots

The delrow () method is responsible for connecting our database's
deleteRowAlternative () method to our context menu's delete () method.
Here, we fetch the ID of the object set on the particular listview item and pass
it to the deleteRowAlternative () method of databaseManager in order to
delete the data from the database. After removing the data from the database,
we will instruct our listview to remove the corresponding entry from our
contact list.

In the onContextItemSelected () method, we can also see the update itemin case
the user has clicked on the update button. We will launch the activity to add a new
contact and add the data we already have in case the user wants to edit some fields.
The catch is to know from where the call has been initiated. Is it to add a new entry
or update an existing one? We take the help of the following code to tell the activity
that this action is used to update rather than add a new entry:

intent.putExtra (REQ TYPE, CONTACT UPDATE REQ CODE) ;

Summary

In this chapter, we covered the steps of building up a database-based application,
from scratch and then from schema to object model and then from object model

to building actual databases. We underwent the process of building our database
manager and finally implemented the UI database connect to achieve a fully
functional application. The topics covered ranged from the building blocks of the
model class, database schema to our database handler, and CRUD methods. We
also covered the important concept of connecting a database to the Android views
with proper hooks in place to pick up user data, add data to the database, and show
relevant information after picking up data from the database.

In the next chapter, we will focus on building upon the groundwork we have done
here. We will explore contentproviders. We will also learn how to fetch data
from ContentProviders, how to make our own content provider, the best practices
associated while building them, and much more.

[48]

Sharing is Caring

"Data really powers everything that we do."

— Jeff Weiner, LinkedIn

In the last chapter, we started programming our very own contact manager. We
came across various building blocks of a database-centric application; we covered
database handlers and building queries in order to get meaningful data from our
database. We also explored how to make a connection between our UI and database
and present it in a consumable manner for the end user.

In this chapter, we will learn how to access other application's data via means of
content providers. We will also learn how to build our very own content provider
in order to share our data with other applications. We will look into Android's
providers such as contactprovider. To wrap things up, we will construct a test
application to use our newly constructed content provider.

In this chapter, we will cover the following topics:

* Whatis a content provider?
* Creating a content provider
* Implementing the core methods

* Using a content provider

Sharing is Caring

What is a content provider?

A content provider is the fourth component of an Android application. It is used

to manage access to a structured set of data. Content providers encapsulate the

data, and provide abstraction and the mechanism to define data security. However,
content providers are primarily intended to be used by other applications that access
the provider using a provider's client object. Together, providers and provider
clients offer a consistent, standard interface for data, which also handles interprocess
communication and secure data access.

A content provider allows one app to share data with other applications. By design,
an Android SQLite database created by an application is private to the application;
it is excellent if you consider the security point of view, but troublesome when you
want to share data across different applications. This is where a content provider
comes to the rescue; you can easily share data by building your content provider. It
is important to note that although our discussion will focus on a database, a content
provider is not limited to it. It can also be used to serve file data that normally goes
into files, such as photos, audio, or videos:

Process A Process B

Application A Application B

Content Provider

I I
I I
I I
I I
I I
I I
! S—— !
I !
I I
I I
I I
I I
I I
I I
I I
I I

Content Resolver

Method1()
Method2()

Method1()
Method2()

Methodn()

Methodn()

Inter Process Communication

[50]

Chapter 3

In the preceding diagram, notice how the interaction between Applications A and

B happens while exchanging data. Here, we have an Application A whose activity
needs to access the database of Application B. As we have already seen, the database
of Application B is stored in the internal memory and cannot be directly accessed by
Application A. This is where Content Provider comes into the picture; it allows us to
share data and modify access to other applications. The content provider implements
methods to query, insert, update, and delete data in databases. Application A now
requests the content provider to perform some desired operations on behalf of it.

We will explore both sides of the coin, but we will first use Content Provider to

fetch contacts from a phone's contact database, and then we will build our very own
content provider for others to pick data from our database.

Using existing content providers

Android lists a lot of standard content providers that we can use. Some of them are
Browser, CalendarContract, CallLog, Contacts, ContactsContract, MediaStore,
userDictionary, and so on.

In our current contact manager application, we will add a new feature. In the UI of
the AddNewContactActivity class, we will add a small button to fetch contacts from
a phone's contact list with help from the system's existing ContentProvider and
ContentResolver providers. We will be using the contactsContract provider

for this purpose.

What is a content resolver?

The contentResolver object in the application's context is used to communicate
with the provider as a client. The contentResolver object communicates with the
provider object —an instance of a class that implements ContentProvider. The
provider object receives data requests from clients, performs the requested action,
and returns the results.

[51]

Sharing is Caring

ContentResolver is a single, global instance in our application that provides access
to other application's content providers; we do not need to worry about handling
interprocess communication. The ContentResolver methods provide the basic
CRUD (create, retrieve, update, and delete) functions of persistent storage; it has
methods that call identically named methods in the provider object but does not
know the implementation. We will cover contentResolver in more detail as we
progress through this chapter.

r§| PersonalContactManager

Name, ‘ | -

In the preceding screenshot, notice the new icon on the right-hand side to add
contacts directly from the phone contacts; we modified the existing XML to add the
icon. The corresponding class AddNewContactActivity will also be modified:

public void pickContact () {
try {
Intent cIntent = new Intent(Intent.ACTION_PICK,
ContactsContract.Contacts.CONTENT_URI);
startActivityForResult (cIntent, PICK CONTACT) ;
} catch (Exception e) {
e.printStackTrace() ;
Log.i (TAG, "Exception while picking contact");
}
}

We added a new method pickContact () to prepare an intent in order to pick
contacts. Intent .ACTION_PICK allows us to pick an item from a data source; in
addition, all we need to know is the Uniform Resource Identifier (URI) of the
provider, which in our case is ContactsContract.Contacts.CONTENT URI. This
functionality is also provided by Messaging, Gallery, and Contacts. If you look into
the code from Chapter 2, Connecting the Dots, you will find we have used the same
code to pick images from Gallery. The Contacts screen will pop up allowing us to
browse or search for contacts we require to migrate to our new application. Notice
onActivityResult, thatis, our next stop we will modify this method to handle our
corresponding request to handle contacts. Let us look at the code we have to add to
pick contacts from an Android's contact provider:

[52]

Chapter 3

else if (requestCode == PICK CONTACT) {
if (resultCode == Activity.RESULT OK)

Uri contactData = data.getData() ;
Cursor c = getContentResolver () .query(contactData, null,
null, null, null);
if (c.moveToFirst())
String id = ¢
.getString(c
.getColumnIndexOrThrow (ContactsContract.
Contacts. ID));

String hasPhone = c
.getString(c
.getColumnIndex (ContactsContract.Contacts.
HAS PHONE NUMBER)) ;

if (hasPhone.equalsIgnoreCase("1"))
Cursor phones = getContentResolver ()
.query (ContactsContract .CommonDataKinds.Phone.
CONTENT_URI,
null,
ContactsContract.CommonDataKinds.Phone.
CONTACT_ID
+ " = " 4+ id, null, null);
phones.moveToFirst () ;
contactPhone. setText (phones.getString (phones
.getColumnIndex ("datal"))) ;

contactName
.setText (phones.getString (phones
.getColumnIndex (ContactsContract.Contacts.
DISPLAY NAME))) ;

[53]

Sharing is Caring

To add a little flair to your application, download the entire set of
M stencils, sources, the action bar icon pack, color swatches, and the
Q Roboto font family from the Android developer site, http://goo.
gl/4Msuct. Designing a functional application is incomplete without
a consistent Ul that follows Android guidelines.

We start by checking whether the request code matches ours. Then, we

cross-check resultcode. We get the ContentResolver object by making

a call to getcontentresolver on the Context object; it is a method of the android.
content . Context class. As we are in an activity that inherits from context, we do
not need to be explicit in making a call to it. The same goes for services. We will now
verify whether the contact we picked has a phone number or not. After verifying the
necessary details, we pull the data that we require, such as contact name and phone
number, and set them in relevant fields.

Creating a content provider

A content provider provides access to data in two ways: one is structured data that
goes in the form of a database, as the example we are working on currently, or in the
form of file data, that is, data that goes in the form of pictures, audio, video, and so
on stored in the private space of the application. Before we begin digging into how
to create a content provider, we should also retrospect whether we need one. If we
want to offer data to other applications, allow users to copy data from our app to
another, or use the search framework in our application, then the answer is yes.

Just like other Android components (Activity, Service, or BroadcastReceiver),
a content provider is created by extending the ContentProvider class. Since
ContentProvider is an abstract class, we have to implement the six abstract
methods. These methods are as follows:

Method Usage

void onCreate () Initializes the provider

String getType (Uri) Returns the MIME type of data in the content
provider

int delete(Uri uri, Deletes data from the content provider

String selection,
String[] selectionArgs)

[54]

Chapter 3

Method Usage

Uri insert (Uri uri, Inserts new data into the content provider
ContentValues values)

Cursor query(Uri uri, Returns data to the caller
String[] projection,

String selection,

String[] selectionArgs,

String sortOrder)

int update (Uri uri, Updates the existing data in the content provider
ContentvValues values,

String selection,

String[] selectionArgs)

These methods will be dealt with in more detail later as we progress through the
chapter and build our application.

Understanding content URIs

Every data access method of contentpProvider has a content URI, as an argument
that allows it to determine the table, row, or file
to access. It generally follows the following structure:

content://authority/Path/Id

Let's analyze the breakdown of the components of the content: // URIL The scheme
for content providers is always content. The colon and double-slash (: //) act as

a separator from the authority part. Then, we have the authority part. By rule,
authorities have to be unique for every content provider. The naming convention the
Android documentation recommends using is the fully qualified class name of your
content provider subclass. Generally, it is built as a package name plus a qualifier for
each content provider we publish.

The remaining part is optional, also referred to as path, and is used for segregation
between different types of data our content provider can provide. A very good
example is the Mediastore provider which needs to distinguish between audio,
video, and image files.

Another optional part is id, which points to a specific record; depending on whether
id is present or not, the URI becomes ID-based or directory-based, respectively.
Another way to understand it would be that an ID-based URI enables us to interact
with data individually at row level, whereas a directory-based URI enables us to
interact with multiple rows of a database.

[55]

Sharing is Caring

For example, consider content://com.personalcontactmanager.provider/
contacts; we will encounter this soon enough as we move ahead with the chapter
where we define how to access the content provider we are currently building.

On a side note, the package name for applications should always be
unique; this is because all the applications on Play Store are identified
by their package name. All the updates for an application on Play Store
- need to have the same package name and be signed with the same
% keystore used initially. For instance, the following is the Play Store link
~ of a Gmail application; notice that at the end of URL, we will find the
package name of the application:
play.google.com/store/apps/details?id=com.google.
L android.gm -

Declaring our contract class

Declaring a contract is a very important part of building our content provider. This
class, as the name suggests, will act as a contract between our content provider and
the application that is going to access our content provider. Itis a public final class,
which contains constant definitions for URIs, column names, and other metadata. It
can also contain Javadoc, but the biggest advantage is that the developer using it

need not worry about the names of tables, columns, and constants, leading to less
error-prone code.

The contract class provides us with the necessary abstraction; we can change

the underlying operations as and when required and we can also change the
corresponding data manipulation affecting other dependent applications. An
important thing to note is that we need to be careful while changing the contract

in future; if we are not careful, we might break the other applications that are using
our contract class.

Our contract class looks like the following:

public final class PersonalContactContract {

/**

* The authority of the PersonalContactProvider

*/

public static final String AUTHORITY = "com.personalcontactmanager.
provider";

public static final String BASE PATH = "contacts';

/**

[56]

Chapter 3

* The Uri for the top-level PersonalContactProvider

* authority

*/

public static final Uri CONTENT URI = Uri.parse("content://" +

AUTHORITY

+ "/" + BASE PATH) ;

/**

* The mime type of a directory of items.

*/

public static final String CONTENT TYPE =
ContentResolver.CURSOR DIR BASE TYPE +
"/vnd.com.personalcontactmanager.provider.table";

/**

* The mime type of a single item.

*/

public static final String CONTENT ITEM TYPE =
ContentResolver.CURSOR ITEM BASE TYPE +
"/vnd.com.personalcontactmanager.provider.table

item";

/**

* A projection of all columns

* in the items table.

*/

public static final String[] PROJECTION ALL = { " _id",

"contact_name",
"contact email",

/**

"contact number",
"photo id" };

* The default sort order for

* queries containing NAME fields.

*/

//public static final String SORT ORDER DEFAULT = NAME + " ASC";

public static final class Columns

public
public
public
public
public

static
static
static
static
static

String
String
String
String
String

TABLE_ROW_ID = "_id";

TABLE _ROW_NAME = "contact_ name";
TABLE ROW_PHONENUM = "contact number";
TABLE ROW_EMAIL = "contact email";
TABLE_ROW_PHOTOID = "photo_id";

[57]

Sharing is Caring

AUTHORITY is the symbolic name that identifies the provider among many other
providers registered as part of an Android system. BASE_PATH is the path of the table.
CONTENT_URI is the URI of the table encapsulated by the provider. CONTENT TYPE is
the Android platform's base MIME type for content URI containing a cursor of zero
or more items. CONTENT ITEM TYPE is the Android platform's base MIME type for
content URIs containing a cursor of a single item. PROJECTION ALL and Columns
contain the column IDs of the table.

Without this information, other developers will not be able to access your provider
even though it is open for access.

There can be many tables inside a provider and each should have a
— unique path; the path is not a real physical path but an identifier.

Creating UriMatcher definitions

UriMatcher is a utility class, which aids in matching URIs in content providers. The
addurI () method takes the content URI patterns that the provider should recognize.
We add a URI to match, and the code to return when this URI is matched:

addURI (String authority, String path, int code)

We pass authority, a path pattern, and an integer value to the addurI () method of
UriMatcher; it returns the int value, which we defined as constant when we tried to
match patterns.

Our uriMatcher looks like the following:

private static final int CONTACTS TABLE = 1;
private static final int CONTACTS TABLE ITEM = 2;

private static final UriMatcher mmURIMatcher
UriMatcher (UriMatcher .NO_ MATCH) ;
static {
mmURIMatcher.addURI (PersonalContactContract .AUTHORITY,
PersonalContactContract .BASE PATH, CONTACTS TABLE) ;
mmURIMatcher.addURI (PersonalContactContract .AUTHORITY,
PersonalContactContract.BASE PATH+ "/#",
CONTACTS TABLE I TEM) ;

new

}

Notice that it also supports the use of wildcards; we have used hashtag (#) in the
preceding code snippet, we can also use wildcards such as *. In our case, with the
hashtag, " content://com.personalcontactmanager.provider/contacts/2"
this expression matches, but using * "content://com.personalcontactmanager.
provider/contacts it doesn't.

[58]

Chapter 3

Implementing the core methods

In order to build our content provider, the next step will be to prepare our core
database access and data modifying methods, better known as CRUD methods. This
is where the core logic of how we want to interact with our data depending on the
insert, query, or delete calls received is specified. We will also implement the Android
architecture's life cycle methods such as oncreate ().

Initializing the provider through the
onCreate() method

We create an object of our database manager class in onCreate (). There should

be minimum operations in oncreate () as it runs on the Main Ul thread, and it
may cause lag for some users. It is good practice to avoid long-running tasks in
oncreate () as it increases the startup time of the provider. It is even recommended
to defer database creation and data loading until our provider actually receives a
request for the data, that is, to move long-lasting actions to the CRUD methods:

@Override

Public Boolean onCreate () {
dbm = new DatabaseManager (getContext ()) ;
return false;

Querying records through the query() method

The query () method will return a cursor over the result set. The URI is passed to our
UriMatcher to see whether it matches any patterns we defined earlier. In our switch case
statement, if it is a table-item-related case, we check whether the selection statement

is empty; in case it is, we build our selection statement up to the lastpathsegment, else
we append the selection to the 1astpathsegment statement. We use a DatabaseManager
object to a run query on the database and get a cursor as a result. It is expected of the
query () method to throw an I111egalArgumentException to inform of an unknown
URT; it is also good practice to throw a nullPointerException in case we encounter

an internal error during the query process:

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

int uriType = mmURIMatcher.match (uri) ;

[59]

Sharing is Caring

switch (uriType)

case CONTACTS_ TABLE:
break;
case CONTACTS TABLE ITEM:
if (TextUtils.isEmpty(selection))
selection = PersonalContactContract.Columns.TABLE ROW ID

+ "=" + uri.getLastPathSegment () ;

} else {

selection = PersonalContactContract.Columns.TABLE ROW ID
+ "=" + uri.getLastPathSegment () +
" and " + selection;
}
break;
default:
throw new IllegalArgumentException ("Unknown URI: " + uri);

Cursor cr = dbm.getRowAsCursor (projection, selection,
selectionArgs, sortOrder) ;

return cr;

Remember that an Android system must be able to communicate
the exception across process boundaries. Android can do this for the
following exceptions that may be useful in handling query errors:

%‘ * IllegalArgumentException: You may choose to throw
this if your provider receives an invalid content URI
* NullPointerException: This is thrown when the object is
null and we try to access its field or method

[60]

Chapter 3

Adding records through the insert() method

As the name suggests, the insert () method is used to insert a value in our database.
It returns the URI of the inserted row and, while checking the URI, we need to
remember that an insertion can happen at the table level, hence the operations in

the method are processed at the URI that matches the table. After matching, we use
the standard DatabaseManager object to insert our new value into the database. The
content URI for the new row is constructed by appending the new row's _1ID value to
the table's content URI:

@Override
public Uri insert (Uri uri, ContentValues values) ({

int uriType = mmURIMatcher.match (uri) ;
long id;

switch (uriType)
case CONTACTS_TABLE:
id = dbm.addRow (values) ;
break;
default:
throw new IllegalArgumentException ("Unknown URI: " + uri);

}

Uri ur = ContentUris.withAppendedId (uri, id);
return ur;

Updating records through the update()
method

The update () method updates an existing row in the appropriate table, using the
values in the ContentVvalues argument. First, we identify the URI, whether it is
directory-based or ID-based, then we build our selection statement as we did in

the query () method. Now, we will execute the standard updateRow () method of
DatabaseManager that we defined earlier while building this application in Chapter
2, Connecting the Dots, which returns the number of affected rows.

The update () method returns the number of rows updated. Based on the selection
clause, one or more rows can be updated:

@Override
public int update (Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

[61]

Sharing is Caring

int uriType = mmURIMatcher.match (uri) ;

switch (uriType)
case CONTACTS_ TABLE:
break;
case CONTACTS TABLE ITEM:
if (TextUtils.isEmpty(selection))
selection = PersonalContactContract.Columns.TABLE ROW ID
+ "=" + uri.getLastPathSegment () ;
} else {
selection = PersonalContactContract.Columns.TABLE ROW ID
+ "=" + uri.getLastPathSegment ()
+ " and " + selection;
}
break;
default:
throw new IllegalArgumentException ("Unknown URI: " + uri);

int count = dbm.updateRow(values, selection, selectionArgs) ;

return count;

Deleting records through the delete() method

The delete () method is very similar to the update () method and the process of
using it is similar; here, the call is made to delete a row instead of updating it. The
delete () method returns the number of rows deleted. Based on the selection clause,
one or more rows can be deleted:

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {

int uriType = mmURIMatcher.match (uri) ;

switch (uriType)
case CONTACTS_ TABLE:

break;
case CONTACTS TABLE ITEM:

if (TextUtils.isEmpty(selection))

selection = PersonalContactContract.Columns.TABLE ROW ID
+ "=" + uri.getLastPathSegment () ;
} else {

[62]

Chapter 3

selection = PersonalContactContract.Columns.TABLE ROW ID

+ "=" + uri.getLastPathSegment ()
+ " and " + selection;
}
break;
default:
throw new IllegalArgumentException ("Unknown URI: " + uri);

int count = dbm.deleteRow(selection, selectionArgs) ;

return count;

Getting the return type of data through
the getType() method

The signature of this simple method takes a URI and returns a string value; every
content provider must return the content type for its supported URIs. A very
interesting fact is that no permissions are needed for an application to access this
information; if our content provider requires permissions, or is not exported, all
the applications can still call this method regardless of their access permissions to
retrieve MIME types.

All these MIME types should be declared in the contract class:

@Override
public String getType (Uri uri) {

int uriType = mmURIMatcher.match (uri) ;
switch (uriType) {
case CONTACTS_ TABLE:
return PersonalContactContract.CONTENT TYPE;
case CONTACTS TABLE ITEM:
return PersonalContactContract.CONTENT ITEM TYPE;
default:
throw new IllegalArgumentException ("Unknown URI: " + uri);

[63]

Sharing is Caring

Adding a provider to a manifest

Another important step is to add our content provider to a manifest, like we do with
other Android components. We can register multiple providers here. The important
bit here, other than android:authorities, is android:exported; it defines whether
the content provider is available for other applications to use. In case of true, the
provider is available to other applications; if it is false, the provider is not available
to other applications. If applications have the same user ID (UID) as the provider,
they will have access to it:

<provider
android:name="com.personalcontactmanager.provider.
PersonalContactProvider"
android:authorities="com.personalcontactmanager.provider"
android:exported="true"
android:grantUriPermissions="true" >
</providers>

Another important concept is permissions. We can add additional security by
adding read and write permissions, which the other application has to add in their
manifest XML file and, in turn, automatically inform a user that they are going to use
a particular application's content provider either to read, write, or both. We can add
permissions in the following manner:

android:readPermission="com.personalcontactmanager.provider.READ"

Using a content provider

The main reason we built a content provider was to allow other applications to
access the complex data store in our database and perform CRUD operations.

We will now build one more application in order to test our newly built content
provider. The test application is very simple, comprising of only one activity class
and one layout file. It has standard buttons to perform actions. Nothing fancy, just
the tools for us to test the functionality we just implemented. We will now delve into
the TestMainActivity class and look into its implementation:

public class TestMainActivity extends Activity {

public final String AUTHORITY = "com.personalcontactmanager.provider";
public final String BASE PATH = "contacts";
private TextViewqueryT, insertT;

public class Columns {

[64]

Chapter 3

public final static String TABLE ROW ID = " id";
public final static String TABLE ROW NAME = "contact name";
public final static String TABLE ROW PHONENUM =

"contact number";
public final static String TABLE ROW _EMAIL = "contact email";
public final static String TABLE ROW PHOTOID = "photo id";

}

To access a content provider, we need details such as AUTHORITY and BASE_PATH

and the names of the columns of database tables; we need to access the public class
Columns for this purpose. We have more tables and we will see more of these classes.
Generally, all this necessary information will be taken from the published contract
class of the content provider. Some content providers also require implementing read
or write permissions in the manifest:

<uses-permissionandroid:name="AUTHORITY.permission.WRITE TASKS"/>

In some cases, the content provider we need to access can ask us to add permissions
in our manifest. When the users install the application, they will see an added
permission in their permission list:

@Override

protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity test main) ;
queryT = (TextView) findvViewById(R.id.textQuery) ;
insertT = (TextView) findvViewById(R.id.textInsert);

}

To try out some other app's content provider, refer to
% http://goo.gl/NEX2hN.
o~ It lists how you can use the Any.do's content provider—a
very famous task application.

We will set our layout and initialize the views we require in onCreate () of activity.
To query, we first need to prepare the URI object that matches the table.

Content resolver now comes into play; it acts as a resolver for the content URI we
prepared. Our getContentResolver.query () method, in this case, will fetch all the
columns and rows. We will now move the cursor to the first position in order to read
the result. For testing purposes, it's read as a string:

public void query (View v)

[65]

Sharing is Caring

Uri contentUri = Uri.parse("content://" + AUTHORITY
+ "/ BASE_PATH);

Cursor cr = getContentResolver () .query(contentUri, null,
null, null, null);

if (cr != null) {
if (cr.getCount () > 0) {
cr.moveToFirst () ;

String name = cr.getString(cr.getColumnIndexOrThrow (
Columns.TABLE ROW_NAME)) ;

queryT.setText (name) ;

}

Now, we build a URI to read a particular row instead of a complete table. We already
mentioned that to make URI ID-based, we need to add the ID part to our existing
contenturi. Now, we build our projection string array to be passed as a parameter
in our query () method:

public void query (View v)

Uri rowUri = contentUri = ContentUris.withAppendedId
(contentUri, getFirstRowId());

String[] projection = new Stringl[] ({
Columns.TABLE ROW NAME, Columns.TABLE ROW PHONENUM,
Columns.TABLE_ROW EMAIL, Columns.TABLE ROW PHOTOID };

cr = getContentResolver () .query(contentUri, projection,
null, null, null);

if (cr != null) {
if (cr.getCount () > 0) {
cr.moveToFirst () ;
String name = cr.getString(cr.getColumnIndexOrThrow (
Columns.TABLE ROW_NAME)) ;

[66]

Chapter 3

queryT.setText (name) ;

}

The getFirstRowId () method gets the ID of the first row in the table. It is done
because the ID of the first row will not always be 1. It changes when the rows are
deleted. If the first item in the table with row ID 1 is deleted, then the second item
with row ID 1 becomes the first item:

private int getFirstRowId() {

int id = 1;
Uri contentUri = Uri.parse("content://" + AUTHORITY + "/"
+ "contacts") ;
Cursor cr = getContentResolver () .query(contentUri, null,
null, null, null);
if (cr != null) {
if (cr.getCount () > 0) {
cr.moveToFirst () ;
id = cr.getlInt (cr.getColumnIndexOrThrow (
Columns.TABLE ROW_ID)) ;

}

return id;

!
Let's take a closer look at the query () method:

public final Cursor query (Uri uri, String[] projection, String
selection, String[] selectionArgs, String sortOrder)

Present in API level 1, the query () method returns a cursor over the result set
against the parameters we supplied. The following are the parameters of the
preceding code:

* uri: This is contentURI in our case, using the content : // scheme for the
content to be retrieved. It can be ID-based or directory-based.

* projection: This is a list of the columns to be returned as we have prepared
using the column names. Passing null will return all the columns.

* selection: Formatted as a SQL WHERE clause, excluding the WHERE itself,
this acts as a filter declaring which rows to return.

[67]

Sharing is Caring

selectionArgs: We may include » parameter markers in selection. Android
SQL query builder will replace the » parameter markers by the values bound
as string from selectionArgs, in the order that they appear in the selection.

sortorder: This tells us how to order the rows, formatted as an SQL ORDER
BY clause. A null value will use the default sort order.

According to official documentation, there are a few guidelines we
should follow for optimum performance:

. * Provide an explicit projection to prevent reading data from
% storage that isn't going to be used.
o * Use question mark parameter markers such as phone="?
instead of explicit values in the selection parameter, so that
queries that differ only by those values will be recognized as
the same for caching purposes. -

The same process we used earlier to check for null values and an empty cursor is
performed, and finally, a required value is extracted from the cursor.

Now, let us look at the insert method for our test application.

We start by building our content value object and relevant key-value pairs, for
instance, putting a phone number in the relevant Columns. TABLE_ROW_PHONENUM
field. Notice that because details such as a column's name were shared with us in

the form of a class, we need not worry about details such as the actual column name.
We just need to access it via means of the Columns class. This ensures that we only
need to update the relevant values. If in future the content provider undergoes some
change and changes the table names, the rest of the functionality and implementation
remains the same. We build our projection string array with the column names we
required, as we did earlier in the case of querying the content provider for data.

We also build our content URI; notice that it matches the table and not individual
rows. The insert () method also returns a URI unlike the query () method, which
returned a cursor over the result set:

public void insert (View v) {

String name = getRandomName () ;
String number = getRandomNumber () ;

ContentValues values = new ContentValues() ;

values.put (Columns.TABLE ROW NAME, name) ;

values.put (Columns.TABLE ROW_ PHONENUM, number) ;
values.put (Columns.TABLE ROW_EMAIL, name + "@gmail.com") ;
values.put (Columns.TABLE ROW_ PHOTOID, "abc");

[68]

Chapter 3

String[] projection = new Stringl[] ({
Columns.TABLE ROW NAME, Columns.TABLE ROW PHONENUM,
Columns.TABLE_ROW EMAIL, Columns.TABLE ROW PHOTOID };

Uri contentUri = Uri.parse("content://" + AUTHORITY + "/"
+ BASE_PATH) ;

Uri insertedRowUri = getContentResolver () .insert (
contentUri, values) ;

//checking the added row
Cursor cr = getContentResolver () .query (insertedRowUri,
projection, null, null, null);

if (cr != null) {
if (cr.getCount () > 0) {
cr.moveToFirst () ;
name = cr.getString(cr.getColumnIndexOrThrow (
Columns.TABLE ROW NAME)) ;
insertT.setText (name) ;

}

The getRandomName () and getRandomNumber () methods generate a random name

and number to insert in the table:

private String getRandomName () {

Random rand = new Random() ;

String name = "" + (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26))
+ (char) (122-rand.nextInt (26)) ;

return name;

public String getRandomNumber () {

[69]

Sharing is Caring

Random rand = new Random() ;
String number = rand.nextInt (98989) *rand.nextInt (59595)+"";

return number;

}
Let's take a closer look at the insert () method:

public final Uri insert (Uri url, ContentValues values)
The following are the parameters of the preceding line of code:

¢ url: The URL of the table to insert the data into

* values: The values for the newly inserted row in the form of a
ContentValues object, the key is the column name for the field

Notice that after inserting, we are running the query () method again with the
URI that was returned by the insert () method. We run this to see that the value
we intended to insert has been inserted; this query will return columns as per the
projection of the row whose ID is appended.

So far, we have covered the query () and insert () methods; now, we will cover the
update () method.

We progressed in the insert () method by preparing the Contentvalues object.
Similarly, we will prepare an object that we will use in the update () method of
ContentResolver to update an existing row. We will build our URI in this case up to
the ID, as this operation is ID based. Update the row as pointed by the rowUri object
and it will return the number of rows updated, which will be the same as the URIL;

in this case, it is rowUri that points to only a single row. An alternate method could
be using a combination of contentUri (which points to the table) and selection/
selectionArgs. In this case, the rows updated could be more than one as per the
selection clause:

public void update (View v) {

String name = getRandomName () ;
String number = getRandomNumber () ;

ContentValues values = new ContentValues() ;

values.put (Columns.TABLE ROW NAME, name) ;

values.put (Columns.TABLE ROW PHONENUM, number) ;
values.put (Columns.TABLE ROW_EMAIL, name + "@gmail.com") ;
values.put (Columns.TABLE ROW_ PHOTOID, " ");

Uri contentUri = Uri.parse("content://" + AUTHORITY
+ "/ BASE_PATH);

[70]

Chapter 3

Uri rowUri = ContentUris.withAppendedId (
contentUri, getFirstRowId()) ;
int count = getContentResolver () .update (rowUri, wvalues, null, null);

1
Let's take a closer look at the update () method:

public final int update (Uri uri, ContentValues values, String where,
String[] selectionArgs)

The following are the parameters of the preceding line of code:

* uri: This is the content URI we wish to modify

* values: This is similar to the values we used earlier with other methods;
passing a null value will remove an existing field value

* where: A SQL WHERE clause that acts as a filter to rows before updating them

We can run the query () method again to see whether the change is reflected; this
activity has been left as an exercise for you.

The last method is delete (), which we require in order to complete our arsenal

of CRUD methods. The delete () method begins in a similar fashion as the rest of
the methods do; first, prepare our content URI at the directory level and then build
it for the ID level, that is, at the individual row level. After that, we pass it to the
delete () method of contentResolver. Unlike the query () and insert () methods
that return an integer value, the delete () method deletes a row as pointed by our
ID-based content URI object rowUri and returns the number of rows deleted. This
will be 1 in our case as our URI points to only one row. An alternate method could
be using a combination of contentUri, which points to the table, and selection/
selectionArgs. In this case, the rows deleted could be more than 1 as per the
selection clause:

public void delete (View v) ({

Uri contentUri = Uri.parse("content://" + AUTHORITY
+ "/ BASE PATH) ;
Uri rowUri = contentUri = ContentUris.withAppendedId (
contentUri, getFirstRowId()) ;
int count = getContentResolver () .delete(rowUri, null,
null) ;

[71]

Sharing is Caring

The Ul and output look like the following;:

©=9 8 @ G "l 50% 0 12:10

@ ContentTestApp

uer
a lavigtkx
insert
ibedzsmu
update
delete
_— -

If you want to dive in a little more into how an Android content
. provider actually manages various write and read calls between
% various tables (hint: it uses CountDownLatch), you can check out the
— video at Coursera by Dr. Douglas C. Schmidt for more information.
The video can be found at https://class.coursera.org/posa-
002/lecture/49.

Summary

In this chapter, we covered the basics of content providers. We learned how to access
system-provided content providers and even our own version of a content provider.
We went from creating a basic contact manager to evolving it into a fully-fledged
citizen of the Android ecosystem by implementing ContentProvider in order to
share data across other applications.

In the following chapter, we will cover Loaders, CursorAdapters, nifty hacks and
tips, and some open source libraries to make our life easier while working with the
SQLite database.

[72]

Thread Carefully

" Premature optimization is the root of all evil."

-Donald Knuth

We covered a very important concept in the previous chapter: content provider.
We progressed in a step-by-step manner, covering essential questions such as how
to create a content provider and how to use an existing system with a content
provider in detail. We also covered how to use the content provider we created

by means of creating a test application to access it.

In this chapter, we will explore how to use loaders, in particular, a loader

called cursor loader. We will look at how to interact with a content provider
asynchronously with the help of an example. We will discuss the important topic
of security in the Android database and how we can ensure that data is secured
inan Android model. Last but not least, we will also see some code snippets that
will cover topics such as how to upgrade a database and how to ship a preloaded
database with our application.

In this chapter, we will cover the following topics:
* Loading data with CursorLoader

* Data security

* General tips and libraries

Loading data with CursorLoader

CursorLoader is part of the loader family. Before we dive deep into an example
explaining how to use CursorLoader, we will explore a bit about loaders and
why it is important in the current scenario.

Thread Carefully

Loaders

Introduced in HoneyComb (API level 11), loaders serve the purpose of asynchronously
serving data in an activity or fragment. The need to have loaders arose from many
things: calls to various time-consuming methods on the main UI thread in order to
fetch data that leads to a clunky UI, and even in some cases, the dreaded ANR box.
This is demonstrated in the following screenshot:

Hello World isn't responding.

Do you want to close it?

Wait 0K

For example, the managedQuery () method, which was deprecated in API 11,
was a wrapper around the ContentResolver'squery () method.

In the previous chapter, while highlighting how to fetch data from a content
provider inside the query method, we used getContentResolver.query () instead
of managedQuery () . Using deprecated methods can lead to problems with future
releases and should be avoided.

Loaders provide asynchronous loading of data for an activity of fragment on a
non-UI thread. The loader or the subclasses of a loader perform their work in a
separate thread and deliver their results to the main thread. The segregation of
calls from the main thread and the posting of results on the main thread while
working in a separate thread ensure that we have a responsive application.

Post the loader era, we were faced with problems such as when an
activity should be recreated due to a configuration change, for instance,
rotation of a device's orientation. We had to worry about data and
refetch data while creating a new instance. But with loaders, we don't
have to worry about all these as loaders automatically reconnect to the

M last loader's cursor when being recreated after a device configuration
change and refetch the data. As an added bonus, loaders monitor the
data source and deliver new results when the content changes. In
other words, loaders automatically get updated, and hence, there is no
need to requery the cursor. Read more about keeping your Android
application responsive and avoiding application not responding (ANR)
messages at the Android developer website, http://developer.

L android.com/training/articles/perf-anr.html. -

[74]

Chapter 4

Loader API's summary

Let's look at the loader API that consists of various classes and interfaces. In this
section, we will look at the implementation aspect of loader API's classes/interfaces:

Class/interface

Description

LoaderManager

LoaderManager.LoaderCallbacks

Loader

AsyncTaskLoader

CursorLoader

This is an abstract class associated with

an activity or fragment to manage a

loader. Although there can be one or more
loader instances, only one instance of
LoaderManager per activity or fragment
is permitted. It is responsible for dealing
with the activity or fragment's life cycle and
particularly helpful when running long-
running tasks.

This is a callback interface we
must implement to interact with
LoaderManager.

This is the base class for a loader. It's an
abstract class that performs asynchronous
loading of data. We can implement our own
subclass instead of using subclasses such as
CursorLoader.

This is an abstract loader that provides
AsyncTask to perform the work in the
background, that is, on a separate thread;
however, the result is delivered on the main
thread. According to the documentation, it
is advised to subclass AsyncTaskLoader
instead of directly subclassing the Loader
class.

This is a subclass of AsyncTaskLoader
that queries ContentResolver on the
background thread in a non-blocking
manner and returns a cursor.

Using CursorLoader

Loaders provide us with a lot of handy features; one of them is that once our activity
or fragment implements a loader, it need not worry about refreshing the data. A
loader monitors the data source for us, reflects any changes, and even performs

new loads; all of this is done asynchronously. Hence, we do not need to take care of
implementing and managing threads, offloading queries on the background thread,
and retrieving results once the query is completed.

[75]

Thread Carefully

A loader can be in any one of the following three distinct states:

Started state: Once started, loaders remain in this state until stopped or reset.
It executes loads, monitors any change, and reflects the same to the listeners.

Stopped state: Here, loaders continue to monitor changes but do not pass the
result to the clients.

Reset state: In this state, loaders release any resources they have held and do
not perform the process of executing, loading, or monitoring data.

We will now relook at our personal contact manager application and make

the corresponding changes to implement CursorLoader in our application.
CursorLoader, as the name suggests, is a loader that queries ContentResolver

and returns a cursor. This is a subclass of AsyncTaskLoader and performs the cursor
query on the background thread so that it does not block the application's UL In

the diagram, you can see the various methods of a loader callback and how they
communicate with CursorLoader and CursorAdapter.

onCreatelLoader()

onlLoadFinished() ® Cursor Adapter

onLoaderReset()

Provider

For implementing a cursor loader, we need to perform the following steps:

1.

To begin with, we need to implement the LoaderManager.
LoaderCallbacks<Cursor> interface:

public class ContactsMainActivity extends Activity implements
OnClickListener, LoaderManager.LoaderCallbacks<Cursor> {..}

Then, implement the methods that reflect the distinct states of a loader:
onCreatelLoader (), onLoadFinished (), and onLoaderReset ().

[76]

Chapter 4

To initiate a query, we will make a call to the LoaderManager. initLoader ()
method; this initializes the background framework:

getLoaderManager () .initLoader (CUR_LOADER, null, this);

The cUr_LOADER value is passed on to the oncreateLoader () method,
which acts as an ID for the loader. A call to initloader () invokes
onCreateLoader (), passing the ID we used to call initloader ():

@Override
public Loader<Cursor> onCreatelLoader (int loaderID,
Bundle bundle)
{
switch (loaderID) ({
case CUR_LOADER:

return new CursorLoader (this, PersonalContactContract.CONTENT
URI,

PersonalContactContract.PROJECTION ALL, null, null, null);
default: return null;

}
}

We use a switch case to take the loader based on its ID and return null

for an invalid ID. We create a URI object contentUri and pass it as a
parameter to the CursorLoader constructor. A point to note is that we

can implement a cursor loader using either this constructor or an empty
unspecified cursor loader, CursorLoader (Context context). Also, we
can set values via methods such as setUri (Uri), setSelection (String),
setSelectionArgs (Stringl[]), setSortOrder (String), and
setProjection (String[]):

public CursorLoader (Context context, Uri uri, String[] projection,
String selection, String[] selectionArgs, String sortOrder)

The following are the parameters of the previous code:

[e]

context: This is the parent activity context.

o

uri: We employ contentURI, using the content:// scheme,
to retrieve the content. It can be based on an ID or directory.

projection: This is a list of columns to be returned as we are prepared
with the column names. Passing null will return all the columns.

selection: This is formatted as a SQL WHERE clause, excluding the
WHERE itself, acting as a filter declaring which rows to return.

[77]

Thread Carefully

° selectionArgs: We may include question marks in the selection,
which will be replaced by the values bound as a string from
selectionArgs, and they will appear in the order of their selection.

° sortorder: This tells us how to order rows, formatted as a SQL
ORDER BY clause. A null value will use the default sort order.

4. onCreateLoader starts the query in the background, and when the query is
finished, the cursor loader object is passed to the background's framework,
which calls onLoadFinished (), where we provide our adapter instance with
the cursor object data:

@Override
public void onLoadFinished (Loader<Cursor> loader, Cursor data)

{

this.mAdapter.changeCursor (data) ;

}

5. The adapter is a subclass of Cursoradapter. Instead of the traditional
getView () method, which we get by extending BaseAdapter, we have the
bindview () and newView () methods. We inflate our listview row layout in
the view object in newview, and in bind view, we perform an action similar
to the getview () method. We define our layout elements and associate
theme with the relevant data:

public class CustomCursorAdapter extends CursorAdapter

{

public void bindView(View view, Context argl, Cursor cursor)
finalImageView contact photo = (ImageView) view
.findviewById(R.id.contact photo) ;

contact email.setText (cursor.getString(cursor
.getColumnIndexOrThrow (DatabaseConstants.TABLE ROW
EMAIL))) ;
setImage (cursor.getBlob (cursor
.getColumnIndex (DatabaseConstants.TABLE ROW PHOTOID)),
contact_photo) ;

@Override
public View newView (Context arg0, Cursor argl, ViewGroup arg2)

{

final View view = LayoutInflater.from(context) .inflate (

[78]

Chapter 4

10.

R.layout.contact list row, null, false);
return view;

}

This method is invoked when the cursor loader is being reset. We clear out
any reference to the cursor by passing null to the changeCursor () method.
Whenever the data associated with a cursor changes, the cursor loader calls
this method before it reruns the query to clear any past references, thereby
preventing memory leaks. Once onLoaderReset () is set, the cursor loader
will rerun its query:

@Override

public void onLoaderReset (Loader<Cursor> loader)

{

this.mAdapter.changeCursor (null) ;

}

Now we move on to our content provider where we have to make small
changes to ensure that any changes we make to the database are reflected
in our application's list view:

cr.setNotificationUri (getContext () .getContentResolver () ,uri) ;

We need to register observer in ContentResolver through the cursor in the
query method of contentpProvider. We do this to watch the content URI for
any changes, which can be the URI of a specific data row or table in our case:

getContext () .getContentResolver () .notifyChange (ur,null) ;

In the insert () method, we use the notifyChange () method to inform
registered observers that a row was updated. By default, the cursoraAdapter
objects will get this notification. So, now when we add a new row of data

by inserting a new contact in our application, the insert () method of
contentProvider is invoked via a call:

resolver.insert (PersonalContactContract.CONTENT URI,
prepareData (contact)) ;

A similar action needs to be performed for the delete () and update ()
methods, both of which have been left as an exercise for the reader as most
of the boilerplate code is present. Implementing a loader is simple and saves
us from a lot of headache when it comes to threading, and a jarring Ul is
highly recommended to perform this task.

[79]

Thread Carefully

loadInBackground () is another important method; this returns
a cursor instance for a load operation and is called on the worker
* thread. Ideally, loadInBackground () should not directly return
the result of the load operation, but we can achieve this by overriding
A .

the deliverResult (D) method. To cancel, we need to check the

value of isLoadInBackgroundCanceled () as we do in the case of

AsyncTask, where we check isCancelled () periodically.

Data security

Security is the latest buzzword in town. The Android ecosystem ensures that our
database is exposed to prying eyes; however, a rooted device can leave our database
exposed, as we saw in Chapter 2, Connecting the Dots. With the help of a rooted
device, an emulator and the adb pull command in our case, we pulled our database
for inspection with the SQLite manager tool. Another important aspect is content
providers; we need to be careful while setting permissions. We should make the
process of applying appropriate permissions compulsory in order to inform users
about the control that an app establishes over data, using the contract class.

ContentProvider and permissions

In Chapter 3, Sharing is Caring, we briefly covered the topic of permissions in the
Adding a provider to a manifest section. Let's elaborate a little more on this:

1. As mentioned earlier, while adding the content provider to the manifest,
we will also add our custom permissions. This will ensure two things,
namely, stop an unauthorized action in an application and inform the
users about permissions:

<provider
android:name="com.personalcontactmanager.provider.
PersonalContactProvider"

android:authorities="com.personalcontactmanager.provider"
android:readPermission="com.personalcontactmanager.provider.read"
android:exported="true"

android:grantUriPermissions="true"

>

2. Additionally, we will add the permissions tag to the manifest to indicate the
set of permissions that other applications will require:
<permission
android:name="com.personalcontactmanager.provider.read"
android:icon="@drawable/ic_launcher"

[80]

Chapter 4

android:label="Contact Manager"
android:protectionLevel="normal" >
</permission>

Now, in the application in which we want to access the content provider we
use the permission tag, in our case, Ch4 - TestApp in code bundle:

<uses-permission android:name="com.personalcontactmanager.
provider.read" />

When users install this application, they will get our custom permission
message along with other permissions required by the application. For this
step, instead of directly running the application from Eclipse, export an apk
and install it:

W 7 ol 97% ™ 3:10

ContentTestApp

Do you want to install this application?
It will get access to:

Allow this app to:
e Default

Contact Manager

Cancel Install

If you have not defined the permission in the application and if the application tries
to access the content provider, it will get the SecurityException: Permission
Denial message.

If the content provider we created is not meant to be shared, we will need to change
the android:exported="true" property to false. This will make our content
provider secure, and if someone tries to run a malicious query on it, they will
encounter a security exception.

[81]

Thread Carefully

If we want to share data only between our applications, Android provides a solution;
we can use android:protectionLevel and set the permission to signature instead
of normal. For this, both the apps, the one that implements the content provider

and the one that wants to access it, have to be signed by the same key while they

are exported. This is because a bonus signature permission does not require user
confirmation. This does not confuse the user as it is done internally and also does

not obstruct the user experience.

Encrypting critical data

We have already discussed what kind of access rights other applications have on
our database and how to efficiently share our content providers, and we also briefly
discussed why we should not believe that the system is foolproof. In the most
foolproof method, sensitive data will not be kept on the device but on the server
instead, and it will use tokens to give access. If you have to store the data on the
device's database, use encryption. Use a user-defined key to encrypt and decrypt
sensitive data.

We will explore a way to use an encrypted database, which will not be readable if
someone is able to extract it via means of a root or via exploiting backups. If someone
tries to read it using SQLite Manager or some other tool, they will receive a friendly
message, such as the one shown in the following screenshot; this is the database file
that we will create in a moment with a library known as SQLCipher.

X = O SQLite Manager Alert

SQLiteManager: Error in opening File test.db - either the File is encrypted or corrupt
Exception Name: NS_ERROR_FILE_CORRUPTED

Exception Message: Component returned Failure code: 0x8052000b
(NS_ERROR_FILE_CORRUPTED) [moziStorageService.openUnsharedDatabase]

SQLCipher is an open source extension to SQLite that provides a transparent 256-bit
AES encryption of database files, as mentioned on their website. It is very easy to
deploy SQLCipher. Now we'll look at the steps to build a sample application:

1. First, we will download the necessary files from http://sglcipher.net/
open-source. Here, they have listed a community edition of the Android-
based SQLCipher; download it.

2. Now we will create a new Android project in our eclipse environment.

[82]

Chapter 4

Inside the downloaded folder, we will find the 1ibs folder; inside it, are a
set of jars that we will need to work with SQLCipher. We will also notice
that folders are named as armeabi, armeabi-v7a, and x86, and all of these
contain the . so files. If you are familiar with Android NDK, this will not
seem new. The . so file is a shared object file, which is a component of
dynamic libraries. For different architectures, we require different . so files,
hence the three folders. If you are running an x86 emulator, you will need
the x86 folder in your 1ibs folder. For simplicity, we will copy all the folders
to the 1ibs folder. Copy the asset folder's content into our project's asset
folder and navigate to the project's properties. It will look something like
the following screenshot. You can also see these JAR files in the project's
class path. The initial setup for this project is now complete.

¥ i assets
&l icudt4el.zip
» &= bin
B (= armeabi
P (= armeabi-v7a
B (= x86
& android-support-v4.ja
&l commons-codec.jar
& quava-rog.jar
& sqlcipher.jar
P b res

After completing the necessary setup part, let's move to writing code to make
a small test application:

public class MainActivity extends Activity

{

TextView showResult;

@Override
protected void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
showResult = (TextView) findViewById(R.id.showResult) ;
InitializeSQLCipher () ;

}

private void InitializeSQLCipher ()

[83]

Thread Carefully
{

SQLiteDatabase.loadLibs (this) ;
File databaseFile = getDatabasePath("test.db") ;
databaseFile.mkdirs () ;
databaseFile.delete () ;
SQLiteDatabase database = SQLiteDatabase

.openOrCreateDatabase (databaseFile, "testl23", null);

database.execSQL ("create table tl(a, b)");
database.execSQL ("insert into tl(a, b) values(?, ?)",

new Object[] {"I am ", "Encrypted" });

public void runQuery (View v)
{
File databaseFile = getDatabasePath("test.db");
SQLiteDatabase database = SQLiteDatabase.openOrCreateDatabase (
databaseFile, "testl1l23", null);
String selection = "select * from tl";
Cursor c = database.rawQuery(selection, null) ;
c.moveToFirst () ;
showResult.setText (c.getString(c.getColumnIndex("a")) +
c.getString(c.getColumnIndex ("b"))) ;

}
}

The preceding code has two main methods: InitializeSQLCipher () and
runQuery (). Inside InitializeSQLCipher (), we load our . so library files
by invoking the loadLibs () method.

4. Now we find the absolute path to the database and create a missing parent
folder if any. With openorCreateDatabase (), we will make a call to open an
existing database or create one if the database is nonexistent. We will execute
standard database calls to create a table with columns a and b and insert
values in a row.

Now we will perform a simple query to fetch the values back to the
runQuery () method. You will notice that apart from loading the library,
all the core methods we used are pretty much standard, so where is the
major change? Go to the Ch4 - PersonalContactManager example in the
code bundle and notice the packages we have used:

import android.database.Cursor;

import android.database.sglite.SQLiteDatabase;

We have SQLCipher packages:

[84]

Chapter 4

import net.sglcipher.Cursor;
import net.sqglcipher.database.SQLiteDatabase;

The implementation is simple, familiar, and easy to implement. If you pull the
database out and try to read it, you will find the error message, as we displayed earlier
in a screenshot. The user will find no change, and even our app's logic remains the
same. In the screenshot, you can see the application screen we just built which encrypts
the database:

airtel @ M

Fﬁl SqglChipherAndroid

Run Query

| am Encrypted

OAuth is an open standard for authorization. It provides client
_ applications with a secure delegated access to server resources on behalf
of a resource owner. It specifies a process for resource owners to
& authorize third-party access to their server resources without sharing
their credentials, as explained in Wikipedia; read more about OAuth at
http://ocauth.net/2/.

General tips and libraries

We will cover some general and not so general workarounds and practices, which can
be put to good use depending on the situation. For instance, in some cases, we need

to have a prepopulated database of values that we will make use of in our Android
application or upgrading a database, which seems trivial but can break our application.

[85]

Thread Carefully

Upgrading a database

In Chapter 2, Connecting the Dots, we used onUpgrade () to show how a database
is updated. If we go back to the example, you will notice that it executes a Drop
Table command. What will happen here is that the original table will be dropped
and a new table will be created by the call, oncreate (). This will lead to a loss of
the existing data and hence is not suitable if we need to alter our database. The
onUpgrade () function can be defined as follows:

public void onUpgrade (SQLiteDatabase db, int oldVersion, int
newVersion)

{

String DROP_TABLE = "DROP TABLE IF EXISTS " + TABLE NAME;
db.execSQL (DROP_TABLE) ;
onCreate (db) ;

}

One more challenge is to identify the version we are using here. The user might be
running older versions of the application, so we have to keep in mind the different
versions that an application has and whether those versions would bring about any
changes in the database. For a new user, we need not worry because if the database
does not exist, onCreate () will be called.

To make sure we have a proper upgrade, we will use the DB_VERSION constant in our
CustomSQLiteOpenHelper class to tell our onUpgrade () method about the action to
be taken:

private static final int DB VERSION = 1;
We will change the DB_VERSION constant to 3 to reflect the upgrade:
private static final int DB _VERSION = 3;

The constructor will take care of the rest:

public CustomSQLiteOpenHelper (Context context)

{
}

When the super class constructor is run, it compares the DB_VERSION constant of the
stored SQLite . db file against the DB_ VERSION we passed as a parameter and calls the
onUpgrade () method if needed:

super (context, DB NAME, null, DB _VERSION) ;

public void onUpgrade (SQLiteDatabase db, int oldVersion, int
newVersion)

[86]

Chapter 4

{

switch(oldversion) ({
case 1: db.execSQL(DATABASE CREATE MAIN TABLE) ;
case 2: db.execSQL (DATABASE CREATE MAIN TABLE) ;
case 3: db.execSQL (DATABASE CREATE DEL TABLE) ;
}

}

Inside our onUpgrade () method, we have a switch case to make changes. Notice
that we do not use the break statement because the user can be on an older version
and may not have updated the application, as explained earlier. For instance, let's
consider that a user is on a particular version of an application that is running bB_
VERSION =1 and he or she skips the next update that contained DB_VERSION =2, and
eventually, a new version of the application with DB_VERSION =3 is released. Now,
we have a case where the user is still using an older version of the application and
has not installed the new updates we have released. So, in this case, when the user
installs the application, the onUpgrade () method will first execute case 1 and then
go to case 2 toinstall updates that the user missed; finally, the user will install the
updates of the third version, ensuring that all the database changes are reflected.
Notice that there is no break statement. This is because we want to run all the cases
where the switch statement obtains the value 1 and the last two statements where
the switch case obtains the value 2.

Alternatively, we can also use the if statement. This will also behave as we intended
as our test DB_VERSION constant was 1, which will satisfy both the conditions and
reflect the changes:

if (oldversion<2) {db.execSQL(DATABASE CREATE_MORE_TABLE); }
if (oldversion<3) {db.execSQL (DATABASE CREATE_DEL_TABLE); }

Database minus SQL statements

In most parts of the book, we looked around for nooks and corners of Android and
SQLite. For some, writing SQL statements would be just another day in the office,
while for some, it will come across as a roller-coaster ride. This section will cover a
library that enables us to save and retrieve SQLite database records without writing
a single SQL statement. ActiveAndroid is an active record-style SQLite persistence
for Android. According to the documentation, each database record is wrapped
neatly into a class with methods such as save () and delete (). We will be using the
example in the ActiveAndroid documentation and build a working sample based on
it. Let's look at the steps required to get it up and running,.

Have a look at the official site, http://www.activeandroid.com/, for an overview
and download the files from http://goo.gl/oWw2kod.

[87]

Thread Carefully

Once you download the file, run ant on the root folder to build the JAR file. Once
you run ant, you will find your JAR file in the dist folder. In Eclipse, make a new
project, add the JAR file to the 1ibs folder of the project, and then add the JAR file
to the Java Build Path in the project properties.

ActiveAndroid looks out for some global settings configured by performing the
following steps:

1.

We will start by creating a class, extending the application class:
public class MyApplication extends com.activeandroid.app.
Application
{
@Override

public void onCreate ()
{

super.onCreate () ;

ActiveAndroid.initialize (this) ;

}

@Override
public void onTerminate ()
super.onTerminate () ;
ActiveAndroid.dispose() ;

}
}

Now we will add this application class to our manifest file and add metadata
corresponding to our application:

<application
android:name="com.active.android.MyApplication">
<meta-data
android:name="AA DB_NAME"
android:value="test.db" />
<meta-data
android:name="AA DB _VERSION"
android:value="1" />

</application>

With this basic setup complete, we will now proceed on to creating our data
model. The ActiveAndroid library supports annotation and we will use it in
the following model classes:

[88]

Chapter 4

// Category class

@Table (name = "Categories")

public class Category extends Model
{

@Column (name = "Name")

public String name;

}

// Item class

@Table (name = "Items")
public class Item extends Model
{
// If name is omitted, then the field name is used.
@Column (name = "Name")
public String name;

@Column (name = "Category")
public Category category;

public Item()

{

super () ;

public Item(String name, Category category)
{

super () ;

this.name = name;

this.category = category;

If you want to explore annotations and use them in your project
% and reduce boilerplate code, you can check out the following

L libraries for Android: Android Annotations, Square's Dagger,
and ButterKnife.

[89]

Thread Carefully

4. To add a new category or item, we need to make a call to save (). In the
code segment, we can see that an item object is created and associated with
a particular category, and in the end, save () is called:

public void insert (View v)
Item testItem = new Item() ;
testItem.category = testCategory;
testItem.name = editTextItem.getText () .toString() ;
testItem.save() ;

}

To delete an item, we can call item.delete (). Similarly, to fetch values, we
have relevant methods as well. The following is a call to fetch all of the data
for a particular category:

List<Item>getall = new Select().from(Item.class)
.where ("Category = ?", testCategory.getId())
.orderBy ("Name ASC") .execute() ;

There is lot more to be explored in ActiveAndroid. They have schema migration

and type serialization; in addition to this, you can ship a prepopulated database by
placing the database in the asset folder, and you can use content providers as well.
In short, it is a well-built library for people looking for indirect ways to communicate
with the database and perform database operations. It helps in accessing the
database in the familiar form of Java methods instead of preparing SQL statements
to perform the same action. The complete sample code is bundled in the chapter 4
code bundle.

Shipping with a prepopulated database

We will build a database and put it inside our asset folder, which is a read-only
directory. At runtime, we will check whether a database exists. If not, we will copy
our database from the asset folder to /data/data/yourpackage/databases. In
Chapter 2, Connecting the Dots, we used a tool called SQLite Manager; have a look at
the third screenshot of the chapter. We are going to use the same tool to build our
database now. If you pull your database as explained in that section or look at that
screenshot, you will notice a few more tables along with your database table:

¥Tables (3)
Pandroid metadata

contact_table

Psqlite_sequence

[90]

Chapter 4

The steps to be followed to create a prepopulated database are as follows:

1.

To make a prepopulated database, we need to create a table named
android_metadata apart from the table we require. Using the SQLite
Manager tool, we will create a new database named contact, then we
will create the android metdata table:

CREATE TABLE "android metadata" ("locale" TEXT DEFAULT 'en US')

We will insert a row in the table:
INSERT INTO "android metadata" VALUES ('en US')

Now we will create the tables we require, in our case, contact_table
using the SQL query we used in Chapter 2, Connecting the Dots. In the
DatabaseManager class, we will just replace the constants with the
actual values:

CREATE TABLE "contact table" (" _id" integer primary key
autoincrement not null, "contact name" text not null, "contact

number" text not null, "contact email" text not null, "photo id"
BLOB)

It is necessary to rename the primary ID field of our tables to _id if it is not
already defined. This helps Android in identifying where to bind the ID
field of our tables.

Let us fill a few rows of data. We can do this by running the Insert query
or manually typing in the values using the tool. Now, copy the database
file into the asset folder.

Now, in our original personal contact manager, we will modify our
DatabaseManager class. The good part is that this is the only class
we need to modify and the rest of the system will work as intended.

When the application runs and creates a new DatabaseManager class by
passing the context, we will make a call to createDatabase () in which
first of all we will check whether the database already exists:

Private Boolean checkDataBase ()

{

SQLiteDatabase checkDB = null;
try {
String myPath = DB _PATH + DB NAME;
checkDB = SQLiteDatabase.openDatabase (myPath, null,
SQLiteDatabase.OPEN READONLY) ;
} catch (SQLiteException e) {
// database doesn't exist yet.

[91]

Thread Carefully

if (checkDB != null) {
checkDB.close () ;

}

return checkDB != null ? true : false;

}

7. If it doesn't, we will create an empty database that we will replace with our
database, which we copied into our asset folder. After copying the database
from the asset folder, we will create a new SQLiteDatabase object:

private void copyDataBase () throws IOException

{

InputStream myInput = myContext.getAssets () .open (DB NAME) ;
String outFileName = DB _PATH + DB_NAME;
OutputStream myOutput = new FileOutputStream(outFileName) ;
byte[] buffer = new byte[1024];
int length;
while ((length = myInput.read(buffer)) > 0) {

myOutput .write (buffer, 0, length);

myOutput.flush() ;
myOutput.close () ;
myInput.close() ;

}

Another point to note is that the onCreate () method of our CustomsQLiteOpenHelper
class will be empty as we are not creating a database and tables, but we are copying
one. The sample code is bundled in the chapter 4 code bundle. If this process looks
tedious, don't worry; the Android developers' community has a solution for you.
SQLiteAssetHelper is an Android library that will help you in managing database
creation and version management, using an application's raw asset files.

To implement this, we have to follow a few simple steps:

1. Copy the JAR file into our project's 1ibs folder.
2. Add alibrary to Java Build Path.

3. Copy our zipped database file into the asset folder of projectassets/
databases/your database.db.zip.

The ZIP file should contain only one db file.

5. Instead of extending the framework's SQLiteOpenHelper class, we will
extend the sQLiteAssetHelper class.

[92]

Chapter 4

6. They also provide you with assistance to upgrade the database file,
which needs to be placed in assets/databases/<database_names>_
upgrade_<from versions>-<to versions.sqgl.

7. The library, documentation, and its corresponding sample can be found at
http://goo.gl/8XSSmR.

Summary

We covered a myriad of advanced topics in this chapter, ranging from loaders to

the security of data. We implemented our cursor loader to understand how a loader
works magic for our applications, and we delved into securing our database and
understanding the concept of permissions while exposing our content provider to
other applications. We also covered some tips such as shipping with a prepopulated
database, upgrading a database without breaking the system, and using database
queries without using SQL commands. This is in no way the only set of things we
can achieve with database and Android. This chapter only serves as a nudge towards
the vast programming possibilities out there.

[93]

Index

A B-trees 9
building blocks, Android 26

ActiveAndroid

about 87 C

global settings, configuring 88-90

URL 87 classes/interfaces, Loader API
addRow() method 35 AsyncTaskLoader 75
addURI() method 58 Loader 75
ADT bundle LoaderManager 75

URL, for downloading 5 LoaderManager.LoaderCallbacks 75
Ahead of Time (AOT) 14 close() method 17
Android column constraint, SQLite

storage 14 about 28
android.database.SQLite package 16 AUTO INCREMENT keyword 29
Android developer website CHECK constraint 29

URL 74 DEFAULT constraint 29
APIs 16 NOT NULL constraint 29
application not responding (ANR) 74 PRIMARY key 29
architecture, SQLite UNIQUE constraint 29

backend 9 URL 29

interface 8 constraint 11

SQL compiler 8 content provider

virtual machine 9 about 50, 51, 80, 82
ART 14 adding, to manifest 64
AsyncTaskLoader 75 ContentResolver object 51, 54
AUTO INCREMENT keyword 29 content URI 55, 56

contract class, declaring 56-58
B creating 54, 55
initializing, onCreate() method used 59

backend, SQLite URIMatcher, creating 58

about 9 using 64-72

B-trees 9 ContentResolver object 51, 54

OS Interface 9 content URI 55, 56

Pager 9 ContentValues 22
BLOB class 13 context 16

Boolean datatype 13

contract class
declaring 56-58
create query
building 32-35
CREATE TABLE command
about 10
attributes 10
critical data, data security
encrypting 82-85
CursorLoader
about 77
implementing 76-79
reset state 76
started state 76
stopped state 76
used, for loading data 73
using 75

D

Dalvik virtual machine (DVM) 14
data
loading, with CursorLoader 73
database
about 9
prepopulated database, creating 91, 92
SQLite statement 10, 11
SQLite syntax 12
Ul connecting with 43-48
upgrading 86
database handler 30, 31
database packages
about 16
APIs 16
ContentValues 22
Cursor object 22, 23
SQLiteDatabase class 19, 20
SQLiteOpenHelper class 16, 17
data, loading with CursorLoader
loader API 75
loaders, using 74
data security
about 80
content provider 80, 81
critical data, encrypting 82-85
permissions 80, 81

datatypes, SQLite

about 12

Boolean datatype 13
Date datatype 13
storage classes 12
Time datatype 13

Date datatype 13
DEFAULT constraint 29
DELETE command 10
delete() method

about 20
used, for deleting records 62

delete query

building 40, 41

deleteRow() method 45
delRow method 48
dynamic typing 29

E

Eclipse

emulator, setting up 26- 30

emulator, Eclipse

setting up, steps 26, 27

external storage 15

F

features, SQLite

compact 7
cross-platform 7
fool proof 7
no-copyright 7

zero-configuration 6

G

Genymotion

URL 27

getBlob() method 44

getCount() method 23

get*() methods 23
getRandomName() method 69
getRandomNumber() method 69
getReadableDatabase() method 17
getType() method

used, for getting content return type 63

getView() method 46

[96]

Illegal ArgumentException 60
INSERT command 10
insert() method

url parameter 70

used, for adding records 61

values parameter 70
insert query

building 35-40
INTEGER class 12
interface, SQLite 8
internal storage 15
isAfterLast() method 22
isReadOnly() method 17

J

JDK
URL, for downloading 5
Just in Time (JIT) 14

L

Loader API
classes/interfaces 75
Loader class 75
LoaderManager class 75
LoaderManager.LoaderCallbacks
interface 75
loaders 74
loadInBackground method 80

moveToFirst() method 22
moveToNext() method 23

N

NOT NULL constraint 29
NULL class 12
NullPointerException 60

(0

OAuth
URL 85
onContextItemSelected() method 48

onCreate() method

about 17, 33
used, for initializing content provider 59

onOpen() method 17
onUpgrade() method 35 17

P

path, content URIs 55
permissions 64, 80, 81
prepopulated database

creating 91, 92
shipping 90

PRIMARY key 29
primitive datatypes. See storage classes

Q

query

about 10, 30, 31

create query, building 32-35
delete query, building 40, 41
insert query, building 35-40
update query, building 41, 42

query() method

projection parameter 67
selectionArgs parameter 68
selection parameter 67
sortOrder parameter 68

uri parameter 67

used, for querying records 59, 60

R

REAL class 13
reset state, CursorLoader 76

S

SELECT command 10
shared preference 14
SQLCipher

about 82
sample application, steps 82-84
URL 82

SQL compiler 8
SQLite

about 6

[97]

architecture 8

datatypes 12

features 6

using 6
SQLite3 command

.dump command 15

.help command 15

.schema command 15
SQLiteDatabase class

about 19, 20

URL, for documentation 20
SQLiteDatabase() query method 37
SQLite, in Android

about 14

database packages 16

prerequisites 5, 6

version 15
SQLite Manager tool

URL 34
SQLiteOpenHelper class 16,17
SQLite statement

about 10, 11

ALTER 10

DELETE 10

DROP 10

INSERT 10

SELECT 10

UPDATE 10
SQL statements

tips 87
started state, CursorLoader 76
stopped state, CursorLoader 76
storage, Android

external storage 15

internal storage 15

shared preference 14
storage classes

about 12

BLOB 13

INTEGER 12

NULL 12

REAL 13

TEXT 13
String getType(Uri) method 54
syntax, SQLite 12

T

TEXT class 13
Time datatype 13
tips, prepopulated database 85

U

Ul

connecting, with database 43-47
Uniform Resource Identifier (URI) 55
UNIQUE constraint 29
UPDATE command 10
update() method

about 20

uri parameter 71

used, for updating records 61

values parameter 71

WHERE clause 71
update query

building 41, 42

\'

version, SQLite 15

Virtual Database Engine (VDBE) 9
virtual machine 9

void onCreate() method 54

[98]

open source

community experience distilled

PUBLISHING

Thank you for buying
Android SQLite Essentials

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Android Database Programming
ISBN: 978-1-84951-812-3 Paperback: 212 pages

Exploit the power of data-centric and data-driven
Android applications with this practical tutorial

1. Master the skills to build data-centric Android
applications.

2. Go beyond just code by challenging yourself
to think about practical use cases with SQLite
and others.

Android Database Programming

3. Focus on flushing out high level design
concepts before drilling down into different
code examples.

Learning Android Intents
ISBN: 978-1-78328-963-9 Paperback: 318 pages

Explore and apply the power of intents in Android
application development

1. Understand Android Intents to make
application development quicker and easier.

2. Categorize and implement various kinds
of Intents in your application.

3. Perform data manipulation within
Android applications.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

>
N

™

ddd'd d d

Y
WAPLLP

Short |Fasl | Focused
Spring for Android
Starter

Anthony Dahanne

Instant Spring for Android Starter
ISBN: 978-1-78216-190-5 Paperback: 72 pages

Leverage Spring for Android to create RESTful and
OAuth Android apps

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn what Spring for Android adds to the
Android developer toolkit.

3. Learn how to debug your Android
communication layer observing HTTP
requests and responses.

Android Application
Security Essentials

Android Application Security
Essentials
ISBN: 978-1-84951-560-3 Paperback: 218 pages

Write secure Android applications using the most
up-to-date techniques and concepts

1. Understand Android security from kernel
to the application layer.

2. Protect components using permissions.

3. Safeguard user and corporate data from
prying eyes.

4. Understand the security implications of
mobile payments, NFC, and more.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Enter SQLite
	Why SQLite?
	The SQLite architecture
	The SQLite interface
	The SQL compiler
	The virtual machine
	The SQLite backend

	A quick review of database fundamentals
	What is an SQLite statement?
	The SQLite syntax
	Datatypes in SQLite
	The storage classes
	The Boolean datatype
	The Date and Time datatype

	SQLite in Android
	SQLite version
	Database packages
	APIs
	The SQLiteOpenHelper class
	The SQLiteDatabase class
	ContentValues
	Cursor

	Summary

	Chapter 2: Connecting the Dots
	Building blocks
	Database handler and queries
	Building the Create query
	Building the Insert query
	Building the Delete query
	Building the Update query

	Connecting the UI and database
	Summary

	Chapter 3: Sharing is Caring
	What is a content provider?
	Using existing content providers
	What is a content resolver?

	Creating a content provider
	Understanding content URIs
	Declaring our contract class
	Creating UriMatcher definitions

	Implementing the core methods
	Initializing the provider through the onCreate() method
	Querying records through the query() method
	Adding records through the insert() method
	Updating records through the update() method
	Deleting records through the delete() method
	Getting the return type of the data through
the getType() method
	Adding a provider to a manifest

	Using a content provider
	Summary

	Chapter 4: Thread Carefully
	Loading data with CursorLoader
	Loaders
	Loader API's summary
	Using CursorLoader

	Data security
	ContentProvider and permissions
	Encrypting critical data

	General tips and libraries
	Upgrading a database
	Database minus SQL statements
	Shipping with a prepopulated database

	Summary

	Index

