
•••• 

Холден Карау, Энди Конвински, 

Патрик Венделл, Матей З
а

хария 

O'REILLY. 



Халдеи Карау, Энди Конвински, 
Патрик Венделл и Матей Захария 

И3учаем Sparl< 
МОЛНИЕНОСНЫЙ АНАЛИ3 ЛАННЫХ 

Москва, 2015 



УДК 004.65:004.43 Spark 
ББК 32.972.34 

К21 

Карау Х., Конвински Э., Венделл П., Захария М. 
К21 Изучаем Spark: молниеносный анализ данных. - М.: ДМК 

Пресс, 2015. - 304 с.: ил. 

ISBN 978-5-97060-323-9 

Объем обрабатываемых данных во всех областях человеческой 
деятельности продолжает расти быстрыми темпами. Существуют 
ли эффективные приемы работы с ним? В этой книге рассказыва­
ется об Apache Spark, открытой системе кластерных вычислений, 
которая позволяет быстро создавать высокопроизводительные 
программы анализа данных. С помощью Spark вы сможете мани­
пулировать огромными объемами данных посредством простого 
API на Python,Java и Scala. 

Написанная разработчиками Spark, эта книга поможет иссле­
дователям данных и программистам быстро включиться в работу. 
Она рассказывает, как организовать параллельное выполнение 
заданий всего несколькими строчками кода, и охватывает примеры 
от простых пакетных приложений до программ, осуществляю­
щих обработку потоковых данных и использующих алгоритмы 
машинного обучения. 

УДК 004.65:004.43 Spark 
ББК 32.972.34 

All rights reserved. No part of this book may Ье reproduced, stored in а retrieval 
system, or transmitted in any form or Ьу any means, without the prior written 
permission of the puЬlisher, except in the case of brief quotations embedded in 
critical articles or reviews. 

Все права защищены. Любая часть этой книги не может быть воспроиз­
ведена в какой бы то ни было форме и какими бы то ни было средствами без 
письменного разрешения владельцев авторских прав. 

Материал, изложенный в данной книге, многократно проверен. Но по­
скольку вероятность технических ошибок все равно существует, издательство 
не может гарантировать абсолютную точность и правильность приводимых 
сведений. В связи с этим издательство не несет ответственности за возможные 
ошибки, связанные с использованием книги. 

ISBN 978-1-449-35862-4 (анr.) 
ISBN 978-5-97060-323-9 (рус.) 

Copyright © 2015 Databricks 
© Оформление, издание, 

ДМК Пресс, 2015 



Содер>1<ание 

Предисловие ........................................................... 1 О 

Вступление . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Глава 1 . Введение в анализ данных с помощью Spark ..... 18 
Что такое Apache Spark? ................................................................................... 18 
Унифицированный стек .................................................................................... 19 

Spark Саге ......................................................................................................... 20 
Spark SQL ......................................................................................................... 20 
Spark Streaming ............................................................................................... 21 
MLlib ................................................................................................................... 21 
GraphX ............................................................................................................... 22 
Диспетчеры кластеров .................................................................................. 22 

Кто и с какой целью использует Spark? ...................................................... 22 
Исследование данных ................................................................................... 23 
Обработка данных ......................................................................................... 24 

Краткая история развития Spark ................................................................... 24 
Версии Spark ......................................................................................................... 26 
Механизмы хранения данных для Spark .................................................... 26 

Глава 2. Загрузка и настройка Spark ............................ 27 
Загрузка Spark ...................................................................................................... 27 
Введение в командные оболочки Spark для Python и Scala ................. 29 
Введение в основные понятия Spark ............................................................ 33 
Автономные приложения ................................................................................. 35 

Инициализация SparkContext ................................................................... 36 
Сборка автономных приложений ............................................................. 38 

В заключение ........................................................................................................ 41 

Глава 3. Программирование операций с RDD ................. 42 
Основы RDD ........................................................................................................ 42 
Создание RDD ..................................................................................................... 45 
Операции с RDD ................................................................................................. 46 

Преобразования .............................................................................................. 46 
Действия ............................................................................................................ 47 
Отложенные вычисления ............................................................................ 49 

Передача функций в Spark. .............................................................................. 50 
Python ................................................................................................................ 50 
Scala ..................................................................................................................... 51 
Java ...................................................................................................................... 52 



Б •:• Солержание 

Часто используемые преобразования и действия ................................... 54 
Простые наборы RDD .................................................................................. 54 
Преобразование типов RDD ..................................................................... 63 

Сохранение (кэширование) ............................................................................. 65 
В заключение ........................................................................................................ 68 

Глава 4. Работа с парами ключ/значение ...................... 69 
Вступление ............................................................................................................ 69 
Создание наборов пар ........................................................................................ 70 
Преобразования наборов пар .......................................................................... 71 

Агрегирование ................................................................................................. 73 
Группировка данных ..................................................................................... 80 
Соединения ...................................................................................................... 81 
Сортировка ....................................................................................................... 82 

Действия над наборами пар ключ/значение ............................................. 83 
Управление распределением данных ........................................................... 84 

Определение объекта управления распределением RDD ............... 88 
Операции, получающие выгоды от наличия информации 
о распределении .............................................................................................. 89 
Операции, на которые влияет порядок распределения .................... 90 
Пример: PageRank .......................................................................................... 91 
Собственные объекты управления распределением ......................... 93 

В заключение ........................................................................................................ 96 

Глава 5. Загрузка и сохранение данных ........................ 97 
Вступление ............................................................................................................ 97 
Форматы файлов ................................................................................................. 98 

Текстовые файлы ............................................................................................ 99 
JSON ................................................................................................................ 101 
Значения, разделенные запятыми, и значения, разделенные 
табуляциями ................................................................................................. 104 
SequenceFiles ................................................................................................. 108 
Объектные файлы ....................................................................................... 111 
Форматы Hadoop для ввода и вывода ................................................ 112 
Сжатие файлов ............................................... , ............................................. 117 

Файловые системы .......................................................................................... 118 
Локальная/«обычная�> файловая система .......................................... 118 
Aп1azon S3 ...................................................................................................... 119 
HDFS ............................................................................................................... 119 

Структурированные данные и Spaгk SQL ............................................... 120 
Apache Hive ................................................................................................... 121 
JSON ................................................................................................................ 122 

Базы данных ....................................................................................................... 123 



Содержание •:• 7 

Java Database Connectivity ....................................................................... 123 
Cassandra ........................................................................................................ 124 
HBase ............................................................................................................... 127 
Elasticsearch ................................................................................................... 127 

В заключение ..................................................................................................... 129 

Глава 6. Дополнительные возможности Spark .............. 130 
Введение .............................................................................................................. 130 
Аккумуляторы ................................................................................................... 131 

Аккумуляторы и отказоустойчивость ................................................. 135 
Собственные аккумуляторы ................................................................... 136 

Широковещательные переменные ............................................................. 136 
Оптимизация широковещательных рассылок .................................. 139 

Работа с разделами по отдельности ........................................................... 140 
Взаимодействие с внешними программами ........................................... 143 
Числовые операции над наборами RDD ................................................. 147 
В заключение ..................................................................................................... 149 

Глава 7. Выполнение в кластере ................................ 150 
Введение .............................................................................................................. 150 
Архитектура среды Spark времени выполнения ................................... 151 

Драйвер ........................................................................................................... 151 
Исполнители ................................................................................................. 153 
Диспетчер кластера ............................... : .................................................... 153 
Запуск программы ...................................................................................... 154 
Итоги ............................................................................................................... 154 

Развертывание приложений с помощью spark-submit ........................ 155 
Упаковка программного кода и зависимостей ....................................... 158 

Сборка приложения нajava с помощью Maven ............................... 159 
Сборка приложения на Scala с помощью sbt ..................................... 161 
Конфликты зависимостей ........................................................................ 163 

Планирование приложений и в приложениях Spark .......................... 163 
Диспетчеры кластеров .................................................................................... 164 

Диспетчер кластера Spark Standalone .................................................. 165 
Hadoop YARN ............................................................................................... 169 
Apache Mesos .................................................................................................. 171 
Amazon ЕС2 ................................................................................................... 173 

Выбор диспетчера кластера .......................................................................... 176 
В заключение ..................................................................................................... 177 

Глава 8. Настройка и отладка Spark ............................ 178 
Настройка Spark с помощью SparkConf ................................................... 178 
Компоненты выполнения: задания, задачи и стадии .......................... 181 



В •:• Содержание 

Поиск информации ......................................................................................... 189 
Веб-интерфейс Spark ................................................................................. 189 
Журналы драйверов и исполнителей ................................................... 193 

Ключевые факторы, влияющие на производительность ................... 195 
Степень параллелизма .............................................................................. 195 
Формат сериализации ............................................................................... 196 
Управление памятью .................................................................................. 198 
Аппаратное обеспечение ........................................................................... 199 

В заключение ..................................................................................................... 201 

Глава 9. Spark SQL .................................................. 202 
Включение Spark SQL в приложения ....................................................... 203 
Использование Spark SQL в приложениях ............................................ 205 

Инициализация Spark SQL ..................................................................... 205 
Пример простого запроса ......................................................................... 207 
Наборы данных SchemaRD D .................................................................. 208 
Кэширование ................................................................................................ 21 О 

Загрузка и сохранение данных .................................................................... 211 
Apache Hive ................................................................................................... 212 
Parquet ............................................................................................................. 213 
JSON ................................................................................................................ 214 
Из RDD ........................................................................................................... 216 
Сервер JDBC/ODBC ................................................................................. 217 
Работа с программой Beeline ................................................................... 219 
Долгоживущие таблицы и запросы ...................................................... 220 

Функции, определяемые пользователем ................................................. 221 
Spark SQL UDF ........................................................................................... 221 
Hive UDF ....................................................................................................... 222 

Производительность Spark SQL ................................................................. 223 
Параметры настройки производительности ..................................... 223 

В заключение ..................................................................................................... 225 

Глава 1 О. Spark Streaming ......................................... 226 
Простой пример ................................................................................................ 227 
Архитектура и абстракция ............................................................................ 230 
Преобразования ................................................................................................ 234 

Преобразования без сохранения состояния ...................................... 234 
Преобразования с сохранением состояния ........................................ 238 

Операции вывода ............................................................................................. 244 
Источники исходных данных ...................................................................... 245 

Основные источники ................................................................................. 246 
Дополнительные источники ................................................................... 247 
Множество источников и размеры кластера ..................................... 252 



Солержание -:. 9 

Круглосуточная работа ................................................................................. 252 
Копирование в контрольных точках .................................................... 253 
Повышение отказоустойчивости драйвера ........................................ 254 
Отказоустойчивость рабочих узлов ..................................................... 255 
Отказоустойчивость приемников ......................................................... 256 
Гарантированная обработка ..................................................................... 257 

Веб-интерфейс Spark Streaming .................................................................. 257 
Проблемы производительности .................................................................. 258 

Интервал пакетирования и протяженность окна ............................ 258 
Степень параллелизма ............................................................................. 259 
Сборка мусора и использование памяти ............................................ 259 

В заключение ..................................................................................................... 260 

Глава 11. Машинное обучение с MLlib ........................ 261 
Обзор .................................................................................................................... 261 
Системные требования .................................................................................. 263 
Основы машинного обучения ...................................................................... 263 

Пример: классификация спама .............................................................. 265 
Типы данных ...................................................................................................... 269 

Векторы .......................................................................................................... 269 
Алгоритмы .......................................................................................................... 271 

Извлечение признаков .............................................................................. 271 
Статистики .................................................................................................... 275 
Классификация и регрессия .................................................................... 276 
Кластеризация ............................................................................................. 282 
Коллаборативная фильтрация и рекомендации .............................. 283 
Понижение размерности .......................................................................... 285 
Оценка модели ............................................................................................. 287 

Советы и вопросы производительности .................................................. 288 
Выбор признаков ......................................................................................... 288 
Настройка алгоритмов .............................................................................. 289 
Кэширование наборов RDD для повторного использования ..... 289 
Разреженные векторы ............................................................................... 290 
Степень параллелизма .............................................................................. 290 

Высокоуровневый API машинного обучения ........................................ 290 
В заключение ..................................................................................................... 292 

Предметный указатель ............................................ 293 



Предисловие 

За очень короткое время после появления Apache Spark - фреймворк 
следующего поколения для быстрой обработки больших объемов 
данных - получил повсеместное распространение. Spark превосхо­
дит фреймворк Hadoop MapReduce, который дал импульс револю­
ции в обработке больших объемов данных, по множеству ключевых 
параметров: он намного быстрее, намного проще в использовании 
благодаря богатому API и может применяться для создания не толь­
ко приложений пакетной обрабqтки данных разной мощности, но 
и интерактивных приложений, приложений потоковой обработки 
данных, машинного обучения и обработки графов. 

Я был тесно вовлечен в разработку Spark на всех этапах этого про­
цесса, от чертежной доски до образования самого активного из со­
временных открытых проектов и одного из самых активных проек­
тов Apache! Мне было особенно приятно, что Матей Захария (Matei 
Zaharia), создатель Spark, объединился с другими давнишними раз­
работчиками Spark - Патриком Венделлом (Patrick Wendell), Энди 
Конвински (Andy Konwinski) и Холденом Карау (Holden Karau), -
чтобы написать эту книгу. 

В связи с быстрым ростом популярности Spark на передний план 
вышла проблема нехватки хороших справочных руководств. Авто­
ры книги проделали длинный путь для ее решения, написав 11 глав 
и представив десятки подробных примеров, чтобы помочь специалис­
там в области анализа данных, студентам и программистам поближе 
узнать Spark. Она доступна читателям, не имеющим опыта работы 
с <<большими данными1>, что делает ее отличной отправной точкой 
для начала изучения предметной области в целом. Я надеюсь, что 
много лет спустя читатели со светлым чувством будут вспоминать эту 
книгу как проводника в новый захватывающий мир. 

- Ион Стоика (!оп Stoica),

директор Databricks и содиректор АМР!аЬ, 
Калифорнийский университет Беркли 



Вступление 

По мере вхождения в обиход анализа данных специалисты-практики 
во многих областях искали все более простые инструменты для реше­
ния этой задачи. Apache Spark быстро завоевал популярность как ин­
струмент, расширяющий и обобщающий модель MapReduce. Фрейм­
ворк Spark имеет три основных преимущества. Во-первых, простота 
в использовании - с его помощью можно создавать приложения на 
ноутбуке, используя высокоуровневый API, который позволяет скон­
центрироваться на предметной стороне вычислений. Во-вторых, вы­
сокая скорость работы, что дает возможность создавать интерактив­
ные приложения и использовать сложные алгоритмы. И в-третьих, 
обобщенность, позволяющая объединять разнотипные вычисления 
(например, выполнять SQL-запросы, обрабатывать текст и реализо­
вывать алгоритмы машинного обучения (machine learning)), для чего 
прежде необходимо было применять разрозненные инструменты. Все 
это делает Spark отличной отправной точкой на пути изучения аспек­
тов обработки <<больших данных� (Big Data). 

Цель этого вводного руководства - помочь вам быстро настроить 
Spark и приступить к работе с ним. Здесь вы узнаете, как загрузить и за­
пустить Spark на своем ноутбуке, как работать с ним в интерактивном 
режиме, чтобы поближе познакомиться с API. Затем мы рассмотрим 
особенности доступных операций и распределенных вычислений. В за­
ключение мы совершим экскурс по высокоуровневым библиотекам, 
входящим в состав Spark, включая библиотеки для машинного обуче­
ния, потоковой обработки данных (stream processing) и SQL. Мы на­
деемся, что с этой книгой вы быстро сможете приступить к решению за­
дач, связанных с анализом данных, как на одной, так и на сотнях машин. 

Кому адресована эта 1<нига 
Данная книга адресована специалистам в области анализа данных 
(или исследователям) и инженерам-программистам. Мы выбрали 
эти две группы, потому что они смогут извлечь наибольшую выгоду 
от привлечения фреймворка Spark для решения своих задач. Богатая 
коллекция библиотек (таких как ML!ib), входящих в состав Spark, 
поможет специалистам в области анализа данных решать статистиче­
ские задачи, непосильные единственному компьютеру. Программис-
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ты, в свою очередь, узнают, как писать распределенные программы 
на основе Spark и как управлять промышленными приложениями. 
Программисты и исследователи по-разному будут воспринимать эту 
книгу, но и те, и другие смогут задействовать Spark для решения боль­
ших распределенных задач в своих областях. 

Исследователи основное внимание уделяют ответам на вопросы 
и разработке моделей на основе данных. Они часто имеют матема­
тическую подготовку, и некоторые из них знакомы с такими инстру­
ментами, как Python, R и SQL. Мы постарались включить в книгу 
примеры программного кода на Python и, где это необходимо, на 
SQL, а также обзор библиотек и особенностей поддержки машинно­
го обучения в Spark. Если вы - исследователь, специалист в области 
анализа данных, мы надеемся, что после прочтения нашей книги вы 
сможете использовать те же математические подходы для решения 
задач, только намного быстрее и в более широком масштабе. 

Вторая целевая группа данной книги - инженеры-программисты, 
имеющие некоторый опыт программирования на Java, Python или 
других языках. Если вы - программист, мы надеемся, что благодаря 
этой книге вы научитесь настраивать кластеры Spark, пользоваться 
командной оболочкой Spark и писать Sраrk-приложения для органи­
зации параллельных вычислений. Знакомые с фреймворком Hadoop 
уже знают, как взаимодействовать с HDFS и управлять кластерами, 
но, как бы то ни было, мы все равно опишем основные понятия рас­
пределенных вычислений. 

Кем бы вы ни были, исследователем или программистом, чтобы из­
влечь максимум из этой книги, необходимо иметь знакомство с лю­
бым из языков программирования: Python,Java, Scala или им подоб­
ным. Мы полагаем, что у вас уже реализовано решение хранилища 
для ваших данных, поэтому мы охватим лишь наиболее общие подхо­
ды к загрузке и сохранению данных, но не будем обсуждать вопросы 
их реализации. Если у вас пока нет опыта использования ни одного 
из перечисленных языков, не волнуйтесь: существуют великолепные 
книги, которые помогут в овладении ими. Некоторые из таких книг 
мы упомянем в разделе <<Книги поддержки1> ниже. 

l<a1< органи3ована эта 1<нига 
Главы в этой книге следуют в порядке изучения материала. В начале 
каждой главы мы будем сообщать, какие ее разделы, по нашему мне­
нию, больше подходят для исследователей, а какие - для программис-
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тов. При этом мы надеемся, что все разделы будут доступны читате­
лям с любым уровнем подготовки. 

Первые две главы описывают порядок установки на ноутбук фрейм­
ворка Spark в базовой конфигурации и демонстрируют, чего можно 
достичь с его помощью. После установки и знакомства с некоторыми 
возможностями мы погрузимся в командную оболочку Spark - ин­
струмент, очень удобный для разработки и прототипирования. В по­
следующих главах подробно обсуждаются программный интерфейс 
Spark, порядок выполнения приложений в кластерах и высокоуров­
невые библиотеки, доступные в Spark (такие как Spark SQL и ML!ib). 

Книги поддер>1<1<и 
Исследователям, не имеющим опыта использования Python, отлич­
ным введением в этот язык программирования могут послужить кни­
ги «Learning Python,> 1 и <<Head First Python>> (обе выпущены изда­
тельством O'Reilly). Имеющим некоторый опыт программирования 
на Python, но желающим изучить его глубже можно порекомендовать 
книгу «Dive into Python,> (Apress). 

Инженерам-программистам, а также всем, кто прочтет эту книгу, 
для расширения познаний в области обработки данных мы рекомен­
дуем книги <<Machine Learning for Hackers,> и «Doing Data Science,> 
(обе выпущены издательством O'Reilly). 

Эта книга написана языком, доступным для начинающих. В даль­
нейшем мы предполагаем написать более подробную книгу для тех, 
кто пожелает глубже вникнуть во внутреннее устройство Spark. 

Типографские соглашения 
В этой книге приняты следующие типографские соглашения: 

Курсив 
Используется для обозначения новых терминов, адресов электрон­

ной почты, имен файлов и расширений имен файлов. 

Моноширинный шрифт 
Применяется для оформления листингов программ и программ­

ных элементов внутри обычного текста, таких как имена перемен-

1 Лутц М. Изучаем Python. 4-е изд. М.: Символ-Плюс, 2010. ISBN: 978-5-
93286-159-2. - Прим. перев. 



14 •:• Вступление 

ных и функций, типов данных, переменных окружения, инструкций 
и ключевых слов. 

МоиоширииНЪIЙ жирНЪIЙ 
Обозначает команды или другой текст, который должен вводиться 

пользователем. 

Моноширинный курсив 
Обозначает текст, который должен замещаться фактическими 

значениями, вводимыми пользователем или определяемыми из кон­
текста. 

Так обозначаются советы, предложения и примечания общего харак­
тера. 

& Так обозначаются предупреждения и предостережения.

Исполь3ование программного 1<ола 

примеров 
Все примеры программного кода, что приводятся в этой книге, до­
ступны в репозитории GitHub. Их можно получить по адресу: https:// 
github.com/databricks/learning-spark. Примеры кода написаны на язы­
кахjаvа, Scala и Python. 

\ Примеры на языке Java написаны для выполнения под управлением 
',,, J ava 6 и выше. В J ava 8 появилась поддержка лямбда-выражений, облег­
.. чающих создание встраиваемых (inline) функций, благодаря чему код,

использующий фреймворк Spark, получается намного более простым.
Мы решили нс использовать этот синтаксис в основных примерах, по­
скольку версия Java 8 пока не получила широкого распространения.
Если вам интересно будет попробовать синтаксис Java 8, прочитайте
статью в благе Databricks 1

• Некоторые из примеров мы переписали на
Java 8 и сохранили в репозитории GitHub.

Данная книга призвана оказать вам помощь в решении ваших за­
дач. Вы можете свободно использовать примеры программного кода 
из этой книги в своих приложениях и в документации. Вам не нужно 
обращаться в издательство за разрешением, если вы не собираетесь 
воспроизводить существенные части программного кода. Например, 
если вы разрабатываете программу и используете в ней несколько 
отрывков программного кода из книги, вам не нужно обращаться за 

1 http://Ьit.ly/1ywZBs4. 
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разрешением. Однако в случае продажи или распространения ком­
пакт-дисков с примерами из этой книги вам необходимо получить 
разрешение от издательства O'Reilly. Если вы отвечаете на вопросы, 
цитируя данную книгу или примеры из нее, получение разрешения не 
требуется. Но при включении существенных объемов программного 
кода примеров из этой книги в вашу документацию необходимо полу­
чить разрешение издательства. 

Мы приветствуем, но не требуем добавлять ссылку на первоисточ­
ник при цитировании. Под ссылкой на первоисточник мы подразу­
меваем указание авторов, издательства и ISBN. Например: «Learning 
Spark Ьу Holden Karau, Andy Konwinski, Patrick Wendell, and Matei 
Zaharia (O'Reilly). Copyright 2015 Databricks, 978-1-449-35862-4�. 

За получением разрешения на использование значительных объ­
емов программного кода примеров из этой книги обращайтесь по 
адресу permissions@oreilly.com. 

Safari® Bool<s Online 

Safari Books Online (http://www.safaribooksonline.com) - это виртуаль­
ная библиотека, содержащая авторитетную информацию 1 в виде книг 
и видеоматериалов, созданных ведущими специалистами в области 
технологий и бизнеса. 

Профессионалы в области технологии, разработчики программ­
ного обеспечения, неб-дизайнеры, а также бизнесмены и творческие 
работники используют Safari Books Online как основной источник 
информации для проведения исследований, решения проблем, обуче­
ния и подготовки к сертификационным испытаниям. 

Библиотека Safari Books Online предлагает широкий выбор про­
дуктов и тарифов2 для организаций3

, правительственных4 и учебных" 
учреждений, а также физических лиц. 

Подписчики имеют доступ к поисковой базе данных, содержащей 
информацию о тысячах книг, видеоматериалов и рукописей от таких 
издателей, как O'Reilly Media, Prentice Hall Professional, Addison­
Wesly Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal 
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, 

1 https://www.safaribooksonline.com/explore/. 
2 https://www.safaribooksonline.com/pricing/. 
3 https://www. safaribooksonli пе .com/enterprise/. 
4 https://www.safaribooksonline.com/government/. 
5 https://www.safaribooksonline.com/academic-puЫic-li brary /.
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IВМ Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New 
Riders, McGraw-Hill, J ones & Bartlett, Course Technology, и десятков 
друrих 1

• За подробной информацией о Safari Books Online обращай­
тесь по адресу: http://www.safaribooksonline.com/.

Как с нами связаться 
С вопросами и предложениями, касающимися этой книги, обращай­
тесь в издательство: 

O'Reilly Media, Inc. 
1005 Gravenstein Highway North 
Sebastopol, СА 95472 
800-998-9938 ( в Соединенных Штатах Америки или в Канаде)
707-829-0515 (международный)
707-829-0104 (факс)

Список опечаток, файлы с примерами и другую дополнительную 
информацию вы найдете на странице книги http://Ьit.ly/learning-spark. 

Свои пожелания и вопросы технического характера отправляйте 
по адресу: bookquestions@oreilly.com. 

Дополнительную информацию о книгах, обсуждения, Центр ресур-
сов издательства O'Reilly вы найдете на сайте: http://www.oreilly.com. 

Ищите нас в Facebook: http://facebook.com/oreilly. 
Следуйте за нами в Твиттере: http://twitter.com/oreillymedia. 
Смотрите нас на YouTube: http://www.youtube.com/oreillymedia. 

Благодарности 
Авторы выражают благодарность обозревателям за отзывы об этой 
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Davies), Сэму ДеХорити (Sam DeHority), Виду Ха (Vida На), Энд­
рю Галу (Andrew Gal), Майклу Грегсону (Michael Gregson), Яну 
Иойпену Qan Joeppen), Стефану Йоу (Stephan Jou), Джеффу Мар­
тинесу Qeff Martinez), Джошу Махонину Qosh Mahonin), Эндрю Ор 
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1 https://www.safaribooksonline.com/our-library /. 
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Введение 

в анализ данных 

с помошью Sparl< 

В этой главе приводится обобщенный обзор Apache Spark. Если вы 
уже знакомы с этим фреймворком и его компонентами, можете сразу 
перейти к главе 2. 

Что та1<ое Apache Sparl<? 
Apache Spark - это универсальная и высокопроизводительная кластер­
ная вычислительная платформа. 

По производительности Spark превосходит популярные реализации 
модели MapReduce, попутно обеспечивая поддержку более широкого 
диапазона типов вычислений, включая интерактивные запросы и пото­
ковую обработку (streaming processing). Скорость играет важную роль 
при обработке больших объемов данных, так как именно скорость по­
зволяет работать в интерактивном режиме, не тратя минуты или часы 
на ожидание. Одно из важнейших достоинств Spark, обеспечивающих 
столь высокую скорость, - способность выполнять вычисления в па­
мяти. Но даже при работе с дисковой памятью Spark выполняет опера­
ции намного эффективнее, чем известные механизмы MapReduce. 

Фреймворк создавался с целью охватить как можно более широкий 
диапазон рабочих нагрузок, которые прежде требовали создания от­
дельных распределенных систем, включая приложения пакетной об­
работки, циклические алгоритмы, интерактивные запросы и потоко­
вую обработку. Поддерживая все эти виды задач с помощью единого 
механизма, Spark упрощает и удешевляет обьединение разных видов 
обработки, которые часто необходимо выполнять в едином конвейере 
обработки данных. Кроме того, он уменьшает бремя обслуживания, 
поддерживая отдельные инструменты. 
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Фреймворк Spark предлагает простой API на языках Python,Java, 
Scala и SQL и богатую коллекцию встроенных библиотек. Он также 
легко объединяется с другими инструментами обработки больших 
данных. В частности, Spark может выполняться под управлением 
кластеров Hadoop и использовать любые источники данных Hadoop, 
включая Cassandra. 

Унифиuированный сте1< 
Проект Spark включает множество тесно связанных компонентов. 
Ядро фреймворка образует его <<вычислительный механизм» ( compu­
tational engine ), отвечающий за планирование, распределение и мо­
ниторинг приложений, выполняющих множество вычислительных 
задач на множестве машин - вычислителыюм кластере. Быстрое 
и универсальное вычислительное ядро Spark приводит в действие 
разнообразные высокоуровневые компоненты, специализированные 
для решения разных задач, таких как выполнение запросов SQL или 
машинное обучение. Эти компоненты поддерживают тесную интег­
рацию друг с другом, давая возможность объединять их, подобно биб­
лиотекам в программном проекте. 

Философия тесной интеграции имеет несколько преимуществ. 
Во-первых, все библиотеки и высокоуровневые компоненты стека 
извлекают определенные выгоды от улучшений в слоях более низ­
кого уровня. Например, когда в ядро Spark вносятся какие-то опти­
мизации, библиотеки поддержки SQL и машинного обучения авто­
матически увеличивают производительность. Во-вторых, затраты на 
сопровождение стека минимальны, потому что вместо 5-10 незави­
симых программных систем организации требуется поддерживать 
только одну. Эти затраты включают развертывание, сопровождение, 
тестирование, поддержку и т. д. Это также означает, что при добав­
лении в стек Spark новых компонентов все организации, использую­
щие Spark, немедленно получают возможность опробовать эти новые 
компоненты. Это уменьшает затраты на опробование новых видов 
анализа данных, избавляя организации от необходимости загружать, 
развертывать и изучать новые программные проекты. 

Наконец, одним из самых больших преимуществ тесной интеграции 
является возможность создавать приложения, прозрачно объединяю­
щие разные модели обработки. Например, используя Spark, можно на­
писать приложение, применяющее модель машинного обучения для 
классификации данных в масштабе реального времени и потребляю-
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щее потоковые данные. Одновременно аналитики имеют возмож­
ность запрашивать результаты, также в масштабе реального времени, 
посредством SQL (например, объединяя данные с неструктурирован­
ными файлами журналов). Кроме того, опытные программисты и ис­
следователи могут обращаться к тем же данным посредством команд­
ной оболочки на языке Python и выполнять дополнительные виды 
анализа. Другие могут пользоваться результатами, получаемыми от 
автономных приложений пакетной обработки. При этом отделу ИТ 
приходится обслуживать единственную систему. 

Ниже мы коротко представим все основные компоненты Spark, 
изображенные на рис. 1.1. 

SparkSQL, 
обработка 

структурированных 
данных 

Spark Streaming, 
обработка данных 

в режиме реального 
времени 

Standalone Scheduler 

MUib, 
библиотека 
машинного 
обучения 

YARN 

Рис. 1 . 1 •:• Стек Spark 

Spark Core 

GraphX, 
обработка 

rрафов 

Mesos 

Spark Core реализует основные функциональные возможности 
фреймворка Spark, включая компоненты, осуществляющие плани­
рование заданий, управление памятью, обработку ошибок, взаимо­
действие с системами хранения данных и многие другие. Spark Core 
является также основой API устойчивых распределенных наборов 
данных (Resilient DistriЬuted Datasets, RDD) - базовой абстракции 
Spark. Наборы данных RDD представляют собой коллекции элемен­
тов, распределенных между множеством вычислительных узлов, ко­
торые могут обрабатываться параллельно. Spark Core предоставляет 
множество функций управления такими коллекциями. 

Spark SQL 

Spark SQL - пакет для работы со структурированными данными. По­
зволяет извлекать данные с помощью инструкций на языке SQL и его 
диалекте Hive Query Language (HQL). Поддерживает множество ис-
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точников данных, включая таблицы Hive, Parquet и JSON. В допол­
нение к интерфейсу SQL компонент Spark SQL позволяет смешивать 
в одном приложении запросы SQL с программными конструкциями 
на Python, Java и Scala, поддерживаемыми абстракцией RDD, и та­
ким способом комбинировать SQL со сложной аналитикой. Подобная 
тесная интеграция с богатыми возможностями вычислительной среды 
выгодно отличает Spark SQL от любых других инструментов управ­
ления данными. Spark SQL был добавлен в стек Spark в версии 1.0. 

Первой реализацией поддержки SQL в Spark стал проект Shark, 
созданный в Калифорнийском университете, Беркли. Этот проект 
представлял собой модификацию Apache Hive, способную выпол­
няться под управлением Spark. Позднее ему на смену пришел компо­
нент Spark SQL, имеющий более тесную интеграцию с механизмом 
Spark и API для разных языков программирования. 

Spark Streaming 

Spark Streaming - компонент Spark для обработки потоковых дан­
ных. Примерами источников таких данных могут служить файлы 
журналов, заполняемые действующими веб-серверами, или очереди 
сообщений, посылаемых пользователями веб-служб. Spark Streaming 
имеет API для управления потоками данных, который близко соот­
ветствует модели RDD, поддерживаемой компонентом Spark Core, 
что облегчает изучение самого проекта и разных приложений обра­
ботки данных, хранящихся в памяти, на диске или поступающих в ре­
жиме реального времени. Прикладной интерфейс (API) компонента 
Spark Streaming разрабатывался с прицелом обеспечить такую же на­
дежность, пропускную способность и масштабируемость, что и Spark 
Core. 

MLlib 

В состав Spark входит библиотека MLlib, реализующая механизм 
машинного обучения (Machine Learning, ML). MLlib поддерживает 
множество алгоритмов машинного обучения, включая алгоритмы 
классификации ( classification), регрессии (regression), кластеризации 
( clustering) и совместной фильтрации ( collaborative filtering), а также 
функции тестирования моделей и импортирования данных. Она так­
же предоставляет некоторые низкоуровневые примитивы ML, вклю­
чая универсальную реализацию алгоритма оптимизации методом 
градиентного спуска. Все эти методы способны работать в масштабе 
кластера. 
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GraphX 
GraphX - библиотека для обработки графов (примером графа может 
служить граф друзей в социальных сетях) и выполнения параллель­
ных вычислений. Подобно компонентам Spark Streaming и Spark SQL, 
GraphX дополняет Spark RDD API возможностью создания ориен­
тированных графов с произвольными свойствами, присваиваемыми 
каждой вершине или ребру. Также GraphX поддерживает разнообраз­
ные операции управления графами (такие как subgraph и rnapVertices) 
и библиотеку обобщенных алгоритмов работы с графами ( таких как 
алгоритмы ссылочного ранжирования PageRank и подсчета треуголь­
ников). 

Диспетчеры кластеров 
Внутренняя реализация Spark обеспечивает эффективное масшта­
бирование от одного до многих тысяч вычислительных узлов. Для 
достижения такой гибкости Spark поддерживает большое многообра­
зие диспетчеров l(Jlacmepoв ( cluster managers ), включая Hadoop YARN, 
Apache Mesos, а также простой диспетчер кластера, входящий в со­
став Spark, который называется Standalone Scheduler. При установке 
Spark на чистое множество машин на начальном этапе с успехом мож­
но использовать Standalone Scheduler. При установке Spark на уже 
имеющийся кластер Hadoop YARN или Mesos можно пользоваться 
встроенными диспетчерами этих кластеров. Подробнее о разных дис­
петчерах кластеров и их использовании рассказывается в главе 7. 

Кто и с какой uелью использует Sparl<? 
Так как Spark относится к категории универсальных фреймворков 
поддержки вычислений в кластерах, он применяется для реализа­
ции широкого круга приложений. Во вступлении мы определили две 
группы читателей, на которых ориентирована наша книга: специалис­
ты в области анализа данных и инженеры-программисты. Давайте 
теперь поближе познакомимся с обеими группами и с тем, как они 
используют Spark. Неудивительно, что специалисты в этих двух 
группах используют Spark по-разному, но мы можем примерно раз­
бить случаи использования на две основные категории - исследова­
ние данных и обработка данных. 

Разумеется, это весьма условное разделение, и многие профессио­
налы обладают обоими навыками, иногда выступая в роли исследо-



l<то и с какой uелью использует Sparl<? •:• 23 

вателей данных, а иногда создавая приложения обработки данных. 
Тем не менее имеет смысл в отдельности рассмотреть эти две группы 
и соответствующие им случаи использования. 

Исследование данных 

Наука о данных ( data science) - относительно новая дисциплина, по­
явившаяся несколько лет тому назад и специализирующаяся на ана­
лизе данных. Несмотря на отсутствие точного определения, мы будем 
пользоваться термином специалист в области анализа данных, или 
исследователь, для обозначения людей, основной задачей которых 
являются анализ и моделирование данных. Специалисты в области 
анализа данных могут иметь опыт использования SQL, статистиче­
ских методов, прогнозирования (машинного обучения) и программи­
рования, как правило, на Python, Matlab или R. Они также владеют 
приемами преобразования данных в форматы, в которых они могут 
быть проанализированы для проникновения в их суть (иногда это на­
зывают выпасом данных - data wrangling). 

Исследователи используют свои навыки для анализа данных 
с целью ответить на определенные вопросы или вскрыть их суть. Час­
то они прибегают к специализированным методам анализа, для чего 
используют интерактивные оболочки (вместо создания сложных 
приложений), позволяющие им получать результаты запросов в крат­
чайшие сроки. Благодаря быстродействию и простоте API фреймворк 
Spark прекрасно подходит для этой цели, а его встроенные библиоте­
ки предоставляют множество готовых алгоритмов. 

Благодаря большому числу компонентов Spark поддерживает 
большое многообразие видов анализа данных. Командная оболочка 
Spark упрощает проведение анализа в интерактивном режиме, с при­
менением Python или Scala. Spark SQL также имеет отдельную интер­
активную оболочку SQL, которую можно использовать для иссле­
дования данных. Компонент Spark SQL можно также использовать 
в обычных программах на основе Spark или из командной оболочки 
Spark. Технологии машинного обучения и анализа данных поддержи­
ваются также библиотеками MLlib. Кроме того, имеется поддержка 
внешних программ Matlab или на языке R. Spark позволяет иссле­
дователям данных заниматься задачами, основанными на обработке 
огромных объемов данных, которые прежде были недоступны при ис­
пользовании простых инструментов, таких как R или Pandas. 

Иногда, вслед за начальным этапом исследования данных, иссле­
дователю необходимо оформить анализ в виде законченного продук-
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та, то есть создать надежное приложение, позволяющее выполнять 
данный анализ и способное стать частью промышленного приложе­
ния. Например, начальные исследования данных могли бы привести 
исследователя к мысли о необходимости создания рекомендательной 
системы (recommender system), интегрированной в неб-приложение 
и генерирующей предложения для пользователей. Нередко создани­
ем такого законченного продукта занимается другой человек - инже­
нер-программист. 

Обработка данных 
Еще один основной случай использования фреймворка Spark можно 
описать в контексте работы инженера-программиста. В данном слу­
чае под инженерами-программистами мы подразумеваем разработчи­
ков программного обеспечения, использующих Spark для создания 
приложений обработки данных. Обычно эти разработчики знакомы 
с принципами создания программ, такими как инкапсуляция, дизайн 
интерфейса и объектно-ориентированное программирование. Они 
часто имеют специальное образование и используют свои знания 
и навыки для проектирования и создания программных систем, реа­
лизующих бизнес-логику. 

Программистам Spark предоставляет простой способ распаралле­
ливания создаваемых ими приложений в рамках кластера и скрывает 
сложность программирования распределенных систем, сетевых взаи­
модействий и устойчивости к ошибкам. Система дает им достаточно 
высокий уровень контроля для организации мониторинга и настрой­
ки приложений, а также быстрого создания реализаций типичных 
задач. Модульная природа API (на основе передачи распределенных 
коллекций объектов) упрощает создание библиотек многократного 
использования и их тестирование на локальном компьютере. 

Пользователи часто выбирают фреймворк Spark в качестве осно­
вы для своих приложений обработки данных, потому что он предо­
ставляет широкое разнообразие функциональных возможностей, 
простых в изучении и применении, а также благодаря его зрелости 
и надежности. 

Краткая история ра3вития Sparl< 
Spark - это проект с открытым исходным кодом, поддерживаемый 
многочисленным сообществом разработчиков. Если вы или ваша 
организация пробует применить Spark впервые, вам может быть ин-
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тересно узнать немного об истории этого проекта. Проект Spark на­
чинался в 2009 году как исследовательский, в лаборатории систем 
быстрой разработки приложений RAD Lab Калифорнийского уни­
верситета (Беркли), позднее переименованной в AMPLab. Прежде 
сотрудники лаборатории использовали Hadoop MapReduce и при­
шли к выводу, что модель MapReduce неэффективна для реализации 
итеративных и интерактивных вычислительных задач. Поэтому с са­
мого начала фреймворк Spark проектировался с прицелом на дости­
жение максимальной производительности в интерактивном режиме 
и при выполнении итеративных алгоритмов, что, в свою очередь, по­
влекло реализацию идей хранения данных в памяти и эффективной 
обработки ошибок. 

Вскоре после начала работы над проектом в 2009 году в академиче­
ских кругах появились первые статьи о Spark. Уже тогда фреймворк 
показывал 10-20-кратное превосходство в скорости над MapReduce 
на некоторых задачах. 

В числе первых пользователей Spark были только лаборатории 
Калифорнийского университета. К их числу, например, относятся 
исследователи в области машинного обучения из проекта Moblle 
Millennium - они использовали Spark для мониторинга и прогнози­
рования пробок на дорогах Сан-Франциско. Однако в очень короткое 
время Spark стали использовать другие организации, и на сегодняш­
ний день более 50 организаций указывают себя на странице Spark 
PoweredBy 1 и десятки других заявляют об использовании Spark 
в списках сообществ, таких как Spark Meetups2 и Spark Summit3

• По­
мимо Калифорнийского университета, в разработке Spark участвуют
также Databricks, Yahoo! и Intel.

В 2011 году лаборатория AMPLab приступила к разработке высо­
коуровневых компонентов для Spark, таких как Shark (Hive on Spark)4 

и Spark Streaming. Эти и другие компоненты иногда называют «Стек 
анализа данных из Берклиi> (Berkeley Data Analytics Stack, BDAS)5

• 

Исходный код Spark был открыт в марте 2010 года и в июне 2013-го 
передан в фонд Apache Software Foundation, где продолжает разви­
ваться и по сей день. 

1 http://bit.ly/1yx195p.
2 http://www.meetup.com/spark-users/.
3 http://spark-summit.org/.
4 Позднее проект Shark заменил проект Spark SQL. 
5 https://amplab.cs.berkeley.edu/software/.



26 •:• Введение в ана/\из данных с помошью Sparl< 

Версии Sparl< 
С момента создания проект Spark активно развивается сообществом, 
которое продолжает разрастаться с каждым выпуском. В создании 
версии Spark 1.0 участвовало более 100 отдельных разработчиков. 
Несмотря на рост активности, сообщество продолжает выпускать 
обновленные версии Spark на регулярной основе. Версия Spark 1.0 
вышла в мае 2014-го. Эта книга в основном охватывает версии Spark 
1.1.0 и выше, хотя большинство примеров будет работать и с более 
ранними версиями. 

Механиэмы хранения данных лля Sparl< 
Spark может создавать распределенные наборы данных из любых 
файлов, хранящихся в распределенной файловой системе Hadoop 
(HDFS) или в других системах хранения данных, поддерживающих 
Hadoop API (включая локальную файловую систему, Amazon SЗ, 
Cassandra, Hive, HBase и др.). Важно помнить, что Spark не требует 
наличия Hadoop; он просто поддерживает взаимодействие с система­
ми хранения данных, реализующих Hadoop API. Spark поддерживает 
текстовые файлы, файлы SequenceFile, Avro, Parquet и любые другие 
форматы, поддерживаемые Hadoop. Приемы использования этих ис­
точников данных будут рассматриваться в главе 5. 
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3агру31<а 

и настрой1<а Sparl< 

В этой главе мы рассмотрим процесс загрузки и настройки Spark для 
работы в локальном режиме на единственном компьютере. Эта глава 
написана для всех, кто только приступает к изучению Spark, включая 
исследователей данных и инженеров. 

Функциональные возможности Spark можно использовать в про­
граммах на Python, J ava или Scala. Для успешного усвоения сведений 
из этой книги необязательно быть опытным программистом, но все 
же знание базового синтаксиса хотя бы одного из этих языков будет 
как нельзя кстати. Мы будем включать примеры на всех этих языках, 
где только возможно. 

Сам фреймворк Spark написан на Scala и выполняется под управ­
лением виртуальной машиныjаvа Qava Virtual Machine,JVM). Что­
бы запустить Spark на ноутбуке или в кластере, достаточно лишь 
установить J ava версии 6 или выше. Если вы предпочитаете Python 
API, вам потребуется интерпретатор Python (версии 2.6 или выше). 
В настоящее время Spark не поддерживает Python 3. 

3агруэка Sparl< 
Первым шагом к использованию Spark являются его загрузка и рас­
паковка. Давайте начнем с загрузки последней скомпилированной 
версии Spark. Откройте в браузере страницу http://spark.apache.org/ 
downloads.html, выберите тип пакета Pre-built for Hadoop 2.4 and later 
(Скомпилированная версия с поддержкой Hadoop 2.4) и тип загруз­
ки Direct Download (Непосредственная загрузка). Затем щелкните на 
ссылке ниже, чтобы загрузить сжатый ТАR-файл, или тарболл, с име­
нем spark-1.2.0-Ьin-hadoop2.4.tgz. 

Пользователи Windows могут столкнуться с проблемой при установке 
Spark в каталог, имя которого содержит пробелы. Поэтому устанавли­
вайте Spark в каталог с именем без пробелов (например, C:\spark). 
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Для установки Spark необязательно иметь Hadoop, но если у вас 
уже имеется настроенный кластер Hadoop или установлена поддерж­
ка HDFS, выбирайте для загрузки соответствующую версию. На 
странице http://spark.apache.org/downloads.html можно также выбрать 
другой тип пакета, но имена файлов будут отличаться незначительно. 
Возможна также сборка из исходных текстов; последнюю версию ис­
ходных текстов можно получить из репозитория GitHub или выбрав 
тип пакета Source Code (Исходный код) на странице загрузки. 

Большинство версий Unix и Linux, включая Мае OS Х, уже имеют 
предустановленный инструмент командной строки tar для распаковки 
Т АR-файлов. Если в вашей операционной системе отсутствует команда 
tar, попробуйте найти в Интернете свободный инструмент распаковки 
ТАR-архивов, например 7-Zip для Windows. 

Загрузив файл архива с фреймворком Spark, давайте распакуем его 
и посмотрим, что входит в состав дистрибутива по умолчанию. Для 
этого откройте окно терминала, перейдите в каталог, куда была вы­
полнена загрузка Spark, и распакуйте файл. В результате будет создан 
новый каталог с тем же именем, но без расширения .tgz. Перейдите 
в этот каталог и посмотрите, что в нем содержится. Для этого можно 
выполнить следующие команды: 

cd -

tar -xf spark-l.2.0-bin-hadoop2.4.tgz 

cd spark-l.2.0-bin-hadoop2.4 

ls 

Флаг х в команде tar сообщает архиватору, что он должен извлечь 
файлы из архива, а флаг f определяет имя тарболла. Команда ls вы­
водит содержимое каталога. Рассмотрим назначение некоторых наи­
более важных файлов и каталогов: 

О README.md - содержит краткие инструкции по настройке 
Spark; 

О Ьiп - содержит выполняемые файлы, которые можно использо­
вать для взаимодействий с фреймворком Spark ( среди них, на­
пример, командная оболочка Spark, о которой рассказывается 
далее в этой главе); 

О core, streaming, python, ... - содержат исходный код основных 
компонентов проекта Spark; 

О examples - содержит примеры реализации некоторых распро­
страненных задач, которые можно опробовать и использовать 
для изучения Spark API. 
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Пусть вас не волнует большое число файлов и каталогов в проекте 
Spark; мы познакомимся с большинством из них далее в этой книге. 
А теперь давайте сразу же попробуем воспользоваться командными 
оболочками Spark для Python и Scala. Для начала попытаемся запус­
тить некоторые примеры, входящие в состав дистрибутива. Затем на­
пишем, скомпилируем и выполним собственную простенькую задачу. 

Все операции в этой главе будут выполняться в Spark, действую­
щем в локальном режиме, то есть в нераспределенном режиме - на 
единственном компьютере. Spark может работать в нескольких раз­
ных режимах, или окружениях. Помимо локального режима, Spark 
может также выполняться под управлением Mesos, У ARN и собствен­
ного автономного планировщика Standalone Scheduler. Подробнее 
о разных режимах выполнения рассказывается в главе 7. 

Введение в командные оболочки Sparl< 

лля Python и Scala 
В состав дистрибутива Spark входят интерактивные командные обо­
лочки (shell), позволяющие выполнять специализированные виды 
анализа. Командные оболочки Spark напоминают любые другие 
командные оболочки, такие как, например, командные оболочки R, 
Python и Scala или даже командные оболочки операционных систем, 
допустим Bash или «Командная строка,> в Windows. 

Однако, в отличие от большинства других оболочек, позволяющих 
манипулировать данными на диске и в памяти единственного компью­
тера, оболочки Spark дают возможность оперировать данными, рас­
пределенными по нескольким компьютерам, при этом все сложности, 
связанные с распределенным доступом, берет на себя Spark. 

Так как Spark может загружать данные в память на множестве ра­
бочих узлов, многие распределенные вычисления, даже на массивах 
данных, занимающих терабайты, распределенных между десятка­
ми компьютеров, выполняются всего несколько секунд. Это делает 
командную оболочку Spark вполне пригодной для исследования дан­
ных в интерактивном режиме. Spark предоставляет оболочки для обо­
их языков, Python и Scala, которые с успехом могут использоваться 
в кластерах. 

Большинство примеров в этой книге написаны на всех языках, поддер­
живаемых фреймворком Spark, но интерактивные командные оболочки 
доступны только для Python и Scala. Так как оболочку очень удобно 
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использовать для изучения API, мы рекомендуем изучить один из этих 
двух языков, даже если вы занимаетесь разработкой нajava, потому что 
для всех языков поддерживаются похожие API. 

Проще всего продемонстрировать мощь командной оболочки Spark 
на примере выполнения одного из простых видов анализа. Давайте 
рассмотрим пример из начального руководства <<Quick Start Guidei> 1 

в официальной документации к Spark. 
Сначала запустите одну из командных оболочек Spark. Чтобы за­

пустить командную оболочку для Python, которую также называют 
PySpark Shell, перейдите в каталог установки Spark и выполните 
команду: 

Ьin/pyspark 

(Или Ьin\pyspark в Windows.) Чтобы запустить командную оболочку 
для Scala, выполните: 

Ьin/spark-shell 

В течение нескольких секунд в окне терминала должно появиться 
приглашение к вводу. Когда оболочка запустится, вы должны уви­
деть множество сообщений. Вам может понадобиться нажать кла­
вишу Enter, чтобы очистить окно и вывести приглашение к вводу. 
На рис. 2.1 показано, как выглядит приглашение к вводу в оболочке 
PySpark Shell. 

Кому-то такие начальные сообщения могут показаться излишни­
ми или даже раздражающими. Вы можете избавиться от них, создав 
в каталоге сап/ файл с именем log4j.properties. Разработчики Spark 
уже включили в дистрибутив шаблон этого файла с именем log4j. 
pгoperties.template. Чтобы уменьшить число выводимых сообщений, 
скопируйте содержимое файла conf/log4j.properties.template в файл 
conf/log4j.pгoperties и найдите в нем следующую строку: 

log4j.rootCategory;INFO, console 

Уменьшите уровень подробности так, чтобы выводились только 
сообщения с уровнем WARN: 

log4j.rootCategory;WARN, console 

Если после этого вновь запустить командную оболочку, вы увиди­
те, что число сообщений уменьшилось, как показано на рис. 2.2. 

1 http://spark.apache.org/docs/latest/quick-start. html.
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Рис. 2. 1 •:• Оболочка PySpark Shell с сообщениями, 

выводимыми по умолчанию 

Рис. 2.2 •:• Оболочка PySpark Shell с меньшим числом сообщений 
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ИспользованиеlРуthоп 

IPython - улучшенная командная оболочка Python, пользующаяся за­
служенной популярностью среди пользователей Python и предлагаю­
щая такие особенности, как автодополнение команд. Инструкции по 
установке можно найти по адресу http://ipython.org. Оболочку IPython 
можно использовать совместно с фреймворком Spark, для чего нужно 
присвоить переменной окружения IPYTHON значение 1: 

IPYTHON=l . /Ьin/pyspark 

Чтобы задействовать IPython Notebook - веб-версию IPython, выпол­
ните команду: 

IPYTHON _ OPTS="notebook" . /Ьin/pyspark 

В Windows установите переменную и запустите оболочку: 

set IPYTHON=l 
Ьin\pyspark 

В Spark вычисления выражаются в виде операций с распределен­
ными коллекциями, которые автоматически распараллеливаются 
в кластере. Эти коллекции называются устойчивыми распределеu­
mши uаборами да1111ы.х (Resilient Distributed Datasets, RDD). Наборы 
RDD - это фундаментальная абстракция в Spark, используемая для 
представления распределенных данных и вычислений. 

Прежде чем перейти к обсуждению особенностей наборов RDD, 
давайте создадим один такой набор в командной оболочке на основе 
текстового файла и выполним какой-нибудь очень простой анализ, 
как показано в примере 2.1 для Python или в примере 2.2 для Scala. 

Пример 2.1 •:• Подсчет строк на Python 

>» lines = sc.textFile("READМE.md") t Создать RDD с именем lines
>>> lines.count() 1 Подсчитать число элементов в RDD 
127 

»> lines.first()

u'i Apache Spark' 

Первый элемент в RDD, то есть первая строка 
в README.md 

Пример 2.2 •:• Подсчет строк на Scala 

scala> val lines = sc.textFile("READМE.md") // Создать RDD с именем lines 
lines: spark.RDD[String] = MappedRDD[ ... J 

scala> lines.count() // Подсчитать число элементов в RDD 
resO: Long = 127 

scala> lines.first() // Первый элемент в RDD, то есть первая строка 
// в README.md 

resl: String = 1 Apache Spark 
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Чтобы выйти из оболочки, нажмите комбинацию Ctrl-D. 

Подробнее эти примеры мы обсудим в главе 7, тем не менее вы мог­
ли заметить одно из сообщений: INFO SparkUI: Started SparkUI at http: / / 
[ipaddress] :4040. Вы можете обратиться к графическому интерфейсу 
Spark UI (то есть к неб-интерфейсу) по указанному адресу и увидеть 
всю информацию о своих задачах и кластере. 

В примерах 2.1 и 2.2 определяется переменная lines, представляю­
щая набор RDD, созданный из текстового файла. С набором RDD 
можно выполнять разнообразные параллельные операции, такие как 
подсчет числа элементов (в данном случае строк в текстовом файле), 
или вывести первый элемент. Более подробно наборы RDD будут 
обсуждаться в последующих главах, но прежде давайте потратим не­
много времени на знакомство с основными понятиями Spark. 

Введение в основные понятия Sparl< 
Теперь, после опробования первого примера взаимодействия 
с фреймворком Spark из программного кода, можно приступать к бо­
лее детальному исследованию приемов программирования. 

В общем случае любое приложение на основе Spark состоит из 
программы-драйвера (driver program), который запускает различные 
параллельные операции в кластере. Драйвер содержит функцию main 
приложения и определяет распределенные наборы данных, а затем 
применяет к ним различные операции. В предыдущих примерах роль 
драйвера выполняет сама командная оболочка Spark, благодаря чему 
можно просто вводить желаемые операции. 

Драйвер обращается к Spark посредством объекта SparkContext, 
представляющего соединение с вычислительным кластером. Команд­
ная оболочка Spark автоматически создает объект SparkContext в виде 
переменной с именем sc. Попробуйте ввести имя sc, чтобы получить 
его тип, как показано в примере 2.3. 

Пример 2.3 •:• Исследование переменной sc 

>» sc

<pyspark.context.SparkContext object at Ox1025b8f90> 

Имея объект SparkContext, можно создавать наборы RDD. В приме­
рах 2.1 и 2.2 с этой целью вызывался метод sc. textFile (), создающий 
RDD, который представляет строки из текстового файла. После соз­
дания набора можно приступать к выполнению разнообразных опе­
раций со строками, таких как count (). 
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Для выполнения этих операций драйверы обычно используют не­
сколько узлов (nodes), которые называют исполнителями (executors). 
Например, если бы операция count () выполнялась в кластере, разные 
машины могли бы выполнять подсчет строк в разных фрагментах 
файла. Так как мы использовали командную оболочку Spark на ло­
кальном компьютере, вся работа выполнялась на одном компьютере, 
но ту же самую командную оболочку можно подключить к класте­
ру и выполнить анализ с применением параллельных операций. На 
рис. 2.3 показано, как действует Spark в кластере. 

Рабочий узел 

Исполнитель 

Программа-драйвер / 

� 
1 Задание 11 Задание 1 

1 SparkContext 1 
� 

... 

Рабочий узел 

Исполнитель � 
"" 1 Задание 11 Задание 1 

Рис. 2.3 •:• Компоненты 
распределенного выполнения в Spark 

Наконец, значительная часть Spark API так или иначе связана с пе­
редачей функций в операторы для их выполнения в кластере. Так, 
мы могли бы дополнить пример анализа файла README операцией 
фильтрации строк, скажем, по слову Python, как показано в приме­
ре 2.4 (для Python) и в примере 2.5 (для Scala). 

Пример 2.4 •:• Пример фильтрации на Python 

>» lines = sc.textFile("READМE.md")
»> pythonLines = lines.filter(lamЬda line: "Python" in line)
>>> pythonLines.first()
u'## Interactive Python Shell'

Пример 2.5 •:• Пример фильтрации на Scala 

scala> val lines = sc.textFile("READМE.md") // Создать RDD с именем lines 
lines: spark.RDD[String] = MappedRDD[ ... ) 

scala> val pythonLines = lines.filter(line => line.contains("Python")) 
pythonLines: spark.RDD[String) = FilteredRDD[ ... ) 

scala> pythonLines.first() 
resO: String = ## Interactive Python Shell 
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Передача функций в Spark 
Для тех, кто не знаком с синтаксисом lamЬda или =>, используемым в при­
мерах 2.4 и 2.5, отметим, что это самый простой способ определения 
встраиваемых функций в языках Python и Scala. При использовании Spark 
в программах на этих языках можно также определять обычные функции 
и передавать их имена. Например, на Python: 

def hasPython (line): 

return "Python" in line 

pythonLines = lines .filter (hasPython) 

Передачу функций в Spark можно также организовать в программном коде 
нajava, но в этом случае их необходимо оформлять в виде классов, реали­
зующих интерфейс Function. Например: 

JavaRDD<String> pythonLines = lines.filter ( 

new Function<String, Boolean> () { 

Boolean call (String line) { return line.contains ("Python"); 

); 

Bjava 8 поддерживается более краткий синтаксис лямбда-выражений, ко­
торый выглядит подобно синтаксису в языках Python и Scala. Вот как вы­
глядит код, использующий этот синтаксис: 

JavaRDD<String> pythonLines = 

lines.filter(line -> line.contains("Python")); 

Подробнее о механизме передачи функций рассказывается в разделе «Пе­
редача функций в Sparki> в главе 3. 

Подробнее Spark API будет рассматриваться в следующих главах, 
а пока заметим, что его мощь в значительной мере объясняется воз­
можностью применения операций, принимающих пользовательские 
функции, таких как filter, также способных выполняться параллель­
но в кластере. То есть Spark автоматически принимает вашу функцию 
(например, line.contains ("Python")) и передает ее узлам-исполните­
лям. Благодаря этому можно писать код для единственного драйвера 
и автоматически получить возможность выполнения его на множест­
ве узлов. Детально RDD API рассматривается в главе 3. 

Автономные прило>1<ения 
В заключение краткого обзора возможностей фреймворка Spark рас­
смотрим, как использовать его в автономных программах. Помимо 
использования интерактивной оболочки, фреймворк Spark можно 
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скомпоновать с автономным приложением нaJava, Scala или Python. 

Основное отличие таких приложений заключается в необходимо­
сти вручную создавать и инициализировать собственный объект 

SparkContext. В остальном используется все тот же API. 

Процедура компоновки с фреймворком Spark зависит от языка 

программирования. В Java и Scala достаточно определить зависи­
мость от артефакта spark-core в системе сборки Maven. Для версии 

Spark 1.2.0, которая была последней на момент написания этих строк, 

определение зависимости в Maven выглядело так: 

groupid = org.apache.spark 

artifactld = spark-core_2.10 

version = 1.2.0 

Maven - популярный инструмент сборки для языков на осно­
ве JVM, позволяющий подключать библиотеки из общедоступных 

репозиториев. Для сборки своих проектов вы можете использовать 

Maven или другие инструменты, способные работать с репозитория­
ми Maven, включая инструмент sbt для Scala или Gradle. Популярные 

интегрированные среды разработки, такие как Eclipse, также дают 
возможность включать в проекты зависимости Maven. 

При использовании Python не требуется выполнять компоновку, 

достаточно лишь запускать такие программы с использованием сце­

нария Ыn/spark-submit, входящего в состав Spark. Этот сценарий ав­

томатически подключает все необходимые зависимости, настраивая 

окружение для использования Spark Python API. Просто запускайте 

свои программы, как показано в примере 2.6. 

Пример 2.6 •:• Запуск программы на Python 

bin/spark-submit my_script.py 

(Обратите внимание, что в Windows вместо прямого слэша (/) следу­

ет использовать обратный слэш (\).) 

Инициализация SparkContext 

После компоновки приложения с фреймворком Spark нужно им­
портировать пакеты Spark в программу и создать объект контекста 

SparkContext. Для этого сначала следует создать объект SparkConf 
для настройки приложения и затем с его помощью сконструиро­

вать SparkContext. Как это делается, демонстрируют примеры с 2.7 
по 2.9. 
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Пример 2. 7 •:• Инициализация Spark в Python 

from pyspark import SparkConf, SparkContext 

conf = SparkConf () .setMaster ("local") .setAppName ("Му Арр") 

sc = SparkContext(conf = conf) 

Пример 2.8 •:• Инициализация Spark в Scala 

import org.apache.spark.SparkConf 

import org.apache.spark.SparkContext 

1mport org.apache.spark.SparkContext. 

val conf = new SparkConf () . setMaster (" local") . setAppName ( "Му Арр") 

val sc = new SparkContext(conf) 

Пример 2.9 •:• Инициализация Spark в Java 

import org.apache.spark.SparkConf; 

import org.apache.spark.api.java.JavaSparkContext; 

SparkConf conf = 

new SparkConf () . setMaster ( "local") . setAppName ( "Му Арр"); 

JavaSparkContext sc = new JavaSparkContext(conf); 

В этих примерах демонстрируется минимально необходимая ини­
циализация SparkContext с двумя параметрами: 

О адрес URL кластера, local в данных примерах, который сообща­
ет фреймворку Spark, как подключиться к кластеру. Адрес local 
имеет специальное значение и сообщает Spark, что операции 
должны выполняться в одном потоке на локальном компьюте­
ре, без подключения к кластеру; 

О имя приложения, Му Арр в данных примерах. Это имя будет иден­
тифицировать приложение в графическом интерфейсе управ­
ления кластером, при выполнении в кластере. 

С помощью дополнительных параметров можно определить, как 
будет выполняться приложение, или добавить код для передачи 
в кластер, но подробнее об этом мы поговорим в последующих главах. 

После инициализации SparkContext можно приступать к использо­
ванию любых его методов создания наборов RDD (например, из текс­
товых файлов) и выполнения операций с ними. 

Наконец, завершив работу с фреймворком Spark, можно вызвать 
метод stop () объекта SparkContext или просто выйти из приложения 
(например, вызовом System.exit (0) или sys .exit () ). 

Этого краткого обзора должно быть достаточно, чтобы вы смогли 
самостоятельно запустить свое автономное приложение для Spark на 
ноутбуке. В главе 7 обсуждаются более сложные варианты настрой-
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ки, определяющие порядок подключения приложения к кластеру, 
включая упаковку приложения, чтобы его код автоматически переда­
вался на рабочие узлы (worker nodes). А пока обращайтесь к началь­
ному руководству «Quick Start Guide,> 1 в официальной документации 
к Spark. 

Сборка автономных приложений 
Эта вводная глава в книге, посвященной большим данным, не была 
бы полной без примера подсчета слов. Реализовать подсчет слов на 
единственном компьютере очень просто, но в фреймворках распреде­
ленных вычислений все не так просто, потому что необходимо орга­
низовать чтение и объединение результатов с множества рабочих уз­
лов. Далее мы покажем, как собрать и упаковать простое приложение 
подсчета слов с помощью двух инструментов, sbt и Maven. Все наши 
примеры можно собрать вместе, но для простоты, чтобы уменьшить 
число зависимостей до минимума, мы создали отдельные проекты 
в каталоге leaming-sparkexamples/mini-complete-example, которые при­
водятся в примерах 2.10 (дляjаvа) и 2.11 (для Scala). 

Пример 2. 1 О •:• Приложение подсчета слов на Java - не пугайтесь, 

если что-то вам непонятно 

// Создать SparkContext 

SparkConf conf ; new SparkConf () . setAppName ("wordCount"); 

JavaSparkContext sc; new JavaSparkContext(conf); 

// Загрузить исходные данные. 

JavaRDD<String> input; sc.textFile(inputFile); 

// Разбить на слова. 

JavaRDD<String> words; input.flatMap( 

new FlatMapFunction<String, String>() 

puЫic IteraЫe<String> call(String х) 

return Arrays.asList(x.split(" ")); 

} }); 

// Преобразовать в пары и выполнить подсчет. 

JavaPairRDD<String, Integer> counts; words.mapToPair( 

new PairFunction<String, String, Integer>() { 

puЫic Tuple2<String, Integer> call(String х) { 

return new Tuple2(x, 1); 

}}) .reduceByKey(new Function2<Integer, Integer, Integer>() { 

puЫic Integer call(Integer х, Integer у) { return х + у;}}); 

// Сохранить результаты в текстовый файл. 

counts.saveAsTextFile(outputFile); 

1 http://spark.apache.org/docs/latest/quick-start.html.
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Пример 2.11 •:• Приложение подсчета слов на Scala - не пугайтесь, 

если что-то вам непонятно 

// Создать SparkContext. 

val conf = new SparkCont() .setAppName("wordCount") 
val sc = new SparkContext(conf) 
// Загрузить исходные данные. 
val input = sc.textFile(inputFile) 
// Разбить на слова. 
val words = input.flatMap(line => line.split(" ")) 
// Преобразовать в пары и выполнить подсчет. 
val counts = words.map(word => (word, 1)) .reduceByKey{case (х, у) => х + у) 
// Сохранить результаты в текстовый файл. 
counts.saveAsTextFile(outputFile) 

Файлы сборки этих приложений для обоих инструментов - sbt 
(пример 2.12) и Maven (пример 2.13) - выглядят очень просто. Мы 
пометили зависимость Spark Core как provided, чтобы потом, когда 
будет использоваться файл-сборка JAR, мы не включали JАR-файл 
spark-core, который уже находится в пути classpath на рабочих узлах. 

Пример 2. 12 •:• Файл сборки для sЫ 

name : = "learning-spark-mini-example" 

version : = "0.0.1" 

scalaVersion : = "2.10.4" 

// дополнительные библиотеки 
libraryDependencies ++= Seq( 

"org.apache.spark" %% "spark-core" "1.2.0" % "provided" 

Пример 2. 1 З •:• Файл сборки для Maven 

<project> 

<groupid>com.oreilly.learningsparkexamples.mini</groupid> 

<artifactid>learning-spark-mini-example</artifactid> 
<modelVersion>4.0.0</modelVersion> 
<name>example</name> 

<packaging>jar</packaging> 

<version>0.0.1</version> 

<dependencies> 
<dependency> <!-- зависимость Spark --> 

<groupid>org.apache.spark</groupid> 

<artifactid>spark-core_2.10</artifactid> 
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<version>l.2.0</version> 
<scope>provided</scope> 

</dependency> 
</dependencies> 
<properties> 

<java.version>l.6</java.version> 
</properties> 
<build> 

<pluginManagement> 
<plugins> 

<plugin> 
<groupid>org.apache.maven.plugins</groupid> 
<artifactid>maven-compiler-plugin</artifactid> 
<version>З.1</version> 
<configuration> 

<source>${java.version}</source> 
<target>${java.version}</target> 

</ configur а tion> 
</plugin> 

</plugins> 
</pluginManagement> 

</build> 
</project> 

Пакет spark-core помечен как provided на случай, если приложение 
будет упаковываться в файл-сборку JAR. Подробнее об этом рассказы­
вается в главе 7. 

Определив файл сборки, мы легко сможем упаковать приложе­
ние и запускать его с помощью сценария Ьin/spark-subrnit. Сценарий 
spark-subrnit настраивает несколько переменных окружения, исполь­
зуемых фреймворком Spark. Находясь в каталоге mini-complete­
example, можно собрать оба приложения: для Scala (пример 2.14) 
иjava (пример 2.15). 

Пример 2. 14 •:• Сборка и запуск приложения на Scala 

sbt clean package 
$SPARK_HOME/bin/spark-submit \ 

--class com.oreilly.learningsparkexamples.mini.scala.WordCount 
./target/ ... {as above) \
./README.md ./wordcounts

Пример 2.15 •:• Сборка и запуск приложения на Java 

mvn clean && mvn compile && mvn package 
$SPARK_HOME/bin/spark-submit \ 
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--class com.oreilly.learningsparkexamples.mini.java.WordCount 

./target/learning-spark-mini-example-0.0.1.jar \

./README.md ./wordcounts

Еще более подробные примеры компоновки приложений с фрейм­
варком Spark можно найти в начальном руководстве <<Quick Start 
Guide,> 1 в официальной документации к Spark. Подробнее об упаков­
ке приложений для Spark рассказывается в главе 7. 

В заключение 

В этой главе вы узнали, как загрузить Spark, запустить на локальном 
компьютере, как использовать его из интерактивной командной обо­
лочки и из автономного приложения. Мы дали краткий обзор основ­
ных понятий, связанных с применением фреймворка Spark: про­
грамма-драйвер создает объект SparkContext и наборы RDD, а затем 
выполняет параллельные операции с этими наборами. В следующей 
главе мы подробнее рассмотрим, как действуют наборы RDD. 

1 http://spark.apache.org/docs/latest/quick-start. html.



Глава3 

Программирование 

операuий с RDD 

Эта глава является введением в базовые абстракции фреймворка 
Spark, используемые при работе с данными, устойчивыми распреде­
ленными наборами данных (Resilient Distributed Datasets, RDD). Набор 
RDD - это просто распределенная коллекция элементов. Собствен­
но, вся работа Spark заключается в создании новых, преобразовании 
существующих или выполнении операций с наборами RDD. За ку­
лисами Spark автоматически распределяет данные в наборах RDD 
между компьютерами в кластере и распараллеливает выполнение 
операций над ними. 

Исследователи данных и инженеры обязательно должны прочи­
тать эту главу, потому что наборы RDD являются базовым понятием 
в Spark. Мы настоятельно рекомендуем, чтобы вы опробовали при­
меры в интерактивной оболочке (см. раздел <<Введение в командные 
оболочки Spark для Python и Scala,> в главе 2). Кроме того, исходный 
код всех примеров для этой главы можно загрузить из репозитория 
GitHub: https: / / gi thub. сот/ databricks/learning-spark. 

Основы RDD 

Набор RDD в Spark - это простая, неизменяемая, распределенная 
коллекция объектов. Каждый набор RDD делится на множество час­
тей, которые могут обрабатываться разными узлами в кластере. На­
боры RDD могут содержать объекты любого типа на Python,Java или 
Scala, включая экземпляры пользовательских классов. 

Пользователи могут создавать RDD двумя способами: загружая 
внешние наборы данных или распределяя коллекции объектов (на­
пример, списки или множества) внутри программы-драйвера. Мы 
уже видели, как можно загрузить текстовый файл и превратить его со­
держимое в набор RD D строк вызовом метода SparkContext. textFile () 
( см. пример 3.1 ). 
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Пример 3. 1 •:• Создание набора RDD строк вызовом textFile() в Python 

»> lines = sc.textFile("READМE.md")

После создания RD D появляется возможность выполнять два вида
операций: преобразования (transformations) и действия (actions). 
Преобразования создают новые наборы RDD на основе существую­
щих. Примером типичного преобразования может служить фильтра­
ция данных по заданному условию. Продолжая пример с текстовым 
файлом, можно создать новый набор RDD, хранящий только строки 
со словом «Python,>, как показано в примере 3.2. 

Пример 3.2 •:• Вызов преобразования filter() 

» > pythonLines = lines . fil ter ( lamЬda line: "Python" in line)

Действия, напротив, вычисляют результат, не создавая новых на­
боров RDD, и возвращают его программе-драйверу или сохраняют во 
внешнем хранилище (например, в HDFS). Примером действия, ко­
торое мы уже выполняли выше, может служить вызов метода fir s t () , 
который возвращает первый элемент RDD (см. пример 3.3). 

Пример 3.3 •:• Вызов действия first() 

»> pythonLines .first ()
и'## Interactive Python Shell'

Преобразования и действия отличаются способом обработки на­
боров RDD. Даже при том, что новый набор RDD можно создать 
в любой момент, Spark откладывает фактическое его создание до мо­
мента первого обращения к нему. На первый взгляд, такое решение 
может показаться необычным, но при работе с большими данными 
оно выглядит более чем разумно. Например, вернемся к примерам 3.1 
и 3.2, где определялся набор RDD на основе текстового файла и за­
тем фильтровался по слову «Python>>. Если бы Spark загружал и со­
хранял все строки из файла при выполнении инструкции lines = 
sc. textFile ( ... ), ему пришлось бы впустую потратить значительный 
объем памяти, особенно если учесть, что сразу вслед за созданием 
набора выполняется его фильтрация. Чтобы такого не происходило, 
Spark вычисляет результат, только когда видит всю цепочку преоб­
разований. Фактически, выполняя действие first (), Spark сканирует 
файл, пока не найдет первую строку, соответствующую условию, - он 
даже не читает весь файл целиком. 

Наконец, наборы RDD по умолчанию вычисляются фреймворком 
Spark заново всякий раз, когда выполняется очередное действие. Если 
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предполагается использовать один и тот же набор RDD для выпол­
нения нескольких действий, можно потребовать от Spark сохранить 
его вызовом метода persist (). Сохранить набор RDD можно в разных 
местах, которые будут перечислены в табл. 3.6. После вычисления 
набора RDD в первый раз Spark сохранит его содержимое в памяти 
(по частям, на узлах в кластере) и будет использовать при выполне­
нии последующих действий. Имеется также возможность сохранить 
RDD на диске. Такое поведение, когда по умолчанию Spark не сохра­
няет набор, также выглядит необычным, но в этом есть определенный 
смысл при работе с большими объемами данных: если набор RDD 
нужен для получения единственного результата и в дальнейшем не 
будет использоваться, нет смысла напрасно расходовать память 1

• 

На практике часто приходится использовать persist () для загруз­
ки подмножества данных в память и повторного его использования. 
Например, если бы мы знали, что со строками из файла README, 

содержащими слово <iPython:1>, потребуется выполнить несколько 
действий, мы могли бы написать сценарий, как показано в приме­
ре 3.4. 

Пример 3.4 •:• Сохранение RDD в памяти 

>>> pythonLines.persist 

>>> pythonLines.count() 

2 

>>> pythonLines.first() 

и'## Interactive Python Shell' 

Итак, все программы на основе Spark и командные оболочки дей­
ствуют следующим образом: 

1. Создаются некоторые исходные наборы RDD из внешних дан­
ных.

2. На их основе создаются новые наборы с применением преоб­
разований, таких как filter ().

3. Для любых промежуточных наборов, которые потребуются
впоследствии, вызывается метод persist ().

1 Возможность повторного вычисления наборов RDD по умолчанию объ­
ясняет, почему эти наборы называются устойчивыми (resilient). Если 
компьютер, хранящий данные из набора RDD, потерпит аварию, Spark вос­
пользуется этой возможностью и вычислит недостающие части незаметно 
для пользователя. 
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4. Запускаются действия, такие как count () и first (), которые опти­
мизируются и выполняются фреймворком Spark параллельно
на нескольких компьютерах в кластере.

(; Метод cache () действует так же, как метод persist () с уровнем сох ране­
';/ ния по умолчанию. 

В оставшейся части главы мы подробно исследуем все эти этапы 
и попутно познакомимся с наиболее типичными операциями над на­
борами RDD, которые поддерживаются фреймворком Spark. 

Со3дание RDD 

Поддерживаются два способа создания наборов RDD: путем загрузки 
внешних наборов данных и распределением коллекций в программе­
драйвере. 

Самый простой способ - взять существующую коллекцию и пере­
дать ее методу parallelize () объекта SparkContext, как показано в при­
мерах с 3.5 по 3.7. Такой подход удобно использовать при изучении 
Spark, поскольку позволяет быстро создать собственный набор RDD 
в командной оболочке и приступить к выполнению операций с ним. 
Но имейте в виду, что на практике подобный прием используется до­
статочно редко (обычно только для проверки идей и тестирования), 
потому что требует наличия в памяти одного компьютера полного на­
бора данных. 

Пример 3.5 •:• Вызов метода parallelize() в Python 
lines = sc.parallelize(["pandas", "i like pandas"]) 

Пример 3.6 •:• Вызов метода parallelize() в Scala 
val lines = sc.parallelize(List("pandas", "i like pandas")) 

Пример 3. 7 •:• Вызов метода parallelize() в Java 
JavaRDD<String> lines = sc.parallelize( 

Arrays.asList("pandas", "i like pandas")); 

Чаще наборы RDD создаются путем загрузки данных из внешних 
источников. Подробнее о загрузке данных рассказывается в главе 5. 
Однако мы уже видели один из методов, загружающий текстовый 
файл как набор RDD строк, SparkContext. textFile (), применение ко­
торого показано в примерах с 3.8 по 3.10. 

Пример 3.8 •:• Метод textFile() в Python 

lines = sc.textFile("/path/to/README.md") 
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Пример 3.9 •:• Метод textFile() в Scala 

val lines = sc.textFile("/path/to/README.md") 

Пример 3.1 О •:• Метод textFile() в Java 

JavaRDD<String> lines = sc.textFile("/path/to/README.md"); 

Операuии с RDD 
Как уже отмечалось выше, наборы RDD поддерживают два типа опе­
раций: преобразования и действия. Преобразования - это операции 
над наборами RDD, возвращающие новые наборы RDD, такие как 
map () и filter (). Действия - это операции, возвращающие результат 
в программу-драйвер или записывающие его в хранилище, такие как 
count () и first (). Преобразования и действия выполняются фрейм­
ворком Spark по-разному, поэтому очень важно понимать, какой тип 
операции вы собираетесь выполнять. Когда возникают сомнения от­
носительно типа операции, выполняемой той или иной функцией, 
взгляните на тип возвращаемого значения: преобразования возвра­
щают наборы RDD, а действия - данные других типов. 

Преобразования 
Преобразования - это операции над наборами RDD, возвращаю­
щие новые наборы RDD. Как отмечается в разделе «Отложенные 
вычисления>> ниже, вычисление преобразованных наборов RDD от­
кладывается до момента, когда к ним будут применены действия. 
Большинство преобразований выполняются поэлементно, то есть 
преобразованиям подвергаются элементы по отдельности, но это 
относится не ко всем преобразованиям. Например, представьте, что 
имеется файл журнала log.txt со множеством сообщений и нам требу­
ется выбрать из него только сообщения об ошибках. В этом случае мы 
можем воспользоваться преобразованием fil ter (), которое уже виде­
ли выше. Но на этот раз рассмотрим реализацию фильтрации на всех 
трех языках, поддерживаемых Spark (примеры с 3.11 по 3.13). 

Пример 3.11 •:• Преобразование filter() в Python 

inputRDD = sc.textFile("log.txt") 

errorsRDD = inputRDD.filter (lamЬda х: "error" in х) 

Пример 3. 12 •:• Преобразование filter() в Scala 

val inputRDD = sc.textFile("log.txt") 

val errorsRDD = inputRDD. filter (line => line. contains ( "error") ) 
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JavaRDD<String> inputRDD = sc.textFile("log.txt"); 
JavaRDD<String> errorsRDD = inputRDD. filter ( 

new Function<String, Boolean>() { 

) 

}); 

puЫic Boolean call(String х) { return x.contains("error"); 

Обратите внимание, что операция fil ter () не изменяет исходного 
набора inputRDD - она возвращает указатель на совершенно новый 
набор RDD. Набор inputRDD можно продолжать использовать в про­
грамме, например для поиска других слов. И в самом деле, давайте 
воспользуемся набором inputRDD еще раз и найдем в нем строки со 
словом <,warning�, а затем задействуем еще одно преобразование, 
union (), чтобы вывести число строк, содержащих слово <<error� или 
<1warning�. В примере 3.14 показано решение на языке Python, однако 
на других языках функция union () используется точно так же. 

Пример 3.14 •:• Преобразование union() в Python 

errorsRDD = inputRDD.filter (lamЬda х: "error" in х) 
warningsRDD = inputRDD.filter (lamЬda х: "warning" in х) 
badLinesRDD = errorsRDD.union(warningsRDD) 

Операция union () отличается от fil ter () тем, что принимает два на­
бора RDD вместо одного. Вообще, преобразования могут опериро­
вать любым числом исходных наборов RDD. 

() Тот же результат, что в примере 3.14, можно получить гораздо проще, 

V применив к inputRDD только одно преобразо�ание фильтрации, отыски-
вающее строки со словом <<error>.> или <1warnшg>.>. 

Наконец, так как преобразования создают новые наборы RDD 
на основе других, Spark следит за зависимостями между наборами, 
конструируя <<граф происхождения�. Эта информация используется 
для вычисления каждого набора RDD по мере необходимости и вос­
становления утраченных данных при потере фрагментов хранимых 
наборов RDD. На рис. 3.1 показан граф происхождения для приме­
ра 3.14. 

Действия 

Мы видели, как создавать наборы RDD на основе друг друга с при­
менением преобразований, но в какой-то момент нам может потре­
боваться выполнить что-то более существенное с набором данных. 
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errorsRDD 

inputRDD 
�-----......._ filter 

union 

badLinesRDD 

warningsRDD 

Рис. З. 1 •:• Граф происхождения RDD, 

созданный в ходе анализа файла журнала 

Действия - это второй тип операций с наборами RDD. Они возвра­
щают конкретное значение в программу-драйвер или записывают его 
во внешнее хранилище. Действия служат спусковым крючком для 
фактического выполнения необходимых преобразований, поскольку 
они должны вернуть фактический результат. 

Продолжая пример с файлом журнала из предыдущего разде­
ла, нам могло бы понадобиться вывести некоторую информацию 
о badLinesRDD, например число элементов, которое можно получить 
с помощью count (), и примеры элементов, которые можно извлечь 
с помощью take (), как показано в примерах с 3.15 по 3.17. 

Пример З. 15 •:• Подсчет сообщений об ошибках на Python 

print "Input had" + badLinesRDD.count() +" concerning lines" 
print "Here are 10 examples:" 
for line in badLinesRDD.take(lO): 

print line 

Пример З. 16 •:• Подсчет сообщений об ошибках на Scala 

println("Input had" + badLinesRDD.count() +" concerning lines") 
println("Here are 10 examples:") 
badLinesRDD.take(lO) .foreach(println) 

Пример З. 17 •:• Подсчет сообщений об ошибках на Java 

System.out.println("Input had" + badLinesRDD.count() + 
" concerning lines") 

System.out.println("Here are 10 examples:") 
for (String line: badLinesRDD.take(lO)) 

System.out.println(line); 

В этих примерах с помощью действия take () мы извлекли неко­
торое число элементов из RDD и затем в цикле вывели их. Наборы 
RDD имеют также функцию collect (), возвращающую весь набор це-
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ликом. Она может пригодиться, когда объем RDD уменьшается с по­
мощью фильтрации до небольшой величины и новый набор можно 
обработать локально. Имейте в виду: чтобы использовать функцию 
collect (), извлекаемый ею набор RDD должен целиком умещать­
ся в памяти одного компьютера, то есть collect () нельзя применять 
к очень большим наборам данных. 

Часто наборы RDD нельзя просто так выбрать вызовом collect () 
в программе-драйвере, потому что они слишком велики для этого. 
В подобных ситуациях принято сохранять данные в распределен­
ном хранилище, таком как HDFS или Amazon SЗ. Сохранить со­
держимое набора RDD можно вызовом действий saveAsTextFile (), 
saveAsSequenceFile () и ряда других, сохраняющих данные в разных 
поддерживаемых форматах. Подробнее имеющиеся возможности со­
хранения данных будут обсуждаться в главе 5. 

Важно отметить, что всякий раз, когда вызывается новое действие, 
происходит вычисление всего набора RDD <<С нуля�,. Чтобы избежать 
ненужных накладных расходов, пользователи имеют возможность 
сохранить промежуточные результаты, как описывается в разделе 
<�Сохранение (кэширование)�, ниже. 

Отложенные вычисления 

Как уже говорилось, преобразования наборов RDD выполняются 
в отложенном режиме. То есть Spark не начинает преобразования, 
пока не встретит действие. Это обстоятельство может противоречить 
опыту начинающих пользователей, но хорошо знакомо тем, кто уже 
пользовался функциональными языками программирования, та­
кими как Haskell, или LINQ-подобными фреймворками обработки 
данных. 

Под словами <�выполняются в отложенном режиме�, подразуме­
вается, что когда вызывается преобразование набора RDD (напри­
мер, map () ), операция не запускается немедленно. Вместо этого Spark 
просто запоминает, что была запрошена данная операция. Не нужно 
думать о наборах RDD как о содержащих какие-то конкретные дан­
ные. Представляйте их как инструкции получения этих данных путем 
преобразования. Загрузка данных в RDD также выполняется в отло­
женном режиме, как любое другое преобразование. То есть когда вы­
зывается метод sc. textFile (), Spark не загружает данные немедленно, 
а откладывает эту операцию до момента, когда эти данные действи­
тельно потребуются. Подобно другим преобразованиям, операция 
(в данном случае чтение данных) может встречаться множество раз. 
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Несмотря на то что преобразования выполняются в отложенном режи­
ме, есть возможность вынудить Spark выполнить их немедленно, запус­
тив действие, такое как count (). Это - простой способ протестировать 
некоторую часть программы. 

Отложенные вычисления используются в Spark, чтобы уменьшить 
число итераций по данным за счет группировки операций. В систе­
мах, таких как Hadoop MapReduce, разработчики часто тратят массу 
времени, пытаясь найти способ группировки операций, чтобы умень­
шить число итераций, выполняемых механизмом MapReduce. В Spark 
даже самые изощренные ухищрения в виде сложных преобразований 
map () не дают существенного преимущества перед последовательно­
стью более простых операций. Соответственно, пользователь волен 
организовать свою программу как последовательность более простых 
и управляемых операций. 

Передача функuий в Sparl< 
Большинство преобразований и некоторые действия требуют переда­
чи функций, которые используются фреймворком Spark для вычис­
ления данных. Все поддерживаемые языки имеют немного отличаю­
щиеся механизмы передачи функций. 

Python 

В Python поддерживаются три способа передачи функций в Spark. 
Короткие функции можно передавать в виде лямбда-выражений, как 
показано в примерах 3.2 и 3.18. Кроме того, можно передавать гло­
бальные или локальные функции. 

Пример 3. 18 •:• Передача функций в Python 

word = rdd.filter(lamЬda s: "error" in s) 

def containsError(s): 
return "error" in s 

word = rdd.filter (containsError) 

Передавая функции, помните о проблеме, связанной с сериали­
зацией объектов, содержащих функции. Если попытаться передать 
функцию, которая является членом (методом) объекта или содер­
жит ссылки на поля объекта (например, self .field), Spark отправит 
рабочим узлам объект целиком, размер которого может оказаться 
значительно больше, чем требуемый фрагмент данных ( см. пример 
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3.19). Иногда такая попытка может вызвать аварийное завершение 
программы, если класс содержит объекты, которые интерпретатор 
Python не сможет сериализовать. 

Пример 3. 19 •:• Передача функций со ссылками на поля (не делайте 

так!) 

class SearchFunctions(object): 

def init (self, query): 

self.query; query 

def isMatch(self, s): 

return self.query in s 

def getMatchesFunctionReference(self, rdd): 

t Проблема: ссылка "self" в "self.isMatch" 

return rdd.filter (self. isMatch) 

def getMatchesMernЬerReference(self, rdd): 

t Проблема: ссылка "self" в "self.query" 

return rdd.filter(larnЬda х: self.query in х) 

Вместо этого достаточно просто извлечь нужные поля из объекта 
в локальные переменные и передать их, как показано в примере 3.20. 

Пример 3.20 •:• Передача функции Python без ссылок на поля 

class WordFunctions(object): 

def getMatchesNoReference(self, rdd): 

t Безопасно: требуемое поле извлекается в локальную переменную 

query; self.query 

return rdd.filter(larnЬda х: query in х) 

Scala 

В Scala можно передавать встроенные (inline) функции, ссылки на 
методы и статические функции, как это делается в других функцио­
нальных API на языке Scala. Кроме того, при передаче функций необ­
ходимо учитывать некоторые особенности, а именно: данные, на ко­
торые ссылается такая функция, должны поддерживать возможность 
сериализации (реализоватьjаvа-интерфейс SerializaЫe). Так же как 
в Python, передача метода или поля объекта включает ссылку на весь 
объект, хотя в Scala это не так очевидно, потому что синтаксис этого 
языка не вынуждает программиста явно использовать ссылку self. 
Так же как на языке Python (см. пример 3.20), можно вместо полей 
передавать локальные переменные и тем самым избежать необходи­
мости передачи всего объекта, как показано в примере 3.21. 
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Пример 3.21 •:• Передача функций в Scala 

class SearchFunctions(val query: String) { 
def isMatch(s: String): Boolean = { 

s.contains(query) 

def getMatchesFunctionReference(rdd: RDD[String]): RDD[String] = { 

// Проблема: "isMatch" означает "this.isMatch", то есть передается 
// ссылка "this" 
rdd.map(isMatch) 

def getMatchesFieldReference(rdd: RDD[String]): RDD[String] = { 

// Проблема: "query" означает "this.query", то есть передается 
// ссылка "this" 
rdd.map(x => x.split(query)) 

def getMatchesNoReference(rdd: RDD[String]): RDD[String] = { 
// Безопасно требуемое поле извлекается в локальную переменную 
val query_ = this.query 
rdd.map(x => x.split(query_)) 

Если в Scala возникает исключение NotSerializaЬleException, это 
говорит о попытке передачи ссылки на метод или поле класса, не 
поддерживающего сериализацию. Обратите внимание, что всегда 
безопасно передавать сериализуемые локальные переменные и функ­
ции-члены глобального объекта. 

Java 

В J ava функции определяются как объекты, реализующие один из 
интерфейсов Spark из пакета org .apache. spark.api. java. function. 
Имеется множество разных интерфейсов для разных возвращаемых 
значений. Наиболее основные интерфейсы функций перечислены 
в табл. 3.1, а далее, в подразделе <!Преобразование типов RDD,>, мы 
познакомимся с другими интерфейсами функций, возвращающими 
специальные типы данных, такие как ключ/значение. 

Имеется возможность определять классы функций непосредствен­
но в точке вызова, в виде анонимных классов (пример 3.22), или объ­
являть именованные классы и использовать их (пример 3.23). 

Пример 3.22 •:• Передача Jаvа-функции с использованием 
анонимного встроенного класса 

RDD<String> errors = lines .filter (new Function<String, Boolean> () 
puЫic Boolean call(String х) { return x.contains("error"); ) 

}) ; 
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Таблица З. 1. Стандартнь,е интерфейсы функций Java 

Интерфейс 
Реализуемый 

метод 
Назначение 

Function<T, R> R call (Т) Принимает одно значение и возвра-
щает одно значение. Применяется для 
использования в операциях, таких как 
map () и filter () 

Function2<Tl, Т2, R> R call (Tl, Т2) Принимает два значения и возвращает 
одно значение. Применяется для 
использования в операциях, таких как 
aggregate () и fold () 

FlatMapFunction<T, R> IteraЫe<R> Принимает одно значение и возвращает 
call (Т) нуль или более значений. Применяется 

для использования в операциях, таких 
как flatMap () 

Пример 3.23 •:• Передача Jаvа-функции с использованием 

именованного класса 

class ContainsError implements Function<String, Boolean> () { 

puЫic Boolean call (String х) { return x.contains ("error"); 

RDD<String> errors = lines.filter(new ContainsError()); 

Выбор того или иного стиля во многом зависит от личных пред­
почтений, но мы считаем, что использование именованных функций 
делает программный код более простым и понятным. Еще одно пре­
имущество именованных классов - возможность определить кон­
структор с параметрами, как показано в примере 3.24. 

Пример 3.24 •:• Класс Jаvа-функции с параметрами 

class Contains implements Function<String, Boolean> () ( 

private String query; 

puЫic Contains(String query) this.query = query; 

puЫic Boolean call (String х) return x.contains (query); 

RDD<String> errors = lines.filter(new Contains("error")); 

В Java 8 можно использовать еще более компактные лямбда-вы­
ражения. Так как версияjаvа 8 все еще остается относительно новой 
на момент написания этих строк, в наших примерах мы используем 
более подробный синтаксис определения классов, поддерживаемый 
предыдущими версиями Java. Однако в примере 3.25 показано, как 
выглядит реализация поиска с применением лямбда-выражения. 
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Пример 3.25 •:• Передача Jаvа-функции в виде лямбда-выражения 
в Java 8 

RDD<String> errors = lines.filter(s -> s.contains("error")); 

Если вас заинтересовала возможность применения лямбда-выра­
жений в J ava 8, обращайтесь к официальной документации на сайте 
Oracle (http://bit.ly/1 oHnAAt) и прочитайте статью об использовании 
лямбда-выражений в Spark (http://Ьit.ly/1ywZBs4). 

Анонимные встроенные классы и лямбда-выражения могут ссылаться 
на любые переменные, объявленные со спецификатором final, поэтому 
вы можете передавать такие переменные в Spark так же, как в програм­
мах на Pythoп и Scala. 

Часто испольэуемые преобраэования 

и действия 
В этой главе мы знакомимся с наиболее часто используемыми пре­
образованиями и действиями фреймворка Spark. Для наборов RDD 
с определенными типами данных доступны дополнительные опера­
ции. Например, к наборам RDD с числами можно применять ста­
тистические операции, а к наборам с парами ключ/значение можно 
применять соответствующие операции над такими парами, как агре­
гирование данных по ключу. Эти специальные операции и операции 
преобразования типов RDD мы рассмотрим в последующих разде­
лах. 

Простые наборы RDD 

Начнем с преобразований и действий, которые могут применяться 
к любым наборам RDD независимо от их типов. 

Поэлементные преобразования 
Двумя наиболее часто используемыми преобразованиями, которые 

наверняка понадобятся вам, являются map () и fil ter () ( см. рис. 3.2). 
Преобразование map () принимает функцию и применяет ее к каждо­
му элементу в наборе RDD, а результат этой функции сохраняется 
как значение элемента в новом наборе RDD. Преобразование fil ter () 
принимает функцию и возвращает новый набор RDD, содержащий 
только элементы исходного набора, прошедшие функцию fil ter (). 

Преобразование map () можно использовать практически для всего, 
что угодно, от извлечения содержимого веб-сайта, связанного с каж-
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Исходный 
нaбopRDD 

{1, 2, З, 4} 

mapx =>x • xj '\:ilter х => х! = 1 

Отображенный Отфильтрованный 
нaбopRDD нaбopRDD 

{1,4,9, 16} (2,3,4} 

Рис. 3.2 •:• Отображенный и отфильтрованный наборы, 
полученные из исходного набора RDD 

дым URL в коллекции, до вычисления квадратов чисел. Важно от­
метить, что тип набора RD О, возвращаемого преобразованием map (), 
может не совпадать с типом исходного набора. То есть если имеется 
набор данных типа String, а функция map () выполняет парсинг строк 
и возвращает значения типа DouЫe, исходный RDD будет иметь тип 
RDD [String], а возвращаемый - тип RDD [DouЬle]. 

Рассмотрим простой пример применения преобразования map () для 
вычисления квадратов чисел в наборе RDD (примеры с 3.26 по 3.28). 

Пример 3.26 •:• Вычисление квадратов чисел в Python 

nums = sc.parallelize ( [l, 2, 3, 4]) 
squared = nums.map(lamЬda х: х * х) .collect() 
for num in squared: 

print "%i " % (num) 

Пример 3.27 •:• Вычисление квадратов чисел в Scala 

val input = sc.parallelize(List(l, 2, 3, 4)) 
val result = input.map(x => х * х) 
println(result.collect() .mkString(",")) 

Пример 3.28 •:• Вычисление квадратов чисел в Java 

JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(l, 2, 3, 4)); 
JavaRDD<Integer> result = rdd.map(new Function<Integer, Integer>() 

puЬlic Integer call (Integer х) { return х*х; ) 
)); 
System.out.println(StringUtils.join(result.collect(), ",")); 

Иногда бывает желательно произвести несколько новых элемен­
тов для каждого исходного элемента. Сделать это можно с помощью 
операции fla tMap (). Подобно преобразованию map (), преобразование 
flatMap () принимает функцию и вызывает ее для каждого элемента 
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в исходном наборе RDD. Но вместо единственного элемента наша 
функция должна вернуть итератор для обхода возвращаемых зна­
чений новых элементов. Однако вместо набора RDD итераторов 
flatMap () возвращает набор RDD с элементами, получаемыми с при­
менением всех итераторов. Простым примером применения flatMap () 
может служить разбиение исходных строк на слова, как показано 
в примерах с 3.29 по 3.31. 

Пример 3.29 •:• Разбиение строк на слова с помощью flatMap() 

в Python 

lines = sc.parallelize(["hello world", "hi"]) 

words = lines.flatMap(lamЬda line: line.split(" ")) 

words .first () # вернет "hello" 

Пример 3.30 •:• Разбиение строк на слова с помощью flatMap() в Scala 

val lines = sc .parallelize (List ("hello world", "hi")) 

val words = lines.flatMap(line => line.split(" ")) 

words.first() // вернет "hello" 

Пример 3.31 •:• Разбиение строк на слова с помощью flatMap() в Java 

JavaRDD<String> lines = sc.parallelize(Arrays.asList("hello world", "hi")); 

JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() ( 

puЫic IteraЬle<String> call(String line) { 

return Arrays.asList(line.split(" ")); 

} 

}) ; 

words .first (); // вернет "hello" 

Мы изобразили различия между flatMap () и rnap () на рис. 3.3. Вы мо­
жете рассматривать flatMap () как функцию, <<раскручивающую;,, ите­
раторы, то есть возвращающую не набор списков, а набор элементов, 
составляющих эти списки. 

tokenize("coffee panda") = List("coffee","panda") 

RDD1 

{"coffee panda","happy panda", 
"happiest panda party"} 

rdd1 .map(tokenize) 

rdd 1. flatMap(tokenize) 

mappedRDD 

{["coffee","panda"],["happy","panda"], 
["happiest", "panda", "party"]} 

flatMappedRDD 

{"coffee","panda","happy","panda", 

"happiest", "panda", "party"} 

Рис. 3.3 •:• Различия между flatMap () и map () 
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Операции с псевдомножествами 
Наборы RDD поддерживают операции с математическими мно­

жествами, такие как объединение и пересечение, даже при том, что 
сами RDD не являются множествами в полном смысле этого слова. 
На рис. 3.4 показаны четыре операции. Важно отметить, что все эти 
операции могут применяться только к множествам одного типа. 

RDD1 

{coffee, coffee, panda, 

monkey, tea} 

RDD1 .distinct() 

{coffee, panda, 

monkey, tea} 

RDD1 .union(RDD2) 

{coffee, coffee, coffee, 

panda, monkey, 

monkey, tea, kitty} 

RDD2 

{coffee, monkey, kitty} 

RDD1 .intersection(RDD2) 

{coffee, monkey} 

RDD1 .suЬtract(RDD2) 

{panda, tea} 

Рис. 3.4 •:• Некоторые простые операции над множествами 

Часто наборы RDD не соответствуют требованию уникальности 
элементов, предъявляемому к множествам. Чтобы получить новый 
набор, содержащий только уникальные элементы, можно восполь­
зоваться преобразованием RDD. distinct (). Обратите внимание, что 
distinct () - это весьма дорогостоящая операция, так как в процессе 
выполнения ей приходится постоянно пересылать данные по сети, 
чтобы убедиться в уникальности каждого элемента. Пересылка дан­
ных и то, как ее избежать, подробно обсуждаются в главе 4. 

Простейшей операцией над множествами является union (other), 
которая возвращает набор RDD, содержащий данные из двух исход­
ных наборов. Она может понадобиться в самых разных случаях, на­
пример при обработке файлов журналов из нескольких источников. 
В отличие от математической операции объединения, преобразова­
ние union () не гарантирует уникальности элементов в возвращаемом 
наборе (что, впрочем, можно исправить с помощью distinct () ). 

В Spark имеется также метод intersection (other), возвращающий 
только элементы, присутствующие в обоих исходных наборах RDD. 
Функция intersection () также удалит все повторяющиеся элементы 
из результата. Несмотря на то что intersection () и union () являются 
преобразованиями с похожими концепциями, производительность 
intersection () намного хуже, так как для выявления общих элементов 
приходится пересылать значительные объемы данных. 
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Иногда бывает желательно убрать некоторые данные из рассмотре­
ния. Функция suЬtract (other) принимает другой набор RDD и воз­
вращает RDD, содержащий только значения, присутствующие в пер­
вом наборе и отсутствующие во втором. Подобно intersection (), ей 
приходится пересылать значительные объемы данных. 

На рис. 3.5 показано, как вычислить декартово произведение двух 
наборов RDD. Преобразование cartesian (other) возвращает все воз­
можные пары (а, Ь), где а - первый исходный набор RDD, а Ь - вто­
рой. Декартово произведение может пригодиться при определении 
сходства всех возможных пар, как, например, вычисление ожидаемой 
заинтересованности пользователя в некотором предложении. Можно 
также найти декартово произведение набора RDD с самим собой, что 
может пригодиться, например, для выявления сходств между поль­
зователями. Но имейте в виду, что операция вычисления декартова 
произведения является весьма дорогим удовольствием для больших 
наборов RDD. 

RDD1 .cartesian(RDD2) 

{User( 1 ), User(2), User(З)} 

RDD1 .cartesian(RDD2) 

Venue("Betabrand"), 

Venue("Asha Теа House"), 

Venue("Ritual")} 

RDD1 .cartesian(RDD2) 

{(User(1 ), Venue("Betabrand")), 

(User(1 ), Venue("Asha Теа House")), 

(User(1 ), Venue("Ritual")), 

{(User(2), Venue("Betabrand")), 

(User(2), Venue("Asha Теа House")), 

(User(2), Venue("Ritual")), 

{(User(З), Venue("Betabrand")), 

(User(З), Venue("Asha Теа House")), 

(User(З), Venue("Ritual")), 

Рис. 3.5 •:• Декартово произведение двух наборов RDD

Краткая сводка по уже представленным и другим преобразовани­
ям приводится в табл. 3.2 и 3.3. 

Действия 

Наиболее часто к простым наборам RDD применяется действие 
reduce (), которое принимает функцию, оперирующую двумя элемен­
тами данного набора RDD и возвращающую новый элемент того же 
типа. Простым примером такой функции может служить+ (сложе­
ние), которую можно использовать для вычисления суммы элемен­
тов RDD. С помощью reduce () легко найти сумму элементов RDD, 
определить их количество и выполнить другие виды агрегирования 
(см. примеры с 3.32 по 3.34). 



Часто используемые преобразовани,1 и лействи,1 •:• 59 

Таблица 3.2. Простые преобразования при применении к набору 

RDD, содержащему (1, 2, 3, 3} 

Функция Назначение 
map() Применение некоторой 

функции к каждому эле-
менту RDD и получение 
нового набора с резуль-
татами 

flatMap () Применение некоторой 
функции к каждому эле-
менту RDD и получение 
нового набора с содер-
жимым возвращаемых 
итераторов. Часто ис-
пользуется для разбие-
ния строк на слова 

filter () Получить RDD, содер-
жащий только элемен-
ты, соответствующие 
условию, переданному 
в filter () 

distinct () Удаление дубликатов 
sample ( Выборка случайных 
withReplacement, элементов из RDD 
fraction, [seed]) с заменой или без 

Пример 

rdd.map (х => х + 1) 

rdd.flatMap (х => 
х. to (311 

rdd.filter (х => х 
! = 1)

rdd.distinct () 

rdd. sample ( f alse, 
О. 5) 

Результат 

{ 2, 3, 4, 41 

{ 1, 2, 3, 2, 
3, 3, 3) 

{ 2, 3, 3} 

( 1, 2, 3} 
Результат нельзя 
определить 
заранее 

Таблица 3.3. Преобразования с двумя наборами RDD, 
содержащими (1, 2, 3} и (3, 4, 5} 

Функция Назначение 
union () Получить набор RDD, 

содержащий элементы 
из обоих исходных наборов 

intersection ( 1 Получить набор RDD, 
содержащий только 
элементы, присутствующие 
в обоих исходных наборах 

subtract ( 1 Удаление содержимого 
одного из RDD (например, 
удаление тестовых данных) 

cartesian ( 1 Декартово произведение 
с другим RDD 

Пример 3.32 •:• reduce() в Python 

sum = rdd.reduce(lamЬda х, у: х + у) 

Пример 3.33 •:• reduce() в Scala 

val sum = rdd. reduce [ (х, у} => х + у) 

Пример Результат 
rdd. union (other) ( 1, 2, 3, 3, 

4, 51 

rdd. intersection (other) ! 31 

rdd. suЬtract (other) { 1, 21 

rdd. cartesian ( other) ( (1, 3) 1 (1, 
4) 1 . . .  (3, 5)} 
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Пример 3.34 •:• reduce() в Java 

Integer sum = rdd.reduce(new Function2<Integer, Integer, Integer>() 

puЫic Integer call (Integer х, Integer у) { return х + у; } 

}) ; 

Действие fold () похоже на действие reduce (). Оно тоже принима­

ет функцию с такой же сигнатурой, но, в отличие от reduce (), при­
нимает дополнительное <<нулевое значение>>, используемое в первом 
вызове пользовательской функции. Нулевое значение должно быть 

нейтральным по отношению к выполняемой операции, то есть мно­
гократное его применение с вашей функцией не должно изменять 

значения (например, О для+, 1 для * или пустой список для конка­
тенации). 

Есть возможность минимизировать создание объектов в fold (}, изме­
няя и возвращая первый из двух параметров. При этом второй параметр 
не должен изменяться. 

Оба действия, fold () и reduce (), требуют, чтобы тип результата, воз­
вращаемого нашей функцией, совпадал с типом элементов в RDD. 
Это требование не вызывает затруднений, когда, например, нужно 
подсчитать сумму элементов, но иногда бывает желательно вернуть 
значение другого типа. Например, вычисляя скользящее среднее, не­
обходимо хранить счетчик обработанных и общее число элементов, 
которые должны возвращаться в виде пары. Эту задачу можно было 
бы решить, применив сначала rnap () , чтобы преобразовать каждый 
элемент в пару, хранящую его значение и число 1, и тем самым полу­
чить значения требуемого типа, а затем обработать полученные пары 
функцией reduce (). 

Однако есть лучшее решение. Функция aggregate () освобождает 
от данного ограничения. Действие aggregate (), по аналогии с fold (), 
принимает начальное нулевое значение типа, который требует­
ся вернуть, и применяет функцию для объединения элементов из 
исходного набора RDD с аккумулятором (накопителем). Допол­
нительно необходимо передать функцию для объединения двух 
аккумуляторов, так как каждый узел накапливает результат в акку­
муляторе локально. 

Действие aggregate () можно использовать для вычисления средне­
го значения в RDD, избежав необходимости применения rnap () перед 
fold (), как показано в примерах с 3.35 по 3.37. 
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Пример 3.35 •:• aggregate() в Python 

sumCount = nums.aggregate((O, О), 
(lamЬda асс, value: (асс[О] + value, acc[l] + 1), 
(lamЬda accl, асс2: (accl[O] + асс2[0], accl[l] + асс2[1])))) 

return sumCount[O] / float(sumCount[l]) 

Пример 3.36 •:• aggregate() в Scala 

val result = input.aggregate ( (0, О)) ( 
(асс, value) => (асс._1 + value, асс._2 + 1), 
(accl, асс2) => (accl._1 + асс2._1, accl._2 + асс2._2)) 

val avg = result._1 / result. 2.toDouЫe 

Пример 3.37 •:• aggregate() в Java 

class AvgCount implements SerializaЫe 
puЬlic AvgCount(int total, int num) { 

this.total = total; 
this.num = num; 

puЫic int total; 
puЫic int num; 
puЫic douЫe avg () 

return total / (douЬle) num; 

Function2<AvgCount, Integer, AvgCount> addAndCount 
new Function2<AvgCount, Integer, AvgCount>() { 

); 

puЫic AvgCount call(AvgCount а, Integer х) ( 
a.total += х; 
a.num += 1; 
return а;

Function2<AvgCount, AvgCount, AvgCount> comЬine = 
new Function2<AvgCount, AvgCount, AvgCount>() { 
puЫic AvgCount call(AvgCount а, AvgCount Ь) ( 

a.total += b.total; 

); 

a.num += b.num;
return а; 

AvgCount initial = new AvgCount(O, О); 
AvgCount result = rdd.aggregate(initial, addAndCount, comЬine); 
System.out.println(result.avg()); 
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Некоторые действия с наборами RD D возвращают все или часть 
данных программе-драйверу в форме обычной коллекции или един­
ственного значения. 

Простейшей и наиболее часто используемой операцией, возвра­
щающей данные в программу-драйвер, является функция collect (). 
Она возвращает все содержимое набора RDD. Функция collect () 
часто применяется в модульном тестировании, когда, как предпола­
гается, все содержимое RD D легко умещается в памяти и его можно 
сравнить с ожидаемыми результатами. Функция collect () требует, 
чтобы все содержимое набора RDD умещалось в памяти единствен­
ного компьютера, так как все эти данные будут переданы в виде кол­
лекции программе-драйверу. 

Действие take (n) возвращает п элементов из набора RDD и пыта­
ется уменьшить число разделов, к которым осуществляется доступ, 
из-за чего программе-драйверу может быть возвращена смещенная 
коллекция. Важно отметить, что эти операции могут возвращать эле­
менты не в том порядке, в каком ожидается. 

Эти операции удобны для модульного тестирования и отладки, но 
могут превратиться в узкое место при работе с большими объемами 
данных. 

Если определен некоторый порядок хранения данных, можно из­
влечь из RDD последние ( «верхние1>, или «наибольшие1>) элементы 
вызовом top (). Действие top () использует упорядочение данных по 
умолчанию, а также позволяет передать ему функцию сравнения для 
извлечения первых элементов. 

Иногда в программе-драйвере бывает необходимо получить вы­
борку данных. Получить такую выборку, с заменой или без, можно 
с помощью функции takeSample (withReplacement, num, seed). 

Нередко бывает полезно выполнить действие над всеми элемен­
тами в наборе RDD, но без возврата результата в программу-драй­
вер. Отличным примером может служить отправка текста в формате 
JSON на веб-сервер или вставка записей в базу данных. В любом та­
ком случае с помощью действия foreach () можно выполнить вычис­
ления с каждым элементом в RDD без возврата результата на локаль­
ный компьютер, в программу-драйвер. 

Все другие стандартные операции с простыми наборами RD D обла­
дают поведением, которое легко определяется по их названиям. Дей­
ствие count () возвращает число элементов (count), а countByValue () 
возвращает отображение каждого уникального значения на его число 
( определяющее, сколько раз это значение встречается в наборе). Все 
эти остальные действия перечисляются в табл. 3.4. 
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Таблица 3.4. Основные действия над набором RDD, содержащим 

(1, 2, 3, 3) 

Функция Назначение Пример Результат 
collect (1 Возвращает все rdd. collect (1 { 1, 2, 3, 3} 

элементы из RDD 
count {} Возвращает число rdd. count (1 4 

элементов в RDD 
countByValue 1} Сколько раз встреча- rdd. countByValue () { (1, 1), 

ется каждый элемент (2, 1), 
вRDD (3, 2)} 

take (num) Возвращает num элемен- rdd. take (2) { 1, 2) 
тов из RDD 

top(num) Возвращает первые num rdd. top(2) { 3, 3} 
элементов из RDD 

takeOrdered (num) ( Возвращает num элемен- rdd. takeOrdered (2) ( 3, 3) 
ordering) тов из RDD, опираясь (myOrdering) 

на указанное упорядо-
чение 

takeSample 1 Возвращает num случай- rdd. takeSample Результат 
wi thReplacement, но выбранных элемен- (false, 1) нельзя 
num, [ seed]) тов из RDD определить 

заранее 
reduce (func) Объединяет (например, rdd. 9 

суммирует) элементы reduce ( (х, у) =>х+у) 
изRDD 

fold(zero) (func) То же, что и reduce (1, но rdd.fold(O) 9 
с указанием нулевого ( (х, у) =>х+у) 
значения 

aggregate (zeroValue) Действует подобно rdd.aggregate ( (О, О)) (9, 4) 
(seqOp, соmЬОр) reduce (1, но использу- ( (х, у)=> 

ется,чтобы вернуть (х. 1 + у, х. 2 + 1) , 
значение другого типа (х, -у) => -

(х._1 + у._1, х._2 + 
у. 2)) 

foreach (func) Применяет указанную rdd. foreach (func) Ничего 
функцию к каждому 
элементу в RDD 

Преобразование типов RDD 

Некоторые функции доступны только для RDD определенных типов. 
Например, mean () и variance () доступны лишь для числовых наборов, 
а join () - для наборов пар ключ/значение. Подробнее специальные 
функции, доступные для числовых наборов, будут рассматривать­
ся в главе 6, а функции для наборов пар ключ/значение - в главе 4. 
В Scala и Java эти методы не определены в стандартном классе RDD, 
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поэтому, чтобы получить доступ к специализированным функциям, 
необходимо позаботиться о выборе правильного специализированно­
го класса. 

Scala 

В Scala преобразование типов RDD (например, чтобы полу­
чить доступ к числовым функциям в RDD [ DouЬle]) выполняется 
автоматически с помощью специальных функций, в рамках неяв­
ного приведения типов. Как отмечалось в разделе �инициализа­
ция SparkContext,> в главе 2, чтобы эти преобразования работали, 
нужно добавить инструкцию irnport org. apache. spark. SparkContext .. 
Перечень неявных преобразований можно найти в документации 
ScalaDoc с описанием объекта SparkContext по адресу http://Ьit.

ly/1 Bc4fNt. Эти неявные преобразования наборов RDD в разные 
классы-обертки, такие как DouЬleRDDFunctions (для наборов с чис­
ловыми данными) и PairRDDFunctions (для пар ключ/значение), ис­
пользуются для доступа к дополнительным функциям, таким как 
rnean () и variance (). 

Неявные преобразования, несмотря на свое удобство, иногда мо­
гут вводить в заблуждение. Собираясь вызвать функцию, например 
rnean (), вы можете заглянуть в документацию с описанием класса на­
бора RDD и заметить, что в этом классе нет функции rnean (). Тем не 
менее вызов будет выполняться вполне благополучно благодаря не­
явному преобразованию между RDD [ DouЬle] и DouЬleRDDFunctions. По­
этому, пытаясь найти описание той или иной функции для своего 
набора RDD в Scaladoc, обязательно загляните в описание этих клас­
сов-оберток. 

Java 

В J ava преобразование между специализированными типами RD D 
выполняется более явно. В частности, существуют специальные клас­
сы JavaDouЬleRDD и JavaPairRDD для наборов RDD этих типов, с допол­
нительными методами. Их применение делает программный код бо­
лее понятным, хотя и несколько громоздким. 

Чтобы сконструировать набор RDD специализированного типа, 
вместо класса Function следует использовать специализированную 
версию. Например, чтобы получить DouЬleRDD из набора RDD типа 
Т, вместо Function<T, DouЫe> следует использовать DouЬleFunction<T>. 
Специализированные функции и порядок их использования пере­
числены в табл. 3.5. 
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Кроме того, для выполнения операций с RDD необходимо вызы­
вать разные функции (то есть нельзя просто создать DouЬleFunction 
и передать ее в map () ). Чтобы вернуться к типу DouЬleRDD, вместо map () 
нужно вызвать mapToDouЫe (). Этому же шаблону следуют все осталь­
ные функции. 

Таблица 3.5. Интерфейсы Java для функций специальных типов 

Функция 
Эквивалент 

Используется function*<A, В, ... > 

DoubleFla tмapFunction<T> Function<T, Чтобы получить DouЬleRDD 
IteraЫe<DouЫe» из flatMapToDouЫe 

DouЬleFunction<T> Function<T, douЫe> Чтобы получить DouЬleRDD 
из mapToDouЫe 

PairFlatMapFunction<T, Function<T, Чтобы получить PairRDD<K, V> 
К, V> IteraЫe<Tuple2<K, V»> из fJatMapToPair 
PairFunction<T, К, V> Function<T, Tuple2<K, V» Чтобы получить PairRDD<K, V> 

из mapToPair 

Мы можем изменить пример 3.28, где возводили в квадрат числа 
в наборе RDD, чтобы произвести JavaDouЬleRDD, как показано в приме­
ре 3.38. Это даст доступ к специализированным функциям DouЬleRDD, 
таким как mean () и variance (). 

Пример 3.38 •:• Создание DouЫeRDD в Java 

JavaDouЫeRDD result; rdd.mapToDouЬle( 
new DouЫeFunction<Integer>() ( 

puЫic douЫe call(Integer х) 
return (douЫe) х * х; 

}); 
System.out.println(result.mean()); 

Python 

Прикладной программный интерфейс для Python структурирован 
иначе, чем для Java и Scala. В Python все функции реализованы на 
основе класса RDD, но терпят неудачу во время выполнения, если 
тип данных в RDD не соответствует ожидаемому функциями. 

Сохранение (l<Эширование) 
Как обсуждалось выше, наборы RDD в Spark вычисляются в отло­
женном режиме, и иногда один и тот же набор может использоваться 
многократно. Если не предпринять никаких дополнительных мер, 
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Spark каждый раз заново будет вычислять набор RDD и все его за­
висимости. Это может оказаться слишком дорогим удовольствием, 
особенно в итеративных алгоритмах, выполняющих поиск данных 
несколько раз. Другой тривиальный пример многократного исполь­
зования одного и того же набора RDD показан в примере 3.39: здесь 
сначала вычисляется число элементов, а затем выводится содержи­
мое набора. 

Пример 3.39 •:• Двукратное вычисление набора RDD в Scala 

val result = input.map(x => х*х) 
println(result.count()) 
println(result.collect() .mkString(",")) 

Чтобы избежать многократного вычисления набора RDD, можно 
потребовать от Spark сохранить данные. В этом случае узлы в клас­
тере, вычисляющие элементы набора RDD, будут сохранять свои 
разделы. Если какой-то узел, хранящий данные, потерпит аварию, 
Spark повторно вычислит утраченный раздел данных, когда он по­
требуется. Имеется также возможность скопировать данные на мно­
жество узлов, на тот случай, когда необходимо иметь возможность 
незамедлительного восстановления данных при аварийном заверше­
нии узла. 

Фреймворк Spark поддерживает несколько уровней сохранения 
для разных целей, которые перечислены в табл. 3.6. В языках Scala 
(пример 3.40) и Java функция persist () по умолчанию сохраняет 
данные в куче JVM в виде несериализованных объектов. В Python, 
напротив, сохраняемые данные всегда сериализуются. Когда дан­
ные записываются на диск или в хранилище, находящееся вне кучи 
(heap ), они всегда сериализуются. 

Кэширование за пределами кучи пока имеет статус экспериментальной 
особенности и использует Tachyon (http://tachyon-project.org/). Если вас 
заинтересовала идея кэширования в Spark за пределами кучи, загляни­
те в руководство <<Running Spark оп Tachyon1> (http://tachyon-project.org/ 
Running-Spark-on-Tachyon. html ). 

Пример 3.40 •:• Использование persist() в Scala 

val result = input.map(x => х * х) 
result.persist(StorageLevel.DISK_ONLY) 
println(result.count()) 
println (resul t. collect () . mkString (", ")) 
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Таблица З.6. Уровни сохранения из org.apache.spark.storage. 
StorageLevel и pyspark.StorageLevel; при желании можно орга­
низовать копирование данных на два компьютера, добавив _2 
в конец имени уровня хранения 

Уровень 

MEMORY ONLY 

MEMORY ONLY SER 

MEMORY AND DISK 

MEMORY AND DISK SER 
- - -

DISK ONLY 

а,: 111 
U 111 1- 1-
ф u
>, :z: 
1'1 111 
.а С1. 
с 1-о u
с о u С1. 
:s: с 

Много 

Мало 

Много 

Мало 

Мало 

ф 
::) :s: 
о. :z: 
(.) ф 

:z: - :s: 111 .а :z: С1. 1- ф >< !::Е о
1- ф u

111 Cl.111 
(') 111 :z: 

Малые 

Большие 

Средние 

Большие 

Большие 

:s: 
Комментарии 1- :,,: 

а,: u 
::Е :s: 
111 С[ 
с 111 

а1 ::i:: 

Да Нет 

Да Нет 

Не все Не все Запись на диск выпол-
няется, только если все 
данные не умещаются 
в памяти 

Не все Не все Запись на диск вы пол-
няется, только если все 
данные не умещаются 
в памяти. Данные сохра-
няются на диск в сериа-
лизованном представ-
лени и 

Нет Да 

Обратите внимание, что функция persist () вызывается перед пер­
вым действием с RDD. Сам вызов persist () не приводит к немедлен­
ному вычислению набора. 

Если попытаться кэшировать слишком большой объем данных, не 
умещающийся в памяти, Spark автоматически вытеснит старые раз­
делы в соответствии с политикой кэширования LRU (Least Recently 
Used - наиболее давно использовавшиеся). Для уровней MEMORY ONLY* 
вытесненные разделы будут повторно вычислены при следующем об­
ращении к ним, а для уровней MEMORY AND DISK* вытесняемые разделы 
будут сохранены на диске. в любом случае это означает, что нет при­
чин беспокоиться о потере данных, если потребовать от Spark кэши­
ровать слишком большой их объем. Однако кэширование ненужных 
данных может привести к вытеснению нужных и к потерям времени 
на их повторное вычисление. 

Наконец, наборы RDD поддерживают метод unpersist (), позво­
ляющий вручную удалять их из кэша. 
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В эа1<лючение 

В этой главе мы охватили модель выполнения RDD и познакомили 
вас с большим числом часто используемых операций над RDD. Если 
вы дочитали до этого места, поздравляем - вы познакомились со все­
ми основными аспектами работы Spark. В следующей главе мы пред­
ставим вашему вниманию набор специальных операций для RDD пар 
ключ/значение, которые часто применяются для объединения или 
группировки данных. Затем мы обсудим ввод/вывод для разных ис­
точников данных и дополнительные темы, касающиеся работы с объ­
ектом SparkContext. 



Глава4 
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Работа с парами 

1<Люч/3начение 

В этой главе рассказывается, как работать с наборами RDD, содер­
жащими пары ключ/значение, - широко распространенным типом 
данных, используемым во многих операциях в Spark. Наборы RDD 
пар ключ/значение обычно применяются для группировки, и для их 
получения часто приходится выполнять последовательность опе­
раций извлечения, преобразования и загрузки (Extract, Transform, 
Load - ETL). Наборы пар ключ/значение поддерживают новые для 
нас операции (например, подсчет отзывов для каждого товара, груп­
пировка данных с одинаковыми ключами и группировка двух разных 
наборов RDD). 

Мы также обсудим дополнительную особенность, позволяющую 
пользователям управлять распределением (partitioning) наборов пар 
по узлам в кластере. Управляя распределением, приложения могут 
иногда значительно уменьшить расходы на взаимодействие между 
узлами, предусмотрев хранение на одном узле данных, используе­
мых совместно. Иногда это дает существенный прирост скорости 
обработки информации. Мы покажем, как управлять распределени­
ем с применением алгоритма PageRank (рейтинг страницы). Выбор 
алгоритма распределения данных сродни выбору структуры данных 
для хранения информации на локальном компьютере - в обоих слу­
чаях порядок размещения данных может существенно влиять на про­
изводительность. 

Вступление 
Фреймворк Spark поддерживает специальные операции для наборов 
RDD с парами ключ/значение. Такие наборы RDD называют набо­
рами пар. Наборы пар являются удобными строительными блоками 
во многих программах, поддерживая операции, позволяющие выпал-
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нять параллельные операции с ключами или перегруппировывать 
данные по сети. Например, наборы пар имеют метод reduceByKey () , для 
группировки данных по каждому ключу, и метод j oin (), способный 
объединить два набора RDD, путем группировки элементов с одина­
ковыми ключами. На практике часто приходится извлекать поля из 
набора RDD (представляющие, например, время события, идентифи­
катор клиента или какой-то другой идентификатор) и использовать 
эти поля в роли ключей в операциях с наборами пар. 

Со3дание наборов пар 
В Spark поддерживается множество способов получить набор пар. 
Многие форматы загрузки, которые мы исследуем в главе 5, непо­
средственно возвращают наборы пар ключ/значение. Также часто 
у нас имеется некоторый обычный набор RDD, который требуется 
преобразовать в набор пар. Сделать это можно с помощью функции 
rnap (), возвращающей пары ключ/значение. Для иллюстрации мы по­
кажем код, изначально имеющий набор RDD текстовых строк, в ко­
торых роль ключа должно играть первое слово. 

В разных языках наборы пар конструируются по-разному. В Python 
функция, генерирующая пару ключ/значение, должна возвращать 
результат в виде кортежа (см. пример 4.1). 

Пример 4. 1 •:• Создание в Python набора пар из строк, где роль ключа 

играет первое слово 

pairs = lines.map(lamЬda х: (x.split(" ") [О], х)) 

В Scala функция, генерирующая пару ключ/значение, также долж­
на возвращать результат в виде кортежа (см.пример 4.2). Для доступа 
к дополнительным функциям с парами ключ/значение поддержива­
ется неявное преобразование в наборы RD D кортежей. 

Пример 4.2 •:• Создание в Scala набора пар из строк, где роль ключа 

играет первое слово 

val pairs = lines.map(x => (x.split(" ") (0), х)) 

В языке Java отсутствует встроенный тип данных �кортеж�,, по­
этому Spark Java API требует, чтобы пользователи создавали корте­
жи с использованием класса scala. Tuple2. Данный класс очень прост: 
сконструировать новый кортеж с его помощью можно инструкцией 
new Tuple2 (elernl, elern2) и затем обращаться к его элементам с приме­
нением методов . 1 () и . 2 () . 

- -
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Пользователям J ava также необходимо вызывать специальные 
версии функций Spark для создания набора пар. Например, вместо 
простой функции map () следует вызывать mapToPair (). Этот вопрос 
более подробно обсуждался в разделе «Преобразование типов RDD,> 
в главе 3, а теперь давайте рассмотрим простой случай, как показано 
в примере 4.3, пары ключ/значение: 

Пример 4.3 •:• Создание в Java набора пар из строк, где роль ключа 
играет первое слово 

PairFunction<String, String, String> keyData = 

new PairFunction<String, String, String>() { 
puЬlic Tuple2<String, String> call(String х) 

return new Tuple2(x.split(" ")[О], х); 

} 

}; 

JavaPairRDD<String, String> pairs = lines.rnapToPair(keyData); 

Когда набор пар создается из коллекции, находящейся в памя­
ти, в Scala и Python достаточно вызвать SparkContext. parallelize (). 
Чтобы то же самое реализовать в Java, нужно вызвать SparkContext. 
parallelizePairs(). 

Преобра3ования наборов пар 
К наборам пар могут применяться те же преобразования, что и к обыч­
ным наборам RDD. При этом действуют те же правила, что были опи­
саны в разделе «Передача функций в Spark,> в главе 3. Так как набо­
ры пар состоят из кортежей, преобразованиям должны передаваться 
функции, оперирующие кортежами, а не отдельными значениями. 
В табл. 4.1 и 4.2 перечислены преобразования для наборов пар, кото­
рые подробнее рассматриваются далее в этой главе. 

Оба семейства функций для работы с наборами пар мы обсудим 
в отдельных разделах. 

Наборы пар остаются обычными наборами RDD (объектов Tuple2 
вjava/Scala или кортежей в Python), и, соответственно, для них под­
держиваются те же операции, что и для обычных RDD. Например, 
можно взять набор пар из предыдущего раздела и отфильтровать 
строки длиннее 20 символов, как показано в примерах с 4.4 по 4.6 и на 
рис. 4.1. 

Пример 4.4 •:• Простой фильтр по второму элементу в Pythoп 

result = pairs.filter(larnЬda keyValue: len(keyValue[l]} < 20) 



72 •:• Работа с парами К/\ЮЧ/значение 

Таблица 4. 1. Преобразования для набора пар 
(например: { ( 1, 2), (З, 4), (З, б)}) 

Функция Назначение Пример 
reduceByKey (funcl Объединить значения rdd. reduceByKey ( 

с одинаковыми ключами (х, у) => х + у) 

groupByKey ( 1 Сгруппировать значения с оди- rdd. groupByKey () 
наковыми ключами 

comЬineByKey ( Объединить значения с оди- см.примеры 
createComЬiner, наковыми ключами и получить 4.12-4.14 
mergeValue, результат другого типа 
mergeComЬiners, 
partitionerl 

Результат 

( (1, 2), 
(3, 10) 1 

1 (1, [2]), 
(3, [ 4, 6]) 1 

mapValues (funcl Применить функцию к каждому rdd.mapValues (х => ( (1, 31, 
значению в наборе пар без из- х+ 11 (3, 51, 
менения ключа (3, 711 

flatMapValues (funcl Применить функцию, возвра- rdd.flatMapValues \х 1 (1, 21, 
щающую итератор для каждого =>(xto51 (1, 31, 
значения в наборе ( 1, 41 , 
пар и создающую для каждого 11, 51, 
возвращаемого элемента 13, 4), 
пару ключ/значение со старым /3, 51) 
ключом. Часто используется 
для выделения базовых эле-
ментов (лексем) 

keys !) Получить набор RDD rdd. keys (1 ( 1, 3, 3) 
с одними ключами 

values (1 Получить набор RDD rdd. values (1 {2, 4, 61 
с одними значениями 

sortByKey ( 1 Получить RDD, отсортирован- rdd. sortByKey (1 1 (1, 2), 
НЫЙ ПО КЛЮЧУ /3, 41, 

/3, 61) 

Таблица 4. 2. Преобразования для двух наборов пар (например: 
rdd = ((1, 2), (З, 4), (З, б)} other = { (З, 9)}) 

Функция Назначение Пример Результат 
subtractByKey Удалить элементы с ключом, rdd. subtractByKey 1 1 (1, 2) J 

представленным в другом otherl 
наборе RDD 

join Выполнить внутреннее соеди- rdd.join\other) 113, /4, 9)), 
нение двух наборов RDD /3, (6, 91 J 1 

rightOuterJoin Выполнить соединение rdd. rightOuterJoin 1 ( /3, \Some 14), 911, 
двух наборов RDD, где ключ otherl /3, (Some (61,911) 
должен быть представлен 
в первом RDD 

leftOuterJoin Выполнить соединение rdd. lef tOuterJoin ( 111, (2,Nonel 1, 
двух наборов RDD, где ключ otherl (3, !4,Some(911), 
должен быть представлен во (3, \6,Some(9)111 
втором RDD 

cogroup Сгруппировать по ключу rdd. cogroup \otherl { 11, 1[21, 1111, 
данных из двух наборов /3, ( [ 4, 6), [9) 11) 
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Пример 4.5 •:• Простой фильтр по второму элементу в Scala 

pairs.filter{case (key, value) => value.length < 20} 

Пример 4.6 •:• Простой фильтр по второму элементу в Java 

Function<Tuple2<String, String>, Boolean> longWordFilter = 
new Function<Tuple2<String, String>, Boolean>() { 

}; 

puЬlic Boolean call(Tuple2<String, String> keyValue) { 
return (keyValue._2() .length() < 20); 

JavaPairRDD<String, String> result = pairs .filter (longWordFilter); 

Кпюч Значение 
Кпюч Значение 

holden likes coffee Фильтр 
holden likes coffee 

panda likeslong 
stringsand 
coffee 

Рис. 4. 1 •:• Фильтрация по значению 

Иногда при работе с наборами пар возникают затруднения, ког­
да требуется обратиться только к значениям в парах. Поскольку та­
кая потребность возникает достаточно часто, в Spark предусмотрена 
функция mapValues ( func), которая действует точно так же, как map { case 
(х, у): (х, func (у))). Мы будем использовать эту функцию во многих 
примерах. 

А теперь рассмотрим каждое семейство функций для наборов пар 
и начнем с агрегирования. 

Агрегирование 
Когда множество данных описывается в терминах пар ключ/значе­
ние, часто бывает желательно реализовать сбор статистик по всем 
элементам с одинаковыми ключами. Мы уже знакомы с действиями 
fold (), comЬine () и reduce () над простыми наборами RDD. Аналогич­
ные преобразования с группировкой по ключу поддерживаются и для 
наборов пар. Эти операции возвращают наборы RDD и, соответствен­
но, являются преобразованиями, а не действиями. 

Преобразование reduceByKey () очень напоминает reduce (): оба 
принимают функцию и используют ее для объединения значений. 
reduceByKey () запускает несколько параллельных операций свертки 
(reduce), по одной для каждого ключа в наборе, где каждая опера-
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ция объединяет значения с одинаковыми ключами. Так как набо­
ры данных могут иметь очень большое число ключей, reduceByKey () 
реализована не как действие, возвращающее значение, а как преоб­
разование, результатом которого является новый набор RDD, где 
каждому ключу соответствует результат свертки значений для это­
го ключа. 

Преобразование foldByKey () очень напоминает fold (): оба прини­
мают нулевое значение того же типа, что и данные в RDD, а также 
функцию, реализующую логику объединения. Как и в случае с функ­
цией fold (), нулевое значение для foldByKey () должно быть нейтраль­
ным для функции объединения. 

Как показано в примерах 4.7 и 4.8, функцию reduceByKey() можно 
использовать в комплексе с mapValues () для вычисления среднего 
значения для каждого ключа, подобно тому, как мы делали это с по­
мощью fold () и map () для обычного набора RDD (см.рис. 4.2). Для вы­
числения среднего можно также использовать специализированную 
функцию, о которой рассказывается ниже. 

Пример 4. 7 •:• Вычисление средних значений по ключам с помощью 

reduceByKey() и mapValues() в Python 

rdd.mapValues(lambda х: (х, 1)) .reduceByKey( 
l ambda х, у: ( х [О] + у [О] , х [ l] + у [ 1 ] ) ) 

Пример 4.8 •:• Вычисление средних значений по ключам с помощью 

reduceByKey() и mapValues() в Scala 

rdd.mapValues(x => (х, 1)) .reduceByKey( 
(х, у) => (x._l + у._1, х._2 + у._2)) 

Читатели, знакомые с понятием комбинатора из MapReduce, наверня­
ка заметили, что вызов reduceByKey () и foldByKey () автоматически бу­
дет выполнять комбинирование локально, на каждой машине, перед 
вычислением общих итогов для каждого ключа. От пользователя не 
требуется указывать комбинатор. Однако при желании специализи­
ровать поведение комбинатора можно воспользоваться интерфейсом 
comЬineByKey (). 

Аналогичный подход, как показано в примерах с 4.9 по 4.11, можно 
использовать для решения классической задачи вычисления распре­
деления слов. Мы воспользовались функцией flatMap () из предыду­
щей главы, чтобы создать набор пар, где роль ключей играют слова, 
а роль значений - число 1, и затем подсчитали суммы для всех слов 
с помощью reduceByKey (), как в примерах 4.7 и 4.8. 
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Кпюч Значение Кпюч Значение 

panda о panda (О, 1) 

pink 3 mapValues _ pink (3, 1) 

pirate 3 pirate (3, 1) 

panda 1 panda (1, 1) 

pink 4 pink (4, 1) 

reducebyKey 

Кпюч Значение 

panda (1, 2) 

pink (7, 2) 

pirate (3, 1) 

Рис. 4.2. Поток данных при вычислении 

средних значений по ключам 

Пример 4.9 •:• Подсчет слов в Python 

rdd = sc.textFile("sЗ:// ... ") 

words = rdd.flatMap(lamЬda х: x.split(" ")) 

result = words.map(lamЬda х: (х, 1)) .reduceByKey(lamЬda х, у: х + у) 

Пример 4. 1 О •:• Подсчет слов в Sca\a 

val input = sc.textFile("sЗ:// ... ") 

val words = input.flatMap(x => x.split(" ")) 

val result = words.map(x => (х, 1)) .reduceByKey((x, у) => х + у) 

Пример 4. 11 •:• Подсчет слов в Java 

JavaRDD<String> input = sc.textFile("sЗ:// ... ") 

JavaRDD<String> words = input.flatMap( 

new FlatMapFunction<String, String>() ( 

puЫic IteraЬle<String> call(String х) { 

return Arrays.asList(x.split(" ")); } 

}); 

JavaPairRDD<String, Integer> result = words.mapToPair( 

new PairFunction<String, String, Integer>() { 

puЬlic Tuple2<String, Integer> call(String х) { 

return new Tuple2(x, 1); } 

}) .reduceByKey( 

new Function2<Integer, Integer, Integer>() 
puЫic Integer call(Integer а, Integer Ь) { return а+ Ь; } 

}) ; 
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Подсчет слов можно ускорить, если задействовать функцию count­
ByValue () для первого набора RDD: input.flatMap(x => x.split(" ")). 
countByValue (). 

Для объединения данных по ключу чаще других используется 
функция comЬineByKey (). Большинство других функций объединения 
реализовано на ее основе. Подобно функции aggrega te () , comЬineByKey () 
позволяет возвращать значения другого типа, не совпадающего с ти­
пом исходных данных. 

Для понимания особенностей comЬineByKey () важно знать, как она 
обрабатывает каждый элемент. В процессе обхода элементов в разде­
ле для comЬineByKey () каждый следующий элемент имеет ключ, либо 
не встречавшийся прежде, либо совпадающий с ключом предыдущего 
элемента. 

При встрече элемента с новым ключом comЬineByKey () использует 
пользовательскую функцию, переданную в аргументе createComЬiner, 
чтобы создать начальное значение для аккумулятора. Важно отме­
тить, что это происходит при первой встрече ключа в каждом разделе. 

Если ключ уже встречался в ходе обработки данного раздела, 
вызывается пользовательская функция, переданная в аргументе 
mergeValue, с текущим значением аккумулятора для данного ключа 
и новым значением. 

Так как каждый раздел обрабатывается независимо, для некоторых 
ключей может получиться несколько значений аккумулятора. Если 
при объединении результатов обработки разных разделов обнару­
жится несколько значений аккумулятора для одного и того же клю­
ча, вызывается пользовательская функция, переданная в аргументе 
mergeComЬiners. 

Имеется возможность отключить агрегирование при отображении 
( шap-side aggregation) в comЫneByKey () , если известно, что это не даст 
никаких преимуществ. Например, groupByKey () отключает подобное 
агрегирование, если функция агрегирования (добавляемая в конец 
сниска) нс даст экономии памяти. Если потребуется отключить объеди­
нение при отображении (шap-side coшЬines), следует определить свой 
объект управления распределением (partitioner); но на данный момент 
можно просто использовать rdd.partitioner. 

Так как функция comЬineByKey () имеет множество разнообразных 
параметров, она является отличным образцом для примера. Чтобы 
нагляднее показать, как действует comЬineByKey (), рассмотрим вычис­
ление среднего значения для каждого ключа, как показано в приме­
рах с 4.12 по 4.14 и на рис. 4.3. 
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Пример 4. 12 •:• Вычисление среднего значения для каждого ключа 
с помощью comЬineByKey() в Python 

sumCount = nums.comЬineByKey( 
(lamЬda х: (х,1)), 
(lamЬda х, у: (х[О] + у, x[l] + 1)), 
(lamЬda х, у: (х[О] + у[О], x[l] + y[l]))) 

sumCount.map(lamЬda key, ху: (key, xy[O]/xy[l])) .collectAsMap() 

Пример 4. 1 З •:• Вычисление среднего значения для каждого ключа 
с помощью comЬineByKey() в Scala 

val result = input.comЬineByKey( 
(v) => (v, 1),
(асс: (Int, Int), v) => (асс._1 + v, асс._2 + 1),
(accl: (Int, Int), асс2: (Int, Int)) =>

(accl._1 + асс2._1, accl._2 + асс2._2) 
) .map{ case (key, value) => (key, value._1 value._2.toFloat) 
result.collectAsMap() .map(println(_)) 

Пример 4. 14 •:• Вычисление среднего значения для каждого ключа 
с помощью comЬineByKey() в Java 

puЬlic static class AvgCount implements SerializaЫe { 
puЬlic AvgCount(int total, int num) { total_ = total; num = num; ) 
puЫic int total_; 
puЫic int num_; 
puЬlic float avg () ( return total / (float) num_; 

Function<Integer, AvgCount> createAcc = 
new Function<Integer, AvgCount>() 

puЫic AvgCount call(Integer х) 
return new AvgCount(x, 1); 

); 

Function2<AvgCount, Integer, AvgCount> addAndCount 
new Function2<AvgCount, Integer, AvgCount>() { 

puЫic AvgCount call(AvgCount а, Integer х) { 
a.total_ += х; 

) 

); 

a.num += 1;
return а;

Function2<AvgCount, AvgCount, AvgCount> comЬine = 
new Function2<AvgCount, AvgCount, AvgCount>() ( 
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puЫic AvgCount call(AvgCount а, AvgCount Ь) 

a.total += b.total ; 

} 

}; 

- -

a.num_ += b.num_;

return а;

AvgCount initial = new AvgCount(0,0); 

JavaPairRDD<String, AvgCount> avgCounts 

nums.comЬineByKey(createAcc, addAndCount, comЬine); 

Map<String, AvgCount> countMap = avgCounts.collectAsMap(); 

for (Entry<String, AvgCount> entry: countMap.entrySet()) { 

System.out.println(entry.getKey() + "·" + entry.getValue().avg()); 

Раздел 1 

coffee 1 

coffee 1 

panda 1 

Раздел 2 

coffee ! 9

def createComblner(value): 
(value, 1) 

dea mergeValue(acc, value): 
(acc[O]+value, асс[1 ]+1) 

Трассировка раздела 1 : 
(coffee, 1) -> новый ключ 
accumulators[ coffee] = createComblner( 1) 
(coffee, 2) -> существующий ключ 
accumulators[ coffee] = mergeValue(accumulators[ coffee] ,2) 
(panda, З) -> новый ключ 
accumulators[panda] = createComblner(З) 

Трассировка раздела 2: 
(coffee, 9) ·> новый ключ 
accumulators[ coffee] = createComblner(9) 

Объединение разделов: 
mergeComblner(partition 1.accumulators[ coffee], 

partition2.accumulators[coffee]) 

def mergeComblners(acc1, асс2): 

(асс1 (О]+асс2(0], асс[1 ]+асс2[1]) 

Рис. 4.3 •:• Порядок работы comЫneByKey () 

Существует множество других вариантов группировки данных 
по ключу, большинство из них реализовано на основе cornЬineByKey (), 
но предоставляет более простой интерфейс. В любом случае, приме­
нение специализированных функций агрегирования из имеющихся 
в Spark может оказаться намного более быстрым решением, чем пря· 
мая реализация группировки данных с последующей сверткой. 

Настройка уровня параллелизма 
Прежде уже говорилось, что все преобразования выполняются па­

раллельно несколькими узлами в кластере, но мы пока не видели, как 



Преобразования наборов пар •:• 79 

Spark в действительности распределяет работу. Каждый набор RDD 
имеет фиксированное число разделов, определяющее уровень парал­
лелизма операций, выполняемых с этим набором. 

При выполнении операций агрегирования или группировки мож­
но потребовать от Spark использовать определенное число разделов. 
Spark всегда пытается использовать разумное значение по умолча­
нию, опираясь на размер кластера, но в некоторых случаях бывает 
желательно вручную настроить уровень параллелизма, чтобы полу­
чить более высокую производительность. 

Большинство операций, обсуждаемых в этой главе, принимают 
второй параметр, определяющий, сколько разделов следует исполь­
зовать при создании наборов RDD, подвергающихся группировке 
или агрегированию, как показано в примерах 4.15 и 4.16. 

Пример 4. 15 •:• reduceByKey() с параметром уровня параллелизма 

в Python 

data = [ ("а", 3), ("Ь", 4), ("а", 1)] 

# С уровнем параплелизма по умолчанию 

sc.parallelize(data) .reduceByKey(lamЬda х, у: х + у) 

# С настроенным уровнем параллелизма 

sc.parallelize(data) .reduceByKey(lamЬda х, у: х + у, 10) 

Пример 4. 16 •:• reduceByKey() с параметром уровня параллелизма 

в Scala 

val data = Seq( ("а", 3), ("Ь", 4), ("а", 1)) 

// С уровнем параллелизма по умолчанию 

sc.parallelize(data) .reduceByKey((x, у) => х + у) 

// С настроенным уровнем параллелизма 

sc.parallelize(data) .reduceByKey((x, у) => х + у) 

Иногда бывает желательно изменить порядок распределения 
набора RD D вне контекста операций группировки или агрегиро­
вания. Для таких случаев в Spark имеется функция reparti tion () , 
которая перераспределяет данные и создает новый набор разделов. 
Имейте в виду, что перераспределение данных - весьма дорогостоя­
щая операция. В Spark имеется также оптимизированная версия 
reparti tion (), которая называется coalesce () и позволяет избежать 
перемещения данных по сети, но только в случае уменьшения чис-
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ла разделов RDD. Чтобы узнать, насколько безопасным (в смыс­
ле производительности) будет вызов coalesce (), можно проверить 
размер RDD вызовом rdd.partitions. size () в Java/Scala и rdd. 
getNumParti tions () в Python и сравнить полученное фактическое 
число разделов с желаемым. 

Группировка данных 
При использовании данных, состоящих из пар ключ/значение, часто 
бывает необходимо сгруппировать данные по ключу, например чтобы 
увидеть список заказов, сделанных одним клиентом. 

Если данные уже хранятся в виде пар ключ/значение, как нам тре­
буется, мы легко можем сгруппировать данные вызовом groupByKey (). 
Если набор RDD содержит ключи типа К и значения типа V, мы полу­
чим обратно набор RDD типа [К, IteraЫe [V]]. 

Чтобы сгруппировать простые данные (без ключей) или данные 
с ключами, но по какому-то иному критерию, не учитывающему те­
кущих ключей, можно воспользоваться функцией groupBy (). Она при­
нимает функцию и применяет ее к каждому элементу в исходном на­
боре RDD, а полученный результат использует как ключ. 

Если обнаружится, что вслед за вызовом groupByKey () вам требуется 
применить reduce () или fold () к значениям, знайте, что тот же результат 
часто можно получить более эффективным способом, с помощью од­
ной из функций агрегирования по ключу. Вместо свертки набора RDD 
в значение можно выполнить свертку данных по ключу и получить об­
рапю набор RDD с результатами свертки значений для каждого ключа. 
Например, rdd. reduceByKey (func) вернет тот же набор RDD, что и rdd. 
groupByKey() .rnapValues (value => value.reduce (func)), но справится со сво­
ей работой гораздо эффективнее, так как ей не потребуется создавать 
список для каждого ключа. 

Помимо группировки данных из единственного набора RDD, мож­
но также сгруппировать данные с одинаковыми ключами из разных 
наборов RDD, используя функцию cogroup (). Когда эта операция вы­
полняется над двумя наборами RDD с ключами одного типа К и зна­
чениями типа V и W, она возвращает набор типа RDD [ (К, ( IteraЫe [V], 
IteraЬle [W]))]. Если один из наборов RDD не имеет элементов с клю­
чом, присутствующим в другом наборе, соответствующий элемент 
IteraЫe будет пуст. Функция cogroup () дает нам мощную возмож­
ность группировки данных из нескольких наборов RDD. 

Функция cogroup () используется как основа для создания соедине­
ний Uoins), о которых рассказывается в следующем разделе. 
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Функцию cogroup () можно использовать не только для реализации со­
единений, но также для вычисления пересечений по ключу. Кроме того, 
cogroup () может работать с тремя и более наборами RD D одновременно. 

Соединения 

Одними из самых полезных операций с наборами из пар ключ/значе­
ние являются операции объединения их с другими такими наборами. 
Наиболее типичным представителем подобных операций является 
вычисление соединения (join) для пары RDD, и для этого в Spark 
имеются все возможности, необходимые для получения правого и ле­
вого внешних соединений (right and left outer joins), перекрестного 
соединения (cross join) и внутреннего соединения (inner joins). 

Простой оператор join вычисляет внутреннее соединение 1
• Он воз­

вращает только ключи, присутствующие в обоих наборах RDD. Когда 
одному ключу соответствует несколько значений в любом из исход­
ных наборов, в возвращаемый набор RDD будет добавлено несколько 
элементов с одинаковыми ключами. Чтобы проще было понять суть 
этой операции, взгляните на пример 4.17. 

Пример 4. 17 •:• Внутреннее соединение в командной оболочке Scala 

storeAddress = { 

(Store ("Ritual"), "1026 Valencia St"), 

(Store ("Philz"), "748 Van Ness Ave"), 

(Store ("Philz"), "3101 24th St"), 

(Store("Starbucks"), "Seattle")) 

storeRating = { 

(Store("Ritual"), 4.9), (Store("Philz"), 4.8))) 

storeAddress.join(storeRating) == { 

(Store("Ritual"), ("1026 Valencia St", 4.9)), 

(Store ("Philz"), ("748 Van Ness Ave", 4. 8)), 

(Store("Philz"), ("3101 24th St", 4.8))) 

Иногда не требуется, чтобы ключ присутствовал в обоих наборах 
RDD для включения его в результат. Например, выполняя соедине­
ние информации о клиенте с рекомендациями, может быть нежела­
тельно оставлять в стороне клиентов, которым не было выдано ни­
каких рекомендаций. Желаемый результат в этом случае помогут 
получить leftOuterJoin (other) и rightOuterJoin (other), выполняющие 

1 Термин «соединение�,, Uoin) пришел из мира баз данных и обозначает опе­
рацию объединения полей из двух таблиц на основе общих значений. 
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соединение пары наборов RDD по ключу, в одном из которых может 
отсутствовать некоторый ключ. 

Функция leftOuterJoin () возвращает набор RDD с элементами для 
каждого ключа в исходном наборе RDD (относительно которого вы­
зывается этот метод). В качестве значений в возвращаемом наборе ис­
пользуются кортежи со значениями из исходного набора RDD и объ­
ектами Option (или Optional в Java) для значений из второго набора 
RDD. В Python вместо отсутствующего значения возвращается None, 
а присутствующие значения представлены самими этими значения­
ми, без применения каких-либо оберток. Как и в случае с join (), для 
каждого ключа в возвращаемом наборе может быть создано несколь­
ко элементов для каждого ключа - в этом случае мы получаем декар­
тово произведение двух списков значений. 

Тип Optional определяется в библиотеке Google Guava (https://github.com/ 
google/guava) и используется для представления возможно отсутствую­
щих значений. Узнать, присутствует ли фактическое значение, можно 
вызовом метода isPresent (), а получить его - вызовом метода get (). 

Функция rightOuterJoin () действует почти идентично функции 
leftOuterJoin (),с той лишь разницей, что ключи должны присутство­
вать в другом наборе RDD (передается в виде аргумента), а кортежи 
включают необязательные значения из исходного набора (относи­
тельно которого вызывается этот метод). 

Давайте продолжим пример 4.17 и вызовем leftOuterJoin () 
и rightOuterJoin () для наборов RDD, использовавшихся для иллюст­
рации функции join () (см. пример 4.18). 

Пример 4. 18 •:• leftOuter Join() и rightOuter Join() 

storeAddress.leftOuterJoin(storeRating) == 
{ (Store("Ritual"), ("1026 Valencia St",Some(4.9))), 

(Store ( "Starbucks"), ( "Seattle", None)) , 

(Store("Philz"), ("748 Van Ness Ave",Some(4.8))), 

(Store("Philz"), ("3101 24th St",Some(4.8)))} 

storeAddress.rightOuterJoin(storeRating) == 
{(Store("Ritual"), (Some("1026 Valencia St"),4.9)), 

(Store("Philz"), (Some("748 Van Ness Ave"),4.8)), 

(Store("Philz"), (Some("3101 24th St"),4.8))) 

Сортировка 
Возможность сортировки данных может пригодиться в самых разных 
ситуациях, особенно когда производится вывод результатов. Отсор-
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тировать набор RDD пар ключ/значение можно при условии, что 
ключи поддерживают понятие упорядочения. После сортировки дан­
ных любые последующие вызовы collect () или save () будут работать 
с упорядоченными данными. 

Поскольку нередко бывает необходимо отсортировать набор 
RDD в обратном порядке, функция sortByKey () принимает параметр 
ascending, определяющий порядок сортировки (по умолчанию име­
ет значение true, то есть сортировка выполняется по возрастанию). 
Иногда бывает желательно в корне изменить порядок сортировки. 
С этой целью можно передать собственную функцию сравнения. 
В примерах с 4.19 по 4.21 выполняется сортировка набора RDD с пре­
образованием целых чисел в строки и с использованием функции 
сравнения строк. 

Пример 4. 19 •:• Сортировка целочисленных значений как строк 

в Python 

rdd.sortByKey(ascending=True, numPartitions=None, 

keyfunc = lamЬda х: str(x)) 

Пример 4.20 •:• Сортировка целочисленных значений как строк 
в Scala 

val input: RDD[(Int, Venue)] = ... 

implicit val sortintegersByString = new Ordering[Int] 

override def compare(a: Int, Ь: Int) = a.toString.compare(b.toString) 

rdd. sortByKey () 

Пример 4.21 •:• Сортировка целочисленных значений как строк в Java 

class IntegerComparator implements Comparator<Integer> { 

puЫic int compare(Integer а, Integer Ь) { 

return String.valueOf{a) .compareTo(String.valueOf(b)) 

rdd.sortByKey(comp) 

действия нал наборами пар 1<Люч/эначение 
По аналогии с преобразованиями для наборов пар ключ/значение до­
ступны все стандартные действия. Кроме того, для наборов пар ключ/ 
значение доступны также некоторые дополнительные действия, ис­
пользующие специфические особенности таких данных. Все они пе­
речислены в табл. 4.3. 
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Таблица 4. З. Действия с наборами RDD пар ключ/значение 

(например: (((1, 2), (З, 4), (З, б)})) 

Функция Назначение Пример Результат 
countByKey 1) Подсчет числа элементов rdd. countByKey 1) { (1, 1) 1 (3, 2) 1 

для каждого ключа 
collectAsMap 1) Извлечение данных в виде rdd. collectAsMap {) Мар{ (1, 2), 

ассоциативного массива Мар (3, 4) 1 (3, 6)) 
для простоты поиска 

lookup (key) Извлечение всех значений, rdd. lookup (3) [ 4, 6] 
связанных с указанным 
ключом 

Существует также множество действий с наборами RD D пар ключ/ 
значений, которые сохраняют RDD, но о них мы расскажем в главе 5. 

Управление распределением данных 
Последняя особенность Spark, которую мы обсудим в этой главе, -
возможность управления распределением данных между узлами. 
В распределенных системах взаимодействия между их компонен­
тами требуют существенных затрат вычислительных мощностей, 
поэтому размещение данных так, чтобы максимально уменьшить 
сетевой трафик, способствует увеличению производительности. По­
добно тому, как программа, выполняющаяся на единственном узле, 
должна выбрать правильную структуру для коллекции записей, 
Sраrk-программы должны управлять распределением своих наборов 
RDD для уменьшения операций взаимодействий между узлами. Рас­
пределение данных полезно не для всех приложений. Например, если 
набор RD D сканируется только один раз, нет никакого смысла раз­
бивать его на разделы, - такое разбиение дает выгоды, только когда 
набор данных используется мноюкратно в таких операциях, как вы­
числение соединений. Чуть ниже мы представим несколько приме­
ров, доказывающих верность данного утверждения. 

Механизм распределения данных в Spark поддерживается для всех 
наборов RDD пар ключ/значение и позволяет системе группировать 
элементы, опираясь на функцию от ключа. Несмотря на то что фрейм­
ворк Spark не дает возможности явного управления распределения 
конкретных ключей между рабочими узлами (отчасти потому, что си­
стема спроектирована с учетом возможности выхода из строя какого­
то узла), тем не менее он гарантирует, что за каждым узлом будет 
закреплено определенное множество ключей. Например, вы можете 
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разбить набор RDD на 100 разделов по хэш-значению ключа, чтобы 
элементы с ключами, имеющими одинаковый остаток от деления хэш­
значения на 100, оказались на одном узле. Аналогично можно разбить 
набор RDD на сортированные диапазоны ключей, чтобы элементы, 
имеющие ключи из одного диапазона, оказались на одном узле. 

В качестве простого примера рассмотрим приложение, хранящее 
в памяти большую таблицу с информацией о пользователях, напри­
мер набор пар (UserID, Userinfo), где Userinfo содержит список тем, на 
которые подписался данный пользователь. Приложение периодиче­
ски сопоставляет эту таблицу с коротким файлом событий за послед­
ние пять минут, например содержащим таблицу пар (UserID, Linkinfo) 
с информацией о пользователях, щелкнувших по ссылке на веб-сайте 
в течение этих пяти минут. В таком приложении мы могли бы под­
считать, сколько пользователей выполнило переход по ссылкам, не 
включенным в их подписки. Сделать это можно с помощью операции 
join (), сгруппировав пары Userinfo и Linkinfo для каждого UserID по 
ключу, как показано в примере 4.22. 

Пример 4.22 •:• Простое приложение на Scala 

// Инициализация; информация о пользователях загружается 

// из Hadoop SequenceFile в HDFS. 

// В результате элементы userData распределяются по блокам HDFS, 

// где они находятся, и Spark не имеет никакой возможности узнать, 

// в каком разделе находится конкретный UserID. 

val sc = new SparkContext( ... ) 

val userData = 

sc.sequenceFile[UserID, Userinfo] ("hdfs:// ... ") .persist() 

// Следующая функция вызывается периодически для обработки файла 

// журнала с событиями за последние 5 минут; предполагается, что 

// это - SequenceFile, содержащий пары (UserID, Linkinfo). 

def processNewLogs(logFileNarne: String) { 

val events = sc.sequenceFile[UserID, Linkinfo] (logFileNarne) 

val joined = 

userData.join(events) // RDD пар (UserID, (Userinfo, Linkinfo)) 

val offTopicVisits = joined.filter ( 

case (userid, (userinfo, linkinfo)) =>//Развернуть кортеж 

!userinfo.topics.contains(linkinfo.topic)

) . count () 

println("NurnЬer of visits to non-subscribed topics: " +

offTopicVisits) 
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Этот код прекрасно будет справляться с поставленной задачей 
и в таком виде, но делать это он будет крайне неэффективно. Дело 
в том, что операция j oin (), которая вызывается при каждом обраще­
нии к processNewLogs (), ничего не знает о том, как распределены ключи 
между узлами. По умолчанию эта операция вычисляет хэш-значения 
для всех ключей в обоих наборах данных, посылает элементы с оди­
наковыми хэш-значениями на один и тот же узел и затем вычисляет 
соединение элементов на этом узле (см. рис. 4.4). Так как предпола­
гается, что таблица userData намного больше, чем файл журнала с со­
бытиями, масса работы выполняется впустую: таблица userData хэши­
руется и распределяется между узлами при каждом вызове, даже если 
она не изменяется. 

userData 
Результат 

соединения События 

Передача данных между узлами 

Рис. 4.4 •:• Каждая операция соединения userData 

и списка событий без использования partitionBy () 

Исправить эту проблему совсем не сложно: достаточно применить 
преобразование parti tionBy () к userData с распределением по хэш­
значению в начале программы. Для этого следует передать объект 
spark. HashParti tioner в parti tionBy (), как показано в примере 4.23. 

Пример 4.23 •:• Нестандартное распределение в Scala 

val sc = new SparkContext( ... ) 

val userData = sc.sequenceFile[UserID, Userinfo] ("hdfs:// ... ") 

.partitionBy(new HashPartitioner(lOO)) // Создать 100 разделов 

. persist () 



Управ/\ение распреде/\ением ланных •:• 87 

Функцию processNewLogs () можно оставить без изменений: набор 
events с событиями является локальным для processNewLogs () и ис­
пользуется в этой функции только один раз, поэтому его распреде­
ление между узлами не даст никаких преимуществ. Поскольку те­
перь конструирование набора userData выполняется с применением 
parti tionBy (), Spark будет знать, что распределение выполнено на 
основании хэш-значения ключей, и использовать эту информацию 
при вызове join (). В частности, когда программа вызовет userData. 
join (events), Spark перераспределит только набор events с событиями 
и отправит события с каждым конкретным UserID только на узел, со­
держащий соответствующий хэш-раздел userData (см. рис. 4.5). В ре­
зультате сетевой трафик уменьшится, и программа будет работать 
заметно быстрее. 

userData 

С)-­
С)-­
С)--

С)--

Результат 
соединения События 

Локальные ссылки 
_________________________ ,.. 

Рис. 4.5 •:• Каждая операция соединения userData 

и списка событий с использованием parti tionBy () 

Обратите внимание, что parti tionBy () является преобразованием, 
то есть эта функция всегда возвращает новый набор RD D - она не 
изменяет исходного набора RDD. Наборы RDD не могут изменяться 
после их создания. Соответственно, имеет смысл сохранить резуль­
тат вызова partitionBy () как userData. Кроме того, число 100, передан­
ное в вызов parti tionBy (), представляет число разделов и определяет, 
сколько параллельных заданий будет создаваться при выполнении 
операций над этим набором RDD (таких как вычисление соедине-



88 •:• Работа с парами К/\Юч/значение 

ния). В общем случае это число рекомендуется выбирать не меньше 
числа ядер в кластере. 

/\ Ошибка сохранения RDD после преобразования с помощью parti-
/.l\ tionBy () приведет к тому, что в последующих операциях над набором

RDD перераспределение данных будет выполняться повторно, что, 
в свою очередь, будет вызывать повторное вычисление RDD от начала 
J\O конца. Это может свести на нет все преимущества, что дает приме­
нение parti tionBy (), из-за повторяющегося перераспределения данных 
между узлами, как если бы использовалось распределение по умолча-
1шю. 

Фактически многие другие операции Spark автоматически созда­
ют RDD с известной информацией о распределении, и многие опе­
рации, кроме j oin (), используют эту информацию для увеличения 
производительности. Например, sortByKey () и groupByKey () создают 
наборы RDD с распределением по диапазонам и хэш-значениям соот­
ветственно. С другой стороны, некоторые операции, такие как map (), 
создают новые наборы RDD, которые не наследуют информацию 
о распределении от родительского набора, потому что такие операции 
теоретически могут изменять значения ключей. 

В следующих нескольких разделах описывается, как узнать, какой 
порядок распределения применен к набору RDD и как этот порядок 
влияет на разные операции Spark. 

Распределение в Java и Python. Прикладной интерфейс Spark для 
Java и Python так же позволяет управлять распределением, как при­
кладной интерфейс для Scala. Однако в Python нельзя передать объект 
HashPartitioner в вызов partitionBy; вместо этого следует просто пере­
дап, число желаемых разделов ( например, rdd. partitionBy ( 100) ). 

Определение объекта управления распределением 
RDD 

Определить порядок распределения набора RDD в Scala иjava мож­
но с помощью свойства partitioner (или метода partitioner () вjava) 1

• 

При обращении к этому свойству возвращается объект scala.Option, 
играющий в Scala роль класса контейнера, который может содержать 
или не содержать один элемент. Проверить наличие фактического 
значения в объекте Option можно с помощью его метода isDefined (), 
а с помощью метода get () - получить это значение. Если значение 

1 Прикладной интерфейс для Python пока не предоставляет возможности 
определить объект, управляющий распределением набора RDD, хотя он 
используется внутренними механизмами. 
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присутствует, им будет объект spark. Parti tioner. В действительности 
этим объектом является функция, сообщающая RDD, к какому разде­
лу относится каждый ключ. Подробнее об этом мы поговорим ниже. 

Свойство partitioner - отличный способ проверить в командной 
оболочке Spark, какое влияние на разные операции оказывает поря­
док распределения, и убедиться в правильности результатов, возвра­
щаемых этими операциями (см. пример 4.24). 

Пример 4.24 •:• Определение объекта, управляющего 
распределением RDD 

scala> val pairs = sc.parallelize(List((l, 1), (2, 2), (3, 3))) 
pairs: spark.RDD[(Int, Int)] = ParallelCollectionRDD[OJ at parallelize at 
<console>:12 

scala> pairs.partitioner 
resO: Option[spark.Partitioner] = None 

scala> val partitioned = pairs.partitionВy(new spark.HashPartitioner(2)) 
partitioned: spark.RDD[(Int, Int)J = ShuffledRDD[l] at partitionBy at 
<console>: 14 

scala> partitioned.partitioner 
resl: Option[spark.Partitioner] = Some(spark.HashPartitioner@5147788d) 

В этом коротком сеансе мы создали набор RDD с парами типа 
(Int, Int), который изначально не имеет информации о распределе­
нии ( объект Option со значением None ). Затем мы создали второй набор 
RDD с распределением по хэш-значениям ключей. Если нам нужно 
было использовать информацию о распределении в последующих 
операциях, мы должны были бы добавить вызов persist () в третьей 
команде, где определяется набор partitioned. Именно по этой причи­
не мы вызывали метод persist () при создании userData в предыдущем 
примере: без вызова этого метода все последующие операции вычис­
ляли бы распределенный набор RD D целиком снова и снова. 

Операции, получающие выгоды от наличия 

информации о распределении 
Многие операции Spark выполняют обмен данными между узла­
ми. Все они получают выгоды от наличия информации о распреде­
лении. В версии Spark 1.0 к таким операциям относятся: cogroup (), 
groupWith (), join (), leftOuterJoin (), rightOuterJoin (), groupByKey (), 
reduceByKey (), comЬineByKey () и lookup (). 
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Операции, воздействующие на единственный набор RDD, такие 
как reduceByKey (), при применении к распределенному набору RD D 
вычисляют все значения для каждого ключа локально, на каждом ра­
бочем узле, получают окончательное локальное значение (результат 
свертки) и посылают его ведущему узлу. Операции, воздействующие 
на два набора, такие как cogroup () и j oin (), из которых хотя бы один 
имеет информацию о распределении, не пересылают такие набо­
ры между узлами. Если оба набора RDD были распределены одним 

и тем же способом и кэшированы на одних и тех же узлах (например, 
если один набор был создан с помощью mapValues () на основе другого) 
или если один из них еще не был вычислен, пересылка данных по сети 
тоже не производится. 

Операции, на которые влияет порядок 

распределения 
Фреймворк Spark знает, какое влияние оказывает порядок распре­
деления на каждую его операцию, и автоматически назначает объект 
управления распределением наборам RDD, создаваемым операция­
ми. Например, представьте, что мы вычисляем соединение двух на­
боров RDD. Так как элементы с одинаковыми ключами хэшируются 
на одной машине, Spark знает, что результат будет распределен по 
хэш-значениям ключей и операции, такие как reduceByKey (), над ре­
зультатом соединения будут выполняться значительно быстрее, если 
получат возможность пользоваться информацией о распределении. 

Проблема, однако, в том, что преобразования не всегда могут вос­
произвести известный порядок распределения. В этом случае возвра­
щаемые ими наборы RD D имеют незаполненное свойство parti tioner. 
Например, если вызвать преобразование map () для набора, распреде­
ленного по хэш-значениям ключей, функция, передаваемая в map (), 
теоретически способна изменить ключи у всех элементов, из-за чего 
результат не будет подчиняться первоначальному порядку распреде­
ления и его свойство partitioner не будет установлено. Фреймворк 
Spark не анализирует пользовательские функции, чтобы определить, 
изменяют они ключи или нет. Вместо этого он предоставляет две дру­
гие операции, mapValues () и flatMapValues (), которые гарантируют не­
изменность ключей во всех кортежах. 

Итак, вот все операции, которые возвращают набор RDD с уста­
новленным свойством partitioner: cogroup (), groupWith (), join (), 

leftOuterJoin (), rightOuterJoin (), .groupByKey (), reduceByKey (), comЬine-
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ВуКеу(), partitionBy(), sort(), rnapValues() (если для исходного набора 
RDD был задан порядок распределения), flatMapValues () (если для 
исходного набора RDD был задан порядок распределения) и filter () 
(если для исходного набора RDD был задан порядок распределения). 
Все остальные операции возвращают наборы без установленного по­
рядка распределения. 

Наконец, операции над двумя наборами возвращают результат, 
распределение которого зависит от распределения исходных наборов. 
По умолчанию используется распределение на основе хэш-значений 
ключей с числом разделов, соответствующим уровню параллелизма, 
установленному для операции. Однако если один из исходных на­
боров имеет установленное свойство partitioner, его значение будет 
определять порядок распределения результата; а если оба исходных 
набора имеют установленное свойство partitioner, порядок распреде­
ления результата будет выбран по первому исходному набору. 

Пример: PageRank 

В качестве примера более сложного алгоритма, который может из­
влечь выгоду от упорядоченного распределения набора RDD, мы рас­
смотрим алгоритм PageRank. Этот алгоритм получил свое название 
в честь Лари Пейджа (Larry Page ), одного из основателей проекта 
Google 1 , предпринявшего попытку выработать алгоритм, с помощью 
которого можно было бы оценить важность (�ранг�,,) каждого до­
кумента во множестве, опираясь на число ссылок на этот документ 
в других документах. Этот алгоритм можно использовать не только 
для определения ранга неб-страниц, но также для научных статей или 
влиятельности пользователей в социальных сетях. 

PageRank - это итеративный алгоритм, выполняющий множество 
соединений, поэтому он, как никакой другой, может извлечь выгоду 
из использования наборов RDD с упорядоченным распределением. 
Алгоритм оперирует двумя наборами данных: один - с элемента­
ми типа (pageID, linkList), содержащими списки соседних страниц, 
и другой - с элементами типа (pageID, rank), содержащими текущий 
ранг соответствующих страниц. Действует он следующим образом: 

1. Изначально каждой странице присваивается ранг 1.0.
2. В каждой итерации для каждой страницы р вычисляется ее

вклад (contribution) в ранг соседних страниц (на которые есть
ссылки в текущей странице) как (р) /nurnNeighbors (р).

1 Тогда еще BackRub. - Прим. перев.
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3. Каждой странице присваивается ранг О .15 + О. 85 * contribu­
tionsRecei ved.

Последние два шага повторяются несколько раз, в результате чего 
алгоритм сходится к правильному значению PageRank для каждой 
страницы. На практике обычно достаточно десяти итераций. 

В примере 4.25 приводится программный код реализации алгорит­
ма PageRank с применением фреймворка Spark. 

Пример 4.25 •:• Реализация алгоритма PageRank на Scala 

!! Допустим, что список соседних страниц хранится в objectFile 

val links = sc.objectFile [ (String, Seq[String])] ("links") 

.partitionBy(new HashPartitioner(lOO)) 

. persist () 

// Инициализировать ранг каждой страницы значением 1.0; 

// поскольку используется mapValues, получившийся набор RDD 

!/ будет иметь то же распределение, что и набор links 

var ranks = links.mapValues(v => 1.0) 

!/ Выполнить 10 итераций 

for (i <- О until 10) { 

val contributions = links.join(ranks) .ПаtМар 

case (pageid, (links, rank)) => 

links.map(dest => (dest, rank ! links.size)) 

ranks = contributions.reduceByKey((x, у) => х + у) 

.mapValues(v => 0.15 + O.BS*v) 

// Записать результаты в файл 

ranks.saveAsTextFile("ranks") 

Вот и все! Реализация алгоритма начинается с инициализации каж­
дого элемента в наборе RDD начальным значением ранга 1.0, после 
чего элементы в наборе ranks обновляются в каждой итерации. Тело 
реализации алгоритма PageRank очень просто выражается с примене­
нием Spark: сначала выполняется соединение j oin () текущих наборов 
ranks и links, чтобы получить список ссылок и ранг каждой страницы, 
затем вызывается flatMap для определения <<вклада>> в ранг каждой со­
седней страницы. Потом эти значения складываются по ID страницы 
( получившей вклад), и вычисляется новый ранг страницы как О .15 + 
О. 85 * contributionsRecei ved. 
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Хотя код сам по себе прост, в примере предпринимаются дополни­
тельные усилия, гарантирующие определенный порядок распределе­
ния наборов RDD для большей эффективности: 

1. Обратите внимание, что в каждой итерации вычисляется со­
единение набора links с набором ranks. Так как links - это
статический набор данных, для него вначале устанавливается
порядок распределения вызовом parti tionBy (), чтобы потом из­
бежать излишних операций передачи данных по сети. Кроме
того, обычно набор links имеет намного больший размер (в бай­
тах), чем ranks, потому что содержит список соседей для каж­
дой страницы, а не просто значение типа DouЫe, поэтому данная
оптимизация помогает существенно уменьшить сетевой трафик
в сравнении с простой реализацией PageRank (например, с при­
менением механизма MapReduce).

2. По тем же причинам, что и раньше, мы вызываем persist () для
набора links и сохраняем его в памяти между итерациями.

3. Когда набор ranks создается в первый раз, мы используем
mapValues () вместо map (), чтобы сохранить порядок распреде­
ления, унаследованный от родительского набора RDD (links).
Благодаря этому операция соединения оказывается относи­
тельно недорогой.

4. В теле цикла мы следуем шаблону применения преобразования
reduceByKey () с последующим преобразованием mapValues (); так
как результат reduceByKey () уже имеет упорядоченное распреде­
ление, это обеспечит высокую эффективность вычисления со­
единения результата отображения с набором links в следующей
итерации.

Чтобы получить максимальную выгоду от упорядоченного распреде­
ления, всегда используйте mapValues () или flatMapValues (), если ключи
элементов не изменяются.

Собственные объекты управления распределением 
Объекты HashPartitioner и RangePartitioner в Spark хорошо подхо­
дят для большинства случаев, тем не менее Spark позволяет также 
создавать собственные объекты управления распределением набо­
ров RDD, предоставляя базовый класс Partitioner. С его помощью 
можно еще больше уменьшить число сетевых взаимодействий, вос­
пользовавшись знанием специфических особенностей предметной 
области. 
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Например, представьте, что нам требуется применить алгоритм 
PageRank из предыдущего раздела ко множеству веб-страниц. В дан­
ном случае роль идентификатора страницы (ключа в наборе RDD) 
будет играть адрес U RL страницы. Если применить стандартную хэш­
функцию для распределения набора страниц между узлами, страницы 
с похожими адресами (например, http://www.cnn.com;WORLD и http:// 
www.cnn.com/US) могут оказаться на разных узлах. Однако мы знаем, 
что веб-страницы в одном домене обычно содержат множество ссы­
лок друг на друга. Поскольку алгоритм PageRank должен в каждой 
итерации вычислять вклад каждой страницы в соседние, было бы 
разумно распределить страницы с похожими адресами в один раздел. 
Реализовать это можно с помощью собственного объекта Partitioner, 
который будет принимать во внимание только имена доменов, а не 
адреса URL целиком. 

Для реализации собственного объекта управления распределени­
ем нужно определить подкласс класса org.apache.spark.Partitioner 
и реализовать в нем три метода: 

О nurnPartitions: Int, возвращает число разделов, которые требу­
ется создать; 

О getPartition (key: Any): Int, возвращает идентификатор раздела 
(от О до nurnPartitions-1) для заданного ключа key; 

О equals (), стандартный Jаvа-метод проверки на равенство; этот 
метод обязательно надо реализовать, потому что фреймворку 
Spark нужен инструмент для сравнения объекта Parti tioner 
с другими экземплярами этого же класса, чтобы определить, 
поддерживают ли два ваших набора RDD один и тот же поря­
док распределения! 

Одна из проблем заключается в том, что стандартный Jаvа-метод 
hashCode () может возвращать отрицательные значения, тогда как вам 
нужно гарантировать возврат методом getParti tion () только неотри­
цательных значений. 

В примере 4.26 показано, как могла бы выглядеть реализация объ­
екта управления распределением на основе доменных имен, который 
хэширует только имена доменов в адресах URL. 

Пример 4.26 •:• Реализация собственного объекта управления 
распределением в Scala 
class DomainNamePartitioner(numParts: Int) extends Partitioner { 

override def numPartitions: Int = numParts 

override def getPartition(key: Any): Int = { 
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val domain = new Java.net.URL(key.toString) .getHost() 
val code = (domain.hashCode % numPartitions) 
if (code < О) ( 

code + numPartitions // Сделать неотрицательным 
else 
code 

// Jаvа-метод equals для сравнения объектов Partitioner 
override def equals(other: Any): Boolean = other match 

case dnp: DomainNamePartitioner => 
dnp.numPartitions == numPartitions 

case => 
false 

Обратите внимание, что для проверки объекта other на принад­
лежность классу DornainNarnePartitioner в методе equals () использует­
ся оператор сопоставления с шаблоном (rnatch) и выполняется при­
ведение типов, если это так. Этот код действует подобно функции 
instanceof () в Java. 

Пользоваться новым объектом Partitioner совсем не сложно: до­
статочно просто передать его методу parti tionBy (). Многие методы 
в Spark, способные генерировать значительный сетевой трафик, такие 
как j oin () и groupByKey (), также принимают необязательный объект 
Partitioner для управления распределением возвращаемого набора. 

В Java собственный объект Partitioner создается аналогичным об­
разом: определяется подкласс класса spark. Partitioner, и в нем реали­
зуются необходимые методы. 

В Python не требуется наследовать класс Parti tioner - вместо этого 
следует передать функцию хэширования в дополнительном аргумен­
те методу RDD.partitionBy (), как показано в примере 4.27. 

Пример 4.27 •:• Реализация собственного объекта управления 

распределением в Python 

import urlparse 

def hash_domain(url): 
return hash(urlparse.urlparse(url) .netloc) 

rdd.partitionBy(20, hash_domain) # Создать 20 разделов 
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Обратите внимание, что для выяснения соответствия порядка рас­
пределения данного и других наборов RDD будет выполняться срав­
нение идентичности (identity) функции. Если потребуется исполь­
зовать один и тот же порядок распределения во множестве наборов 
RDD, определите глобальную функцию хэширования и передавайте 
один и тот же объект функции! 

В эа1<Лючение 

В этой главе мы узнали, как работать с парами ключ/значение, ис­
пользуя специализированные функции Spark. Приемы, описанные 
в главе 3, также могут применяться к наборам RDD пар ключ/зна­
чение. В следующей главе мы посмотрим, как загружать и сохранять 
данные. 
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и сохранение данных 

И программисты, и исследователи данных почерпнут немало полез­
ного из этой главы. Программистам может понадобиться подробнее 
исследовать форматы вывода данных, чтобы узнать, насколько хоро­
шо они соответствуют требованиям заказчика. Исследователей на­
верняка заинтересуют форматы, в которых хранятся уже имеющиеся 
у них данные. 

Вступление 
Мы познакомились со множеством операций, которые можно вы­
полнять над распределенными наборами данных после их создания.
До сих пор во всех наших примерах мы загружали и сохраняли наши
данные, используя обычные коллекции и файлы, но есть вероятность,
что набор данных не уместится на одном компьютере, поэтому при­
шло время исследовать доступные возможности, касающиеся загруз­
ки и сохранения данных.

Фреймворк Spark поддерживает широкий диапазон механизмов
ввода/вывода отчасти потому, что создавался в экосистеме Hadoop.
В частности, для доступа к данным Spark использует интерфейсы
InputFormat и OutputFormat из Hadoop MapReduce, которые поддержи­
вают множество форматов файлов и систем хранения ( например, SЗ,
HDFS, Cassandra, НБаsе и т. д.) 1

• В разделе <,Форматы Hadoop для
ввода и вывода�- мы покажем, как использовать эти форматы непо­
средственно.

Однако больший интерес для разработчиков представляют высо­
коуровневые API, основанные на этих интерфейсах. К счастью, Spark 
и его экосистема обеспечивают массу возможностей в этом направ-

1 InputFormat и OutputFormat - это Java API, который используется механиз­
мом MapReduce для подключения к источникам данных. 
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лении. В данной главе мы рассмотрим три основных множества ис­
точников данных: 

О файлы и файловые системы - данные в локальных и распреде­
ленных файловых системах, таких как NFS, HDFS или Amazon 
SЗ, Spark может хранить в разных форматах, включая текст, 
JSON, SequenceFiles и Protocol Buffers 1

• Мы покажем, как ис­
пользовать некоторые из распространенных форматов, а также 
расскажем, как включить в Spark поддержку разных файловых 
систем и настроить сжатие; 

О источники структурированных данных, доступные через Spark 
SQL - модуль Spark SQL, о котором рассказывается в главе 9, 
предоставляет отличный и часто более эффективный API для 
доступа к источникам структурированных данных, включая 
JSON и Apache Hive. В этой главе мы лишь кратко коснемся 
использования Spark SQL, отложив описание подробностей до 
главы 9; 

О базы данных и хранилища пар ключ/значение - мы познако­
мимся в общих чертах со встроенными и сторонними библио­
теками для взаимодействий с базами данных Cassandra, HBase, 
Elasticsearch и JDBC. 

В основном мы будем обсуждать методы, доступные во всех поддер­
живаемых языках, однако некоторые библиотеки все еще доступны 
только дляJаvа и Scala. Такие библиотеки мы будем отмечать особо. 

Форматы файлов 
Spark поддерживает загрузку и сохранение данных из файлов самых 
разных форматов, от неструктурированных и полуструктурирован­
ных, таких как текст и JSON, до полностью структурированных, та­
ких как SequenceFiles (см.табл. 5.1 ). Кроме того, для всех допустимых 
форматов Spark прозрачно поддерживает сжатие, опираясь на расши­
рения в именах файлов. 

Помимо механизмов вывода, поддерживаемых фреймворком Spark 
непосредственно, можно также использовать новый и старый Hadoop 
API для работы с файлами, хранящими данные в виде пар ключ/ 
значение. Однако эти программные интерфейсы можно использо­
вать только для работы с данными в виде пар ключ/значение из-за 

1 Язык описания данных, предложенный Google как альтернатива XML. -
Прим. перев. 
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Таблица 5. 1. Наиболее часто используемые форматы файлов 

Формат 
Структу-

Описание 
рирован 

Текст Нет Простые текстовые файлы. Предполагается, 
что каждая запись занимает отдельную строку 

JSON Наполовину Распространенный, полуструктурированный 
текстовый формат; большинство библиотек 
требуют, чтобы каждая запись занимала 
отдельную строку 

csv Да Распространенный текстовый формат, часто 
используемый в приложениях электронных 
таблиц 

SequenceFiles Да Распространенный формат файлов в Hadoop, 
предназначенный для хранения данных 
в виде пар ключ/значение 

Protocol Buffers Да Компактный, многоязычный формат, обеспе-
чивающий высокую скорость обработки 

Объектные файлы Да Удобный формат с целью сохранения данных 
в заданиях Spark для дальнейшей передачи 
разделяемому коду. Легко «ломается» 
при изменении классов, так как опирается 
на механизм сериализации 

требований Hadoop, даже при том, что в некоторых форматах ключи 
игнорируются. В случаях, когда формат игнорирует ключ, обычно ис­
пользуется ложный ключ (например, null). 

Текстовые файлы 
Текстовые файлы очень просты в обращении. Когда текстовый файл 
используется как источник данных, каждая его строка интерпрети­
руется как отдельный элемент набора RDD. Существует возмож­
ность организовать загрузку текстовых файлов целиком в набор пар 
ключ/значение, где ключом служит имя файла, а значением - его со­
держимое. 

Загрузка из текстовых файлов 
Загрузка из единственного текстового файла выполняется прос­

тым вызовом функции textFile () объекта SparkContext, как показано 
в примерах с 5.1 по 5.3. Если потребуется определить число разделов, 
можно также передать значение параметра minPartitions. 

Пример 5. 1 •:• Загрузка из текстового файла в Python 

input = sc.textFile("file:///home/holden/repos/spark/README.md") 
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Пример 5.2 •:• Загрузка из текстового файла в Scala 

val input = sc. textFile ( "file: ///home/holden/repos/spark/README .md") 

Пример 5.3 •:• Загрузка из текстового файла в Java 

JavaRDD<String> input = 
sc. textFile ( "file: / / /home/holden/ repos/ spark/README .md") 

Загрузка из множества файлов, находящихся в каталоге, может 
быть выполнена двумя способами. Можно просто вызвать тот же са­
мый метод textFile () и передать ему путь к каталогу, в этом случае 
он загрузит содержимое всех файлов в набор RDD. Но иногда важно 
знать, какой файл какой части данных соответствует (например, дан­
ные за период времени с ключом в файле), или требуется обработать 
весь файл целиком. Если файлы достаточно маленькие, можно вос­
пользоваться методом SparkContext. wholeTextFiles () и получить набор 
RDD с парами ключ/значение, роль ключей в котором будут играть 
имена файлов. 

Метод wholeTextFiles () может очень пригодиться, когда каждый 
файл представляет данные за определенный период времени. Напри­
мер, имея файлы с информацией о продажах за разные периоды, лег­
ко можно вычислить среднее за каждый период, как показано в при­
мере 5.4. 

Пример 5.4 •:• Среднее значение по данным в файле (Scala) 

val input = sc.wholeTextFiles("file://home/holden/salesFiles") 
val result = input.mapValues{y => 

val nums = y.split(" ") .map(x => x.toDouЫe) 
nums.sum / nums.size.toDouЫe 

, Spark поддерживает возможность чтения всех файлов в заданном ката­
логе и использование шаблонных символов в именах файлов (напри­
мер, part-*. txt). Это удобно для загрузки больших наборов данных, 
часто разбросанных по множеству файлов, особенно если в том же ка­
талоге могут присутствовать другие файлы (например, играющие роль 
флагов). 

Сохранение в текстовые файлы 
Вывод в текстовые файлы осуществляется так же просто. Метод 

saveAsTextFile (), что демонстрируется в примере 5.5, принимает путь 
к файлу для сохранения содержимого RDD. Путь интерпретируется 
как имя каталога, и Spark сохраняет в нем множество файлов. Это 
дает возможность сохранять данные с множества узлов. Данный ме-
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тод не позволяет управлять сохранением разделов в конкретных фай­
лах, но есть другие методы, которые дают такую возможность. 

Пример 5.5 •:• Сохранение в текстовый файл на Python 

result.saveAsTextFile(outputFile) 

JSON 

JSON - популярный полуструктурированный формат представления 
данных. Самый простой способ загрузить данные в формате JSON -
прочитать их как текстовый файл и затем отобразить в значения с по­
мощью парсера JSON. Аналогично с помощью предпочтительной 
библиотеки поддержки формата JSON можно осуществлять преоб­
разование значений в строки и выводить их в файл. В Java и Scala 
работать с данными в формате JSON можно также, реализовав под­
держку собственного формата в Hadoop. В разделе «JSON,> (глава 9) 
показано, как загрузитьJSОN-данные с помощью Spark SQL. 

Загрузка JSON 

Загрузка данных в формате JSON из текстового файла с последую­
щим парсингом возможна во всех поддерживаемых языках. При этом 
предполагается, что каждая JSОN-запись находится в отдельной стро­
ке. Если в ваших файлах одна запись может занимать множество строк, 
вам придется загружать такие файлы целиком и выполнять парсинг 
каждого такого файла. Если создание и инициализация парсера JSON 
на вашем языке являются слишком трудоемкой операцией, задействуй­
те mapPartitions () для повторного использования парсера; подробности 
см. в разделе <,Работа с разделами по отдельности�> в главе 6. 

Существует большое разнообразие библиотек поддержки формата 
JSON для всех трех языков, рассматриваемых нами, но для просто­
ты мы представим по одной библиотеке для каждого языка. В Python 
мы будем использовать встроенную библиотеку ( пример 5.6), а в J ava 
и Scala - библиотеку Jackson 1 (примеры 5.7 и 5.8). Мы выбрали эти 
библиотеки, потому что они действуют достаточно быстро и име­
ют относительно простой интерфейс. Если ваши программы тратят 
слишком много времени на парсинг данных, попробуйте подыскать 
другие библиотеки поддержкиJSОN для Scala илиJаvа. 

Пример 5.6 •:• Загрузка данных в формате JSON в Python 

import json 

data = input.map(lambda х: json.loads(x)) 

1 http://jackson.codehaus.org/. 
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В Scala и Java обычно принято загружать записи в классы, пред­
ставляющие их структуру. На данном этапе нам может также потре­
боваться организовать пропуск недействительных записей. Мы по­
кажем пример загрузки записей с преобразованием их в экземпляры 
класса Person. 

Пример 5. 7 •:• Загрузка данных в формате JSON в Scala 

import com.fasterxml.jackson.module.scala.DefaultScalaModule 
import com.fasterxml.jackson.module.scala.experimental.ScalaObjectMapper 
import com.fasterxml.jackson.databind.ObjectMapper 
import com.fasterxml.jackson.databind.DeserializationFeature 

case class Person(name: String, // Должен быть глобальным классом 
lovesPandas: Boolean) 

// Парсинг записи в экземпляр класса. Для обработки ошибок 
// используется flatMap: если обнаруживается какая-либо 
!/ проблема, возвращается пустой список (None), а если 
!/ все в порядке - возвращается список с единственным элементом 
// (Some (_)). 
val result = input.flatMap(record => { 

try { 
Some(mapper.readValue(record, classOf[Person])) 

} catch { 
case е: Exception => None 

} }) 

Пример 5.8 •:• Загрузка данных в формате JSON в Java 

class ParseJson implements FlatMapFunction<Iterator<String>, Person> 
puЫic IteraЫe<Person> call(Iterator<String> lines) throws Exception 
{ 

ArrayList<Person> people = new ArrayList<Person>(); 
ObjectMapper mapper = new ObjectMapper(); 
while (lines.hasNext()) { 

String line = lines.next(); 
try { 

people.add(mapper.readValue{line, Person.class)}; 
catch (Exception е) { 
// пропустить запись, вызвавшую ошибку 

return people; 

JavaRDD<String> input = sc.textFile("file.json"); 
JavaRDD<Person> result = input.mapPartitions(new ParseJson()); 
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Обработка неправильно сформированных записей может представ­
лять большую проблему, особенно в полуструктурированных форма­
тах, таких как JSON. Когда набор данных невелик, вполне допустимо 
<1остановить Землю>.> (то есть завершить выполнение программы) при 
встрече с недопустимой записью, но для огромных наборов данных 
подобные ошибочные записи являются вполне обыденными. Если вы 
решили пропускать ошибочные данные , возможно, вам понравится 
идея использования счетчика ошибок (см. раздел <1Аккумуляторы>.> 
в главе 6). 

Сохранение JSON 

Запись данных в файлы в формате JSON реализуется намного 
проще, чем загрузка, потому что не нужно беспокоиться об ошибках 
форматирования и, к тому же, мы точно знаем тип записываемых дан­
ных. С помощью тех же библиотек, что использовались для преобра­
зования строк JSON в набор RDD, можно выполнить обратное пре­
образование структурированных данных из RDD в строки и записать 
их, применив прикладной интерфейс Spark для работы с текстовыми 
файлами. 

Представьте, что мы проводим рекламную кампанию, направлен­
ную на людей, которые любят панд. Мы можем взять исходные дан­
ные, полученные на предыдущем шаге, и отфильтровать их, оставив 
только тех, кто любит панд, как показано в примерах с 5.9 по 5.11. 

Пример 5.9 •:• Сохранение данных в формате JSON в Python 

(data.filter(lamЬda х: x['lovesPandas']) 
.map(lambda х: json.dumps(x)) 
.saveAsTextFile(outputFile)) 

Пример 5.10 •:• Сохранение данных в формате JSON в Scala 

result.filter(p ;> P.lovesPandas) 
.map(mapper.writeValueAsString(_)) 
.saveAsTextFile(outputFile) 

Пример 5.11 •:• Сохранение данных в формате JSON в Java 

class WriteJson implements FlatMapFunction<Iterator<Person>, String> 
puЫic IteraЫe<String> call(Iterator<Person> people) throws Exception 

{ 
ArrayList<String> text; new ArrayList<String>(); 
ObjectMapper mapper; new ObjectMapper(); 
while (people.hasNext()) ( 

Person person; people.next(); 
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text.add(mapper.writeValueAsString(person)); 

return text; 

JavaRDD<Person> result = input.mapPartitions(new ParseJson()) 

. fil ter (new LikesPandas () ) ; 

JavaRDD<String> formatted = result.mapPartitions(new WriteJson()); 

formatted.saveAsTextFile(outfile); 

Мы легко можем загружать и сохранять данные в формате JSON, 
используя механизмы Spark для работы с текстовыми файлами и до­
полнительные библиотеки поддержкиJSОN. 

Значения, разделенные запятыми, и значения, 

разделенные табуляциями 
Файлы в формате CSV (Comma-Separated Values - значения, раз­
деленные запятыми), как предполагается, содержат фиксированное 
число полей в каждой строке, и эти поля разделены запятыми (или та­
буляциями, в формате TSV (Tab-Separated Values - значения, разде­
ленные табуляциями)). Обычно каждая запись хранится в отдельной 
строке, но иногда можно встретить записи, занимающие по нескольку 
строк. Файлы CSV и TSV иногда могут быть непоследовательными, 
особенно в отношении символов перевода строк, экранирования и 
отображения нe-ASCII символов или нецелых чисел. Формат CSV не 
предусматривает поддержку вложенных полей, поэтому упаковывать 
и распаковывать такие поля приходится вручную. 

В отличие от полей JSON, записи в формате CSV не имеют имен 
полей; вместо этого мы получаем обратно номера строк. Общепри­
нято в единственном файле CSV отводить первую строку под запись, 
поля которой содержат имена соответствующих полей. 

Загрузка CSV 

Загрузка данных CSV /TSV напоминает загрузку данных JSON -
сначала загружается текст, а затем производится его обработка. От­
сутствие стандартизации формата привело к появлению разных 
версий библиотек, иногда обрабатывающих исходные данные по­
разному. 

Как и для формата JSON, существует множество библиотек под­
держки формата CSV, но мы представим лишь по одной библиотеке 
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для каждого языка. И снова в примерах на Python мы будем использо­
вать встроенную библиотеку csv 1

, а в Scala иj ava - библиотеку opencsv2
• 

("') Существует также реализация Наdоор-интерфейса InputForrnat -
)i CSVInputForrnat3, - которая может использоваться для загрузки данных

CSV в Scala и Java, однако она не поддерживает записей, содержащих 
символы перевода строк. 

Если вам повезло и ваши данные CSV не содержат символов пе­
ревода строк в полях, вы можете загрузить их с помощью textFile () 
и преобразовать, как показано в примерах с 5.12 по 5.14. 

Пример 5.12 •:• Загрузка данных в формате CSV с помощью textFile () 
в Python 

import csv 
import StringIO 

def loadRecord(line): 
"""Парсинг строки CSV""" 
input = StringIO.StringIO(line) 
reader = csv.DictReader(input, 

fieldnames= [ "name", "favouri teAnimal"]) 
return reader.next() 

input = sc.textFile(inputFile) .map(loadRecord) 

Пример 5. 1 З •:• Загрузка данных в формате CSV с помощью textFile () 
в Scala 

import Java.io.StringReader 
import au.com.bytecode.opencsv.CSVReader 

val input = sc.textFile(inputFile) 
val result = input.map{ line => 

val reader = new CSVReader(new StringReader(line)); 
reader.readNext(); 

Пример 5. 14 •:• Загрузка данных в формате CSV с помощью textFile () 
вJava 

import au.com.bytecode.opencsv.CSVReader; 
import Java.io.StringReader; 

puЫic static class ParseLine implements Function<String, String[]> { 

1 https://docs.python.org/2/library/csv.html.
2 http://opencsv.sourceforge.net/.
3 http://bit.ly/1 FigUkq. 
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puЫic String[] call(String line) throws Exception 
CSVReader reader; new CSVReader(new StringReader(line)); 
return reader.readNext(); 

JavaRDD<String> csvFilel; sc.textFile(inputFile); 
JavaPairRDD<String[]> csvData; csvFilel.map(new ParseLine()); 

В случае если в полях присутствуют символы перевода строки, 
каждый файл придется загружать целиком и выполнять парсинг все­
го сегмента, как показано в примерах с 5.15 по 5.17. И это печально, 
потому что если каждый файл будет иметь большой размер, загрузка 
и парсинг могут стать узким местом в приложении. Описание разных 
способов загрузки текстовых файлов вы найдете в разделе «Загрузка 
из текстовых файлов� выше. 

Пример 5. 15 •:• Загрузка файлов CSV целиком в Python 

def loadRecords(fileNameContents): 
"""Загружает все записи из заданного файла'""' 
input; StringIO.StringIO(fileNameContents[l]) 
reader; csv.DictReader(input, 

fieldnames;["name", "favoriteAnimal"]) 
return reader 

fullFileData; sc.wholeTextFiles(inputFile) .flatMap(loadRecords) 

Пример 5.16 •:• Загрузка файлов CSV целиком в Scala 

case class Person(name: String, favoriteAnimal: String) 

val input; sc.wholeTextFiles(inputFile) 
val result; input.flatMap{ case (_, txt) ;) 

val reader; new CSVReader(new StringReader(txt)); 
reader.readAll() .map(x ;) Person(x(O), x(l))) 

Пример 5. 17 •:• Загрузка файлов CSV целиком в Java 

puЫic static class ParseLine 
implements FlatMapFunction<Tuple2<String, String>, String[]> 
puЬlic IteraЫe<String[]> call(Tuple2<String, String> file) 

throws Exception 

CSVReader reader ; new CSVReader (new StringReader (file. _ 2 ()) ) ; 
return reader.readAll(); 

JavaPairRDD<String, String> csvData; sc.wholeTextFiles(inputFile); 
JavaRDD<String [] > keyedRDD ; csvData .flatMap (new ParseLine ()); 
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Если число файлов невелико и есть необходимость использовать метод 
wholeFile (), можно попробовать перераспределить ввод данных, чтобы 
помочь фреймворку Spark эффективно распараллелить последующие 
операции. 

Сохранение CSV 

Запись в данных в формате CSV /TSV, как и запись данных в фор­
мате JSON, осуществляется намного проще, и есть возможность вос­
пользоваться выгодами от повторного использования объекта коди­
рования. Так как в CSV имена полей не выводятся с каждой записью, 
чтобы обеспечить согласованность вывода, необходимо создать 
отображение. Для этого достаточно написать функцию, преобразую­
щую поля в соответствующие позиции в массиве. В Python при выво­
де словарей объект записи в формате CSV автоматически сделает это, 
опираясь на порядок следования полей, который был определен при 
конструировании объекта записи. 

Используемые нами библиотеки поддерживают вывод в файлы/ 
объекты записи, поэтому можно использовать StringWriter/StringIO 
для сохранения наборов RDD, как показано в примерах 5.18 и 5.19. 

Пример 5. 18 •:• Запись данных в формате CSV в Python 

def writeRecords(records): 
"""Записывает в файл строки CSV""" 
output = StringIO.StringIO() 
writer = csv.DictWriter(output, 

fieldnames= ["name", "favoriteAnimal"]) 
for record in records: 

writer.writerow(record) 
return [output.getvalue()] 

pandaLovers.mapPartitions(writeRecords) .saveAsTextFile(outputFile) 

Пример 5. 19 •:• Запись данных в формате CSV в Scala 

pandaLovers.map(person => List(person.name, 
person.favoriteAnimal) .toArray) 

.mapPartitions{people => 
val stringWriter = new StringWriter(); 
val csvWriter = new CSVWriter(stringWriter); 
csvWriter.writeAll(people.toList) 
Iterator(stringWriter.toString) 

}.saveAsTextFile(outFile) 

Как можно заметить, предыдущие примеры работают, только если 
известны все поля, которые выводятся. Однако если имена каких-
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то полей определяются во время выполнения, из пользовательского 
ввода, необходимо использовать иной подход. Самый простой спо­
соб - выполнить обход всех данных, извлечь уникальные ключи и за­
тем выполнить второй проход для вывода. 

SequenceFiles 

SequenceFiles - популярный формат файлов, используемый в Hadoop, 
состоящих из пар ключ/значение. Формат SequenceFiles имеет метки 
синхронизации, что позволяет фреймворку Spark находить нужную 
точку в файле и повторно синхронизировать с границами записей. 
Благодаря этому обеспечивается высокая эффективность параллель­
ного чтения файлов в формате SequenceFiles несколькими узлами. 
SequenceFiles также широко используется как формат ввода/вывода 
в механизме Hadoop MapReduce, то есть если вы работаете с имею­
щейся системой Hadoop, велика вероятность, что исходные данные 
будут доступны именно в формате SequenceFile. 

Поддержка SequenceFiles состоит из элементов, реализующих ин­
терфейс Hadoop WritaЫe, так как Hadoop использует собственную 
инфраструктуру сериализации. В табл. 5.2 перечислены наиболее 
часто используемые типы и соответствующие им классы, реализую­
щие интерфейс WritaЫe. Обычно, чтобы определить наличие того 
или иного класса реализации, следует добавить слово WritaЫe в ко­
нец имени типа данных и посмотреть, существует ли такой класс, 
наследующий org. apache. hadoop. io. Wri tаЫе. Если вы не найдете реа­
лизацию WritaЫe для типа данных, запись которого требуется орга­
низовать (например, для собственного класса), можете сделать шаг 
вперед и написать собственную реализацию WritaЫe, переопределив 
в ней методы readFields и write, унаследованные от org .apache.hadoop. 
io.WritaЫe. 

1" Hadoop RecordRcader повторно использует один и тот же объект для 
L1i чтения каждой записи, поэтому непосредственный вызов метода cache

при чтении набора RDD таким способом может потерпеть неудачу. Что­
бы избежать этого, добавьте простую операцию rnap () и кэшируйте ее 
результаты. Кроме того, многие классы реализации интерфейса Hadoop 
WritaЬle не реализуют интерфейс java.io.SerializaЫe, поэтому, чтобы 
иметь возможность использовать их с наборами RDD, все равно при­
дется преобразовывать их с помощью rnap () . 

В версиях Spark 1.0 и ниже поддержка SequenceFiles была доступна 
только в J ava и Scala. В версии Spark 1.1 была добавлена поддержка 
этого формата и в Python. Однако имейте в виду, что определять соб-
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Таблица 5.2. Классы, реализующие интерфейс Hadoop WritaЬ/e 

Тип вScala Тип вJava Класс реализации 

Int Integer IntWritaЫe или VIntWritaЫe' 

Long Long LongWritaЫe или VLongWritaЬle 1 

Float Float FloatWritaЫe 

DouЫe DouЫe DouЫeWritaЫe 
Boolean Boolean BooleanWritaЫe 
Array[Byte] byte[] BytesWritaЫe 

String String Text 

Апау[Т] Т[] ArrayWritaЫe<TW>2 

List [Т] List<T> ArrayWritaЫe<TW>2 

Мар[А, В] Мар<А, В> MapWritaЫe<AW, BW>2 

ственные классы реализации интерфейса WritaЬle можно только на 
Java и Scala. Прикладной интерфейс для Python поддерживает лишь 
реализации WritaЫe для основных типов, доступные в Hadoop. 

Загрузка SequenceFiles 

Фреймворк Spark имеет специализированный API для чте­
ния данных в формате SequenceFiles: мы можем использовать ме­
тод sequenceFile(path, keyClass, valueClass, minPartitions) объекта 
SparkContext. Как отмечалось выше, формат SequenceFiles поддер­
живается классами, реализующими интерфейс WritaЬle, поэтому оба 
аргумента - keyClass и valueClass - должны быть классами, реализую­
щими интерфейс WritaЬle. Давайте рассмотрим пример загрузки ин­
формации о людях и числе панд из файла в формате SequenceFile. 
В данном случае значением keyClass мог бы быть класс Text, а значе­
нием аргумента valueClass - класс IntWritaЫe или VIntWritaЬle, но, 
чтобы не усложнять пример, будем использовать класс IntWritaЫe, 
как показано в примерах с 5.20 по 5.22. 

Пример 5.20 •:• Загрузка данных в формате SequenceFile в Python 

val data ; sc.sequenceFile(inFile, 

"org. apache. hadoop. io. Text", "org. apache. hadoop. io. IntWri tаЫе") 

1 Целые и длинные целые часто сохраняются как значения фиксированно­
го размера. При сохранении число 12 занимает такое же пространство, что 
и число 2**30. Если у вас имеется множество маленьких значений, исполь­
зуйте типы переменного размера, VIntWritaЬle и VLongWritaЬle, которые при 
сохранении занимают меньше места для маленьких чисел. 

2 Шаблонный тип также должен реализовать интерфейс WriteaЬle.
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Пример 5.21 •:• Загрузка данных в формате SequenceFile в Scala 

val data = sc.sequenceFile(inFile, classOf[Text], classOf[IntWritaЫe]) 
.rnap(case (х, у) => (x.toString, y.get())) 

Пример 5.22 •:• Загрузка данных в формате SequenceFile в Java 

puЬlic static class ConvertToNativeTypes irnplernents 
PairFunction<Tuple2<Text, IntWritaЫe>, String, Integer> 

puЫic Tuple2<String, Integer> call(Tuple2<Text, IntWritaЬle> record) 
( 

return new Tuple2(record._l.toString(), record._2.get()); 

JavaPairRDD<Text, IntWritaЫe> input = sc.sequenceFile(fileNarne, 
Text.class, IntWritaЫe.class); 

JavaPairRDD<String, Integer> result = input.rnapToPair( 
new ConvertToNativeTypes()); 

В Scala имеется удобная функция, способная автоматически преобразо­
вывать значения типа WritaЫe в соответствующие им типы Scala. Бла­
годаря этому вместо аргументов keyClass и valueClass можно вызвать 
sequenceFile [Кеу, Value] (path, minPartitions) и получить набор RDD со 
значениями соответствующих типов Scala. 

Сохранение SequenceFiles 

Сохранение данных в формате SequenceFiles в Scala выполняется 
похожим образом. Во-первых, так как данные в формате SequenceFiles 
представлены парами ключ/значение, нужно создать PairRDD с 
типами ключей и значений, поддерживающими запись в формате 
SequenceFiles. Многие типы языка Scala поддерживают неявное при­
ведение к типам, реализующим интерфейс Hadoop WritaЬle, поэтому 
для записи значений встроенных типов можно просто вызвать метод 
saveAsSequenceFile (path) набора PairRDD. Если автоматическое преоб­
разование типов ключей и значений не поддерживается или требует­
ся использовать типы переменного размера (такие как VIntWritaЫe), 
можно просто с помощью операции rnap () преобразовать данные перед 
сохранением. Давайте рассмотрим сохранение данных, загруженных 
в предыдущем примере, как показано в примере 5.23. 

Пример 5.23 •:• Сохранение данных в формате SequenceFiles в Scala 

val data = sc.parallelize(List(("Panda", 3), ("Кау", 6), ("Snail", 2))) 
data.saveAsSequenceFile(outputFile) 
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Сохранение данных в формате SequenceFiles в Java реализует­
ся немного сложнее из-за отсутствия метода saveAsSequenceFile () 
в JavaPairRDD. Поэтому для сохранения данных в формате SequenceFiles 
необходимо использовать механизм поддержки нестандартных фор­
матов Hadoop в Spark. Мы покажем, как это делается, в разделе <1Фор­
маты Hadoop для ввода и вывода>> ниже. 

Объектные файлы 
Объектные файлы - это обманчиво простая обертка вокруг форма­
та SequenceFiles, позволяющая сохранять наборы RDD, содержащие 
простые значения. В отличие от SequenceFiles, запись значений в объ­
ектные файлы выполняется с помощью механизма сериализации 
в языке J ava. 

/,\ При изменении классов - например, при добавлении или удалении пo­
ill лей - старые объектные файлы могут оказаться нечитаемыми. Работа 

с объектными файлами осуществляется с помощью механизма сериа­
лизации в J ava, который имеет рудиментарную поддержку управления 
совместимостью классов, но требует вмешательства программиста. 

Применение механизма сериализацииjаvа влечет за собой опреде­
ленные последствия. В отличие от обычного формата SequenceFiles, 
результат будет отличаться от того, что производит Hadoop для тех 
же объектов. В отличие от других форматов, объектные файлы в ос­
новном предназначены для использования во взаимодействиях меж­
ду заданиями Spark. Кроме того, механизм сериализации в Java не 
является образцом высокой производительности. 

Сохранение данных в объектные файлы осуществляется простым 
вызовом метода saveAsObjectFile () набора RDD. Чтение из объектно­
го файла также не представляет сложности: метод objectFile () объ­
екта SparkContext принимает путь и возвращает RDD. 

Учитывая все оговорки, касающиеся объектных файлов, у любого 
может возникнуть вопрос: зачем вообще пользоваться ими? Главная 
причина использования объектных файлов: они практически не тре­
буют от программиста никаких усилий для сохранения произволь­
ных объектов. 

Объектные файлы не поддерживаются в Python, но зато 
в Python наборы RDD и объект SparkContext поддерживают методы 
saveAsPickleFile () и pickleFile (). Они используют библиотеку сериа­
лизации pickle. Но имейте в виду, что к файлам pickle относятся те 
же предостережения, что и к объектным файлам: библиотека pickle 
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не отличается высокой производительностью, и старые файлы могут 
оказаться нечитаемыми при изменении классов. 

Форматы Hadoop для ввода и вывода 

Помимо форматов, непосредственно поддерживаемых фреймворком 
Spark, имеется возможность использовать любые форматы Hadoop. 
Spark поддерживает и «старый1>, и «новый>> прикладной интерфейс 
Hadoop для доступа к файлам, что дает немалую гибкость 1

• 

Загрузка данных в других форматах Hadoop 

Чтобы прочитать файл с использованием нового Hadoop API, 
нужно передать фреймворку Spark некоторую информацию. Функ­
ция newAPIHadoopFile принимает путь и три класса. Первый класс -
класс «формата>>, представляющий входной формат данных. 
В старом API имеется похожая функция, hadoopFile (), для работы 
с входным форматом Hadoop. Второй класс - класс ключей. И тре­
тий класс - класс значений. Если потребуется определить некото­
рые дополнительные свойства для настройки Hadoop, их можно 
передать в виде объекта conf. 

Одним из простейших форматов, поддерживаемых Hadoop, явля­
ется KeyValueTextinputFormat. Его можно использовать для чтения дан­
ных в виде пар ключ/значение из текстовых файлов (см.пример 5.24). 
Каждая строка такого файла обрабатывается отдельно и содержит 
ключ и значение, разделенные табуляцией. Поддержка этого формата 
встроена непосредственно в Hadoop, поэтому для его использования 
нет необходимости добавлять в проекты лишние зависимости. 

Пример 5.24 •:• Использование KeyValueTextinputFormat () со старым API 
в Scala 

val input = 
sc.hadoopFile[Text, Text, KeyValueTextinputFormat] (inputFile) 

.map{ 
case (х, у) => (x.toString, y.toString) 

Мы уже видели, как организовать загрузку и парсинг данных в фор­
мате J SОN из текстовых файлов, но точно так жеJSОN-данные мож­
но загружать, используя механизм поддержки форматов в Hadoop. 
Правда, для этого требуется приложить чуть больше усилий, чтобы 

1 С течением времени в Hadoop появился новый MapReduce API, но некото­
рые библиотеки по-прежнему используют старый. 
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настроить поддержку сжатия, поэтому, если этот способ вам не ин­
тересен, вы можете пропустить дальнейшее описание. Пакет Twitter 
Elephant Bird 1 поддерживает огромное число форматов данных, вклю­
чая JSON, Lucene, Protocol Buffer и др. Кроме того, этот пакет может 
работать с обоими Hadoop API для доступа к файлам, новым и ста­
рым. Для иллюстрации применения нового Hadoop API из Spark мы 
рассмотрим пример загрузки данных в форматеJSОN с LZО-сжатием 
с помощью LzoJsoninputFormat (см. пример 5.25). 

Пример 5.25 •:• Загрузка JSОN-данных с LZО-сжатием с помощью 
Elephant Bird в Scala 

val input; sc.newAPIHadoopFile(inputFile, classOf[LzoJsonlnputFormat], 
classOf[LongWritaЫe], classOf[MapWritaЫe], conf) 

// Каждый экземпляр MapWritaЫe в "input" представляет объект JSON 

Д Для поддержки LZО-сжатия необходимо установить пакет hadoop-lzo
ill и передать Spark пути к его библиотекам. Например, после установ­
. • · ки пакета в Deblan добавьте --driver-library-path /usr/liЬ/hadoop/liЬ/ 

native/ --driver-class-path /usr/liЬ/hadoop/liЬ/ в вызов sparksubmit. 

Чтение файлов с применением старого Hadoop API выполняется 
практически точно так же, с той лишь разницей, что нужно пере­
дать старый класс InputFormat. Многие вспомогательные функции 
во фреймворке Spark (такие как sequenceFile ()) реализованы с при­
целом на использование старого Hadoop API. 

Сохранение данных в других форматах Hadoop 

Мы уже исследовали поддержку формата SequenceFiles до опре­
деленной степени, но беда в том, что в Java отсутствуют вспомога­
тельные функции, упрощающие сохранение наборов RDD с парами 
ключ/значение. Мы воспользуемся этим обстоятельством, чтобы 
продемонстрировать, как можно использовать старый Hadoop API 
( см. пример 5.26); новый API ( saveAsNewAPIHadoopFile) используется 
похожим образом. 

Пример 5.26 •:• Сохранение данных в формате SequenceFile в Java 

puЫic static class ConvertToWritaЫeTypes implements 
PairFunction<Tuple2<String, Integer>, Text, IntWritaЫe> { 
puЫic Tuple2<Text, IntWritaЫe> call(Tuple2<String, Integer> record) 
{ 

return new Tuple2(new Text(record._l), new IntWritaЬle(record._2)); 

1 https://github.com/twitter /elephant-Ьird. 
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JavaPairRDD<String, Integer> rdd; sc.parallelizePairs(input); 

JavaPairRDD<Text, IntWritaЫe> result; 

rdd.mapToPair(new ConvertToWritaЫeTypes()); 

result.saveAsHadoopFile(fileName, Text.class, IntWritaЫe.class, 

SequenceFileOutputFormat.class); 

Источники данных, не являющиеся файловыми 
системами 

Помимо семейства функций hadoopFile () и saveAsHadoopFile (), 
существуют также функции hadoopDataset/saveAsHadoopDataSet 
и newAPIHadoopDataset/saveAsNewAPIHadoopDataset, обеспечивающие до­
ступ к другим хранилищам данных Hadoop, которые не являются 
файловыми системами. Например, многие хранилища данных в виде 
пар ключ/значение, такие как HBase и MongoDB, обеспечивают воз­
можность прямого доступа к хранящимся в них данным. Вы легко мо­
жете организовать работу с такими хранилищами в Spark. 

Семейство функций hadoopDataset () просто принимает объект 
Configuration с настройками свойств Hadoop, необходимыми для до­
ступа к источнику данных. Здесь определяются те же свойства, что 
и при настройке задания Hadoop MapReduce, поэтому можно смело 
следовать инструкциям по настройке доступа к источникам данных, 
что приводятся в описании MapReduce, и затем передать готовый объ­
ект фреймворку Spark. Например, в разделе %HBase,> ниже показано, 
как использовать newAPIHadoopDataset для загрузки данных из HBase. 

Пример: Protocol Buffers 

Формат Protocol Buffers 1 впервые был создан в компании Google 
для использования в реализации механизма вызова удаленных про­
цедур (Remote Procedure Call, RPC), и затем его исходный код был 
открыт. Protocol Buffers (PBs) - это структурированный формат 
представления данных, с явно определяемыми полями и их типами. 
Это компактный формат, оптимизированный для быстрой обработ­
ки. В сравнении с XML одни и те же данные в формате PBs занимают 
от Зх до 10х меньший объем и могут обрабатываться от 20х до 100х 
быстрее. Хотя формат РВ имеет однозначное кодирование, существу­
ет множество способов создания файлов, состоящих из нескольких 
РЕ-сообщений. 

1 Иногда также можно встретить название pbs или pmtobufs (https://github.
com/google/protobuf). 
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Сначала нужно определить Protocol Buffers с использованием 
предметно-ориентированного языка ( domain -specific language ), а за­
тем можно воспользоваться компилятором Protocol Buffers, чтобы 
сгенерировать методы доступа на разных языках программирова­
ния (включая все, что поддерживаются фреймворком Spark). Так 
как главная цель PBs - обеспечить максимальную компактность, 
этот формат не является «самоописываемым�>, поскольку кодиро­
ванное описание занимает дополнительное место. Это означает, что 
для парсинга данных в формате РВ нужно определение формата 
Protocol Buffer. 

Формат PBs состоит из полей, которые могут быть обязательными, 
необязательными и повторяющимися. При парсинге данных отсут­
ствие необязательного поля не приводит к ошибке, но отсутствие обя­
зательного поля вызывает остановку процедуры парсинга. Поэтому 
при добавлении новых полей в существующее определение формата 
принято определять их как необязательные, так как не все обновляют 
программное обеспечение одновременно ( но даже если бы все делали 
это одновременно, все равно кому-то могло бы потребоваться ввести 
свои старые данные). 

Поле РВ может иметь любой из предопределенных типов или быть 
другим сообщением РВ. В число таких типов входят: string, int32, 
перечисления и многие другие. Все вышесказанное ни в коей мере 
не претендует на исчерпывающее введение Protocol Buffers, поэтому 
если вас заинтересовала данная тема, обязательно посетите веб-сайт 
Protocol Buffers (https://developers.google.com/protocol-buffers/). 

В примере 5.27 демонстрируется определение простого формата 
Protocol Buffer VenueResponse для представления множества объектов 
Venue с единственным повторяющимся полем, содержащим другое со­
общение с обязательными, необязательными и перечислимыми по­
лями. 

Пример 5.27 •:• Пример определения формата Protocol Buffer 

message Venue { 
required int32 id = 1; 
required string name = 2; 
required VenueType type = З; 
optional string address = 4; 

enum VenueType { 
COFFEESHOP = О; 
WORKPLACE = 1; 
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CLUB = 2; 

OMNOМNOM = 3; 

OTHER = 4; 

message VenueResponse 

repeated Venue results = 1; 

Библиотека Elephant Bird, которую мы использовали в предыду­
щем разделе для загрузки данных в формате JSON, поддерживает так­
же загрузку и сохранение данных в формате Protocol Buffers. Взгляни­
те, как выполняется запись нескольких объектов Venues (пример 5.28). 

Пример 5.28 •:• Сохранение данных в формате Protocol Buffer 

с использованием Elephaпt Bird в Scala 

val j оЬ = new Job () 

val conf = job.getConfiguration 

LzoProtobufBlockOutputFormat.setClassConf(classOf[Places.Venue], 

val dnaLounge = Places.Venue.newBuilder() 

dnaLounge.setld(l); 

conf); 

dnaLounge.setName("DNA Lounge") 

dnaLounge.setType(Places.Venue.VenueType.CLUB) 

val data = sc.parallelize(List(dnaLounge.build())) 

val outputData = data.map{ рЬ => 

val protoWritaЫe = ProtobufWritaЫe 

.newlnstance(classOf[Places.Venue]); 

protoWritaЫe.set(pb) 

(null, protoWritaЫe) 

outputData.saveAsNewAPIHadoopFile(outputFile, classOf[Text], 

classOf[ProtobufWritaЫe[Places.Venue]J, 

classOf[LzoProtobufBlockOutputFormat[ 

ProtobufWritaЫe[Places.Venue]]J, conf) 

Полная версия этого примера доступна в пакете загружаемого ис­
ходного кода для этой книги. 

При сборке своего проекта обязательно убедитесь, что используется 
библиотека поддержки Protocol Buffer той же версии, что и Spark. На 
момент написания данных строк это была версия 2.5. 
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Сжатие файлов 
Часто при работе с большими данными бывает желательно исполь­
зовать сжатие данных для экономии места в хранилище и уменьше­
ния объема сетевого трафика. В большинстве выходных форматов 
Hadoop есть возможность указать кодек, который будет сжимать 
данные. Как мы уже видели, встроенные форматы ввода в Spark 
( textFile и sequenceFile) автоматически поддерживают некоторые 
виды сжатия. При чтении сжатых данных можно также использо­
вать кодеки сжатия, которые способны автоматически определять 
тип сжатия. 

Поддержка сжатия применяется только к форматам Hadoop, 
предусматривающим такую возможность, а именно - к данным, со­
храняемым в файловой системе. Форматы Hadoop для баз данных 
в общем случае не поддерживают сжатие, за исключением случаев, 
когда сжатие записей предусматривается самой базой данных. 

Выбор кодека сжатия для сохранения может оказывать значитель­
ное влияние на круг будущих пользователей данных. В распределен­
ных системах, таких как Spark, нам обычно приходится читать дан­
ные, разбросанные по нескольким компьютерам. Чтобы такое было 
возможно, каждый рабочий узел должен иметь возможность найти 
начало новой записи. Некоторые форматы сжатия делают это невоз­
можным, что вынуждает каждый отдельный узел читать все данные, 
что явно не способствует высокой производительности. Форматы, 
которые легко читаются сразу с нескольких машин, называют «рас­
щепляемыми�,, (splittaЬle). В табл. 5.3 перечислены доступные сред­
ства поддержки сжатия . 

. 1.\ Метод textFile () в Spark поддерживает возможность чтения сжатых 
ffi данных, однако он автоматически запрещает расщепление, даже если 

формат сжатия является расщепляемым. Если вам потребуется про­
читать большой сжатый файл, для этой цели лучше использовать 
newAPIHadoopFile или hadoopFile с применением требуемого кодека 
сжатия. 

Некоторые форматы (такие как SequenceFiles) поддерживают сжа­
тие только значений в парах ключ/значение, что может быть удобно 
для поиска. Другие форматы имеют собственные механизмы управ­
ления сжатием: например, многие форматы в пакете Twitter Elephant 
Bird способны работать с LZО-сжатием. 
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Таблица 5.З. Средства поддержки сжатия 

са 
1-
(J � 

.11 С1) 
1- 1-

>:S: (J а,: 

:а С) :s: 
Q, Q, 1-

:i: С) са С) 
С1) � ЭЕ С) 

(J (J "t:J 

а,: .11 
са 

1: ::с 
са С1) 

а,: а,: :z: 
:i: :З' 

:z: :s: С1) � 
С[ 1- 1: 111 

Q, 
(J 111 са 111 С[ 

С) са с. ЭЕ 1- С) 
е D. u (J u ::.:: 

gzip Нет Высокая Высокая org.apache.hadoop.io. 
compress .GzipCodec 

lzo Да' Очень Средняя сот. hadoop. 

высокая compression. lzo. 
LzoCodec 

bzip2 Да Низкая Очень org. apache. hadoop. io. 

высокая compress. BZip2Codec 

zlib Нет Низкая Средняя org. apache. hadoop. io. 
compress. Defaul tCodec 

Sпарру Нет Очень Низкая org. apache. hadoop. io. 

высокая compress. SnappyCodec 

Файловые системы 

:а 
1-
:z: 
С1) 

са :i: 
> > 
са Q, � 1- >:S: 

(J 111 :s: 
а,: 

са 
:z: 

Q, 
са � :s: са :z: 

ЭЕ С1) 1-:z: 
Q, :s: :z: 

С1) 
С1) 

:z: С1) 

�� 3 :i:
111 :i: 

(J С) :z: С) 
111 1: 111 ::.:: 
Да Да 

Да Да Требуется 

установка 

поддержки 

LZO на каждый 

рабочий узел 

Да Да В качестве 

расщепляемой 

версии исполь-

зуется версия, 

встроенная 

вJava 

Да Да Используется 

в Hadoop как 

кодек по умол-

чанию 

Нет Да Существует 

поддержка, 

встроенная 

в Java, но она 

пока недоступна 

в Spark/Hadoop 

Spark поддерживает большое число файловых систем, которые мы 
можем использовать для чтения и записи файлов в любых форматах. 

Локальная/ссобычная)) файловая система 
Несмотря на то что Spark поддерживает загрузку файлов из локаль­
ной файловой системы, он требует, чтобы файлы были доступны по 
одному и тому же пути на всех узлах кластера. 

1 Зависит от используемой библиотеки. 
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Некоторые сетевые файловые системы, такие как NFS, AFS и MapR 
NFS, для пользователя выглядят как обычные файловые системы. Если 
данные уже находятся в одной из таких файловых систем, вы с легко­
стью сможете использовать их, просто указав пyтьfile:j/; Spark сможет 
работать с такой файловой системой при условии, что она будет смон­
тирована в один и тот же каталог на всех узлах ( см. пример 5.29). 

Пример 5.29 •:• Загрузка сжатого текстового файла из локальной 

файловой системы в Scala 

val rdd; sc.textFile("file:///horne/holden/happypandas.gz") 

Если файл недоступен всем узлам в кластере, его можно загрузить 
локально, в программе-драйвере, и затем вызвать parallelize, чтобы 
распределить содержимое между рабочими узлами. Однако такое ре­
шение работает медленнее, поэтому мы рекомендуем хранить свои 
файлы в разделяемой файловой системе, такой как HDFS, NFS или SЗ. 

Amazon SЗ 

Amazon SЗ - весьма популярное решение для хранения больших объ­
емов данных. SЗ работает особенно быстро, когда вычислительные 
узлы располагаются внутри Amazon ЕС2. Но производительность мо­
жет падать весьма существенно, если доступ к хранилищу осуществ­
ляется через Интернет. 

Для организации доступа к SЗ из Spark необходимо сначала опре­
делить переменные окружения AWS _ ACCESS _ КЕУ _ ID и AWS _ SECRET _ ACCESS _ 
КЕУ, сохранив в них свой идентификатор и ключ доступа к SЗ. Создать 
их можно в консоли Amazon Web Services. Затем передать в методы 
чтения файлов путь, начинающийся с sЗп://, в виде sЗп:j/корзина/ 
путь-внутри-корзины. Как и для любых других файловых систем, 
Spark поддерживает шаблонные символы в путях SЗ, например: 
sЗn:j /bucket/my-files/* .txt. 

Если при попытке доступа к SЗ вы получили сообщение об ошиб­
ке от сервера Amazon, проверьте, наделены ли ваши учетные данные, 
указанные в настройках доступа, привилегиями «read>> и «list,> для 
работы с корзиной. Spark должен иметь возможность получать спи­
сок (привилегия «list�) объектов в корзине, чтобы выяснить, какие из 
них следует прочитать. 

HDFS 

Hadoop Distributed File System (HDFS) - популярная распределен­
ная файловая система, поддерживаемая в Spark. HDFS создавалась 
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для работы на массовом аппаратном обеспечении и обеспечивает 
высокую устойчивость к выходам из строя отдельных узлов. Spark 
и HDFS могут размещаться на одних и тех же машинах, при этом 
Spark способен использовать это обстоятельство, чтобы хранить дан­
ные локально и избежать лишних сетевых взаимодействий. 

Чтобы задействовать HDFS, достаточно просто указать путь 
hdfs://master.p01t/path к файлу для ввода или вывода. 

/\ 

/!\ 
i"""'! \ 

Протокол HDFS изменяется от версии к версии Hadoop, поэтому если 
использовать версию Spark, скомпилированную с поддержкой другой 
версии HDFS, попытки обращения к файлам будут терпеть неудачу. По 
умолчанию Spark скомпилирован с поддержкой версии Hadoop 1.0.4. 
Если вы компилируете фреймворк из исходных текстов, укажите вер­
сию Hadoop в переменной окружения SPARK HADOOP VERSION= или загру­
зите другую, скомпилированную версию Spark. 0-пределить установ­
ленную версию Hadoop можно командой hadoop version. 

Структурированные данные и Sparl< SQL 
Spark SQL- это компонент Spark, добавленный в версии 1.0 и быст­
ро превратившийся в предпочтительный способ работы со структу­
рированными и полуструктурированными данными. Под структу­
рированными данными мы подразумеваем данные, имеющие схему, 
то есть единый набор полей для всех записей. Spark SQL поддер­
живает ввод из множества источников структурированных данных, 
и благодаря наличию информации о схеме он может эффективно 
извлекать только необходимые поля записей. Более подробно мы 
будем рассматривать Spark SQL в главе 9, а пока покажем, как с его 
помощью загружать данные из некоторых наиболее типичных ис­
точников. 

В любом случае компоненту Spark SQL передается запрос SQL для 
выполнения на источнике данных, а в ответ получаем набор RDD 
объектов Row, по одному на запись. В Java и Scala объекты Row обеспе­
чивают доступ к полям по их порядковым номерам. Каждый объект 
Row имеет метод get (), возвращающий результат обобщенного типа, 
который можно привести к требуемому типу, и специализированные 
методы get * () для основных типов (такие как getFloat (), getlnt (), 
getLong (), getString (), getShort () и getBoolean () ). В Python имеется 
возможность напрямую обращаться к полям, используя конструкции 
row[column_nurnЬer] и row.column_name. 
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Одним из часто используемых в Hadoop источником структуриро­
ванных данных является Apache Hive. Hive может хранить таблицы 
в разных форматах - в виде простого текста или в табличном виде -
внутри HDFS или в других системах хранения. Spark SQL может за­
гружать любые таблицы, поддерживаемые в Hive. 

Чтобы подключить Spark SQL к Hive, необходимо определить на­
стройки Hive. Для этого следует скопировать файл hive-site.xml в ка­
талог . / conf/ с настройками Spark. Затем создать в программе объ­
ект HiveContext, являющийся точкой входа в Spark SQL, и выполнить 
запрос на языке запросов Hive (Hive Query Language, HQL), чтобы 
получить данные в виде набора RDD записей. Как это делается, де­
монстрируют примеры с 5.30 по 5.32. 

Пример 5.30 •:• Создание объекта HiveContext и извлечение данных 
в Python 

from pyspark.sql import HiveContext 

hiveCtx = HiveContext(sc) 

rows = hiveCtx.sql("SELECT name, age FROM users") 

firstRow = rows .first () 

print firstRow. name 

Пример 5.31 •:• Создание объекта HiveContext и извлечение данных 
в Scala 

import org.apache.spark.sql.hive.HiveContext 

val hiveCtx = new org.apache.spark.sql.hive.HiveContext(sc) 

val rows = hiveCtx.sql("SELECT name, age FROM users") 

val firstRow = rows. first () 

println (firstRow.getString(O)) // Поле О - это поле name 

Пример 5.32 •:• Создание объекта HiveContext и извлечение данных 
вJava 

import org.apache.spark.sql.hive.HiveContext; 

import org.apache.spark.sql.Row; 

import org.apache.spark.sql.SchemaRDD; 

HiveContext hiveCtx = new HiveContext(sc); 

SchemaRDD rows = hiveCtx.sql("SELECT name, age FROM users"); 

Row firstRow = rows .first (); 

System.out.println(firstRow.getString(O)); // Поле О - это поле name 
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Подробнее о загрузке данных из Hive рассказывается в разделе 
«Apache Hive� в главе 9. 

JSON 

Если у вас имеются данные в формате JSON с единой схемой полей 
для всех записей, Spark SQL сможет на основе этой схемы загрузить 
и такие данные, вернув их в форме записей. Это позволит вам лег­
ко и просто извлекать только нужные поля. Ч тоды загрузить данные 
в формате JSON, сначала создайте объект Hi veContext, как при ис­
пользовании Hive. (Наличие Hive в системе при этом не требуется, 
то есть вам не понадобится копировать файл hivesite.xml.) Затем вы­
зовите метод Hi veContext. j sonFile, чтобы получить набор RDD объ­
ектов Row. Помимо использования целых объектов Row, можно также 
зарегистрировать полученный набор RDD как таблицу и выбирать из 
нее только необходимые поля. Например, допустим, что у нас имеет­
ся JSОN-файл с сообщениями из Твиттера, как показано в примере 
5.33, по одному сообщению в строке. 

Пример 5.33 •:• Пример файла с сообщениями в формате JSON 

{"user": {"name": "Holden", "location": "San Francisco"}, "text": "Nice day 

out today"} 

{"user": {"name": "Matei", "location": "Berkeley"}, "text": "Even nicer here 

: 1.} 

Мы можем загрузить эти данные и выбрать из него только поля 
username и text, как показано в примерах с 5.34 по 5.36. 

Пример 5.34 ·:· Загрузка JSON с помощью Spark SQL в Python 

tweets = hiveCtx.jsonFile{"tweets.json") 

tweets.registerTempTaЬle{"tweets") 

results = hiveCtx.sql("SELECT user.name, text FROM tweets") 

Пример 5.35 •:• Загрузка JSON с помощью Spark SQL в Scala 

val tweets = hiveCtx.jsonFile("tweets.json") 

tweets.registerTempTaЬle("tweets") 

val results = hiveCtx.sql("SELECT user.name, text FROM tweets") 

Пример 5.36 •:• Загрузка JSON с помощью Spark SQL в Java 

SchemaRDD tweets = hiveCtx.jsonFile(jsonFile); 

tweets.registerTempTaЬle("tweets"); 

SchemaRDD results = hiveCtx.sql("SELECT user.name, text FROM tweets"); 
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Подробнее о загрузке данных в формате JSON с помощью Spark 
SQL с использованием их схемы рассказывается в разделе «JSONi,, 
в главе 9. Spark SQL поддерживает не только загрузку данных, но 
и позволяет запрашивать данные, комбинировать их с данными из 
других наборов RDD и вызывать собственные функции для их об­
работки, о чем подробно будет рассказываться в главе 9. 

Баэы данных 

Фреймворк Spark поддерживает возможность работы с некоторыми 
популярными базами данных с использованием инструментов до­
ступа Hadoop или собственных средств. В этом разделе мы покажем 
четыре таких наиболее часто используемых средства. 

Java Database Connectivity 

Spark может загружать данные из любых реляционных баз данных, 
поддерживающих Java Database Connectivity QDBC), включая 
MySQL, Postgres и другие системы. Для доступа к данным нужно 
создать объект org.apache.spark.rdd.JdbcRDD и передать его объекту 
SparkContext с другими параметрами. В примере 5.37 демонстрируется 
использование JdbcRDD для подключения к базе данных MySQL. 

Пример 5.37 •:• JdbcRDD в Scala 

def createConnection() = { 

Class. forName { "com. mysql. j dbc. Dri ver") . newinstance (); 

DriverManager.getConnection{ 

"jdbc:mysql://localhost/test?user=holden"); 

def extractValues(r: ResultSet) 

(r.getint(l), r.getString(2)) 

val data = new JdЬcRDD(sc, 

createConnection, "SELECT * FROM panda WHERE ? <= id AND id <= ?", 

lowerBound = 1, upperBound = З, numPartitions = 2, 

mapRow = extractValues) 

println(data.collect() .toList) 

JdbcRDD принимает несколько параметров: 
О во-первых, мы передаем функцию для установки соединения 

с базой данных. Это позволит каждому узлу создать собствен-
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ное соединение для загрузки данных после выполнения всех 
необходимых настроек; 

О далее мы передаем запрос для чтения данных, а также значения 
lowerBound и upperBound для параметров запроса. Эти параметры 
помогают фреймворку Spark запрашивать разные диапазоны 
данных на разных машинах, благодаря чему мы избавляемся 
от узкого места, связанного с загрузкой всех данных на един­
ственный узел 1

; 

О последний параметр - функция, преобразующая каждую запись 
из j ava. sql. Resul tSet в формат, удобный для работы с данными. 
В примере 5.37 мы получим пары (Int, String). Если этот пара­
метр отсутствует, Spark автоматически будет преобразовывать 
записи в массивы объектов. 

По аналогии с другими источниками данных, прежде чем исполь­
зовать JdbcRDD, нужно убедиться, что база данных поддерживает па­
раллельные операции чтения, которые будет выполнять Spark. Если 
вам понадобится использовать данные без подключения к действую­
щей базе данных, можете воспользоваться механизмом экспортиро­
вания, встроенным в базу данных, и сохранить данные в текстовый 
файл. 

Cassandra 

Поддержка Cassandra в Spark значительно улучшилась с появлением 
открытого проекта Spark Cassandra Connector от DataStax2

• Посколь­
ку в настоящий момент этот проект не является частью Spark, вам 
потребуется добавлять его поддержку в виде зависимостей в файл 
сборки. Cassandra пока не использует Spark SQL, но возвращает на­
боры RDD объектов CassandraRow, которые имеют те же методы, что 
и объект Row из Spark SQL, как показано в примерах 5.38 и 5.39. В на­
стоящее время Spark Cassandra Connector можно использовать толь­
ко в J ava и Scala. 

Пример 5.38 •:• Зависимости Cassandra Connector для sЫ 

"com.datastax.spark" %% "spark-cassandra-connector" % "1.0.0-rcS", 

"com.datastax.spark" %% "spark-cassandra-connector-java" % "1.0.0-rc5" 

1 Если число записей заранее неизвестно, можно сначала вручную выпол­
нить запрос, возвращающий их количество, а затем использовать результат 
для определения upperBound и lowerBound. 

2 https://github.com/datastax/spark-cassandra-connector.
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Пример 5.39 •:• Зависимости Cassandra Connector для Maven 

<dependency> <!-- Cassandra --> 
<groupld>com.datastax.spark</groupld> 
<artifactld>spark-cassandra-connector</artifactld> 
<version>l.0.0-rcS</version> 

</dependency> 
<dependency> <!-- Cassandra --> 

<groupld>com.datastax.spark</groupld> 
<artifactld>spark-cassandra-connector-java</artifactld> 
<version>l.0.0-rcS</version> 

</dependency> 

Во многом подобный Elasticsearch, инструмент Cassandra Connector 
читает свойства задания, чтобы определить, к какому кластеру выпол­
нять подключение. Мы должны указать кластер Cassandra в свойстве 
spark.cassandra.connection.host, имя пользователя и пароль в свой­
ствах spark. cassandra. auth. username и spark. cassandra. auth. password. 

Допустим, что у нас имеется единственный кластер Cassandra, мы 
можем настроить подключение к нему, создав объект SparkContext, как 
показано в примерах 5.40 и 5.41. 

Пример 5.40 •:• Настройка доступа к Cassandra в Scala 

val conf = new SparkConf(true) 
. set ( "spark. cassandra. connection. host", "hostname") 

val sc = new SparkContext(conf) 

Пример 5.41 •:• Настройка доступа к Cassandra в Java 

SparkConf conf = new SparkConf(true) 
.set("spark.cassandra.connection.host", cassandraHost); 

JavaSparkContext sc = new JavaSparkContext( 
sparkMaster, "basicquerycassandra", conf); 

Datastax Cassandra использует неявные преобразования в Scala, 
чтобы добавить дополнительные функции в SparkContext и наборам 
RDD. Давайте импортируем неявные преобразования и попробуем 
загрузить какие-нибудь данные (пример 5.42). 

Пример 5.42 •:• Загрузка целой таблицы в набор RDD 

пар ключ/значение в Scala 

// Импортировать неявные преобразования, чтобы добавить функции 
// в SparkContext и RDD. 
import com.datastax.spark.connector. 
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/! Прочитать таблицу в RDD. Предполагается, что таблица создана как: 

// CREATE TABLE test.kv(key text PRIМARY КЕУ, value int); 

val data = sc.cassandraTaЫe("test" , "kv") 

// Вывести некоторые основные статистики для поля value. 

data.map(row => row.getint("value")) .stats() 

В Java неявные преобразования отсутствуют, поэтому объект Spark­
Context и набор RDD необходимо преобразовать явно (пример 5.43). 

Пример 5.43 •:• Загрузка целой таблицы в набор RDD 

пар ключ/значение в Java 

import com.datastax.spark.connector.CassandraRow; 

import static com.datastax.spark.connector.CassandraJavaUtil.javaFunctions; 

// Прочитать таблицу в RDD. Предполагается, что таблица создана как: 

// CREATE TABLE test.kv(key text PRIМARY КЕУ, value int); 

JavaRDD<CassandraRow> data = 

javaFunctions(sc) .cassandraTaЬle("test" , "kv"); 

// Вывести некоторые основные статистики. 

System.out.println(data.mapToDouЫe(new DouЫeFunction<CassandraRow>() 

puЫic douЫe call(CassandraRow row) ( return row.getint("value"); ) 

)).stats()); 

Помимо загрузки таблиц целиком, поддерживается возможность 
запрашивать подмножества данных. Ограничить выборку можно, до­
бавив в вызов cassandraTaЬle () предложение where, например: sc. cassa 
ndraTaЬle( ... ) .where("key=?", "panda"). 

Cassandra Connector поддерживает сохранение в Cassandra данных 
из наборов RDD разных типов. Есть возможность напрямую сохра­
нить набор RDD объектов CassandraRow, что удобно для дальнейшего 
копирования данных между таблицами. Наборы RDD, являющиеся 
не наборами записей, а набQрами кортежей или списков, можно сохра­
нить, определив отображение в столбцы, как показано в примере 5.44. 

Пример 5.44 •:• Сохранение данных в Cassandra в Scala 

val rdd = sc.parallelize(List(Seq("moremagic", 1))) 

rdd.saveToCassandra("test" , "kv", SomeColumns("key", "value")) 

Этот раздел является лишь кратким введением в Cassandra Connec­
tor. Более полную информацию ищите на странице проекта в GitHub 1

• 

1 https://github.com/datastax/spark-cassandra-connector.
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HBase 

Доступ к HBase из Spark осуществляется с использованием под­
держки форматов в Hadoop, реализованной в классе org. apache. 
hadoop. hbase .mapreduce. TaЬleinputFormat. Этот класс возвращает 
пары ключ/значение, где ключи имеют тип org. apache. hadoop. hbase. 
io. ImmutaЬleBytesWritaЫe, а значения - тип org. apache. hadoop. hbase. 
client. Resul t. Класс Resul t включает разные методы получения значе­
ний на основе семейств столбцов, как описывается в документации 1

• 

Чтобы получить доступ к HBase из Spark, можно вызвать метод 
SparkContext. newAPIHadoopRDD и передать ему требуемый формат, как 
показано в примере 5.45. 

Пример 5.45 •:• Пример чтения данных из HBase в Scala 

import org. apache. hadoop. hbase. HBaseConfiguration 
import org.apache.hadoop.hbase.client.Result 
import org.apache.hadoop.hbase.io.ImmutaЫeBytesWritaЫe 
import org.apache.hadoop.hbase.mapreduce.TaЬleinputFormat 

val conf = HBaseConfiguration. create () 
conf.set(TaЬleinputFormat.INPUT_TABLE, "taЫename") // определить таблицу 

val rdd = sc.newAPIHadoopRDD( 
conf, classOf[TaЬleinputFormat], classOf[ImmutaЬleBytesWritaЫe], 
classOf [Result]) 

Для оптимизации операции чтения из HBase TaЬleinputFormat вклю­
чает множество настроек, таких как ограничение множества просмат­
риваемых столбцов и времени просмотра. Описание всех настроек, 
имеющихся в TaЬleinputFormat, можно найти в документации2 и уста­
навливать в объекте HBaseConfiguration перед передачей его в Spark. 

Elasticsearch 

Spark поддерживает чтение и запись данных в Elasticsearch посред­
ством Elasticsearch-Hadoop3

• Elasticsearch - это новый проект с от­
крытым исходным кодом системы поиска на основе Lucene.

Порядок подключения к Elasticsearch несколько отличается от 
подключения к другим хранилищам, с которыми мы познакомились 

1 https://hbase .apache .org/apidocs/org/apache/hadoop/hbase/client/Result. html. 
2 http ://hbase. apache. org/apidocs/org/apache/hadoop/hbase/mapreduce/ТaЫe­

lnputFormat. html. 
3 https://github.com/elastic/elasticsearch-hadoop. 
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выше. Компонент подключения игнорирует информацию о пути 
и опирается на настройки в SparkContext. Кроме того, компонент 
OutputForrnat подключения к Elasticsearch не поддерживает типы, 
для которых имелись бы обертки в Spark, поэтому сохранение дан­
ных должно выполняться вызовом метода saveAsHadoopDataSet, а это 
означает необходимость определения множества свойств вручную. 
Давайте посмотрим, как осуществляется чтение/запись простых дан­
ных в Elasticsearch (см. примеры Examples 5.46 и 5.47). 

Последняя версия компонента подключения к Elasticsearch в Spark ста­
ла еще проще в использовании и поддерживает возврат записей через 
Spark SQL. Однако она все еще закрыта, так как пока поддерживает не 
все встроенные типы Elasticsearch. 

Пример 5.46 •:• Сохранение данных в Elasticsearch в Scala 

val jobConf = new JobConf (sc.hadoopConfiguration) 
jobConf.set( 11mapred.output.format.class 11

, 

11org.elasticsearch.hadoop.mr.EsOutputFormat 11

) 

jobConf.setOutputCommitter(classOf[FileOutputCommitter]) 
jobConf.set(ConfigurationOptions.ES_RESOURCE_WRITE, 11twitter/tweets 11

) 

j obConf. set (ConfigurationOptions. ES _ NODES, 11 localhost 11) 

FileOutputFormat.setOutputPath(jobConf, new Path( 11

-
11

)) 

output.saveAsHadoopDataset(jobConf) 

Пример 5.47 •:• Загрузка данных из Elasticsearch в Scala 

def mapWritaЬleToinput(in: MapWritaЫe): Map[String, String] 
in.map{case (k, v) => (k.toString, v.toString) ).toMap 

val jobConf = new JobConf(sc.hadoopConfiguration) 
jobConf.set(ConfigurationOptions.ES_RESOURCE_READ, args(l)) 
j obConf. set (ConfigurationOptions. ES _ NODES, args (2)) 
val currentTweets = sc.hadoopRDD(jobConf, 

classOf[EsinputFormat[Object, MapWritaЫe]], classOf[Object], 
classOf[MapWritaЫe]) 

// Извлечь только отображение 
// Преобразовать MapWritaЫe[Text, Text] в Map[String, String] 
val tweets = currentTweets.map{ 

case (key, value) => mapWritaЬleToinput(value) 

По сравнению с некоторыми другими способами подключения 
к другим базам данных, этот выглядит немного замысловатым, но слу­
жит отличным примером, как работать с подобными компонентами. 
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Д При чтении данных Elasticsearch может автоматически определять пo­
ill рядок отображения, но иногда типы данных определяются неправиль­

но, поэтому лучше явно задавать отображение, если читаются данные, 
отличные от строк. 

В эа1<Лючение 

Прочитав эту главу до конца, вы должны уметь извлекать данные 
в Spark для дальнейшей их обработки и сохранять результаты вычис­
лений в требуемом вам формате. Мы исследовали здесь множество 
разных форматов, а также средства поддержки сжатия и их влия­
ние на порядок использования данных. В последующих главах мы 
займемся изучением более эффективных способов записи и приемов 
создания программ на основе Spark, применяя которые, мы сможем 
загружать и сохранять огромные наборы данных. 
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дополнительные 

803МО)l{НОСТИ Sparl< 

Введение 

В этой главе описываются различные дополнительные возможности 
программирования в Spark, которые не затрагивались в предыдущих 
главах. Мы познакомим вас с двумя типами разделяемых перемен­
ных: аккумуляторами (accumulators), используемыми для накопле­
ния информации, и широковещательными переменными (broadcast 
variahles), используемыми для эффективной передачи значений 
большого объема. Опираясь на преобразования, поддерживаемые 
наборами RDD, мы изучим пакетные операции, предназначенные 
для решения задач с высокой стоимостью предварительной подго­
товки, таких как выполнение запросов к базам данных. С целью рас­
ширения кругозора мы охватим также приемы организации взаимо­
действий Spark с внешними программами, такими как сценарии на 
языке R. 

При создании примеров на протяжении всей этой главы мы будем 
использовать в качестве источника данных журналы сеансов связи 
радиолюбительских станций. Эти журналы, как минимум, включа­
ют позывной радиостанции корреспондента. Позывные присваива­
ются в соответствующих странах, и каждая страна определяет свой 
диапазон позывных, поэтому по позывному мы сможем определить 
страну радиостанции корреспондента. Некоторые журналы включа­
ют также физическое местоположение оператора, по которому мож­
но определить его удаленность. Чтобы вы представляли, о чем речь, 
мы включили в текст главы пример записи из журнала (см. пример 

6.1 ). В пакет загружаемых примеров для книги включен также спи­
сок позывных для поиска данных в журналах и обработки резуль­
татов. 
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Пример 6. 1 •:• Запись из журнала в формате JSON 

(часть полей опущена) 

{ "address": "address here", "band": "40m", "callsign": "KKбJLK", 

"city":"SUNNYVALE", "contactlat":"37.384733", 

"contactlong":"-122.032164", "county":"Santa Clara", 

"dxcc":"291", "fullname":"МATTHEW McPherrin", "id":57779," 

mode": "FM", "mylat": "37. 751952821", "mylong": "-122. 4208 688735", ... } 

Знакомство с дополнительными возможностями Spark мы нач­
нем с исследования разделяемых переменных, которые являются 
переменными специального типа и могут использоваться заданиями 
Spark. В нашем примере мы будем использовать разделяемые пере­
менные для подсчета числа нефатальных ошибок и передачи боль­
шой таблицы поиска. 

Когда подготовка заданий к выполнению занимает продолжительное 
время, например создание соединений с базами данных или генерато­
ров случайных чисел, бывает полезно использовать результаты этой ра­
боты для обработки нескольких элементов данных. На примере исполь­
зования удаленной базы данных для поиска позывных мы покажем, как 
повторно использовать результаты настройки при обработке разделов. 

Система может вызывать программы, написанные не только 
на языках программирования, непосредственно поддерживаемых 
в Spark, но и на других. В этой главе мы расскажем, как с помощью 
метода pipe () организовать взаимодействие с другими программами 
через стандартный ввод и вывод. Здесь мы будем использовать метод 
pipe () для доступа к библиотеке на языке R с целью вычисления рас­
стояния до радиостанции корреспондента. 

Наконец, в арсенале Spark имеются инструменты для работы с чис­
ловыми данными, подобные тем, что применяются для работы с пара­
ми ключ/значение. Мы продемонстрируем эти инструменты на при­
мере удаления аномальных значений из расстояний, вычисленных по 
журналам вызовов радиолюбительских станций. 

Аккумуляторы 
Обычно при передаче функций в Spark, например в вызов map () или 
условия в вызов fil ter (), они могут использовать переменные, опре­
деляемые за их пределами в программе-драйвере, но каждое задание, 
выполняемое в кластере, получает новую копию такой переменной, 
однако изменения в таких копиях не возвращаются в программу­
драйвер. Чтобы преодолеть это ограничение, в Spark была добавлена 
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поддержка разделяемых переменных, аккумуляторов (accumulators) 
и широковещателы-tых переменных (broadcast variahles), которые 
обеспечивают типичные шаблоны взаимодействий: накопление ре­
зультатов и рассылка значений. 

Разделяемые переменные первого типа, аккумуляторы, обеспечи­
вают простой синтаксис передачи накопленных значений от рабочих 
узлов обратно в программу-драйвер. Обычно аккумуляторы приме­
няются с целью отладки, для подсчета некоторых событий, возни­
кающих в процессе выполнения заданий. Например, допустим, что 
мы загружаем список всех позывных, для которых требуется извлечь 
записи из журналов, но нам также интересно знать, сколько пустых 
строк имеется в журнале (предполагается, что таких строк будет не 
так много). Этот сценарий демонстрируется в примерах с 6.2 по 6.4. 

Пример 6.2 •:• Подсчет пустых строк в Python 

file = sc.textFile(inputFile) 

# Создать Accumulator[Int], инициализированный нулем 

ЫankLines = sc.accumulator(O) 

def extractCallSigns(line): 

global ЫankLines # Получить доступ к глобальной переменной 
if (line == ""): 

ЫankLines += 

return line.split(" ") 

callSigns = file.flatMap(extractCallSigns) 

callSigns.saveAsTextFile(outputDir + "/callsigns") 

print "Blank lines: %d" % ЫankLines.value 

Пример 6.3 •:• Подсчет пустых строк в Scala 

val sc = new SparkContext( ... ) 

val file = sc. textFile ( "file. txt") 

// Создать Accumulator[Int], инициализированный нулем 

val ЫankLines = sc.accumulator(O) 

val callSigns = file .flatMap (line => 

if (line == '"') { 

ЫankLines += 1 // Увеличить значение в аккумуляторе 

line.split(" ") 

}) 

callSigns.saveAsTextFile("output.txt") 

println("Blank lines: " +  ЫankLines.value) 
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JavaRDD<String> rdd = sc.textFile(args[l]); 
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final Accumulator<Integer> ЫankLines = sc.accumulator(O); 

JavaRDD<String> callSigns = rdd.flatMap( 

new FlatMapFunction<String, String>() { 

puЬlic IteraЫe<String> call(String line) 

if (line.equals("")) { 

ЫankLines.add(l); 

return Arrays.asList(line.split(" ")); 

))); 

callSigns.saveAsTextFile("output.txt") 

System.out.println("Blank lines: "+ ЫankLines.value()); 

В этих примерах создается переменная ЫankLines типа Accurnu­
lator [Int], и затем ее значение увеличивается на 1 при обнаружении 
каждой пустой строки в исходных данных. После вычисления пре­
образования выводится значение счетчика. Обратите внимание, что 
правильное значение счетчика будет получено только после вызова 
действия saveAsTextFile (), потому что преобразование rnap () действу­
ет в отложенном режиме, то есть наращивание аккумулятора про­
изойдет лишь после принудительного применения преобразования 

rnap () вызовом действия saveAsTextFile (). 
Разумеется, можно обеспечить сбор информации из всего набора 

RDD и возврат ее в программу-драйвер с помощью таких действий, 
как reduce (), но иногда бывает желательно иметь более простой спо­
соб накопления значений в ходе преобразования наборов RDD, созда­
ваемых в разном масштабе или степенью детализации, а не по целым 
наборам RDD. Применение аккумулятора в предыдущем примере 
позволило организовать подсчет ошибок в процессе загрузки данных 
без выполнения отдельного действия fil ter () или reduce (). 

В общем и целом аккумуляторы действуют следующим образом: 
О создаются в программе-драйвере вызовом метода SparkContext. 

accurnulator (initial Value) с начальным значением аккуму­
лятора, который возвращает объект типа org. apache. spar k. 
Accurnulator [Т], где Т - тип initial Value; 

О действующий код, выполняющийся в замыканиях Spark, мо­
жет наращивать значение аккумулятора вызовом метода += 
(в Scala) или add (вjava); 
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О для доступа к значению аккумулятора программа-драйвер 
может использовать его свойство value (или методы value () 
и setValue() вJava). 

Обратите внимание, что задания, выполняющиеся на рабочих уз­
лах, не имеют доступа к значению аккумулятора - с точки зрения за­
даний, аккумуляторы являются переменными, доступными толъко

для записи. Подобное решение позволяет сделать реализацию акку­
муляторов максимально эффективной, без необходимости пересы­
лать данные по сети при каждом обновлении. 

Способ подсчета, показанный здесь, особенно удобен, когда необ­
ходимо организовать слежение за множеством значений или когда 
одно и то же значение должно увеличиваться во множестве мест в па­
раллельно выполняющейся программе ( например, можно подсчитать 
число вызовов библиотеки парсингаJSОN). На практике часто пред­
полагается, что какой-то процент исходных данных будет поврежден 
или допускается некоторое число ошибок. Чтобы предотвратить вы­
вод неверных результатов, обусловленных слишком большим чис­
лом ошибок, можно организовать подсчет числа допустимых и недо­
пустимых записей. Значения аккумуляторов будут доступны только 
программе-драйверу, где и должны выполняться проверки. 

Продолжая предыдущий пример, мы теперь можем проверить по­
зывные и вывести результаты, только если большая часть исходных 
данных верна. Формат радиолюбительских позывных определя­
ется статьей 19 Соглашения Международного союза электросвязи 
(International Telecommunication Union), на основании которого мы 
сконструировали регулярное выражение для проверки соответствия 
( см. пример 6.5). 

Пример 6.5 •:• Использование аккумулятора для подсчета ошибок 
в Python 

# Создать аккумулятор для проверки позывных 
validSignCount = sc.accumulator(O) 
invalidSignCount = sc.accumulator(O) 

def validateSign(sign): 
global validSignCount, invalidSignCount 
if re.match(r"\A\d?(a-zA-ZJ (1,2)\d{l,4) [a-zA-Z] {1,3)\Z", sign): 

validSignCount += 1 
return True 

else: 
invalidSignCount += 1 
return False 



# Подсчитать число сеансов связи с каждым позывным 

validSigns = callSigns .filter (validateSign) 

Аккуму/\ЯТОРЫ ·:· 135 

contactCount = validSigns.map(larnЬda sign: (sign, 1)) .reduceByKey( 

larnЬda (х, у) : х + у) 

# Инициировать принудительное выполнение вычислений, 

# чтобы заполнить счетчики 

contactCount.count() 

if invalidSignCount.value < 0.1 * validSignCount.value: 

contactCount.saveAsTextFile(outputDir + "/contactCount") 

else: 

print "Тоо many errors: %d in %d" % (invalidSignCount.value, 

validSignCount.value) 

Аккумуляторы и отказоустойчивость 
Spark автоматически решает проблемы, порождает вышедшими из 
строя или медленными узлами, перезапуская прерванные задания 
или задания, выполняющиеся слишком медленно. Например, если 
узел, выполняющий обработку раздела, потерпит аварию, Spark пере­
запустит это задание на другом узле; и даже если узел не потерпел 
аварию, а просто работает медленнее других узлов, Spark может пре­
вентивно запустить <<спекулятивную>> копию задания на другом узле 
и использовать результаты, полученные этой копией. Даже если узел 
потерпит аварию, Spark все равно сможет выполнить задание и пере­
строить кэшированное значение. То есть одна и та же функция может 
применяться к одним и тем же данным, в зависимости от того, что 
происходит в кластере. 

Как осуществляется взаимодействие с аккумуляторами? Для ак­
кумуляторов, используемых в действиях, Spark применяет обновление 
для каждого задания только один раз. То есть если необходим абсо­
лютно надежный счетчик, не зависящий от отказов узлов и повтор­
ных запусков заданий, его следует поместить внутрь действия, такого 
как foreach (). 

Для аккумуляторов, используемых в преобразованиях наборов RDD, 
таких гарантий не существует. Изменение аккумулятора, обновляе­
мого внутри преобразования, может происходить более одного раза. 
Примером такого множественного, непреднамеренного обновления 
может служить ситуация, когда кэшированный и редко используемый 
набор RDD сначала вытесняется из кэша, а затем вновь загружается. 
В этом случае происходит повторное вычисление RDD с непреднаме­
ренными и сопутствующими побочными эффектами, вызывающими 
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изменение аккумулятора. Как следствие внутри преобразований ак­
кумуляторы должны использоваться только для целей отладки. 

В будущих версиях Spark такое поведение может измениться, и ак­
кумуляторы в преобразованиях будут обновляться лишь один раз, 
однако в текущей версии (1.2.0) все еще наблюдается множественное 
обновление аккумуляторов, и поэтому аккумуляторы в преобразова­
ниях рекомендуется использовать только для отладки. 

Собственные аккумуляторы 
К настоящему моменту мы видели пример использования одного
из встроенных типов аккумуляторов Spark: целочисленных аккуму­
ляторов (Accumulator [Int]) - и операции наращивания. Помимо ак­
кумуляторов данного типа, Spark поддерживает также аккумулято­
ры типов DouЬle, Long и Float. Но, кроме этого, Spark предоставляет
API для определения собственных типов аккумуляторов и операций
агрегирования ( например, выбор максимального из накопленных
значений вместо прибавления). Собственные типы аккумуляторов
должны наследовать класс AccumulatorParam, описание которого мож­
но найти в документации для Spark API 1

• Помимо увеличения чис­
лового значения, можно использовать любую другую операцию, если
эта операция является коммутативной и ассоциативной. Например,
вместо ведения общего счетчика с операцией сложения можно было
бы организовать сохранение максимального значения.

Операция ар считается коммутативной, если а ар Ь = Ь ар а для всех зна­
чений а и Ь. Операция ар считается ассоциативной, если (а ар Ь) ар с = а 
ар (Ь ар с) для всех значений а, Ь и с. 
Например, операции sum и max являются и коммутативными, и ассо­
циативными, и часто используются в аккумуляторах Spark. 

Широ1<овешательные переменные 
Второй тип разделяемых переменных в Spark - широковещательные 
переменные (bгoadcast vmiaЬles) - позволяют программам эффек­
тивно передавать большие значения, доступные только для чтения, 
всем рабочим узлам для использования в операциях Spark. Они могут 
пригодиться, например, для передачи больших таблиц поиска всем 
узлам или даже больших характеристических векторов в алгоритмах 
машинного обучения. 

1 http://spark.apache.org/docs/latest/api/scala/index.html.
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Напомним, что Spark автоматически передает все переменные при 
попытке сослаться на них в замыканиях на рабочих узлах. Несмотря 
на удобство, такие переменные могут стать причиной неэффективно­
сти, потому что ( 1) механизм по умолчанию, запускающий задания, 
оптимизирован для небольших по объему заданий и (2) одну и ту же 
переменную может потребоваться использовать во множестве парал­
лельных заданий, а Spark передает такие переменные отдельно для 
каждой операции. Например, представьте, что нам нужно написать 
программу для Spark, которая отыскивает название страны по по­
зывным путем сопоставления префиксов позывных со значениями 
в массиве. Это удобно для радиолюбительских позывных, потому что 
каждой стране выделяется свой префикс, даже при том, что префиксы 
имеют разную длину. Реализация такого поиска «в лоб,> могла бы вы­
глядеть, как показано в примере 6.6. 

Пример 6.6 •:• Поиск страны в Python 

# Поиск страны по позывному в наборе RDD contactCounts. 

# С этой целью загружается массив кодов стран с соответствующими 

# префиксами позывных. 

signPrefixes = loadCallSignTaЫe () 

def processSignCount(sign_count, signPrefixes): 

country = lookupCountry(sign_count[O], signPrefixes) 

count = sign_count[l] 

return (country, count) 

countryContactCounts = (contactCounts.map(processSignCount) 

.reduceByKey((lamЬda х, у: х+ у))) 

Такая реализация будет работать, но если таблица поиска окажется 
слишком большой (например, таблица с IР-адресами вместо позыв­
ных), объем signPrefixes легко может достигнуть нескольких мегабайт, 
что сделает передачу массива заданиям слишком дорогостоящей опе­
рацией. Кроме того, если тот же самый объект signPrefixes будет по­
вторно использоваться позже ( например, для обработки следующего 
файла журнала), его снова придется передать каждому узлу. 

Исправить эту проблему можно, превратив signPrefixes в широко­
вещательную переменную. Широковещательная переменная - это 
обычный объект типа spar k. broadcast. Broadcas t [ Т] , обертывающий 
значение типа Т. Получить это значение можно вызовом метода value 
объекта Broadcast. Значение передается каждому узлу только один 
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раз, с применением эффективного, BitTorrent-пoдoбнoro механизма 
взаимодействий. 

В примерах с 6. 7 по 6.9 показано, как реализовать предыдущий 
пример с использованием широковещательной переменной. 

Пример 6. 7 •:• Поиск страны с помощью широковещательной 
переменной в Python 

# Поиск страны по позывному в наборе RDD coпtactCouпts. 
# С этой целью загружается массив кодов стран с соответствующими 

# префиксами позывных. 
signPrefixes = sc.broadcast(loadCallSignTaЫe()) 

def processSignCount (sign _ count, signPrefixes) : 

country = lookupCountry(sign_count[O], signPrefixes.value) 
count = sign_count[l] 
return (country, count) 

countryContactCounts = (contactCounts.map(processSignCount) 

. reduceByKey ( (lamЬda х, у: х+ у))) 

countryContactCounts.saveAsTextFile(outputDir + "/countries.txt") 

Пример 6.8 •:• Поиск страны с помощью широковещательной 
переменной в Scala 

// Поиск страны по позывному в наборе RDD contactCounts. 
// С этой целью загружается массив кодов стран с соответствующими 
// префиксами позывных. 
val signPrefixes = sc.broadcast(loadCallSignTaЫe()) 
val countryContactCounts = contactCounts.map{case (sign, count) => 

val country = lookupinArray (sign, signPrefixes. value) 
(country, count) 

} . reduceByKey ( (х, у) => х + у) 

countryContactCounts.saveAsTextFile(outputDir + "/countries.txt") 

Пример 6.9 •:• Поиск страны с помощью широковещательной 
переменной в Java 

// Прочитать таблицу позывных. 
// Для каждого позывного определить страну в 
// наборе RDD contactCounts 
final Broadcast<String[]> signPrefixes = 

sc.broadcast(loadCallSignTaЬle()); 

JavaPairRDD<String, Integer> countryContactCounts 

contactCounts.mapToPair( 
new PairFunction<Tuple2<String, Integer>, String, Integer> () { 
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puЫic Tuple2<String, Integer> 

call(Tuple2<String, Integer> callSignCount) 

String sign = callSignCount._l(); 

String country = lookupCountry(sign, callSigninfo.value()); 

return new Tuple2(country, callSignCount._2()); 
))) .reduceByKey(new Sumints()); 

countryContactCounts.saveAsTextFile(outputDir + "/countries.txt"); 

Как показано в этих примерах, порядок использования широкове­
щательных переменных достаточно прост: 

1. Создать Broadcast[T] вызовом SparkContext.broadcast с типом
объекта Т. Использовать можно любой тип, реализующий ин­
терфейс SerializaЫe.

2. Обратиться к значению с помощью свойства value (или метода
value () вjava).

3. Переменная будет отправлена каждому узлу лишь один раз
и должна использоваться только для чтения (изменения в пере­
менной не будут передаваться другим узлам).

Проще всего удовлетворить требование к доступу только для чте­

ния - осуществить передачу элементарного значения или ссылки на 
неизменяемый объект. В таких случаях невозможно будет изменить 
значение широковещательной переменной, кроме как в программе­
драйвере. Однако иногда бывает удобно или более эффективно пере­
давать через широковещательную переменную изменяемые объекты. 
В этом случае защита переменной от записи целиком ложится на 
плечи программиста. Продолжая пример с таблицей префиксов по­
зывных, имеющей тип Array[String], мы должны гарантировать, что 
рабочие узлы не попытаются выполнить что-нибудь подобное: 

val theArray = broadcastArray.value; theArray(O) = newValue 

При выполнении рабочим узлом эта строка присвоит newValue пер­
вому элементу массива, но только в копии массива, локальной по отно­
шению к рабочему узлу, - она не изменит содержимое broadcastArray. 
value на других рабочих узлах. 

Оптимизация широковещательных рассылок 
Когда выполняется широковещательная рассылка очень больших 
объемов данных, важно выбрать формат сериализации, одновремен­
но компактный и быстрый в обработке, потому что время передачи 
данных по сети может быстро превратиться в узкое место, если бу­
дет занимать слишком продолжительное время на сериализацию или 
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на транспортировку сериализованных данных по сети. В частности, 
в Scala API и Java API фреймворка Spark используется библиотека 
J ava Serialization, которая может быть очень неэффективной для все­
го, чего угодно, кроме массивов элементарных типов. Вы могли бы оп­
тимизировать сериализацию, выбрав другую библиотеку с помощью 
свойства spark.serializer (в главе 8 рассказывается, как задейство­
вать Kryo, более быструю библиотеку сериализации) или реализо­
вав собственные процедуры сериализации для своих типов данных 
(например, с использованием интерфейса java. io. ExternalizaЫe для 
Java Serialization или метода reduce () для определения собственной 
процедуры сериализации для библиотеки pickle в Python). 

Работа с раэлелами по отдельности 
Работа с данными в каждом разделе по отдельности позволяет из­
бежать многократного выполнения подготовительных операций для 
каждого элемента данных. Примерами таких операций могут слу­
жить подключение к базе данных или создание генератора случай­
ных чисел. В Spark имеются версии map и foreach, ориентированные 
на работу в рамках одного раздела, что помогает снизить стоимость 
этих операций за счет однократного выполнения для каждого раздела 
в наборе RDD. 

Вернемся к примеру с позывными. У нас имеется база данных ра­
диолюбительских позывных, из которой можно получить список со­
единявшихся с ними корреспондентов. Используя версии операций, 
ориентированные на работу в рамках раздела, можно организовать со­
вместное использование пула соединений с этой базой данных, чтобы 
избежать настройки множества соединений и повторно использовать 
парсер JSON. В примерах с 6.10 по 6.12 показано, как использовать 
функцию mapParti tions () , которая ожидает получить итератор по эле­
ментам в разделе набора RDD и возвращает итератор по результатам. 

Пример б. 1 О •:• Разделяемый пул соединений в Python 

def processCallSigns(signs): 
"'"'Поиск позывных с использованием пула соединений'""' 
# Создать пул соединений 
http = urllibЗ.PoolManager() 
# URL, связанный с каждой записью 
urls = map(lambda х: "http://73s.com/qsos/%s.json" % х, signs) 
# создать запрос (неблокирующий) 
requests = map(lamЬda х: (х, http.request('GET', х)), urls) 
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result = map (lamЬda х: (х [О), json. loads (х [1) .data)), requests) 
# удалить пустые значения и вернуть 
return filter (lamЬda х: x[l) is not None, result) 

def fetchCallSigns(input): 
11 111'Извлечь позывные"""

return input.mapPartitions( 
lamЬda callSigns : processCallSigns(callSigns)) 

contactsContactList = fetchCallSigns(validSigns) 

Пример 6.11 •:• Разделяемый пул соединений и парсер JSON в Scala 

val contactsContactLists = validSigns.distinct() .mapPartitions{ 
signs => 
val mapper = createMapper() 
val client = new HttpClient() 
client. start () 
// создать http-зaпpoc 
signs.map {sign => 

createExchangeForSign(sign) 
// извлечь ответы 
).map{ case (sign, exchange) => 

(sign, readExchangeCallLog(mapper, exchange)) 
).filter(x => х._2 != null) // Удалить пустые записи 

Пример 6.12 •:• Разделяемый пул соединений и парсер JSON в Java 

// Применить mapPartitions для повторного использования настроек 
JavaPairRDD<String, CallLog[)> contactsContactLists 

validCallSigns.mapPartitionsToPair( 
new PairFlatMapFunction<Iterator<String>, String, CallLog[)>() 

puЫic IteraЫe<Tuple2<String, CallLog[)>> 
call(Iterator<String> input) { 

// Список для результатов. 
ArrayList<Tuple2<String, CallLog[)>> callsignLogs 

new ArrayList<>(); 
ArrayList<Tuple2<String, ContentExchange>> requests = 

new ArrayList<>(); 
ObjectMapper mapper = createMapper(); 
HttpClient client = new HttpClient(); 
try { 

client.start(); 
while (input.hasNext()) 

requests.add(createRequestForSign(input.next(), client)); 
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for (Tuple2<String, ContentExchange> signExchange : requests) { 

callsignLogs.add(fetchResultFromRequest(mapper, signExchange)); 

catch (Exception е) { 

return callsignLogs;  

})); 

System.out.println(StringUtils.join(contactsContactLists.collect(), ",")); 

При работе с разделами по отдельности Spark передает нашей 
функции итератор Iterator по элементам в этом разделе. Чтобы вер­
нуть результаты, мы возвращаем экземпляр IteraЫe. Помимо map­
Parti tions (), в Spark имеется несколько операций, действие которых 
ограничивается рамками раздела. Все они перечислены в табл. 6.1. 

Таблица б. 1. Операции над данными в рамках одного раздела 

Функция Вызывается с Возвращает Сигнатура функции 
для RDD[T] 

mapPartitions () итератором по эле- итератор f: (Iterator[T])-
ментам в данном по возвращае- Iterator [U] 
разделе мым элементам 

mapParti tions- целым числом, номе- итератор f: (Int, Iterator[T]} -
Wi thindex () ром раздела и итера- по возвращае- Iterator [U] 

тором по элементам мым элементам 

в данном разделе 

foreach- итератором по эле- ничего f: (Iterator[T]) -Unit 
Parti tion (1 ментам в данном 

разделе 

Помимо избавления от лишней работы по настройке, функцию 
mapPartitions () иногда можно использовать, чтобы избежать созда­
ния лишних объектов. Иногда бывает желательно создать объект для 
агрегирования результатов разных типов. Вернемся к примеру в гла­
ве 3 вычисления среднего значения, где мы рассматривали способ, 
основанный на преобразовании набора чисел в набор кортежей, что­
бы можно было отследить число обработанных элементов на этапе 
свертки. Вместо этого можно было бы создать по одному кортежу для 
каждого раздела, как показано в примерах 6.13 и 6.14. 

Пример 6. 1 З •:• Вычисление среднего без применения 
mapParti tions () в Python 

def combineCtrs(cl, с2): 

return (cl[O] + с2[0], cl[l] + с2[1]) 
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def basicAvg(nums): 
"11'1Вычислить среднее"' 1 11 

nums.map(lamЬda num: (num, 1)) .reduce(combineCtrs) 

Пример 6.14 •:• Вычисление среднего с применением mapPartitions () 
в Python 

def partitionCtr(nums): 

"" "Вычислить sumCounter для раздела'""' 

sumCount = [О, О] 

for num in nums: 

sumCount[O] += num 

sumCount[l] += 1 

return [sumCount] 

def fastAvg(nums): 
11"11Вычислить среднее""'' 

sumCount = nums.mapPartitions(partitionCtr) .reduce(combineCtrs) 

return sumCount[O] / float(sumCount[l]) 

83аимолействие с внешними 

программами 
В библиотеках связи (Ьindings) на всех трех языках, поддерживаемых 
фреймворком Spark, есть все необходимое, что может потребоваться 
для разработки приложений на основе Spark. Однако на тот случай, 
если потребуется организовать взаимодействие с программами на 
языках, отличных от Scala, Java или Python, в Spark имеется более 
универсальный механизм обмена данными с программами на других 
языках, такими как сценарии на языке R. 

Наборы RDD в Spark имеют метод pipe (), благодаря которому 
можно писать задания для Spark на любом языке, при условии что 
они будут записывать данные в стандартные потоки ввода/вывода 
Unix и читать их оттуда. С помощью pipe () можно реализовать пре­
образование для RDD, которое читает каждый элемент набора из 
стандартного ввода как значение типа String, изменяет его и записы­
вает результат в стандартный вывод тоже как значение типа Strings. 
Интерфейс и модель программирования в данном случае весьма огра­
ничены, но часто предоставляемых возможностей вполне достаточно. 

Чаще всего необходимость пропускать содержимое набора через 
какую-то внешнюю программу или сценарий возникает потому, что 
это сложное программное обеспечение уже отлажено и проверено, 
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и было бы желательно использовать его в комплексе с фреймвор­
ком Spark. Многие исследователи данных пишут программный код 
на языке R 1, и вам может понадобиться реализовать взаимодействие 
с программами на этом языке с помощью pipe (). 

В примере 6.15 демонстрируется использование библиотеки на R 
для вычисления расстояния между всеми корреспондентами. Наша 
программа выводит все элементы набора, разделяя их символами 
перевода строки, и каждая строка, которая выводится внешней про­
граммой, является строковым элементом в результирующем наборе 
RDD. Чтобы упростить разбор входных данных в программе на R, мы 
выводим их в виде списка значений, разделенных запятыми: rnylat, 
rnylon, theirlat, theirlon. 

Пример 6.15 •:• Программа на R вычисления расстояния 

#!/usr/bin/env Rscript 
library("Imap") 
f <- file("stdin") 
open(f) 
while(length(line <- readLines(f,n=l)) > О) ( 

# Обработать строку 
contents <- Map(as.numeric, strsplit(line, ",")) 
mydist <- gdist(contents[[l]] [1], contents[[l]J [2], 

contents [ [ 1]] [ 3], contents [ [ 1] ] [ 4], 
units="m", а=6378137.О, Ь=6356752.3142, 
verbose = FALSE) 

write(mydist, stdout()) 

Если сохранить этот код в выполняемом файле .jsrc/R/ 
finddistance.R, его можно будет задействовать, как показано ниже: 

$ . / src/R/finddistance. R 
37.75889318222431,-122.42683635321838,37.7614213,-122.4240097 
349.2602 
coffee 
NA 
ctrl-d 

Пока все хорошо - мы получили программу, которая преобразует 
строки, полученные из stdin, и выводит результаты в stdout. Теперь 
нужно сделать доступной программу finddistance.R на всех рабочих 

1 Существует проект SparkR (http://amplab-extras.github.io/SparkR-pkg/), реа­
лизующий легковесный интерфейс к Spark для языка R. 
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узлах и выполнить фактическое преобразование набора RDD с по­
мощью сценария на языке командной оболочки. Поставленная задача 
легко решается в Spark, как показано в примерах с 6.16 по 6.18. 

Пример 6.16 •:• Программа-драйвер, использующая pipe () 

для вызова finddistance.R в Python 

# Вычисляет расстояние до каждого корреспондента 

# с помощью внешней программы 

distScript = ". ! src/R/fiпddistance. R" 

distScriptName = "finddistance. R" 

sc.addFile(distScript) 

def hasDistinfo(call): 

"""Убедиться, что call имеет поля, 

необходимые для вычисления расстояния"'"' 

requiredFields = [ "mylat", "mylong", "contactlat", "contactlong"] 

return all(map(lamЬda f: call[f], requiredFields)) 

def formatCall(call): 

'""'Сформировать строку для программы на R""" 

return "{0), {1), {2), {3)".format( 

call [ "mylat"], call [ "mylong"], 

call["contactlat"], call["contactlong"]) 

pipeinputs = contactsContactList. values () .flatMap ( 

lamЬda calls: map(formatCall, filter(hasDistinfo, calls))) 

distances = pipeinputs.pipe(SparkFiles.get(distScriptName)) 

print distances.collect() 

Пример 6. 17 •:• Программа-драйвер, использующая pipe () 

для вызова finddistance. R в Scala 

// Вычисляет расстояние до каждого корреспондента 

// с помощью внешней программы 

/! добавляет сценарий в список файлов, подлежащих 

// загрузке вместе с заданием каждым узлом 

val distScript = ". / src/R/finddistance. R" 

val distScriptName = "finddistance.R" 

sc.addFile(distScript) 

val distances = contactsContactLists.values.flatMap(x => 

x.map(y => s"$y.contactlay,

$y.contactlong, 

$y.mylat,$y.mylong")) .pipe(Seq( 

SparkFiles.get(distScriptName))) 

println(distances.collect() .toList) 
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Пример 6.18 •:• Программа-драйвер, использующая pipe () 
для вызова finddistance. R в Java 

/! Вычисляет расстояние до каждого корреспондента 

// с помощью внешней программы 

// добавляет сценарий в список файлов, подлежащих 

!/ загрузке вместе с заданием каждым узлом 

String distScript = "./src/R/finddistance.R"; 

String distScriptName = "finddistance. R"; 

sc.addFile(distScript); 

JavaRDD<String> pipeinputs = contactsContactLists.values() 

.map(new VerifyCallLogs()) .ilatMap( 

new FlatMapFunction<CallLog[], String>() { 

puЫic IteraЫe<String> call(CallLog[] calls) 

ArrayList<String> latLons = new ArrayList<String>(); 

for (CallLog call: calls) { 

) 

)); 

latLons.add(call.mylat + "," + call.mylong + 

"," + call.contactlat + "," + call.contactlong); 

return latLons; 

JavaRDD<String> distances = pipeinputs.pipe(SparkFiles.get(distScriptName)); 

System.out.println(StringUtils.join(distances.collect(), ",")); 

С помощью SparkContext. addFile (path) можно сконструировать 
список файлов для загрузки на каждый рабочий узел вместе с за­
данием Spark. Эти файлы могут находиться в локальной файловой 
системе (как в данных примерах), в HDFS или другой файловой 
системе, поддерживаемой системой Hadoop, а также на серверах 
НТТР, HTTPS или FTP. Когда задание выполняет действие, фай­
лы автоматически загружаются на каждый узел и попадают в ката­
лог SparkFiles. getRootDirectory, откуда их можно получить вызовом 
Files. get (filename). Это единственный способ гарантировать, что 
pipe () найдет сценарий на рабочем узле. Файлы можно загружать на 
рабочие узлы и с помощью сторонних инструментов, при условии что 
они будут сохраняться в известном месте. 

Все файлы, добавляемые с помощью SparkContext. addFile (path), сохра­
няются в одном и том же каталоге, поэтому очень важно давать им уни­
кальные имена. 

Как только внешний сценарий станет доступен, не составляет ни­
какого труда передать ему данные из набора с помощью метода pipe (). 
Возможно, более универсальная версия findDistance могла бы прини-
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мать разделитель SEPARATOR как аргумент командной строки. В данном 
случае любой из следующих вызовов справился бы с этим, хотя пер­
вый из них выглядит предпочтительнее: 

О rdd. pipe (Seq (SparkFiles. get ( 11finddistance. R 11

), 
11

, 
11)); 

О rdd.pipe(SparkFiles.get( 11finddistance.R 11

) + 11 

1
11). 

В первой версии командная строка передается как последователь­
ность позиционных аргументов (с самой командой в нулевой пози­
ции); во второй версии передается единая командная строка, которую 
затем Spark разбивает на позиционные аргументы. 

При необходимости в вызов pipe () можно также передать опреде­
ление переменных окружения. Для этого достаточно просто передать 
методу pipe () ассоциативный массив во втором аргументе, а Spark 

создаст на его основе необходимые переменные окружения. 
Теперь вы должны хотя бы в общих чертах понимать, как использо­

вать pi ре () для обработки элементов набора RD D с помощью внешней 
команды и как передавать сценарии таких команд на узлы кластера. 

Числовые операuии над наборами RDD 
Spark поддерживает несколько описательных статистических опера­
ций с наборами RDD, содержащими числовые данные. Эти, а также 
другие, более сложные статистические операции и методы машинно­
го обучения более подробно будут рассматриваться в главе 11. 

Числовые операции в Spark реализованы с применением потоко­
вых алгоритмов, предусматривающих обработку элементов по од­
ному. Все описательные статистики вычисляются за один проход по 
данным и возвращаются методом stats () в виде объекта StatsCounter. 
Методы объекта StatsCounter перечислены в табл. 6.2. 

Таблица 6.2. Статистики, доступные в объекте StatsCounter 

Метод 

count (1 

mean (1 

sum() 

max() 

min (1 

variance (1 

sampleVariance (1 

stdev 11 

sampleStdev 11 

Возвращает 

Число элементов в наборе 

Среднее значение по элементам 

Общую сумму элементов 

Максимальное значение 

Минимальное значение 

Дисперсию элементов 

Дисперсию для выборки элементов 

Стандартное отклонение 

Стандартное отклонение для выборки элементов 
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Если вам понадобится вычислить только одну из этих статистик, 
можно вызвать соответствующий метод RDD, например rdd.mean () 
или rdd. sum () . 

В примерах с 6.19 по 6.21 демонстрируется использование статис­
тик для удаления некоторых аномальных значений. Так как один 
и тот же набор RDD будет просматриваться дважды (один раз - для 
вычисления статистик и второй - для удаления аномальных значе­
ний), было нелишним кэшировать этот набор. Итак, вернемся к при­
меру с журналами сеансов радиосвязи и удалим записи о корреспон­
дентах, которые оказались слишком далеко. 

Пример б. 19 •:• Удаление аномальных значений в Python 

# Преобразовать RDD строк в набор числовых данных, 

# чтобы вычислить статистики для удаления аномальных значений. 

distanceNumerics = distances.map(lamЬda string: float(string)) 

stats = distanceNumerics.stats() 

stddev = std.stdev() 

mean = stats.mean() 

reasonaЬleDistances = distanceNumerics.filter( 

lambda х: math.fabs(x - mean) < З * stddev) 

print reasonaЫeDistances.collect() 

Пример 6.20 •:• Удаление аномальных значений в Scala 

/! Теперь можно удалить аномальные значения, полученные 

// из-за ошибок в определении местоположения; но для этого 

// прежде необходимо преобразовать строки из RDD в числа. 

val distanceDouЫe = distance.map(string => string.toDouЬle) 

val stats = distanceDouЫes.stats() 

val stddev = stats.stdev 

val mean = stats.mean 

val reasonaЬleDistances = 

distanceDouЫes.filter(x => math.abs(x-mean) < З * stddev) 

println(reasonaЬleDistance.collect() .toList) 

Пример 6.21 •:• Удаление аномальных значений в Java 

/! Сначала необходимо преобразовать набор элементов String в DouЬleRDD, 

!/ чтобы получить доступ к статистикам 

JavaDouЬleRDD distanceDouЫes = 

distances.mapToDouЬle(new DouЬleFunction<String>() 

puЫic douЫe call(String value) { 

return DouЬle.parseDouЬle(value); 

) )) ; 

final StatCounter stats = distanceDouЫes.stats(); 



final DouЫe stddev = stats.stdev(); 

final DouЫe mean = stats. mean (); 

JavaDouЬleRDD reasonaЬleDistances = 
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distanceDouЫes. filter (new Function<DouЫe, Boolean> () 

puЬlic Boolean call(DouЫe х) ( 

return (Math.abs(x-mean) < 3 * stddev);))); 

System.out.println(StringUtils.join(reasonaЬleDistance.collect(), 

",")); 

Этим последним фрагментом кода мы завершаем наше приложе­
ние, которое использует аккумуляторы и широковещательные пере­
менные, обрабатывает данные по разделам, взаимодействует с внеш­
ними программами и использует статистики. Исходный код целиком 
доступен в файлах src/python/ChapterSixExample.py, src/main/scala/ 
com/oreilly/leamingsparkexamples/scala/ChapterSixExample.scala и src/ 
main/java/com/oreilly/leamingsparkexamples/java/ChapterSixExample. 
java. 

В 3а1<Лючение 

В этой главе вы познакомились с не�оторыми дополнительными воз­
можностями фреймворка Spark, которые можно использовать для 
повышения эффективности или выразительности программ. После­
дующие главы охватывают развертывание и настройку приложений 
на основе Spark, а также знакомят со встроенными библиотеками для 
взаимодействий с базами данных SQL, потоковой обработки данных 
и использования приемов машинного обучения. Кроме того, далее мы 
будем исследовать еще более сложные и законченные примеры при­
ложений, более широко использующих функциональные возможно­
сти, описывавшиеся до сих пор, и это должно придать вам уверенно­
сти, чтобы начать собственные исследования фреймворка Spark. 
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Выполнение 

в 1<Ластере 

Введение 

До настоящего момента мы концентрировались на знакомстве 
с интерактивной оболочкой фреймворка Spark и примерами, вы­
полняющимися в локальном режиме. Одним из преимуществ при­
ложений на основе Spark является возможность выполнения вы­
числений на множестве компьютеров, объединенных в кластер. 
Самое интересное, что при разработке приложений для параллель­
ных вычислений в кластере используется тот же самый API, что 
мы изучали до сих пор. Примеры и приложения, написанные в пре­
дыдущих главах, точно так же способны выполняться и в класте­
ре. Одно из самых больших преимуществ высокоуровневого Spark 
API заключается в том, что пользователи могут быстро создавать 
прототипы своих приложений, опробовать их локально, на неболь­
ших наборах данных и затем без всяких модификаций запускать на 
больших кластерах. 

В этой главе мы сначала расскажем об архитектуре распределен­
ных приложений Spark, затем обсудим варианты запуска Spark на 
распределенных кластерах. Spark может работать под управлением 
самых разных диспетчеров кластеров (Hadoop YARN, Apache Mesos 
и собственного встроенного диспетчера Spark Standalone ). Мы обсу­
дим также достоинства и недостатки каждого варианта, а также не­
обходимые настройки. Попутно мы исследуем некоторые техниче­
ские детали, касающиеся планирования, развертывания и настройки 
приложений Spark. После прочтения этой главы вы будете иметь все 
знания, необходимые для запуска распределенных программ. В сле­
дующей главе мы рассмотрим приемы тонкой настройки и отладки 
приложений. 
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выполнения 
Прежде чем погрузиться в исследование особенностей выполнения 
Spark в кластере, вам будет полезно познакомиться с архитектурой 
распределенного режима Sprk (см. рис. 7.1). 

Драйвер Spark 

t 

Координатор 

кластера: 
Mesos, YARN 

или Standalone 

1 
+ + + 

Рабочий узел Рабочий узел Рабочий узел 

1 Исполнитель 1 1 Исполнитель 1 1 Исполнитель 1 

Рис. 7.1 •:• Компоненты распределенного приложения Spark 

В распределенном режиме Spark использует архитектуру ведущий/ 
ведомый (master/slave) с одним центральным координатором и мно­
жеством распределенных рабочих узлов. Центральный координатор 
называется драйвером (driver). Драйвер взаимодействует с (возмож­
но) большим числом рабочих узлов, которые называют исполнителями 
(executors). Драйвер и исполнители выполняются в отдельных и неза­
висимых друг от друга процессахJаvа и составляют приложение Spark. 

Приложение Spark запускается на множестве компьютеров с ис­
пользованием внешней службы, которая называется диспетчером, или 
координатором, J(Jlacmepa. Как отмечалось выше, в состав Spark входит 
свой, встроенный диспетчер кластера Spark Standalone. Spark может 
также выполняться под управлением Hadoop YARN и Apache Mesos, 
двух популярных диспетчеров кластеров с открытым исходным кодом. 

Драйвер 
Драйвер - это процесс, в котором выполняется метод main () про­
граммы. Этот процесс выполняет пользовательский код, создающий 
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объект SparkContext, наборы RDD и выполняющий преобразования 
и действия. Запуская интерактивную оболочку Spark, вы создаете 
программу-драйвер (если помните, интерактивная оболочка Spark 
автоматически создает объект SparkContext с именем sc). С заверше­
нием работы драйвера завершается и выполнение приложения. 

В процессе выполнения драйвер решает две задачи: 
1. Преобразует пользовательскую программу в задания. Драй­

вер Spark отвечает за преобразование пользовательской про­
граммы на единицы выполнения, которые называют задачами
(tasks). На верхнем уровне все программы Spark имеют одну
и ту же организацию: они создают наборы RDD на основе не­
которых исходных данных, порождают новые наборы RDD
с применением преобразований и выполняют действия для
сбора и сохранения данных. Программа Spark неявно созда­
ет логический ориентировттый ациклический граф (Directed
Acyclic Graph, DAG) операций. В процессе работы драйвер
преобразует этот логический граф в фактический план выпол­
нения.
Spark применяет некоторые оптимизации, такие как <<конвейе­
ризация� (pipelining) преобразований с их объединением,
и преобразует граф выполнения во множество этапов. Каждый
этап, в свою очередь, состоит из множества заданий. Задания
компонуются и подготавливаются для передачи в кластер. За­
дания - это наименьшие единицы выполнения в Spark; типич­
ная пользовательская программа может разбиваться на сотни
и тысячи заданий.

2. Планирует выполнение заданий исполнителями. На основе
составленного плана выполнения драйвер Spark координирует
передачу отдельных заданий исполнителям. Когда исполните­
ли запускаются, они регистрируют себя в драйвере, благодаря
чему драйвер имеет полное представление об имеющихся в его
распоряжении исполнителях. Каждый исполнитель представ­
ляет процесс, пригодный для выполнения заданий и хранения
данных из набора RDD.
Драйвер Spark определяет множество доступных исполнителей
и пытается передать каждому из них свое задание, основываясь
на местоположении данных. Выполняющееся задание может
порождать побочные эффекты в виде кэширования данных.
Драйвер также следит за местоположением кэшированных дан­
ных и использует эту информацию, когда принимает решение
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о выполнении следующих заданий, использующих эти данные. 
Драйвер экспортирует информацию о выполняемом приложе­
нии Spark через веб-интерфейс, доступный по умолчанию через 
порт 4040. Например, в локальном режиме веб-интерфейс досту­
пен по адресу: http://localhost:4040. Подробнее о веб-интерфейсе 
и механизмах планирования рассказывается в главе 8. 

Исполнители 

Исполнители в Spark - это рабочие процессы, ответственные за вы­
полнение отдельных заданий. Исполнители запускаются один раз 
в начале приложения Spark и обычно продолжают работать в течение 
всего жизненного цикла приложения, однако приложения Spark мо­
гут продолжать работать даже после аварийного завершения испол­
нителей. Исполнители играют две роли. Во-первых, они выполняют 
задания, переданные приложением, и возвращают результаты драй­
веру. Во-вторых, обеспечивают сохранение в памяти наборов RDD, 
кэшированных пользовательскими программами, через службу Block 
Manager, действующую внутри каждого исполнителя. Так как наборы 
RDD кэшируются непосредственно внутри исполнителей, задания 
могут манипулировать кэшированными данными. 

Драйверы и исполнители в локальном режиме. Большинство приме­
ров, демонстрируемых в этой книге, мы выполняли и будем выполнять 
в локальном режиме работы Spark. В этом режиме драйвер Spark вы­
полняется вместе с исполнителями в одном процессеJаvа. Это особый 
случай, потому что обычно исполнители действуют в рамках отдельных 
процессов. 

Диспетчер кластера 

До сих пор мы говорили о драйверах и исполнителях как о чем-то аб­
страктном. Но как же в действительности происходит запуск процес­
сов драйверов и исполнителей? В отношении запуска исполнителей 
и иногда драйверов Spark полагается на диспетчера кластера. Дис­
петчер кластера - это подключаемый компонент Spark. Фреймворк 
Spark поддерживает возможность работы поверх внешних диспетче­
ров, таких как У ARN и Mesos, а также поверх встроенного диспетчера 
Spark Standalone. 

В документации Spark повсеместно используются термины <�драйвер» 
( driver) и <�исполнитель,> ( executor) для описания процессов, в которых 
выполняются все приложения Spark. Термины <�ведущий» ( <imaster,>) 
и <�ведомый,> (или <�рабочий» - <,worker>>) используются в основном 
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для описания центральной и распределенных частей диспетчера клас­
тера. Эти термины легко спутать, поэтому будьте очень внимательны. 
Например, Hadoop YARN запускает ведущего демона (master daemon, 
который называют диспетчером ресурсов - Resource Manager) и не­
сколько ведомых, или рабочих, демонов (worker daemons, их называют 
диспетчерами узлов - Node Managers). Spark может выполнять на рабо­
чих узлах процессы обоих типов, драйверы и исполнители. 

Запуск программы 

Независимо от используемого диспетчера кластера Spark предо­
ставляет один и тот же сценарий для запуска программ, который 
называется spark-submit. В зависимости от параметров командной 
строки spark-submit может соединяться с разными диспетчерами 
кластеров и управлять выделением ресурсов для приложения. С не­
которыми диспетчерами кластеров spark-submit может запускать 
драйвер внутри кластера (например, на рабочем узле YARN), тогда 
как с другими драйвер всегда запускается на локальной машине. Бо­
лее подробно мы будем рассматривать сценарий spark-submit в сле­
дующем разделе. 

Итоги 

Чтобы подвести итоги обо всем, что рассказывалось в этом разделе, 
перечислим, какие именно шаги выполняет Spark, когда запускает 
приложение в кластере: 

1. Пользователь вызывает сценарий spark-submit, чтобы запустить
приложение.

2. spark-submit запускает· программу-драйвер и вызывает метод
main (), указанный пользователем.

3. Программа-драйвер связывается с диспетчером кластера и за­
прашивает у него ресурсы для запуска исполнителей.

4. Диспетчер кластера запускает исполнителей от имени програм­
мы-драйвера.

5. Процесс драйвера выполняет инструкции в пользовательском
приложении. Опираясь на действия и преобразования наборов
RD D в программе, драйвер посылает задания исполнителям.

6. Исполнители выполняют задания, получают и сохраняют ре­
зультаты.

7. Если драйвер выполняет выход из метода main () или вызывает
SparkContext. stop (), Spark останавливает исполнителей и осво­
бождает ресурсы, возвращая их диспетчеру кластера.



Развертывание при/\ожений с помошью sparl<-submit •:• 155 

Развертывание прило>1<ений с помошью 

sparl<-submit 
Как вы уже знаете, Spark предоставляет единый инструмент для рас­
пределения заданий независимо от типа диспетчера кластера, кото­
рый называется spark-subrnit. В главе 2 вы видели простой пример за­
пуска программы на языке Python с помощью spark-subrnit, которую 
мы приведем еще раз в примере 7.1. 

Пример 7. 1 •:• Запуск приложения на языке Python 

bin/spark-submit my_script.py

Когда сценарий spark-subrnit запускается с единственным парамет­
ром - именем сценария или JАR-файла, он просто запускает указан­
ную программу локально. Допустим, что нам нужно запустить эту 
программу под управлением диспетчера кластера Spark Standalone. 
Мы можем передать дополнительные флаги, указывающие на дис­
петчера Standalone, и определить размер каждого процесса исполни­
теля, как показано в примере 7.2. 

Пример 7 .2 •:• Запуск приложения с дополнительными параметрами 

bin/spark-submit --master spark://host:7077 --executor-memory 10g my_script.py

Флаг --rnaster определяет URL кластера для подключения; в дан­
ном случае URL spark.j/ означает кластер, действующий под управ­
лением Spark Standalone (см.табл. 7 .1 ). Другие типы адресов URL мы 
обсудим ниже. 

Помимо URL кластера, сценарию spark-subrnit можно передать еще 
множество разных параметров, описывающих конкретные особенности 
запускаемого приложения. Эти параметры условно делятся на две ка­
тегории. Первая: информация для планирования, как, например, объем 
ресурсов, необходимых для выполнения заданий (как показано в при­
мере 7.2). Вторая: сведения о зависимостях приложения, таких как биб­
лиотеки или файлы, которые требуется загрузить на рабочие машины. 

Общий синтаксис командной строки spark-subrnit показан в при­
мере 7.3. 

Пример 7 .З •:• Общий синтаксис командной строки spark-submit 

bin/spark-submit [options] <арр jar I python file> [арр options] 

О [options] - список флагов для spark-subrnit; получить полный 
список флагов можно, выполнив команду spark-subrnit --help; 
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Таблица 7. 1. Возможные значения для флага --master сценария 

spark-submit 

Тип URL Описание 

spark: ! /host: port Адрес кластера Spark Standalone с указанным 
портом. По умолчанию диспетчеры кластеров Spark 
Standalone используют порт 7077 

mesos: / /host: port Адрес кластера Mesos с указанным портом. 
По умолчанию диспетчеры кластеров Mesos 
используют порт 5050 

yarn Адрес кластера YARN. Перед запуском YARN необходи-
мо определить переменную окружения HADOOP _ CONF _DIR, 
в которой указать путь к каталогу с настройками 
Hadoop, описывающими параметры кластера 

local Запуск в локальном режиме на одном ядре 
local[NJ Запуск в локальном режиме на N ядрах 
local[*J Запуск в локальном режиме на всех ядрах, 

имеющихся на машине 

перечень наиболее часто используемых флагов приводится 
в табл. 7.2; 

О <арр jar I python file> - имяJАR-файла или сценария на Python, 
содержащего точку входа в приложение; 

О [арр options] - параметры для передачи приложению; если ме­
тод main () программы предусматривает анализ параметров ко­
мандной строки, он увидит только параметры [ арр options], фла­
ги, предназначенные для spark-submit, будут ему недоступны. 

Сценарий spark-submit позволяет также передавать произвольные 
параметры настройки SparkConf либо в виде флага --conf prop=value, 
либо в файле с парами ключ/значение, с помощью флага --properties­
file. Подробнее порядок настройки Spark будет обсуждаться в главе 8. 

В примере 7.4 показано несколько длинных команд вызова сцена­
рия spark-submit с разными параметрами. 

Пример 7 .4 •:• Использование spark-submit с разными параметрами 

# Запуск приложения на Java в режиме кластера Standalone 

./bin/spark-suЬmit \

--master spark://hostname:7077 \

--deploy-mode cluster \

--class com.dataЬricks.examples.SparkExample \

--name "Example Program" \

--jars depl.jar,dep2.jar,dep3.jar \

--total-executor-cores 300 \

--executor-memory 10g \
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Таблица 7.2. Наиболее часто используемые флаги для spark-submit 

Флаг Описание 

--master Определяет диспетчера кластера для подключения. 
Параметры для этого флага описываются в табл. 7.1 

--deploy-mode Определяет, должна ли программа-драйвер эапус-
каться локально ("client") или на одном из рабочих 
узлов кластера ("cluster"). В режиме client сценарий 
spark-submit запустит программу-драйвер на той же 
машине, где запущен сам сценарий spark-submit. В ре-
жиме cluster программа-драйвер будет отправлена 
на один из рабочих узлов кластера. По умолчанию 
используется режим client 

--class «Главный» класс для приложений на Scala или Java 

--name Удобочитаемое имя приложения, которое должно 
отображаться в веб-интерфейсе Spark 

--jars Список JАR-файлов для выгрузки и сохранения в пути 
поиска классов (classpath) приложения. Если при-
ложение зависит от небольшого числа сторонних 
JАR-файлов, их можно перечислить эдесь 

--files Список файлов для размещения в рабочем каталоге 
приложения. Это могут быть файлы с данными, кото-
рые необходимо скопировать на каждый узел 

--py-files Список файлов для добавления в PYTHONPATH приложе-
ния. Может включать файлы .ру, .egg и .zip 

--executor-memory Объем памяти в байтах, выделяемой для исполните-
лей. Для обозначения единиц измерения допускается 
использовать суффиксы, например: 512m (512 Мбайт) 
или 15g (15 Гбайт) 

--driver-memory Объем памяти в байтах, выделяемой для процесса 
драйвера. Для обозначения единиц измерения до-
пускается использовать суффиксы, например: 512m 
(512 Мбайт) или 15g (15 Гбайт) 

myApp.jar "options" "to your application" "qo here" 

Запуск приложения на Python в клиентском режиме 

под управлением YARN 

$ export НАDОР CONF DIR=/opt/hadoop/conf 
$ ./bin/spark-suЬmit \ 

--master yarn \ 
--py-files someliЬ-1.2.eqq,otherlib-4.4.zip,other-file.py \ 
--deploy-mode client \ 
--name "Example Proqram" \ 
--queue exampleQueue \ 
--nC1111-executors 40 \ 
--executor-memory 10q \ 
my_script.py "options" "to your application" "qo here" 
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Упаковка программного кола 

и эависимостей 
На протяжении практически всей книги мы будем представлять при­
меры программ, не имеющие зависимостей от внешних библиотек. 
Однако пользовательские программы очень часто используют сто­
ронние библиотеки. Если программа импортирует какие-либо биб­
лиотеки, не входящие в состав пакета org. apache. spark и не являю­
щиеся частью стандартной библиотеки языка программирования, 
необходимо гарантировать удовлетворение всех зависимостей такой 
программы. 

Пользователи Python имеют несколько способов установки сто­
ронних библиотек. Так как PySpark использует Python, установлен­
ный на рабочих машинах, необходимые библиотеки можно устано­
вить непосредственно на машины в кластере, используя стандартный 
диспетчер пакетов Python (такой как pip или easy install), или вруч­
ную, в подкаталог site-packages/ в каталоге установки Python. От­
дельные библиотеки можно также отправлять на рабочие машины 
с помощью флага --py-files сценария spark-submit. Добавлять библио­
теки вручную удобнее, когда нет доступа к установочным пакетам на 
кластере, но имейте в виду, что это может приводить к конфликтам 
с пакетами, уже установленными на машины. 

А сам Spark? Компонуя приложение, никогда не включайте сам Spark 
в список зависимостей. Сценарий spark-submit автоматически гаранти­
рует присутствие Spark в пути программы. 

Пользователи Java и Scala имеют также возможность передавать 
отдельные JАR-файлы с использованием флага --jars сценария 
spark-submit. Такой прием может пригодиться, когда имеется зави­
симость от одной-двух простых библиотек, которые сами не имеют 
никаких зависимостей. Однако чаще встречаются проекты на Java 
и Scala, которые зависят от большего числа библиотек. Когда прило­
жение передается фреймворку Spark, оно должно быть распростране­
но по кластеру со всеми промежуточными зависимостями. В их число 
входят не только библиотеки, которые используются приложением 
непосредственно, но также их зависимости, зависимости их зависи­
мостей и т. д. Отследить все эти зависимости вручную порой очень 
сложно. Поэтому чаще с помощью инструментов сборки производят 
один большой JАR-файл, содержащий приложение со всеми его за­
висимостями. Такие JАR-файлы нередко называют cynep-]AR или 
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]АR-сборка. Артефакты подобного типа могут производить многие 
инструменты сборки для J ava и Scala. 

Наиболее популярными инструментами сборки для] ava и Scala яв­
ляются Maven и sbt (Scala Build Tool - инструмент сборки для Scala). 
Оба инструмента можно использовать для любого из этих двух язы­
ков, но Maven чаще используется для сборки проектов нaJava, а sbt 
для сборки проектов на Scala. В этом разделе мы приведем примеры 
сборки приложений для Spark с использованием обоих инструмен­
тов. Вы можете использовать их как шаблоны для своих проектов. 

Сборка приложения на Java с помощью Maven 

Давайте рассмотрим сборку cyпep-JAR для проекта на J ava со множест­
вом зависимостей. В примере 7.5 приводится файл pom.xml для Maven, 
содержащий определения, необходимые для сборки. В этом примере не 
демонстрируется фактический программный код нaJava или структура 
каталогов проекта, но Maven предполагает, что пользовательский код 
будет находиться в подкаталоге src/main/java корневого каталога про­
екта ( файл pom.xml должен находиться в корневом каталоге). 

Пример 7.5 •:• Файл pom.xml сборки приложения на Java с помощью 
Maven 

<project> 

<modelVersion>4.0.0</modelVersion> 

<!-- Информация о проекте --> 
<groupid>com.databricks</groupid> 
<artifactid>example-build</artifactid> 
<name>Simple Project</name> 
<packaging>jar</packaging> 

<version>l.0</version> 

<dependencies> 

<!-- Зависимость Spark --> 

<dependency> 
<groupid>org.apache.spark</groupid> 
<artifactid>spark-core_2.10</artifactid> 
<version>l.2.0</version> 

<scope>provided</scope> 
</dependency> 
<!-- Сторонняя библиотека --> 
<dependency> 

<groupid>net.sf.jopt-simple</groupid> 
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<artifactid>jopt-simple</artifactid> 
<version>4.3</version> 

</dependency> 
<!-- Сторонняя библиотека --> 
<dependency> 

<groupid>joda-time</groupid> 
<artifactid>joda-time</artifactid> 
<version>2.0</version> 

</dependency> 
</dependencies> 

<build> 
<plugins> 

<!-- Расширение для Maven, создающее cyпep-JAR --> 
<plugin> 

<groupid>org.apache.maven.plugins</groupid> 
<artifactid>maven-shade-plugin</artifactid> 
<version>2.3</version> 
<executions> 

<execution> 
<phase>package</phase> 
<goals> 

<goal>shade</goal> 
</goals> 

</execution> 
</executions> 

</plugin> 
</plugins> 

</build> 
</project> 

Этот проект имеет две зависимости: jopt-simple, библиотека Java 
для парсинга параметров командной строки, и joda-time, библиотека 
с утилитами для работы с датой и временем. Проект также зависит 
от Spark, но Spark отмечен как provided, чтобы исключить упаковку 
фреймворка в артефакты приложения. Файл сборки включает так­
же расширение maven-shade-plugin, создающее cyпep-JAR со всеми 
зависимостями. Оно подключается, когда Maven получает коман­
ду выполнить цель shade на этапе упаковки. С такими настройками 
cyпep-JAR будет создан автоматически при запуске пакета mvn ( см. 
пример 7 .6). 

Пример 7 .6 •:• Упаковка приложения для Spark с помощью Maven 

$ mvn package 

# В целевом каталоге появятся cyпep-JAR и оригинальный пакет JAR 
$ ls target/ 
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example-build-1.0.jar 

original-example-build-1.0.jar 

# Если вывести листинг с содержимым cyпep-JAR, можно увидеть 

# в нем все классы из библиотек зависимостей 

$ jar tf tarqet/example-build-1.0.jar 

joptsimple/HelpFormatter.class 

org/joda/time/tz/UTCProvider.class 

# Cyпep-JAR можно передать непосредственно сценарию spark-submit 

$ /path/to/spark/bin/spark-suЬmit 

--master local ... tarqet/example-build-1.0.jar 

Сборка приложения на Scala с помощью sЬt 

sbt - новейший инструмент сборки, чаще всего используемый для 
сборки проектов на языке Scala. sbt предполагает аналогичную орга­
низацию проекта, как и Maven. В корневом каталоге проекта должен 
находиться файл сборки с именем build.sbt, а в подкаталоге src/main/ 
scala - исходный код. Файлы сборки для sbt пишутся на специальном 
языке и содержат настройки, которые оформляются как операции 
присваивания значений разным параметрам. Например, существует 
ключ name, содержащий имя проекта, и ключ libraryDependencies, со­
держащий список зависимостей проекта. В примере 7.7 приводится 
полный файл сборки sbt для простого приложения, зависящего от 
Spark и нескольких сторонних библиотек. Этот файл сборки предна­
значен для использования с версией sbt 0.13. Так как sbt развивается 
очень быстро, обязательно загляните в документацию, где могут быть 
описаны изменения в форматировании файлов сборки, не отражен­
ные здесь. 

Пример 7.7 •:• Файл build.sblдля сборки приложения на Scala 

с помощью sbl О. 13 

1mport AssemЫyKeys. 

name : = "Simple Project" 

version : = "1.0" 

organization ·= "com.databricks" 

scalaVersion ·= "2.10.3" 

libraryDependencies ++= Seq( 

// Зависимость от Spark 
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"org.apache.spark" % "spark-core_2.10" % "1.2.0" "provided", 
// Сторонние библиотеки 
"net.sf.jopt-sirnple" % "jopt-sirnple" "4.3", 
"joda-tirne" % "joda-tirne" % "2.0" 

// Эта инструкция подключает расширение для создания сборки 
assernЬlySettings 

// Настроить сборку JАR-файла с помощью расширения 
jarName in assernЬly : = "my-project-assernЬly.jar" 

// Специальный параметр, препятствующий включению Scala в JАR-сборку, 
// потому что Spark уже включает поддержку Scala. 
assemЬlyOption in assernЬly : = 

(assernЬlyOption in assernЬly) .value.copy(includeScala = false) 

Первая строка в этом файле сборки импортирует поддержку соз­
дания файлов-сборок JAR из расширения sbt. Чтобы задействовать 
это расширение, необходимо также подключить небольшой файл 
из каталога project/ со списком зависимостей расширения. Для 
этого просто создайте файл project/assemhly.sbt и добавьте в него: 
addSЬtPlugin("com.eed3si9n" % "sЬt-assemЬly" % "0.11.2"). Точная вер­
сия sЬt-assemЬly у вас может отличаться от приведенной здесь. При­
мер 7.8 демонстрирует использование sbt версии 0.13. 

Пример 7.8 •:• Добавление расширения создания сборок в сборку 
проекта с помощью sЬt 

# Выводит содержимое файла project/assernЬly.sbt 
$ cat project/assemЫy.sbt 
addSbtPlugin("com.eed3si9n" % "sbt-assernЬly" % "0.11.2") 

Теперь, после создания файла сборки со всем необходимым, можно 
собрать файлJАR (пример 7.9). 

Пример 7. 9 •:• Упаковка приложения для Spark с помощью sЬt 

$ sbt assemЫy 
# В целевом каталоге появится файл JАR-сборки 
$ ls target/scala-2.10/ 
my-project-assernЬly.jar 

# Если вывести листинг с содержимым JАR-сборки, можно увидеть 
# в нем все классы из библиотек зависимостей 
$ jar tf target/scala-2.10/my-project-assemЫy.jar 
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joptsimple/HelpFormatter.class 

org/joda/time/tz/UTCProvider.class 

JАR-сборку можно передать непосредственно сценарию spark-submit 

/path/to/spark/bin/spark-suЬmit --master local 

target/scala-2.10/my-project-assemЫy.jar 

Конфликты зависимостей 
Одной из серьезных проблем являются конфликты зависимостей, 
когда пользовательское приложение и фреймворк Spark исполь­
зуют одну и ту же библиотеку. Это происходит довольно редко, но 
когда такое случается, это может приводить пользователей в уны­
ние. Обычно данная проблема проявляется в виде исключений JVM 
NoSuchMethodError, ClassNotFoundException и некоторых других, возни­
кающих при попытке загрузить класс в процессе выполнения задания 
Spark. Существуют два решения этой проблемы. Первое: изменить 
приложение так, чтобы оно использовало ту же версию сторонней 
библиотеки, что и фреймворк Spark. Второе: изменить процедуру 
сборки приложения, применив прием, который часто называют <<За­
тенением» (shading). Инструмент сборки Maven поддерживает зате­
нение через дополнительные настройки расширения, как показано 
в примере 7.5 ( вообще говоря, именно поддержка затенения ( shading) 
объясняет, почему расширение носит имя maven-shade-plugin). Затене­
ние позволяет создать вторую копию конфликтующего пакета в дру­
гом пространстве имен и переписать код приложения для использо­
вания переименованной версии. Этот прием «грубой силы» весьма 
эффективен для разрешения конфликтов зависимостей во время вы­
полнения. Конкретные инструкции, как затенять зависимости, ищите 
в документации к своему инструменту сборки. 

Планирование прило>1<ений 

и в прило>1<ениях Sparl< 
Пример, который мы только что рассмотрели, предусматривает за­
пуск единственного задания в кластере. В действительности многие 
кластеры совместно используются большим числом пользователей, 
а такие разделяемые окружения подразумевают необходимость пла-
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нирования (scheduling): что получится, если два пользователя запус­
тят приложения Spark, которые требуют в свое распоряжение все 
ресурсы кластера? Следование выбранной стратегии планирования 
помогает гарантировать наличие свободных ресурсов в любой мо­
мент и распределение рабочей нагрузки в соответствии с системой 
приоритетов. 

Поддержка планирования во фреймворке Spark опирается прежде 
всего на распределение ресурсов между Sраrk-приложениями дис­
петчером кластера. Когда Sраrk-приложение запрашивает у диспет­
чера кластера предоставить ему процессы исполнителей, оно может 
получить больше или меньше исполнителей, в зависимости от загру­
женности кластера. Многие диспетчеры кластеров имеют возмож­
ность определять очереди с разными приоритетами или доступными 
объемами ресурсов, а Spark поддерживает возможность добавлять 
задания в такие очереди. За дополнительной информацией обра­
щайтесь к документации с описанием интересующего вас диспетчера 
кластеров. 

Особый случай представляют долгоживущие приложения, которые 
не предусматривают завершения когда-либо. Примером такого дол­
гоживущего приложения может служить сервер JDBC, связанный 
с компонентом Spark SQL. Когда происходит запуск сервера JDBC, 
он запрашивает у диспетчера кластера множество исполнителей и за­
тем действует как постоянный мост для запросов SQL, посылаемых 
пользователями. Так как единственное приложение предусматривает 
работу со множеством пользователей, ему необходим некоторый ме­
ханизм, реализующий стратегию совместного использования. В Spark 
имеется такой механизм в виде внутреннего планировщика Spark Fair 
Scheduler, позволяющего долгоживущим приложениям определять 
очереди с приоритетами для выполняемых задач. Детальный обзор 
данного механизма выходит далеко за рамки этой книги, поэтому за 
дополнительной информацией о планировщике Fair Scheduler обра­
щайтесь к официальной документации. 

диспетчеры 1<Ластеров 
Фреймворк Spark может работать под управлением разных диспет­
черов кластеров (cluster managers). Если вам просто нужно запустить 
Spark на множестве машин, достаточно будет использовать встро­
енного диспетчера Spark Standalone. Однако если кластер уже име­
ется и вам хотелось бы организовать выполнение на нем не только 
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Sраrk-приложений, но и других (например, обеспечить одновремен­
ное выполнение заданий Spark и Hadoop MapReduce ), у вас на выбор 
есть два популярных диспетчера кластеров: Hadoop YARN и Apache 
Mesos. Наконец, для развертывания на Amazon ЕС2 в составе Spark 
имеются сценарии запуска кластера Standalone и различных служб 
поддержки. В этом разделе мы расскажем, как запустить Spark в каж­
дом из упомянутых окружений. 

Диспетчер кластера Spark Standalone 

Диспетчер Spark Standalone предлагает простой способ запуска при­
ложений в кластере. Он состоит из одного ведущего (master) и не­
скольких ведомых (worker) процессов, для каждого из которых на­
страивается объем доступной памяти и ядер процессора. Выполняя 
запуск приложения, можно выбрать, сколько памяти будет выделять­
ся исполнителям, а также общее число ядер для всех исполнителей. 

Запуск диспетчера Spark Standalone 

Запустить диспетчера Standalone можно либо запуском ведущего 
и ведомых процессов вручную, либо с помощью сценария запуска из 
подкаталога sbin в каталоге установки Spark. Сценарии запуска пред­
ставляют собой самый простой способ, но требуют наличия доступа 
через SSH к машинам в кластере и в настоящее время (начиная с вер­
сии Spark 1.1) доступны только в Мае OS Х и Linux. Мы рассмотрим 
эти сценарии в первую очередь, а затем покажем, как запускать клас­
теры вручную на других платформах. 

Чтобы запустить кластер с помощью сценария запуска, выполните 
следующие шаги: 

1. Скопируйте скомпилированную версию Spark в один и тот же
каталог на всех машинах, например /home/youmame/spark.

2. Настройте доступ по SSH без пароля с ведущей машины на
все остальные. Для этого нужно создать одну и ту же учетную
запись на всех машинах, сгенерировать закрытый ключ SSH на
ведущей машине с помощью ssh-keygen и добавить этот ключ
в файлы .ssh/authorized_keys на всех рабочих машин.ах. Если
прежде вам не приходилось делать этого, просто выполните
следующие команды:

# На ведущей машине: выполните ssh-keygeп с параметрами по умолчанию 

$ ssh-keyqen -t dsa

Enter file in which to save the key (/home/you/ .ssh/id_dsa): [ENTER] 
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Enter passphrase (empty for no passphrase): [ЕМРТУ] 
Enter same passphrase again: [ЕМРТУ] 

На рабочих машинах: 
скопируйте �/.ssh/id_dsa.pub с ведущей машины на рабочую, затем: 
cat N/,ssh/id_dsa.puЬ >> N/,ssh/authorized_keys 

$ chmod 644 N/.ssh/authorized_keys 

3. Отредактируйте файл conf /slaves на ведущей машине и занеси­
те в него сетевые имена ведомых машин.

4. Чтобы запустить кластер, выполните команду shin/start-all.sh
на ведущей машине (важно выполнить эту команду именно на
ведущей машине, а не на ведомой). Если запуск прошел успеш­
но, на экране не должно появиться приглашение к вводу пароля
и должен стать доступным веб-интерфейс диспетчера кластера
по адресу http://rnasternode:8080 со списком всех рабочих ма­
шин.

5. Чтобы остановить кластер, выполните hin/stop-all.sh на веду­
щей машине.

Если вы пользуетесь иной операционной системой, отличной от 
UNIX, или вам интересно попробовать запустить кластер вручную, 
вы можете сделать это с помощью сценария spark-class в подката­
логе Ьiп/ каталога установки Spark. На ведущей машине выполните 
команду: 

bin/spark-class org.apache.spark.deploy.master.Master 

Затем на ведомых машинах: 

bin/spark-class org.apache.spark.deploy.worker.Worker spark://masternode:7077 

(где rnasternode - сетевое имя ведущей машины). В Windows исполь­
зуйте обратный слэш (\) вместо прямого(/). 

По умолчанию диспетчер кластера автоматически выделит память 
и ядра процессоров для каждого рабочего узла и для самого фрейм­
ворка Spark. Подробности о настройке диспетчера кластера Spark 
Standalone смотрите в официальной документации Spark. 

Запуск приложений 
Чтобы запустить приложение под управлением диспетчера 

Spark Standalone, передайте флаг --rnaster с аргументом spark: // 
rnasternode: 7077 сценарию spark-subrnit. Например: 

spark-submit --master spark://masternode:7077 yourapp 
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Этот адрес URL также отображается в неб-интерфейсе диспетче­
ра Standalone по адресу: http://masternode:8080. Обратите внимание, 
что имя хоста (сетевое имя) и порт, используемые для запуска при­
ложения, должны в точности повторять URL, представленный в веб­
интерфейсе. Некоторые пользователи могут безуспешно пытаться 
использовать IР-адрес вместо имени хоста. Даже если IР-адрес соот­
ветствует требуемому хосту, приложение не будет запущено. Некото­
рые администраторы могут настроить Spark на использование порта 
с другим номером, отличным от 7077. Чтобы быть полностью уверен­
ными в правильности имени хоста и номера порта, просто скопируйте 
их из неб-интерфейса и вставьте в командную строку. 

Точно таким же способом можно запустить на кластере spark-shell 
или pyspark, передав флаг --rnaster: 

spark-shell --rnaster spark://rnasternode:7077 
pyspark --rnaster spark://rnasternode:7077 

Чтобы убедиться, что приложение или интерактивная оболочка 
запустились, откройте неб-интерфейс диспетчера кластера http:// 
masternode:8080 и проверьте: ( 1) подключилось ли ваше приложение 
(то есть присутствует ли оно в списке Running Applications (Дей­
ствующие приложения)) и (2) указано ли в списке, что ему (прило­
жению) выделена память и более О ядер. 

Часто нормальному запуску приложения препятствует его требование 
выделить исполнителям больше памяти (с помощью флага --executor­
rnernory сценария spark-subrnit), чем доступно в кластере. В этом случае 
диспетчер Standalone никогда не запустит исполнителей для приложе­
ния. Убедитесь, что требование приложения может быть удовлетворено 
кластером. 

Наконец, диспетчер Standalone поддерживает два режима раз­
вертывания, определяющих, где будет запущена программа-драйвер 
приложения. В клиентском режиме (используется по умолчанию) 
драйвер запускается на машине, где выполнена команда spark-subrnit, 
и действует как часть этой команды. Это означает, что вы можете 
непосредственно наблюдать вывод своей программы-драйвера или 
передавать ей ввод (например, если программой-драйвером является 
интерактивная оболочка), но для этого машина, где запускается при­
ложение, должна иметь быстрое соединение с рабочими машинами 
и оставаться доступной в течение всего времени работы приложения. 
Напротив, в режиме кластера драйвер запускается внутри диспетчера 
Standalone как еще один процесс на одном из рабочих узлов и затем 



168 •:• Выпо/\нение в К/\астере 

вновь подключается к диспетчеру, чтобы потребовать выделить ис­
полнителей. В этом режиме команда spark-submit работает по принци­
пу <<Запустил и забыл,> - вы можете закрыть крышку своего ноутбука, 
пока приложение выполняется. Вы все еще сможете получить доступ 
к журналам приложения через веб-интерфейс диспетчера кластера. 
Чтобы выполнить запуск в режиме кластера, команде spark-submit 
следует передать флаг --deploy-mode cluster. 

Настройка использования ресурсов 
Когда кластер Spark одновременно используется множеством при­

ложений, необходимо решить, как должны распределяться ресурсы 
между исполнителями. Диспетчер Spark Standalone реализует прос­
тейшую стратегию планирования, обеспечивающую возможность 
конкурентного выполнения нескольких приложений. Диспетчер 
Apache Mesos поддерживает более динамичное управление, осу­
ществляемое прямо во время выполнения приложений, а диспетчер 
YARN реализует концепцию очередей, с помощью которых можно 
делить приложения на группы. 

Выделение ресурсов в диспетчере Standalone регулируется двумя 
настройками: 

1. Объем памяти для исполнителя. Значение для этого парамет­
ра можно задать с помощью флага --executor-memory сценария
spark-submit. Для каждого приложения будет запускаться не бо­
лее одного процесса исполнителя на каждом рабочем узле, соот­
ветственно, данный параметр определяет, какой объем памяти
на рабочем узле будет запрашивать приложение. По умолчанию
этот параметр имеет значение 1 Гбайт, но в большинстве случа­
ев пользователями задается большее значение.

2. Максимальное общее число ядер. Общее число ядер в клас­
тере, используемое всеми исполнителями в приложении. По
умолчанию число ядер не ограничивается; то есть приложение
будет пытаться запустить исполнителей на всех рабочих узлах,
доступных в кластере. Однако во многопользовательской среде
желательно ограничивать аппетиты пользователей. Сделать это
можно с помощью флага --total -executor-cores сценария spark­
submi t или параметра spark. cores .max в конфигурационном фай­
ле Spark.

Для проверки настроек можно заглянуть в веб-интерфейс диспет­
чера Standalone (http://masternode:8080), где отображается текущее 
распределение ресурсов. 
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Наконец, диспетчер кластера Standalone по умолчанию стремится 
запустить максимальное число исполнителей для каждого приложе­
ния. Например, представьте, что у нас имеется кластер из 20 узлов 
с 4-ядерными процессорами на каждой машине и выполняется запуск 
приложения с флагами --executor-memory lG и --total -executor-cores 8. 
В результате Spark запустит восемь исполнителей на разных машинах 
и каждому выделит 1 Гбайт ОЗУ. Это делается по умолчанию, чтобы 
дать приложению шанс достичь локальности данных в распределен­
ных файловых системах, действующих на тех же машинах (напри­
мер, HDFS), потому что эти системы обычно распределяют данные 
по всем узлам. При желании можно потребовать от Spark сосредото­
чить исполнителей на минимально возможном числе узлов, присвоив 
значение false конфигурационному свойству spar k. deploy. spreadOut 
в файле conf/spark-defaults.conf. В этом случае для данного прило­
жения будет запущено только два исполнителя, каждому из которых 
будет выделено 1 Гбайт ОЗУ и четыре ядра. Данная настройка окажет 
влияние на все приложения, выполняющиеся в кластере Standalone, 
и должна быть выполнена перед запуском диспетчера Standalone. 

Высокая доступность 
В промышленном окружении весьма желательно, чтобы кластер 

Standalone оставался доступен для приложений, даже в случае выхода 
из строя отдельных узлов. Диспетчер Spark Standalone поддержива­
ет продолжение работы после остановки нескольких рабочих узлов. 
На случай, если также потребуется обеспечить высокую доступность 
ведущего узла кластера, Spark поддерживает использование Apache 
ZooKeeper (распределенной системы координации) для создания ре­
зервных ведущих узлов и переключения между ними, если один из 
них выходит из строя. Настройка интеграции кластера Standalone 
с системой ZooKeeper выходит далеко за рамки этой книги, но опи­
сана в официальной документации Spark (https://spark.apache.org/ 
docs/latest/spark-standalone.html#high-availaЬility). 

Hadoop YARN 

YARN - это диспетчер кластера, появившийся в версии Hadoop 2.0 
и позволяющий разнообразным фреймворкам обработки данных ис­
пользовать разделяемый пул ресурсов. Обычно этот диспетчер уста­
навливается на те же узлы, что и файловая система Hadoop (HDFS). 
Запуск Spark под управлением YARN имеет свои преимущества, пота-
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му что обеспечивает фреймворку быстрый доступ к данным в HDFS, 
хранящимся на тех же узлах, где работают исполнители. 

Запустить Spark под управлением YARN совсем не сложно: нужно 
определить переменную окружения, ссылающуюся на каталог с на­
стройками Hadoop, а затем запустить приложение с помощью сце­
нария spark-submit, передав ему специально сформированный адрес 
URL ведущего узла. 

На первом этапе необходимо узнать путь к каталогу с настройка­
ми Hadoop и сохранить его в переменной окружения HADOOP CONF DIR. 
в этом каталоге находятся файл yarnsite.xml и другие конфигураци­
онные файлы. Обычно этим каталогом является HADOOP НОМЕ/ conf,

если фреймворк Hadoop установлен в HADOOP НОМЕ, или с-истемный 
каталог /etc/hadoop/conf. Затем можно запустить приложение, как 
показано ниже: 

export HADOOP_CONF_DIR=" ... " 

spark-submit --master yarn yourapp 

Так же как при использовании диспетчера Spark Standalone, 
YARN поддерживает два режима выполнения в кластере: клиент­
ский режим, когда программа-драйвер выполняется на машине, где 
произведен запуск (например, на вашем ноутбуке), и кластерный 
режим, когда драйвер выполняется внутри контейнера YARN. Вы­
бор режима производится с помощью флага --deploy-mode сценария 
spar k-submi t. 

Оба инструмента Spark, интерактивная оболочка и pyspark, поддер­
живают работу под управлением YARN; просто определите перемен­
ную HADOOP CONF DIR и передайте флаг --master yarn этим приложени­
ям. Имейте в виду, что оба инструмента будут запущены в клиентском 
режиме, так как они ожидают ввода пользователя. 

llастройка использования ресурсов 

Когда приложения Spark запускаются в YARN с использованием 
фиксированного числа исполнителей, которое можно задать флагом 
--num-executors сценария spark-submit, spark-shell и т. д., по умолча­
нию диспетчер запускает только двух исполнителей, поэтому часто 
бывает нужно увеличить их число. Также можно указать объем па­
мяти (флаг --executor-memory), который должен выделяться каждому 
исполнителю, и число ядер для всех исполнителей ( флаг --executor­
cores ). Обычно Spark работает эффективнее с небольшим числом 
крупных исполнителей (когда каждому выделяется большой объем 
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памяти и несколько ядер), потому что имеет возможность оптимизи­
ровать взаимодействия внутри каждого исполнителя. Однако имейте 
в виду, что некоторые кластеры накладывают ограничение на размер 
исполнителя (8 Гбайт по умолчанию) и не позволяют запускать более 
крупных исполнителей. 

Иногда с целью улучшения управления ресурсами в кластерах 
YARN настраивают планирование приложений посредством <<очере­
дей,>. Выбор имени очереди осуществляется с помощью флага --queue. 

Наконец, дополнительную информацию о настройке YARN можно 
найти в официальной документации Spark (http://spark.apache.org/ 
docs/latest/submitting-applications.html). 

Apache Mesos 

Apache Mesos - это универсальный диспетчер кластера, способный 
выполнять аналитические задачи и долгоживущие службы (напри­
мер, веб-приложения или хранилища данных в виде пар ключ/значе­
ние). Чтобы запустить Spark под управлением Mesos, передайте адрес 
mesos:// сценарию spark-submit: 

spark-submit --master mesos://masternode:5050 yourapp 

Кластеры Mesos можно настроить на использование системы 
ZooKeeper для выбора ведущего узла при работе в режиме с несколь­
кими ведущими узлами. В этом случае используйте URI mesos.j / 
zk://, указывающий на список узлов ZooKeeper. Например, если име­
ются три узла ZooKeeper (nodel, node2 и nodeЗ), на которых система 
ZooKeeper обслуживает запросы на порту с номером 2181, можно ис­
пользовать следующий URI: 

mesos://zk://nodel:2181/mesos,node2:2181/mesos,node3:2181/mesos 

Режимы планирования в Mesos 

В отличие от других диспетчеров кластеров, Mesos предлагает два 
режима распределения ресурсов между исполнителями. В режиме 
«тонкого управления�, который используется по умолчанию, число 
ядер процессоров, предоставляемых исполнителям, может регу лиро­
ваться диспетчером Mesos в ту или иную сторону прямо в процес­
се выполнения, благодаря чему имеется возможность динамически 
перераспределять вычислительные ресурсы между несколькими ис­
полнителями, действующими на одной машине. В режиме «грубо­
го управления� Spark заранее выделяет фиксированное число ядер 
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каждому исполнителю и никогда не изменяет его до завершения 
приложения, даже если в настоящий момент исполнитель не задей­
ствован в вычислениях. Включить режим грубого управления мож­
но с помощью флага --conf spark.mesos.coarse=true сценария spark­
submit. 

Режим тонкого управления выглядит привлекательнее, когда не­
сколько пользователей используют один кластер для выполнения 
интерактивных приложений, таких как интерактивные оболочки, 
потому что на время простоя для таких приложений сокращается 
число используемых ядер, и они отдаются в распоряжение програм­
мам других пользователей. Однако при этом увеличивается задержка 
(что особенно заметно на таких приложениях, как Spark Streaming), 
и приложениям приходится ждать некоторое время освобождения 
ядер процессора, которые будут «отобраны1> у приложения при вводе 
пользователем команды в другом интерактивном приложении. Сле­
дует отметить, что есть возможность смешивать режимы планиро­
вания в одном кластере Mesos ( то есть для некоторых приложений 
параметр spark. mesos. coarse можно установить в значение true, а для 
других - в false). 

Клиентский и кластерный режимы 
Начиная с версии 1.2, Spark, работая под управлением Mesos, под­

держивает выполнение приложений только в «клиентском,> режиме -
то есть когда программа-драйвер выполняется на машине, где запус­
кается сценарий spark-submit. Чтобы запустить программу-драйвер 
в кластерном режиме под управлением Mesos, можно воспользовать­
ся такими фреймворками, как Aurora и Chronos. Вы можете использо­
вать любой из них для запуска драйвера своего приложения. 

Настройка использования ресурсов 
Управление использованием ресурсов в Mesos осуществляет­

ся с помощью двух флагов сценария spark-submit: --executor-memory 
( определяет объем памяти, выделяемой каждому исполнителю) 
и --total-executorcores ( определяет максимальное число ядер про­
цессора, выделяемых в сумме всем исполнителям в приложении). 
По умолчанию Spark старается передать каждому исполнителю мак­
симально возможное число ядер, запустив минимально возможное 
число исполнителей, чтобы выделить каждому желаемое число ядер. 
Если параметр --total -executor-cores не задан, Spark попытается за­
действовать все доступные ядра в кластере. 
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Amazon ЕС2 

В состав Spark входит сценарий для запуска кластеров на Amazon 
ЕС2. Этот сценарий запускает множество узлов и затем устанав­
ливает на них диспетчера кластера Spark Standalone, поэтому, как 
только кластер запустится, его можно использовать в соответствии 
с инструкциями использования режима Standalone, что приводились 
в предыдущем разделе. Дополнительно сценарий поддержки ЕС2 на­
страивает доступ к службам мониторинга кластера, таким как HDFS, 
Tachyon и Ganglia. 

Этот сценарий называется spark-ec2 и находится в подкаталоге 
ес2 каталога установки Spark. Он требует наличия в системе версии 
Python 2.6 или выше. Вы можете загрузить Spark и запустить сцена­
рий spark-ec2 без предварительной компиляции самого фреймворка. 

Сценарий поддержки ЕС2 может управлять множеством имено­
ванных кластеров, идентифицируя их с помощью групп безопасности 
ЕС2. Для каждого кластера сценарий создаст группу безопасности 
с именем clustername-master (для ведущего узла) и clustername-slaves 
(для рабочих узлов). 

Запуск кластера 
Чтобы запустить кластер, необходимо сначала создать учетную 

запись на Amazon Web Services (AWS) и приобрести идентификатор 
ключа доступа и секретный ключ доступа. Затем экспортировать их 
через переменные окружения: 

export AWS_ACCESS_KEY_ID=" ... " 
export AWS_SECRET_ACCESS_KEY=" ... " 

Дополнительно создать пару ключей ЕС2 SSH и загрузить файл 
закрытого ключа ( обычно с именем keypair.pem ), чтобы иметь доступ 
к машинам через SSH. 

Далее выполнить команду launch сценария spark-ec2, передав имя 
пары ключей, имя файла закрытого ключа и имя кластера. По умол­
чанию эта команда запустит кластер с единственным ведущим и од­
ним ведомым узлом, используя экземпляры ЕС2 ml. xlarge: 

cd /path/to/spark/ec2 

./spark-ec2 -k mykeypair -i mykeypair.pem launch mycluster

Вы можете также настроить типы экземпляров, число ведомых уз­
лов, регион ЕС2 и другие параметры, передав их в виде аргументов 
сценарию spark-ec2. Например: 
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# Запуск кластера с 5 ведомыми узлами типа mЗ.xlarge 

./spark-ec2 -k mykeypair -i mykeypair.pem

-s 5 -t mЗ.xlarge launch mycluster

Полный список параметров можно получить командой spark-ec2
--help. В табл. 7.3 перечислены некоторые из наиболее часто исполь­
зуемых параметров.

Таблица 7.З. Часто используемые параметры сценария spark-ec2

Параметр Назначение 

-k KEYPAIR Имя используемой пары ключей 

-i IDENТITY FILE Файл закрытого ключа (с расширением .pem) 

-s NUM SLAVES Число ведомых (рабочих) узлов 

-t INSTANCE ТУРЕ Тип используемого экземпляра Amazon 

-r REGION Регион Amazon (например, us-west-1) 

-z ZONE Зона доступности (например, us-west-lb) 

--spot-pr ice= PRICE Использовать спотовые экземпляры по указанной 
цене (в долларах США) 

После запуска сценария обычно требуется что-то около пяти ми­
нут для запуска машин. Зайдите на эти машины и настройте Spark. 

Журналирование в кластере 
Вы можете зайти на ведущий узел кластера через SSH, используя 

файл .рет для своей пары ключей. Для большего удобства сценарий 
spark-ec2 предоставляет команду login: 

./spark-ec2 -k mykeypair -i mykeypair.pem login mycluster

Как альтернатива: можно определить имя хоста ведущего узла ко­
мандой 

./spark-ec2 get-master mycluster

и затем войти в него через SSH командой ssh -i keypair .pem root@
masternode. 

Оказавшись на кластере, можно использовать Spark, установ­
ленный в /root/spark, для запуска программ. Это - кластер Spark 
Standalone с адресом URL ведущего узла spark://masternode:7077. 
Если вы предпочитаете запускать программы с помощью сценария 
spark-submit, он уже будет корректно настроен для запуска ваших 
приложений на кластере. Веб-интерфейс такого кластера будет до­
ступен по адресу http://masternode:8080. 
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Обратите внимание, что запускать задания смогут только програм­
мы, запущенные на кластере; настройки брандмауэра не позволяют 
внешним хостам делать это по соображениям безопасности. Чтобы 
запустить готовое приложение на кластере, его сначала нужно скопи­
ровать командой scp: 

scp -i mykeypair.pem app.jar root@masternode:� 

Остановка кластера 
Чтобы остановить кластер, запущенный сценарием spark-ec2, вы­

полните команду 

./spark-ec2 destroy mycluster

Она завершит все экземпляры, связанные с кластером ( то есть все
экземпляры в двух группах безопасности, mycluster-master и mycluster­
slaves ). 

Приостановка и перезапуск кластера 
Помимо завершения кластера, сценарий spark-ec2 позволяет при­

остановить экземпляры Amazon в кластере и затем перезапустить 
их. При остановке экземпляры закрываются и теряют все данные на 
<<эфемерных�.> дисках ( <<ephemerali.> disks), которые настраиваются 
с установкой HDFS для spark-ec2 (см. раздел �хранилище на основе 
кластера�.> ниже). Однако остановленные экземпляры сохраняют все 
данные в своих корневых каталогах ( то есть все файлы выгруженные 
туда), благодаря чему можно быстро возобновить работу. 

Приостановить кластер можно командой 

./spark-ec2 stop mycluster

А перезапустить - командой

./spark-ec2 -k mykeypair -i mykeypair.pem start mycluster

Q
Несмотря на то что сценарий spark-ec2 не имеет команды, позволяющей 
изменить размер кластера, это все же можно делать, добавляя машины 
в группу mycluster-slaves или удаляя их оттуда. Чтобы добавить новую 
машину, сначала приостановите кластер, затем в консоли управления 
AWS щелкните правой кнопкой мыши на одном из ведомых узлов и вы­
берите пункт �Launch more like thisi.> ( �запустить еще такой же�.>). В ре­
зультате в той же группе безопасности будет создана еще одна машина. 
Затем с помощью spark-ec2 перезапустите кластер. Для удаления ма­
шин просто завершайте их из консоли AWS (но имейте в виду, что это 
приведет к уничтожению данных в HDFS кластера). 
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Хранилище на основе кластера 
Кластеры Spark ЕС2 предлагают две предустановленные файло­

вые системы Hadoop, которые можно использовать для хранения ра­
бочих данных, например наборов данных, в среде, обеспечивающей 
более быстрый доступ, чем Amazon SЗ. Бот эти версии: 

О <<Эфемерная,> файловая система HDFS, использующая эфе­
мерные диски на узлах. Большинство типов экземпляров 
Amazon предоставляется со значительным объемом локаль­
ного пространства на �эфемерных�> дисках, которое исчезает 
при остановке экземпляра. Данная файловая система HDFS 
имеет значительный объем рабочего пространства, но данные, 
хранящиеся в ней, теряются при остановке и перезапуске клас­
тера ЕС2. Эта версия установлена на узлах в каталоге /root/ 
ephemeral-hdfs, где можно найти команду Ьin/hdfs для доступа 
к файлам и получения их списка. Увидеть содержимое эфемер­
ной файловой системы можно также через неб-интерфейс по 
адресу: http://masternode:50070. 

О �постоянная,> версия HDFS на корневых томах узлов. Эта 
файловая система сохраняет данные даже в случае перезапуска 
кластера, но обычно она меньше и медленнее, чем эфемерная 
версия. Ее хорошо использовать для хранения не очень больших 
наборов данных, которые не хотелось бы загружать многократ­
но. Эта версия установлена на узлах в каталоге /root/persistent­
hdfs. Увидеть содержимое постоянной файловой системы мож­
но через неб-интерфейс по адресу: http://masternode:60070. 

Помимо этих двух файловых систем, для доступа к данным часто 
используется Amazon SЗ, доступная в Spark через схему URI sЗn:j/. 
Подробности см. в разделе <<Amazon SЗ,> главы 5. 

Выбор диспетчера 1<Ластера 
Разные диспетчеры кластеров, поддерживаемые фреймворком Spark, 
предлагают различные варианты для развертывания приложений. 
Если вы приступаете к созданию нового приложения и стоите перед 
выбором подходящего диспетчера кластера, мы рекомендуем следо­
вать рекомендациям ниже: 

О Начните с диспетчера Spark Standalone. Этот диспетчер прост 
в настройке и обеспечивает практически те же возможности, 
что и другие диспетчеры, если говорить только о приложениях 
Spark. 
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О Если наряду с приложениями Spark требуется запускать дру­
гие приложения или необходимы более богатые возможности 
планирования ( например, очереди), попробуйте использовать 
YARN или Mesos. Из них диспетчер YARN обычно предуста­
навливается вместе с системой Hadoop. 

О Одно из преимуществ Mesos перед YARN и Standalone - тонкое 
управление распределением ресурсов, что позволяет интер­
активным приложениям, таким как интерактивная оболочка 
Spark, освобождать вычислительные ресурсы, когда они не 
нужны. Это особенно привлекательная особенность в окруже­
ниях, где множество пользователей запускает интерактивные 
оболочки. 

О Во всех случаях желательно запускать Spark на тех же узлах, 
где установлена файловая система HDFS, чтобы добиться бо­
лее быстрого доступа к хранилищу. Вы можете вручную уста­
новить на эти узлы диспетчеры кластеров Mesos или Standalone 
или использовать дистрибутивы Hadoop, устанавливающие 
YARN и HDFS вместе. 

О Наконец, имейте в виду, что управление кластерами - это очень 
быстро развивающаяся сфера: к моменту, когда эта книга вый­
дет из печати, могут появиться новые возможности в уже су­
ществующих диспетчерах, а также новые диспетчеры класте­
ров. Методы запуска приложений, описанные здесь, не будут 
меняться, но вам обязательно следует обратиться к официаль­
ной документации для своей версии Spark (http://spark.apache. 
org/docs/latest/), чтобы ознакомиться с последними возможно­
стями. 

В 3а1<Лючение 

В этой главе сначала была описана архитектура распределенных при­
ложений Spark, состоящих из процесса драйвера и распределенного 
множества процессов исполнителей. Затем мы рассказали, как соби­
рать, упаковывать и запускать приложения Spark. В заключение в об­
щих чертах описали наиболее распространенные среды выполнения 
для Spark, включая встроенный диспетчер кластера, YARN, Mesos, 
а также рассмотрели возможность запуска Spark в облаке Amazon 
ЕС2. В следующей главе мы погрузимся в исследование более слож­
ных вопросов функционирования и сосредоточимся на настройке 
и отладке промышленных приложений Spark. 
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Настрой1<а 

и отлад1<а Sparl< 

В этой главе рассказывается, как настраиваются приложения Spark, 
и дается краткий обзор приемов настройки и отладки промышлен­
ных приложений Spark. Фреймворк Spark спроектирован так, что 
настройки по умолчанию хорошо подходят в большинстве случаев. 
Однако в некоторых конфигурациях может появиться желание из­
менить их. В этой главе описываются механизмы настройки Spark 
и выделяются некоторые параметры, которые пользователям может 
понадобиться отрегулировать под свои нужды. Настройки могут по­
мочь увеличить производительность приложений; во второй части 
этой главы описываются основы, необходимые для понимания источ­
ников повышения производительности приложений Spark, а также 
соответствующие параметры настройки и шаблоны проектирования 
для создания высокопроизводительных приложений. Мы также рас­
скажем о пользовательском интерфейсе Spark и механизмах журна­
лирования - они наверняка пригодятся вам для настройки произво­
дительности и разрешения проблем. 

Настрой1<а Sparl< с помошью Sparl<Conf 
Часто под настройкой Spark подразумевается изменение конфигура­
ции среды выполнения приложения Spark. Основным механизмом 
настройки в Spark является класс SparkConf. Экземпляр SparkConf 
необходим при создании нового объекта SparkContext, как показано 
в примерах с 8.1 по 8.3. 

Пример 8. 1 •:• Настройка приложения с использованием SparkConf 
в Python 

# Создать объект conf 

conf = new SparkConf() 

conf.set("spark.app.name", "Му Spark Арр") 
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conf.set("spark.master", "local[4]") 

conf.set("spark.ui.port", "36000") # Переопределить порт по умолчанию 

# Создать SparkContext с данной конфигурацией 

sc = SparkContext(conf) 

Пример 8.2 •:• Настройка приложения с использованием SparkConf 
в Scala 

// Создать объект conf 

val conf = new SparkConf() 

conf.set("spark.app.name", "Му Spark Арр") 

conf. set ( "spark .master", "local [ 4] ") 

conf.set("spark.ui.port", "36000") // Переопределить порт по умолчанию 

// Создать SparkContext с данной конфигурацией 

val sc = new SparkContext(conf) 

Пример 8.3 •:• Настройка приложения с использованием SparkConf 
вJava 

// Создать объект conf 

SparkConf conf = new SparkConf(); 

conf.set("spark.app.name", "Му Spark Арр"); 

conf. set ( "spark.master", "local [ 4] "); 

conf. set ( "spark. ui. port", "36000"); / / Переопределить порт по умолчанию 

// Создать SparkContext с данной конфигурацией 

JavaSparkContext sc = JavaSparkContext(conf); 

Класс SparkConf имеет очень простое устройство: экземпляр 
SparkConf состоит из пар ключ/значение, представляющих парамет­
ры конфигурации, которые пользователь может переопределить. 
Каждый параметр в Spark определяется строковым ключом и значе­
нием. Чтобы воспользоваться объектом SparkConf, его сначала нужно 
создать, вызвать метод set (} , чтобы добавить параметры конфигура­
ции, и затем передать этот объект в вызов конструктора SparkContext. 
Помимо метода set (), класс SparkConf имеет еще несколько вспомо­
гательных методов для настройки часто используемых параметров. 
В трех предыдущих примерах можно было бы воспользоваться также 
методами setAppNarne (} и setMaster () для изменения значений пара­
метров spark. арр. narne и spar k. rnaster соответственно. 

В этих примерах значения параметров в Spar kConf устанавливаются 
программно, в коде приложения, что очень удобно, когда конфигу­
рацию для данного приложения требуется изменять динамически. 
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Кроме того, Spark позволяет определять конфигурацию с помощью 
инструмента spark-submit. Когда производится запуск приложения 
с помощью сценария spark-submit, он внедряет в окружение парамет­
ры настройки по умолчанию, которые затем определяются и перепи­
сываются во вновь созданный объект SparkConf. Благодаря этому 
пользовательские приложения могут просто конструировать <<Пус­
тые>> объекты SparkConf и передавать их непосредственно в вызов 
конструктора SparkContext. 

Сценарий spark-submit поддерживает множество флагов для наи­
более часто используемых параметров настройки Spark и универ­
сальный флаг --conf, который может принимать любые конфигура­
ционные значения Spark. Применение этих флагов демонстрируется 
в примере 8.4. 

Пример 8.4 •:• Определение параметров настройки 

с использованием флагов сценария spark-submit 

$ bin/spark-suЬmit \ 
--class com.example.MyApp \ 
--master local[4] \ 
--name "Му Spark Арр" \ 
--conf spark.ui.port=ЗбOOO \ 
myApp.jar 

spark-submit поддерживает также загрузку настроек из файла. Это 
может пригодиться для определения параметров конфигурации окру­
жения, общих для множества пользователей, таких как URL ведуще­
го узла. По умолчанию spark-submit ищет файл conf/spark-defaults. 
сап/ в каталоге Spark и пытается прочитать пары ключ/значение, раз­
деленные пробельными символами. Есть возможность определить 
иное местоположение файла с помощью флага --properties-file, как 
показано в примере 8.5. 

Пример 8.5 •:• Определение параметров настройки 

с использованием конфигурационного файла 

$ bin/spark-suЬmit \ 
--class com.example.MyApp \ 
--properties-file my-config.conf \ 
myApp.jar 

Н Содержимое файла my-config. conf ## 
spark.master local[4] 
spark.app.name "Му Spark Арр" 
spark.ui.port 36000 
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Объект SparkConf, ассоциированный с данным приложением, не может 
изменяться после передачи его в вызов конструктора SparkContext. Это 
означает, что все конфигурационные решения должны быть приняты до 
создания объекта SparkContext. 

Иногда одно и то же конфигурационное свойство может устанав­
ливаться в разных местах. Например, пользователь может непосред­
ственно вызвать метод setAppNarne () объекта SparkConf, а также пере­
дать флаг --narne сценарию spark-subrnit. В таких случаях настройки, 
выполненные непосредственно в программном коде, имеют высший 
приоритет. Параметры, переданные сценарию spark-subrnit, имеют бо­
лее низкий приоритет, настройки в конфигурационном файле имеют 
еще более низкий приоритет, и, наконец, самый низкий приоритет 
имеют настройки по умолчанию. Чтобы узнать, какие настройки дей­
ствуют для данного приложения, загляните в список активных кон­
фигураций, отображаемый в веб-интерфейсе приложения, как опи­
сывается ниже в этой главе. 

В табл. 7.2 были перечислены некоторые часто используемые на­
стройки. В табл. 8.1 приводится список еще нескольких настроек, 
которые могут заинтересовать вас. Полный список настроек можно 
найти в документации к Spark'. 

Почти все настройки Spark передаются через объект SparkConf, кро­
ме одного важного параметра. Чтобы определить каталоги локально­
го хранилища данных для Spark (требуется в кластерах Standalone 
и Mesos), необходимо экспортировать переменную окружения SPARK 
LOCAL DIRS в сценарии conf/ spar k-env. sh, которая должна содержать 
список каталогов, разделенных запятыми. Подробнее о переменной 
SPARK LOCAL DIRS рассказывается в разделе <<Аппаратное обеспечение�> 
ниже� Этот -параметр наверняка должен иметь разные значения в раз­
ных конфигурациях Spark, потому что они могут отличаться для раз-
ных хостов. 

Компоненты выполнения: эалания, эалачи 

и стадии 

Прежде чем приступать к настройке и отладке приложений Spark, не­
обходимо получить более глубокое понимание внутренней архитек­
туры системы. В предыдущих главах вы видели «логическое,> пред­
ставление наборов RDD и их разделов. В процессе выполнения Spark 

1 http://spark.apache.org/docs/latest/configuration. html.
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Таблица В. 1. Часто используемые настройки Spark 

Параметр(ы) 
Значение 

по умолчанию 
Описание 

spar k. executor. memory 512m Объем памяти для каждого процесса 
(--executor-memory) исполнителя. Значение определя-

ется в формате строк определения 
объемов памяти в JVM (например, 
512m, 2g). Подробности см. в разделе 
«Аппаратное обеспечение» ниже 

spar k. executor. cores 1 Параметр, ограничивающий число 
(--executor-cores) (нет) ядер, доступных приложению. В клас-
spark. cores. max тере YARN свойству spark.executor. 
(--total -executor-cores 1 cores присваивается число ядер для 

каждого отдельно взятого исполни-
теля. В кластерах Standalone и Mesos 
этот параметр определяет общее 
число ядер, выделяемых для всех 
исполнителей в приложении. 
Подробности см. в разделе 
«Аппаратное обеспечение» ниже 

spark. speculation false Значение true в этом параметре 
разрешает спекулятивное выполне-
ние заданий. Это означает, что для 
заданий, выполняющихся слишком 
медленно, будут запускаться до-
полнительные копии на других узлах. 
С помощью этого параметра можно 
ускорить выполнение отстающих 
заданий в больших кластерах 

spark.storage 45000 Внутренний тайм-аут, используемый 
. ЫockManagerTimeout- для определения работоспособности 
IntervalMs исполнителей. Для заданий, пережи-

вающих продолжительные паузы, вы-
званные работой механизма сборки 
мусора, установка значения 100000 
(100 секунд) или выше в этом пара-
метре может предотвратить 
выполнение ненужных действий. 
В будущих версиях Spark этот пара-
метр, возможно, заменит более об-
щий параметр настройки тайм-аута, 
поэтому не забывайте обращаться 
к документации 

spark.executor. (пустое) Эти три параметра дают возможность 
extraJavaOptions настраивать поведение механизма 
spark. executor. запуска исполнителей в JVM. Три 
extraClassPath флага добавляют дополнительные 
spark. executor. параметры Java, элементы пути поис-
extraLibraryPath ка классов (classpath) и элементы пути 

поиска библиотек JVM. 
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Таблица 8.1 (окончание) 

Параметр(ы) 
Значение 

по умолчанию 
Описание 

Эти параметры должны опре-
деляться как строковые значе-
ния (например, spark.executor. 
extraJavaOptions="-XX: +PrintGCDetails-
ХХ: +PrintGCTimeStamps"). Обратите 
внимание, что, несмотря на наличие 
возможности вручную изменять 
classpath исполнителя, для добавле-
ния зависимостей рекомендуется 
использовать флаг --jars сценария 
spark-submit (который не использует 
этих параметров) 

spark. serializer org. apache. spark Класс, используемый для сериали-
.serializer зации объектов перед передачей их 
. JavaSerializer по сети или перед кэшированием. По 

умолчанию для всех Jаvа-объектов, 
реализующих интерфейс SerializaЫe, 
используется Java Serialization, но он 
действует слишком медленно, поэто-
му мы рекомендуем использовать org. 
apache. spark. serializer. KryoSerializer 
и настраивать сериализацию Кгуо 
всегда, когда необходима высокая 
производительность. Может быть 
любым подклассом класса org. apache. 
spark. Serializer 

spark. [Х] .port (случайное) Позволяет определять номера пор-
тов, используемых действующими 
приложениями Spark. Может приго-
диться в кластерах, где доступ к сети 
защищен системой безопасности. 
Возможные значения для Х: driver, 
fileserver, broadcast, replClassServer, 
ЫockManager и executor 

spark.eventLog. enaЫed false Значение true разрешает журналиро-
вание событий, что позволяет увидеть 
(с помощью сервера хронологии), 
какие задания Spark были выпол-
нены. За подробностями о сервере 
хронологии Spark обращайтесь 
к официальной документации 

spark. eventLog. dir file: ///tmp/ Путь к хранилищу журналов событий, 
sparkevents если журналирование разрешено. 

Указанное местоположение должно 
находиться в общедоступной файло-
вой системе, такой как HDFS 
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транслирует логическое представление в физический план выполне­
ния путем слияния отдельных операций в задачи (tasks). Подробное 
обсуждение каждого аспекта выполнения Spark выходит далеко за 
рамки этой книги, но представление о выполняемых шагах и исполь­
зуемой терминологии совершенно необходимо для настройки и от­
ладки заданий. 

Для демонстрации фаз выполнения Spark мы создадим прило­
жение и на его примере посмотрим, как пользовательский код пре­
образуется в низкоуровневый план выполнения. Рассматриваемое 
приложение представляет собой простой анализ журналов в интерак­
тивной оболочке Spark. В качестве исходных данных будет исполь­
зоваться текстовый файл с сообщениями разной степени важности, 
перемежающимися пустыми строками (пример 8.6). 

Пример 8.6 •:• input.txt - файл с исходными данными 

Н input. txt Н 
INFO This is а message with content 
INFO This is some other content 
(пустая строка) 
INFO Неге are more messages 
WARN This is а warning 
(пустая строка) 
ERROR Something bad happened 
WARN More details on the bad thing 
INFO back to normal messages 

Нам нужно открыть этот файл в интерактивной оболочке Spark 
и подсчитать число сообщений с каждым уровнем важности. Сначала 
создадим несколько наборов RDD, которые помогут нам ответить на 
этот вопрос (пример 8.7). 

Пример 8. 7 •:• Обработка текстовых данных в интерактивной 
оболочке Scala Spark 

// Прочитать файл 
scala> val input = sc.textFile("input.txt") 
// Разбить на слова и удалить пустые строки 
scala> val tokenized = input. 

1 map(line => line.split(" ")). 
1 filter(words => words.size > О) 

// Извлечь первое слово из каждой строки (уровень важности) 
// и увеличить соответствующий счетчик 
scala> val counts = tokenized. 

map(words => (words(O), 1)). 
1 reduceByKey{ (а, Ь) =>а+ Ь 
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Данная последовательность команд создает набор RDD counts 
с числом записей для каждой степени важности. После выполнения 
этих команд в интерактивной оболочке программа не выполняет 
никаких действий. Вместо этого она неявно определяет ориентиро­
ванный ациклический граф (Directed Acyclic Graph, DAG) объек­
тов RDD, которые будут использоваться в последующих действиях. 
Каждый набор RD D хранит указатель на одного или более родителей, 
а также метаданные о взаимоотношениях с ними. Например, когда 
выполняется инструкция val Ь = а .map (), в наборе RDD Ь сохраняется 
ссылка на родительский набор а. Такие ссылки (указатели) позволя­
ют наборам определять всех своих предков. 

Для вывода иерархий происхождения наборов RDD в Spark име­
ется метод toDebugString (). В примере 8.8 рассматриваются иерархии 
происхождения пары наборов, созданных в предыдущем примере. 

Пример 8.8 •:• Визуализация иерархии происхождения наборов RDD 

с помощью toDebugString () в Scala 

scala> input.toDeЬugString 
res85: String = 
(2) input.text MappedRDD[292] at textFile at <console>:13

1 input.text HadoopRDD[291] at textFile at <console>:13

scala> counts.toDeЬugString 
res84: String = 
(2) ShuffledRDD [ 296] at reduceByKey at <console>: 17
+-(2) MappedRDD[295] at rnap at <console>:17

1 FilteredRDD [ 294 J at filter at <console>: 15 

1 MappedRDD[293] at rnap at <console>:15 

1 input.text MappedRDD[292] at textFile at <console>:13 
1 input.text HadoopRDD[291] at textFile at <console>:13 

Первый вызов toDebugString () вывел содержимое набора input. 
Этот набор был создан вызовом sc. textFile (). Полученный результат 
позволяет понять, что делает sc. textFile (), так как показывает, какие 
наборы были созданы функцией textFile (). Как видите, она создала 
HadoopRDD и затем применила к нему преобразование map, чтобы полу­
чить возвращаемый набор. Иерархия происхождения набора counts 
выглядит сложнее. Этот набор имеет несколько предков, потому что 
к исходному набору было применено несколько операций, таких как 
отображение, фильтрация и свертка. Иерархия происхождения counts 
изображена также на рис. 8.1 слева. 

Перед выполнением действий эти наборы хранят только метадан­
ные, на основе которых позднее можно будет вычислить их содер-
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жимое. Чтобы запустить вычисления, нужно применить действие 
к набору counts, например возвращающее его содержимое, такое как 
вызов метода collect () в драйвере, как показано в примере 8.9. 

Пример 8.9 •:• Извлечение содержимого набора 

scala> counts.collect() 
res86: Array[ (String, Int)] = Array( (ERROR,l), (INF0,4), (WARN,2)) 

Для выполнения этого действия планировщик Spark создаст фи­
зический план вычислений, необходимых для выполнения действия. 
В данном случае вызывается действие collect (), для выполнения ко­
торого Spark должен материализовать все разделы набора и передать 
их программе-драйверу. Планировщик Spark начинает работу с по­
следнего набора в иерархии (в данном случае с набора counts) и дви­
жется в обратном направлении, определяя, какие еще наборы должны 
быть вычислены. Он переходит к родителю набора counts, затем к ро­
дителю его родителя и т. д., пока не будет составлен план вычисления 
всех необходимых наборов RDD. В простейшем случае планировщик 
определяет стадию вычислений для каждого RDD в графе, где каждая 
стадия делится на задачи для всех разделов в этом наборе. Затем эти 
стадии выполняются в обратном порядке для вычисления требуемого 
набора. 

В более сложных случаях множество стадий иногда не соответству­
ет в точности графу RDD. Такое возможно, когда планировщик вы­
полняет конвейерную обработку (pipelining) или свертку нескольких 
наборов внутри одной стадии. Конвейерная обработка выполняется, 
когда наборы могут вычисляться из их предков без перемещения дан­
ных. В выводе иерархии происхождения (в примере 8.8) отступами 
показано, где выполняется конвейерная обработка. Наборы, изобра­
женные на одном уровне со своими предками, вычисляются таким 
конвейерным способом. Например, в иерархии происхождения набо­
ра counts, даже при наличии большого числа родительских наборов 
RDD, имеются всего два уровня. Это указывает на наличие всего двух 
стадий вычислений в плане. В данном случае конвейерная обработка 
включает в себя несколько последовательных операций отображения 
и фильтрации. Справа на рис. 8.1 показаны две стадии выполнения, 
необходимые для получения набора counts. 

Если открыть веб-интерфейс приложения, можно убедиться, что 
действие collect () действительно выполняется в две стадии. Веб­
интерфейс доступен по адресу http://localhost:4040, если выполнить 
этот пример на локальной машине. Подробнее о веб-интерфейсе мы 
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Граф объектов RDD Физический план ! HadoopRDD 

sc.textFile( ... ) 
----'---

HadoopRDD 

.map( ... ) 

.filter( ... ) 

.reduceByKey( ... ) ShuffledRDD ShuffledRDD 

Рис. 8.1 •:• Преобразования набора RDD, 

собранные в две стадии 

Стадия2 

Стадия2 

будем говорить ниже, но уже сейчас вы можете использовать его, чтобы 
видеть, какие стадии выполнялись в ходе работы данной программы. 

В дополнение к конвейерной обработке внутренний планировщик 
Spark может укорачивать граф происхождения RDD, если требуемый 
набор уже был сохранен в памяти кластера или на диске. В таких слу­
чаях Spark может использовать прием �вычислений по короткой схе­
меi> и сразу приступать к вычислению следующего набора на основе 
сохраненного. Второй случай, когда может произойти укорачивание 
графа, - когда набор RDD был материализован в результате предыду­
щих операций, даже если он не был явно сохранен вызовом persist (). 
Это - внутренняя оптимизация, основанная на том факте, что Spark 
сохраняет промежуточные результаты на диске и использует его, что­
бы избежать многократного вычисления фрагментов графа RDD. 

Чтобы ощутить эффект кэширования, давайте сохраним набор 
counts и посмотрим, как будет укорочен граф выполнения для по­
следующих действий (пример 8.10). Если теперь заглянуть в веб­
интерфейс, можно увидеть, что кэширование уменьшило число ста­
дий, необходимых для будущих вычислений. Добавление нескольких 
вызовов collect () привело к созданию единственной стадии выпол­
нения. 
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Пример 8. 1 О •:• Вычисление кэшированного набора RDD 

// Кэшировать RDD 
scala> counts.cache() 
// Когда это действие встретилось в первый раз, оно было 
// выполнено в две стадии 
scala> counts.collect() 
res87: Array[(String, Int)] = Array((ERROR,1), (INF0,4), (WARN,2), 
( ##, 1) , ( ( empt у, 2) ) 
// Последующие вызовы действия выполняются в одну стадию 
scala> counts.collect() 
resBB: Array[(String, Int)] =Array((ERROR,l), (INF0,4), (WARN,2), 
( ##, 1) , ( ( empt у, 2) ) 

Множество стадий, произведенных для конкретного действия, на­
зывают заданием Uob ). В каждом случае, когда вызывается действие, 
такое как count (), создается задание, состоящее из одной или более 
стадий. 

Как только граф стадий будет определен, создаются задачи (tasks) 
и передаются внутреннему планировщику. Стадии в физическом пла­
не выполнения могут зависеть друг от друга в зависимости от иерар­
хии происхождения набора RDD, поэтому они выполняются в опре­
деленном порядке. Например, стадия, которая производит данные, 
должна выполняться перед стадиями, использующими эти данные. 

Физическая стадия запускает задачи, каждая из которых выполня­
ет одни и те же операции, но с разными разделами набора данных. Все 
задачи состоят из одной и той же последовательности шагов: 

1. Получить исходные данные из хранилища данных (если набор
RDD является исходным набором RDD), из существующего
набора RDD (если стадия опирается на использование кэши­
рованных данных) или из промежуточных результатов, произ­
веденных другой стадией.

2. Выполнить операции, необходимые для вычисления набора.
Например, применить функцию fil ter () или map () к исходным
данным или произвести группировку либо свертку.

3. Сохранить результат во внешнем хранилище или вернуть драй­
веру ( если это результат действия, такого как count () ).

Большинство средств журналирования и трассировки в Spark опе­
рируют стадиями, задачами и промежуточными данными. Понима­
ние процесса преобразования пользовательского кода в компоненты 
физического выполнения дается очень непросто, но это знание помо­
жет вам в настройке и отладке приложений. 
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Итак, процесс выполнения Spark включает следующие этапы: 
1. Пользовательский код определяет DAG (ориентированный

ациклический граф) наборов RDD. Операции над набора­
ми RDD создают новые наборы RDD, которые имеют обрат­
ные ссылки на своих родителей, в результате чего образуется
граф.

2. Действия вынуждают Spark преобразовать DAG в план вы­
полнения. Когда к набору RDD применяется действие, этот на­
бор обязательно должен быть вычислен. Но для этого необходи­
мо также вычислить родительские наборы RDD. Планировщик
Spar создает задание для вычисления всех необходимых наборов
RDD. Это задание делится на одну или более стадий, которые
выполняются параллельными волнами, состоящими из задач.

Каждая стадия соответствует одному или более наборам RDD
в графе DAG. Одна стадия может соответствовать нескольким
наборам RDD из-за конвейерной обработки.

3. Задачи планируются и выполняются в кластере. Стадии вы­
полняются в определенном порядке, запуская отдельные задачи
для вычисления сегментов RDD. Как только завершается по­
следняя стадия в задании, завершается и действие.

В конкретном приложении вся эта последовательность шагов мо­
жет выполняться неоднократно и последовательно, по мере создания 
новых наборов RDD. 

Поиск информаuии 
Фреймворк Spark подробно фиксирует порядок выполнения и ха­
рактеристики производительности приложения. Вся эта информа­
ция доступна пользователям в двух местах: в веб-интерфейсе Spark 
и в файлах журналов, производимых процессами драйвера и испол­
нителей. 

Веб-интерфейс Spark 
Первой остановкой на пути исследования поведения и производи­
тельности приложения Spark является веб-интерфейс. Он доступен 
на машине, где выполняется драйвер, на порту с номером 4040, по 
умолчанию. Но имейте в виду, что в случае когда драйвер приложе­
ния выполняется в кластере YARN, доступ к веб-интерфейсу осу­
ществляется через диспетчера ресурсов YARN ResourceMaпager, ко­
торый перенаправляет запросы непосредственно драйверу. 
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Веб-интерфейс Spark состоит из нескольких страниц, точный фор­
мат которых зависит от версии Spark. Так, в версии Spark 1.2 веб­
интерфейс включает четыре раздела, которые описываются ниже. 

Задания: ход выполнения и характеристики 
производительности стадий, задач и т. д. 
СтраницаjоЬs, изображенная на рис. 8.2, содержит подробную ин-

формацию об активных и недавно завершившихся заданиях Spark. 
Здесь содержится очень ценная информация о ходе выполнения 
заданий, стадий и задач. Для каждой стадии приводится несколько 
характеристик, которые помогут лучше понять, как протекает вы­
полнение. 

Страница jobs была добавлена только в версии Spark 1.2, поэтому в бо­
лее ранних версиях Spark она недоступна. 
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Рис. 8.2 •:• Главная страница веб-интерфейса приложения 

со списком заданий 
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Обычно эта страница используется для получения информации 
о производительности заданий. Для начала хорошо посмотреть, ка­
кие стадии составляют задание и имеются ли среди них особенно 
медленные или значительно меняющие свою производительность 
при многократном выполнении одного и того же задания. Обнаружив 
такую медлительную стадию, можно щелкнуть на ней, чтобы увидеть, 
какой программный код связан с ней. 

После сужения круга проблемных стадий можно перейти на стра­
ницу выбранной стадии stage (см.рис. 8.3), чтобы попытаться выявить 
проблемы, обусловливающие низкую производительность. В систе­
мах параллельной обработки данных, таких как Spark, часто возникает 
проблема, когда небольшое число задач тратит намного больше време­
ни на выполнение, чем другие. Страница stage может помочь выявить 
подобные проблемы путем сопоставления характеристик выполнения 
задач. Для начала сравните время выполнения задач - какие задачи 
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Рис. 8.3 •:• Страница веб-интерфейса приложения 
с подробной информацией о стадии 
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выполняются дольше других? Выявив такие задачи, можно пойти 
дальше и посмотреть, что заставляет задачи быть такими медлитель­
ными. Может быть, эти задачи читают и записывают большие объемы 
данных? Или они выполняются на очень медленных узлах? Ответы на 
эти вопросы очень помогут вам в отладке задания. 

Помимо выявления медлительных задач, нелишним будет узнать, 
сколько времени тратят задачи на каждом этапе своего жизненного 
цикла: чтение, вычисление и запись. Если задача тратит мало времени 
на чтение/запись данных, но выполняется слишком долго, это может 
быть обусловлено неоптимальной работой программного кода (при­
мер оптимизации кода можно найти в разделе <1Работа с разделами по 
отдельности� в главе 6). Некоторые задачи могут тратить почти все 
свое время на чтение данных из внешних источников, и в этом случае 
оптимизация кода не даст ощутимых результатов, потому что узким 
местом является ввод данных. 

Хранилище: информация о сохраненных наборах RDD 

Страница storage содержит информацию о сохраненных наборах 
RDD. Набор RDD сохраняется, если в какой-то момент вызывается 
его метод persist (), и позднее, в каком-нибудь задании, этот же набор 
вычисляется вновь. Иногда, если кэшировано слишком много набо­
ров RDD, самые старые могут выталкиваться из кэша, чтобы освобо­
дить память для новых. Эта страница сообщит вам, какой фрагмент 
каждого набора RDD хранится в кэше и какие объемы данных кэши­
рованы на разных носителях (диск, память и прочее). Иногда бывает 
полезно пробежать взглядом по этой странице и выяснить, сохраня­
ются ли в памяти наиболее важные наборы данных. 

Исполнители: список исполнителей в приложении 

На этой странице (executors) вы найдете список активных испол­
нителей в приложении вместе с некоторыми характеристиками, опи­
сывающими доступные исполнителям объемы для хранения данных. 
Данная страница поможет выяснить, обладает ли приложение доста­
точными объемами ресурсов. На первом этапе отладки хорошо загля­
нуть на эту страницу, так как нередко из-за неправильной настройки 
приложения число исполнителей оказывается меньше ожидаемого. 
Обратите также внимание на исполнителей с аномалиями в поведе­
нии, например имеющих большое значение отношения неудачных 
и удачных попыток выполнения задач. Присутствие исполнителей 
с большим числом неудачных попыток может свидетельствовать 
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о неправильной настройке приложения или о частом выходе из строя 
физического хоста. Простое исключение этого хоста из кластера мо­
жет способствовать увеличению производительности. 

Еще одной особенностью страницы executors является возмож­
ность посмотреть трассировку стека, для чего следует щелкнуть на 
кнопке Тhread Dump (Дамп потока) - эта особенность появилась 
в версии Spark 1.2. По трассировке стека вызовов потока исполните­
ля можно точно выяснить, какой код выполнялся в каждый момент 
времени. Если делать выборки трассировки стека через короткие про­
межутки времени, можно выявить <.горячие>.> участки программного 
кода или фрагменты, выполняющиеся дольше других. Такой способ 
неформального профилирования часто помогает выявить неэффек­
тивный пользовательский код. 

Окружение: настройка механизма отладки Spark 

На странице environment перечисляются активные свойства окру­
жения приложения Spark. Настройки, представленные здесь, отра­
жают <<без прикрас>> конфигурацию приложения. На основании дан­
ной информации можно выяснить, какие конфигурационные флаги 
включены, что особенно важно при использовании нескольких ме­
ханизмов настройки. Здесь также перечислены JAR и другие файлы, 
добавленные в приложение, что можно использовать для выявления 
проблем с неудовлетворенными зависимостями. 

Журналы драйверов и исполнителей 
Иногда пользователи могут получить дополнительную полезную 
информацию, исследуя файлы журналов, заполняемые непосред­
ственно программой-драйвером и исполнителями. Журналы содер­
жат более полные следы аномальных событий, такие как внутренние 
предупреждения или сведения об исключениях в пользовательском 
коде. Эти данные могут помочь при решении проблем или устране­
нии неожиданных аномалий в поведении. 

Точное местоположение журналов зависит от режима разверты­
вания: 

О в режиме Spark Standalone журналы приложения отображают­
ся непосредственно в неб-интерфейсе ведущего узла. По умол­
чанию они сохраняются в подкаталоге work/ каталога установ­
ки Spark на каждом рабочем узле; 

О в режиме Mesos журналы хранятся в каталоге work/ ведомого 
узла Mesos и доступны в неб-интерфейсе ведущего узла Mesos; 
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О в режиме YARN получить доступ к журналам проще всего с по­
мощью инструмента выборки информации из журналов (вы­
полните команду yarn logs -applicationid <арр ID> ), который 
возвращает отчет с журналами для указанного приложения. 
Этим приемом можно воспользоваться только после полной 
остановки приложения, потому что YARN должен сначала объ­
единить записи из разных журналов. Для просмотра журналов 
работающего приложения можно со страницы диспетчера ре­
сурсов ResourceManager в веб-интерфейсе YARN перейти на 
страницу Nodes (Узлы), затем перейти на страницу для выбран­
ного узла и уже там выбрать конкретный контейнер. YARN 
выведет журналы, связанные с выводом, который производит 
Spark в этом контейнере. В будущих версиях Spark этот про­
цесс, возможно, станет более прямолинейным за счет добавле­
ния прямой ссылки на соответствующие журналы. 

По умолчанию Spark записывает в журналы значительный объ­
ем информации. Однако есть возможность настроить ограниче­
ние, изменив уровень журналирования, или выводить журналы 
в нестандартное местоположение. Подсистема журналирования 
в Spark основана на log4j, библиотеке журналирования, широко 
используемой в программировании на Java, и, соответственно, на­
стройки журналирования следуют формату, принятому в log4j. 
В состав Spark входит пример конфигурационного файла conf / 
log4j.properties.template. Чтобы изменить настройки журналиро­
вания по умолчанию, следует сначала скопировать этот файл под 
именем log4j.properties, а затем внести изменения в настройки, та­
кие как базовый уровень журналирования (порог серьезности жур­
налируемых сообщений). По умолчанию он установлен в значение 
INFO. Чтобы уменьшить объем информации, сохраняемой в жур­
нале, можно установить уровень WARN или ERROR. После настройки 
параметров журналирования в соответствии с желаниями можно 
добавить файл log4j.properties с помощью ключа --files сценария 
spark-submit. Если после установки уровня журналирования таким 
способом у вас возникли проблемы, проверьте, не подключаете 
ли вы к приложению какие-нибудь архивы JAR, содержащие свои 
версии файла log4j.properties. Библиотека log4j сканирует каталоги 
в пути поиска классов (classpath) в поисках файлов свойств и, об­
наружив такой файл, игнорирует все остальные подобные файлы, 
которые могут находиться в других каталогах. 
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l<лючевые фа1<торы, влияюшие 

на проиэволительность 
Теперь вы имеете некоторое представление о том, как работает Spark, 
как наблюдать за ходом выполнения приложения и где искать харак­
теристики производительности и журналы. В этом разделе мы сдела­
ем следующий шаг и расскажем об общих проблемах производитель­
ности, с которыми можно столкнуться в приложениях, а также дадим 
рекомендации по настройке приложений с целью повысить их про­
изводительность. В первых трех разделах рассказывается, как мож­
но изменить программный код, чтобы поднять производительность, 
а в последнем обсуждаются вопросы настройки кластера и окруже­
ния, в которых выполняется Spark. 

Степень параллелизма 
На логическом уровне набор RD D является единой коллекцией объек­
тов. В процессе выполнения, как уже неоднократно говорилось выше, 
RDD делится на множество разделов, каждый из которых содержит 
подмножество всех данных. Когда Spark планирует и выполняет за­
дачи, для каждого раздела создается по одной задаче, и каждая зада­
ча будет выполняться по умолчанию на одном ядре. В большинстве 
случаев такой степени параллелизма вполне достаточно для быстрой 
обработки наборов RDD. Кроме того, параллелизм для исходных 
RDD обычно зависит от используемой системы хранения. Например, 
в HDFS исходные наборы RDD делятся на разделы по блокам файла 
HDFS. Для наборов, полученных в результате обработки других на­
боров, степень параллелизма определяется размерами родительских 
наборов RDD. 

Степень параллелизма оказывает двоякое влияние на произво­
дительность. При недостаточно высокой степени параллелизма не­
которые ресурсы Spark могут простаивать. Например, если в распо­
ряжение приложения передана 1 ООО ядер, а оно выполняет стадию, 
состоящую всего из 30 задач, можно было бы увеличить степень 
параллелизма и задействовать большее число ядер. Напротив, если 
степень параллелизма слишком высока, небольшие накладные рас­
ходы, связанные с каждым разделом, в сумме могут оказаться сущест­
венными. Признаком такой ситуации может служить почти мгновен­
ное - в течение нескольких миллисекунд - выполнение задач или 
когда задачи не читают и не записывают данных. 
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Spark предлагает два способа настройки параллелизма операций. 
Первый - передача степени параллелизма в виде параметра в опе­
рации, которые производят новые наборы RDD. Второй - любой 
имеющийся набор можно перераспределить между большим или 
меньшим числом разделов. Оператор reparti tion () перераспределит 
RDD случайным образом между желаемым числом разделов. Если 
известно, что число разделов RD D уменьшится, можно воспользо­
ваться оператором coalesce (), более эффективным, чем reparti tion (), 
поскольку он не использует операцию перемешивания данных. Если 
у вас сложилось мнение, что степень параллелизма слишком высо­
кая или слишком низкая, попробуйте перераспределить свои данные 
с помощью этих операторов. 

Например, допустим, что приложение читает большой объем дан­
ных из SЗ и сразу вслед за этим выполняет операцию fil ter (), которая 
почти наверняка исключит какую-то часть набора данных. По умол­
чанию набор RDD, возвращаемый функцией filter (), получит тот же 
размер, что и родительский, и может включать множество пустых или 
маленьких разделов. В такой ситуации можно увеличить производи­
тельность приложения путем объединения маленьких разделов RDD, 
как показано в примере 8.1 1. 

Пример 8. 11 •:• Объединение разделов RDD в оболочке PySpark 

# Шаблонный символ в имени исходного файла, из-за 
# чего в набор могут быть загружены тысячи файлов 
»> input = sc.textFile("sЗn://log-files/2014/*.log")
>>> input.getNumPartitions()
35154
# Фильтр, исключающий почти все данные
»> lines = input.filter(lamЬda line: line.startswith("2014-10-17"))
>>> lines.getNumPartitions()
35154
# Объединение строк в RDD перед кэшированием
>>> lines = lines.coalesce(S) .cache()
>>> lines.getNumPartitions()
4

# Последующие операции выполняются с объединенным набором RDD ... 
>>> lines.count() 

Формат сериализации 
Когда Spark передает данные по сети или сохраняет их на диск, он 
должен сериализовать объекты в двоичный формат. Эта операция 
играет важную роль при создании новых наборов, когда могут пере-
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мещаться значительные объемы данных. По умолчанию Spark ис­
пользует встроенный механизм сериализации J ava Serialization, но 
допускает возможность использования Kryo, сторонней библиотеки 
сериализации, имеющей более высокую производительность и про­
изводящую более компактное двоичное представление данных. К со­
жалению, Kryo может сериализовать не все типы объектов. Практи­
чески любые приложения смогут получить выгоды от использования 
Kryo для сериализации. 

Чтобы задействовать библиотеку Kryo, можно присвоить па­
раметру spark. serializer значение org. apache. spark. serializer. 
KryoSerializer. Для большей производительности можно зарегист­
рировать в Kryo классы, подлежащие сериализации, как показано 
в примере 8.12. Регистрация классов позволяет Kryo избежать не­
обходимости записывать полные имена классов с отдельными объ­
ектами, что может дать существенную экономию при сериализации 
тысяч или миллионов объектов. Если потребуется обеспечить при­
нудительное использование такой регистрации, установите свойство 
spark. kryo. registrationRequired в значение true, и Kryo будет генери­
ровать ошибки, встречая незарегистрированные классы. 

Пример 8.12 •:• Использование библиотеки Kryo и регистрация классов 

val conf = new SparkConf() 
conf.set("spark.serializer", 

"org.apache.spark.serializer.KryoSerializer") 

// Потребовать обязательную регистрацию классов 
conf.set("spark.kryo.registrationRequired", "true") 
conf.registerKryoClasses(Array(classOf[MyClass], 

classOf[MyOtherClass])) 

Всякий раз, используя Kryo или стандартное средство сериализации 
в Java, можно столкнуться с исключением NotSerializaЬleException, 
если программный код попытается сериализовать класс, не реали­
зующий интерфейса SerializaЫe. В таких ситуациях порой сложно 
отыскать класс, ставший причиной исключения, потому что поль­
зовательский код может ссылаться на множество разных классов. 
Многие реализации JVM поддерживают специальный флаг, помо­
гающий в отладке таких ситуаций: "-Dsun.io.serialization.extended 
Debuginfo=true". Включить этот флаг можно с помощью флагов 
--dri ver-java-options и --executor-java-options сценария spark-submit. 
Выяснив, какой класс является причиной исключения, самый прос­
той способ исправить проблему - изменить класс, добавив в него 
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реализацию интерфейса SerializaЫe. Если исходный код класса 
вам недоступен, придется использовать более сложные обходные 
решения, такие как создание подкласса, реализующего интерфейс 
ExternalizaЫe или определяющего поддержку сериализации с ис­
пользованием Kryo. 

Управление памятью 
Spark использует память для разных целей, поэтому понимание 
и умение настраивать использование памяти в Spark может помочь 
оптимизировать приложения. Внутри каждого исполнителя память 
используется для: 

О хранения наборов RDD: когда программа вызывает метод 
persist () или cache () набора RDD, его разделы сохраняются 
в памяти. Spark ограничивает объем памяти для кэширования 
некоторой долей <<кучи,> JVM, которая определяется парамет­
ром spar k. s torage. memoryFraction. Если этот предел будет пре­
вышен, Spark удалит из памяти самые старые разделы; 

О буферов под промежуточные наборы данных: при выполнении 
действий Spark создает промежуточные буферы для сохране­
ния результатов. Эти буферы используются также для сохране­
ния результатов агрегирования, которые будут переданы про­
грамме-драйверу или другому действию. Spark ограничивает 
объем памяти для хранения таких результатов долей, которая 
определяется параметром spark. shuffle .memoryFraction; 

О пользовательского кода: Spark выполняет произвольный поль­
зовательский код, соответственно, пользовательским функци­
ям также может потребоваться память. Например, если пользо­
вательское приложение создает большие массивы или другие 
объекты, для них также необходима память. Пользовательский 
код имеет доступ к части кучи JVM, оставшейся после выделе­
ния пространства для хранения наборов RDD и промежуточ­
ных результатов. 

По умолчанию Spark выделяет 60% памяти под хранилище на­
боров RDD, 20% - под промежуточные результаты и оставшиеся 
20% - для нужд пользовательских программ. В некоторых случаях 
перенастройка этих параметров может способствовать повышению 
производительности. Если пользовательский код создает очень боль­
шие объекты, имеет смысл уменьшить пространство, выделяемое под 
хранение RDD и промежуточных результатов, чтобы избежать исчер­
пания памяти пользовательскими функциями. 
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В дополнение к настройке размеров регионов памяти можно изме­
нить параметры функционирования механизма кэширования в Spark 
и тем самым улучшить производительность для некоторых видов на­
грузки. По умолчанию операция cache () сохраняет память, используя 
уровень хранения MEMORY _ ONLY. Это означает, что если для кэширования 
новых разделов RDD окажется недостаточно места в памяти, старые 
разделы будут просто удаляться, а если они потребуются вновь, Spark 
вычислит их повторно. Иногда метод persist () лучше вызывать с уров­
нем хранения MEMORY AND DISK - в этом случае старые разделы RDD 
будут сбрасываться на ДИСК И, КОГДа потребуются ВНОВЬ, будут про­
читаны в память из локального хранилища. Это может оказаться на­
много дешевле, чем повторное вычисление блоков, и обеспечить более 
предсказуемую производительность. Такой подход может пригодить­
ся, в частности, если повторное вычисление разделов RDD занимает 
значительное время (например, когда их требуется прочитать из базы 
данных). Полный список уровней хранения gds найдете в табл. 3.6. 

Второе усовершенствование в стратегии по умолчанию механиз­
ма кэширования - кэширование сериализованных объектов вместо 
самих Jаvа-объектов, что можно обеспечить, установив уровень хра­
нения MEMORY ONLY SER или MEMORY AND DISK SER. Кэширование сериа­
лизованных объектов несколько замедлит -работу операций с кэшем 
из-за необходимости сериализовать объекты, но может существенно 
уменьшить время на сборку мусора в JVM, потому что множество 
отдельных записей может храниться как единственный сериализо­
ванный буфер. Как известно, стоимость сборки мусора определяется 
числом объектов в куче, а не числом байтов данных, а такой метод кэ­
ширования заключается в сериализации множества объектов в один 
гигантский буфер. Подумайте об этом варианте, если вам доведется 
кэшировать большие объемы данных (исчисляемые, к примеру, гига­
байтами) в виде объектов и/или наблюдать длинные паузы в работе 
приложения, вызванные сборкой мусора. Такие паузы можно наблю­
дать в веб-интерфейсе приложения, в колонке GC Time (Время рабо­
ты сборщика мусора) для каждой задачи. 

Аппаратное обеспечение 
Аппаратные ресурсы также оказывают существенное влияние на 
производительность приложений. Основными параметрами оценки 
кластера являются: объем памяти, выделяемой каждому исполните­
лю, число ядер для каждого исполнителя, общее число исполнителей 
и число локальных дисков для хранения промежуточных данных. 
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Независимо от используемого диспетчера кластера объем памяти 
для одного исполнителя определяется параметром spark.executor. 
memory или флагом --executor-memory сценария spark-submit. Способ 
определения числа исполнителей и ядер для одного исполнителя 
зависит от применяемого диспетчера кластера. В YARN можно уста­
новить параметр spar k. executor. cores или передать флаги --executor­
cores и --num-executors сценарию spark-submit. В Mesos и Standalone 
Spark постарается захватить так много ядер и создать так много ис­
полнителей, как будет предложено планировщиком. Однако оба дис­
петчера, Mesos и Standalone, поддерживают параметр spark. cores .max, 
ограничивающий общее число ядер, выделяемых для всех исполните­
лей в приложении. Локальные диски используются как рабочее хра­
нилище для промежуточных результатов операций. 

Вообще говоря, приложения Spark способны извлекать выгоды 
от большего объема памяти и числа ядер. Архитектура Spark обес­
печивает линейное масштабирование: удвоение объемов доступных 
ресурсов часто приводит к удвоению скорости работы приложения. 
Дополнительного рассмотрения при оценке приложения Spark заслу­
живает вопрос учета кэширования промежуточных наборов данных 
как части рабочей нагрузки. Если вы планируете использовать кэ­
ширование, чем больше кэшированных данных уместится в памяти, 
тем выше будет производительность приложения. Страница storage 
в неб-интерфейсе Spark позволит получить подробную информацию 
о данных, кэшированных в памяти. Для оценки можно выполнить кэ­
ширование подмножества данных на небольшом кластере и экстра­
полировать общий объем памяти, который понадобится, чтобы раз­
местить полный набор данных. 

Помимо памяти и ядер, Spark еще использует дисковое простран­
ство для хранения промежуточных данных, а также разделов наборов 
RDD, вытесненных на диск. Использование большого числа локаль­
ных дисков может способствовать увеличению производительно­
сти приложений Spark. В YARN конфигурация локальных дисков 
осуществляется непосредственно через диспетчера YARN, который 
имеет собственный механизм выделения каталогов для данных. При 
использовании диспетчера Spark Standalone можно определить пере­
менную окружения SPARK LOCAL DIRS в сценарии spark-env.sh, исполь­
зуемом при развертывании кластера Standalone, и приложения Spark 
будут наследовать эту настройку. В Mesos или когда приложение вы­
rюлняется под управлением других диспетчеров кластеров и требует­
ся переопределить местоположение хранилища по умолчанию, мож-
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но установить параметр spar k. local. dir. Во всех случаях указываются 
локальные каталоги в виде единого списка каталогов через запятую. 
Общепринято выделять один каталог на каждом отдельном диске, 
доступном в Spark. Запись данных будет равномерно распределена 
по всем локальным каталогам. Поэтому чем больше дисков доступно, 
тем выше общая пропускная способность. 

Но имейте в виду, что принцип «чем больше, тем лучше;,, не всегда 
работает в отношении памяти для исполнителей.Выделение слишком 
большого объема динамической памяти может вызывать продолжи­
тельные паузы для сборки мусора, отрицательно сказывающиеся на 
пропускной способности заданий Spark. Иногда выгоднее запросить 
меньший объем памяти (скажем, 64 Мбайт или меньше) для испол­
нителей, чтобы смягчить эту проблему. Диспетчеры Mesos и YARN 
поддерживают возможность выполнения небольших исполнителей 
на одном и том же физическом узле, поэтому уменьшение размеров 
исполнителей не означает, что приложение получит меньше ресур­
сов. В Spark Standalone нужно запустить больше рабочих процессов 
(определяется переменной окружения SPARK WORKER INSTANCES), чтобы 
ДЛЯ ОДНОГО приложения на ОДНОМ КОМПЬЮТер-е запустить более ОДНОГО 
исполнителя. Это ограничение наверняка будет убрано в следующих 
версиях Spark. Облегчение сборки мусора в дополнение к уменьше­
нию размеров исполнителей и хранению данных в сериализованной 
форме ( см. раздел << Управление памятью>> выше) также может спо­
собствовать увеличению производительности приложения. 

В 3а1<Лючение 

Одолев эту главу, вы готовы приступить к промышленному использо­
ванию Spark. Мы охватили в этой главе вопросы управления настрой­
ками в Spark, получения характеристик работы через веб-интерфейс 
Spark, а также распространенные приемы улучшения производитель­
ности в промышленных окружениях. Более полные рекомендации по 
настройке вы найдете в официальной документации Spark, в руко­
водстве по настройке <<Tuning Spark;,, 1

• 

1 http://spark.apache.org/docs/latest/tuning.html.
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Sparl< SQL 

В этой главе мы познакомим вас с компонентом Spark SQL, обеспечи­
вающим интерфейс для работы со структурированными и полуструк­
турированными данными. Структурированными называют любые 
данные, имеющие схему, то есть известный набор полей для каждой 
записи. Когда имеются данные такого типа, Spark SQL не только 
упрощает загрузку подобных данных, но и делает ее более эффектив­
ной. В частности, Spark SQL обладает тремя важными особенностями 
(изображены на рис. 9.1): 

1) может загружать данные из разных источников (например,
JSON, Hive и Parquet);

2) позволяет запрашивать данные с использованием SQL внутри
программ Spark и из внешних инструментов, взаимодействую­
щих с компонентом Spark SQL через стандартные механизмы
подключения к базам данных QDBC/ODBC). Примером таких
инструментов может служить ТаЬ!еаu;

3) при использовании внутри программ Spark Spark SQL обеспе­
чивает разнообразный программный интерфейс между SQL
и обычным кодом на Python/Java/Scala, включая возможность
создания соединений наборов RDD и таблиц SQL, экспортиро­
вания функций в SQL и многое другое. Использование такой
комбинации часто упрощает разработку заданий.

Для реализации всего этого богатства возможностей Spark SQL 
определяет специальный тип RDD с именем SchernaRDD. Класс SchernaRDD 
представляет набор RDD объектов Row, каждый из которых представ­
ляет отдельную запись. Тип SchernaRDD также часто называют схемой 
(то есть списком полей данных) записей. Несмотря на то что SchernaRDD 
выглядит как обычный набор RDD, внутренне он хранит данные бо­
лее эффективным способом, используя для этого схему. Кроме того, 
наборы этого типа поддерживают ряд операций, недоступных в дру­
гих наборах RDD, такие как выполнение запросов SQL. Наборы типа 
SchernaRDD можно создавать из внешних источников данных, из резуль­
татов запросов и из обычных наборов RDD. 
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ТаЫеаu 
1 _I ______

JDBC/ODBC Bawe 
приложение

Рис. 9. 1 •:• Использование Spark SQL

Интерактивная
оболочка 
SparkSQL 

В этой главе мы сначала покажем, как использовать SchemaRDD внут­
ри обычных программ Spark для загрузки структурированных дан­
ных и для работы с ними. Затем опишем сервер Spark SQL JDBC, 
позволяющий запускать Spark SQL на общем сервере и подключать 
к нему интерактивные оболочки SQL или инструменты визуализа­
ции, такие как ТаЬ!еаu. В заключение мы обсудим некоторые допол­
нительные особенности. Spark SQL - новейший компонент в составе 
Spark и получит существенные улучшения в версии Spark 1.3, поэто­
му обязательно обращайтесь к самой свежей документации за инфор­
мацией о Spark SQL и SchemaRDD. 

На протяжении этой главы мы будем использовать Spark SQL для 
исследования файла JSON с короткими сообщениями из Twitter. 
Если у вас нет такого файла под рукой, используйте приложение 
Databricks I для загрузки нескольких сообщений или файл files/ 
testweetjson в репозитории примеров для данной книги. 

81<Лючение Sparl< SQL в прило>1<ения 
Как и в случае с другими библиотеками Spark, включение Spark SQL 
в приложение требует добавления некоторых зависимостей. Такой 
подход позволяет скомпоновать ядро Spark Core без лишних зависи­
мостей от большого числа дополнительных пакетов. 

Spark SQL можно скомпилировать с поддержкой Apache Hive, ме­
ханизма Hadoop SQL, или без нее. Наличие поддержки Hive в Spark 
SQL дает возможность доступа к таблицам Hive, функциям UDF 
(User-Defined Functions - функции, определяемые пользователями), 

1 https ://github .com/databricks/reference-apps/tree/master /twitter _ classifier. 
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форматам сериализации и десериализации (SerDes) и языку запро­
сов Hive (HiveQL). Важно отметить, что для подключения библиотек 
Hive не требуется устанавливать весь фреймворк Hive. Часто бывает 
предпочтительнее иметь сборку Spark SQL с поддержкой Hive, что­
бы обладать дополнительными возможностями. Если вы решили за­
грузить версию Spark в двоичном (скомпилированном) формате, она 
должна быть собрана с поддержкой Hive. Если вы собираете версию 
Spark из исходных текстов, выполните команду sbt/ sЬt -Phi ve as sernЫ у. 

Если вы столкнетесь с конфликтом зависимостей и имеющейся 
установки Hive, который не сможете разрешить путем исключения 
или затенения, можете попробовать скомпилировать Spark SQL без 
поддержки Hive. В этом случае вам придется выполнить компоновку 
с отдельным артефактом Maven. 

В J ava и Scala компоновкой Spark SQL с Hive управляет Maven, как 
показано в примере 9.1. 

Пример 9. 1 •:• Maven управляет nодцержкой Hive в Spark SQL 

groupid = org.apache.spark 
artifactid = spark-hive_2.10 
version = 1.2.0 

Если у вас не получится подключить зависимости от Hive, исполь­
зуйте артефакт spark-sql 2 .10 вместо spark-hive 2 .10. 

в Python никаких изменений в сборку ВНОСИТЬ не требуется. 
При использовании Spark SQL в программах у нас имеются две 

точки входа, в зависимости от необходимости использовать поддерж­
ку Hive. Рекомендуется использовать точку входа Hi veContext, обеспе­
чивающую доступ к HiveQL и другой функциональности Hive. Более 
простой объект SQLContext предоставляет поддержку Spark SQL, не­
зависимую от Hive. Такое разделение предусмотрено для пользова­
телей, имеющих конфликты при подключении всех зависимостей от 
Hive. Еще раз напомним, что для HiveContext не требуется устанавли­
вать полный фреймворк Hive. 

Для работы с компонентом Spark SQL рекомендуется использо­
вать язык запросов HiveQL. Информацию о HiveQL можно найти 
в разных источниках, включая книгу «Programming Hivei>, электрон­
ное руководство «Hive Language Manuali> 1

• В версиях Spark 1.0 и 1.1 
компонент Spark SQL основан на Hive 0.12, а в Spark 1.2 поддержива­
ет также версию Hive 0.13. Знакомые со стандартом SQL не должны 
испытывать сложностей с использованием HiveQL. 

1 http://Ьit.ly/1 уСЗgоМ.
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Spark SQL - новый и быстро развивающийся компонент Spark. Мно­
жество совместимых с ним версий Hive может измениться в будущем, 
поэтому за подробностями всегда обращайтесь к самой свежей доку­
ментации. 

Наконец, чтобы подключить Spark SQL к уже установленной вер­
сии Hive, необходимо скопировать файл hive-site.xml в каталог с на­
стройками Spark ($SPARK_HOME/con/). В отсутствие Hive компо­
нент Spark SQL сохраняет свою работоспособность. 

Имейте в виду, что в отсутствие установленной версии Hive Spark 
SQL создаст собственное метахранилище Hive (для хранения мета­
данных) в рабочем каталоге программы, с именем metastore db. Кро­
ме того, если попытаться создать таблицу с использованием НivеQL­
инструкции CREATE TABLE (вместо CREATE EXTERNAL TABLE), она будет 
помещена в каталог /user /hive/warehouse ( в локальной файловой 
системе или в HDFS, если в пути поиска классов присутствует файл 
hdfs-site.xml). 

Испольэование Sparl< SQL в прило>кениях 
Внутри приложений компонент Spark SQL упрощает загрузку дан­
ных и позволяет запрашивать их с использованием языка SQL, объ­
единяя запросы с <1обычным� программным кодом на Python, Java 
или Scala. 

Чтобы задействовать Spark SQL, необходимо создать объект Hive­
Context (или SQLContext, когда поддержка Hive недоступна), опираясь 
на объект SparkContext. Этот объект контекста предоставляет допол­
нительные функции для получения и обработки данных. С помощью 
Hi veContext можно создавать наборы данных SchemaRDD, представляю­
щие структурированные данные, и оперировать ими с применением 
запросов SQL или обычных операций над RDD, таких как map (). 

Инициализация Spark SQL 

Прежде чем приступать к использованию Spark SQL, нужно добавить 
в программу несколько инструкций import, как показано в примере 9.2. 

Пример 9.2 •:• Импортирование Spark SQL в Scala 

// Импортировать Spark SQL 

import org.apache.spark.sql.hive.HiveContext 

// Или если не должно быть зависимостей от Hive 

import org.apache.spark.sql.SQLContext 
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Пользователи Scala должны обратить внимание, что здесь импор­
тируется именно HiveContext, а не HiveContext. , как это делается в слу­
чае с SparkContext, чтобы получить доступ к неявным преобразовани­
ям. Эти неявные преобразования используются для превращения 
наборов RDD с информацией требуемого типа в наборы RDD, спе­
циализированные для выполнения запросов с помощью Spark SQL. 
Создав экземпляр Hi veContext, можно импортировать неявные преоб­
разования, как показано в примере 9.3. Инструкции импортирования 
дляjаvа и Python показаны в примерах 9.4 и 9.5 соответственно. 

Пример 9.3 •:• Импортирование неявных преобразований SQL в Scala 

// Создать экземпляр HiveCoпtext 

val hiveCtx = ••. 

// Импортировать неявные преобразования 

import hiveCtx. 

Пример 9.4 •:• Импортирование Spark SQL в Java 

// Импортировать Spark SQL 

import org.apache.spark.sql.hive.HiveContext; 

// Или если не должно быть зависимостей от Hive 

import org.apache.spark.sql.SQLContext; 

// Импортировать JavaSchemaRDD 

import org.apache.spark.sql.SchemaRDD; 

import org.apache.spark.sql.Row; 

Пример 9.5 •:• Импортирование Spark SQL в Python 

# Импортировать Spark SQL 

from pyspark.sql import HiveContext, Row 

# Или если не должно быть зависимостей от Hive 

from pyspark.sql import SQLContext, Row 

После добавления инструкций импортирования следует создать 
экземпляр HiveContext или SQLContext, если программа не должна 
иметь зависимостей от Hive (см.примеры с 9.6 по 9.8). Конструкторы 
обоих классов принимают экземпляр SparkContext. 

Пример 9.6 •:• Создание экземпляра контекста SQL в Scala 

val sc = new SparkContext( ... ) 

val hiveCtx = new HiveContext(sc) 
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Пример 9. 7 •:• Создание экземпляра контекста SQL в Java 

JavaSparkContext ctx = new JavaSparkContext( ... ); 

SQLContext sqlCtx = new HiveContext(ctx); 

Пример 9.8 •:• Создание экземпляра контекста SQL в Python 

hiveCtx = HiveContext(sc) 

Теперь, когда в программе имеется экземпляр HiveContext или 
SQLContext, можно приступать к загрузке данных и выполнению за­
просов. 

Пример простого запроса 
Запросы к таблицам выполняются с помощью метода sql () объекта 
HiveContext или SQLContext. Прежде всего нужно сообщить Spark SQL, 
какие данные будут запрашиваться. В рассматриваемом случае мы за­
грузим некоторые данные из Twitter в форматеJSОN и дадим им имя, 
зарегистрировав «временную таблицу�. чтобы потом можно было 
выполнять запросы SQL к ней. (Подробнее о загрузке мы расскажем 
в разделе «Загрузка и сохранение данных,> ниже.) После загрузки 
данных можно выбрать наиболее часто цитируемые сообщения по 
значению retweetCount ( см. примеры с 9.9 по 9.11 ). 

Пример 9.9 •:• Загрузка и выборка сообщений в Scala 

val input = hiveCtx.jsonFile(inputFile) 

/! Зарегистрировать схему RDD 

input.registerTempTaЬle("tweets") 

// Выбрать сообщения по retweetCount 

val topTweets = hiveCtx.sql("SELECT text, retweetCount FROM 

tweets ORDER ВУ retweetCount LIMIT 10") 

Пример 9. 1 О •:• Загрузка и выборка сообщений в Java 

SchemaRDD input = hiveCtx.jsonFile(inputFile); 

// Зарегистрировать схему RDD 

input.registerTempTaЬle("tweets"); 

// Выбрать сообщения по retweetCount 

SchemaRDD topTweets = hiveCtx.sql("SELECT text, retweetCount FROM 

tweets ORDER ВУ retweetCount LIMIT 10"); 
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Пример 9.11 •:• Загрузка и выборка сообщений в Python 

input = hiveCtx.jsonFile(inputFile) 

# Зарегистрировать схему RDD 
input.registerTempTaЬle("tweets") 

# Выбрать сообщения по retweetCouпt 
topTweets = hiveCtx.sql("""SELECT text, retweetCount FROM 

tweets ORDER ВУ retweetCount LIMIT 10""") 

Если в системе установлен фреймворк Hive и файл hive-site.xrnl ско­
пирован в каталог $SPARK HOME/conf, для выполнения запросов к сущест­
вующим таблицам Hive можно также использовать hi veCtx. sql (). 

Наборы данных SchemaRDD 

Обе операции, загрузка данных и запросы, возвращают наборы дан­
ных SchernaRDD. Наборы типа SchemaRDD напоминают таблицы в тради­
ционных базах данных. Внутренне набор SchemaRDD является набором 
объектов Row с дополнительной информацией о схеме, описывающей 
типы всех столбцов. Объекты Row являются всего лишь обертками во­
круг массивов значений простых типов ( таких как целые числа и стро­
ки) - подробнее мы будем рассматривать их в следующем разделе. 

Обратите внимание, что в будущих версиях Spark имя SchemaRDD 
может быть изменено на DataFrame. Но на момент написания этих 
строк необходимость такого переименования все еще является пред­
метом дискуссий. 

Наборы SchemaRDD являются самыми обычными наборами данных, 
поэтому к ним могут применяться любые преобразования, такие как 
rnap () и fil ter (). Но, кроме этого, они обладают дополнительными 
функциональными возможностями. Самая важная из них - возмож­
ность зарегистрировать любой набор SchemaRDD как временную табли­
цу и выполнять запросы к ней с вызовом метода Hi veContext. sql () 
или SQLContext. sql (). Мы уже демонстрировали регистрацию набора 
SchemaRDD в примерах с 9.9 по 9.11 с помощью метода registerTempTaЬle (). 

Временные таблицы являются локальными по отношению к Hi veContext 
или SQLContext и исчезают, когда приложение завершает работу. 

Наборы SchemaRDD могут хранить данные нескольких простых ти­
пов, а также структуры и массивы, состоящие из значений этих типов. 
Определение типов осуществляется с использованием синтаксиса 
HiveQL 1 . Поддерживаемые типы перечислены в табл. 9.1. 

1 https://cwiki. apache .org/confluence/display /Hive/Lang uageManual+DDL.
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Таблица 9. 1. Типы, которые моrут храниться в наборах 
SchemaRDD 

Тип Spark 
Тип Scala TиnJava Тип Python 

SQL/HiveQL 

TINYINT Byte Byte/byte int/long (в диапазоне от -128 
ДО 127) 

SМALLINT Short Short/ short int/long (в диапазоне от -32 768 
до32 767) 

INT Int Int/int int или long 
ВIGINT Long Long/long long 
FLOAT Float Float/float float 
DOUBLE DouЫe DouЫe/douЫe float 
DECIМAL Scala. ma th. Java.math. decimal.Decimal 

BigDecimal BigDecimal 
STRING String String string 
BINARY Array[Byte] byte[J bytearray 
BOOLEAN Boolean Boolean/иoolean bool 
TIMESTAМP oava. sql. oava. sql. datetime.datetime 

TimeStamp TimeStamp 
ARRAY<DAТA ТУРЕ> Seq List list, tuple или апау 
МАР<КЕУ _ ТУРЕ, VAL Мар Мар dict 

-

ТУРЕ> 

STRUCT<COLl: COLl Row Row Row 
-

ТУРЕ, ... > 

Последний тип - структуры - в Spark SQL представляется с по­
мощью типа Row. Последние три типа могут вкладываться друг в дру­
га. Например, можно создать массив структур или ассоциативный 
массив ( map) структур. 

Операции над объектами Row 

Объекты Row представляют записи внутри наборов SchemaRDD и фак­
тически являются массивами полей фиксированной длины. В Scala/ 
J ava объекты Row имеют множество методов для получения значе­
ний полей по их индексам. Стандартный метод чтения get (или apply 
в Scala) принимает номер столбца и возвращает значение типа Object 
(или Any в Scala), который мы должны привести к правильному типу. 
Для полей со значениями, имеющими тип Boolean, Byte, DouЫe, Float, 
Int, Long, Short или String, существует метод getType (), возвращающий 
значение соответствующего типа. Например, метод getString(O) вер­
нет значение поля с индексом О в виде строки, как показано в при­
мерах 9.12 и 9.13. 
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Пример 9.12 •:• Обращение к текстовому полю (с индексом О) 
в наборе topTweets в Scala 

val topTweetText = topTweets.rnap(row => row.getString(O)) 

Пример 9. 1 З •:• Обращение к текстовому полю ( с индексом О) в набо­
ре topTweets в Java 
JavaRDD<String> topTweetText = 

topTweets.toJavaRDD() .rnap(new Function<Row, String>() { 

puЫic String call(Row row) { 

return row.getString(O); 

) }} ; 

В Python объекты Row имеют иную реализацию, потому что в этом 
языке отсутствует явная типизация. Программа может просто обра­
щаться к i-му элементу как row [ i]. Кроме того, объекты Row в Python 
по,тщерживают доступ к полям по именам, в форме row.column_name, как 
показано в примере 9.14. Если вы сомневаетесь в правильности имено­
вания полей, в разделе <<]SON>> ниже приводится схема набора данных. 

Пример 9.14 •:• Обращение к текстовому полю в наборе topTweets 
в Python 

topTweetText = topTweets.rnap(larnЬda row: row.text) 

Кэширование 
Механизм кэширования в Spark SQL действует немного иначе. По­
скольку типы полей известны заранее, Spark имеет возможность 
хранить данные более эффективно. Для кэширования информации 
в наиболее оптимальном представлении следует использовать спе­
циальный метод hiveCtx. сасhеТаЫе ("taЫeName"). Кэшированные 
таблицы Spark SQL хранят данные в табличном представлении. Та­
кие таблицы сохраняются в памяти, только пока выполняется про­
грамма-драйвер, то есть при повторном запуске данные необходимо 
кэшировать снова. Как и в случае с обычными наборами RDD, кэ­
ширование таблиц следует выполнять, только когда предполагается 
многократное их использование. 

В Spark 1.2 обычный метод cache () наборов RDD также приводит к вы­
зову сасhеТаЫе (), если вызывается для набора SchernaRDD. 

Кэшировать таблицы можно и с помощью инструкций HiveQL/ 
SQL. Для кэширования таблицы или удаления ее из кэша достаточно 
просто выполнить инструкцию САСНЕ TABLE taЬleName или UNCACHE TABLE 
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taЬleNarne. Этот прием особенно часто используется в клиентах ко­
мандной строки cepвepaJDBC. 

Кэшированные наборы SchernaRDD отображаются в неб-интерфейсе 
приложения Spark, подобно любым другим наборам RDD, как пока­
зано на рис. 9.2. 

SIOrAgo 

Рис. 9.2 •:• Набор SchemaRDD 

в веб-интерфейсе приложения Spark SQL 

Подробнее о производительности механизма кэширования Spark 
SQL рассказывается в разделе «Производительность Spark SQL;,, ниже. 

3агру31<а и сохранение данных 
Spark SQL по умолчанию поддерживает большое разнообразие ис­
точников структурированных данных, позволяя получать наборы 
объектов Row без привлечения сложного процесса загрузки. К числу 
таких источников, кроме всего прочего, относятся: таблицы Hive, 
файлы JSON и файлы Parquet. Кроме того, если выполнить запрос 
SQL к такому источнику и выбрать только подмножество данных, 
Spark SQL вернет лишь выбранное подмножество данных, в отличие 
от SparkContext. hadoopFile. 

Помимо источников, перечисленных выше, данные можно также 
извлекать из обычных наборов RDD путем присваивания им схемы. 
Это упрощает разработку запросов SQL, даже когда данные хранят-
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ся в виде объектов Python илиjаvа. Часто запросы SQL получаются 
более компактными, когда вычисляется сразу несколько характери­
стик (таких как среднее значение, максимальное значение и число 
уникальных значений). Помимо этого, через создание промежуточ­
ных наборов SchemaRDD легко можно находить соединения простых 
наборов RDD с любыми другими источниками данных, поддержи­
ваемыми в Spark SQL. В этом разделе мы рассмотрим приемы рабо­
ты с внешними источниками, а также с наборами RDD. 

Apache Hive 

Spark SQL поддерживает любые форматы хранения данных в Hive 
(SerDes), включая текстовые файлы, RCFiles, ORC, Parquet, Avro 
и Protocol Buffers. 

Чтобы подключить Spark SQL к любой существующей установ­
ке Hive, необходимо предоставить информацию о конфигурации 
Hive. Для этого достаточно скопировать файл hive-site.xml в каталог 
/сап//, куда установлен Spark. В отсутствие файла hive-site.xml бу­
дет использоваться локальное метахранилище Hive, и это не поме­
шает загрузить данные в таблицу Hive для использования в после­
дующем. 

Примеры с 9.15 по 9.17 иллюстрируют выполнение запросов 
к таблице Hive. В данных примерах таблица имеет два столбца: ключ 
(целое число) и значение (строка). Как создать такую таблицу, мы по­
кажем в следующей главе. 

Пример 9. 15 •:• Загрузка в таблицу Hive в Python 

from pyspark.sql import HiveContext 

hiveCtx = HiveContext(sc) 

rows = hiveCtx.sql("SELECT key, value FROM mytaЬle") 

keys = rows.map(lamЬda row: row[OJ) 

Пример 9. 16 •:• Загрузка в таблицу Hive в Scala 

import org.apache.spark.sql.hive.HiveContext 

val hiveCtx = new HiveContext(sc) 
val rows = hiveCtx.sql("SELECT key, value FROM mytaЫe") 
val keys = rows.map(row => row.getint(O)) 

Пример 9.17 •:• Загрузка в таблицу Hive в Java 

import org.apache.spark.sql.hive.HiveContext; 
import org.apache.spark.sql.Row; 
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import org.apache.spark.sql.SchemaRDD; 

HiveContext hiveCtx = new HiveContext(sc); 
SchemaRDD rows = hiveCtx.sql("SELECT key, value FROM mytaЫe"); 

JavaRDD<Integer> keys = 

rdd.toJavaRDD() .map(new Function<Row, Integer>() { 
puЫic Integer call (Row row) { return row. getint (0); 

)); 

Parquet 

Parquet - популярный, таблично-ориентированный формат хране­
ния данных, позволяющий эффективно хранить записи с вложен­
ными полями. Он часто используется различными инструментами 
в экосистеме Hadoop и поддерживает все типы данных в Spark SQL. 
Spark SQL предоставляет набор методов для чтения данных непо­
средственно из файлов Parquet. 

Загрузить данные из файла можно с помощью Hi veContext. parquet­
File () или SQLContext. parquetFile (), как показано в примере 9.18. 

Пример 9. 18 •:• Загрузка данных в формате Parquet в Python 

# Загрузить данные из файла Parquet с именами nолей 
rows = hiveCtx.parquetFile(parquetFile) 
names = rows.map(lamЬda row: row.name) 
print "Everyone" 
print names.collect() 

Файл Parquet можно также зарегистрировать как временную таб­
лицу Spark SQL и выполнять запросы к ней. Пример 9 .19 продолжает 
пример 9.18. 

Пример 9. 19 •:• Выполнение запросов к файлу Parquet в Python 

# Найти любителей панд 
tЫ = rows.registerTempTaЫe("people") 

pandaFriends = hiveCtx.sql( 

"SELECT name FROM people WHERE favouriteAnimal = \"panda\ 11 11
) 

print "Panda friends" 
print pandaFriends.map(lamЬda row: row.name) .collect() 

Наконец, содержимое набора SchemaRDD можно сохранить в файл 
Parquet вызовом метода saveAsParquetFile (), как показано в приме­
ре 9.20. 

Пример 9.20 •:• Сохранение данных в файл Parquet в Python 

pandaFriends.saveAsParquetFile("hdfs:// ... ") 
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JSON 

Если у вас имеется файл в формате JSON с записями, следующими 
одной и той же схеме, Spark SQL сможет определить схему путем ска­
нирования файла и дать вам доступ к полям по именам (пример 9.21). 
Если вам когда-нибудь доведется столкнуться с огромным каталогом 
записей в формате JSON, способность Spark SQL определять схему 
поможет вам быстро приступить к работе, не написав ни строчки спе­
циального кода для загрузки данных. 

Чтобы загрузить данные в формате JSON, достаточно просто вы­
звать метод j sonFile () объекта hi veCtx, как показано в примерах с 9.22 
по 9.24. Если вам будет интересно узнать, какую схему для ваших 
данных вывел Spark SQL, вызовите метод printScherna () полученного 
набора SchernaRDD (пример 9.25). 

Пример 9.21 •:• Исходные записи 

{ "name": "Holden"} 

{"name":"Sparky The Bear", "lovesPandas":true, 

"knows": {"friends": ["holden"J}} 

Пример 9.22 •:• Загрузка данных JSON с помощью Spark SQL в Python 

input = hiveCtx.jsonFile(inputFile} 

Пример 9.23 •:• Загрузка данных JSON с помощью Spark SQL в Scala 

val input = hiveCtx.jsonFile(inputFile) 

Пример 9.24 •:• Загрузка данных JSON с помощью Spark SQL в Java 

SchemaRDD input = hiveCtx.jsonFile(jsonFile}; 

Пример 9.25 •:• Схема, полученная вызовом printSchema (} 

root 

1-- knows: struct (nullaЫe = true} 

1 1-- friends: array (nullaЫe = true) 
1 1 1-- element: string (containsNull false) 

1-- lovesPandas: boolean (nullaЫe = true) 
1-- name: string (nullaЫe = true) 

Дополнительно в примере 9.26 приводится схема, выведенная ком­
понентом Spark SQL для набора сообщений из Twitter. 

Пример 9.26 •:• Неполная схема набора сообщений из Twitter 

root 

1-- contributorsIDs: array (nullaЫe = true) 

1-- element: string (containsNull = false) 
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1-- createdAt: string (nullaЫe = true) 

1-- currentUserRetweetid: integer (nullaЫe = true) 

1-- hashtagEntities: array (nullaЫe = true) 

1 1-- element: struct (containsNull = false) 

1 1-- end: integer (nullaЫe = true) 

1 1-- start: integer (nullaЫe = true) 

1 1-- text: string (nullaЫe = true) 

1-- id: long (nullaЫe = true) 

1-- inReplyToScreenName: string (nullaЫe = true) 

/-- inReplyToStatusid: long (nullaЫe = true) 

\-- inReplyToUserid: long (nullaЬle = true) 

1-- isFavorited: boolean (nullaЫe = true) 

1-- isPossiЬlySensitive: boolean (nullaЫe = true) 

1-- isTruncated: boolean (nullaЫe = true) 

1-- mediaEntities: array (nullaЫe = true) 

1 1-- element: struct (containsNull = false) 

1 1 1-- displayURL: string (nullaЫe = true) 

1-- end: integer (nullaЫe = true) 

1-- expandedURL: string (nullaЫe = true) 

1-- id: long (nullaЫe = true) 

1-- mediaURL: string (nullaЫe = true) 

1-- mediaURLHttps: string (nullaЫe = true) 

1-- sizes: struct (nullaЫe = true) 

1 1-- О: struct (nullaЫe = true) 

1 1 1-- height: integer (nullaЫe = true) 

1 1-- resize: integer (nullaЫe = true) 

1 1-- width: integer (nullaЫe = true) 

1-- 1: struct (nullaЫe = true) 

1 1-- height: integer (nullaЫe = true) 

1 1-- resize: integer (nullaЫe = true) 

1 1-- width: integer (nullaЫe = true) 

1-- 2: struct (nullaЫe = true) 

1 1-- height: integer (nullaЫe = true) 

1-- resize: integer (nullaЫe = true) 

1-- width: integer (nullaЫe = true) 

1-- 3: struct (nullaЫe = true) 

1 1 1-- height: integer (nullaЫe = true) 

1 1 1-- resize: integer (nullaЫe = true) 

1 1 1-- width: integer (nullaЫe = true) 

1-- start: integer (nullaЫe = true) 

1 1-- type: string (nullaЫe = true) 

1 1-- url: string (nullaЫe = true) 

1-- retweetCount: integer (nullaЫe = true) 
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Увидев такую схему, многие могут задать резонный вопрос: <�:Как 
получить доступ к вложенным полям и полям-массивам?,> В Python 
доступ к вложенным полям осуществляется с использованием опера­
тора точки (.) для каждого уровня вложенности (например, toplevel. 
nextlevel). К элементам массивов можно обратиться в SQL, указав 
индекс, например [element], как показано в примере 9.27. 

Пример 9.27 •:• SQL-зanpoc, извлекающий вложенные поля 
и элементы массивов 

select hashtagEntities[O] .text from tweets LIMIT 1; 

Из RDD 

Помимо загрузки данных из внешних источников, наборы SchemaRDD 
можно создавать из обычных наборов RDD. В Scala наборы RDD не­
явно преобразуются в наборы SchemaRDD. 

В Python нужно создать набор RDD объектов Row и затем вызвать 
метод inferSchema (), как показано в примере 9.28. 

Пример 9.28 •:• Создание набора SchemaRDD с использованием Row 
и именованного кортежа в Python 

happyPeopleRDD = 
sc.parallelize([Row(name="holden", favouriteBeverage="coffee")]) 

happyPeopleSchemaRDD = hiveCtx.inferSchema(happyPeopleRDD) 
happyPeopleSchemaRDD.registerTempTaЬle("happy_people") 

В Scala определение схемы осуществляют наши старые друзья -
неявные преобразования (пример 9.29). 

Пример 9.29 •:• Создание набора SchemaRDD из саsе-класса в Scala 

case class HappyPerson(handle: String, favouriteBeverage: String) 

// Создать набор персон и превратить его в SchemaRDD 
val happyPeopleRDD = 

sc.parallelize(List(HappyPerson("holden", "coffee"))) 

// Обратите внимание: здесь действует неявное преобразование, 
// эквивалентное вызову sqlCtx.createSchemaRDD(happyPeopleRDD) 
happyPeopleRDD.registerTempTaЬle("happy_people") 

В Java преобразовать простой набор RDD из объектов, поддержи­
вающих сериализацию и имеющих общедоступные методы чтения/ 
записи, в SchemaRDD можно вызовом applySchema (), как показано в при­
мере 9.30. 
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Пример 9.30 •:• Создание набора SchemaRDD из JavaBean в Java 

class HappyPerson implements SerializaЫe { 
private String name; 
private String favouriteBeverage; 
puЬlic HappyPerson() {) 
puЫic HappyPerson(String n, String Ь) 

name = n; favouriteBeverage = Ь; 

puЬlic String getName() { return name; 
puЫic void setName (String n) ( name = n; 
puЫic String getFavouriteBeverage() { return favouriteBeverage; ) 
puЬlic void setFavouriteBeverage(String Ь) { 

) 

); 

favouriteBeverage = Ь; 

ArrayList<HappyPerson> peopleList = new ArrayList<HappyPerson>(); 
peopleList. add (new HappyPerson ( "holden", "cof fee") ) ; 
JavaRDD<HappyPerson> happyPeopleRDD = sc.parallelize(peopleList); 
SchemaRDD happyPeopleSchemaRDD = hiveCtx.applySchema(happyPeopleRDD, 

HappyPerson.class); 
happyPeopleSchemaRDD.registerTempTaЬle("happy_people"); 

Сервер JDBC/ODBC 

Spark SQL поддерживает также подключение кJDBC, что может при­
годиться при использовании промышленных инструментов с клас­
тером Spark и совместном использовании кластера множеством 
пользователей. Сервер JDBC действует как самостоятельная про­
грамма-драйвер, способная одновременно обслуживать множество 
клиентов. Любой клиент может кэшировать страницы в памяти, вы­
полнять запросы к ним и т. д., при этом ресурсы кластера и кэширо­
ванные данные будут доступны им всем. 

Сервер JDBC в Spark SQL является аналогом HiveServer2 в Hive. 
Его также часто называют «Thrift-cepвepoмi.>, потому что он исполь­
зует протокол связи Thrift. Имейте в виду, что сервер JDBC требует, 
чтобы фреймворк Spark был скомпилирован с поддержкой Hive. 

Запустить сервер можно вызовом сценария sЬin/ start-thrif tserver. 
sh в каталоге Spark (пример 9.31). Этот сценарий принимает те же 
флаги и параметры, что и spark-submit. По умолчанию сервер при­
нимает соединения по адресу localhost: 10000, но его можно изменить 
с помощью переменных окружения (HIVE _ SERVER2 _ THRIFT _PORT и HIVE _ 
SERVER2_THRIFT_ВIND_HOST) или параметров настройки Hive (hive. 
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server2. thrift. port и hi ve. server2. thrift. Ыnd. host ). Поддерживается 
также ВОЗ!\ЮЖ1юсть изl\!енять параl\!етры настройки Hive в команд­
ноii строке с помощью флага --hiveconf property=value. 

Пример 9.31 •:• Запуск сервера JDBC 

./sbin/start-thriftserver.sh --master sparkMaster

В состав Spaгk также входит клиентская программа Beeline 1, кото­
рую 1\ЮЖ1ю 11с1юльзовать для соединения с сервером JDBC, как по­
каз,1110 в 11р11мере 9.32 11 на рис. 9.3. Эта программа - простая интерак­
тнвная оболочка SQL, позволяющая выполнять команды на сервере. 

................. � 

......................... erby. \09 LIПNSE README .11d yorn 
•v log\J repl 
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holden@h11bp2: -/гepos/spark$ . /Ыn/beetine -u J dbc: h1ve2 ://localhost: НЮ00 

park assetnЫy has Ьееn built with Hive, 1пclud1ng Oatanucleus jars оп clas'ipat 
scan complete in 111s 

onnecting to jdbc:hive2://tocathost: 10006 
onnected to: Spark SQL (veгs1on 1.2.6-SПАРSНОТ) 
riveг: spark-assetnЫy (vers1on 1.2.0-SNAPSНOT) 
ransaction isotation: ТRANSAПION REPEATABLE READ 

Beetine version 1.2.8-SNAPSНOT Ьу Apache Hive­
: jdbc:h1ve2://\ocathost:1B060> show taЬl@s; 
·········+

1 r@sutt 
...•.•. ··+ 

1 pokes 
..... ····+ 

1 row sel@cted (1.473 seconds) 

: Jdbc:hive2://localhost:16000> 

Рис. 9.3 •:• Запуск сервера JDBC 
и подключение к нему с помощью Beeline 

Пример 9.32 •:• Подключение к серверу JDBC с помощью Beeline 

holde�@hmbp2:-/repos/spark$ ./bin/beeline -u jdЬc:hive2://localhost:10000 
Spark assemЫy has been built with Hive, including Datanucleus Jars on 
classpath 
scan complete in lms 
Con�ecting to jdbc:hive2://localhost:10000 
Connected to: Spark SQL (version 1.2.0-SNAPSHOT) 
JDBC/ODBC Server 1 175 
Driver: spark-assemЫy (version 1.2.0-SNAPSHOT) 

1 http://bit.ly/1BQmMvF . 
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Transaction isolation: TRANSACTION REPEATABLE READ - -

Beeline version 1.2.0-SNAPSHOT Ьу Apache Hive 

О: jdЬc:hive2://localhost:10000> show taЫes; 

+---------+ 

1 result 

+---------+ 

1 pokes 

+---------+ 

1 row selected (1.182 seconds) 

О: jdbc:hive2://localhost:10000> 

(') Сразу после запуска сервер JDBC переходит в фоновый режим и весь 

\j вывод направляет в файл журнала. Если при выполнении запроса к сер­
веру JDBC возникнет ошибка, полный текст сообщения о ней вы найде­
те именно там. 

Многие внешние инструменты могут также соединяться с компо­
нентом Spark SQL через его собственный драйвер ODBC. Драйвер 
ODBC в Spark SQL создан компанией Simba 1 и может быть загружен 
на сайтах, поставляющих дистрибутивы Spark (например, Databricks 
Cloud, Datastax и MapR). Он часто используется промышленными 
инструментами, такими как Microstrategy или ТаЫеаu. Чтобы узнать, 
как подключается к Spark SQL ваш инструмент, обращайтесь к до­
кументации для этого инструмента. Кроме того, большинство про­
мышленных инструментов, имеющих компоненты для подключения 
к Hive, также могут подключаться к Spark SQL, потому что Spark SQL 
использует тот же язык запросов и сервер. 

Работа с программой Beeline 

В клиенте Beeline можно использовать стандартные команды HiveQL 
для создания таблиц и выполнения запросов к ним. Полное описа­
ние языка HiveQL можно найти в электронном руководстве «Hive 
Language Manual,>2

, а здесь мы покажем лишь несколько из наиболее 
часто используемых операций. 

Прежде всего создать таблицу на основе локальных данных можно 
с помощью команды CREATE TABLE и следующей за ней команды LOAD 
DATA. Hive поддерживает загрузку данных из текстовых файлов с фик­
сированным разделителем полей, таких как CSV, и других файлов, 
как показано в примере 9.33. 

1 http://www.simba.com/.
2 https://cwiki.apache.org/confluence/display/Hive/LanguageManual.
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Пример 9.33 •:• Загрузка данных в таблицу 

> CREATE ТАВLЕ IF NOT EXISTS mytaЬle (key INТ, value STRING)
ROW FORМAT DELIМITED FIELDS TERМINATED ВУ ' , ' ;
> LOAD DATA LOCAL INPATH 'learning-spark-examples/files/int_string.csv'
INТO ТАВLЕ mytaЬle;

Получить список таблиц можно с помощью инструкции SHOW TABLES 
(пример 9.34). Имеется также возможность описать каждую схему 
командой DESCRIВE taЬleName. 

Пример 9.34 •:• Вывод списка таблиц 

> SHOW TAВLES;
mytaЫe
Time taken: 0.052 seconds

Кэширование таблиц выполняется командой САСНЕ TABLE taЬleName. 
Позднее таблицу можно удалить из кэша командой UNCACHE TABLE 
taЫeName. Обратите внимание, что кэшированные таблицы доступны 
всем клиентам данного cepвepaJDBC, как уже говорилось выше. 

Наконец, Beeline позволяет посмотреть план запроса. Для этого 
можно передать запрос команде EXPLAIN, как показано в примере 9.35. 

Пример 9.35 •:• Команда EXPLAIN в интерактивной оболочке Spark SQL 

spark-sql> EXPLAIN SELECT * FROM mytaЬle where key = 1; 
== Physical Plan == 
Filter (key#lб = 1) 

HiveTaЬleScan [key#lб, value#l 7], (MetastoreRelation default, mytaЫe, 
None), None 
Time taken: 0.551 seconds 

В данном конкретном плане Spark SQL применяет фильтр к ре­
зультатам HiveTaЬ!eScan. 

С этого момента вы можете писать запросы SQL для извлечения 
данных. Программа Beeline поможет вам быстро приступить к иссле­
дованию кэшированных таблиц, совместно используемых многими 
пользователями. 

Долгоживущие таблицы и запросы 
Одно из преимуществ сервера JDBC в Spark SQL - возможность со­
вместного использования таблиц многими программами. Это возможно 
благодаря тому, что Thrift-cepвep JDBC является общей программой­
драйвером. Нам достаточно лишь зарегистрировать таблицу и затем 
выполнить команду САСНЕ, как было показано в предыдущем разделе. 
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Автономная интерактивная оболочка Spark SQL. Кроме сервера 
JDBC, Spark SQL поддерживает также простую интерактивную оболоч­
ку . /Ыn/ spark-sql, которую можно использовать как единственный 
процесс. Эта оболочка подключается к метахранилищу Hive, настроен­
ному в файле conf/hivesite .xml, если таковой существует, или создает 
локальное метахранилище. Эта оболочка очень полезна для разработки 
на локальном компьютере. Если в процессе разработки используется 
кластер, вместо нее следует использовать cepвepJDBC и подключаться 
к нему с помощью Beeline. 

Фун1<uии, определяемые польэователем 
Функции, определяемые пользователем (User-Defined Functions, 
UDF), позволяют зарегистрировать собственные функции на Python, 
Java и Scala для использования в запросах SQL. Это очень популяр­
ный способ расширения функциональных возможностей SQL, п.ото­
му что пользователи могут использовать их, не написав ни строчки 
своего кода. Spark SQL существенно упрощает создание таких функ­
ций. Он поддерживает собственные и предопределенные функции 
Apache Hive UDF. 

Spark SQL UDF 

Spark SQL предлагает встроенный метод для регистрации UDF 
простой передачей ему функции, написанной на выбранном языке 
программирования. В Scala и Python можно использовать обычные 
функции и лямбда-выражения, а в J ava достаточно просто расширить 
соответствующий класс UDF. Наши функции UDF могут работать 
с данными разных типов и возвращать результаты разных типов. 

В Python и J ava также необходимо определить возвращаемый тип 
как один из типов, поддерживаемых наборами SchemaRDD и перечис­
ленных в табл. 9.1. BJava эти типы определены в org. apache. spark. sql. 
api. java. DataType, а в Python нужно импортировать модуль DataType. 

В примерах 9.36 и 9.37 приводится очень простая функция UDF, 
вычисляющая длину строки, которую можно использовать для опре­
деления размеров сообщений из Twitter. 

Пример 9.36 •:• Функция UDF определения длины строки в Python 

! Создать UDF для определения длины строки
hiveCtx.registerFunction(

"strLenPython", lamЬda х: len (х), IntegerType ()) 
lengthSchemaRDD = hiveCtx.sql( 

"SELECT strLenPython( 'text') FROM tweets LIMIT 10") 
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Пример 9.37 •:• Функция UDF определения длины строки в Scala 

registerFunction("strLenScala", (_: String) .length) 
val tweetLength = hiveCtx.sql( 

"SELECT strLenScala('tweet') FROM tweets LIMIT 10") 

Для определения UDF в Java необходимо импортировать ряд до­
полнительных пакетов. Как и в случае с функциями, определяемыми 
для наборов RDD, требуется расширить специальный класс. В зави­
симости от числа параметров расширяется класс с именем UDF [N], как 
показано в примерах 9.38 и 9.39. 

Пример 9.38 •:• Импортирование дополнительных пакетов в Java 

// Импортировать класс UDF и DataTypes 
// Примечание: пути в этих инструкциях могут 
// измениться в следующих версиях 
import org.apache.spark.sql.api.java.UDFl; 
import org.apache.spark.sql.types.DataTypes; 

Пример 9.39 •:• Функция UDF определения длины строки в Java 

hiveCtx.udf() .register("stringLengthJava", new UDFl<String, Integer>() 
@Override 

puЫic Integer call(String str) throws Exception {

return str.length(); 

), DataTypes.IntegerType); 

SchemaRDD tweetLength = hiveCtx.sql( 
"SELECT stringLengthJava('text') FROM tweets LIMIT 10"); 

List<Row> lengths = tweetLength.collect(); 
for (Row row : result) { 

System.out.println(row.get(O)); 

Hive UDF 

Spark SQL способен также использовать предопределенные функции 
Hive UDF. Стандартные функции Hive UDF регистрируются авто­
матически. Если у вас есть собственные функции UDF, не забудьте 
подключить соответствующие JАR-файлы к приложению. При ис­
пользовании cepвepaJDBC не забывайте, что подключить такие фай­
лы можно с помощью флага --jars. Разработка функций Hive UDF 
выходит далеко за рамки данной книги, поэтому мы просто покажем, 
как пользоваться уже имеющимися функциями. 
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Чтобы получить возможность вызывать функции Hive UDF, необ­
ходимо использовать объект контекста HiveContext вместо обычного 
SQLContext. Чтобы получить доступ к функции Hive UDF, просто вы­
зовите hi veCtx. sql ( "CREATE TEMPORARY FUNCTION name AS class. function"). 

Прои3волительность Sparl< SQL 
Как отмечалось во введении, Spark SQL поддерживает язык запросов 
высокого уровня, и наличие дополнительной информации о типах 
позволяет этому компоненту действовать более эффективно. 

Spark SQL не просто дает пользователям возможность выполнять 
запросы SQL - он существенно упрощает выполнение агрегатных 
операций, таких как вычисление сумм для множества столбцов (как 
показано в примере 9.40), без необходимости создавать специальные 
объекты, о которых рассказывалось в главе 6. 

Пример 9.40 •:• Вычисление нескольких сумм в Spark SQL 

SELECT SUM(user.favouritesCount), SUM(retweetCount), user.id FROM tweets 

GROUP ВУ user.id 

Spark SQL может использовать информацию о типах для более 
эффективной работы с данными. Когда выполняется кэширование 
данных, Spark SQL использует внутреннее хранилище в таблич­
ном формате. Это не только позволяет экономить память, но если 
последующие запросы будут извлекать ограниченное подмножест­
во данных, Spark SQL сможет минимизировать объем данных для 
чтения. 

Ограничивающее условие дает Spark SQL возможность перенести 
выполнение некоторых частей запроса <<ВНИЗ>>, в механизм обработки 
запросов. Если в Spark нам потребуется прочитать только определен­
ные записи, стандартный способ решения этой задачи заключается 
в том, чтобы прочитать весь набор данных, а затем применить фильтр. 
Но в Spark SQL, если хранилище данных поддерживает извлечение 
ограниченного подмножества данных, ограничивающее условие бу­
дет передано в механизм хранения данных, благодаря чему для чте­
ния может быть предоставлено гораздо меньше данных. 

Параметры настройки производительности 
В Spark SQL имеется множество разных параметров настройки про­
изводительности; все они перечислены в табл. 9.2. 



224 •:• Sparl< SOL 

Таблица 9.2. Параметры настройки производительности в Spark SQL 

Параметр 
Значение 

по умолчанию 
Описание 

spark. sql. codegen false Если имеет значение true, Spark SQL 
будет компилировать каждый запрос 
в байт-кодJаvа «на лету». Это может 
способствовать увеличению произво-
дительности больших запросов, но на 
коротких запросах, наоборот, может 
наблюдаться ухудшение производи-
тельности 

spark.sql. false Автоматическое сжатие табличного 
inMemoryColumnarStorage. 
compressed 

хранилища в памяти 

spark.sql. 1000 Размер пакета для кэширования. 
inMemoryColumnarStorage. Большие значения могут вызвать 
batchSize ошибку исчерпания памяти 

spark. sql. parquet. snappy Используемый кодек сжатия. 
compression. codec Допустимые значения: uncompressed, 

snappy, gzip и lzo 

Используя инструменты подключения кJDBC и оболочку Beeline, 
мы можем изменять эти и другие параметры командой set, как пока­
зано в примере 9.41. 

Пример 9.41 •:• Включение динамической компиляции запросов 

в Beeline 

beeline> set spark.sql.codegen=true; 

SET spark.sql.codegen=true 

spark.sql.codegen=true 

Time taken: 1.196 seconds 

В традиционных приложениях Spark SQL эти параметры можно 
устанавливать как свойства объекта конфигурации (см.пример 9.42). 

Пример 9.42 •:• Включение динамической компиляции запросов 

в Scala 

conf.set("spark.sql.codegen", "true") 

Некоторые параметры заслуживают особого внимания. Первый 
из них - spark. sql. codegen, который управляет компиляцией каждого 
запроса в байт-код Java перед его выполнением. Такая компиляция 
может существенно увеличить производительность длительных или 
часто повторяющихся запросов. Однако для коротких запросов (вы­
полняющихся 1-2 секунды) компиляция их перед каждым выполне-
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нием может оказаться слишком дорогостоящей 1• Поддержка динами­
ческой компиляции все еще находится на стадии экспериментов, тем 
не менее мы рекомендуем пользоваться ею для обработки больших 
запросов или для запросов, повторяющихся снова и снова. 

Второй параметр, который вам может понадобиться изменить, -
это spark. sql. inMemoryColumnarStorage. batchSize. При кэшировании 
наборов SchemaRDD Spark SQL группирует записи в пакеты с разме­
ром, определяемым этим параметром (значение по умолчанию: 1000), 
и сжимает каждый пакет. Если задать размер пакетов слишком ма­
леньким, это будет замедлять сжатие, но, с другой стороны, очень 
большой размер также может вызывать проблемы, так как каждый 
пакет может оказаться слишком большим, чтобы уместиться в памя­
ти. Если строки в таблице очень велики (например, содержат сотни 
полей или имеют строковые поля, которые могут хранить очень длин­
ные строки, такие как целые веб-страницы), вам может понадобиться 
уменьшить размер пакета, чтобы избежать ошибки исчерпания па­
мяти. Размер пакета по умолчанию достаточно хорошо подходит для 
большинства случаев, так как сокращает дополнительные операции 
сжатия при выходе за ограничение в 1000 записей. 

В эа1<Лючение 

Компонент Spark SQL позволяет использовать Spark для работы со 
структурированными и полуструктурированными данными. Поми­
мо запросов, которые мы исследовали здесь, для работы с наборами 
SchemaRDD Spark SQL предоставляет те же инструменты, что были 
представлены в главах с 3 по 6. Часто бывает удобно смешивать SQL 
(из-за его краткости) с программным кодом, написанным на других 
языках программирования ( из-за их способности выражать сложную 
логику). Кроме того, используя Spark SQL, вы также получаете до­
полнительные выгоды от оптимизации, возможной благодаря извест­
ной схеме данных. 

1 Обратите внимание, что первые несколько вызовов компилятора выпол­
няются особенно медленно из-за необходимости инициализации, поэто­
му, прежде чем приступать к измерению накладных расходов, необходимо 
скомпилировать четыре-пять запросов. 
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Sparl< Streaming 

Многие приложения получают дополнительное преимущество, если 
способны обрабатывать данные сразу после их прибытия. Например, 
приложение может следить за статистикой просмотра страницы в мас­
штабе реального времени, проводить машинное обучение или автома­
тически определять аномалии. Spark Streaming - это модуль в составе 
Spark, предназначенный для создания таких приложений. Он дает воз­
можность писать потоковые приложения (streaming applications) с ис­
пользованием API, очень похожего на тот, что применяется в пакетных 
заданиях (batch jobs ), а значит, и тех же навыков программирования. 

Подобно тому, как весь фреймворк Spark построен на понятии на­
боров данных RDD, Spark Streaming предоставляет собственную аб­
стракцию, которая называется DStreams, или Discretized Streams (дис­
кретизированные потоки). DStream - это последовательность данных, 
прибывшая за некоторый интервал времени. Внутренне каждый поток 
DStream представлен последовательностью наборов RDD, прибывших 
за интервал времени (именно поэтому в названии используется слово 
<<дискретизированный,> ). Потоки DStream могут создаваться на основе 
любых источников данных, таких как Flume, Kafka или HDFS. После 
создания они предлагают два типа операций: преобразования, порож­
дающие новые потоки DStream, и операции вывода, записывающие дан­
ные во внешние системы. Потоки DStream поддерживают большинство 
операций из тех, что доступны для наборов RDD, плюс новые операции, 
связанные со временем, такие как определение скользящего окна. 

В отличие от программ пакетной обработки, приложения на основе 
Spark Streaming нуждаются в дополнительной настройке, чтобы ра­
ботать 24 часа в сутки, семь дней в неделю. Мы обсудим механизм 
копирования данных в контрольных точках ( checkpointing), преду­
смотренный как раз для достижения этой цели и позволяющий Spark 
Streaming сохранять данные в надежной файловой системе, такой как 
HDFS. Мы также расскажем, как перезапускать приложения в случа­
ях аварийного их завершения и как настроить автоматический пере­
запуск. 
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Наконец, в версии Spark 1.1 модуль Spark Streaming был досту­
пен лишь вjava и Scala. Экспериментальная поддержка Python была 
добавлена в версии Spark 1.2, но она пока способна работать только 
с текстовыми данными. Поэтому в этой главе мы будем демонстри­
ровать примеры использования Spark Streaming API лишь на Java 
и Scala, но те же концепции применимы и в Python. 

Простой пример 
Прежде чем погрузиться в изучение особенностей Spark Streaming, 
рассмотрим простой пример. По условиям задачи приложение при­
нимает с сервера поток текстовых строк, разделенных символом пере­
вода строки, выделяет строки со словом ($error>.> и выводит их. 

Программы на основе Spark Streaming лучше всего действуют, ког­
да оформлены как автономные приложения, собранные с использо­
ванием Maven или sbt. Модуль Spark Streaming даже при том, что 
является составной частью фреймворка Spark, распространяется как 
отдельный артефакт Maven и имеет дополнительные зависимости, 
импортирование которых необходимо добавить в проект. Все это по­
казано в примерах с 10.1 по 10.3. 

Пример 1 О. 1 •:• Определение зависимостей для Spark Streaming 
в Maven 

groupld = org.apache.spark 

artifactld = spark-streaming_2.10 

version = 1.2.0 

Пример 10.2 •:• Импортирование механизма потоковой обработки 
в Scala 

import org.apache.spark.streaming.StreamingContext 

import org.apache.spark.streaming.StreamingContext. 

import org.apache.spark.streaming.dstream.DStream 

import org.apache.spark.streaming.Duration 

import org.apache.spark.streaming.Seconds 

Пример 10.3 •:• Импортирование механизма потоковой обработки 
в Java 

import org.apache.spark.streaming.api.java.JavaStreamingContext; 

import org.apache.spark.streaming.api.java.JavaDStream; 

import org.apache.spark.streaming.api.java.JavaPairDStream; 

import org.apache.spark.streaming.Duration; 

import org.apache.spark.streaming.Durations; 
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В первую очередь приложение должно создать объект Streaming­
Context, являющийся главной точкой входа в механизм потоковой об­
работки. При этом автоматически будет создан объект SparkContext, 
используемый для обработки данных. Конструктор StreamingContext () 
принимает интервал времени, определяющий, как часто должны об­
рабатываться новые данные, - в данном случае мы установили ин­
тервал, равный 1 секунде. Далее вызывается метод socketTextStream () 
для создания потока DStream текстовых данных, принимаемых с пор­
та 7777 локального компьютера. Затем выполняется преобразование 
DStream вызовом метода fil ter (), чтобы оставить только строки со 
словом <<errori,,. В заключение вызывается метод print () для вывода 
строк, оставшихся после фильтрации (см. примеры 10.4 и 10.5). 

Пример 10.4 •:• Потоковый фильтр для вывода строк со словом 
«error» в Scala 

// Создать StreamingContext с 1-секундным интервалом обработки 
// и с использованием SparkConf 
val ssc = new StreamingContext(conf, Seconds(l)) 

// Создать DStream из данных, принятых с порта 7777 
// локального компьютера 
val lines = ssc.socketTextStream("localhost", 7777) 

// Отфильтровать поток DStream, оставив строки со словом "error" 
val errorLines = lines. fil ter (_. contains ( "error")) 

// Вывести строки со словом "error" 
errorLines.print() 

Пример 10.5 •:• Потоковый фильтр для вывода строк со словом 
«error» в Java 

// Создать StreamingContext с 1-секундным интервалом обработки 
// и с использованием SparkConf 
JavaStreamingContext jssc = 

new JavaStreamingContext(conf, Durations.seconds(l)); 

// Создать DStream из данных, принятых с порта 7777 
// локального компьютера 
JavaDStream<String> lines = jssc.socketTextStream("localhost", 7777); 

// Отфильтровать поток DStream, оставив строки со словом "error" 
JavaDStream<String> errorLines = 

lines. filter (new Function<String, Boolean> () { 



puЫic Boolean call(String line) 
return line.contains("error"); 

)}) ; 

// Вывести строки со словом "error" 
errorLines.print(); 
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Это - только вычисления, которые должны выполняться при 
приеме данных. Чтобы начать прием данных, необходимо явно вы­
звать метод start () объекта StreamingContext. После этого Spark 
Streaming запустит задание Spark под управлением SparkContext. 
Все это должно происходить в отдельном потоке выполнения, а для 
предотвращения завершения приложения необходимо также вызвать 
awaitTermination (), чтобы дождаться завершения обработки потока 
(см. примеры 10.6 и 10.7). 

Пример 10.6 •:• Потоковый фильтр для вывода строк со словом 
«error» в Scala 

// Запустить обработку потока и дождаться ее "завершения" 
ssc. start () 
// Ждать завершения задания 
ssc.awaitTermination() 

Пример 1 О. 7 •:• Потоковый фильтр для вывода строк со словом 
«error» в Java 

// Запустить обработку потока и дождаться ее "завершения" 
j ssc. start (); 
// Ждать завершения задания 
jssc.awaitTermination(); 

Имейте в виду, что контекст потоковой обработки можно запус­
тить только один раз, и запуск должен производиться лишь после 
подготовки всех потоков DStream и операций вывода. 

Теперь, после создания простого потокового приложения, можно 
попробовать запустить его, как показано в примере 10.8. 

Пример10.8 •:• Запуск потокового приложения и передача данных 
в Linux/Mac 

$ spark-suЬmit \ 
--class com.oreilly.learningsparkexamples.scala.StreamingLoginput \ 
$ASSEМВLY_JAR local[4] 

$ nc localhost 7777 # Позволит вводить строки для отправки приложению 
<здесь следуют строки, вводимые вручную> 
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Вместо команды пс пользователи Windows могут применять ncat 1
• 

Команда ncat входит в состав пакета nrnap2
• 

В оставшейся части главы мы будем опираться на этот пример для 
организации обработки файлов журнала веб-сервера Apache. При же­
лании можно сгенерировать фиктивные файлы журналов с помощью 
сценария ./Ьiп// akelogs.sh или /Ьiп// akelogs.cmd, входящего в пакет 
примеров для данной книги. 

Архите1<тура и абстра1<uия 
Модуль Spark Streaming построен с применением «микропакетной� 
архитектуры (micro-batch architecture), когда поток данных интер­
претируется как непрерывная последовательность маленьких паке­
тов данных. Spark Streaming принимает данные из разных источников 
и объединяет их в небольшие пакеты. Новые пакеты создаются через 
регулярные интервалы времени. В начале каждого интервала време­
ни создается новый пакет, и любые данные, поступившие в течение 
этого интервала, включаются в пакет. В конце интервала увеличение 
пакета прекращается. Размер интервала определяется параметром, 
который называется интервал пакетирования (batch interval). Обыч­
но интервал пакетирования выбирается в диапазоне от 500 милли­
секунд до нескольких секунд. Каждый пакет формирует набор RDD 
и обрабатывается заданием Spark, создающим другой набор RDD. Ре­
зультаты обработки пакета могут затем передаваться внешним систе­
мам для дальнейшего анализа. Описанная архитектура изображена 
на рис. 10.1. 

Как вы уже знаете, программной абстракцией в Spark Streaming 
является дискретизированный поток, или DStream (изображен на 
рис. 10.2), представленный в виде последовательности наборов RDD, 
где каждый набор RDD соответствует одному отрезку времени. 

Потоки DStream можно создавать из внешних источников данных 
или путем применения преобразований к другим потокам DStream. 
Потоки DStream поддерживают большинство из преобразований, 
с которыми мы познакомились в главе 3. Кроме того, потоки DStream 
имеют новые преобразования с поддержкой «состояния,>, позволяю­
щие агрегировать данные на протяжении всего периода обработки 
данных. Эти преобразования будут обсуждаться в следующем разделе. 

1 http://nmap.org/ncat/. 
2 http://nmap.org/. 
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Рис. 10.2 •:• DStream как последовательность наборов RDD 

В нашем простом примере мы создали поток DStream на основе 
данных, принимаемых через сетевое соединение, и применили к ним 
преобразование filter (). Это преобразование создает внутренние на­
боры RDD, как показано на рис. 10.3. 

Если вы попробовали запустить пример 10.8, вы должны были уви­
деть результаты, напоминающие те, что показаны в примере 10.9. 
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Рис. 10.3 •:• Потоки DStream и преобразование 

из примеров с 10.4 по 10.8 
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Пример 10.9 •:• Результаты обработки журнала программой 

из примера 1 О.В 

Time: 1413833674000 ms 

71.19.157.174 - - [24/Sep/2014:22:26:12 +0000] "GET /error78978 НТТР/1.1" 404 505 

Time: 1413833675000 ms 

71.19.164.174 - - [24/Sep/2014:22:27:10 +0000] "GET /error78978 НТТР/1.1" 404 505 

Эти результаты наглядно иллюстрируют микропакетную архитек­
туру Spark Streaming. В процессе работы приложения новые результа­
ты фильтрации выводятся каждую секунду, потому что мы установи­
ли интервал пакетирования равным 1 секунде, когда создавали объект 
StreamingContext. Веб-интерфейс Spark (см. рис. 10.4) также показыва­
ет, что Spark Streaming выполняет множество мелких заданий. 

Кроме преобразований, потоки DStream поддерживают операции 
вывода, такие как print () в нашем примере. Операции вывода напо­
минают действия для наборов RDD в том смысле, что они передают 
данные внешним системам, только в Spark Streaming они выполняют­
ся периодически, в каждом интервале времени. 

Порядок работы Spark Streaming в границах компонентов распре­
деленного выполнения Spark показан на рис. 10.5 (см. также рис. 2.3, 
где изображены компоненты распределенного выполнения Spark). 
Для каждого источника данных Spark Streaming запускает приемники

(receivers) - задачи, выполняемые процессами-исполнителями, соби­
рающие данные из источников и сохраняющие их в наборах RDD. Они 
получают исходные данные и передают их ( по умолчанию) другим ис­
полнителям для большей надежности. Эти данные сохраняются в па­
мяти исполнителей точно так же, как кэшированные наборы RDD'. 
Затем объект StreamingContext в программе-драйвере периодически 
запускает задания Spark для обработки данных, собранных в преды­
дущие интервалы времени, и объединения результатов в наборы RDD. 

1 В Spark 1.2 приемники могут также копировать данные в HDFS. Кроме 
того, некоторые источники, такие как HDFS, поддерживают копирование 
естественным образом, поэтому Spark Streaming не выполняет повторного 
копирования. 
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Рис. 10.4 •:• Веб-интерфейс приложения Spark, 
занимающегося обработкой потоковых данных 
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Рис. 10.5 •:• Spark Streaming в границах компонентов 
распределенного выполнения Spark 

Spark Streaming обладает теми же свойствами надежности в отно­
шении потоков DStream, что и Spark в отношении наборов RDD: пока 
имеется копия исходных данных, сохраняется возможность повторно 
вычислить любой результат, получаемый из иерархии наборов RDD 
( то есть сохраняется возможность повторно выполнить операции об­
работки). По умолчанию принятые данные, как уже отмечалось, ко-
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пируются между двумя узлами, поэтому приложения Spark Streaming 
легко переживают выход из строя любого рабочего узла. Однако по­
вторные вычисления исключительно на основе иерархии происхож­
дения могут потребовать длительного времени для данных, накоп­
ленных с момента запуска приложения. Поэтому в Spark Streaming 
имеется дополнительный механизм копирования данных в контроль­
ных точках ( checkpointing), который сохраняет состояние приложе­
ния в надежной файловой системе (например, HDFS или SЗ). Часто 
такое копирование выполняется через каждые 5-1 О пакетов данных. 
Благодаря этому механизму, когда модулю Spark Streaming потребует­
ся восстановить утраченные данные, ему нужно будет только вернуть­
ся к последней контрольной точке и возобновить вычисления от нее. 

В оставшейся части главы мы подробнее исследуем преобразова­
ния, операции вывода и источники данных в Spark Streaming. Затем 
мы вернемся к вопросу отказоустойчивости и копированию в конт­
рольных точках и покажем, как настроить программу для непрерыв­
ной работы 24 часа в сутки, 7 дней в неделю. 

Преобразования 
Преобразования потоков DStream можно условно разделить на две 
группы: с сохранением и без сохранения состояния. 

О Преобразования без сохранения состояния применяются для 
обработки пакетов, не зависимых от данных в предыдущих 
пакетах. К ним относятся обычные преобразования наборов 
RDD, с которыми мы познакомились в главах 3 и 4, такие как 
map (), filter () и reduceByKey (). 

О Преобразования с сохранением состояния, напротив, исполь­
зуют данные из предыдущих пакетов или промежуточные 
результаты для обработки текущего пакета. К ним относятся 
преобразования на основе скользящего окна и на изменении 
состояния с течением времени. 

Преобразования без сохранения состояния 
Преобразования без сохранения состояния, часть которых перечис­
лена в табл. 10.1, - это обычные преобразования, доступные для набо­
ров RDD, которые применяются к каждому пакету, то есть к каждому 
набору RDD в потоке DStream. Мы уже видели применение преоб­
разования filter () выше (см. рис. 10.3). Многие преобразования набо­
ров RDD, обсуждавшиеся в главах 3 и 4, также доступны для потоков 
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DStream. Обратите внимание, что преобразования потоков DStream 
пар ключ/значение, такие как reduceByKey (), доступны в Scala после 
импортирования StreamingContext. . В J ava, как и в случае с наборами 
RDD, необходимо создать JavaPairDStream с помощью mapToPair (). 

Таблица 10. 1. Примеры преобразований потоков DStream 
без сохранения состояния (неполный список) 

Сигнатура 

Примерна 
пользова-

Функция Назначение тельской Scala 
функции 

в DStream[T] 
map () Применить функцию к каждо- ds.map(x ;> х + 1) f: (Т) - U 

му элементу в потоке DStream 

и возвратить поток DStream 

результатов 

flatMap() Применить функцию к каждо- ds.flatMap(x ;> f: т -

му элементу в потоке DStream x.split(« «)) IteraЫe[U] 

и вернуть поток DStream полу-

ченных итераторов 

filter () Получить поток DStream, ds.filter(x ;> х f: Т - Boolean 

содержащий только элементы, ! ; 1) 

соответствующие заданному 

условию 

reparti tion () Изменить число разделов ds. reparti tion ( 10) Нет

потока DStream 

reduceByKey () Объединить значения с оди- ds.reduceByKey( f: Т, т - т 

наковыми ключами в каждом (х, у) ;> х + у) 

пакете 

groupByKey () Сгруппировать значения ds. groupByKey () Нет 

с одинаковыми ключами 

в каждом пакете 

Имейте в виду: даже при том, что эти преобразования выглядят 
так, как будто они применяются ко всему потоку, внутренне каждый 
поток DStream состоит из множества наборов RDD (пакетов), и каж­
дое преобразование без сохранения состояния применяется к каждо­
му набору RDD в отдельности. Например, reduceByKey () будет выпол­
нять свертку данных в пределах каждого интервала времени, но не во 
всем потоке. Обработку данных на протяжении всего времени работы 
позволяют осуществлять преобразования с сохранением состояния, 
которые мы рассмотрим ниже. 

В программе обработки файлов журнала, представленной выше, 
можно было бы, к примеру, использовать преобразования map () 
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и reduceByKey () для подсчета событий по IР-адресам в каждом пакете, 
как показано в примерах 10.10 и 10.11. 

Пример 10.1 О •:• Применение преобразований map () и reduceByKey () 
к потоку DStream в Scala 

// Предполагается, что ApacheAccessLog - вспомогательный 

// класс для парсинга записей в журналах Apache 

val accessLogDStream = 

logData.map(line => ApacheAccessLog.parseFromLogLine(line)) 

val ipDStream = 

accessLogsDStream.map(entry => (entry.getipAddress(), 1)) 

val ipCountsDStream = ipDStream.reduceByKey((x, у) => х + у) 

Пример 1 О. 11 •:• Применение преобразований map () и reduceByKey () 
к потоку DStream в Java 

// Предполагается, что ApacheAccessLog - вспомогательный 

// класс для парсинга записей в журналах Apache 

static final class IpTuple implements PairFunction<ApacheAccessLog, String, 

Long> ( 

puЬlic Tuple2<String, Long> call(ApacheAccessLog log) ( 

return new Tuple2<>(log.getipAddress(), 11); 

JavaDStream<ApacheAccessLog> accessLogsDStream = 

logData.map(new ParseFromLogLine()); 

JavaPairDStream<String, Loпg> ipDStream = 

accessLogsDStream.mapToPair(new IpTuple()); 

JavaPairDStream<String, Long> ipCountsDStream = 

ipDStream.reduceByKey(new LongSumReducer()); 

Преобразования без сохранения состояния также способны ком­
бинировать данные из нескольких потоков DStream, но опять же 
в пределах отдельных пакетов. Например, для потоков DStream пар 
ключ/значение поддерживаются преобразования, вычисляющие со­
единения, по аналогии с наборами RDD, а именно cogroup(), join(), 
leftOuterJoin () и др. (см. раздел <,Соединения� в главе 4). Мы можем 
применять эти преобразования к потокам DStream для выполнения 
операций над наборами RDD в них в отдельных пакетах. 

Давайте рассмотрим пример вычисления соединения двух потоков 
DStream. В примерах 10.12 и 10.13 мы имеем данные, ключами в ко­
торых служат IР-адреса, и нам нужно найти соединение этих потоков, 
чтобы подсчитать число переданных байтов. 
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Пример 1 О. 12 •:• Соединение двух потоков DStream в Scala 

val ipBytesDStream = accessLogsDStream.map( 
entry => (entry.getipAddress(), entry.getContentSize())) 

val ipBytesSumDStream = 
ipBytesDStream.reduceByKey((x, у) => х + у) 

val ipBytesRequestCountDStream = 
ipCountsDStream.join(ipBytesSumDStream) 

Пример 10.1 З •:• Соединение двух потоков DStream в Java 

JavaPairDStream<String, Long> ipBytesDStream = 
accessLogsDStream.mapToPair(new IpContentTuple()); 

JavaPairDStream<String, Long> ipBytesSumDStream = 
ipBytesDStream.reduceByKey(new LongSumReducer()); 

JavaPairDStream<String, Tuple2<Long, Long>> 
ipBytesRequestCountDStream = ipCountsDStream.join(ipBytesSumDStream); 

Объединить содержимое двух разных потоков DStream мож­
но также с помощью метода union () или воспользоваться методом 
StreamingContext. union () для объединения большего числа потоков. 

Наконец, если этих преобразований без сохранения состояния ока­
жется недостаточно, потоки DStream имеют дополнительный метод 
transform (), позволяющий оперировать непосредственно наборами 
RDD внутри них. Метод transform () принимает произвольные функ­
ции преобразования RDD-в-RDD. Эта функция будет вызываться 
для каждого пакета данных в потоке, чтобы получить новый поток. 
Типичное применение метода transform() - повторное использова­
ние программного кода для обработки пакетов, который прежде был 
написан для обработки наборов RDD. Например, если у вас имеет­
ся функция extractOutliers (), которая воздействует на набор строк 
в журнале и возвращает набор аномальных строк ( аномальность 
которых, возможно, вычисляется после сбора некоторой статисти­
ческой информации), эту функцию можно использовать с методом 
transform(), как показано в примерах 10.14 и 10.15. 

Пример 10.14 •:• Применение метода transform () к потоку DStream 
в Scala 

val outlierDStream = accessLogsDStream.transform ( rdd => 
extractOutliers(rdd) 

Пример 10.15 •:• Применение метода transform () к потоку DStream 
вJava 

JavaPairDStream<String, Long> ipRawDStream = accessLogsDStream.transform( 
new Function<JavaRDD<ApacheAccessLog>, JavaRDD<ApacheAccessLog>>() ( 
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puЫic JavaPairRDD<ApacheAccessLog> call(JavaRDD<ApacheAccessLog> rdd) 

return extractOutliers(rdd); 

) 

)) ; 

Имеется также возможность объединять и преобразовывать данные 
из нескольких потоков DStream с использованием StreamingContext. 
transform или DStream. transformWith (otherStream, func). 

Преобразования с сохранением состояния 
Преобразования с сохранением состояния - это операции над потока­
ми DStream, целью которых является слежение за данными на протя­
жении всего времени существования потока; то есть при вычислении 
результатов для нового пакета используются данные из предыдущих 
пакетов. Операции этого типа делятся на операции со скользящим 
окном, когда вычисления производятся в пределах скользящего окна 
во времени, и updateStateByKey (), которая применяется для слежения 
за состоянием каждого ключа ( например, за созданием объектов, 
представляющих сеансы работы с пользователями). 

Преобразования с сохранением состояния требуют обязательного 
использования механизма копирования данных в контрольных точ­
ках для обеспечения надежности. Подробнее о контрольных точках 
мы поговорим в разделе <<Круглосуточная работа,> ниже, а пока прос­
то включим этот механизм, передав каталог в вызов ssc. checkpoint (), 
как показано в примере 10.16. 

Пример 1 О. 16 •:• Настройка механизма копирования в контрольных 

точках 

ssc. checkpoint ( "hdf s: / / ... ") 

При разработке на локальном компьютере можно указать путь 
к локальному каталогу (например, /tmp ). 

Оконные преобразования 
Оконные операции (windowed operations) вычисляют результаты 

по данным, полученным в течение более длинного периода времени, 
чем интервал пакетирования в StreamingContext, путем объединения 
результатов обработки нескольких пакетов. В этом разделе мы пока­
жем, как использовать такие операции для слежения за кодами отве­
тов, размерами содержимого и подключениями клиентов в журнале 
доступа ( access log) неб-сервера. 
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Все оконные операции принимают два параметра, размер окна 
и шаг перемещения окна, причем оба должны быть кратны величине 
интервала пакетирования в StreamingContext. Размер окна определяет, 
сколько предыдущих пакетов данных будет участвовать в вычисле­
ниях, а именно последние windowDuration/batch!nterval. Например, 
если имеется исходный поток DStream с интервалом пакетирования 
1 О секунд и требуется определить скользящее окно, охватывающее 
последние 30 секунд (последние 3 пакета), в параметре windowDuration 
следует передать значение, равное 30 секундам. Шаг перемеще­
ния окна, который по умолчанию равен интервалу пакетирования, 
управляет частотой вычисления данных для нового потока DStream. 
Например, если имеется исходный поток DStream с интервалом па­
кетирования 1 О секунд и требуется определить скользящее окно, 
вычисляющее результаты только при получении каждого второго 
пакета, в параметре, определяющем шаг перемещения, в этом случае 
следует передать значение, равное 20 секундам. Пример организации 
такого скользящего окна показан на рис. 10.6. 

Простейшей оконной операцией из числа поддерживаемых потока­
ми DStream является window (), возвращающая новый поток DStream 
с данными, соответствующими указанному окну. Иными словами, 
каждый набор RDD в потоке DStream, возвращаемом window (), будет 

Исходные данные 

из сети 

t1 

t2 

tЗ 

t4 

t5 

tб 

Поток, возвращаемый 

оконной операцией 

размер окна: 3 

шаг перемещения: 2 

Рис. 10.6 •:• Скользящее окно для потока, 

охватывающее 3 пакета и с шагом перемещения в 2 пакета; 

при получении каждого второго пакета выполняются вычисления, 

результаты по 3 последним пакетам 
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содержать данные из нескольких пакетов, которые затем можно об­
рабатывать с помощью преобразований count (), transforrn () и др. ( см. 
примеры 10.17 и 10.18.) 

Пример 1 О. 17 •:• Применение window () для подсчета значений 
в скользящем окне (Scala) 
val accessLogsWindow = 

accessLogsDStream.window(Seconds(ЗO), Seconds(lO)) 

val windowCounts = accessLogsWindow.count() 

Пример 1 О. 18 •:• Применение window () для подсчета значений 
в скользящем окне (Java) 

JavaDStream<ApacheAccessLog> accessLogsWindow = 

accessLogsDStream.window(Durations.seconds(ЗO), 

Durations.seconds(lO)); 

JavaDStream<Integer> windowCounts = accessLogsWindow.count(); 

Несмотря на то что все остальные оконные операции можно реали­
зовать на основе window (), Spark Streaming предоставляет множество
других оконных операций из соображений большей эффективности
и удобства. Прежде всего reduceByWindow () и reduceByKeyAndWindow () по­
зволяют более эффективно выполнять оконные операции свертки. Они
принимают единственную функцию свертки, такую как + 1

• Кроме того,
обе они имеют специальные формы, позволяющие фреймворку Spark
выполнять свертку пошагово, учитывая только данные, поступающие
в окно и исходящие из него. Эти специальные формы требуют переда­
чи функции, обратной функции свертки, например - для+. Такой под­
ход намного эффективнее для окон большого размера, при условии что
имеется функция, обратная функции свертки (см. рис. 10.7).

В нашем примере, демонстрирующем обработку файлов журнала, эти 
две функции можно задействовать для более эффективного подсчета по­
сещений с каждого IР-адреса, как показано в примерах 10.19 и 10.20. 

Пример 10.19 •:• Подсчет посещений с каждого IР-адреса в Scala 

val ipDStream = accessLogsDStream.map( 

logEntry => (logEntry.getipAddress(), 1)) 

val ipCountDStream = ipDStream.reduceByKeyAndWindow( 

( (х, у) => х + у), // Добавить элементы из новых пакетов в окне 
( (х, у) => х - у), // Удалить элементы из пакетов, покинувших окно 

Seconds(ЗO), // Размер окна 

Seconds(lO)) // Шаг перемешения окна 

1 Б языке Scala оператор+, как и другие привычные нам операторы, действи­
тельно является функцией! - Прим. перев. 
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Исходные данные Простая оконная Исходные данные Оконная свертка 
из сети свертка из сети с использованием 

пары+и-
t1 

t2 

tЗ 

t4 

t5 

tб 

{1, 1} {11 1} 

{4, 2} {4,2} 

{9} {9} 

{З} 20 {3} 

{З, 1} 22 {З, 1} 

{1} 17 {1} 

Рис. 1 О. 7 •:• Разница между простой операцией reduceByWindow () 

и инкрементальной ее версией reduceByWindow (), 

использующей обратную функцию 

Пример 10.20 •:• Подсчет посещений с каждого IР-адреса в Java 

class Extractip extends PairFunction<ApacheAccessLog, String, Long> { 
puЫic Tuple2<String, Long> call(ApacheAccessLog entry) { 

return new Tuple2(entry.getipAddress(), 11); 

class AddLongs extends Function2<Long, Long, Long>() ( 
puЫic Long call (Long vl, Long v2) { return vl + v2; 

class SubtractLongs extends Function2<Long, Long, Long>() 
puЬlic Long call(Long vl, Long v2) { return vl - v2; } 

JavaPairDStream<String, Long> ipAddressPairDStream = 
accessLogsDStream.mapToPair(new Extractip()); 

JavaPairDStream<String, Long> ipCountDStream = 
ipAddressPairDStream.reduceByKeyAndWindow( 

new AddLongs(), // Добавить элементы из новых пакетов в окне 
new SubtractLongs() 
// Удалить элементы из пакетов, покинувших окно 
Durations.seconds(ЗO), // Размер окна 
Durations.seconds(lO)); // Шаг перемещения окна 

+

+ 
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Наконец, для подсчета данных в потоках DStream имеются более 
удобные методы countByWindow () и countByValueAndWindow (). Метод 
countByWindow () возвращает поток DStream, представляющий число 
элементов в окне, а countByValueAndWindow () возвращает поток DStream 
со счетчиками уникальных значений (см. примеры 10.21 и 10.22). 

Пример 10.21 •:• Подсчет числа элементов в окне (Scala) 

val ipDStream = accessLogsDStream.map{entry => entry.getipAddress()} 

val ipAddressRequestCount = 
ipDStream.countByValueAndWindow(Seconds(ЗO), Seconds(lO)) 

val requestCount = 
accessLogsDStream.countByWindow(Seconds(ЗO), Seconds(lO)) 

Пример 10.22 •:• Подсчет числа элементов в окне (Java) 

JavaDStream<String> ip = accessLogsDStream.map( 
new Function<ApacheAccessLog, String>() { 

puЫic String call{ApacheAccessLog entry) 
return entry.getipAddress(); 

} )) ; 

JavaDStream<Long> requestCount = accessLogsDStream.countByWindow( 
Dirations.seconds(ЗO), Durations.seconds(lO)); 

JavaPairDStream<String, Long> ipAddressRequestCount = 
ip.countByValueAndWindow(Dirations.seconds(ЗO), 

Durations.seconds(lO)); 

Преобразование UpdateStateByKey 

Иноrда бывает желательно поддерживать информацию о состоя­
нии от пакета к пакету (например, сопровождать сеансы пользовате­
лей по мере посещения ими сайта). Реализовать это можно с помощью 
преобразования updateStateByKey (), обеспечивающего доступ к пере­
менной состояния для потоков пар ключ/значение. Для заданного по­
тока DStream пар (ключ, событие) с помощью этого преобразования 
можно создать новый поток DStream пар (ключ, состояние), передав 
ему функцию, определяющую, как должно изменяться состояние 
для каждого ключа в зависимости от события. Например, событиями 
в журнале неб-сервера для нас могут быть посещения сайта, а ключа­
ми - идентификаторы пользователей. Используя updateStateByKey (), 
мы сможем организовать слежение за посещением каждым пользова­
телем 1 О последних страниц. Этот список мог бы играть роль объекта 
<�состояния� и обновляться при каждом событии. 

Чтобы использовать updateStateByKey (), необходимо реализовать 
функцию update (events, oldState), принимающую события для ключа 
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с предыдущим состоянием и возвращающую новое состояние. Ниже 
приводится описание сигнатуры функции: 

О events - список событий в текущем пакете (может быть пус­
тым); 

О oldState - необязательный объект состояния, хранящийся 
в объекте Option; может отсутствовать, если для данного ключа 
отсутствует прежнее состояние; 

О возвращаемое значение - новое состояние, также объект Option; 
функция может вернуть пустой объект Option, показывая тем 
самым, что состояние можно удалить. 

Результатом updateStateByKey () будет новый поток DStream, со­
держащий набор RDD пар (ключ, состояние) для каждого интервала 
пакетирования. 

В качестве простого примера используем преобразование update­
StateByKey () для непрерывного подсчета числа сообщений в журна­
ле для каждого кода НТТР-ответа. Ключами для нас будут служить 
коды ответов, состоянием - целые числа, представляющие счетчики, 
и событиями - обращения к страницам. Обратите внимание, что, 
в отличие от предыдущих примеров использования оконных опера­
ций, примеры 10.23 и 10.24 продолжают наращивать счетчики <<до 
бесконечности�. пока выполняется программа. 

Пример 10.23 •:• Подсчет числа каждого кода ответа 
с использованием updateStateByKey () в Scala

def updateRunningSurn(values: Seq[Long], state: Option[Long]) 

Sorne(state.getOrElse(OLI + values.size) 

val responseCodeDStrearn = 

accessLogsDStrearn.rnap(log => (log.getResponseCode(I, 111) 

val responseCodeCountDStrearn = 

responseCodeDStrearn.updateStateByKey(updateRunningSurn _) 

Пример 10.24 •:• Подсчет числа каждого кода ответа 
с использованием updateStateByKey () в Java

class UpdateRunningSurn irnplernents Function2<List<Long>, 

Optional<Long>, Optional<Long>> { 

); 

puЫic Optional<Long> call(List<Long> nurns, Optional<Long> current) 

long surn = current.or(OL); 

return Optional.of(surn + nurns.size(I); 



244 •:• Spark Streaming 

JavaPairDStream<Integer, Long> responseCodeCountDStream = 
accessLogsDStream.mapToPair( 

new PairFunction<ApacheAccessLog, Integer, Long>() { 
puЬlic Tuple2<Integer, Long> call(ApacheAccessLog log) 

return new Tuple2(log.getResponseCode(), 11); 
))) 

.updateStateByKey(new UpdateRunningSum()); 

Операuии вывода 
Операции вывода определяют, что сделать с преобразованными дан­
ными в потоке ( например, записать их во внешнюю базу данных или 
вывести на экран). 

Во многом, подобно отложенным вычислениям с наборами RDD, если 
к потоку DStream не применить никакую операцию вывода, такой по­
ток не будет вычисляться. И если в StreamingContext не будет выполнено 
никаких операций вывода, контекст просто не запустится. 

Часто для отладки используется уже знакомая нам операция вы­
вода print (). Она извлекает первые 10 элементов из каждого пакета 
в потоке DStream и выводит их. 

После отладки программы операции вывода можно использовать 
для сохранения результатов. Spark Streaming поддерживает семейство 
операций save () для потоков DStreams, каждая из которых принимает 
путь к каталогу, куда должны сохраняться файлы, и необязательное 
расширение имен файлов. В результате действия этих операций все 
пакеты сохраняются в подкаталогах указанного каталога в виде фай­
лов с именами, представляющими время, и с указанным расширени­
ем. Например, можно было бы сохранить счетчики IР-адресов, как 
показано в примере 10.25. 

Пример 10.25 •:• Сохранение потока DStream в текстовые файлы в Scala 

ipAddressRequestCount.saveAsTextFiles("outputDir", "txt") 

Более универсальная операция saveAsHadoopFiles () принимает 
формат вывода Hadoop. Например, Spark Streaming не имеет встро­
енной функции saveAsSequenceFile (), но мы можем сохранить после­
довательность файлов, как показано в примерах 10.26 и 10.27. 

Пример 10.26 •:• Сохранение потока DStream в виде 
последовательности файлов в Scala 

val writaЫeipAddressRequestCount = ipAddressRequestCount.map 
(ip, count) => (new Text(ip), new LongWritaЬle(count)) ) 

writaЫeipAddressRequestCount.saveAsHadoopFiles[ 
SequenceFileOutputFormat[Text, LongWritaЫe)J ("outputDir", "txt") 



Источники исхолных данных •:• 245 

Пример 10.27 •:• Сохранение потока DStream в виде 
последовательности файлов в Java 

JavaPairDStream<Text, LongWritaЫe> writaЬleDStream ; 
ipDStream.mapToPair( 

new PairFunction<Tuple2<String, Long>, Text, LongWritaЫe>() 
puЫic Tuple2<Text, LongWritaЫe> call(Tuple2<String, Long> е) 

return new Tuple2(new Text(e._1()), new LongWritaЬle(e._2())); 
}}); 

class OutFormat extends SequenceFileOutputFormat<Text, LongWritaЫe> {}; 
writaЬleDStream.saveAsHadoopFiles( 

"outputDir", "txt", Text.class, LongWritaЫe.class, OutFormat.class); 

Наконец, имеется универсальная операция вывода foreachRDD (), 
позволяющая выполнять произвольные вычисления с RDD в потоке 
DStream. Она напоминает преобразование transform() в том, что от­
крывает доступ к каждому набору RDD. Внутри foreachRDD () можно 
использовать любые действия, поддерживаемые фреймворком Spark. 
Например, на практике часто приходится сохранять данные во внеш­
нюю базу данных, такую как MySQL, для которой в Spark может 
отсутствовать функция saveAs (), но мы можем использовать метод 
foreachPartition () набора RDD. Для удобства операция foreachRDD () 
может также передавать нам время текущего пакета, благодаря чему 
можно организовать вывод данных за разные интервалы времени 
в разные места (см. пример 10.28). 

Пример 10.28 •:• Вывод данных во внешние системы с помощью 
foreachRDD () в Scala 

ipAddressRequestCount.foreachRDD { rdd ;> 
rdd.foreachPartition ( partition ;) 

// Открыть соединение с внешней системой (например, с базой данных) 
partition.foreach { item ;) 

// Передать элемент через соединение 

// Закрыть соединение 

Источники исходных данных 

Spark Streaming имеет встроенную поддержку самых разных источ­
ников данных. Некоторые «основные� источники встроены в Spark 
Streaming в виде артефактов Maven, тогда как другие доступны в виде 
дополнительных артефактов, таких как spark-streaming-kafka. 
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В этом разделе мы познакомимся поближе с некоторыми из этих 
источников. Здесь предполагается, что эти источники уже установле­
ны и настроены, и мы не будем тратить времени на знакомство с ком­
понентами, не имеющими отношения к Spark. Если вы приступаете 
к проектированию нового приложения, мы рекомендуем для начала 
попробовать в качестве источников HDFS или Kafka. 

Основные источники 

Объект StrearningContext имеет все необходимые методы для создания 
потока DStream из основных источников. Мы уже встречались с од­
ним таким источником в примерах выше: сокеты. Ниже мы обсудим 
еще два источника: файлы и акторы Akka. 

Файлы 

Фреймворк Spark поддерживает чтение из любых файловых си­
стем, совместимых с Hadoop, поэтому Spark Streaming естественным 
образом поддерживает создание потоков из файлов, хранящихся в ка­
талогах таких файловых систем. Этот вариант пользуется большой 
популярностью благодаря поддержке широкого разнообразия файло­
вых систем, часто используемых для хранения различных журналов, 
которые можно скопировать в HDFS. Для организации нормальной 
работы с данными с применением Spark Streaming необходимо опре­
делить непротиворечивый формат имен каталогов и обеспечить ато­

марность создания файлов ( например, путем перемещения файла 
в каталог, за которым следит Spark) 1

• Мы можем изменить примеры
10.4 и 10.5, реализовав возможность обработки новых файлов журна­
лов по мере их появления в каталоге, как показано в примерах 10.29 
и 10.30. 

Пример 10.29 •:• Включение в поток текстовых файлов, 

появляющихся в указанном каталоге (Scala) 

val logData = ssc.textFileStream(logDirectory) 

Пример 10.30 •:• Включение в поток текстовых файлов, 

появляющихся в указанном каталоге (Java) 

JavaDStream<String> logData = jssc.textFileStream(logsDirectory); 

1 Под атомарностью подразумевается, что вся операция будет выполнена как 
единое целое. Это важно, потому что если после начала обработки файла 
модулем Spark Streamiпg в него будут записаны дополнительные данные, 
они могут остаться незамеченными. В большинстве файловых систем опе­
рация переименования файла обычно выполняется атомарно. 
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Для создания фиктивных файлов журналов можно воспользовать­
ся сценарием /Ьin/fakelogs_directory.sh или, если у вас имеются на­
стоящие файлы журналов, можно заменить вызов сценария ротации 
командой rnv для перемещения заполненных журналов в каталог, за 
которым осуществляется наблюдение. 

Помимо текстовых данных, поддерживаются также данные в лю­
бых форматах Hadoop. Как описывалось в разделе «Форматы Hadoop 
для ввода и вывода�> в главе 5, достаточно просто передать Spark 
Streaming классы Кеу, Value и InputForrnat. Если, к примеру, имеется 
потоковое задание, обрабатывающее файлы журналов и сохраняю­
щее результаты в формате SequenceFile, мы могли бы прочитать эти 
результаты, как показано в примере 10.31. 

Пример 10.31 •:• Чтение последовательности файлов SequenceFile 

из каталога в Scala 

ssc.fileStream[LongWritaЫe, IntWritaЫe, 

SequenceFileinputFormat[LongWritaЫe, IntWritaЫe]] 

(inputDirectory) .map { 

case (х, у) => (x.get(), y.get()) 

Акторы Akka 

Второй основной приемник данных - actorStrearn - позволяет ис­
пользовать в роли источников акторы Akka. Для создания потока 
в этом случае нужно создать актор Akka и реализовать интерфейс 
org. apache. spark. strearning. recei ver .ActorHelper. Чтобы скопировать 
исходные данные из актора в Spark Streaming, следует вызвать функ­
цию store () актора после получения новых данных. Акторы Akka 
довольно редко используются для наполнения потоков DStream, по­
этому мы не будем углубляться в детали, но вы можете самостоятель­
но заглянуть в документацию 1 и изучить пример ActorWordCount2 

в Spark, чтобы увидеть, как их использовать. 

Дополнительные источники 
Помимо основных, существуют также дополнительные приемники дан­
ных для работы с широко известными системами, оформленные в виде 
отдельных компонентов для Spark Streaming. Эти приемники являют­
ся частью Spark, но, чтобы их задействовать, необходимо подключить 
дополнительные пакеты в файле сборки. В настоящее время в число 

1 http://Ьit.ly/1 BQzCdp. 
2 http://Ьit.ly/1 BQzDOR. 
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дополнительных приемников входят: Twitter, Apache Kafka, Amazoп 
Кinesis, Apache Flume и ZeroMQ. Эти дополнительные приемники 
можно подключить, добавив артефакт Maven spark-streaming-[project­
name] _ 2 .1 О с номером версии, совпадающим с номером версии Spark. 

Apache Kafka 

Apache Kafka 1 - источник данных, пользующийся большой по­
пулярностью благодаря высокой скорости работы и надежности. 
Используя встроенную поддержку Kafka, легко можно организо­
вать обработку сообщений с разными темами. Чтобы задействовать 
этот источник, необходимо подключить к проекту артефакт Maven 
spark-streaming-kafka 2 .10. Предлагаемый объект KafkaUtils2 работа­
ет с объектами StreamingContext и JavaStreamingContext и создает поток 
DStream сообщений Kafka. Так как он может подписываться сразу на 
множество тем, созданный им поток DStream будет состоять из пар 
(тема, сообщение). Чтобы создать поток, мы должны вызвать метод 
createStream () с объектом, представляющим потоковый контекст, 
строкой со списком хостов ZooKeeper, разделенных запятыми, име­
нем группы потребителей (уникальное имя) и ассоциативным масси­
вом, отображающим темы в число потоков выполнения для использо­
вания в приемнике этой темы (см. примеры 10.32 и 10.33). 

Пример 10.32 •:• Подписка Apache Kafka на тему Panda в Scala 

import org.apache.spark.streaming.kafka. 

/! Создать отображение тем в число потоков выполнения 
val topics = List(("pandas", 1), ("logs", 1)) .toMap 
val topicLines = KafkaUtils.createStream(ssc, zkQuorum, group, topics) 
StreamingLoginput.processLines(topicLines.map(_._2)) 

Пример 10.33 •:• Подписка Apache Kafka на тему Panda в Java 

import org.apache.spark.streaming.kafka.*; 

// Создать отображение тем в число потоков выполнения 
Map<String, Integer> topics = new HashMap<String, Integer>(); 
topics. put ( "pandas", 1) ; 
topics.put("logs", 1); 
JavaPairDStream<String, String> input = 

KafkaUtils.createStream(jssc, zkQuorum, group, topics); 
input.print (); 

1 http://kafka.apache.org/. 
2 http://Ьit.ly/1 BQzJFL. 
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Apache Fl.ume 

В состав Spark входят два разных приемника для работы с Apache 
Flume 1 (см. рис. 10.8): 

1) пассивный приемник (push-based receiver): этот приемник дей­
ствует подобно получателю Avro - Flume передает ему данные
по своей инициативе;

2) активный приемник (pull-based receiver): этот приемник может
сам извлекать данные из промежуточного получателя, куда дру­
гие процессы могут записывать данные из Flume.

Rume 

Передача в 
... 
п_о_р т  

____ ._ ___ 
п_ е"""

р_е_,
дача в п ромежуточ ный 

Рабочий узел Spark 

получатель 

Получатель Rume 

Извлечение дан ных 
и з  получателя 

Рабочий узел Spark 

Рис. 1 О.В •:• Варианты организации 

приема данных из Flume 

Обе версии требуют перенастройки Flume и запуска приемника на 
узле с отдельно настроенным портом (не совпадающим с портами, за­
нятыми Spark или Flume). Чтобы задействовать любой из приемни­
ков, нужно подключить к проекту артефакт Maven spark-streaming­
flume 2 .10. 

Пассивный приемник 
Пассивный приемник прост в настройке, но он не поддерживает 

механизма транзакций при приеме данных. Этот приемник действу­
ет по аналогии с получателем (sink) Avro, поэтому Flume нужно на­
строить на передачу данных в него, как в получатель Avro (пример 
10.34). Объект FlumeUtils настраивает приемник для работы на узле 
с указанным именем хоста и номером порта (примеры 10.35 и 10.36). 
Эти параметры должны совпадать с соответствующими параметрами 
настройки Flume. 

1 http://flume.apache.org/.
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Пример 10.34 •:• Настройка получателя Avro в конфигурации Flume 

al.sinks = avroSink 

al.sinks.avroSink.type = avro 

al.sinks.avroSink.channel = memoryChannel 

al.sinks.avroSink.hostname = receiver-hostname 

al.sinks.avroSink.port = port-used-for-avro-sink-not-spark-port 

Пример 10.35 •:• Агент FlumeUtils в Scala 

val events = 

FlumeUtils.createStream(ssc, receiverHostname, receiverPort) 

Пример 10.36 •:• Агент FlumeUtils в Java 

JavaDStream<SparkFlumeEvent> events = 

FlumeUtils.createStream(ssc, receiverHostname, receiverPort) 

Несмотря на простоту, этот подход имеет один важный недоста­
ток - отсутствие поддержки транзакций. Это увеличивает вероят­
ность потери небольших объемов данных в случае выхода из строя 
рабочего узла, где выполняется приемник. Кроме того, при выходе 
из строя рабочего узла с приемником система попытается запустить 
приемник в другом месте, и тогда потребуется перенастроить Flume 
для передачи данных на другой узел. Реализовать такую перенастрой­
ку часто бывает очень трудно. 

Активный приемник 
Более новый подход на основе активного приемника (реализо­

ванный в Spark 1.1) заключается в настройке специализированного
получателя Flume, откуда Spark Streaming будет выполнять чтение
данных, и создании приемника, который будет извлекать данные из
получателя. Этот подход обеспечивает более высокую надежность,
так как данные сохраняются в получателе Flume, пока Spark Streaming
не прочитает их и не сообщит об этом получателю подтверждением
транзакции.

В первую очередь необходимо настроить промежуточного полу­
чателя в виде стороннего расширения для Flume. Самые свежие на­
ставления по установке расширений можно найти в документации
Flume 1

• Так как расширения пишутся на языке Scala, необходимо
добавить в расширения Flume само расширение и библиотеку Scala.
В примере 10.37 показаны зависимости Maven для Spark 1.1.

1 http://Ьit.ly/1BQASNt. 
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Пример 10.37 •:• Зависимости Maven для сборки получателя Flume 

groupid = org.apache.spark 
artifactid = spark-streaming-flume-sink_2.10 
version = 1.2.0 
groupid = org.scala-lang 
artifactid = scala-library 
version = 2.10.4 

После добавления промежуточного получателя в узел необходимо 
настроить Flume для передачи в него данных, как показано в приме­
ре 10.38. 

Пример 10.38 •:• Настройка промежуточного получателя 
в конфигурации Flume 

al.sinks = spark 
al.sinks.spark.type = org.apache.spark.streaming.flume.sink.SparkSink 
al.sinks.spark.hostname = receiver-hostname 
al.sinks.spark.port = port-used-for-sync-not-spark-port 
al.sinks.spark.channel = memoryChannel 

Теперь можно использовать объект FlumeUtils для чтения данных, 
накапливаемых промежуточным получателем, как показано в приме­
рах 10.39 и 10.40. 

Пример 10.39 •:• Извлечение данных из промежуточного получателя 
в Scala 

val events = FlumeUtils 
.createPollingStream(ssc, receiverHostname, receiverPort) 

Пример 10.40 •:• Извлечение данных из промежуточного получателя 
вJava 

JavaDStream<SparkFlumeEvent> events = 
FlumeUtils.createPollingStream(ssc, receiverHostname, receiverPort) 

В любом случае, получаемый поток DStream будет состоять из 
объектов SparkFlumeEvents 1

• Получить доступ к внутреннему объекту
AvroFlumeEvent можно через свойство event. Если предположить, что 
телом события является строка в кодировке UTF-8, извлечь ее содер­
жимое можно, как показано в примере 10.41. 

Пример 10.41 •:• SparkFlumeEvent в Scala 

// Предполагается, что событие - это строка в кодировке UTF-8 
val lines = events.map{e => 

new String(e.event.getBody() .array(), "UTF-8")) 

1 http://Ьit.ly/1 BQBlzp.



252 •:• Sparl< Streaming 

Собственные источники данных 

Помимо поддерживаемых источников данных, можно реализовать 
собственные источники. Как это сделать, описывается в руководстве 
<<Streaming Custom Receivers,> 1

• 

Множество источников и размеры кластера 
Как уже говорилось выше, имеется возможность объединять мно­
жество потоков DStream с использованием таких операций, как 
union (). С их помощью можно объединить данные из нескольких ис­
ходных потоков DStream. Иногда наличие нескольких приемников 
необходимо, чтобы увеличить пропускную способность ( если един­
ственный приемник не справляется с потоком данных). Бывает, что 
разные приемники создаются для получения данных из разных ис­
точников, чтобы затем объединить их с помощью j oin () или cogroup (). 

Важно понимать, как выполняются приемники в кластере Spark. 
Каждый приемник действует как долгоживущая задача внутри ис­
полнителя Spark и поэтому занимает ядра процессора, выделенные 
приложению. Кроме того, приложению должны быть доступны ядра 
для обработки данных. Это означает, что, запуская множество при­
емников, необходимо предусмотреть выделение приложению такого 
количества ядер, чтобы оно было не меньше числа приемников, плюс 
дополнительное количество ядер, достаточное для выполнения вы­
числений. Например, если вы захотите запустить в потоковом прило­
жении 10 приемников, необходимо будет выделить приложению как 
минимум 11 ядер. 

Нс запускайте программы, использующие Spark Streaming, на локаль­
ном компьютере, где ведущий узел настроен как II local II или "local [ 1] 11• 

При таких настройках задачам будет выделяться только одно ядро про­
нсссора, и если запустить на этом компьютере приемник, в приложении 
не останется вычислительных ресурсов для обработки принимаемых 
данных. Используйте хотя бы "local [2] ", чтобы иметь большее число 
ядер. 

Круглосуточная работа 
Одним из главных преимуществ Spark Streaming является высокая 
отказоустойчивость. Если гарантируется надежность хранения дан­
ных, Spark Streaming всегда сможет вычислить правильный резуль-

1 http://Ьit.ly/1 BQzCdp.
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тат, даже в случае выхода из строя рабочих узлов или аварийного за­
вершения драйвера. 

Чтобы приложения Spark Streaming могли выполняться круглосу­
точно, требуется выполнить некоторые дополнительные настройки. 
Прежде всего следует настроить копирование данных в контрольных 
точках в надежную систему хранения, такую как HDFS или Amazon 
SЗ 1

• Дополнительно нужно позаботиться об отказоустойчивости про­
граммы-драйвера (для чего потребуется предусмотреть специальные 
настройки) и о ненадежных источниках данных. В данном разделе мы 
расскажем, как выполнить эти настройки. 

Копирование в контрольных точках 
Контрольные точки (checkpoints) - это основной механизм в Spark 
Streaming, который должен быть настроен для обеспечения отказо­
устойчивости. Он управляет периодическим сохранением данных 
о приложении в надежном хранилище, таком как HDFS или Amazon 
SЗ, для использования при восстановлении. В частности, механизм 
контрольных точек преследует следующие цели: 

О ограничение объема вычислений, которые придется повторить 
в случае отказа. Как обсуждалось в разделе «Архитектура и аб­
стракция;,, выше, Spark Streaming может повторно вычислить 
состояние приложения с использованием графа преобразова­
ний, а механизм контрольных точек определяет, как далеко на­
зад придется отступить; 

О обеспечение отказоустойчивости программы-драйвера. Если 
драйвер в потоковом приложении завершится в результате фа­
тальной ошибки, его можно запустить повторно и сообщить ему 
о необходимости восстановить состояние от контрольной точ­
ки, предшествовавшей аварии. В этом случае Spark Streaming 
определит, как далеко назад нужно отступить, и возобновит 
работу с этого места. 

По этим причинам механизм контрольных точек обязательно дол­
жен настраиваться в любых промышленных потоковых приложе­
ниях. Сделать это можно, передав путь к каталогу (в HDFS, SЗ или 
локальной файловой системе) в вызов метода ssc. checkpoint (), как 
показано в примере 10.42. 

1 Мы не затрагивали тему настройки этих файловых систем, но они входят 
в состав многих облачных окружений или систем на основе Hadoop. При 
развертывании собственного кластера проще всего, пожалуй, настроить 
поддержку HDFS. 
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Пример 10.42 •:• Настройка механизма контрольных точек 

ssc. checkpoint ( "hdf s: / / ... ") 

Обратите внимание, что даже в локальном режиме Spark Streaming 
будет выводить предупреждения при попытке выполнить любую 
операцию с сохранением состояния, если не будет включен механизм 
контрольных точек. В этом случае можно передать путь к локальному 
каталогу. Но в любом промышленном окружении следует использо­
вать специализированную систему, такую как HDFS, SЗ или NFS. 

Повышение отказоустойчивости драйвера 
Повышение отказоустойчивости драйвера требует специального под­
хода к созданию объекта StreamingContext, который заключается в пе­
редаче ему каталога для сохранения контрольных точек. Вместо того 
чтобы просто вызвать new StreamingContext, следует воспользоваться 
функцией StreamingContext. getOrCreate (). Наш начальный пример 
можно было бы изменить, как показано в примерах 10.43 и 10.4 4. 

Пример 10.43 •:• Настройка драйвера, устойчивого к отказам, в Scala 

def createStreamingContext() = ( 

val sc = new SparkContext(conf) 
// Создать StreamingContext с 1-секундным интервалом обработки 
val ssc = new StreamingContext(sc, Seconds(l)) 
ssc.checkpoint(checkpointDir) 

val ssc = StreamingContext.getOrCreate(checkpointDir, createStreamingContext _) 

Пример 10.44 •:• Настройка драйвера, устойчивого к отказам, в Java 

JavaStreamingContextFactory fact = new JavaStreamingContextFactory() 
puЫic JavaStreamingContext call() { 

JavaSparkContext sc = new JavaSparkContext(conf); 
/! Создать StreamingContext с 1-секундным интервалом обработки 
JavaStreamingContext jssc = 

new JavaStreamingContext(sc, Durations.seconds(l)); 
jssc.checkpoint(checkpointDir); 
return j ssc; 

) }; 

JavaStreamingContext jssc = 

JavaStreamingContext.getOrCreate(checkpointDir, fact); 
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Когда этот код выполняется в первый раз, предполагается, что ката­
лог для контрольных точек еще не существует, объект StreamingContext 
будет создан вызовом фабричной функции (createStreamingContext () 
в Scala и JavaStreamingContextFactory () в Java). В фабричной функции 
необходимо определить каталог для контрольных точек. После того 
как драйвер завершится аварийно и этот код будет выполнен повтор­
но, функция getOrCreate () инициализирует StrearningContext из ката­
лога с контрольными точками и продолжит обработку. 

В дополнение к использованию функции getOrCreate () необхо­
димо организовать физический запуск драйвера в случае его оста­
новки. Практически ни один диспетчер кластера, поддерживаемый 
в Spark, не позволяет автоматически перезапустить драйвер в случае 
аварийного завершения, поэтому его работу нужно контролировать 
с помощью инструмента мониторинга, такого как rnonit, и перезапус­
кать при необходимости. Лучший способ реализации перезапуска 
в значительной степени зависит от окружения. Единственное, где 
Spark обеспечивает более или менее существенную поддержку, - дис­
петчер кластера Spark Standalone, которому можно передать флаг 
--supervise при запуске драйвера. Также диспетчеру нужно передать 
флаг --deploy-mode, чтобы был запущен в кластере, а не на локальном 
компьютере, как показано в примере 10.45. 

Пример 10.45 •:• Запуск драйвера в контролируемом режиме 

./bin/spark-subrnit --deploy-rnode cluster --supervise --rnaster spark:// ... App.jar

Используя это решение, необходимо еще обеспечить отказоустой­
чивость ведущего узла Spark Standalone. Реализовать это можно с по­
мqщью ZooKeeper, как описывается в документации Spark 1

• В этом 
случае ваше приложение не будет иметь слабого звена.

Наконец, обратите внимание, что когда драйвер неожиданно завер­
шается, исполнители Spark также перезапускаются, потому что испол­
нители не могут продолжать обработку данных без драйвера. Однако 
такая модель поведения может измениться в будущих версиях Spark. 
При повторном запуске драйвер автоматически запустит исполнителей, 
которые продолжат работу с того места, где они ее прервали перед этим. 

Отказоустойчивость рабочих узлов 
Для повышения отказоустойчивости рабочих узлов Spark Streaming 
использует те же приемы, что и Spark. Все данные, принятые из внеш-

1 http://Ьit.ly/1 BQCEOO. 
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них источников, копируются на несколько рабочих узлов Spark. Все 
наборы RDD, созданные в ходе преобразований скопированных ис­
ходных данных, устойчивы к отказам, потому что, опираясь на иерар­
хию происхождения RDD, система способна повторно вычислить все 
данные, утраченные с момента копирования исходных данных. 

Отказоустойчивость приемников 
Отказоустойчивость рабочих узлов, где выполняются приемники, 
имеет еще один важный аспект. В случае отказа Spark Streaming пере­
запустит приемники на других узлах кластера. Однако в зависимо­
сти от природы источника данных (способности повторить передачу) 
и реализации приемника (поддержка транзакций, подтверждающих 
прием данных) может произойти потеря некоторой информации. 
Например, одним из основных отличий двух типов приемников для 
Flume является гарантия от потери данных. При использовании ак­
тивных приемников Spark удаляет элементы только после того, как 
они будут скопированы внутри Spark. При использовании пассив­
ных приемников, если приемник завершится неожиданно до того, 
как успеет скопировать данные, эти данные могут быть утрачены. 
В общем случае, какой бы приемник не использовался, всегда прини­
майте во внимание характеристики отказоустойчивости источников 
данных, чтобы избежать потери данных. 

Вообще говоря, приемники дают следующие гарантии: 
О все данные, прочитанные из надежной файловой системы (на­

пример, с помощью StrearningContext. hadoopFiles ), находятся 
в полной безопасности, потому что сама файловая система 
предусматривает резервное копирование. Spark Streaming за­
поминает в контрольных точках, какие данные были обрабо­
таны, и в случае краха приложения возобновляет работу с по­
следней контрольной точки; 

О при использовании ненадежных источников, таких как Kafka, 
пассивные приемники Flume или Twitter, фреймворк Spark ав­
томатически копирует исходные данные на другие узлы, но это 
не гарантирует сохранности некоторых небольших объемов 
данных в случае аварийного завершения задачи с приемни­
ком. В версиях Spark 1.1 и ниже принятые данные сохранялись 
только в памяти исполнителей, поэтому потеря данных могла 
произойти также в случае аварийного завершения драйвера 
(из-за чего теряется связь с исполнителями). В Spark 1.2 при­
нятые данные могут сохраняться в надежную файловую си-
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стему, такую как HDFS, что обеспечивает их сохранность при 
перезапуске драйвера. 

Таким образом, чтобы гарантировать обработку всех данных, луч­
ше использовать надежные источники (например, HDFS или актив­
ные приемники Flume ). Эти же рекомендации остаются актуальными 
и в случае, когда требуется организовать обработку данных позднее, 
в пакетном режиме: применение надежных источников гарантирует, 
что пакетные и потоковые задания получат одни и те же исходные 
данные и вернут одни и те же результаты. 

Гарантированная обработка 
Благодаря отказоустойчивости Spark Streaming обеспечивает под­
держку семантики «только однажды» (exactly-once semantic) для лю­
бых преобразований, даже если рабочий узел выйдет из строя в тот мо­
мент, когда выполнялась обработка некоторых данных, окончательный 
результат преобразования (то есть преобразованные наборы RDD) бу­
дет тем же, как если бы данные обрабатывались только один раз. 

Однако когда результат преобразований выводится во внешнюю 
систему с использованием операции вывода, задача вывода может 
быть выполнена несколько раз из-за неудачных попыток, и некото­
рые данные могут быть выведены несколько раз. Поскольку здесь 
в работу вовлечены внешние системы, данная проблема должна ре­
шаться с учетом особенностей конкретной принимающей системы. 
Передачу данных можно осуществлять с использованием механизма 
транзакций (то есть передавать разделы RDD по одному, атомарно) 
или реализовать операции обновления так, чтобы они были идем­
потентными (когда результат операции не зависит от того, сколько 
раз она была выполнена). Например, операции saveAs ... File в Spark 
Streaming автоматически гарантируют существование только одной 
копии выходного файла, атомарно перемещая файл в требуемое мес­
то после завершения записи данных в него. 

Веб-интерфейс Sparl< Streaming 
Spшk Stre.aтjng имеет собственную веб-страницу, позволяющую 
увидеть, что делают приложения. Она доступна во вкладке Streaming 
в неб-интерфейсе Spark (обычно по адресу http:/!<driver>:4040). На 
рис. 10.9 показан скриншот такой страницы. 

В неб-интерфейсе Spark Streaming отображается информация об 
обработке пакетов и состоянии приемников. В данном примере име-
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Рис. 10.9 •:• Вкладка «Streaming» в веб-интерфейсе Spark 

ется один сетевой приемник и можно наблюдать скорость обработки 
сообщений. Если бы имело место запаздывание, можно было бы уви­
деть, сколько записей способен обработать каждый приемник. Здесь 
также можно увидеть, имели ли место аварийные ситуации с при­
емниками. Раздел с информацией по обработке пакетов сообщает, 
как долго обрабатываются пакеты и какие задержки возникают при 
планировании задания. Если в кластере возникает острая конкурен­
ция между заданиями за обладание ресурсами, это может приводить 
к увеличению задержек планирования. 

Проблемы прои3водительности 
Помимо параметров настройки производительности Spark, обсуж­
давшихся ранее, приложения Spark Streaming обладают дополни­
тельными, специализированными параметрами. 

Интервал пакетирования и протяженность окна 
При создании приложений Spark Streaming типичной проблемой 
является выбор минимального интервала пакетирования и протя­
женности окна. В общем случае интервал пакетирования 500 мил-
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лисекунд является достаточно разумным выбором. Однако выбор 
величины интервала лучше производить экспериментальным путем, 
начав с большого интервала (что-нибудь около 10 секунд), и затем под 
воздействием обычной рабочей нагрузки постепенно уменьшать его, 
пока характеристики производительности в веб-интерфейсе Spark 
Streaming (см. рис. 10.9) продолжают улучшаться с каждым шагом. 
Как только будет отмечено ухудшение, можно считать, что вы достиг­
ли минимального интервала пакетирования для своего приложения. 

Аналогично подбирается оптимальная протяженность окна для 
оконных операций, в которых параметры окна оказывают существен­
ное влияние на производительность. Если оконные операции явля­
ются узким местом в приложении, можно попробовать увеличить 
размер и шаг окна. 

Степень параллелизма 
Уменьшение времени обработки пакетов обычно достигается за счет 
увеличения степени параллелизма. Сделать это можно тремя спосо­
бами: 

1) увеличить число приемников: иногда приемники оказываются
узким местом, особенно когда число поступающих записей ока­
зывается слишком велико для единственной машины и она не
справляется с их приемом и распределением. В такой ситуации
можно попробовать увеличить число приемников, создающих
несколько потоков DStream с исходными данными, и затем объ­
единять их с помощью union в единый поток;

2) явно перераспределять исходные данные: если число приемни­
ков нельзя увеличить, можно попробовать перераспределять
данные, явно разбрасывая исходный поток по большему чис­
лу разделов (или объединяя несколько потоков) с помощью
DStream.repartition;

3) увеличить степень параллелизма при агрегировании: при вы­
полнении таких операций, как reduceByKey (), можно указать
степень параллелизма во втором параметре, как уже говорилось
выше, при обсуждении наборов RDD.

Сборка мусора и использование памяти 
Еще один фактор, который может вызывать проблемы, - сборка му­
сора в Java. Минимизировать непредсказуемые паузы, вызванные 
работой сборщика мусора, можно, включив сборщик мусора CMS 
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(Concurrent Mark-Sweep). Вообще, этот сборщик мусора потребляет 
больше ресурсов, но реже вызывает длительные паузы. 

Чтобы выбрать данный сборщик мусора, следует добавить -ХХ: +Use­
ConcMarkSweepGC в параметр настройки spark. executor. extraJavaOptions. 
Как это сделать с помощью spark-submit, показано в примере 10.46. 

Пример 10.46 •:• Включение сборщика мусора Concurrent Mark-Sweep 

spark-submit --conf \ 

spark.executor.extraJavaOptions;-XX:+UseConcMarkSweepGC \ 

Арр. jar 

В дополнение к выбору сборщика мусора, уменьшающего вероят­
ность пауз, можно попробовать снизить нагрузку на него. Кэширо­
вание наборов RDD в сериализованной форме снижает нагрузку на 
сборщика мусора, и именно поэтому наборы RDD, сгенерированные 
модулем Spark Streaming, по умолчанию хранятся в сериализован­
ном виде. Применение библиотеки сериализации Kryo позволяет еще 
больше снизить потребность в памяти для хранения кэшированных 
данных. 

Кроме того, Spark дает возможность выбирать алгоритм вытесне­
ния из кэша хранящихся в нем наборов RDD. По умолчанию Spark 
использует алгоритм LRU. Кроме того, если установить параметр 
spark. cleaner. ttl, Spark будет явно вытеснять наборы RDD, более 
�старые�,,, чем указано в этом параметре. Принудительное вытеснение 
старых наборов �RDDi,,, которые маловероятно понадобятся спустя 
указанный период времени, также может помочь уменьшить нагрузку 
на сборщика мусора. 

В 3а1<лючение 

В этой главе мы узнали, как организовать обработку потоковых дан­
ных с использованием потоков DStream. Так как эти потоки представ­
ляют собой последовательности наборов RDD, вы с успехом сможете 
использовать знания и навыки, приобретенные в предыдущих главах, 
для создания потоковых приложений и приложений, действующих 
в масштабе реального времени. В следующей главе мы познакомимся 
с машинным обучением. 
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Машинное обучение 

с MLlib 

MLlib - это библиотека функций машинного обучения (machine 
learning), входящая в состав Spark. Предназначенная для использова­
ния в кластерах, библиотека ML!ib содержит реализации разных ал­
горитмов машинного обучения и может использоваться во всех язы­
ках программирования, поддерживаемых фреймворком Spark. В этой 
главе мы покажем вам, как пользоваться этой библиотекой в своих 
программах, и дадим некоторые рекомендации по ее применению. 

Сама по себе тема машинного обучения настолько обширна, что 
достойна даже не отдельной книги, а множества книг 1

, поэтому, 
к большому сожалению, в этой главе у нас будет не так много места, 
чтобы подробно рассказать о технологии машинного обучения. Если 
вы не новичок в машинном обучении, в этой главе вы узнаете, как 
применять его в среде Spark; и даже те, кто прежде даже не слышал 
об этой технологии, смогут соединить знания, полученные здесь, 
с любым другим вводным материалом. Эта глава в большей степени 
адресована исследователям данных, имеющим опыт использования 
технологии машинного обучения и ищущим возможность применять 
их совместно с фреймворком Spark, а также программистам, работаю­
щим со специалистами в области машинного обучения. 

Обзор 
Библиотека ML!ib имеет очень простую архитектуру и философию: 
она позволяет применять разные алгоритмы к распределенным мас­
сивам данных, представленным в виде наборов RDD. Библиотека 
ML!ib вводит несколько новых типов данных (например, маркиро-

1 Примерами могут служить книги издательства O'Rei\ly: <<Machine Learning
with R,> (http://shop.oreilly.com/product/9781782162148.do) и <<Machine 
Lcarning for Hackers,> (http://shop.oreilly.com/product/0636920018483.do ). 
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ванные точки и векторы), но в конечном счете это просто множество 
функций для обработки наборов RDD. Например, чтобы задейство­
вать библиотеку MLlib в задаче классификации текста (например, 
для выявления спама среди электронных писем), достаточно выпол­
нить следующие шаrи: 

1) создать набор RDD строк, представляющих содержимое элект­
ронных писем;

2) выполнить один из алrоритмов извлечения признаков (feature
extraction) в библиотеке MLlib, чтобы преобразовать текст
в числовые признаки ( пригодные для использования в алгорит­
мах обучения). В результате будет получен набор RDD векторов;

3) вызвать алгоритм классификации (например, алгоритм логисти­
ческой регрессии (logistic regression)) для обработки набора RD D
векторов. В результате будет получена объектная модель, кото­
рую затем можно использовать для классификации новых точек;

4) применить модель к тестовому набору данных с использовани­
ем одной из функций библиотеки MLlib.

Важно отметить, что библиотека MLlib содержит только парал­
лельные алгоритмы, пригодные для использования в кластерах. Не­
которые классические алгоритмы машинного обучения не вошли 
в библиотеку только потому, что не предназначены для работы на 
параллельных платформах, но, с другой стороны, в MLlib имеется 
реализация нескольких новейших алгоритмов для кластеров, таких 
как распределенные случайные леса ( distributed random forests ), метод 
К-средних (K-meansll) и метод чередующихся наименьших квадратов 
(alternating least squares). Этот выбор разработчиков MLlib означа­
ет, что библиотека предназначена для обработки больших ( очень 
больших) массивов данных. Если у вас, наоборот, имеется множест­
во небольших массивов данных, на основе которых вы хотели бы 
<1обучать�,, разные модели, тогда вам лучше использовать другую би­
блиотеку, предназначенную для использования на одном узле ( такую 
как Weka или SciKit-Learn), функции из которой могут вызываться 
на каждом узле в отдельности с использованием преобразования 
Spark rnap (). Аналогично для некоторых процессов машинного обу­
чения характерно требовать применения одного и того же алгоритма 
к маленькому набору данных со множеством параметров настройки, 
чтобы выбрать лучший вариант. Реализовать это в Spark можно с по­
мощью parallelize () и списка параметров для проведения обучения 
на разных узлах, опять же с применением библиотеки, предназна­
ченной для выполнения на одном узле. Что же касается библиотеки 
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MLlib, она особенно ярко проявляет себя при обучении моделей на 
больших, распределенных массивах данных. 

Наконец, интерфейс MLib в Spark 1.0 и 1.1 имеет довольно низ­
кий уровень, дающий возможность вызывать функции для решения 
разных задач, но не высокоуровневые операции, обычные для про­
цесса машинного обучения (например, деление исходных данных на 
обучающую (training data) и тестовую (test data) выборки или опро­
бование множества комбинаций параметров). В Spark 1.2 библиотека 
MLlib реализует дополнительный API (и пока еще эксперименталь­
ный, на момент написания этих строк) для построения подобных про­
цессов обучения. Этот API напоминает такие высокоуровневые биб­
лиотеки, как SciKit-Learn, и мы надеемся, что он упростит создание 
полных, самонастраивающихся процессов обучения. Мы добавили 
обзор этого API в конец главы, а в основной ее части сосредоточимся 
на низкоуровневых функциях. 

Системные требования 
MLlib требует наличия в системе некоторых библиотек линейной
алгебры. Во-первых, необходима библиотека времени выполнения
gfortran. Если MLlib предупредит об отсутствии gfortran, прочитайте
и выполните инструкции на неб-сайте MLlib 1

• Во-вторых, чтобы ис­
пользовать MLlib в Python, нужно установить пакет NumPy2

• Если
в установленной у вас версии Python этот пакет отсутствует (то есть
вы не сможете выполнить инструкцию import numpy ), установите пакет
python-numpy или numpy с помощью диспетчера пакетов в Linux или вос­
пользуйтесь дистрибутивом Python для научных расчетов от сторон­
них производителей, таких как Anaconda3

• 

Библиотека ML!ib поддерживает алгоритмы, которые развиваются 
уже достаточно давно. Все алгоритмы, что будут обсуждаться здесь, 
доступны в Spark 1.2, но некоторые из них могут отсутствовать в бо­
лее ранних версиях. 

Основы машинного обучения 
Чтобы помочь вам понять назначение функций в библиотеке ML!ib, 
мы сначала дадим краткий обзор понятий машинного обучения. 

1 http://Ьit.ly/1yCoHox.
2 http://www.numpy.org/.
3 http://Ьit.ly/1yCoMIC.
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Цель алгоритмов машинного обучения - попытаться на осно­
ве обучающей выборки (training data) выдать прогноз или решение, 
часто путем максимизации математической цели, о том, как дол­
жен вести себя алгоритм. Существуют разные типы задач обучения, 
включая классификацию, регрессию или кластеризацию, имеющие 
разные цели. Как простой пример мы рассмотрим задачу классифика­
ции, целью которой является определение принадлежности элемента 
к той или иной категории (например, является электронное письмо 
спамом или нет) на основе маркированных экземпляров подобных 
элементов ( например, электронных писем, о которых точно известно, 
являются они спамом или нет). 

Все алгоритмы машинного обучения требуют определить для каж­
дого элемента набор характеристических признаков (features), кото­
рый будет передаваться функции обучения. Например, для электрон­
ного письма характеристическими признаками могут быть: сервер 
исходящей почты, число упоминаний слова <1бесплатно,> или цвет 
текста. Во многих случаях определение правильных характеристиче­
ских признаков является самой сложной частью машинного обуче­
ния. Например, простое добавление в задачу, подбирающую рекомен­
дации по выбору товаров, еще одного характеристического признака 
(например, в задачу, рекомендующую выбор книг, можно было бы до­
бавить такой признак, как просматриваемые пользователем фильмы) 
может значительно улучшить результаты. 

Большинство алгоритмов поддерживают только числовые харак­
теристические признаки ( например, векторы чисел, представляющих 
значения признаков), поэтому часто важным шагом являются из­

влечение и преобразование признаков для получения таких векторов. 
Например, для случая с классификацией текста (спам или неспам) 
есть несколько методов определения характеристик текста, таких как 
подсчет частоты встречаемости каждого слова. 

После преобразования исходных данных в векторы признаков 
большинство алгоритмов обучения на их основе пытаются найти 
оптимум известной математической функции. Например, один из 
алгоритмов классификации может пытаться определить плоскость 
(в пространстве векторов признаков), которая <<лучше� всего отде­
ляет примеры спама от примеров неспама в соответствии с опреде­
лением понятия <1лучше,> (например: <<большинство экземпляров 
классифицируется плоскостью правильно,>). В завершение алгоритм 
вернет модель, представляющую результат обучения (например, по­
лученную плоскость). Эта модель может применяться для классифи-
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кации новых точек ( например, можно посмотреть, по какую сторону 
от плоскости оказывается характеристический вектор нового элект­
ронного письма, чтобы решить, является оно спамом или нет). На 
рис. 11.1 показан пример работы процесса обучения. 

Выделение признаков Обучение 
спам: 

бесплатные деньги ·---
прямо сейчас! ------- ---· +купите на эти деньги - - --- --

,
---:- -�t. + __..сэкономьте$$$ -········ ••.• •·•• - ....,.

неспам: .... ·······
··• >·:.�-:: .• -

как поживаете?············ .•. ,,,,-,,,=·
это задание Spark -···::::>·· 
это задание Spark _..-

Обучающие данные Векторы признаков Модель Лучшая модель 

Рис. 11.1 •:• Типичные этапы процесса машинного обучения 

Наконец, большинство обучающих алгоритмов имеют множество 
параметров, влияющих на результаты, поэтому на практике в про­
цессе обучения часто создается несколько версий модели, и затем 
производится оценка каждой из них. С этой целью исходные данные 
обычно делятся на «обучающую,> и «тестовую,> выборки, и обучение 
выполняется только на первой из них, а тестовая выборка использу­
ется для оценки версий модели. Библиотека ML!ib предоставляет не­
сколько алгоритмов оценки моделей. 

Пример: классификация спама 
Для начального знакомства с ML!ib мы покажем пример очень простой 
программы, генерирующей классификатор спама (примеры с 11.1 по 
11.3). В этой программе используются два алгоритма из ML!ib: HashingTF, 
создающий вектор частот встречаемости терминов (term frequency) 
в тексте, и LogisticRegressionWithSGD, реализующий процедуру логисти­
ческой регрессии (logistic regression) методом стохастического гради­
ентного спуска (Stochastic Gradient Descent, SGD). Предполагается, что 
имеются два файла, spam.txt и nonnal.txt, каждый из которых содержит 
примеры электронных писем со спамом и без спама, по одному в стро­
ке. Каждое электронное письмо в каждом файле преобразуется в век­
тор признаков с частотами терминов, и производится обучение модели 
логистической регрессии для разделения сообщений двух типов. Про­
граммный код и данные можно найти в Git-репозитории книги. 
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Пример 11 . 1 •:• Классификатор спама в Pythoп 

from pyspark.mllib.regression import LabeledPoint 

from pyspark.mllib.feature import HashingTF 

from pyspark.mllib.classification import LogisticRegressionWithSGD 

spam = sc.textFile("spam.txt") 

normal = sc.textFile("normal.txt") 

# Создать экземпляр HashingTF для отображения текста электронных 

# писем в векторы с 10 ООО признаков. 

tf = HashingTF(numFeatures = 10000) 

# Разбить каждое электронное пистьмо на слова и каждое слово 

# отобразить в один признак. 

spamFeatures = spam.map( 

lamЬda email: tf.transform(email.split(" "))) 

normalFeatures = normal.map( 

lamЬda email: tf.transform(email.split(" "))) 

# Создать наборы данных LabeledPoint для примеров, дающих 

# положительную реакцию (спам) и отрицательную (обычные письма). 

positiveExamples = spamFeatures.map( 

lamЬda features: LabeledPoint(l, features)) 

negativeExamples = normalFeatures.map( 

lamЬda features: LabeledPoint(O, features)) 

trainingData = positiveExamples.union(negativeExamples) 

trainingData.cache() # Кэшировать, потому что алгоритм 

# Logistic Regression является циклическим. 

# Выполнить логистическую регрессию методом SGD. 

model = LogisticRegressionWithSGD.train(trainingData) 

Проверить положительный экземпляр (спам) и отрицательный (неспам). 

Сначала применить то же преобразование HashingTF, чтобы получить 

векторы признаков, затем применить модель. 

posTest = tf.transform( 

"О М G GET cheap stuff Ьу sending money to ... ".split (" ")) 

negTest = tf.transform( 

"Hi Dad, I started studying Spark the other ... ".split(" ")) 

print "Prediction for positive test example: %g" % 

model.predict(posTest) 

print "Prediction for negative test example: %g" 

model.predict(negTest) 
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Пример 11 .2 •:• Классификатор спама в Scala 

import org.apache.spark.mllib.regression.LabeledPoint 
import org.apache.spark.mllib.feature.HashingTF 
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD 

val spam; sc.textFile("spam.txt") 
val normal; sc.textFile("normal.txt") 

// Создать экземпляр HashingTF для отображения текста электронных 
// писем в векторы с 10 ООО признаков. 
val tf; new HashingTF(numFeatures; 10000) 

// Разбить каждое электронное письмо на слова и каждое слово 
// отобразить в один признак. 
val spamFeatures; spam.map(email ;> tf.transform(email.split(" "))) 
val normalFeatures 

normal.map(email ;> tf.transform(email.split(" "))) 

// Создать наборы данных LabeledPoint для примеров, дающих 
// положительную реакцию (спам) и отрицательную (обычные письма). 
val positiveExamples; 

spamFeatures.map(features ;> LabeledPoint(l, features)) 
val negativeExamples; 

normalFeatures.map(features ;> LabeledPoint(O, features)) 
val trainingData; positiveExamples.union(negativeExamples) 
trainingData.cache() // Кэшировать, потому что алгоритм 

// Logistic Regression является циклическим. 

// Выполнить логистическую регрессию методом SGD. 
val model; new LogisticRegressionWithSGD() .run(trainingData) 

// Проверить положительный экземпляр (спам) и отрицательный (неспам). 
val posTest; tf.transform( 

"О М G GET cheap stuff Ьу sending money to ... ". split (" ")) 
val negTest; tf.transform( 

"Hi Dad, I started studying Spark the other ... ".split(" ")) 
println ( "Prediction for posi ti ve test example: " + 

model.predict(posTest)) 
println("Prediction for negative test example: " +

model.predict(negTest)) 

Пример 11 .З •:• Классификатор спама в Java 

import org.apache.spark.mllib.classification.LogisticRegressionModel; 
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD; 
import org.apache.spark.mllib.feature.HashingTF; 
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import org.apache.spark.mllib.linalg.Vector; 

import org.apache.spark.mllib.regression.LabeledPoint; 

JavaRDD<String> spam = sc.textFile( 11spam.txt 11
); 

JavaRDD<String> normal = sc.textFile("normal.txt 11

); 

// Создать экземпляр HashingTF для отображения текста электронных 

// писем в векторы с 10 ООО признаков. 

final HashingTF tf = new HashingTF(lOOOO); 

// Создать наборы данных LabeledPoint для примеров, дающих 

// положительную реакцию (спам) и отрицательную (обычные письма). 

JavaRDD<LabeledPoint> posExamples = 

spam.map(new Function<String, LabeledPoint>() 

puЫic LabeledPoint call(String email) ( 

return new LabeledPoint(l, 

} 

}) ; 

tf.transform(Arrays.asList(email.split( 11 11

)))); 

JavaRDD<LabeledPoint> negExamples = 

normal.map(new Function<String, LabeledPoint>() 

puЫic LabeledPoint call(String email) ( 

return new LabeledPoint(O, 

} 

}); 

tf.transform(Arrays.asList(email.split( 11 11

)))); 

JavaRDD<LabeledPoint> trainData = 

positiveExamples.union(negativeExamples); 

trainData.cache();// Кэшировать, потому что алгоритм 

// Logistic Regression является циклическим. 

// Выполнить логистическую регрессию методом SGD. 

LogisticRegressionModel model = 

new LogisticRegressionWithSGD() .run(trainData.rdd()); 

// Проверить положительный экземпляр (спам) и отрицательный (неспам). 

Vector posTest = tf.transform(Arrays.asList( 
110 М G GET cheap stuff Ьу sending money to ... 11.split( 11 

"))); 

Vector negTest = tf.transform(Arrays.asList( 
1
1 Hi Dad, I started studying Spark the other ... 11 .split( 11 1

1))); 

System.out.println( 11Prediction for positive example: 11 +

model.predict(posTest)); 

System.out.println( 11Prediction for negative example: 11 + 

model.predict(negTest)); 
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Как видите, программный код на всех языках имеет много общего. 
Он непосредственно воздействует на наборы RD D - в данном случае 
на наборы строк (с исходным текстом) и объектов LabeledPoint (тип 
данных в ML!ib для векторов маркированных признаков). 

Типы данных 

В ML!ib имеется несколько собственных типов данных, которые 
определяются в пакетах org. apache. spark.mllib Oava/Scala) и pyspark. 
mllib (Python). Наиболее значимыми из них являются: 

О Vector - вектор в математическом смысле. MLlib поддержи­
вает обе разновидности векторов: плотные, хранящие все эле­
менты, и разреженные, хранящие только ненулевые значения 
для экономии памяти. Мы рассмотрим разные типы векторов 
чуть ниже. Векторы могут конструироваться с помощью класса 
mllib.linalg.Vector; 

О LabeledPoint - маркированная точка в пространстве данных 
для использования в алгоритмах обучения, таких как класси­
фикация и регрессия. Включает вектор признаков и маркер 
(являющийся вещественным числом). Определение находится 
в пакете mllib. regression package; 

О Rating - оценка продукта пользователем, используемая в паке­
те mllib. recommendation для определения рекомендаций; 

О семейство классов Model - все модели типа Model являются ре­
зультатом работы алгоритма обучения и обычно имеют метод 
predict () для применения модели к новой точке или к набору 
RDD новых точек данных. 

Большинство алгоритмов оперируют непосредственно наборами 
RDD объектов Vector, LabeledPoint или Rating. Наборы этих объектов 
можно создавать вручную, но обычно они создаются в ходе преоб­
разований внешних данных - например, путем загрузки текстовых 
файлов или выполнением команд Spark SQL - с последующим при­
менением map () для превращения данных в объекты ML!ib. 

Векторы 
В отношении класса Vector из библиотеки ML!ib, который использу­
ется, пожалуй, чаще других, следует сделать несколько важных за­
мечаний. 

Во-первых, векторы имеют две разновидности: плотные и разрежен­
ные. Плотные векторы хранят в массиве вещественных чисел все эле-
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менты. Например, вектор с размером 100 будет хранить 100 значений 
типа douЫe. Разреженные векторы, напротив, хранят только ненуле­
вые значения и их индексы. Обычно разреженные векторы предпоч­
тительнее (и с точки зрения использования памяти, и с точки зрения 
скорости), если не более 10% элементов имеют ненулевые значения. 
Большинство алгоритмов определения характеристических признаков 
возвращают очень разреженные векторы, поэтому применение данной 
разновидности векторов часто оказывается важной оптимизацией. 

Во-вторых, в разных языках векторы создаются немного по-разно­
му. В Python можно просто передать массив NumPy какой-либо функ­
ции из ML!ib как представление плотного вектора или использовать 
класс mllib. linalg. Vectors для создания векторов других типов ( см. 
пример 11.4) 1

• BJava и Scala следует использовать класс mllib. linalg.
Vectors ( см. примеры 11.5 и 11.6). 

Пример 11 .4 •:• Создание векторов в Python 

from numpy import array 
from pyspark.mllib.linalg import Vectors 

# Создать плотный вектор <1.0, 2.0, 3.0> 
denseVecl = array([l.O, 2.0, 3.0]) # в MLlib можно передавать 

# непосредственно массивы NumPy 
denseVec2 = Vectors.dense([l.O, 2.0, 3.0]) # .. или использовать 

# класс Vectors 

# Создать разреженный вектор <1.0, О.О, 2.0, О.О>; соответствующие 
# методы принимают только размер вектора (4) и 
# индексы с ненулевыми элементами. Исходные данные можно передать 
# в виде словаря или как два риска - индексов и значений. 
sparseVecl = Vectors. sparse ( 4, {О: 1. О, 2: 2. О}) 
sparseVec2 = Vectors.sparse(4, [О, 2], [1.0, 2.0]) 

Пример 11.5 •:• Создание векторов в Scala 

import org.apache.spark.mllib.linalg.Vectors 

// Создать плотный вектор <1.0, 2.0, 3.0>; 
// Vectors.dense принимает значения или массив 
val denseVecl = Vectors.dense(l.O, 2.0, 3.0) 
val denseVec2 = Vectors.dense(Array(l.O, 2.0, 3.0)) 

// Создать разреженный вектор <1.0, О.О, 2.0, О.О>; 

1 Пользующиеся пакетом SciPy могут передавать в Spark матрицы scipy. 
sparse размером Nx1 в качестве векторов с длиной N. 



// Vectors.sparse принимает размер вектора (4) 
// и индексы с ненулевыми элементами 
val sparseVecl = Vectors.sparse(4, Array(O, 2), Array(l.O, 2.0)) 

Пример 11 .6 •:• Создание векторов в Java 

import org.apache.spark.mllib.linalg.Vector; 
import org.apache.spark.mllib.linalg.Vectors; 

// Создать плотный вектор <1.0, 2.0, 3.0>; 
// Vectors.dense принимает значения или массив 
Vector denseVecl = Vectors.dense(l.O, 2.0, 3.0); 
Vector denseVec2 = Vectors.dense(new douЫe[J (1.0, 2.0, 3.0}}; 

// Создать разреженный вектор <1.0, О.О, 2.0, О.О>; 
// Vectors.sparse принимает размер вектора (4) 
// и индексы с ненулевыми элементами 
Vector sparseVecl = Vectors.sparse(4, new int[J {О, 2}, 

new douЫe[]{l.O, 2.0}}; 

Наконец, вjava и Scala классы Vector в MLlib предназначены в пер­
вую очередь для представления данных и не поддерживают выпол­
нения арифметических операций, таких как сложение и вычитание, 
в пользовательском API. (Разумеется, в Python можно использовать 
NumPy для выполнения вычислений с участием плотных векторов 
и передавать их в MLlib.) Сделано это было в основном, чтобы сохра­
нить библиотеку MLlib небольшой, потому что создание полноцен­
ной библиотеки функций линейной алгебры не являлось целью это­
го проекта. Но если в программе понадобится поддержка векторных 
операций, можно воспользоваться сторонней библиотекой, такой как 
Breeze в Scala или MTJ в J ava, и преобразовывать данные из представ­
лений этих библиотек в векторы MLlib. 

Алгоритмы 
В этом разделе мы познакомимся с алгоритмами, доступными в MLlib, 
а также с типами их входных и выходных данных. У нас недостаточно 
места, чтобы объяснить математический аппарат, на котором основы­
вается каждый алгоритм, поэтому мы расскажем лишь, как вызывать 
и настраивать эти алгоритмы. 

Извлечение признаков 
Пакет rnllib. feature содержит несколько классов реализации преоб­
разований признаков. В том числе алгоритмы создания векторов при-
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знаков из текста (или из других типов данных), а также нормализа­
ции и масштабирования признаков. 

TF-IDF 

Term Frequency - lnverse Document Frequency (частота слова -
обратная частота документа), или TF-IDF - это простой алгоритм 
создания векторов признаков для текстовых документов (таких как 
веб-страницы). Он вычисляет для каждого слова в каждом документе 
две статистики: частоту слова (Term Frequency, TF), то есть сколько 
раз встретилось это слово в документе, и обратную частоту докумен­
та (Inverse Document Frequency, IDF), оценивающую, как (не)часто 
встречается слово во всей коллекции документов. Произведение этих 
значений, TF х IDF, показывает, насколько важным является слово 
для конкретного документа ( то есть слово может часто использовать­
ся в данном документе, но редко во всей коллекции в целом). 

В библиотеке ML!ib имеются два алгоритма для вычисления оцен­
ки TF-ID F: HashingTF и IDF, оба в пакете mllib. fea ture. HashingTF вы­
числяет для документа вектор частот слов заданного размера. Для 
отображения слов в индексы вектора в нем используется прием хэ­

ширования. В любом языке человеческого общения имеются сотни 
тысяч слов, поэтому отображать каждое слово в отдельный индекс 
вектора было бы слишком дорого. Вместо этого HashingTF берет хэш­
код слова, желаемый размер вектора, S, и отображает каждое слово 
в числа в диапазоне от О до S - 1. В результате всегда получается 
вектор с S элементами, и результаты практически всегда получаются 
достаточно устойчивыми, даже если несколько разных слов отобра­
жаются в один и тот же хэш-код. Разработчики ML!ib рекомендуют 
выбирать значение S между 2 18 и 220 • 

HashingTF может обработать один документ или сразу целый на­
бор RDD. Он требует, чтобы каждый «документ>> был представлен 
итерируемой последовательностью объектов - например, списком 
в Python или Collection в Java. В примере 11.7 показано использова­
ние HashingTF в Python. 

Пример 11. 7 •:• Использование HashingTF в Python 

>>> from pyspark.mllib.feature import HashingTF 

»> sentence = "hello hello world"

>>> words = sentence.split() Разбить sentence на список слов 

>>> tf = HashingTF(lOOOO) # Создать вектор размера S = 10000 



>>> tf.transform(words) 
SparseVector(lOOOO, {3065: 1.0, 6861: 2.0)) 

»> rdd = sc.wholeTextFiles("data") .map(lamЬda (name, text): text.split())
>>> tfVectors = tf.transform(rdd) # Преобразовать сразу весь набор RDD

Q
На практике часто бывает желательно предварительно обработать и от­
сеять слова в документе перед передачей их в TF. Например, все буквы 
в словах можно преобразовать в нижний регистр, отсеять знаки пунк­
туации и отбросить окончания. Для получения более качественного 
результата можно воспользоваться в map () библиотекой обработки тек­
стов на естественных языках, такой как NLTK 1 • 

После того как векторы с частотами слов будут созданы, можно 
вычислить обратные частоты документов и перемножить их на час­
тоты слов для получения оценки TF-IDF. Для этого вызовом мето­
да fit () объекта IDF сначала нужно получить объект модели IDFModel, 
представляющий обратные частоты документов в коллекции, затем 
вызвать метод transform () модели, чтобы преобразовать векторы TF 
в векторы IDF. В примере 11.8 показано, как выполнить эти вычисле­
ния, не начиная с вычислений из примера 11.7. 

Пример 11.8 •:• Вычисление оценки TF-IDF в Python 

from pyspark.mllib.feature import HashingTF, IDF 

# Прочитать множество текстовых файлов в векторы TF 
rdd = sc. wholeTextFiles ( "data") .map (lamЬda (name, text) : text. spli t ()) 
tf = HashingTF () 
tfVectors = tf.transform(rdd) .cache() 

# Вычислить IDF, затем векторы TF-IDF 
idf = IDF () 
idfModel = idf .fit (tfVectors) 
tfidfVectors = idfModel.transform(tfVectors) 

Обратите внимание на вызов метода cache () набора tfVectors. Сде­
лано это потому, что данный набор используется дважды ( первый раз 
для обучения модели IDF и второй - в операции умножения векторов 
TF моделью IDF). 

Масштабирование 
Большинство алгоритмов машинного обучения оценивают вели­

чину каждого элемента в векторе признаков, из-за чего более точные 

1 http://www.nltk.org/. 



274 •:• Машинное обучение с Mllib 

результаты получаются, когда признаки масштабированы так, что 
имеют примерно равные веса (например, все признаки имеют сред­
нее значение, равное О, и стандартное отклонение 1 ). С этой целью 
после создания векторов признаков можно воспользоваться классом 
StandardScaler из ML!ib, выполняющим масштабирование по средним 
значениям и стандартным отклонениям. Для этого нужно создать 
экземпляр StandardScaler, вызвать его метод fit (), чтобы получить 
StandardScalerModel (то есть вычислить среднее и дисперсию каждого 
столбца), затем вызвать transform () модели для масштабирования на­
бора данных. Все эти действия демонстрируются в примере 11.9. 

Пример 11.9 •:• Масштабирование векторов в Python 

from pyspark.mllib.feature import StandardScaler 

vectors = [Vectors.dense([-2.0, 5.0, 1.0]), 

Vectors.dense([2.0, О.О, 1.0])] 

dataset = sc.parallelize(vectors) 

scaler = StandardScaler(withMean=True, withStd=True) 

model = scaler.fit(dataset) 

result = model.transform(dataset) 

Результат: { [-0. 7071, О. 7071, О.О], [О. 7071, -0. 7071, О.О]] 

Нормализация 
Иногда бывает полезно нормализовать векторы, то есть привес­

ти их к единичной длине. Сделать это можно с помощью класса 
Normalizer, простым вызовом Normalizer () . transform (rdd). По умолча­
нию класс Normalizer использует L2 норму (то есть эвклидову длину), 
но точно так же можно передать в вызов Normalizer () другое значение 
показателя степени р, чтобы использовать норму LP. 

Word2Vec 

Word2Vec 1 (https://code.google.com/p/word2vec/) - это алгоритм 
выделения признаков для текста на основе нейронных сетей, который 
можно использовать для подготовки данных к обрабьтке следующи­
ми за ним алгоритмами. Фреймворк Spark включает реализацию это­
го алгоритма в виде класса mllib. feature. Word2Vec. 

Для обучения Word2Vec следует передать коллекцию документов, 
представленную объектами-коллекциями IteraЬle строк (по одному 

1 Представлен в книге Миколова с соавторами <iEfficient Estimation of Word
Representations in Vector Spacei>, 2013. 
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слову в строке). Так же как для алгоритма TF-IDF, рекомендуется 
нормализовать слова (например, привести все символы к нижнему 
регистру и удалить из текста знаки пунктуации и числа). Результатом 
обучения (вызовом Word2Vec .fit (rdd)) является объект Word2VecModel, 
метод transforrn () которого можно использовать для преобразова­
ния каждого слова в вектор. Обратите внимание, что размер модели 
в алгоритме Word2Vec равен числу слов в словаре, умноженному на 
размер вектора (по умолчанию 100). Вам может потребоваться от­
фильтровать слова, отсутствующие в стандартном словаре, чтобы 
ограничить размер. Вообще, хорошими считаются словари, содержа­
щие порядка 100 ООО слов. 

Статистики 

Вычисление основных статистик является важной частью анализа 
данных и для специальных исследований, и для нужд машинного 
обучения. Библиотека ML!ib предлагает возможность вычисления 
широко используемых статистических характеристик для наборов 
RDD с помощью методов класса rnllib. stat. Statistics, таких как: 

О Statistics. colStats (rdd) - вычисляет статистические характе­
ристики для векторов в наборе RDD: минимальное, максималь­
ное, среднее и дисперсию для каждого столбца во множестве 
векторов. Может использоваться для получения широкого раз­
нообразия статистик за один проход; 

О Statistics. сап (rdd, method) - вычисляет матрицу корреляций 
между столбцами в наборе векторов, с использованием алго­
ритма Пирсона (Pearson) или Спирмена (Spearman) - опре­
деляется параметром rnethod, который может иметь значение 
pearson или spearrnan; 

О Statistics.corr(rdd1, rdd2, method) - вычисляет корреляцию 
между двумя наборами RDD вещественных значений, исполь­
зуя алгоритм Пирсона или Спирмена - определяется парамет­
ром rnethod, который может иметь значение pearson или spearrnan; 

О Statistics .chiSqTest (rdd) - вычисляет тест независимости Пир­
сона для каждого признака с маркером в наборе RDD объек­
тов LabeledPoint. Возвращает массив объектов ChiSqTestResult, 
хранящих р-значение, статистики теста и степень свободы для 
каждого признака. Значения маркера и признака должны быть 
качественными величинами (то есть дискретными). 

Кроме этих методов, наборы RDD с числовыми данными предла­
гают свои методы для получения простых статистик, такие как rnean () , 
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stdev () и sum (), как описывалось в разделе « Числовые операции над 
наборами RDD>> в главе 6. Кроме того, наборы RDD поддерживают 
методы sample () и sampleByKey () для получения простых и стратифи­
цированных выборок данных. 

Классификация и регрессия 
Классификация и регрессия - это две типичные формы управляе­
мого обучения (или обучения с учителем - supemised leaming), когда 
алгоритмы пытаются классифицировать переменную по признакам 
объектов, использовавшихся для обучения ( то есть объектов, клас­
сификация которых известна заранее). Различия между этими двумя 
формами - тип возвращаемого значения: в классификации результат 
получается дискретный (то есть принадлежит конечному множеству 
значений, называемых классами); например, для электронных писем 
классами могут быть spam и nonspam или название языка, на котором 
написан текст. В регрессии результат принадлежит непрерывному 
ряду (например, результат предсказания роста человека по его воз­
расту и весу). 

В обоих случаях, и в классификации, и в регрессии, используется 
класс LabeledPoint из ML!ib, описанный в разделе« Типы данных>> выше 
и находящийся в пакете mllib. regression. Экземпляр LabeledPoint со­
стоит из маркера label (всегда являющегося вещественным числом 
типа DouЬle, но в задачах классификации могущего получать дискрет­
ные целые значения) и вектора признаков features. 

Для двоичной классификации библиотека ML!ib использует маркеры О 
и 1. В некоторых книгах предлагается использовать значения -1 и 1, но 
это ведет к получению ошибочных результатов. Когда классификация 
выполняется в большее число классов, ML!ib использует маркеры со 
значениями от О до С - 1, где С - число классов. 

Библиотека ML!ib включает разные методы классификации и ре­
грессии, в том числе простые линейные методы, деревья решений 
и леса ( см. раздел «Деревья решений и леса�,, ниже). 

Линейная ре�рессия 
Линейная регрессия - один из наиболее часто используемых ме­

тодов регрессии для предсказания выходного значения по линейной 
комбинации признаков. MLlib поддерживает также регуляризо­
ванные регрессии L 1 и L2, которые часто называют регрессией Лассо 
и гребневой регрессией. 
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Алгоритмы линейной регрессии доступны в виде классов rnllib. 
regression.LinearRegressionWithSGD, LassoWithSGD и RidgeRegression­
WithSGD. Имена этих классов следуют соглашениям, принятым повсю­
ду в библиотеке MLlib, в соответствии с которыми множественные 
реализации решения одной и той же задачи включают часть <<With,>, 
указывающую на используемый метод решения. Здесь под SGD под­
разумевается Stochastic Gradient Descent (стохастический метод гра­
диентного спуска). 

Данные классы имеют несколько параметров настройки алгоритма: 
О nurniterations - число итераций (по умолчанию: 100); 
О stepSize - величина шага градиентного спуска (по умолчанию: 

1.0); 
О intercept - определяет необходимость добавления системати­

ческого признака в данные - то есть еще одного признака, зна­
чение которого всегда равно 1 (по умолчанию false); 

О regPararn - параметр регуляризации для регрессии Лассо и греб­
невой регрессии (по умолчанию 1.0). 

В разных языках вызов алгоритма выполняется по-разному. В J ava 
и Scala следует создать объект LinearRegressionWi thSGD, с помощью 
методов записи установить параметры и затем вызвать метод run () 
для обучения модели. В Python достаточно вызвать метод класса 
LinearRegressionWi thSGD. train (), передав ему параметры в виде имено­
ванных параметров. В обоих случаях методу обучения передается на­
бор объектов LabeledPoints, как показано в примерах с 11.10 по 11.12. 

Пример 11. 1 О •:• Линейная регрессия в Python 

from pyspark.mllib.regression import LabeledPoint 

from pyspark.mllib.regression import LinearRegressionWithSGD 

points = # (создать набор объектов LabeledPoint) 

model = LinearRegressionWithSGD.train(points, 

iterations=200, intercept=True) 

print "weights: %s, intercept: %s" % (model.weights, model.intercept) 

Пример 11. 11 •:• Линейная регрессия в Scala 

import org.apache.spark.mllib.regression.LabeledPoint 

import org.apache.spark.mllib.regression.LinearRegressionWithSGD 

val points: RDD[LabeledPoint] = // ... 

val lr = new LinearRegressionWithSGD() .setNumiterations(200) 
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.setintercept(true) 

val model = lr.run(points) 

println("weights: %s, intercept: %s".format(model.weights, 

model.intercept)) 

Пример 11. 12 •:• Линейная регрессия в Java 

import org.apache.spark.mllib.regression.LabeledPoint; 

import org.apache.spark.mllib.regression.LinearRegressionWithSGD; 

import org.apache.spark.mllib.regression.LinearRegressionModel; 

JavaRDD<LabeledPoint> points = // ••. 

LinearRegressionWithSGD lr = 

new LinearRegressionWithSGD() .setNumiterations(200) 

.setintercept(true); 

LinearRegressionModel model = lr.run(points.rdd()); 

System.out.printf("weights: %s, intercept: %s\n", 

model.weights(), model.intercept()); 

Обратите внимание, что в J ava потребовалось преобразовать 
JavaRDD в Sсаlа-класс RDD вызовом метода . rdd (). Это обычная прак­
тика при работе с библиотекой ML!ib, потому что методы ML!ib про­
ектировались для вызова из обоих языков, J ava и Scala. 

Во всех языках после обучения возвращается объект модели 
LinearRegressionModel, имеющий метод predict (), который можно ис­
пользовать для предсказания значения единственного вектора. Клас­
сы RidgeRegressionWithSGD и LassoWithSGD действуют аналогично и воз­
вращают аналогичные объекты модели. В действительности такой 
шаблон доступа к алгоритмам, с возможностью изменения парамет­
ров вызовом методов записи и получением в ответ объекта модели 
с методом predict (), распространен повсюду в библиотеке ML!ib. 

Ло�истическая регрессия 

Логистическая регрессия - это метод двоичной классификации, 
идентифицирующий линейную плоскость, разделяющую положи­
тельные и отрицательные образцы. В ML!ib реализация логистиче­
ской регрессии принимает объекты LabeledPoint со значениями мар­
керов О или 1 и возвращает объект модели LogisticRegressionModel, 
способный предсказывать значения для новых точек. 

Алгоритм логистической регрессии имеет API, напоминающий 
API линейной регрессии, о которой рассказывалось в предыдущем 
разделе. Единственное отличие - для логистической регрессии до-
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ступны два алгоритма решения: SGD и LBFGS 1
• Вообще, алгоритм

LBFGS считается более предпочтительным, но он недоступен в не­
которых ранних версиях MLlib (в версиях Spark ниже 1.2). Эти
алгоритмы доступны в виде классов mllib. classification. Logistic­
RegressionWi thLBFGS и Wi thSGD, имеющих такой же интерфейс, как
и класс LinearRegressionWi thSGD. Они принимают те же самые парамет­
ры, что и алгоритм линейной регрессии (см. предыдущий раздел).

Объект LogisticRegressionModel, возвращаемый этими алгоритмами, 
вычисляет оценку между О и 1 для каждой точки, возвращаемую ло­
гистической функцией, и возвращает О или 1, опираясь на пороговое

значение, которое может быть установлено пользователем: по умол­
чанию, если оценка не меньше 0.5, возвращается 1. Изменить порого­
вое значение можно вызовом метода setThreshold(). Можно также во­
обще запретить применение порога вызовом clearThreshold (), и тогда 
predict () будет возвращать фактически вычисленную оценку. Для сба­
лансированных наборов данных, включающих примерно одинаковое 
число положительных и отрицательных экземпляров, мы рекоменду­
ем оставлять порог равным 0.5. Для несбалансированных наборов дан­
ных порог можно увеличить, чтобы уменьшить вероятность ошибок 
первого рода (когда верное значение интерпретируется как ложное), 
или наоборот - уменьшить, чтобы уменьшить вероятность ошибок 
второго рода ( когда ложное значение интерпретируется как верное). 

При использовании логистической регрессии обычно важно пред­
варительно масштабировать признаки, чтобы привести их в один 
диапазон изменений значений. Для этого можно использовать класс 
StandardScaler из ML!ib, как рассказывалось в разделе �масштабирова­
ние,> выше. 

Метод опорных векторов 
Метод опорных векторов (Support Vector Machines, SVM) - это еще 

один метод двоичной классификации с линейными разделительными 
плоскостями, также основанный на работе с маркерами, имеющими 
значение О или 1. Этот алгоритм доступен в виде класса SVMWithSGD, 
имеет те же параметры, что линейная и логистическая регрессия. Воз­
вращаемый объект SVММodel использует пороговое значение для пред­
сказания, подобно LogisticRegressionModel. 

1 LBFGS - это аппроксимация метода Ньютона, которая сходится за мень­
шее число итераций, чем метод стохастического градиентного спуска. 
Описание можно найти по адресу: http://en.wikipedia.org/wiki/Limited-mem­

ory_BFGS (на русском языке: http://alglib.sources.ru/optimization/lЬfgsandcg.
php - прим. перев.). 
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Наивный байесовский классификатор 
Наивный байесовский классификатор (Naive Bayes) - это алго­

ритм классификации, оценивающий, насколько хорошо каждая точка 
соответствует каждому из множества классов, опираясь на линейную 
функцию от ее признаков. Часто используется для классификации 
текстов с признаками TF-IDF. Библиотека ML!ib реализует полино­
миальный наивный байесовский классификатор (Multinomial Naive 
Bayes ), который ожидает получить неотрицательные значения частот 
(например, частоты встречаемости слов). 

Наивный байесовский классификатор в ML!ib доступен в виде 
класса mllib.classification.NaiveBayes. Он поддерживает единствен­
ный параметр lamЬda (или lambda в Python), используемый для 
сглаживания. При вызове ему передается набор RDD объектов 
LabeledPoints, где маркеры имеют значения от О до С - 1 при класси­
фикации в С классов. 

Возвращаемый объект Nai veBayesModel имеет метод predict (), воз­
вращающий класс, которому лучше всего соответствует анализируе­
мая точка. Также доступны два параметра обученной модели: theta, 
матрица вероятностей для каждого признака (размера С х D для 
С классов и D признаков), и pi, С-мерный вектор приоритетов классов. 

Деревья решений и леса 
Деревья решений ( decision trees) - это гибкая модель, которую 

можно использовать и для классификации, и для регрессии. Они 
представляют дерево узлов, в каждом из которых принимается двоич­
ное решение на основе признаков данных (например, человек старше 
20 лет?), а листьями дерева являются результаты (например, есть ли 
вероятность, что человек купит этот товар?). Деревья решений при­
влекательны тем, что модели легко поддаются исследованию и под­
держивают качественные и количественные признаки. На рис. 11.2 
показан пример дерева. 

Обучение деревьев в ML!ib выполняется с использованием клас­
са mllib. tree. DecisionTree и его статических методов trainClassifier () 
и trainRegressor (). В отличие от некоторых других алгоритмов, в Java 
и Scala также используются статические методы, не требующие за­
ранее создавать объект DecisionTree и настраивать его. Обучающие 
методы принимают следующие параметры: 

О data - набор RDD объектов LabeledPoint; 
О numClasses (только для классификации) - число классов; 
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Рис. 11.2 •:• Пример дерева решений, помогающего определить, 

купит ли пользователь товар 

О impurity - степень <1загрязненности,> узла; может принимать 
значение gini или entropy для классификации и variance для 
регрессии; 

О maxDepth - максимальная глубина дерева (по умолчанию: 5); 
О maxBins - число контейнеров для разбиения данных при по­

строении каждого узла (предлагаемое значение: 32); 
О categoricalFeaturesinfo - ассоциативный массив, определяю­

щий, какие признаки являются качественными и сколько кате­
горий каждый из них может иметь. Например, если признак 1 
имеет двоичный характер с маркерами О и 1, а признак 2 опре­
деляет три категории со значениями О, 1 и 2, в этом параметре 
нужно будет передать { 1: 2, 2: 3). Если качественных призна­
ков нет, передавайте пустой ассоциативный массив. 

Подробное описание используемого алгоритма приводится 
в электронной документации к библиотеке MLlib 1

• Стоимость алго­
ритма находится в линейной зависимости от обучающей выборки, 
числа признаков и значения maxBins. Для больших обучающих вы­
борок можно несколько уменьшить rnaxBins, чтобы ускорить процесс 
обучения модели, правда, при этом падает ее качество. 

Методы train () возвращают DecisionTreeModel. Этот объект можно 
использовать для классификации новых векторов или наборов RDD 
векторов признаков с помощью метода predict (), или вывести дерево 
вызовом toDebugString (). Данный объект поддерживает сериализа­
цию, поэтому его можно сохранять с применением механизма сериа­
лизации J ava Serialization и загружать в другие программы. 

1 http://spark.apache.org/docs/latest/mllib-decision-tree. html.
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Наконец, в Spark 1.2 в библиотеку MLlib добавлен эксперименталь­
ный класс RandomForest, доступный в Java и Scala для создания сово­
купностей деревьев, также известных как случайные леса (random fo­
rests ). Сделать это можно вызовом методов RandomForest. trainClassifier 
и trainRegressor. В дополнение к параметрам для отдельных деревьев, 
перечисленным выше, RandomForest принимает следующие параметры: 

О numTrees - число создаваемых деревьев. Увеличение значения 
numTrees уменьшает вероятность переобучения ( overfitting) на 
обучающей выборке; 

О featureSubsetStrategy - число признаков, учитываемых при раз­
биении каждого узла; может принимать значения: auto (биб­
лиотека сама выберет подходящее значение), all, sqrt, log2 
и onethird; чем больше значение, тем выше стоимость алгоритма; 

О seed - начальное значение для генератора случайных чисел. 
В результате обучения случайного леса создается объект Weighted­

EnsemЬleModel, содержащий несколько деревьев (в поле weakHypotheses, 
взвешенные свойством weakHypothesisWeights ), метод predict () кото­
рого можно использовать для классификации набора RDD или век­
тора. Он также имеет метод toDebugString () для вывода всех деревьев. 

Кластеризация 
Кластеризация - это задача обучения без учителя, цель которой за­
ключается в том, чтобы сгруппировать объекты в группы (кластеры) 
по схожести. В отличие от задач обучения с учителем, описывавшихся 
выше и где данные имели маркеры, кластеризация может применять­
ся к немаркированным данным. Этот вид анализа обычно использу­
ется при исследовании данных (чтобы определить, на что похож но­
вый набор данных) и выявлении аномалий (для определения точек, 
далеко отстоящих от любых групп). 

Метод К-средних 
Библиотека ML!ib включает реализацию популярного алгоритма 

кластеризации <�метод К-средних� (K-means), а также его разновид­
ности, которая называется <<метод К-среднихll� (K-meansll), обеспе­
чивающей более оптимальный выбор начальных значений центров 
кластеров в параллельных окружениях 1• Метод К-среднихll имеет 

1 Метод К-средних!! был представлен в книге Бахмани (Bahmani) с соавтора­
ми ,,Sса\аЫе K-l\1eans++,>, VLDB 2008. 
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процедуру инициализации, напоминающую метод К-средних++, ко­
торый часто используется для вычислений на одном узле. 

Наиболее важным параметром в методе К -средних является це­
левое число кластеров К. На практике редко известно <<истинное,,-, 
число кластеров, поэтому часто пробуют выполнить кластеризацию 
с несколькими значениями К, пока среднее расстояние между класте­
рами не прекратит существенно уменьшаться. Однако алгоритм мо­
жет обработать только одно значение К за раз. Помимо значения К, 
реализация метода К-средних в MLlib имеет следующие параметры: 

О initializationMode - метод инициализации центров кластеров, 
который может быть <!:k-meansll'-" или <<random>>; k-rneans 11 (по 
умолчанию) обычно дает лучшие результаты, но является бо­
лее дорогостоящим; 

О rnaxiterations - максимальное число итераций (по умолчанию: 
100); 

О runs - число параллельных процессов, выполняющих алгоритм. 
Реализация К-средних в MLlib поддерживает параллельное 
выполнение вычислений с разных начальных позиций, с вы­
бором лучшего результата, что позволяет получить лучшую 
полную модель ( так как вычисления методом К-средних могут 
быть остановлены в локальном минимуме). 

Подобно другим алгоритмам, метод К-средних вызывается путем 
создания объекта rnllib. clustering. KMeans (в Java/Scala) или вызова 
метода КМеаns. train (в Python). В обоих случаях алгоритму передает­
ся набор RDD векторов типа Vector и в вызывающий код возвращает­
ся объект KMeansModel со свойством clusterCenters (массив векторов) 
и методом predict (), который возвращает кластер для нового векто­
ра. Имейте в виду, что predict () всегда возвращает ближайший центр 
к точке, даже если точка находится далеко от всех кластеров. 

Коллаборативная фильтрация и рекомендации 
Коллаборативная (collaborative - совместная) фильтрация - это при­
ем для рекомендательных систем, которые на основе оценок пользо­
вателей составляют рекомендации по приобретению новых товаров. 
Коллаборативная фильтрация привлекательна своей простотой - она 
требует передачи единственного списка оценок товаров пользовате­
лями: <<ЯВНЫХ>> (например, выставленных явно на сайте магазина) 
или <<неявных>-'> (например, когда пользователь проявляет интерес 
к товару, просматривая страницу с его описанием, но не оценивает 
этот товар явно). Опираясь исключительно на эти оценки, алгорит­
мы коллаборативной фильтрации исследуют сходства товаров ( оце-
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ненных теми же самыми пользователями) и сходства пользователей 
и выдают новые рекомендации. 

Несмотря на то что MLlib API оперирует терминами �пользовате­
ли» и «товары», в действительности коллаборативную фильтрацию 
можно использовать и для других целей, например вырабатывать для 
пользователей рекомендации по выбору социальной сети, тегов для 
добавления в статью или песен для прослушивания. 

Метод чередующихся наименьших квадратов 
MLlib включает реализацию метода чередующихся наименьших

квадратов (Alternating Least Squares, ALS), популярного алгорит­
ма коллаборативной фильтрации, который прекрасно масштабиру­
ется для выполнения на кластерах 1

• Она находится в классе rnllib.
recornrnendation.ALS.

Алгоритм ALS определяет вектор признаков для каждого пользо­
вателя и товара - такой, чтобы скалярное произведение вектора поль­
зователя и товара было максимально близким к их оценке. Имеет сле­
дующие параметры: 

О rank - размер векторов признаков; чем больше значение rank, 
тем точнее модель, но выше стоимость вычислений (по умол­
чанию: 10); 

О iterations - число итераций (по умолчанию: 10); 
О larnЬda - регулирующий параметр (по умолчанию: 0.01); 
О alpha - константа, используемая для вычисления уровня на­

дежности неявных оценок (по умолчанию: 1.0); 
О nurnUserBlocks, nurnProductВlocks - число блоков для разделения 

пользователей и товаров при параллельных вычислениях; можно 
передать значение -1 (по умолчанию), чтобы библиотека MLlib 
могла автоматически подобрать значение для этого параметра. 

Чтобы задействовать алгоритм ALS, необходимо передать ему 
набор RDD объектов rnllib.recornrnendation.Rating, каждый из кото­
рых содержит идентификатор пользователя, идентификатор товара 
и рейтинг (явная или неявная оценка; см. обсуждение выше). Одна 
из проблем реализации заключается в том, что все идентификаторы 
должны быть представлены 32-разрядными целыми числами. Если 

1 Существуют две исследовательские работы, посвященные применению 
алгоритма ALS к большим объемам веб-данных: Чжоу (Zhou) с соавтора­
ми, «Large-Scale Parallel Collaborative Filtering for the Netflix Prize», и Хью 
(Hu) с соавторами, <<Collaborative Filtering for lmplicit Feedback Datasets», 
обе опубликованы в 2008 г. 
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у вас идентификаторы представлены строками или целочисленными 
значениями, не умещающимися в 32 бита, мы рекомендуем задей­
ствовать прием хэширования идентификаторов; даже если какие-ни­
будь два пользователя или товара получат в результате одинаковые 
идентификаторы, на общих результатах это почти не скажется. Мож­
но также создать общую таблицу, отображающую идентификаторы 
товаров в уникальные целые числа. 

Результатом работы ALS является объект MatrixFactorizationModel, 
метод predict () которого можно использовать для предсказания оце­
нок в наборах RDD пар (userID, productID)'. Как вариант можно ис­
пользовать rnodel. recornrnendProducts (userid, nurnProducts) для поиска 
первых nurnProducts () товаров, рекомендованных данному пользова­
телю. Обратите внимание, что, в отличие от других моделей в ML!ib, 
MatrixFactorizationModel может иметь огромные размеры, так как 
хранит по одному вектору для каждого пользователя и товара. Это 
означает, что его нельзя сохранить на диске и затем загрузить в дру­
гой программе. Вместо этого рекомендуется сохранять наборы RDD 
векторов признаков, произведенных в результате анализа, rnodel. 
userFeatures и rnodel. productFeatures. 

Наконец, алгоритм ALS имеет два варианта: для явных оценок ( по 
умолчанию) и неявных ( который доступен через вызов метода ALS. 
trainirnplicit () вместо ALS. train () ). В первом случае используются 
явные оценки, выставленные товарам пользователями (например, 
от 1 до 5 звезд), и рекомендации, выдаваемые моделью, также будут 
иметь вид оценок. В случае с неявными оценками каждая оценка от­
ражает степень уверенности, что пользователь выберет товар (напри­
мер, оценка может быть увеличена в несколько раз, если пользователь 
посетил веб-страницу с описанием товара), и результатом выработки 
рекомендаций также будет оценка уверенности. Дополнительные по­
дробности, касающиеся применения алгоритма ALS с неявными оцен­
ками, можно найти в работе Хью (Hu) с соавторами, <<Collaborative 
Filtering for Implicit Feedback Datasets�. ICDM 2008. 

Понижение размерности 

Метод главных компонент 

Имея набор точек в пространстве большой размерности, часто бы­
вает желательно уменьшить размерность, чтобы получить возмож­
ность анализа с применением более простых инструментов. Напри-

1 В J ava процедура начинается с создания набора типа J avaRD D элементов
Tuple2<Integer, Integer> и последующего вызова . rdd (). 
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мер, может понадобиться отобразить точки на двумерной плоскости 
или просто уменьшить число признаков, чтобы повысить эффектив­
ность обучения моделей. 

Основным приемом понижения размерности в области машинного 
обучения является метод главных компонент (Principal Component 
Analysis, РСА) 1• Отображение в пространство с меньшей размерностью 
в этом приеме производится так, чтобы максимизировать дисперсию 
данных в новом пространстве и тем самым исключить неинформатив­
ные измерения. Для вычисления отображения создается нормализо­
ванная корреляционная матрица данных, и далее �спользуются сингу­
лярные векторы и значения из этой матрицы. Сингулярные векторы, 
соответствующие наибольшим сингулярным значениям, используют­
ся для восстановления большей доли дисперсии исходных данных. 

Алгоритм метода главных компонент в настоящее время доступен 
только вjava и Scala (в версии MLlib 1.2). Чтобы вызвать его, следует 
сначала представить матрицу с использованием класса mllib. linalg. 
distributed.RowMatrix, хранящего наборы RDD векторов типа Vector, 
по одной строке в каждом2

• Затем можно вызвать алгоритм, как по­
казано в примере 11.13. 

Пример 11 . 13 •:• Метод главных компонент в Scala 

import org.apache.spark.mllib.linalg.Matrix 
import org.apache.spark.mllib.linalg.distributed.RowMatrix 

val points: RDD[Vector] = // • • .

val mat: RowMatrix = new RowMatrix(points) 
val ре: Matrix = mat.computePrincipalComponents(2) 

// Отобразить точки в пространство с меньшей размерностью 
val projected = mat.multiply(pc) .rows 

// Обучить модель k-средних с применением результатов 
// проецирования данных в 2-мерное пространство 
val model = KMeans.train(projected, 10) 

В этом примере набор RDD, полученный в результате отображе­
ния, содержит двумерную версию первоначального набора точек 
и может использоваться для построения графика или вычислений 
с применением других алгоритмов MLlib, таких как кластеризация 
методом К-средних. 

1 https://ru. wikiреdiа.огg/wiki/Метод_главных_компонент.
2 В J ava процедура начинается с создания набора тиnaJavaRD D векторов Vector

и последующего вызова . rdd ( 1 для преобразования в набор RD D для Scala. 
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Обратите внимание, что computePrincipalComponents () возвращает 
объект mllib. linalg .Matrix вспомогательного класса, представляюще­
го плотные матрицы, подобно классу Vector. Извлечь данные, храня­
щиеся в этом объекте, можно вызовом метода toArray (). 

Сингулярное разложение 
В MLlib имеется также реализация низкоуровневого сингулярного 

разложения (Singular Value Decomposition, SVD). Этот алгоритм раз­
лагает матрицу А размером т х п на три матрицы А "" U"i. vт, где: 

О И - ортонормальная матрица, столбцы которой называют ле­
выми сингулярными векторами; 

О "i. - диагональная матрица с неотрицательными диагональны­
ми элементами, расположенными в порядке убывания, кото­
рые называют сингулярными значениями; 

О V- ортонормальная матрица, столбцы которой называют пра­
выми сингулярными векторами. 

Для больших матриц обычно не требуется выполнять полное 
разложение - только для наибольших сингулярных значений и со­
ответствующих им сингулярных векторов. Благодаря этому можно 
сэкономить память, понизить уровень шумов и восстановить низко­
уровневую структуру матрицы. При сохранении первых k сингуляр­
ных значений получаемые матрицы будут иметь размеры: И: т х k, 

"i.: k х k и V: п х k. 

Разложение матрицы выполняется вызовом computeSVD () класса 
RowMatrix, как показано в примере 11.14. 

Пример 11. 14 •:• Сингулярное разложение в Scala 

// Найти первые 20 сингулярных значений матрицы RowMatrix 

// и соответствующие сингулярные векторы. 

val svd: SingularValueDecomposition[RowMatrix, Matrix] = 

mat.computeSVD(20, computeU=true) 

val U: RowMatrix = svd.U // U - распределенная матрица RowMatrix. 

val s: Vector = svd.s 

val V: Matrix = svd.V 

Оценка модели 

// Сингулярные значения - локальный плотный вектор 

// V - локальная плотная матрица. 

Независимо от алгоритма, использовавшегося для обучения, оценка 
модели играет важную роль в процессе машинного обучения. Мно­
гие задачи обучения могут воспроизводить разные модели и даже ис­
пользовать один и тот же алгоритм с разными настройками и полу-
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чать разные результаты. Кроме того, всегда есть риск переобучения 
модели избыточной обучающей выборкой, который можно оценить 
путем тестирования модели другими наборами данных, отличных от 
использовавшихся для обучения. 

На момент написания этих строк (для Spark 1.2) библиотека 
MLlib содержала экспериментальное множество функций оценки 
моделей, но доступных только в ] ava и Scala. Они доступны в паке­
те mllib. evaluation, в таких классах, как BinaryClassificationMetrics 
и MulticlassMetrics, в зависимости от преследуемых целей. С исполь­
зованием этих классов можно создать объект Metrics из набора RDD 
пар (прогноз, контрольные данные) и затем вычислить такие показа­
тели, как точность, повторимость и площадь под кривой рабочей ха­
рактеристики приемника. Эти методы должны выполняться на тесто­
вых наборах данных, не использовавшихся для обучения (например, 
можно оставить 20% данных для нужд тестирования). Применить по­
лученную модель к тестовым данным можно в вызове функции map () 
и получить набор RDD пар (прогноз, контрольные данные). 

В будущих версиях Spark, в высокоуровневый API машинного 
обучения, о котором рассказывается в конце главы, будут включе­
ны функции оценки моделей для всех языков. С помощью этого вы 
сможете определять процедуры из алгоритмов машинного обучения 
и пороговые оценки и получать в результате системы поиска пара­
метров и выбора наилучшей модели. 

Советы и вопросы производительности 

Выбор признаков 
В обсуждениях темы машинного обучения часто основное внимание 
уделяется используемым алгоритмам, однако важно помнить, что лю­
бой алгоритм хорош настолько, насколько представительными являют­
ся передаваемые ему признаки! Многие известные практики в области 
машинного обучения согласны, что выбор признаков является очень 
важным шагом. Добавление большего числа информативных призна­
ков (например, выполнение соединений с другими наборами данных, 
чтобы получить больший объем информации) и преобразование имею­
щихся признаков в подходящее векторное представление (например, 
масштабирование векторов) может существенно улучшить результаты. 

Детальное обсуждение проблемы выбора признаков выходит дале­
ко за рамки этой книги, поэтому за дополнительной информацией мы 
рекомендуем обращаться к другим работам, посвященным машинно-
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му обучению. Тем не менее мы можем дать несколько общих советов 
при использовании ML!ib. 

О Масштабируйте исходные признаки. Обрабатывайте их с по­
мощью StandardScaler, как описывается в разделе «Масштаби­
рование>> выше, чтобы сделать их веса примерно равными. 

О Правильно определяйте признаки текстовых данных. Исполь­
зуйте внешние библиотеки, такие как NLTK, для приведения 
однокоренных слов к общему виду, и вычисляйте значение IDF 
для всего набора текстовых документов при использовании ал­
горитма TF-IDF. 

О Правильно маркируйте классы (категории) в задачах класси­
фикации. Библиотека ML!ib требует, чтобы классы имели мар­
керы в диапазоне от О до С - 1, где С - общее число классов. 

Настройка алгоритмов 

Большинство алгоритмов в ML!ib дают лучшие результаты (в смысле 
точности предсказаний) с включенной регуляризацией, когда эта воз­
можность поддерживается. Кроме того, для достижения удовлетво­
рительных результатов большинству алгоритмов, основанных на ме­
тоде стохастического градиентного спуска (SGD), требуется порядка 
100 итераций. Библиотека MLlib стремится подставить достаточно 
разумные значения по умолчанию, тем не менее попробуйте увели­
чить число итераций и посмотрите, не приведет ли это к увеличению 
точности. Например, в методе чередующихся наименьших квадратов 
(ALS) параметр rank имеет довольно низкое значение по умолчанию 
(10), поэтому обязательно попробуйте увеличить его. Обязательно 
оценивайте такие изменения параметров настройки с применением 
тестовых данных, не использовавшихся для обучения. 

Кэширование наборов RDD для повторного 
использования 

Большинство алгоритмов в ML!ib имеют итеративный характер, то 
есть выполняют обход данных в цикле снова и снова. По этой при­
чине важно кэшировать наборы исходных данных вызовом cache () 
перед передачей их в ML!ib. Если данные не умещаются в памяти, 
пробуйте кэшировать вызовом persist (StorageLevel. DISK _ ONLY). 

Библиотека ML!ib автоматически кэширует наборы RDD на сто­
роне J ava, когда они передаются из программного кода на Python, 
поэтому в Python нет необходимости выполнять кэширование явно, 
если только вы не собираетесь повторно использовать наборы в своей 
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программе. В Scala и Java, однако, ответственность за кэширование 
целиком и полностью лежит на ваших плечах. 

Разреженные векторы 
Когда векторы признаков состоят почти из одних нулей, хранение 
их в разреженном (sparse) формате может сэкономить массу памя­
ти и времени. С точки зрения экономии пространства, разреженное 
представление в ML!ib оказывается меньше плотного, если ненуле­
вые значения имеют не более двух третей элементов вектора. С точки 
зрения стоимости обработки, разреженные векторы обычно обходят­
ся дешевле, если ненулевые значения имеют не более 10% элемен­
тов. ( Это обусловлено необходимостью выполнения большего числа 
инструкций для каждого элемента разреженного вектора в сравнении 
с элементами плотных векторов.) Но если переход к разреженному 
представлению позволит кэшировать векторы, которые невозможно 
кэшировать в плотном представлении, такой переход можно считать 
оправданным даже для более плотных данных. 

Степень параллелизма 
Для большинства алгоритмов желательно разбивать исходные набо­
ры RDD по числу ядер в кластере, чтобы добиться максимального 
распараллеливания вычислений. Напоминаем, что по умолчанию 
Spark создает разделы по числу �блоков�> в файле, где блок обычно 
имеет объем 64 Мбайт. Изменить это поведение можно с помощью 
метода загрузки данных, такого как SparkContext. textFile (), передав 
ему явно требуемое число разделов, например sc. textFile ( "data. txt", 
10). Как вариант можно вызвать метод repartition (numPartitions) на­
бора RDD, чтобы разбить его на numPartitions разделов. Число разде­
лов любого набора RDD можно узнать в веб-интерфейсе Spark. В то 
же время остерегайтесь чрезмерного увеличения числа разделов, по­
тому что это приведет к увеличению накладных расходов на взаимо­
действие между узлами. 

Высо1<оуровневый API машинного 

обучения 
Начиная с версии Spark 1.2, в ML!ib добавлен новый, высокоуровне­
вый API поддержки машинного обучения, основанный на концепции 
конвейеров (pipelines). Этот API напоминает программный интерфейс 



Высокоуровневый API машинного обучения •:• 291 

SciКit-Learn 1
• В двух словах: под конвейером в данном случае пони­

мается последовательность алгоритмов ( преобразования признаков
или обучения модели), преобразующих набор данных. Каждый этап
в конвейере может иметь параметры ( например, число итераций
для алгоритма LogisticRegression). Высокоуровневый API способен
автоматически подбирать наиболее оптимальный набор параметров
с использованием метода решетчатого поиска (grid search), оценивать
каждый набор с использованием характеристик по выбору.

Высокоуровневый API повсюду использует однородное представ­
ление наборов данных - SchemaRDD из Spark SQL ( см. главу 9). Наборы 
типа SchemaRDD имеют множество именованных столбцов, что упроща­
ет доступ к разным полям в данных. Разные этапы внутри конвейера 
могут добавлять новые столбцы. В общем виде эта концепция напо­
минает кадры данных ( data frames) в языке R. 

Чтобы дать вам некоторое представление об этом API, мы вклю­
чили в книгу еще одну версию примера классификации спама ( см. 
раздел <<Пример: классификация спама,> выше). Мы также пока­
жем, как улучшить пример за счет использования решетчатого по­
иска (grid search) по нескольким значениям параметров HashingTF 
и LogisticRegression (см. пример 11.15). 

Пример 11. 15 •:• Версия классификации спама с применением 

высокоуровневого API в Scala 

import org.apache.spark.sql.SQLContext 

import org.apache.spark.ml.Pipeline 

import org. apache. spark .ml. classification. LogisticRegression 

import org.apache.spark.ml.feature.{HashingTF, Tokenizer} 

import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} 

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator 

/! Класс для лредставления документов -- будет преобразован в SchemaRDD 

case class LabeledDocument(id: Long, text: String, label: DouЫe) 

val documents = // (загрузить набор RDD объектов LabeledDocument) 

val sqlContext = new SQLContext(sc) 

import sqlContext. 

// Настроить конвейер машинного обучения с тремя этапами: 

!/ разбиение на слова, подсчет частоты встречаемости слов и 

!/ обучение модели логистической регрессии; каждый этап 

// выводит столбец в SchemaRDD, который используется на 

1 http://scikit-learn.org/. 
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// следующем этапе 
val tokenizer = new Tokenizer() // Разбить на слова 

.setinputCol("text") 

.setOutputCol("words") 
val tf = new HashingTF() // Отобразить слова в векторы 10000 признаков 

.setNumFeatures(lOOOO) 

.setinputCol(tokenizer.getOutputCol) 

.setOutputCol("features") 
val lr = new LogisticRegression () // Использовать "features" как inputCol 
val pipeline = new Pipeline() .setStages(Array(tokenizer, tf, lr)) 

// Передать в конвейер обучающие документы 
val model = pipeline.fit (documents) 

// Вместо однократного обучения с фиксированным набором параметров 
!! можно добавить перебор нескольких значений параметров и выбрать 
!! лучшую модель на основе перекрестного тестирования 
val paramМaps = new ParamGridBuilder() 

.addGrid(tf.numFeatures, Array(lOOOO, 20000)) 

.addGrid(lr.maxiter, Array(lOO, 200)) 

.build() // Сконструировать все возможные комбинации параметров 
val eval = new BinaryClassificationEvaluator () 
val cv = new CrossValidator() 

.setEstimator(lr) 

.setEstimatorParamМaps(paramМaps) 

.setEvaluator(eval) 
val bestModel = cv .fit (documents) 

На момент написания этих строк высокоуровневый API все еще 
находился на экспериментальной стадии развития, но вы всегда мо­
жете узнать о его состоянии в официальной документации MLlib 1

• 

В заключение 

В этой главе мы познакомились с библиотекой поддержки машинно­
го обучения, входящей в состав Spark. Как вы могли убедиться, эта 
библиотека тесно связана с другими API фреймворка, что позволяет 
работать с наборами RDD и передавать результаты другим функциям 
Spark. Библиотека MLlib - одна из активно развивающихся частей 
Spark. Поэтому мы рекомендуем заглядывать в официальную доку­
ментацию2 для вашей версии фреймворка, чтобы узнать, какие функ­
ции доступны для использования. 

1 http://spark.apache.org/docs/latest/mllib-guide.html.
2 http://spark.apache.org/documentation.html.
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Символы 
->, лямбда-выражения, 32 
--class, флаг, 157 
--deploy-mode, флаг, 157 
--driver-memory, флаг, 157 
--executor-memory, флаг, 157 
--files, флаг, 157 
--jars, флаг, 157 
--master, флаг, 156, 157 
--name, флаг, 157 
--py-files, флаг, 157 

А 
AccumulatorParam, класс, 136 
actorStream, 247 
Amazon S3, 119 
Amazoп Web Services, 173 
Apache Flume, 249 

активный приемник, 250 
пассивный приемник, 249 

Apacl1e Hive, 121 
HiveJDBC/ODBC, 217 
Hive UDF, 222 
HiveServer2, 217 
загрузка и сохранение данных в Spark 
SQL, 211 
и Spark SQL, 203 

Apache Katka, 248 
Apache Mesos, 150 
Apache Mesos, диспетчер кластера, 171 

журналирование, 17 4 
запуск, 173 
настройка использования ресурсов, 172 
остановка, 175 
перезапуск, 175 
приостановка, 175 
режимы планирования, 171, 172 
хранение данных, 176 

Apacl1e Software Foundation 
Spark, 25 

Apache ZooKeeper, 169 
asceпding, параметр функции 
sortByKey(), 83 
Аvrо,получатель,251 
AvroFlumeEvent, объект, 249 
AWS ACCESS КЕУ ID, переменная 
окружения, 119- -
AWS SECRET ACCESS КЕУ, 
пере;енная окружения, 119 

в 

Beeline, клиент 
использование, 219 
подключение к серверу JDBC, 218 

BinaryClassificationMetrics, класс, 288 
bzip2, формат сжатия, 118 

с 
cache() и cacheTaЬle(), 210 
Cassandra, 124 
Cassandra Connector, 125 
CassandraRow, объект, 124 
coalesce(), 79, 196 
cogroup(), 80, 89, 90 

DStream, 236 
collect(), 83, 186 
collectAsMap(), 84 
comblne(), 73 
comblneByKey(), 76, 89, 91 
conf/slaves, файл, 166 
conf/spark-defaults.conf, файл, 180 
count(), 147 
countByKey(), 84 
countByValue(), 76 
countByValueAndWindow(), 242 
countByWindow(), 242 
CSV, 104 

загрузка в Spark, 104 
сохранение в Spark, 107 

CSV, файлы, 99 

D 
DAG (Directed Acyclic Graph 
ориентированный ациклический 
граф), 185 
Datastax Cassaпdra, 125 
DStream.transform(), 237 
DStream.transform With(), 238 
DStreams (Discretized Streams -
дискретизированные потоки), 226 

traпsform(), метод, 237 
как последовательность RDD, 230 
операции вывода, 244 
поддержка операций вывода, 232 
поддержка преобразований, 231,234 
преобразования без сохранения 
СОСТОЯНИЯ, 234 
простой пример, 227, 238 

запуск в Linux/Mac, 229 
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Е 

создание с помощью 
socketTextStream(), 228 
сохранение в текстовые файлы, 244 

Elasticsearch, 127 
и Spark SQL, 128 

Elepliant Bird, библиотека, 116 
ExternalizaЬle, интерфейс Qava), 140 

F 
fakelogs_directory.s\1, сценарий, 247 
Files.get(), 146 
filter(), потоковый фильтр, 228 
flatMap(), 74 
FlumeUti\s, объект, 249 
fold(), 73, 80 
foldByKcy(), 74 
foreach(), использование аккумуляторов 
в действиях, 135 
foreachPartition(), 142, 245 
foreac\1RDD(), 245 

G 
gfortran, библиотека времени 
выполнения, 263 
Google Guava, библиотека, 82 
GraphX, библиотека, 22 
groupBy(), 80 
groupByKey(), 80, 88, 89, 90 
groupWith(), 89, 90 
gzip, формат сжатия, 118 

н 

Hadoop YARN, диспетчер кластера, 169 
настройка использования 
ресурсов, 170 

hadoopDataset(), 114 
l1adoopFile(), 114 
HashingTF, алгоритм, 272 
HashPartitioner, объект, 86 
HBase, 127 
HDFS, 119 
Hive Query Language (HQL) 

CREATE TABLE, инструкция, 205 
синтаксис определения типов, 208 

HiveContext, объект, 204 
импортирование, 205 
создание, 206 

HiveContext.parquetFile(), 213 
hiveCtx.cacheTaЬle(), 210 
hive-site.xm\, файл, 121 

inferSchema(), 216 
InputFormat, интерфейс, 97 
IРуthоп,оболочка,32 
lterator, объект, 142 

J 
JАR-сборка, 159 
Java 

Row, объекты, методы 
чтения/записи,209 
векторы, создание, 271 
загрузка данных из файловJSОN, 214 
загрузка и использование набора 
сообщений, 207 
загрузка из объектных файлов, 112 
загрузка из текстовых файлов, 99 
загрузка из файлов CSV, 104 
загрузка из файловJSОN, 101 
загрузка из файлов SequenceFiles, 109 
импортирование поддержки SQL, 205 
использование статистик 
для удаления аномальных значений 
(пример), 148 
линейная регрессия, 278 
настройка Spark с помощью 
SparkConf, 178 
подсчет посещений с каждого 
IР-адреса, 240 
подсчет слов, 38 
поиск страны (пример), 138 
преобразования наборов пар 
ключ/значение, 71 
пример классификации спама, 265 
распределенный подсчет слов, 7 4 
соединение потоков, 236 
создание SchemaRDD изJavaBean, 216 
соэдание наборов пар ключ/значение, 71 
сохранение в текстовые файлы, 100 
сохранение в файлы CSV, 107 
сохранение в файлыJSОN, 214 
сохранение в файлы SequenceFiles, 110 
стандартные интерфейсы, 52 
функция UDF определения длины 
строки,222 

Java Serialization, библиотека, 140 
Java Serialization, механизм 
сериализации, 197 
java.io.ExternalizaЬle, интерфейс, 140 
JDBC, 123 
JDBC/ODBC сервер в Spark SQL, 217 

запуск, 218 
подключение с помощью Beeline, 218 



JdbcRDD, объект, 123 
join(), 82, 89, 90 

DStream, 236 
JSON, 99, 101 

журналы сеансов связи 
радиолюбительских станций, 130 
загрузка в Spark, 1 О 1 
загрузка и сохранение 
в Spark SQL, 214 
сохранение в Spark, 103 

jsonFile(), 214 

к 
KMeans, класс, 283 
Kryo, библиотека сериализации, 140, 197 

L 
LabeledPoint, 269 

использование в классификации 
и регрессии, 276 

LassoWithSGD, 277 
LBFGS, алгоритм, 279 
leftOuterJoin(), 82, 89, 90 

DStream, 236 
LinearRegressionMode\, 278 
LinearRegression WithSGD, объект, 277 
Linux/Mac 

tar, команда, 28 
запуск потокового приложения, 229 

log4j, 194 
настройка журналирования 
в Spark, 194 
пример конфигурационного 
файла, 194 

log4j.properties.template, файл, 30 
log4j.properties, файл, 194 
LogisticRegressionModel, 278 
lookup(), 84, 89 
LzoJsonlnputFormat, 113 
LZО-сжатие, 113 
lzo, формат сжатия, 118 

м 
main, функция, 33 
map(), 74 
mapPartitions(), 140, 142 
mapPartitionsWithlndex(), 142 
mapValues(), 74, 91 
match, оператор, 95 
MatrixFactorizationMode\, 285 
Maven, 36, 159 

компоновка Spark SQL с Hive, 204 
сборка приложений нaJava, 159 
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сборка простого приложения, 39 
max(), 147 
mean(), 147 
min(), 147 
MLlib, 21 
MulticlassMetrics, класс, 288 

N 
NaiveBayesMode\, 280 
NaiveBayes, класс, 280 
newAPIНadoopFile(), 112 
Normalizer, класс, 27 4 
NumPy,263 

о 
Optiona\, объект, 82 
Option, объект, 82, 88 
OutputFormat, интерфейс, 97 

р 
PageRank, пример, 91 
parallelize(), 71, 262 
Parquet, 213 

загрузка данных в Spark SQL, 213 
partitionBy(), 86, 91 
Partitioner, объект, 89, 93 
partitioner, свойство, 89 
pipe(), 143 
print(), 228, 244 
Protocol Buffers, 99, 114 
PySpark, оболочка 

открытие и использование, 30 
пример фильтрации, 34 
создание RDD и простой анализ, 32 

Python, 29 
!Python, оболочка, 32
Row, объекты, использование, 209
векторы, создание, 270
вычисление среднего (пример), 142
загрузка данных из файловJSОN, 214
загрузка данных из файлов Parquet, 213
загрузка из текстовых файлов, 99
загрузка из файлов CSV, 104
загрузка из файловJSОN, 101
загрузка из файлов SequenceFiles, 109
загрузка и использование набора
сообщений, 207
импортирование поддержки SQL, 205
использование статистик
для удаления аномальных значений
(пример), 148
настройка Spark с помощью
SparkConf, 178
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оболочка для Spark, 30 
передача функций в Spark, 35 
поддержка Нive в Spark SQL, 204 
подсчет пустых строк (пример), 132 
подсчет числа ошибок (пример), 134 
поиск страны, 137 
поиск страны (пример), 138 
преобразования наборов пар 
ключ/значение, 71 
пример классификации спама, 265 
разделяемый пул соединений, 140 
распределенный подсчет слов, 7 4 
создание Scl1emaRDD из объектов 
Row и кортежей, 216 
создание автономных приложений, 36 
создание наборов пар 
ключ/значение, 70 
функция UDF определения длины 
строки,221 

Python, линейная регрессия, 277 

R 
Rating, КЛАСС, 284 
Rating, тип, 269 
rdd.getNumPartitions(), 80 
rdd.partitioвs.size(), 80 
RDD (Resilient Distributed Datasets -
устойчивые распределенные наборы 
данных), 20 

counts (пример), 185 
визуализация с помощью 
toDebugString(), 185 
выборка, 186 
конвейерная обработка, 185 
кэширование, 187 

RDD, наборы 
действия, 43, 47 
операции с псевдомножествами, 57 
основы,42 
отложенные вычисления, 49 
преобразование типов, 63 
преобразования, 43, 46 

простые, 58 
программирование операций, 42 
создание, 45 
сохранение (кэширование), 65 
устойчиеые распределенные наборы 
данных, 42 

reduce(), 73 
reduceБyKey(), 73, 89, 90 

DStream, 235 
reduceБy Кеу AndWindow(), 240 
reduceБyWindow(), 240 

repartition(), 79, 196 
RidgeRegression WithSGD, 277 
rightOuterJoin(), 82, 89, 90 
RowMatrix, класс, 286 
Row, объект, наборы RDD, 202 
Row, объекты, использование, 209 

s 
sampleStdev(), 147 
sampleVariance(), 147 
save(), 83 

DStream, 244 
saveAsHadoopFile(), 114 
saveAsHadoopFiles(), 244 
saveAsParquetFile(), 213 
saveAsSequenceFile(), 110, 244 
saveAsTextFile(), использование 
с аккумуляторами, 133 
sbt, инструмент сборки для Scala, 161 
sbt (Scala build tool), сборка простого 
приложения, 39 
Scala, 29 

Row, объекты, методы 
чтения/записи, 209 
векторы, создание, 270 
визуализация с помощью 
toDebugString(), 185 
загрузка данных из файлов 
JSON, 214 
загрузка из объектных файлов, 112 
загрузка из текстовых файлов, 99 
загрузка из файлов CSV, 104 
загрузка из файлоеJSОN, 101 
загрузка из файлов SequenceFiles, 109 
загрузка и использование набора 
сообщений, 207 
импортирование поддержки SQL, 205 
использование статистик 
для удаления аномальных значений 
(пример), 148 
компоновка с фреймворком Spark, 36 
линейная регрессия, 277 
настройка Spark с помощью 
SparkConf, 178 
обработка текстовых данных 
в интерактивной оболочке Scala 
Spark, 184 
передача функций в Spark, 35 
подсчет посещений с каждого 
IР-адреса, 240 
подсчет пустых строк (пример), 132 
подсчет слов, 38 
поиск страны (пример), 138 



преобразования наборов пар 
ключ/значение, 71 
пример классификации спама, 265 
распределенный подсчет слов, 7 4 
соединение потоков, 236 
создание SchemaRDD 
из case-класса, 216 
создание наборов пар 
ключ/значение, 70 
функция UDF определения длины 
строки,222 

scala.Тuple2, класс, 70 
Scala, оболочка, 29 

открытие и использование, 29 
пример фильтрации, 34 
создание RDD и простой анализ, 32 

SchemaRDD, наборы данных, 202, 208 
поддерживаемые типы, 208 
регистрация временных таблиц, 208 
создание из саsе-класса, 216 
создание изJavaBean, 216 
создание из объектов Row 
и кортежей, 216 
сохранение в файлы Parquet, 213 

sc, переменная (SparkContext), 33, 152 
SequenceFiles, 99 

загрузка в Spark, 109 
сохранение в Spark, 11 О 

SerDes (форматы сериализации 
и десериализации), 204 
Snappy, формат сжатия, 118 
socketTextStream(), 228 
sort(), 91 
Spark 

версии, 26 
завершение приложения, 37 
командная оболочка, 23 
компоненты выполнения, 181 
компоновка с приложениями 
на разных языках, 35 
краткая история, 24 
механизмы хранения данных, 26 
настройка, 178 

загрузка параметров из файла, 180 
локальные каталоги 
для промежуточных данных, 181 
с помощью SparkConf, 178 
с помощью spark-submit, 180 
часто используемые параметры, 181 

передача функций в, 50 
поиск информации, 189 

spark-class, сценарий, 166 
SparkConf, объект, 36 
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настройка Spark, 178 
SparkContext.addFile(), 146 
SparkContext.parallelize(), 71 
SparkContext.parallelizePairs(), 71 
SparkContext, объект, 33, 228 

и StreamingContext, 228 
инициализация, 36 

Spark Core, 20 
spark-core, пакет, 39 
spark.deploy.spreadOut, свойство, 169 
spark-ec2, сценарий, 175 
SparkFiles.getRootDirectory, 146 
SparkFlumeEvents, объект, 251 
SPARK_WCAL_DIRS, переменная 
окружения, 181 
SparkR, проект, 144 
spark.serializer, свойство, 140 
Spark SQL, 20, 120, 202 

UDF, 221 
динамическая компиляция 
запросов,224 
и Elasticsearch, 128 
использование в приложениях 

SchemaRDD, наборы данных, 208 
загрузка и сохранение данных, 211 
инициализация, 205 
простой пример, 207 

как источник структурированных 
данных, 98 
кэширование, 21 О 
особенности, 202 
параметры настройки 
производительности,223 
поддержка Apache Hive, 121 
производительность,223 
структурированные данные, 120 

Spark Standalone, диспетчер 
кластера, 153, 165 

conf/slaves, файл, 166 
запуск, 165 
запуск приложений, 166 
настройка использования 
ресурсов, 168 
режимы развертывания, 167 

spark.storage.memory Fraction, 198 
Spark Streaming, 21, 226 

DStream, 226 
создание с помощью 
socketTextStream(), 228 

архитектура и абстракция, 230 
веб-интерфейс, 257 
дополнительные источники 
данных, 247 
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запуск приложений, 253 
копирование в контрольных 
точках,253 

источники данных, 245 
контрольные точки, 234 
круглосуточная работа, настройка, 252 
операции вывода, 244 
основные источники, акторы Akka, 247 
основные источники данных 

файлы, 246 
отказоустойчивость, 253 
повышение отказоустойчивости 
приемников, 256 
повышение отказоустойчивости 
рабочих узлов, 255 
преобразования с сохранением 
состояния, 238 
производительность, 258 
простоii пример, 227, 234 

запуск в Linux/Mac, 229 
сборка мусора и использование 
памяш, 259 

spark-submit, сценарий, 40, 154 
--class, флаг, 157 
--deploy-mode, флаг, 157 
--driver-memory, флаг, 157 
--executor-memory, флаг, 157 
--files, флаг, 157 
--jars, флаг, 157 
--master, флаг, 156, 157 
--name, флаг, 157 
--py-files, флаг, 157 

sql(), 207 
SQLContext.parquetFile(), 213 
Standalone Scl1eduler, 22 
StandardScalerModel, 274 
StandardScaler, класс, 27 4 
Statistics, класс, 275 
stats(), 147 
StatsCounter, объект, 147 
stdev(), 147 
StreamiпgCoпtext.awaitTermination(), 229 
StreamingContext.checkpoint(), 253 
StreamiпgCoпtext.getOrCreate(), 254, 255 
StreamingContext.start(), 229 
StreamiпgContext.uпion(), 237 
sum(), 147 
SV MModel, 279 
SV MWithSGD, класс, 279 

т 
tar, команда, 28 
textFile(), 99, 185 

Thrift-cepвep, 217 
toDebugString(), 185 

u 
UDF (User-Defiпed Fuпctions -
функции, определяемые 
пользователями), 203, 221 

в Spark SQL, 221 
updateStateByKey(), 242 

V 
variance(), 147 
Vector, тип, 269 

w 
wholeTextFiles(), 100 
wiпdow(), 239 
Wiпdows, система 

tar, команда, 28 
запуск потокового приложения, 230 

Word2VecModel, 275 
Word2Vec,клacc,274 

z 
zlib, формат сжатия, 118 

А 

Автономные приложения, 35 
сборка,38 

Агрегирование, 73 
распределенный подсчет слов, 74 

Аккумуляторы, 131 
и отказоустойчивость, 135 
как они действуют, 133 
подсчет пустых строк (пример), 132 
подсчет числа ошибок (пример), 134 
собственные, 136 
типы аккумуляторов, 136 

Активный приемник, 249, 250 
Акторы Akka, 247 
Алгоритмы извлечения 
признаков, 262, 272 

TF-IDF, 272 
Word2Vec, 27 4 
масштабирование, 273 
нормализация,274 

Аппаратное обеспечение, 199 
и производительность, 199 

Ассоциативные операции, 136 

Б 
Базы данных, 123 

Cassaпdra, 124 
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Elasticsearch, 127 
HBase, 127 

JDBC, 123 
как источники данных, 98 

Веб-интерфейс, 153, 189 
Spark Streaming, 257 
журналы драйверов 
и исполнителей, 193 
информация о настройках, 192 
страница environment, 193 
страница executors, 192 
страница jobs, 190 
страница stage, 191 
страница storage, 192 
страница task, 191 

Ведущий/ведомый, архитектура, 151 
Векторы 

Vector, тип, 269 
использование,269 
масштабирование, 273 
разреженные, 290 
создание, 269 

Взаимодействие с внешними 
программами, 143 
Внешние соединения, 81 
Внутреннее соединение, 81 
Выпас данных, 23 
Вычислительные кластеры, 19 

г 
Группировка пар ключ/значение, 80 

д 
Деревья решений, 280 
Диспетчеры кластеров, 22, 151, 153, 164 

Apache Mesos, 171 
Hadoop YARN, 169 
Spark Standalone, 165 
spark-submit, сценарий, 154 
выбор, 176 
сценарии запуска, 165 

Долгоживущие таблицы и запросы, 220 
Дополнительные возможности 
программирования, 130 
Дополнительные источники 

Apache Katka, 248 
Дополнительные источники данных, 247 
Драйверы, 151 

в локальном режиме, 153 
выборка RDD, 186 
журналы, 193 
повышение отказоустойчивости, 254 
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ж 
Журналирование 

cepвepJDBC, 219 
управление подробностью вывода 
в оболочке PySpark, 30 

Журналы драйверов 
и исполнителей, 193 

3 
Завершение приложения Spark, 37 
Зависимости, 158 

зависимости приложений времени 
выполнения, 158 
затенение, 163 
информация о, 193 
конфликты, 163 
упаковка приложений Spark, 158 
установка сторонних библиотек, 159 

Загрузка Spark, 27 
файлы и каталоги, 28 

Загрузка и сохранение данных, 98 
CSV, 99,103 
JSON, 99, 101 
Protocol Buffers, 99, 114 
SequenceFiles, 99 
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