Big Data
Made Easy

A Working Guide to the Complete Hadoop Toolset

Michael Frampton

F VI FIFIFPIFVYIFTFFYFyFryrySySyyyy .y aa
4 gy \?v.. ¥ & y ('/‘7/-"'“'.;"%-’ Yy b . (1_,_:/9’___:.,. vy b & & du
y Y 4 & & & P & & y =
T P PO L


http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info


http://www.it-ebooks.info/

Contents at a Glance

About the AUthOr ... ———————————— Xv
About the Technical ReVIEWET ........cvsssvsmssssssmsmsmssssssssmssssmssssssssssssssssssssssnssssnssssssnsssnssnsnss xvii
AcknOowIedgmEeNnts.......cccciiiisssssnmmnnmmmmmmsssssssssssnnnmesssssssssnnnnnnsessssssssssnnnnnnsessssssssnnnnnnnnnessssssns Xix
INtrodUCTiON .....ceiiieesissannsssannssssnnnsssnnnsssnnnsssnnnsssnnnsssnnnsssannsssnnnsssnnnsssannsssnnnssssnnenssnnnsssnnnsssnnns xxi
Chapter 1: The Problem with Data.........ccccininemmmmmmnssnmmmmsssnmmmsssssmsssssssssssssssssamsnn. 1
Chapter 2: Storing and Configuring Data with Hadoop, YARN, and ZooKeeper..........cuuu. 11
Chapter 3: Collecting Data with Nutch and Solr ..........cccrcmnnnnnmnsesnnsssn——————— 57
Chapter 4: Processing Data with Map Reduce ........cccuccrrssemrmsssnsmsssnsmsssnsssssssssssssssssnnsssnns 85
Chapter 5: Scheduling and WOrkflow ........ccccccmnnssemmmnnssssssnmmmsssnnmmsssssssssssssesssssssnns 121
Chapter 6: Moving Data........ccccusemmmmmmssnnmmmisssssmmmsssssmmmsssssnmssssssnnsssssssessssssssessssnnssnssns 155
Chapter 7: Monitoring Data ........c.ccccusmmmmsmmmmsssmmmssssmmsssssssssssesssssesssssesssssessnssesssnsesssnness 191
Chapter 8: Cluster Management...........ccccinnnnsemmmmnmssssnmmmssssssmmssssssnesssssssssssssssssessssnsnsnsans 225
Chapter 9: Analytics with Hadoop ........cccciuisnemmmmmissemmmmmsssssmmmmssssmmssssssmssssssssessssssnnan 257
Chapter 10: ETL with HadOoOP .....c.cccnisemmmmssmmmmssssmmsssssssssnsssssssssssssssssnsssssssessnnsessansessnnnenss 291
Chapter 11: Reporting with Hadoop ......cccccviseemmmmmisemmmmmisssnmmmssesnmmsssssmsmssssssessssssnnas 325
L1 . 361
v

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction

If you would like to learn about the big data Hadoop-based toolset, then Big Data Made Easy is for you. It provides
a wide overview of Hadoop and the tools you can use with it. I have based the Hadoop examples in this book on
CentOS, the popular and easily accessible Linux version; each of its practical examples takes a step-by-step approach
to installation and execution. Whether you have a pressing need to learn about Hadoop or are just curious, Big Data
Made Easy will provide a starting point and offer a gentle learning curve through the functional layers of Hadoop-
based big data.

Starting with a set of servers and with just CentOS installed, I lead you through the steps of downloading,
installing, using, and error checking. The book covers following topics:

e  Hadoop installation (V1 and V2)

e  Web-based data collection (Nutch, Solr, Gora, HBase)

e  Map Reduce programming (Java, Pig, Perl, Hive)

e  Scheduling (Fair and Capacity schedulers, Oozie)

e  Moving data (Hadoop commands, Sqoop, Flume, Storm)
e  Monitoring (Hue, Nagios, Ganglia)

e  Hadoop cluster management (Ambari, CDH)

e  Analysis with SQL (Impala, Hive, Spark)

e  ETL (Pentaho, Talend)

e  Reporting (Splunk, Talend)

Asyou reach the end of each topic, having completed each example installation, you will be increasing your
depth of knowledge and building a Hadoop-based big data system. No matter what your role in the IT world,
appreciation of the potential in Hadoop-based tools is best gained by working along with these examples.

Having worked in development, support, and testing of systems based in data warehousing, I could see that
many aspects of the data warehouse system translate well to big data systems. I have tried to keep this book practical
and organized according to the topics listed above. It covers more than storage and processing; it also considers
such topics as data collection and movement, scheduling and monitoring, analysis and management, and ETL
and reporting.

This book is for anyone seeking a practical introduction to the world of Linux-based Hadoop big data tools.

It does not assume knowledge of Hadoop, but it does require some knowledge of Linux and SQL. Each command use
is explained at the point it is utilized.

xxi

www.it-ebooks.info


http://www.it-ebooks.info/

INTRODUCTION

Downloading the Code

The source code for this book is available in ZIP file format in the Downloads section of the Apress website,
WWW.apress.com.

Contacting the Author

I hope that you find this book useful and that you enjoy the Hadoop system as much as I have. I am always interested
in new challenges and understanding how people are using the technologies covered in this book. Tell me about what
you're doing!

You can find me on LinkedIn at waw. 1inkedin.com/profile/view?id=73219349.

In addition, you can contact me via my website at www. semtech-solutions.co.nz or by email at
mike_ frampton@hotmail.com.

xxii

www.it-ebooks.info


www.apress.com
www.linkedin.com/profile/view?id=73219349
http://www.semtech-solutions.co.nz
http://mike_frampton@hotmail.com
http://www.it-ebooks.info/

CHAPTER 1

The Problem with Data

The term “big data” refers to data sets so large and complex that traditional tools, like relational databases, are unable
to process them in an acceptable time frame or within a reasonable cost range. Problems occur in sourcing, moving,
searching, storing, and analyzing the data, but with the right tools these problems can be overcome, as you'll see in
the following chapters. A rich set of big data processing tools (provided by the Apache Software Foundation, Lucene,
and third-party suppliers) is available to assist you in meeting all your big data needs.

In this chapter, I present the concept of big data and describe my step-by-step approach for introducing each
type of tool, from sourcing the software to installing and using it. Along the way, you'll learn how a big data system can
be built, starting with the distributed file system and moving on to areas like data capture, Map Reduce programming,
moving data, scheduling, and monitoring. In addition, this chapter offers a set of requirements for big data
management that provide a standard by which you can measure the functionality of these tools and similar ones.

A Definition of “Big Data”

The term “big data” usually refers to data sets that exceed the ability of traditional tools to manipulate them—typically,
those in the high terabyte range and beyond. Data volume numbers, however, aren’t the only way to categorize big
data. For example, in his now cornerstone 2001 article “3D Management: Controlling Data Volume, Velocity, and
Variety,” Gartner analyst Doug Laney described big data in terms of what is now known as the 3Vs:

e  Volume: The overall size of the data set
e  Velocity: The rate at which the data arrives and also how fast it needs to be processed

e  Variety: The wide range of data that the data set may contain—that is, web logs, audio, images,
sensor or device data, and unstructured text, among many others types

Diya Soubra, a product marketing manager at ARM a company that designs and licenses microprocessors,
visually elaborated on the 3Vs in his 2012 datasciencecentral.com article “The 3Vs that Define Big Data.” He has
kindly allowed me to reproduce his diagram from that article as Figure 1-1. As you can see, big data is expanding in
multiple dimensions over time.

www.it-ebooks.info



http://datasciencecentral.com/
http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

Big Data:
Expanding on 3 fronts
at an increasing rate.

. Data
Velocity

<
Qe
{\\,(\6
A

(\ei'a$ QG(\ O(IS\G
@ Data

w,, MB GB] B PB 1 \/olume
% %t

02%\ : % %‘5‘@
=2
%

Data
Variety >

Un,
Str,, _
Cfu,E,U Mobile

Figure 1-1. Diya Soubra’s multidimensional 3V diagram showing big data’s expansion over time

You can find real-world examples of current big data projects in a range of industries. In science, for example,
a single genome file might contain 100 GB of data; the “1000 Genomes Project” has amassed 200 TB worth of
information already. Or, consider the data output of the Large Hadron Collider, which produces 15 PB of detector data
per year. Finally, eBay stores 40 PB of semistructured and relational data on its Singularity system.

The Potentials and Difficulties of Big Data

Big data needs to be considered in terms of how the data will be manipulated. The size of the data set will impact
data capture, movement, storage, processing, presentation, analytics, reporting, and latency. Traditional tools quickly
can become overwhelmed by the large volume of big data. Latency—the time it takes to access the data—is as an
important a consideration as volume. Suppose you might need to run an ad hoc query against the large data set or a
predefined report. A large data storage system is not a data warehouse, however, and it may not respond to queries in
a few seconds. It is, rather, the organization-wide repository that stores all of its data and is the system that feeds into
the data warehouses for management reporting.

One solution to the problems presented by very large data sets might be to discard parts of the data so as to
reduce data volume, but this isn’t always practical. Regulations might require that data be stored for a number of
years, or competitive pressure could force you to save everything. Also, who knows what future benefits might be
gleaned from historic business data? If parts of the data are discarded, then the detail is lost and so too is any potential
future competitive advantage.

Instead, a parallel processing approach can do the trick—think divide and conquer. In this ideal solution, the
data is divided into smaller sets and is processed in a parallel fashion. What would you need to implement such
an environment? For a start, you need a robust storage platform that’s able to scale to a very large degree (and

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

at reasonable cost) as the data grows and one that will allow for system failure. Processing all this data may take
thousands of servers, so the price of these systems must be affortable to keep the cost per unit of storage reasonable.
In licensing terms, the software must also be affordable because it will need to be installed on thousands of servers.
Further, the system must offer redundancy in terms of both data storage and hardware used. It must also operate on
commodity hardware, such as generic, low-cost servers, which helps to keep costs down. It must additionally be able
to scale to a very high degree because the data set will start large and will continue to grow. Finally, a system like this
should take the processing to the data, rather than expect the data to come to the processing. If the latter were to be
the case, networks would quickly run out of bandwidth.

Requirements for a Big Data System

This idea of a big data system requires a tool set that is rich in functionality. For example, it needs a unique kind of
distributed storage platform that is able to move very large data volumes into the system without losing data. The
tools must include some kind of configuration system to keep all of the system servers coordinated, as well as ways
of finding data and streaming it into the system in some type of ETL-based stream. (ETL, or extract, transform, load,
is a data warehouse processing sequence.) Software also needs to monitor the system and to provide downstream
destination systems with data feeds so that management can view trends and issue reports based on the data. While
this big data system may take hours to move an individual record, process it, and store it on a server, it also needs to
monitor trends in real time.

In summary, to manipulate big data, a system requires the following:

e A method of collecting and categorizing data
¢ A method of moving data into the system safely and without data loss
e  Astorage system that

e Isdistributed across many servers

e Isscalable to thousands of servers

e Wil offer data redundancy and backup

e  Will offer redundancy in case of hardware failure

e  Will be cost-effective

e Arichtool set and community support

¢ Amethod of distributed system configuration
e  Parallel data processing

e  System-monitoring tools

e Reporting tools

e  ETL-like tools (preferably with a graphic interface) that can be used to build tasks that process
the data and monitor their progress

e Scheduling tools to determine when tasks will run and show task status
e  The ability to monitor data trends in real time
e  Local processing where the data is stored to reduce network bandwidth usage

Later in this chapter I explain how this book is organized with these requirements in mind. But let’s now consider
which tools best meet the big data requirements listed above.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

How Hadoop Tools Can Help

Hadoop tools are a good fit for your big data needs. When I refer to Hadoop tools, I mean the whole Apache
(www.apache.org) tool set related to big data. A community-based, open-source approach to software development,
the Apache Software Foundation (ASF) has had a huge impact on both software development for big data and
the overall approach that has been taken in this field. It also fosters significant cross-pollination of both ideas and
development by the parties involved—for example, Google, Facebook, and LinkedIn. Apache runs an incubator
program in which projects are accepted and matured to ensure that they are robust and production worthy.
Hadoop was developed by Apache as a distributed parallel big data processing system. It was written in
Java and released under an Apache license. It assumes that failures will occur, and so it is designed to offer both
hardware and data redundancy automatically. The Hadoop platform offers a wide tool set for many of the big data
functions that I have mentioned. The original Hadoop development was influenced by Google's MapReduce and
the Google File System.
The following list is a sampling of tools available in the Hadoop ecosystem. Those marked in boldface are
introduced in the chapters that follow:

e  Ambari Hadoop management and monitoring

e Avro Data serialization system

e  Chukwa Data collection and monitoring

e Hadoop Hadoop distributed storage platform

e Hama BSP scientific computing framework

e HBase Hadoop NoSQL non-relational database
e Hive Hadoop data warehouse

e Hue Hadoop web interface for analyzing data
e  Mahout Scalable machine learning platform

e Map/Reduce Algorithm used by the Hadoop MR component

e Nutch Web crawler

e Oozie Workflow scheduler

e Pentaho Open-source analytics tool set

e Pig Data analysis high-level language

e Solr Search platform

e Sqoop Bulk data-transfer tool

e Storm Distributed real-time computation system
e Yarn Map/Reduce in Hadoop Version 2

e ZooKeeper Hadoop centralized configuration system

When grouped together, the ASE Lucene, and other provider tools, some of which are here, provide a rich
functional set that will allow you to manipulate your data.

www.it-ebooks.info


http://www.apache.org/
http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

My Approach

My approach in this book is to build the various tools into one large system. Stage by stage, and starting with the
Hadoop Distributed File System (HDFS), which is the big data file system, I do the following:

e Introduce the tool

e  Show how to obtain the installation package
e  Explain how to install it, with examples

¢  Employ examples to show how it can be used

Given that I have a lot of tools and functions to introduce, I take only a brief look at each one. Instead, I show
you how each of these tools can be used as individual parts of a big data system. It is hoped that you will be able to
investigate them further in your own time.

The Hadoop platform tool set is installed on CentOS Linux 6.2. I use Linux because it is free to download and
has a small footprint on my servers. I use Centos rather than another free version of Linux because some of the
Hadoop tools have been released for CentOS only. For instance, at the time of writing this, Ambari is not available
for Ubuntu Linux.

Throughout the book, you will learn how you can build a big data system using low-cost, commodity hardware.
I'relate the use of these big data tools to various IT roles and follow a step-by-step approach to show how they
are feasible for most IT professionals. Along the way, I point out some solutions to common problems you might
encounter, as well as describe the benefits you can achieve with Hadoop tools. I use small volumes of data to
demonstrate the systems, tools, and ideas; however, the tools scale to very large volumes of data.

Some level of knowledge of Linux, and to a certain extent Java, is assumed. Don'’t be put off by this; instead, think
of it as an opportunity to learn a new area if you aren’t familiar with the subject.

Overview of the Big Data System

While many organizations may not yet have the volumes of data that could be defined as big data, all need to consider
their systems as a whole.A large organization might have a single big data repository. In any event, it is useful to
investigate these technologies as preparation for meeting future needs.

Big Data Flow and Storage

Many of the principles governing business intelligence and data warehousing scale to big data proportions. For
instance, Figure 1-2 depicts a data warehouse system in general terms.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

Scheduling Monitoring

= ==
= = e Adhoc
== =
= = — Access
—_ = ==
= == == Reports
—— —=  Staging Data
= ==

Vault
ETL Data
Feeds -

Data Flow

Figure 1-2. A general data warehouse system

Asyou can see in Figure 1-2, ETL (extraction, transformation, and loading of the data) feeds arrive at the
staging schema of the warehouse and are loaded into their current raw format in staging area tables. The data is
then transformed and moved to the data vault, which contains all the data in the repository. That data might be
filtered, cleaned, enriched, and restructured. Lastly, the data is loaded into the BI, or Business Intelligence, schema
of the warehouse, where the data could be linked to reference tables. It is at this point that the data is available for
the business via reporting tools and adhoc reports. Figure 1-2 also illustrates the scheduling and monitoring tasks.
Scheduling controls when feeds are run and the relationships between them, while monitoring determines whether
the feeds have run and whether errors have occurred. Note also that scheduled feeds can be inputs to the system, as
well as outputs.

Note The data movement flows from extraction from raw sources, to loading, to staging and transformation, and to
the data vault and the Bl layer. The acronym for this process is ELT (extract, load, transfer), which better captures what is
happening than the common term ETL.

Many features of this data warehouse system can scale up to and be useful in a big data system. Indeed, the
big data system could feed data to data warehouses and datamarts. Such a big data system would need extraction,
loading, and transform feeds, as well as scheduling, monitoring, and perhaps the data partitioning that a data
warehouse uses, to separate the stages of data processing and access. By adding a big data repository to an IT
architecture, you can extend future possibilities to mine data and produce useful reports. Whereas currently you
might filter and aggregate data to make it fit a datamart, the new architecture allows you to store all of your raw data.

So where would a big data system fit in terms of other systems a large organization might have? Figure 1-3
represents its position in general terms, for there are many variations on this, depending on the type of company and
its data feeds.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

Billi

=
da

Batch Reports

C

0

o
o
c
a

= Big Dat
ig Data =
Invgory = 8 = Datamarts
— =
Machine Data ~ —— ; D D D
O = —
Social = = Data Warehouse
= . I
O_ Repository D D D

Transactional
NoSQL

Web Logs D D D

Figure 1-3. A general big data environment

0z0

Figure 1-3 does not include all types of feeds. Also, it does not have the feedback loops that probably would exist.
For instance, data warehouse feeds might form inputs, have their data enriched, and feed outputs. Web log data might
be inputs, then enriched with location and/or transaction data, and become enriched outputs. However, the idea here
is that a single, central big data repository can exist to hold an organization's big data.

Benefits of Big Data Systems

Why investigate the use of big data and a parallel processing approach? First, if your data can no longer be processed
by traditional relational database systems (RDBMS), that might mean your organization will have future data
problems. You might have been forced to introduce NoSQL database technology so as to process very large data
volumes in an acceptable time frame. Hadoop might not be the immediate solution to your processing problems,
owing to its high latency, but it could provide a scalable big data storage platform.

Second, big data storage helps to establish a new skills base within the organization. Just as data warehousing
brought with it the need for new skills to build, support, and analyze the warehouse, so big data leads to the same type
of skills building. One of the biggest costs in building a big data system is the specialized staff needed to maintain it
and use the data in it. By starting now, you can build a skills pool within your organization, rather than have to hire
expensive consultants later. (Similarly, as an individual, accessing these technologies can help you launch a new and
lucrative career in big data.)

Third, by adopting a platform that can scale to a massive degree, a company can extend the shelf life of its system
and so save money, as the investment involved can be spread over a longer time. Limited to interim solutions, a
company with a small cluster might reach capacity within a few years and require redevelopment.

Fourth, by getting involved in the big data field now, a company can future-proof itself and reduce risk by
building a vastly scalable distributed platform. By introducing the technologies and ideas in a company now, there
will be no shock felt in later years, when there is a need to adopt the technology.

In developing any big data system, your organization needs to keep its goals in mind. Why are you developing the
system? What do you hope to achieve? How will the system be used? What will you store? You measure the system use
over time against the goals that were established at its inception.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

What'’s in This Book

This book is organized according to the particular features of a big data system, paralleling the general requirements
of a big data system, as listed in the beginning of this chapter. This first chapter describes the features of big data
and names the related tools that are introduced in the chapters that follow. My aim here is to describe as many big
data tools as possible, using practical examples. (Keep in mind, however, that writing deadlines and software update
schedules don’t always mesh, so some tools or functions may have changed by the time you read this.)

All of the tools discussed in this book have been chosen because they are supported by a large user base, which
fulfills big data’s general requirements of a rich tool set and community support. Each Apache Hadoop-based tool has
its own website and often its own help forum. The ETL and reporting tools introduced in Chapters 10 and 11, although
non-Hadoop, are also supported by their own communities.

Storage: Chapter 2
Discussed in Chapter 2, storage represents the greatest number of big data requirements, as listed earlier:

e  Astorage system that

e Isdistributed across many servers

e Isscalable to thousands of servers

e  Will offer data redundancy and backup

e  Will offer redundancy in case of hardware failure
e  Will be cost-effective

A distributed storage system that is highly scalable, Hadoop meets all of these requirements. It offers a high
level of redundancy with data blocks being copied across the cluster. It is fault tolerant, having been designed with
hardware failure in mind. It also offers a low cost per unit of storage. Hadoop versions 1.x and 2.x are installed and
examined in Chapter 2, as well as a method of distributed system configuration. The Apache ZooKeeper system is
used within the Hadoop ecosystem to provide a distributed configuration system for Apache Hadoop tools.

Data Collection: Chapter 3

Automated web crawling to collect data is a much-used technology, so we need a method of collecting and
categorizing data. Chapter 3 describes two architectures using Nutch and Solr to search the web and store data. The
first stores data directly to HDFS, while the second uses Apache HBase. The chapter provides examples of both.

Processing: Chapter 4
The following big data requirements relate to data processing:
e  Parallel data processing
e Local processing where the data is stored to reduce network bandwidth usage

Chapter 4 introduces a variety of Map Reduce programming approaches, with examples. Map Reduce programs
are developed in Java, Apache Pig, Perl, and Apache Hive.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

Scheduling: Chapter 5

The big data requirement for scheduling encompasses the need to share resources and determine when tasks will
run. For sharing Hadoop-based resources, Chapter 5 introduces the Capacity and Fair schedulers for Hadoop. It also
introduces Apache Oozie, showing how simple ETL tasks can be created using Hadoop components like Apache
Sqoop and Apache Pig. Finally, it demonstrates how to schedule Oozie tasks.

Data Movement: Chapter 6

Big data systems require tools to allow safe movement of a variety of data types, safely and without data loss. Chapter 6
introduces the Apache Sqoop tool for moving data into and out of relational databases. It also provides an example of
how Apache Flume can be used to process log-based data. Apache Storm is introduced for data stream processing.

Monitoring: Chapter 7

The requirement for system monitoring tools for a big data system is discussed in Chapter 7. The chapter introduces
the Hue tool as a single location to access a wide range of Apache Hadoop functionality. It also demonstrates the
Ganglia and Nagios resource monitoring and alerting tools.

Cluster Management: Chapter 8

Cluster managers are introduced in Chapter 8 by using the Apache Ambuari tool to install Horton Works HDP 2.1 and
Cloudera’s cluster manager to install Cloudera CDH5. A brief overview is then given of their functionality.

Analysis: Chapter 9

Big data requires the ability to monitor data trends in real time. To that end, Chapter 9 introduces the Apache Spark
real-time, in-memory distributed processing system. It also shows how Spark SQL can be used, via an example. It also
includes a practical demonstration of the features of the Apache Hive and Cloudera Impala query languages.

ETL: Chapter 10

Although ETL was briefly introduced in Chapter 5, this chapter discusses the need for graphic tools for ETL chain
building and management. ETL-like tools (preferably with a graphic interface) can be used to build tasks to process
the data and monitor their progress. Thus, Chapter 10 introduces the Pentaho and Talend graphical ETL tools for
big data. This chapter investigates their visual object based approach to big data ETL task creation. It also shows that
these tools offer an easier path into the work of Map Reduce development.

Reports: Chapter 11

Big data systems need reporting tools. In Chapter 11, some reporting tools are discussed and a typical dashboard is
built using the Splunk/Hunk tool. Also, the evaluative data-quality capabilities of Talend are investigated by using the
profiling function.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 * THE PROBLEM WITH DATA

Summary

While introducing the challenges and benefits of big data, this chapter also presents a set of requirements for big data
systems and explains how they can be met by utilizing the tools discussed in the remaining chapters of this book.

The aim of this book has been to explain the building of a big data processing system by using the Hadoop tool
set. Examples are used to explain the functionality provided by each Hadoop tool. Starting with HDFS for storage,
followed by Nutch and Solr for data capture, each chapter covers a new area of functionality, providing a simple
overview of storage, processing, and scheduling. With these examples and the step-by-step approach, you can build
your knowledge of big data possibilities and grow your familiarity with these tools. By the end of Chapter 11, you will
have learned about most of the major functional areas of a big data system.

As you read through this book, you should consider how to use the individual Hadoop components in your own
systems. You will also notice a trend toward easier methods of system management and development. For instance,
Chapter 2 starts with a manual installation of Hadoop, while Chapter 8 uses cluster managers. Chapter 4 shows
handcrafted code for Map Reduce programming, but Chapter 10 introduces visual object based Map Reduce task
development using Talend and Pentaho.

Now it's time to start, and we begin by looking at Hadoop itself. The next chapter introduces the Hadoop
application and its uses, and shows how to configure and use it.

10

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2

Storing and Configuring Data with
Hadoop, YARN, and ZooKeeper

This chapter introduces Hadoop versions V1 and V2, laying the groundwork for the chapters that follow. Specifically,
you first will source the V1 software, install it, and then configure it. You will test your installation by running a simple
word-count Map Reduce task. As a comparison, you will then do the same for V2, as well as install a ZooKeeper
quorum. You will then learn how to access ZooKeeper via its commands and client to examine the data that it stores.
Lastly, you will learn about the Hadoop command set in terms of shell, user, and administration commands. The
Hadoop installation that you create here will be used for storage and processing in subsequent chapters, when you
will work with Apache tools like Nutch and Pig.

An Overview of Hadoop

Apache Hadoop is available as three download types via the hadoop.apache.org website. The releases are named as
follows:

e Hadoop-1.2.1
e Hadoop-0.23.10
e Hadoop-2.3.0

The first release relates to Hadoop V1, while the second two relate to Hadoop V2. There are two different release
types for V2 because the version that is numbered 0.xx is missing extra components like NN and HA. (NN is “name
node” and HA is “high availability.”) Because they have different architectures and are installed differently, I first
examine both Hadoop V1 and then Hadoop V2 (YARN). In the next section, I will give an overview of each version and
then move on to the interesting stuff, such as how to source and install both.

Because I have only a single small cluster available for the development of this book, I install the different
versions of Hadoop and its tools on the same cluster nodes. If any action is carried out for the sake of demonstration,
which would otherwise be dangerous from a production point of view, I will flag it. This is important because, in
a production system, when you are upgrading, you want to be sure that you retain all of your data. However, for
demonstration purposes, I will be upgrading and downgrading periodically.

So, in general terms, what is Hadoop? Here are some of its characteristics:

e Itis an open-source system developed by Apache in Java.
e [tis designed to handle very large data sets.
e Itis designed to scale to very large clusters.

e Itis designed to run on commodity hardware.
11

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

e TItoffers resilience via data replication.

e It offers automatic failover in the event of a crash.

e Itautomatically fragments storage over the cluster.

e Itbrings processing to the data.

e  Its supports large volumes of files—into the millions.

The third point comes with a caveat: Hadoop V1 has problems with very large scaling. At the time of writing, it is
limited to a cluster size of around 4,000 nodes and 40,000 concurrent tasks. Hadoop V2 was developed in part to offer
better resource usage and much higher scaling.

Using Hadoop V2 as an example, you see that there are four main component parts to Hadoop. Hadoop Common
is a set of utilities that support Hadoop as a whole. Hadoop Map Reduce is the parallel processing system used by
Hadoop. It involves the steps Map, Shuffle, and Reduce. A big volume of data (the text of this book, for example) is
mapped into smaller elements (the individual words), then an operation (say, a word count) is carried out locally
on the small elements of data. These results are then shuffled into a whole, and reduced to a single list of words and
their counts. Hadoop YARN handles scheduling and resource management. Finally, Hadoop Distributed File System
(HDFS) is the distributed file system that works on a master/slave principle whereby a name node manages a cluster
of slave data nodes.

The Hadoop V1 Architecture

In the V1 architecture, a master Job Tracker is used to manage Task Trackers on slave nodes (Figure 2-1). Hadoop’s
data node and Task Trackers co-exist on the same slave nodes.

Master Slave

Job Trackér
/r mT‘ask
&

Client

Task Tracker
| Task

Figure 2-1. Hadoop V1 architecture

12

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

The cluster-level Job Tracker handles client requests via a Map Reduce (MR) API. The clients need only process
via the MR AP]I, as the Map Reduce framework and system handle the scheduling, resources, and failover in the event
of a crash. Job Tracker handles jobs via data node-based Task Trackers that manage the actual tasks or processes. Job
Tracker manages the whole client-requested job, passing subtasks to individual slave nodes and monitoring their
availability and the tasks’ completion.

Hadoop V1 only scales to clusters of around 4,000 to 5,000 nodes, and there are also limitations on the number of
concurrent processes that can run. It has only a single processing type, Map Reduce, which although powerful does
not allow for requirements like graph or real-time processing.

The Differences in Hadoop V2

With YARN, Hadoop V2’s Job Tracker has been split into a master Resource Manager and slave-based Application
Master processes. It separates the major tasks of the Job Tracker: resource management and monitoring/scheduling.
The Job History server now has the function of providing information about completed jobs. The Task Tracker has
been replaced by a slave-based Node Manager, which handles slave node-based resources and manages tasks on
the node. The actual tasks reside within containers launched by the Node Manager. The Map Reduce function is
controlled by the Application Master process, while the tasks themselves may be either Map or Reduce tasks.

Hadoop V2 also offers the ability to use non-Map Reduce processing, like Apache Giraph for graph processing, or
Impala for data query. Resources on YARN can be shared among all three processing systems.

Figure 2-2 shows client task requests being sent to the global Resource Manager and the slave-based Node
Managers launching containers, which have the actual tasks. It also monitors their resource usage. The Application
Master requests containers from the scheduler and receives status updates from the container-based Map Reduce tasks.

Client Resource Mgr Node Mgr

N\

Node Mgr \\ Node Mgr

Mab I App Master

Figure 2-2. Hadoop V2 architecture

This architecture enables Hadoop V2 to scale to much larger clusters and provides the ability to have a higher
number of concurrent processes. It also now offers the ability, as mentioned earlier, to run different types of processes
concurrently, not just Map Reduce.

13

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

This is an introduction to the Hadoop V1 and V2 architectures. You might have the opportunity to work with both
versions, so I give examples for installation and use of both. The architectures are obviously different, as seen in
Figures 2-1 and 2-2, and so the actual installation/build and usage differ as well. For example, for V1 you will carry out
a manual install of the software while for V2 you will use the Cloudera software stack, which is described next.

The Hadoop Stack

Before we get started with the Hadoop V1 and V2 installations, it is worth discussing the work of companies like
Cloudera and Hortonworks. They have built stacks of Hadoop-related tools that have been tested for interoperability.
Although I describe how to carry out a manual installation of software components for V1, I show how to use one of
the software stacks for the V2 install.

When you're trying to use multiple Hadoop platform tools together in a single stack, it is important to know what
versions will work together without error. If, for instance, you are using ten tools, then the task of tracking compatible
version numbers quickly becomes complex. Luckily there are a number of Hadoop stacks available. Suppliers can
provide a single tested package that you can download. Two of the major companies in this field are Cloudera and
Hortonworks. Apache Bigtop, a testing suite that I will demonstrate in Chapter 8, is also used as the base for the
Cloudera Hadoop stack.

Table 2-1 shows the current stacks from these companies, listing components and versions of tools that are
compatible at the time of this writing.

Table 2-1. Hadoop Stack Tool Version Details
Cloudera CDH 4.6.0 Hortonworks Data Platform 2.0

Ambari 1.4.4
DataFu 0.0.4

Flume 1.4.0 1.4.0
Hadoop 2.0.0 2.2.0
HCatalog 0.5.0 0.12.0
HBase 0.94 0.96.1
Hive 0.10.0 0.12.0
Hue 2.5.0 2.3.0
Mahout 0.7 0.8.0
Oozie 3.3.2 4.0.0
Parquet 1.2.5

Pig 0.11 0.12.0
Sentry 1.1.0

Sqoop 1.4.3 1.4.4
Sqoop2 1.99.2

Whirr 0.8.2

ZooKeeper 3.4.5 3.4.5
14

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

While I use a Hadoop stack in the rest of the book, here I will show the process of downloading, installing,
configuring, and running Hadoop V1 so that you will be able to compare the use of V1 and V2.

Environment Management

Before I move into the Hadoop V1 and V2 installations, I want to point out that I am installing both Hadoop V1 and V2
on the same set of servers. Hadoop V1 is installed under /usr/local while Hadoop V2 is installed as a Cloudera CDH
release and so will have a defined set of directories:

e Logging under /var/log; that is, /var/log/hadoop-hdfs/
e  Configuration under /etc/hadoop/conf/
e  Executables defined as servers under /etc/init.d/; that is, hadoop-hdfs-namenode
I'have also created two sets of .bashrc environment configuration files for the Linux Hadoop user account:

[hadoop@hcinn ~]$ pwd
/home/hadoop

[hadoop@hcinn ~]$ 1s -1 .bashrc*

lrwxrwxrwx. 1 hadoop hadoop 16 Jun 30 17:59 .bashrc -> .bashrc_hadoopv2
-Iw-r--r--. 1 hadoop hadoop 1586 Jun 18 17:08 .bashrc_hadoopvi
-Iw-r--r--. 1 hadoop hadoop 1588 Jul 27 11:33 .bashrc_hadoopv2

By switching the .bashrc symbolic link between the Hadoop V1 (.bashrc_hadoopv1) and V2 (.bashrc_hadoopv2)
files, I can quickly navigate between the two environments. Each installation has a completely separate set of
resources. This approach enables me to switch between Hadoop versions on my single set of testing servers while
writing this guide. From a production viewpoint, however, you would install only one version of Hadoop at a time.

Hadoop V1 Installation

Before you attempt to install Hadoop, you must ensure that Java 1.6.x is installed and that SSH (secure shell) is
installed and running. The master name node must be able to create an SSH session to reach each of its data nodes
without using a password in order to manage them. On CentOS, you can install SSH via the root account as follows:

yum install openssh-server

This will install the secure shell daemon process. Repeat this installation on all of your servers, then start the
service (as root):

service sshd restart

Now, in order to make the SSH sessions from the name node to the data nodes operate without a password,
you must create an SSH key on the name node and copy the key to each of the data nodes. You create the key with
the keygen command as the hadoop user (I created the hadoop user account during the installation of the CentOS

operating system on each server), as follows:

ssh-keygen

15

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

A key is created automatically as $HOME/.ssh/id_rsa.pub. You now need to copy this key to the data nodes. You
run the following command to do that:

ssh-copy-id hadoop@hciriml

This copies the new SSH key to the data node hclrlm1 as user hadoop; you change the server name to copy the
key to the other data node servers.
The remote passwordless secure shell access can now be tested with this:

ssh hadoop@hciriml

A secure shell session should now be created on the host hclrlm1 without need to prompt a password.
As Hadoop has been developed using Java, you must also ensure that you have a suitable version of Java installed
on each machine. I will be using four machines in a mini cluster for this test:

e hclnn - A Linux CentOS 6 server for a name node
e hclrlml - A Linux CentOS 6 server for a data node
e hclrlm?2 - A Linux CentOS 6 server for a data node

e hclrlms3 - A Linux CentOS 6 server for a data node

Can the name node access all of the data nodes via SSH (secure shell) without being prompted for a password?
And is a suitable Java version installed? I have a user account called hadoop on each of these servers that I use for this
installation. For instance, the following command line shows hadoop@hcinn, which means that we are logged into the
server hclnn as the Linux user hadoop:

[hadoop@hcinn ~]$ java -version

java version "1.6.0_30"

OpenJDK Runtime Environment (IcedTea6 1.13.1) (rhel-3.1.13.1.el6 5-i386)
OpendDK Client VM (build 23.25-b01, mixed mode)

This command, java -version, shows that we have OpenJDK java version 1.6.0_30 installed. The following
commands create an SSH session on each of the data nodes and checks the Java version on each:

[hadoop@hcinn ~]$ ssh hadoop@hcirim3

Last login: Thu Mar 13 19:41:12 2014 from hcinn

[hadoop@hcirim3 ~]$

[hadoop@hcirim3 ~]$ java -version

java version "1.6.0_30"

OpenJDK Runtime Environment (IcedTea6 1.13.1) (rhel-3.1.13.1.el6 5-i386)
OpenJDK Server VM (build 23.25-b01, mixed mode)

[hadoop@hcirim3 ~]$ exit

logout

Connection to hcirim3 closed.

[hadoop@hcinn ~]$ ssh hadoop@hcirim2

Last login: Thu Mar 13 19:40:45 2014 from hcinn

[hadoop@hcirim2 ~]$ java -version

java version "1.6.0_30"

OpenJDK Runtime Environment (IcedTea6 1.13.1) (rhel-3.1.13.1.el6 5-1386)
OpenIDK Server VM (build 23.25-b01, mixed mode)

16

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

[hadoop@hcirim2 ~]$ exit
logout
Connection to hcirim2 closed.

[hadoop@hcinn ~]$ ssh hadoop@hcirimi

Last login: Thu Mar 13 19:40:22 2014 from hcirim3

[hadoop@hcirimi ~]$ java -version

java version "1.6.0_30"

OpenJDK Runtime Environment (IcedTea6 1.13.1) (rhel-3.1.13.1.el6 5-x86 64)
OpenIDK 64-Bit Server VM (build 23.25-b01, mixed mode)

[hadoop@hcirim1i ~]$ exit

logout

Connection to hciriml closed.

These three SSH statements show that a secure shell session can be created from the name node, hclnn, to each
of the data nodes.

Notice that I am using the Java Open]JDK (http://openjdk.java.net/) here. Generally it’s advised that you use
the Oracle Sun JDK. However, Hadoop has been tested against the OpenJDK, and I am familiar with its use. [ don’t
need to register to use OpenJDK, and I can install it on Centos using a simple yum command. Additionally, the Sun
JDK install is more complicated.

Now let’s download and install a version of Hadoop V1. In order to find the release of Apache Hadoop to
download, start here: http://hadoop.apache.org.

Next, choose Download Hadoop, click the release option, then choose Download, followed by Download a
Release Now! This will bring you to this page: http://www.apache.org/dyn/closer.cgi/hadoop/common/. It suggests
a local mirror site that you can use to download the software. It’s a confusing path to follow; I'm sure that this website
could be simplified a little. The suggested link for me is http://apache.insync.za.net/hadoop/common. You may be
offered a different link.

On selecting that site, I'm offered a series of releases. I choose 1.2.1, and then I download the file: Hadoop-
1.2.1.tar.gz. Why choose this particular format over the others? From past experience, I know how to unpack it and use
it; feel free to choose the format with which you're most comfortable.

Download the file to /home/hadoop/Downloads. (This download and installation must be carried out on each
server.) You are now ready to begin the Hadoop single-node installation for Hadoop 1.2.1.

The approach from this point on will be to install Hadoop onto each server separately as a single-node installation,
configure it, and try to start the servers. This will prove that each node is correctly configured individually. After that,
the nodes will be grouped into a Hadoop master/slave cluster. The next section describes the single-node installation
and test, which should be carried out on all nodes. This will involve unpacking the software, configuring the
environment files, formatting the file system, and starting the servers. This is a manual process; if you have a very large
production cluster, you would need to devise a method of automating the process.

Hadoop 1.2.1 Single-Node Installation

From this point on, you will be carrying out a single-node Hadoop installation (until you format the Hadoop file
system on this node). First, you ftp the file hadoop-1.2.1.tar.gz to all of your nodes and carry out the steps in this
section on all nodes.

So, given that you are logged in as the user hadoop, you see the following file in the $HOME/Downloads
directory:

[hadoop@hcinn Downloads]$ 1s -1

total 62356
-IW-IW-T--. 1 hadoop hadoop 63851630 Mar 15 15:01 hadoop-1.2.1.tar.gz

17

www.it-ebooks.info


http://openjdk.java.net/
http://hadoop.apache.org/
http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://apache.insync.za.net/hadoop/common
http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

This is a gzipped tar file containing the Hadoop 1.2.1 software that you are interested in. Use the Linux gunzip
tool to unpack the gzipped archive:

[hadoop@hcinn Downloads]$ gunzip hadoop-1.2.1.tar.gz

[hadoop@hcinn Downloads]$ 1s -1

total 202992

-IwW-IW-I--. 1 hadoop hadoop 207861760 Mar 15 15:01 hadoop-1.2.1.tar

Then, unpack the tar file:

[hadoop@hcinn Downloads]$ tar xvf hadoop-1.2.1.tar

[hadoop@hcinn Downloads]$ 1s -1

total 202996

drwxr-xr-x. 15 hadoop hadoop 4096 Jul 23 2013 hadoop-1.2.1
-IW-IW-r--. 1 hadoop hadoop 207861760 Mar 15 15:01 hadoop-1.2.1.tar

Now that the software is unpacked to the local directory hadoop-1.2.1, you move it into a better location. To do
this, you will need to be logged in as root:

[hadoop@hcinn Downloads]$ su -

Password:

[root@hcinn ~]# cd /home/hadoop/Downloads
[root@hcinn Downloads]# mv hadoop-1.2.1 /usr/local
[root@hcinn Downloads]# cd /usr/local

You have now moved the installation to /usr/local, but make sure that the hadoop user owns the installation.
Use the Linux chown command to recursively change the ownership and group membership for files and directories
within the installation:

[root@hcinn locall]# chown -R hadoop:hadoop hadoop-1.2.1
[root@hcinn locall# 1s -1

total 40

drwxr-xr-Xx. 15 hadoop hadoop 4096 Jul 23 2013 hadoop-1.2.1

You can see from the last line in the output above that the directory is now owned by hadoop and is a member of
the hadoop group.

You also create a symbolic link to refer to your installation so that you can have multiple installations on the same
host for testing purposes:

[root@hcinn locall# ln -s hadoop-1.2.1 hadoop

[root@hcinn locall# 1s -1

lrwxrwxrwx. 1 root root 12 Mar 15 15:11 hadoop -> hadoop-1.2.1
drwxr-xr-x. 15 hadoop hadoop 4096 Jul 23 2013 hadoop-1.2.1

The last two lines show that there is a symbolic link called hadoop under the directory /usr/local that points to
our hadoop-1.2.1 installation directory at the same level. If you later upgrade and install a new version of the Hadoop
V1 software, you can just change this link to point to it. Your environment and scripts can then remain static and
always use the path /usr/local/hadoop.

Now, you follow these steps to proceed with installation.

18

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

1. Set up Bash shell file for hadoop $HOME/.bashrc

When logged in as hadoop, you add the following text to the end of the file S(HOME/.bashrc. When you create this
Bash shell, environmental variables like JAVA_HOME and HADOOP_PREFIX are set. The next time a Bash shell is created
by the hadoop user account, these variables will be pre-defined.

HHEHHEHE
# Set Hadoop related env variables

export HADOOP_PREFIX=/usr/local/hadoop

# set JAVA HOME (we will also set a hadoop specific value later)
export JAVA HOME=/usr/1ib/jvm/jre-1.6.0-openjdk

# some handy aliases and functions
unalias fs 2>/dev/null

alias fs="hadoop fs"

unalias hls 2>/dev/null

alias hls="fs -1"

# add hadoop to the path

export PATH=$PATH:$HADOOP_PREFIX
export PATH=$PATH:$HADOOP_PREFIX/bin
export PATH=$PATH:$HADOOP_PREFIX/sbin

Note that you are not using the $HADOOP_HOME variable, because with this release it has been superseded. If you
use it instead of $HADOOP_PREFIX, you will receive warnings.

2. Set up conf/hadoop-env.sh

You now modify the configuration file hadoop-env.sh to specify the location of the Java installation by setting the
JAVA_HOME variable. In the file conf/hadoop-env.sh, you change:

# export JAVA HOME=/usr/1ib/j2sdk1.5-sun
to
export JAVA HOME=/usr/1ib/jvm/jre-1.6.0-openjdk

Note: When referring to the Hadoop installation configuration directory in this section, and all subsequent
sections for the V1 installation, I mean the /usr/local/hadoop/conf directory.

19

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

3. Create Hadoop temporary directory

On the Linux file system, you create a Hadoop temporary directory, as shown below. This will give Hadoop a working
area. Set the ownership to the hadoop user and also set the directory permissions:

[root@hcinn locall# mkdir -p /app/hadoop/tmp
[root@hcinn locall# chown -R hadoop:hadoop /app/hadoop
[root@hcinn locall# chmod 750 /app/hadoop/tmp

4. Set up conf/core-site.xml

You set up the configuration for the Hadoop core component. This file configuration is based on XML; it defines the
Hadoop temporary directory and default file system access. There are many more options that can be specified; see
the Hadoop site (hadoop.apache.org) for details.

Add the following text to the file between the configuration tags:

<property>

<name>hadoop.tmp.dir</name>

<value>/app/hadoop/tmp</value>

<description>A base for other temporary directories.</description>
</property>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>
<description>The name of the default file system.</description>
</property>

5. Set up conf/mapred-site.xml

Next, you set up the basic configuration for the Map Reduce component, adding the following between the
configuration tags. This defines the host and port name for each Job Tracker server.

<property>
<name>mapred. job.tracker</name>
<value>localhost:54311</value>
<description>The host and port for the Map Reduce job tracker
</description>
</property>

<property>
<name>mapred. job.tracker.http.address</name>
<value>localhost:50030</value>

</property>

<property>
<name>mapred.task.tracker.http.address</name>

<value>localhost:50060</value>
</property>

20

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

The example configuration file here is for the server hclrlm1. When the configuraton is changed to a cluster,
these Job Tracker entries will refer to Name Node machine hclnn.

6. Set up file conf/hdfs-site.xmi

Set up the basic configuration for the HDFS, adding the following between the configuration tags. This defines the
replication level for the HDEFS; it shows that a single block will be copied twice. It also specifies the address of the
Name Node web user interface as dfs.http.address:

<property>
<name>dfs.replication</name>
<value>3</value>
<description>The replication level</description>
</property>
<property>
<name>dfs.http.address</name>
<value>http://localhost:50070/</value>
</property>

7. Format the file system

Run the following command as the Hadoop user to format the file system:
hadoop namenode -format

Warning Do not execute this command on a running HDFS or you will lose your data!

The output should look like this:

14/03/15 16:08:19 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************

STARTUP_MSG: Starting NameNode

STARTUP_MSG:  host = hcinn/192.168.1.107

STARTUP_MSG:  args = [-format]

STARTUP_MSG:  version = 1.2.1

STARTUP_MSG:  build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r
1503152; compiled by 'mattf' on Mon Jul 22 15:23:09 PDT 2013

STARTUP_MSG:  java = 1.6.0_30
kstokokskstsokskokoskokskokskokskokskokskokskokskokskokskokskokskokskokskokskokskokskokskotskokskokskokskekskokskekok /

14/03/15 16:08:20 INFO util.GSet: Computing capacity for map BlocksMap

14/03/15 16:08:20 INFO util.GSet: VM type = 32-bit
14/03/15 16:08:20 INFO util.GSet: 2.0% max memory = 1013645312
14/03/15 16:08:20 INFO util.GSet: capacity = 2722 = 4194304 entries

14/03/15 16:08:20 INFO util.GSet: recommended=4194304, actual=4194304
14/03/15 16:08:20 INFO namenode.FSNamesystem: fsOwner=hadoop

14/03/15 16:08:20 INFO namenode.FSNamesystem: supergroup=supergroup

14/03/15 16:08:20 INFO namenode.FSNamesystem: isPermissionEnabled=true
14/03/15 16:08:20 INFO namenode.FSNamesystem: dfs.block.invalidate.limit=100

21

www.it-ebooks.info


https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2
http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

14/03/15 16:08:20 INFO namenode.FSNamesystem: isAccessTokenEnabled=false accessKeyUpdateInterval=0
min(s), accessTokenLifetime=0 min(s)

14/03/15 16:08:20 INFO namenode.FSEditLog: dfs.namenode.edits.toleration.length = 0

14/03/15 16:08:20 INFO namenode.NameNode: Caching file names occuring more than 10 times

14/03/15 16:08:20 INFO common.Storage: Image file /app/hadoop/tmp/dfs/name/current/fsimage of size
112 bytes saved in 0 seconds.

14/03/15 16:08:20 INFO namenode.FSEditlog: closing edit log: position=4, editlog=/app/hadoop/tmp/
dfs/name/current/edits

14/03/15 16:08:20 INFO namenode.FSEditlLog: close success: truncate to 4, editlog=/app/hadoop/tmp/
dfs/name/current/edits

14/03/15 16:08:21 INFO common.Storage: Storage directory /app/hadoop/tmp/dfs/name has been
successfully formatted.

14/03/15 16:08:21 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************

SHUTDOWN_MSG: Shutting down NameNode at hcinn/192.168.1.107
************************************************************/

Now you test that you can start, check, and stop the Hadoop servers on a standalone node without errors. Start
the servers by using:

start-all.sh
You will see this:

starting namenode, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-namenode-hcinn.out
localhost: starting datanode, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-datanode-hcinn.out
localhost: starting secondarynamenode, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-secondarynamenode-hcinn.out
starting jobtracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-jobtracker-hcinn.out
localhost: starting tasktracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-tasktracker-hcinn.out

Now, check that the servers are running. Note that you should expect to see the following:
e Name node
¢ Secondary name node
e Job Tracker
e  Task Tracker
e Datanode
Running on the master server hclnn, use the jps command to list the servers that are running:
[hadoop@hcinn ~1$ jps
2116 SecondaryNameNode
2541 Jps

2331 TaskTracker
2194 JobTracker

22

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

1998 DataNode
1878 NameNode

If you find that the jps command is not available, check that it exists as $JAVA_HOME/bin/jps. Ensure that you
installed the Java JDK in the previous step. If that does not work, then try installing the Java OpenJDK development
package as root:

[root@hcinn ~]$ yum install java-1.6.0-openjdk-devel

Your result shows that the servers are running. If you need to stop them, use the stop-all.sh command, as
follows:

[hadoop@hcinn ~]$ stop-all.sh
stopping jobtracker

localhost: stopping tasktracker
stopping namenode

localhost: stopping datanode
localhost: stopping secondarynamenode

You have now completed a single-node Hadoop installation. Next, you repeat the steps for the Hadoop V1
installation on all of the nodes that you plan to use in your Hadoop cluster. When that is done, you can move to the
next section, “Setting up the Cluster,” where you'll combine all of the single-node machines into a Hadoop cluster
that’s run from the Name Node machine.

Setting up the Cluster

Now you are ready to set up the Hadoop cluster. Make sure that all servers are stopped on all nodes by using the
stop-all.sh script.

First, you must tell the name node where all of its slaves are. To do so, you add the following lines to the master
and slaves files. (You only do this on the Name Node server [hclnn], which is the master. It then knows that it is the
master and can identify its slave data nodes.) You add the following line to the file SHADOOP_PREFIX/conf/masters
to identify it as the master:

hcinn

Then, you add the following lines to the file S(HADOOP_PREFIX/conf/slaves to identify those servers as slaves:
hcinn
hcirimi
hcirim2
hcirim3

These are all of the machines in my cluster. Your machine names may be different, so you would insert your own
machine names. Note also that I am using the Name Node machine (hclnn) as a master and a slave. In a production
cluster you would have name nodes and data nodes on separate servers.

On all nodes, you change the value of fs.default.name in the file SHADOOP_PREFIX/conf/core-site.xml to be:
hdfs://hcinn:54310

This configures all nodes for the core Hadoop component to access the HDFS using the same address.

23

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

On all nodes, you change the value of mapred.job.tracker in the file SHADOOP_PREFIX/conf/mapred-site.xml to be:
hcinn:54311

This defines the host and port names on all servers for the Map Reduce Job Tracker server to point to the Name
Node machine.

On all nodes, check that the value of dfs.replication in the file SHADOOP_PREFIX/conf/hdfs-site.xml is set to 3.
This means that three copies of each block of data will automatically be kept by HDES.

In the same file, ensure that the line http://localhost:50070/ for the variable dfs.http.address is changed to:

http://hcinn:50070/

This sets the HDFS web/http address to point to the Name Node master machine hclnn. With none of the
Hadoop servers running, you format the cluster from the Name Node server—in this instance, hclnn:

hadoop namenode -format

At this point, a common problem can occur with Hadoop file system versioning between the name node and data
nodes. Within HDFS, there are files named VERSION that contain version numbering information that is regenerated
each time the file system is formatted, such as:

[hadoop@hcinn dfs]$ pwd
/app/hadoop/tmp/dfs

[hadoop@hcinn dfs]$ find . -type f -name VERSION -exec grep -H namespaceID {} \;
./data/current/VERSION:namespaceID=1244166645

./name/current/VERSION: namespaceID=1244166645
./name/previous.checkpoint/VERSION: namespaceID=1244166645
./namesecondary/current/VERSION:namespaceID=1244166645

The Linux command shown here is executed as the hadoop user searches for the VERSION files under /app/
hadoop/tmp/dfs and strips the namespace ID information out of them. If this command was executed on the Name
Node server and the Data Node servers, you would expect to see the same value 1244166645. When this versioning
gets out of step on the data nodes, an error occurs, such as follows:

ERROR org.apache.hadoop.hdfs.server.datanode.DataNode: java.io.IOException: Incompatible
namespacelDs

While this problem seems to have two solutions, only one is viable. Although you could delete the data directory
/app/hadoop/tmp/dfs/data on the offending data node, reformat the file system, and then start the servers, this
approach will cause data loss. The second, more effective method involves editing the VERSION files on the data
nodes so that the namespace ID values match those found on the Name Node machine.

You need to ensure that your firewall will enable port access for Hadoop to communicate. When you attempt to
start the Hadoop servers, check the logs in the log directory (/usr/local/hadoop/logs).

Now, start the cluster from the name node; this time, you will start the HDFS servers using the script start-dfs.sh:

[hadoop@hcinn logs]$ start-dfs.sh

starting namenode, logging to /usr/local/hadoop-1.2.1/1libexec/../logs/hadoop-hadoop-namenode-
hcinn.out

hcirim2: starting datanode, logging to /usr/local/hadoop-1.2.1/libexec/../logs/hadoop-hadoop-
datanode-hcirim2.out

24

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

hcirimi: starting datanode, logging to /usr/local/hadoop-1.2.1/1libexec/../logs/hadoop-hadoop-
datanode-hcirimi.out

hcirim3: starting datanode, logging to /usr/local/hadoop-1.2.1/libexec/../logs/hadoop-hadoop-
datanode-hcirim3.out

hcinn: starting datanode, logging to /usr/local/hadoop-1.2.1/libexec/../logs/hadoop-hadoop-
datanode-hcinn.out

hcinn: starting secondarynamenode, logging to /usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-
hadoop-secondarynamenode-hcinn.out

As mentioned, check the logs for errors under SHADOOP_PREFIX/logs on each server. If you get errors like
“No Route to Host,” it is a good indication that your firewall is blocking a port. It will save a great deal of time and
effort if you ensure that the firewall port access is open. (If you are unsure how to do this, then approach your systems
administrator.)

You can now check that the servers are running on the name node by using the jps command:

[hadoop@hcinn ~1$ jps
2116 SecondaryNameNode
2541 Jps

1998 DataNode

1878 NameNode

If you need to stop the HDFS servers, you can use the stop-dfs. sh script. Don’t do it yet, however, as you will
start the Map Reduce servers next.

With the HDFS servers running, it is now time to start the Map Reduce servers. The HDFS servers should always
be started first and stopped last. Use the start-mapred. sh script to start the Map Reduce servers, as follows:

[hadoop@hcinn logs]$ start-mapred.sh
starting jobtracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-jobtracker-hcinn.out
hcirim2: starting tasktracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-tasktracker-hcirim2.out
hcirim3: starting tasktracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-tasktracker-hcirim3.out
hcirimi: starting tasktracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-tasktracker-hcirimi.out
hcinn: starting tasktracker, logging to
/usr/local/hadoop-1.2.1/1ibexec/../logs/hadoop-hadoop-tasktracker-hcinn.out

Note that the Job Tracker has been started on the name node and a Task Tracker on each of the data nodes.
Again, check all of the logs for errors.

Running a Map Reduce Job Check

When your Hadoop V1 system has all servers up and there are no errors in the logs, you're ready to run a sample Map
Reduce job to check that you can run tasks. For example, try using some data based on works by Edgar Allan Poe. I
have downloaded this data from the Internet and have stored it on the Linux file system under /tmp/edgar. You could
use any text-based data, however, as you just want to run a test to count some words using Map Reduce. It is not the
data that is important but, rather, the correct functioning of Hadoop. To begin, go to the edgar directory, as follows:

cd /tmp/edgar

25

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

[hadoop@hcinn
total 3868

-TW-IW-T--. 1
-IW-T--T--. 1
-IW-IW-T--. 1
-IW-TW-T--. 1
STW-TW-T--. 1
STW-IW-T--. 1
-TW-IW-T--. 1
-IW-IW-T--. 1

edgar]$

hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop

1s -1

hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop

632294 Feb
559342 Feb
66409 Oct
550284 Mar
579834 Dec
596745 Feb
487087 Mar
474746 Jul

5 2004 10947-8.
23 2005 15143-8.
27 2010 17192-8.
16 2013 2147-8.
31 2012 2148-8.
17 2011 2149-8.
27 2013 2150-8.

1 2013 2151-8.

txt
txt
txt
txt
txt
txt
txt
txt

There are eight Linux text files in this directory that contain the test data. First, you copy this data from the Linux
file system into the HDFS directory /user/hadoop/edgar using the Hadoop file system copyFromLocal command:

[hadoop@hcinn edgar]$ hadoop fs -copyFromLocal /tmp/edgar /user/hadoop/edgar

Now, you check the files that have been loaded to HDFS:

[hadoop@hcinn edgar]$ hadoop dfs -1s

Found 1 items
dYwXY-XT-X

hadoop

[hadoop@hcinn edgar]$

Found 8 items
-IW-Y--T--
-IW-Y--T--
-IW-Y--T--
-IW-Y--T--
-IW-Y--T--
-IW-Y--T--
-IW-Y--T--
-IW-T--T--

N NDNDNNNDNDN

hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop

hadoop

hadoop

hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop

/user/hadoop/edgar

0 2014-09-05 20:25 /user/hadoop/edgar/edgar

dfs -1s /user/hadoop/edgar/edgar

632294
559342
66409

550284
579834
596745
487087
474746

2014-03-16
2014-03-16
2014-03-16
2014-03-16
2014-03-16
2014-03-16
2014-03-16
2014-03-16

13:
13:
13:
13:
:50

13

13:
13:
13:

50
50
50
50

50
50
50

/user/hadoop/edgar/edgar/10947-8.txt
/user/hadoop/edgar/edgar/15143-8.txt
/user/hadoop/edgar/edgar/17192-8.txt
/user/hadoop/edgar/edgar/2147-8.txt
/user/hadoop/edgar/edgar/2148-8.txt
/user/hadoop/edgar/edgar/2149-8.txt
/user/hadoop/edgar/edgar/2150-8.txt
/user/hadoop/edgar/edgar/2151-8.txt

Next, you run the Map Reduce job, using the Hadoop jar command to pick up the word count from an examples
jar file. This will run a word count on the Edgar Allan Poe data:

[hadoop@hcinn edgar]$ cd $HADOOP_PREFIX

[hadoop@hcinn hadoop-1.2.1]$ hadoop jar ./hadoop-examples-1.2.1.jar wordcount
/user/hadoop/edgar /user/hadoop/edgar-results

This job executes the word-count task in the jar file hadoop-examples-1.2.1.jar. It takes data from HDFS under
/user/hadoop/edgar and outputs the results to /user/hadoop/edgar-results. The output of this command is as follows:

14/03/16 14:08:07 INFO
14/03/16 14:08:07 INFO
14/03/16 14:08:07 INFO
14/03/16 14:08:08 INFO
14/03/16 14:08:18 INFO

26

input.FileInputFormat: Total input paths to process : 8
util.NativeCodeloader: Loaded the native-hadoop library
mapred.JobClient: Running job: job_ 201403161357 0002

mapred.JobClient:
mapred.JobClient:

map 0% reduce 0%
map 12% reduce 0%

www.it-ebooks.info


http://www.it-ebooks.info/

14/03/16 14:08:19
14/03/16 14:08:23
14/03/16 14:08:26
14/03/16 14:08:28
14/03/16 14:08:29
14/03/16 14:08:33
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
waiting after reserving slots

14/03/16 14:08:34 INFO mapred.

waiting after reserving slots
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
bytes=1878641

14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
14/03/16 14:08:34
(bytes)=1277771776
14/03/16
14/03/16
14/03/16
14/03/16
14/03/16
14/03/16
snapshot=1508696064

14/03/16 14:08:34 INFO mapred.
14/03/16 14:08:34 INFO mapred.

snapshot=4710014976

14/03/16 14:08:34 INFO mapred.

INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.

INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.

INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.
INFO mapred.

14:08:34 INFO mapred.
14:08:34 INFO mapred.
14:08:34 INFO mapred.
14:08:34 INFO mapred.
14:08:34 INFO mapred.
14:08:34 INFO mapred.

JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:

(ms)=0

JobClient:

(ms)=0

JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:

JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:

JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:

JobClient:
JobClient:

JobClient:

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

reduce 0%
reduce 0%
75% reduce 25%
87% reduce 25%
100% reduce 25%
100% reduce 100%

50%
75%

map
map
map
map
map
map

Job complete: job_201403161357_0002
Counters: 29

Job Counters
Launched reduce tasks=1
SLOTS_MILLIS_MAPS=77595
Total time spent by all reduces

Total time spent by all maps

Launched map tasks=8
Data-local map tasks=8
SLOTS_MILLIS_REDUCES=15037
File Output Format Counters
Bytes Written=769870
FileSystemCounters
FILE_BYTES_READ=1878599
HDFS_BYTES_READ=3947632
FILE_BYTES WRITTEN=4251698
HDFS_BYTES WRITTEN=769870
File Input Format Counters
Bytes Read=3946741
Map-Reduce Framework
Map output materialized

Map input records=72369
Reduce shuffle bytes=1878641
Spilled Records=256702

Map output bytes=6493886

CPU time spent (ms)=25930
Total committed heap usage

Combine input records=667092
SPLIT_RAW_BYTES=891

Reduce input records=128351
Reduce input groups=67721
Combine output records=128351
Physical memory (bytes)

Reduce output records=67721
Virtual memory (bytes)

Map output records=667092

27

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

To take a look at the results (found in the HDFS directory /user/hadoop/edgar-results), use the Hadoop file
system 1s command:

[hadoop@hcinn hadoop-1.2.1]$ hadoop fs -1s /user/hadoop/edgar-results
Found 3 items

-Iw-r--r-- 1 hadoop supergroup 0 2014-03-16 14:08
/user/hadoop/edgar-results/ SUCCESS
drwxr-xr-x - hadoop supergroup 0 2014-03-16 14:08

/user/hadoop/edgar-results/_logs
-Iw-r--r-- 1 hadoop supergroup 769870 2014-03-16 14:08
/user/hadoop/edgar-results/part-r-00000

This shows that the the word-count job has created a file called _SUCCESS to indicate a positive outcome. It has
created a log directory called _logs and a data file called part-r-00000. The last file in the list, the part file, is of the most
interest. You can extract it from HDFS and look at the contents by using the Hadoop file system cat command:

doop@hcinn hadoop-1.2.1]$ mkdir -p /tmp/hadoop/
doop@hcinn hadoop-1.2.1]% hadoop fs -cat
/user/hadoop/edgar-results/part-r-00000 > /tmp/hadoop/part-r-00000

The results reveal that the test job produced a results file containing 67,721 records. You can show this by using
the Linux command wc -1 to produce a line count of the results file:

[hadoop@hcinn hadoop-1.2.1]$ wc -1 /tmp/hadoop/part-r-00000
67721 /tmp/hadoop/part-r-00000

By using the Linux head command with a -20 option, you can look at the first 20 lines of the output part file on the
Linux file system:

[hadoop@hcinn hadoop-1.2.1]$ head -20 /tmp/hadoop/part-r-00000

! 1
" 22
T 1
"o 1
"'A 1
"' After 1
"'Although 1
"' Among 2
"'And 2
"'Another 1
"'As 2
"'At 1
"'Aussi 1
"'Be 2
"'Being 1
"'But 1
"'But, ' 1
"'But--still--monsieur----' 1
"'Catherine, 1
"' Comb 1

28

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Clearly, the Hadoop V1 installation is working and can run a Map Reduce task. (The word-count algorithm does
not seem to strip out characters like quotation marks; this is not an issue for our purposes here, but might be if you
wanted a truly accurate count of the number of times Poe used particular words.)

Hadoop User Interfaces

Up to this point you have installed the release, configured it, and run a simple Map Reduce task to prove that it is
working. But how can you visually examine the Hadoop distributed file system or determine the state of the Hadoop
servers? Well, Hadoop provides a set of built-in user interfaces for this purpose. They are quite basic, but it is
worthwhile knowing about them. (In a large production system, of course, you would use one of the more functional
systems like Ambari for monitoring.)

In this example configuration, you can find the name node UI on port 50070 with a URL of http://hc1nn:50070/
(on the name node hclnn). This port was defined via the value of the dfs.http.address in the configuration file hdfs-
site.xml. The name node UI shows storage information and node basics, as illustrated in Figure 2-3. It is also possible
to browse the Hadoop file system and logs to determine the state of the nodes. The levels of HDFS storage used and
free can also be determined.

29

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

[d, localhost:50070/dfshealth.jsp

NameNode 'hclnn:54310'

Started: Sun Mar 16 11:24:37 NZDT 2014

Version: 1.2.1, r1503152

Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

35 files and directories, 16 blocks = 51 total.

Heap Size is 31.57 MB / 966.69 MB (3%)

Configured Capacity 196.86 GB
DFS Used 12.57 MB
Non DFS Used : 17.96 GB
DFS Remaining :  178.89GB
DFS Used% 0.01 %
DFS Remaining% 90.87 %
Live Nodes 4
Dead Nodes 0
Decommissioning Nodes 0
Number of Under-Replicated Blocks 2
NameNode Storage:
Storage Directory Type State

/app/hadoop/tmp/dfs/name | IMAGE_AND_EDITS

Active

This is Apache Hadoop release 1.2.1

Figure 2-3. The name node user interface

To see the administration information for Map Reduce, go to port 50030 by using the URL http://hc1nn:50030/,
shown in Figure 2-4. This port number refers to the value of the variable mapred.job.tracker.http.address already
defined in the mapred-site.xml configuration file. Figure 2-4 shows the state of the jobs, as well as the capacity per
node in terms of Map and Reduce. It also shows an example word-count job that’s running currently, which that has
completed the Map stage and is 8.33 percent into its Reduce phase.

30

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

[ @ localhost:50030/jobtracker.jsp

v 2 3

&

Quick Links

hclnn Hadoop Map/Reduce Administration
State: RUNNING
Started: Sun Mar 16 11:45:02 NZDT 2014
Version: 1.2.1, r1503152
Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf
Identifier: 201403161145
SafeMode: OFF
Cluster Summary (Heap Size is 15.5 MB/966.69 MB)

nUM":lp“ﬂ RR':::::‘: Total Nodes Occupled 0:::3:? Reserved Rl::;uce“ Map Task Re.r::u:e Avg. Blacklisted | Graylisted | Excluded

Tasks Tasks | Submissions Map Slots | "¢, " |Map Slots | "¢ " | Capacity | oo | Tasks/Node | Nodes Nodes Nodes

0 1 1 a 0 1 0 0 8 8 4.00 0 0 0
Scheduling Information

Queue Name |State Scheduling Information *

default running | N/A
Filter (Jobid, Priority, User, Name) |
Example: user:smith 3200" will fiter by 'smith’ only in the user feld and '3200" in all felds
Running Jobs

Map % Map |Maps Red % |Red Red Job Diagnostic
Jobid Started Priority |User | Name | . Total |C Total Completed lsncf?rdm:ltllllﬂn Info
Tan tar 16 word 1100.00% 8.33%
ob_201403161145_0001 hzngz'zl(?m NORMAL | hadoop | /o LO0% |8 8 8. , |t 0 NA NA

Retired Jobs

Local Logs
Log directory, Job Tracker History

This is Apache Hadoop release 1.2.1

Figure 2-4. Hadoop Job Tracker user interface

The Task Tracker Ul is on port 50060; this is the value defined by the variable mapred.task.tracker.http.address in
the configuration file mapred-site.xml. Use the URL http://hc1nn:50060/ (on the name node hclnn) to access it and
check the status of current tasks. Figure 2-5 shows running and non-running tasks, as well as providing a link to the

log files. It also offers a basic list of task statuses and their progress.

www.it-ebooks.info

31


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

48 | @ localhost:50060/tasktracker,s; v & [

tracker_hclnn:localhost.localdomain/127.0.0.1:33637 Task Tracker Status

G hEGREED

Version: 1.2.1,r1503152
Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf

Running tasks

k .ITask ;\ttcmpts‘lStat\:sllf‘rogress.l Errors.i

Non-Running Tasks

| Task Attempts | Status

attempt 201403161145 0001 _m 000000 _0 | SUCCEEDED

attempt 201403161145 _0001_m_000002_0 || SUCCEEDED

Tasks from Running Jobs

Task Attempts Status Progress || Errors

attempt 201403161145 0001 _m 000000 _0(SUCCEEDED | 100.00%

attempt 201403161145 0001 m 000002 O )(SUCCEEDED | 100.00%

Local Logs

Log directory

This is Apache Hadoop release 1.2.1

Figure 2-5. The Task Tracker user interface

Now that you have tasted the flavor of Hadoop V1, shut it down and get ready to install Hadoop V2.

Hadoop V2 Installation

In moving on to Hadoop V2, you will this time download and use the Cloudera stack. Specifically, you will install CDH
4 because it is available for both 32-bit and 64-bit machines and it supports YARN. I have chosen to install the latest
manual CDH release available at the time of this writing.

In this section, you will not only learn how to obtain and install the Cloudera Hadoop packages; you'll also
find out how to install, run, and use ZooKeeper, as well as how to configure Hadoop V2. You'll tour the necessary
directories on the Linux file system and HDFS; lastly, you'll find out how to control the servers as Linux services.

To begin, you need to add a CDH repository file on all machines as root under /etc/yum.repos.d/. You create a
file named cloudera-cdh4.repo on each server, with the following contents:

root@hciriml yum.repos.d]# cat cloudera-cdh4.repo

[cloudera-cdh4]

name=Cloudera's Distribution for Hadoop, Version 4
baseurl=http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/

gpgkey = http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/RPM-GPG-KEY-cloudera
gpgcheck = 1

32

www.it-ebooks.info


http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/
http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/RPM-GPG-KEY-cloudera
http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

The Linux cat command shows the contents of the cloudera-cdh4.repo file. The 1s -1 command shows that it is
owned by the root Linux user:

[root@hciriml yum.repos.d]# ls -1 cloudera-cdh4.repo
-Iw-r--r-- 1 root root 229 Sep 6 09:24 cloudera-cdh4.repo

This repository configuration file tells the yum command where to source Cloudera cdh4 software. The above file
is configured for a 64-bit machine (x86_64); a 32-bit machine would have the following lines:

baseurl=http://archive.cloudera.com/cdh4/redhat/6/i386/cdh/4/
gpgkey = http://archive.cloudera.com/cdh4/redhat/6/1386/cdh/RPM-GPG-KEY-cloudera

At this point, Cloudera advises you to install ZooKeeper so that you have a ZooKeeper cluster; you'll do so in the
next section. Tools like HBase (the distributed database that will be introduced in Chapter 3) rely on it.

ZooKeeper Installation

ZooKeeper is a centralized service for maintaining configuration information in distributed applications. Many of the
tools in the Hadoop ecosystem use it, so it will be helpful to install it now because you will need it later. You install the
ZooKeeper base package as follows:

yum install zookeeper

When you install ZooKeeper, remember that it needs to be installed on an odd number of servers—for example,
three machines. (When voting on an outcome, the odd number of servers makes it possible for ZooKeper to reach a
majority decision.) Next, you install the ZooKeeper server on each node:

yum install zookeeper-server

After installation, the ZooKeeper configuration needs to be altered for your environment. By default, the
configuration file is stored under /etc/zookeeper/conf/zoo.cfg. Its initial contents are the following:

maxClientCnxns=50

# The number of milliseconds of each tick
tickTime=2000

# The number of ticks that the initial

# synchronization phase can take
initlimit=10

# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5

# the directory where the snapshot is stored.
dataDir=/var/1ib/zookeeper

# the port at which the clients will connect
clientPort=2181

33

www.it-ebooks.info


http://archive.cloudera.com/cdh4/redhat/6/i386/cdh/4/
http://archive.cloudera.com/cdh4/redhat/6/i386/cdh/RPM-GPG-KEY-cloudera
http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

You need to add to these a section at the bottom of the file to define the port ranges used by ZooKeeper clients
on each of the servers. For instance, on server hclrlml, the port range for ZooKeeper server 1 is 60050 to 61050. That
allows for 1,000 client connections per ZooKeeper server.

server.1=hc1rim1:60050:61050
server.2=hc1rim2:60050:61050
server.3=hc1rim3:60050:61050
#server.4=hcinn:60050:61050

Note also that you have three servers defined and a fourth set up, but commented out to ensure that there will be
an odd number of ZooKeeper instances to form a quorum. Now, you initialize the Hadoop V2 installation:ZooKeeper
installation:

service zookeeper-server init

Edit the files /var/lib/zookeeper/myid on each server, entering integer numbers to match the configuration file.
For instance, for the setup on hclrlml, you add a “1” to the file, and so on. This allows each ZooKeeper server to
determine its ID number and so recognize its port range from the configuration file.

You now start ZooKeeper on hclrlml, hclrlm2, and hclrlm3, using the service command:

service zookeeper-server start

JMX enabled by default
Using config: /etc/zookeeper/conf/zoo.cfg
Starting zookeeper ... STARTED

Under /var/log/zookeeper/, you check the logs to ensure everything is running correctly:

-Iw-r--I--. 1 zookeeper zookeeper 21450 Mar 20 18:54 zookeeper.log
-Iw-r--r--. 1 zookeeper zookeeper 0 Mar 20 18:50 zookeeper.out

You'll likely see errors indicating that the servers can’t reach each other, meaning that the firewall is interfering
again. You need to open the ports that ZooKeeper uses and then restart both Iptables and the ZooKeeper server for
the changes to be picked up. If you are unsure how to configure your firewall, approach your systems administrator.

[root@hclrim3 conf]# service zookeeper-server restart

Restarting ZooKeeper daemon: JMX enabled by default
Using config: /etc/zookeeper/conf/zoo.cfg

Stopping zookeeper ... STOPPED

JMX enabled by default

Using config: /etc/zookeeper/conf/zoo.cfg

Starting zookeeper ... STARTED

After you restart all of the ZooKeeper servers, they now will run as desired and will contain no errors in their log
files, as shown:

2014-03-20 19:09:34,011 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Environment@100] - Server
environment:os.arch=1386

2014-03-20 19:09:34,012 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Environment@100] - Server

34

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

environment:os.version=2.6.32-220.e16.1686

2014-03-20 19:09:34,012 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Environment@100] - Server
environment:user.name=zookeeper

2014-03-20 19:09:34,013 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Environment@100] - Server
environment:user.home=/var/run/zookeeper

2014-03-20 19:09:34,014 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Environment@100] - Server
environment:user.dir=/

2014-03-20 19:09:34,028 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:ZooKeeperServer@162] - Created server with
tickTime 2000 minSessionTimeout 4000 maxSessionTimeout 40000 datadir
/var/lib/zookeeper/version-2 snapdir /var/lib/zookeeper/version-2
2014-03-20 19:09:34,030 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Follower@63] - FOLLOWING - LEADER ELECTION
TOOK - 83

2014-03-20 19:09:34,145 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:Learner@325] - Getting a snapshot from leader
2014-03-20 19:09:34,154 [myid:3] - INFO
[QuorumPeer[myid=3]/0.0.0.0:2181:FileTxnSnapLog@®273] - Snapshotting:
0x100000000 to /var/lib/zookeeper/version-2/snapshot.100000000

Manually Accessing the ZooKeeper Servers

Using the server name, main port number, and some four-letter words, you can manually access the ZooKeeper
servers. Specifically, you can use the nc command to issue additional four-letter commands. This type of access to
ZooKeeper might be useful when you're investigating problems with the servers or just checking that all is okay.

For this setup, the configuration file lists the main port on each server as 2181. To access the configuration details
for server hclrlm?2, therefore, you use the nc command to issue a conf command. Press Enter after both the nc
command line and the conf command on the following line:

[hadoop@hcirim2 ~]$ nc hcirim2 2181
conf

clientPort=2181
dataDir=/var/lib/zookeeper/version-2
datalogDir=/var/lib/zookeeper/version-2
tickTime=2000

maxClientCnxns=50
minSessionTimeout=4000
maxSessionTimeout=40000

serverId=2

initLimit=10

syncLimit=5

electionAlg=3

electionPort=61050

quorumPort=60050

peerType=0

35

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

This has outputted the configuration of the ZooKeeper server on hclrlm2. While it’s on server hclrlmz2, you can
check that the ZooKeeper server on hclrlml1 is still running by using the ruok (running okay?) command:

[hadoop@hcirim2 ~]$ nc hcirimi 2181
Tuok

imok

The returned value of imok (I'm OK!) tells you the contacted server is running. You can then get the connection
details for server hclrlm1l by using the cons command:

[hadoop@hcirim2 ~]$ nc hcirimi 2181
Cons

/192.168.1.106:42731[0] (queued=0,recved=1, sent=0)

The response says there is just a single connection to that server. To supplement this with some basic server
details, you use the stat command:

[hadoop@hcirim2 ~]$ nc hcirimi 2181
stat

Zookeeper version: 3.4.5-cdh4.6.0--1, built on 02/26/2014 09:19 GMT
Clients:
/192.168.1.106:42732[0] (queued=0,recved=1, sent=0)
Latency min/avg/max: 0/11/93
Received: 18
Sent: 17
Connections: 1
Outstanding: 0
Zxid: 0x300000006
Mode: follower
Node count: 4

This result provides status information for the ZooKeeper server on hclrlml. It has listed information like the

installed version and the volume of messaging. (You can find a full list of ZooKeeper commands on the Cloudera site
atarchive.cloudera.com/cdh4/4/zookeeper.)

The ZooKeeper Client

An alternative to the nc command method is to use the built-in ZooKeeper client to access your servers. You can find
it with the type command, as follows:

[hadoop@hcirim3 ~]$ type zookeeper-client
zookeeper-client is /usr/bin/zookeeper-client

By default, the client connects to ZooKeeper on the local server:
[hadoop@hcirim3 ~]$ zookeeper-client

Connecting to localhost:2181

36

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

You can also get a list of possible commands by entering any unrecognized command, such as help:

[zk: localhost:2181(CONNECTED) 1] help
ZooKeeper -server host:port cmd args

connect host:port

get path [watch]

1s path [watch]

set path data [version]

mr path

delquota [-n|-b] path

quit

printwatches on|off

create [-s] [-e] path data acl

stat path [watch]

close

1s2 path [watch]

history

listquota path

setAcl path acl

getAcl path

sync path

redo cmdno

addauth scheme auth

delete path [version]

setquota -n|-b val path

To connect to one of the other ZooKeeper servers in the quorum, you would use the connect command,
specifying the server and its connection port. If, for example, you're currently on hclrlm3, but want to connect to
hclrlml (remember, all servers are connected via port 2181), you use the following:

[zk: localhost:2181(CONNECTED) 0] connect hcilrim1:2181

[zk: hcirim1:2181(CONNECTING) 1] 2014-03-22 13:28:05,898 [myid:] - INFO [main-SendThread(hcirimi
:2181):ClientCnxn$SendThread@852] - Socket connection established to hcirim1/192.168.1.104:2181,
initiating session

2014-03-22 13:28:05,913 [myid:] - INFO [main-SendThread(hci1rim1:2181):ClientCnxn$SendThread@1214] -
Session establishment complete on server hcirim1/192.168.1.104:2181, sessionid = 0x144e6df88b70004,
negotiated timeout = 30000

[zk: hcirim1:2181(CONNECTED) 1]

The result tells you that you are now connected to a ZooKeeper session on client node hclrlm1l from hclrlma3.

So far, you have ZooKeeper installed and have learned how to access it manually. In a large cluster, however, a
distributed application would connect to ZooKeeper automatically through one of its language APIs. It would use
the hierarchy of ZNodes to store configuration information. So, at this point you should examine the ZooKeeper
architecture in terms of those ZNodes to understand how they might be used for cluster configuration and
monitoring.

ZooKeeper stores its data in a hierarchy of nodes called ZNodes, each designed to contain a small amount of
data. When you log into the client, you can think of your session as similar to a Unix shell. Just as you can create
directories and files in a shell, so you can create ZNodes and data in the client.

37

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Try creating an empty topmost node named “zk-top,” using this syntax:

[zk: localhost:2181(CONNECTED) 4] create /zk-top "'
Created /zk-top

You can create a subnode, nodel, of zk-top as well; you can add the contents cfgl at the same time:

[zk: localhost:2181(CONNECTED) 5] create /zk-top/node1l 'cfgi'
Created /zk-top/nodel

To check the contents of the subnode (or any node), you use the get command:

[zk: localhost:2181(CONNECTED) 6] get /zk-top/nodel
'cfg1’

The delete command, not surprisingly, deletes a node:
[zk: localhost:2181(CONNECTED) 8] delete /zk-top/node2

The set command changes the context of a node. This command sequence first checks the contents of nodel
with get, changes it with set, and then displays the new contents:

[zk: localhost:2181(CONNECTED) 9] get /zk-top/nodel
'cfg1'

[zk: localhost:2181(CONNECTED) 10] set /zk-top/nodel 'cfg2'

[zk: localhost:2181(CONNECTED) 11] get /zk-top/nodel
'cfg2’

The contents of nodel changed from cfgl to cfg2. Although this is a simple example, it explains the principle.
You can also list the subnodes of a node with the 1s command. For example, nodel has no subnodes, but zk-top
contains nodel:

zk: localhost:2181(CONNECTED) 0] 1s /zk-top/nodel
]

[
[
[zk: localhost:2181(CONNECTED) 1] 1s /zk-top
[node1]

You can place watches on the nodes to check whether they change. Watches are one-time events. If the contents
change, then the watch fires and you will need to reset it. To demonstrate, I create a subnode node2 that contains
data2:

[zk: localhost:2181(CONNECTED) 9] create /zk-top/node2 ‘'data2’

[zk: localhost:2181(CONNECTED) 10] get /zk-top/node2
'data2’

38

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Now, I use get to set a watcher on that node. The first command sets a watcher on the node2 data item “data2.”
When I change the data to “data3” with the next set command, the watcher notices the data change and fires, as shown:

[zk: localhost:2181(CONNECTED) 11] get /zk-top/node2 true
'data2’

[zk: localhost:2181(CONNECTED) 12] set /zk-top/node2 'data3’
WATCHER: :
WatchedEvent state:SyncConnected type:NodeDataChanged path:/zk-top/node2

In addition to the basic nodes you've been working with, you can create sequential and ephemeral nodes with
the create command. Ephemeral nodes exist only for the lifetime of the current session, while sequential nodes have a
sequence number applied to the node name and will persist. To create a sequential node, use the -s option, as shown:

[zk: localhost:2181(CONNECTED) 13] 1s /zk-top

[node2, node1]

[zk: localhost:2181(CONNECTED) 14] create -s /zk-top/node3 'data3’
Created /zk-top/node30000000005

[zk: localhost:2181(CONNECTED) 15] 1s /zk-top

[node2, nodel, node30000000005 ]

To create an ephemeral node, use the -e option:

[zk: localhost:2181(CONNECTED) 16] create -e /zk-top/node4 'datas’
Created /zk-top/node4

[zk: localhost:2181(CONNECTED) 17] 1s /zk-top

[node4, node2, nodel, node30000000005 ]

So, node 4 exists in this session under zk-top. It will disappear when you log out of the session (with quit) and
start a new one. Notice that the 1s command at the end of this sequence no longer lists node4:

[zk: localhost:2181(CONNECTED) 18] quit

Quitting...

2014-03-22 14:02:56,572 [myid:] - INFO [main:ZooKeeper@684] - Session: 0x344e6df92ab0005 closed
2014-03-22 14:02:56,572 [myid:] - INFO [main-EventThread:ClientCnxn$EventThread@512] - EventThread
shut down

[hadoop@hcirim3 ~]$

[hadoop@hcirim3 ~]$ zookeeper-client

[zk: localhost:2181(CONNECTED) 0] 1s /zk-top
[node2, nodel, node30000000005 ]

Asyou can see, node 4 is gone; it only existed for the session in which it was created. Note: you can also make
sequential nodes ephemeral with a command like this:

[zk: localhost:2181(CONNECTED) 16] create -s -e /zk-top/node4 'datas’

39

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

ZooKeeper ZNodes and their commands are building blocks for meeting your needs. Ephemeral nodes are
especially useful in a distributed clustered environment, for example. In each session, you could create a node to
see which application nodes were connected. You could also store all your configuration information in a series of
ZooKeeper ZNodes and have the applications use that configuration information on each node. You would then be
able to ensure that the nodes were using the same configuration information.

This has been a basic introduction to ZooKeeper. For further reading, have a look at Cloudera’s site or perhaps have a
go at building your own distributed application.

Hadoop MRv2 and YARN

With ZooKeeper in place, you can continue installing the Cloudera CDH 4 release. The components will be installed
using yum commands as root to install Cloudera packages. I chose to install a Cloudera stack because the installation
has been professionally tested and packaged. The components are guaranteed to work together and with a range

of Hadoop client applications. The instructions that follow describe the installation of the Name Node, Data Node,
Resource Manager, Node Manager, Job History, and Proxy servers.

In comparison to the V1 installation, you do not have to choose the location for your installation; that is done
automatically and the different parts of the installation are placed in meaningful locations. Configuration is placed
under /etc/hadoop, logs are placed under /var/log, and executables are created as Linux servers under /etc/init.d.
Here’s the process:

1. Install the HDFS Name Node component on the master server hclnn:
[root@hcinn ~]# yum install hadoop-hdfs-namenode

2. Install the HDFS Data Node component on the slave servers hclrlml through 3:
[root@hciriml ~]# yum install  hadoop-hdfs-datanode

3. Install the Resource Manager component on the Name Node machine hclnn:
[root@hcinn ~]# yum install hadoop-yarn-resourcemanager

4. Install the Node Manager and Map Reduce on all of the Data Node slave servers hclrlml
through 3:

[root@hcirimi ~]# yum install hadoop-yarn-nodemanager hadoop-mapreduce
5. Install the Job History and Proxy servers on a single node:
yum install hadoop-mapreduce-historyserver hadoop-yarn-proxyserver

That concludes the component package installations.

Now that the software is installed, you need to set up the configuration files that they depend upon. You can find
these configuration files under the directory /etc/hadoop/conf. They all have names like <component>-site.xml,
where <component> is replaced by yarn, hdfs, mapred, or core.

The HDFS term you have come across already; it is the Hadoop distributed file system. YARN stands for “yet
another resource negotiator.” The MAPRED component is short for “Map Reduce,” and CORE is the configuration for
the Hadoop common utilities that support other Hadoop functions.

40

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Use the 1s command to view the configuration files that need to be altered:

[root@hcinn confl# cd /etc/hadoop/conf

[root@hcinn conf]# 1s -1 *-site.xml

-Tw-r--r--. 1 root root 904 Feb 26 23:17 core-site.xml
-IwW-r--r--. 1 root root 1023 Feb 26 23:17 hdfs-site.xml
-Iw-r--r--. 1 root root 904 Feb 26 23:17 mapred-site.xml
-IW-r--r--. 1 root root 2262 Feb 26 23:17 yarn-site.xml

On each node, set up the core-site.xml as follows:
<configuration>

<property>
<name>fs.defaultFS</name>
<value>hdfs://hcinn/</value>
</property>

</configuration>
You need hdfs-site.xml on each node, as well. To set it up, use the form:
<configuration>

<property>
<name>dfs.namenode.name.dir</name>
<value>/var/lib/hadoop-hdfs/cache/hdfs/dfs/name</value>
<description> Can be a comma separated list of values </description>
</property>

<property>
<name>dfs.permissions.superusergroup</name>
<value>hadoop</value>

</property>

<property>
<name>dfs.replication</name>
<value>2</value>

</property>

</configuration>

Remember, however, to define dfs.namenode.name.dir on the name node and dfs.datanode.data.dir on the data
node. So, the entry for the data nodes would be as follows:

<property>
<name>dfs.datanode.name.dir</name>
<value>/var/lib/hadoop-hdfs/cache/hdfs/dfs/name</value>
<description> Can be a comma separated list of values </description>
</property>

41

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

On each node, make sure that the directories used in the configuration files exist:
[root@hcinn confl# mkdir -p /var/lib/hadoop-hdfs/cache/hdfs/dfs/name

Next, set the ownership of these directories:
[root@hcinn confl# chown -R hdfs:hdfs /var/lib/hadoop-hdfs/cache/hdfs/dfs/name
[root@hcinn confl# chmod 700 /var/lib/hadoop-hdfs/cache/hdfs/dfs/name

The preceding commands create the name directory, change the ownership to the hdfs user, and set its
permissions. Before starting the name node, though, you have to format the file system (as the hdfs user):

[root@hcinn conf]# su - hdfs
-bash-4.1% hdfs namenode -format

Now, you set up the file mapred-site.xml, setting the framework to be yarn:
<configuration>

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

</configuration>

Next, you set up the file yarn-site.xml. There is a lot of configuration information here, including port addresses,
file system paths, and class path information. (For a full list of available configuration file options, check the Hadoop
site at hadoop.apache.org.)

<configuration>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

<property>
<name>yarn.resourcemanager.address</name>
<value>hcinn:8032</value>

</property>

<property>
<name>yarn.resourcemanager.scheduler.address</name>

<value>hcinn:8030</value>
</property>

42

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

<property>
<name> yarn.resourcemanager.resource-tracker.address</name>
<value>hcinn:8031</value>

</property>

<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hcinn:8033</value>

</property>

<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hcinn:8088</value>

</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>

</property>

<property>
<description>List of directories to store localized files in.</description>
<name>yarn.nodemanager.local-dirs</name>
<value>/var/lib/hadoop-yarn/cache/${user.name}/nm-local-dir</value>
</property>

<property>
<description>Where to store container logs.</description>
<name>yarn.nodemanager.log-dirs</name>
<value>/var/log/hadoop-yarn/containers</value>
</property>

<property>
<description>Where to aggregate logs to.</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/var/log/hadoop-yarn/apps</value>

</property>

<property>
<description>Classpath for typical applications.</description>
<name>yarn.application.classpath</name>
<value>
$HADOOP_CONF_DIR,
$HADOOP_COMMON_HOME /* , $HADOOP_COMMON_HOME/1ib/*,
$HADOOP_HDFS_HOME/*, $HADOOP_HDFS_HOME/1ib/*,
$HADOOP_MAPRED_HOME /* , $HADOOP_MAPRED_HOME/1ib/*,
$YARN_HOME/*, $YARN_HOME/1ib/*
</value>
</property>

</configuration>

43

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Now, the directories used by YARN, as shown in the configuration above, will need to be created and ownership
and group membership will have to be set to the YARN Linux user and group, as follows:

[root@hcinn conf]# mkdir -p /var/log/hadoop-yarn/containers
[root@hcinn conf]# mkdir -p /var/log/hadoop-yarn/apps

[root@hcinn confl# chown -R yarn:yarn /var/log/hadoop-yarn/containers
[root@hcinn conf]# chown -R yarn:yarn /var/log/hadoop-yarn/apps
[root@hcinn conf]# chmod 755 /var/log/hadoop-yarn/containers
[root@hcinn conf]# chmod 755 /var/log/hadoop-yarn/apps

You add the following configuration to mapred-site.xml for the Job History server:

<property>
<name>mapreduce.jobhistory.address</name>
<value>hcinn:10020</value>

</property>

<property>
<name>mapreduce. jobhistory.webapp.address</name>
<value>hcinn:19888</value>

</property>

You also need to set up the staging directory in yarn-site.xml. If you don’t specifically create one, YARN will create
a directory under /tmp. To create the directory, add the following xml to yarn-site.xml:

<property>
<name>mapreduce.jobhistory.intermediate-done-dir</name>
<value>/var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir</value>
</property>

<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/var/lib/hadoop-mapreduce/jobhistory/donedir</value>
</property>

The directories needed for staging must be created on the file system. You set their ownership and group
membership to yarn, then set the permissions:

[root@hcinn confl# mkdir -p /var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir

[root@hcinn confl# mkdir -p /var/lib/hadoop-mapreduce/jobhistory/donedir

[root@hcinn confl# chown -R yarn:yarn /var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir
[root@hcinn conf]# chown -R yarn:yarn /var/lib/hadoop-mapreduce/jobhistory/donedir

[root@hcinn conf]# chmod 1777 /var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir
[root@hcinn conf]# chmod 750 /var/lib/hadoop-mapreduce/jobhistory/donedir

44

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Now it’s time to start the Hadoop servers. On the Name Node machine (hclnn), run the following as root to start
the HDFS, YARN, and History servers:

service hadoop-hdfs-namenode start

service hadoop-mapreduce-historyserver start
service hadoop-yarn-resourcemanager start
service hadoop-yarn-proxyserver start

On the Data Node machines (hclrlm1 to hclrlma3), run the following as root to start the data node and Node
Manager:

service hadoop-hdfs-datanode start
service hadoop-yarn-nodemanager start

You can make sure that Hadoop is writing to HDFS by executing the Hadoop file system 1s command on
the /directory:

[root@hcinn conf]# su - hdfs
-bash-4.1% hadoop fs -1s /
Also, ensure that the temporary directory exists on HDFS:

-bash-4.1% hadoop fs -mkdir /tmp
-bash-4.1%
-bash-4.1% hadoop fs -chmod -R 1777 /tmp

The permissions “1777” means that any file system user can write to the directory but cannot remove another
user’s files.

You need to create the required directories under HDFS; these directories will be owned and used by YARN for
logging and history data:

[root@hcinn hadoop-hdfs]# su - hdfs

-bash-4.1%

-bash-4.1% hadoop fs -mkdir /user/history

-bash-4.1% hadoop fs -chmod -R 1777 /user/history

-bash-4.1% hadoop fs -chown yarn /user/history

-bash-4.1% hadoop fs -mkdir /var/log/hadoop-yarn

-bash-4.1$ hadoop fs -chown yarn:mapred /var/log/hadoop-yarn

At this point, check which top-level directories exist on the Hadoop distributed file system (HDFS). Because
you have executed a longlist (1s -1) and have used a recursive switch (-R), you can also see which subdirectories
exist. The following listing shows permissions (drwxrwxrw), plus details like ownership and group membership
(hdfs hadoop):

-bash-4.1$ hadoop fs -1s -R /

drwxrwxrwt - hdfs hadoop 0 2014-03-23 14:58 /tmp

drwxr-xr-x - hdfs hadoop 0 2014-03-23 14:55 /user

drwxrwxrwt - yarn hadoop 0 2014-03-23 14:55 /user/history
drwxr-xr-x - hdfs hadoop 0 2014-03-23 14:56 /var

drwxr-xr-x - hdfs hadoop 0 2014-03-23 14:56 /var/log

drwxr-xr-x - yarn mapred 0 2014-03-23 14:56 /var/log/hadoop-yarn

45

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

So, you have the /tmp and /user directories, and the /var/log directory exists with a subdirectory for YARN. Now,
you need to create home directories for the Map Reduce users on HDFS. In this case there is only the hadoop account,
so you change user (su) to the Linux hdfs account, then use the hadoop file system command mkdir to create the
directory and use chown to set its ownership to hadoop:

[root@hcinn sysconfigl# su - hdfs

-bash-4.1%

-bash-4.1$ hadoop fs -mkdir /user/hadoop
-bash-4.1% hadoop fs -chown hadoop /user/hadoop

Last step is to set up the Map Reduce user environment in the Bash shell by setting some environmental options
in the Bash configuration file .bashrc. As in the Hadoop V1 installation, this allows you to set environment variables
like JAVA_HOME and HADOOP_MAPRED_HOME in the Bash shell. Each time the Linux account is accessed and a Bash shell is
created, these variables will be pre-defined.

[hadoop@hcinn ~]$ tail .bashrc

TR
# Set Hadoop related env variables

# set JAVA HOME (we will also set a hadoop specific value later)
export JAVA HOME=/usr/1ib/jvm/jre-1.6.0-openjdk

export HADOOP_MAPRED HOME=/usr/1ib/hadoop-mapreduce

At this point you have completed the configuration of your installation and you are ready to start the servers.
Remember to monitor the logs under /var/log for server errors; when the servers start, they state the location where
they are logging to.

You start the HDFS servers and monitor the logs for errors:

[root@hcinn init.d]# cd /etc/init.d
[root@hcinn init.d]# 1s -1d hadoop-hdfs-*
-IWXIr-Xr-x. 1 root root 4469 Feb 26 23:18 hadoop-hdfs-namenode

[root@hcinn init.d]# service hadoop-hdfs-namenode start
Starting Hadoop namenode: [ oK ]
starting namenode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-namenode-hcinn.out

If you start the name node on the master and the data nodes on the slaves, check that the necessary ports
are open in the firewall. For example, I check that port 8020 is open in the firewall configuration. I also show how
the Iptables (Linux kernel firewall) service can be restarted. (I do not provide an in-depth study of the firewall
configuration, as that leads us into the realm of systems administration, which is a separate field.)

[root@hcinn sysconfigl# cd /etc/sysconfig

[root@hcinn sysconfigl# grep 8020 iptables

-A INPUT -m state --state NEW -m tcp -p tcp --dport 8020 -j ACCEPT
So, this result tells the firewall to accept tcp-based requests on port 8020.

If the ports are not open, then Iptables needs to be updated with an entry similar to the last line above and the
server restarted, as shown next. (If you are unsure about this, consult your systems administrator.)

46

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

[root@hcinn sysconfigl# service iptables restart

iptables: Setting chains to policy ACCEPT: filter [ oK ]
iptables: Flushing firewall rules: [ OK ]
iptables: Unloading modules: [ oK ]
iptables: Applying firewall rules: [ OK ]

You are now ready to start the YARN servers. First, start the Resource Manager on the master, then start the Node
managers on the data nodes. Finally, check the logs for errors. The sequence of commands you need for doing this is
as follows:

[root@hcinn init.d]# service hadoop-yarn-resourcemanager start
Starting Hadoop resourcemanager: [ oK ]
starting resourcemanager, logging to /var/log/hadoop-yarn/yarn-yarn-resourcemanager-hcinn.out

[root@hciriml init.d]# service hadoop-yarn-nodemanager start
Starting Hadoop nodemanager: [ oK ]
starting nodemanager, logging to /var/log/hadoop-yarn/yarn-yarn-nodemanager-hcirimi.out

Running Another Map Reduce Job Test

You have the Hadoop V2 HDFS and YARN servers running; all servers are up on the data nodes and the Node
manager. You have checked the logs and found no errors. So, you are ready to attempt a test of Map Reduce. Try
issuing the word-count job on the Poe data, as was done earlier for Hadoop V1 :

1. Switch user to the Linux hadoop account:

[root@hcinn ~]$ su - hadoop
2. Next, create the working directory for the data on HDEFS:

[hadoop@hcinn ~]$ hdfs dfs -mkdir -p /user/hadoop/edgar/edgar
3. Now, copy the same edgar test data to the working directory on HDES:

[hadoop@hcinn edgar]$ hdfs dfs -copyFromLocal *.txt /user/hadoop/edgar/edgar

4.  And finally, run the Map Reduce word-count job:

[hadoop@hcinn ~]$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar wordcount /
user/hadoop/edgar/edgar /user/hadoop/edgar-results

14/03/23 16:34:46 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=

14/03/23 16:34:48 INFO util.ProcessTree: setsid exited with exit code 0

14/03/23 16:34:48 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxR
esourceCalculatorPlugin@18b4587

14/03/23 16:34:48 INFO mapred.MapTask: Processing split: hdfs://hcinn/user/hadoop/edgar/edgar/10947-8.
txt:0+632294

14/03/23 16:34:48 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.
MapTask$MapOutputBuffer

14/03/23 16:34:48 INFO mapred.MapTask: io.sort.mb = 100

47

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

14/03/23 16:34:48 INFO mapred.MapTask: data buffer =

--------

14/03/23 16:34:56 INFO mapred.JobClient: Spilled Records=256702

14/03/23 16:34:56 INFO mapred.JobClient: CPU time spent (ms)=0

14/03/23 16:34:56 INFO mapred.JobClient: Physical memory (bytes) snapshot=0

14/03/23 16:34:56 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0

14/03/23 16:34:56 INFO mapred.JobClient: Total committed heap usage (bytes)=1507446784

Notice that the Hadoop jar command is very similar to that used in V1. You have specified an example jar file to
use, from which you will execute the word-count function. An input and output data directory on HDFS has also been
specified. Also, the run time is almost the same.

Okay, the Map Reduce job has finished, so you take a look at the output. In the edgar-results directory, there is a
_SUCCESS file to indicate a positive outcome and a part-r-00000 file that contains the reduced data:

[hadoop@hcinn ~]$ hadoop fs -1ls /user/hadoop/edgar-results

Found 2 items

-rw-r--r-- 2 hadoop hadoop 0 2014-03-23 16:34 /user/hadoop/edgar-results/_SUCCESS
-Iw-r--r-- 2 hadoop hadoop 769870 2014-03-23 16:34 /user/hadoop/edgar-results/part-r-00000

The job was successful; you have part data. To examine the part file data, you need to extract it from HDFS. The
Hadoop file system cat command can be used to dump the contents of the part file. This will then be stored in the
Linux file system file /tmp/hadoop/part-r-00000:

[hadoop@hcinn ~]$ mkdir -p /tmp/hadoop/
[hadoop@hcinn ~]$ hadoop fs -cat /user/hadoop/edgar-results/part-r-00000 > /tmp/hadoop/part-r-00000

[hadoop@hcinn ~]$ wc -1 /tmp/hadoop/part-r-00000
67721 /tmp/hadoop/part-r-00000

If you use the Linux command wc -1 to show the file lines, you'll see that there are 67,721 lines in the extracted
file. This is the same result as you received from the Map Reduce word-count job in the V1 example. To list the actual
data, you use:

[hadoop@hcinn ~]$ head -20 /tmp/hadoop/part-r-00000
! 1

||||T

N
N

"'A
"'After
"'Although
"' Among
"'And
"'Another
"'As

"'At
"'Aussi
"'Be
"'Being
"'But
"'But, '

PR R NPRPRPRNRNNRPRRRRR

48

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

"'But--still--monsieur----' 1
"'Catherine, 1
"' Comb 1

Again, V2 provides a sorted list of words with their counts. The successful test proves that the installed system,
both HDFS and Map Reduce, works. For now, you're finished with the configuration, although in later chapters of this
book I'll be introducing more Hadoop components.

Like Hadoop V1, Hadoop V2 offers a web interface for monitoring your cluster’s nodes. Direct your web browser
to http://hcinn:8088/cluster/nodes, and you can see all of your active data nodes along with information relating
to status and storage. The nodes themselves are actually http links, so you can click on then to drill down further.

Logged in as: dowhe

Nodes of the cluster

'hadznap

= Cluster Cluster Metrics
About Apps Apps Apps Memaory Aema ry Memar y Decommissionad ost Unk Rebaoted
Nodes Submitted Pending Running Used otal Reserved Nodes Nodes Nodes
il ] 0 o 08B 24GB 0B 0 0 0 0
Show 20 ~|entries Search:
L Node Node Address Node HTTP th-st Last health-update Ty Containers Mem Mem
Rack State itdrecs Health-status Health-repert Used Avall
fdefault-rack RUNNING  helrlm2:52163 holrlm2:204 Healthy 23-Mar-2014 o oB 8GB
KILLED 17:00:12
fdefault-rack RUNNING  hclrlm1:48284 hclrlm1:8042 Healthy 23-Mar-2014 ] 0B 8GE
Scheduler 00
17:00:23
+ Tools Jdefault-rack RUNNING hclrlm3:47426 hclrlm3:8042 Healthy 23-Mar-2014 0 []-} BGE
- 17:00:12

Showing 1 to 3 of 3 entries

Figure 2-6. Hadoop V2 UI cluster nodes

Hadoop Commands

Hadoop offers many additional command-line options. In addition to the shell commands you've already used in this
chapter’s examples, I'll cover some other essential commands here, but only give a brief introduction to get you going.
The following sections will introduce Hadoop shell, user and administration commands. Where possible, I've given a
working example for each command. For a complete guide, see the Hadoop site, https://hadoop.apache.org.

Hadoop Shell Commands

The Hadoop shell commands are really user commands; specifically, they are a subset related to the file system.
Each command is invoked using the hadoop keyword, followed by the fs option, which stands for “file system.” Each
subcommand is passed as an argument to the fs option. File paths are specified as uniform resource identifiers, or URIs.
A file on the HDFS can be specified as hdfs:///dir1/dir2/filel, whereas the same file on the Linux file system can
be specified as file:///dir1/dir2/filel. If you neglect to offer a scheme (hdfs or file), then Hadoop assumes you mean
the HDFS.
If you are familiar with Linux or Unix shell commands, then you will find these Hadoop file system commands
similar. You can list files on HDFS using the 1s command:
[hadoop@hcinn ~]$ hadoop fs -1s /user/hadoop/edgar/
Found 1 items
drwxr-XT-X

- hadoop hadoop 0 2014-03-23 16:32 /user/hadoop/edgar/edgar

49

www.it-ebooks.info


http://hc1nn:8088/cluster/nodes
https://hadoop.apache.org/
http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

To perform a recursive listing, add the -R option; this means that the 1s command will list the topmost directory
and all subdirectories:

[hadoop@hcinn ~]$ hadoop fs -1s -R /user/hadoop/edgar/

drwxr-xr-x - hadoop hadoop 0 2014-03-23 16:32 /user/hadoop/edgar/edgar

-1w-r--r-- 2 hadoop hadoop 632294 2014-03-23 16:32 /user/hadoop/edgar/edgar/10947-8.txt
-rw-r--r-- 2 hadoop hadoop 559342 2014-03-23 16:32 /user/hadoop/edgar/edgar/15143-8.txt
-rw-r--r-- 2 hadoop hadoop 66409 2014-03-23 16:32 /user/hadoop/edgar/edgar/17192-8.txt
-Iw-r--r-- 2 hadoop hadoop 550284 2014-03-23 16:32 /user/hadoop/edgar/edgar/2147-8.txt
-Iw-r--r-- 2 hadoop hadoop 579834 2014-03-23 16:32 /user/hadoop/edgar/edgar/2148-8.txt
-Tw-r--r-- 2 hadoop hadoop 596745 2014-03-23 16:32 /user/hadoop/edgar/edgar/2149-8.txt
-1w-r--r-- 2 hadoop hadoop 487087 2014-03-23 16:32 /user/hadoop/edgar/edgar/2150-8.txt
-rw-r--r-- 2 hadoop hadoop 474746 2014-03-23 16:32 /user/hadoop/edgar/edgar/2151-8.txt

You can create directories with mkdir; this example will create a directory on HDFS called “test” under the / root
node. Once it has been created, the 1s command shows that it exists and is owned by the user hadoop:

[hadoop@hcinn ~]$ hadoop fs -mkdir /test

[hadoop@hcinn ~]$ hadoop fs -1s /
Found 5 items
drwxr-xr-x - hadoop hadoop 0 2014-03-24 18:18 /test

The chown and chmod commands change ownership and permissions, respectively. If you know Unix commands,
then these will be familiar. Their syntax is:

[hadoop@hcinn ~]$ hadoop fs -chown hdfs:hdfs /test
[hadoop@hcinn ~]$ hadoop fs -chmod 700 /test

[hadoop@hcinn ~]$ hadoop fs -1s /

Found 5 items

drwx------ - hdfs  hdfs 0 2014-03-24 18:18 /test

The chown command has changed the ownership of the HDFS /test directory to user/group hdfs/hdfs. The chmod
command has changed the directory permissions to 700 or rwx --- --- . That is read/write/execute for the owner (hdfs),
and there’s no access for the group or any other user.

You can copy a file to and from the local file system into HDFS by using the copyFromLocal argument:

[hadoop@hcinn ~]$ hadoop fs -copyFromLocal ./test file.txt /test/test file.txt
[hadoop@hcinn ~1$

[hadoop@hcinn ~]$ hadoop fs -1ls /test

Found 1 items

-IW-r--r-- 2 hadoop hdfs 504 2014-03-24 18:24 /test/test file.txt

The example above shows that a Linux file system file ./test_file.txt was copied into HDFS to be stored under /test/
test_file.txt. The next example shows how copyToLocal can be used to copy a file from HDFS to the Linux file system:

[hadoop@hcinn ~]$ hadoop fs -copyTolLocal /test/test file.txt ./test file2.txt
[hadoop@hcinn ~]$ 1s -1 ./test file*

-TWXI-Xr-X. 1 hadoop hadoop 504 Mar 24 18:25 ./test_file2.txt

-Iw-IW-I--. 1 hadoop hadoop 504 Mar 24 18:24 ./test file.txt

50

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

In the above example, the HDFS file /test/test_file.txt has been copied to the Linux file system as ./test_file2.txt.
To move a file or directory on HDFS, you use the mv command:

[hadoop@hcinn ~]$ hadoop fs -mv /test/test file.txt /test/test file3.txt
[hadoop@hcinn ~]$ hadoop fs -1ls /test

Found 1 items

-IW-Y--r-- 2 hadoop hdfs 504 2014-03-24 18:24 /test/test_file3.txt

The HDFEFS file /test/test_file.txt has been moved to the HDFS file /test/test_file3.txt. You can recursively delete in
HDFS by using rm -r:

[hadoop@hcinn ~]$ hadoop fs -rm -r /test

[hadoop@hcinn ~]$ hadoop fs -1s /
Found 4 items

drwxrwxrwt - hdfs  hadoop 0 2014-03-23 14:58 /tmp
drwxr-xr-x - hdfs hadoop 0 2014-03-23 16:06 /user
drwxr-xr-x - hdfs hadoop 0 2014-03-23 14:56 /var

The example above has deleted the HDFS directory /test and all of its contents. To determine the space usage in
HDFS, you use the du (disk usage) command:

[hadoop@hcinn ~]$ hadoop fs -du -h /
0 /tmp

4.5 M /user

0 /var

The -h option just makes the numbers humanly readable. This last example shows that only the HDEFS file system
/user directory is using any space.

Hadoop User Commands

This section introduces some Hadoop user commands that you can use to check the health of the HDFS, determine
the Hadoop version, and carry out large-scale distributed data copies. Hadoop fsck offers the ability to determine
whether the file system is healthy. It displays the total data size plus file and directory volumes. It also offers
information like the replication factor and corrupted blocks. Hadoop distcp provides the functionality to move very
large volumes of data between clusters.

The following example of the fsck command shows that the file system “/” is healthy. No corrupted or under-
replicated blocks are listed. By default, there should be two copies of each block saved (the default replication factor
value was 2). If the HDFS had failed in this area, it would be shown in the report as “Under-replicated blocks” with a
value greater than zero.

51

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

[hadoop@hcinn ~]$ hadoop fsck /

Connecting to namenode via http://hcinn:50070

FSCK started by hadoop (auth:SIMPLE) from /192.168.1.107 for path / at Mon Mar 24 18:42:09 NZDT 2014
.......... Status: HEALTHY

Total size: 4716611 B

Total dirs: 14

Total files:10

Total blocks (validated): 9 (avg. block size 524067 B)

Minimally replicated blocks: 9 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2

Average block replication: 2.0
Corrupt blocks: 0

Missing replicas: 0 (0.0 %)
Number of data-nodes: 3

Number of racks: 1

FSCK ended at Mon Mar 24 18:42:09 NZDT 2014 in 9 milliseconds
The filesystem under path '/' is HEALTHY

You can use the job command to list jobs, although this example shows no jobs currently running:
[hadoop@hcinn 1ib]$ hadoop job -list all

14/03/24 18:53:49 INFO service.AbstractService:
Service:org.apache.hadoop.yarn.client.YarnClientImpl is inited.
14/03/24 18:53:50 INFO service.AbstractService:
Service:org.apache.hadoop.yarn.client.YarnClientImpl is started.
Total jobs:0

JobId State StartTime UserName OQueue Priority UsedContainers RsvdContainers UsedMem
RsvdMem NeededMem AM info

To determine which version of Hadoop you are using, as well as the checksum and dates, you use the
version command:

[hadoop@hcinn 1ib]$ hadoop version

Hadoop 2.0.0-cdh4.6.0

Subversion git://centos32-6-slave.sf.cloudera.com/data/1/jenkins/workspace/generic-package-
centos32-6/topdir/BUILD/hadoop-2.0.0-cdh4.6.0/src/hadoop-common-project/hadoop-common -r
8e266e052e423a1592871e2dfe09d54c03f6a0e8

Compiled by jenkins on Wed Feb 26 01:59:02 PST 2014

From source with checksum a9d36604dfb55479c0648f2653c69095

This command was run using /usr/lib/hadoop/hadoop-common-2.0.0-cdh4.6.0.jar

The version output above shows that you are using Cloudera CDH 4.6, which is actually Hadoop version 2.0.0. It
also shows when the release was built and by whom.

52

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Distcp offers you the ability to copy within a cluster or between clusters. It uses Map Reduce to do this, and it is
designed for large-scale copying. I can provide only a theoretical example here because I have only a small four-node
cluster for writing this book with a single name node. Check the website hadoop.apache.org for more information.
The syntax for distcp is as follows:

[hadoop@hcinn 1ib]$ hadoop distcp \
hdfs://hcinn:8020/test2 \
hdfs://hc2nn:8020/test3

This example shows the contents of cluster one HDFS directory /test2 being copied to cluster two directory /
test3. The URIs used here (hdfs://hc1nn:8020/test2 and hdfs://hc2nn:8020/test3) use a scheme of hdfs, but they also
refer to a hostname and port. These are the hosts and port numbers for the name nodes for the two clusters.

Hadoop Administration Commands

This discussion of Hadoop administration commands will let you sample some of the full set of commands available.
For complete details, check hadoop.apache.org. These commands will enable you to format the HDFS, manage
upgrades, set logging levels, and save configuration information.

You already used one of the administration commands (-format) when you formatted the file system earlier.
Take a second look:

hadoop namenode -format

The format command starts the name node, executes its command, and then shuts the name node down again.
The name node is the centralized place on the HDFS where metadata concerning files in the file system are stored. If
the Hadoop file system is running when this command is executed, then HDFS data is lost.

I'won't run the upgrade command here, but you can use it after releasing a new version of Hadoop, as follows:

hadoop namenode -upgrade

This upgrade command will create new working directories on the data nodes for the new Hadoop version. The
previous checkpoint version is kept to allow for a rollback to the previous version of software in case the upgrade
doesn’t work out.

If you need to roll back to the previous version of Hadoop, you can use hadoop namenode -rollback.) This
rollback command will cause Hadoop to revert to the previous version of the working directories.

On the other hand, to finalize the upgrade and remove the old version, you use:

hadoop namenode -finalize

Be sure that the upgrade has worked before you remove the option to roll back.
You can get and set daemon log levels with daemonlog:

[hadoop@hcinn ~]$ hadoop daemonlog -getlevel hcinn:8088

53

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

org.apache.hadoop.mapred.JobTracker

Connecting to
http://hcinn:8088/loglLevel?log=org.apache.hadoop.mapred.JobTracker
Submitted Log Name: org.apache.hadoop.mapred.JobTracker

Log Class: org.apache.commons.logging.impl.Log4JLogger

Effective level: INFO

By changing getLevel to setLevel, you can set the log levels. Some possible values are all, info, debug, and
error. The level and volume of the information you receive will vary, with all supplying everything and error just
giving an error message.

You can use the dfsadmin report option to get information and administer Hadoop, as follows:

[hadoop@hcinn ~]$ hadoop dfsadmin -report

Configured Capacity: 158534062080 (147.65 GB)
Present Capacity: 141443452928 (131.73 GB)
DFS Remaining: 141433782272 (131.72 GB)

DFS Used: 9670656 (9.22 MB)

DFS Used%: 0.01%

Under replicated blocks: 0

Blocks with corrupt replicas: o

Missing blocks: 0

Datanodes available: 3 (3 total, 0 dead)

Live datanodes:

Name: 192.168.1.106:50010 (hcirim2)
Hostname: hcirim2

Decommission Status : Normal

Configured Capacity: 52844687360 (49.22 GB)
DFS Used: 4157440 (3.96 MB)

Non DFS Used: 6079811584 (5.66 GB)

DFS Remaining: 46760718336 (43.55 GB)

DFS Used%: 0.01%

DFS Remaining’%: 88.49%

Last contact: Wed Mar 26 18:26:18 NZDT 2014

Name: 192.168.1.104:50010 (hcirimi)
Hostname: hcilriml

Decommission Status : Normal

Configured Capacity: 52844687360 (49.22 GB)
DFS Used: 3698688 (3.53 MB)

Non DFS Used: 3301863424 (3.08 GB)

DFS Remaining: 49539125248 (46.14 GB)

DFS Used%: 0.01%

DFS Remaining%: 93.74%

Last contact: Wed Mar 26 18:26:20 NZDT 2014

54

www.it-ebooks.info


http://hc1nn:8088/logLevel?log=org.apache.hadoop.mapred.JobTracker
http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

Name: 192.168.1.102:50010 (hcilrim3)
Hostname: hcirim3

Decommission Status : Normal

Configured Capacity: 52844687360 (49.22 GB)
DFS Used: 1814528 (1.73 MB)

Non DFS Used: 7708934144 (7.18 GB)

DFS Remaining: 45133938688 (42.03 GB)

DFS Used%: 0.00%

DFS Remaining%: 85.41%

Last contact: Wed Mar 26 18:26:19 NZDT 2014

This report shows the HDFS capacity and usage, as well as the same information on each of the data nodes. It
also shows information like under-replicated blocks, which gives an indication of potential data loss in the event of
server failure.

You can save the name node data structures to file by using the hadoop dfsadmin metasave command:

[hadoop@hcinn ~]$ hadoop dfsadmin -metasave metaFilel
Created metasave file metaFile1l in the log directory of namenode hdfs://hcinn

In this example, you could have specified where this file was saved via the attribute hadoop.log.dir. In any
event, having run this command, you can now check the contents of the file via the Linux 1s and more commands:

[hadoop@hcinn hadoop-hdfs]$ 1s -1 /var/log/hadoop-hdfs/metaFilel
-Iw-r--r--. 1 hdfs hdfs 658 Mar 26 18:29 /var/log/hadoop-hdfs/metaFile1

The 1s command shows the location of the metadata file that you have created, metaFilel. It also shows that it is
owned by the Linux user hdfs. You can examine the contents of that metadata file by using the Linux more command:

[hadoop@hcinn hadoop-hdfs]$ more /var/log/hadoop-hdfs/metaFilel

25 files and directories, 9 blocks = 34 total

Live Datanodes: 3

Dead Datanodes: 0

Metasave: Blocks waiting for replication: 0

Mis-replicated blocks that have been postponed:

Metasave: Blocks being replicated: 0

Metasave: Blocks 0 waiting deletion from 0 datanodes.

Metasave: Number of datanodes: 3

192.168.1.106:50010 IN 52844687360(49.22 GB) 4157440(3.96 MB) 0.00%
46760718336

43.55 GB) Wed Mar 26 18:29:18 NZDT 2014

192.168.1.104:50010 IN 52844687360(49.22 GB) 3698688(3.53 MB) 0.00%
49539125248(

46.14 GB) Wed Mar 26 18:29:20 NZDT 2014

192.168.1.102:50010 IN 52844687360(49.22 GB) 1814528(1.73 MB) 0.00%
45133869056 (

42.03 GB) Wed Mar 26 18:29:19 NZDT 2014

The last three lines of this example metadata file relate to data node capacity and data usage. Instead of refering
to the data nodes by their server names, though, their IP addesses have been used. For instance, in my example
cluster, the ip address 192.168.1.102 relates to the datanode hclrlm3. The file also shows that there are three live data
nodes and none that are dead.

55

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © STORING AND CONFIGURING DATA WITH HADOOP, YARN, AND ZOOKEEPER

A full explanation of these administration commands is beyond the scope of this chapter, but by using the
dfsadmin command you can manage quotas, control the upgrade, refresh the nodes, and enter safe mode. Check the
Hadoop site hadoop . apache. org for full information.

Summary

In this chapter you have been introduced to both Hadoop V1 and V2 in terms of their installation and use. It is hoped
you can see that, by using the CDH stack release, the installation process and use of Hadoop are much simplified.

In the course of this chapter you have installed Hadoop V1 manually via a download package from the Hadoop
site. You have then installed V2 and YARN via CDH packages and the yum command. Servers for HDFS and YARN are
started as Linux services in V2 rather than as scripts, as in V1. Also, in the CDH release logs, binaries and configuration
functions were separated into their own, specific directories.

You have been shown the same Map Reduce task as run on both versions of Hadoop. Task run times were
comparable between V1 and V2. However, V2 offers the ability to have a larger production cluster than does V1.

(In the following chapters you will look at Map Reduce programming in Java and Pig).

You have also configured Hadoop V2 across a mini cluster with name nodes and data nodes on different servers.
You have installed and used ZooKeeper, setting up a quorum and using the client. (In the next chapter, HBase—the
Hadoop database—will be discussed and that calls upon ZooKeeper).

Lastly, you have looked at the command set for file system and for user and administration commands. True, it
was only a brieflook, but further information is available at the Hadoop website.

56

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3

Collecting Data with Nutch and Solr )

Many companies collect vast amounts of data from the web by using web crawlers such as Apache Nutch. Available for
more than ten years, Nutch is an open-source product provided by Apache and has a large community of committed
users. An Apache Lucene open-source search platform, Solr can be used in connection with Nutch to index and
search the data that Nutch collects. When you combine this functionality with Hadoop, you can store the resulting
large data volume directly in a distributed file system.

In this chapter, you will learn a number of methods to connect various releases of Nutch to Hadoop. I will
demonstrate, though architectural examples, what can be accomplished by using the various tools and data.
Specifically, the chapter’s first architectural example uses Nutch 1.8 configured to implicitly use the local Hadoop
installation. If Hadoop is available, Nutch will use it for storage, providing you with the benefits of distributed and
resiliant storage. It does not, however, give you much control over the selection of storage. Nutch will use either
Hadoop, if it is available, or the file system.

In the second architectural example, employing Nutch 2.x, you will be able to specify the storage used via Gora.
By explicitly selecting the storage method in the configuration options, you can gain greater control. This example
uses the HBase database, which still employs Hadoop for distributed storage. You then have the option of choosing a
different storage mechanism at a later date by altering the configuration.

Remember, although these examples are using small amounts of data, the architectures can scale to a high
degree to meet your big data-collection needs.

The Environment

Before we begin, you need to understand a few details about the environment in which we’ll be working. This chapter
demonstrates the use of Nutch with Hadoop V1.2.1 because I could not get Nutch to build against Hadoop V2 at the
time of this writing. (Subsequently, I learned of a version of Nutch developed for YARN, but deadline constraints
prevented me from implementing it here.) Although in Chapter 2 you installed Cloudera CDH4 on the CentOS Linux
server hclnn, at this point you'll need to switch back to using Hadoop V1. You'll manage this via a number of steps
that are explained in the following sections. A shortage of available machines is the only reason I have installed
multiple versions of Hadoop on a single cluster. This kind of multiple Hadoop installation is not appropriate for
project purposes.

Stopping the Servers

The Hadoop Cloudera CDH4 cluster servers may still be running, so they need to be stopped on all nodes in the
Hadoop cluster. Because these servers are Linux services, you need to stop them as the Linux root user. You carry out
the following steps on all servers in the cluster—in this case, hclnn, hclrlml, hclrlm2, and helrlma3.

57

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

First, change the user to the root account with the Linux su (switch user) command:
[hadoop@hcinn ~]$ su -

Next, issue the command sequence:
[root@hcinn ~]# cd /etc/init.d/

[root@hcinn init.d]# 1s hadoop*mapreduce*
hadoop-0.20-mapreduce-jobtracker hadoop-mapreduce-historyserver

[root@hcinn init.d]# 1s hadoop*yarn*
hadoop-yarn-proxyserver hadoop-yarn-resourcemanager

[root@hcinn init.d]# 1s hadoop*hdfs*
hadoop-hdfs-namenode

The Linux cd (change directory) command moves the current path to /etc/init.d/, and the 1s command displays
the Map Reduce, Yarn, and HDFS Hadoop services. (The * character is a wildstar value that matches all text to the end
of the string.) For each of the services displayed, execute the following command:

service <service name> stop
For instance, the stop command stops the proxy server, although it was not running:

[root@hcinn init.d]# service hadoop-yarn-proxyserver stop
Stopping Hadoop proxyserver: [ OK ]
no proxyserver to stop

Remember to stop the non-HDFS services before the HDFS services and stop Map Reduce and YARN before
HDES. Once you have done this on all the servers in this small cluster, then Hadoop V2 CDH4 will be stopped. You are
still logged in as root, however, so use the Linux exit command to return control back to the Linux hadoop account
session:

[root@hcinn init.d]# exit
logout
[hadoop@hcinn ~]$

Changing the Environment Scripts

In Chapter 2, you worked with two versions of Hadoop with two different environment configurations. The
environment file used to hold these configurations was the Linux hadoop user’s SHOME/.bashrc file. During the
creation of this book, I needed to switch between Hadoop versions frequently, and so I created two separate versions
of the bashrec file on each server in the cluster, as follows:

[hadoop@hcinn ~1$ pwd
/home/hadoop

58

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

[hadoop@hcinn ~]$ 1s -1 .bashrc*

lrwxrwxrwx. 1 hadoop hadoop 16 Jun 30 17:59 .bashrc -> .bashrc_hadoopv2
-Iw-r--r--. 1 hadoop hadoop 1586 Jun 18 17:08 .bashrc_hadoopvi
-Iw-r--r--. 1 hadoop hadoop 1588 Jul 27 11:33 .bashrc_hadoopv2

The Linux pwd command shows that the current location is the Linux hadoop user’s home directory /home/
hadoop/. The Linux 1s command produces a long listing that shows a symbolic link called .bashrc, which points
to either a Hadoop V1 or a V2 version of the bashrc configuration file. Currently it is pointing to V2, so you need to
change it back to V1. (I will not explain the contents of the files, as they are listed in Chapter 2).

Delete the symbolic link named .bashrc by using the Linux rm command, then re-create it to point to the V1 file
by using the Linux 1n command with a -s (symbolic) switch:

[hadoop@hcinn ~]1$ rm .bashrc
[hadoop@hcinn ~]$ 1n -s .bashrc_hadoopvi .bashrc

[hadoop@hcinn ~]$ 1s -1 .bashrc*

lrwxrwxrwx 1 hadoop hadoop 16 Nov 12 18:32 .bashrc -> .bashrc_hadoopvi
-IW-T--r--. 1 hadoop hadoop 1586 Jun 18 17:08 .bashrc_hadoopvi
-Iw-r--r--. 1 hadoop hadoop 1588 Jul 27 11:33 .bashrc_hadoopv2

That creates the correct environment configuration file for the Linux hadopop account, but how does it now take
effect? Either log out using the exit command and log back in, or use the following:

[hadoop@hcinn ~]$ . ./.bashrc

« n

This means that the .bashrc is executed in the current shell (denoted by the first “ . ” character). The ./ specifies
that the .bashrec file is sourced from the current directory. Now, you are ready to start the Hadoop V1 servers.

Starting the Servers

The Hadoop V1 environment has been configured, and the V2 Hadoop servers have already been stopped. Now, you
change to the proper directory and start the servers:

[hadoop@hcinn ~]$ cd $HADOOP_PREFIX/bin
[hadoop@hcinn hadoop]$ pwd
/usr/local/hadoop/bin/

[hadoop@hcinn bin]$ ./start-dfs.sh
[hadoop@hcinn bin]$ ./start-mapred.sh

These commands change the directory to the /usr/local/hadoop/bin/ directory using the HADOOP_PREFIX
variable. The HDFS servers are started using the start-dfs.sh script, followed by the Map Reduce servers with start-
mapred.sh. At this point, you can begin the Nutch work, using Hadoop V1 on this cluster.

Architecture 1: Nutch 1.x

This first example illustrates how Nutch, Solr, and Hadoop work together. You will learn how to download, install, and
configure Nutch 1.8 and Soly, as well as how to set up your environment and build Nutch. With the prep work finished,
I'll walk you through running a sample Nutch crawl using Solr and then storing the data on the Hadoop file system.

59

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

In Nutch 1.8, the crawl class has been replaced by the crawl script. The crawl script, which will be described later, runs
the whole Nutch crawl for you, as well as storing data in Hadoop. Then, you will learn how to check that your data has
been processed by Solr.

Nutch Installation

For this first example, you will download and install Nutch 1.8 from the Nutch website (nutch.apache.org). From
the Downloads page, choose the source version of Nutch 1.8. The -src in the file name means that the source files are
included in the software package as well as the binaries. As in the previous chapter, you download a gzipped tar file
(.tar.gz), then unpack it using the gunzip command, followed by the tar xvf command. (In the tar command, x stands
for “extract,” v for “verbose,” and the file name to process is specified after the f option.)

-Iw-IW-I--. 1 hadoop hadoop 2757572 Apr 1 18:12 apache-nutch-1.8-src.tar.gz

[hadoop@hcinn Downloads]$ gunzip apache-nutch-1.8-src.tar.gz
[hadoop@hcinn Downloads]$ tar xvf apache-nutch-1.8-src.tar

This leaves the raw unpacked Nutch package software extracted under the directory apache-nutch-1.8-src,
as shown here:

[hadoop@hcinn Downloads]$ 1s -1d apache-nutch-1.8-src
drwxrwxr-x. 7 hadoop hadoop 4096 Apr 1 18:13 apache-nutch-1.8-sxc

Using the mv command, you move this release to a better location and then set the ownership to the Linux
hadoop user with the chown command. Note that I used the -R switch, which recursively changes ownership on
subdirectories and files under the topmost directory, apache-nutch-1.8-src:

[root@hcinn Downloads]# mv apache-nutch-1.8-src /usr/local
[root@hcinn Downloads]# cd /usr/local

[root@hcinn Downloads]# chown -R hadoop:hadoop apache-nutch-1.8-src
[root@hcinn Downloads]# 1ln -s apache-nutch-1.8-src  nutch

Now the Nutch installation has been moved to /usr/local/ and a symbolic link has been created to point to the
installed software, called “nutch.” That means that the environment can use this alias to point to the installed software
directory. If a new release of Nutch is required in the future, simply change this link to point to it; the environment will
not need to be changed.

[root@hcinn locall# 1s -1d *nutch*
drwxrwxr-x. 7 hadoop hadoop 4096 Apr 1 18:13 apache-nutch-1.8-src
lrwxrwxrwx. 1 root root 20 Apr 1 18:16 nutch -> apache-nutch-1.8-src

Next, you will set up the configuration files. The first step is to create symbolic links to the Hadoop configuration
files in the Nutch build. This avoids the need to copy changes in the Hadoop configuration to the Nutch build each
time such a change occurs. Create the links as follows:

[root@hcinn Downloads]# cd /usr/local/nutch/conf

[root@hcinn Downloads]# 1n -s /usr/local/hadoop/conf/core-site.xml  core-site.xml
[root@hcinn Downloads]# 1n -s /usr/local/hadoop/conf/hdfs-site.xml  hdfs-site.xml
[root@hcinn Downloads]# 1n -s /usr/local/hadoop/conf/hadoop-env.sh  hadoop-env.sh
[root@hcinn Downloads]# 1n -s /usr/local/hadoop/conf/mapred-site.xml mapred-site.xml
[root@hcinn Downloads]# 1n -s /usr/local/hadoop/conf/masters masters
[root@hcinn Downloads]# 1n -s /usr/local/hadoop/conf/slaves slaves

60

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Then you can check that these links exist by creating a long Linux listing using 1s -1:
[hadoop@hcinn conf]$ 1s -1

lrwxrwxrwx. 1 hadoop hadoop 36 Apr 5 14:15 core-site.xml -> /usr/local/hadoop/conf/core-site.xml
lrwxrwxrwx. 1 hadoop hadoop 36 Apr 5 14:16 hadoop-env.sh -> /usr/local/hadoop/conf/hadoop-env.sh
lrwxrwxrwx. 1 hadoop hadoop 36 Apr 5 14:16 hdfs-site.xml -> /usr/local/hadoop/conf/hdfs-site.xml
lrwxrwxrwx. 1 hadoop hadoop 38 Apr 5 14:16 mapred-site.xml -> /usr/local/hadoop/conf/mapred-site.xml
lrwxrwxrwx. 1 hadoop hadoop 38 Apr 5 14:16 masters -> /usr/local/hadoop/conf/masters

lrwxrwxrwx. 1 hadoop hadoop 38 Apr 5 14:16 slaves -> /usr/local/hadoop/conf/slaves

Next, you make some additions to the nutch-site.xml configuration file, as well as to the Hadoop core-site.
xml and mapred-site.xml files. When adding the code snippets, place each new property (identified by the opening
<property> and closing </property> tags) between the configuration tags in the appropriate file. You can find these
files (or links to them) in the Nutch configuration directory /usr/local/nutch/conf.

First, make the nutch-site.xml file changes. These define the name of your Nutch agent and the location of the
plug-ins folders, a source of extra modules:

<configuration>

<property>
<name>http.agent.name</name>
<value>NutchHadoopCrawler</value>
</property>

<property>
<name>plugin.folders</name>
<value>/usr/local/nutch/build/plugins</value>
</property>

</configuration>

Next, make those changes that are for the Hadoop core component (core-site.xml) in the Nutch configuration
directory /usr/local/nutch/conf/ to enable gzip compression with Hadoop:

<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,org.
apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.SnappyCodec</value>
</property>

Place the changes for the Hadoop Map Reduce component in the mapred-site.xml file in the Nutch configuration
directory /usr/local/nutch/conf/. These specify the memory limitations and the maximum attempt limits for both
Map and Reduce tasks, thereby helping to prevent a runaway task in terms of Map Reduce looping or memory use:

<property>
<name>mapred.child. java.opts</name>

<value>-Xmx1024m</value>
</property>

61

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

<property>
<name>mapreduce.map.maxattempts</name>
<value>4</value>

</property>

<property>
<name>mapreduce.reduce.maxattempts</name>
<value>4</value>

</property>

<property>
<name>mapred. job.map.memory.mb</name>
<value>4000</value>

</property>

<property>
<name>mapred.job.reduce.memory.mb</name>
<value>3000</value>

</property>

Each time your Hadoop configuration changes, you need to rebuild your Nutch release with the Apache Ant tool
(which I'll describe in a moment). The build is carried out from within the build subdirectory of the Nutch release,
and it creates release-specific .jar and .job files, which are used during the Nutch crawl. The .jar file contains the
released Nutch Java components built into a single file. The .job file contains all of the classes and plug-ins needed to
run a Nutch job.

From the Nutch build directory of the existing Nutch 1.8, you can list the .jar and .job files:

[hadoop@hcinn build]$ pwd
/usr/local/nutch/build

[hadoop@hcinn build]$ 1s -1 *.jar *.job
-Iw-r--r--. 1 hadoop hadoop 556673 Apr 5 15:35 apache-nutch-1.8.jar
-Iw-r--r--. 1 hadoop hadoop 79105966 Apr 5 18:42 apache-nutch-1.8.job

The Nutch Ant build re-creates these files and copies them to their runtime directories, as shown here (the
NUTCH_HOME path variable is defined below):

job file -> $NUTCH_HOME/runtime/deploy
jar file -> $NUTCH_HOME/runtime/local/lib

Note that I am using the Linux hadoop account to define the environment for Nutch. This is convenient because
itis also the user account that owns the Hadoop installation (see Chapter2). However, this user’s shell configuration
file (SHOME/.bashrc) needs to be extended to add environmental variables for Nutch. To do so, add the following text

at the end of the file, then log out of the Linux hadoop account and log back in to pick up the changes:

HHEHHEHE
# Set up Nutch variables

export NUTCH_HOME=/usr/local/nutch
export NUTCH_CONF_DIR=$NUTCH_HOME/conf

62

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

export CLASSPATH=.:$NUTCH_HOME/runtime/local/lib
export CLASSPATH=$CLASSPATH:$NUTCH_HOME/conf

export PATH=$PATH:$NUTCH HOME/bin

You can now build Nutch using Ant. Move to the Nutch installation directory (/usr/local/nutch) using the
NUTCH_HOME variable you just set up. Issue the ant command to start the build. The build output will be copied to the
session window:

[hadoop@hcinn nutch]# cd $NUTCH_HOME
[hadoop@hcinn nutch]# ant
Buildfile: build.xml

BUILD SUCCESSFUL
Total time: 11 minutes 15 seconds

It can take quite a while to run the build, depending on the volume of changes and the age of the build; for
instance, this example took me more than 11 minutes. Checking the job file in the Nutch build directory shows (by
date and size) when the Nutch job file has been re-created:

[hadoop@hcinn home]$ cd $NUTCH HOME/build
[hadoop@hcinn build]$ 1s -1 *.job
-IW-T--r--. 1 hadoop hadoop 79104396 Apr 1 18:34 apache-nutch-1.8.job

With Nutch installed and ready, you can move on to installing Solr, in preparation for using these tools together.

Solr Installation

To begin your installation, download Solr from the Solr website (https://lucene.apache.org/solr). For example,
I selected the zipped file to download and easily unpacked it using the Linux unzip command:

[root@hcinn Downloads]# 1ls -1 solr-4.7.0.zip
-Iw-IW-I--. 1 hadoop hadoop 157644303 Mar 29 13:08 solr-4.7.0.zip

The release unpacks to a directory called solr-4.7.0 in the same location as the .zip file.
[root@hcinn Downloads]# unzip solr-4.7.0.zip

[root@hcinn Downloads]# 1s -1d solr-4.7.0
drwxr-xr-x. 7 root root 4096 Feb 22 08:39 solr-4.7.0

Move the release to /usr/local/ (the same location as your Nutch and Hadoop software) and change its
ownership and group membership to hadoop. (Remember to use the recursive -R flag with the Linux chown
command.) As with the other software releases, a symbolic link called “solr” is created to point to the installed release.

root@hcinn Downloads]# mv solr-4.7.0 /usr/local
root@hcinn Downloads]# cd /usr/local

root@hcinn locall# chown -R hadoop:hadoop solr-4.7.0
root@hcinn local]# 1ln -s solr-4.7.0 solr

[
[
[
[

63

www.it-ebooks.info


https://lucene.apache.org/solr
http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

A quick check of the installation under /usr/local/ shows the solr installation directory as owned by Hadoop and
the solr link pointing to it:

[root@hcinn locall# 1s -1d *solr*
lrwxrwxrwx. 1 root root 10 Mar 29 13:11 solr -> solr-4.7.0
drwxr-xr-x. 7 hadoop hadoop 4096 Feb 22 08:39 solr-4.7.0

At this point you have Solr installed in the correct location, and you are ready to configure it. You can set up a
variable in the hadoop user’s Bash shell to point to the Solr installation. Add the following text to the bottom of the
Linux hadoop account configuration file $HOME/.bashrc. This will define the Bash shell environment variable
SOLR_HOME to be /usr/local/solr.

FHESHHHR IR R A
# Set up Solr variables

export SOLR_HOME=/usr/local/solr

Next, configure Solr to integrate it with Nutch. Some of the Nutch configuration files need to be copied to the Solr
configuration directory; copy the files schema.xml and schema-solr4.xml across:

[hadoop@hcinn ~]$ cd $NUTCH HOME/conf
[hadoop@hcinn conf]$ cp schema.xml $SOLR_HOME/example/solr/collectioni/conf
[hadoop@hcinn conf]$ cp schema-solr4.xml $SOLR_HOME/example/solr/collectioni/conf
These schema files define the field types and fields that the documents being indexed will contain. Solr uses the
information in the schema files to help it parse and index the data that it processes.
Next, add a few extra fields at the end of the <fields> section of schema.xml:
<!-- fields for Nutch -->
<field name="_version_" type="long" indexed="true" stored="true"/>
<field name="text" type="string" indexed="true" stored="true"/>
The filter factory algorithm currently listed in the file is the EnglishPorterFilterFactory, which has been
deprecated. To replace it, you need to specify the SnowballPorterFilterFactory; originally devised by by
Martin Porter, the algorithm is used as a filter to prepare document tokens before they are processed by Solr.
Look for this line:
<filter class="solr.EnglishPorterFilterFactory" protected="protwords.txt"/>
And replace it with this one:
<filter class="solr.SnowballPorterFilterFactory" protected="protwords.txt" language="English"/>
Now try starting Solr to test that it will work:
[hadoop@hcinn conf]$ cd $SOLR_HOME/example/
[hadoop@hcinn example]$ java -jar start.jar &

The & symbol as the end of the line means that the Solr job you are running will run in the background. Look for
any errors in the output that are displayed in the session window.

64

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

You can also check the log file under $SOLR_HOME/example/logs/. If there are no errors, then try connecting to
the Solr admin client at:

http://localhost:8983/solr/admin/

The Solr admin client (Figure 3-1) contains logging and administrative functions, as well as the core selector that
you will use shortly to examine the results of Solr indexing.

J J
Apache "’ = Instance = System O

SOI r & Start 6 minutes ago Physical Memory

@ Dashboard = Versions

3 Logging sois SOIr-spec4.7.0

st ; solr-impl 4.7.0 1570806 - simon - 2014-02-22 08:36:23
:t Core Admin Swap Space

& lucene-sped.0

lucene-imgl.0 1570806 - simon - 2014-02-22 08:25:23

Java Properties

Thread Dump

File Descriptor Count

VM = JVM-Memory

Runtime Sun Microsystems Inc. Open]DK Client VM (1.6.0_...

i Processois

Figure 3-1. The Solr administration user interface

Now that you have Solr running without error and you can connect to its admin client, you are ready to run Nutch
and do a simple web crawl using Hadoop as the storage mechanism.

Running Nutch with Hadoop 1.8

You are ready to run the first crawl using Nutch and Hadoop. For doing this, I have created a seed file on the Linux file
system containing the initial website to crawl. I have also added a single URL to the file, my own website.!

[hadoop@hcinn nutch]$ 1s -1 urls
total 4
-Iw-Iw-r--. 1 hadoop hadoop 19 Apr 5 13:14 seed.txt

'T own the site and it’s contents, so there are no issues with processing the site contents and displaying them here.

65

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

This is a small-scale example, so you will start with a single URL to follow. In a real situation, you would populate
the crawl database with a large volume of URLSs by using a much larger seed file. You can also download seed file
databases from the Internet. The file at http://rdf.dmoz.org/rdf/content.rdf.u8.gz has around 3 million URLs.

No matter the size of your seed file, you need to copy it (seed.txt, in this case) from the Linux file system to HDFS
(to the nutch/urls directory):

[hadoop@hcinn nutch]$ hadoop dfs -put urls/seed.txt nutch/urls
[hadoop@hcinn nutch]$ hadoop dfs -1s nutch/urls

Found 1 items

-Iw-r--r-- 1 hadoop supergroup 19 2014-04-05 13:19
/user/hadoop/nutch/urls/seed.txt

Found in $NUTCH_HOME/runtime/deploy/bin, the Nutch crawl command is actually a shell script that
automates the sequence of Nutch operations, as follows:
1. Inject. Inserts a URL into the Nutch crawl database.

2. Generate. Creates a fetch list from the Nutch database for the crawl. This creates a
segment directory within the crawl database for fetch processing.

Fetch. Runs the fetcher against the segment created in step 2.

Parse. Processes the results of the fetch.

Update db. Updates the Nutch crawl database with the results of the parse.
Invertlinks. Creates a link mabp, listing incoming links for this URL.
Dedup. Deletes duplicate documents that are in the index.

Index. Runs the indexer on the database.

© L® N 9 g » w

Clean. Cleans up after the crawl cycle.

For the actual crawl itself, the syntax of the crawl command is:
crawl <seedDir> <crawlDir> <solrURL> <numberOfRounds>

The seed directory, nutch/urls, will be sourced from HDFS, which is why you copied the URL list to HDFS.
The Solr URL gives Nutch a link to the Solr instance you started in the last section. The number of rounds is actually
the depth that the crawl will process to.

The crawl script runs a couple of steps to decide whether it should use Hadoop for storage. First, it looks for the
job file:

mode=local
if [ -f ../*nutch-*.job ]; then

mode=distributed
fi

66

www.it-ebooks.info


http://rdf.dmoz.org/rdf/content.rdf.u8.gz
http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Then it checks to determine whether it can access Hadoop:

# check that hadoop can be found on the path
if [ $mode = "distributed" ]; then
if [ $(which hadoop | wc -1 ) -eq 0 ]; then
echo "Can't find Hadoop executable. Add HADOOP_HOME/bin to the path or run in local mode."
exit -1;
fi
fi

Given these checks, if Hadoop is available, it will be used for storage; otherwise, the Linux file system will be used.
You can now run the crawl as follows:

cd $NUTCH_HOME/runtime/deploy/bin
./crawl nutch/urls crawl http://hcinn:8983/solxr/ 2

This gives you the Nutch crawl output:

14/04/06 16:56:22 INFO crawl.Injector: Injector: starting at 2014-04-06 16:56:22
14/04/06 16:56:22 INFO crawl.Injector: Injector: crawlDb: /user/hadoop/crawl/crawldb
14/04/06 16:56:22 INFO crawl.Injector: Injector: urlDir: nutch/urls

14/04/06 16:56:22 INFO crawl.Injector: Injector: Converting injected urls to crawl db entries.
14/04/06 16:56:26 INFO util.NativeCodeloader: Loaded the native-hadoop library
14/04/06 16:56:26 INFO mapred.FileInputFormat: Total input paths to process : 1
14/04/06 16:56:26 INFO mapred.JobClient: Running job: job_201404061342_0056

14/04/06 16:56:27 INFO mapred.JobClient: map 0% reduce 0%

14/04/06 16:56:43 INFO mapred.JobClient: map 50% reduce 0%

14/04/06 16:56:47 INFO mapred.JobClient: map 100% reduce 0%

14/04/06 16:56:51 INFO mapred.JobClient: map 100% reduce 33%

14/04/06 16:56:52 INFO mapred.JobClient: map 100% reduce 100%

14/04/06 16:56:53 INFO mapred.JobClient: Job complete: job_201404061342_0056

14/04/06 17:05:53 INFO mapred.JobClient: Counters: 30

14/04/06 17:05:53 INFO mapred.JobClient: Job Counters

14/04/06 17:05:53 INFO mapred.JobClient: Launched reduce tasks=1

14/04/06 17:05:53 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=10036

14/04/06 17:05:53 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving
slots (ms)=0

14/04/06 17:05:53 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0

14/04/06 17:05:53 INFO mapred.JobClient: Rack-local map tasks=1

14/04/06 17:05:53 INFO mapred.JobClient: Launched map tasks=2

14/04/06 17:05:53 INFO mapred.JobClient: Data-local map tasks=1

14/04/06 17:05:53 INFO mapred.JobClient: SLOTS MILLIS REDUCES=8334

14/04/06 17:05:53 INFO mapred.JobClient: File Input Format Counters

14/04/06 17:05:53 INFO mapred.JobClient: Bytes Read=3746

14/04/06 17:05:53 INFO mapred.JobClient: File Output Format Counters

14/04/06 17:05:53 INFO mapred.JobClient: Bytes Written=0

14/04/06 17:05:53 INFO mapred.JobClient: FileSystemCounters

14/04/06 17:05:53 INFO mapred.JobClient: FILE BYTES READ=6

67

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

14/04/06 17:05:53 INFO mapred.JobClient: HDFS_BYTES_ READ=4096

14/04/06 17:05:53 INFO mapred.JobClient: FILE BYTES WRITTEN=246622

14/04/06 17:05:53 INFO mapred.JobClient: Map-Reduce Framework

14/04/06 17:05:53 INFO mapred.JobClient: Map output materialized bytes=12

14/04/06 17:05:53 INFO mapred.JobClient: Map input records=43

14/04/06 17:05:53 INFO mapred.JobClient: Reduce shuffle bytes=12

14/04/06 17:05:53 INFO mapred.JobClient: Spilled Records=0

14/04/06 17:05:53 INFO mapred.JobClient: Map output bytes=0

14/04/06 17:05:53 INFO mapred.JobClient: Total committed heap usage (bytes)=360120320
14/04/06 17:05:53 INFO mapred.JobClient: CPU time spent (ms)=3040

14/04/06 17:05:53 INFO mapred.JobClient: Map input bytes=3431

14/04/06 17:05:53 INFO mapred.JobClient: SPLIT_RAW_BYTES=242

14/04/06 17:05:53 INFO mapred.JobClient: Combine input records=0

14/04/06 17:05:53 INFO mapred.JobClient: Reduce input records=0

14/04/06 17:05:53 INFO mapred.JobClient: Reduce input groups=0

14/04/06 17:05:53 INFO mapred.JobClient: Combine output records=0

14/04/06 17:05:53 INFO mapred.JobClient: Physical memory (bytes) snapshot=408395776
14/04/06 17:05:53 INFO mapred.JobClient: Reduce output records=0

14/04/06 17:05:53 INFO mapred.JobClient: Virtual memory (bytes) snapshot=4121174016
14/04/06 17:05:53 INFO mapred.JobClient: Map output records=0

14/04/06 17:05:53 INFO indexer.CleaningJob: CleaningJob: finished at 2014-04-06 17:05:53, elapsed: 00:00:31

This output has been clipped because it is too long to include all of it here. As long as you get to the CleaningJob
line, you know that the cycle has completed.

Look for any warnings and errors in this output. Common errors relate to undefined or unexpected document
tokens being found while crawling. Updating the schema.xml before starting Solr or attempting the crawl will
minimize these. Also, check the Hadoop logs and the Nutch log under:

$HADOOP_PREFIX/logs/
$NUTCH_HOME/runtime/local/logs/

You can now check the Hadoop file system and see the data being stored there:

[hadoop@hcinn nutch]$ hadoop fs -1s /user/hadoop
Found 2 items

drwxr-xr-x - hadoop supergroup 0 2014-04-06 14:07
/user/hadoop/crawl
drwxr-xr-x - hadoop supergroup 0 2014-04-06 11:46
/user/hadoop/nutch

The Nutch crawl directory stores the current and old data in subdirectories:
[hadoop@hcinn nutch]$ hadoop fs -1s /user/hadoop/crawl/crawldb

Found 2 items

drwxr-xr-x - hadoop supergroup 0 2014-04-06 14:16
/user/hadoop/crawl/crawldb/current
drwxr-xr-x - hadoop supergroup 0 2014-04-06 14:07

/user/hadoop/crawl/crawldb/old

68

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

The segments directory has a list of the segments that have been processed:
[hadoop@hcinn nutch]$ hadoop fs -1s /user/hadoop/crawl/segments

Found 2 items

drwxr-xr-x - hadoop supergroup 0 2014-04-06 14:08
/user/hadoop/crawl/segments/20140406140827
drwxr-xr-x - hadoop supergroup 0 2014-04-06 14:17

/user/hadoop/crawl/segments/20140406141732

You now have data in Solr. To see it, go to the Solr admin web page at http://localhost:8983/solr/ and select
“collectionl” in the core selector drop-down menu (halfway down the left side). Figure 3-2 shows that the sample data
has loaded into Solr. Specifically, under the Replication heading on the right, you can see that around 10 KB of data
loaded from the short crawl of the Semtech Solutions web page. Although this is a comparatively small sum of data for
a large-scale distributed system, it serves to prove that the crawl executed and indexed correctly.

779

i /Y il Statistics i Instance
o
Sol r r Last Modified: 14 minutes ago CWD: fusrflocal/solr4.7.0/example
Num Docs: 1 Instance: Jusrflocal/solr-4.7 (Wexample/solrfcollectionl
Dashboard Max Doc: 1 Data: fusrlocal/solr-4.7.0/example/solrfcollectionl/data
ashboarc
- Heap Memory 359 Index: [fusrflocal/solr-4. 7.0fexample/solrfcollectionl
L3 Legging Usage /datajindex
Deleted Docs: 0
F . Admy Impl: org.apache solrcore NRTCachingDirectoryfactory
it Core Admin Version: 3 F 9-ap g ¥l ¥
Java Properties Segment 1
Count
Thread Dump
Optimized:
Current:
collectionl -
* Replication (Master)
4 Overview
|
Master (Searching) 1396760717718 2 1041 KB
Master (Replicable) 1396760717728 2
E3 Admin Extra
=

Documentation  #f Issue Tracker @& IRC Channel Community forum Solr Query Syntax
Figure 3-2. The Solr sample data after processing

To examine some of the actual data in Solr, you select the Query option (bottom left). An Execute Query option
will appear; select it to see the crawl results. Figure 3-3 shows a sample of the data that Solr has indexed from the
website at the single URL specified in the seed file.

69

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

/sTicu

{
common “responseHeader”: {

Apache q “status”: 0,

Solr i

“indent": "true",

<
- n\‘

@ Dashboard

q: s
Loqain fq "_": "1396761612187",
=zt a9ine =I_J "wt": "json"
& Core Admin - }
- ; }.
Java Properties SR
tart, row .
Thread Dump S e numFound”: 1,
0 10 "start”: 0,
fl "docs": [
collectionl > {
"title": "semtech-solutions support web site",
' df

“segment”: "20140406165833",
i "boost”: 1.61928039,

Raw Query Parameters "digest": "876abchSedSdelBecded76cadbSdeds3”,
keyl=vall&key2=val2 “tstamp”: "2014.04-06T04:58:52.5872",
"id": "http://www.semtech-solutions.co.nz/",
wt
" - "url®: "http://www.semtech-solutions.co.nz/",
2500 | " version_": 1464609762277589000
= v indent }
M 1
“ ) debugQuery }
- Query » }
udismax

Figure 3-3. Solr with crawl results

So, that'’s it for architecture example 1. You have connected Hadoop 1.2.1 to Nutch 1.8 and indexed the data using
Solr 4.7. Note that during the crawl script, Nutch implicitly checked for Hadoop before using it; otherwise, it would have
used the Linux file system for storage. That is an important point to recognize here because, in the second architectural
example, using Nutch 2.x, you will explicitly configure Nutch to use HBase, and therefore Hadoop as well.

Architecture 2: Nutch 2.x

In the first architecture example, you used Nutch 1.x. When you executed a crawl, Nutch used Hadoop because it
automatically checked whether you were in a distributed environment and it attempted to use Hadoop for storage.
The architecture of this next example enables you to specify the storage you will use for your Nutch crawl. Nutch 2.x
uses Apache Gora (gora.apache.org) to abstract the storage layer. You will also use Apache HBase with Nutch. Using
Hadoop and HDES for storage, Apache HBase (hbase.apache.org) offers real-time read/write random access to

big data. Should you later need to choose a different storage option, Gora provides the flexibility to do that; you just
change the Gora configuration. For instance, you might decide to use the Apache Accumulo database
(accumulo.apache.org).

70

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Nutch and Solr Configuration

You have already learned how to install Nutch and Solr in the first architecture example, so I will be brief here. To
begin, you set up a little configuration in the Linux hadoop account’s $HOME/.bashrc for Solr and Nutch.

The following Bash file defines the Hadoop and Java variables; it also creates some useful aliases for Hadoop
commands, like s (saves typing). In addition, it sets up the shell search path (PATH) and defines some variables for
Solr and Nutch.

[hadoop@hcirim2 ~]$ cd $HOME
[hadoop@hcirim2 ~]$ 1s -1 .bashrc*
-IW-I--Y--. 1 hadoop hadoop 1142 Apr 5 15:57 .bashrc

[hadoop@hcirim2 ~]$ cat .bashrc

FHESHHHR I R A
# Set Hadoop related env variables

export HADOOP_PREFIX=/usr/local/hadoop

# set JAVA HOME (you will also set a hadoop specific value later)
export JAVA HOME=/usr/1ib/jvm/jre-1.6.0-openjdk

# some handy aliases and functions
unalias fs 2>/dev/null

alias fs="hadoop fs"

unalias hls 2>/dev/null

alias hls="fs -1"

unalias cdh 2>/dev/null

alias cdh="cd $HADOOP_PREFIX"

# add hadoop to the path

export PATH=$HADOOP_PREFIX:$PATH
export PATH=$HADOOP_PREFIX/bin:$PATH
export PATH=$HADOOP_PREFIX/sbin:$PATH

A
# Set up Nutch and Solr variables

export NUTCH_HOME=/usr/local/nutch
export NUTCH_CONF_DIR=$NUTCH_HOME/conf
export SOLR_HOME=/usr/local/solr
export PATH=$PATH:$NUTCH_HOME/bin
You now install Nutch 2.x from Apache on the machine hclrlm2, because that is where ZooKeeper is already
installed. For example, I download and unpack the appropriate file from the Nutch website

(http://nutch.apache.org/downloads.html):

[hadoop@hcirim2 Downloads]$ 1ls -1 apache-nutch-2.2.1-src.tar.gz
-IW-IW-T--. 1 hadoop hadoop 3839858 Apr 7 18:32 apache-nutch-2.2.1-src.tar.gz

71

www.it-ebooks.info


http://nutch.apache.org/downloads.html
http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

As for example 1, you choose the gzipped tar file; using the gunzip and tar xvf Linux commands, it is easily
unpacked. The tar command unpacks the file into the directory named apache-nutch-2.2.1:

[hadoop@hcirim2 Downloads]$ gunzip apache-nutch-2.2.1-src.tar.gz
[hadoop@hcirim2 Downloads]$ tar xvf apache-nutch-2.2.1-src.tar

Next, you move it to its home location and set up a symbolic link called “nutch” to simplify the path. Also, you use
the Linux chown command with a recursive (-R) switch to change ownership of all files and directories to the Linux
hadoop account.

[root@hclrim2 Downloads]# mv apache-nutch-2.2.1 /usr/local
[root@hcirim2 Downloads]# cd /usr/local

[root@hcirim2 Downloads]# chown -R hadoop:hadoop apache-nutch-2.2.1
[root@hcirim2 locall# 1n -s apache-nutch-2.2.1 nutch

[root@hcirim2 locall]# 1s -1d *nutch*

drwxrwxr-x. 7 hadoop hadoop 4096 Apr 7 18:33 apache-nutch-2.2.1
lrwxrwxrwx. 1 root root 18 Apr 7 18:35 nutch -> apache-nutch-2.2.1

Okay, so you have a simple environment set up. Next, you set up the Nutch configuration files:

[hadoop@hcirim2 ~]$ cd $NUTCH_CONF DIR ; pwd
/usr/local/nutch/conf

Note that the configuration directory for Nutch is under /usr/local/nutch/conf/, as just shown. Extra Nutch
configuration properties will now be added to these files for Nutch V2. For example, storage.data.store.class indicates
that you are going to use Gora and HBase for storage. (In the Nutch 1.8 architecture, you specified the plug-in folders
and agent name options instead.)

<property>
<name>http.agent.name</name>
<value>NutchHadoopCrawler</value>
</property>

<property>
<name>storage.data.store.class</name>
<value>org.apache.gora.hbase.store.HBaseStore</value>
</property>

<property>
<name>plugin.folders</name>
<value>/usr/local/nutch/build/plugins</value>
</property>

As before, you copy the Nutch configuration files into the Solr configuration directory:

[hadoop@hcirim2 ~]$ cd $NUTCH HOME/conf
[hadoop@hcirim2 conf]$ cp schema.xml $SOLR_HOME/example/solr/collection1/conf
[hadoop@hcirim2 conf]$ cp schema-solr4.xml $SOLR_HOME/example/solr/collectioni/conf

Now, you need to make some changes to the schema file, schema.xml. As before, find the line that specifies the
deprecated EnglishPorterFilterFactory:

<filter class="solr.EnglishPorterFilterFactory" protected="protwords.txt"/>

72

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Update it to the following to provide filtering functionality for the parsed tokens:

<filter class="solr.SnowballPorterFilterFactory" protected="protwords.txt"
language="English"/>

Add the following lines at the end of the <fields> section to define some extra field types in the documents to be
parsed. (By making these changes you will avoid Nutch document parsing errors):

<!-- fields for Nutch -->
<field name="_version " type="long" indexed="true" stored="true"/>
<field name="text" type="string" indexed="true" stored="true"/>

Build Nutch as you did in the last Nutch release:

[hadoop@hcirim2 nutch]$ pwd
/usr/local/nutch
[hadoop@hcirim2 nutch]$ ant

Buildfile: build.xml

BUILD SUCCESSFUL
Total time: 1 minute 47 seconds

Note: That was a quick build. (As you remember, the last Nutch build took more than 11 minutes). With Nutch
built, you are ready to install Apache HBase, the Hadoop-based database, and test it.

HBase Installation

The pieces are moving into place for this second architecture example. Nutch is installed and built, as well as
configured to use Gora and HBase. The Gora component was included with the Nutch 2.x release, and Apache
ZooKeeper was installed already as part of Chapter2’s installation. Now you need to install Apache HBase.
To demonstrate its use, I show how to install HBase on a single server.

You can download HBase from the HBase website (hbase.apache.org). After clicking the Downloads option on
the left of the page, you may be directed to an alternative mirror site. That’s fine—just follow the link. (I downloaded
the 0.90.4 release). Again, it is a gzipped tar file that needs to be unpacked.

[hadoop@hcirim2 Downloads]$ 1ls -1 hbase-0.90.4.tar.gz
-Iw-IW-I--. 1 hadoop hadoop 37161251 Apr 8 18:36 hbase-0.90.4.tar.gz

[hadoop@hcirim2 Downloads]$ gunzip hbase-0.90.4.tar.gz
[hadoop@hcirim2 Downloads]$ tar xvf hbase-0.90.4.tar

Move the unpacked release to /usr/local, and change the ownership to the Linux hadoop user recursively
with chown -R. Then, create a symbolic link called “hbase” under /usr/local/ to simplify both the path and the
environment setup.

root@hcirim2 Downloads]# mv hbase-0.90.4 /usr/local
[root@hclrim2 Downloads]# cd /usr/local

[root@hcirim2 locall# chown -R hadoop:hadoop hbase-0.90.4
[root@hcirim2 locall# 1n -s hbase-0.90.4 hbase

73

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

[root@hcirim2 locall# 1ls -1d *hbase*
lrwxrwxrwx. 1 root root 12 Apr 8 18:38 hbase -> hbase-0.90.4
drwxrwxr-x. 8 hadoop hadoop 4096 Apr 8 18:36 hbase-0.90.4

Next, set up the HBase configuration. You'll find the configuration files under /usr/local/hbase/conf, as shown:

[hadoop@hcirim2 conf]$ pwd

/usr/local/hbase/conf

[hadoop@hcirim2 conf]$ 1s

hadoop-metrics.properties hbase-site.xml regionservers
hbase-env.sh log4j.properties

You will need to change the contents of the hbase-site.xml file. Specifically, the value of hbase.rootdir needs
to point to the name node on the master server. This allows HBase to store data on HDFS. Also, the distributed flag
(hbase.cluster.distributed) tells HBase that you are using a cluster.

You also need to specify the HBase master address and port number, as well as the value of the region server
port (i/o server) and the fact that it is on a cluster. Other properties to define are the address of the HBase temporary
directory, details for HBase access to ZooKeeper, and limits for ZooKeeper operation.

To start, you add the properties that follow to the hbase-site.xml file between the configuration open
(<configuration>) and configuration closing (</configuration>) XML tags:

<configuration>

<property>
<name>hbase.rootdir</name>
<value>hdfs://hcinn:54310/hbase</value>
</property>

<property>
<name>hbase.master</name>
<value>hc1rim2:60000</value>
</property>

<property>
<name>hbase.master.port</name>
<value>60000</value>
</property>

<property>
<name>hbase.regionserver.port</name>
<value>60020</value>

</property>

<property>
<name>hbase.cluster.distributed</name>

<value>true</value>
</property>

74

www.it-ebooks.info


http://www.it-ebooks.info/

<property>
<name>hbase.tmp.dir</name>
<value>/var/hbase/</value>
</property>

<property>
<name>hbase.zookeeper.quorum</name>
<value>hcirimi,hcirim2,hcirim3</value>
</property>

<property>
<name>dfs.replication</name>
<value>1</value>

</property>

<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>

</property>

<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/var/lib/zookeeper</value>

</property>

<property>
<name>zookeeper.session.timeout</name>
<value>1000000</value>

</property>

<property>
<name>hbase.client.scanner.caching</name>
<value>6000</value>

</property>

<property>
<name>hbase.regionserver.lease.period</name>
<value>2500000</value>

</property>

<property>
<name>hbase.zookeeper.property.maxClientCnxns</name>
<value>0</value>
</property>
<property>
<name>hbase.zookeeper.property.tickTime</name>
<value>8000</value>
</property>

</configuration>

www.it-ebooks.info

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

75


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

You also need to tell HBase that it will not be managing the ZooKeeper quorum, because ZooKeeper is already
running. To do so, set up the following variable in the Linux hadoop account environment (I have defined this in my
environment via an entry in $SHOME/.bashre, as follows):

export HBASE MANAGES ZK=false

You must make sure that Hadoop and HBase are using the same version of Hadoop core libraries, so issue a pair
of cd and 1s commands to check the versions:

[hadoop@hcirim2 1ib]$ cd /usr/local/hbase/1ib
[hadoop@hcirim2 1ib]$ 1s -1 hadoop-core-*.jar
-TwxIwxr-x. 1 hadoop hadoop 2707856 Feb 10 2011 hadoop-core-0.20-append-1r1056497.jar

[hadoop@hcirim2 hadoop]$ cd $HADOOP_PREFIX
[hadoop@hcirim2 hadoop]$ 1s -1 hadoop-core-*.jar
-Iw-IW-I--. 1 hadoop hadoop 4203147 Jul 23 2013 hadoop-core-1.2.1.jar

As you can see, the versions don’t match. The HBase Hadoop core file (hadoop-core-0.20-append-r1056497.
jar) is at version 0.20, while the Hadoop jar file (hadoop-core-1.2.1.jar) is at version 1.2.1. Currently, if you tried to run
HBase, it would fail with a connect exception.

You already know from the Hadoop installation you carried out in Chapter 2 that the Hadoop installation is
version 1.2.1. To work with the Hadoop installation, HBase must use the same version of Hadoop libraries. You copy
this library into place, as follows:

[hadoop@hc1rim2 hadoop]$ cp $HADOOP_PREFIX/hadoop-core-*.jar  /usr/local/hbase/lib
[hadoop@hcirim2 hadoop]$ cd  /usr/local/hbase/lib

[hadoop@hcirim2 hadoop]$ mv hadoop-core-0.20-append-r1056497.jar hadoop-core-0.20-append-11056497.
jar.save

Check the version of the Hadoop commons configuration jar file being used by HBase. This library assists with
the reading of configuration and preference files. If the version is different, then it can be updated by copying the
Hadoop version into place. (This will avoid errors like “NoClassDefFoundError” when you try to run HBase.) Use the
command sequence:

[root@hcirim2 1ib]# cd /usr/local/hadoop/lib/
[root@hcirim2 1ib]# 1s commons-configuration*
/usr/local/hadoop/1ib/commons-configuration-1.6.jar

That shows that the Hadoop version of this file is 1.6. You copy it to the HBase library area:

[root@hcirim2 lib]# cd  /usr/local/hbase/lib
[root@hcirim2 1lib]# cp /usr/local/hadoop/lib/commons-configuration* .

Now, you can try starting HBase by using the start script in the HBase bin directory:

[hadoop@hcirim2 ~]$ cd /usr/local/hbase
[hadoop@hclrim2 hbase]$ ./bin/start-hbase.sh

starting master, logging to
/usr/local/hbase/logs/hbase-hadoop-master-hcirim2.out

76

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Note that HBase has given the address of its log file, so you can check the logs for errors. The logs files look like this:

[hadoop@hcirim2 hbase]$ 1s -1 /usr/local/hbase/logs/

total 28
-YW-IW-Y--. 1 hadoop hadoop 11099 Apr 32 hbase-hadoop-master-hcirim2.log
-IwW-IW-I--. 1 hadoop hadoop 0 Apr

-IwW-IW-I--. 1 hadoop hadoop 78 Apr
-Iw-IwW-I--. 1 hadoop hadoop 250 Apr

30 hbase-hadoop-regionserver-hcirim2.log

8:

8:32 hbase-hadoop-master-hcirim2.out

8:

8:30 hbase-hadoop-regionserver-hcirim2.out

91
91
91
91

A few typical errors reported might be related to ZooKeeper, such as:

2014-04-13 14:53:54,827 WARN org.apache.zookeeper.ClientCnxn: Session 0x14558da65420000 for server
null, unexpected error,

closing socket connection and attempting reconnect

java.net.ConnectException: Connection refused

This indicates that either ZoloKeeper is down or there are network issues. Make sure that all of your ZooKeeper
servers are up, and check the ZooKeeper logs.

A good way to see that HBase is working is to start a shell and create a table. For example, start the shell as
follows:

[root@hcirim2 bin]# pwd

/usr/local/hbase/bin

[root@hcirim2 bin]# ./hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell

Version 0.90.4, 11150278, Sun Jul 24 15:53:29 PDT 2011

hbase(main):001:0>

Now, create a table named “employer” with a single column named “empname” for the name of the employee
and insert some data:

hbase(main):001:0> create 'employer', 'empname'
0 row(s) in 0.5650 seconds

Insert a single row into the table column created with the employee name "Evans D"; this is row 1:

hbase(main):004:0> put 'employer', 'rowl', 'empname', 'Evans D'
0 row(s) in 0.0130 seconds

Check that this data is accessible from the employee table:
hbase(main):005:0> get 'employer', 'rowi'
COLUMN CELL
empname: timestamp=1397028137988, value=Evans D

1 row(s) in 0.0330 seconds

hbase(main):006:0> exit

77

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

HBase seems to be running okay, but you should check that HBase is storing the data to HDFS. To do so, use the
Hadoop file system 1s command. HBase should have created a storage directory on HDFS called “/hbase,” so you can
check that:

[hadoop@hcinn logs]$ hadoop dfs -1s /hbase
Found 5 items

drwxr-xr-x - hadoop supergroup 0 2014-04-12 19:55 /hbase/-R0O0T-
drwxr-xr-x - hadoop supergroup 0 2014-04-12 19:55 /hbase/.META.
drwxr-xr-x - hadoop supergroup 0 2014-04-12 19:57 /hbase/.logs
drwxr-xr-x - hadoop supergroup 0 2014-04-12 19:57 /hbase/.oldlogs
-Iw-r--r-- 3 hadoop supergroup 3 2014-04-12 19:55 /hbase/hbase.version

Gora Configuration

Nutch and Solr are ready, HBase and ZooKeeper are ready, and HBase is storing its data to HDFS. Now it is time to
connect Nutch to HBase using the Apache Gora module that was installed with Nutch 2.x. Gora (Gora.apache.org)
provides an in-memory data model for big data and data persistence. It allows you to choose where you will store the
data that Nutch collects, because it supports a variety of data stores. In this section, you will configure Gora to store
Nutch 2.x crawl data to HBase.

You can now set up the Gora connection for Nutch. First, you need to edit the nutch-site.xml file:

[hadoop@hcirim2 conf]$ pwd
/usr/local/nutch/conf
[hadoop@hcirim2 conf]$ vi nutch-site.xml

Specifically, you add a property called “storage.data.store.class” to specify that HBase will be the default storage
for Nutch Gora. As before, make sure that you add the property to the file so that it sits between the xml open and
close configuration tabs:

<property>
<name>storage.data.store.class</name>
<value>org.apache.gora.hbase.store.HBaseStore</value>
<description>Default class for storing data</description>
</property>

Check the Nutch Ivy configuration. Apache Ivy (http://ant.apache.org/ivy/) is a dependency manager that is
integrated with Apache Ant. Intended for Java-based systems, it is mostly used for system build management.

[hadoop@hcirim2 ivy]$ pwd
/usr/local/nutch/ivy
[hadoop@hcirim2 ivy]$ vi ivy.xml

Make sure that this line is uncommented so that Ivy is configured to use Gora. This is what the line looks like after
the change:

<dependency org="org.apache.gora" name="gora-sql" rev="0.3" conf="*->default" />

78

www.it-ebooks.info


http://ant.apache.org/ivy/
http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Make sure that the gora.properties file is set up correctly, as shown:

[hadoop@hcirim2 nutch]$ pwd
/usr/local/nutch
[hadoop@hcirim2 nutch]$ vi ./conf/gora.properties

Check that Gora is the default data store. The line here should already exist in the file, but it may be commented
out. Uncomment or add the line. This will set the default Gora data store to be Apache HBase:

gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

Remember that each time you change the Nutch configuration, you need to re-compile Nutch. Do so now, so that
the Gora changes take effect:

[hadoop@hcirim2 nutch]$ pwd
/usr/local/nutch

[hadoop@hcirim2 nutch]$ ant runtime
Buildfile: build.xml

BUILD SUCCESSFUL

Total time: 13 minutes 39 seconds

Running the Nutch Crawl

You have managed to start HBase and you know that HBase is storing its data within Hadoop HDFS. You have a
ZooKeeper quorum running, and HBase is able to connect to it without error. Solr has been started and is running
without error on port 8983. Additionally, Nutch Gora has been configured to use HBase for storage. So now you are
ready to run a Nutch crawl, move to the Nutch home directory as shown by the Linux cd command:

[hadoop@hcirim2 nutch]$ cd $NUTCH_HOME
[hadoop@hcirim2 nutch]$ pwd
/usr/local/nutch

Now make sure that the seed URL is ready in HDFS. (You know it is ready because you stored it there for the
Nutch 1.x crawl.) Checking the contents of the seed file, you can see that it has a single URL line (my website address).

You could have put a few million lines into this file for a larger crawl, but you can try that later.

[hadoop@hcirim2 hadoop]$ hadoop dfs -cat /user/hadoop/nutch/urls/seed.txt
http://www.semtech-solutions.co.nz

You can determine the syntax for the crawl by executing the script name without parameters. The error message
tells you how it should be run:

[hadoop@hcirim2 nutch]$ cd runtime/deploy/bin
[hadoop@hcirim2 bin]$ ./crawl
Missing seedDir : crawl <seedDir> <crawlID> <solrURL> <numberOfRounds>

The crawl is executed in the same format as for Nutch 1.x, and the output is shown as follows:

[hadoop@hcinn bin]$ ./crawl urls crawll http://hcirim2:8983/solr/ 2

79

www.it-ebooks.info


http://www.semtech-solutions.co.nz/
http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

14/04/13 17:28:10 INFO crawl.InjectorJob: InjectorJob: starting at 2014-04-13 17:28:10

14/04/13 17:28:10 INFO crawl.InjectorJob: InjectorJob: Injecting urlDir: nutch/urls

14/04/13 17:28:11 INFO zookeeper.ZooKeeper: Client environment:zookeeper.version=3.3.2-1031432,
built on 11/05/2010 05:32 GMT

14/04/13 17:28:11 INFO zookeeper.ZooKeeper: Client environment:host.name=hcirim2

14/04/13 17:28:11 INFO zookeeper.ZooKeeper: Client environment:java.version=1.6.0_30

14/04/13 17:28:11 INFO zookeeper.ZooKeeper: Client environment:java.vendor=Sun Microsystems Inc.

14/04/13 17:28:11 INFO zookeeper.ZooKeeper: Client environment:java.home=/usr/lib/jvm/java-1.6.0-
openjdk-1.6.0.0/jre

14/04/13 17:28:11 INFO zookeeper.ZooKeeper: Client

................

14/04/13 17:37:20 INFO mapred.JobClient: Job complete: job_ 201404131430 0019

14/04/13 17:37:21 INFO mapred.JobClient: Counters: 6

14/04/13 17:37:21 INFO mapred.JobClient: Job Counters

14/04/13 17:37:21 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=54738

14/04/13 17:37:21 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving
slots (ms)=0

14/04/13 17:37:21 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0

14/04/13 17:37:21 INFO mapred.JobClient: Launched map tasks=8

14/04/13 17:37:21 INFO mapred.JobClient: SLOTS MILLIS REDUCES=0

You need to monitor all of your logs; that is, you need to monitor the following:

e ZooKeeper logs, in this case under /var/log/zookeeper. These allow you to ensure that all
servers are up and running as a quorum.

e Hadoop logs, in this case under /usr/local/hadoop/logs. Hadoop and MR must be running
without error so that HBase can use Hadoop.

e  HBaselogs, in this case under /usr/local/hbase/logs. You make sure that HBase is running and
able to talk to ZooKeeper.

e Solr output from the Solr session window. It must be running without error so that it can index
the crawl output.

e Nutch output from the crawl session. Any errors will appear in the session window.

Each of the components in this architecture must work for the Nutch crawl to work. If you encounter errors, pay
particular attention to your configuration. For timeout errors in ZooKeeper, try increasing the tickTime and
syncLimit values in your ZooKeeper config files.

Potential Errors

Here are some of the errors that occurred when I tried to use this configuration. They are provided here along with
their reasons and solutions. If you encounter them, go back to the step you missed and correct the error.
Consider the first one:

2014-04-08 19:05:39,334 ERROR
org.apache.hadoop.hbase.master.HMasterCommandLine: Failed to start master
java.io.IOException: Couldnt start ZK at requested address of 2181, instead
got: 2182. Aborting. Why? Because clients (eg shell) wont be able to find this

80

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

ZK quorum at
org.apache.hadoop.hbase.master.HMasterCommandLine.startMaster (HMasterCommandLine.java:131)

This problem was caused by one of the ZooKeeper servers (on hclrlml) running under the wrong Linux account.
It didn’t have file system access. The solution was to shut it down and start as the correct user.
Another error you may encounter is:

2014-04-09 18:32:53,741 ERROR
org.apache.hadoop.hbase.master.HMasterCommandLine: Failed to start master
java.io.IOException: Unable to create data directory
/var/lib/zookeeper/zookeeper/version-2

Again, this was the same issue as for ZooKeeper in the previous error. The ZooKeeper server (on hclrlm1) was
running under the wrong Linux account. It didn’t have file system access. The solution was to shut it down and start as
the correct user.

An HBase error that could occur is:

org.apache.hadoop.ipc.RemoteException: Server IPC version 7 cannot communicate
with client version 3

This was an HBase error. IPC version 4 is for Hadoop 1.0, whereas version 7 is for Hadoop 2.0, so HBase expects
Hadoop version 1.x. That is why we are using Hadoop version 1.2.1 with Nutch 2.x.
This error occurred during the Nutch crawl:

14/04/12 20:32:30 ERROR crawl.InjectorJob: InjectorJob:
java.lang.ClassNotFoundException: org.apache.gora.hbase.store.HBaseStore

The Gora configuration was incorrect. Go back, check the setting, and retry the crawl once you've fixed it.
These errors occurred during a crawl in the HBase logs:

2014-04-12 20:52:37,955 INFO org.apache.hadoop.hbase.master.ServerManager:
Waiting on regionserver(s) to checkin

org.apache.hadoop.security.AccessControlException:
org.apache.hadoop.security.AccessControlException: Permission denied:
user=root, access=WRITE, inode=".logs":hadoop:supergroup:rwxr-xr-x

They indicate a file system access issue on HDFS for HBase. I had set the HBase directory permissions for the
Jlogs directory incorrectly.

[hadoop@hcinn bin]$ hadoop dfs -1s /hbase/ | grep logs
drwxrwxrwx - hadoop supergroup 0 2014-04-13 18:00 /hbase/.logs

Your permissions for HDFS directories should be fine, but if you encounter a permissions access error, you can
use the hadoop dfs -chmod command to set permissions.
This error occurred because I had an error in my /etc/hosts file:

14/04/13 12:00:54 INFO mapred.JobClient: Task Id :
attempt_201404131045_0016_m 000000 0, Status : FAILED
java.lang.RuntimeException: java.io.IOException: java.lang.RuntimeException:
org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to connect

81

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

to ZooKeeper but the connection closes immediately. This could be a sign that
the server has too many connections (30 is the default). Consider inspecting
your ZK server logs for that error and then make sure you are reusing
HBaseConfiguration as often as you can. See HTable's javadoc for more
information.

Make sure that your /etc/hosts file entries are defined correctly and that ZooKeeper is working correctly before
you move on to start HBase.

As for architecture example 1, you can check the Solr query page for your results. For this example, because the
seed URL was from my own site, the query found the apache URLSs, as shown in Figure 3-4.

| [@ hearimz:2983/50lr4 n1/query v @ [ o
STarT, TOWS “nunFound": 833,
0 10 "start": 9,
rr, fl "docs": [
Apache " {
F
Solr 4 § *id": “org.apache.hadoop:http/docs/current/hadoop-mapreduce-client/hadoop-map:
d "boost": 0.064453565,
"digest": "d1079042086f05261337967984805086",
@ Dashboard a ) N - . .
aw Query Parameters tstamp": "2014-08-11T00:04:06.502Z",
(&3 Logging keyl=vall&key2=val2 “url": “"http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-r
*_version_": 1465245904017555500
& Ccore Admin wt }
. json =
Java Properties {
M indent *id": “org.apache.hadoop:http/docs/current/hadoop-project-dist/hadoop-common/t
Thread Du "
read Dump O debugQuery boost”: 8.864453565,
“digest": *afeflec54a266797a6ece2d549795271", A
collection] v | O dismax "tstamp": "2014-08-11T00:02:40.385Z",
X "url": "http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-comme
. L edismax “_version_": 1465245904081518600
- Oni 1,
! O facet {
0O I "id": "org.apache. hadoop:http/docs/current/hadoop-project-dist/hadoop-common/t
spatia “title": "Apache Hadoop 2.3.0 - Hadoop MapReduce Next Generatien 2.3.8 - CLIt
’ O spelicheck "beost": 0.064453565,
™) Execute Query "digest": "cfc579303486c4fa05955268000ec507",
= "tstamp": "2014-08-11T00:03:58.393Z",
o "url": "http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-comm
o “_version_": 14652459041156730060
h
#- Query

"id": "org.apache.hadoop:http/docs/current/hadoop-project-dist/hadoop-common/t

Figure 3-4. Solr output showing the crawl data

A Brief Comparison

Of the two architecture examples given in this chapter, the second, using HBase, was the most difficult to use. This
may be the future direction that Nutch is taking, but there are a lot more configuration items to take care of. There
are more components to worry about and check, plus more potential areas of failure. Having said that, the second
architecture example gives you the ability to explicitly choose the storage architecture. If for some reason at a future
date you need to use an alternative system to HBase that Gora supports, you will be able to do that.

You have only used Hadoop V1 in both of these examples. If time had allowed, it would have been useful to use
Hadoop V2 as well. In that case, you would have needed to rebuild both HBase and Nutch using Hadoop V2 libraries.
Nevertheless, it would have been interesting to compare the Nutch processing time using Hadoop V1 and V2.

82

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3 © COLLECTING DATA WITH NUTCH AND SOLR

Summary

In this chapter, you investigated big data collection using Nutch, Solr, Gora, and HBase. You used both Nutch 1.x and
2.x to crawl a seed URL and collect data. Although you crawled only on a small scale, the same process can be used
to gather large volumes of data. You used Solr in both cases to index data passed from Nutch. In the second example,
you used Apache Gora to determine where Nutch would store its data—in this case, it was HBase. You also looked at
two possible approaches for using Nutch and Hadoop. In the first, Nutch implicitly used Hadoop for storage; in the
second, Nutch used Apache Gora to explicitly select HBase for storage.

Where do you go from here? The command sequence and examples given in this chapter should enable you to
apply these approaches to your own system. Take a logical approach, and make sure that HDFS is working before
moving on. Also, make sure that ZooKeeper is working before you attempt HBase. Remember: if you encounter errors,
search the web for solutions, because other people may have encountered similar problems. Also, keep trying to think
of new ways to approach the problem.

83

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4

Processing Data with Map Reduce W,

Hadoop Map Reduce is a system for parallel processing of very large data sets using distributed fault-tolerant storage
over very large clusters. The input data set is broken down into pieces, which are the inputs to the Map functions.
The Map functions then filter and sort these data chunks (whose size is configurable) on the Hadoop cluster data
nodes. The output of the Map processes is delivered to the Reduce processes, which shuffle and summarize the data
to produce the resulting output.

This chapter explores Map Reduce programming through multiple implementations of a simple, but flexible
word-count algorithm. After first coding the word-count algorithm in raw Java using classes provided by Hadoop
libraries, you will then learn to carry out the same word-count function in Pig Latin, Hive, and Perl. Don’t worry about
these terms yet; you will learn to source, install, and work with this software in the coming sections.

An Overview of the Word-Count Algorithm

The best way to understand the Map Reduce system is with an example. A word-count algorithm is not only the
most common and simplest Map Reduce example, but it is also one that contains techniques you can apply to more
complex scenarios. To begin, consider Figure 4-1, which breaks the word-count process into steps.

Sort
one,1
Ma one,1
P one,1
Reduce
one 1
one,1 Sort one,3
two,1
three,1 two,1
two,1 Reduce
Input Split Map two,1 two,3
one one two three one one two three two,1 Sort Reduce Output

two,1

[ovecnetwortes | :

et ane e e — o3
three,1 three,3

three three four Map three,1 Reduce four,2

three three four

five,1
four five six three,1 Sort four,2 six,1
four five six three,1
four,1 four,1 Reduce
four,1
five,1
Map
Sort
four.1 Reduce
our, i
fved five,1 six 1
six,1
Sort
s5ix,1

Figure 4-1. The word-count Map Reduce process
85

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

The input file on the left of Figure 4-1 is split into chunks of data. The size of these splits is controlled by the
InputSplit method within the FileInputFormat class of the Map Reduce job. The number of splits is influenced by the
HDES block size, and one mapper job is created for each split data chunk.

Each split data chunk—that is, “one one two three,” is sent to a Mapper process on a Data Node server. In the
word-count example, the Map process creates a series of key-value pairs where the key is the word—for instance,
“one”—and the value is the count of 1. These key-value pairs are then shuffled into lists by key type. The shuffled lists
are input to Reduce tasks, which reduce the list volume by summing the values (in this simple example). The Reduce
output is then a simple list of summed key-value pairs.

The Map Reduce framework takes care of all other tasks, like scheduling and resources.

Map Reduce Native

Now, it’s time to put the word-count algorithm to work, starting with the most basic example: the Map Reduce native
version. The term Map Reduce native means that the Map Reduce code is written in Java using the functionality
provided by the Hadoop core libraries within the Hadoop installation directory. Map Reduce native word-count
algorithms are available from the Apache Software Foundation Hadoop 1.2.1 Map Reduce tutorial on the Hadoop
website (hadoop.apache.org/docs/r1.2.1/). For instance, I sourced two versions of the Hadoop word-count
algorithm and stored them in Java files in a word-count directory, as follows:

[hadoop@hcinn wordcount]$ pwd
/usr/local/hadoop/wordcount
[hadoop@hcinn wordcount]$ 1s *.java
wc-exl.java wc-ex2.java

The file wc-ex1.java contains the first simple example, while the second Java file contains a second, more
complex version.

Java Word-Count Example 1

Consider the Java code for the first word-count example. It follows the basic word-count steps shown in Figure 4-1:

01 package org.myorg;

02

03 import java.io.IOException;

04 import java.util.*;

05

06 import org.apache.hadoop.fs.Path;

07 import org.apache.hadoop.conf.*;

08 import org.apache.hadoop.io.*;

09 import org.apache.hadoop.mapred.*;

10 import org.apache.hadoop.util.*;

11

12 public class WordCount

13 {

14

15 public static class Map extends MapReduceBase implements
16 Mapper<Longhritable, Text, Text, IntWritable>
17

18 private final static IntWritable one = new IntWritable(1);
19 private Text word = new Text();

20
86

www.it-ebooks.info


http://www.it-ebooks.info/

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable output, Reporter reporter) throws IOException
{
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens())
{
word.set(tokenizer.nextToken());
output.collect(word, one);
}

}
} /* class Map */

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable>
{

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException
{

int sum = 0;

while (values.hasNext())

{
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}

} /* class Reduce */

public static void main(String[] args) throws Exception
{
JobConf conf = new JobConf(WordCount.class);
conf.setJobName ("wordcount™);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);

}

} /* class WordCount */

87

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Describing the Example 1 Code

In this section, we look at the Java code used in the Java-based simple Map Reduce word-count example. We then
proceed to compile it, create a jar file, and run it. This package is called org.myorg, and it is defined at line 1:

01 package org.myorg;

Lines 6 to 10 import Hadoop functionality for Path, configuration, I/O, Map Reduce, and utilities.

06 import org.apache.hadoop.fs.Path;
07 import org.apache.hadoop.conf.*;
08 import org.apache.hadoop.io.*;

09 import org.apache.hadoop.mapred.*;
10 import org.apache.hadoop.util.*;

For the details of these APIs, consult https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/. Just
select the package name—that is, mapred—and then choose package-summary.html. The fs.Path class provides file
system path functionality and the Conf class adds configuration functionality as shown at line 51 in the example. The
10 class adds input/output functionality, while the Util class adds utilities like logging and checksums. The Mapred
class is the Hadoop V1 Map Reduce class API implimentation. The V1 class names are called mapred, while the V2
implementation that you will encounter later in the book uses the term mapreduce.

The Map class is defined at line 15:

15 public static class Map extends MapReduceBase implements
16 Mapper<LongWritable, Text, Text, IntWritable>

Line 25 uses a StringTokenizer to break the input line into words, which are then passed as outputs as key-value
pairs—that is, <word,1>.

25 StringTokenizer tokenizer = new StringTokenizer(line);
26 while (tokenizer.hasMoreTokens())

27 {

28 word.set(tokenizer.nextToken());

29 output.collect(word, one);

30 }

As defined at line 34, the Reduce class accepts shuffled key-value pairs as input:

34 public static class Reduce extends MapReduceBase implements
35 Reducer<Text, IntWritable, Text, IntWritable>

From line 40 on, the code then totals the values for the key-value pairs with the same key and outputs the totaled
key-value pairs; that is, <word,5>:

40 int sum = 0;

41 while (values.hasNext())

42 {

43 sum += values.next().get();

44 }

45 output.collect(key, new IntWritable(sum));
88

www.it-ebooks.info


https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

The main method at line 49 sets up the Map Reduce configuration by defining the type of input. In this case, the
input is text.

49 public static void main(String[] args) throws Exception
The code then defines the Map, Combine, and Reduce classes, as well as specifying the input/output formats:

51 JobConf conf = new JobConf(WordCount.class);
52 conf.setJobName("wordcount");

53

54 conf.setOutputKeyClass(Text.class);

55 conf.setOutputValueClass(InthWritable.class);

56

57 conf.setMapperClass(Map.class);

58 conf.setCombinerClass(Reduce.class);
59 conf.setReducerClass(Reduce.class);
60

61 conf.setInputFormat(TextInputFormat.class);

62 conf.setOutputFormat(TextOutputFormat.class);

63

64 FileInputFormat.setInputPaths(conf, new Path(args[0]));
65 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

Finally, line 67 runs the job:

67 JobClient.runJob(conf);

Running the Example 1 Code

To compile this code, I used the Java compiler javac, which was installed with the JDK when Java 1.6 was installed. The
compiler expects the Java file name to match the class name, so I renamed the example code as WordCount.Java.

The classes on which this example relies are found in the Hadoop core library that is in the Hadoop release, so
I specified that when compiling the code. Also, I placed the compiled output into a subdirectory called wc_classes,
which can be used when building an example jar file.

[hadoop@hcinn wordcount]$ cp wc-ex1.java WordCount.java

[hadoop@hcinn wordcount]$ mkdir wc_classes

[hadoop@hcinn wordcount]$ javac -classpath $HADOOP_PREFIX/hadoop-core-1.2.1.jar -d wc_classes
WordCount.java

The following recursive listing shows all of the subdirectories and classes from the build of the first example code:
[hadoop@hcinn wordcount]$ 1s -R wc_classes
wc_classes:

org

wc_classes/org:
myorg

wc_classes/org/myorg:
WordCount.class WordCount$Map.class WordCount$Reduce.class

89

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Building the code into a jar library using the jar command creates the wordcountl.jar file:

[hadoop@hcinn wordcount]$ jar -cvf ./wordcountl.jar -C wc_classes .

added manifest

adding: org/(in = 0) (out= 0)(stored 0%)

adding: org/myorg/(in = 0) (out= 0)(stored 0%)

adding: org/myorg/WordCount.class(in = 1546) (out= 750)(deflated 51%)
adding: org/myorg/WordCount$Reduce.class(in = 1611) (out= 648)(deflated 59%)
adding: org/myorg/WordCount$Map.class(in = 1938) (out= 798)(deflated 58%)

[hadoop@hcinn wordcount]$ 1s -1 *.jar
-IwW-IW-I--. 1 hadoop hadoop 3169 Jun 15 15:05 wordcountl.jar

This file can now be used to run a word-count task on Hadoop. As in previous Map Reduce runs, the input and
output data for the job will be taken from HDFS. To provide the words to count, I copied some data from Edgar Allan
Poe books into a directory on HDFS from the Linux file system. The Linux 1s command shows the text files that will
be used:

[hadoop@hcinn wordcount]$ 1s $HOME/edgar
10031.txt 15143.txt 17192.txt 2149.txt 932.txt

Copying these files to the HDFS directory called /user/hadoop/edgar, using the Hadoop file system
copyFromLocal command, sets up the data for the word-count job:

[hadoop@hcinn wordcount]$ hadoop dfs -copyFromLocal $HOME/edgar/* /user/hadoop/edgar
[hadoop@hcinn wordcount]$ hadoop dfs -1ls /user/hadoop/edgar

Found 5 items

-Iw-r--r-- 1 hadoop supergroup 410012 2014-06-15 15:53 /user/hadoop/edgar/10031.txt
-rw-r--r-- 1 hadoop supergroup 559352 2014-06-15 15:53 /user/hadoop/edgar/15143.txt
-Iw-r--r-- 1 hadoop supergroup 66401 2014-06-15 15:53 /user/hadoop/edgar/17192.txt
-TW-1--r-- 1 hadoop supergroup 596736 2014-06-15 15:53 /user/hadoop/edgar/2149.txt
-Iw-r--r-- 1 hadoop supergroup 63278 2014-06-15 15:53 /user/hadoop/edgar/932.txt

By running the word-count example against the data in the input directory (/user/hadoop/edgar), you create the
results data in the output directory (/user/hadoop/edgar-results). First, though, make sure the processes are all up
before you run the job using jps.

[hadoop@hcinn wordcount]$ jps
1959 SecondaryNameNode

1839 DataNode

4166 TaskTracker

4272 Ips

1720 NameNode

4044 JobTracker

This shows that the HDFS processes for the data node and name node are running on hclnn. Also, the Map
Reduce processes for the Task and Job Trackers are running. If you are going to rerun this job, then you will need to

delete the HDFS-based results directory by using the Hadoop file system rmr command:

[hadoop@hcinn wordcount]$ hadoop dfs -rmr /user/hadoop/edgar-results

90

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

You can run the job via the Hadoop jar command. The parameters passed to it are the library file you have just
created, the name of the class to run in that library, the input directory on HDFS, and the output directory:

[hadoop@hcinn wordcount]$ hadoop jar ./wordcountl.jar org.myorg.WordCount /user/hadoop/edgar /user/
hadoop/edgar-results

14/06/15 16:04:50 INFO util.NativeCodeloader: Loaded the native-hadoop library
14/06/15 16:04:50 INFO mapred.FileInputFormat: Total input paths to process : 5
14/06/15 16:04:51 INFO mapred.JobClient: Running job: job_201406151602_0001
14/06/15 16:04:52 INFO mapred.JobClient: map 0% reduce 0%

14/06/15 16:05:02 INFO mapred.JobClient: map 20% reduce 0%

14/06/15 16:05:03 INFO mapred.JobClient: map 40% reduce 0%

14/06/15 16:05:04 INFO mapred.JobClient: map 60% reduce 0%

14/06/15 16:05:19 INFO mapred.JobClient: Combine input records=284829

14/06/15 16:05:19 INFO mapred.JobClient: Reduce input records=55496

14/06/15 16:05:19 INFO mapred.JobClient: Reduce input groups=36348

14/06/15 16:05:19 INFO mapred.JobClient: Combine output records=55496

14/06/15 16:05:19 INFO mapred.JobClient: Physical memory (bytes) snapshot=912035840
14/06/15 16:05:19 INFO mapred.JobClient: Reduce output records=36348

14/06/15 16:05:19 INFO mapred.JobClient: Virtual memory (bytes) snapshot=7949012992
14/06/15 16:05:19 INFO mapred.JobClient: Map output records=284829

The job has completed (the output shown above has been trimmed), so you can check the output on HDFS
under /user/hadoop/edgar-results/ by using the Hadoop file system 1s command:

[hadoop@hcinn wordcount]$ hadoop dfs -1s /user/hadoop/edgar-results/
Found 3 items

-IW-1--r-- 1 hadoop supergroup 0 2014-06-15 16:05 /user/hadoop/edgar-results/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2014-06-15 16:04 /user/hadoop/edgar-results/_logs
-Iw-r--r-- 1 hadoop supergroup 396500 2014-06-15 16:05 /user/hadoop/edgar-results/part-00000

These results show a _SUCCESS file, so the job was completed without error. As in previous examples, you use
the Hadoop file system cat command to dump the contents of the results file and the Linux head command to limit
the job results to the first 10 rows:

[hadoop@hcinn wordcount]$ hadoop dfs -cat /user/hadoop/edgar-results/part-00000 | head -10

D} 1

T 1

"'And 1

"'As 1

"'Be 2
"'But--still--monsieur----' 1
"'Catherine, 1

"'Comb 1

"'Come 1

"'Eyes, "' 1

Well done! You have just compiled and run your own native Map Reduce job from a source file. To create more,
you can simply change the algorithm in Java (or write your own) and follow the same process. One change that might
be useful is to ignore the white-space and symbol characters when counting the words. The example’s output data
contains characters like these (“ or -). The next example adds these refinements.

91

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Java Word-Count Example 2

Using the same Map and Reduce classes as the first example, you will find this second example adds pattern filtering
to the code. You can find the file, wc-ex2.java, in the Apache Software Foundation Hadoop 1.2.1 Map Reduce tutorial
at the Hadoop website (hadoop.apache.org/docs/r1.2.1/). Here's the complete listing:

01 package org.myorg;

02

03 import java.io.*;

04 import java.util.*;

05

06 import org.apache.hadoop.fs.Path;

07 import org.apache.hadoop.filecache.DistributedCache;

08 import org.apache.hadoop.conf.*;

09 import org.apache.hadoop.io.*;

10 import org.apache.hadoop.mapred.*;

11 import org.apache.hadoop.util.*;

12

13 public class WordCount extends Configured implements Tool

14 {

15

16 F A e L L P P PP P PP T e */
17 public static class Map extends MapReduceBase

18 implements Mapper < LongWritable, Text, Text, IntWritable >
19 {

20

21 static enum Counters

22 {

23 INPUT_WORDS

24 }

25

26 private final static IntWritable one = new IntWritable(1);

27 private Text word = new Text();

28

29 private boolean caseSensitive = true;

30 private Set < String > patternsToSkip = new HashSet < String > ();
31

32 private long numRecords = 0;

33 private String inputFile;

34

35 e L L e */
36 public void configure(JobConf job)

37 {

38 caseSensitive = job.getBoolean("wordcount.case.sensitive", true);
39 inputFile = job.get("map.input.file");

40

41 if (job.getBoolean("wordcount.skip.patterns", false))

42

43 Path[] patternsFiles = new Path[0];

44 try

45 {

46 patternsFiles = DistributedCache.getlLocalCacheFiles(job);
47 }
92

www.it-ebooks.info


http://www.it-ebooks.info/

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

catch (IOException ioe)

{
System.err.println("Caught exception while getting cached
files: " + StringUtils.stringifyException(ioe));

}

for (Path patternsFile: patternsFiles)

parseSkipFile(patternsFile);

private void parseSkipFile(Path patternsFile)
{
try
{
BufferedReader fis = new BufferedReader(new
FileReader(patternsFile.toString()));
String pattern = null;
while ((pattern = fis.readLine()) != null)

patternsToSkip.add(pattern);

}
}
catch (IOException ioe)
{
System.err.println("Caught exception while parsing cached file
+ patternsFile + "' : " + StringUtils.stringifyException(ioe));

}

public void map(LongWritable key, Text value, OutputCollector < Text,
IntWritable > output, Reporter reporter) throws IOException

{
String line = (caseSensitive) ? value.toString() :
value.toString().toLowerCase();

for (String pattern: patternsToSkip)

line = line.replaceAll(pattern, "");

}

StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens())

{
word.set(tokenizer.nextToken());
output.collect(word, one);
reporter.incrCounter(Counters.INPUT_WORDS, 1);

}

93

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

98 if ((++numRecords % 100) == 0)

99 {

100 reporter.setStatus("Finished processing " + numRecords +
101 " records " + "from the input file: " + inputFile);

102 }

103 }

104

105 } /* class Map */

106

107 R e L LT */
108 public static class Reduce extends MapReduceBase implements Reducer
109 < Text, IntWritable, Text, IntWritable >

110 {

111 public void reduce(Text key, Iterator < IntWritable > values,
112 OutputCollector

113 < Text, IntWritable > output, Reporter reporter) throws
114 IOException

115 {

116 int sum = 0;

117 while (values.hasNext())

118 {

119 sum += values.next().get();

120 }

121 output.collect(key, new IntWritable(sum));

122 }

123 } /* class Reduce */

124 Y e et */
125 public int run(String[] args) throws Exception

126 {

127 JobConf conf = new JobConf(getConf(), WordCount.class);

128 conf.setJobName("wordcount");

129

130 conf.setOutputKeyClass(Text.class);

131 conf.setOutputValueClass(IntWritable.class);

132

133 conf.setMapperClass(Map.class);

134 conf.setCombinerClass(Reduce.class);

135 conf.setReducerClass(Reduce.class);

136

137 conf.setInputFormat(TextInputFormat.class);

138 conf.setOutputFormat(TextOutputFormat.class);

139

140 List < String > other_args = new Arraylist < String > ();
141 for (int i = 0; i < args.length; ++i)

142 {

143 if ("-skip".equals(args[i]))

144

145 DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
146 conf.setBoolean("wordcount.skip.patterns”, true);

147 }
94

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

148 else

149 {

150 other_args.add(args[i]);

151 }

152 }

153

154 FileInputFormat.setInputPaths(conf, new Path(other args.get(0)));
155 FileOutputFormat.setOutputPath(conf, new Path(other args.get(1)));
156

157 JobClient.runJob(conf);

158 return 0;

159 }

160 J A et e L EE L P PP P */
161 public static void main(String[] args) throws Exception

162 {

163 int res = ToolRunner.run(new Configuration(), new WordCount(), args);
164 System.exit(res);

165

166

167 } /* class word count*/

Describing the Example 2 Code
Take a closer look at the code for the simpler example, given earlier. Note that line 1 defines the package name as org.
myorg and lines 6 through 11 import the Hadoop functionality for Path, configuration, I/O, Map Reduce, and utilities.
New to this second example is the cache definition, which is used to store the configurations pattern file (which will
be described later):
07 import org.apache.hadoop.filecache.DistributedCache;

Line 13 defines the main WordCount class:
13 public class WordCount extends Configured implements Tool

Meanwhile, the Map class is defined at line 17:

17 public static class Map extends MapReduceBase
18 implements Mapper < LongWritable, Text, Text, IntWritable >

This class now has a configure method defined at line 36, which offers case-sensitivity and pattern-skipping
functionality:

36 public void configure(JobConf job)
The parseSkipFile method at line 60 parses the pattern file for the pattern-skipping functionality just
mentioned. The patternsFile contains a list of patterns that should be removed from the text to be processed when

counting words:

60 private void parseSkipFile(Path patternsFile)

95

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

The map method is defined at line 79:

79 public void map(LongWritable key, Text value, OutputCollector < Text,
80 IntWritable > output, Reporter reporter) throws IOException

As in the last example, a StringTokenizer (line 90) breaks the line into words, then a while loop outputs the
words as key-value pairs where the key is the word and the value is 1:

90 StringTokenizer tokenizer = new StringTokenizer(line);
91 while (tokenizer.hasMoreTokens())

92 {

93 word.set (tokenizer.nextToken());

94 output.collect(word, one);

95 reporter.incrCounter(Counters.INPUT_WORDS, 1);

96 }

The Reduce class is defined at line 108:

108 public static class Reduce extends MapReduceBase implements Reducer
109 < Text, IntWritable, Text, IntWritable >

The reduce method totals the values for similar words and outputs the key-value pair beginning at line 117:

117 while (values.hasNext())

118 {

119 sum += values.next().get();

120 }

121 output.collect(key, new IntWritable(sum));

There is now a run method (starting at line 125) that contains the functionality from example 1's main method. It
sets the Map Reduce and I/0 format classes:

133 conf.setMapperClass(Map.class);

134 conf.setCombinerClass(Reduce.class);

135 conf.setReducerClass(Reduce.class);

136

137 conf.setInputFormat(TextInputFormat.class);
138 conf.setOutputFormat(TextOutputFormat.class);

The new run method parses the skip command line option, saves the pattern file name, and sets the skip
patterns option to True. Processing of the skip file can be seen at line 143 via the -skip command line option:

143 if ("-skip".equals(args[i]))

144

145 DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
146 conf.setBoolean("wordcount.skip.patterns”, true);

147 }

96

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

The run method also sets the input and output paths for the job:

154 FileInputFormat.setInputPaths(conf, new Path(other args.get(0)));
155 FileOutputFormat.setOutputPath(conf, new Path(other_ args.get(1)));

Finally, line 157 runs the job:

157 JobClient.runJob(conf);

Running the Example 2 Code

To run this second Java example, you copy its file to the WordCount.java file so that the file name matches the Java class.
[hadoop@hcinn wordcount]$ cp wc-ex2.java WordCount.java

Then, you remove the contents of the wc_classes directory and re-create it to receive the Java build output. Use
the Linux rm command for the Remove with 1 for “recursive”’and f for “force switches.” Use the Linux mkdir command
to re-create the directory:

[hadoop@hcinn wordcount]$ rm -rf wc_classes
[hadoop@hcinn wordcount]$ mkdir wc_classes

You build the WordCount java file by specifying an output directory called wc_classes:

[hadoop@hcinn wordcount]$ javac -classpath $HADOOP PREFIX/hadoop-core-1.2.1.jar -d wc_classes
WordCount.java

Then, you list the contents of the wc_classes directory recursively to ensure that the org.myorg directory structure
exists and contains the newly compiled classes:

[hadoop@hcinn wordcount]$ 1s -R wc_classes
wc_classes:
org

wc_classes/org:
myorg

wc_classes/org/myorg:
WordCount.class WordCount$Map.class WordCount$Map$Counters.class WordCount$Reduce.class

You build these classes into a jar library called wordcountl.jar, so that the resulting jar file can be used for a
Hadoop Map Reduce job run. Use the Linux jar command for this (which operates in a similar manner to tar) by
using the options C for “create,” v for “verbose,” and f to specify the file to create:

[hadoop@hcinn wordcount]$ jar -cvf ./wordcountl.jar -C wc_classes.

added manifest

adding: org/(in = 0) (out= 0)(stored 0%)

adding: org/myorg/(in = 0) (out= 0)(stored 0%)

adding: org/myorg/WordCount.class(in = 2671) (out= 1289)(deflated 51%)

adding: org/myorg/WordCount$Reduce.class(in = 1611) (out= 648)(deflated 59%)
adding: org/myorg/WordCount$Map$Counters.class(in = 983) (out= 504)(deflated 48%)
adding: org/myorg/WordCount$Map.class(in = 4661) (out= 2217)(deflated 52%)

97

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

[hadoop@hcinn wordcount]$ 1s -1 *.jar
-Iw-IW-I--. 1 hadoop hadoop 5799 Jun 21 17:19 wordcounti.jar

The test data from the first example is still available on HDFS under the directory /user/hadoop/edgar; this is
shown by using the Hadoop file system 1s command:

[hadoop@hcinn wordcount]$ hadoop dfs -1ls /user/hadoop/edgar
Found 5 items

-1w-r--r-- 1 hadoop supergroup 410012 2014-06-19 11:59 /user/hadoop/edgar/10031.txt
-rw-r--r-- 1 hadoop supergroup 559352 2014-06-19 11:59 /user/hadoop/edgar/15143.txt
-Iw-r--r-- 1 hadoop supergroup 66401 2014-06-19 11:59 /user/hadoop/edgar/17192.txt
-Iw-1--r-- 1 hadoop supergroup 596736 2014-06-19 11:59 /user/hadoop/edgar/2149.txt
-Iw-1--r-- 1 hadoop supergroup 63278 2014-06-19 11:59 /user/hadoop/edgar/932.txt

To give this first example a thorough test, I also created a patterns file called patterns.txt that contains a series of
unwanted characters. I have dumped the contents of the file shown here by using the Linux cat command. Note that
some characters have an Escape character (\) at the start of the line to avoid processing errors for characters that Java
might consider to have special meaning. By using an Escape character, you will ensure that these patterns are just
treated as text:

[hadoop@hcinn wordcount]$ cat patterns.txt
!

\(
\)
\#
\$
\&
\.
\,
\ ¥
\-
\/
\{
\}

Copy the patterns.txt onto HDFS into the directory /user/hadoop/java by using the Hadoop file system
copyFromLocal command. Using the Hadoop file system 1s command, list the patterns.txt file that is now on HDFS:

[hadoop@hcinn wordcount]$ hadoop dfs -copyFromLocal ./patterns.txt /user/hadoop/java/patterns.txt
[hadoop@hcinn wordcount]$ hadoop dfs -1ls /user/hadoop/java

Found 1 items
-Tw-1--r-- 1 hadoop supergroup 46 2014-06-21 17:29 /user/hadoop/java/patterns.txt

98

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Now you are ready to run this extended version of the Java Map Reduce task. The library that was just created is
specified via the Hadoop jar option. This is followed by the Class name to be called within that library. Next, a flag
is set via the -D option to switch the case sensitivity off. After that, the input data file and output directory names on
HDFEFS are listed. Finally, you specify a skip file to remove any unwanted characters in the data processed:

[hadoop@hcinn wordcount]$ hadoop jar ./wordcounti.jar org.myorg.WordCount
-Dwordcount.case.sensitive=false /user/hadoop/edgar/10031.txt
/user/hadoop/edgar-results -skip /user/hadoop/java/patterns.txt

The command produces the following Map Reduce task output:

14/06/21 17:40:06 INFO util.NativeCodeloader: Loaded the native-hadoop library
14/06/21 17:40:06 INFO mapred.FileInputFormat: Total input paths to process : 1
14/06/21 17:40:07 INFO mapred.JobClient: Running job: job_ 201406211041 0004
14/06/21 17:40:08 INFO mapred.JobClient: map 0% reduce 0%

14/06/21 17:40:15 INFO mapred.JobClient: map 50% reduce 0%

14/06/21 17:40:23 INFO mapred.JobClient: map 100% reduce 16%

14/06/21 17:40:30 INFO mapred.JobClient: map 100% reduce 100%

14/06/21 17:40:31 INFO mapred.JobClient: Job complete: job_ 201406211041 0004
14/06/21 17:40:31 INFO mapred.JobClient: Counters: 32

14/06/21 17:40:31 INFO mapred.JobClient: Job Counters

14/06/21 17:40:31 INFO mapred.JobClient: Launched reduce tasks=1

14/06/21 17:40:31 INFO mapred.JobClient: SLOTS MILLIS MAPS=17198

14/06/21 17:40:31 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving
slots (ms)=0

14/06/21 17:40:31 INFO mapred.JobClient: CPU time spent (ms)=5880

14/06/21 17:40:31 INFO mapred.JobClient: Map input bytes=410012

14/06/21 17:40:31 INFO mapred.JobClient: SPLIT RAW_BYTES=198

14/06/21 17:40:31 INFO mapred.JobClient: Combine input records=63590

14/06/21 17:40:31 INFO mapred.JobClient: Reduce input records=12581

14/06/21 17:40:31 INFO mapred.JobClient: Reduce input groups=9941

14/06/21 17:40:31 INFO mapred.JobClient: Combine output records=12581

14/06/21 17:40:31 INFO mapred.JobClient: Physical memory (bytes) snapshot=404115456
14/06/21 17:40:31 INFO mapred.JobClient: Reduce output records=9941

14/06/21 17:40:31 INFO mapred.JobClient: Virtual memory (bytes) snapshot=4109373440
14/06/21 17:40:31 INFO mapred.JobClient: Map output records=63590

Check the results directory on HDFS by using the Hadoop file system 1s command. The existence of a_SUCCESS
file shows that the job was a success:

[hadoop@hcinn wordcount]$ hadoop dfs -1ls /user/hadoop/edgar-results
Found 3 items

-TW-1--r-- 1 hadoop supergroup 0 2014-06-21 17:40 /user/hadoop/edgar-results/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2014-06-21 17:40 /user/hadoop/edgar-results/_logs
-Iw-r--r-- 1 hadoop supergroup 103300 2014-06-21 17:40 /user/hadoop/edgar-results/part-00000

99

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Checking the last 10 lines of the results part file using the Hadoop file system cat command and the Linux tail
command gives a sorted word count with any unwanted characters removed:

[hadoop@hcinn wordcount]$ hadoop dfs -cat /user/hadoop/edgar-results/part-00000 | tail -10
zanthe 1

zeal 2
zeboin 1
zelo 1
zephyr 1
zimmermann 1
zipped 1
zoar 1
zoilus 3
zone 1

Comparing the Examples

The two Map Reduce native word-count examples (wc-ex1.java and wc-ex2.java) show that raw Java code for Map
Reduce can create complex functionality. They are not, however, the most efficient approaches. Consider the effect
achieved when some simple pattern-filtering options were added. The listing grew from 70 lines in example 1 to 167
lines in example 2. As the code volume increases, so do the cost, complexity, and time to implement. Now, imagine
the effect on a more complex algorithm; the resulting code could quickly become even more unwieldy.

The good news is that alternatives are available. In the next sections, I will introduce some other Map Reduce
coding tools that offer the ability to code these tasks at a higher level and so reduce code volume. Generally, it is more
efficient and cheaper to use less code to achieve your objective. You should write your code at a lower level in Java
only if higher level systems like Pig native (including UDFs), which will be described in the next section, do not offer
the functionality you need.

So, next you will learn to source, install, and use Apache Pig. You will also code the same word-count algorithm
in Pig.

Map Reduce with Pig

As it is able to run in interactive or batch mode, Pig is a higher level programming language for processing large data
sets. You will be able to see that fewer lines of code are needed to carry out the same word-count example. Apache Pig
can be downloaded from pig.apache.org.

As Pig is a higher-level language, you can concentrate more on the logical flow of data processing and less on the
lower-level coding to achieve that processing. Also, Pig integrates well with the visual-object-based ETL and reporting
tools for big data that are introduced in Chapters 10 and 11 of this guide. This means that you have a quicker and
easier path into the world of data processing using Map Reduce. Although this will be explained later, tools like Talend
even help to abstract Map Reduce with its predefined Pig-based functionality.

Installing Pig

For this book’s examples, I chose to download Pig release 0.12.1 from pig.apache.org/releases.html because it is
compatible with the version of Hadoop I have been using up to this point (1.x). The download and installation are
straightforward. From the download page, you select to download Pig 0.8 and later. The Pig website then suggests
a mirror site for from which you can download (in my case, it was www. carfab.com). After clicking that link, you're

100

www.it-ebooks.info


http://www.carfab.com/
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

offered a series of Pig versions. Choose 0.12.1, and download the version of the release file that is tarred and gzipped.
For example, I used wget to download the release to the server hclnn, which was convenient because I could
download the package straight to a server directory using the website URL:

[hadoop@hcinn ~]$ wget http://www.carfab.com/apachesoftware/pig/pig-0.12.1/pig-0.12.1.tar.gz

Next, you unzip the release using the Linux command gunzip, and unpack the tar file using the Linux tar -xvf
command:

[hadoop@hcinn ~]$ 1s -1 pig-0.12.1.tar.gz

-Iw-IW-I--. 1 hadoop hadoop 59445085 Apr 5 21:44 pig-0.12.1.tar.gz
[hadoop@hcinn ~]$ gunzip pig-0.12.1.tar.gz

[hadoop@hcinn ~]$ tar xvf pig-0.12.1.tar

[root@hcinn hadoop]# 1s -1d pig-0.12.1
drwxr-xr-x. 15 hadoop hadoop 4096 Apr 5 21:44 pig-0.12.1

You move the release to a location under /usr/local/ using the Linux mv command, then set up a symbolic link
under /usr/local/ called pig by using the Linux 1n command with a -s (symbolic) switch to simplify the path to the
software and the environment. Finally, you use the Linux 1s command to create a long listing that displays the link
and the install the Pig directory.

[root@hcinn hadoop]# mv pig-0.12.1 /usr/local

[root@hcinn hadoop]# cd /usr/local/

[root@hcinn hadoop]# 1n -s pig-0.12.1 pig

[root@hcinn locall# 1s -1d pig*

lrwxrwxrwx. 1 root root 10 Jun 18 12:02 pig -> pig-0.12.1
drwxr-xr-x. 15 hadoop hadoop 4096 Apr 5 21:44 pig-0.12.1

To simplify access to and use of Pig, you can add some Pig-related variables to the Linux hadoop user's Bash shell
configuration at the bottom of the file SHOME/.bashrc:

S
# Set up Pig variables

export PIG HOME=/usr/local/pig
export PATH=$PATH:$PIG HOME/bin

Once the installation is in place and the environment is set up, you can test that the Pig binary is available and
will run. For example, you can use the Linux type command to check that the Pig Linux command is picked up from

the correct location:

[hadoop@hcinn ~]$ type pig
pig is hashed (/usr/local/pig/bin/pig)

101

www.it-ebooks.info


http://www.carfab.com/apachesoftware/pig/pig-0.12.1/pig-0.12.1.tar.gz
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

This shows that the path is good—it is the one that was just installed. Issuing the Pig help command is another a
good way to ensure that commands will run without error:

[hadoop@hcinn ~]$ pig -help

Apache Pig version 0.12.1 (r1585011)
compiled Apr 05 2014, 01:41:34

USAGE: Pig [options] [-] : Run interactively in grunt shell.
Pig [options] -e[xecute] cmd [emd ...] : Run cmd(s).
Pig [options] [-f[ile]] file : Run cmds found in file.
options include:

-M, -no_multiquery - Turn multiquery optimization off; default is on

-P, -propertyFile - Path to property file

-printCmdDebug - Overrides anything else and prints the actual command used to run Pig, including

any environment variables that are set by the pig command.

The results are good: the pig command is located in /usr/local/pig/bin, and it runs as the help option shows. It is
now time to use it.

Running Pig

Pig lets you choose how you wish to work with it. For example, you can direct where Pig looks for data by specifying

the local mode or the Map Reduce mode (the default). Local mode takes all data from the local server and the file

system, while Map Reduce mode uses Hadoop. In addition, you can run tasks interactively or in batch mode. When

working interactively, you issue Pig commands via the Grunt command prompt. For larger scheduled or background

tasks, you can use batch mode. For the word-count demonstration, you will use Pig interactively in Map Reduce mode.
To prepare to use Pig, you first need to create a Pig working directory on HDFS:

[hadoop@hcinn edgar]$ hadoop dfs -mkdir /user/hadoop/pig/

Then, you copy a text-based data file of Edgar Allan Poe’s work into that HDFS-based directory from the Linux file
system by using the Hadoop file system command copyFromLocal:

[hadoop@hcinn edgar]$ cd $HOME/edgar

[hadoop@hcinn edgar]$ 1s

10031.txt 15143.txt 17192.txt 2149.txt 932.txt

[hadoop@hcinn edgar]$ hadoop dfs -copyFromLocal ./10031.txt /user/hadoop/pig

A quick check on HDFS shows that the file 10031.txt containing the text is now sitting on HDFS in the directory /
user/hadoop/pig:

[hadoop@hcinn edgar]$ hadoop dfs -1s /user/hadoop/pig

Found 1 items
-Iw-r--r-- 1 hadoop supergroup 410012 2014-06-18 12:29 /user/hadoop/pig/10031.txt

102

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

You can now start Pig in interactive Map Reduce mode. Without any options, the pig command will result in the
interactive Grunt command line after trying to access Hadoop:

[hadoop@hcinn edgar]$ pig

2014-06-18 12:27:10,055 [main] INFO org.apache.pig.Main - Apache Pig version 0.12.1 (r1585011)
compiled Apr 05 2014, 01:41:34

2014-06-18 12:27:10,056 [main] INFO org.apache.pig.Main - Logging error messages to: /home/hadoop/
edgar/pig_1403051230051.1log

2014-06-18 12:27:10,095 [main] INFO org.apache.pig.impl.util.Utils - Default bootup file /home/
hadoop/.pigbootup not found

2014-06-18 12:27:10,386 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine
- Connecting to hadoop file system at: hdfs://hcinn:54310

2014-06-18 12:27:10,750 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine
- Connecting to map-reduce job tracker at: hcinn:54311

grunt>

In Pig, the character “--” denotes a comment, meaning text between the -- and the start of the next line is ignored.
The semicolon (;) denotes the end of a Pig native statement. The data file is loaded from HDFS into variable A by using
the load option:
grunt> A = load '/user/hadoop/pig/10031.txt'; -- load the text file

With a single line, you can process each word in the data in variable A into a list of words, place each word from
the list in variable B, then add them to variable C. TOKENIZE splits the data on white-space characters. Here's the
command you need:

grunt> C = foreach A generate flatten(TOKENIZE((chararray)$0)) as B ; -- get list of words

Next, you can group the identical words into a variable D, and create a list of word counts in variable E by using
the count option:

grunt> D = group C by B ; -- group words
grunt> E = foreach D generate COUNT(C), group; -- create word count

To view the word count, you use the dump command to display the contents of variable E in the session window;
this shows the word-count list. (I've listed the last 10 lines here.) As you can see, it’s very basic counting:

grunt> dump E; -- dump result to session

(1,http://pglaf.org/fundraising.)
(1,it!--listen--now--listen!--the)
(1,http://www.gutenberg.net/GUTINDEX.ALL)
(1,http://www.gutenberg.net/1/0/2/3/10234)
(1,http://www.gutenberg.net/2/4/6/8/24689)
(1,http://www.gutenberg.net/1/0/0/3/10031/)
(1,http://www.ibiblio.org/gutenberg/etext06)
(0,)

103

www.it-ebooks.info


http://pglaf.org/fundraising
http://www.gutenberg.net/GUTINDEX.ALL
http://www.gutenberg.net/1/0/2/3/10234
http://www.gutenberg.net/2/4/6/8/24689
http://www.gutenberg.net/1/0/0/3/10031/
http://www.ibiblio.org/gutenberg/etext06
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Lastly, you can store the contents of the count, currently in variable E, on HDFS in /user/hadoop/pig/wc_result:

grunt> store E into '/user/hadoop/pig/wc_result' ; -- store the results
grunt> quit ; -- quit interactive session

Having quit the Pig interactive session, you can examine the results of this Pig job on HDFS. The Hadoop file
system 1s command shows a success file (_ SUCCESS), a part file (part-r-00000) containing the word-count data, and a
logs directory. (I have listed the part file from the word count using the Hadoop file system command cat.) Then, you
can use the Linux tail command to view the last 10 lines of the file. Both options are shown here:

[hadoop@hcinn edgar]$ hadoop dfs -1ls /user/hadoop/pig/wc_result

Found 3 items

-rw-r--r-- 1 hadoop supergroup 0 2014-06-18 13:08 /user/hadoop/pig/wc_result/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2014-06-18 13:08 /user/hadoop/pig/wc_result/_logs
-Iw-r--r-- 1 hadoop supergroup 137870 2014-06-18 13:08 /user/hadoop/pig/wc_result/part-r-00000

[hadoop@hcinn edgar]$ hadoop dfs -cat /user/hadoop/pig/wc_result/part-r-00000 | tail -10
1 http://gutenberg.net/license

1 Dream'--Prospero--0Oberon--and

1 http://pglaf.org/fundraising.

1 it!--listen--now--listen!--the

1 http://www.gutenberg.net/GUTINDEX.ALL

1 http://www.gutenberg.net/1/0/2/3/10234

1 http://www.gutenberg.net/2/4/6/8/24689

1 http://www.gutenberg.net/1/0/0/3/10031/

1 http://www.ibiblio.org/gutenberg/etexto6

It is quite impressive that, with five lines of Pig commands (ignoring the dump and quit lines), you can run the
same word-count algorithm as took 70 lines of Java code. Less code means lower development costs and, we all hope,
fewer code-based errors.

While efficient, the interactive Pig example does have a drawback: The commands must be manually typed each
time you want to run a word count. Once you're finished, they’re lost. The answer to this problem, of course, is to store
the Pig script in a file and run it as a batch Map Reduce job. To demonstrate, I placed the Pig commands from the
previous example into the wordcount.pig file:

[hadoop@hcinn pig]$ 1s -1
total 4
-IW-IW-T--. 1 hadoop hadoop 313 Jun 18 13:24 wordcount.pig

[hadoop@hcinn pigl$ cat wordcount.pig

01 -- get raw line data from file

02

03 rlines = load '/user/hadoop/pig/10031.txt";
04

05 -- get list of words

06

07 words = foreach rlines generate flatten(TOKENIZE((chararray)$0)) as word;
08

09 -- group the words by word value

10

104

www.it-ebooks.info


http://gutenberg.net/license
http://pglaf.org/fundraising
http://www.gutenberg.net/GUTINDEX.ALL
http://www.gutenberg.net/1/0/2/3/10234
http://www.gutenberg.net/2/4/6/8/24689
http://www.gutenberg.net/1/0/0/3/10031/
http://www.ibiblio.org/gutenberg/etext06
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

11 gwords = group words by word ;

12

13 -- create a word count

14

15 wcount = foreach gwords generate group, COUNT(words) ;
16

17 -- store the word count

18

19 store wcount into '/user/hadoop/pig/wc_result1' ;

I also added comments, line numbers, and meaningful names for the variables. These modifications can help
when you're trying to determine what a script is doing. They also help to tie this example to the work in the next
section, on Pig user-defined functions.

Instead of invoking the interactive Grunt command line, you invoke Pig with the name of the file containing
the Pig script. Pig will use Map Reduce mode by default and so access HDFS. The output will be stored in the HDFS
directory /user/hadoop/pig/wc_resultl/. So, when the task starts, a Map Reduce job is initiated.

[hadoop@hcinn pigl$ pig wordcount.pig

Counters:

Total records written : 13219

Total bytes written : 137870

Spillable Memory Manager spill count : 0
Total bags proactively spilled: 0

Total records proactively spilled: 0

Job DAG:
job 201406181226 0003

2014-06-18 13:27:49,446 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapreducelayer.
mapreducelauncher - Success!

As mentioned previously, you can use Hadoop and Linux commands to output the word count:
[hadoop@hcinn pigl$ hadoop dfs -cat /user/hadoop/pig/wc_resulti/part-r-00000 | tail -10

http://gutenberg.net/license
Dream'--Prospero--0Oberon--and
http://pglaf.org/fundraising.
it!--listen--now--listen!--the
http://www.gutenberg.net/GUTINDEX.ALL
http://www.gutenberg.net/1/0/2/3/10234
http://www.gutenberg.net/2/4/6/8/24689
http://www.gutenberg.net/1/0/0/3/10031/
http://www.ibiblio.org/gutenberg/etexto6

PR R RPRRPRRRRR

Notice that in both the interactive and batch script versions, the count includes non-alpha-numeric chararacters
like “:”(colon), and that the case of the words has not been standardized. For instance, the word Dream (with a capital D)
is part of the count. In the next section, you will learn how to add greater selectivity to Pig by creating user-defined
functions.

105

www.it-ebooks.info


http://gutenberg.net/license
http://pglaf.org/fundraising
http://www.gutenberg.net/GUTINDEX.ALL
http://www.gutenberg.net/1/0/2/3/10234
http://www.gutenberg.net/2/4/6/8/24689
http://www.gutenberg.net/1/0/0/3/10031/
http://www.ibiblio.org/gutenberg/etext06
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Pig User-Defined Functions

Coded in Java, user-defined functions (UDFs) provide custom functionality that you can invoke from a Pig script. For
instance, you might create a UDF if you found that you needed to carry out an operation that the standard Pig Latin
language did not include. This section will provide an example of just such a function. You will examine the UDF Java
code, as well as the method by which it is built into a jar library. You will then use an extended version of the Pig script
from the last section that incorporates this UDE You will learn how to incorporate both the jar file and its classes into
a Pig script.

As greater functionality was obtained for earlier Map Reduce jobs, such as removing unwanted characters from
the word-count process, the same will be done here. Using Java, you will create a UDF to remove unwanted characters,
so that the final word count is more precise. For instance, I have created a UDF build directory on the Linux file system
under /home/hadoop/pig/wcudfs that contains a number of files:

[hadoop@hcinn wcudfs]$ pwd
/home/hadoop/pig/wcudfs/

[hadoop@hcinn wcudfs]$ 1s
build clean _ws.sh build lower.sh CleanWS.java

The Java files contain the code for UDFs while the shell scripts ( *.sh ) are used to build them. The CleanWS.java
file contains the following code:

01 package wcudfs;

02

03 import java.io.*;

04

05 import org.apache.pig.EvalFunc;

06 import org.apache.pig.data.Tuple;

07 import org.apache.hadoop.util.*;

08

09 public class CleanWS extends EvalFunc<String>

10 {

11 L et */
12 @0verride

13 public String exec(Tuple input) throws IOException

14 {

15 if (input == null || input.size() == 0)

16 return null;

17 try

18 {

19 String str = (String)input.get(0);

20

21 return str.replaceAll("[*A-Za-z0-9]"," ");

22 }

23 catch(IOException ioe)

24

25 System.err.println("Caught exception processing input row : "
26 + StringUtils.stringifyException(ioe) );
27 }

28

106

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

29 return null;

30 }

31 /K e o */
32

33 } /* class CleanWS */

Line 1 defines the package name to be wcudfs
01 package wcudfs;

Pig and Hadoop functionality for tuples and utilities is imported into the UDF between lines 5 and 7. Line 5
invokes the EvalFunc class and identifies this as an eval type of UDF function:

05 import org.apache.pig.EvalFunc;
06 import org.apache.pig.data.Tuple;
07 import org.apache.hadoop.util.*;

Line 9 specifies the class name as CleanWWS, which extends the EvalFunc class and has a String return type.
09 public class CleanWS extends EvalFunc<String>

Line 13 onward defines the exec method that will be called to process every tuple in the data:
13 public String exec(Tuple input) throws IOException

Line 21 changes the return string, removing all characters that are not in the character sets A-Z, a-z, or 0-9 and
replacing them with a space character.

21 return str.replaceAll("[~A-Za-z0-9]"," ");
For example, I built CleanWS as follows:
[hadoop@hcinn wcudfs]$ cat build clean ws.sh
javac -classpath $PIG HOME/pig-0.12.1.jar -Xlint:deprecation CleanWS.java

The Java compiler is called javac; an option is added via the classpath to include the Pig library in the build. The
lint:deprecation option uses lint to check the code for deprecated API calls. These scripts build the class files:

[hadoop@hcinn wcudfs]$ ./build_clean_ws.sh
[hadoop@hcinn wcudfs]$ 1s
build _clean_ws.sh CleanWS.class CleanWS.java

The class file is created as part of the build for the Java file. The class file for the UDF is built into a library that can
be used within a Pig script. The library is built using the jar command with the options c (create), v (verbose), and f
(file). The next parameter to be created is the library name, followed by the list of classes to be placed in the library:

[hadoop@hcinn wcudfs]$ cd ..

[hadoop@hcinn pigl$ jar cvf wcudfs.jar wcudfs/*.class

added manifest

adding: wcudfs/CleanWS.class(in = 1318) (out= 727)(deflated 44%)

[hadoop@hcinn pigl$ 1s -1 wcudfs.jar
-IW-IW-T--. 1 hadoop hadoop 2018 Jun 24 18:57 wcudfs.jar

107

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

This is the library containing the UDF classes that will be called in the Pig script register line.
Next, take a look at the updated version of the Pig script wordcount2.pig by using the Linux cat command, which
employs the newly created UDF function:

[hadoop@hcinn pigl$ cat wordcount2.pig

01 REGISTER /home/hadoop/pig/wcudfs.jar ;

02

03 DEFINE CleanWS wcudfs.CleanWS() ;

04

05 -- get raw line data from file

06

07 rlines = load '/user/hadoop/pig/10031.txt' AS (rline:chararray);
08

09 -- filter for empty lines

10

11 clines = FILTER rlines BY SIZE(rline) > 0 ;

12

13 -- get list of words

14

15 words = foreach clines generate

16 flatten(TOKENIZE(CleanWS( (chararray) $0 ))) as word ;
17

18 -- group the words by word value

19

20 gword = group words by word ;

21

22 -- create a word count

23

24 wcount = foreach gword generate group, COUNT(words) ;
25

26 -- store the word count

27

28 store wcount into '/user/hadoop/pig/wc_result1' ;

There are some new terms in this script. At line 1, the REGISTER keyword is used to register the word-count UDF
library wcudfs.jar for use with this Pig script.

01 REGISTER /home/hadoop/pig/wcudfs.jar ;
Line 3 uses the DEFINE keyword to refer to the classes of the package within this library that use a single term.
For instance, the class CleanWsS in the package wcudfs, in the library wcudfs.jar, can now be called as just CleanWS in
the code.
03 DEFINE CleanWS wcudfs.CleanWS() ;
Line 11 introduces the FILTER keyword. Using this filter removes any lines that are empty from the data set. The
variable clines is used to contain lines that have more than zero characters. This is accomplished by using a check on

the size of the line (r1ine) and ensuring that the size is greater than zero.

11 clines = FILTER rlines BY SIZE(rline) > 0 ;

108

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Line 16 calls the user-defined function named CleanWS, which removes unwanted characters from the input text.

15 words = foreach clines generate
16 flatten(TOKENIZE(CleanWS( (chararray) $0 ))) as word ;

I have created some Bash shell scripts to assist in running this second Pig job. This is just to provide an example
of how to speed up a manual job. For instance, instead of having to type the Pig job execution command each time,
I can just execute a simple script. Instead of having to manually delete the job results directory for a job rerun, I can
run a clean script. Here is the clean_wc.sh script that was used to delete the job results HDFS directory, employing the
Linux cat command:

[hadoop@hcinn pig]$ cat clean wc.sh

01 #!/bin/bash

02

03 # remove the pig script results directory
04

05 hadoop dfs -rmr /user/hadoop/pig/wc_result1

The script does this by calling the Hadoop file system rmr command to remove the directory and its contents.
The next script that is run_wc2.sh, which is used to run the job, calls the clean script (at line 5) each time it is run.
This single script cleans the results directory on HDFS and runs the wordcount2.pig job:

[hadoop@hcinn pig]$ cat run_wc2.sh

01 #!/bin/bash

02

03 # run the pig wc 2 job
04

05 ./clean_wc.sh

06

07 pig -stop_on_failure wordcount2.pig

This shell script calls the clean_wec.sh script and then invokes the Pig wordcount2.pig script. The pig command
on line 7 is called with a flag (-stop_on_failure), telling it to stop as soon as it encounters an error. The results are
listed via the result_wec.sh script:

[hadoop@hcinn pigl$ cat result wc.sh

01 #!/bin/bash

02
03 # remove the pig script results directory
04
05 hadoop dfs -1s /user/hadoop/pig/wc_resultl
07

08 hadoop dfs -cat /user/hadoop/pig/wc_resulti/part-r-00000 | tail -10

109

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

This script lists the contents of the Pig job results directory and then dumps the last 10 lines of the part file within
that directory that contains the word-count job data. It does this by using the Hadoop file system cat command and
the Linux tail command. So, to run the job, you just execute the run_wc2.sh Bash script:

[hadoop@hcinn pigl$ ./run_wc2.sh

Deleted hdfs://hcinn:54310/user/hadoop/pig/wc_result1

2014-06-24 19:06:44,651 [main] INFO org.apache.pig.Main - Apache Pig version 0.12.1 (r1585011)
compiled Apr 05 2014, 01:41:34

2014-06-24 19:06:44,652 [main] INFO org.apache.pig.Main - Logging error messages to: /home/hadoop/
pig/pig_1403593604648.1og

-------------------------------

Input(s):
Successfully read 10377 records (410375 bytes) from: "/user/hadoop/pig/10031.txt"

Output(s):
Successfully stored 9641 records (95799 bytes) in: "/user/hadoop/pig/wc_result1”

Counters:

Total records written : 9641

Total bytes written : 95799

Spillable Memory Manager spill count : O
Total bags proactively spilled: 0

Total records proactively spilled: 0

Job DAG:
job_201406241807_0002

2014-06-24 19:07:23,252 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.
MapReducelauncher - Success!

You then list the results of the job that will output the Pig job results directory and the last 10 lines of the Pig job
data file, as explained in the description of the result_wc_.sh script described above:

[hadoop@hcinn pigl$ ./result_wc.sh

Found 3 items

-Iw-r--r-- 1 hadoop supergroup 0 2014-06-24 19:07 /user/hadoop/pig/wc_result1/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2014-06-24 19:06 /user/hadoop/pig/wc_resulti/ logs
-Iw-r--r-- 1 hadoop supergroup 95799 2014-06-24 19:07 /user/hadoop/pig/wc_result1/part-r-00000

unexceptionable
constitutionally
misunderstanding
tintinnabulation
unenforceability
Anthropomorphites
contradistinction
preconsiderations
undistinguishable
transcendentalists

PR R R RRRRRR

110

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Notice that all of the unwanted characters have now been removed from the output. Given this simple example,
you will be able to build your own UDF extentions to Pig. You are now able to use Apache Pig to code your Map
Reduce jobs and expand its functionality via UDFs. You can also gain the greater flexibility of reduced code volume by
using your own UDF libraries.

In the next section, you will tackle the same Map Reduce job using Apache Hive, the big-data data warehouse.

A similar word-count algorithm will be presented using Hive QL, Hive’s SQL-like query language. All of these methods
and scripts for creating Map Reduce jobs are presented to give you a sample of each approach. The data that you want
to use and the data architecture that you choose will govern which route you take to create your jobs. The ETL tools
that you choose will also affect your approach—for instance, Talend and Pentaho, to be discussed in Chapter 10, can
integrate well with Pig functionality.

Note For more information on Apache Pig and Pig Latin, see the Apache Software Foundation guide at
http://pig.apache.org/docs/r0.12.1/start.html.

Map Reduce with Hive

This next example involves installing Apache Hive from hive.apache.org. Hive is a data warehouse system that uses
Hadoop for storage. It is possible to interrogate data on HDFS by using an SQL-like language called HiveQL. Hive can
represent HDFS-based data via the use of external tables (described in later chapters) or relational data where there
are relationships between data in different Hive tables.

In this section, I will explain how to source and install Hive, followed by a simple word-count job on the same
data as used previously.

Installing Hive

When downloading and installing Hive, be sure to choose the version compatible with the version of Hadoop you
are using in conjunction with this book. For this section’s examples, I chose version 0.13.1, which is compatible with
Hadoop version 1.2.1 used earlier. As before, I used wget from the Linux command line to download the tarred and
gzipped release from a suggested mirror site:

[hadoop@hcinn Downloads]$ wget http://apache.mirror.quintex.com/hive/hive-0.13.1/apache-hive-0.13.1-
bin.tar.gz

[hadoop@hcinn Downloads]$ 1ls -1 apache-hive-0.13.1-bin.tar.gz
-Iw-IW-I--. 1 hadoop hadoop 54246778 Jun 3 07:31 apache-hive-0.13.1-bin.tar.gz

As before, you unpack the software using the Linux commands gunzip and tar:

[hadoop@hcinn Downloads]$ gunzip apache-hive-0.13.1-bin.tar.gz
[hadoop@hcinn Downloads]$ tar xvf apache-hive-0.13.1-bin.tar

[hadoop@hcinn Downloads]$ ls -1d apache-hive-0.13.1-bin
drwxrwxr-x. 8 hadoop hadoop 4096 Jun 18 17:03 apache-hive-0.13.1-bin

111

www.it-ebooks.info


http://pig.apache.org/docs/r0.12.1/start.html
http://apache.mirror.quintex.com/hive/hive-0.13.1/apache-hive-0.13.1-bin.tar.gz
http://apache.mirror.quintex.com/hive/hive-0.13.1/apache-hive-0.13.1-bin.tar.gz
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Next, you move the release to /usr/local/ and create a symbolic link to the release to simplify the path and
environment:

[root@hcinn Downloads]# mv apache-hive-0.13.1-bin /usr/local
[root@hcinn Downloads]# cd /usr/local
[root@hcinn locall]# 1n -s apache-hive-0.13.1-bin hive

[root@hcinn locall# 1ls -1d *hive*
drwxrwxr-x. 8 hadoop hadoop 4096 Jun 18 17:03 apache-hive-0.13.1-bin
lrwxrwxrwx. 1 root root 22 Jun 18 17:05 hive -> apache-hive-0.13.1-bin

You update the user environment for the Linux account hadoop via its S(HOME/ .bashrc. For instance, I added the
following to the end of the file:

HHEH e S R e e
# Set up Hive variables

export HIVE_HOME=/usr/local/hive
export PATH=$PATH:$HIVE_HOME/bin

Once installed, Hive needs to use several HDFS-based directories, including a temporary directory and a
warehouse directory. You first check that these exist and are group writeable:

[hadoop@hcinn bin]$ hadoop fs -mkdir /tmp
[hadoop@hcinn bin]$ hadoop fs -chmod g+w  /tmp
[hadoop@hcinn bin]$ hadoop fs -mkdir /user/hive/warehouse
[hadoop@hcinn bin]$ hadoop fs -chmod g+w  /user/hive/warehouse

After making one last check for the proper release via the Linux type command, which shows that the hive
command is accessible, you can start Hive by using the hive command, which results in the Hive> prompt:

[hadoop@hcinn bin]$ type hive
hive is hashed (/usr/local/hive/bin/hive)

[hadoop@hcinn bin]$ hive

Logging initialized using configuration in jar:file:/usr/local/apache-hive-0.13.1-bin/lib/hive-
common-0.13.1.jar!/hive-log4j.properties

hive>

The hive command starts the Hive command line interface (CLI), readying Hive for some Hive QL.

Hive Word-Count Example

With the Hive CLI running, you're ready to do a word count on HDFS data using HiveQL. Notice that you must
terminate each command with a semicolon. To create a table to hold the data file lines, use the CREATE TABLE
command. The first parameter is the table’s name—in this case, “rawdata.” Next, you pass the column names and their
type. Here, you specify a single column named“line,’of type STRING:

hive> CREATE TABLE rawdata (line STRING);

112

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

You load the text files under /user/hadoop/edgar/ on HDFS into the Hive table rawdata by using the LOAD DATA
statement.

hive> LOAD DATA INPATH '/user/hadoop/edgar/' INTO TABLE rawdata ;

The data in the rawdata table is converted to the word-count table via a CREATE TABLE with a sub SELECT. (I have
taken the liberty of adding line numbers to the script that follows to better explain this.) You have created the rawdata
table and populated it with data via a LOAD DATA command. The Hive QL script that will carry out the word count now
is as follows:

hive>

01 > CREATE TABLE wordcount AS

02 >  SELECT

03 > word,

04 > count(1) AS count
05 > FROM

06 > (SELECT

07 > EXPLODE(SPLIT(line," ")) AS word
08 > FROM

09 > rawdata

10 > ) words

11 > GROUP BY word

12 > ORDER BY word ;

Lines 6 to 10 create a derived table called words that takes data from the rawdata table. It does this by splitting the
rawdata.line column into a column called word in the derived table at line 7. The rawdata.line free text is split by
space characters so that the derived table column words.word contains a list of words.

The rest of the Hive QL then groups these words together (line 11), counts the instances of each (line 4), and
orders the list (line 12) that is output.

When you check the word-count table with a SELECT COUNT(*) command, you find there are over 36 thousand
rows:

hive> SELECT COUNT(*) FROM wordcount;

OK
36511

You can narrow your results by using SELECT, as well. Selecting the data from the word count where the count is
greater than 1,500 instances gives a short list of the most frequently occurring words in the data.

hive> SELECT
> word,

count
FROM

wordcount
WHERE

count > 1500
ORDER BY

count ;

vV V V V V VvV Vv

113

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

he 1585
for 1614
at 1621
his 1795
had 1839
it 1918
my 1921
as 1950
with 2563
that 2726
was 3119
I 4532
in 5149
a 5649
to 6230
and 7826
of 10538
the 18128

This is an SQL-like example that uses HiveQL to run a word count. It is easy to install and use, and Hive
provides a powerful HiveQL interface to the data. Not including the COUNT (*) line, the word-count job took just three
statements. Each of the statements issued to the Hive CLI was passed on to Hadoop as a Map Reduce task.

Whether you employ Hive for Map Reduce will depend on the data you are using, its type, and the relationships
between it and other data streams you might wish to incorporate. You have to view your use of Hive QL in terms of
your ETL chains—that is, the sequence of steps that will transform your data. You might find that Hive QL doesn’t offer
the functionality to process your data; in that case, you would choose either Pig Latin or Java.

Map Reduce with Perl

Additionally, you can use the library-based data streaming functionality provided with Hadoop. The important point
to note is that this approach allows you to process streams of data using Hadoop libraries. With the Hadoop streaming
functionality, you can create Map Reduce jobs from many executable scripts, including Perl, Python, and Bash. It is
best used for textual data, as it allows data streaming between Hadoop and external systems.

In this example, you will run a Perl-based word-count task. (I present this example in Perl simply because I am
familiar with that language.) The streaming library can be found within the Hadoop release as a jar file. This is the
library within Hadoop that provides the functionality for users to write their own scripts and have Hadoop use them
for Map Reduce:

[hadoop@hcinn hadoop]$ pwd

/usr/local/hadoop

[hadoop@hcinn hadoop]$ 1s -1 contrib/streaming/hadoop-*streaming*.jar

-Iw-IwW-I--. 1 hadoop hadoop 107399 Jul 23 2013 contrib/streaming/hadoop-streaming-1.2.1.jar

First, we need a Perl working directory on HDFS called /user/hadoop/perl which will be used for result data for
the Map Reduce run:

[hadoop@hcinn python]$ hadoop dfs -mkdir /user/hadoop/perl

114

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

I have already created a number of scripts in the Linux file system directory /home/hadoop/perl:

[hadoop@hcinn perl]$ 1s
mapper.pl  testi.sh wc_clean.sh  wordcount.sh
reducer.pl test2.sh wc_output.sh

The file names ending in .pl are Perl scripts, while those ending in .sh are shell scripts used either to test the perl
scripts or to run them. The Map function is in the file mapper.pl and looks like this:

[hadoop@hcinn perl]$ cat mapper.pl

01 #!/usr/bin/perl
02

03 my $line;

04 my @words = ();
05 my $word;

05

06 # process input line by line

07

08 foreach $line ( <STDIN> )

09 {

10 # strip new line from string

11

12 chomp( $line );

13

14 # strip line into words using space

15

16 @words = split( ' ', $line );

17

18 # now print the name value pairs

19

20 foreach $word (@words)

21 {

22 # convert word to lower case

23

24 $word = lc( $word ) ;

25

26 # remove unwanted characters from string

27

28 $word =~ s/1//g ; # remove ! character from word
29 $word =~ s/"//g ; # remove " character from word
30 $word =~ s/'//g ; # remove ' character from word
31 $word =~ s/_//g ; # remove _ character from word
32 $word =~ s/;//g ; # remove ; character from word
33 $word =~ s/\(//g ; # remove ( character from word
34 $word =~ s/\)//g ; # remove ) character from word
35 $word =~ s/\#//g ; # remove # character from word
36 $word =~ s/\$//g ; # remove $ character from word
37 $word =~ s/\&//g ; # remove & character from word
38 $word =~ s/\.//g ; # remove . character from word
39 $word =~ s/\,//g ; # remove , character from word
40 $word =~ s/\*//g ; # remove * character from word

115

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

41 $word =~ s/\-//g ; # remove - character from word
42 $word =~ s/\///g ; # remove / character from word
43 $word =~ s/\{//g ; # remove { character from word
44 $word =~ s/\}//g ; # remove } character from word
45 $word =~ s/\}//g ; # remove } character from word
46

47 # only print the key,value pair if the key is not
48 # empty

49

50 if ( $word ne "" )

51 {

52 print "$word,1\n" ;

53 }

54

55 }

56

57 }

This script takes text file lines from STDIN at line 8, the Linux standard input stream; breaks the input down into
lines, then into words at line 16; and strips the words of unwanted characters between lines 28 and 45. It then prints a
series of key-value pairs as word, 1 at line 52. Look at the Reduce script in the Perl file reducer.pl:

[hadoop@hcinn perl]$ cat reducer.pl

01 #!/usr/bin/perl

02

03 my $line;

04 my @lineparams = ();

05 my $oldword,$word,$value,$sumval;

06

07 # the reducer is going to receive a key,value pair from stdin and it
08 # will need to sum up the values. It will need to split the name and
09 # value out of the comma separated string.

10

11 $oldword = "" ;

12

13 foreach $line ( <STDIN> )

14 |

15 # strip new line from string

16

17 chomp( $line );

18

19 # split the line into the word and value
20

21 @lineparams = split( '\,', $line );
22

23 $word = $lineparams[0];

24 $value = $lineparams[1];

25

26 # Hadoop sorts the data by value so just sum similar word values
27

116

www.it-ebooks.info


http://www.it-ebooks.info/

28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44 '}
45
46 #
47

if ( $word eq $oldword )

$sumval += $value ;

}

else

{
if ( $oldword ne "" )

print "$oldword,$sumval\n" ;
}
$sumval = 1 ;

}

# now print the name value pairs

$oldword = $word ;

remember to print last word

48 print "$oldword,$sumval\n" ;

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

The reducer.pl Perl script that receives data from the mapper.pl script splits its STDIN (standard input) line into
the key-value pair of word, 1 (at line 21). It then groups similar words and increments their count between lines 28 and
39. Lastly, it outputs key-value pairs as word, count at lines 36 and 48.

You already have some basic text files on HDFS under the directory /user/hadoop/edgar on which you can run the
Perl word-count example. Check the data using the Hadoop file system 1s command to be sure that it is ready to use:

[hadoop@hcinn python]$ hadoop dfs -1s /user/hadoop/edgar

Found 5 items

-Iw-r--r-- 1 hadoop supergroup 4
-Iw-r--r-- 1 hadoop supergroup 5
-Iw-r--r-- 1 hadoop supergroup
-1w-r--r-- 1 hadoop supergroup 5
-rw-r--r-- 1 hadoop supergroup

10012 2014-06-15 15:53 /user/hadoop/edgar/10031.txt
59352 2014-06-15 15:53 /user/hadoop/edgar/15143.txt
66401 2014-06-15 15:53 /user/hadoop/edgar/17192.txt
96736 2014-06-15 15:53 /user/hadoop/edgar/2149.txt
63278 2014-06-15 15:53 /user/hadoop/edgar/932.txt

The testl.sh shell script tests the Map function on the Linux command line to ensure that it works, giving a single
word count—that is, a count of 1 for each word in the string:

[hadoop@hcinn perl]$ cat testi.sh

01 #!/bin/bash

02

03 # test the mapper

04

05 echo "one one one two three" | ./mapper.pl

[hadoop@hcinn perl]$ ./testi.sh

one,1
one,1
one,1
two,1

three,

1

117

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Okay, that works. The input of five words separated by spaces is outputted as five key-value pairs of the words
with a value of 1. Now, you test the Reduce function with test2.sh:

[hadoop@hcinn perl]$ cat test2.sh

01 #!/bin/bash

02

03 # test the mapper

04

05 echo "one one one two three" | ./mapper.pl | ./reducer.pl

This script pipes the output from the Map function shown above into the Reduce function:

[hadoop@hcinn perl]$ ./test2.sh
one,3

two, 1

three, 1

The Reduce function sums the values of the similar words correctly: three instances of the word one followed by
one each of fwo and three. Now, it is time to run the Hadoop streaming Map Reduce job by using these Perl scripts.
You create three scripts to help with this:

[hadoop@hcinn perl]$ 1s w*
wc_clean.sh wc_output.sh wordcount.sh

The script wc_clean.sh is used to delete the contents of the results directory on HDFS so that the Map Reduce job
can be rerun:

[hadoop@hcinn perl]$ cat wc_clean.sh

01 #!/bin/bash

02

03 # Clean the hadoop perl run data directory
04

05 hadoop dfs -rmr /user/hadoop/perl/results_wc

This uses the Hadoop file system rmr command to delete the directory and its contents.
The script we_output.sh is used to display the results of the job:

[hadoop@hcinn perl]$ cat wc_output.sh

01 #!/bin/bash

02

03 # List the results directory

04

05 hadoop dfs -1s /user/hadoop/perl/results_wc

06

07 # Cat the last ten lines of the part file

08

09 hadoop dfs -cat /user/hadoop/perl/results wc/part-00000 | tail -10

118

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

It lists the files in the results directory on HDFS and dumps the last 10 lines of the results part file using the
Hadoop file system cat command and the Lunix tail command.

The script wordcount.sh runs the Map Reduce task by using the Map and Reduce Perl scripts:
[hadoop@hcinn perl]$ cat wordcount.sh

01 #!/bin/bash

02

03 # Now run the Perl based word count

04

05 cd $HADOOP_PREFIX

06

07 hadoop jar contrib/streaming/hadoop-*streaming*.jar \
08 -file /home/hadoop/perl/mapper.pl \
09 -mapper /home/hadoop/perl/mapper.pl \

10 -file /home/hadoop/perl/reducer.pl \
11 -reducer /home/hadoop/perl/reducer.pl \
12 -input  /user/hadoop/edgar/* \

13 -output /user/hadoop/perl/results_wc

The \ characters allow you to make your Hadoop command line more readable by breaking a single command
line over multiple lines. The -file options make a file executable within Hadoop. The -mapper and -reducer options
identify the Map and Reduce functions for the job. The -input option gives the path on HDFS to the input text data.
The -output option specifies where the job output will be placed on HDFS.

The Hadoop jar parameter allows the command line to specify which library file to use—in this case, the
streaming library. Using the last three scripts for cleaning, running, and outputting the results makes the Map Reduce
task quickly repeatable; you do not need to retype the commands! The output is a Map Reduce job, as shown below:

[hadoop@hcinn perl]$ ./wordcount.sh

packageJobJar: [/home/hadoop/perl/mapper.pl, /home/hadoop/perl/reducer.pl, /app/hadoop/tmp/hadoop-

unjar5199336797215175827/] [] /tmp/streamjob5502063820605104626.jar tmpDir=null

14/06/20 13:35:56 INFO util.NativeCodeloader: Loaded the native-hadoop library

14/06/20 13:35:56 INFO mapred.FileInputFormat: Total input paths to process : 5

14/06/20 13:35:57 INFO streaming.StreamJob: getlocalDirs(): [/app/hadoop/tmp/mapred/local]

14/06/20 13:35:57 INFO streaming.StreamJob: Running job: job_201406201237_0010

14/06/20 13:35:57 INFO streaming.StreamJob: To kill this job, run:

14/06/20 13:35:57 INFO streaming.StreamJob: /usr/local/hadoop-1.2.1/1libexec/../bin/hadoop job
-Dmapred. job.tracker=hcinn:54311 -kill job_ 201406201237 0010

14/06/20 13:35:57 INFO streaming.StreamJob: Tracking URL: http://hcinn:50030/jobdetails.
jsp?jobid=job_201406201237_0010

14/06/20 13:35:58 INFO streaming.StreamJob: map 0% reduce 0%

14/06/20 13:36:06 INFO streaming.StreamJob: map 20% reduce 0%

14/06/20 13:36:08 INFO streaming.StreamJob: map 60% reduce 0%

14/06/20 13:36:13 INFO streaming.StreamJob: map 100% reduce 0%

14/06/20 13:36:15 INFO streaming.StreamJob: map 100% reduce 33%

14/06/20 13:36:19 INFO streaming.StreamJob: map 100% reduce 100%

14/06/20 13:36:22 INFO streaming.StreamJob: Job complete: job_ 201406201237 _0010

14/06/20 13:36:22 INFO streaming.StreamJob: Output: /user/hadoop/perl/results_wc

119

www.it-ebooks.info


http://hc1nn:50030/jobdetails.jsp?jobid=job_201406201237_0010
http://hc1nn:50030/jobdetails.jsp?jobid=job_201406201237_0010
http://www.it-ebooks.info/

CHAPTER 4 © PROCESSING DATA WITH MAP REDUCE

Looking on HDFS, you will find a results_wc directory under /user/hadoop/perl that contains the output of the
word-count task. As in previous examples, it is the part file that contains the result. When you dump the part file to the
session by using the Hadoop file system cat command and the Linux tail command, you limit the results to the last
10 lines, with the following resulting data:

[hadoop@hcinn perl]$ ./wc_output.sh

Found 3 items

-IW-1--r-- 1 hadoop supergroup 0 2014-06-20 13:36 /user/hadoop/perl/results_wc/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2014-06-20 13:35 /user/hadoop/perl/results_wc/_logs
-Iw-r--r-- 1 hadoop supergroup 249441 2014-06-20 13:36 /user/hadoop/perl/results_wc/part-00000

zephyr,1
zero,1
zigzag,?
zimmermann,5
zipped,1
zoar,1
zoilus,3
zone, 1
zones, 1
zoophytes,1

The words have been sorted and their values totaled, and many of the unwanted characters have been removed
from the words. This last example shows the wide-ranging possibility of using scripts for Map Reduce jobs with
Hadoop streaming. No Java code was needed and no code was compiled.

Summary

In this chapter you have investigated Map Reduce programming by using one example implemented in several ways.
That is, by using a single algorithm, you can better compare the different approaches.

A Java-based approach, for example, gives a low-level means to Map Reduce development. The downside is that
code volumes are large, and so costs and potential error volume increase. On a positive note, using low-level
Hadoop-based APIs gives a wide range of functionality for your data processing.

In contrast, the Apache Pig examples involved a high-level Pig native code API. This resulted in a lower code
volume and therefore lower costs and quicker times. You can also extend the functionality of Pig by writing user-
defined functions (UDFs) in Java. Pig can be a vehicle for processing HDFS-based data, and although there was no
time to cover it here, it can also load data to Hive by using a product called HCatalog.

A word-count example was then attempted using Hive, the Hadoop data warehouse. A file was imported into a
table and a count of words was created in Hive QL, an SQL-like language. While this is a functional language and quite
easy to use, it may not offer the full range of functions that are available when using Pig and UDFs. Although it was
quick to implement and needed very little code, choosing this technique depends on the complexity of your task.

Lastly, word count was coded in Perl and called via the Hadoop streaming library. This showed that a third-party
language like Python or Perl can be used to create Map Reduce jobs. In this example, unstructured text was employed
for the streaming job, making it possible to create user-defined input and output formats. See the Hadoop streaming
guide at http://hadoop.apache.org/docs/r1.2.1/streaming.html#Hadoop+Streaming

These different Map Reduce methods offer the ability to create simple ETL building blocks that can be used to
build complex ETL chains. Later chapters will discuss this concept in relation to products like Oozie, Talend, and
Pentaho. Therefore, the reader should consider this chapter in conjunction with Chapter 10, which will present big-
data visual ETL tools such as Talend and Pentaho; these offer a highly functional approach to ETL job creation using
object drag and drop.

120

www.it-ebooks.info


http://hadoop.apache.org/docs/r1.2.1/streaming.html#Hadoop+Streaming
http://www.it-ebooks.info/

CHAPTER 5

Scheduling and Workflow

When you're working with big data in a distributed, parallel processing environment like Hadoop, job scheduling
and workflow management are vital for efficient operation. Schedulers enable you to share resources at a job level
within Hadoop; in the first half of this chapter, I use practical examples to guide you in installing, configuring, and
using the Fair and Capacity schedulers for Hadoop V1 and V2. Additionally, at a higher level, workflow tools enable
you to manage the relationships between jobs. For instance, a workflow might include jobs that source, clean,
process, and output a data source. Each job runs in sequence, with the output from one forming the input for the
next. So, in the second half of this chapter, I demonstrate how workflow tools like Oozie offer the ability to manage
these relationships.

An QOverview of Scheduling

The default Hadoop scheduler was FIFO—first in, first out. It did not support task preemption, which is the ability to
temporarily halt a task and allow another task to access those resources. Apache, though, offers two extra schedulers
for Hadoop—Capacity and Fair—that you can use in place of the default.

Although both schedulers are available in Hadoop V1 and V2, the functions they offer depend on the Hadoop
version you're using. To decide which scheduler is right for your applications, take a look at the prime features of each,
detailed in the following sections, or consult the Apache Software Foundation website at hadoop.apache.org/docs for
in-depth information.

The Capacity Scheduler

Capacity handles large clusters that are shared among multiple organizations or groups. In this multi-tenancy
environment, a cluster can have many job types and multiple job priorities. Some key features of Capacity are as
follows:

Organization: As it is designed for situations in which clusters need to support multi-tenancy, its resource
sharing is more stringent so as to meet capacity, security, and resource guarantees.

Capacity: Resources are allocated to queues and are shared among the jobs on that queue. It is possible to set
soft and hard limits on queue-based resources.

Security: In a multi-tenancy cluster, security is a major concern. Capacity uses access control lists (ACLs) to
manage queue-based job access. It also permits per-queue administration, so that you can have different settings on
the queues.

Elasticity: Free resources from under-utilized queues can be assigned to queues that have reached their
capacities. When needed elsewhere, these resources can then be reassigned, thereby maximizing utilization.

Multi-tenancy: In a multi-tenancy environment, a single user’s rogue job could possibly soak up multiple
tenants’ resources, which would have a serious impact on job-based service-level agreements (SLAs). The Capacity
scheduler provides a range of limits for these multiple jobs, users, and queues so as to avoid this problem.

121

www.it-ebooks.info



http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Resource-based Scheduling: Capacity uses an algorithm that supports memory-based resource scheduling for
jobs that are resource intensive.

Hierarchical Queues: When used with Hadoop V2, Capacity supports a hierarchy of queues, so that under-
utilized resources are first shared among subqueues before they are then allocated to other cluster tenant queues.

Job Priorities: In Hadoop V1, the scheduler supports scheduling by job priority.

Operability: Capacity enables you to change the configuration of a queue at runtime via a console that permits
viewing of the queues. In Hadoop V2, you can also stop a queue to let it drain.

The Fair Scheduler

Fair aims to do what its name implies: share resources fairly among all jobs within a cluster that is owned and used by
a single organization. Over time, it aims to share resources evenly to job pools. Some key aspects of Fair are:
Organization: This scheduler organizes jobs into pools, with resources shared among the pools. Attributes, like
priorities, act as weights when the resources are shared.
Resource Sharing: You can specify a minimum level of resources to a pool. If a pool is empty, then Fair shares the
resources of other pools.
Resource Limits: With Fair, you can specify concurrent job limits by user and pool so as to limit the load
on the cluster.

Scheduling in Hadoop V1

Now that you have a sense of each scheduler’s strengths, you're ready to see them put to work. This section
demonstrates job scheduling in a Hadoop V1 environment. You'll learn how to configure the Capacity and Fair
schedulers, and you'll see that the libraries necessary to use them are already supplied with Hadoop V1.2.1, just
waiting for you to plug them in.

V1 Capacity Scheduler

As mentioned, the library used by the Hadoop Capacity scheduler is included in the V1.2.1 release within the lib
directory of the installation, as you can see:

[hadoop@hcinn 1ib]$ pwd

/usr/local/hadoop/1ib

[hadoop@hcinn 1ib]$ 1s -1 hadoop-capacity-scheduler*

-Iw-IW-I--. 1 hadoop hadoop 58461 Jul 23 2013 hadoop-capacity-scheduler-1.2.1.jar

To use the library, you plug it into the configuration by adding the following property to the mapred-site.xml file
in the conf directory of the installation:

<property>
<name>mapred.jobtracker.taskScheduler</name>
<value>org.apache.hadoop.mapred.CapacityTaskScheduler</value>
<description>Plugin the Capcity scheduler</description>
</property>

122

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

As described earlier, Capacity is designed for multiple tenancy and is queue-based, with queues shared among
cluster tenants. A configuration file for the queue configuration, called capacity-scheduler.xml, is supplied in the conf
directory as well. The file contains the configuration for the default queue:

[hadoop@hcinn conf]$ pwd

/usr/local/hadoop/conf

[hadoop@hcinn conf]$ 1s -1 capacity-scheduler.xml

-IW-IW-T--. 1 hadoop hadoop 7457 Jul 23 2013 capacity-scheduler.xml

To demonstrate an example of a Hadoop V1 Capacity scheduling queue, I have set up a new queue called
“tqueue” in this file, with the following configuration. The configuration file, which you can copy, shows the attributes
that can be set for the queue. The default queue already exists; the new tqueue queue is added:

<!-- Set up test queue -->

<property>
<name>mapred.capacity-scheduler.queue.tqueue.capacity</name>
<value>50</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.maximum-capacity</name>
<value>100</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.supports-priority</name>
<value>true</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.minimum-user-limit-percent</name>
<value>20</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.user-limit-factor</name>
<value>1</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.maximum-initialized-active-tasks</name>
<value>200000</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.maximum-initialized-active-tasks-per-user</name>

<value>100000</value>
</property>

123

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

<property>
<name>mapred.capacity-scheduler.queue.tqueue.init-accept-jobs-factor</name>
<value>10</value>

</property>

You can specify access controls, such as which users can submit jobs and which can administer queues, in the
conf directory file mapred-queue-acls.xml. For complete details, see the configuration guide supplied by the Apache
Software Foundation, available at hadoop.apache.org/docs/r1.2.1/; click Map Reduce (on the left), and then select
Capacity Scheduler.

Next, in mapred-queue-acls.xml, you need to specify the list of queues via the mapred. queue.names property:

<property>
<name>mapred.queue.names</name>
<value>default,tqueue</value>
</property>

Make sure that the sum of the queue capacity values in the configuration file for all the queues is 100. For
instance, both the default and tqueue queues in my configuration file have a capacity value of 50 (see below).

<property>
<name>mapred.capacity-scheduler.queue.default.capacity</name>
<value>50</value>

</property>

<property>
<name>mapred.capacity-scheduler.queue.tqueue.capacity</name>
<value>50</value>

</property>

After you add the configuration for the Capacity scheduler, it will become visible within the system when the Map
Reduce servers are restarted. They can be checked via the Job Tracker user interface. For example, to check the jobs
on the name node hclnn server, use the URL http://hcinn:50030/jobtracker. jsp.

Figure 5-1 shows a list of queues, along with their attributes, for the Capacity scheduler on the name node hclnn
server. Notice the scheduling configuration of the two queues—default and tqueue.

124

www.it-ebooks.info


http://hc1nn:50030/jobtracker.jsp
http://www.it-ebooks.info/

Scheduling Information

Queue Name

State

Scheduling Information

default

running

Queue configuration
Capacity Percentage: 50.0%
User Limit: 100%

Priority Supported: NO

Map tasks

Capacity: 4 slots

Used capacity: 0 (0.0% of Capacity)
Running tasks: 0

Reduce tasks

Capacity: 4 slots

Used capacity: 0 (0.0% of Capacity)
Running tasks: 0

Job info

Number of Waiting Jobs: 0

Number of Initializing Jobs: 0

Number of users who have submitted jobs: 0

tqueue

running

Queue configuration
Capacity Percentage: 50.0%
User Limit: 20%

Priority Supported: YES

Map tasks
Capacity: 4 slots

Maximum capacity: & slots

Used capacity: 0 (0.0% of Capacity)
Running tasks: 0

Reduce tasks

Capaciy: 4 slots

Maximum capacity: & slots

Used capacity: 0 (0.0% of Capacity)
Running tasks: 0

Job info

Number of Watting Jobs: 0

Number of Initializing Jobs: 0

Number of users who have submitted jobs: 0

Figure 5-1. Capacity scheduler queue list

V1 Fair Scheduler

As was the case for the Capacity scheduler, the library you need to use the Fair scheduler is included with the Hadoop
V1.2.1 installation; it is within the lib directory:

[hadoop@hcinn 1ib]$ pwd
/usr/local/hadoop/1ib

[hadoop@hcinn 1ib]$ 1s -1 hadoop-fairscheduler*

CHAPTER 5 © SCHEDULING AND WORKFLOW

-IW-IW-Tr--. 1 hadoop hadoop 70409 Jul 23 2013 hadoop-fairscheduler-1.2.1.jar

www.it-ebooks.info

125


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

However, you need to modify the property mapred. jobtracker.taskScheduler in the file mapred-site.xml within
the conf directory, as follows:

<property>
<name>mapred.jobtracker.taskScheduler</name>
<value>org.apache.hadoop.mapred.FairScheduler</value>
<description>Plugin the Fair scheduler</description>
</property>

To give greater control, I add some properties to the mapred-site.xml file to switch off pre-emption by
setting mapred.fairscheduler.preemption to False and I disallow unspecified pool names by setting
mapred.fairscheduler.allow.undeclared.pools to False. Also, I assign pool property names to queue names by
using mapred.fairscheduler.poolnameproperty. Finally, I use the mapred.queue.names property to define a list of
allowed queue names that could be used in the configuration file, all as follows:

<property>
<name>mapred.fairscheduler.preemption</name>
<value>false</value>

</property>

<property>
<name>mapred.fairscheduler.allow.undeclared.pools</name>
<value>false</value>

</property>

<property>
<name>mapred.fairscheduler.poolnameproperty</name>
<final>true</final>
<value>mapred.job.queue.name</value>

</property>

<property>
<name>mapred.queue.names</name>
<final>true</final>
<value>high pool,low_pool,default</value>
</property>

To see the full configuration guide, go to the Apache Software Foundation website
(hadoop.apache.org/docs/r1.2.1/), click Map Reduce, and then select Fair Scheduler.

Like the configuration for the Capacity scheduler, you can add access control in the mapred-queue-acls.xml file
for the Fair scheduler to specify user and administration access to each queue. For example, here I grant the hadoop
user access to the high_pool and administration access to that queue, as follows:

<property>
<name>mapred.queue.high pool.acl-submit-job</name>
<value>hadoop</value>

</property>

<property>
<name>mapred.queue.low_pool.acl-submit-job</name>

<value>smitha</value>
</property>

126

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5

<property>
<name>mapred.queue.default.acl-submit-job</name>
<value>jonesb</value>

</property>

<property>
<name>mapred.queue.high pool.acl-administer-jobs</name>
<value>hadoop</value>

</property>

<property>
<name>mapred.queue.low_pool.acl-administer-jobs</name>
<value>smitha</value>

</property>

<property>
<name>mapred.queue.default.acl-administer-jobs</name>
<value>jonesb</value>

</property>

SCHEDULING AND WORKFLOW

There is already a configuration file provided for this scheduler in the installation configuration directory:

[hadoop@hcinn conf]$ pwd

/usr/local/hadoop/conf

[hadoop@hcinn conf]$ 1s -1 fair-scheduler.xml

-IW-IW-I--. 1 hadoop hadoop 327 Jul 23 2013 fair-scheduler.xml

I add the following configuration to this file to specify the fair scheduler pools high pool, low_pool, and default
queues, as well as their attributes, such as the minimum and maximum number of Map and Reduce function

instances, as follows:

<pool name="high pool">
<minMaps>10</minMaps>
<minReduces>10</minReduces>
<maxMaps>50</maxMaps>
<maxReduces>50</maxReduces>
<maxRunningJobs>1000</maxRunningJobs>
<weight>3</weight>

</pool>

<pool name="low_pool">
<minMaps>10</minMaps>
<minReduces>10</minReduces>
<maxMaps>50</maxMaps>
<maxReduces>50</maxReduces>
<maxRunningJobs>1000</maxRunningJobs>
<weight>1</weight>

</pool>

www.it-ebooks.info

127


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

<pool name="default">
<minMaps>10</minMaps>
<minReduces>10</minReduces>
<maxMaps>50</maxMaps>
<maxReduces>50</maxReduces>
<maxRunningJobs>1000</maxRunningJobs>
<weight>1</weight>

</pool>

Here, I define three pools (high_pool, low_pool, and default), each with the same configuration for the Map
Reduce minimum and maximum limits. They all have a maximum of 1,000 running jobs, but the high pool has three
times the weighting, so the high_pool will get three times the share of the cluster than the other pools will get.

To show how the Fair scheduler works, I will run a Pig-based job as an example. But before running the job
example, I restart the Map Reduce servers as I did for the Capacity scheduler earlier, so as to pick up the changes to
the configuration. Using the mapred. fairscheduler.pool property, I specify the name of the queue that my Pig Latin
job will be placed on when I issue the command line, using the -D switch, as follows.

[hadoop@hcinn pigl$ pig -Dmapred.fairscheduler.pool=high pool wordcount2.pig

Note: If I did not specify the pool to be used by using the -D option, I would encounter an error because, by
default, Fair assumes that the queue name matches the Linux account name. Given that I am running the job using
the Linux hadoop account, Fair would have looked for a queue named “hadoop,” which does not exist. The error
message I would receive is an example of an UndeclaredPoolException error:

Failed Jobs:

JobId Alias Feature Message Outputs

N/A clines,gword,rlines,wcount,words GROUP_BY, COMBINER

Message: org.apache.hadoop.ipc.RemoteException: org.apache.hadoop.mapred.UndeclaredPoolException:
Pool name: 'hadoop' is invalid. Add pool name to the fair scheduler allocation file. Valid pools
are: high_pool, low_pool

However, proceeding with the Fair scheduler example, I can see that the scheduler has started without error from
the Job Server’s log in the install logs directory. I look for the following line:

2014-06-29 13:41:27,882 INFO org.apache.hadoop.mapred.FairScheduler: Successfully configured
FairScheduler

By checking the Job Tracker user interface, I can learn more about the job details. Figure 5-2 shows a compound
image of the Pig Latin job that I submitted to the high_pool pool. For instance, the top table is taken from the list
of running jobs from the Job Tracker user interface. It shows that the hadoop user has submitted the Pig Latin job
wordcount2.pig, which is running.

128

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Running Jobs

Jobid Started Priority |User |Name Map % Complete | Map Total | Maps Completed
0.00% 1 0
[

job 201406291503 0002 | Sun Jun 29 15:12:26 NZST 2014 | NORMAL | hadoop | PigLatin:wordcount2.pig

Reduce % Complete | Reduce Total | Reduces Completed | Job Scheduling Information | Diagnostic Info

0.00% 1 0 NA NA

Job Summary for the Queue :: high_pool

(in the order maintained by the scheduler)

Jobid Started Priority |User |[Name Map % Complete | Map Total | Maps Completed
job 201406291503 0002 | Sun Jun 29 15:12:26 NZST 2014 | NORMAL | hadeop | PigLatin:wordcount2. pig | 0:00% ] 1 0

Reduce % Complete | Reduce Total | Reduces Completed | Job Scheduling Information | Diagnostic Info

0.00% 1 0 NA NA

Figure 5-2. Fair scheduler job queue

The second table is taken from the high_pool queue, and it shows that the job was submitted to this queue with
Normal priority, using the command line switch -Dmapred.fairscheduler.pool=high pool.

Now that you've examined the schedulers in Hadoop V1, it’s time to take a look at those same schedulers in
Hadoop V2. You can use the environment section in Chapter 4 to find out how to switch between versions on a single
cluster of servers. You will then see the similarities of the V1 and V2 schedulers, but also note the more advanced
interfaces that V2 offers.

Scheduling in Hadoop V2

In this section, I show how to configure the Capacity and Fair plug-in schedulers for Hadoop V2. You can find full
details at the Apache Software Foundation website (hadoop.apache.org/docs) by selecting your Hadoop version,
then the desired scheduling options from the menu on the left. In comparison to V1, the V2 user interface offers better
functionality and generally looks much more presentable. The configuration is similar, however, and the files that
need to be set up are the same.

129

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

V2 Capacity Scheduler

You need to set up the Capacity scheduler to work with YARN. You begin by configuring YARN so that its scheduler
class is defined as Capacity, rather than as the default FIFO scheduler. At the end of the yarn-site.xml file, which is
located under /etc/hadoop/conf, you add the following property to define Capacity:

<!-- add scheduler configuration -->

<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>

As you remember, Hadoop V2 can support hierarchical queues for each cluster client. This way, free resources
can be shared across a client’s queues before being offered to other queues. To demonstrate how this works, I define
some queues in the Capacity scheduler’s configuration file (capacity-scheduler.xml, found in /etc/hadoop/conf).
Specifically, I define and create three new queues (clientl, client2, and client3) and their subqueues, as follows:

<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>client1,client2,client3</value>
</property>

<property>
<name>yarn.scheduler.capacity.root.client1.queues</name>
<value>clientia,clientib</value>

</property>

<property>
<name>yarn.scheduler.capacity.root.client2.queues</name>
<value>client2a,client2b,client2c</value>

</property>

<property>
<name>yarn.scheduler.capacity.root.client3.queues</name>
<value>client3a,client3b</value>

</property>

In addition, for each queue I create, I define its properties in the capacity-scheduler.xml file. The XML that
follows is an example of that needed for one of the queues. Note that this must be repeated for each parent and child
queue; therefore, I must remember to change the name of each attribute to match the queue name—that is, yarn.
scheduler.capacity.root.clientl.capacity.

As in the V1 example, the sum of the capacity values for queues in the configuration file must be 100. Also, the
sum of the capacity values for the child queues within a parent queue must be 100. For instance, the children of
clientl are named clientl.clientla. This XML sets up the attributes for queue clientl in terms of capacity, state, and
access. In this case, the * values mean “anyone,” so access has been left open:

<property>

<name>yarn.scheduler.capacity.root.clienti.capacity</name> <value>100</value>
</property>

130

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

<property>

<name>yarn.scheduler.capacity.root.clienti.user-limit-factor</name> <value>1</value>
</property>
<property>

<name>yarn.scheduler.capacity.root.client1.maximum-capacity</name> <value>100</value>
</property>
<property>

<name>yarn.scheduler.capacity.root.clienti.state</name> <value>RUNNING</value>
</property>
<property>

<name>yarn.scheduler.capacity.root.clienti.acl_submit_applications</name> <value>*</value>
</property>
<property>

<name>yarn.scheduler.capacity.root.clientl.acl_administer queue</name> <value>*</value>
</property>

Now, I get YARN to refresh its queue configuration by using the yarn rmadmin command with a -refreshQueues
option. This causes YARN to reread its configuration files and so pick up the changes that have been made:

[hadoop@hcinn conf]$ yarn rmadmin -refreshQueues
My reconfigured scheduler is ready, and I now submit a word-count job to show the queues in use. To display
the queue’s functionality, however, I need some test data; therefore, I have created the job’s input data in the HDFS

directory /usr/hadoop/edgar, as the HDFS file system command shows (and I populate it with data):

[hadoop@hcinn edgar]$ hdfs dfs -1s /usr/hadoop/edgar
Found 5 items

-Iw-r--r-- 2 hadoop hadoop 410012 2014-07-01 18:14 /usr/hadoop/edgar/10031.txt
-Iw-r--r-- 2 hadoop hadoop 559352 2014-07-01 18:14 /usr/hadoop/edgar/15143.txt
-Tw-1--r-- 2 hadoop hadoop 66401 2014-07-01 18:14 /usr/hadoop/edgar/17192.txt
-Iw-r--r-- 2 hadoop hadoop 596736 2014-07-01 18:14 /usr/hadoop/edgar/2149.txt
-Tw-r--r-- 2 hadoop hadoop 63278 2014-07-01 18:14 /usr/hadoop/edgar/932.txt

The word-count job will read this data, run a word count, and place the output results in the HDFS directory /
usr/hadoop/edgar-resultsl. The word-count job results look like this:

hdfs \
jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar \
wordcount \
-Dmapred.job.queue.name=clientia \
/usr/hadoop/edgar \
/usr/hadoop/edgar-resultsi

The backslash characters (\) allow me to spread the command over multiple lines to make it more readable. I've
used a -D option to specify the queue in which to place this job (client1a).

Now I examine the scheduler configuration using the Name Node server name hclnn, with a port value of 8088,
taken from the property yarn.resourcemanager.webapp.address in the configuration file yarn-site.xml:
http://hcinn:8088/cluster/scheduler. Figure 5-3 illustrates the resulting hierarchy of job queues, with the
currently running word-count Map Reduce job placed in the clientla. child queue.

131

www.it-ebooks.info


http://hc1nn:8088/cluster/scheduler
http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

- Cluster Cluster Metrics

About Apps Submitted  Apps Pending Apps Running  Apps Completed | Containeérs Running  Memary Used = Memaory Total = Memaory Reserved  Adlive Nodes D
Nedes 1 0 1 1] 1 2GB 24 GB 0B 3 1]
Apphcations

HEW Application Queues

SUEMITTED E =

ACCEPTED Legend: = Capacity _Used . Used (over capacity) Max Capacity

RUNNING

EINISHING + B

FINISHED w=rack

FAILED * [+ client2

KILLED

b |+ dients

EScheduler « |

ol ¥ |+ clientl.clientlb
»Tools | | St
« (Slienti.client] s

Queue State: RUNNING
Used Capacity: 50.5%
Absolute Capacity: 16.5%
Absolute Max Capacity: 50.0%
Used Resources: <memory:2048, vCores:1>
Num Active Applications: 1
Num Pending Applications: 0
Num Containers: 1
Max Applications: 1650
Max Applications Per User: 1650
Max Active Applications: 2
Max Active Applications Per User: 1
Configured Capacity: 50.0%
Configured Max Capacity: 50.0%
Configured Minimum User Limit Percent: 100%
Configured User Limit Factor: 1.0
Active users: hadoop <Memory: 2048 (100.00%

Show 20 [+ |entries

D = User c Name ¥ | Queue < StarTime . FinishTime E State
application 1404193791956 0005 hadoop word count dient1a Tue, 01.Jul 2014 06:24:12 MA RUNNING
GMT

Figure 5-3. Hadoop V2 Capacity scheduler

Note that I have cropped Figure 5-3 so that the used queues are visible. You can see the Map Reduce word-count
job running on the clientl.clientla queue. The Capacity scheduler, therefore, is working on Hadoop V2 because it can
accept Hadoop jobs into its queues.

V2 Fair Scheduler

The configuration for the Hadoop V2 Fair scheduler is quite simple and follows the same method as for the V1
configuration. In the yarn-site.xml file within the configuration directory (/etc/hadoop/conf), you define the
yarn.resourcemanager.scheduler.class property.

<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>

Then, you set up the default Fair scheduler configuration file fair-scheduler.xml in the same directory.

132

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

To demonstrate, I have borrowed this file from the V1 configuration:
<allocations>

<pool name="high pool">
<minMaps>10</minMaps>
<minReduces>10</minReduces>
<maxMaps>50</maxMaps>
<maxReduces>50</maxReduces>
<maxRunningJobs>1000</maxRunningJobs>
<weight>3</weight>

</pool>

<pool name="low_pool">
<minMaps>10</minMaps>
<minReduces>10</minReduces>
<maxMaps>50</maxMaps>
<maxReduces>50</maxReduces>
<maxRunningJobs>1000</maxRunningJobs>
<weight>1</weight>

</pool>

<pool name="default">
<minMaps>10</minMaps>
<minReduces>10</minReduces>
<maxMaps>50</maxMaps>
<maxReduces>50</maxReduces>
<maxRunningJobs>1000</maxRunningJobs>
<weight>1</weight>

</pool>

</allocations>

You now use the yarn rmadmin command to refresh the YARN scheduler queue configuration. This will cause
YARN (as for V2 Capacity) to reread its configuration files and so pick up the changes that you have made:

[hadoop@hcinn conf]$ yarn rmadmin -refreshQueues

To demonstrate its use, I create a Map Reduce job and specify a queue value of high_queue so that I can ensure
that the submitted job will be processed by the YARN Fair scheduler and will be placed in the right queue.
The job I use specifies the queue name using a -D option:

hadoop \
jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar \
wordcount \
-Dmapred. job.queue.name=high pool \
/usr/hadoop/edgar \
/usr/hadoop/edgar-resultsi

Figure 5-4 shows the job status in the scheduler user interface. The queue legend now displays Fair Share, and
the job details appear in the high_pool queue, which is marked in green to indicate it’s being used.

133

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Cluster Metrics

NEW,SUBMITTED,ACCEPTED,RUNNING,FINISHING

* Cluster

About Apps Submitted  Apps Pending  Apps Running  Apps Completed  Containers Running | Memory Used | Memory Total Memory Reserved  Active Nodes  De
Ecdf:amm 1 0 1 0 1 2GB 24GE 0B 3 [)]
—E‘pl_T User Metrics for dr.who

53?‘:‘% Apps Submitted Apps Pending Apps Running Apps Completed Containers Running Containers Pending Containers Resen

A T

EooIRIED 0 0 1 ] 0 0 0

FINISHING —

EINISHED A_ppllcatmn Queues

EAILED ; .

KILLED Legend: Fair Share Used Used (over fair share) Max Capacity
Scheduler + (EsE

» Tools » 4+ rook.. fa
¥ [+ roct.l
+ [=rocthiah poo!
Used Resources: <memory:2048, vCores:1>
Num Active Applications: 1
Num Pending Applications: 0
Min Resources: <memory:0, vCores:0>
Max Resources: <memory:24576, vCores:24>
Fair Share: <memory:14746, vCores:0>
Show 20 [ |entries
D ; User Name Queve < Fair Share StarfTime FinishTime
zpplication 1404197983745 0001 hadoop word count high_pool 14745 Tue, 01 Jul 2014 MNIA AC
07:02:26 GMT

Figure 5-4. Hadoop V2 Fair scheduler

As shown in Figure 5-4, the V2 fair scheduler is configured and working correctly.

Using Oozie for Workflow

Capacity, Fair, and similar plug-in schedulers deal with resources allocated to individual jobs over a period of time.
However, what about the relationships between jobs and the dependencies between them? That’s where workflow
managers, like Apache’s Oozie, come in. This section examines Hadoop job-based workflows and scheduling, and
demonstrates how tools like Oozie enable you to manage related jobs as workflows.

A workflow scheduler for Hadoop, Oozie is integrated into many of the Hadoop tools, such as Pig, Hive, Map
Reduce, and Streaming. Oozie workflows are defined as directed acyclical graphs (DAGs) and are stored as XML.

In this section, I will demonstrate how to install the Oozie component that is part of the Cloudera installation
that was used in Chapter 2. I show how to check that it is working, and how to create an example workflow. For further
details, check the Apache Software Foundation website at oozie.apache.org.

Installing Oozie

You start by installing the Oozie client and server as root, using Yum, the Linux-based package manager.
You install Oozie on the single CentOS 6 Linux server hclnn, as follows:

[root@hcinn conf]# yum install oozie

[root@hcinn confl# yum install oozie-client

134

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Next, you configure Oozie to use YARN by editing the oozie-env.sh file under the directory /etc/oozie/conf:
[root@hcinn conf]# cd /etc/oozie/conf

[root@hcinn conf]# 1s -1 oozie-env.sh
-IwW-r--r--. 1 root root 1360 May 29 07:20 oozie-env.sh

You can configure Oozie to use either YARN or Map Reduce V1, but not both at the same time. The
oozie-server-0.20 option is for Map Reduce V1, while setting CATALINA_BASE as oozie-server configures it
to use YARN. (In this demonstration, I have chosen to use YARN because this is Hadoop V2, and it is the default).
Because I'm using YARN, I edit the file as follows:

#export CATALINA_BASE=/usr/lib/oozie/oozie-server-0.20 ## use MRv1
export CATALINA BASE=/usr/lib/oozie/oozie-server ## use Yarn

Note that I left the MRv1 line in the file but commented it out so that I know how to configure Oozie later if I want
to switch back to use Map Reduce version 1. I have also elected to use the default Derby database that comes with
the Oozie installation. If you need to use an alternative database, such as Oracle or MySql, you can. Check the Oozie
website at 0oozie.apache.org for details.

To proceed, you set up Oozie and run it as the Linux hadoop user. This is the account where you previously stored
your scripts and set up your Hadoop-based configuration. So, you run the ooziedb.sh script with parameters create
and -run to set up the oozie database:

[hadoop@hcinn conf]# /usr/lib/oozie/bin/ooziedb.sh create -run

Validate DB Connection

DONE

Check DB schema does not exist

DONE

Check O0ZIE_SYS table does not exist
DONE

Create SQL schema

DONE

Create OOZIE_SYS table

DONE

Oozie DB has been created for Oozie version '3.3.2-cdh4.7.0'
The SQL commands have been written to: /tmp/ooziedb-3196886912358277569.sql

This sets up the Oozie Derby database under the directory /var/lib/oozie. In this example, the directory is owned
by the Oozie Linux user. If you plan to use a different account to run Oozie, make sure it has access to this directory
and its contents. (I used the su [switch user] command to switch the user to the Linux root account. I then changed
the directory to /var/lib/oozie and used the Linux chmod command to recursively set permissions to 777. This is
because the Linux hadoop account needs to run Oozie and so access this Derby database instance).

[hadoophcinn ~1$ su -

[root@hcinn oozie]$ cd /var/lib/oozie

[root@hcinn ooziel]$ 1s -1

drwxr-xr-x. 2 oozie oozie 4096 Jul 9 17:44 oozie-db
[root@hcinn oozie]$ chmod -R 777 *

[root@hcinn oozie]$ exit

135

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

To use the Oozie web-based console, it has to be configured. You download and install the file ext-2.2.zip onto
Hadoop. You use wget to download the file:

[hadoop@hcinn Downloads]$ wget http://extjs.com/deploy/ext-2.2.zip

[hadoop@hcinn Downloads]$ 1ls -1 ext-2.2.zip
-IW-IW-I--. 1 oozie oozie 6800612 Oct 24 2008 ext-2.2.zip

You unpack the file with the Linux unzip command, and then use the Linux 1s command to check the unpacked
directory ext-2.2:

[hadoop@hcinn Downloads]$ unzip ext-2.2.zip

[hadoop@hcinn Downloads]$ ls -1d ext-2.2
drwxr-xr-x. 9 oozie oozie 4096 Aug 4 2008 ext-2.2

This unzipped package needs to be moved to the /var/lib/oozie directory, which is the location where Oozie will
look for it when it runs. In this example, I move the installation directory using the root account. The commands that
follow show that the Linux su (switch user) command switches to the root account. The Linux cd (change directory)
command moves it to the Downloads directory. The Linux mv (move) command moves the Oozie web console
package to the /var/lib/oozie/ directory:

[hadoophcinn ~]$ su -

[root@hcinn ~]$ cd /home/Hadoop/Downloads
[root@hcinn Downloads]$ mv ext-2.2 /var/lib/oozie/
[root@hcinn Downloads]$ cd /var/lib/oozie/

[root@hcinn Downloads]# 1s -1 /var/lib/oozie

total 8

drwxrwxr-x. 9 oozie oozie 4096 Aug 4 2008 ext-2.2
drwxr-xr-x. 2 oozie oozie 4096 Jul 9 17:44 oozie-db

[root@hcinn Downloads]# exit

You unpack the Oozie shared library in a temporary directory under /tmp so that you can install it onto HDFS.
This library provides the functionality for tools like Pig, Hive, and Sqoop when used in workflows. There is a version
for YARN and one for Map Reduce V1. For this example, I use the YARN version because that is what my Hadoop V2
CDH4 cluster is using.

[hadoop@hcinn ~]$ 1s -1 /usr/lib/oozie/oozie-sharelib*.gz

-TWXIWXIwx. 1 root root 84338242 May 29 07:02 /usr/lib/oozie/oozie-sharelib-mri.tar.gz
-TwWXxTwxrwx. 1 root root 84254668 May 29 07:02 /usr/lib/oozie/oozie-sharelib-yarn.tar.gz

You choose the file that you wish to use; my example needs the YARN version. The Linux mkdir command
creates a directory under /tmp, called “ooziesharelib.” The Linux cd command then moves it to that directory. The tar
command extracts the Oozie tarred and gzipped file oozie-sharelib-yarn.tar.gz; the x option means “extract” while the
z option unzips the tar file:

[hadoop@hcinn ~]$ mkdir /tmp/ooziesharelib
[hadoop@hcinn ~]$ cd /tmp/ooziesharelib
[hadoop@hcinn ooziesharelib]$ tar xzf /usr/lib/oozie/oozie-sharelib-yarn.tar.gz

[hadoop@hcinn ooziesharelib]$ 1s -1d *
drwxr-xr-Xx. 3 oozie oozie 4096 May 29 06:59 share

136

www.it-ebooks.info


http://extjs.com/deploy/ext-2.2.zip
http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Now, you use the Hadoop file system command put to copy the share directory onto HDFS under /user/Oozie
workflow:

[oozie@hcinn ooziesharelib]$ hdfs dfs -put share /user/oozie/share

It is quite simple to start the Oozie server by using the Linux service command as the root user. You use the
Linux su command to switch the user to root, then start the Oozie service:

[hadoop@hcinn ooziesharelib]$ su -
[root@hcinn ~]$ service oozie start
[root@hcinn ~]$ exit

Finally, you can use the Oozie client as the Linux hadoop user to access Oozie and check the server’s status:

[hadoop@hcinn ~]$ oozie admin -oozie http://localhost:11000/00zie -status
System mode: NORMAL

[hadoop@hcinn ~]$ oozie admin -oozie http://localhost:11000/00zie -version
Oozie server build version: 3.3.2-cdh4.7.0

By setting the 00ZIE_URL variable, you can simplify the Oozie client commands. The URL tells the Oozie client the
location in terms of the host name and port of the Oozie server, as follows:

[hadoop@hcinn ~]$ export O0ZIE URL=http://localhost:11000/00zie
[hadoop@hcinn ~]$ oozie admin -version
Oozie server build version: 3.3.2-cdh4.7.0

At this point, you can access the Oozie web console via the URL http://localhost:11000/00zie. (I discuss this
in more detail following the discussion of workflows in Oozie).

The Mechanics of the Oozie Workflow

In general, the workflow is a set of chained actions that call HDFS-based scripts like Pig and Hive. All input comes from
HDFS, not from the Linux file system, because Oozie cannot guarantee which cluster nodes will be used to process the
workflow. Created as an XML document, an Oozie workflow script contains a series of linked actions controlled via
pass/fail control nodes that determine where the control flow moves next. The fork option, for example, allows actions
to be run in parallel. You can configure the script to send notifications of the workflow outcome via email or output
message, as well as set action parameters and add tool-specific actions like Pig, Hive, and Java to the workflow.

Oozie Workflow Control Nodes

The workflow control nodes are like traffic cops in a script, directing the flow of work. The start control node defines
the starting point for the workflow. Each workflow script can have only one start node, and it must define an existing
action.

<start to="pig-fork"/»>

The end control node is also mandatory and indicates the end of the workflow. If the control flow reaches the end
control node, it has finished sucessfully.

<end name="end"/>

137

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Offering the ability to split the flow of work into a series of parallel streams, the fork and join control nodes are
used as a pair. For instance, you can use these to run several Pig data-processing scripts in parallel. The join control
node will not complete until all of the fork actions have completed.

<fork name="pig-fork">
<path start="pig-manufacturer"/>
<path start="pig-model"/>
</fork>

Optional in the workflow, the kill control node stops the workflow. It is useful for error conditions; if any actions
are still running when an error occurs, they will be ended.

<kill name="fail">
<message>Workflow died, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>

The decision control node uses a switch statement with a series of cases and a default option to decide which
control flow to use. The first case to be True is used; otherwise, the default case is used. In the pig-decision switch
statement the workflow uses a file system test of file size and will pass control to the end control node if the data
required by the workflow is not greater than 1 GB.

<decision name="pig-decision">
<switch>
<case to="pig-fork">
${fs:fileSize("${hdfsRawData}) gt 1 * GB}

</case>
<default to="end"/>
</switch>
</decision>
Oozie Workflow Actions

The best way to understand an Oozie workflow action is to examine an example. I present the following Pig
Latin-based action to define the values of the JobTracker and name node. The prepare section deletes data for the
action. The configuration section then defines the Pig action queue name, and it is followed by a script section
that specifies the script to call. Finally, the OK and error options define which nodes to move to, depending on the
outcome of the Pig script.

<action name="pig-manufacturer">
<pig>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${hdfsEntityData}/manufacturer"/>
</prepare>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>

138

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

<script>manufacturer.pig</script>
</pig>
<ok to="pig-join"/>
<error to="fail"/>
</action>

Creating an Oozie Workflow

In this example, I examine and run a Pig- and Hive-based Oozie workflow against Oozie. The example uses
a Canadian vehicle fuel-consumption data set that is provided at the website data.gc.ca. You can either
search for “Fuel Consumption Ratings” to find the data set or use the link http://open.canada.ca/data/en/
dataset/98f1a129-1628-4ce4-b24d-6f16bf24dd64.

To begin, I download the English version of each CSV file. For instance, I have downloaded these files using the
Linux hadoop account, downloading them to that account’s Downloads directory, as the Linux 1s command shows:

[hadoop@hcinn Downloads]$ 1s

MY1995-1999 Fuel Consumption Ratings.csv MY2007 Fuel Consumption Ratings.csv

MY2000 Fuel Consumption Ratings.csv MY2008 Fuel Consumption Ratings.csv
MY2001 Fuel Consumption Ratings.csv MY2009 Fuel Consumption Ratings.csv
MY2002 Fuel Consumption Ratings.csv MY2010 Fuel Consumption Ratings.csv
MY2003 Fuel Consumption Ratings.csv MY2011 Fuel Consumption Ratings.csv
MY2004 Fuel Consumption Ratings.csv MY2012 Fuel Consumption Ratings.csv
MY2005 Fuel Consumption Ratings.csv MY2013 Fuel Consumption Ratings.csv
MY2006 Fuel Consumption Ratings.csv MY2014 Fuel Consumption Ratings.csv

I then need to copy these files to an HDFS directory so that they can be used by an Oozie workflow job. To do this,
I create some HDFS directories, as follows:

[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie wf

[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie wf/fuel

[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie wf/fuel/rawdata
[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie wf/fuel/pigwf

[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie wf/fuel/entity
[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie_wf/fuel/entity/manufacturer
[hadoop@hcinn Downloads]$ hdfs dfs -mkdir /user/hadoop/oozie wf/fuel/entity/model

The Hadoop file system 1s command produces a long list that shows the three HDFS subdirectories I've just
created and that will be used in this example.

[hadoop@hcinn Downloads]$ hdfs dfs -1s /user/hadoop/oozie_wf/fuel/
Found 3 items

drwxr-xr-x - hadoop hadoop 0 2014-07-12 18:16 /user/hadoop/oozie_wf/fuel/entity
drwxr-xr-x - hadoop hadoop 0 2014-07-12 18:15 /user/hadoop/oozie wf/fuel/pigwf
drwxr-xr-x - hadoop hadoop 0 2014-07-08 18:16 /user/hadoop/oozie wf/fuel/rawdata

I employ the rawdata directory under /user/hadoop/oozie_wf/fuel/ on HDFS to contain the CSV data that I
will use. I use the pigwf directory to contain the scripts for the task. I use the entity directory and its subdirectories to
contain the data used by this task.

139

www.it-ebooks.info


http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

So, my next step is to upload the CSV files from the Linux file system Downloads directory to the HDFS directory
rawdata:

[hadoop@hcinn Downloads]$ hdfs dfs -copyFromLocal *.csv /user/hadoop/oozie wf/fuel/rawdata
Now, the workflow data are ready, and the scripts and configuration files that the workflow will use need to be
copied into place. For this example, I have created all the necessary files. To begin, I1oad them to the HDFS pigwf

directory using the Hadoop file system copyFromLocal command:

[hadoop@hcinn Downloads]$ cd /home/hadoop/oozie/pig/fuel
[hadoop@hcinn fuell$ 1s

load. job.properties model.pig manufacturer.pig model.sql workflow.xml
manufacturer.sql

[hadoop@hcinn fuel]$ hdfs dfs -copyFromLocal * /user/hadoop/oozie wf/fuel/pigwf

Next, using the Hadoop file system 1s command, I check the contents of the pigwf directory. The listing shows
the sizes of the files that were just uploaded:

[oozie@hcinn fuell]$ hdfs dfs -1s /user/oozie/oozie wf/fuel/pigwf/
Found 6 items

-IW-r--r-- 2 oozie oozie 542 2014-07-06 15:48 /user/oozie/oozie wf/fuel/pigwf/load.job.properties
-IW-I--r-- 2 oozie oozie 567 2014-07-08 19:13 /user/oozie/oozie_wf/fuel/pigwf/manufacturer.pig
-IW-I--r-- 2 oozie oozie 306 2014-07-12 18:06 /user/oozie/oozie wf/fuel/pigwf/manufacturer.sql
-IW-Ir--r-- 2 oozie oozie 546 2014-07-08 19:13 /user/oozie/oozie wf/fuel/pigwf/model.pig
-IW-T--r-- 2 oozie oozie 283 2014-07-12 18:06 /user/oozie/oozie wf/fuel/pigwf/model.sql
-IW-I--r-- 2 oozie oozie 2400 2014-07-12 18:15 /user/oozie/oozie wf/fuel/pigwf/workflow.xml

Note that I actually don’t need to copy the load.job.properties file to HDFS, as it will be located from the local
Linux file system. Having uploaded the files, it is time to explain their contents.

The Workflow Configuration File

The first file is the workflow configuration file, called load.job.properties; this specifies parameters for the workflow.
I'have listed its contents using the Hadoop file system cat command and have taken the liberty of adding line numbers
here and elsewhere to use in explaining the steps:

[hadoop@hcinn fuel]$ hdfs dfs -cat /user/hadoop/oozie_wf/fuel/pigwf/load.job.properties

01 # -----mmmmmmmmmem e
02 # Workflow job properties

03 # =o s emeeeeeeeieceiiciicncaines
04

05 nameNode=hdfs://hcinn:8020

06

07 # Yarn resource manager host and port

08 jobTracker=hcinn:8032

09 queueName=high pool

10

140

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

11 oozie.libpath=${nameNode}/user/hadoop/share/1ib
12 oozie.use.system.libpath=true

13 oozie.wf.rerun.failnodes=true

14

15 hdfsUser=hadoop

16 wfProject=fuel

17 hdfsWfHome=${nameNode}/user/${hdfsUser}/oozie wf/${wfProject}
18 hdfsRawData=${hdfsWfHome}/rawdata

19 hdfsEntityData=${hdfsWfHome}/entity

20

21 oozie.wf.application.path=${hdfsWfHome}/pigwf
22 oozieWfPath=${hdfsWfHome}/pigwf/

The parameters in this file specify the Hadoop name node by server and port. Because YARN is being employed,
the Resource Manager is defined via its host and port by using the JobTracker variable. Job Tracker is obviously a
Hadoop V1 component name, but this works for YARN. The queue name to be used for this workflow, high _pool, is
also specified.

The library path of the Oozie shared library is defined by oozie.libpath, along with the parameter cozie.use.
system.libpath. The HDFS user for the job is specified, as is a project name. Finally, the paths are defined for the
workflow scripts and entity data that will be produced. The special variable oozie.wf.application.pathis used to
define the location of the workflow job file.

The workflow.txt file is the main control file for the workflow job. It controls the flow of actions, via Oozie, and
manages the subtasks. This workflow file runs two parallel streams of processing to process the data in the HDFS
rawdata directory.

The manufacturer.pig script is called to strip manufacturer-based data from the HDFS-based rawdata files. This
data is placed in the HDFS-based entity/manufacturer directory. Then the script manufacturer.sql is called to process
this data to the Hive data warehouse.

In parallel to this (via a fork option in the xml), the model.pig script is called to strip the vehicle model-based
data from the HDFS rawdata files. This data is placed in the HDFS entity/model directory. Then the script model.sql is
called to process this data to the Hive data warehouse.

The workflow.xml workflow file has been built using a combination of the workflow elements described earlier
(see “The Mechanics of the Oozie Workflow”). I have used the Hadoop file system cat command to display its contents:

[hadoop@hcinn fuel]$ hdfs dfs -cat /user/hadoop/oozie wf/fuel/pigwf/workflow.xml

01 <workflow-app name="FuelWorkFlow" xmlns="uri:Oozie workflow:workflow:0.1">
02

03 <start to="pig-fork"/>

04

05 <fork name="pig-fork">

06 <path start="pig-manufacturer"/>

07 <path start="pig-model"/>

08 </fork>

09

10 <action name="pig-manufacturer">

11 <pig>

12 <job-tracker>${jobTracker}</job-tracker>

13 <name-node>${nameNode }</name-node>

14 <prepare>

15 <delete path="${hdfsEntityData}/manufacturer"/>
16 </prepare>

141

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

17 <configuration>

18 <property>

19 <name>mapred. job.queue.name</name>
20 <value>${queueName}</value>

21 </property>

22 </configuration>

23 <script>manufacturer.pig</script>

24 </pig>

25 <ok to="pig-join"/>

26 <error to="fail"/>

27 </action>

28

29 <action name="pig-model">

30 <pig>

31 <job-tracker>${jobTracker}</job-tracker>
32 <name-node>${nameNode }</name-node>

33 <prepare>

34 <delete path="${hdfsEntityData}/model"/>
35 </prepare>

36 <configuration>

37 <property>

38 <name>mapred.job.queue.name</name>
39 <value>${queueName}</value>

40 </property>

41 </configuration>

42 <script>model.pig</script>

43 </pig>

44 <ok to="pig-join"/>

45 <error to="fail"/>

46 </action>

47

48 <join name="pig-join" to="hive-fork"/>

49

50 <fork name="hive-fork">

51 <path start="hive-manufacturer"/>

52 <path start="hive-model"/>

53 </fork>

54

55 <action name="hive-manufacturer">

56 <hive xmlns="uri:Oozie workflow:hive-action:0.2">
57 <job-tracker>${jobTracker}</job-tracker>
58 <name-node>${nameNode }</name-node>

59 <configuration>

60 <property>

61 <name>mapred. job.queue.name</name>
62 <value>${queueName}</value>

63 </property>

64 </configuration>

65 <script>model.sql</script>

66 </hive>

67 <ok to="hive-join"/>

142

www.it-ebooks.info


http://www.it-ebooks.info/

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

CHAPTER 5

<error to="fail"/>
</action>

<action name="hive-model">
<hive xmlns="uri:Oozie workflow:hive-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode }</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
</configuration>
<script>model.sql</script>
</hive>
<ok to="hive-join"/>
<error to="fail"/>
</action>

<join name="hive-join" to="end"/>

<kill name="fail">

SCHEDULING AND WORKFLOW

<message>Workflow died, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>

</kill>

<end name="end"/>

</workflow-app>

The workflow uses a fork control node atline 05 to run the Pig manufacturer and model jobs in parallel. The

join controlis issued at line 48 when both Pig jobs have finished. The Pig actions at lines 10 and 29 are exactly the
same as the example earlier (see “Oozie Workflow Actions”). They set up the actions by defining the name node and
the Job Tracker, and then they prepare the job by deleting any previous data. They define the Hadoop-based queue
that the job should be sent to, and finally they define the script to be called

atline 48 has a to element that passes control to the Hive fork control node at line 50.

48
49
50
51
52
53

<join name="pig-join" to="hive-fork"/>

<fork name="hive-fork">
<path start="hive-manufacturer"/>
<path start="hive-model"/>
</fork>

<Hive> label is used and that there is no prepare section to delete data.

83
84
85
86

<ok to="hive-join"/>
<error to="fail"/>
</action>

www.it-ebooks.info

The Hive jobs use the same fork and join structure as the Pig jobs at lines 50 and 87. The Pig join control node

The workflow definition of the Hive actions are similar to the Pig actions. The only major difference is that the

Each of the four actions has a set of error conditions that determine where control will be passed to:

143


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

87
88
89
90
91
92
93

<join name="hive-join" to="end"/>
<kill name="fail">

<message>Workflow died, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>

<end name="end"/>

An error condition in any of the four main actions passes control to the kill control node, called fail. The 0K

condition just passes the control flow to the next success node in the workflow.

Now I will briefly explain the manufacturer and model pig and sql script contents. I have used the Hadoop file

system cat command to display the contents of the manufacturuer.pig file.

[hadoop@hcinn fuel]$ hdfs dfs -cat /user/hadoop/oozie wf/fuel/pigwf/manufacturer.pig

01
02
03
04

05

06
07
08
09
10
11
12
13
14
15

-- get the raw data from the files from the csv files

rlines = LOAD '/user/hadoop/oozie wf/fuel/rawdata/*.csv' USING PigStorage(',') AS
( year:int, manufacturer:chararray, model:chararray, class:chararray, size:float,
cylinders:int,
transmission:chararray, fuel:chararray, cons_cityl100:float, cond _hwyl100:float, cons_
citympgs:int,
cond_hwympgs:int, lyears:int, co2s:int

);

mlist = FOREACH rlines GENERATE manufacturer;

dlist

DISTINCT mlist ;
-- save to a new file
STORE dlist INTO '/user/hadoop/oozie wf/fuel/entity/manufacturer/' ;

The pig script is just stripping the manufacturer information from the rawdata CSV files and storing that data

in the HDEFS directory under entity/manufacturer. The sql script called manufacturuer.sql then processes that
information and stores it in Hive.

[hadoop@hcinn fuel]$ hdfs dfs -cat /user/hadoop/oozie_wf/fuel/pigwf/manufacturer.sql

01
02
03
04
05
06
07
08
09
10
11
12

144

drop table if exists rawdata2 ;

create external table rawdata2 (
line string
)

location '/user/hadoop/oozie wf/fuel/entity/manufacturer/' ;
drop table if exists manufacturer ;
create table manufacturer as

select distinct line from rawdata2 where line not like '%=%'
and line not like '% % %' ;

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

The sql just creates an external Hive table called rawdata2 from the manufacturer HDFS-based files. It then
creates a second table in Hive called “manufacturer” by selecting the contents of the rawdata2 table.

The model.pig and sql files are very similar, pulling vehicle model data from the HDFS-based rawdata files and
moving it to HDFS. I use the Hadoop file system cat command to display the model.pig file:

[hadoop@hcinn fuel]$ hdfs dfs -cat /user/hadoop/oozie wf/fuel/pigwf/model.pig

01 -- get the raw data from the files from the csv files

02

03 rlines = LOAD '/user/hadoop/oozie wf/fuel/rawdata/*.csv' USING PigStorage(',') AS

04 ( year:int, manufacturer:chararray, model:chararray, class:chararray, size:float,
cylinders:int,

05 transmission:chararray, fuel:chararray, cons_cityl100:float, cond_hwyl100:float, cons_

citympgs:int,

06 cond_hwympgs:int, lyears:int, co2s:int

07 );

08

09 mlist = FOREACH rlines GENERATE manufacturer,year,model ;

10

11 dlist = DISTINCT mlist ;

12

13 STORE dlist INTO '/user/hadoop/oozie wf/fuel/entity/model/' using PigStorage(',"');

Again, it strips vehicle model information from the HDFS-based CSV files in the rawdata directory. It then
stores that information in the entity/model HDFS directory. The model.sql script then processes that information to
a Hive table:

[hadoop@hcinn fuell]$ hdfs dfs -cat /user/hadoop/oozie wf/fuel/pigwf/model.sql

01 drop table if exists rawdata2 ;
02

03 create external table rawdata2 (
04 line string

05 )

06 location '/user/hadoop/oozie wf/fuel/entity/model/’ ;
07

08 drop table if exists model ;
09

10 create table model as

11 select

12 distinct split(line,’,")
13 from rawdata2

14 where

15 line not like '%=%" ;

The Hive QL script creates an external table over the HDFS-based entity/model data, called rawdata2; it then
selects that data into a Hive-based table called “model”

The intention of this workflow example is to show that complex ETL (“extract, transform, load”) chains of
subtasks can be built using Oozie. The tasks can be run in parallel and control can be added to the workflow to set up
the jobs and define the end conditions. Having described the workflow, it is now time for me to run the job; the next
section explains how the workflow can be run and monitored with the Oozie web-based user interface.

145

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 SCHEDULING AND WORKFLOW

Running an Oozie Workflow

To make the Oozie task invocation simpler, I define the 00ZIE_URL variable. This means that when I want to invoke
an Oozie job, I have simply invoke the oozie command; I do not have to specify the whole Oozie URL. For the Oozie
example, this is as follows:

[hadoop@hcinn fuel]$ export O0ZIE_URL=http://localhost:11000/00zie

The oozie command is then used with a job parameter and the load. job.properties file. The -submit
parameter is used to submit the file, and this returns the Oozie job number 0000000-140706152445409-00zie-00zi-W:

oozie job

-config ./load.job.properties

-submit

job: 0000000-140706152445409-00zie-00zi-W

The workflow can now be started using this Oozie job number. I issue the oozie command with the parameters

job and -start, followed by the job number:

oozie job

-start 0000000-140706152445409-00zie-00zi-W

I can pause and restart the job with the -suspend and -resume oozie command options. The help option passed
to the oozie command gives me a full list of the possible options.
I now access the Oozie console (shown in Figure 5-5) by using the OOZIE_URL value I specified previously.

EHIGHRE Documentation
Oozie Web Cnﬂsole
Workflow Jobs || Coordinator Jobs
&Y AllJobs Active Jobs Done Jobs

Job id

w oM =

0000006-140712104057581-00zie

~ &

0000002-140T12104057581-00zie.

& 0000001-1407T12104057581-00z2ie. ..
9 0000000-140712104057581-00zie. ..

10 0000001-140710174734611-002ke-
11 0000000-1407T10174734611-00zie-

12 0000001-140709174422442-002i8. ..
13 0000000-140709174422442-00ze. ..

14 0000003-14070817483837%-00zie

15 0000002-140T08174838375-00zie. ..
16 0000001-140T08174838379-002e. ..
17 0000000-14070817483837%-00zie. .
18 0000003-140707180534862-00zie. ..

19 0000002-140707180534862-00zie

Page 1

0000008-140712104057581-00zie...
0000007-140712104057581-00zie. ..

0000005-140712104057581-00zie. ..
0000004-140T12104057561-00zTie. ..
0000003-140712104057581-00zie. ..

Bundie Jobs
Custom Fiter ~

Name
FuelorkFlow
FuelWorkFiow
FuelWorkFlow
FuelWorkFlow
FuehorkFlow
FuelWorkFlow
FuelWorkFlow
FuelWorkFlow
FushVorkFlow
FuelWorkFiow
FuelWorkFlow
FuehWorkFlow
FuelWorkFiow
FuelorkFlow
FuelVorkFlow
FuehorkFlow
FuetWorkFiow
FuelWorkFlow
FuelorkFlow

of1| b H &

Figure 5-5. Oozie console job list

146

System Info

Status
SUCCEEDED
SUCCEEDED
KILLED
FALED
SUCCEEDED
KILLED
KILLED
KILLED
KILLED
SUCCEEDED
KILLED
FALED
FALED
SUCCEEDED
KILLED
KILLED
KILLED
KILLED
KILLED

Instrumentaton

Run | User «

0
0
o
o
o
0
o
0
o
0
0
o
0
o
o
o
0
0
o

hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadeop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop

Settings

Group

Created

Sat, 12 Jul 2014 06:15:38 GMT

Sat, 12 Jul 2014 06:07:03 GMT

Sat, 12 Jul 2014 05:57:59 GMT

Sat, 12 Jul 2014 05:00:09 GMT

Sat, 12 Jul 2014 04:50:32 GMT

Sat, 12 Jul 2014 04:35:51 GMT

Sat, 12 Jul 2014 03:58:22 GNT

Sat, 12 Jul 2014 03:55:44 GMT

Sat, 12 Jul 2014 03:50:26 GMT

Thu, 10 Jul 2014 06:13:54 GMT
Thu, 10 Jul 2014 05:06:42 GNT
Wed, 09 Jul 2014 06:40:56 GNT
Wed, 09 Jul 2014 06:38:16 GMT
Tue, 08 Jul 2014 07:13:47 GMT
Tue, 08 Jul 2014 06:27:35 GMT
Tue, 08 Jul 2014 06:19:10 GMT
Tue, 08 Jul2014 06:01:47 GMT
Mon, 07 Jul 2014 07:08:45 GMT
Mon, 07 Jul 2014 07:08:58 GMT

www.it-ebooks.info

Started

Sat, 12 Jul 2014 05:15:46 GMT
Sat, 12 Jul 2014 05:07:12 GMT
Sat, 12 Jul 2014 06:02:34 GMT
Sat, 12 Jul 2014 05:00:24 GNT
Sat, 12 Jul 2014 04:50:43 GNT
Sat, 12 Jul 2014 04:35:04 GNT
Sat, 12 Jul 2014 02:58:52 GMT
Sat, 12 Jul 2014 03:55:51 GMT
Sat, 12 Jul 2014 03:50:39 GMT
Thu, 10 Jul 2014 06:14:05 GUT
Thu, 10 Jul 2014 06:05:54 GUT
Wied, 09 Jul 2014 06:41:11 GMT
Wed, 09 Jul 2014 06:38:30 GMT
Tue, 08 Jul 2014 07:14:07 GUT
Tue, 08 Jul 2014 06:27:57 GMT
Tue, 08 Jul 2014 06:19:45 GMT
Tue, 08 Jul 2014 06:01:55 GUT
Mon, 07 Jul 2014 07:08:57 GMT
Maon, 07 Jul 2014 07:07:06 GMT

Last Modified

Sat, 12 Jul 2014 06:19:43 GMT ~
Sat, 12 Jul 2014 06:11:36 GMT
Sat, 12 Jul 2014 06:04:30 GMT
Sat, 12 Jul 2014 05:00:26 GMT
Sat, 12 Jul 2014 04:58:33 GMT
Sat, 12 Jul 2014 04:44:45 GUT
Sat, 12 Jul 2014 04:31:26 GMT
Sat, 12 Jul 2014 04:31:04 GMT |~
Sat, 12 Jul 2014 04:29:54 GMT
Thu, 10 Jul 2014 05:15:45 GMT
Thu, 10 Jul 2014 08:18:21 GMT
Thu, 10 Jul 2014 05:48:05 GNT
Thu, 10 Jul 2014 05:48:05 GNT
Tue, 08 Jul 2014 07:16:29 GMT
Tue, 08 Jul 2014 05:28:27 GNT

I

Tue, 08 Jul 2014 06:20:36 GNT

Tue, 08 Jul 2014 06:02:37 GNT

Mon, 07 Jul 2014 07:09:26 GUT

Won, 07 Jul 2014 07:07:24 GMT -
»

1-250f25


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

The left column of Figure 5-5 gives a list of job IDs that are issued when each Oozie job is submitted. The next
column to the right shows the workflow name—in this case, FuelWorkFlow. The Status column shows the job's
last status, which could be Prep, Running, Suspended, Succeeded, Failed, or Killed. Table 5-1 lists the meanings of
these statuses.

Table 5-1. Job Statuses and Meanings

Status Meaning

PREP Job just created; it can be moved to Running or Killed.

RUNNING Job is being executed; its state can change to Suspended, Succeeded, Killed, or Failed.
SUSPENDED A running job can be suspended; its state can change to Running or Killed.
SUCCEEDED The job sucessfully reached its end state.

FAILED The job encountered an unexpected error.

KILLED A job action failed or the job was killed by an administrator.

The User and date columns show which Linux user account ran the job and when it was created, started, and
modified. The tabs at the top of the display are for workflows, coordinator jobs, and bundling. Coordinator jobs are
for scheduling, either via time or event, while bundling allows the grouping of coordinator jobs. The other tabs are for
configuration information and metrics.

By selecting an individual workflow job, you can bring up a job-related Oozie window. In Figure 5-6, I have
selected the topmost successful job on the list. As you can see, the Job Info tab shows the job’s attributes and
its actions and status details. The Job Definition tab contains the xml contents of the workflow, while the Job
Configuration tab shows configured attributes for the job. The Job Log tab shows the logged output for this job, as
Figure 5-7 shows.

147

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 * SCHEDULING AND WORKFLOW

|| 30b 1nfo || JobDefintion || Job Configuration || JobLog | JobDAG |

<

i Job 1d: | 0000008-140712104057581-00ze:

Name: | FuslorkFlow ]
i App Path: hdfs://hcinn:8020/userfhadoop/ot.
+ Run: :o |

Status: | SUCCEEDED |
I User: hadoop ]
Group: |

|

||| create Tme: sat, 12 12014 06:15:38 GMT |
|| Nominal Time: |
|

|

|

Start Time: | sat, 12 Jul 2014 06:15:46 GMT
Last Modified: Sat, 12 Jul 2014 06:19:43 GMT
End Tme: | sat, 12 Jul 2014 06:19:43 GHT

" —
5 Action K Name Type Status Transition StariTime EndTime
© | 1 0000008-140712104057581-cozie-o0ziW@:... :start: START. oK pig-fork Sat, 12 Jul 2014 06:15:46 GMT  Sat, 12 Jul 2014 05:15:46 GUT
2 0000008-140712104057581-00zie-00z-W@...  pig-fork FORK: oK ' Sat, 12 Jul 2014 06:15:46 GMT  Sat, 12 Jul 2014 05:15:45 GMT
'] 3 0000006-140712104057581cozie-00z-W@... pig-manufa... pig oK pig-ioin Sal, 12 Jul2014 06:1546 GNT  Sat, 12Jul 2014 06:16:58 GMT
4 00D0002-140712104057581-00zie-00z-W@...  pig-model pig oK pig-join Sat, 12 Jul 2014 06:15:49GMT  Sat, 12 Jul 2014 05:17:04 GHT
5 0000008-140712104057581-00zie-00z-W@...  pig-join JOM: oK hive-fork Sat, 12 Jul2014 06:17:04 GMT  Sat, 12 Jul 2014 05:17:04 GMT
& 0000008-140712104057581-00zie-002-W@... hive-fork FORK: oK . Sat, 12 Jul 2014 06:17:04 GMT  Sat, 12 Jul2014 05:17:04 GWT
7 0000008-140712104057561-00zie-002-W@... hive-manuf... hive oK hive-join Sat, 12 Jul2014 06:17:05 GNT  Sat, 12 Jul 2014 06:19:43 GT
& 0000008-140712104057581-00zie-00z-W@... hive-model  hive oK hive-join Sat, 12 Jul2014 06:7:11 GMT  Sat, 12 Jul 2014 06:19:27 GMT
9 0000008-140712104057581-00zie-002-W@... hive-jon JOM: 0K end Sat, 12 Jul 2014 061943 GMT  Sat, 12 Jul 2014 06:19:43 GNT
10 0000008-140712104057581-00zie-002-W@.. end £ND: oK Sat, 12 Jul 2014 06:19:43GMT  Sat, 12 Jul2014 05:19:43 GUT
Figure 5-6. Oozie job information window
&
2014-08-01 15:34:44,361 INFO ActionStartXCommand: 539 - USER [hadoop] GROUP[-] TOKEN[] APP[FuelWorkFlow] JOB[0000000-14080 1153407695-00zie-00zi-W] 4
ACTION[0000000-140801153407695-00zie-00zi-W @:start:] Start action [0000000-14080 115340769500z -00zi-W@:start:] with user retry state : userRetryCount [0], i

userRetryMax [0], userRetryInterval [10]

2014-08-01 15:34:44,378 WARN ActionStartXCommand: 542 - USER[hadoop] GROUP[-] TOKEN[] APP[FuelWorkFiow] JOB[0000000-140801153407695-00zie-002-W]
ACTION[0000000-140801153407695-00zie-00zi-W @:start:] [***0000000-140801153407695-00zie-00z-W @:start: ***]Action status=DONE

2014-08-01 15:34:44,378 WARN ActionStartXCommand: 542 - USER [hadoop] GROUP[-] TOKEN([] APP[FuelWorkFiow] JOB[0000000-14080 115340763 5-00zie-002-W]
ACTION[0000000- 140801153407695-00zie-00zi-W @:start:] [*==0000000-140801153407695-00zie-0ozi-W @:start: *==] Action updated in DB!

2014-08-01 15:34:44,939 INFO ActonStartXCommand: 539 - USER [hadoop] GROUP[-] TOKEN[] APP{FuelWorkFlow] JOB[0000000- 14080 1153407695-cozie -00zi-W]
ACTION[D000000- 14080 115340 7695-00zie-002i-W @pig-fork] Start action [0000000-140801153407695-00zie-00zi-W @pig-fork] with user-retry state : userRetryCount [0],
userRetryMax [0], userRetryInterval [10]

2014-08-01 15:34:44,947 WARN ActionStartXCommand: 542 - USER[hadoop] GROUP[-] TOKEN[] APP[FuelWorkFiow] JOB[0000000-140801153407695-00zie-00Z-W]
ACTION[0000000- 14080115340 7695-00zie-00zi-W @pig-fork] [**=0000000- 14080 115340 7695-00zie -007i-W Epig-fork =**] Action status=

2014-08-01 15:34:94,948 WARN ActionStartiCommand: 542 - USER [hadoop] GROUP[-] TOKEN[] APP[FuelWorkFlow] JOB[0000000-140801153407695-002-002-W]
ACTION[0000000-14080 115340 7695-00zie-00zi-W @pig-fork] [**=0000000- 14080 115340765 5-00zie -00zi-W @pig-fork =] Action updated in DB!

2014-08-01 15:34:45,615 INFO ActonStartXCommand: 539 - USER [hadoop] GROUP[-] TOKEN[] APP{FuelWorkFlow] JOB[0000000-140801153407695-coze -00zi-W]
ACTION[0000000-140801153407695-00zie-002i-W @pig-manufacturer] Start action [0000000-140801153407695-007ie -00zi-W @pig-manufacturer] with userretry state :
userRetryCount [0], userRetryMax [0], userRetryInterval [10]

2014-08-01 15:34:96, 184 WARN ActionStartXCommand: 542 - USER[hadoop] GROUP[-] TOKEN[] APP[FuelWorkFlow] JOB[0000000-140801153407695-00zie-00Z-W]
ACTION[0000000-140801153407695-00zie-00zi-W @pig-manufacturer] Error starting action [pig-manufacturer]. ErrorType [TRANSIENT], ErrorCode [JA009], Message [JADOS:
Cannot delete fuser hadoop/oozie-00zi/0000000- 140801 15340769 5-00zie-002-W fpig-manufacturer —pig. tmp. Name node is in safe mode.

The reported blocks 358 needs additional 378 blocks to reach the threshold 0.9990 of total blocks 735, Safe mode will be turned off automatically.

at org.apache. hadoop. hdfs.server. namenode . FSName: el vternal (FSh tem.java: 2905)
at org.apache.hadoop.hdfs.server.namenode.FSN; tem.del 1t{FSe Java; 2872)
at org.apache.hadoop.hdfs.server.namenode. f delete(F: java: 2859)

at org.apache.hadoop. hdfs.server.namenode, NameNodeRpcServer. delete(NameNodeRpcServer . javai642)
at org.apache.hadoop.hdfs.protocolPB. Qmmmenodeﬁ'uldeerverSndeTrans&awrPB deiete(C]lenmamenudeProtomGServerSdeTranslawPB Jjava:408)
at org.apache.hadoop. hdfs.protocol. proto. Cli odeProtocolProt rotocol$2. callBlockingMe thod (ClentNamenodeProtocolProtos. java: 44963) -

Figure 5-7. Oozie job log information window
148

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

The Job DAG (directed acyclical graph) tab is interesting because it shows both the structure and the state of the
job's actions. Figures 5-8 and 5-9 provide examples of Oozie DAGs. Figure 5-8 has no state or colors shown on it; it is a
job that has been submitted but not run. However, the DAG contains enough detail so that you can read the labels. It
shows the pig-manufacturer and pig-model tasks running in parallel. The triangular pig-fork and pig-join nodes split
the streams of processing. The Hive-based functionality is organized in the same manner, with the manufacturer and
model Hive tasks running in parallel. The workflow begins with a start node and terminates at an end node.

1
Y 4
pig-manufacturer pig-model

1 A

hive-model hive-manufacturer

Figure 5-8. Oozie job DAG with no state information

149

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 SCHEDULING AND WORKFLOW

© =) ©

® é o

Figure 5-9. Oozie job DAG information for three jobs

Figure 5-9 shows three different DAGs. The text is illegible because the figures have been minimized to fit
together on a single page, but you can see the different states that nodes in a DAG can achieve.

For instance, in Figure 5-9 the circles show the start and endpoints, while the triangles show the forks and joins.
The boxes show the actions to be executed, while the actions between a fork and join show that they will be executed
in parallel. The color codes indicate the execution states: gray means that a node has not been executed, green means
that that node has executed sucessfully, red means that an error has occurred, and black is the unreached endpoint.
That is, the DAG on the left completed successfully and the two on the right failed.

150

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Scheduling an Oozie Workflow

How do you schedule a workflow to run at a specific time or run after a given event? For instance, you might want
the workflow to run at 01:00 each Tuesday morning or each time data arrives. Oozie coordinator jobs exist for this
purpose. To continue my example, I updated the workflow properties file to use a coordinator job:

oozielWfPath=${hdfsWfHome}/pigwf
# Job Coordination properties

jobStart=2014-07-10T12:00Z
jobEnd=2014-09-10T12:00Z

# Frequency in minutes

JobFreq=10080
jobNZTimeZone=GMT+1200

oozie.coord.application.path=${hdfsWfHome}/pigwf

The path to the workflow script is now called oozieWfPath, and the path to the coordinator script is called
oozie.coord.application.path, the latter which is the reserved pathname that Oozie expects will be used to identify
a cordinator job. I also specify some time-based parameters to the cordinator job, a start time, an end time, and a job
frequency in minutes. Lastly, I set the time zone for New Zealand.

I create an XML-based coordinator job file called coordinator.xml, which I copy to the workflow directory in
HDEFS. The file looks like this:

<coordinator-app

1

2

3 name="FuelWorkFlowCoord"

4 frequency="${JobFreq}"

5 start="${jobStart}"

6 end="${jobEnd}"

7 timezone="${jobNZTimeZone}"

8 xmlns="uri:0ozie workflow:coordinator:0.4">
9

10 <action>

11 <workflow>

12 <app-path>${oozielWfPath}/workflow.xml</app-path>
13 </workflow>

14 </action>

15

16 </coordinator-app>

This is a time-based coordinator job that will run between the start and end dates for a given frequency using
New Zealand time.
I send the coordinator job to Oozie as follows:

oozie job -config ./load.job.properties -submit
job: 0000000-140713100519754-00zie-00zi-C

151

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 SCHEDULING AND WORKFLOW

A coordinator job appears on the Oozie console coordinator tab, as shown in Figure 5-10, indicating that the
coordinator job has started and its frequency is 10,080 minutes (24 hours times 60 minutes times 7 days).

EHEGHINE Documentation
Oozie Web Console
vJobs | Coordinator Jobs | Bundle Jobs || System Info

" Alllobs ActiveJobs Donelobs Custom Filer ~

Job Id Name Status User Group frequency
1 D000000-1407131005159754 C  FuelWorkFiow.. RUNNING  hadoop 10020

Figure 5-10. Ozzie coordinator job status

unit Started Next Materiaization
MINUTE  Thu, 10 Jul 2014 12:00:00 G... The, 17 Jul 2014 12:00:00 G

So, as set, this job will run weekly at this time until its end date. The last column in Figure 5-10 also shows the
next time that this job will run, which is a week from the start date. Clicking on the job ID provides a window with its

details, as shown in Figure 5-11.

| Job (Name: FuelWorkFlowCoord/coordlobld: 0000000-140712100519754-00zie-oozi-C)
Coord Job Info | Coord Job Definition || Coord Job Configuration || Coord Job Log

-]

Job Id: | 0000000- 140713100519754- cozie-cozi-C
Name: | FuelWork FlowCoord

Status: RUNNING

User:

hadoop

Group:
Frequency: 10080
Unit: | MINUTE
Start Time: | Thu, 10 Jul 2014 12:00:00 GMT
Next Matd: Thu, 17 Jul 2014 12:00:00 GMT
End Time: Wed, 10 Sep 2014 12:00:00 GMT
Pause Time:

Concurrency: 1

Actions
Action Id Status Ext ld Error Code
0000000-140713100515754-coze-002i-C@1 SUCCEED... 0000001-140713100515754-00zie-002-W

Created Time Nominal Time La
Sun, 13 Jul 2014 00:47:32.. Thu, 10 Jul 2014 12:00:00 ...

Pagel ofl =

Figure 5-11. Ozzie coordinator job details window

152

www.it-ebooks.info

1-10f1


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

The Definition tab in the Figure 5-11 window contains the contents of the job’s coordinator.xml file. The
Configuration tab contains all of the job’s parameters in XML from the configuration file. And the Log tab contains the
job’s log entries.

As an extension to this coordinator job, I add a dataset requirement and create a new data set variable, as follows:

DataJobFreq=1440
And the XML now looks like this:
<coordinator-app

1

2

3 name="FuelWorkFlowCoord"

4 frequency="${JobFreq}"

5 start="¢{jobStart}"

6 end="${jobEnd}"

7 timezone="${jobNZTimeZone}"

8 xmlns="uri:0ozie workflow:coordinator:0.4">
9

10 <datasets>

11 <dataset

12

13 name="vehicle"

14 frequency="${DataJobFreq}"

15 initial-instance="${jobStart}"

16 timezone="${jobNZTimeZone}">

17

18 <uri-template>${hdfsRawData}/${YEAR} ${MONTH} ${DAY} Fuel Consumption</uri-template>
19 </dataset>

20 </datasets>

21

22 <action>

23 <workflow>

24 <app-path>${oozieWfPath}/workflow.xml</app-path>
25 </workflow>

26 </action>

27

28 </coordinator-app>

The data set requirement is added between lines 10 and 20, using the hdfsPathRawData variable from
the configuration file and the predefined YEAR, MONTH, and DAY variables. So, if the file for July 13, 2014
(${hdfsRawData}/2014 07 _13_Fuel Consumption)is not available in the rawdata directory, then the job will not run.
This section has provided a brief introduction, via examples, for you to sample Oozie. For a full definition of
workflow specification, you should check the Oozie website at oozie.apache.org. Choose the documentation level
that matches your Oozie installation; there is a detailed specification there for workflow and coordinator jobs. You
could also investigate bundler jobs, which allow you to group coordinator jobs.

153

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © SCHEDULING AND WORKFLOW

Summary

This chapter presented Hadoop-based schedulers and discussed their use for Hadoop V1 and V2. Remember that
each scheduler type is meant for a different scenario. The Capacity scheduler enables multiple tenants to share a
cluster of resources, while the Fair scheduler enables multiple projects for a single tenant to share a cluster. The
aim overall is to share cluster resources appropriately. Keep checking the Hadoop website (hadoop.apache.org) for
version updates applicable to the scheduling function.

While these schedulers allow the sharing of resources, tools like Oozie offer the ability to schedule jobs that are
organized into workflows by time and event. Using an example, this chapter has shown how to create a workflow and
how to schedule it. Additionally, the Oozie console was used to examine the job output and status.

As a final suggestion, you might consider investigating workflow schedulers like Azkaban and Luigi as well
to give you some idea of comparable functionality. Azkaban uses DAGs like Oozie, and it integrates with Hadoop
components like Pig and Hive. Luigi is a simple workflow engine written in Python; at the time of this writing, it
integrates with Hive but not with Pig.

154

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6

Moving Data

The tools and methods you use to move big data within the Hadoop sphere depend on the type of data to be
processed. This is a large category with many data sources, such as relational databases, log data, binary data, and
realtime data, among others. This chapter focuses on a few common data types and discusses some of the tools you
can use to process them. For instance, in this chapter you will learn to use Sqoop to process relational database data,
Flume to process log data, and Storm to process stream data.

You will also learn how this software can be sourced, installed, and used. Finally, I will show how a sample data
source can be processed and how all of these tools connect to Hadoop. But I begin with an explanation of the Hadoop
file system commands.

Moving File System Data

You can use Hadoop file system commands to move file-based data into and out of HDFS. In all the examples in this
book that employ Hadoop file system commands, I have used either a simple file name (myfile.txt) or a file name with
a path (/tmp/myfile.txt). However, a file may also be defined as a Uniform Resource Identifier (URI). The URI contains
the file’s path, name, server, and a source identifier. For instance, for the two URIs that follow, the first file is on HDFS
while the second is on the file system. They also show that the files in question are located on the server hclnn:

hdfs://hcinn/user/hadoop/oozie_wf/fuel/pigwf/manufacturer.pig
file://hcinn/tmp/manufacturer.pig

To indicate the data’s source and destination for the move, each command accepts one or more URIs.
The Hadoop file system cat command (below) dumps the contents of the HDFS-based file manufacturer.pig to

STDOUT (the standard out stream on Linux). The URI is the text in the line that starts at the string “hdfs” and ends
with the file type (.pig):

hdfs dfs -cat hdfs://hcinn/user/hadoop/oozie wf/fuel/pigwf/manufacturer.pig

On the other hand, the cat command below dumps the Linux file system file flume_exec.sh to STDOUT
(the standard out stream):

hdfs dfs -cat file:///home/hadoop/flume/flume_exec.sh
Although file or hdfs and the server name can be specified in the URI, they are optional. In this chapter I use only

file names and paths.
Now, let’s take a closer look at some of the most useful system commands.

155

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

The Cat Command

The Hadoop file system cat command copies the contents of the URIs presented to it to STDOUT.
hdfs dfs -cat hdfs://hcinn/user/hadoop/oozie_wf/fuel/pigwf/manufacturer.pig

The cat command is useful if you want to run adhoc Linux-based commands against Hadoop-based data.
For instance, the following:

hdfs dfs -cat hdfs://hcinn/user/hadoop/oozie wf/fuel/pigwf/manufacturer.pig | wc -1

would give you a line count of this file using the Linux command wc (word count ), with a -1 switch for the number
of lines.

The CopyFromLocal Command

The source for the CopyFromLocal command is the local Linux file system; this command copies files from the local
Linux file system to Hadoop.

[hadoop@hcinn flume]$ hdfs dfs -copyFromLocal /home/hadoop/flume /tmp/flume
[hadoop@hcinn flume]$ hdfs dfs -1s /tmp/flume
Found 6 items

-Iw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:09 /tmp/flume/agentl.cfg
-Iw-r--r-- 2 hadoop hadoop 1483 2014-07-26 20:09 /tmp/flume/agentl.cfg.nl
-Iw-r--r-- 2 hadoop hadoop 45 2014-07-26 20:09 /tmp/flume/flume_clean_hdfs.sh
-1w-r--r-- 2 hadoop hadoop 197 2014-07-26 20:09 /tmp/flume/flume_exec.sh
-Iw-r--r-- 2 hadoop hadoop 233 2014-07-26 20:09 /tmp/flume/flume_exec.sh.nl
-rw-r--r-- 2 hadoop hadoop 42 2014-07-26 20:09 /tmp/flume/flume_show_hdfs.sh

In this example, the contents of the Linux file system directory /home/hadoop/flume have been copied to HDFS
under /tmp/flume.

The CopyToLocal Command

For the CopyToLocal command, the destination directory must be the local Linux file system. This command copies
files from HDFS to the Linux file system:

[hadoop@hcinn flume]$ hdfs dfs -copyTolLocal /tmp/flume /tmp/hdfscopy
[hadoop@hcinn flume]$ 1s -1 /tmp/hdfscopy

total 24

-rwxr-xr-x. 1 hadoop hadoop 1343 Jul 26 20:13 agenti.cfg
-Twxr-xr-x. 1 hadoop hadoop 1483 Jul 26 20:13 agenti.cfg.nl
-TWXT-Xr-x. 1 hadoop hadoop 45 Jul 26 20:13 flume_clean_hdfs.sh
-TwXr-Xr-X. 1 hadoop hadoop 197 Jul 26 20:13 flume_exec.sh
-Twxr-xr-x. 1 hadoop hadoop 233 Jul 26 20:13 flume_exec.sh.nl
-Twxr-xr-x. 1 hadoop hadoop 42 Jul 26 20:13 flume_show_hdfs.sh

The contents of the /tmp/hdfscopy directory on HDES have been copied to the Linux file system directory /tmp/
hdfscopy.

156

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

The Cp Command

The cp command can copy multiple sources to a destination. The sources and destination might be on HDFS or on
the local file system. If multiple sources are specified, the destination must be a directory:

[hadoop@hcinn flume]$ hdfs dfs -1s /tmp/flume/agent*
Found 1 items

-rw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:09 /tmp/flume/agenti.cfg
Found 1 items
-Iw-r--r-- 2 hadoop hadoop 1483 2014-07-26 20:09 /tmp/flume/agentl.cfg.nl

[hadoop@hcinn flume]$ hdfs dfs -cp /tmp/flume/agentl.cfg /tmp/flume/agent2.cfg

[hadoop@hcinn flume]$ hdfs dfs -1s /tmp/flume/agent*
Found 1 items

-Iw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:09 /tmp/flume/agentl.cfg
Found 1 items

-Iw-r--r-- 2 hadoop hadoop 1483 2014-07-26 20:09 /tmp/flume/agenti.cfg.nl
Found 1 items

-Iw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:19 /tmp/flume/agent2.cfg

This example shows that an HDFS-based file agentl.cfg is being copied to another HDFS-based file agent2.cfg.

The Get Command

The get command copies HDFS-based files to the local Linux file system. The get command is similar to
copyTolocal, except that copyToLocal must copy to a local Linux file system based file.

[hadoop@hcinn tmp]$ hdfs dfs -get /tmp/flume/agent2.cfg
[hadoop@hcinn tmp]$ 1s -1 ./agent2.cfg
-IwXr-xr-x. 1 hadoop hadoop 1343 Jul 26 20:23 ./agent2.cfg

This example copies the HDFS-based file agent2.cfg to the local Linux directory (“.”).

The Put Command

The put command copies a single file or multiple source files and writes them to a destination. This command
can also read from STDIN (the input file stream). The put command is similar to copyFromLocal, except that
copyFromLocal must copy from a local Linux file system based file.

[hadoop@hcinn tmp]$ ps -ef | hdfs dfs -put - /tmp/ps/list.txt

[hadoop@hcinn tmp]$ hdfs dfs -cat /tmp/ps/list.txt | head -10

uID PID PPID C STIME TTY TIME CMD

root 1 0 0 13:48 ? 00:00:01 /sbin/init
root 2 0 0 13:48 ? 00:00:00 [kthreadd]
root 3 2 0 13:48 ? 00:00:00 [migration/o0]
root 4 2 0 13:48 ? 00:00:03 [ksoftirgd/o]

157

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

root 5 2 0 13:48 ? 00:00:00 [migration/o0]
root 6 2 0 13:48 ? 00:00:00 [watchdog/0]
root 7 2 0 13:48 ? 00:00:00 [migration/1]
root 8 2 0 13:48 ? 00:00:00 [migration/1]
root 9 2 0 13:48 ? 00:00:02 [ksoftirqd/1]

This example takes input from STDIN, which is sourced from a full-process listing. The Hadoop file system put
command places the contents in list.txt on HDFS. The Hadoop file system cat command then dumps the contents of
the list.txt file and the Linux head command is used to limit the output to the first 10 lines.

The Mv Command

The mv command allows files to be moved from a source to a destination, but not across a file system:

[hadoop@hcinn tmp]$ hdfs dfs -1s /tmp/flume/agent*
Found 1 items

-Iw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:09 /tmp/flume/agenti.cfg
Found 1 items

-Iw-r--r-- 2 hadoop hadoop 1483 2014-07-26 20:09 /tmp/flume/agentl.cfg.nl
Found 1 items

-Tw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:19 /tmp/flume/agent2.cfg

[hadoop@hcinn tmp]$ hdfs dfs -mv /tmp/flume/agent2.cfg /tmp/flume/agent3.cfg

[hadoop@hcinn tmp]$ hdfs dfs -1s /tmp/flume/agent*
Found 1 items

-1w-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:09 /tmp/flume/agentl.cfg
Found 1 items

-Iw-r--r-- 2 hadoop hadoop 1483 2014-07-26 20:09 /tmp/flume/agentl.cfg.nl
Found 1 items

-Tw-r--r-- 2 hadoop hadoop 1343 2014-07-26 20:19 /tmp/flume/agent3.cfg

This example shows that the HDFS file agent2.cfg has been moved to the file agent3.cfg.

The Tail Command

You can use the Hadoop file system tail command to dump the end of the file to STDOUT. Adding the -f switch
(tail -f)enablesyou to continuously dump the contents of a file as it changes. The example that follows dumps the
end of the HDFS-based file list.txt.

[hadoop@hcinn tmp]$ hdfs dfs -tail /tmp/ps/list.txt

0? 00:00:00 pam: gdm-password
root 4494 1348 0 14:00 ? 00:00:00 sshd: hadoop [priv]
hadoop 4514 4494 0 14:01 ? 00:00:01 sshd: hadoop@pts/0

hadoop 4515 4514 0 14:01 pts/0 00:00:00 -bash

158

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

root 4539 1348 0 14:01 ? 00:00:00 sshd: hadoop [priv]
hadoop 4543 4539 0 14:01 ? 00:00:01 sshd: hadoop@pts/1
hadoop 4544 4543 0 14:01 pts/1 00:00:00 -bash

postfix 16083 1459 0 20:29 ? 00:00:00 pickup -1 -t fifo -u
hadoop 16101 4544 0 20:31 pts/1 00:00:00 ps -ef

hadoop 16102 4544 0 20:31 pts/1 00:00:00 /usx/lib/jvm/java-1.6

Asyou can see, the system commands enable you to move data to and from Hadoop from the Linux file system,
but what happens if data is in another source such as a database? For that, you'll need a tool like Sqoop.

Moving Data with Sqoop

You can use the Sqoop tool to move data into and out of relational databases, including Oracle, MySQL, PostgreSQL,
and HSQLDB. Sqoop can place the data onto HDFS and from there move it into Hive, the Hadoop data warehouse.

It provides the ability to incrementally load data and it supports many data formats—for example, CSV and Avro. It is
integrated with such Hadoop-based tools as Hive, HBase, Oozie, Map Reduce, and HDFS. Sqoop is the popular default
Hadoop-based tool of choice for moving this type of data.

In this section I demonstrate how to use Sqoop to import data from a MySQL database. Initially, I load the data
onto HDEFS, and then I add the step to load the data directly into a Hive table. But note: Before you start to work with
Sqoop and Hadoop, always make sure that your database (which in my example is MySQL) is configured correctly
on your Hadoop cluster. If it is not, you might get unexpected errors from the Sqoop job and low-level errors in your
database might be masked.

Note For details on the specifics of Sqoop, refer to the Apache Sqoop website at sqoop . apache.org. Make sure you
choose the documentation that matches the version you are using. (The examples in this chapter use version 1.4.3.)

Check the Database

To use Sqoop for this example, I have installed MySQL onto the Linux server hclnn and MySQL clients onto each of
the data nodes. That means that MySQL will be accessible on all servers in the cluster. Basically, I create a database
called “sqoop” with a user called “sqoop” and a table called “rawdata.” I place some data in the rawdata table, but the
content is not important because whatever is there will be copied. Because I am concentrating on Sqoop, there’s no
need to describe the MySQL configuration or the data any further; there are plenty of sources on the web to describe
the MySQL configuration, if you need more information.

Each data node that will access part of the Map Reduce-based Scoop job may try to access the MySQL database.
So, before running the Sqoop task, I must be sure that MySQL (or whichever database you use) is accessible on each
cluster node and that the test table can be accessed using the test user. To do this, I perform a test on each data node
to ensure the data node can access the remote MySQL database.

For example, I begin the test with the line:

mysql --host=hcinn --user=sqoop --pasSWOTd=XXXXXXXXXX

159

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

I have obscured the password above, but the command gives MySQL on the local node the username and proper
password, as well as the hostname of the remote server. Once the mysql> prompt is available, I can try to get a row
count from the rawdata table:

mysql> select count(*) from sqoop.rawdata;

Hmmmmmm e +
| count(*) |
Hmmmmmmmmeen +
| 20031 |
Hmmm e +

The results show that the rawdata table exists and is accessible by the sqoop database account, and that the table
contains 20,031 rows of data for the import test. The data is just textual data contained in a table with a single column
called “rawline,” which contains the textual row data. 'm good to go.

Note Any relational database access problems must be fixed before you proceed, given that MySQL is being used in
this example. Further information can be found at the MySQL website at http://dev.mysql.com/doc/.

Install Sqoop

Given that the Cloudera stack was installed in Chapter 2, you can simply install Sqoop as the root user account on the
server hclnn as follows, using yum:

[root@hcinn ~]# yum install sqoop
To check that the Sqoop installation was successful, you use the version option:
[hadoop@hcinn conf]$ sqoop version

Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.

Please set $HCAT_HOME to the root of your HCatalog installation.

Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO HOME to the root of your Accumulo installation.

14/07/17 18:41:17 INFO sqoop.Sqoop: Running Sqoop version: 1.4.3-cdh4.7.0
Sqoop 1.4.3-cdh4.7.0

git commit id 8e266e052e423af592871e2dfe09d54c03f6a0e8

Compiled by jenkins on Wed May 28 11:36:29 PDT 2014

Note that this check for my example yielded a couple of warnings: HCatalog and Accumulo (the database) are not
installed. But as they are not used in the example, these warnings can be ignored.

In order to use MySQL, however, you must download and install a connector library for MySQL, as follows:

[root@hcinn ~]# wget http://dev.mysql.com/get/Downloads/Connector-3/mysql-connector-java-5.1.22.tar.gz

160

www.it-ebooks.info


http://dev.mysql.com/doc/
http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.22.tar.gz
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

The wget command downloads the tarred and compressed connector library file from the web address
http://dev.mysql.com/get/Downloads/Connector-]/. As soon as the file is downloaded, you unzip and untar it, and
then move it to the correct location so that it can be used by Sqoop:

[root@hcinn ~]# 1s -1 mysql-connector-java-5.1.22.tar.gz
-IwW-r--r--. 1 root root 4028047 Sep 6 2012 mysql-connector-java-5.1.22.tar.gz

This command shows the downloaded connector library, while the next commands show the file being unzipped
using the gunzip command and unpacked using the tar command with the expand (x) and file (f) options:

[root@hcinn ~]# gunzip mysql-connector-java-5.1.22.tar.gz
[root@hcinn ~]# tar xf mysql-connector-java-5.1.22.tar

[root@hcinn ~]# 1s -1rt

total 9604

drwxr-xr-x. 4 root root 4096 Sep 6 2012 mysql-connector-java-5.1.22
-Iw-r--r--. 1 root root 9809920 Sep 6 2012 mysql-connector-java-5.1.22.tar

Now, you copy the connector library to the /usr/lib/sqoop/lib directory so that it is available to Sqoop when it
attempts to connect to a MySQL database:

[root@hcinn ~]# cp mysql-connector-java-5.1.22/mysql-connector-java-5.1.22-bin.jar /usr/lib/sqoop/lib/

For this example installation, I use the Linux hadoop account. In that user’s $SHOME/.bashrc Bash shell
configuration file, I have defined some Hadoop and Map Reduce variables, as follows:

A
# Set up Sqoop variables

# For each user who will be submitting MapReduce jobs using MapReduce v2 (YARN), or running
# Pig, Hive, or Sqoop in a YARN installation, set the HADOOP_MAPRED_ HOME

export HADOOP_CONF_DIR=/etc/hadoop/conf

export HADOOP_COMMON_HOME=/ust/lib/hadoop

export HADOOP_HDFS HOME=/usr/lib/hadoop-hdfs

export HADOOP_MAPRED HOME=/usr/1ib/hadoop-mapreduce
export YARN_HOME=/usr/1ib/hadoop-yarn/

Use Sqoop to Import Data to HDFS

To import data from a database, you use the Sqoop import statement. For my MySQL database example, I use an
options file containing the connection and access information. Because these details are held in a single file, this
method requires less typing each time the task is repeated. The file that will be used to write table data to HDFS
contains nine lines.

The import line tells Sqoop that data will be imported from the database to HDFS. The -- connect option with a
connect string of jdbc:mysql://hcinn/sqoop tells Sqoop that JDBC will be used to connect to a MySQL database on
server hclnn called “sqoop.” I use the Linux cat command to show the contents of the Sqoop options file.

161

www.it-ebooks.info


http://dev.mysql.com/get/Downloads/Connector-J/
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

[hadoop@hcinn sqoop]$ cat import.txt

import

--connect
jdbc:mysqgl://hcinn/sqoop
--username

sqoop

--password

XXXXXXXXXX

--table

rawdata

W ooNOUVI B~ WN R

The username and password options in the Sqoop options file provide account access to MySQL, while the table
option shows that the table to be accessed is called “rawdata.” Given that the Sqoop options file describes how to
connect to the relational database that has been set up, the database itself should now be checked.

For MySQL on the server hclnn to be accessed from all data nodes, the access must be granted within
MySQL—otherwise, you will see errors like this:

14/07/19 20:20:28 ERROR manager.SqlManager: Error executing statement:
com.mysql.jdbc.exceptions.jdbca.MySQLSyntaxExrrorException: Access denied for user
"sqoop'@'localhost’ to database 'sqoop.rawdata’

To grant that access, you first log in as the root user. On the MySQL instance on the server hclnn that contains the
example database “sqoop,” for instance, you log into the database as the root user with the line:

mysql -u root -p
Then you grant access to the database access user (in this case, called “sqoop”) on all servers, as follows:

GRANT ALL PRIVILEGES ON sqoop.rawdata to 'sqoop'@'hcirimi’;
GRANT ALL PRIVILEGES ON sqoop.rawdata to 'sqoop'@'hcirim2’;
GRANT ALL PRIVILEGES ON sqoop.rawdata to 'sqoop'@'hcirim3’;

Also, you set password access for all the remote database users. (The actual passwords here have been crossed
out, but the syntax to use is shown.)

SET PASSWORD FOR 'sqoop'@'hcinn’ PASSWORD (" XXXXXXXXXXXX ") ;
SET PASSWORD FOR 'sqoop'@'hcirimi' = PASSWORD('XXXXXXXXXXXX');
SET PASSWORD FOR 'sqoop'@'hcirim2' = PASSWORD('XXXXXXXXXXXX');
SET PASSWORD FOR 'sqoop'@'hcirim3' = PASSWORD('XXXXXXXXXXXX');

Finally, you flush the privileges in MySQL in order to make the changes take effect:
FLUSH PRIVILEGES;

Now that the options file has been created, and the MySQL database access has been checked, it is time to
attempt to use Sqoop. The Sqoop command that executes the import by using the options file is as follows:

sqoop --options-file ./import.txt --table sqoop.rawdata -m 1

162

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Make sure that you specify the -m option (as shown above) to perform a sequential import, or you will encounter
an error like the following. If such an error occurs, just correct your sqoop command and try again.

14/07/19 20:29:46 ERROR tool.ImportTool: Error during import: No primary key could be
found for table rawdata. Please specify one with --split-by or perform a sequential
import with '-m 1'.

Another common error you might see is this one:

14/07/19 20:31:19 INFO mapreduce.Job: Task Id : attempt_ 1405724116293 _0001_m_000000_O,

Status: FAILED

Error: java.lang.RuntimeException: java.lang.RuntimeException: com.mysql.jdbc.exceptions.jdbc4.
CommunicationsException: Communications link failure

This error may mean that MySQL access is not working. Check that you can log in to MySQL on each node and that the
database on the test node (in this case, hclnn) can be accessed as was tested earlier, in the section “Check the Database.”

By default, the Sqoop import will attempt to install the data in the directory /user/hadoop/rawdata on HDFS.
Before running the import command, though, make sure that the directory does not exist. This is done by using the
HDFS file system -rm option with the - recursive switch:

[hadoop@hcinn sqoop]$ hdfs dfs -rm -r /user/hadoop/rawdata
Moved: 'hdfs://hcinn/user/hadoop/rawdata’ to trash at: hdfs://hcinn/user/hadoop/.Trash/Current

If the directory already exists, you will see an error like this:

14/07/20 11:33:51 ERROR tool.ImportTool: Encountered IOException running import job:
org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory
hdfs://hcinn/user/hadoop/rawdata already exists

So, to run the Sqoop import job, you use the following command:
[hadoop@hcinn sqoop]$ sqoop --options-file ./import.txt --table sqoop.rawdata -m 1
The output will then look like this:

Please set $HCAT _HOME to the root of your HCatalog installation.

Please set $ACCUMULO HOME to the root of your Accumulo installation.

14/07/20 11:35:28 INFO sqoop.Sqoop: Running Sqoop version: 1.4.3-cdh4.7.0

14/07/20 11:35:28 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/07/20 11:35:28 INFO tool.CodeGenTool: Beginning code generation

14/07/20 11:35:29 INFO manager.SqlManager: Executing SOL statement: SELECT t.* FROM "rawdata’
AS t LIMIT 1

14/07/20 11:35:29 INFO manager.SqlManager: Executing SOL statement: SELECT t.* FROM "rawdata’
AS t LIMIT 1

14/07/20 11:35:29 INFO orm.CompilationManager: HADOOP_MAPRED HOME is /usxr/lib/hadoop-mapreduce
14/07/20 11:35:31 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/
647e8646a006T6e95b0582fcagccf4ca/rawdata. jar

14/07/20 11:35:31 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/07/20 11:35:31 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/07/20 11:35:31 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/07/20 11:35:31 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)

163

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

14/07/20 11:35:31 INFO mapreduce.ImportJobBase: Beginning import of rawdata
14/07/20 11:35:33 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.
YarnClientImpl is inited.
14/07/20 11:35:33 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.
YarnClientImpl is started.
14/07/20 11:35:37 INFO mapreduce.JobSubmitter: number of splits:1
14/07/20 11:35:37 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1405804878984 0001
14/07/20 11:35:38 INFO client.YarnClientImpl: Submitted application application 1405804878984 0001
to ResourceManager at hcinn/192.168.1.107:8032
14/07/20 11:35:38 INFO mapreduce.Job: The url to track the job: http://hcinn:8088/proxy/
application_1405804878984_0001/
14/07/20 11:35:38 INFO mapreduce.Job: Running job: job_ 1405804878984 0001
14/07/20 11:35:55 INFO mapreduce.Job: Job job 1405804878984 0001 running in uber mode : false
14/07/20 11:35:55 INFO mapreduce.Job: map 0% reduce 0%
14/07/20 11:36:14 INFO mapreduce.Job: map 100% reduce 0%
14/07/20 11:36:14 INFO mapreduce.Job: Job job_ 1405804878984 0001 completed successfully
14/07/20 11:36:14 INFO mapreduce.Job: Counters: 27
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=92714
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=87
HDFS: Number of bytes written=1427076
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=16797
Total time spent by all reduces in occupied slots (ms)=0
Map-Reduce Framework
Map input records=20031
Map output records=20031
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=100
CPU time spent (ms)=3380
Physical memory (bytes) snapshot=104140800
Virtual memory (bytes) snapshot=823398400
Total committed heap usage (bytes)=43712512
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=1427076
14/07/20 11:36:14 INFO mapreduce.ImportJobBase: Transferred 1.361 MB in 41.6577 seconds (33.4543 KB/sec)
14/07/20 11:36:14 INFO mapreduce.Import]obBase: Retrieved 20031 records.

164

www.it-ebooks.info


http://hc1nn:8088/proxy/application_1405804878984_0001/
http://hc1nn:8088/proxy/application_1405804878984_0001/
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

In this case, the output indicates that the Sqoop import was completed successfully. You check the HDFS data
directory by using the HDFS file system 1s command and see the results of the job:

[hadoop@hcinn sqoop]$ hdfs dfs -1s /user/hadoop/rawdata

Found 2 items

-1w-r--r-- 2 hadoop hadoop 0 2014-07-20 11:36 /user/hadoop/rawdata/_SUCCESS
-rw-r--r-- 2 hadoop hadoop 1427076 2014-07-20 11:36 /user/hadoop/rawdata/part-m-00000

These results show a _SUCCESS file and a part data file. You can dump the contents of the part file by using the
HDFS file system cat command. You can then pipe the contents to the wc (word count) Linux command | wc -1by

using the -1 switch to give a file line count:

[hadoop@hcinn sqoop]$ hdfs dfs -cat /user/hadoop/rawdata/part-m-00000 | wc -1
20031

The output shows that there were 20,031 lines imported from MySQL to HDFS, which matches the data volume
from MySQL. You can double-check the MySQL volume easily:

mysql --host=hcinn --user=sqoop --pasSWOLd=XXXXXXXXXXXX

mysql> select count(*) from sqoop.rawdata;

Hmmm e +
| count(*) |
Hmmmmmmmea +
| 20031 |
Hmmmmmmmmeen +

Good; logging into MySQL as the user sqoop and getting a row count from the database table sqoop.rawdata by
using count (*) gives you a row count of 20,031.

This is a good import and thus a good test of Sqoop. Although this simple example shows an import, you could
also export data to a database. For example, you can easily import data, modify or enrich it and export it to another
database.

Use Sqoop to Import Data to Hive

As you saw, Sqoop can move data to HDFS, but what if you need to move the data into the Hive data warehouse?
Although you could use a Pig Latin or Hive script, Sqoop can directly import to Hive as well.

As for HDFS, you need to remember that Hive must be working on each data node before you attempt the Sqoop
import. Testing before making the import is far better than getting strange errors later. On each node, you run a simple
Hive show tables command, as follows:

[hadoop@hcinn ~]$ hive
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties
Hive history file=/tmp/hadoop/hive_job_log ac529ba0-df48-4c65-9440-dbddf48f87b5_42666910.txt
hive>

> show tables;
0K
Time taken: 2.089 seconds

165

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

For the Hive import, you need to add an extra line to the option file: --hive-import (line 10). Once the data is
loaded onto HDFS, the new line will cause it to be loaded into Hive, this time to a table named to match its source:

import

--connect
jdbc:mysqgl://hcinn/sqoop
--username

sqoop

--password

XXXXXXXXXXXX

--table

rawdata

--hive-import

OwWwoo~NOUVT B WN R

[N

The Sqoop command to import remains the same—only the contents of the options file change. The data will be
loaded into Hive, and the table in Hive will be named the same as its source table in MySQL, as follows:

sqoop --options-file ./hive-import.txt --table sqoop.rawdata -m 1

Also, before you run the Sqoop command, you should be aware of some potential errors that can occur.
For example, if the Hive Metastore server (the server that manages metadata for Hive) is not running, you will receive
the following error:

14/07/20 11:45:44 INFO hive.HiveImport: org.apache.hadoop.hive.ql.metadata.HiveException:
java.lang.RuntimeException:
Unable to instantiate org.apache.hadoop.hive.metastore.HiveMetaStoreClient

As the Linux root user, you can check the state of the Hive Metastore server by using the following command:

[root@hcinn confl# service hive-metastore status
Hive Metastore is dead and pid file exists [FAILED]

Errors also can occur when the server cannot access the Derby database for read/write, as this error from the
/var/log/hive/ hive-metastore.log shows:

2014-07-20 09:20:58,148 ERROR Datastore.Schema (Log4JLogger.java:error(125)) - Failed initialising
database.

Cannot get a connection, pool error Could not create a validated object, cause: A read-only user
or a user in a read-only database is not permitted to disable read-only mode on a connection.
org.datanucleus.exceptions.NucleusDataStoreException: Cannot get a connection, pool error Could
not create a validated object, cause: A read-only user or a user in a read-only database is not
permitted to disable read-only mode on a connection.

If you encounter read/write errors to the Hive Derby database, you can fix them by updating each Hive instance’s
hive-site.xml file under /etc/hive/conf to add the following:

<property>
<name>hive.metastore.uris</name>
<value>thrift://hcinn:9083</value>
<description>
IP address (or fully-qualified domain name) and port of the metastore host
</description>
</property>

166

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

These additions tell Hive the server and port of its Metastore server, with the server name matching the physical
host on which it is installed (in this case, hclnn).
Once all the errors are out of the way, you can import data to Hive. Here is the output of a successful job:

Please set $HCAT HOME to the root of your HCatalog installation.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.

14/07/21
14/07/21
override
14/07/21
14/07/21
14/07/21 15:
14/07/21 15:
AS t LIMIT 1
14/07/21 15:53
AS t LIMIT 1

14/07/21 15:53
14/07/21 15:53

15:
15:

53
53

15:
15:

53
53
53
53

107
107
107
:08

:08

:08
:11

:07 INFO
107

INFO

INFO
INFO
INFO
INFO

INFO

INFO
INFO

sqoop.Sqoop: Running Sqoop version: 1.4.3-cdh4.7.0
tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can

tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
manager.MySQLManager: Preparing to use a MySQL streaming resultset.
tool.CodeGenTool: Beginning code generation

manager.SqlManager: Executing SQL statement: SELECT t.* FROM "“rawdata®

manager.SqlManager: Executing SQL statement: SELECT t.* FROM "rawdata’

orm.CompilationManager: HADOOP_MAPRED HOME is /usr/1ib/hadoop-mapreduce
orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/

6cdb761542523f9fe68bbodoffca26c3/rawdata. jar

14/07/21
14/07/21
14/07/21
14/07/21
14/07/21 15:53
14/07/21 15:53
YarnClientImpl
14/07/21 15:53
YarnClientImpl
14/07/21 15:53
14/07/21 15:53
14/07/21 15:53

15:
15:
15:
15:

53
53
53
53

111
111
111
$11
:11
:12

:12
116

116
:17

WARN
WARN
WARN
INFO
INFO
INFO
init
INFO

is

is
INFO
INFO
INFO

manager .MySOLManager: It looks like you are importing from mysql.
manager.MySOLManager: This transfer can be faster! Use the --direct

manager .MySQLManager: option to exercise a MySQL-specific fast path.
manager.MySOLManager: Setting zero DATETIME behavior to convertToNull (mysql)
mapreduce.ImportJobBase: Beginning import of rawdata

service.AbstractService: Service:org.apache.hadoop.yarn.client.
ed.

service.AbstractService: Service:org.apache.hadoop.yarn.client.

started.

mapreduce.JobSubmitter: number of splits:1
mapreduce.JobSubmitter: Submitting tokens for job: job_1405907667472_0001
client.YarnClientImpl: Submitted application application_1405907667472_0001

to ResourceManager at hcinn/192.168.1.107:8032

14/07/21 15:53:17 INFO mapreduce.

application_1405907667472_0001/

14/07/21
14/07/21
14/07/21
14/07/21
14/07/21
14/07/21

15:
15:
15:
15:
15:
15:

53
53
53
53
53
53

:17
:32
:32
152
152
152

INFO
INFO
INFO
INFO
INFO
INFO

Job: The url to track the job: http://hcinn:8088/proxy/
mapreduce.Job: Running job: job_1405907667472_0001
mapreduce.Job: Job job_1405907667472_0001 running in uber mode : false
mapreduce.Job: map 0% reduce 0%
mapreduce.Job: map 100% reduce 0%
mapreduce.Job: Job job_1405907667472_0001 completed successfully
mapreduce.Job: Counters: 27

File System Counters

FILE:
FILE:
FILE:
FILE:
FILE:
HDFS:
HDFS:
HDFS:
HDFS:
HDFS:

of
of
of
of
of
of
of

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

bytes read=0

bytes written=92712
read operations=0

large read operations=0
write operations=0
bytes read=87

bytes written=1427076
of read operations=4

of large read operations=0
of write operations=2

167

www.it-ebooks.info


http://hc1nn:8088/proxy/application_1405907667472_0001/
http://hc1nn:8088/proxy/application_1405907667472_0001/
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=17353
Total time spent by all reduces in occupied slots (ms)=0
Map-Reduce Framework
Map input records=20031
Map output records=20031
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=97
CPU time spent (ms)=3230
Physical memory (bytes) snapshot=103755776
Virtual memory (bytes) snapshot=823398400
Total committed heap usage (bytes)=43712512
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=1427076
14/07/21 15:53:52 INFO mapreduce.ImportJobBase: Transferred 1.361 MB in 39.9986 seconds
(34.8419 KB/sec)
14/07/21 15:53:52 INFO mapreduce.ImportJobBase: Retrieved 20031 records.
14/07/21 15:53:52 INFO manager.SqlManager: Executing SOL statement: SELECT t.* FROM “rawdata’
AS t LIMIT 1
14/07/21 15:53:52 INFO hive.HiveImport: Loading uploaded data into Hive
14/07/21 15:53:56 INFO hive.HiveImport: Logging initialized using configuration in file:/etc/hive/
conf.dist/hive-log4j.properties
14/07/21 15:53:56 INFO hive.HiveImport: Hive history file=/tmp/hadoop/hive _job log calba3e3-8ece-
4b54-8c5b-e4da6779e121_58562623.txt
14/07/21 15:53:57 INFO hive.HiveImport: OK
14/07/21 15:53:57 INFO hive.HiveImport: Time taken: 0.958 seconds
14/07/21 15:53:59 INFO hive.HiveImport: Loading data to table default.rawdata
14/07/21 15:54:00 INFO hive.HiveImport: Table default.rawdata stats: [num partitions: o,
num files: 2, num rows: 0, total size: 1427076, raw_data size: 0]
14/07/21 15:54:00 INFO hive.HiveImport: OK
14/07/21 15:54:00 INFO hive.HiveImport: Time taken: 2.565 seconds
14/07/21 15:54:00 INFO hive.HiveImport: Hive import complete.
14/07/21 15:54:00 INFO hive.HiveImport: Export directory is empty, removing it.

Asyou can see, the data was imported to HDFS and then successfully imported to Hive. The warnings in
this output indicate that you could have used a --direct flag in the import that would employ MySQL-specific
functionality for a faster import. (I didn’t use the flag so as to demonstrate a simple data import; I wasn’t worried
about performance.) To check the table’s contents, use the following commands:

hive>
> show tables;
0K
rawdata
Time taken: 1.344 seconds

168

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

You can see that the rawdata table was created, but how much data does it contain? To check the row count of
the Hive rawdata table, you use the following:

hive> select count(*) from rawdata;

Total MapReduce jobs =1

Launching Job 1 out of 1

Total MapReduce CPU Time Spent: 2 seconds 700 msec
0K

20031

Time taken: 25.098 seconds

Success is confirmed: the table in Hive contains 20,031 rows, which matches the MySQL table row count.

Asyou can see from this brief introduction, Sqoop is a powerful relational database data import/export tool for
Hadoop. You can even use Sqoop in an Oozie workflow and schedule complex ETL flows using Sqoop, Pig, and Hive
scripts. Also, you can carry out incremental loads with such Hive options as --incremental and - -check-column.
This would be useful if you were receiving periodic data-feed updates from a relational database. Check the sqoop.
apache.org website to learn more.

So with Sqoop, you have seen an example of moving data between a relational database and Hadoop. But what if
the data that you wish to move is in another type of data source? Well, that is where the Apache Flume tool comes into
play. The next section describes it and provides an example of its use.

Moving Data with Flume

Apache Flume (flume.apache.org) is an Apache Software Foundation system for moving large volumes of log-based
data. The Flume data model is defined in terms of agents, where an agent has an event source, a channel, and an event
sink. Agents are defined in Flume configuration files. The source describes the data source. The channel receives event
data from the source and stores it. The sink takes event data from the channel. Figure 6-1 provides a simple example of
a Flume agent; it is the building block of the Flume architecture.

Flume Agent

Channel

Event
Queue

Figure 6-1. The Flume agent

The sink might pass data to the source of another agent or write the data to a store like HDFS, as I'll demonstrate
in the sections that follow. You can build complex topologies to process log or event data, with multiple agents passing
data to a single agent or to agents processing data in parallel. The following two examples show simple architectures
for Flume. Figure 6-2 shows a hierarchical arrangement, with Flume agents on the left of the diagram passing data on
to subagents that act as collectors for the data and then store the data to HDFS.

169

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Agents

Collectors

BC_E

HDFS

Ot 0

:
NV

Figure 6-2. Hierarchical example of Flume architecture

Figure 6-3 shows a linear arrangement whereby the output from one agent is passed to the next and the next after
that, until it is finally stored on HDFS. No specific architecture is advised here; instead, you should recognize that
Flume is flexible and that you can arrange your Flume architecture to meet your needs.

BL 8 —-BC 8~ EC_JE
!
B 8 - B8 - EC_JE

l

HDFS

Figure 6-3. Linear example of Flume architecture

The Flume user guide shows some example topologies; see http://flume.apache.org/FlumeUserGuide.html.

Install Flume

Before you can move any log data, you must install Flume. Given that I am using the Cloudera CDH4 x stack here,
installation is simple, using the Linux yum commands. You install the Flume server first, as follows:

yum install flume-ng

170

www.it-ebooks.info


http://flume.apache.org/FlumeUserGuide.html
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Then you install the component that allows Flume to start up at server boot time:
yum install flume-ng-agent

Finally, you install Flume documentation:
yum install flume-ng-doc

Next, you set up the basic configuration:

[root@hcinn etc]# cd /etc/flume-ng/conf
[root@hcinn conf]# 1s
flume.conf flume-conf.properties.template flume-env.sh.template log4j.properties

cp flume-conf.properties.template  flume.conf

You won't customize the configuration for the agent now; an agent-based configuration file will be defined shortly.
As with many other Cloudera stack Apache components, you can find the Flume configuration and logs in
the standard places. For instance, logs are located under /var/log/flume-ng, the configuration files are under
/etc/flume-ng/conf, and the flume-ng executable file is /usr/bin/flume-ng.

A Simple Agent

As an example of how Flume works, I build a single Flume agent to asynchronously take data from a Centos
Linux-based message file called /var/log/messages. The message file acts as the data source and is stored in a single
Linux-based channel called channell. The data sink is on HDFS in a directory called “flume/messages.”

In the Linux hadoop account I have created a number of files to run this example of a Flume job, display the
resulting data, and clean up after the job. These files make the job easier to run; there is minimal typing, and it is
easier to rerun the job because the results have been removed from HDFS. The files will also display the results of the
job that reside on HDFS. You can use scripts like these if you desire.

[hadoop@hcinn ~]$ cd $HOME/flume
[hadoop@hcinn flume]$ 1s
agentl.cfg flume_clean_hdfs.sh flume_exec_hdfs.sh flume_show_hdfs.sh

The file agent1.cfg is the Flume configuration file for the agent, while the Bash (.sh) files are for running the
agent (flume_exec_hdfs.sh), showing the results on HDFS (flume_show_hdfs.sh), and cleaning up the data on HDFS
(flume_clean_hdfs.sh). Examining each of these files in turn, we see that the show script just executes a Hadoop file
system 1s command against the directory /flume/messages, where the agent will write the data.

[hadoop@hcinn flume]$ cat flume show hdfs.sh
#!/bin/bash

hdfs dfs -1s /flume/messages

171

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

The clean script executes a Hadoop file system remove command with a recursive switch:
[hadoop@hcinn flume]$ cat flume_clean_hdfs.sh
#!/bin/bash
hdfs dfs -rm -r /flume/messages

The execution script, flume_execute_hdfs.sh, runs the Flume agent and needs nine lines:
[hadoop@hcinn flume]$ cat flume exec hdfs.sh

1 #!/bin/bash

2

3 # run the bash agent

4

5 flume-ng agent \

--conf /etc/flume-ng/conf \

--conf-file agenti.cfg \
-Dflume.root.logger=DEBUG, INFO, console \
-name agent1

O 0N O

This execution script runs the Flume agent within a Linux Bash shell and is easily repeatable because a single
script has been run, rather than retyping these options each time you want to move log file content. Line 5 actually
runs the agent, while lines 6 and 7 specify the configuration directory and agent configuration file. Line 8 specifies
the log4j log configuration via a -D command line option to show DEBUG, INFO, and console messages. Finally,
line 9 specifies the Flume agent name agentl.

The Flume agent configuration file (agentl.cfg, in this case) must contain the agent’s source, sink, and channel.
Consider the contents of this example file:

[hadoop@hcinn flume]$ cat agenti.cfg

agenti.sources = sourcel
agentl.channels = channel1
agentl.sinks = sinkl

O oo~NOUVT S WN PR

[N
(AN
H*+
a
)
a2
-
S
o
[}
oQ
0]
=
=3
N
=>
o
S
=
1)
N

(RN
w N

agentil.channels.channel1.type = FILE
agent1.channels.channell.capacity = 2000000
agentl.channels.channel1.checkpointInterval = 60000
agentl.channels.channell.maxFileSize = 10737418240

PR R R
<~ ou b

172

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

18 o mm oo o
19 # define agent source

20 H mmmmmm s m o m e e e e e e oo
21

22 agentl.sources.sourcel.type = exec

23 agentl.sources.sourcel.command = tail -F /var/log/messages

24 agentl.sources.sourcel.channels = channell

25

26 mm oo o m oo
27 # define agent sink

28 mm oo oo
29

30 agentl.sinks.sinkl.type = hdfs

31 agent1.sinks.sink1.hdfs.path = hdfs://hcinn/flume/messages

32 agentl.sinks.sink1.hdfs.rollInterval = 0

33 agentl.sinks.sinkl.hdfs.rollSize = 1000000

34 agentl.sinks.sink1.hdfs.batchSize = 100

35 agentl.sinks.sinkl.channel = channel1

As already defined in the agent execution script, the Flume agent name in this example is agentl. Lines 5 to 7
define the names of the source, channel, and sink.

5 agentl.sources = sourcel
6 agentl.channels = channel1
7 agentl.sinks = sink1

The channel (channell) is described between lines 13 and 16. Line 13 specifies that the channel type will be a
file. Line 14 indicates that the maximum capacity of the channel will be 2 million events. Line 15, in milliseconds,
indicates the time between checkpoints. Line 16 specifies the maximum channel file size in bytes.

13 agenti.channels.channeli.type = FILE

14 agentil.channels.channell.capacity = 2000000

15 agentl.channels.channell.checkpointInterval = 60000
16 agentl.channels.channell.maxFileSize = 10737418240

The configuration file lines (22 to 24 ) show how the Flume data source sourcel is defined.

22 agentl.sources.sourcel.type = exec
23 agentl.sources.sourcel.command = tail -F /var/log/messages
24 agentl.sources.sourcel.channels = channel1l

In this example, I may need to ensure that the Linux account I am using to run this Flume job has access to read the
log file /var/log/messages. Therefore, I grant access using the root account as follows: I use the Linux su (switch user)
command to change the user ID to root. Then I use the Linux chmod command to grant global read privileges while
maintaining current access. The two Linux 1s command listings show that extra access has been granted:

su -
1s -1 /var/log/messages
-YW------- 1 root root 410520 Nov 22 09:20 /var/log/messages

chmod 644 /var/log/messages

1s -1 /var/log/messages

-Iw-r--r-- 1 root root 410520 Nov 22 09:25 /var/log/messages
exit

173

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

The source type is defined as “exec” in line 22, but Flume also supports sources of Avro, Thrift, Syslog, jms,
spooldir, twittersource, seq, http, and Netcat. You also could write custom sources to consume your own data types;
see the Flume user guide at flume.apache.org for more information.

The executable command is specified at line 23 as tail -F /var/log/messages. This command causes new
messages in the file to be received by the agent. Line 24 connects the source to the Flume agent channel, channell.
Finally, lines 30 through 35 define the HDFS data sink:

30 agentl.sinks.sinkl.type = hdfs

31 agentl.sinks.sinkl.hdfs.path = hdfs://hcinn/flume/messages
32 agenti.sinks.sink1.hdfs.rollInterval = 0

33 agent1.sinks.sink1.hdfs.r0l1Size = 1000000

34 agentl.sinks.sinkl.hdfs.batchSize = 100

35 agentl.sinks.sinkl.channels = channell

In this example, the sink type is specified at line 30 to be HDEFS, but it could also be a value like logger, avro, irc,
hbase, or a custom sink (see the Flume user guide at flume.apache.org for futher alternatives). Line 31 specifies the
HDFS location as a URI, saving the data to /flume/messages.

Line 32 indicates that the logs will not be rolled by time, owing to the value of 0, while the value at line 33
indicates that the sink will be rolled based on size. Line 34 specifies a sink batch size of 100 for writing to HDFS, and
line 35 connects the channel to the sink.

For this example, I encountered the following error owing to a misconfiguration of the channel name:

2014-07-26 14:45:10,177 (conf-file-poller-0) [WARN - org.apache.flume.conf.FlumeConfiguration
$AgentConfiguration.

validateSources(FlumeConfiguration.java:589)] Could not configure source sourcel due to: Failed to
configure component!

This error message indicated a configuration error—in this case, it was caused by putting an “s” on the end of the
channels configuration item at line 24. When corrected, the line reads as follows:

24 agentl.sources.sourcel.channel = channel1l

Running the Agent

To run your Flume agent, you simply run your Bash script. In my example, to run the Flume agent agentl, I run the
Centos Linux Bash script flume_exec_hdfs.sh, as follows:

[hadoop@hcinn flume]$ cd $HOME/flume
[hadoop@hcinn flume]$ ./flume_execute_hdfs.sh

This writes the voluminous log output to the session window and to the logs under /var/log/flume-ng. For my
example, I don’t provide the full output listing here, but I identify the important parts. Flume validates the agent
configuration and so displays the source, channel, and sink as defined:

2014-07-26 17:50:01,377 (conf-file-poller-0) [DEBUG - org.apache.flume.conf.FlumeConfiguration$Agent
Configuration.isValid(FlumeConfiguration.java:313)] Starting validation of configuration for agent:

agent1, initial-configuration: AgentConfiguration[agenti]

SOURCES: {sourceil={ parameters:{command=tail -F /var/log/messages, channels=channel1, type=exec} }}

174

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

CHANNELS: {channeli={ parameters:{checkpointInterval=60000, capacity=2000000,
maxFileSize=10737418240, type=FILE} }}

SINKS: {sinki={ parameters:{hdfs.path=hdfs://hcinn/flume/messages, hdfs.batchSize=100,
hdfs.rollInterval=0, hdfs.r0l11Size=1000000, type=hdfs, channel=channel1i} }}

Flume then sets up the file-based channel:

2014-07-26 17:50:02,858 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.channel.file.FileChannel.
start(FileChannel.java:254)] Starting FileChannel channell { dataDirs: [/home/hadoop/.flume/file-
channel/data] }...

The channel on the Linux file system contains checkpoint and log data:
[hadoop@hcinn flume]$ 1s -1 $HOME/.flume/file-channel/*

/home/hadoop/.flume/file-channel/checkpoint:
total 15652

-IW-IW-T--. 1 hadoop hadoop 16008232 Jul 26 17:51 checkpoint
-Iw-IW-I--. 1 hadoop hadoop 25 Jul 26 17:51 checkpoint.meta
-Tw-IW-I--. 1 hadoop hadoop 32 Jul 26 17:51 inflightputs
-IwW-IW-I--. 1 hadoop hadoop 32 Jul 26 17:51 inflighttakes
drwxrwxr-x. 2 hadoop hadoop 4096 Jul 26 17:50 queueset

/home/hadoop/ . flume/file-channel/data:

total 2060

-TW-IW-I--. 1 hadoop hadoop 0 Jul 26 15:44 log-6
-IwW-IW-I--. 1 hadoop hadoop 47 Jul 26 15:44 log-6.meta
-Iw-IW-I--. 1 hadoop hadoop 1048576 Jul 26 15:55 log-7
-Iw-IW-I--. 1 hadoop hadoop 47 Jul 26 15:56 log-7.meta
-Iw-IW-I--. 1 hadoop hadoop 1048576 Jul 26 17:50 log-8
-TW-IW-I--. 1 hadoop hadoop 47 Jul 26 17:51 log-8.meta

The Flume agent sets up the data sink by creating a single empty file on HDFS. The log message indicating this is
as follows:

2014-07-26 17:50:10,532 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.
flume.sink.hdfs.BucketWriter.open(BucketWriter.java:220)] Creating hdfs://hcinn/flume/messages/
FlumeData.1406353810397.tmp

The script flume_show_hdfs.sh can be run as follows, using the Linux hadoop account to show the Flume data
sink file on HDFS:

[hadoop@hcinn flume]$ ./flume_show_hdfs.sh

Found 1 items

-rw-r--r-- 2 hadoop hadoop 0 2014-07-26 17:50 /flume/messages/FlumeData.1406353810397.tmp
The script reveals that the file is empty, with a zero in the fifth column. When the number of new messages in

the messages file reaches 100 (as defined by batchSize at line 34 of the agent configuration file), the data is written to

HDFS from the channel:

34 agentl.sinks.sinkl.hdfs.batchSize = 100

175

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

I can see this behavior by running the Flume show script again:

[hadoop@hcinn flume]$ ./flume_show_hdfs.sh

Found 11 items

-Iw-r--r-- 2 hadoop hadoop 1281 2014-07-26 17:50 /flume/messages/FlumeData.1406353810397
-1w-r--r-- 2 hadoop hadoop 1057 2014-07-26 17:50 /flume/messages/FlumeData.1406353810398
-rw-r--r-- 2 hadoop hadoop 926 2014-07-26 17:50 /flume/messages/FlumeData.1406353810399
-rw-r--r-- 2 hadoop hadoop 1528 2014-07-26 17:50 /flume/messages/FlumeData.1406353810400
-IW-1--r-- 2 hadoop hadoop 1281 2014-07-26 17:50 /flume/messages/FlumeData.1406353810401
-Iw-r--r-- 2 hadoop hadoop 1214 2014-07-26 17:50 /flume/messages/FlumeData.1406353810402
-Tw-r--r-- 2 hadoop hadoop 1190 2014-07-26 17:50 /flume/messages/FlumeData.1406353810403
-1w-r--r-- 2 hadoop hadoop 1276 2014-07-26 17:50 /flume/messages/FlumeData.1406353810404
-rw-r--r-- 2 hadoop hadoop 1387 2014-07-26 17:50 /flume/messages/FlumeData.1406353810405
-Iw-r--r-- 2 hadoop hadoop 1107 2014-07-26 17:50 /flume/messages/FlumeData.1406353810406
-Tw-1--r-- 2 hadoop hadoop 1281 2014-07-26 17:51 /flume/messages/FlumeData.1406353810407

Asyou can see in this example, those 100 messages have been written to HDFS and the data is now available
for further processing in an ETL chain by one of the other processing languages. This has further possibilities. For
instance, you could use Apache Pig native to strip information from these files and employ an Oozie workflow to
organize that processing into an ETL chain.

This simple example uses a simple agent with a single source and sink. You could also organize agents to act
as sources or sinks for later agents in the chain so the feeds can fan in and out. You could build complex agent
processing topologies with many different types, depending upon your needs. Check the Apache Flume website at
flume.apache.org for further configuration examples.

You've now seen how to process relational database data with Sqoop and log-based data with Flume, but what
about streamed data? How is it possible to process an endless stream of data from a system like Twitter? The data
would not stop—it would just keep coming. The answer is that systems like Storm allow processing on data streams.
For instance, by using this tool, you can carry out trend analysis continuously on current data in the stream. The next
section examines some uses of Storm.

Moving Data with Storm

Apache Storm (storm.incubator.apache.org) from the Apache Software Foundation is an Apache incubator
project for processing unbounded data streams in real time. (The term “incubator” means that this is a new Apache
project; it is not yet mature. It needs to follow the Apache process before it can “graduate,” and this might mean that
its release process or documentation is not complete.) The best way to understand the significance of Storm is with a
comparison. On Hadoop, a Map Reduce job will start, process its data set, and exit; however, a topology (a Storm job
architecture) will run forever because its data feed is unlimited.

Consider a feed of events from the website Twitter; they just keep coming. When Storm processes a feed from
such a source, it processes the data it receives in real time. So, at any point, what Storm presents is a window on a
stream of data at the current time. Because of this, it also presents current trends in the data. In terms of Twitter, that
might indicate what many people are talking about right now. But also, because the data set is a stream that never
ends, Storm needs to be manually stopped.

A topology is a Storm job architecture. It is described in terms of spouts, steams, and bolts. Streams are streams of
data created from a sequence of data records called tuples.

Figure 6-4 shows a simple Storm data record, or tuple; a sequence or pipe of these data records forms a stream,
which is shown in Figure 6-5.

176

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Tuple m—_——————— ( 10, 3.5, 4.7, 2.2, 5.5 )

Figure 6-4. A Storm tuple

Figure 6-5. A Storm stream
Data sources in Storm are call spouts, while the joints between the streams are called bolts. The input to a stream

might be a spout or a bolt. Bolts can connect stream outputs to inputs from or to other streams. Figure 6-6 shows a
simple Storm topology. Multiple spouts and bolts have been used to merge stream data.

& 5 e o o o s s s

]

OCCCEOOO0O0O00O0o0

0
& pecconoooooo U0 ooope g

|

0

O
& I:II:I:I:EI:I:H:II:II:IEII:ID|
O
0

&) oooccooooooom O

Figure 6-6. An simple Storm topology

I i ) i o

OCCEE |

Storm has a master process called a Nimbus and slave processes called supervisors. Configuration is managed
via ZooKeeper servers. The Nimbus master handles the monitoring and distribution of code and tasks to the slaves.
Hadoop runs potentially long-running batch jobs that will eventually end. Storm provides real-time trend processing
of endless stream-based data that will run until it is manually stopped.

As an incubator project, Storm has not yet matured to the level of a full Apache project. It demands a little more
work than is required of more mature systems to source and build the components. Storm depends on ZeroMQ
(a messaging system) and JZMQ (Java Bindings for ZeroMQ), so you need to install these before you install Storm
itself. In the next sections, I show how to install ZeroMQ, JXMQ, and Storm. Remember, though, that each of the
following installations should be carried out on each server on which Storm will run. You will also need ZooKeeper,
the installation for which was described in Chapter 2. Once you check that everything is operating without error,
you'll be able to follow my demonstration of the Storm interface and an example of the code samples that Storm
provides on the Storm cluster that I build.

177

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Install ZeroMQ

Install ZeroMQ on the server hclnn as the Linux user hadoop into a working directory that you create for the task called
$HOME/storm/zeromq. Download version 2.1.7 of ZeroMQ from the ZeroMQ website as a zipped tar file, as follows:

[hadoop@hcinn zeromq]$ pwd
/home/hadoop/storm/zeromq

[hadoop@hcinn zeromq]$ wget http://download.zeromq.org/zeromg-2.1.7.tar.gz
[hadoop@hcinn zeromq]$ 1s -1

total 1836

-IW-IW-T--. 1 hadoop hadoop 1877380 May 12 2011 zeromq-2.1.7.tar.gz

Next, unpack the compressed tar file using tar -xzf. The z option accepts a file with a gzipped file extension and
unzips it. The x option extracts the tar contents, and the f option allows the tar file name to be specified:

[hadoop@hcinn zeromq]$ tar -xzf zeromg-2.1.7.tar.gz
This shows the contents of the ZeroMQ release:
[hadoop@hcinn zeromq]$ cd zeromg-2.1.7

[hadoop@hcinn zeromg-2.1.7]$ 1s

acinclude.m4 builds configure.in foreign Makefile.am README zeromq. spec
aclocal.m4 ChangeLog COPYING include Makefile.in src

AUTHORS config COPYING.LESSER INSTALL NEWS tests

autogen.sh configure doc MAINTAINERS perf version.sh

The configure script is used to prepare the release for a build. Note: When I initially used this script, I encountered
this error:

checking for uuid_generate in -luuid... no
configure: error: cannot link with -luuid, install uuid-dev.

The error alerted me that a dependency was missing that ZeroMQ required. To fix this, I installed the following
components as root, using the yum command:

[root@hcinn ~]# yum install libuuid-devel gcc-c++.x86 64 libtool
Then I set up the build configuration as follows:

[hadoop@hcinn zeromq]$ ./configure

..............

config.status: creating builds/redhat/zeromq.spec
config.status: creating src/platform.hpp
config.status: executing depfiles commands
config.status: executing libtool commands

178

www.it-ebooks.info


http://download.zeromq.org/zeromq-2.1.7.tar.gz
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

I have truncated the output I received next; if you get these last few lines and see no errors, then you know that
the command has completed successfully.
Now, you run a make command to build ZeroMQ:

[hadoop@hcinn zeromg-2.1.7]$ make

make[1]: Leaving directory °/home/hadoop/storm/zeromq/zeromq-2.1.7/tests’
make[1]: Entering directory °/home/hadoop/storm/zeromq/zeromq-2.1.7"
make[1]: Nothing to be done for “all-am'.

make[1]: Leaving directory °/home/hadoop/storm/zeromq/zeromq-2.1.7"

Again, the preceding is only a portion of the output to give you the general idea. Having built the release, you are
ready to install it, but you will need to do this as root:

[root@hcinn zeromg-2.1.7]# make install

make[1]: Entering directory °/home/hadoop/storm/zeromq/zeromq-2.1.7"
make[2]: Entering directory °/home/hadoop/storm/zeromq/zeromq-2.1.7"
make[2]: Nothing to be done for “install-exec-am'.
make[2]: Nothing to be done for “install-data-am'.
make[2]: Leaving directory °/home/hadoop/storm/zeromq/zeromq-2.1.7"
make[1]: Leaving directory °/home/hadoop/storm/zeromq/zeromq-2.1.7"

With ZeroMQ, Storm’s messaging component successfully installed, you can move on to installing JZMQ, the Java
binding component.

Install JZMQ

Create a working directory for this installation at SHOME/storm/jzmgq, from which you will carry out the installation.
Use the git command to download a JZMQ release. Use the Linux yum command as root in the first three lines that
follow to install the git command, which enables software downloads:

[hadoop@hcinn jzmg]$ su -
[root@hcinn ~]$ yum install git
[root@hcinn ~]$ exit

[hadoop@hcinn jzmg]$ git clone https://github.com/nathanmarz/jzmq.git

Initialized empty Git repository in /home/hadoop/storm/jzmq/jzmq/.git/
remote: Counting objects: 611, done.

remote: Compressing objects: 100% (257/257), done.

remote: Total 611 (delta 239), reused 611 (delta 239)

Receiving objects: 100% (611/611), 348.62 KiB | 216 KiB/s, done.
Resolving deltas: 100% (239/239), done.

179

www.it-ebooks.info


https://github.com/nathanmarz/jzmq.git
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Move it into the release directory and list the contents:

[hadoop@hcinn jzmq]$ cd  jzmq
[hadoop@hcinn jzmq]$ 1s

AUTHORS Changelog COPYING.LESSER Makefile.am pom.xml src
autogen.sh configure.in debian NEWS README test
builds COPYING jzmq. spec perf README - PERF

Now run the autogen.sh script to prepare this release for a build:

[hadoop@hcinn jzmg]$ ./autogen.sh

configure.in:14: installing “config/install-sh'
configure.in:14: installing “config/missing’
src/Makefile.am: installing “config/depcomp’
Makefile.am: installing ~./INSTALL'

autoreconf: Leaving directory ~.'

(Again, the output is cropped.) You use the configure script to set up build Makefiles:

[hadoop@hcinn jzmq]$ ./configure
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating perf/Makefile
config.status: creating src/config.hpp
config.status: executing depfiles commands
config.status: executing libtool commands

Now, build the release by executing the make command
[hadoop@hcinn jzmq]$ make

.................

echo timestamp > classdist _noinst.stamp
/usr/bin/jar cf zmg-perf.jar *.class
make[2]: Leaving directory °/home/hadoop/storm/jzmq/jzmq/perf"

make[1]: Leaving directory °/home/hadoop/storm/jzmq/jzmq/perf"
make[1]: Entering directory °/home/hadoop/storm/jzmq/jzmq"
make[1]: Nothing to be done for “all-am'.

make[1]: Leaving directory °/home/hadoop/storm/jzmq/jzmq’

Having built the release successfully, you install it as the Linux root account:
[root@hcinn jzmq]# pwd

/home/hadoop/storm/jzmq/jzmq
[root@hcinn jzmq]# make install

180

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

..............................

make[1]: Entering directory °/home/hadoop/storm/jzmq/jzmq’
make[2]: Entering directory °/home/hadoop/storm/jzmq/jzmq’
make[2]: Nothing to be done for “install-exec-am'.
make[2]: Nothing to be done for “install-data-am'.
make[2]: Leaving directory °/home/hadoop/storm/jzmq/jzmq’
make[1]: Leaving directory °/home/hadoop/storm/jzmq/jzmq’

That completes the installations for the Storm dependencies; now it’s time to install Storm itself.

Install Storm

Create a working directory $HOME/storm/storm to carry out this installation. Use wget to download version 0.9.2 of
Storm as a gzipped tar file.

[hadoop@hcinn storm]$ pwd
/home/hadoop/storm/storm

[hadoop@hcinn storm]$ wget http://supergsego.com/apache/incubator/storm/apache-storm-0.9.2-
incubating/apache-storm-0.9.2-incubating.tar.gz

[hadoop@hcinn storm]$ 1s -1
total 19608
-Iw-IW-Y--. 1 hadoop hadoop 20077564 Jun 25 02:49 apache-storm-0.9.2-incubating.tar.gz

Using the tar command, unpack the zipped tar file; x means extract, f specifies the archive file, and z decompresses
the file:

[hadoop@hcinn storm]$ tar -xzf apache-storm-0.9.2-incubating.tar.gz
Using the Linux root account, move the Storm release to the /usr/local directory:
[root@hcinn ~]# cd /home/hadoop/storm/storm

[root@hcinn storm]# mv apache-storm-0.9.2-incubating /usr/local
[root@hcinn storm]# cd /usr/local

Create a symbolic link for the release under /usr/local and name the link “storm.” Using this link to refer to the
release will simplify the environment and make the Storm configuration release version independent:

[root@hcinn locall]# 1n -s apache-storm-0.9.2-incubating storm

[root@hcinn locall# 1s -1d *storm*

drwxrwxr-x. 9 hadoop hadoop 4096 Jul 27 11:28 apache-storm-0.9.2-incubating
lrwxrwxrwx. 1 root  root 29 Jul 27 11:30 storm -> apache-storm-0.9.2-incubating

Now, create a Storm-related environment variable in the $HOME/.bashrc shell file for the Linux hadoop account:

FHHHEEH
# Set up Storm variables

export STORM HOME=/usr/local/storm
export PATH=$PATH:$STORM_HOME/bin

181

www.it-ebooks.info


http://supergsego.com/apache/incubator/storm/apache-storm-0.9.2-incubating/apache-storm-0.9.2-incubating.tar.gz
http://supergsego.com/apache/incubator/storm/apache-storm-0.9.2-incubating/apache-storm-0.9.2-incubating.tar.gz
http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

This action creates a STORM_HOME environment variable that points to the installation. Also, the Storm installation
binary directory has been added to the path so that the Storm executable can be located. Now, you create a Storm
working directory; I place mine under /app/storm:

[root@hcinn appl# cd /app
[root@hcinn appl# mkdir storm
[root@hcinn app]# chown hadoop:hadoop storm

[root@hcinn appl# 1s -1

total 8

drwxr-xr-Xx. 3 hadoop hadoop 4096 Mar 15 15:38 hadoop
drwxr-xr-Xx. 2 hadoop hadoop 4096 Jul 27 11:38 storm

I am using my Linux hadoop user account to run Storm, but you might want to use a dedicated Storm account.
You set up the Storm configuration files under $STORM_HOME;/ conf. Set the following values in the file storm.yaml:

storm.zookeeper.servers:
- "hciraim"
- "hcirim2"
- "hcirim3"

nimbus.host: "hcinn"
nimbus.childopts: "-Xmx1024m -Djava.net.preferIPv4Stack=true"
ui.childopts: "-Xmx768m -Djava.net.preferIPv4Stack=true"
supervisor.childopts: "-Djava.net.preferIPv4Stack=true"
worker.childopts: "-Xmx768m -Djava.net.preferIPv4Stack=true"
storm.local.dir: "/app/storm"
These settings specify three ZooKeeper servers (hclrlml, hclrim2, hclrlm3 ) to be the nodes on which the slave
Storm processes will run. The master (Nimbus) Storm process is set to run on the server hclnn. Also, the Storm local

directory is defined as “ /app/storm.”
Now, it is time to check that ZooKeeper is running before you attempt to run Storm.

Start and Check Zookeeper

As the Linux root account, you start the ZooKeeper server on each slave node; root is used because these servers are
Linux-based services:

service zookeeper-server start
The configuration for the ZooKeeper server is stored under /etc/zookeeper/conf/zoo.cfg, while the logs can be
found under /var/log/zookeeper. Check the logs for errors and ensure that each ZooKeeper server is running.

Now, you use a four-letter acronym RUOK (“Are you OK?”) with each server to check that it is running correctly.
The response that you can expect is IMOK (“I am OK”).

182

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

The ZooKeeper installation and use was already described in Chapter. Here are the successful outputs from the
ZooKeeper checks:

nc hcirimi 2181
ruok
imok

nc hcirim2 2181
ruok
imok

nc hcirim3 2181
ruok
imok

Run Storm

With the prep work finished, you're now ready to run the Storm servers. Start the supervisor processes on the slave
nodes first, and then the Nimbus process on the master server. Also, start the Storm user interface process so that
Storm can be monitored via a web page. On each of the slave nodes (hclrlml, hclrlm2, hclrlm3 ), you run the Storm
supervisor slave process (via the Linux hadoop account) as a background process ("&"). This will free up the terminal
session if it is required:

storm supervisor &

Run the Storm Nimbus master process on the master server hclnn, and run the user interface instance on the
same server:

storm nimbus &
storm ui &

The Storm cluster is now running, but you need to check the logs under /usr/local/storm/logs for errors on each
server. Shown in Figure 6-7, the Storm user interface is available at http://hcinn:8080/.

183

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Storm Ul

Cluster Summary

Version Nimbus uptime Supervisors Used slots Free slots

0.9.2-incubating 50s 3 0 12
Topology summary

Name Id Status Uptime Num workers Num executors
Supervisor summary

Id - Host Uptime

0ad406d5-71ba-423c-aala-e27foc7e1953 heirim1 2m 28s

97¢56095-0518-43e5-bb17-b62de5c454d8 hcirim3 2m 33s

¢3138c07-a8ea-4de(-895c-ebi594af88a6 hcirim2 2m 37s

Nimbus Configuration
Key

devzookeeper.path
drpc.childopts
drpc.invocations.port
drpc.port

drpc.queue.size
drpc.requesttimeoutsecs
drpc.workerthreads
Java.library.path
logviewer.appender.name
logviewer.childopts

logviewer.port

Figure 6-7. The basic Storm user interface

Total slots Executors Tasks
12 0 0
Num tasks

Slots Used slots

4 0

4 0

4 0
- Value

fmpldev-storm-zookeeper
-Xmx768m

3773

3772

128

600

64
fusrflocalflibloptlocalllibusriib
Al

-Xmx128m

8000

The Storm user interface shows the supervisor processes running, the Nimbus master, the topologies that are
running, and a cluster summary. In the Figure 6-7 window, no topology can be seen running at the moment (but I
add one in the next section). The Storm release comes with some example topologies in a storm-starter subdirectory.

Next, I build these examples into a jar file and run one of them on the Storm cluster; this will demonstrate the process

and the available tools.

184

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

An Example of Storm Topology

On the master server, I build the storm-starter topology code under $STORM_HOME/examples/storm-starter.
The build creates a jar file that can be run against the cluster under a directory called “target” at this level:

[hadoop@hcinn ~]$ cd $STORM HOME/examples/storm-starter
[hadoop@hcinn storm-starter]$ 1s -1

total 2888

drwxr-xr-x. 3 hadoop hadoop 4096 May 6 07:13 multilang

-Iw-r--r--. 1 hadoop hadoop 5191 Jun 14 08:35 pom.xml

-IW-I--Y--. 1 hadoop hadoop 4825 May 29 04:24 README.markdown

drwxr-xr-Xx. 4 hadoop hadoop 4096 May 6 07:13 src

-Iw-1--r--. 1 hadoop hadoop 2927299 Jun 14 08:57 storm-starter-topologies-0.9.2-incubating.jar
drwxr-xr-x. 3 hadoop hadoop 4096 May 6 07:13 test

I then use Apache Maven version 3.2.1 to build this package:

[hadoop@hcinn storm-starter]$ mvn package

INFO] Total time: 04:16 min

INFO] Finished at: 2014-07-27T13:57:49+12:00

INFO] Final Memory: 25M/59M
1

— e

I have truncated the build output for purposes of this example, but if you get to this success line, then all is good.
So, I check to see that the built library exists:

[hadoop@hcinn storm-starter]$ 1s -lrt target/storm-starter-*-incubating-jar-with-dependencies.jar

-Iw-IW-I--. 1 hadoop hadoop 2927301 Jul 27 13:57 target/storm-starter-0.9.2-incubating-jar-with-
dependencies. jar

Note If you want to know which topologies are available for use, you can look at the Java source code under
$STORM_HOME/examples/storm-starter/src/jvm/storm/starter. It might be useful to have a look at this code to familiarize
yourself with how it works. Also, check the Apache Storm website (storm. incubator.apache.org) documentation for
topology coding examples.

[hadoop@hcinn storm-starter]$ cd $STORM_HOME/examples/storm-starter/src/jvm/storm/starter
[hadoop@hcinn starter]$ 1s *.java

BasicDRPCTopology.java ReachTopology. java TransactionallWords.java
ExclamationTopology.java RollingTopWords.java WordCountTopology.java
ManualDRPC. java SingleJoinExample. java

PrintSampleStream.java TransactionalGlobalCount.java

185

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

Now that the storm-start jar file is built, I can run a topology from its contents. Remember that this topology will
run forever, processing a simulated data feed created by the example code. So, I run the exclamation topology, which
just randomly adds exclamation marks to the incoming data. (This may seem like a simple process, but the aim here is
to show how to use and run topologies on Storm. Later, you can investigate building and running your own.) The storm
command line tool launches the topology onto the cluster and has four parameters. The first is the jar parameter,
which is followed by the jar file name that was just built. The third and fourth are the class name and topology name:

storm jar target/storm-starter-*-incubating-jar-with-dependencies.jar \
storm.starter.ExclamationTopology \
exclamation-topology

Inow check the status of the topology on the cluster by using the Storm 1ist option. The output that follows
shows that the topology is active, provides timing information, and shows the number of tasks:

[hadoop@hcinn starter]$ storm list

Topology name Status Num_tasks Num_workers Uptime_secs

exclamation-topology ACTIVE 18 3 62

As mentioned, this topology will run forever, providing a series of snapshots of data processed within given data
windows. If I check the Storm user interface (Figure 6-8), I see that there is an active topology called “exclamation-
topology” shown in the Topology Summary section.

Storm Ul

Cluster Summary

Version Nimbus uptime Supervisors Used slots Free slots Total slots Executors Tasks

Topology summary
Name - Id Status Uptime Num workers Num executors Num tasks

exclamation-topology exclamation-topology-1-1406430614

Figure 6-8. Storm user interface with running topology

By clicking on the topology name in the user interface, I can drill down into the topology to get more information.
The detailed topology view in Figure 6-9 gives information about the spouts and bolts within the topology, for
example. Remember that spouts provide data sources while bolts process the streams of data. My example includes a
single spout data source, called “word,” whose data is being passed to two bolts, called “exclaim1” and “exclaim2.” The
detailed topology view also lists the volume of data processed and the number of tasks involved.

186

www.it-ebooks.info


http://www.it-ebooks.info/

Storm Ul

Topology summary

Name Id Status  Uptime Num workers
exclamation-topology  exclamation-topology-1-1406430614 ACTIVE  2m 45s 18
Topology actions
Activate  Deactivate | Rebalance | Kill
Topology stats
Window - Emitted Transferred Complete latency (ms) Acked Failed
10m 0s 45000 30020 0.000 29940 0
3h0m0s 45000 30020 0.000 29940 0
1d0h Om 0s 45000 30020 0.000 29940 0
Alltime 45000 30020 0.000 29940 0
Spouts (All time)
Id + Executors Tasks Emitted Transferred Complete latency (ms) Acked
word 10 10 15000 15000 0.000 0

Bolts (All time)

Id ~ Executors Tasks Emitted Transferred Capacity (last10m) Execute latency (ms)
exclaim1 3 3 15020 15020 0.067 0.905
exclaim2 2 2 14980 0O 0.018 0.229

Topology Visualization

Show Visualization

Figure 6-9. Detailed view of Storm user interface topology

CHAPTER 6 = MOVING DATA

Num executors Num tasks

3 18

Failed Lasterror

0

Executed Process latency (ms) Acked Failed
14980 0.828 14980 0
14960 0.184 14960 0

I also can obtain a visual view of my example’s topology structure by clicking the Show Visualization button.
Figure 6-10 provides an enlarged image of the resulting topology. As you can see, the spout passes data to the bolt

exclaiml, which then passes it on to exclaim2.

www.it-ebooks.info

187


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

exclaim2
0.13ms

defaulty36740: 50%

default- 35760: S0%

exclaimi
0.53 ms

Figure 6-10. Storm user interface showing topology structure

The green circles in Figure 6-10 are bolts and the blue circle is a spout. The gray arrows are data flows, and the
timing information is shown in each object. This is a simple topology. To do anything meaningful, you would build
a larger structure. If you refresh the user interface (press F5), you will see the statistics update. You will always see a
current window of data showing the current data trend.

The data stream that this topology processes is boundless, meaning that if you want to stop it, you have to manually
kill it. You can do this by using the Storm kill command with the topology name, as I have done for my example:

[hadoop@hcinn starter]$ storm kill exclamation-topology

2530 [main] INFO backtype.storm.thrift - Connecting to Nimbus at hcinn:6627

2689 [main] INFO backtype.storm.command.kill-topology - Killed topology: exclamation-topology
Now, when I list the running Storm topologies, I can see that there are none running:

[hadoop@hcinn starter]$ storm list

3326 [main] INFO backtype.storm.thrift - Connecting to Nimbus at hcinn:6627
No topologies running.

To shut down Storm, you first stop the supervisor processes on each slave node. To find out which processes are
running, you use the jps command to see a list of processes and their process numbers. In my example, I can see
that the supervisor process on the host hclrim2 has a process ID of 17617. I can use this number with the Linux kill
command to kill the process, as follows:

[hadoop@hcirim2 logs]$ jps

17617 supervisor
18134 Jps

188

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 = MOVING DATA

[hadoop@hcirim2 logs]$ kill -9 17617
[hadoop@hcirim2 logs]$
[1]+ Killed storm supervisor

Next, I kill the Nimbus and the user interface processes on the master server hclnn. Again, I use the jps
command to show the running processes. The Storm user interface shows the name “Core” instead of a meaningful
name. Remember, though, that Storm is an incubator project and so problems like this will be resolved in future
releases. However, when I kill the associated process numbers by using the Linux kill command, I can see that the
Nimbus and UI have stopped:

[hadoop@hcinn starter]$ jps
24718 core

27661 Jps

24667 nimbus

[hadoop@hcinn starter]$ kill -9 24718 24667

[hadoop@hcinn starter]$

[1]- Killed storm nimbus (wd: /usr/local/storm/conf)

(wd now: /usr/local/storm/examples/storm-starter/src/jvm/storm/starter)
[2]+ Killed storm ui (wd: /usr/local/storm/conf)

(wd now: /usr/local/storm/examples/storm-starter/src/jvm/storm/starter)

If this very short introduction to Storm leaves you curious for more information, take a look at the other example
topologies and examine the code. Try running some of these other topologies and see what they do. You can read the
Apache Storm website, but be aware that because Storm is an incubator project, the documentation is a little thin.

Summary

This chapter has highlighted some, but not all, of the many tools and alternatives for moving data. For instance, the
Sqoop2 tool was just recently released. Remember that although most of the examples in this chapter have processed
data in to Hadoop, these same tools can be used to send data out of Hadoop as well. Also, each of the tools examined,
especially Sqoop and Flume, can process multiple types of data. You can also embed your Sqoop data-processing
scripts into Oozie workflows for management and scheduling. This chapter has examined only a small portion of the
functionality that is offered by Sqoop, Flume, and Storm for processing data. You could also examine a tool called
Apache Chukwa (chukwa.apache.org), which has features similar to Flume. Note also that Chapter 10 examines tools
like Pentaho and Talend, with which you can move data using visual building blocks.

The next chapter surveys monitoring systems like Hue to provide a visual view of Hadoop cluster processing. Hue
provides a single, integrated web-based interface by which scripting and monitoring functionality can be accessed.
Examples here and in earlier chapters have used Sqoop, Hive, Pig, and Oozie; next, you'll be accessing these tools
within Hue.

189

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7

Monitoring Data

No matter how carefully you set up your big data system, you need to continually monitor HDFS, as well as the
Hadoop jobs and workflows running on it, to ensure the system is running as efficiently as possible. This chapter
examines the Hadoop and third-party tools available for monitoring a big data system, including tools for monitoring
the system-level resources on each node in the cluster and determining how processing is spread across the cluster.

For example, user interface systems such as Hue ease both the use and the monitoring of Hadoop by centralizing
access to Hadoop-based functionality via a single well-designed interface. Systems like Ganglia and Nagios provide
rich open-source, resource-level monitoring and alerting. In the sections that follow, I will provide working examples
for sourcing these systems, installing them, and putting them into use. Because I will use the Cloudera CDH4 stack,
this chapter’s examples will be based upon Hadoop V2.

In the first section I examine the Hadoop Hue browser, sourcing the software, installing and configuring it, and
then I present the user interface in operation.

The Hue Browser

An Apache Software Foundation top-level project released under an Apache 2 license, the Hue browser offers a web-
based user interface on top of Hadoop, including user interfaces for tools like Oozie, Pig, Impala, HBase, and Hive.

It also has a file browser for HDFS and interactive scripting for Pig, Sqoop, Hive, and HBase. There is also a job
browser, a job designer, and an Oozie editor and dashboard.

The Hue browser provides a single location for accessing multiple Hadoop-based tools. For instance, suppose
you were developing an ETL (extract, transform, and load) chain that might pull data from a remote relational
database, run a Pig script on the data in HDFS, and then move the data to Hive. You could develop, test, and run the
ETL components from within Hue. You could even run an Oozie job that would group and schedule the linked ETL
tasks from Hue. For the simple convenience alone, that must be worth considering.

As I use the Cloudera stack version 4, I show how to install and use Hue 2.5.0, the version that comes with
Cloudera CDH4. Later versions are available, but this installation should be a good introduction. Along the way, I also
point out some solutions to common errors that you might encounter while installing and working with Hue. For the
latest news and details on Hue, visit its official website at gethue. com.

Installing Hue

To install Hue, you need to ensure that the components it will integrate with are properly installed. For this example,
that means I have to ensure that the connections to HDFS, YARN, HBase, Oozie, Sqoop, and Sqoop2 are working
correctly before I move on to use Hue itself. It’s advised that you follow each section completely before moving on to
the Hue interface, thereby avoiding unnecessary errors.

191

www.it-ebooks.info



http://gethue.com/
http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

By example, I install Hue on the CentOS 6 server hclnn, using the Linux-based yum command as the root user, as
follows:

[root@hcinn ~]# yum install hue
[root@hcinn ~]# yum install hue-server

Next, I add some configuration items to Hadoop for Hue. Specifically, under /etc/hadoop/conf, I add the
following entry to the hdfs-site.xml file at the bottom of the configuration section:

<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>

</property>

This enables a webhdfs Rest API on the name node and data nodes. I repeat this addition on all Hadoop nodes in
my cluster, then add the following changes to the Hadoop core-site.xml file in the same location:

<!-- Hue WebHDFS proxy user setting -->

<property>
<name>hadoop.proxyuser.hue.hosts</name>
<value>*</value>

</property>

<property>
<name>hadoop.proxyuser.hue.groups</name>
<value>hadoop</value>

</property>

<property>
<name>hadoop.proxyuser.hcat.hosts</name>
<value>*</value>

</property>

<property>
<name>hadoop.proxyuser.hcat.groups</name>
<value>hadoop</value>

</property>

<!-- set up hdfs trash collection advised by hue -->
<property>
<name>fs.trash.interval</name>
<value>10060</value>
</property>

By defining Hue’s Hadoop proxy user settings, these first four entries define the host and group access for hue and
hcat. The final entry specifies the Hue file system trash interval.

192

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

After making these changes to Hadoop, I restart the Hadoop servers to pick up the changes. Next, I set up the Hue
configuration file under /etc/hue/conf called hue.ini. To begin, I set the secret key to a suitable alpha numeric value
for session hashing. This secret key string should be between 30 and 60 characters long, and it should be random. It is
used for Internet browser cookie session security:

secret_key=kdntwdfjgmxnsprngpwekspfnsmdpwtyiubkdn
I then define the web host and port with the following:

http_host=hcinn
http_port=8888

I set my web services URL, which I will use later to access Hue:
webhdfs_url=http://hcinn:50070/webhdfs/v1/
Ileave the Hadoop paths as the default values; they are correct for Cloudera Hadoop CDH4:

hadoop_hdfs_home=/usr/1ib/hadoop-hdfs
hadoop_bin=/usr/bin/hadoop
hadoop_conf_dir=/etc/hadoop/conf

I now define my YARN configuration as follows:

resourcemanager_host=hcinn
resourcemanager_port=8032

submit_to=True

resourcemanager_api url=http://localhost:8088
proxy_api url=http://localhost:8088

history server api url=http://localhost:19888
node_manager_api_url=http://localhost:8042

My liboozie section to enable the Hue Oozie browser is as follows. (If you remember, this is the Oozie URL that
was used to connect to the Oozie web browser in Chapter 5.) I connect Hue to the Oozie functionality:

oozie_url=http://localhost:11000/00zie

Sqoop2 Server Setup for Hue

Next, I install and set up the Sqoop2 server. Sqoop2 is a server-based version of Sqoop that, at the time of this writing,
does not yet have a full complement of functionals. For instance, right now Sqoop2 cannot transfer data from a
relational database to the Hadoop HBase database. Given that Hue integrates with Sqoop2, I install it so that I can
demonstrate its features via Hue.

It should also be noted at this point that Sqoop2 and Sqoop should not be installed on the same server. I have
installed Sqoop on hclnn, while Sqoop2 is installed on hclrlm1. Sqoop?2 is installed as the Linux root user, as follows:

[root@hcirimi ~]# yum install sqoop2-server
[root@hciriml ~]# yum install sqoop2-client

193

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

The mysql driver library mysql-connector-java-5.1.22-bin.jar in the directory /usr/lib/sqoop/lib that is installed
for Sqoop on hclnn is copied to the Sqoop2 server hclrlml, as follows:

[root@hcinn 1ib]# pwd

/usr/1lib/sqoop/lib

[root@hcinn 1ib]# 1s -1 mysql-connector-java-5.1.22-bin.jar

-Iw-r--r--. 1 root root 832960 Jul 17 18:50 mysql-connector-java-5.1.22-bin.jar

It is copied via ftp to the following directory on hclrlm1:
/usr/1ib/sqoop2/webapps/sqoop/WEB-INF/1ib

This MySQL driver gives Sqoop2 the ability to access the MySQL databases from the server hclrlml. Having
made these changes, I restart the Sqoop2 server using the Linux server restart command as root:

[root@hciriml ~]# service sqoop2-server restart

I then update the section in the Hue configuration file hue.ini for Sqoop2 to reflect these changes. The port
number comes from the value of the SQO0P_HTTP_PORT variable in the setenv.sh under /etc/sqoop2/conf on the
sqoop2 install server hclrlm1:

# Sqoop server URL
server_url=http://hcirim1:12000/sqoop

HBase Cluster Setup for Hue

My section for HBase in the hue.ini file has the following entry (which will be used when the HBase cluster is set up).
I determined the HBase port number by looking for the HBase Thrift server port number in the HBase logs. I looked
in the directory /var/log/hbase and searched the log files there for the term “TBoundedThreadPoolServer,” and the
related log message, then provide the port number. The term “Cluster” represents the fact that this is a clustered
version of HBase running on many servers:

hbase clusters=(Cluster|hcirim1:9090)

There are some new HBase servers to introduce in this section, so before I start installing them, let’s review their
purposes. The HBase Region server manages the HBase regions comprising the storages files and blocks. The HBase
Thrift server provides a thrift API for HBase; it means that HBase clients can be developed in multiple languages and can
be used to access HBase. The Hbase Rest server uses an HTTP-based method to access HBase, and access is achieved
and data passed via a web address. The HBase Master process is the main server that manages the other servers.

Before you can use the HBase browser in Hue, you must set up HBase to run as a cluster because Hue attempts
to connect to the HBase Thrift server. For this example, I will install and run HBase on the three nodes where my
ZooKeeper servers are running (hclrlml, hclrlm2, hclrlm3 ). HBase needs a master node in the cluster, so the first
step for me is to install the HBase Master server (hclrlml, for the example):

yum install hbase-master

Next, I install the HBase Thrift server on the HBase master node (hclrlm1) and I install the Rest and Region
servers on all HBase cluster nodes:

yum install hbase-thrift
yum install hbase-rest
yum install hbase-regionserver

194

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Next, I modify the HBase configuration files on all HBase cluster nodes under /etc/hbase/conf. In the
regionservers file used in the Linux Cat command, I insert the name of the HBase master node:

[root@hcirimi conf]# cat regionservers
hcirimi

In the HBase environment file hbase-env.sh, I make sure that logging is set up and I ensure that HBase is
configured to not manage ZooKeeper. This is because the ZooKeeper servers are already running and are being used
by multiple Hadoop components. HBase can use them, but does not need to manage them, thereby avoiding any
impact on their availability for other components:

export HBASE_LOG DIR=/var/log/hbase
export HBASE_MANAGES ZK=false

I create a link in the HBase configuration directory to the Hadoop core configuration file so that HBase has access
to the Hadoop configuration:

[root@hciriml conf]# 1n -s /etc/hadoop/conf/core-site.xml  core-site.xml

[root@hcirimi conf]# 1s -1

total 28

lrwxrwxrwx. 1 root root 30 Aug 9 12:07 core-site.xml -> /etc/hadoop/conf/core-site.xml

I next set up the hbase-site.xml file by adding the following property entries between the file’s configuration tags:

<property>
<name>hbase.zookeeper.quorum</name>
<value>hcirimi,hcirim2,hcirim3</value>
<description>
Comma separated list of Zookeeper servers (match to what is specified
in zoo.cfg but without portnumbers)
</description>
</property>

<property>
<name>hbase.cluster.distributed</name>
<value>true</value>

</property>

<property>
<name>hbase.master.wait.on.regionservers.mintostart</name>
<value>1</value>

</property>

<property>
<name>hbase.rootdir</name>
<value>hdfs://hcinn:8020/hbase</value>
</property>

<property>
<name>hbase.rest.port</name>

<value>60050</value>
</property>

195

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

<property>
<name>hbase.master</name>
<value>hcirimi:60000</value>
</property>

The hbase.zookeeper. quorum parameter sets the ZooKeeper quorum servers to be the three listed machines on
which ZooKeeper is installed. Setting the hbase.cluster.distributed parameter to True tells HBase that it is
set up as a cluster. Finally, the HBase parameter hbase.rootdir tells HBase where to access HDFS, while the HBase
hbase.master parameter tells HBase which node is the master node.

With all the pieces in place, I can start the HBase servers. To do so, I use the following script as the Linux root user
on each of the HBase cluster nodes:

for x in “cd /etc/init.d ; 1ls hbase-* ; do service $x start ; done

This example installation was intended as a guide for completing your own installation. If all has gone well, you
have installed the components that Hue depends on and you are ready to start using Hue.

Starting Hue

Once the Hue service is started, the Hue error logs can be checked for errors. Some possible errors are described
in the section that follows. Also, you can try to access the Hue interface described in the section “Running Hue.”
Any configuration or operational errors will quickly become apparent. If you encounter a problem, recheck your
configuration steps for a mistake.
You now start the Hue service as the Linux root user using the service command. The Hue service is called “hue”:

[root@hcinn init.d]# service hue start
Starting hue: [ OK ]

Once the Hue service is running, you can find the Hue logs under the Linux file system directory /var/log/hue.
Look through the logs for any error messages; if you find any, then check the section on errors. If you don’t find a
solution there, check the Hue website at gethue. com:

[hadoop@hcinn ~]$ cd /var/log/hue
[hadoop@hcinn huel$ 1s -1rt

total 80

-Iw-r--r--. 1 hue hue 0 Jul 17 18:57 access.log
-Iw-r--r--. 1 hue hue 0 Jul 17 18:57 shell output.log
-TW-T--1--. 1 hue hue 0 Jul 17 18:57 shell input.log
-IW-r--r--. 1 hue hue 15943 Jul 17 19:00 syncdb.log
-Iw-r--r--. 1 hue hue 0 Jul 17 19:38 supervisor.out
-Iw-r--r--. 1 hue hue 0 Jul 17 19:38 kt_renewer.out
-IW-Y--Y--. 1 hue hue 526 Jul 17 19:41 error.log
-Iw-r--r--. 1 hue hue 310 Jul 19 10:26 kt_renewer.log
-IW-T--r--. 1 hue hue 1784 Jul 19 10:26 beeswax_server.log
-IW-I--r--. 1 hue hue 2753 Jul 19 10:26 supervisor.log
-Iw-r--r--. 1 hue hue 278 Jul 19 10:26 runcpserver.out
-Iw-r--r--. 1 hue hue 1254 Jul 19 10:26 runcpserver.log
-IW-r--r--. 1 hue hue 40208 Jul 19 10:26 beeswax_server.out
196

www.it-ebooks.info


http://gethue.com/
http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Potential Errors

Here are some of the errors that can occur while you are configuring and installing Hue. The details of the errors are
provided along with their causes and solutions. You may encounter errors that are not mentioned here; if so, consult
the Hue website at gethue. com.

For instance, this error occurred in the beeswax_server.out log file:

Booting Derby version The Apache Software Foundation - Apache Derby - 10.4.2.0 - (689064): instance
a816c00e-0147-4341-f063-0000008eef18
on database directory /var/lib/hive/metastore/metastore_db in READ ONLY mode

Database Class Loader started - derby.database.classpath=""

14/07/17 00:38:21 ERROR Datastore.Schema: Failed initialising database.

Cannot get a connection, pool error Could not create a validated object, cause: A read-only user or
a user in a read-only database is not permitted to disable read-only mode on a connection.

The Hue user account needs to be able to access the Hive Metastore server directory /var/lib/hive/metastore/
metastore_db, but this error message indicates that it currently lacks the correct permissions. To rectify this, add a Hue
Linux user account (hue2) that you can use for Hue access to the Linux hadoop group.

If you see this error:

could not create home directory

it implies that there is a configuration error in the file core-site.xml. Check your proxy user settings that were set up
earlier in that file.
If you see an error like the secret key issue shown here:

Secret key should be configured as a random string

it means that the secret key has not been defined in the hue.ini file. See the secret key example configuration
previously used in the “Installing Hue” section.
When attempting to use the Sqoop functionality in Hue, you may see an error like this one:

shell.shelltypes Command '/usr/bin/sqoop2' for entry 'sqoop2' in Shell app configuration
cannot be found on the path.

It means that the Sqoop2 server that Hue depends on has not been installed. See the earlier section “Sqoop2
Server Setup for Hue.”

If a Linux-based account has an associated account in the Hue browser but does not have a home directory, any
of these errors may occur:

Failed to access filesystem root

hadoop.mapred_clusters.default Failed to contact JobTracker plugin at localhost:9290.
Failed to determine superuser of WebHdfs at

Failed to obtain user group information:

User: hue is not allowed to impersonate hue (error 401)

Just as your Linux hadoop account must have a home directory under /home/hadoop, and an associated .bashrc
file, so too must your Hue user account. The account that I use in these examples is Hue2; it has a home directory on
Linux (/home/hue2 ) and a home directory in HDFS (/user/hue2). It also has the same .bashrc contents as the Linux
hadoop user to set up its environment and a Linux user ID number greater than 500. If your account’s user ID is not
greater than 500, you may encounter an error when trying to create scripts.

197

www.it-ebooks.info


http://gethue.com/
http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

To test webhdfs Hue access, use the Hue LISTSTATUS function. You can test access to the webhdfs Rest interface
using a general URL of the form:

curl -i http://<server>:<port>/webhdfs/vi/tmp?op=LISTSTATUS

This is where the server is the Name Node server name and the port is the port number of the name node. The
command is passed using the curl command, which retrieves information from the URL. The -I option causes
header information to be included in the output. So the full command is:

[hadoop@hcinn ~]$ curl -i http://hcinn:50070/webhdfs/v1/tmp?op=LISTSTATUS
And the trimmed output looks like this:

HTTP/1.1 200 OK

Cache-Control: no-cache

Expires: Tue, 05 Aug 2014 07:03:42 GMT
Date: Tue, 05 Aug 2014 07:03:42 GMT
Pragma: no-cache

Expires: Tue, 05 Aug 2014 07:03:42 GMT
Date: Tue, 05 Aug 2014 07:03:42 GMT
Pragma: no-cache

Content-Type: application/json
Content-Length: 1167

Server: Jetty(6.1.26.cloudera.2)

{"FileStatuses":{"FileStatus":[
{"accessTime":0, "blockSize":0,"group": "hadoop","length":0,"modificationTime":1406363236301, "owner":"
hadoop", "pathSuffix":"flume","permission”:"755","replication":0, "type":"DIRECTORY"},

.................................

The output is the same as an HDFS 1s command on the /tmp directory. If you get this type of output, then you
know that your Hue webhdfs Rest interface is working and so Hue should work for you.

Running Hue

It should be possible to connect to the Hue web-based user interface at this point. Any log-based errors encountered
in your installation should have been resolved. Given that, in my example, Hue was installed on the Centos Linux
server hclnn, I can access the Hue web interface via the URL, http://hcinn:8888/. For your installation, you simply
substitute your own server name.

On your first login, you will be prompted to create an account and guided through further steps by the Quick Start
wizard. The wizard displays any configuration problems it encounters, as shown in Figure 7-1.

198

www.it-ebooks.info


http://hc1nn:50070/webhdfs/v1/tmp?op=LISTSTATUS
http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

4 Could not create home directory.

Quick Start Wizard - Hue 2.5.0

Step 1. €€ Check Configuraton Step 2 @ Exarpies Sten 3 @ Users  Siep & WGo
=  Check your current configuration
Configuration fles located i Jezc/iue

Padocp. hafs_clostert defmldt wihafs ol Corrent value: betp:/AO: S0 wehafy, vl

Faded o access fesystem ract
Faded 1o contact JobTracker phign ot b<ahost 3250

Carreat vaiue.
Secret key should be configured 48 a random siring,

o avaiabie impalad to send queries b

Command Tusebinaqoopd for eniry "890062" in Shel app configuration canaot be found on the path

&  HDFS Trash Configuration

‘¥iou can activabe rash colection by setting b trash intervalin core-sie o

Figure 7-1. The Hue Quick Start wizard

Most of the problems listed in Figure 7-1 relate to missing components (such as Impala not having been
installed) or a home directory not existing for the login account on Linux. Make sure that the home directories exist
and that there is a suitable environment shell file, such as .bashrc, set up for the account. Also, as stated earlier, make
sure that the account has a home directory on HDFS under /user. Finally, make sure that the Linux user ID number of
the Linux account is greater than 500 to avoid scripting errors in Hue.

If there are no errors, you will see the Home page for Hue (Figure 7-2), which is divided into three sections of
functions: those for Query, Hadoop, and Workflow. The same functions are displayed with icons across the top of the
Hue screen. In Figure 7-3, for example, the Home icon is highlighted.

Welcome Home.

Hue is 8 Web Ul for Apache Hadoop. Select an application below.

= Query 8 Hadoop B Workflow
» Hive Files Dashboard
> Impala Jobs Editor
» Plg » Tables
Search Sqoop 2
» HBase » Designs
- Shell

Figure 7-2. The Hue home page

199

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

Figure 7-3. The Hue icons, with Home highlighted

Next to the Home icon in Figure 7-3 you'll see the Bee icon, which provides access to the Hive user interface,
shown in Figure 7-4. This page allows you to load and save Hive queries in Hive QL. It enables you to create queries
and choose which database to run them against. There is also an Explain option, which is similar to an Explain plan in
arelational database system, helping to describe how your query will run.

Query Editor My Queries  Saved Queries  History  Setlings

- Query Editor

Example: SELECT * FROM tablename, or press CIRL + space

Add
Agd

[#]1Enable Parameterization
[F1Email me on completion

(7]

Save as.. Explain =~ orcreatea  New query

Figure 7-4. The user interface for Hue Hive

The next icon is for access to Impala. (You'll learn about using Impala via Hue in Chapter 9.) To the right of the
Impala icon is the Pig icon. Click it to see the Pig interface shown in Figure 7-5. In this color-coded Pig file editor you
can load and save Pig scripts, as well as examine logs and run Pig scripts. In addition, it includes a dashboard feature

to examine your running jobs.

200
www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Editor  Scripts  Dashboard

= Propenies
B Save

P Submit
B Logs

& Copy
& Delete
© Script

(]

Figure 7-5. The Hue Pig editor

2 =-- get the raw data

manufacturer.pig

om the csv files

E age(’,") AS
rarray, size:float, cylinders:int,
cond_hwyll00:float, cons_citympgs:int,

igStT
y, model:chararray, clas,
¥, cons_cityllO0:floas,

mlisc = FOREACH rlines GENERATE manufacturer;

2 dlist = DISTINCT mlist ;

16 S5TORE mlist INTO '/user/hadoop/oozie_wf/fuel/entity/manufacturer/' ;

The next icon opens the HDSF browser (Figure 7-6). Here, you can upload and download files from the browser,
as well as rename, move, and delete those files. You can also change file permissions and navigate the file system via
clickable directory links. Clicking on a file link allows you to edit that file’s contents, as illustrated in Figure 7-7.

File Browser

# Home flume | messages

Type Name

FlumeData. 1406353810397
FlumeData. 1406353810398
FlumeData. 1406353810399
FlumeData. 1406353810400
FlumeData. 1406353810401
FlumeData, 1406353810402
FlumeData.1406353810403
FlumeData.1406353810404

Dornr

FlumeData.1406353810405
FlumeData.1406353810406
FlumeData.1406353810407

0DDDODDODDPODDODOEO

A Rename 2 Move ) Copy E= Change permissions & Download x Move to trash = @ Upload ~ © Mew ~

B View trash
Size User Group Permissions Date
hadoop hadoop drwour-r-x July 25, 2014 10:51 PM
hadoop hadoop drworr-xr-x July 25, 2014 10:50 PM
13KB hadoop hadoop O July 25, 2014 10:50 PM
1.0KB hadoop hadoop W July 25, 2014 10:50 PM
926 bytes hadoop hadoop TWT-T=- July 25, 2014 10:50 PM

15KB hadoop hadoop -

July 25, 2014 10:50 PM

Figure 7-6. The Hue HDFS browser

13KB hadoop hadoop -TW- July 25, 2014 10:50 PM
1.2KB hadoop hadoop TV July 25, 2014 10.50 PM
12KB hadoop hadoop i July 25, 2014 10:50 PM
12KB hadoop hadoop e July 25, 2014 10:50 PM
14 KB hadoop hadoop W~ July 25, 2014 10:50 PM
11KB hadoop hadoop “TWT=F= July 25, 2014 10:50 PM
13KB hadoop hadoop “PW-T=-F== July 25, 2014 10:51 PM
201

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

# Home user

fiew as binary
# Edit file

& Download

B View file location
< Refresh

INFO
ast modified
Aug. 1, 2014 7:27 p.m.
User
hadoop
Group
hadoop
Size
453 KB
Mode
100644

oozie_wf/ rawdata/ MY2000 Fuel Consumption Ratings.csv

Next Block = Last Block Viewing Bytes: 1 -| 4096 of 46421 (4096 B block size)

MODEL ,MANUFACTURER ,MODEL , VEHICLE CLASS,ENGINE SIZE,CYLINDERS, TRANSMISSION,FUEL,FUEL CONSUMPTION,,,,FUEL,CO2 EMISSIONS
YEAR, ,# = high output engine,,(L),,,TYPE,CITY (L/18@® km),HWY (L/10@ km),CITY (mpg),HWY (mpg),(L/year),(g/km)
2000, ACURA, 1. 6EL, COMPACT,1.6,4,44,X,9.2,6.7,31,42,1620, 186

2000, ACURA, 1. 6EL, COMPACT,1.6,4,M5,X,8.5,6.5,33,43,1520,175

2009, ACURA, 3. 2TL, MID-SIZE,3.2,6,A55,2,12.2,7.4,23,36,2000,230

2000, ACURA, 3. SRL,MID-SIZE,3.5,6,A4,2,13.4,9.2,21, 31,2300, 264

2000, ACURA, INTEGRA, SUBCOMPACT, 1.8,4,A4,%,10,7,28,40,1720, 198

2069, ACURA, INTEGRA, SUBCOMPACT, 1.8,4,M5,X,9.3,6.8, 38,42, 1640, 189

2869, ACURA , INTEGRA GSR/TYPE R,SUBCOMPACT,1.8,4,M5,1,9.4,7,30,48,1668,191

2080, ACURA ,NSX , SUBCOMPACT , 3,6,A54,1,13.6,9.2,21,31,2320,267

2989, ACURA ,N5X , SUBCOMPACT ,3.2,6,M6,2,13.8,9.1,20,31,12349,269

2000, AUDI, A4, COMPACT, 1.8,4,A5,2,11.4,7.2,25,39,1900, 218

2000, AUDI , A4, COMPACT,1.8,4,M5,2,9.7,6.8,29,42,1680,193

2000, AUDI, A4 , COMPACT ,2.8,6,45,2,13,8.2,22, 34,2160, 248

2000, AUDI , A4, COMPACT ,2.8,6,M5,2,11.7,7.5, 24, 38,1960, 225

2000,AUDI,A4 QUATTRO,COMPACT,1.8,4,A5,2,12.1,7.7,23,37,2020,232

2000, AUDI,A4 QUATTRO,COMPACT,1.8,4,M5,Z,10.7,7.5,26,38,1860,214

2009, AUDI, A4 QUATTRO,COMPACT,2.8,6,A5,Z,13.3,8.5,21,33,2220, 255

2000, AUDI , A4 QUATTRD,COMPACT,2.8,6,M5,7,12.7,8.7,22,32,2180, 251

2@e@,AUDI , AS,MID-SIZE,2.8,6,A5,7,13.4,8.6,21,33,2248,258

2000,AUDI A6 AVANT QUATTRO,STATION WAGOM - MID-SIZE,2.8,6,A5,1,13.8,9.1,20,31,2340,269
2009,AUDI A6 QUATTRO,MID-5IZE,2.7,6,A5,Z,13.6,9,21,31,2380,264

20809 ,AUDI,A6 QUATTRO,MID-5I1ZE,2.7,6,M6,1,13.6€,9.1,21,31,2320,267

2000 ,AUDI A6 QUATTRO,MID-SIZE,2.8,6,A5,7,13.8,9.1,20,31,2348,269

2000 ,AUDI A6 QUATTRO,MID-5IZE,2.8,6,M5,2,13,9.2,22,31,2260,260

2000,AUDL A6 QUATTRO,MID-51ZE,4.2,8,A5,2,13.9,9.1,20,31,2340,269

2009,AUDI ,AB QUATTRO,MID-SIZE,4.2,8,45,2,13.9,9.1,20,31,2340,269

2800,AUDI, 54 QUATTRO,COMPACT,2.7,6,A5,Z,13.6,9,21,31,2300,264

2000,AUDI, 54 QUATTRO,COMPACT,2.7,6,M6,Z,13.6,9.1,21,31,2320,267

2009,AUDI, TT COUPE QUATTRO,MINICOMPACT,1.8,4,M5,Z,11.6,7.6,24,37,1968,225

2009,AUDI, TT COUPE QUATTRO (SUPERCHARGED),MINICOMPACT,1.8,4,M6,Z,11.6,7.7,24,37,196@,225
2009,AUDI, TT ROADSTER, TWO-SEATER,1.8,4,M5,Z,10.9,7.3,26,39,1860,214

Figure 7-7. The Hue HDFS file editor

202

You can view file contents block by block, or you can edit the files by clicking the Edit option on the left. The
Actions list at the left also contains options to view the contents as binary and to download the file.

Following the HDFS Browser icon in the bar is the icon for the Metastore manager (Figure 7-8), which enables
you to navigate among your databases. Here, you can manage the databases and tables, as well as import data into
those tables. You can also sample table data to check on the content.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Table feed1

aa Databases staging / feed1
ACTIONS Columns = Sample
Import Data
Browse Data 4 Name Type Comment
Drop Table code string
View File Location cost double
description string
id int
name string
value float

Figure 7-8. The Hue Metastore manager

To the right once more is the icon for the Sqoop user interface (Figure 7-9), with which you can specify and run
Sqoop import and export jobs from Hue.

203

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

© New job

Sqoop Jobs / New Job

SICIORMY M Step 2: From  Step 3: To

Connection

Name Untitled Job

Job type
X 2
Import Export

Connection mysqljdbc B (& Edit % Delete

<4 Add a new connection

Figure 7-9. The Hue Sqoop user interface

An import job is specified in terms of its type, followed by where the data is coming from; in the case of Figure 7-9,
it’s mysql), as well as where the data is going to (HDFS, as shown in Figure 7-10).

204

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Sqoop Jobs / & IMPORT mysq|l import © New job
ACTIONS Step 1: From
» Run
& Copy
X Delete HDFS

SUBMISSIONS

& Output directory Storage type HDFS

]

LAST STATUS

Output format TEXT_FILE

]

Output directory | /user/hadoop/rawdata
Extractors

Loaders

Figure 7-10. The Hue Sqoop user interface: output to HDFS

The next icon in the top bar, the Job Designer, allows you to create job actions of many different types, including
but not limited to Map Reduce, Pig, Hive, and Sqoop. You can design a job by adding properties and parameters and
then submit that job from the same interface. For example, Figure 7-11 shows a Sqoop action.

205

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

Job Designs

P Submit #Eat 7 Copy X Move totrash  ~ # View desgns B View trash © New action ~

Job Design (sqoop type)

Description mpert from mysgl

#* advanced
You can parameterize the values, using Smvar OF ${mvar} . VWhen the design is submitted, you will be prompted for the actual value of myvar
Command | sqoop -
~connect -
dbcmysqtihcinnisgoop
Prepare  Type Value
delete | /userhadoopirawdats " Delate
Add delete Add mikd
Params Add arg
Job progertes Add property
Fies Add file
Archives Add archive

Figure 7-11. The Hue job designer: a Sqoop action

Continuing to the right in the top bar, the Oozie icon opens the Oozie workflow interface, which I feel is an
improvement on the default Oozie user interface. From here, you can filter the job list by job type and drill down into
workflows to see further details (Figure 7-12).

206

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Dashboard  Workflows  Coordinalors  Bundies
Workflows  Coordnators  Bundies  Oozie
v Submission Status Name Progress Submitter  Created Last Modified Run Action
tio matching recerds
Shawing 0 1o 0 of 0 entries (fitered fram 2 total entries) . -
» Completion Name Duration Submitter Created Last Modified Run  d
Sat, 12 Jul 2014 175218 FuelVorkFiow 4mdss hadoop Sat, 12 Jul 2014 1747:33 Sat, 12 Jul2014 175219 0 0712100519754-00 20
Fri, 11 Jul 2014 23:15:43 FuetorkFiow ImSTs hadoop Fri, 11 Jul 2014 23:15:38 Fri, 11 Jul 2014 23:15:43 L} 407 12104057551 -0 zie-
Fri, 11 Jul 2014 23:11:38 FuetWorkFiow 4m24s hadoop Frri, 11 Jul 2014 23:07.03 Fri, 11 Jul 2014 23:11:38 0 40712104057581-0020-002
Fri, 11 Jul 2014 21:58:33 FuetWorkFiow TmS0s hadoop Fri 11 Jul 2014 21°50:32 Fri 11 Jul 2014 21:58:33 0 4-1407 12104057581 00 zie-00 W
‘Wed, 09 Jul 2014 23:15:45 FuelorkFiow 1m40s hadeop Wed, 09 Jul 2014 23:13 54 Wed, 09 Jul 2014 23:15:45 0 407T101T4TI4E11 -cozie-0.
Tue, 05 Jul 2014 00:16:29 FuetorkFiow 2m2s hadoop Tue, 08 Jul 2014 001347 T, 08 Jui 2014 00:1629 L] 4070811453537 9-00 2-002-W

Showing 1 1o & of & entries (fitered from 22 total entries)

Figure 7-12. The Hue Oozie interface

If you click the next icon, for Hue Shell, you get the option of performing a Pig, Sqoop2, or HBase shell that will
execute an adhoc script (Figure 7-13).

HBase Shell

Pig Shell (Grunt)

Sqoop 2 Shell

which: no hadoop in ((null})

which: ne fusz/lib/hadecp/bin/hadscp in ((null))

dirname: missing operand

Try ‘dirname —-help’ for more information.

2014-08-02 18:54:16,927 [main] INFO org.apache.pig.Main - Apache Pig version 0.11.0-cdhd.7.0 (r:
2014-08-02 18:84:1€,929 (main] INFO org.apache.pig.Main - logging error messages to: /dew/null
2014=08=02 1 17,013 [main] INFO ozg.apache.pig.impl.util.Utils = Default Bootup file /home/huel/.plgbootup not found

2014-02=02 1 17,875 [main] WARN org.apache.hadoop.conf.Configuration - mapred.job.tracker is ceprecated. Instead, use mapreduce.icbrracker.address
2014-08-02 18:54:17,875 [main] WARN org.apache.hadoop.conf.Configuration - fs.default.name is deprecated. Instead, use fa.defaultF5

unknown) compiled May 28 2014, 11:06:50

2014-08-02 1 17,881 (main] INFO org.aspache.pig.backend.badoop.executionengine onEngine - C to hadeop file system at: hdfs://helnn/

2014-08-02 1 17,892 (main] WARM org.apache.hadoop.conf.Configuraticn - mapred.used. is Inscead, use client. used
2014-08-02 18:54:10,866 [main] WARN org.apache.hadoop.conf.Configuraticn - fs.default.name is ceprecated. Inscead, use fs.defaultF3

grunc> |

Figure 7-13. The Hue shell: Pig Grunt

207

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

The next-to-last icon, which looks like an “H,” is for the HBase browser. Using this browser, you can examine
HBase tables, determine their structure, and manipulate their data. In addition, you can add rows or execute a bulk
upload of data (Figure 7-14).

2

HBase Browser - Cluster Switch Cluster -
© New Table
Table Name Enabled

sumption

[ <]

<]

=
@
=]
i
a

[< N < I < I < <}

5
;
5
[ <]

Figure 7-14. The Hue HBase user interface

The right-most icon (the question mark) is the Hue help option, which is comprehensive. It has a series of sub-
help sections that include helpful topics on all of the Hadoop tools that have been integrated into Hue. If using Hue or
its components becomes unclear at any point, the Hue help pages are a good place to find extra information.

That completes a very quick tour of the Hue browser. It packs a lot of Hadoop functionality into a single user
interface, thereby enabling you to visually create and monitor Hadoop-based jobs and workflows from one interface.
What it doesn’t offer, however, is any low-level monitoring of system-level resources. For that, you need Ganglia and
Nagios. The next sections present these monitoring tools, which can be used with a pre-existing Hadoop cluster.

Ganglia

An open-source monitoring system released under a BSD license, Ganglia is designed for monitoring on distributed
high-performance systems. With Ganglia installed you can monitor a Hadoop-based cluster. The official Ganglia
website is ganglia.sourceforge.net. Ganglia has been integrated into the Ambari Hadoop cluster manager, which
you will examine in Chapter 8.

While Hue provided a single, web-based user interface for accessing Hadoop-based components, Ganglia offers
true monitoring functionality. For example, it is possible to set up graph-based dashboards in Ganglia that show the
state of Hadoop cluster resources. At a glance, it is possible to determine if there is a cluster problem at the present
time or there has been one during the lifetime of each graph. Also, it is possible to add graphs for multiple types of
resources on a single dashboard. (Ganglia will again be discussed in regard to the Ambari Cluster manager, in the next
chapter.)

Here, I first tell how to source and install Ganglia. I also discuss some of the errors that might be encountered.
Then, I discuss its user interface.

208

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Installing Ganglia

To install Ganglia on Centos Linux, you first install the Epel repository so that you have a safe location for the Linux
yum command to source the software from. Be sure to execute the Epel repository steps on all Hadoop cluster nodes
to support the Ganglia install. For my example installation, I enable the Epel repository for Centos 6.x (on each node)
working in /tmp/epel:

[root@hcinn ~1# cd /tmp ; mkdir epel ; cd epel

[root@hcinn epel]# wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
[root@hcinn epel]# wget http://rpms.famillecollet.com/enterprise/remi-release-6.rpm

[root@hcinn epell# rpm -Uvh remi-release-6*.rpm epel-release-6*.rpm

When I check the downloaded files in /etc/yum.repos.d/, I see that four files have been sourced:

[root@hcinn epell# 1s -1 /etc/yum.repos.d/epel* /etc/yum.repos.d/remi.repo
/etc/yum.repos.d/epel-apache-maven.repo

/etc/yum.repos.d/epel.repo

/etc/yum.repos.d/epel-testing.repo

/etc/yum.repos.d/remi.repo

Next, I enable the remi repository by editing the remi.repo file and setting Enabled to 1 in the [remi] section:
[root@hcinn epell# vi /etc/yum.repos.d/remi.repo

[remi]

name=Les RPM de remi pour Enterprise Linux 6 - $basearch
#baseurl=http://rpms.famillecollet.com/enterprise/6/remi/$basearch/
mirrorlist=http://rpms.famillecollet.com/enterprise/6/remi/mirror
enabled=1

Now, I am ready to install the Ganglia software on the Hadoop name node (in my example, this is hclnn) and all
of the data nodes. I install the following packages on the Name Node server hclnn, using the Linux yum command as
the root user:

yum install ganglia

yum install ganglia-gmetad
yum install ganglia-web
yum install ganglia-gmond

On the data nodes (hclrlml, hclrlm2, hclrlm3 ), I install the following components:

yum install ganglia
yum install ganglia-gmond

The Ganglia gmond processes will collect data and pass it to the gmetad process on hclnn. I can then view the
data via the Ganglia web component. I must, however, tell Ganglia the frequency at which to collect the data. On
hclnn, I specify the Ganglia data-collection frequency in the file gmetad.conf; in my example, I have set it to be two
minutes (120 seconds):

vi /etc/ganglia/gmetad.conf
data_source "my cluster" 120 hcinn

209

www.it-ebooks.info


http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
http://rpms.famillecollet.com/enterprise/6/remi/$basearch/
http://rpms.famillecollet.com/enterprise/6/remi/mirror
http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

In the same line, I named the cluster “my cluster” for purposes of Ganglia data collection. On the collector server
hclnn, I'set up the gmond.conf file using this name and the other parameters that follow, like this:

[root@hcinn etc]# vi /etc/ganglia/gmond.conf

cluster {
name = "my cluster"
owner = "unspecified"
latlong = "unspecified"
url = "unspecified"

}

udp_send_channel {
mcast_join = hcinn
port = 8649

}

udp_recv_channel {
port = 8649
}

tcp accept _channel {
port = 8649
}

I then restart the collector and node daemons on the collector server hclnn by using the Linux service
command:

service gmetad restart
service gmond restart

On each data node to be monitored (hclrlm]l, hclrlm?2, hclrlma3), I set up the configuration of the Ganglia
gmond process by editing the gmond.conf file under /etc/ganglia:

[root@hciriml etc]# vi /etc/ganglia/gmond.conf

cluster {
name = "my cluster"
owner = "unspecified"
latlong = "unspecified"
url = "unspecified"

}

udp_send_channel {
mcast_join = hcinn
port = 8649

}

210

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Then I restart the Ganglia gmond server by using the Linux service command:
service gmond restart

I make sure that the httpd daemon is running on hclnn; this supports the Ganglia web interface:
service httpd restart

Also, I make sure that selinux is disabled on all nodes by checking that the SELINUX value is set to the file /etc/
sysconfig/selinux. If this is not the case, then I will need to make the following change and restart my Linux servers:

[root@hcinn ganglia]# vi /etc/sysconfig/selinux
SELINUX=disabled

Now I wait for the minimum monitoring interval of 120 seconds and attempt to access my Ganglia web interface
by using the URL http://<collector server>/ganglia/. For example, the name of my collector server is hclnn, with
an IP address of 192.168.1.107, making the URL http://hcinn/ganglia/.

At this point, I can enable Hadoop metrics collection on all Hadoop servers by editing the hadoop-metrics.
properties file in /etc/hadoop/conf.

[root@hciriml conf]# cd /etc/hadoop/conf

vi hadoop-metrics.properties
dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext
dfs.period=10

dfs.servers=localhost:8649
mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext
mapred.period=10

mapred.servers=localhost:8649
jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext
jvm.period=10

jvm.servers=localhost:8649
rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext
rpc.period=10

rpc.servers=localhost:8649

I restart the Hadoop cluster to make the changes take effect.

211

www.it-ebooks.info


http://hc1nn/ganglia/
http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

Potential Errors

Potential Ganglia errors can relate to the web server configuration, permissions, access, and Ganglia servers that
might be down. Here are some common error messages and some possible solutions.
For example, if you encounter an error like this on the Ganglia web page:

Not Found

The requested URL /ganglia was not found on this server.
Apache/2.2.15 (Cent0S) Server at 192.168.1.107 Port 80

the solution is to edit the Ganglia web configuration file /etc/httpd/conf.d/ganglia.conf and change the Deny line to an
Allowline. The # character comments out a line so that the httpd web server will ignore that line:

#Deny from all
Allow from all

Then you can restart the httpd service on the server hclnn by using the Linux service command as the Linux
root user:

service httpd restart

Displayed on the Ganglia web user interface, an error like the following implies that the SELINUX option needs to
be disabled on the cluster:

There was an error collecting ganglia data (127.0.0.1:8652): fsockopen error: Permission denied
This means that Ganglia is not compatable with the option enabled. You edit the file /etc/sysconfig/selinux and
set the SELINUX option to the value disabled. You will need to do this as the Linux root user account and restart each

server afterwards. If you're in doubt, consult a systems administrator; otherwise, use the following command:

[root@hcinn ganglia]# vi /etc/sysconfig/selinux
SELINUX=disabled

If an error like this occurs in the /var/log/messages file:

Aug 16 17:12:52 hcinn /usr/sbin/gmetad[4575]: Please make sure that /var/lib/ganglia/rrds is owned
by ganglia

then the directory mentioned, /var/lib/ganglia/rrds, is not owned by the Linux ganglia user account. Check the
ownership of the directory by using the Linux 1s long listing and it will show that it is owned by “nobody.” You can
reset ownership recursively using the Linux chmod -R command:

[root@hcinn logl# 1s -1d /var/lib/ganglia/rrds

drwxrwxrwx. 4 nobody root 4096 Aug 16 15:06 /var/lib/ganglia/rrds

[root@hcinn logl# chown -R ganglia /var/lib/ganglia/rrds

Next, you restart the Ganglia servers on the data collector server hclnn:

service gmetad restart
service gmond restart

212

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA
If you see an error similar to the following in the /var/log/messages file:

Aug 16 17:28:55 hcinn /usr/sbin/gmetad[7861]: data_thread() got no answer from any [my cluster]
datasource

check on each server that the Ganglia gmond processes are running. If necessary, restart them using the Linux
service command as the root user:

service gmond restart

The Ganglia Interface

The Ganglia cluster web interface offers an overview of the cluster and a series of clickable icons that represent each

server in the cluster that has been configured to collect data. Figure 7-15 shows the default CPU-based display of the
cluster.

Ganglia

my cluster Cluster Report for Sar, 16 Ang 1014 06:08:11 +0000 | Gt Fresh Cata |

Metric  cpu_report > Last hour = Sorted descendng = Physical View

Grid > my cluster > ~Choosea Node

Overview of my chster
CPUs Total 4
Hosts up: 4
Hosts down o

my cluster Cluster Load last hour my cluster Cluster (PU last hour my cluster Cluster Memory last howr

. 1 eoel

L " o

. o | ' -
» - 5JJ' | 188

8 - . n +

P LLos ! e I 7

Percent
Bytes

Arg Load (15, 5, 1m)

Losa/Procs

5305 P . & 17:40 n:00
'3"2“'58%"35 sk - via 74 00 B Hemary Used wory Shares B Hewery Coched
Localtame: 17:23 17:40 100 Wuser cPU DMice cFU B Systes CPU [0 WAIT (P O Memary Butfered W Fesory Swapped
201 4-08-16 06:07 D 1-min Lasd @ Sodes B cPos B Rumming Processan O 19te cPU B Tetad In.Core Memery
my cluster Cluster Network last hour
Cluster Load Percentages
Dne-75 i50.000) g 1Bk
o
013 130,000 i
2 e P iy 91 T
s+ — < .
v e [
(- B LY [ 3
Show Hoate ves @ ss O | my choster cpu_report Lt hour sorted desconding | Colmas & = Sire madium =
helrimi CPU last hour helrimd CPU last hour helreiml CPU last hour helnn CPU last heur
e ot wet et
L B e A . =
] E & £E = E =
T . ;a0 T @ P @
b 2 S L s »
i 2 LD W we s 5D ED [ Ll Wi 1id0 i
Wuser cPp Onice Py MSystes U DWAIT CPU | Miwser CPU Omice CPu MiSystes CPU DWAIT U | Biser G OWice U M Systes CPU EWAIT ¢PU | MUser CP2 Omice (Pu M Systes CPU [ WALT CPU
0 tate cre O mate cru 0 e o 0 1ate cr

(Nodes colored by |-mamute load) | Legend

Figure 7-15. Ganglia overview display

In Figure 7-15, notice the Get Fresh Data button (top right) for refreshing your data and the Metric drop-down
menu (top left), from which you can choose to display network, packets, memory, and load information. The visual
display of server states enables you to drill down into those servers that appear to be taking the greatest load. For
example, click on the Name Node display (hclnn), and you'll get a detailed display for that server. As you can see in
Figure 7-16, the display provides information about the Ganglia processes, such as when they started and how long they
have been running. It also provides information about the server's memory and CPU configuration. Click the images on
the right of the screen to reveal detailed graphs for the server's load, memory, CPU, network, and packet usage.

213

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

IS L LU hclnn Host Report for Sat, 16 Aug 2014 06:11:26 +0000 Get Franaa

- Node View
helon Overview
heinn Load Last hour
T
f o
Time and String Metrics A
Sat, 16 Acg 2014 05:07:35 0000 S
OFF M 740 wos
Sat, 16:\‘3' 3014 05:57:21 0 1-min Loaa | L) B Runnisg Processes
0 days, 0:00:02 hclnn Memory last hoar
%86 1 [
Linex E,. 186
2.6.32-431.416.i686 i
© days, 1:03:40 e T T 100 *
W Mewiry Used W Memary Shared @ Memory Cached
O Memery Buffered B Measry Swapped
cmm: Mel:nn W Tetal In.Core Memary
CPU Count ICPU helnn CPU Last hour
2800 ME:= l:‘:’
1926852 KB f o
4128760 KB P
m|
Y 17:40 18:08 3]
Wuser CPU D Nice (PU @ Syites CPU [0 WAIT CPU
0 1ate cou
hclon Network last hear
r B
FTYN
E s al
Y. 17:40 h:08 "
| BLY | our

helon Packets last heur

T

0 [T 08

a
5
=
g

Figure 7-16. Ganglia node display

The second half of the screen, shown in Figure 7-17, contains a large number of sections and resource graphs.
Because there are so many available, I have selected just a few to display here. However, each is composed of CPU,
disk, load, memory, network, and process graphs. Each category of function being monitored has a number of
aspects: for instance, CPU shows system user and input/output characteristics.

214

www.it-ebooks.info


http://www.it-ebooks.info/

cpu metrics (6)
CPU aidle
awt
|
3%
St
n|
30+ - *
17:20 17:40 18:00
H hclon last hour (now 35.00)
disk matries (3)
Disk Space Available
ot
1w
8 |
140
.
17:20 17:40 18:00
H helnn last hour {now 138.03)
load metrics (3)
Fifteen Minute Load Average
L2t
1.1
1.9
0.9
.8+ -
o4 17:20 17:40 18: 00
W helen last hour (new 1.16)
memory metrics (5)
Memory Buffers
2wt
8k
w 16k|
= Mk
1k
K+ -
= 17:20 17:40 18:00
H hclen last hour (now 14,024)
network metrics (4)
Bytes Received
S0kt
£ a0k
= ok
£ 20x
o Lok| =
17:20 17:40 18:00
B hclen last hour (now 2,527)

Figure 7-17. Ganglia node display

CPU Idle
awt
3
36
- Sk
n
30+ - .
17:20 17:40 18:00
B helnn last hour (now 31.40)

Total Disk Space
w00t

150

2 e
140

17:20 17:40 18:00
B helnn last hour [now 153.32)
Five Minute Load Average
.
1.4
L2
1.0
.84 .
-3 17:20 17:40 18: 00
B helnn last hour [now 1.29)
Cached Memory
.50t
1L4n
[}
2
L3N
2 M
L 17:20 ir:40 18:00
B hclon last hour (now 1,229,412)
Bytes Sent
w0kl
g
<
: 10 k
Fy
0 1r:40 18:00
B hclnn last hour [now 13.234)

packets/sec

CHAPTER 7 MONITORING DATA
CPU Nice
Lot
0.8
0.6 |
0.4
0.2
0.0+ - . .
17:20 17:40 18:00
B hclan last hour (now 0.00)
Maximum Disk Space Used
w0t
LB
16|
M|
12|
e 17:40 18: 00 :
B helnn last hour (now 16.00)
One Minute Load Average
20t
L5
1.0
.
17:20 17:40 18: 00
B helan last hour (new 1.28)
Free Memory
w0kt
m 150k|
2
100 k |
T e 17:40 18:00
M hclan last hour (now 139,7492)
Packets Received
0t
20|
10 |
T e 17:40 18:00
B hclan last hour (now 16.62)

While this multitude of resource graphs may be bewildering at first, it does present a wide range of possible
features that Ganglia can be used to monitor. It should be obvious that Ganglia provides suitable functionality to
monitor a Hadoop cluster. Check websites like ganglia.sourceforge.net for further information. Also, try installing
Ganglia yourself and compare the graphs that it produces by default against your own Hadoop cluster.

This chapter also presents the Nagios monitoring system. Nagios extends the possibilities for system monitoring
by providing the ability to create alerts based on the problems that it finds.

Nagios

Nagios is an open-source cluster monitoring system that is available from Nagios Enterprises (www.nagios.org).
While systems like Ganglia offer a wide range of monitoring graph options, the Nagios monitoring system provides
the ability to monitor cluster server attributes and create alerts when problems occur. Nagios has a similar structure to
Ganglia, in that it has a Nagios Master server and client (nrpe) programs. In this section, I show how it can be sourced,
installed, configured, and used to monitor alerts.

www.it-ebooks.info

215


http://www.nagios.org/
http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

It is important to reiterate Nagios’s alerting capability because not only can you determine that there is a problem
but you can also create an automatic alert and raise awareness of the issue. So, the combination of Ganglia and Nagios
for system monitoring is a highly functional duo. Nagios alerts you to a problem while Ganglia provides a color-coded
graph to display the problem. A typical problem might be that Hadoop has run out of memory or disk space. Now, you
can be alerted to the problem and assess the potential solutions.

Installing Nagios

To demonstrate how to install Nagios, I place the Nagios server on the name node, hclnn, and the Nagios clients on all
of the servers so that the whole cluster will be monitored and the Nagios map (more on this in a moment) will contain
the entire cluster. So, on hclnn, Iinstall the following servers via the Linux yum command as root:

[root@hcinn ~]# yum install nagios

[root@hcinn ~]# yum install nagios-plugins-all
[root@hcinn ~]# yum install nagios-plugins-nrpe
[root@hcinn ~]# yum install nrpe

In your installation, you will also need the php and httpd components, which you probably already have
installed. When you execute the following commands, you will receive a “Nothing to do” message if the components
are already installed:

[root@hcinn ~]# yum install php
[root@hcinn ~]# yum install httpd

I use the chkconfig command to configure these servers (httpd, nrpe, and Nagios) to start when the server hclnn
is rebooted. The Nagios server uses the nrpe components on each machine, which in turn use the Nagios plug-ins to
monitor different features, like hosts, devices, and services:

[root@hcinn ~]# chkconfig httpd on
[root@hcinn ~]# chkconfig nagios on
[root@hcinn ~]# chkconfig nrpe on

Now, I install the the following Nagios components on the data nodes (hclrlm1l, hclrlm2, hclrlm3) by using the
Linux yum command as root:

[root@hcinn ~]# yum install nagios
[root@hcinn ~]# yum install nagios-plugins-all
[root@hcinn ~]# yum install nrpe

[root@hcinn ~]# chkconfig nrpe on

On the name node, I set the password for the Nagios administration account, nagiosadmin. I will use this account
and password combination to access the Nagios web browser:

[root@hcinn ~]# htpasswd -c /etc/nagios/passwd nagiosadmin

216

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Thus, I can access the web browser via a URL in this form: http://hcinn/nagios.

My example uses the name of the name node in my cluster, but it won'’t be accesssible until the Nagios server
is started after the configuration has been finalized. Therefore, on the Name Node server hclnn, I edit the file /etc/
nagios/nagios.cfg, which is the configuration file for the central Nagios server component. I comment out the line that
defines the cfg_file value for localhost (I will later define each of the cluster servers explicitly.)

#cfg_file=/etc/nagios/objects/localhost.cfg

In the same file on hclnn, I'use the cfg_dir attribute to specify the directory location where Nagios will look for
the configuration files:

[root@hcinn nagios]# grep "~cfg dir" /etc/nagios/nagios.cfg
cfg_dir=/etc/nagios/conf.d

I go to this location and create empty configuration files for each of the servers in the cluster by using the Linux
touch command:

[root@hcinn nagios]# cd /etc/nagios/conf.d

[root@hcinn conf.d]# touch hcirimi.cfg
[root@hcinn conf.d]# touch hcirim2.cfg
[root@hcinn conf.d]# touch hcirim3.cfg
[root@hcinn conf.d]# touch hcinn.cfg

The contents of each of the server configuration files mirrors the following listing (to which I added line numbers
for easy reference). The important parts of a single server configuration file—in this case, hclnn.cfg—are described
below. The file sections have been listed along with some text to describe their function. The sum of the numbered
configuration file parts forms a whole that Nagios uses to monitor and alert on a server.

The first entry defines the server details, while the later ones define such services as ping, ssh, and load. For
example, the host definition defines the hostname and its alias, plus its IP address:

1 define host {

2 use linux-server

3 host_name hcinn

4 alias hcinn

5 address 192.168.1.107
6 }

Each of the file’s remaining entries define the services available to Nagios on the server. Notice that they take
advantage of the terms “generic-service” and “local-service.” These terms are templates specified in the file /etc/
nagios/objects/templates.cfg, and they provide a way of using pre-defined attributes for the service. For example, the
check_ping service (lines 8 to 13) defines the hostname to ping, hclnn. In addition, it specifies an average roundtrip
time of 100 milliseconds and a packet loss of 20 percent will produce a warning message. A roundtrip time of 500
milliseconds and a packet loss of 60 percent will trigger a critical error. The commands referred to in the
check_command line (i.e., check_ping) are further defined in the file /etc/nagios/objects/commands.cfg.

8 define service {
9 use generic-service
10 host_name hcinn
11 service_description PING
12 check_command check_ping!100.0,20%!500.0,60%
13 }

217

www.it-ebooks.info


http://hc1nn/nagios
http://www.it-ebooks.info/

CHAPTER 7 © MONITORING DATA

The rest of the configuration file contains a list of services defined for the server—in this case, hclnn.

Although space prevents me from explaining every service definition, you can find details at
http://nagios.sourceforge.net/docs.

15 define service {

16 use generic-service

17 host_name hcinn

18 service_description SSH

19 check_command check_ssh

20 notifications_enabled 0

21 }

22

23 define service {

24 use generic-service

25 host_name hcinn

26 service_description Current Load

27 check _command check local load!s.0,4.0,3.0!10.0,6.0,4.0
28 }

29

30 ##H#HH# extra checks

31

32 define service{

33 use local-service

34 host_name hcinn

35 service_description Root Partition

36 check_command check_local disk!20%!10%!/
37 }

38

39 define service{

40 use local-service

41 host_name hcinn

42 service_description Current Users

43 check_command check local users!20!50
44 }

45

46 define service{

47 use local-service

48 host_name hcinn

49 service description Total Processes

50 check_command check local procs!250!400!RSZDT
51 }

I used the file /etc/nagios/objects/localhost.cfg as a template for each server configuration file, simply by

changing the server name and IP address for each to match the corresponding server. These files give Nagios a map of
servers that it needs to do the monitoring.

With the service configuration files finished, I configure the nrpe.cfg file on each server under /etc/nagios. The
nrpe (Nagios remote plugin executor) process on each host executes the Nagios plug-ins:

vi /etc/nagios/nrpe.cfg

218

www.it-ebooks.info


http://nagios.sourceforge.net/docs
http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

In the file, I find the allowed_hosts line and change the server name to indicate which of my servers are allowed
to contact nrpe; for example, I use the following:

allowed_hosts=hcinn

Also, I add the following command lines to each nrpe.cfg file to define which service commands will be used to
monitor each server—specifically, which check will be carried out on users, loads, disks (/ and /home), and processes:

command[ check users]=/usr/lib/nagios/plugins/check users -w 5 -c 10

command[ check load]=/usr/1ib/nagios/plugins/check load -w 15,10,5 -c 30,25,20
command[ check_root]=/usr/1ib64/nagios/plugins/check disk -w 20% -c 10% -p /
command[ check_home]=/usr/1ib64/nagios/plugins/check disk -w 20% -c 10% -p /home
command[ check_zombie procs]=/usr/lib/nagios/plugins/check_procs -w 5 -c 10 -s Z
command[ check total procs]=/usr/lib/nagios/plugins/check procs -w 150 -c 200

Now I am ready to start the Nagios servers. On each machine, I start the nrpe server as the Linux root user using
the service command :

[root@hcinn ~]# service nrpe start
On the name node (hclnn), I start the httpd and Nagios servers:

[root@hcinn ~]# service httpd start
[root@hcinn ~]# service nagios start

Potential Errors

Error messages may be generated while you are installing and trying to run Nagios. For instance, you might see the
following:

error: Starting nagios:CONFIG ERROR! Start aborted. Check your Nagios configuration.

This error may be due to a “hostgroup” entry in the Nagios configuration file. In this case, Nagios won’t start and
there are no log files.

First determine what the error is, then use the Linux which command to determine where the Nagios executable
resides. Run that Nagios executable under /usr/sbin/nagios with a -v parameter and the full path to the Nagios
configuration file. The -v option verifies the configuration file before starting, and so provides extra logged output, as
follows:

which nagios
/usr/sbin/nagios

/usr/sbin/nagios -v /etc/nagios/nagios.cfg

This provides details of a configuration error message, which states that a hostgroup in the configuration file is
incorrect. You comment out this section (with # characters at line position 0) and restart Nagios.

219

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

The Nagios Interface

With your servers up and running, the Nagios web interface is available at http://hcinn/nagios/. The home page is

shown in Figure 7-18.

Nagios’

General

Home
Documentation

Current Status

Tactical Overview

Map
Hosts
Services
Host Groups
Summary
. G . Get Started
egulr‘:ia__;oups * Start monitoring your infrastructure
Grid * Change the look and feel of Nagios
] Wi L d
Problems . E.l:t(‘:;?smgms with hundreds of
Services (Unhandled) -
Hosts (Unhandled) : gg:f:pnw”
Network Outages . oot c{ertirl'lr;-?j
Quick Search
Quick Links
* Magios Library (tutorials and docs)
Reports » Nagios Labs (development blog)
Availability + Magios Exchange (plugins and
Trends addons)
Alerts * Magios Support (tech support)
History  MNagios.com (company)
Summary * Nagios.org (project)
Histogram
Notifications

Figure 7-18. Nagios home page

Nagios &

Core”

Nagios® Core"
Version 3.5.1

August 30, 2013
Check for updates

Don't Miss...

FLASH SALE! Interested in attending Magios World Conference 20147 This
week (Monday, 8/11 - Sunday, 8/17) we are running a FLASH SALE during
which you can purchase a Silver Conference Pass for only $795! All you have
to dois enter discount code; FLASH - while registering! Register Now
Improve your Nagios skillset with self-paced and instructor led training
senvices.

Latest News

Magios Core 4.0.8 Released

Updated Core Virtual Machines Released
MNagios Plugins 2.0.3 Released

More news...

For my example, I can click the Map option on the left of the home page to see the Nagios cluster map showing
the server objects that were created under /etc/nagios/conf.d on hclnn (bottom right of Figure 7-19). I select a server
icon (such as for hclnn) in the Nagios map to display the details for that server, as shown on the left of Figure 7-19.

220

www.it-ebooks.info


http://hc1nn/nagios/
http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

?

[Name: | [hetnn J
[Aliss: |[hetnn ]
Address: |[182.168.1.107 |
State: ] [op |
1Stlhulnlurmnlinn: ”HHGOKAPIGI(E(IM;IM miﬂ.ﬂﬁlllsl
[State Duration: | [ 0d 23h 21m 525 ]

l Last Status Chedc Il 08-18-2014 18:29:32 I
Last State Change: | | 08-17-2014 19:10:52 |
Parent Host(s): | Hone (This is a root host) |

[ iate Child Hosts: || 0 |

S3ek
- 5 pending

Figure 7-19. Nagios map display

If I click one of the servers in the map to drill down to determine server status, I get the results shown in Figure 7-20.

Current Network Status Host Status Totals Service Status Totals
Last Updated: Man Aug 18 18:45:43 NIST 2014 Up Down Unreachable Pending Ok Warning Unknown Critical Pending
bed every 50 seconds
Noalos Cortm 351 - 5108 13 BT o e Bl o ICo o o]
Lopged in as nagicsadmin Al Problems All Types All Problems All Types
o 1 L] T I

Wiew Mistory For This Host
Viaw Motifications For This Host
View Service Status Detail For All Hosts

Service Status Details For Host ‘heinn’

Limit Resul. 100 ~

Host *4 Service *4 Status *& Last Check *4 Duration * 4 Attempt *4 Status
helnn Cunent Load [ 08-18-2014 18:48:02 04 230 38m 513 s OK - load aversge: 0,52, 0.93, 0.83

Cument Users [ os-18-2014 18:47:54 04 0n 16m 435 14 USERS OK - 2 users cumently logged in
PING [ os-16-2014 18:48:02 04 23h 36m 513 " PING OK - Packet ioss = 0%, RTA = 0.08 ms
Foct Partition (S os-18-2014 18:48:18 04.0n 18m 2% 18 DISK OF - fres space: | 42209 MB [84% Inode=sos)
SSH % _ 08-18-2014 18:45:00 04 238 34m E1s 14 S5H OK - OpenSSH_5.3 (protecsl 2.0}
Swap Lsage (G oe-18-2014 18:45:42 04 0n 14m 13 144 SWAP OK - 100% free (4031 NB cut of 4031 MB)
Total Frocesses SR 0s-18-2014 18:48:25 0400 13m 188 4 FROCS OK: 175 processes with STATE = RSZDT

Figure 7-20. Nagios server details

The Nagios display follows a traffic light system: green is good, warnings are yellow, and errors are red. Clicking
the root partition service, as shown in Figure 7-20, allows you to drill down further to determine service details, as
shown in Figure 7-21.

221

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 = MONITORING DATA

Service Information

Last Updated: Mon Aug 18 18:50:28 NZST 2014
Updsated every 90 seconds

Nagios® Core™ 3.5.1 - www.nagios.org

Logged in as nagiosadmin

View Information For This Host

View Status Detail For This Host
View Alert History For This Service
View Trend This Service

gram For This Service

For
View Alert
View Availability Report For This Service
View Notifications Fer This Service

Current Status:
Status Information:
Performance Data:
Current Attempt:
Last Check Time:
Check Type:

Service State Information
[FOK7] (for 0d 0h 16m 10s)

/=T6T5MB,40316,45356,0,50396
1/4 (HARD state)

08-18-2014 18:49:18

ACTIVE

Check Latency / Duration: 0.048 / 0.012 seconds

Next Scheduled Ch

Last State Change:
Last Notification:

eck: 08-18-2014 18:54:18
08-18-2014 18:34:18
N/A (notification 0)

Is This Service Flapping? [[NO | (0.00% state change)
In Scheduled Downtime? [E]

Last Update:

08-18-2014 18:50:19 ( 0d Oh Om 9s ago)

Active Checks:
Passive Checks:

Obsessing: ENABLED
Notifications: ENABLED
Event Handler: ENABLED

Flap Detection:

Figure 7-21. Details of the Nagios root partition

DISK OK - free space: / 42209 MB (84% inode=95%).

Senvice
Root Partition

On Host
hcinn

(hc1nn)

Member of
No servicegroups.

192.168.1.107

To demonstrate what a warning alert looks like, I changed the hclnn.cfg configuration file on the server hclnn,
defining the root parition check_command line to provide a warning if free space reaches 90 percent. (A silly measure,
I know, but it will show what a warning alert looks like.)

define service{
use
host_name
service_description
check_command

}

I then saved the configuration file and restarted the Nagios server to pick up the changes:

local-service
hcinn

Root

Partition

check _local disk!90%!10%!/

[root@hcinn ~]# service nagios restart

Not surprisingly, at the next scheduled check, the alert shown in Figure 7-22 was raised, stating that the root
partition contained less than 90 percent free space.

222

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 MONITORING DATA

Service State Information

Current Status: WARNING | (for 0d 2h Tm 39s)

Status Information: DISK WARNING - free space: / 42183 MB (84% inode=95%):
Performance Data: I=T701MB;5039;45356;0,50396

Current Attempt: 4/4 (HARD state)

Last Check Time: 08-18-2014 21:27:18

Check Type: ACTIVE

Check Latency / Duration: 0.194/0.014 seconds

Next Scheduled Check:  08-18-2014 21:32:18

Last State Change: 08-18-2014 19:24:18

Last Notification: 08-18-2014 21:27:20 (notification 3)

Is This Service Flapping? IEl (0.00% state change)

In Scheduled Downtime? [ NO |

Last Update: 08-18-2014 21:31:50 ( 0d Oh Om 7s ago)

Figure 7-22. Nagios root partition alert

This is an example of a monitored alert that could enable critical intervention when your Hadoop cluster
resources become limited. Monitoring and alerting on Hadoop cluster resources should be a mandatory
consideration when you are setting up a cluster yourself.

A combination of Naios and Ganglia could be used on the Hadoop cluster to provide a rich selection of historical
graphs and alerts. Nagios could trigger an alert for Hadoop cluster resources as those resources run low; then Ganglia
could examine the graphs that have recorded the condition of the resources over time.

Summary

This chapter discussed three major enhancements for Hadoop functionality. Hue provides a central location for
scripting and Hadoop-based job monitoring. Through Hue, you can inspect Hive and HBase databases and can
manipulate their data. Hue also offers the ability to visually browse the Hadoop file system HDFS.

Although Hue consolidates Hadoop fuctionality and access into one useful interface, it isn’t a full-scale
monitoring system. (For instance, it doesn’t have the ETL or reporting functionality of Pentaho or Talend, which
are covered in Chapters 10 and 11.) To supplement Hue, Ganglia and Nagios offer cluster monitoring. When used
together, Nagios and Ganglia complement each other: Nagios alerts the user to potential problems, while Ganglia
provides graph-based details to show what has happened, on which server and its type. This combined action will
help in problem investigation before system failure.

223

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8

Cluster Management

From its inception, Hadoop has been progressing and evolving to help you more easily manage your big data needs.
Compared to version 1, installation of Hadoop V2 via Cloudera's version 4.x stack was an advance; Hadoop tool
binaries were configured as Linux services and Hadoop’s tool-related logging and functionality were moved to logical
places within the Linux file system. The progression continues with the move to cluster managers, which consolidate
all of the tools examined thus far in this book into a single management user interface. Cluster managers automate
much of the difficult task of Hadoop component installation—and their configuration, as well.

This chapter examines Apache Ambari and the Cloudera Cluster Manager, two of several Hadoop cluster
managers that enable you to install the whole Hadoop stack in one go. Management systems like Ambari also use
cluster monitoring tools like Ganglia and Nagios to provide a user interface for management and monitoring within
a single system. In addition, in this chapter you'll learn about the Apache Bigtop tool, with which you can install the
whole stack, as well as run smoke tests during the installation to test the stack operation.

Although the installation of these components will include the whole Hadoop stack, this chapter primarily
demonstrates the ease of use and overall functionality of the installation systems themselves. (I would need an entire
book to cover each piece of subfunctionality within the Hadoop server stack.) Consider this chapter a snapshot of the
current systems and their functionality. Which system is best for your purposes is a question you can answer only after
matching your needs to their capabilities.

Because systems like Ambari install the whole Hadoop cluster, they are not compatible with pre-existing Hadoop
installs, and therefore they cannot use the same set of servers, as were discussed in earlier chapters (hclnn for the
name node and hclrlml to hclrlm3 for the data nodes). For this chapter’s example, I install the cluster on a new set
of 64-bit machines but I preserve the work to date on the old set of machines whose Name Node server was called
hclnn. The new Name Node server is called hc2nn, and the four data nodes are called hc2rlm1l, hc2rlm2, hc2rlm3,
and hc2r1m4. As for the original servers, the “h” in these server names stands for Hadoop, the “c” indicates the cluster
number, the “r” represents the rack number in the cluster, and the “m” represents the machine number within the
Hadoop cluster rack. So, hc2nn is the Name Node server for Hadoop cluster 2. The server hc2rlm4 is the number 4
machine in rack 1 for Hadoop cluster 2. Also, because the systems examined in this chapter are intended for fresh
servers, I reinstall Centos 6 on each machine prior to sourcing each system.

Initially, I install the Ambari Hadoop cluster manager. You will note that I am sourcing Ambari from the
Hortonworks site, so I use it to install the latest Hortonworks Hadoop stack. If you have attempted all of the Hadoop
tool installations up to this point in the book, you will have discovered that Hadoop installations and the necessary
configuration are time-consuming and can be difficult. You may encounter errors that take a lot of time to solve. You
might also find that versions of the components will not work with one another. But at this point, all you really want to
do is use the software.

This is where cluster managers become useful: they automate the installation and configure the Hadoop
cluster and the Hadoop tool set. They provide wizards that advise you when you need to make changes. They have
monitoring tools to automatically check the health of your Hadoop cluster. They also offer a means to continuously
upgrade the Hadoop stack.

225

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

The Cloudera cluster manager is Cloudera’s own Hadoop cluster manager release, while the Ambari tool is
actually an Apache project. Hortonworks has used Ambari as the mechanism to both release and manage its Hadoop
stack. Given that Cloudera and Hortonworks are two of the best-known Hadoop stack suppliers, it is their cluster
managers that I have chosen to source and install here.

As alast thought before launching into the installation of Ambari, I mention that there are licensing fees
associated with these releases of Hadoop cluster manager. However, the costs are easily offset by the savings in time
and trouble when big problems can be avoided.

The Ambari Cluster Manager

Although Ambari can be used to install many different Hadoop stacks, and is a top-level Apache project in its own
right, I install only the latest HDP stack to demonstrate its functionality. As in prior chapters, I use an example
installation to show how it’s accomplished. I start by sourcing the Ambari code and install the Ambari agents and
server on the new cluster nodes: hc2nn (the Name Node server) and hc2rim1 through hc2rim4 (four data nodes).

Note For the latest information on Ambari and up-to-date release documentation, see the official Apache Software
Foundation Ambari website at http://ambari.apache.org/.

Ambari Installation

To install the latest Hortonworks Ambari release, I first install a Hortonworks Centos 6 repository to match the version
of CentOS that is installed, by running the following commands as root:

[root@hc2nn /]# cd /etc/yum.repos.d/

[root@hc2nn yum.repos.d]# wget http://public-repo-1.hortonworks.com/ambari/centos6/1.x/
updates/1.6.1/ambari.repo

The wget command downloads the ambari.repo file to the directory /etc/yum/yum.repos.d. Now, I use the Linux
yum command to install the Ambari server on the Name Node server hc2nn:

[root@hc2nn yum.repos.d]# yum install ambari-server
Itun the Ambari server setup command as root to configure the Ambari server component:
[root@hc2nn yum.repos.d]# ambari-server setup

Using python /usr/bin/python2.6

Setup ambari-server

Checking SELinux...

SELinux status is 'enabled’

SELinux mode is 'enforcing'

Temporarily disabling SELinux

WARNING: SELinux is set to 'permissive' mode and temporarily disabled.
OK to continue [y/n] (y)? y

Customize user account for ambari-server daemon [y/n] (n)? y
Enter user account for ambari-server daemon (root):
Adjusting ambari-server permissions and ownership...

226

www.it-ebooks.info


http://ambari.apache.org/
http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.6.1/ambari.repo
http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.6.1/ambari.repo
http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Checking iptables...

WARNING: iptables is running. Confirm the necessary Ambari ports are accessible. Refer to the Ambari
documentation for more details on ports.

0K to continue [y/n] (y)?

Checking JDK...

[1] - Oracle JDK 1.7

[2] - Oracle IDK 1.6

[3] - Custom JDK

At this point, I choose option 3 for the Java JDK because I have already installed the openJDK on these servers
and I am familiar with its use.

Enter choice (1): 3

WARNING: IDK must be installed on all hosts and JAVA HOME must be valid on all hosts.
WARNING: JCE Policy files are required for configuring Kerberos security. If you plan to use
Kerberos,please make sure JCE Unlimited Strength Jurisdiction Policy Files are valid on all hosts.
Path to JAVA HOME: /usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64

Validating JDK on Ambari Server...done.

Completing setup...

Configuring database...

Enter advanced database configuration [y/n] (n)?

Default properties detected. Using built-in database.

Checking PostgreSQL...

Running initdb: This may take upto a minute.

Initializing database: [ OK ]

About to start PostgreSQL

Configuring local database...

Connecting to local database...done.
Configuring PostgreSQL...

Restarting PostgreSQL

Ambari Server 'setup' completed successfully.

Whichever JDK option you choose, if the last line of the setup output indicates that the setup is successful, you
can start the Ambari server as root. I do just that, as follows:

ambari-server start

Using python /usx/bin/python2.6

Starting ambari-server

Ambari Server running with 'root' privileges.

Organizing resource files at /var/lib/ambari-server/resources...
Waiting for server start...

Server PID at: /var/run/ambari-server/ambari-server.pid

Server out at: /var/log/ambari-server/ambari-server.out

Server log at: /var/log/ambari-server/ambari-server.log

Ambari Server 'start' completed successfully.

I can now access the Ambari web-based user interface via the Name Node server name and port number 8080:

http://hc2nn:8080

227

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

The default login account is called “admin” with a password of “admin” When I log in, the Ambari installation
wizard will start automatically and guide me through the installation.

From the Ambari installation wizard, I set the cluster name and select the installation stack. For my example,
I name the cluster “cluster2” and I select HDP 2.1, the lastest installation stack. Next, I specify the server names on
which to install, making sure to use FQDNs (fully qualified domain names). So, instead of specifying the server short
name of “hc2nn,” I use hc2nn.semtech-solutions.co.nz. When I check the hostnames, Ambari does the equivalent of
the Linux hostname -f command to determine the FQDN; if  hadn’t used FQDNS, this check would fail. My server list
now looks like this:

hc2nn.semtech-solutions.co.nz

hc2rimi.semtech-solutions.co.nz
hc2rim2.semtech-solutions.co.nz
hc2rim3.semtech-solutions.co.nz
hc2rim4.semtech-solutions.co.nz

If at this point in your own installation you encounter the following permission-based error, you can install
the Ambari agent manually. This error message is probably related to SELinux and the file labeling used by SSH
(secure shell).

Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).

A manual installation of the Ambari agent on each node is a workaround for this problem. Then, you would just
be manually installing a component that Ambari has not been able to install automatically. Once you have done this
manually, Ambari will complete the cluster installation for you.

If this error is encountered follow these steps; make sure that the Ambari Centos 6 repository is installed on each

machine:

cd /etc/yum.repos.d/
wget http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.6.1/ambari.repo

Next, I use the Linux yum command as root to install the Ambari agent on each machine, as follows:
yum install ambari-agent
I edit the Ambari configuration file and set the server hostname to be the fully qualified name of the server:

vi /etc/ambari-agent/conf/ambari-agent.ini
hostname=hc2nn.semtech-solutions.co.nz

To register the Ambari machines, I install the Linux time service ntpd on all servers I intend to use. I use the Linux
yum command as root to install the ntp servers and documentation, and I set the server to start at boot time:

yum install ntp ntpdate ntp-doc
chkconfig ntpd on

Next, I initialize and start the ntpd server:
ntpdate pool.ntp.org

service ntpd start

228

www.it-ebooks.info


http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.6.1/ambari.repo
http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Now, I restart the Ambari agent as the root user:
ambari-agent restart

When the agent starts, it registers with the server so that the server has a list of the agent hostnames. I can check
this list by using the curl command and see all the fully qualified server names I have previously specified. For
example, the following curl command accesses the Ambari server URL by using the username and password admin
provided by the -u option. It requests a list of hosts from the server, which is displayed as shown here. For instance, I
ran this command as the Linux root user from the cluster2 Name Node machine hc2nn:

[root@hc2nn ~]# curl -u admin:admin http://hc2nn:8080/api/vi/hosts

{
"href" : "http://192.168.1.103:8080/api/v1/hosts",
"items" : [
{
"href" : "http://192.168.1.103:8080/api/v1/hosts/hc2nn.semtech-solutions.co.nz",
"Hosts" : {
"host_name" : "hc2nn.semtech-solutions.co.nz"
}
1
{
"href" : "http://192.168.1.103:8080/api/v1/hosts/hc2rimi.semtech-solutions.co.nz",
"Hosts" : {
"host_name" : "hc2rimi.semtech-solutions.co.nz"
}
1
{
"href" : "http://192.168.1.103:8080/api/v1/hosts/hc2rim2.semtech-solutions.co.nz",
"Hosts" : {
"host_name" : "hc2rim2.semtech-solutions.co.nz"
}
1
{
"href" : "http://192.168.1.103:8080/api/v1/hosts/hc2rim3.semtech-solutions.co.nz",
"Hosts" : {
"host_name" : "hc2rim3.semtech-solutions.co.nz"
}
1
{
"href" : "http://192.168.1.103:8080/api/v1/hosts/hc2rim4.semtech-solutions.co.nz",
"Hosts" : {
"host_name" : "hc2rim4.semtech-solutions.co.nz"
}
}
]
}

If the full list of server names in this output looks correct, I return to the Ambari user interface and manually
register the agent servers. I can see that all of the servers in cluster2 are listed in the output of the curl command just
given. Figure 8-1 shows notification of a successful registration.

229

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

Confirm Hosts

Registering your hosts.
Please confirm the host list and remove any hosts that you do not want to include in the cluster

® Remove Selected Show: ; Instaling (0) | Registering (0) | Success (5) | Fail (0)

]  Host Progress Status Action

] hc2nn.semtech-solutions.co.nz B success & Remove
] hc2rim1.semtech-solutions.co.nz B  Success & Remove
[ bhc2rim2.semtech-solutions.co.nz _ Success & Remove
] hc2rim3.semtech-solutions.co.nz B Success 8 Remove
[[]  hc2rimd.semtech-solutions.co.nz _ Success & Remove

Show:| 25 Er 1-50f5 W € 9 M
5 Other Registered Hosts

ve Click here to

see the warniﬁgs

Figure 8-1. Ambari server registration

I click Next to access the Assign Master window. I keep the default settings here, because the Name Node server
was set as hc2nn and components like Oozie are on a different server, which is hc2rlml. I click Next again to set up
the slaves and clients. As shown in Figure 8-2, this window defines which servers will be data nodes, node managers,
and region servers, and so on. For my configuration, all of the non-Name Node (hc2nn) machines are set as data
nodes and they all have clients.

230

www.it-ebooks.info


http://www.it-ebooks.info/

Assign Slaves and Clients

Assign slave and client components to hosts you want to run them on.
Hosts that are assigned master components are shown with #_
“Client” will install HDFS Client, MapReduce2 Client, YARN Client, Tez Client, Hive Client, HCat, HBase
Client, Pig, Sqoop, Oozie Client, ZooKeeper Client and Falcon Client.

Host

all | none all | none
hcZnn.semtech-solutions... ] DataNode [ NodeManager
he2rim1.semtech-solutio... #  [7] DataNode [¥]NedeManager
hc2rim2.semtech-solutio... = [V DataNode (¥ NedeManager
he2rim3.semtech-solutio... [¥] DataNode  [¥] NedeManag
hc2rimd. semtech-solutic.. [#] DataNode  [#] NodeManager

— Back

Figure 8-2. List of Ambari slaves and clients

all | none all | none

| RegionServer  [¥] Superisor
[¥] RegionServer [T Supenvisor
71 RegionServer  [7] Supenisor
7] RegionServer  [7] Supenisor

7] RegionServer  [7] Supenisor

all | none

[¥] Client
[ Client
[#] Client
[#] Client

¥ Client

CHAPTER 8 © CLUSTER MANAGEMENT

Clicking Next once more brings me to the Customize Services window, where I again use the defaults. Here also I
can specify the passwords for the databases and monitoring. I specify passwords for Hive and Oozie, as well as a Nagios
monitoring admin password and email address. I click Next to proceed to the Review Configuration window, as shown
in Figure 8-3. At this stage, I am able to check the configuration that is going to be installed on my Hadoop cluster.

Review

Please review the configuration before installation

Admin Name : admin

Cluster Name : cluster2

Total Hosts - 5 (5 new)
Repositories
redhat5 (HDP-2.1)

http://public-repo-1

com/HDP/

redhat5 (HDP-UTILS-1.1.0.17).
http:/fpublic-repa-1.hortonworks.com/HDP-UTILS-1.1.0.17/repos/centos5

redhaté (HDP-2.1)

5/2 xw/updates/2.1.3.0

http://public-repo-1.

com/HDP/

radhat6 (HDP-UTILS-1.1.0.17)
http://public-repo-1 hortonworks.com/HDP-UTILS-1.1.0.17/repos/centos6

suse11 (HDP-2.1)

tos6/2. 214.0

http:/fpublic-repo-1.hortonworks com/HDP/suse 11/2 x/updates/2.1.3.0

susell (HDP-UTILS-1.1.0.17)
http://public-repo-1.hortonworks.com/HDP-UTILS-1.1.0.17/repos/suse 11

Services

~— Back

Figure 8-3. Ambari window for reviewing the configuration

www.it-ebooks.info

231


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

I take the time to go through the configuration list to be sure that I am happy both with what is going to be
installed and with the servers on which everything will be installed.

In the Review Configuration window, I click Deploy to move to the next page. The next window gives me a list
of components that will be installed. I select Next to start the installation, which takes around 30 minutes. Figure 8-4
shows the results of the successful installation.

Install, Start and Test

Please wait while the selected senices are installed and started.

Ecccccmccccccsniiiiiii& 100 % overal

Show: EANEN| In Progress (0) | Warning (0) | Success (5] | Fail (0}

Host Status Message
hc2nn.semtech-solutions.co.nz — 100% Success
he2rim1.semtech-solutions.co.nz B 100% Success
he2rim2.semtech-solutions.co.nz B 100% Success
he2rim3.semtech-solutions.co.nz B 100% Success
he2rimd.semtech-solutions.co.nz — 100% Success

5 of 5 hosts showing - Show Al Show:| 25 EI 1-50f§ H & 3 N

Successfully installed and started the senices.

Figure 8-4. Ambari announcement of installation success

From the Install, Start and Test window I click Next to access the Ambari dashboard. The dashboard provides a
visual overview of the Hadoop cluster, showing the services available and the state of resources in the cluster.
Figure 8-5, for example, displays the dashboard’s Metrics tab.

232

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

N Ambari cluster2 {Eeg Dashboard G . Tobs Admir

® HDFS Metrics~  Heatmaps
@ YARN
HDFS Disk Usage DataNodes Live HDFS Links Memory Usage Network Usage
© MapReduce2
O Tez ' NameNode IJ— 14.0 MB
- secondary Namellode
© HBase T% 4}!4 “°: ry HameNode ﬁ-’_’
Datalodes
@ Hve Pm—— e —
@ WebHCat
© Falcon CPU Usage Cluster Load NameNode Heap NameNode RPC NameNode CPU
@ Storm [ 100% ' wio I
@ Oozie 50 |,
\ ool 4% 0.25 ms 53%
© Ganglia ;aqﬁﬁ :
@ MNagios T = ) "
@ ZooKeeper
ol Ba NameNode Uptime HBase Master Heap HBase Links HBase Ave Load HBase Master Uptime
8 PFig
8 Sqoop HBase Master
44.9 min 1% SR 3 43.5 min
Actions ~ Master Web Ul
More... =
ResourceManager ResourceManager NodeManagers Live YARN Memory Supervisors Live
Heap . Uptime
2% 39.3 min 4/4 0% 1M1

Figure 8-5. Ambari dashboard

The dashboard is the cluster manager home page, and the black menu bar at the top of the page allows me
to select the Dashboard, Services, Hosts, Jobs, or Admin functions. The service list on the left side of the display
allows me to access service-specific details—for example, HDFS. The dashboard display has two tabs—Metrics and
Heatmaps—each of which I will examine shortly. For instance, the Metrics window basically shows the state of the
cluster’s resources.

Clicking one the resource icons provides me with a larger, more detailed display of that cluster resource type. For
instance, I click CPU Usage and get the results shown in Figure 8-6. Specifically, what Figure 8-6 shows is CPU usage
for the last hour. The display is color-coded, with a corresponding key; in this instance, user CPU usage exceeds that
of system usage. It also shows that the cluster resources are being under-utilized, as CPU usage rarely exceeds 50
percent. Also, there is a table of minimum, average, and maximum CPU values for each category. I click OK to close
that display.

233

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

CPU Usage

Last 1 hour
100% -

Figure 8-6. Ambari dashboard showing CPU usage

Clicking the Heatmaps tab at the top of the dashboard yields a color-coded display for the Hadoop cluster state
for a given metric—in this instance, it is disk usage, as shown in Figure 8-7.

© HDFS Metrics ~ Heatmaps

© YARN
@ MapReduce2

Select Metric... Host Disk Space Used %

o Tez B 2% Default Rack
20% - 40%
40% - 60%

R B so%-a0%

© WebHCat B oo -100%

© Falcon 8 reccon
Not Applicable

© Storm

@ Oozie Maximum:

@ Ganglia 100 %

@ Nagios

@ ZooKeeper

o Pig

0 Sqgoop

Actions =

Figure 8-7. Ambari Heatmap display

234

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

The cluster that has been installed has a single server rack called “rack 1.” In Figure 8-7, this is represented by the
five green bars in “Host Disk Space Used %.” Each bar represents a server in the rack. If there were more servers and more
racks, there would be more rows of colored bars. Green represents a good state, while red would represent a problem.

The color-coded key on the left gives the meaning of the color state in the display. In this case, the key presents
disk space usage and it warns when the disk space becomes low on each server.

There is a drop-down menu on the top left of the display so that different Hadoop cluster metrics can be
examined—for instance, memory.

Clicking Services or Hosts in the top bar (next to Dashboard) enables you to see the cluster state from a service or
server point of view. For example, by selecting an individual server, such as the Name Node, in the Hosts interface,

I obtain a detailed view of the state of the Name Node server, as shown in Figure 8-8.

'. Ambari  cluster2 {iliEg Hosts LSS N

@ he2nn.semtech-solutions.co.nz [[EEH

€ Back
Summary ~ Configs ey
Components + Add Host Metrics %
@ DRPC Server / Storm Started - T 100%
@ Ganglia Server / Gangliz Started hd
" 186.2 GB

@ Active HBase Master / HBase Started - 50%
@ MNagios Server J | Started - MM
@ NameNode / HOFS Started = CPU Usage Disk Usage
© Nimbus [/ Storm Started - M—k_\__
© Storm REST API Server / Storm Started - l i |

20 i N
@ Storm Ul Server / Storm Started = " A | bl
© ZooKeeper Server / ZooKeeper Started - ‘_‘_M}':d
© Ganglia Monitor / Ganglia Started - ko] Memory /ssge
@ Supervisor / Storm e

DI * 195.3 KB

Clients / Falcon Client , HBase Client Installed -
HCat , HDFS Client , Hive 500
Client , MapReduce2 Client W
Oozie Client , Pig , Sqoop WW

Tez Client , YARN Client

Zookeeper Client j Metwork Usage Processes

Figure 8-8. State of Ambari server

Figure 8-8 indicates that the system CPU (blue) on the top left graph is spiking to 100 percent. Also, it shows that
memory usage for processes and disk usage seems to be high. I'm not worried about this, though, as I know that my
cluster is a little under-powered, especially where memory is concerned. However, if you see graphs maxing out like
this on your own cluster, you may need to invest in extra resources or examine the cluster loading.

Clicking Admin in the top menu bar will allow you to access the administration functions within Ambari, thus
enabling you to examine users, high availability, the cluster, security, and access.

Finally, from the Dashboard you can also access user interfaces via links for such components as the Name Node,
Resource Manager, HBase, Storm, Oozie, Ganglia, and Nagios by using the menu on the left of the screen. Many of
these interfaces are familiar because I've covered them in earlier chapters of this book; it's just that Ambari brings
them all together in one place. For example, Figure 8-9 illustrates how the Resource Manager user interface lists
successful jobs that have completed.

235

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

@hﬂdﬂﬂp All Applications B

* Cluster Cluster Mefrics
Aboul

Applications 4 o o
HEY

™
=)

State o

ambari-ga  weed eount detault FINISHED ~ SUCCEEDED History

acanon_14 7 3 ambarga PgLaINPYSMOKESh MAPREDUCE defaul  Sal Z3AN)  Sal 23Au3  FINISHED SUCCEEDED History
2014 2014
+ Tools 231am 231419 GMT

apghcation 1408834703548 0002 ambari-ga MAPREDUCE detaun FINISHED SUCCEEDED History
144 5l 1 ambar-ga MAPREDUCE default Sat, 23 Aug FINISHED SUCCEEDED History
2014
230629 GMT

Showing 1 10 4 of 4 enlries.

Figure 8-9. Ambari Resource Manager user interface

That completes this short introduction to Ambari. Given that Ganglia and Nagios monitoring systems were
discusssed in Chapter 7, the Ambari displays should look familiar. That’s because Ambari uses Nagios and Ganglia for
its cluster manager graphs and alerts. In summary, Ambari can help you to install your cluster and provide automatic
monitoring. It can also provide quick access to the web-based user interfaces of the Hadoop components.

Ambari is used for the Hortonworks Hadoop stack, but if you want to use the Cloudera stack, what does that
cluster manager look like? Well, Cloudera has developed its own cluster manager application, which I demonstrate
next. To avoid any conflict between installations, however, I need to reinstall CentOS Linux on all of my cluster2
servers so that they provide a clean base from which to install the next cluster version.

The Cloudera Cluster Manager

In this section I take a look at the Cloudera cluster manager for CDH5. As mentioned in this chapter’s introduction,
both Ambari and the Cloudera cluster managers automate the installation and management of the Hadoop stack.
They also both provide a means for future software updates to be automated. So if you plan to install Hortonworks,
choose Ambari; if you want Cloudera’s releases, choose the Cloudera cluster manager.

Installing Cloudera Cluster Manager

For this example, I use the same 64-bit cluster of machines with 2 GB of memory, but I increase the Name Node
machine’s memory to 4 GB because the Cloudera cluster manager, especially the name node, needs more memory to
avoid swapping. As with the installation of Ambarij, I reinstall Centos 6 onto the servers so that the machines are fresh
and free of conflict. Unless otherwise stated, the work is executed as the root user.

You can download the enterprise Cloudera manager binary installer from the Cloudera website at waw.cloudera.
com/content/support/en/downloads/cloudera_manager.html. For this example, I store the installer in /tmp on the
Name Node machine hc2nn:

[root@hc2nn tmpl# pwd
/tmp

[root@hc2nn tmpl# 1s -1 cloudera-manager-installer.bin
-IwW-r--r--. 1 root root 510569 Aug 30 19:11 cloudera-manager-installer.bin

236

www.it-ebooks.info


http://www.cloudera.com/content/support/en/downloads/cloudera_manager.html
http://www.cloudera.com/content/support/en/downloads/cloudera_manager.html
http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

I make the binary executable using the Linux chmod command:
[root@hc2nn tmp]# chmod 755 cloudera-manager-installer.bin

[root@hc2nn tmp]# 1s -1 cloudera-manager-installer.bin
-IWXT-Xr-x. 1 root root 510569 Aug 30 19:11 cloudera-manager-installer.bin

Before running the installation, I disable SELinux on each server and reboot the server. I do this as the root user:
vi /etc/selinux/config

I set the SELINUX value to “disabled”:
SELINUX=disabled
[root@hc2nn tmpl# reboot

Then I execute the Cloudera manager binary and follow the prompts until I can access the installation web
browser at http://hc2nn:7180/. Ilogin as the user admin with a password of “admin” to see a list of the packages
that I can install. I click Continue.

At the next page, I enter the fully qualified domain names (FQDN) hostnames on which I intend to install, in the
form as follows:
hc2nn.semtech-solutions.co.nz hc2nn

192.168.1.103

Then I click the Search button to allow the manager to obtain details about the servers. When the servers are
located, I see “host ready” messages similar to those shown in Figure 8-10.

Suppert= 1 admin

Specify hosts for your CDH cluster installation.

Hosts should be specified using the same hosiname (FQDN) that they will KIentify Ihemseives with
Cloudera recommends including Cloudera Manager Server's host. This will also enable health monitoring for that host

Hint: Search for hostnames and/or IP addresses using patiems &

5 hosts scanned, 5 running 534

Expanded Query

NE2nn semiech-solutions.co.nz
ne2rimi semiech-solutions.co.nz
he2rim2 semtech-solutions.co.nz
NE2r1M3. SeMmiEch-SoUlions.co.nz

ne2rimd semiech-solutions co.nz

Hostname (FQDN)
hcZnn semiech-solulions co.ng

hc2rim1 semiech-solutions co.nz
hc2rim2. semtech-solutions co.nz.
NCZr1m3. SemieCn-Sotons Co.NZ

he2rimd semisch-solulions. conz

IP Address
192.168.1.1
192.168.1.1
192.168.1.1
192.168.1.1

192.168.1.1

Currently Managed Result

No +/ Host ready: 0 ms response tme.
No  Host ready: 1 ms response time.
No + Host ready: 2 ms response time.
No  Host ready: 2 ms response tme.
No  Host ready: 1 ms response time

Figure 8-10. List of Cloudera installation hosts

237

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

I click the Continue button to move to the Select Repository page and choose the installation method,
packages, or parcels (advised). Here, I can also specify the version of CDH to install and any extra parcels, such as
Accumulo. Figure 8-11 shows this repository, with additional parcels like Accumulo and Sqoop to be chosen for
installation, if needed.

Select Repository

Cloudera recommends the use of parcels for installation over packages, because parcels enable Cloudera Manager to easily manage the software on your cluster, automating the
deployment and upgrade of service binaries. Electing not to use parcels will require you to manually upgrade packages on all hosts in your cluster when software updates are
available, and will prevent you from using Cloudera Manager's rolling upgrade capabilities

Choose Method Use Packages @

o

Use Parcels (Recommended) @  More Options

Select the version of CDH

& CDH-5.12-1.cdh5.1.2.p0.3
CDH-4.70-1.cdh4.7.0.p0.40

Additional Parcels @& ACCUMULO-16.0-1.cdh5.1.0.p051
ACCUMULO-1.4.4-1.¢dh4.5.0.p0.65
None

SQOO0P_NETEZZA_CONNECTOR-1 2c5
@ None

SQOO0P_TERADATA_CONNECTOR-1.2¢5
@ None

Select the sg of the CI Agent you want to install on your hosts.

@ Matched release for this Cloudera Manager Server
Custom Repository

Figure 8-11. Cloudera selection repository

I choose to install CDH 5.1.2, as shown in Figure 8-11.1had already installed CDH 4 in Chapter 2, so that
installing CDH5 with the cluster manager is a progression from that previous work.

I click Continue once more, and consider enabling Java encryption. In this example, I leave my installation as the
default option without encryption, simply by clicking Continue to move on.

At the next cluster installation page, which has the title “Provide SSH Login Credentials,” I enter my installation
login credentials. I choose to use the root user and enter the user's password. This time when I click Continue the
actual installation of the Cloudera agent and server modules begins. Banners indicate both the overall progress and
the individual progress per server. Figure 8-12 shows a successful installation. I click Continue again to move on to
installing the selected parcels.

238

www.it-ebooks.info


http://www.it-ebooks.info/

cloudera

Cluster Installation

Installation completed successfully.

CHAPTER 8 © CLUSTER MANAGEMENT

Support~ 4 admin

5 of 5 host(s) completed successfully.

Hostname

hc2nn semtech-solutions conz

Rc2rimi. semtech-solutions.co.nz

he2rim2 semtech-solutions co.nz

hc2rim3. semtech-solutions co.nz

hc2rimd semtech-solutions co.nz

W Back

IP Address
102.168.1.103

192.168.1.105

192.168.1.108

192.168.1.109

192.168.1.110

Progress Status

O successt
D -/ instaliation completed successfully.
N / instaliation completed successfully.
N
N instaliation completed successfully.

[1]2]5]4]5]6]

Figure 8-12. Notification of successful Cloudera installation

L]

Details

L]

Details

o

Details

After each parcel is downloaded, distributed, and activated, my page looks like that shown in Figure 8-13.

cloudera

Cluster Installation

Installing Selected Parcels

The selected parcels are being downloaded and installed on all the hosts in the cluster.

ACCUMULO 1.6.0-1.cdh5.1.0.p0.51

Downloaded

Support- 4 admin

CDH 5.1.2-1.cdn6.1.2.p0.3

Actvated

Downloaded

Distributed

Actvated

W Back

Figure 8-13. Notice of successful parcel installation

www.it-ebooks.info

M Continue

239


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

After I click Continue, the manager carries out a host inspection to determine whether there are any problems
with the server. If there are none, I click Finish to advance to the first page of the cluster setup, as shown in Figure 8-14,
where I then choose the CDH services to be installed. I choose to install Core Hadoop to reduce the load on my servers,

then click Continue.

Cluster Setup

Choose the CDH 5 services that you want to install on your cluster.

Choose a combination of services to install
@ Core Hadoop
HDFS, YARN (MapReduce 2 Included), ZooKeeper, Oozie
Core with HBase
HDFS, YARN (MapReduce 2 Included), ZooKeeper, Oozie
Core with Impala
HDF3, YARN (MapReduce 2 Included), ZooKeeper, Oozie
Core with Search
HDFS, YARN (MapReduce 2 Included), ZooKeeper, Oozie
Core with Spark
HDFS. YARN (MapReduce 2 Included), ZooKeeper, Oozie
O All Services
HDFS. YARN (MapReduce 2 Includad), ZooKeeper, Oozie
Custom Services

Choose your own senvices. Services required by chosen services will

Hive

Hive

Hive

Hive

Hive

Hive

Hue

Hu

M

Hue

Hue

Hue

Hue

and Sqoop

Sqoop, and HBase

Sqoop, and Impala

Sqoop, and Solr

Sqoop, and Spark

Sqoop, HBase, impala. Solr, Spark, and Key-Value Store Indexer

automatically be included. Flume can be added after your initial cluster has been set up

This wizard will 2lso install the Cloudera Management Service. These are a set of components that enable monitoring, reporting, events, and alerts; these components require
databases to store information, which will be configured on the next page

Include Cloudera Navigator

W Back

Figure 8-14. CDH service installation

Next, I assign the roles that determine where the services will run. For instance, I remember that ZooKeeper
needs a quorum of instances and that it must be an odd number of instances so they can vote successfully. Figure 8-15
shows my assignments. I then click Continue.

240

www.it-ebooks.info


http://www.it-ebooks.info/

Cluster Setup

Customize Role Assignments

CHAPTER 8 © CLUSTER MANAGEMENT

You can customize the role assignments for your new cluster here, but if assignments are made incorrectly, such as assigning too many roles to a single host. this can impact the
perfarmance of your services. Cloudera does not recommend altering assignments unless you have specific requirements, such as having pre-selected a specific host for a specific role

You can also view the role assignments by host

@ HDFS

Il nameNode = 1 New

hc2nn hc2nn he2nn
[ NFs Gateway M DataMode = 4 New

Select hosts he2rim[1-4] =
‘& Hive

G Gateway = 5New HuS Hive Metastore Server x 1 New

he2nn; he2rimi1-4] hc2nn hc2rimi =
¢ Hue
IEEH Hue Server = 1 New

hcznn
[ cloudera Management Service

(1]2]3]4]s]6)

M Back

dd-senvices/index®

Figure 8-15. CDH role assignments

B secondaryNameNode = 1 New

Il Batancer = 1 New

wHes WebHCat Server = 1 New

B HtpFs = 1 New
he2rimi =

Hs2 HiveServer2 = 1 New

hc2nn

M Continue

On the subsequent Database Setup page (Figure 8-16), I choose whether to use the default embedded database
(my choice) or to specify a custom database. After testing that the connections are successful, by clicking the Test

Connections button, I click Continue.

www.it-ebooks.info

241


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

Cluster Setup

Database Setup

Configure and test database connections. If using custom databases, creale the databases first according o the Installing and ©

the Installation e

Use Custom Databases
@ Use Embedded Database

When using the embedded database, passwords are automatically generated. Please copy them down

Activity Monitor

Currently assigned to run on he2nn

Database Host Name:

Reports Manager

Currently assigned to run on hcznn
Database Host Name:

Hive

Database Host Name:

H Back

ing an D section of
/' Successful
CO.NZ.
Database Type: Database Name : Username: Password:
PostgreSQal
 Successful
€0.nZ
Database Type: Database Name : Username: Password:
PostgreSQL
./ Skipped. Cloudera will create this database in a later step.
Database Type: Database Name : Username: Password:
PostgreSQL
1]2]3]4]5]6]

Figure 8-16. Setting the CDH database connections

At this point I'm given an opportunity to review the changes that will be made. I am happy with them, so I click
Continue to install the cluster services. The Cluster Setup page lets me monitor the progress, as shown in Figure 8-17.
When timeouts occur because there’s a shortage of memory on the name node (as happens to me), I click Retry. Once
the installations are complete, I click Continue.

242

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Cluster Setup

Progress '
Command Context Status Started at Ended at
£ First Run In Progress Aug 30, 2014 9:46:01 PM NZST

Command Progress

Compieted 3 of 24 steps

&/ Creating HOFS Amp directory
HOFS directory ftmp already exists.

Details

J Execute command CreateSparkUserDirCommand on service Spark
Successfully created Spark HDFS user directory.

Details &

of Execute command CreateSparkHistoryDirCommand on service Spark
Successfully created Spark Application History directory.

Details &

Execute command SparkUploadJarServiceCommand on service Spark
staming Spark Service

Crealing MR2 job history directory

Creating NodeManager remote application log directory

Starting YARN (MR2 Included) Service

(1]2]3]4]s]6)

K Back M Centinue
Figure 8-17. Monitoring the CDH cluster service installation

Running Cloudera Cluster Manager

When the service installation is completed, I will see the Cluster Manager home screen (Figure 8-18). If I compare
this to the Ambari home dashboard, I can see that the general approach is similar. Each cluster manager has a menu
of services on the left of the display. Each supplier offers a slighty different list of products, though. For instance, the
Ambari service list shows Tez, Falcon, Ganglia, and Nagios; the Cloudera list shows Hue. Both displays offer service
graphs intended to show the state of resources—that is, memory, disk, and CPU.

243

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

cloudera Home Clustors = Hests Diagr \udite Charts ~ Backup = Admi ion = G m{-uppc‘n- 4 admin -
30 minutes preceding September 2 2014, 7:13 PM NZST
Home Staws Al Health issues [TE] Al Configuration Issues 3] All Recent Commands Add Cluster
© Cluster 1 - Charts 20m 1h 2h 6h 12h 1d 7d 30d @~
o = * Cluster CPU Cluster Disk 10 Cluster Network 10
® BQHOFS o CB - percent bytes /secand bytes | second
o W B = f
o = \
o - UNIAL u ) A
@ -
@ o E -
® iz . s 10
byles / second

Cloudera Management Service

@ [ cCioudera Mana -

bem b

Figure 8-18. Cloudera manager’s home page

I now progress through some of the Cloudera cluster manager screens to demonstrate its functionality.
Like the Hue application, the Cloudera cluster manager has an HDFS browser, shown in Figure 8-19. To access it,
you click the HDFS service on the left of the home page and select the Browse File System option.

Home Clusters ~ Hosts Diagno: Audits Charts - Backup - Administration BG} _ Suppert~ 4 admin

Search Files and Manage Directories ( HDFS ) @

user
Hame * Parent Owner Group Permissions File and Directory Count Disk Space
sty i ser mapred hadoop drwrwicrwn 3 0B @ Manage Quota
e W yser hive hive drwncrwncra 2 0B & Manage Quota
- hue hue A 45 06 @ Manage Quota
- oo o yser oozie oozie drwncrwier-c 204 A906ME g Manage Quota
o s sq00p2 sqoop drwaxrwier-x 0 0B @ Manage Quota

n Directories highlighted with this icon in the first column will be indexed and usage data will be shown in the Current Disk Usage By Directory and Historical Disk Usage By Directory repor

Figure 8-19. Cloudera manager HDFS Browser

Within the HDFS browser, you can navigate to file system elements by clicking them; the browser then displays a
long list of file system details, including the object name, parent details, owner, group, permissions, an object count,
and storage. Here, you can also specify quotas that allow you to set file or disk space limits for HDFS directories.

Selecting the Clusters drop-down menu from the top bar, then choosing Reports, provides a series of pre-defined
reports. For example, Figure 8-20 reports the current disk usage by user.

244

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

hfs
sq00p2
Dewnilcad CSV Downlcad X5

Usor . Bytes
hafs B
heve 0B
hue 0B
mapeed (1:]
ozie 163.5MiB
sq0002 LL:]

Raw Bytos
1
L1:]
[1:
L1:]
4906 MB
L]

Figure 8-20. Reports of Cloudera cluster manager

File ard Directory Count

File and Directory Count
'l

3

45

Beneath Cluster 1 on the left of Figure 8-18 is a list of options like Hosts, HDFS, and Hive. By selecting one of the
service options from this menu, you can see a cluster manager screen that is dedicated to that service. On the screens
for services like HDFS and Yarn, it is also possible to access a Hadoop web-based user interface for those services.

For instance, by selecting the cluster service YARN, followed by the Resource Manager Web user interface option,
you will see the familiar Resource Manager web user interface, as shown in Figure 8-21.

'-@hadamp

= Cluster Clusler Metrics
About Apps Apps Apps Apps Contamers Memory Memory
Hndes Submitied Pending Running Completed Running Used Total
Applications [] o o ] 0B 40468

HEW User Metrics for ar.who
HEW SAVING
SUBMITTED

Apps Supmied  Apps Pendaing  Apps Running  Apps Completed
o o L] o

Nodes of the cluster

0

HNode HTTP Address s
he2rim1 semiech-soulions ¢o nz 8042

he2rim2 semech-soulions co g B042
he2rim3 semiech-soulions co.nz 8042
Iic2rimd semiech-Soitions co Nz 042

ACCERTED
BUMNING =
EINISHED Show 20 [~ ] entries.
EAILED I a5
EALLED Rack 1995 Stete Hode Address
Scheduter defaul  RUNMING  he2rimi semiech-solutons oz 8041
Toal /defaul RUNIING  hczrim2 semiech-solubons co az 6041 o
hek0Ols idefaul RUMIING  hc2rim3 semiech-solutons co Az 6041
idefaul  RUNMING  he2rimd semiech-solubons co.nz 8041
Showing 1 1o 4 of 4 enlries

Figure 8-21. User interface for Cloudera’s Resource Manager

Containers Running  Containers Pending

Memory
Reserved
0B

=

Las! health-update &

2-5p-2014 19.58:48
2-5ep-2014 19.58.36
2-8ep-2014 195842
2-56p-2014 19.5649

Active
Nodes

Legged in as: dr.who

Decommssioned Lost Unnzaitny Hebooied
Modes

Nodes MNedes Nodes
2 2 2 2
Contamers Reserved  Memory Used  Memory Pending  Memoary Reserved
0B Ul:] 0B
Search:
" [t i
Heahreport ¢  Coniainers  MemUsed  Memaval . ,:
o oB 101GB 23040512
o o 1.01 GB 230<anb 1.2
[} 0B 101 GB 230<con5.12
0

0B 1.01 GB 230cdn512

Alternatively, by selecting a service option from the Cluster 1 menu, you can determine the state of that service.
For instance, if you select HDFS, you'll see the resource charts, a status summary, list of health tests, and a health

history, as shown in Figure 8-22.

www.it-ebooks.info

245


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

4 admin

pr 1 4 30 minutes preceding September 2 2014, 7:31 PM NZSTH W | €
B HDFS stws Instances Configuration Commands Audits  File Browser Charts - OCE @actons-
HDF S Summary Charts m Th 2h d 7d 30d =~
Configured Capacity ___ IASCINTIZES HDFS Capacity Total Bytes Read Across Dataliodes
Quick Links Replication , Reports , Browse Fil » NameNode Web Ul (Active] ¢ bytes Eytes / second
Ewvent Search Alerts< |, Critical & , Alle _— 2o
Status Summary . b
SecondaryMametode @ 1 Concerning Health e [N — A
HupFS @ 1.Concerning Health
NameNode @ 1 Concerning Health (Active)
Balansar C Mane Total Bytes Written Across DataNodes Total Blocks Read Across Dataodes
Datahode @ 4 Concerning Health ® o | e Bocks { sscoad
Health Tests Expand 4l e ||I 0.02
+ O 2 conceming = ||||| 0.01
© Namehode summary: he2nn.semtech-solutions.co nz (Availability: Active, Hzalth: Details = R e i -
Conceming). This health test reflacts the health of the active NameNode
O Healthy DataNode: 0. Conceming DataMade: 4. Total Datalade: 4. Percent healthy Details
0.00%. Percent healthy or concerning: 100.00%. Warming threshold: 95.00% Total Blocks Written Across Datalodes Total Transceivers Across Datalodes
» O 5good blocks / second transceivers
Health History oe—
> @ 7.0432PM Namehlode Health Conceming 071 9730 ;
> C 10416 PM HDFS Canary Good E
* C 7:04:05 PM DataNodes Health Good Transceivers Across Dataliodes Packet Ack Round Trip Average Time Acr...
> @ 7.0359PM 1 Became Bad transcevers nanes

1 Became Unknown

Figure 8-22. Status of Cloudera services

Next to Clusters in the top bar is the Hosts option. If you click that, you'll view a clickable list of cluster hosts, as
shown in Figure 8-23. You can add hosts to the cluster on this page, as well as inspect the hosts, assign them to a rack,
or decommission them. You can also start host roles here. Or, you can Click Disks Overview to obtain a detailed list of
disk statuses, as shown in Figure 8-24.

Backup - Ad

HOStS Swius Configuration  Templates Disks Overview  Parcels
Status (Cluster 1) Add New Hests to Cluster  Host Inspector  Re-run Uipgrade Wizard
Fittors B Actices for Selected = Dasplay 25 [« Entries
v SEARCH
* Hame P Roles Load Average Disk Usage Physical Memory Swap Space
@ b 88 192 158.1 103 * 16 Rolefs) 00T 071 0Te 218681200168 15G8I16G8 4121 MBII8GE
@ | 192 158.1 105 3 5 Role(s) 0.00 0.00 000 _ WICEIWNAGE  _ eSL1MBI1EGE 0B/35CH
o | 197 158 1 108 3 & Rala(s) 000 000 000 _ teBcerzTice S545UBI18G8 u8/az08
@ | 192 158.1 109 » 4 Role(s) 0.00 0.02 005 _ 18BGEI2TIGE _ SMIMBIIECE oBaECE
@ 192 168.1. 110 3 4 Fiole(s) 0.00 0.00 0.00 _ :G8Imnace __ SIBMBI14GE 08/38G8

Figure 8-23. List of Cloudera hosts

246

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

cloudera ma
HOStS sisiss  Configuration  Templstes  Disks Overview  Farcels
Disks Overview snowoesaissend Fiter S n
This page grves an overvew of the status of 8l deks n ™ deployment The statatcs exposed mach or buld o hose N festat They are shown n a se'es ¢f hagrams that by defsul cover every physical dmk n the system.
Aduat the and time of the lime b 12 Aee B atalalics At difanent points s tme Specily & fler in the bex 10 bl the daplvyed daia Fer sxample i e the diti for & ARGW INCE acicd Asd e filer 18 JogicalPertition « false and rackId « “racct” Chelt 80 A histogram i dril down and dentity suthers.
Disn 1O Utilizason Dvih Average Gueve Lengty Desk Service Tme Desl Avwmit Time ik Awadt Read Tame
» I u ¥ »
s At Wit Time Ry — LR —— [rp— Totat 10#'3
0
. ] ]

Fead 10F5 Vire KPS Dy Average Request Sioe

»

- 5 =
.:r,.: e ,-..?,.:,.:.,_.:..,_ l-_=.=r

Figure 8-24. Status of Cloudera hosts

Click the Host page’s Parcels option and you'll see the available parcels that can be installed. Parcels are provided
by Cloudera from CDH4. They provide a mechanism for installing software updates without causing down time for
the Hadoop cluster. They are actually a gzipped tar file bundle of software supplied by Cloudera in its own format,
as are many of the downloaded and unpacked releases mentioned in this book. The difference is that Cloudera adds
metadata to the parcel, which is extra information so that the Cloudera manager knows what to do with the parcel.

The Parcels display as shown in Figure 8-25 checks on the availability of new parcels via a menu option.

The release of new software parcels to your cluster then just becomes a cycle of downloading those new parcels,
distributing them to the cluster, and activating them—all accomplished from this single screen. If you remember the
topics in Chapter 2, and all of the effort that went into installing and configuring CDH4, then you'll quickly see how
this software release cycle makes the cluster manager worthwhile.

247

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 = CLUSTER MANAGEMENT

Hosts Swws Conbguration Templates Disks Overview  Parcels
Parcels  Pacel Usage A Edit Setings  © Check for New Parcels
Downloadable Clowdera recemminds the use of parcels for nstallation cvar packages.
bacause parcals enabia Cloudsra Managar 1o aasily manage tha softwarm on
your cluster, sutomating the deployment and upgrade of senace binaries.
SQOOP_METEZA..  SQOOP_TERADA.. ACCUMULD ACCUMULD COH SOLR Elicting not ta usse pascels vl require you to manuall uggrace packages ¢n
12e8 128 10 Lednd 1,050 51 1441 cdhi 5050 85 AT 0108 T 00040 1301 cdd S.0.008

all hasts in your cluster when software updates sro svalable, and will prevent
Aecailable Remately Asailable Remotely Aucailatie Remately Auailable Remotely Avadable Remolely Aoailable Remotely you fom using Cloudera Manager's rolling upgrade capabiities.

A parcel deployment consists of the following steps:
[l Download: A pancel first nesds to be downloaded. After the download is

(1]2]5] aea pee 1] :]5) [ |:]:] complete, the parcel will reside in a local drectory on the Claudera Manager
host
) Distribute: After the parcsl has been downloaded. i will be distributed 1o
all the basts in the cluster and ungacked
MPALA ) Activate: Once dstributed, actvating the parcel pragares it to be used
401 inpalat 4 050 By the cluster aker 3 restart. An upgrade may slso be ascessary before
Availatis Remately aciivation

The Download and Distribution steps can be automated. Chck the Edit
Settings button 1o canigure these.

1]2]5] The parcels available and their versians are determined by what's avilable in
the configured parcel repositories. For example, 10 mnstall a specific version of
COH, chek or Edit Settings and use a repository that contains that version.
Far examgle, hitp /larchive cloudera.com/cdhd/parcels/4.3.1/ contains CDH
4.3.1, whereas hitp. archive. cloudera comvcdhd/parcelsfatest’ contains the
Iatest version of COH &
Cluster 1
CoH SPARK
B43tomer 200 2904 canic05090
Actrated Dstnbuted
LLECSR

aee

Figure 8-25. Parcel installation menu

In the top bar’s Charts menu, you'll also find a Chart Builder option that uses an SQL-like language. With it, you
can build your own reporting dashboard. Figure 8-26 shows a simple example of a dashboard that I've called “My
Dash,” which I built using the following SQL statement:

select jvm_heap_used_mb/1024, jvm_heap_committed mb/1024 where category=ROLE and hostname="hc2nn.
semtech-solutions.co.nz"

0 Chsa Bdar #0130 minutes precoding September 2 2014, 7:26 PMNZSTH W [og <
my dash ——— #AddChan  30m 1h Zh Bh 12 14 Td 30d
= Manage Dashboards

monitse_nn

megatytes me jatyies W my dash = Teganytes megatytes

i
INTSCAVER (heinn semiech-aokons CoAZ). v s » ns DAR A LAl SAREY SORVICLMONTOR (hclnn seetech.s0bions co.nz)

megutytes mezatyes

M B

FOR (c2nn semtech-solisons.co.nz;

AANAGER (hcZnn semtech-solsbions. oo

Figure 8-26. Chart builder for Cloudera cluster manager

248

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Given a few simple SQL-like statements, you can build a highly functional dashboard using the Cloudera cluster
manager. Figure 8-26 shows the resource usage for the cluster server hc2nn, built using that simple SQL statement.
This type of dashboard generation function certainly proves useful for your cluster monitoring and management.

The Cloudera cluster manager and CDH 5 stack offer a great deal more functionality than can be covered in this
single chapter, but it will give you a sense of the services that the program can provide. Indeed, while developing
this book, Cloudera has been my cluster manager for CDH5. For example, Cloudera enabled me to change the
configuration of my cluster when tuning performance. The early-warning orange icons at the top of Figure 8-18
helped me investigate problems as they arose, and so avoid future entanglements. Also, the software parcels were
especially useful when upgrading existing software and installing extra software. As I mentioned earlier, the costs in
terms of licensing are handily offset by the savings in problem solving.

Apache Bigtop

Although not a cluster manager itself, Apache Bigtop aims to simplify installation and integration in its own way.
Specifically, Bigtop is an attempt by the Apache Software Foundation to provide integration and smoke testing of the
Apache Hadoop tool kit in order to provide an integrated Hadoop tool stack. Through Bigtop, Apache selects multiple
Hadoop tools, each with its own release version, and uses a set of automated smoke tests to ensure that the set of
applications works together as a stack. The result is a well-tested, high-quality, stack-based Hadoop product set.
Cloudera has recognized the value that the Apache Bigtop project is adding by basing its CDH releases on the
Bigtop releases. Although Cloudera does its own testing for its CDH releases, that testing is based on a pre-tested
Bigtop Hadoop stack product.
In this section I show how to source the Bigtop software and install it. Given that the smoke tests are part of
the Apache Bigtop build, there isn’t much to see. But I build Bigtop and extract the results of one smoke test as an
example.

Installing Bigtop

To install Bigtop, I obtain the Linux yum repository file so that Bigtop software can be sourced, I run the following
command on each machine in the cluster:

wget -0 /etc/yum.repos.d/bigtop.repo http://archive.apache.org/dist/bigtop/bigtop-0.6.0/repos/
centos6/bigtop.repo

100%[ ============================================>| 172 --.-K/s in Os
2014-08-27 18:30:40 (16.7 MB/s) - “/etc/yum.repos.d/bigtop.repo” saved [172/172]

As for installations of the Ambari and Cloudera cluster managers, I make sure the server has CentOS 6 freshly
installed. Next, I use the Linux yum command to install the components necessary for Bigtop on each machine:

yum install -y git cmake git-core git-svn subversion checkinstall build-essential dh-make debhelper
ant ant-optional autoconf automake liblzo2-dev libzip-dev sharutils libfuse-dev reprepro libtool
libssl-dev asciidoc xmlto ssh curl gcc gcc-c++ make fuse protobuf-compiler autoconf automake libtool
shareutils asciidoc xmlto 1zo-devel zlib-devel fuse-devel openssl-devel python-devel 1libxml2-devel
libxslt-devel cyrus-sasl-devel sqlite-devel mysql-devel openldap-devel rpm-build create-repo redhat-
rpm-config wget

249

www.it-ebooks.info


http://archive.apache.org/dist/bigtop/bigtop-0.6.0/repos/centos6/bigtop.repo
http://archive.apache.org/dist/bigtop/bigtop-0.6.0/repos/centos6/bigtop.repo
http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Now I can install Hadoop. For demonstration purposes, I do only a basic installation to get the name node and
data nodes running. From that point, the installation process is the same as was shown in Chapter 2, but it is sourced
from Bigtop. On the Name Node machine (hc2nn), I install the Name Node and Resource Manager components as the
root user:

yum install hadoop-hdfs-namenode hadoop-yarn-resourcemanager

On the Data Node machines (hc2rlml to hc2rlm4), I install the data node and node manager components as the
root user:

yum install hadoop-hdfs-datanode hadoop-yarn-nodemanager

Now, I set up the configuration on each machine in the cluster under /etc/hadoop/conf. I present the necessary
entries and changes briefly here, but you can find full details in Chapter 2.
I add the following to the core-site.xml file:

<property>
<name>fs.default.name</name>
<value>hdfs://hc2nn:8020</value>
</property>

I then modify the hdfs-site.xml file as follows:

<property>
<name>dfs.replication</name>
<value>2</value>

</property>

<property>
<name>dfs.permissions.superusergroup</name>
<value>hadoop</value>

</property>

<property>
<name>dfs.replication</name>
<value>2</value>

</property>

Next, I add the following changes to the yarn-site.xml file:

<property>
<name>yarn.resourcemanager.address</name>
<value>hc2nn:8032</value>

</property>

<property>
<name>yarn.resourcemanager.scheduler.address</name>

<value>hc2nn:8030</value>
</property>

250

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hc2nn:8031</value>

</property>

<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hc2nn:8033</value>

</property>

<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hc2nn:8088</value>

</property>

<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>

I place the following entries into the slaves file to indicate where the slave data nodes reside:

hc2rimi
hc2rim2
hc2rim3
hc2rimq

To ensure that the Hadoop scheduler is correctly configured, I copy the fair-scheduler.xml file that I created in
Chapter 5 and place it in the configuration directory /etc/hadoop/conf. Now I create the Linux and HDFS file system
locations that are needed by the Hadoop server, and I set their ownership and permissions:

[root@hcinn conf]# mkdir -p /var/lib/hadoop-hdfs/cache/hdfs/dfs/name
[root@hcinn conf]# chown -R hdfs:hdfs /var/lib/hadoop-hdfs/cache/hdfs/dfs/name
[root@hcinn confl# chmod 700 /var/1lib/hadoop-hdfs/cache/hdfs/dfs/name

Iset the JAVA_HOME variable so that the Hadoop server knows where to find Java:
export JAVA HOME=/usx/lib/jvm/java-1.6.0-openjdk.x86_64
As the hdfs user, I format the Hadoop file system without the Hadoop servers running:

[root@hc2nn confl# su - hdfs
-bash-4.1% hdfs namenode -format

Next, I create the directories used by YARN, setting the ownership and group membership to the YARN Linux
user and group:

[root@hcinn conf]# mkdir -p /var/log/hadoop-yarn/containers
[root@hcinn conf]# mkdir -p /var/log/hadoop-yarn/apps

[root@hcinn conf]# chown -R yarn:yarn /var/log/hadoop-yarn/containers
[root@hcinn conf]# chown -R yarn:yarn /var/log/hadoop-yarn/apps
[root@hcinn conf]# chmod 755 /var/log/hadoop-yarn/containers
[root@hcinn conf]# chmod 755 /var/log/hadoop-yarn/apps

251

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Then, I create the file system directories needed for staging. I use chown to set their ownership and group
membership to YARN and the Linux chmod command to set the permissions:

[root@hcinn conf]# mkdir -p /var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir
[root@hcinn conf]# mkdir -p /var/lib/hadoop-mapreduce/jobhistory/donedir

[root@hcinn confl# chown -R yarn:yarn /var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir
[root@hcinn conf]# chown -R yarn:yarn /var/lib/hadoop-mapreduce/jobhistory/donedir

[root@hcinn conf]# chmod 1777 /var/lib/hadoop-mapreduce/jobhistory/intermediate/donedir
[root@hcinn conf]# chmod 750 /var/lib/hhostnameadoop-mapreduce/jobhistory/donedir

After carrying out these configuration file changes on all cluster nodes, I restart the servers using the root
account. On the name node hc2nn, I enter:

service hadoop-hdfs-namenode start
service hadoop-yarn-resourcemanager start

On the data nodes, I enter:

service hadoop-hdfs-datanode start
service hadoop-yarn-nodemanager start

To confirm that Hadoop is up on the new cluster, I access the web interfaces for the name node and Resource

Manager. I find the name node web interface at http://hc2nn:50070/, then I click Live Datanodes to show the list of
active data nodes; Figure 8-27 shows the results.

NameNode 'h¢c2nn:8020'

Started: Fri Aug 20 18:22:55 NZST 2014

Version: 2.0 5-alpha, deeBcfiSdbefb8244d416a3692a558c46744c87c92
Compiled: 2013-06-09T06:06Z by jenkins from (no branch)

Cluster ID: CID-28550072-df2c-4df1-afb4-06b3ad0923d0

Block Pool ID:  BP-76148899-192 168.1.103-1409210010112

Browse the filesystem

NameNode Logs
Go back to DF S home

Live Datanodes : 4

Last Configured Used MNonDFS Remaining Used Used Remaining Block Pool Block Pool
Node ¢ ntact AdminState oo city(GB) (GB) Used(GB)  (GB) (%) (%) (%) Blocks \)ced (GB) Used (%> Blocks ' 2i1ed Volumes
he2rimi 2 In Service 4922 | 0.00 312 4610 | 000 | —i G367 0 0.00 000 0
hc2rim2 2|  InSenice 4922 | 000 312 4610 | 000 | ———— 9367 0 0.00 000 0
he2rim3 2 In Service 4922 | 0.00 312 4610 | 000 | —— 9367 0 0.00 0.00 0
he2rimé 2| nSenice 4922 | 000 EXE 46.10 | 000 | ——— 93.67 0 0.00 000 0

Figure 8-27. User interface for Bigtop name nodes

To access the Resource Manager user interface, you go to http://hc2nn:8088/cluster. Click Scheduler in the
left column to view the fair scheduler configuration on the new cluster, as shown in Figure 8-28.

252

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

'#hadaap NEW,SUBMITTED,ACCEPTED,RUNNING, FINISHING -

« Cluster Cluster Meirics
About Apps Apps Agps App: m U Memory # Los Unheaithy Rebooted
Nodes Pending Running Completed ed o Reserved Node Nodes Nodes Nodes
Applcations [/ 0 '] 1] 0B 0B 1] 2 2 2
HEW User Metrics for drwho
SUBMITTED = . = M i
BCCEPTED Apps Submited  Apps Fending  Apps Running unn ainy i taine v mory Use mory f g Memory ved
BUNNING 0 [ [ o ] 0 08 08 08
EINISHING <
EINISHED Application Queues
EAILED
Ef_%ff}a Legend:  Fair Share Usad Used (over fair share) Max Capacity
Scheduler - Nai%s used
T . Naits used
' Nai%h used
v NaN% used
Show 20 [+ entries Szarch

hare e StartTime: - FinishTime: State < FinalStatus ke Progre:

- Tracking U
Mo dala availadle in tadle

Showing 0 100 of O entries.

Figure 8-28. User interface for Bigtop Resource Manager

Running Bigtop Smoke Tests

You can use Bigtop to quickly install a complete stack of Hadoop software if you don’t want to use a cluster manager
or a stack-based Hadoop release from one of the major suppliers. Even if you never plan to use Bigtop yourself, it is
worth understanding how it works, because major Hadoop vendors like Cloudera use it.

To execute an Apache Bigtop smoke test as my example, I first install Apache Maven, which is used to build and
run the tests.

Note For full details on smoke tests, consult the Apache Bigtop website at http://bigtop.apache.org.

I then download the tar and zipped Maven package to /tmp on the server hc2nn by using a wget call to download:

root@hc2nn tmp]# cd /tmp

[
[root@hc2nn tmp]# wget http://supergsego.com/apache/maven/maven-3/3.2.3/binaries/apache-maven-
3.2.3-bin.tar.gz

Iunzip the package as the root user and unpack it using the tar command:

[root@hc2nn tmpl# gunzip apache-maven-3.2.3-bin.tar.gz
[root@hc2nn tmpl# tar xvf apache-maven-3.2.3-bin.tar

Now, I move the unpacked Maven directory to /usr/local so that it resides in the correct place and create a
generic symbolic link to point to the release, simplifying the configuration:

[root@hc2nn tmp]# mv apache-maven-3.2.3 /usr/local

[root@hc2nn tmpl# cd /usr/local

[root@hc2nn locall# 1n -s apache-maven-3.2.3 apache-maven

[root@hc2nn locall# 1s -1d apache-maven*

lrwxrwxrwx. 1 root root 18 Aug 30 08:23 apache-maven -> apache-maven-3.2.3
drwxr-xr-x. 6 root root 4096 Aug 30 08:21 apache-maven-3.2.3

253

www.it-ebooks.info


http://bigtop.apache.org/
http://supergsego.com/apache/maven/maven-3/3.2.3/binaries/apache-maven-3.2.3-bin.tar.gz
http://supergsego.com/apache/maven/maven-3/3.2.3/binaries/apache-maven-3.2.3-bin.tar.gz
http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

I alter the Linux PATH variable so the Maven executable can be found from the command line; the type command
shows that it is located under /usr/local/apache-maven/bin/mvn.

export PATH=/usr/local/apache-maven/bin:$PATH

[root@hc2nn tmpl# type mvn
mvn is /usr/local/apache-maven/bin/mvn

I check the Maven version to ensure that Maven is running without fault:

[root@hc2nn tmpl# mvn -version
Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4; 2014-08-12T08:58:10+12:00)

Now, I set up some variables for the tests to define various Hadoop component paths:

export JAVA HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64
export HADOOP_HOME=/usr/1lib/hadoop

export HADOOP_CONF_DIR=/etc/hadoop/conf

export ZOOKEEPER_HOME=/usx/lib/zookeeper

export PIG HOME=/usr/1ib/pig

export HADOOP_MAPRED HOME=/usr/1ib/hadoop-mapreduce

I have Hadoop and Pig installed for this example, but if you wanted to determine which other components were
available for installation—say, Sqoop—you could use the yum 1ist function, like this:

[root@hc2nn bigtop-tests]# yum list available | grep sqoop

hue-sqoop.x86_64 2.5.1.5-1.el6 Bigtop
sqoop.noarch 1.99.2.5-1.el6 Bigtop
sqoop-client.noarch 1.99.2.5-1.el6 Bigtop
sqoop-server.noarch 1.99.2.5-1.el6 Bigtop

To run the tests, I first install the test artifacts using the Maven (mvn) install command as root:
cd /home/hadoop/bigtop/bigtop/bigtop-tests/test-artifacts/
mvn -f pom.xml install

Ilook for the success banner to indicate that there are no errors:
INFO] BUILD SUCCESS

INFO] Finished at: 2014-08-30T08:44:38+12:00
INFO] Final Memory: 20M/129M

[

|

[INFO] Total time: 08:26 min

[

[

150

254

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Now, Iinstall the configuration components using the same Maven command and look for the same indication of
success:

cd /home/hadoop/bigtop/bigtop/bigtop-tests/test-execution/conf
mvn -f pom.xml install

15073
[INFO] BUILD SUCCESS
1500
[INFO] Total time: 22.638 s

[INFO] Finished at: 2014-08-30T09:14:46+12:00

[INFO] Final Memory: 13M/112M
15073

Finally, I install the common component in the same way:
cd /home/hadoop/bigtop/bigtop/bigtop-tests/test-execution/common

mvn -f pom.xml install
INFO] BUILD SUCCESS

[
[
[
[INFO] Total time: 2.301 s
[INFO] Finished at: 2014-08-30T09:15:30+12:00
[INFO] Final Memory: 9M/78M
[INFO] == === = mm oo oo oo o oo oo oo
Now I can finally run the smoke test. I move to the desired location under Smokes and run the Maven verify
command. For my test, I will run the Pig test case:

[root@hc2nn pigl# cd /home/hadoop/bigtop/bigtop/bigtop-tests/test-execution/smokes/pig
[root@hc2nn pigl# mvn verify

Iwon’t reproduce the entire output here, but you can see that it is a series of Hadoop Pig scripts and test results,
like this:

Running org.apache.pig.test.pigunit.pig.TestGruntParser

DUMP output;

A = LOAD 'input.txt' AS (query:CHARARRAY);

STORE output INTO '/path';

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.239 sec

This script shows that five test cases within the Pig test were run with no errors, and it demonstrates, briefly, that I
can source a Hadoop stack from the Apache Bigtop project whose element programs have been integration-tested via
a series of smoke tests.

You can download the Bigtop stack yourself and build it. You can also run the smoke tests on your own servers
to prove that the installation will work. By running the smoke tests in your environment, you can prove that the whole
Hadoop stack provided by the Bigtop project works as expected for you. Check the Apache Bigtop website
(bigtop.apache.org) for further information.

255

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © CLUSTER MANAGEMENT

Summary

Hadoop cluster managers will save you time and effort when you want to both install and upgrade your Hadoop
environments. They automatically create the configuration on each cluster server. They also create a set of
configuration files that are more complete and contain fewer errors than the hand-crafted alternative. Also, cluster
managers offer the ability to globally modify your configuration attributes. The savings in time for that feature alone
are huge if you think about manually changing the configuration files on each server in a cluster of even moderate
size. Although I have examined only the Cloudera and Hortonworks cluster managers in this chapter, others are
available from vendors such as MapR.

In short, the monitoring functionality of the Ambari and Cloudera cluster managers is impressive, and having a
single place to check the state of the Hadoop cluster is very useful.

Although it’s not a cluster manager, I included Apache Bigtop in this chapter for a number of reasons, but mainly
because it is an attempt to integrate and smoke test a complete Hadoop stack. Cloudera uses Apache Bigtop to create
its CDH stacks, for example. Because the work that the Bigtop project is doing is very worthwhile,I think that Hadoop
users should be aware of it.

256

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9

Analytics with Hadoop

Analytics is the process of finding significance in data, meaning that it can support decision making. Decision

makers turning to Hadoop’s data for their answers will find numerous analytics options. For example, Hadoop-based
databases like Apache Hive and Cloudera Impala offer SQL-like interfaces with HDFS-based data. For in-memory
data processing, Apache Spark is available at a processing rate that is an order faster than Hadoop. For those who have
had experience with relational databases, these SQL-like languages can be a simple path into analytics on Hadoop.

In this chapter, I will explain the building blocks of each Hadoop application’s SQL-like language. The actions
you need to take to transform your data will impact the methods you use to create your complex SQL. Just as in
Chapter 4, when I introduced Pig user-defined functions (UDFs) to extend the functionality of Pig, in this chapter I
will create and use a Hive UDF in an example using Hive QL. I begin with coverage of Cloudera Impala, move on to
Apache Hive, and close the chapter with a discussion of Apache Spark.

Cloudera Impala

Released via an Apache license and provided as an open-source system, Cloudera Impala is a massively parallel
processing (MPP) SQL query engine for Apache Hadoop. Forming part of Cloudera’s data hub concept, Impala is
the company’s Hadoop-based database offering. Chapter 8 introduced the Cloudera cluster manager, which offers
monitoring, security, and a well-defined upgrade process. Impala integrates with this architecture, and given that it
uses HDFS, offers a low-cost, easily expandable, reliable, and robust storage system.

By way of example, I install Impala from the Cloudera CDH 4 stack, then demonstrate how to use it via the Hue
application, as well as how to put Impala’s shell tool and query language to work.

Installation of Impala

The chapter builds on work carried out in previous chapters on Cloudera’s CDH 4 Hadoop stack. So, to follow this
installation, you will need to have completed the installation of the CDH4 Hadoop stack in Chapter 2 and of the Hue
application in Chapter 7. I install Impala manually on server hclrlml and access it via the Hue tool that is already
installed on the server hclnn. I choose the server hclrlm1 because I have a limited number of servers and I want to
spread the processing load though my cluster.

So, the first step is to install some components required by Impala, as the Linux root user on the server hclrlml,
by issuing the following Linux yum command. (These components may already be installed on your servers; if so, they
will not be reinstalled. This step just ensures that they are available now):

[root@hciriml ~]# yum install python-devel openssl-devel python-pip

257

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Next, I install a repository file under /etc/yum.repos.d on hclrima1 for Impala, so that the Linux yum command
knows where to find the Cloudera Impala software. The repository file is downloaded from Cloudera's site by using
the Linux wget command:

[root@hciriml ~]# cd /etc/yum.repos.d
[root@hcirimi ~]# wget http://archive.cloudera.com/impala/redhat/6/x86 64/impala/cloudera-impala.repo

I can examine the contents of this downloaded repository file by using the Linux cat command:
[root@hclriml yum.repos.d]# cat cloudera-impala.repo

[cloudera-impala]

name=Impala

baseurl=http://archive.cloudera.com/impala/redhat/6/x86_64/impala/1/

gpgkey = http://archive.cloudera.com/impala/redhat/6/x86_64/impala/RPM-GPG-KEY-cloudera
gpgcheck = 1

Next, I install the Impala components and the Impala shell by using the yum command as the Linux root user:
[root@hciriml ~]# yum install impala impala-server impala-state-store impala-catalog impala-shell

These commands install the Impala Catalogue server, the Impala server, the Impala State Store server, and the
Impala scripting shell. The Impala server runs on each node in an Impala cluster; it accepts queries and passes data to
and from the files. The Impala scripting shell acts as a client to receive user commands and passes them to the server.
Key to making an Impala cluster robust, the State Store server monitors the state of an Impala cluster and manages the
workload when something goes wrong. The Catalog server manages metadata—that is, data about data—and passes
details about metadata changes to the rest of the cluster.

As soon as the software is installed, it is time to configure it. I copy the Hive hive-site.xml, the HBase hbase-site.xml,
and the Hadoop files core-site.xml and hdfs-site.xml to the Impala configuration area, which I find under/etc/impala/conf.
The dot character (. ) at the end of the cp (copy)command is just Linux shorthand for the current directory:

[root@hciriml conf]# cd /etc/impala/conf

[root@hcirimi conf]# cp /etc/hive/conf/hive-site.xml .

[root@hcirimi conf]# cp /etc/hadoop/conf/core-site.xml .
[root@hciriml conf]# cp /etc/hbase/conf/hbase-site.xml .
[root@hciriml conf]# cp /etc/hadoop/conf/hdfs-site.xml .

To specify the host and port number for the Hive metastore thrift API, as well as to specify a timeout value for
access, I make the following changes to the hive-site.xml file in the Impala configuration area:

<!-- impala changes -->

<property>
<name>hive.metastore.uris</name>
<value>thrift://hcirim1:9083</value>
<description>
IP address (or fully-qualified domain name) and port of the metastore host
</description>
</property>

258

www.it-ebooks.info


http://archive.cloudera.com/impala/redhat/6/x86_64/impala/cloudera-impala.repo
http://archive.cloudera.com/impala/redhat/6/x86_64/impala/1/
http://archive.cloudera.com/impala/redhat/6/x86_64/impala/RPM-GPG-KEY-cloudera
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

<property>

<name>hive.metastore.client.socket.timeout</name>

<value>3600</value>

<description>MetaStore Client socket timeout in seconds</description>
</property>

Then, I make the following changes to Impala's copy of the hdfs-site.xml file:
<!-- changes to impala -->

<property>
<name>dfs.client.read.shortcircuit</name>
<value>true</value>

</property>

<property>
<name>dfs.domain.socket.path</name>
<value>/var/run/hdfs-sockets/dn</value>
</property>

<property>
<name>dfs.client.file-block-storage-locations.timeout</name>
<value>4000</value>

</property>

<property>
<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
<value>true</value>

</property>

These changes boost performance with HDFS by bypassing (short-circuiting) the data node and accessing the
files directly. They specify a domain socket path and a block storage location timeout. These changes, including the
core-site.xml change that follows, provide a real performance boost to Impala’s operation. So, I make the following
changes to the Impala’s copy of the core-site.xml file:

<!-- impala changes -->

<property>
<name>dfs.client.read.shortcircuit</name>
<value>true</value>

</property>

If the directory /var/run/hadoop-hdfs/ is group writeable, I make sure that the group is root. To check this, [ use
the Linux 1s command to get a long listing of the directory:

[root@hcirimi ~]# 1s -1d /var/run/hadoop-hdfs/
drwxr-xr-x. 2 hdfs hdfs 4096 Sep 7 09:21 /var/run/hadoop-hdfs/

259

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

The permissions string reads d rwx r-x r-x.The d means “directory,” the first three characters are permissions
for the owner, the next set is the group, and the final set is the world (or everybody else). So, the group membership
string has r-x, or read and execute permissions; it is not writeable by the group because the w character is missing.
Also, the string hdfs hdfs indicates that the directory is owned by the user and group hdfs. When I check, I make sure
that the directory is either group writeable by the Linux root user or is not group writeable.

Now, I create the sockets directory and subdirectory under /var/run as the root user:

[root@hcirimi impalal# mkdir -p /var/run/hdfs-sockets/dn
[root@hciriml impalal# 1ls -1d /var/run/hdfs-sockets
drwxr-xr-x 3 root root 4096 Sep 7 09:58 /var/run/hdfs-sockets

I start the Impala services (the Impala State Store server, the Catalog server, and the Impala server) as root:

[root@hciriml ~]# service impala-state-store start
[root@hciriml ~]# service impala-catalog start
[root@hciriml ~]# service impala-server start

I check the Impala logs under /var/log/impala for errors. Errors can occur because of incorrect configuration
after installation. For instance, if the sockets directory does not exist, the following error message would appear:

E0907 09:49:42.279753 4815 impala-server.cc:208] ERROR: short-circuit local reads is disabled
because
- Impala cannot read or execute the parent directory of dfs.domain.socket.path

Or, if the configuration value dfs.client.file-block-storage-locations.timeout is either not specified or has too small
avalue, the following error message will be issued:

ERROR: block location tracking is not properly enabled because

- dfs.client.file-block-storage-locations.timeout is too low. It should be at least 3000.
E0907 09:49:42.280009 4815 impala-server.cc:210] Aborting Impala Server startup due to improper
configuration

I plan to access Impala via Hue, so on the server hclnn, I need to change the Hue configuration file hue.ini under
/etc/hue/conf so that Hue knows where to find Impala. To do so, I set the server_host value in the [Impala] section of
the file to the host where Impala is running, hclrlm1:
server_host=hcirimi

After making the change, I restart the Hue server on the host hclnn as the Linux root user:

[root@hcinn ~]# service hue restart

The interface is now be ready for use.

Impala User Interfaces

You can access the Impala server user interface via the URL hc1rim1:25000. Figure 9-1 shows a basic example of this
interface. The Impala State Store server user interface resides at port number 25010, and is reached using the URL
hclrlm1:25010. The Impala Catalogue server user interface is on port 25020. All three of these interfaces provide
information such as configuration, log content, metrics, and session. Because I concentrate on Impala’s analytics
functionality using SQL, I only examine the Impala server interface and leave you to investigate the other options.

260

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Version

impalad version 1.4.8-cdh4-INTERNAL RELEASE (build @8fa3466ddE914356494919534641842113953e8)
Built on Mon, 14 Jul 2814 16:88:22 PST

Hardware Info

Cpu Info:

Model: AMD Athlon(tm) 64 Processor 3808+

Cores: 1

L1 Cache: 64.8@ KB

L2 Cache: 512.80 KB

L3 Cache: @

Hardware Supports:
Physical Memory: 2.69 GB
Disk Info:

Num disks 2:

sda (rotaticnal=true)
dm- (rotational=true)

OS Info

0S version: Linux version 2.6.32-431.el6.x86_64 (mockbuild@c6b8.bsys.dev.centos.org) (gecc version 4.4.7 20120313 (Red Hat 4.4.7-4)
(GCC) ) #1 SMP Fri Nov 22 83:15:09 UTC 2013

Process Info

Process ID: 5935

Figure 9-1. Impala server user interface

With the Hue server running and configured to access Impala, you can write Impala scripts from the Query Editor
in the Hue interface, as shown in Figure 9-2. To open it, you use the URL hc1nn:8888; and from Hue, you click the
stylized impala head (fourth icon from the left) in the top icon bar.

261

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Add

7| Enable Parameterization

& Sync tables tips @

(]

Download Save as. Explain orcreate a3 New query

Figure 9-2. Impala scripting via Hue user interface

Uses of Impala

The real power of Impala lies not in its interfaces but in its query language and the options that it provides. For
example, it can access HDFS-based data via external tables, and it offers standard SQL-based operations, such as
filters, table joins, subqueries, inserts, and more. These terms are described next, in a step-by-step manner, and then
their corresponding equivalents are examined for Hive. The database itself is highly scalable and robust, as it is built
on top of HDFS.

At this point I need some data to process, so as to demonstrate Impala’s SQL-based functionality. In Chapter 5,
Iuploaded a series of fuel consumption CSV data files to HDFS, under the HDFS directory /user/hue2/fuel _
consumption/; the Hadoop file system 1s command that follows shows that upload:

[hadoop@hcirimi ~]$ hdfs dfs -1s /user/hue2/fuel_consumption

Found 16 items

-Iw-r--r-- 2 hadoop hue2 248956 2014-09-07 18:17 /user/hue2/fuel_consumption/MY1995-1999 Fuel
Consumption Ratings.csv

-Iw-r--r-- 2 hadoop hue2 45203 2014-09-07 18:17 /user/hue2/fuel_consumption/MY2000 Fuel
Consumption Ratings.csv

Consumption Ratings.csv

-Iw-r--r-- 2 hadoop hue2 77452 2014-09-07 18:17 /user/hue2/fuel_consumption/MY2013 Fuel
Consumption Ratings.csv
-Tw-r--1r-- 2 hadoop hue2 77186 2014-09-07 18:17 /user/hue2/fuel consumption/MY2014 Fuel

Consumption Ratings.csv

262

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Database Creation

To create a database in Impala, I use the CREATE DATABASE command. I enter the following SQL command in Hue’s
Impala Query Editor to create the fuel database:

CREATE DATABASE fuel ;

After clicking the Execute button to form this text, I find that the database drop-down menu on the Hue’s Impala
user interface has a new option: fuel. To use this database in a SQL script, I can now specify the USE option:

USE fuel ;
Alternatively, I could use the database name before the table name, as shown in this SELECT command:

SELECT * FROM fuel.customer ;

External Table Creation

A Hive external table is a table where you specify the location for data storage rather than using the default value. For
example, by using CREATE EXTERNAL TABLE, I can create an external table against an HDFS directory that contains
comma-separated files (CSV). When the table is dropped the data is not deleted. The following code creates an
external table called “consumption” in the fuel database and that table can then be used to investigate trends in
vehicle fuel consumption:

CREATE EXTERNAL TABLE fuel.consumption
(
myear STRING,
manufacturer STRING,
model STRING,
fclass STRING,
enginesz STRING,
cylinders STRING,
transmission STRING,
fuel STRING,
consumption1 STRING,
consumption2 STRING,
consumption3 STRING,
consumption4 STRING,
avefuel STRING,
co2 STRING
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/hue2/fuel_consumption/';

Because a CSV file uses commas as the column separators, the row following the end parenthesis [)] uses a
DELIMITED option to process the data:

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

263

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

This indicates that the columns are delimited by commas, and so the columns in the table will match the
columns in the CSV file. The final line of the command specifies the location of the data, and the table name is
specified in the form database.table (here, fuel.consumption).

When I want to remove a table, I use the DROP TABLE command. For example, I can remove the “consumption”
table from the fuel database as follows:

DROP TABLE fuel.consumption ;

External tables are useful for data feeds based on files. Rather than load the files into a database table, I could can
create an external table against the files. Then the data can be loaded from the external table as an initial step in an
ETL chain before the data is processed further.

Table Creation

The same information can be used to create an internal table with just a few tweaks of the SQL. I simply remove the
EXTERNAL keyword and leave out the DELIMITED and LOCATION options, as follows:

CREATE TABLE fuel.consumption2
(
myear STRING,
manufacturer STRING,
model STRING,
fclass STRING,
enginesz STRING,
cylinders STRING,
transmission STRING,
fuel STRING,
consumption1l STRING,
consumption2 STRING,
consumption3 STRING,
consumption4 STRING,
avefuel STRING,
co2 STRING

);

For instance, to show which tables exist for the fuel database, I can use the SQL SHOW TABLES command:
SHOW TABLES ;

The result is a single row called “consumption.” To examine the structure of a table, I use the DESCRIBE keyword:
DESCRIBE fuel.consumption;

The result now is a series of output data rows that represent the columns in the table:

0 myear string
1 manufacturer  string
2 model string
3 fclass string
4 enginesz string
5 cylinders string
264

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

6 transmission  string
7 fuel string
8 consumptioni  string
9 consumption2  string
10 consumption3  string
11 consumption4  string
12 avefuel string
13 co2 string

The SELECT Statement

The SELECT keyword plucks data from a database table. For example, I can select data from the “consumption” table of
the fuel database. The asterisk (*) indicates that all column data within the table should be selected. (As this example
contains a lot of data, I provide only a couple of rows of the output to give an idea of the results):

SELECT * from fuel.consumption ;

1 1995 ACURA  INTEGRA SUBCOMPACT 1.8 4 A4 X 10.2
7 28 1760 202

2 1995 ACURA  INTEGRA SUBCOMPACT 1.8 4 M5 X 9.6
7 29 40 1680 193

If I need only a portion of the data, I can replace the asterisk (*) with specific columns names, such as “myear”
and “manufacturer”:

SELECT myear, manufacturer from fuel.consumption ;

1 1995 ACURA
2 1995 ACURA

The WHERE Clause

The WHERE clause is used with SELECT, INSERT, and DELETE statements to filter the results of a request. Here are some
examples of SELECT statements with their WHERE clauses serving as filters for obtaining data by manufacturer or year:

SELECT * from fuel.consumption WHERE manufacturer = 'ACURA' ;

SELECT * from fuel.consumption WHERE myear = '1995' AND manufacturer = 'AUDI' ;

SELECT * from fuel.consumption WHERE myear = '1995' OR manufacturer = 'AUDI' ;

The first statement limits the selected rows to those where “manufacturer” is equal to ACURA. The second limits

the selected rows to where “myear” is 1995 and the “manufacturer” is AUDI. The final example limits the selected
rows to where “myear” is 1995 or the “manufacturer” is AUDI.

265

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

The Subquery

SELECT statements can be nested as subqueries. Here are two examples of how that is done. The first is to use a SELECT
statement as a subquery in the FROM clause of an outer SELECT statement, as follows:

SELECT rd.* FROM

(
SELECT
myear ,manufacturer,model,enginesz,cylinders
FROM
fuel.consumption
) 1d;

The outer SELECT statement uses a derived table called “rd” and selects all columns from rd using the column
list rd. *. The contents of the parentheses form the derived table named rd, which uses a subquery that selects the
following five columns from the external table fuel.consumption:

myear,manufacturer,model,enginesz,cylinders

This first example uses a subquery as a way to transform table data to form a derived table. For example, you
might want to filter table data or join a group of tables together to form a larger data set.

The second example uses a subquery in the WHERE clause of an SQL statement. In this manner, an outer SELECT
statement selects all column data (f1. *) from the table fuel.consumption, with a subquery in its WHERE clause to filter
on the engine size. The result is a table showing data for which the engine size is greater than average:

SELECT
f1.*
FROM
fuel.consumption f1
WHERE
fl.enginesz > ( SELECT AVG(st.enginesz) FROM fuel.consumption st )

In this second example, the subquery in parentheses selects the average (AVG) engine size value from
the instance of the fuel.consumption table with an alias of “st” The outer query filters the contents of the fuel.
consumption table with an alias of “fl,” choosing only those rows where the fl.enginesz column is greater than the
average value.

Table Joins

Table joins allow you to join the data in one table to the data in a second table if there are comparable columns in each
table. For instance, the first table could contain a list of people, with each person having a unique identity number.
A second table might contain a list of addresses plus associated personal identity numbers. By joining the two tables
on the identity numbers, you are able to determine a person’s name and address.

The following SQL example selects data from the earlier fuel.consumption table where the columns “myear,’
“manufacturer,” and “model” match another table called fuel.consumption3. Aliases have been used here for the
two tables—rd1 and rd2; this means there’s less typing when you are specifying the table columns and so there’s no

266

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

confusion about which table a column belongs to. The SELECT statement will only output a data row if a matching row

” u

is found on the “myear,” “manufacturer,” and “model” columns of both tables:

SELECT
rdl.*
FROM
fuel.consumption rdi,
fuel.consumption3 rd2
WHERE
rdl.myear = rd2.myear AND
rd1i. manufacturer = rd2. manufacturer AND
rd1l. model = rd2. model

The INSERT Statement

The INSERT statement allows you to insert a single row into an Impala table, or you can combine INSERT with a SELECT
statement to insert multiple rows. These commands are designed to move large data volumes.

In a first example of this command, the INSERT statement inserts a single row into the fuel database table called
consumption2. The number and type of column values specified in parentheses must match the table definition.
Because the data values are strings, they are shown within single quotes:

INSERT INTO fuel.consumption2 VALUES ('1995','ACURA', 'INTEGRA','SUBCOMPACT','1.8','4','A4",
'x',"10.2"','7"',"'28"',"'40","'1760",'202")

Although this single INSERT statement moves a single row of data into the table fuel.consumption2, a second
example offers better performance by using a SELECT statement to populate the table fuel.consumption2 via a bulk
insert:

INSERT INTO TABLE fuel.consumption2 SELECT * FROM fuel.consumption3

This second version is a simple example; no extra filters or table joins have been used. But the size of the subtable
could be large; with a simple statement, you could copy a large volume of data.
Note: When executing an INSERT statement, you may receive an error message similar to the following:

AnalysisException: Unable to INSERT into target table (fuel.consumption2) because Impala does not
have WRITE access to at least one HDFS path: hdfs://hcinn/user/hive/warehouse/fuel.db/consumption2

This error occurs if the referenced database and/or table name on HDFS is not owned by the HDFS impala user.
To fix this, you change the ownership with a statement like the following:

[hadoop@hcirimi ~]$ hdfs dfs -chown -R impala:supergroup /user/hive/warehouse/fuel.db/

When run as the hadoop user, this statement recursively changes ownership of the HDFS fuel.db directory to the
impala user and changes the group to a supergroup. Then, you drop the table and re-create it to update the Impala
metadata for the table. After these steps, your INSERT statement should work.

This has been a very short introduction to Cloudera Impala SQL. For full details, check the Impala web site at
http://www.cloudera.com/content/cloudera/en/documentation/cloudera-impala. Additionally, try to create your
own SQL statements by joining these simple building blocks. For instance, you can create SELECT statements with
WHERE clauses. And you can add table joins to your SQL statements and consider adding subqueries.

267

www.it-ebooks.info


http://www.cloudera.com/content/cloudera/en/documentation/cloudera-impala
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Apache Hive

Like Cloudera Impala, Apache Hive offers an SQL-type language called Hive QL that can be used to manipulate Hive-
based tables. The functionality of Hive QL can be extended by creating user-defined functions (UDF), as you'll see in
an example shortly.

In this section, I use Hive version 0.10, which was installed in Chapter 7 along with the Hue application. As you
remember, Hue was installed on the server hclnn and has the URL http://hcinn:8888/. Though I don’t mention
Hue again in this chapter, I use the Beeswax Hive user interface to enter the scripts at the Hue URL. Here, I walk you,
step by step, through table creation, SELECT statements, joins, and WHERE clauses. To make the examples a bit more
interesting, I have sourced some real UK trade CSV files to use as data.

Note For more information and in-depth documentation on Hive and Hue, see the Apache Hive website at
hive.apache.org.

Database Creation

To begin the example, I create a database to contain this Hive work, using the CREATE DATABASE command. I name the
database and specify to create it only if it does not already exist:

CREATE DATABASE 1IF NOT EXISTS trade;
I set the current database with the USE command; in this case, I set it to trade:

USE trade;

External Table Creation

External tables are a useful step in an ETL chain because they offer the opportunity to move raw data files from an
HDES directory into a Hive staging table. From the staging table you can transform the data for its journey to its
final state. Before I demonstrate table creation, though, I need to move the data files that I downloaded from the UK
government data site (data.gov.uk) from the Linux file system on hclnn to HDFS. (If you want to obtain the same
data set to run these examples, you can source it from http://data.gov.uk/dataset/financial-transactions-
admin-spend-data-ukti.)

To start the move, I create the /data directory on HDFS as the Linux hadoop user:

[hadoop@hcinn data]$ hdfs dfs -mkdir /data

I then move the data files under the Linux directory /home/hadoop/data/uk_trade to this HDFS directory via a
copyFromLocal HDFS command:

[hadoop@hcinn uk trade]$ pwd
/home/hadoop/data/

[hadoop@hcinn uk trade]$ 1ls uk_trade
ukti-admin-spend-apr-2011.csv ukti-admin-spend-jun-2012.csv
ukti-admin-spend-apr-2012.csv ukti-admin-spend-mar-2011.csv

.......

[hadoop@hcinn data]$ hdfs dfs -copyFromLocal uk trade /data

268

www.it-ebooks.info


http://data.gov.uk/dataset/financial-transactions-admin-spend-data-ukti
http://data.gov.uk/dataset/financial-transactions-admin-spend-data-ukti
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

[hadoop@hcinn data]$ hdfs dfs -1s /data/uk_trade

Found 22 items

-1w-r--r-- 2 hadoop hadoop 355466 2014-09-16 18:09 /data/uk_trade/UKTI_FEBRUARY_ 2013.csv
-rw-r--r-- 2 hadoop hadoop 231177 2014-09-16 18:09 /data/uk_trade/ukti-admin-spend-apr-2011.
csv

.......

The necessary CSV-based data set now resides in HDFS under the directory /data/uk_trade, so I can start using
the data in Hive Query Language (Hive QL) statements. For example, the following CREATE TABLE statement creates
the rawtrans (raw transaction) table in the trade database. (Again, the IF NOT EXISTS clause ensures it is created only
if it does not exist.) The table is linked to the HDFS directory /data/uk_trade/, which contains the UK trade expense
information in CSV format via a LOCATION clause. As the data is in CSV format, the external table specifies that the
fields are delimited by commas, as specified by the ROW FORMAT DELIMITED FIELDS TERMINATED BY clause:

Note Asarule, reserved words appear in uppercase to make the examples clearer, although Hive QL is not
case-sensitive.

CREATE TABLE IF NOT EXISTS
trade.rawtrans

(

dept STRING,

entity STRING,

paydate STRING,

exptype STRING,

exparea STRING,

supplier STRING,

trans STRING,

amount DOUBLE

)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/data/uk_trade';

The columns in the table are separated by commas and are bound by parentheses. The column name is in
lowercase (for instance, dept), followed by the data type in uppercase (such as STRING). The name of the table to be
created is “rawtrans,” and it resides in the trade database. So the name trade.rawtrans refers to the rawtrans table in
the trade database.

The number of columns in the CSV files must match the columns in the SELECT statement. Also, it is good
practice to use meaningful names to represent each column—it avoids confusion later.

I can now access the data in the external table, as a simple COUNT (*) shows. This returns the result that there are
18,976 rows in this external table:

SELECT COUNT(*) FROM trade.rawtrans

269

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Hive UDFs

Hive makes possible the creation of user-defined functions (UDFs), with which you can extend and customize the
functionality of Hive. To demonstrate the process, I create a simple date-conversion function.

Suppose that the date columns in the CSV data that was collected have the wrong format for Hive; specifically,
the dates follow the format dd/MM/yyyy, when they need to have a format of yyyy-MM-dd. Using Java date methods,
I can create a simple Java-based UDF to change the date format. When compiled and loaded into a library, this
function can then be embedded in the Hive QL statements.

To create a Hive UDF, I must install the Scala sbt interactive build tool on the server to compile the Java UDF
package. I create the example UDF on the server hclnn, so I need to install the sbt program on that server by using the
Linux root account. I download an rpm package for sbt from the scala-sbt.org website to the /tmp directory on hclnn,
and I install it from there. The following command moves to the /tmp directory and downloads the sbt.rpm package
by using wget:

[root@hcinn ~]# cd /tmp

[root@hcinn ~]#wget http://repo.scala-sbt.org/scalasbt/sbt-native-packages/org/scala-sbt/sbt/0.13.1/
sbt.rpm

[root@hcinn ~]# rpm -ivh sbt.rpm

The final command, rpm, installs the sbt.rpm package with options I for install and v for verify. I also install the
Java Open]DK 1.6 development package to support this compilation as the root Linux user (because I want access to
tools like jar and jps). I use the open]DK because I can install it via the yum command, and I don’t have to go through a
registration process to get it.

[root@hc2nn ~]# yum install java-1.6.0-openjdk-devel
I compile the new Hive UDF function as the Linux hadoop user, so I use su to change to that account:
[root@hc2nn ~]# su - hadoop

Next, I need to set up a directory structure that will hold the UDF code, so initially I create the directories hive/udf
in the hadoop account home directory to hold my Apache Hive UDF code. Next, I move to that new udf directory:

[hadoop@hc2nn ~]$ mkdir -p hive/udf
[hadoop@hc2nn ~]$ cd hive/udf

At this level, I have created a file called build.sbt that the sbt tool will use to aid in the compilation of the UDE
It describes details like the function name, the version, the organization that it belongs to, and the version of Scala
installed. Here's the contents of the file displayed by using the Linux cat command; I have added line numbers to aid
understanding:

[hadoop@hc2nn udf]$ cat build.sbt

01 name := "DateConv"

02

03 version := "0.1"

04

05 organization := "nz.co.semtechsolutions'
06

07 scalaVersion :
08

"2.10.4"

270

www.it-ebooks.info


http://repo.scala-sbt.org/scalasbt/sbt-native-packages/org/scala-sbt/sbt/0.13.1/sbt.rpm
http://repo.scala-sbt.org/scalasbt/sbt-native-packages/org/scala-sbt/sbt/0.13.1/sbt.rpm
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

09 resolvers += "CDH4" at "https://repository.cloudera.com/artifactory/cloudera-repos/"
10

11 libraryDependencies += "org.apache.hadoop" % "hadoop-core" % "0.20.2" % "provided"
12
13 libraryDependencies += "org.apache.hive" % "hive-exec" % "0.10.0" % "provided"

Each line of this file is separated from the next with a blank line. Notice that the organization name is the reverse
of my company's domain name and the Java package name to which the UDF will belong also uses the same naming
standard. The version of Scala used is defined, as are library dependencies for Hadoop and Hive.

Having created the build sbt file, | now need a directory structure to contain the UDF code. It must match the
structure of the UDF package name, starting with the directories src/main/java. The first line of the Java UDF file
contains a package name:

package nz.co.semtechsolutions.hive.udf;
And so a directory structure must be created to match this, using the mkdir command. Using the -p option causes
all subdirectories in the path to be created at the same time. I then move down to the lowest point in the directory

structure that I have created, the udf directory:

[hadoop@hc2nn udf]$ mkdir -p src/main/java/nz/co/semtechsolutions/hive/udf
[hadoop@hc2nn udf]$ cd src/main/java/nz/co/semtechsolutions/hive/udf

I have created a UDF Java file called DateConv.java that contains the Java code for the UDF function. The
following Linux cat command shows the contents of the Java:

[hadoop@hc2nn udf]$ cat DateConv.java

1 package nz.co.semtechsolutions.hive.udf;

2

3 import org.apache.hadoop.hive.ql.exec.UDF;

4 import org.apache.hadoop.io.Text;

5 import java.text.SimpleDateFormat;

6 import java.util.Date;

7

8 class DateConv extends UDF

9 A

10

11 public Text evaluate(Text s)

12 {

13
14 Text to value = new Text("");
15
16 if (s != null)
17 {
18 try
19 {
20
21 SimpleDateFormat incommingDateFormat = new SimpleDateFormat

("dd/MM/yyyy");
22 SimpleDateFormat convertedDateFormat = new SimpleDateFormat
("yyyy-MM-dd");

23

271

www.it-ebooks.info


https://repository.cloudera.com/artifactory/cloudera-repos/
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

24 Date parsedate = incommingDateFormat.parse( s.toString() );
25

26 to value.set( convertedDateFormat.format(parsedate) );
27

28 }

29 catch (Exception e)

30

31 to value = new Text(s);

32 }

33 }

34 return to_value;

35 }

36 }

The package name is defined at line 1, while import statements to import Hive, Hadoop, and Java functionality
exist between lines 3 and 6.

1 package nz.co.semtech-solutions.hive.udf;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

import java.text.SimpleDateFormat;

import java.util.Date;

o v bW

The class DateConv that is the UDF function name is defined at line 8; it extends an existing class UDF.
8 class DateConv extends UDF
Atline 11, the public class evaulate is defined, which takes a Text parameter and returns a Text value:
11 public Text evaluate(Text s)
Finally, the main functionality of the UDF occurs between lines 21 and 26 in the try/catch section of the code. The

input date string is converted from the format dd-MM-yyyy to the format yyyy-MM-dd. (This is a somewhat contrived
example that takes only a single date format, but it gives an idea of what can be achieved with Hive UDFs.)

21 SimpleDateFormat incommingDateFormat = new
SimpleDateFormat("dd/MM/yyyy");

22 SimpleDateFormat convertedDateFormat = new
SimpleDateFormat("yyyy-MM-dd");

23

24 Date parsedate = incommingDateFormat.parse( s.toString() );

25

26 to _value.set( convertedDateFormat.format(parsedate) );

Having created the Java file that will form the new UDF function, I move back to the top of the directory structure
by using the Linux cd command and invoke the sbt command to compile the code:

[hadoop@hc2nn udf]$ cd /home/hadoop/hive/udf/

[hadoop@hc2nn udf]$ sbt
[info] Set current project to DateConv (in build file:/home/hadoop/hive/udf/)

272

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

I enter the sbt command compile at the sbt> prompt to compile the code, followed by the package command to
package the code into a jar file. Finally, the sbt exit command causes the sbt build session to finish:

> compile
[success] Total time: 3 s, completed Sep 16, 2014 7:50:39 PM

> package
[success] Total time: 1 s, completed Sep 16, 2014 7:50:59 PM

> exit

The jar library containing the new Hive UDF code is contained in the target/scala-{version} directory. It is called
dateconv_2.10-0.1.jar, as the Linux long listing shows:

[hadoop@hc2nn udf]$ 1s -1 target/scala-2.10/dateconv_2.10-0.1.jar
-Iw-IW-I-- 1 hadoop hadoop 1579 Sep 16 19:36 target/scala-2.10/dateconv_2.10-0.1.jar

I can use the Java jar command to show the contents of the library. For example, the following command passes
the options vtf to the jar command and takes the library as a parameter. The v option means verbose, the t option
means show the table of contents, and the f option allows the jar file name to be specified. The output shows the
structure of the jar file and shows that it contains the compiled class file DateConv.class:

[hadoop@hcinn udf]$ jar vtf target/scala-2.10/dateconv_2.10-0.1.jar

288 Tue Sep 16 19:36:32 NZST 2014 META-INF/MANIFEST.MF
0 Tue Sep 16 19:36:32 NZST 2014 nz/
0 Tue Sep 16 19:36:32 NZST 2014 nz/co/
0 Tue Sep 16 19:36:32 NZST 2014 nz/co/semtechsolutions/
0 Tue Sep 16 19:36:32 NZST 2014 nz/co/semtechsolutions/hive/
0 Tue Sep 16 19:36:32 NZST 2014 nz/co/semtechsolutions/hive/udf/

899 Tue Sep 16 19:36:24 NZST 2014 nz/co/semtechsolutions/hive/udf/DateConv.class

Now that the Hive UDF jar file has been created, I can add it to a Hive shell session so that I can use the new

Hive UDF function in Hive Query language (Hive QL). The following add jar command in my Apache Hive session
registers the jar file with the session:

[hadoop@hcinn udf]$ hive
hive> add jar /home/hadoop/hive/udf/target/scala-2.10/dateconv_2.10-0.1.jar;

Added /home/hadoop/hive/udf/target/scala-2.10/dateconv_2.10-0.1.jar to class path
Added resource: /home/hadoop/hive/udf/target/scala-2.10/dateconv_2.10-0.1.jar

The full name of the DateConv UDF function is co.nz.semtechsolutions.hive.udf.DateConv. This is a long name
based on the package name. It would be much more convenient and quicker to just refer to the function as DateConv.
That is what the next command does: it registers the temporary function name DateConv based on the long name:

hive> create temporary function DateConv as 'nz.co.semtechsolutions.hive.udf.DateConv';

0K
Time taken: 0.02 seconds

273

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Now, the DateConv Hive UDF function is ready to be used in a Hive QL query by using just its short name,
DateConv. It will take a date with a structure of dd-MM-yyyy and return a date formatted to yyyy-MM-dd for use in a
Hive table. Next, I show how to invoke this function.

Table Creation

Suppose, as the next step in your ETL chain, you want to extract monthly purchase totals by supplier. You could, as
shown earlier, create a table with CREATE TABLE, using the IF NOT EXISTS clause to prevent duplication; for example,
I create the following table:

CREATE TABLE IF NOT EXISTS
trade.suppliertot

payyear INT,
paymonth INT,
supplier STRING,
totamount DOUBLE

);

Called “suppliertot” and residing in the trade database, this table would have four columns: one for the year of a
transaction, one for the month, one for the the supplier name, and one for the total amount of the purchases from that
supplier (indicated by the comma-separated list within parentheses). The table would not, however, contain any data
yet, as it has no LOCATION clause to link it to an HDFS directory.

Alternatively, I could create the table via a SELECT statement, which would automatically populate it with data. To
do that, I drop the table first and then run the CREATE statement, as follows:

DROP TABLE trade.suppliertot;

CREATE TABLE IF NOT EXISTS
trade.suppliertot
AS
SELECT
year(DateConv (paydate) ) as payyear,
month(DateConv (paydate) ) as paymonth,
supplier,
SUM(amount) as totamount
FROM
trade.rawtrans
GROUP BY
year(DateConv (paydate) ) ,
month(DateConv (paydate) ) ,
supplier ;

This statement uses the DateConv UDF that was created previously to convert date strings with the format dd/
MM/yyyy to the format yyyy-MM-dd; here, it is used against the “paydate” column. I use the same CREATE TABLE IF
NOT EXISTS option to create the table trade.suppliertot. However, I replace the list of columns in parentheses with an
AS SELECT statement that has four columns that takes data from the table trade.rawtrans via a FROM clause.

I can confirm that this second table now contains the data by issuing the statement SELECT COUNT(*) FROM
trade.suppliertot. This returns the result 391, indicating that the trade.suppliertot table contains 391 rows. The
COUNT (*) is a special aggregation function that returns the number of rows in a table.

274

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

The SELECT Statement

The SQL SELECT statement starts with the keyword SELECT, which is followed by a comma-separated list of columns.
The source of the data is identified in the FROM clause, which is followed by the name of the table from which it is
selecting data.

In continuing the second example begun in the previous section, I use the the table with the name trade.
rawtrans. The SELECT statement selects three columns: “paydate,” “supplier,” and “amount.” The “paydate” column,
however, is transformed via the DateConv UDF. The payyear and paymonth values are derived from the “paydate”
column via the year and month functions in Hive. The “amount” column is sum totaled with the aggregating

function SUM.

SELECT
year( DateConv (paydate) ) as payyear,
month(DateConv (paydate) ) as paymonth,
supplier,
SUM(amount) as totamount

FROM
trade.rawtrans

GROUP BY
year( DateConv (paydate) ) ,
month(DateConv (paydate) ) ,
supplier ;

Because the aggregating function SUMis used, a GROUP BY clause is needed to specify which columns are to be
sum totaled. The general rule is that all columns that are not aggregated (i.e. payyear, paymonth, and supplier) must
be in the GROUP BY clause. This example groups data by year, month, and supplier.

The WHERE Clause

When you are running a SELECT statement, you might want to filter the data returned, either because there is too
much data or because you would like to filter on one of the columns. By combining the WHERE clause, column names,
simple operators, and logical expressions like AND and OR, you can build complex filters.

Consider the following example, which adds a filter via the WHERE keyword to the SELECT statement from the
earlier example:

SELECT
year( DateConv (paydate) ) as payyear,
month(DateConv (paydate) ) as paymonth,
supplier,
SUM(amount) as totamount

FROM
trade.rawtrans

WHERE
supplier NOT LIKE 'UK Trade%' AND
supplier NOT LIKE 'Corporate’’

GROUP BY
year( DateConv (paydate) ) ,
month(DateConv (paydate) ) ,
supplier ;

275

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

The value of the column supplier is filtered so that it is “not like” UK Trade’% and “not like” Corporate’. This
means that the only columns that are selected are those in which the supplier name does not start with the strings UK
Trade and Corporate.

The percent (%) character is a wild card that matches any data in the column; when placed at the end of the string,
it matches everything from that point to the end of the string. Strings are expressed in single quotes and the string is
case sensitive.

I could also use the WHERE clause as follows:

WHERE
supplier "ADETIQ LTD' OR
supplier = 'ADS GROUP LTD'

This clause then explicity filters the supplier column on the values that are equal to ADETIQ LTD or ADS GROUP LTD,
and returns the two data rows, as shown:

2013 2 ADETIQ LTD 783.84
2013 2 ADS GROUP LTD 15549.0

The next clause filters the supplier column to equal ADETIQ LTD and not equal (<>) the value ADS GROUP LTD, as
follows:

WHERE
supplier = 'ADETIQ LTD' AND
supplier <> 'ADS GROUP LTD'

And so it returns a single row:

2013 2 ADETIQ LTD 783.84

The Subquery

The SELECT statements can also be used in subqueries. Subqueries are handy when you want to reduce or filter data
from a table before using it. They are coupled for Hive QL in both the FROM clause and the WHERE clause. That is, in the
FROM section of the parent SELECT statement, you simply enclose your subquery in parentheses.

For example, I could select all columns from the trade.rawtrans table, filtering the supplier column to values
containing the string INDIA. This then becomes a derived table with an alias of b, as follows:

SELECT
DateConv (b.paydate) as paydate,
b.supplier,
b.amount

FROM

(
SELECT a.* FROM trade.rawtrans a WHERE a.supplier LIKE '%INDIA%'
)b

And this returns the column data:

2013-02-01 THE INDIA SHOP (IMPORTS) LTD 1000.0
2013-02-08 LIVING MEDIA INDIA LTD 4109.3
2013-02-22 UK INDIA BUSINESS COUNCI 4125.0
276

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Notice that the example uses aliases (a, b) in both SELECT statements. The subquery uses an alias (a) for the
table trade.rawtrans, and so its columns are referenced using this alias (a.supplier). The derived table b contains the
table built by the subquery in parentheses. The columns from the derived table are also referenced using an alias
(b.supplier). (This aliasing avoids confusion as to which table, real or derived, a column belongs to.)

You can also use subqueries in the WHERE clause of a SELECT statement (from Hive 0.13), as my example shows
here:

SELECT
DateConv (b.paydate) as paydate,
b.supplier,
b.amount
FROM
trade.rawtrans b
WHERE
b.supplier IN ( SELECT supplier FROM trade.uksupplier );

The data from the trade.rawtrans table with alias b is being filtered against the supplier name. The subquery
in the WHERE clause is checking that the supplier name from trade.rawtrans exists in the UK supplier list table trade.
uksupplier by using the SQL IN clause.

Table Joins

In the real world, you're seldom pulling data from just one table. What happens if you have data in two tables and you
wish to build a SELECT statement using data from both tables? You can use table joins to merge the data from multiple
tables to form a compound data set. Of course, you will need to know which columns exist in each table and that the
same data exists in each table so that the rows can be joined.

For instance, suppose two derived tables (a and b) each contain a column named “supplier”; that means I can
join them on that column. The SELECT statement that follows uses those two derived tables: the first (aliased a) selects
the “department” and “supplier” columns from the trade.rawtrans table. The second derived table (aliased b) selects
the “supplier” and “amount” columns from the same table. Even though they are taking data from the same table, they
are treated as two different derived tables.

The DISTINCT keyword is used in both subqueries to remove duplicates from the data. The derived tables are
then joined using the JOIN keyword. They are joined on the “supplier” key using the ON keyword. Note: only “equal”
joins are accepted. For instance, you could not sayON ( a.amount > b.amount ).

SELECT
a.dept,
a.supplier,
b.amount
FROM
(
SELECT DISTINCT
c.dept,c.supplier
FROM
trade.rawtrans c

) a

277

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

JOIN

(
SELECT DISTINCT

d.supplier,d.amount
FROM
trade.rawtrans d
) b
ON ( a.supplier = b.supplier ) ;

The INSERT Statement

You can use the INSERT statement to add rows to your table. However, it’s a good idea to check the structure of your
table before you consider inserting data. To check the trade.suppliertot table, for example, I would use the DESCRIBE
command:

hive> DESCRIBE trade.suppliertot ;

0K

payyear int
paymonth int
supplier string
totamount double

Time taken: 0.317 seconds

This shows that my table has two integer columns named “payyear” and “paymonth,” followed by a string column
named “supplier” and a double (real) column named “totamount.” So, the table has four columns. I would then check
to see what university suppliers exist in the data by using the following SELECT statement:

SELECT * FROM trade.suppliertot WHERE supplier LIKE 'UNIVERSITY%' ;

2013 2 UNIVERSITY OF EAST LONDON 550.0
2013 2 UNIVERSITY OF THE ARTS LONDON  550.0

So, I have used a SELECT statement to select all (*) columns from the table called “suppliertot” in the database
named “trade” I added a WHERE clause that searches for suppliers whose name starts with the word “UNIVERSITY".
This shows me that there are two such rows in the table. Therefore, there are two ways to change the data in this table:
the first is to load data from the HDFS file system, and the second is to insert rows from a SELECT statement.

If I should decide to use the second approach, the following statement inserts rows into the trade.suppliertot
table from the SELECT statement on rows 2 and 3 below. Notice that the WHERE clause is the same as that above, so it
is the two UNIVERSITY rows that will be affected. Notice also that a combination of table rows and hard-coded values
have been selected. The payyear and paymonth values have been selected from the table, while the hard-coded values
‘UNIVERSITY OF SEMTECH’ and 700.0 have been set in column positions 3 and 4 of the SELECT statement:

INSERT INTO TABLE trade.suppliertot

SELECT payyear,paymonth, 'UNIVERSITY OF SEMTECH',700.0 FROM
trade.suppliertot WHERE supplier LIKE 'UNIVERSITY%' ;

278

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Running the same SELECT statement to check the university supplier rows in the table now yields four rows. The
year and month were selected from the existing rows, while the supplier and total values were hard-coded:

SELECT * FROM trade.suppliertot WHERE supplier LIKE 'UNIVERSITY%' ;

2013 2 UNIVERSITY OF EAST LONDON 550.0
2013 2 UNIVERSITY OF THE ARTS LONDON 550.0
2013 2 UNIVERSITY OF SEMTECH 700.0
2013 2 UNIVERSITY OF SEMTECH 700.0

I could also use an OVERWRITE clause in an INSERT statement that will cause existing rows to be overwritten.
Running the INSERT statement again, using the clause INSERT OVERWRITE, causes all four university rows to be
changed:

INSERT OVERWRITE TABLE trade.suppliertot

SELECT payyear,paymonth, '"UNIVERSITY OF SEMTECH',950.0 FROM
trade.suppliertot WHERE supplier LIKE 'UNIVERSITY%' ;

SELECT * FROM trade.suppliertot WHERE supplier LIKE 'UNIVERSITY%' ;

2013 2 UNIVERSITY OF SEMTECH  950.0
2013 2 UNIVERSITY OF SEMTECH  950.0
2013 2 UNIVERSITY OF SEMTECH  950.0
2013 2 UNIVERSITY OF SEMTECH  950.0

As this resulting data now shows, all of the rows have the same values. They have all been overwritten by the
INSERT statement.

Organization of Table Data

Simply retrieving data is but one aspect of analytics; organizing the data is another. The following SELECT statement
will produce a list of suppliers and the number of transactions associated with them in the table trade.rawtrans:

SELECT supplier, COUNT(*) FROM trade.rawtrans GROUP BY supplier ;

Although the count of transactions is grouped (GROUP BY) by each supplier so the name and total count for each
supplier is displayed, the statement does not provide any control over the order in which the data is presented. This is
where the ORDER BY clause can be useful. With it, you can order your data in several ways, such as by supplier name,
or present the count values in ascending or descending order. For example, this command will display the supplier
transaction count list in reverse alphabetical order:

SELECT supplier, COUNT(*) FROM trade.rawtrans GROUP BY supplier ORDER BY supplier DESC ;

The DESC clause means “descending”; that is, the supplier names starting with Z will be at the top while those
starting with A will be at the bottom of the list.

279

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

That's fine, but what if you want to find suppliers that meet specific criteria, such as those with more than 1,000
transactions? For this, you must use the HAVING clause:

SELECT

supplier, COUNT(*)
FROM

trade.rawtrans
GROUP BY

supplier
HAVING COUNT(*) > 1000
ORDER BY

supplier DESC ;

Notice that the HAVING clause operates on the COUNT (*) column and uses a greater than (>) operator.

So, with just nine lines of SQL, it is possible to generate the transaction volumes for suppliers by using COUNT (*)
and GROUP BY. The list is sorted in reverse order, with an ORDER BY clause. Finally, the HAVING clause is used to find
the highest volume suppliers. So, by combining these terms in one statement, it is possible to extract some very useful
information from the raw data. The rows with more than 1,000 transactions are shown as follows:

UK Trade & Investment - Trade Development 1158
UK Trade & Investment - Sectors Group 1503
UK Trade & Investment - Regional Directorate 2134
UK Trade & Investment - International Group 1038
UK Trade & Investment - Defence and Security Organisation 2970
UK Trade & Investment - Business Group 1229

When combined with Cloudera Impala and Apache Hive, simple SQL statements become even more powerful.
Asyou have seen, you can extend the functionality of Apache Hive by using UDFs, while Impala integrates with
Cloudera’s enterprise data hub. For further information on Apache Hive QL, see the Apache language reference at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual.

The power of these SQL-like languages comes partly from their functionality but also from the fact that they
are familiar to people who have had exposure to relational databases. Apache Hive and Impala Cloudera are both
Hadoop HDFS-based databases. In the next section, I briefly demonstrate Apache Spark data processing and use an
SQL statement in Spark to show that SQL can also be used to manipulate Spark-based data. (In Chapter 10, I present
Talend and Pentaho, which are also used to form ETL and manipulate data using a visual object-based approach.)

Apache Spark

Apache Spark is a cluster computing system that offers very fast in-memory distributed processing. You can develop
applications in Java, Python, and Scala or use the built-in scripting shell for ad hoc script development. With the
capability to scale to a very large degree (2000 nodes), Spark is also able to cache data for memory-based analytics.
Spark can run in local mode or use cluster managers, such as Mesos, YARN, or Spark. The cluster manager
manages the executor processes on the worker nodes. The executors run applications on worker nodes and process
application data. Spark uses a resilient distributed data set RDD) data model for data processing.
So while a Hadoop cluster provides a distributed batch processing system for handling very large volumes
of data, Spark works in real time and is much faster. Like Hadoop, it offers a robust distributed processing model;
however, Hadoop uses HDFS, while Spark is a memory-based system. Spark can also integrate with Hadoop, pulling
data from and saving data to HDFS.

280

www.it-ebooks.info


https://cwiki.apache.org/confluence/display/Hive/LanguageManual
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Installation of Spark

By way of example, I install Spark onto a 64-bit cluster using the CDH5 name node machine hc2nn and the data nodes
hc2rim1 to hc2rlm4. Spark works on a master-slave model, so I use the name node machine hc2nn as the master and
the date node machines as the slaves. Unless stated otherwise, I carry out the installation as the Linux root user.

My first step is to set up a suitable repository file under the directory /etc/yum.repos.d on each machine so that
the Linux yum command knows where and how to source the installation packages:

[root@hc2riml ~]# cd /etc/yum.repos.d
[root@hc2riml yum.repos.d]# cat cloudera-cdh5.repo

[cloudera-cdhs]

# Packages for Cloudera's Distribution for Hadoop, Version 5, on RedHat or CentOS 6 x86_64
name=Cloudera's Distribution for Hadoop, Version 5
baseurl=http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/5/

gpgkey = http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/RPM-GPG-KEY-cloudera
gpgcheck = 1

The repository file (cloudera-cdh5.repo) tells yum to look at the repository URL http://archive.cloudera.com/
cdh5/redhat/6/x86_64/cdh/5/ when installing the software. After setting up the repository file on each machine, I'm
ready to install the Spark services on all machines. This command installs the Spark Master server, History server, and
worker servers, as well as core and Python modules:

[root@hc2riml ~]# yum install spark-core spark-master spark-worker spark-history-server spark-python

Iinstall these components on each node, then set up the configuration under /etc/spark/conf/. I remember to
make these changes on all servers unless instructed otherwise. Initially, I set up the slave files so that Spark knows
where the slaves will run:

[root@hc2riml ~]# cd /etc/spark/conf/

[root@hc2rim4 conf]# cat slaves

# A Spark Worker will be started on each of the machines listed below.
hc2rimi

hc2rim2

hc2rim3

hc2rimq

Next, I edit the file spark-env.sh and set the value of the STANDALONE_SPARK_MASTER_HOST variable to be the full
name of the master host:

export STANDALONE_SPARK MASTER HOST=hc2nn.semtech-solutions.co.nz

Note If you set this value incorrectly—for instance, using a host short name—you may encounter this error:

14/09/09 18:20:52 ERROR remote.EndpointWriter: dropping message [class akka.actor.SelectChildName]
for non-local recipient [Actor[akka.tcp://sparkMaster@hc2nn:7077/]]
arriving at [akka.tcp://sparkMaster@hc2nn:7077] inbound
addresses are [akka.tcp://sparkMaster@hc2nn.semtech-solutions.co.nz:7077]

281

www.it-ebooks.info


http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/5/
http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/RPM-GPG-KEY-cloudera
http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/5/
http://archive.cloudera.com/cdh5/redhat/6/x86_64/cdh/5/
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

With the correct value for the variable set, I start the Spark Master and History servers on the master node:

[root@hc2nn ~]# service spark-master restart
[root@hc2nn ~]# service spark-history-server restart

Finally, I start the Spark workers on all of the data nodes:
[root@hc2riml ~]# service spark-worker restart

That’s it; I have just started a basic Spark cluster! I now have the choice of user interfaces to monitor the Spark
cluster. In the configuration file spark-env.sh, the following default variables define the master and worker user
interface ports:

export SPARK MASTER WEBUI_PORT=18080
export SPARK WORKER WEBUI PORT=18081

The Spark Master user interface can be found at hc2nn:18080; Figure 9-3 shows its appearance before any
applications are run. Notice the Spark Master URL at the top of the page; that’s needed to run applications later.

Soorﬁg Spark Master at spark://hc2nn.semtech-solutions.co.nz:7077

URL: spar (heZnn semiech-salutions. co nz 7077
Workers: 5

Cores: 10 Total, 0 Used

Memory: 5.7 G
Applications: 0
Drivers: 0 Runn
Status: ALIVE

Workers
Ia Acdress state Cores

he2nn semlech-soutions co.nz TOTE ALIVE

he2rim1 semiech-5080Ns.CO. ALIVE
hC2rim2 semiech-Solutions.co.nz ALIVE 2 (0 Used)
he2rim3 semiech-5olUtions.co nz ALIVE 2 (0 Used)
hc2rimd semiech-solutions.conz 7078 ALVE 2 (0 Used)
Running Applications
-] Hame Cores Memory per Node Submitted Time User State Duration
Completed Applications
+] Hame Cores Memory per Node Submitted Time User State Duration

Figure 9-3. Spark Master server’s user interface

The interface also lists the Spark workers and the machines that they are running on, as well as some information
about the state, cores, and memory available to each worker. (In Figure 9-3, you'll notice that I have also run a worker
on the name node, just to increase the processing capacity in this example.) The area at the bottom of the screen
in Figure 9-3 provides details on running applications, as well as completed applications. In Figure 9-3, none are
running, so the area is blank.

Uses of Spark

In this section, I use an example to demonstrate the Spark shell, an interactive Spark scripting session, and a Spark
application (provided with the installation) to show you how jobs can be submitted, as well as how they appear in the
Spark user interface. The Spark shell can be used interactively to run ad hoc scripts against Spark cluster-based data.
Running a Spark application, as you will see, allows you to run a job on a Spark cluster by using in-memory processing
in batch mode.

282

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

My SQL-based example shows that Spark-based information can be accessed using SQL. Although Spark
processing is not included in Chapter 10’s discussion of Talend and Pentaho, both tools integrate with Spark to offer
visual object-based data manipulation.

The first step in running a Spark script interactively in the Spark shell is to set the master URL displayed on the
Spark Master user interface to be the Spark URL:

[root@hc2nn ~]# spark-shell --master spark://hc2nn.semtech-solutions.co.nz:7077
As shown in Figure 9-4, the Spark shell application is now visible on the Spark Master user interface. The Running

Applications section in Figure 9-4 lists the appplication’s ID and name, as well as the number of cores and the memory
available to the application. I can also check the application’s submission time, state, user, and duration of its run.

Spofﬁl’ Spark Master at spark://hc2nn.semtech-solutions.co.nz:7077

URL: spark /he2nn semiech-solutons conz 7077

Workers

Id Address State Cores

nhe2nn sembech-Soutons co. nz 7078 ALIVE 2 (2 Used)

ALIVE 2 (2 Used

ALIVE

NC2rIm3 semiech-Solutions. co.ne ALIVE 2 (2 useq|
he2rimd sembech-solutions. co.nz TOT8 ALIVE 2 (2 Used| MB (512 0 MB Used)
Running Applications
o HName Cores Memory per Node Submitted Time User State Duration
10 512.0 MB 2014/00/09 19:32:20 root RUNNNG 2.4 min
Completed Applications
[1+] Name Cores Memory per Node Submitted Time User State Duration

Figure 9-4. Spark Master interface with applications listed

IfI click one of the worker node IDs listed in the Workers section of the Spark Master interface, I can drill down
for more information, as shown in Figure 9-5. This detailed view shows the cores and memory available on the worker
node plus the executor for the running Spark shell on that node. I click the Back to Master link to return to the Spark
Master interface.

283

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

spaﬂzz Spark Worker at hc2nn.semtech-solutions.co.nz:7078

ID: worker-20140909190659-hc2nn.semtech-solutions.co.nz-7078
Master URL: spark://hc2nn semtech-solutions.co.nz. 7077

Cores: 2 (2 Used)

Memory: 2.6 GB (512.0 MB Used)

Back to Master

Running Executors 1

ExecutoriD Cores Memory Job Details Logs

3 2 512.0 MB ID: app-20140909193220-0000 stdout stderr
Name: Spark shell
User: root

Figure 9-5. Spark Worker user interface

The work of a given application is spread across the cluster over a series of worker executors on each node. To
reach the application user interface, I simply click an application listed on the Spark Master interface that is in the
Running Applications section, as shown in Figure 9-4. The list of executors for this application is is then shown in
Figure 9-6.

SDinZ Stages  Stor

Environment Executors Spark shell application Ul
Executors (6)
Memory: 0.0 B Usad (1769 4 MB Total)
Disk: 0.0 B Used
Executor RDD Memory Disk Active Failed Complete Total Task Shuffle Shuffle
D Address Blocks Used Used Tasks Tasks Tasks Tasks Time Read Write
o he2rimi semtech- o 0o0B/2049 00B o 0 o (1] Oms ooB oo0B
solutions.co.nz51173 MB
1 hc2rim4 semtech- o 00B/2949 00B 0 0 0 1] Oms o0oB 0o0B
solutions.co.nz- 36524 MB
2 he2rim3 semtech- V] 00B/2049 0O0OB o ] 1] 0 0ms 00B 00B
solutions co nz 46733 MB
3 he2nn semtech- V] 00B/29049 00B V] 0 0 0 0oms 0086 00B
solutions.co.nZE0762 MB
4 hc2rim2 semtech- 0 00B/2049 00B 0 0 0 0 0ms 008 0o0B
solutions.co.nz 55283 MB
<drivers hc2nn.semtech- 0 00B/29049 0.0B o 0 0 0 0ms 0o0B 0oB
solutions. co.nz- 53209 MB

Figure 9-6. Spark application interface

Executors are the tasks based on the cluster worker nodes that process and store an application’s data on the
Spark cluster. Figure 9-6 shows that each executor has a unique ID and address. It also shows the state of the executor
in terms of memory and disk, plus the task time.

So, when the interactive Spark shell is running, what can you do with it? To demonstrate a simple script, Iread a
Linux-based CSV file from HDFS, run a line count on it in memory, and then do a string search on it. I also confirm the
results by checking the output against Linux commands.

284

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

The top few lines of the data from my CSV file using the Linux head command are as follows:
[root@hc2nn fuel consumption]# head scala.csv

MODEL ,MANUFACTURER,MODEL,VEHICLE CLASS,ENGINE SIZE,CYLINDERS,TRANSMISSION,FUEL,FUEL
CONSUMPTION, , , , FUEL,C02 EMISSIONS

YEAR,,,,(L),,,TYPE,CITY (L/200 km),HWY (L/100 km),CITY (mpg),HWY (mpg),(L/year), (g/km)
2014,ACURA, ILX,COMPACT,2,4,AS5,2,8.6,5.6,33,50,1440,166

2014,ACURA, ILX, COMPACT,2.4,4,M6,Z,9.8,6.5,29,43,1660,191

2014,ACURA, ILX HYBRID,COMPACT,1.5,4,AV7,Z,5,4.8,56,59,980,113

2014,ACURA,MDX 4WD,SUV - SMALL,3.5,6,AS6,Z,11.2,7.7,25,37,1920,221

I first copy this file to the /tmp directory on HDFS, so that Scala can access it, by using the HDFS file system
copyFromLocal command:

[root@hc2nn fuel consumption]# hdfs dfs -copyFromLocal scala.csv /tmp/scala.csv

Note that when the Spark shell is used, the special variable sc is created. Called a Spark Context, the variable
describes the connection to the Spark cluster. So, at my Scala shell script prompt (scala >), I use the sc variable in the
following command to read the scala.csv file into memory:

scala> val myFile = sc.textFile("/tmp/scala.csv")

14/09/09 19:55:21 INFO storage.MemoryStore: ensureFreeSpace(74240) called with curMem=155704,
maxMem=309225062

14/09/09 19:55:21 INFO storage.MemoryStore: Block broadcast 1 stored as values to memory (estimated
size 72.5 KB, free 294.7 MB)

myFile: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at <console»>:12

The next command produces a line count on the file, now represented by the variable myFile, in memory:
scala> myFile.count()

14/09/09 19:55:41 INFO spark.SparkContext: Job finished: count at <console>:15, took 3.174464234 s
resl: Long = 1069

The result indicates that there are 1,069 lines in the file. The Spark-based line count can be checked against the
original file on the Linux file system. To do so, I use the Linux wc (word count) command with a -1 switch to confirm
the count of 1,069 lines:

[root@hc2nn fuel consumption]# wc -1 scala.csv
1069 scala.csv

The following Spark shell Scala command counts the number of instances of the string “ACURA” in the
in-memory file:

scala> myFile.filter(line => line.contains("ACURA")).count()

14/09/09 19:58:10 INFO spark.SparkContext: Job finished: count at <console>:15, took 2.815524655 s
res0: lLong = 12

285

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

The result is 12 lines; checking that total by using the Linux grep command piped to the same wc command gives
the same result:

[root@hc2nn fuel consumption]# grep ACURA scala.csv | wc -1
12

Interactively typing the shell commands is useful for short, simple tasks. For larger scripts, you can use the
spark-submit command to submit applications to the Spark cluster. For instance, I use one of the examples in the
spark-examples application library available under /usr/lib/spark/examples/lib/ in the CDHS5 release (which is
supplied with the Spark install):

[root@hc2nn ~]# cd /usr/1lib/spark/examples/1ib/
[root@hc2nn lib]# 1s -1 spark-examples_2.10-1.0.0-cdh5.1.2.jar
-Iw-r--r-- 1 root root 734539 Aug 26 15:07 spark-examples 2.10-1.0.0-cdh5.1.2.jar

I can execute example applications from this library on the cluster and monitor them using the master user
interface. For instance, the following code uses the spark-submit command to run the SparkPi example program
from the examples library. It sets the memory to be used on each worker at 700 MB and the total cores to be used at
10. It uses the same master Spark URL to connect to the cluster and specifies 10,000 tasks/iterations:

[root@hc2nn ~]# spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hc2nn.semtech-solutions.co.nz:7077 \
--executor-memory 700M \
--total-executor-cores 10 \
/ust/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.2.jar \
10000

Checking the Spark Application interface for this application in Figure 9-7 shows the application details and the
progress of the job, such as the duration of the application run. I can also see that the default scheduling mode of FIFO
(first in, first out) is being used. As with YARN, I can set up a fair scheduler for Spark. In the Active Stages section, the
blue bar shows the progress of the application run.

spori: Stages torag v orit wecut Spark Pi applicat

Spark Stages

Total Duration: 253
Scheduling Mede: FIFO
Active Stages: 1
Completed Stages: 0
Failed Stages: 0

Active Stages (1)

Stage Id Description Submitted Duration Tasks: SucceededTotal Shutfle Read Shuffie Write
] ecuce at SparkPi scala3 2014/00/10 183601 2s i 3700r10000

Completed Stages (0)

Stage id Descriptien Submitted Duratien Tasks: Succeededi/Total Shuffle Read Shuffle Write

Falled Stages (0)

Stage Id D Duration Tasks: Succeeded/Total Shuffle Read Shuffle Write Failure Reason

Figure 9-7. Spark Application interface shows details of the job

286

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

By clicking the Executors tab at the top of the Spark Application interface, I can examine details of the application
task, as shown in Figure 9-8. I can see the spread of tasks across the cluster nodes and the task times by node, as well
as a list of tasks, the nodes they run on, their execution times, and their statuses. The Summary Metrics section also
contains minimum, maximum, and percentile information for details like serialization, duration, and delay.

spai{ Sages  Swrage P—— ecutar Spark Pi apy

Details for Stage 0
Total task time across all tasks: 2.5 min

Summary Metrics for 5264 Completed Tasks

Metric Min 25th percentile Median 75th percentile Max
Resull seriaization tme oms 0ms oms oms 2ms
Duration 10 ms 20ms 26 ms 30ms 02s
Time spent lelching task results oms 0 ms 0ms oms oms
Scheduer delay Sms oms 14ms 25ms 3s

Aggregated Metrics by Executor
Executor 1D Address Task Time Total Tasks Failed Tasks Succeeded Tasks Shuffie Read Shutfie Write Shuffie Spill (Memory) Shutfie Spill (Disk)
o he2rimd semiech-soiutions co.nz 48315 53s 1101 L] 11 ooB o0os 108 008

hezrim semiech.soiutions co

14650 538 1163 o 163 ooB 008 i 008

2 hezZnn sembech-solutions co nz 493 561 o 561 0o0B 008 008 008

3 NE2rim3 semiech.-soutions co.nz 39498 535 1189 0 1189 008 008 008 008

4 he2rim2 semiech-solutions co.nz 38801 533 150 0 150 00B 008 008 008

Tasks

Task Index Task IO Status Locality Level Executor Launch Time Duratien GC Time Result Ser Time Errors
0 SUCCESS PROCESS_LOCAL he2rimi semtech-solutions co.nz 201400110 18:36:54 D1s
1 SUCCESS PROCESS_LOCAL he2rim1 semtech-soltions co.nz 2014000 83654 96 ms ams

2 2 PRQ _LOCAL he2rim3 sembec fions £o Nz 2014000/10 183654 01s 1ms

3 3 PROCESS_LOCAL he2rim3 sembes fions Co.nz 201400710 183654 01s

4 4 PROCESS_LOCAL he2rimd sembech-solutions co.nz 201400110 18.36.54 01s 1ms

Figure 9-8. Spark Application interface shows job executors

Asyou can see from these simple examples, the Spark cluster is easy to install, set up, and use. To investigate
Spark in greater detail, visit the Apache Software Foundation website for Apache Spark at spark.apache.org.

Spark SQL

Rather than using the default Spark context object sc, you can create an SQL context from the default Spark context
and process CSV data using SQL. Spark SQL is an incubator project, however; it is not a mature offering at this

time. For instance, its APIs may yet change, and the version in CDH5 no longer reflects Spark SQL's latest functions.
Despite that, it does offer some interesting features for memory-based SQL cluster processing. I use a simple example
of CSV file processing using Spark SQL, based on a schema-based RDD example at https://spark.apache.org/
docs/1.0.0/sql-programming-guide.html.

Note For the latest details on Spark SQL, see the Spark website at spark.apache.org.

287

www.it-ebooks.info


https://spark.apache.org/docs/1.0.0/sql-programming-guide.html
https://spark.apache.org/docs/1.0.0/sql-programming-guide.html
http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

This example uses the same CSV file as was used in a previous example. The basic steps are to create a SQL
Context object in the Spark shell session to make Spark SQL functionality available, then import the data into a table
and run some SQL against it. Here is the CSV file data in the file /tmp/scala.csv. I have removed its header rows so that
it contains only raw data:

[root@hc2nn fuel consumption]# head scala.csv

2014,ACURA, ILX,COMPACT,2,4,AS5,7,8.6,5.6,33,50,1440, 166

2014,ACURA, ILX,COMPACT,2.4,4,M6,2,9.8,6.5,29,43,1660,191

2014,ACURA, ILX HYBRID,COMPACT,1.5,4,AV7,Z,5,4.8,56,59,980,113

2014,ACURA,MDX 4WD,SUV - SMALL,3.5,6,AS6,Z,11.2,7.7,25,37,1920,221
To use SQL in Spark, I enter the following command into my Spark shell:

scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)

This creates a SqlContext from the default Spark context sc, using the SQLContext class. Next, I import the
sqlContext library functionality so that it is available for the rest of the script:

scala> import sqlContext._

I define the schema using a case class to represent all of the comma-separated fields in the data file line. This
defines the number of fields, their name, order, and type:

scala> case class Vehicle(year: Int,manufacturer: String, model: String, vclass: String, engine:
Double, cylinders: Int, fuel: String, consumption: String, clkm: Double, hlkm: Double, cmpg: Int,
hmpg: Int, co2lyr: Int, co2gkm: Int)

Note The column types are case-sensitive; for instance, “int” will cause an error while “Int” will not.

The data types used here are Int, String, and Double to represent the data vaues in the CSV file. The order is
important, as it should match the data in the CSV file row. Also, reserved words need to be avoided, so I have used the
column name vclass to describe my vehicle class.

Now, I create an RDD from the vehicle record, import the CSV file /tmp/scala.csv, split the file by the comma
character, and convert the data columns by type to match the columns in the schema above:
scalay val vehicle = sc.textFile("/tmp/scala.csv").map(_.split(",")).map(p => Vehicle(
p(0).trim.toInt,

p(1),

p(2),

p(3),
p(4).trim.toDouble,
p(5).trim.toInt,
p(6),

p(7),

288

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

p(8).trim.toDouble,
p(9).trim.toDouble,
p(10).trim.toInt,
p(11).trim.toInt,
p(12).trim.toInt,
p(13).trim.toInt

))

That’s quite a complicated statement, but if I break it down, it will seem simpler. The textFile option loads the
CSV file as a text file. The first map option splits the columns in the text file by comma. The next map option maps the
data columns from the previous step into the columns of the vehicle class that was just defined. So, the vehicle RDD
contains the comma-separated data from the file.

I register the vehicle RDD as a table called “vehicle” so that SQL can be executed against the table:

scala> vehicle.registerAsTable("vehicle")

At this point, the data has been imported into the RDD and the RDD has been registered as a table, so I am
ready to execute some SQL against the table. I want to select details of Aston Martin cars from the data. The following
statement creates a schema RDD called “aston” that contains the data from the SELECT statement:

scala> val aston = sql( "SELECT year, manufacturer, model, vclass, engine FROM vehicle WHERE
manufacturer = 'ASTON MARTIN' ")

The SELECT statement takes the year, manufacturer, model, class, and engine size columns from the vehicle table.
It filters the data, selecting only those where the manufacturer’s name is Aston Martin.

When printed, the resulting aston schema RDD appears as a string. One line is printed for each row that is
matched from the table. The five columns from the table that match the columns in the SQL are embedded in the
results string:

scala> aston.map( t => "year: " + t(0) + " manufacturer " + t(1) + " model " + t(2) + " class " +
t(3) + " engine " + t(4) ).collect().foreach(println)

That string prints the following data:

year: 2014 manufacturer ASTON MARTIN model DB9 class MINICOMPACT engine 5.9
year: 2014 manufacturer ASTON MARTIN model RAPIDE class SUBCOMPACT engine 5.9
year: 2014 manufacturer ASTON MARTIN model V8 VANTAGE class TWO-SEATER engine 4.7
year: 2014 manufacturer ASTON MARTIN model V8 VANTAGE class TWO-SEATER engine 4.7
year: 2014 manufacturer ASTON MARTIN model V8 VANTAGE S class TWO-SEATER engine 4.7
year: 2014 manufacturer ASTON MARTIN model V8 VANTAGE S class TWO-SEATER engine 4.7

5.9

year: 2014 manufacturer ASTON MARTIN model VANQUISH class MINICOMPACT engine
Thus, the results show seven matching Aston Martin data rows with their model and class details.
From an analytics point of view, Spark SQL gives analysts SQL-based access to Spark data in memory. In

processing terms, it is much faster than traditional Map Reduce processing. Also, people with a background in
relational databases will be comfortable using SQL to interrogate their data.

289

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 9 © ANALYTICS WITH HADOOP

Summary

Analysts, whether they be managers, testers, or researchers, need to find meaning in their data. They need to be able
to move, load, extract, and transform all or parts of their data to create meaning. Although the simple examples for
Impala, Hive, and Spark in this chapter may not yield any revelations in your company’s data, they do demonstrate the
available building blocks of analytics and provide an overview of the capabilities of these tools.

In this chapter I have shown that you can represent data on HDFS as a database table and use Hive QL or Impala
SQL to query and transform that data. If you combine the steps in this chapter with tools like Sqoop and Flume
(covered in Chapter 6), you can start to build ETL chains to source, move, and modify your data, step by step.

If you find that you need real-time processing rather than batch processing, you might consider using Apache
Spark. Following the example installation in this chapter, you can start using Spark on your cluster. The Spark SQL
example also shows how to process your Spark cluster based in memory data using SQL.

The next chapter covers the ETL tools Pentaho and Talend, which can be used to visually manipulate Hadoop- and
Spark-based data. They integrate with Map Reduce and Hadoop base tools like Pig, Sqoop, and Hive, and can be used
to create and schedule ETL-based chains using a combination of the Hadoop tools that have been introduced so far.

290

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10

ETL with Hadoop

Given that Hadoop-based Map Reduce programming is a relatively new skill, there is likely to be a shortage of highly
skilled staff for some time, and those skills will come at a premium price. ETL (extract, transform, and load) tools,

like Pentaho and Talend, offer a visual, component-based method to create Map Reduce jobs, allowing ETL chains

to be created and manipulated as visual objects. Such tools are a simpler and quicker way for staff to approach Map
Reduce programming. I'm not suggesting that they are a replacement for Java or Pig-based code, but as an entry point
they offer a great deal of pre-defined functionality that can be merged so that complex ETL chains can be created and
scheduled. This chapter will examine these two tools from installation to use, and along the way, I will offer some
resolutions for common problems and errors you might encounter.

Pentaho Data Integrator

In this first half of the chapter I explain how to source and install the Pentaho Data Integration (PDI) application.
Offering tools to analyze, visualize, explore, report, and predict in the same platform, PDI can work as a stand-alone
tool or can be downloaded into Pentaho Business Analytics. Pentaho offers enhanced functionality, features, and
professional support for PDI. The open-source version is called Kettle. PDI is downloaded as a generic zipped package
that can be installed on either Windows or Linux. Here’s how to install PDI and use it with Hadoop.

Note For complete details on PDI, see the company’s website at www. pentaho.com/product/data-integration.

Installing Pentaho

You can download the installation package for the Pentaho Data Integrator (PDI) from the following URL:

http://sourceforge.net/projects/pentaho/files/Data%20Integration/5.1/pdi-ce-5.1.0.0-752.zip/
download.

With an installation package that you can use for either Lunix or Windows, the zipped file is 580 MB, so it takes
quite a while to download. By way of example, after I downloaded and extracted the package, I installed the Windows
package on my C: drive, as shown in Figure 10-1. As you can see in Figure 10-1, the software installs into a directory
called “data-integration.” Note the directory structure, the start-up scripts, and the plug-ins directory that have been
marked with red boxes. On Windows, you would start the application using the Spoon.bat script; on Linux, you would
use the Spoon.sh script.

291

www.it-ebooks.info


http://www.pentaho.com/product/data-integration
http://sourceforge.net/projects/pentaho/files/Data%20Integration/5.1/pdi-ce-5.1.0.0-752.zip/download
http://sourceforge.net/projects/pentaho/files/Data%20Integration/5.1/pdi-ce-5.1.0.0-752.zip/download
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

Organize Include in library =

Y
b
4

Share with »

4 | data-integration

. Data Integration.app
. docs

. launcher

. lib

. libswt

. plugins

. pwd

. repository

& J. samples

. simple-jndi

b ui

, 41 items

Bum

Bl

New folder

|, Data Integraticn.app .| kitchen.sh

\. docs _|pansh

L. launcher __| runSamples.sh

L lib __| set-pentaho-env.sh
T LICENSE

L pwd .| README_INFOBRIGHT

| repository | README_LINUX

|, samples | README_OSX

|, simple-jndi __| README_UNLX_AS400

b ui

_|speon.command

_| pdi-Pentaho MapReduce
| pdi-Pentaho MapReduce 2

4 speon

s/ spoon (] run_kettle_cluster_example
|| cartesh [E] set-pentaho-env

__ encrsh

| generateClusterSchema.sh | SpoenConsole

_|import.sh [E]SpoonDebug

| import-rules

Figure 10-1. Pentaho Data Integrator’s installation structure

Before you start the application, the big data plug-in needs to know what Hadoop configuration you are using.
Figure 10-2 shows the structure of the PDI plugins directory, and specifically, the big data plug-in. It shows that the
pentaho-big-data-plugin resides within the plugins directory. This directory contains a file called plugin.properties
(Figure 10-2), which needs to be altered so that PDI knows which Hadoop version it is connecting to. To determine
which PDI plugin version to use, you check the Pentaho URL http://wiki.pentaho.com/display/BAD/Configuring+
Pentaho+for+your+Hadoop+Distro+and+Version, which provides a mapping of PDI plugin to Hadoop version.

292

www.it-ebooks.info


http://wiki.pentaho.com/display/BAD/Configuring+Pentaho+for+your+Hadoop+Distro+and+Version
http://wiki.pentaho.com/display/BAD/Configuring+Pentaho+for+your+Hadoop+Distro+and+Version
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

=lEl

@U'l « Data » semtech » projects » kettle » data-integration » plugins » pentaho-big-data-plugin »

- | +y | | Search pentaho-b g-data-plugin ol

Organize = 9 Open « Burn New folder

data-integration : :
hadeop-configurations

Data Integration.app lib
J

docs

= h plugins
-..a:nc e & PentahoBigDataPlugin_055_Licenses
L

4| pentaho-big-data-plugin-5.1.0.0-752
libswt e R B

- pentaho-mapreduce-libraries
e [CEE
jobentries

kettle5-logdj-plugin
kettle-gpload-plugin ‘ = ‘
kettle-hi7-plugin

kettle-openerp-plugin

kettle-palo-plugin

market

; pentahe-big-data-plugin

hadeop-configurations
cdhd2
cdh50
hadoop-20
hdp20
mapr31
lib

plugins S

plugin Date modified: 5/10/2014 118 p.m. Date created: 4/10/2014 1:21 p.m.
g PROPERTIES File Size: 236 KB

. kettle = Name Date modified

4/10/2014 212 p.m

5/10/2014 1:18 p.m.  PROPERTIES File

Figure 10-2. Pentaho Data Integrator, showing big data plug-in structure

The subdirectories shown in the hadoop-configurations directory indicate which Hadoop configuration values
are supported by the pentaho-big-data-plugin. By changing the following line in the file plugin.properties, you set the

configuration:

active.hadoop.configuration=cdh50

For example, the setting shown in Figure 10-2 shows that I have set the pentaho-big-data-plugin for PDI to use
Cloudera’s CDH5 (cdh50). Because I have limited memory available on my CDH5 cluster, I decide to run PDI on a

Windows machine and access Hadoop on Linux remotely.

You also need to copy the Hadoop configuration files to the PDI plug-in hadoop directory. From the Cloudera
CDH5 manager home page, you select the YARN (MR2 Included) option, then select the Actions drop-down menu,
followed by Download Client configuration. The zipped file that is downloaded contains the files core-site.xml,
hadoop-env.sh, hdfs-site.xml, hive-site.xml, mapred-site.xml, and yarn-site.xml. Because I am using the CDH5
(cdh50) configuration, I copy these files to the following PDI directory: data-integration\plugins\pentaho-big-

data-plugin\hadoop-configurations\cdhso0.

Pentaho requires Sun/Oracle Java 1.7, which is available at https://java.com/en/download/index. jsp. Be sure
to download and install this on Windows; the cmd.exe Window session output shows my Java installation as follows:

C:\Users\mikejf12>java -version

java version "1.7.0 67"

Java(TM) SE Runtime Environment (build 1.7.0 67-bo01)

Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

www.it-ebooks.info

293


https://java.com/en/download/index.jsp
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

Note If you plan to access MySQL with PDI, you also need to install a MySQL jar file from http://dev.mysql.com/
downloads/connector/j/ called mysql-connector-java-5.1.32-bin.jar into the PDI directory data-integration\lib.

I am using CDHS5, so I also need to add the following to the copy of yarn-site.xml in the PDI plug-in directory that
was copied from Hadoop. This helps the Pentaho libraries locate the YARN server:

<!-- added for pentaho pdi -->

<property>
<name>yarn.resourcemanager.hostname</name>
<value>hc2nn</value>

</property>

Running the Data Integrator

You start PDI on Windows by using the Spoon.bat script, which starts the Spoon client application, as shown in
Figure 10-3. This is where you create your Map Reduce jobs.

& son-t1 e G . R e

File Edit View Action Tools Help

D SERA Perspective: [ Data Integration |
m _# Design I Welcome! %7 basic mapred job :: mapper i 3% reducer

Explorer ) F il ER¥P D6 E& B 100% -

4 [ Transformations =

4 3% mapper
3 Database connections
£ Steps
=3 Hops
£ Partition schemas
» (£ Slave server
I

0 Kettle cluster schemas | h
MapReduce Input set key value MapReduce Output

Dummy (de nothing)

Figure 10-3. Pentaho’s Spoon main window

294

www.it-ebooks.info


http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

To be able to show the functionality of PDI, I have created some tasks, including a Map Reduce job called “basic
mapred job” and the associated Map and Reduce tranformations called “mapper” and “reducer,” respectively. As you
can see, these are already open and displayed in Figure 10-3. Also, note that the Explorer pane functionality on the left
of the figure changes depending on the current job or transformation that is displayed in the right pane.

The Explorer pane on the left of the window has View and Design tabs so that you can either see the content of
the task that you are working on or select functions to add to your job or transformation. The Working pane on the
right currently contains that Map Reduce job I just mentioned, called “basic mapred job” and the two transformations
called “mapper” and “reducer,” which it calls. If you drag the functionality icons from the Explorer pane to the
Working pane on the right, you can then configure and connect the functions to the flow of the task. (There will be
more about those functions later in the chapter.)

The Explorer view of the current mapper transformation, displayed in Figure 10-4, shows that it contains Map
Reduce inputs and outputs, a filter, a field splitter, a set key, and a dummy task. (I'll explain all of these items in more
detail later.) The view also shows the task workflow hops that will be executed. As Figure 10-4 illustrates, you can
configure a slave server, meaning one instance of PDI uses another as a slave and gets that instance to run a task.

(To learn more about slave servers and how they work, see the Pentaho website at www. pentaho. com.)

i View & Design
Explorer B

4 [ Transformations
4 3% mapper
I Database connections
4 [ Steps
«f Dummy (do nothing)
U Filter rows
‘g MapReduce Input
@ MapReduce Output
% Split Fields
7 set key value
a | ) Hops
= set key value --> MapReduce Output (enabled)
-+ MapReduce Input --> Split Fields (enabled)
- Split Fields --> Filter rows (enabled)
<= Filter rows --> Dummy (do nothing) (enabled)
- Filter rows --> set key value (enabled)
) Partition schemas
a | ) Slave server
‘& hnlnn
I Kettle cluster schemas

Figure 10-4. Pentaho’s Explorer view

Figure 10-5 provides a taste of the functionality that’s available in the Design view. The two columns on the left
list the functions available for transformations (note the expanded big data section), while the two columns on the
right show the functions for jobs, again with an expanded big data view. You can construct transactions in a logical,
step-by-step manner by using these building blocks, then include the transactions in jobs that you schedule
within PDI.

295

www.it-ebooks.info


http://www.pentaho.com/
http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

> @ Input 4 | Big Data .| General 4 [ Big Data

> | .'i Output W Avro Input . £ Mail = Amazon EMR Job Executor

> = T":’T’Sfo"“ ¥ Cassandra Input = File management # Amazon Hive Job Executor

> | _-: Utility ‘T Cassandra Output £ Conditions 2% Hadoop Copy Files

) FIoYN _ 4§ CouchDb Input ' .I' ) Saipting %3, Hadoop Job Executor

» [0 Scripting ff; Hadoop File Input £ Bulk loading [ Oozie Job Executor

> I LO_OkUP ﬁ.- Hadoop File Qutput , f . Big Data @ Pentaho MapReduce

> &3 Joins {1} HBaseInput . £ XML ”% Pig Script Executor
(5 Data Warehouse {1 HBase Output . & Utility @ Sqoop Export

> 3 Vallfjaflon "n}_ HBase Row Decoder X -|"- Repository ’ Sqoop Import

- S'Fahstn:s E-I:; MapReduce Input . [ Filetransfer

> § Blg, Data % MapReduce Output . [ File encryption

- [ Agile #2, MongoDB Input . £ Palo

53 Cryptography ® MongoDB Output == Deprecated

> B3 Palo ¥ $STable Output a

. [ Open ERP

» [0 Job

. 23 Mapping

- 2 Bulk loading

. = Inline

- () Experimental

. =) Deprecated

» [ History

Figure 10-5. Pentaho Explorer’s Design view

Creating ETL

Now that you have a sense of the PDI interface, it’s time to examine an example of a Map Reduce task to see how PDI
functions. I create an ETL example by starting with mapper and reducer transformations, and follow with the Map
Reduce job itself. By following my steps you'll learn how each module is configured, as well as gain some tips on how
to avoid pitfalls.

To create my PDI Map Reduce example, I first need some data. The HDFS file (rawdata.txt) should look familiar—
parts of it were used in earlier chapters. Here, I use fuel consumption details for various vehicle models over a number
of years. The data file is CSV-based and resides under HDFS at /data/pentaho/rdbms/. I use the Hadoop file system
cat command to dump the file contents and the Linux head command to limit the data output:

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/pentaho/rdbms/rawdata.txt | head -5
1995, ACURA, INTEGRA, SUBCOMPACT, 1.8,4,A4,X,10.2,7,28,40,1760,202

1995, ACURA, INTEGRA, SUBCOMPACT, 1.8, 4,M5,X,9.6,7,29,40,1680,193

1995,ACURA, INTEGRA GS-R,SUBCOMPACT,1.8,4,M5,Z,9.4,7,30,40,1660,191

1995, ACURA, LEGEND, COMPACT,3.2,6,A4,Z,12.6,8.9,22,32,2180, 251
1995,ACURA, LEGEND COUPE,COMPACT,3.2,6,A4,7,13,9.3,22,30,2260,260

296

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

Using Map Reduce, I want to create a count of manufacturer and model groupings from the data. The first step
is to create two transformations: a mapper and a reducer. The mapper receives the file lines and strips those lines
into fields. It filters out any empty lines and creates a key from the fields I am interested in. Finally, it outputs a single
record per line of the compound key and a value of 1. The reducer receives the output from the mapper, sorts data by
the key, then sums the values by key. It then outputs a sorted list of summed values for each key.

Figure 10-6 shows the structure of the mapper transformation.

T

0

Al | |7 - E

= =

Split Fields Filter{rows set key value MapReduce Output

MapReduce Input

@7 @]

N

4 MapReduce Input . &
Step name MapReduce Input
Type Length Precision
Key field  String - 0 2
Value field String - 0 4
Help ok || cance

Figure 10-6. Input step of mapper transformation

Each Map Reduce transformation must start with a Map Reduce Input and end with a Map Reduce Output.
To set up the sequence, I simply click the Design tab in the Explorer pane of the main PDI interface, then drag the
components from the Design view to the Working pane on the right. To connect the components into a workflow,
I click a component to open a drop-down menu below it, click the rightmost green arrow icon (bordered in red in
Figure 10-6), and then drag a workflow to the next component to connect them. The workflow arrow indicates the
direction of flow and shows whether the action is unconditional or if it occurs only when the result is True or False. By
double-clicking a component, such as Map Reduce Input, I can open its configuration as shown in Figure 10-6. Here,
I can see that the input component has inputs called “key” and “value,” with fields described as “string” from the
HDES file data.

Double-clicking the Split Fields icon opens its configuration, as shown in Figure 10-7. This component receives
a file line containing a comma-separated set of file fields that need to be split into separate values in order to be
manipulated. That is what this step does: it splits the string-based value field by using a comma as a separator and it
creates 14 new fields, Field 1 to Field 14.

297

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

7% Field splitter @Eﬂ

Step name  Split Fields
Field to split |value

Delimiter
Enclosure
Fields

2" Newfield ID RemovelD? Type Length  Precision Format Group Decimal Currency Nullif Default Trimtype
1 Fieldl N String none
2 Field2 N String none
3 Field3 N String none
4 Field4 N String none
5 Field5 N String none
6 Field6 N String none
7 Field7 N String none
8 Field8 N String none
9 Field9 N String none
10 Field10 N String none
1 Field11 N String none
12 Field12 N String none
13 Field13 N String none
14 Field1l4 N String none

[ OK ][ Cancel]

Figure 10-7. Split Fields step of mapper transformation

The next step in the flow is Filter Rows, a decision point where null rows are discarded based on the value of
Field 1. As you can see in Figure 10-8, the empty rows go to a dummy step whose flow has a False state. Valid rows
move on to the Set Key Value step whose flow has a True state, as indicated by the green tick.

Y A——

Filterrows set key value MapReduce Qutput

® % Filter rows M

! Step name
Send 'true’ data to step: | set key value -
Send 'false’ data to step: | Dummy (do nothing) -

f E| The condition:

Dummy (do nothing) il | Fo1a1 | @S WoT WoIT] | -@
(o (o)

Figure 10-8. Filter Rows step of mapper transformation
298

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

After filtering any bad rows out of the data, my next move is to build a compound key from the extracted data
fields via the Set Key Values step. This step creates a combined comb_key key value from Fields 2 and 3, separating
the string values with a dash. (Actually, this is created as a user-defined Java expression. It also creates a comb_value
value field with a value of 1, as shown in Figure 10-9).

7~ User Defined Java Expression LE‘M
Step name. | EETTSTIINS

Fields:
# New field Java expression Value type |
1 comb_key Field2+'-' + Field3 String
2 comb_value 1 Integer

lall 1 | }

[ oK H Cancel‘

Figure 10-9. Java expression for Set Key Values step of mapper transformation

These values are then passed to the MapReduce Output step, which assigns the comb_key and comb_value
variables to the mapper output variables key and value, as shown in Figure 10-10.

% MapReduce Output ﬁ

Step name MapReduce Output

Keyfield  comb_key -

Value field comb_value v
Help ] [ OK 1 [ Cancel 1

Figure 10-10. Output step of mapper transformation

That completes the definition of the mapper transformation that creates a key and value from the incoming data.

As described earlier, the reducer transformation accepts the incoming key / value pair and sorts it, then groups
by key values, sums the value, and finally outputs the results. Figure 10-11 shows the structure of the reducer
transformation. The Input step is the same as for the mapper transformation, but Figure 10-12 provides greater detail
on the Sort Rows step. Here, I define a single field: the sort key field (at the bottom). I also reduce the value in the sort
size field because I didn’t have much data and I wanted to save memory.

299

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

N— &~

MapReduce Input Sort rows Group by MapReduce Output

Figure 10-11. Steps in reducer transformation

1= Sort rows EM

Step name  Sort rows

Sort directory  %%java.io.tmpdir%% ¢

TMP-file prefix gyt

Sort size (rows in memory) 10000 $
Free memory threshold (in %) 2
Compress TMP Files? 9] $
Only pass unique rows? (verifies keys
Fields:
# Fieldname Ascending Case sensitive compare? Presorted?
1 key Y N N

[ ok || cancel || GetFieids

Figure 10-12. Sort Rows step of reducer transformation

Figure 10-13 shows the Group By step, which groups the data by the key value and sums it by the numeric value
to create a new summed value variable called summed_val. The aggregate value is defined as the sum function
working on the value variable.

300

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10~ ETL WITH HADOOP

15 C=NAC
g Group By .- _—

Stepname  Group by

Include all rows? [7]

Temporary files directory | 9%9%java.io.tmpdir%% ® [Eee
TMP-file prefix

grp
Add line number, restart in each ]

Line

group

ber field name

Always give back a result row [
The fields that make up the group:

£ Group field | Get Fields
1

key
Aggregates:
# " Name Subject  Type Value || Get lookup fields
1 summed_val value Sum

<[

m ] »

| ok || cancel |

Figure 10-13. Group By step of reducer transformation

Finally, the reducer Output step produces the key/value data pair as the compound key value that was created by
the mapper and the summed value variable summed_val, as shown in Figure 10-14.

r@ MapReduce Output E

Step name MapReduce Output

Key field  key -

Value field summed_val v

| Hep |[ ok || cance |

[

Figure 10-14. Output step of reducer transformation

301
www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

With the mapper and reducer transformations now defined, I can create a Map Reduce job, as shown in
Figure 10-15. A job always starts with a Start step, which I have pulled over from the General folder. I also add a Map
Reduce step, which uses the new mapper and reducer transformations.

>t ——F
START Pentaho MapReduce

Figure 10-15. Map Reduce job setup

Double-clicking the Start step gives me the option to schedule the job. As you can see in Figure 10-16, this Map
Reduce job is scheduled to run daily at 13:20.

» Job Scheduling el B [ S

Repeat: [¥]
Type: | Daily -

Interval in seconds:

Interval in minutes:  gp
Time of day: 13 = 20 =
Day of week: | Monday i

Day of month: | 1

[(?Help] [ oK H Cancel ]

Figure 10-16. Job scheduling for Map Reduce job

Figure 10-17 shows the Mapper configuration for the Map Reduce job called “pmr1.” The mapper value is defined
as the newly created mapper transformation, while the input and output values are defined as using the mapper
transformation MapReduce Input and Output steps.

302

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10~ ETL WITH HADOOP

&% Pentaho MapReduce

entaho MapReduce
p
pmrl 2

Name:

Hadoop Job Name:

Mapper . Combiner | Reducer\] Job Setup | Cluster] User Defined\]

| Lookin: [Repositnry by name v]

' Mapper Transformation: /mapper
Mapper Input Step Name: MapReduce Input $
Mapper Output Step Name: MapReduce Output $

| Hep || ok || cancel

Figure 10-17. Mapper configuration for job

Clicking the Reducer tab displays the job reducer configuration, as shown in Figure 10-18. The reducer step is
defined as the reducer transformation.

% Pentaho MapReduce

Name: Pentaho MapReduce
Hadoop Job Name: pmrl L 4
'/Mapper 'Combiner |Reducer . Job Setup | Cluster| User Defined\|
. Look in: [Repository by name v]
i1 Reducer Transformation: /reducer
Reducer Input Step Name: MapReduce Input 4
Reducer Output Step Name: MapReduce Output @
Reduce single threaded:

[ Hep ]

OK

] [ Cancel

Figure 10-18. Reducer configuration for job

303

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

Next, I click the Job Setup tab to specify the input and output paths for the job data, a shown in Figure 10-19. The
input data file is stored on HDFS at /data/pentaho/rdbms, as explained earlier.

ej Pentaho MapReduce &
MName: Pentaho MapReduce
Hadoop Job Name: pmrl @

Mapper | Combiner | Reducer Job Setuﬁ Cluster | User Defined

Suppress Output of Map Key: ]
Suppress Output of Map Value: O
Suppress Output of Reduce Key: O
Suppress Output of Reduce Value: ]

l Input Path: /data/pentaho/rdbms $
Output Path: /data/pentaho/result ®
Input Format: org.apache.hadoop.mapred. TextInputFormat $
Output Format: org.apache.hadoop.mapred. TextOutputFormat A 4
Clean output path before execution: [¥]

Help ] I OK ] [ Cancel

Figure 10-19. Job Setup tab for job pmrl

The input and output data formats for this job are defined as Hadoop Map Reduce based Java classes, such as
org.apache.hadoop.mapred.TextOutputFormat. The Clean option is selected so that the job can be rerun. That is,
each time the job runs, it will clean out the results directory.

Lastly, I define the connection to the Hadoop cluster using the Cluster tab. As you can see in Figure 10-20, the
only fields that I have changed in this tab are the hostnames and ports, so that Pentaho knows which hosts to connect
to (hc2nn) for HDFS and Map Reduce. I have also specified the ports, 8020 for HDFS and 8032 for the Resource
Manager (which is actually labeled as the Job Tracker, but this is a CDH5 cluster using YARN).

304

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

&9 Pentaho MapReduce M
Name: Pentaho MapReduce
Hadoop Job Name: pmrl A 4

Mapper | Combiner | Reducer | Job Setup | Cluster . _l_Jser Defined|

HDFS Hostname: he2nn $
HDFS Port: 8020 S 4

I Job Tracker Hostname: heZnn s 4
Job Tracker Port: 8032 $

I Number of Mapper Tasks: 1 S 4

: Number of Reducer Tasks: 1 @ ||
Enable Blocking: ()
Logging Interval: 60 @

Hep |[ ok || cancel

Figure 10-20. Cluster tab for job pmrl

Now that the job is fully specified, I can run the Map Reduce job I've called “pmrl” against YARN and I can
monitor it via Pentaho PDI and the Resource Manager user interface. When it finishes, I can check the data on HDFS.
Clicking the green run arrow, highlighted with a red box in Figure 10-21, causes the Execute a Job job configuration
window to pop up.

3% reducer |}{ mapper |~ . basic mapred job &%

_@-v.g;@l%loo% 5

>—o—

START Pentaho MapReduce

Figure 10-21. Main window for Map Reduce job

305

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

Figure 10-22 shows the Execute a Job window, in which I specify the logging levels and metrics so the Pentaho
Map Reduce job can be run. Note that the Logging Level drop-down menu is highlighted and set to Basic Logging in
Figure 10-22. If an error occurs, I can rerun the job and increase the logging level. (There’s more about logging levels
in the main PDI interface as well.)

7 ¢ Execute a job =8

Local or remote execution
@ Local execution () Execute remotely

Pass export to remote server

("] Expand remote job

Details
" |Enable safe mode
["] Gather performance metrics

Log level Basic legging -

Replay date (yyyy/MM/dd HH:mm:ss)

Starting point of job =
Parameters Variables

s Parameter Value Default value s’ Variable Value

3 1
Arguments

2o Argument Value

1 01

2 02

3 03

4 04

5 05

6 06

7 07

8 08

9 09

10 10

[ Launch ” Cancel

Figure 10-22. Execute a Job window

306

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

Clicking the Launch button executes the job and produces the basic-level log output that is shown in Figure 10-23.

2014/10/08 18:02:44 - Spoon - Asking for repository

2014/10/08 18:02:45 - RepositoriesMeta - Reading repositories XML file: C:\Users\mikejfl2\.kettle\repositoriesxml
2014/10/08 18:02:45 - Version checker - OK

2014/10/08 18:02:49 - Spoon - Connected to metastore : 1, added to delegating metastore

2014/10/08 19:49:20 - Spoon - Starting job...

2014/10/08 19:49:23 - basic mapred job - Start of job execution

2014/10/08 19:49:23 - basic mapred job - Starting entry [Pentaho MapReduce]

2014/10/08 19:49:25 - Pentaho MapReduce - Cleaning output path: hdfs://hc2nn:8020/data/pentaho/result
2014/10/08 19:49:25 - Pentaho MapReduce - Configuring Pentaho MapReduce job to use Kettle installation from /opt/pentaho/mapreduce/5.1.0.0-5.1.0.0-752-cdh50
2014/10/08 19:49:42 - basic mapred job - Finished job entry [Pentaho MapReduce] (result=[true])

2014/10/08 19:49:42 - basic mapred job - Job execution finished

2014/10/08 19:49:42 - Spoon - Job has ended.

2014/10/09 18:23:44 - Spoon - Spoon

2014/10/09 18:26:59 - Spoon - Spoon

Figure 10-23. Results of job run

I have also monitored this job via my Hadoop Resource Manager interface on the URL http://hc2nn.semtech-
solutions.co.nz:8088/cluster/apps. This URL allows me to watch the job’s progress until it is finished and monitor
log files, if necessary. As I know that the job has finished, there must be an existing part file under the results directory
that contains the results data. To see that output, I run this command from the Linux hadoop account:

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/pentaho/result/part-00000 | head -10

ACURA-1.6 EL 2
ACURA-1.6EL 6
ACURA-1.7EL 12
ACURA-2.2CL 2
ACURA-2.3 CL 2
ACURA-2.3CL 2
ACURA-2.5TL 3
ACURA-3.0 CL 1
ACURA-3.0CL 2
ACURA-3.2 TL 1

I use the Hadoop file system cat command to dump the contents of the HDFS-based results part file, and then
the Linux head command to limit the output to the first 10 rows. What I see, then, is a summed list of vehicle makes
and models.

PDTI'’s visual interface makes it possible for even inexperienced Hadoop users to create and schedule Map Reduce
jobs. You don’t need to know Map Reduce programming and can work on client development machines. Simply by
selecting graphical functional icons, plugging them together, and configuring them, you can create complex ETL chains.

Potential Errors

Nothing in life goes perfectly, so let’s addresses some errors you may encounter during a job creation.
For instance, while working on the example just given, I discovered that a MySQL connector jar file had not been
installed into the PDI library directory when I tried to connect PDI to MySQL. I received the following error message:

Driver class 'org.gjt.mm.mysql.Driver' could not be found, make sure the 'MySQL' driver (jar file)
is installed.

307

www.it-ebooks.info


http://hc2nn.semtech-solutions.co.nz:8088/cluster/apps
http://hc2nn.semtech-solutions.co.nz:8088/cluster/apps
http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

Remember, if you plan to access MySQL with PDI, you also need to install a MySQL jar file called mysql-
connector-java-5.1.32-bin.jar from http://dev.mysql.com/downloads/connector/j/ into the PDI directory
data-integration\lib.

When PDI uses the big data plug-in, it copies libraries and configuration files to a directory called /opt/pentaho
on HDFS. Therefore, you need to make sure the user account you're using for PDI has the correct permissions. For my
example, I was running PDI from a client Windows machine which employed the user ID from the Windows session
to access HDEFS. I received the following error message:

2014/09/30 18:26:20 - Pentaho MapReduce 2 - Installing Kettle to /opt/pentaho/mapreduce/5.1.0.0-
5.1.0.0-752-cdh42

2014/09/30 18:26:28 - Pentaho MapReduce 2 - ERROR (version 5.1.0.0, build 1 from 2014-06-19 19-02-57
by buildguy) : Kettle installation failed

2014/09/30 18:26:28 - Pentaho MapReduce 2 - ERROR (version 5.1.0.0, build 1 from 2014-06-19 19-02-57
by buildguy) : org.apache.hadoop.security.AccessControlException:

Permission denied: user=mikejf12, access=WRITE, inode="/":hdfs:hadoop:drwxr-xr-x

The error was caused because the Windows account (mikejf12) did not have directory access on HDFS. You
can resolve this type of problem by using the HDFS chown and chmod commands to grant access on HDEFS as the
commands below show:

[hadoop@hc2nn ~]$ hdfs dfs -chown mikejfi2 /opt/pentaho

[hadoop@hc2nn ~]$ hdfs dfs -chmod 777 /opt/pentaho

[hadoop@hc2nn ~]$ hdfs dfs -1s /opt

Found 1 items

drwxrwxrwx - mikejf12 hadoop 0 2014-10-25 16:02 /opt/pentaho

Unfortunately, deadlines prevented me from resolving an error that occurred on my Linux CDH 4.6 cluster when
I tried to run a PDI Map Reduce job. I knew that it was not the fault of PDI, but in fact was a configuration problem
with the cluster, probably YARN. Here’s the error message I received:

2014/10/01 18:08:56 - Pentaho MapReduce 2 - ERROR (version 5.1.0.0, build 1 from 2014-06-19 19-02-57
by buildguy) : Unknown rpc kind RPC_WRITABLE

2014/10/01 18:08:56 - Pentaho MapReduce 2 - ERROR (version 5.1.0.0, build 1 from 2014-06-19 19-
02-57 by buildguy) : org.apache.hadoop.ipc.RemoteException(java.io.IOException): Unknown rpc kind
RPC_WRITABLE

This is a running cluster, but it is not quite configured in the way that PDI needs. If a cluster is configured with
CDH5 manager, then it seems to work, so the difference between the two configurations must hold the clue to the
solution.

The following error occurred when I tried to run the example PDI application on Centos Linux:

# A fatal error has been detected by the Java Runtime Environment:
#
# SIGSEGV (oxb) at pc=0x80a3812b, pid=4480, tid=3078466416

I resolved it by stopping the application from showing the welcome page at startup. To do so, I simply added the
following line to the file SHOME/ kettle/.spoonrc of the user running PDI:

ShowWelcomePageOnStartup=N

308

www.it-ebooks.info


http://dev.mysql.com/downloads/connector/j/
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

If the wrong type is specified for a key field, there will be an error message generated similar to the following:

{"type":"TASK_FAILED","event":{"org.apache.hadoop.mapreduce.jobhistory.TaskFailed":{"taskid":"task 1
412385899407 _0008_m_000000", "taskType":"MAP","finishTime":1412403861583, "error":",
Error: java.io.IOException: org.pentaho.hadoop.mapreduce.converter.TypeConversionException: \n

Error converting to Long: 1995,ACURA, INTEGRA,SUBCOMPACT,1.8,4,A4,X,10.2,7,28,40,1760,202\n
For input string: \"1995,ACURA,INTEGRA,SUBCOMPACT,1.8,4,A4,X,10.2,7,28,40,1760,202\"\n\n

In this case, a string key was incorrectly being treated as a value.
An error in the configuration of the PDI Map Reduce job can cause the following error message:

commons.vfs.FileNotFoundException: Could not read from
"file:///yarn/nm/usercache/mikejf12/appcache/application_1412471201309_0001/
container 1412471201309 0001_01_000013/job.jar"

/yarn/nm/usercache/mikejf12/appcache/application 1412471201309 0001/
container_ 1412471201309 _0001_01 000001
because it is a not a file.

Although it looks like some kind of Hadoop configuration error, it is not. It was again caused by setting the wrong
data type on Map Reduce variable values. Just follow the example installation and configuration in this section and
you will be fine.

Finally, a lack of available memory on the Hadoop Resource Manager host Linux machine produces an error like
the following:

2014-10-07 18:08:57,674 INFO [RMCommunicator Allocator] org.apache.hadoop.mapreduce.v2.app.
rm.RMContainerAllocator:
Reduce slow start threshold not met. completedMapsForReduceSlowstart 1

To resolve a problem like this, try reducing the Resource Manager memory usage in the CDH Manager so that it
does not exceed that available.

Now that you understand how to develop a Map Reduce job using Pentaho, let’s see how to create a similar job
using Talend Open Studio. The illustrative example uses the same Hadoop CDHS5 cluster as a data source and for
processing.

Talend Open Studio

Talend offers a popular big data visual ETL tool called Open Studio. Like Pentaho, Talend gives you the ability to create
Map Reduce jobs against existing Hadoop clusters in a logical, step-by-step manner by pulling pre-defined modules
from a palette and linking them in an ETL chain to create a Map Reduce based job. I describe how to source, install,
and use Open Studio, as well as to create a Pig-based Map Reduce job. Along the way, I point out a few common errors
and their solutions.

309

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

Installing Open Studio for Big Data

You can find Open Studio, as well as a number of other big data offerings, on Talend’s website at waw. talend. com,
including a big data sand box and big data Studio and Enterprise editions. For the chapter’s example, I use the free,
30-day trial version downloaded from the Talend website rather than the sandbox version. This is because I plan to
connect Talend to my existing Hadoop cluster and I will tackle any problems as they arise. However, you may find the
sand box version useful because it contains sample code and a fully working Hadoop cluster. Also, I create a Pig-based
Map Reduce job because the full Java-based Map Reduce functionality is available only in the Enterprise product.

When I attempt to install these big data ETL tools, I always try to install them on Windows machines first, as I
hope to use them as clients connecting to my Linux-based Hadoop clusters. A shell-based error prevented me from
doing this at this time, so instead I install the Talend software on the Centos 6 Linux host hclnn and I configure it to
connect to the CDH5 Hadoop cluster on nc2nn. (See the “Potential Errors” section for details on this error, which calls
for a fix to be added to future Cloudera releases.)

For this installation, I download the Talend Open Studio for Big Data 5.5 from the URL www. talend.com/
download. I select the Big Data tab and download the Open Studio software, as shown in Figure 10-24. (I added red
indicator boxes to the options that I need.) The download took an hour for me; the length of download time depends
on your bandwidth.

Download

= P = ad Data Data Quality Eon MR
andb 3ig Dats 3PM - ESB VIDIV
Sandbox Big Data B Integration 1DM
Ta 1akes ] with big A ] 1S
ADVANCED BASIC

Talend Enterprise Big Data Talend Open Studio for Big Data

Download Free Trial »

Figure 10-24. Software download for Talend

I place the software in a directory called talend in the Linux hadoop user account’s home directory, using the
Linux pwd command:

[hadoop@hcinn talend]$ pwd
/home/hadoop/talend

310

www.it-ebooks.info


http://www.talend.com/
http://www.talend.com/download
http://www.talend.com/download
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

The downloaded zip file is 1010 MB and needs to be unzipped before use. The 1s -1h command gives a long file
listing with sizes in a more readable form:

[hadoop@hcinn talend]$ 1s -1h TOS_BD-r118616-V5.5.1.zip
-IW-Y--r-- 1 hadoop hadoop 1010M Oct 13 18:22 TOS BD-r118616-V5.5.1.zip

When unpacked with the unzip command, the software resides in a directory called TOS_BD-r118616-V5.5.1:
[hadoop@hcinn talend]$ unzip TOS_BD-r118616-V5.5.1.zip

[hadoop@hcinn talend]$ 1s
TOS_BD-1118616-V5.5.1 TOS_BD-r118616-V5.5.1.zip

[hadoop@hcinn talend]$ cd TOS BD-r118616-V5.5.1
There are a lot of files in this directory, but for this example, all I need to do is run the shell file (.sh). It determines

the architecture of the machine that it resides on and runs the correct binary. For instance, I am running Talend on a
64-bit Centos Linux host.

Running Open Studio for Big Data

To start Talend Open Studio, I issue the following command:
[hadoop@hcinn TOS BD-r118616-V5.5.1]$ ./T0S_BD-linux-gtk-x86.sh &
The “and” character (&) means that the job is running in the background so I can enter further commands in the

Linux session, if necessary. The command brings up the Project Chooser window, where I can either create or select a
Talend project, as shown in Figure 10-25. For this example, I select my project called “bd1,” and click Open.

Talend Open Studio for Big Data

Welcome to Talend Open Studio. Please select an existing
project to start work, or create a new one.

e (5> open |
Talend k | Delete... |
Open Studio . _
for Blg Data | Create... | |Import.. Demo Project...

Workspace:  (mome/adoophtalend/TOS_BD-118616-V5.5.1workspace | | Change |

talen

Figure 10-25. Project chooser window for Talend

311

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

To be able to demonstrate the Designer perspective, which is displayed by default, previously I had created the
ETL job called “tmr1.” This allows me to explain the Open Studio interface features. Open Studio for Big Data opens to
the main interface, shown in Figure 10-26. The searchable palette on the right provides a list of dragable modules. For
instance, searching for “thdfs” and “tpig” provides a list of HDFS and Pig modules. The center of the interface contains
the current open jobs as tabs; in this case, tmrl, the Pig-based Map Reduce job I had created previously, is shown. The
arrows indicate data flows or conditions, while the icons represent functional modules, such as tHDFSConnection_1.
Because I have already successfully run tmrl, it shows some extra information about how the fast data rows were
processed (i.e., one row in 166.12 seconds).

* Talend Open Studio for Big Data (5.5.1.r118616) | bd1 (Connection: Local)

File Edit View Window Help

R %0 u|ldfa q Learn <Gy Ask ‘¥ Upgrade! & Exchange
{41 Repository 2 = B | ¢ Talend Open Studio fajobtmrl 23 = B8 5k Palett 2 =i
e _ e ———— —
2 & | e m = | [tpi &
: & |teig | #
< /,Job Designs " tHDFSCorhection 1 A Pial :a:fll_l_ . ' & Big Data o
M Contexts OnSubobOk  OnSuBTabOK.  rowd kPig) & Pig
”, = - tPi
» wosks s
g i tPigCode
b JsQL Templates I tHDFSDelete_1 | 1 mwﬁg B5d12s & tPigCross
(5l Recycle bin A Z 01 rawsss
2 i % tPigDistinct
s A% tPigFilterColumr
" tPigRlterColumns_1 © ' tPigSort_1 P R 47 tPigFilterRow
| £ tPigjoin
tRigload_2 #, tPigLoad
J tPigMap
#® tPigReplicate
Designer Code #= tPigsort
{3 Job(tmrl |2 Contexts() | <> Compone [ Run(jobt 52 - [ Oocziesch 2 Modules =0 4" tPigStoreResult
& Misc
Job tmrl Default ¢ note
Execution -
—— = Basic Run & i Hanci Name (> Processing
= Ou & Co ® |
- : ﬁbug f:;n ‘ (& Hadoop
la & nvae:cg settings [~] & tPigAggregate
— r xec FEIE
b tHDFSConnection_1 L #. tPigCode
b tHDFSDelete_1 & tPigCross
b tPigFilterColumns_1 #® tPigDistinct
b tPigLoad_1 #F tPigFilterColumr
b tPigLoad_2 47 tPigFilterRow
b tPigMap_1 I tPigjoin
P tPigSort_1 #, tPigload
b tPigStoreResult_1 ¥ tPigMap
=idrai - #& tPigReplicate
= 75 tPigsort
[] Line limit (100 | & wrap I B ' tPigStoreResult

Figure 10-26. Main user interface for Open Studio

312

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

The top-left side of the Figure 10-26 interface shows the local repository for the project bdl; from here, I can
double-click the tmr1 job to open it. At the bottom of the interface is a designer and code section. The Code tab
enables me to examine the Java code that Talend generates from the job file; the Designer tab allows me to both
configure each step of the job by selecting it and to run the job once the configuration is completed.

Before I proceed to use the Open Studio interface, I take a moment to consider the test data that this example
job will use. For instance, I have stored two CSV-based data files in the HDFS directory /data/talend/rdbms/, as the
following Hadoop file system 1s command shows:

[hadoop@hc2nn ~]$ hdfs dfs -1s /data/talend/rdbms

Found 2 items

-Iw-r--r-- 3 hadoop supergroup 1381638 2014-10-10 16:36 /data/talend/rdbms/rawdata.txt
-1w-r--r-- 3 hadoop supergroup 4389 2014-10-18 08:17 /data/talend/rdbms/rawprices.txt

The first file, called rawdata.txt, contains the vehicle model fuel consumption data that has been used in previous
chapter examples, while the second file, called rawprices.txt, contains the matching model prices. The combined
Hadoop file system cat command and the Linux head commands list the first 10 rows of each file, as follows:

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/talend/rdbms/rawdata.txt | head -10

1995,ACURA, INTEGRA, SUBCOMPACT, 1.8,4,A4,X,10.2,7,28,40,1760, 202
1995, ACURA, INTEGRA, SUBCOMPACT, 1.8,4,M5,X,9.6,7,29,40,1680,193
1995,ACURA, INTEGRA GS-R, SUBCOMPACT,1.8,4,M5,Z,9.4,7,30,40,1660,191
1995,ACURA, LEGEND, COMPACT,3.2,6,A4,Z,12.6,8.9,22,32,2180, 251
1995,ACURA, LEGEND COUPE,COMPACT,3.2,6,A4,Z,13,9.3,22,30,2260,260
1995,ACURA, LEGEND COUPE,COMPACT,3.2,6,M6,Z,13.4,8.4,21,34,2240,258
1995, ACURA, NSX, TWO- SEATER, 3,6,A4,Z,13.5,9.2,21,31,2320,267

1995, ACURA, NSX, TWO-SEATER, 3,6,M5,Z,12.9,9,22,31,2220, 255

1995,ALFA ROMEO, 164 LS,COMPACT,3,6,A4,Z,15.7,10,18,28,2620,301
1995,ALFA ROMEO,164 LS,COMPACT,3,6,M5,7,13.8,9,20,31,2320,267

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/talend/rdbms/rawprices.txt | head -10

ACURA, INTEGRA, 44284
ACURA, INTEGRA, 44284
ACURA, INTEGRA GS-R,44284
ACURA, LEGEND, 44284
ACURA, LEGEND COUPE, 44284
ACURA, LEGEND COUPE, 44284
ACURA,NSX, 32835
ACURA,NSX, 32835

ACURA, 2.5TL,44284

ACURA, 3.2TL,44284

For my example, I plan to use only columns 2 and 3 from the first file, which contain the manufacturer and model
details, and the price information from the second file. (Note that these prices are test data, not real prices.)

313

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

Creating the ETL

Examining a completed job is a good way to understand Open Studio’s modules and workflow. Figure 10-27 shows
job tmr1, the Pig-based Map Reduce job I created for this example. It starts with a connection to HDFS called
tHDFSConnection_1, on the condition that the connection works control is passed to an HDFES delete step called
tHDFSDelete_1, which clears the results directory for the job. If that is okay, then control is passed to a tPigLoad step
called tPigLoad_1, which loads the rawdata.txt file from HDFS. At the same time, another load step called tPigLoad_2
loads the rawprices.txt file from HDFS. The data from these files is then passed to a module called tPigMap_1, which
will combine the data.

B s E

. -—a—n .
tHDFSConhection_1 tPigStordResult_1

OnSubjobOk ©On

e 166 1<
1 rows in 1o0b.1.5

row2 (Pig) : :

" tPigFilterColumns_1 tPigSort_1

'ro-;v-j {Lc E‘J:'kup, ‘pigil '

tPigload 2
Figure 10-27. Work flow for Pig native Map Reduce job

Figure 10-27 shows that the tPigMap_1 step combines the data from the two files, while the tPigFilterColumns_1
step removes the column data that is not of interest. The tPigSort_1 step sorts the data, then the tPigStoreResult_1 step
saves the sorted data to HDFS.

To create your own jobs, you select modules in the palette and drag them to the center jobs pane. Then, you
right-click the icons to connect the modules via conditional arrows or arrows that represent data flows (as was
done with Pentaho earlier). Figure 10-28 shows the creation of a conditional flow between steps of a job. If the
tHDFSConnection_1 step works, then control will pass to the deletion step. Figure 10-29 illustrates the creation of a
specific data flow between the tPiglLoad_1 and tPigMap_1 steps.

oAl I % BEE -
tHDFSCor| | k,lult_'l

On Subjob Error '

Figure 10-28. Conditional job flow

314

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

F- 1 b . . w. . & \‘ =
|
tPigLe

Trigger > ‘oreresuit_1 R

Figure 10-29. Data flow for Pig Map Reduce job

Now that you have a sense of the job as a whole, take a closer look at how it’s put together. From this point,

I walk slowly through the configuration of each step of the tmr1 example job, as well as point out some common
troublespots. At the end, I run the job and display the results from the HDFS results directory.

As long as the Component tab in the Designer window is clicked, I can select each step in a job and view its
configuration. For the HDFS connection, for example, the Hadoop version is defined as Cloudera and CDH5. The URI
for the Name Node connection is defined via the cluster Name Node host hc2nn, using the port number 8020. The
user name for the connection is defined as the Linux hadoop account; these choices are shown in Figure 10-30.

£ Job(tmrl ) | 71 Contexts(job tmrl ) -: Component £2 - (& Run (Jobtmrl) 2 Oozie scheduler 2, Modules, = 8

& tHDFSConnection_1 =
Basic settings Property Type 8
Advanced settings Version
Dynamic settings Distribution cloudera B e El A= iCloudera CDHS.0(YARN mode
e NameNode URI[“hdfs://hc2nn:8020/" 3
Documentation s P

Authentication

[ Use kerberos authentication

User name l"hadoop" I+

Figure 10-30. The trml job, with HDFS connection

The HDFS delete step shown in Figure 10-31 just deletes the contents of the /data/talend/result/ HDES directory
so that this Talend job can be rerun. If this succeeds, then control passes to the next step. The ellipses (. . .) button to
the right of the Path field allows me to connect to HDFS and browse for the delete location.

& Use an existing connection Component list ~
File or Directory Path|"/data/talend/result” I

Figure 10-31. HDFS delete step for trm1 job

315

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

My next step is to load the rawdata.txt file (tPigLoad_1). Remember that even though the Hadoop cluster may be
fully configured via XML-based site configuration files, the Talend job carries configuration information, as shown
in Figure 10-32. Note also that the Map/Reduce icon has been selected here, telling Talend that this will be a Map
Reduce job. The same CDH5 cluster information has been specified. However, this time the host- and port-based
addresses have been set for the Resource Manager, the Job History server, and the Resource Manager scheduler. The
port values have been suggested by Talend as default values, and they match the default values chosen by the CDH5
Cluster Manager installer. Again, I use the Linux hadoop account for the connection.

% tPigLoad_1 58

Basic settings Property Type
Advanced settings Schema . | Edit schema [
Dynamic settings Mode
View O Local *
Documentation ® Map/Reduce
Configuration—
Distribution |cloudera ~ |*Version|cloudera CDHS.
Load function PigStorage %

NameNode um|~hdfs:uhc2nn:3020“

Resource Manager ["hcz nn:8032"

|

|
) Set jobhistory address |"hc2nn:10020" |*

|

W Set resourcemanager scheduler address ["hc2nn:8030"

[] Set staging directory

Authentication
[J Use kerberos authentication

User name  |"hadoop" u

Figure 10-32. Loading the HDFS raw data file

At this step I encountered an error message. Initially failing to set the Resource Manager scheduler address
caused the Resource Manager-based job to time out and fail (see the “Potential Errors” section for more detail).

When loading a data file, you must also specify the schema to indicate what columns are in the incoming data,
what they should be called, and what data types they have. For this example, I click the Edit Schema button (shown at
the top of Figure 10-32) to open the Schema window, shown in Figure 10-33.

316

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

* Schema of tPigLoad_1 »
tPigLoad_1
Column Key Type zmullat Date Pattern (Ctrl Length Precision Derault Commenl
manufacturer | string O

model T | String (]

vclass

engine_sz float O
cylinders i int | O
transmission | ?String O
fuel_type string L)
consumption_city_km [ float I O
consumption_hwy_km O iﬂoat 0
consumption_city_mpg : | O
consumption_hwy_mpg O
fuel_lpy O
co2 n
|| %) 7| &]|E o @

OK Cancel

Figure 10-33. Schema window for trm1 job

I use the green plus icon at the bottom left of the window to manually specify the column names and data types.
I try to make the names meaningful so that they accurately represent the data they contain. I do not add any keys,
and my data does not contain null values, so I leave those fields blank. The schema for the raw prices file from the
tPigLoad_2 step shows just three columns, the last of which is the vehicle price (see Figure 10-34).

+* Schema of tPigLoad_2 X
tPigLoad_2

Column Key Type zNulIat Date Patte Lengtl Prect( Def: Comnm
|| rna|nu.:fan:'curv..uerE ) Strmg CTN | | |
| | model |0 |swingl O | |
| price |; long | B | | | |
| % | |Go|| @

oK | Cancel

Figure 10-34. Three-column setup for trml job

The tPigMap_1 step takes the data from the loaded rawdata.txt and rawprices.txt files and combines them on
the manufacturer and model names. It then outputs the combined schema as a data flow called “outl,” shown in
Figure 10-35. The arrows in Figure 10-35 show the flow of columns between the incoming and outgoing data sources.
The schemas at the bottom of the window show the incoming and outgoing data. Note: the example does not map all
the incoming columns, as in a later step I will filter out the columns that are not needed from the resulting data set.

317

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

Talend Open Studio for Big Data - tPigMap - tPigMap_1

Find : | T + X £ Auto Map

b}
(3

main rrowl *
Column | outl & o B

year i Expression Column
manufacturer f rowl.year year

M medel 1 rowl.manufacturer manufacturer
velass i rowl.model model
engine_sz rowl.vclass velass
cylinders rowl.engine_sz engine_sz
transmission | rowl.cylinders cylinders
fuel_type | row3.price price
consumption_city_km
consumption_city_mpg
consumption_hwy_mpg
fuel_lpy

o2
consumption_hwy_km

lookup : row3 Fl e &
Property Value

Join Model Left Quter Join

Join Optimization None

Custom Partitioner

Increase Parallelism

Exp.key Column

b rowl.manufacturer manufacturuer 1.3
% rowl.model model =
price |

Schema editor ~_Expression editor
rowl outl
Column _Keylwm z.NuIIaI:IDate Patter LengthlprecisiIDefalcommen Column IKey _‘rype I3 Nullak Date Patter: Length_Precisi IDefal Comm I

year [ t O | year Olimt | O |
manufacturer | [ | manufacturer | | String |
model I | model String | |

velass | o | | | | velass | D |string | |

[ | | | engine_sz | O |String |

[ | | | L cylinders O | String |

engine_sz I

cylinders [
e[ @ || @

Apply oK Cancel

Figure 10-35. Incoming and outgoing data flows, with corresponding schemas

The column filtering step separates out the columns in the data source to just those required for the resulting
data set. In this case, the columns have been reduced to the vehicle manufacturer, model, and price information, as
shown Figure 10-36.

318

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

Schema of tPigFilterColumns_1

outl (Input) tPigFilterColumns_1 (Output)

Column Key Type <Nullat Date Pat Leng Preci Def C Column Key Type <Nullak Date Pat Leng Preci Def Co
year O |int O ! | manufacturer | () [Strin¢ [0 | ' b
manufacturer 0O |string O | | model O !S;tringg 0O ! ! !
model 0O istring O (3¢ | price i O jstring O |
vclass O |string O
engine_sz O istring O
cylinders O isting O
price O jstring O 5

" [2] a W [=0>)
9 g || @ L || @
OK Cancel

Figure 10-36. Filter Columns step to eliminate unneeded columns

The next step is to sort the data and specify the order in which the columns will be sorted; Figure 10-37 shows a
compounded sorting key of manufacturer, model, and price.

?’g tPigSort_1 55

Basic settings Schema Built-In Edit schema (L] | Sync columns
Advanc_ed set_ti"gs Sort key Column order
Dynamic settings | manufacturer | ASC =
View _ odel | Asc
Documentation Ioeica | ASC -~
: D)
s -

Figure 10-37. Sort step to put columns in desired order

Finally, the data is stored via a results step, which specifies where the Map Reduce job will store its data and what
the field separator will be, as shown in Figure 10-38. I use the default storage method of PigStorage and instruct the
data to be stored in the directory /data/talend/result/. Because this is a Map Reduce job, a successful outcome will
create a part file.

QL, tPigStoreResult_1

Basic settings Property Type
Advanced settings Schema Edit schema Sync columns
Dynamic settings

Result Folder URI|*/data/talend/result/" .
View
Documentation ~] Remove result directory if exists

Store function | JFETIERE v

Field separator *|* I+

Figure 10-38. Results step provides for storage of the data

319

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

Having successfully created the job, I can now run it from the Designer window’s Run tab. I click the Run button
with the green run arrow to start the job. The Basic Run window shows minimal job output, while the Debug Run
option displays a little more output in case of error. The output is color coded; green lines are good and red lines show
an error. See Figure 10-39 for the results of my job example.

£5 Job(tmrl | 7 Contexts()  +: Compone (i Run(jobt 23 - g Ooziesch % Modules = O

Job tmrl Default | &
Basic Run Execution =
Debug Run B+ Run « Clear
Advanced settings T e @)
Target Exec MILL: DS) j '

k

>

.d
[ Line limit |100 W Wrap @ B

Figure 10-39. Job is run and results are shown

Remember that it is possible to track these jobs from the Resource Manager interface, as shown in Figure 10-40.
For my cluster, the Name Node hostname is hc2nn, and the Resource Manager http port number is 8088, so the URL is
hc2nn:8088.

320

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

All Applications

Showing 115 10 o 10 enkie

Figure 10-40. Resource Manager interface for monitoring the job

Note If a Talend Map Reduce job hangs, the only place you can investigate the details of the job log is by using the
Resource Manager user interface.

Figures 10-39 and 10-40 both show that running this Talend job was a success, meaning I can find its output data
on HDFS in the target directory—/data/talend/result/, in this case. I use the HDFS file system command 1s to create a
file listing of that directory showing the resulting data files:

[hadoop@hc2nn ~1$ hdfs dfs -1ls /data/talend/result

Found 2 items

-Iw-r--r-- 3 hadoop supergroup 0 2014-10-18 09:21 /data/talend/result/_SUCCESS
-Iw-1--r-- 3 hadoop supergroup 441159 2014-10-18 09:21 /data/talend/result/part-r-00000

As would be expected, there is a_SUCCESS file and a part file that contains the data. Dumping the contents of the
part file by using the HDFS file system cat command shows me that the vehicle manufacturer, model, and price data
has been sorted and placed in the part file:

[hadoop@hc2nn ~]$ hdfs dfs -cat /data/talend/result/part-r-00000 | head -10

ACURA|1.6 EL|44284
ACURA|1.6 EL|44284
ACURA|1.6 EL|44284
ACURA|1.6 EL|44284
ACURA|1.6EL|44284
ACURA|1.6EL|44284
ACURA|1.6EL|44284
ACURA|1.6EL|44284
ACURA|1.6EL|44284
ACURA|1.6EL|44284

321

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10  ETL WITH HADOOP

All of the pricing information is the same because this is a small sample of the pricing test data. The output data
has been formatted with separator vertical (“|”) characters.

This simple example reflects only a small portion of the available Talend functionality, but it shows the potential
for building Map Reduce jobs using a drag-and-drop approach. Remember also that there is still more functionality
in the Talend Enterprise application. With the Enterprise application, you can build traditional Map Reduce jobs by
using a Map Reduce job type and specifying the functionality of the mapper and reducer components of the job.

Potential Errors

Here are some of the errors I encountered when developing this example, as well as their solutions. Check the Talend
forum at www. talendforge.org/forum for past issues encountered and to ask questions if you cannot find a solution
to your problem.

When I installed Talend on a Windows 7 machine, it crashed on startup, with the following error message:

Java was started but returned exit code = 1
C:\Windows\system32\javaw.exe

-Xms154m

-Xmx2536m

-XX:MaxPermSize=3256m

This problem was caused by a Windows patch called kb2977629. My solution was to remove the patch by
following these steps:
1. Select the Start button.
Click Control Panel.
Click Programs.
Under Programs and Features, Click View Installed Updates.
Search for kb2977629 and uninstall.

o o > W b

Restart Windows.

There was a permissions problem with HDFS when I was running Talend from Linux, which caused the following
error message:

cause:org.apache.hadoop.security.AccessControlException: Permission denied:
user=hadoop, access=WRITE, inode="/tmp/hadoop-yarn":yarn:supergroup:drwxr-xr-x

To fix the problem, I use the Linux su command to change the user to the YARN Linux user, and then used the
HDFS file system chmod command to change the permissions of the directory, as follows:

[root@hc2nn ~]# su - yarn
[yarn@hc2nn ~]$ hdfs dfs -chmod -R 777 /tmp/hadoop-yarn

The following memory-based error occurred because the maximum memory specified for Application Master
component on YARN was less than the level that was needed.

PriviledgedActionException as:hadoop (auth:SIMPLE) cause:java.io.IOException:
org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException:

Invalid resource request, requested memory < 0, or requested memory > max configured,
requestedMemory=1536, maxMemory=1035

322

www.it-ebooks.info


http://www.talendforge.org/forum
http://www.it-ebooks.info/

CHAPTER 10 * ETL WITH HADOOP

I solved this problem on YARN by changing the value of the parameter yarn.app.mapreduce.am.resource.mb in
the file yarn-site.xml, under the directory /etc/hadoop/conf. After making the change, I needed to restart the cluster
to pick up the change.

The next error occurred when I tried to run Talend from a Windows 7 host and tried to connect to a Centos 6
Linux-based CDH5 cluster:

83_0004 failed 2 times due to AM Container for appattempt 1413095146783_0004_ 000002 exited with
exitCode:

1 due to: Exception from container-launch: org.apache.hadoop.util.Shell$ExitCodeException:
/bin/bash: line 0: fg: no job control

org.apache.hadoop.util.Shell$ExitCodeException: /bin/bash: line 0: fg: no job control

This was not a problem with Talend, but a known fix appears in Horton Works HDP 2. I assume that it will soon
be fixed in other cluster stacks like CDH, but at the time of this writing, I used the Talend application only on Linux.
Finally, the following error occurred because I used insufficient configuration settings in the Talend tPigLoad step.

2014-10-14 17:56:13,123 INFO [main] org.apache.hadoop.yarn.client.RMProxy: Connecting to
ResourceManager at /0.0.0.0:8030

2014-10-14 17:56:14,241 INFO [main] org.apache.hadoop.ipc.Client: Retrying connect to server:
0.0.0.0/0.0.0.0:8030. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep
(maxRetries=10, sleepTime=1000 MILLISECONDS)

2014-10-14 17:56:15,242 INFO [main] org.apache.hadoop.ipc.Client: Retrying connect to server:
0.0.0.0/0.0.0.0:8030. Already tried 1 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep
(maxRetries=10, sleepTime=1000 MILLISECONDS)

Because the Resource Manager scheduler address was not being set on the tPigLoad step, the address on YARN
defaulted to 0.0.0.0:8030, and so the job hung and timed out.

Summary

You can use visual, drag-and-drop Map Reduce enabled ETL tools, such as Pentaho Data Integrator and Talend Open
Studio, for big data processing. These tools offer the ability to tackle the creation of ETL chains for big data by logically
connecting the functional elements that the tools provide. This chapter covered only a fraction of the functionality
that they offer. Both include an abundance of Map Reduce components that you can combine to create more
permutations of functionality than I could possibly examine in these pages.

I created the examples in this chapter using a combination of a Hadoop cluster, which I built using Cloudera’s
CDH5 cluster manager, and the visual ETL big data enabled tools Pentaho and Talend. I think that the errors that I
encountered are either configuration based or will be solved by later cluster stack releases. Remember to check the
company websites for application updates and the supplier forums for problem solutions. If you don'’t see a solution
to your ETL problem, don'’t be afraid to ask questions; also, consider simplifying your algorithms as a way to zero in on
the cause of a problem.

Just as I believe that cluster managers reduce problems and ongoing costs when creating and managing Hadoop
clusters, so I think tools like Pentaho and Talend will save you money. They provide a quick entry point to the world of
Hadoop-based Map Reduce. I am not suggesting that they can replace low-level Map Reduce programming, because
I'm sure that eventually you will find complex problems that require you to delve down into API code. Rather, these
tools provide a good starting point, an easier path into the complex domain of Map Reduce.

323

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11

Reporting with Hadoop

Because the potential storage capability of a Hadoop cluster is so very large, you need some means to track both the
data contained on the cluster and the data feeds moving data into and out of it. In addition, you need to consider the
locations where data might reside on the cluster—that is, in HDFS, Hive, HBase, or Impala. Knowing you should track
your data only spawns more questions, however: What type of reporting might be required and in what format? Is a
dashboard needed to post the status of data at any given moment? Are graphs or tables helpful to show the state of a
data source for a given time period, such as the days in a week?

Building on the ETL work carried out in Chapter 10, this chapter will help you sort out the answers to those
questions by demonstrating how to build a range of simple reports using HDFS- and Hive-based data. Although you
may end up using completely different tools, reporting methods, and data content to construct the reports for your
real-world data, the building blocks presented here will provide insight into the tasks on Hadoop that apply to many
other scenarios as well.

This chapter will give you a basic overview of Hunk (the Hadoop version of Splunk) and Talend from a report-
generation point of view. It will show you how to source the software, how to install it, how to use it, and how to create
reports. Some basic errors and their solutions will be presented along with some simple dashboards to monitor the
data. The chapter begins withan introduction to the Hadoop version of Splunk, which is called Hunk.

Note Reports show the state of given data sources in a variety of forms (tables, pie charts, etc.) and might also
aggregate data to show totals or use colors to represent data from different sources. Dashboards provide a single-page
view or overview of a system’s status and might also contain charts with key indicators to show the overall state of
its data.

Hunk

Hunk is the Hadoop version of Splunk (www. splunk.com), and it can be used to create reports and dashboards to
examine the state of the data on a Hadoop cluster. The tool offers search, reporting, alerts, and dashboards from
aweb-based user interface. Let’s look at the installation and uses of Hunk, as well as some simple reports and
dashboards.

Installing Hunk

By way of example, I install Hunk onto the Centos 6 Linux host hc2nn and connect it to the Cloudera CDH5 Hadoop
cluster on the same node. Before downloading the Splunk software, though, I must first create an account and register
my details. I source Hunk from www. splunk.com/goto/downloadhunk.

325

www.it-ebooks.info



http://www.splunk.com/
http://www.splunk.com/goto/downloadhunk
http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Version 6 is about 100 MB. I install the software by using the Centos-based Linux hadoop account. Given that
I am logged into the hadoop account, the download file is saved to the Downloads directory, as follows:

[hadoop@hc2nn ~1$ pwd
/home/hadoop/Downloads

[hadoop@hc2nn Downloads]$ 1s -1 hunk-6.1.3-228780-Linux-x86_64.tar.gz
-Iw-r--r-- 1 hadoop hadoop 105332713 Oct 28 18:19 hunk-6.1.3-228780-Linux-x86_64.tar.gz

This is a gzip compressed tar file, so it needs to be unpacked by using the Linux-based gunzip and tar
commands. I use the Linux gunzip command to decompress the .tar.gz file and create a tar archive file. The Linux tar
command then extracts the contents of the tar file to create the Hunk installation directory. In the tar option, x means
extract, v means verbose, and f allows me to specify the tar file to use:

[hadoop@hc2nn Downloads]$ gunzip hunk-6.1.3-228780-Linux-x86 64.tar.gz
[hadoop@hc2nn Downloads]$ tar xvf hunk-6.1.3-228780-Linux-x86 64.tar

[hadoop@hc2nn Downloads]$ 1s -1d *hunk*
drwxr-xr-x 9 hadoop hadoop 4096 Nov 1 13:35 hunk

The 1s -1d Linux command provides a long list of the Hunk installation directory that has just been created.
The 1 option provides the list while the d option lists the directory details, rather than its contents.

Having created the installation directory, I now move it to a good location, which will be under /usr/local. I need
to use the root account to do this because the hadoop account will not have the required access:

[hadoop@hc2nn Downloads]# su -

[root@ hc2nn Downloads]# mv hunk /usr/local
[root@ hc2nn Downloads]# cd /usr/local

[root@ hc2nn local]# chown -R hadoop:hadoop hunk
[root@ hc2nn locall# exit

[hadoop@ hc2nn Downloads]$ cd /usr/local/hunk

The Linux su command switches the current user to the root account. The Linux mv command moves the Hunk
directory from the hadoop account Downloads directory to the /usr/local/ directory as root. The cd command then
switches to the /usr/local/ directory, and the chmod command changes the ownership and group membership of
the installation to hadoop. The -R switch just means to change ownership recursively so all underlying files and
directories are affected. The exit command then returns the command to the hadoop login, and the final line
changes the directory to the new installation under /usr/local/hunk.

Now that Hunk is installed and in the correct location, I need to configure it so that it will be able to access the
Hadoop cluster and the data that the cluster contains. This involves creating three files—indexes.conf, props.conf, and
transforms.conf—under the following Hunk installation directory:

[hadoop@hc2nn local]$ cd /usr/local/hunk/etc/system/local

326

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Of these three files, the indexes.conf file provides Hunk with the means to connect to the Hadoop cluster. For
example, to create a provider entry, I use a sequence similar to the following:

[hadoop@hc2nn locall]$ cat indexes.conf

[provider:cdh5]

vix.family = hadoop

vix.command.arg.3 = $SPLUNK _HOME/bin/jars/SplunkMR-s6.0-hy2.0.jar
vix.env.HADOOP_HOME = /usr/lib/hadoop

vix.env.JAVA HOME = /usr/lib/jvm/jre-1.6.0-openjdk.x86_64
vix.fs.default.name = hdfs://hc2nn:8020
vix.splunk.home.hdfs = /user/hadoop/hunk/workdir
vix.mapreduce.framework.name = yarn
vix.yarn.resourcemanager.address = hc2nn:8032
vix.yarn.resourcemanager.scheduler.address = hc2nn:8030
vix.mapred.job.map.memory.mb = 1024
vix.yarn.app.mapreduce.am.staging-dir = /user
vix.splunk.search.recordreader.csv.regex = \.txt$

This entry creates a provider entry called cdh5, which describes the means by which Hunk can connect to HDFS,
the Resource Manager, and the Scheduler. The entry describes where Hadoop is installed (via HADOOP_HOME) and the
source of Java (via JAVA_HOME). It specifies HDFS access via the local host name and name node port of 8020. Resource
Manager access will be at port 8032, and Scheduler access is at port 8030. The framework is described as YARN, and
the location on HDFS that Hunk can use as a working directory is described via the property vix. splunk.home.hdfs.

The second file, props.conf, describes the location on HDFS of a data source that is stored under /data/hunk/
rdbms/. The first cat command dumps the contents of the file, and the extractcsv value refers to an entry in the file
tranforms.conf that describes the contents of the data file:

[hadoop@hc2nn local]$ cat props.conf

[source::/data/hunk/rdbms/...]
REPORT-csvreport = extractcsv

The third file, transforms.conf, contains an entry called extractcsv, which is referenced in the props.conf
file above. It has two properties: the DELIMS value describes how the data line fields are delimited (in this case, by
commas); and the FIELDS property describes 14 fields of vehicle fuel-consumption data. This is the same fuel-
consumption data that was sourced in Chapter 4, where it was used to create an Oozie workflow.

[hadoop@hc2nn local]$ cat transforms.conf

[extractcsv]
DELIMS="\,"
FIELDS="year", "manufacturer","model","class","engine size","cyclinders","transmission","Fuel

Type","fuel city 1 100km","fuel hwy 1 100km","fuel city mpg","fuel hwy mpg","fuel 1 yr","co2_g km"

327

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Here’s a sampling of the CSV file contents via an HDFS file system cat command, which dumps the contents of
the file /data/hunk/rdbms/rawdata.txt. The Linux head command limits the output to five lines:

[hadoop@hc2nn local]$ hdfs dfs -cat /data/hunk/rdbms/rawdata.txt | head -5

1995, ACURA, INTEGRA, SUBCOMPACT, 1.8, 4,A4,X,10.2,7,28,40,1760,202
1995, ACURA, INTEGRA, SUBCOMPACT, 1.8, 4,M5,X,9.6,7,29,40,1680,193
1995,ACURA, INTEGRA GS-R, SUBCOMPACT,1.8,4,M5,2,9.4,7,30,40,1660,191
1995, ACURA, LEGEND, COMPACT, 3.2,6,A4,Z,12.6,8.9,22,32,2180,251
1995,ACURA, LEGEND COUPE,COMPACT,3.2,6,A4,Z,13,9.3,22,30,2260,260

Now that some basic configuration files are set up, I can start Hunk.

Running Hunk

Hunk is started from the bin directory within the installation as the Linux hadoop account user.

Note When you first start Hunk, you must use the --accept-1license option; after that, it may be omitted.

In either case, you start Hunk by using the splunk command:

[hadoop@hc2nn local]$ cd /usr/local/hunk/bin
[hadoop@hc2nn bin]$ ./splunk start --accept-license

When starting, Hunk reads its configuration files, so you need to monitor the output for errors in the
configuration files’ error messages, such as:

Checking conf files for problems...
Invalid key in stanza [source::/data/hunk/rdbms/...] in /usr/local/hunk/etc/system/local/
props.conf, line 3: DELIMS (value: ", ")
If any errors occur, you can fix the configuration files and restart Hunk, as follows:

[hadoop@hc2nn bin]$ ./splunk restart

If all is well, you are presented with a message containing the URL at which to access Hunk’s web-based user
interface:

The Splunk web interface is at http://hc2nn:8000

328

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

You will need to login with the account name “admin” and the initial password of “changeme,” which you will
immediately be prompted to change. Once logged in, you will see the Virtual Indexes page, which, as shown in
Figure 11-1, displays the provider cdh5 in the family hadoop that was created in the indexes.conffile. If you don’t see
the Virtual Indexes page, then select Settings and go to Virtual Indexes from the top menu bar.

Virtual indexes Documentation 1
virtual Ingexes (1) User Impersonation
Ingexes

Apout Suppont FieaBug Documentation Privacy Polic © 2005-2014 Splunk Inc. Allrignta regerved

Figure 11-1. Hunk provider cdh5

You can click the cdh5 entry to examine the provider’s details. The entire list of provider properties is too large
to display here, but know that Hunk automatically adds extra entries like vix.splunk.search.recordreader, which
defines how CSV files will be read. To represent most of the details in Figure 11-2, I arranged the list in two columns.

329

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

settings for hadoop configurstion. Refer to Hadoop mapred cocumentation for seting name and

Value

Figure 11-2. Properties for Hunk provider cdh5

Note that the Hadoop version in Figure 11-2 is set to YARN to reflect the CDH5 YARN version. It has not been
necessary to specify the Hadoop supplier name.
Now, click Cancel to leave the cdh5 properties view, and click on the Virtual Indexes tab. For the chapter

example, this tab shows that a single virtual index has been created in Hunk called cdh5_vindex, as shown in
Figure 11-3.

Virtual indexes Documeniaton i3
Providers (1) virtual Incexes (1 1 userimpersonation

Hew vitualindex
ame Status Actions Proviger

Ensbled  Dissnle

Figure 11-3. Hunk virtual index cdh5_vindex

Virtual indexes are the means by which hunk accesses the Hadoop cluster-based data. They enable Hunk to use
Map Reduce against the data and present the results within Hunk reports. By selecting the cdh5_vindex entry, you can
examine the attributes of this virtual index (Figure 11-4). Currently, the entry, which was defined in the props.conf file,

doesn’t have much detail.It just defines the directory on HDFS where the CSV data is located. Click the Cancel button
to exit this property details screen.

330

www.it-ebooks.info


http://www.it-ebooks.info/

Bathe
aths

Path to dstain HDFS 7

gata/hunk/rabms

Recursively process the directory

Whitelist ’

Customize timestamp formst

Name

Cancel

Value

Figure 11-4. Property details of Hunk virtual index cdh5_vindex

Creating Reports and Dashboards

CHAPTER 11

REPORTING WITH HADOOP

Clicking the green menu bar’s Search option opens the Search window, as shown in Figure 11-5. It should be noted
here that report generation is asynchronous. If the report is complex or the data large, then Hunk may take time
to deliver the results. So please be patient, and don’t assume an error has occurred if your results do not return

imediately.

www.it-ebooks.info

331


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Search & Reporting

Q New Search ssveasw  Cose

ingex=cans_vingex Alltime v Q

19,347 evenis (efore 11/1/1 4 8:24:40.000 PM) Job ~ L - S verbose Mode v
Statistics Visusizetion

10 miizeconds per column

REw ~ Format

< Hige Fielas 21 Fislge i  Event

» | 1995,ACURA, INTEGRA,SUBCOMPACT .1.8.,4, .7.28,40,1760,202
29,40,1680,193
.4,7,30,40,1660,191

B b

®

Selected Fielas 1995, ACURA, INTEGRA GS5-R, SUBCOMPACT ,1
1995, ACURA, LEGEND, COMPACT,3.2,.6,A4 8.9,
1995 ,ACURA LEGEND COUPE,COMPACT,3.2,6.A4,2,13,9.3

+ 260

Interesting Fislas
02.g_km * > | 1995,MAZDA MX-6,SUBCOMPACT,2,4,M5,%,9.4,6.6,30,43,1620,186

> | 1995 MAZDA MX-6,SUBCOMPACT ,2.5,6,M5,2,11.8,8.6,24,33,2080,230

» | 1995,MAZDA PROTEGE #,COMPACT,1.8,4,A4,X,10.5,7.5,27,38,1840,212

» | 1995 ,MAZDA PROTEGE #,COMPACT,1.8,4.M5,X,9.1,6.8,31,42,1620,188

» | 1995,MAZDA,PROTEGE ,COMPACT ,1.5,4,A4,X,9.1,6.3,31,45,1560,17%

» | 1995,MAZDA,PROTEGE ,COMPACT ,1.5,4,M5,X,7.8,5.7,36,50,1380,159

>  1995,MAZDA,PROTEGE S,COMPACT,1.8,4.A4,X,9.9.7.3,20,39,1740,200

» | 1993,MAZDA,PROTEGE S,COMPACT,1.8,4,M5,X,8.8,6.5,32,4 79
>  1995,MAZDA RX-7 TURBO,COMPACT,1.3,2.M5,2,14.1,9.20, 271
> | 1995,MERCEDES-BENZ,C 220,COMPACT,2.2,4,A4,2.10.3, 1820, 209

»  1995.MERCEDES-BENZ.C 280.COMPACT.2 8.6.A4.Z7.12.8.5,24,33,2080.230

7
5

»  1995,MERCEDES-BENZ,E 300 DIESEL,COMPACT,3,6.A4,D,9,6.7,31,42,1600,216
g

»  1995,MERCEDES-BENZ,E 320,COMPACT,3.2,6,A4,2,11.9,.8.4,24,34,2060,237

Figure 11-5. Hunk Search window

Figure 11-5 shows the raw-data view of the HDFS-based CSV file data I've been working with. I can scroll through
the data by using the Previous and Next options on the top right of the screen. The Raw drop-down menu offers three
choices for the format of the data displayed: raw, list, or table. In my example, I will build reports from this tabular
form of the vehicle data.

The Format drop-down menu’s options depend on the display type and on desired affects like data wrapping,
line number, and drill down. Notice on the left that fields have been split into two categories: selected fields and
interesting fields. The selected fields are those that will be displayed in table mode. The interesting fields are a
combination of those fields defined in the data and those pre-defined by Hunk.

I click any field to view a Hunk Field Summary window, then set the Selected option to Yes to place the field I
have chosen into the set of selected fields, as shown in Figure 11-6. When the mode is changed to Table, that field
appears in the data in the order in which it appears in the selected list. There are a number of pre-defined reports
available, like Top Values, that can be used to create single-column reports. Also, the top 10 values are displayed with
counts and percentages.

332

www.it-ebooks.info


http://www.it-ebooks.info/

Events (19,347)

Formst Timeline v

< Hige Fielas

Selected Fields

Vesr

Interesting Fields
c02_g_km
cyclinders ¢

engine_size 7C

uel_city_I_100km

mn
il
[=]

Statistics

Zoom Out

CHAPTER 11 © REPORTING WITH HADOOP
Visuglizetion
class ¢
17 values, 100% of events S€lected | Yes | No
Top values by time Rare values

count %
SU 3,407 17.61% -

2,019 15.088% "

2,359 12.193% u

2,283 11.8% u
SUBCOMPACT 1,905 9.846% ¥
FULL-SIZE 1,064 5.5% |
TWO-SEATER 980 5.065% |
STATION WAGON - SMALL 767 3.964% |
MINICOMPACT 757 3.913% |
MINIVAN 543 2.807%

Figure 11-6. Hunk Field Summary window

By selecting the Year field, and then selecting the Top Values report option in the menu that pops up, I can begin
to build a simple report that will show overall volume in my data by year. The report is created under the Visualization
tab. There, I find drop-down menu options for the report’s display, as shown in Figure 11-7. For example, I can switch
the display from a bar chart, to a single line graph, to a pie chart. There is also an option to change the format for each
display type and an option to change the underlying job settings.

333

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

A New Search sweasy  cose
tnoexeconS_vindex| Top LimitelD year amme~ | O
+ 19,347 events (Dedore 1172714 20447000 AM) Job v I 4+ 2 & B verose Moae ~
Evenits (18.347) Stabates (20) pusizaton
FErw  Fomst -

2257 1N eeee—

2001

ppe=———————e . e}

ey

013

i)
-q
7 2005
£

oy M count

2

1996

4

i

By

o 100 200 00 00 00 &0 0 £00 9c0 1.000 1100 1,200 1,300 1,900 2,000 2100 2200 2300
count
0
year 0t percent

Figure 11-7. Hunk Field bar report

The search command that has created this report is displayed at the top of the page as index=cdh5_vindex | top
limit=20 year. This means that the original search (index=cdh5_vindex) has been piped to the top command, with a
limit of the 20 topmost values for the field year. The report is acting on the year field and displaying a default bar graph
with the year value on the Y axis and the volumes on the X axis.

Figure 11-8 is a concatenated view of the report type, format, and job menus to show the options that are
available by which you can change the appearance and job details of a report.

A New Search Seersv Cose
tnoexeconS_vindex| Top LimitelD year amme~ | O
+ 19,347 events (Dedore 1172714 20447000 AM) Job v I 4+ 2 & B verose Moae ~
Events (15,347) SRS 20) pusizaton
FErv  sromat
i | cenent smckmooe | g " I
- A —_
2 G bk hauft-seties e
..... oz
AR
Drilgowm ves
Cren Sverlay
B count
Legena
1100 1.200 1,300 1,900 2,000 2100 2200 2300
count
® Map
0
yeur 0t percent

Figure 11-8. Hunk report menu options

Figure 11-9 shows all variations on the available options in a single Format menu to change the appearance of
the report. For instance, I could define the attributes of the X and Y axis, general drill down, titles, data intervals, and
position of the legend. I can modify these attributes until I am satisfied with the appearance of my report, then click
the Apply button to put those changes into effect.

334

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Search & Reporting

. New Search Stveas~  Close
inGex=CONS_vindex| top 1imite20 year atsme~ | Q
:ﬁ_:u?ewem[nmnfz-'usn“? 000 AM) Jop s x B S vernose Mooe

Events (15,347 Stabstcs (20) isusization
FBr~  sFom
- | sckmose 0 - " Tite Defout v Geaend Tie Defautt~
K-Axis Mum-seres Yes He A Scais Lngar Log
VAN . [ Y.m-s---------- Intervel L i

T Yeu H k
Cran Oveday o = 2 Cnan Overisy Min Vaiue
B count
Legena || tegeno Legena N e
? |
e m = m Sedl Sool] | 2100 2200 2300
Genersl oversy | 5 Genenl Position Rignt~ e
ek = | Xl Truncation | A AZ z ’ pevce
V-Axs i YA

[2F~!ﬂc"=‘ar - || cretovetay

LegeI : Legeng
Cancel m
o (oo |

Figure 11-9. Hunk options for format changes

I click the Save As option to save the report so that it can be used later.

I have saved a number of reports in this manner within Hunk; they are single-column reports that cover areas like
sales volume per year, vehicle manufacturers, and vehicle fuel types. I can view the saved Hunk reports by selecting
the Reports option in the green menu bar. The Reports page, as shown in Figure 11-10, displays details like the report’s
title, ownership, apps, and sharing status. It also shows whether the report has been disabled, and it offers the option
to edit or open the report again.

splunk

Semch  Fivol  Reporls  Alens  Dasnbosrds Search & Reporting

O Reports

Reports are based on single ssarches and can induce visualizations, statishics and/or events. Cick the name 1o view the report.

Open the report in Pivot or the further expi dsta.

& Repons Al | Yours | ThisApp's

i Tige ~ Cwiner App Sharing Embecging

> | Errors in the last 24 hours noooay search App Disableg

> noooay search App Desabied

> | Fuel Types samin search Private Disabled

» | License Usage Deta Cube nooody search App Disabieg

> | Messages b e 1ast 3 hours noooay searcn App Disaplea

> | Sales Volumes aamin search Private Disabled

> | Splunk errors last 24 hours nobody search App Disabled

>  manufacturers Openin Seerch  Eoit ~ sdmin search Privete Digableg
Figure 11-10. Hunk report status

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Many of the reports shown in Figure 11-10 are built into Hunk, butI created the fuel types, sales volumes, and
manufacturers reports. When I save a report, I can choose to add it to a dashboard that I can create at the same time.
For example, in Figure 11-11, I create a dashboard called “Vehicle” to contain the three reports I've just mentioned.

n & Reporting AQMnistrato Messages Settings Help

Semch  Pivot  Reports  Alets  Deshboads Search & Reporting
vehicle Edit v | Momrinfo v P
Top Manufacturers Fuel Types
CHRYSLER CHEVROIER N
SUBARY D
voLvD E N
FORD A
MAZDA A
PORSCHE 2 |
AUDI cMC !
| X
NISSAN BMW 4
VOLESWAGEN DODGE y
TOYOTA MERCEDES-BENZ
Losging -0% Losaing -0%

Sales Volumes

B count

o 200 400 600 800 1.000 1.200 1.400 1.600 1.800 2,000 2.200

Figure 11-11. Hunk dashboard for reports created

To open the dashboard, I choose the Dashboards menu option, then select the Vehicle dashboard. The display
is populated from the current data, giving me, on a single page, an up-to-date view of the state of the data. A simple
example of what can quickly be created to represent HDFS-based data, Figure 11-11 shows two pie charts that display
top manufacturers and fuel types. The bottom bar graph displays sales volume by year. Once the report entries are
on the dashboard, I can edit them to add titles, or drag and drop them into the best positions to give an at-a-glance
impression of the data status.

I can also create complex report expressions to construct multi-column reports. For example, the following
report expression creates a table that contains the minimum CO, emissions by manufacturer and model and was
supplied by Ledion Bitincka, an architect at Splunk, in response to a question I submitted to the Splunk forum):
index=cdh5_vindex | stats min(co02_g _km) AS minco2 BY manufacturer, model | sort 20 minco2. Thus, the
original search expression index=cdh5_vindex is passed to a stats function that finds the minimum CO, emissions
value from the column c02_g_kmin grams per kilometer and saves it to a new column name called minco2. The results
placed in this column are grouped by manufacturer and model, just as you would group non-aggregated columns in
SQL. Finally, the data is sorted and the top 20 rows are displayed, creating the report shown in Figure 11-12.

336

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

splunk>  App: Search & Reporting Adminkstrato A Settings Activity Help
Semch Pt Repons  Alels  Dasnboaios Search & Reporting
L New Search saveAsw  Clse

index=can5_vindex | stats min(cO2_g km) AS minco2 BY manuTacturer, model | sort 20 minco2 altme~ | Q

19,347 evenis (Defore 11/2/14 1001 5:50.000 AM) Job v » 42 B B Verbose Mode v
Events (19,347) Statistics (20) Visuaization

manufacturer moael minco2

Figure 11-12. Hunk multi-column report

Note that because a stats function was used to create an aggregated column in the Figure 11-12 table, the
resulting report was displayed in the Statistics tab. Also, the tabs at the top of the page contain a count of records
used in creating the table. The example uses 19,347 records from the raw data for the Events tab and 20 records in the
Statistics tab.

For additional ideas on what can be accomplished with Hunk;, take a look at the splunk.com website, particularly
the answers forum. You'll find ideas about and examples of generating complex reports. Remember that reports can
be created from multiple Hadoop-based sources in Hunk, and that lookup tables can be used to enrich your data.

Potential Errors

I encountered some problems during the Hunk installation and use, probably because of configuration or installation
mistakes. This section shows you what happened and how I fixed the errors.
For instance, I found the following error in a search log when a search failed:

[hadoop@hc2nn hunk]$ pwd

/usr/local/hunk

[hadoop@hc2nn hunk]$ find . -name search.log
./var/run/splunk/dispatch/1414868687.5/search.log

[cdh5] Error while running external process, return code=255. See search.log for more info

[cdh5] RuntimeException - Failed to create a virtual index filesystem connection: java.net.
UnknownHostException: hc2nn. Advice: Verify that your vix.fs.default.name is correct and available.

337

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

I found the report search logs by running the Linux find command from the Hunk install directory /usr/local/
hunk. I knew that the search log file was named search.log, based on forum answers on splunk.com. The error was
caused by the fact that the user running Hunk did not have access to the Splunk working directory /user/hadoop/
hunk/workdir.

A search log generated this second error, as well:

10-29-2014 19:14:07.385 ERROR ERP.cdh5 - SplunkMR - Failed to create a virtual index filesystem
connection: java.net.UnknownHostException: hc2nn.semtech-solutions.co.nz. Advice: Verify that your
vix.fs.default.name is correct and available.

The error was caused because HDFS was not running. The Hunk report had been run before the Hadoop servers
completed their startup sequence.
This error, again from the search log, seems to be an indication of another underlying problem:

10-30-2014 18:22:55.398 ERROR SearchOperator:stdin - Cannot consume data with unset stream_type
10-30-2014 18:22:55.453 ERROR ExternalResultProvider - Error in 'SearchOperator:stdin’: Cannot
consume data with unset stream type

In this case, I had incorrectly created the configuration for my CSV file processing in the configuration files.
Although from Splunk forum entries I understand that it should not be necessary, adding entries to the files props.
conf and transforms.conf solved this problem.

Iinitially tried running Hunk from a remote Linux server—remote from the Hadoop cluster that it was trying to
connect to. The following test uses the HDFS file system 1s command to examine the / directory on the cluster via the
HDFS-based URI hdfs://hc2nn:8020/:

[hadoop@hcirimi ~]$ hdfs dfs -1s hdfs://hc2nn:8020/

1s: Call From hcirim1/192.168.1.104 to hc2nn:8020 failed on connection exception: java.net.
ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/
ConnectionRefused

The access failed, so before attempting to use Hunlk, it is important to check that the Hunk Linux user on the
server where it is installed has access to Hadoop.
The following errors were displayed when Hunk was started in the Linux command window:

Checking conf files for problems...

Invalid key in stanza [source::/data/hunk/rdbms/...] in /usr/local/hunk/etc/system/
local/props.conf, line 3: DELIMS
(value: ", ™)

Invalid key in stanza [source::/data/hunk/rdbms/...] in /usr/local/hunk/etc/system/
local/props.conf, line 4: FIELDS

(value: f1,f2,f3,f4,fs5,f6,f7,f8,f9,f10,f11,f12,113,f14)
Your indexes and inputs configurations are not internally consistent. For more
information, run 'splunk btool check --

debug'  Done

All preliminary checks passed.

338

www.it-ebooks.info


http://wiki.apache.org/hadoop/ConnectionRefused
http://wiki.apache.org/hadoop/ConnectionRefused
http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

These errors were caused by incorrect configuration file entries while I was learning to use Hunk. I changed the
configuration file entries and restarted Hunk to solve this problem.

If you encounter any of these or additional errors, another good resource to consult is the answers section of the
splunk.com website, including the support menu options. Try to be a good Splunk citizen by adding as much detail
as possible to any questions or answers that you might post on the forum. If you find a solution to your problem, then
post that solution to help future users.

Talend Reports

Expanding on the big data ETL work discussed in Chapter 10, it’s time to examine the reporting capabilities of the
Talend Enterprise big data product—specifically, the profiling functionality. With Talend, you can check the quality of
Hive-based data and build reports from table-based data.

Installing Talend

To download the Talend Enterprise big data application, I go to the URL www.talend.com/download, then select
the Big Data tab and click the Download Free Trial button. I need to enter my details, so I can’t simply execute the
Linux wget command from the Linux command line, as in previous download examples in this book. The package
download is 2 GB, so it will take some time.

The license that was automatically emailed to me does not allow me to access the profiling function. I need
to request a different license from Talend to “unlock” the profiling function on the user interface. (You can contact
Talend via www.talend.com/contact to request similar access.) The Sales Solutions Group Manager at Talend kindly
supplied the license, while others at Talend offered help and documentation so I could develop the example I will
present here.

Iinstall the Talend software on the Centos Linux host hc1nn, using that machine as a client to access the Centos 6
Cloudera CDH5 Hadoop cluster whose name node resides on the server hc2nn. To unpack the software, I use the root
account, accessing it via the Linux su (switch user) command:

[hadoop@hcinn ~1$ su -

I move to the Linux hadoop account Downloads directory, where the package was downloaded, and I examine
the downloaded file using the Linux 1s command to create a long listing:

[root@hcinn ~]# cd /home/hadoop/Downloads
[root@hcinn Downloads]$ 1s -1h
-Iw-r--r-- 1 hadoop hadoop 2.0G Nov 3 18:01 Talend-Tools-Installer-r118616-V5.5.1-installer.zip

The Talend release file is a zipped archive; I unpack it with the Linux unzip command:

[root@hcinn Downloads]# unzip Talend-Tools-Installer-r118616-V5.5.1-installer.zip

339

www.it-ebooks.info


https://www.talend.com/download
http://www.talend.com/contact
http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

The following commands display the unpacked directory via a Linux 1s command. The Linux cd command then
moves into the unpacked Talend software directory TalendTools-5.5.1-cdrom. After that, the Linux 1s command again
provides a long list of the contents of the unpacked software:

[hadoop@hcinn Downloads]$ 1ls -1d TalendTools-5.5.1-cdrom
drwxr-xr-x 2 root root 4096 Jun 18 11:25 TalendTools-5.5.1-cdrom

[root@hcinn Downloads]# cd TalendTools-5.5.1-cdrom

[hadoop@hcinn TalendTools-5.5.1-cdrom]$ 1s -1

total 2081688

-IWXY-XY-X 1 root root 2095344252 Jun 18 11:25 dist

-IWXY-Xr-X 1 root root 6171835 Jun 18 11:25 Talend-Tools-Installer-r118616-V5.5.1-1inux64-
installer.run

-TWXT-Xr-X 1 root root 6003334 Jun 18 11:25 Talend-Tools-Installer-r118616-V5.5.1-1inux-
installer.run

-IW-Y--Y-- 1 root root 18288640 Jun 18 11:25 Talend-Tools-Installer-r118616-V5.5.1-0SX-
installer.app.tar

-IWXT-Xr-X 1 root root 5829599 Jun 18 11:24 Talend-Tools-Installer-r118616-V5.5.1-windows-
installer.exe

The two files with “linux” in their names are used to install Talend on Linux-based hosts. The other files are used
to install Talend on the Windows and Mac OSX operating systems. The file named “dist” is the largest file in the release
and contains the actual distributed software for the installation. Given that I am installing onto a 32-bit Linux host,

I use the Linux-based file that does not have 64 in its name.

Before I install the Talend software, however, I need to install the Oracle Sun version of the JavaSDK. The Talend
installation will fail if this JavaSDK isn’t available. Because I generally use the Java Open]DK, I install this Java release
under /usr/local. I download the latest available JavaJDK from the URL http://www.oracle.com/technetwork/java/
javase/downloads/jdk8-downloads-2133151.html to Centos Linux host hclnn as the Linux hadoop user.

The following commands show the Downloads directory within the Linux hadoop account’s home directory
via the Linux pwd command. They also show a long file listing of the downloaded JavaJDK file using the Linux 1s
command:

[hadoop@hcinn Downloads]$ pwd
/home/hadoop/Downloads

[hadoop@hcinn Downloads]$ 1s -1 jdk-8u25-linux*
-Iw-IW-I-- 1 hadoop hadoop 162406890 Nov 3 19:23 jdk-8u25-linux-i586.tar.gz

This is a compressed tar archive file (it has a file type of .tar.gz), so I uncompress it using the Linux gunzip
command. This produces a tar archive with a file type of .tar. I then use the Linux tar command to unpack it, using the
option xvf, where x means extract, v means verbose, and f allows the tar file name to be specified. Then, a long file list
shows that the unpacked software resides in a directory called jdk1.8.0_25:

[hadoop@hcinn Downloads]$ gunzip jdk-8u25-linux-i586.tar.gz
[hadoop@hcinn Downloads]$ tar xvf jdk-8u25-linux-i586.tar
[hadoop@hcinn Downloads]$ 1s -1d jdk1.8.0 25

drwxr-xr-x 8 hadoop hadoop 4096 Sep 18 11:33 jdk1.8.0 25

340

www.it-ebooks.info


http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Having extracted the JavaJDK, I use the Linux su (switch user) command to change to the root account and move
the software to /usr/local/. The Linux mv (move) command moves the jdk1.8.0_25 directory. The Linux cd (change
directory) command moves to the /usr/local/ directory. The Linux chown (change owner) command recursively
changes the ownership of the Java release to the Linux hadoop account. Finally, the export command sets the
JAVA_HOME variable to the path of this new Java release:

[hadoop@hcinn Downloads]$ su -
Password:
[root@hcinn ~]# cd /home/hadoop/Downloads

[root@hcinn Downloads]# mv jdk1.8.0 25 /usr/local
[root@hcinn Downloads]# cd /usr/local

[root@hcinn locall# chown -R hadoop:hadoop jdk1.8.0 25
[root@hcinn locall# export JAVA HOME=/usr/local/jdk1.8.0 25

It is this Oracle Sun JavaJDK that the Talend release requires, so with the JAVA_HOME variable set I can attempt to
install the software. As the root user, I change the directory to the Downloads directory and then change the directory
to the directory containing the unpacked Talend software. After that, I run the non-64 bit linux.run file. The ./
prepended to the name specifies that the installation file will be sourced from the current directory:

[root@hcinn locall# cd /home/hadoop/Downloads
[root@hcinn Downloads]# cd TalendTools-5.5.1-cdrom

[root@hcinn TalendTools-5.5.1-cdrom]#
./Talend-Tools-Installer-r118616-V5.5.1-1inux-installer.run

The installation is simple. I just accept all defaults and install only the client application, not the server, as the
server is not required for this example. As mentioned earlier, I also need a platform-enabled license file supplied by
Talend to enable the profiling function. This file is specified during the installation. I install the software to the default
path /opt.

The Talend application also needs an rpm build packaging component; the yum installation command, run as
root, installs the necessary software, as follows:

[root@hcinn TalendTools-5.5.1-cdrom]# yum install rpm-build

Finally, the Talend client software can be started from the studio subdirectory of the Talend software installation
directory /opt/TalendTools-5.5.1. The 5.5.1 string shows the version of the Talend Enterprise software that has been
installed. The list obtained using the Linux 1s command shows that there are numerous Linux .sh and windows .ini
files available for starting Talend. Given that I have installed Talend on a 32-bit Linux host, however, the .sh file has
“linux” in its name but lacks the “64,” which denotes a 64-bit architecture. The ./ in the final command indicates that
the file should be run from the current directory. The “and” character (&) denotes the command should be run in the
background:

[root@hcinn TalendTools-5.5.1-cdrom]# cd /opt/TalendTools-5.5.1/studio/

[root@hcinn studio]# 1s *.sh *.ini

341

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

commandline-linux.sh Talend-Studio-linux-gtk-x86.sh
commandline-1inux_x86 64.sh Talend-Studio-solaris-gtk.ini
commandline-mac.sh Talend-Studio-solaris-gtk-x86.ini

Talend-Studio-linux-gtk-ppc.ini Talend-Studio-win32-wpf.ini
Talend-Studio-linux-gtk-x86_64.ini Talend-Studio-win32-x86.ini
Talend-Studio-linux-gtk-x86.ini Talend-Studio-win-x86_64.ini

[root@hcinn studio]# ./Talend-Studio-linux-gtk-x86.sh &

Some basic connection details need to be specified, then Talend will be available for use. The next section will
take care of these details.

Running Talend

If multiple Talend clients were being installed, it would have made sense to install the Talend server and have the
Talend clients connect to that server. The server would then provide access to a storage repository, which would be
based on SVN. In this way, work created via one client could be shared among multiple users. But because only a single
client was installed and no server, the connection specified is to the local host file system. Figures 11-13 and 11-14
show that the connection details are specified as local and a workspace directory is specified under the studio client
directory under /opt.

Talend Enterprise Big Data

Connection | Local

E-Mail

Talend Action
Enterprise
Big Data

Project & |

x Connection incomplete

Figure 11-13. Talend local connection

342

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

+ Talend Enterprise Big Data X
Connections ) Repository Local &
[ Ta
Local i~
! 19 || Name |Local |
Description [Default connection |
User E-mail [info@semtech-solutions.co,nzl ]
User Password
Workspace |fopUTaIend‘rDoIs-Sj.lfstudio!workspace|
k
+
Cancel OK

Figure 11-14. Details of Talend local connection

Although it’s not shown as currently active in Figure 11-13, the Import Demo Project option is enabled when
the connection details are specified. I then click the Go! button to install the big data code I use for this example.
Figure 11-15 shows the installed Talend client running; note that I have opened one of the job examples and have
attempted to connect to Cloudera CDH5. At this point, I am prompted to install any missing Talend or third-party
libraries that are required. Indeed, the yellow banner in Figure 11-15 is prompting a library installation. I install what
is required now to avoid possibility of errors later. (See also the “Potential Errors” section later.) Also, note that I have
placed a red box around the top-right menu option that will be used to change the interface perspective.

343

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Talend Enterprise Big Data (5.5.1.r118616) | big_data_demos (Connection: Local)

File Edit View Window Help

Bl & Qo luwla |2 & a (2N Learn G Ask & Exchange £ KeAMC ECo™
{1 Repository = B || & Talend Enterprise £ *Job Step_1_Hive_Load_Tables 0.1 &2 = 0 =]
LOCAL: big_data_demos = : B .

2 % ¢ @ [iohdishorhvetoloas (Findco]
[t Business Models - | GETFILES FROM DOCUMENTATION 4)1 g i B
OnComponentO : ) : : . ) ) (= Big Data
@ {uJob Designs sEmbEa tHDFSPuL_1 > Business Intell...

= iy Standard Jobs = :
; OnsabjobOk = = (= Business
= (= Hortonworks_Sandbox_Sampl i
Advanced_Examples i : 1 . . .

: o -
b (3 E2E_hCat_2_Hive Drop tables custo... ?W-W W[? = Custom Code
b COHBASE 3 drop customers drop us_states __drop CustomerWithState (= Data Quality
b ©HCATALOG A = OwstBobok’ = e
IV - CREATE TABLE @ OnSubjobOk g Onsub] AR | =
Create Customers Create US ST CustomerWithstate - ESB

o Simple_hive_row_input ¢ = File

Step_1_Hive_Load Tablel} d WJobOh > FileScale (Dep.

Documentation

tHiveRow_8 (drop us_states) Connection S

Ceonnection mode standalone |~ |* Hive Server w

£ Step_2_Hive_ELT 0.1 . ] Table CustomerWithStates = (= Internet
I OPIG LOAD DATA g QDSUEJ‘O%E G I‘:bm 1 5tep 2 ELT (= Logs & Errors
b (3 NoSOL_Examples INPATH ..... Load Customers d States ' i
-~ (= Misc
b @ Map/Reduce Jobs ' I ‘y‘”‘l/"wk R " || & Orchestration
1 i |
: ik Joblet Designs 5 (= Processing
. i 5 5 3 3 5 g 3 - 3 5 2 £ - = System
22 Outline $2 > Code Viewer ] Sese HIVE Sonnec tHiveClose_1 k (= Talend MDM
|? = | | | | (%] & Unstructured
b tHDFSPut_1 [<]/| Designer| Code Jobscript XML,
b tHiveClose_1 £ JobiStep_1_Hive_Load_Tabl " Contexts(job Step_1_Hive L . Component 23 ~ O Run (job Step_1_Hive load =0
b tHiveConnection_1 (hive) e
b tHiveRow_l (Create Customers) (= hive{tHlveConnection_lll
- T
b tHiveRow_2 {Load Customers) Basic settings 1 This componert tHiveConnection requires at least one external jar to be installed
b tHiveRow_3 (Create US ST) | Advanced settings 2
i ithsta = ro| | Built-
b tHiveRow_4 (Create CustomerWithstz| | | pynamic settings perty Type |Bullt-In il
b tHiveRow_5 (Load States) T Version
b tHiveRow_7 (drop customers) = Distribution cloudefa K ¥ Hive version ¢lgudera COH5.0(YARN mode) |~
b

tHiveRow_9 (drop CustomerWithState |~

[ =)

Figure 11-15. Talend Enterprise client

Figure 11-16 shows an example of the necessary libraries being installed. This process may be slow, but I am
patient until it is 100 percent completed. I won’t describe the integration perspective shown in the Figure 11-16, as it
was described in Chapter 10.

Component tHiveRow requires the following third party modules;

List of not i for comp i

Jar ~ | Module Required by componeni mur« License More information Action
datanucleus-api-jdo-3. | Open Source Java | tHiveRow O Apache-2.0 | httpfwww.datanucleus.orgl Download and Install
datanucleus-core-3.0 a‘ Open Source Java { tHiveRow 8] | apache-2.0 ! hittp: e, datanucleus.orgl Downlgad and Install
datanucleus-rdbms-3.0, Open Source Java | tHiveRow a Apache-2.0 | bito: A nucleus.org | Download and Install
hadcop-core-1.0.3.jar | Core library to conl tHiveRow ! 1 | Apache-2.0 ! hittp:/fhadoop. apache. oral Downiload and Install
hive-builtins-0.9.0.jar | API to connect to ¥ tHiveRow ] Apache-2.0 | bttpa/ihi I Download and Install
hive-exec-0.9.0 h:b.]a»i AP1to comect wr! iiveRow | ) | Apache 2.0 | towe hortonworks.com Downisad and Install |

i f 'Ir i | l

[ Do not show again

Download and install all modules available

Figure 11-16. Talend libraries installation
344

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

It is important at this point that I check to see that the correct license is installed so that data quality reports can
be generated. From the client user interface, I select the Help option, then select the About License option to bring up
the window that is depicted in Figure 11-17. Notice also that the term “Talend Platform” is displayed in the figure. This
phrase is important, as it denotes that the correct type of license is being used. (To obtain the necessary access and
licenses, contact Talend at www.talend.com/contact.)

3 About License x

License Expiration Date: 12/06/2014

SEMTECHSOLUTIONS_QXuG1uN78kbljzQURxVv5uTwidpignHbwzpnlQUaQIl9/i
h2f9aQaf4h11DkCyaDIrzyxU1tpS/iJY5YPbip/sBy+/VIEf8+ydSZcfR78TCNRNI
J+4YBV/TLSIKJtT307Pa57pmx4Q6HHBTIk8IvIOstkXhB2eQe82QzYcMkB6IYm
4xbn2UwMF3op3MaiffeuPuN2eB89409RMMaqZG57qYZP6el4mMMSAhjXYH
M7/2IHZKVcQsuDDP8yyBpDg)61SZcSjQKTGG)BtLxtE2bi8b5Shh8bl5YsBLePWal
SalLLBi/gGSP+20paiX6Ns/TfYOu2kN385sry1dZnfZi23v91uhasGV2PkhVMuhs
10G9fiwsxuZrtBOWLcx7 ELX6rX9ffrY3EyQthRhARKgLEWmMsdNXOmVRKIFX6191
LFWgyAxRy5I1ueWw91ni5gthwTEglvFND3)QasSSdJV3oNIkq3ukYuog/I7P)eG+sT|
m48KkTr1wHiuMmvC709ReUaG8hB+0n9tajE/r4BX2Xvbla3GxZ7|Kh+yypiP/9(v)
(<] 1 | lLI

The version of your license for Talend Platform for Big Data is valid.

Browse License...| | Import License... ‘ ‘ Cancel ‘ ‘ OK ‘

Figure 11-17. Details on required Talend license

The profiling perspective can now be accessed by clicking the red-outlined drop-down menu in the top right of
Figure 11-15. I select Other. Next, I choose the “profiling perspective” option, as shown in Figure 11-18.

345

www.it-ebooks.info


https://www.talend.com/contact
http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Talend Platform for Big Data (5.5.1.r118616) | big_data_demos (Connection: Local)

File Edit Window Help

g g [ Learn % Ask & Exchange B I. wPprofiing

% DO Repository 32 = O ks rawtrans_col_analysis 0.1 3 =0
= ;, - = /| * =
¥ v O Analysis Result

= 4, Data Profiling
= = Analyses (3)
b gl db_analysis 0.1
bl rawtrans_analysys 0.1

~ Analysis Summary

Connection: hive_db_connection
Catalog:  trade Execution Date: Nov 7,2014 12:38:05 PM
Table(s):  rawtrans Execution Duration: 192,949 5
View(s): Execution Status: SUCCEss

Number of Execution: 2

Last Successful Execution: 1

Creation Date: Nov 7,2014 12:08:53 PM

& Reports (0)
= [ Libraries
I ¥ Exchange

b = Indicators -
. ~ Analysis Results
&= JRXML Template
b = Patterns Go
b & Rules - Column:rawtrans.amount
P & Source Files ~ Simple Statistics
Il Metada Label Count % 20.000 {
| MOM ti T T |
| = (onnsc lens Row Count | 18976.00 i 100.00% 17,500
- connections
- . Null Count | 8165.00 | 43.03% 15,000
b o hive_db_connection 0.1 | %
R Duplicate Count | 1621.00 8.54% |
I+ [ FileDelimited connections ! ! 125004
E
b [ Recycle Bin 310,000
o | 8,165
7,500
5,000 |
& Detail View =2 =n 2,500 |
General - O Nu! nt
No detail available Simple statis

il
>

Figure 11-18. Talend’s profiling perspective

The Repository pane on the left of the screen shown in Figure 11-18 has a list of previously created analysis
reports and metadata database connections. Earlier, I had created a Hive-based Cloudera CDH5 connection named
hive_db_connection 0.1, as you can see in the list under DB Connections. I also opened the Hive rawtrans table
column analysis report named rawtrans_col_analysis 0.1. The items are expanded in Figure 11-18 to familiarize you
with the display.

To run Talend profiling reports against a CDH5-based Hive data warehouse, I need to know a number of
properties about the Hive installation: which host it is running on, what port number to use to connect to it, the
Linux-based user name of the account to use, the password for that account, and the version of Hive in use. I know
that Hive is installed on my cluster on the server hc2nn, and that the account used will be called hadoop. I also know

346

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

the password for that account, plus I know that the Hive version that I am using for Talend is version 2. That means
that the only property I need to determine is the metastore port number. Given that I know all logs will be stored
under /var/log for Cloudera CDHS5 servers, I obtain that information as follows:

[hadoop@hc2nn hive]$ pwd
/var/log/hive

[hadoop@hc2nn hive]$ 1s -1

total 3828

drwx------ 2 hive hive 4096 Aug 31 12:14 audit

-1w-r--r-- 1 hive hive 2116446 Nov 8 09:58 hadoop-cmf-hive-HIVEMETASTORE-hc2nn.semtech-solutions.
co.nz.log.out

-Iw-r--r-- 1 hive hive 1788700 Nov 8 09:58 hadoop-cmf-hive-HIVESERVER2-hc2nn.semtech-solutions.
co.nz.log.out

[hadoop@hc2nn hive]$ grep ThriftCLIService hadoop-cmf-hive-HIVESERVER2-*.log.out | grep listen |
tail -2

2014-11-08 09:49:47,269 INFO org.apache.hive.service.cli.thrift.ThriftCLIService:
ThriftBinaryCLIService listening on 0.0.0.0/0.0.0.0:10000
2014-11-08 09:58:58,608 INFO org.apache.hive.service.cli.thrift.ThriftCLIService:
ThriftBinaryCLIService listening on 0.0.0.0/0.0.0.0:10000

The first command shows, via a Linux pwd (print working directory) command, that I am in the directory /var/
log/hive. (Note: use the cd command to move to that directory, if necessary.) Then, using the Linux 1s command
with the -1 option to provide a long listing, I check to see which log files exist in this Hive log directory. Finally, I use
the Linux grep command to search the HIVESERVER2-based log file for the string ThriftCLIService. I pipe (|) the
output of this search to another grep command, which searches the ouput further for lines that also contain the text
“listen.” Finally, I limit the output to the last two lines via the Linux tail command with a parameter of -2. The output
contains the port number that I need at the end of the line. Then, 10000 is the default port number that will be used in
the Talend Hive connection for this section.

So, now I am ready to create a Hive database connection. I can do this by right-clicking the DB Connections
option in the Repository pane. Then, I select Create DB Connection to open a form that offers a two-step process for
creating the connection.

The first section requests the name, purpose, description, and status of the connection. Take care to make the
name meaningful. The second step (shown in Figure 11-19) gives the actual connection details. That is, the database
type is set to Hive and the server/port are defined as hc2nn/10000, as previously determined. The Linux account
login for the CentOS host hc2nn is set to hadoop, along with its password. The Hive version is set to Hive2, while
the Hadoop version and instance are set to match the Hadoop cluster being used, Cloudera/CDHS5. Finally, the
jdbc string, the Java-based method that Talend will use to connect to Hive, is set to a connection string that uses the
hostname, port, and Hive version.

347

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

* Database Connection x
Update Database Connection - Step 2/2
@ You must press the Check Button to check the Database Setting ﬁi

DB Type | Hive

<»

Hadoop Cluster | None <

Version Info
Distribution | Cloudera 2 | Version | Cloudera CDH5 £ | Hive Model: | Standalone | &

Hive Server Version | Hive Server2 -- jdbc:hive2:// <

|idbc:hive2:/fhc2nn:10000/

Login hadoop

Password [s222a00a000s

Server {hc2nn

Port 10000

DataBase

Authentication
[] Use Kerberos authentication

Hadoop Properties

Property Value
mapred.job.map.memory.mb 1000
| mapred.job.reduce.memory.mb 1000

* o

Check o

Figure 11-19. Talend-Hive database connection

Some variables have been added to set the memory used by the Talend Map Reduce jobs in terms of map
and reduce functions. A value of 1000 MB is set for each function via the variables mapred.job.map.memory.mb
and mapred. job.reduce.memory.mb. To check this connection before saving it, I click the Check button. In case of
problems, I first ensure that the cluster is functioning without error, that HDFS is accessible, and that Hive can be
accessed and have Hive QL scripts run against it. (You also might use the Hue interface for this.) The connection
works, so I save it. It subsequently will appear in the Repository pane.

By expanding the objects under the Hive database connection in the Repository pane, I can view a table to the
column level, as shown in Figure 11-20.

348

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

w% Applications Places System @)

Talend Platform for Big Data (5.5.1.r118616) | big_data_demos (Connection: Local)

File Edit Window Help

v G | [N Learn %Gy Ask & Exchange & [ Lprofiing
% DQ Repository = O || p. hive_db_connection 0.1 2 [
- = i - +)
| AT Connection Settings
= U Data Profiling 3| - Connection Metadata
b (= Analyses (3) Set the properties of connnection,
(= Reports (0) |
b [ Libraries Name: |nlve_db_c0nnec1|on |
= [ Metadata Purpose: [connecr to hive ]I
MDM connections connect to hive
=l DB connections Cescription: |E—J
e R T e O , |
A cloudera_manager_metastore | Author:
A cloudera_manager_metastore
3 cloudera_manager_metastore St i i
3 cloudera_manager_metastore - Connection information
3 cloudera_manager_metastore The information of connection k

3 cloudera_manager_metastore
@ cloudera_manager_metastore
a3 cloudera_manager_metastore Password:
@ cloudera_manager_metastore|l| yri; [jdbcihive2://hcznn:10000/ 7 [Edit..
@ cloudera_manager_metastore
A cloudera_manager_metastore

Login: [haﬂwp

1 cloudera_manager_metastore Check
3 cloudera_manager_metastore
@ cloudera_manager_metastore
@ cloudera_manager_metastore
@ cloudera_manager_metastore
@ cloudera_manager_metastore
3 cloudera_manager_metastore
3 cloudera_manager_metastore
3 cloudera_manager_metastore
3 cloudera_manager_metastore
3 cloudera_manager_metastore
@ cloudera_manager_metastor¢
|

a cloudera mananer metastore ) 3 %
| | 3 Connection Settings

T YT T YVYVTVYVTVVUVTVV VUV VT TTTT

0g 1 items selected

B root@hclnn:jopt/Tale... | [@ hadoop@hclnni/tmp/... |[@ hadeop@hclnniitmp/... | £ Talend Platform for Bi... fd | | B

Figure 11-20. Repository view of Talend-Hive database connection
At this point, I can create a range of reports based on the underlying Hive table data.

Generating Reports

By using the Splunk/Hunk product at the start of this chapter, I was able to quickly create some reports and develop a
dashboard based on HDFS data. When I create Talend reports based on Hive table data, I can start to think about the
quality of the data that’s residing on HDFS and Hive.

As you remember from Chapter 9, you can create Hive external tables to represent HDFS data. In this section,

I create reports that represent the column data in the Hive rawtrans table of the trade information database. The
content of the data in that table is not relevant; it is the functionality of the Talend data-quality reports that I
concentrate on here.

To create the reports that this section will use, I first need to create two rules for data quality under Libraries, then
Rules, then SQL in the Repository pane, and one regular expression pattern by going to Libraries, then Patterns, then
Regex, then Date. The regular expression rule for date is copied from a similar pre-existing rule in the same location,
called date MM DD YYYY. I simply right-click it and select duplicate.

349

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Shown in Figure 11-21, the new Hive-based rule is now called “Hive Date DD MM YYYY” and will be used to

check Hive table-based dates. Note that the connection type has been set to Hive. The actual regular expression rule,
which appears at the bottom right, basically checks a date column to confirm that it contains a date of the form that’s

either 01/12/2014 or 01-12-2014.

Pattern Settings
~ Pattern Metadata
Set the properties of pattern.

Name: [Hive Date DD MM YYYY |

Purpose:  |match 25/12/2007([|11-07-1517 |
his regular expressions matches dates in the format DD/MM/YYYY where MM can be 01 to 12, DD can be 01 to 31 and YYYY is always 4 digits long. @

Description:

Author:

Status: Draft v |

~ Pattern Definition
Type in the database-specific pattern definition. If the expression is simple enough to be used in all databases, select "Default” type in the list.

~ | [*~(tor2-9m(2t0-91|(200-9 D] (310-1 1)V ((OL1-9 ) {L{0-2 ] (V|- )((19]20)[0-9]{ 2 })$'

Hive

+ |

Figure 11-21. Regular expression rule for dates

You can create SQL-based data-quality rules as well. For example, to do so, I right-click the SQL folder under
Libraries, then choose Rules within the Repository pane and select the option New Business Rule. Figures 11-22

and 11-23 show two rules I created to test column values.

Business Rule Settings

~ Business Rule Metadata
Set the properties of Business Rule.

(] st

Name: iamount_limit_check

Purpose: [check amount limit

Check that trade transaction amount values are below 10,000 UK pounds.

Description:

Author: en It
Status: v

~ Data quality rule
Type in the definition of your Business Rules.

Criticality Level [1

Where Clause amount < 10000

Figure 11-22. SQL data-quality rule for “‘amount” column

350
www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

For instance, Figure 11-22 tests the size of the trade.rawtrans table “amount” column by checking that no
transaction values exceed 10,000 English pounds sterling. The text in the Where clause field is added to the Hive QL
that is generated by Talend and is run against Hive to create the report’s content. In this example, I have not amended
other fields except to add the rule’s name, purpose, and description.

Figure 11-23 is a similar SQL-based data-quality rule, except that in its Where clause field it uses the Hive QL
length function to check the length of the rawtrans table’s Supplier field data in the trade database. Of course, this field
is a string, so this check ensures that a maximum length for the supplier name is adhered to. Checks like this are useful
during data-migration exercises.

Business Rule Settings

~ Business Rule Metadata
Set the properties of Business Rule.

Name: |rawtrans_dq_supplier_[en |

Purpose: [Check length limit |

Ensure that the length of the supplier name does not exceed 50 characters to avoid field column clipping during
Description: data migration. :

Author:

Status: ae omentiiig

~ Data quality rule
Type in the definition of your Business Rules.

Criticality Level |1 |
Where Clause |length(supplier) <51 H

Figure 11-23. SQL data-quality rule for “Supplier” column

Now that the rules have been created, it is possible to create some Talend reports on data quality in the trade.
rawtrans Hive table. I concentrate on column-based reports and create single- and multi-column reports, as well as
reports based on SQL and regular expressions. (Note: you can create new reports by right-clicking the Analysis folder
in the Repository pane and selecting the New Analysis option.) Each type of report has the set of control buttons
shown in Figure 11-24.

B ® X ®
Figure 11-24. Control buttons for reports

The first two buttons shown in Figure 11-24 contract and expand the report display to either hide or show charts
and/or details. The third button saves any changes, while the fourth is used to run the report. The final “eye” icon
refreshes the report charts.

351

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Single-Column Reports

I create a single-column analysis report by right-clicking the Analysis folder under Data Profiling in the Repository
pane. Next, I choose the report folder and type of column analysis in the pop-up window that is shown in
Figure 11-25.

[Z] DQ Repository £ =10 = 8 | ¢ welcome £
¢ Bl B Create New Analysis

[ ‘ ¥ v & 3

= g, Data Profiling [u. pe filter text]

>) [

v &= Analyses (7) P = Schema Analysis

= Reports (0) ek | [P = Table Analysis
i Create Folder e
b [ Libraries < 1= Column Analysis
= Import Items .
b @ Metadata ¥ Analysi
i’ Export Items ' .
P 15 Recycle Bin (= Column Set Analysis

& Match Analysis
P == Redundancy Analysis
b &= Column Correlation Analysis

Next> ) | | Cancel

Figure 11-25. Choosing the type of report to be created

I then click Next and enter a report name and a report description, as shown in Figure 11-26.

New Analysis
your input is valid.

Name [test report

Purpose [quick test report |

Description :
-

Author

Status development vl

Path - . [select..

Type

<Back | Next> N cancel Finish |

Figure 11-26. Describing and naming the report

352

www.it-ebooks.info


http://www.it-ebooks.info/

REPORTING WITH HADOOP

I click Next again to choose the database table column for the report. I expand the Hive DB connection until the

appropriate database table column can be selected, and then I select Finish, as shown in Figure 11-27.

New Analysis

Choose Columns to analyze

Columns:
P [£] MDM connections
~ Ji§ll DB connections
< [, hive_db_connection 0.1

P @ cloudera_manager_metastore_canary_test_db_hive_hivemetastore_b7761
b @ default
< [ trade
¥ (& Tables (1)
< [ rawtrans
= (= Columns (8) H
g dept(STRING) [~]
e " [T
< Back Cancel  Finish k

Figure 11-27. Choosing the database column

Figure 11-28 shows the Analysis Results tab of a single-column report drawn from the rawtrans “amount”

column. It shows both table and bar graph, with the total and null counts for the column. It also shows the spread of

values as the duplicate, distinct, and unique counts for this column.

www.it-ebooks.info

353


http://www.it-ebooks.info/

CHAPTER 11

REPORTING WITH HADOOP

~ Analysis Results

~ Column:rawtrans.amount

- Frequency Statistics

value count
Null field |8165.00
1000.0 | 68.00
200.0 | 33.00
500.0 |32.00
600.0 | 29.00
750.0 | 25.00
550.0 | 19.00
450.0 [14.00
60.0 | 13.00
350.0 {12.00
~ Simple Statistics

Label Count
Row Count [18976.00
Null Count | 8165.00
Duplicate Court | 1621.00
Distinct Count | 8353.00
Unigque Count |6732.00

\nalysis Settings Analysis Results

Figure 11-28. Results for a single-column report

Multi-Column Reports

In the same way that a single-column report is created, multi-column reports can be generated. When I select the
columns on which the report will be drawn, I press the Control key and select “multiple columns.”

%
[43.03%
1 0.36%
1 0.17%
[0.17%
| 0.15%
10.13%
10.10%
| 0.07%
| 0.07%
| 0.06%

%
[ 100.00%
| 43.03%
| 8.54%

| 44.02%

| 35.48%

o 1,000

2,000

3.000

Count

4,000 5,000 6,000

7.000 8,000

L ey

1000.4
2004
500.4
600.4
750.0
550.0
450.0

60.0
350.0

Value

20,000 18,976
17,500 |
15,000 |

12,500 |

1

210,000

(%]

7,500 |
5.000 |
2,500 |

0L

ol l
= o

Row Count

Null Count

D?Iicate Distinct
ount Count

Simple Statistics

6,732 |

Unique Count

The report shown in Figure 11-29 was created from four columns in the trade.rawtrans table: “amount’,

“department” (dept), “supplier’; and “export area” (exparea). The Data mining Type parameter tells Talend what type
of data it is examining. For the “amount” column, I set it to Interval because that column contains numeric values;

I set it to Unstructured Text for the other columns, as they are strings. The simple statistics displayed in Figure 11-29
include the column row count and counts for distinct, duplicate, and unique values. Clicking the Run icon then runs
the report and produces the bar graph shown on the right.

354

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

iy rawtrans_multicol_analysis 0.1 22 S
B ®m X @
Column Set Analysis o
~ Analysis Metadata ~ Graphics
Set the analysis properties.
Name: |rawtrans_multicol_analysis ] * Refresh the graphics
Purpose:  |multi column analysis |
multi column analysis ] Eramp S S THERECS
Description: =
=] 20000 18,976
Author: 17,500 | 3
Status: development | v 15.0001
“12.500 1
~ Analyzed Columns ]
310.000 | 9,672
: - » ’ ]
Connection: |hive_db_connection w | Version:0.1 7,500 {
Select columns to analyze 20001
= 2,500 1.680
Analyzed Columns Datamining Type  Pattern Operat —
i amount (DOUBLE)  nterval| ~ & x 0 — " Row Count Distinct Count  Duplicate Count  Unique Count W
B dept (STRING) ed Text| - & x Simple Statistics
 supplier (STRING) ad Text| ~ = x
i exparea (STRING) d Tex(] 2 %
k
[ I
- Indicators 52

Analysis Settings Analysis Results

Figure 11-29. Muliple-column report

These reports are fine for a simple check of the table column data, but what about generating and using more
complex rules for data quality that check data values and attributes? Well, that is where SQL and regular expression-
based rules can help.

Reports Based on SQL Rules

Reports on data quality are created when the options Table Analysis and then Business Rule Analysis are chosen when
creating a report. For example, I click Next and enter a report name in the form. I click Next again and expand the
database Hive connection until I can select the appropriate table. I click Next, and I select the SQL-based rule that was
created earlier. Finally, I click Finish to generate the report. The resulting report, shown in Figure 11-30, uses the
SQL-based rule that states amount < 10000 and shows that more that 93 percent of the data values in the “amount”
column fail this data-quality rule.

355

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Table Analysis

~ Analysis Metadata - Graphics
Set the analysis properties.
Name: | rawtrans_dq_amount | =Nz
Purpose: | % Refresh
Description: H = Table:rawtrans
= 20,000 | 18,976 ]
Author: 17,500 |
Status: development | v | 15.0001 |
12,500 {
= Analyzed Tables Elo.ono- |
. ; Y 7,500 |
Connection: ~ | Version:0.1 |
5.000 |
Select tables to analyze 2,500 §
= 4 Fow Count
Analyzed Tables Business R Operation Simple Statistics
- [ rawtrans 2 x 100% 5.94% |
Row Count " :g% |
> nii % |
£/ amount_limit_check & X 70% |
9 60% |
i 50% |
40% |
30% |
20% |
10% |
0%

amount_limlt_cheék
Business Rule Statistics

m not matching matching

Analysis Settings| Analysis Results

Figure 11-30. SQL-rule results for data-quality report on ‘amount” column

The SQL-rule statistics in Figure 11-30 show failures in red and passes in green. The report shown in Figure 11-31
checks the length of the supplier string column and displays a failure rate of around 29 percent. Thus, these simple
reports demonstrate that there are improvements needed in the quality of data in this table.

356

www.it-ebooks.info


http://www.it-ebooks.info/

Table Analysis

~ Bnalysis Metadata
Set the analysis properties.

Name: |lawtrans_dq_supplier
Purpose: |

Description;

Author:

Status: development | v

~ Analyzed Tables

Connection: db_connection v | Version:0.1
| | nal
=
Analyzed Tables Business R Operation
= [ rawtrans 2 b 4
Row Count
2 rawtrans_dq_supplit X

Analysis Settings Analysis Results

Figure 11-31. SQL-rule results for data-quality report on “supplier” column

- Graphics

= #

% Refresh the graphics

- Table:rawtrans

20,000 |
17.500 |
15,000 |

100%
90%
B0%
70%
60%
50%
40%
30%
20%
10%

0%

Value

CHAPTER 11 © REPORTING WITH HADOOP

Row Count
Simple Statistics

70.71%

rawtrans_dq_supplier_len
Business Rule Statistics

m not matching matching

These reports check the content and data ranges of tabular data, but what about the actual structure or format of

the data? Regular expressions are the tool for this job.

Reports Based on Regular Expressions

This section uses the date-based regular expression rule that was created previously. I begin the example by creating
a new report in the same manner as I did for the single-column report. In the report’s Analyzed Columns section
(Figure 11-32), I click the Pattern icon next to the column to be checked—in this case, it is the “paydate” column,
which is a date-based string column. This invokes the Pattern Selector window. There, I navigate to Regex, then to
date, and to “Hive Date DD MM YYYY’, which is the regular expression-based rule that I created earlier. I select that
rule, and click OK. Now, I click the Run icon to populate the report’s graphs, as shown in Figure 11-32.

www.it-ebooks.info

357


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

Column Analysis

~ Analysis Metadata
Set the analysis properties.

~ Graphics

Name: |rawtrans_regex_date | =N
Purpose: | | # Refresh the graphics
Description: 5 = Column: paydate
100% |
Author: 90%
80%
Status: development | v
70%
= Analyzed Columns o 60%
; 50%
Connection: [ onnectio ~ | Version:0.1 0% |
30% |
Select columns to analyze
P 20% |
Select indicators for each column 10% |
=l Go ¥l 1n o Hive Date DD MM YYYY
|m not matching mar.chmb
Analyzed Columns Datamining Type  Pattern upI Operatic
b & paydate (STRING) ominal | ~ = . X

Analysis Settings| Analysis Results

Figure 11-32. Regular-expression data-quality report on “paydate” column

The Figure 11-32 report shows the output and the fact that over 92 percent of the data in the “paydate” column
has failed the basic date-format test, probably because it is null. The content here is not important, but the usefulness
of these reports is. If you take care when selecting the rules for generating a data-quality report, you can produce a set
of reports like this that have great importance, especially when you are attempting to ensure the quality of HDFS- and

Hive-based data.

Potential Errors

Idid encounter a few errors while using Talend’s profiling. Generally these were not problems with Talend itself but,
rather, were configuration issues. By examining my solutions, you will be able to either avoid these errors or use them

to devise your own solutions.

I received the following error, followed by a message stating that I needed to install the library Zql.tar:

zql/ParseException

358

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11 © REPORTING WITH HADOOP

This issue was caused by my not installing all third-party libraries when being prompted to do so. The solution is
simple: just click Finish and accept the licensing, then patiently wait for the libraries to install.

Two errors were caused by my setting up the Hive connection incorrectly. Specifically, I received
the following error:Failed to run analysis: rawtrans_analysys

Error message:

Error while processing statement: Failed: Execution Error, return code 1 from
org.apache.hadoop.hive.ql.exec.mr.MapRedTask

and the following error was in the Hive log file /var/log/hive/hadoop-cmf-hive-HIVEMETASTORE-hc2nn.semtech-
solutions.co.nz.log.out:

assuming we are not on mysql: ERROR: syntax error at or near "@@"

The port number should have been set to 10000 for the hiveserver2 address. I used the value 9083, which was
the port value defined in the property hive.metatstore.uris in the file hive-site.xml under the directory /etc/hive/
conf.cloudera.hive.

There was the following error regarding an RPM component:There was an error creating the RPM file:
Could not find valid RPM application:
RPM-building tools are not available on the system

The error occurred because an RPM build component was missing from the Centos Linux host on which Talend
was installed. The solution was to install the component using the yum command install.

Finally, this short error occurred while I was installing the Talend client software and it implied that the Talend
install file called “dist” was corrupted:

Unable to execute validation program

I don’t know how it happened, but I solved the problem by removing the Talend software release directory and
extracting the tar archive a second time.

Summary

Relational database systems encounter data-quality problems, and they use data-quality rules to solve those
problems. Hadoop Hive has the potential to hold an extremely large amount of data—a great deal larger than
traditional relational database systems and at a lower unit cost. As the data volume rises, however, so does the
potential for encountering data-quality issues.

Tools like Talend and the reports that it can produce offer the ability to connect to Hive and, via external tables,
to HDFS-based data. Talend can run user-defined data quality checks against that Hive data. The examples presented
here offer a small taste of the functionality that is available. Likewise, Splunk/Hunk has the potential for generating
reports and creating dashboards to monitor data. After working through the Splunk/Hunk and Talend application
examples provided in this chapter, you might consider investigating the Tableau and Pentaho applications for big data
as well.

You now have the tools to begin creating your own Hadoop-based systems. As you go forward, remember to
check the Apache and tool supplier websites. Consult their forums and ask questions if you encounter problems. As
you find your own solutions, post them as well, so as to help other members of the Hadoop community.

359

www.it-ebooks.info


http://www.it-ebooks.info/

Index

A

Ambari cluster manager
administration functions, 235
color-coded key, 235
configuration file, 228
CPU usage, 233-234
curl command, 229
dashboard’s Metrics tab, 232-233
data nodes, 230
default login account, 228
FQDNSs, 228
Heatmaps tab, 233-234
indication, 227
installation, 232
Java JDK, 227
Linux yum command, 226, 228
memory usage, 235
Name Node server, 235
node managers, 230
ntpd server, 228
region servers, 230
registration, 228-230

Resource Manager user interface, 235-236
Review Configuration window, 231

setup command, 226

slaves and clients, 230-231

SSH, 228

time-consuming, 225

-u option, 229

web-based user interface, 227

wget command, 226

Apache Bigtop

installation
core-site.xml file, 250
Data Node machines, 250
fair-scheduler.xml file, 251
file system directories, 252

Hadoop file system, 251
JAVA_HOME variable, 251
Linux yum repository file, 249
Name Node and Resource
Manager components, 250

root account, 252
user interface, 252-253
YARN Linux user and group, 251
yarn-site.xml file, 250

smoke tests
build and run tests, 253
Hadoop component paths, 254
Hadoop Pig scripts and test results, 255
Linux PATH variable, 254
Maven command, 255
Maven (mvn) install command, 254
Maven verify command, 255
tar command, 253
wget, 253
yum list function, 254

Apache Software Foundation (ASF), 4

B

Big data

Apache Sqoop tool, 9

benefits, 7

cluster management, 9

data analysis, 9

data collection, 8

data processing, 8

data warehouse system
features, 6
feedback loops, 6-7
scheduling and monitoring tasks, 5-6

definition, 1

distributed storage system, 8

ETL, 9

www.it-ebooks.info

361



http://www.it-ebooks.info/

INDEX

Big data (cont.)
Hadoop tools
ASE 4
HDFS, 5
multidimensional 3V diagram, 1-2
Oozie tasks, 9
parallel processing approach, 2
reporting tools, 9
requirements, 3
system monitoring tools, 9

C

Capacity scheduler
features, 121
V1 environment
default queue, 123-124
Job Tracker user interface, 124
mapred.queue.names property, 124
queue configuration, 123
queue list, 124-125
tqueue, 123-124
V1.2.1 release, 122
V2 environment
adding property, 130
capacity values, 130
hierarchy of job queues, 131-132
queues and subqueues, 130
word-count job, 131
YARN configuration, 130
yarn rmadmin command, 131
cat command, 156
chmod command, 50
chown command, 50
Cloudera cluster manager
CDH cluster service installation, 242-243
CDH database connections, 241-242
CDH role assignments, 240-241
CDH service installation, 240
chart builder, 248
Cloudera installation, 239
disk status, 246-247
FQDN, 237
HDFS browser, 244
health history, 245
health tests, 245
home screen, 243-244
hosts option, 246
installation, 237-238
Linux chmod command, 237
Parcel installation menu, 239, 247-248
reports, 244-245
resource charts, 245
resource usage, 249
selection repository, 238

362

SELINUX value, 237
status summary, 245
time saving, 226
user interface, 245

Cluster management

Ambari cluster manager

(see Ambari cluster manager)
Bigtop (see Apache Bigtop)
Cloudera cluster manager

(see Cloudera cluster manager)

CopyFromLocal command, 156
CopyToLocal command, 156
cp command, 157

D, E

Data analytics

Apache Hive
CREATE DATABASE command, 268
CREATE TABLE command, 274
DESC clause, 279
external table creation, 268-269
GROUP BY clause, 279
HAVING clause, 280
INSERT statement, 278-279
ORDER BY clause, 279-280
SELECT statement, 275
subqueries, 276-277
table joins, 277-278
UDFs (see User-defined functions (UDFs)
WHERE clause, 275-276

Apache Spark
copyFromLocal command, 285
executors, 284, 287
head command, 285
installation packages, 281-282
job details, 286
line count, 285
Scala command count, 285
Spark context, 285
Spark shell application, 283
spark-submit command, 286
SQL Context object, 287-289
user interface, 283-284

Cloudera Impala
Catalog server, 258
cat command installation, 258
core-site.xml file, 259
CREATE DATABASE command, 263
DELIMITED and LOCATION option, 264
dot character (.), 258
error messages, 260
external table creation, 263
fuel consumption, 262
hdfs-site.xml file, 259

www.it-ebooks.info


http://www.it-ebooks.info/

hive-site.xml file, 258
INSERT statement, 267
permissions string, 260
SELECT statement, 265
socket creation, 260

SQL SHOW TABLES command, 264

subquery, 266
table joins, 266-267
user interface, 260-262
wget command installation, 258
WHERE clause, 265
yum command installation, 257
Data-collection
change directory (cd) command, 58
Gora configuration, 78
Hadoop logs, 80
HBase installation
accessible data, 77
cd and Is commands, 76
configuration file, 74, 76
gzipped tar file, 73
HBase bin directory, 76
hbase-site.xml file, 74

Solr installation

Bash file, 71

chown command, 72

configuration directory, 72
configuration files, 72

Execute Query option, 69

filter factory algorithm, 64

gunzip and tar xvf Linux commands, 72
hadoop account configuration file, 64
nzip command, 63

output, 80

sample data, 69

Solr administration user interface, 65
user’s Bash shell, 64

start-dfs.sh script, 59
switch user (su) command, 58
ZooKeeper logs, 80
Data monitoring
Ganglia

Linux hadoop account environment, 76

logs files, 77
Is command, 78
path and environment setup, 73
typical errors, 77
HBaselogs, 80
Linux cd command, 79
Nutch installation
Bash file, 71
chown command, 72
configuration directory, 61, 72
configuration files, 60, 72
crawl command, 66
crawl output, 67
crawl script, 66
gunzip command, 60, 72
jar and .job files, 62
Linux file system, 67
Linux hadoop account, 62

Map Reduce looping/memory use, 61

mv command, 60
Nutch crawl directory, 68
NUTCH_HOME variable, 63

nutch-site.xml configuration file, 61

operations, 66
output, 80
segments directory, 69
symbolic links creation, 60
tar xvf Linux commands, 72
potential errors, 80
pwd command, 59
rm command, 59

cluster web interface, 213-215
Epel repository, 209

Ganglia gmond process, 209-210
hadoop-metrics.properties, 211
potential errors, 212-213

remi repository, 209

SELINUX value, 211

yum command, 209

Hue browser

CentOS 6 server hclnn installation, 192
ETL components, 191
Hadoop core-site.xml file, 192
HBase server, 194-196, 208
hdfs-site.xml file, 192

HDSF browser, 201-202

Hive user interface, 200
Home icon, 199-200

Hue shell, 207

Metastore manager, 202-203
Oozie interface, 206-207
Pigicon, 200-201

potential errors, 197-198
Quick Start wizard, 198-199
secret key string, 193

service command, 196
Sqoop2 server, 193-194
Sqoop user interface, 203-206
YARN configuration, 193

Nagios

www.it-ebooks.info

account and password combination, 216
cfg_dir attributes, 217

chkconfig command, 216

components, 216

generic service, 217-218

host definition, 217

local service, 217-218

INDEX

363


http://www.it-ebooks.info/

INDEX

Data monitoring (cont.)
nrpe.cfg file, 219
potential errors, 219
structures, 215

touch command installation, 217

web interface, 220-223

yum command installation, 216

dfsadmin metasave command, 55

F

Fair scheduler
key aspects, 122
V1 environment
error, 128
job queue, 129
Job Tracker user interface, 128
pools, 127
properties, 126
V1.2.1 installation, 125
V2 environment
configuration file setup, 132
job status, 133-134
queue name specification, 133
refreshing YARN scheduler
queue configuration, 133
yarn.resourcemanager.
scheduler.class property, 132
Flume

agent configuration file contents, 169, 172

channel, 173

clean script, 172

execution script, 172
flume/messages directory, 171
hierarchical arrangement, 169-170
installation, 170

linear arrangement, 170

Hadoop V1 installation

cluster, 23

Job Tracker user interface, 31

keygen command, 15

Linux user hadoop, 16

map reduce job check, 25

name node user interface, 30

remote passwordless

secure shell access, 16

secure shell daemon process, 15

single-node installation
$HOME/Downloads directory, 17
Bash shell file, 19
conf/core-site.xml file, 20
conf/hadoop-env.sh file, 19
conf/mapred-site.xml file, 20
file conf/hdfs-site.xml file, 21
file system, 21
Linux chown command, 18
temporary directory, 20

SSH statements, 17

Task Tracker user interface, 32

Hadoop V2 installation

Linux cat command, 33

YARN (see Yet another resource negotiator (YARN))

ZooKeeper installation
built-in ZooKeeper client, 36
configuration information, 33
connect command, 37
conf command, 35
cons command, 36
delete command, 38
ephemeral node, 39
nc command line, 35
sequential node, 39
set command, 38
stat command, 36

Linux ls command, 173 hbase.zookeeper.quorum parameter, 196
misconfiguration error, 174 Hunk report
running agent, 174 cat command, 327-328
Fully qualified domain names (FQDNs), 228, 237 cd command, 326
cdh5 cluster, 327
G cdh5_vindex, 330-331
drop-down menu option, 332
get command, 157 exit command, 326
extractcsv value, 327
H field bar report, 333-334
format menu, 334-335
Hadoop Distributed File System (HDFS), 5, 12 Is-1d command, 326
Hadoop file system copyFromLocal command, 26 mv command, 326
Hadoop scheduler potential errors, 337-339
Capacity (see Capacity scheduler) properties, 329-330
Fair scheduler (see Fair scheduler) report expression, 336-337

FIFO, 121 report menu options, 334-336
workflow scheduler (see Oozie workflow) search window, 331-332, 334

364

www.it-ebooks.info


http://www.it-ebooks.info/

splunk command, 328

stats function, 337

su command, 326

summary window, 332-333

tar command, 326

web-based user interface, 328-329

InputSplit method, 86

J, K

JZMQ, 179

L

Library path, 141

M, N
manufacturer.pig script, 141
Mapper transformation, PDI
Cluster tab, 305
execution, 306
Filter Rows, 298
input component, 297
Java expression, 299
job configuration, 302
job scheduling, 302
job setup, 302, 304
output, 299, 307
Split Fields, 297
structure, 297
Map Reduce programming
Hive
installation, 111
word-count, 112

Perl
cat and tail command, 119
file mapper.pl file, 115

library-based data streaming functionality, 114
-mapper and-reducer options, 119

Reduce function, 118
reducer.pl Perl script, 116-117
resulting data, 120
script wec_clean.sh, 118
script wc_output.sh, 118
testl.sh shell script tests, 117
working directory, 114

Pig
copyFromLocal command, 102
count option, 103
disadvantages, 104

UDFs (see User-defined functions (UDFs))

installation, 100
load option, 103
Is command, 104

word-count algorithm

cat command, 98

code implementation, 86, 92
configure method, 95
copyFromLocal command, 90, 98
fs.Path class, 88

Hadoop file system rmr command, 90
input and output directory, 91
input/output formats, 89
InputSplit method, 86

jar command, 90

key-value pairs, 88

Linuxls command, 90

Linux mkdir command, 97

Is command, 91

Map class, 88

map method, 96

org.myorg package, 88
output, 99

parseSkipFile method, 95
process, 85

Reduce class, 96

run method, 96

tail command, 100
wec_classes directory, 97
wordcountl.jar, 97

Moving data
moving file system data

www.it-ebooks.info

cat command, 156
CopyFromLocal command, 156
CopyToLocal command, 156
cp command, 157

get command, 157

mv command, 158

put command, 157

tail command, 158

UR], 155

with Flume

agent configuration file contents, 172
agents, 169

channel, 173

clean script, 172

execution script, 172
flume/messages directory, 171
hierarchical arrangement, 169-170
installation, 170

linear arrangement, 170

Linuxls command, 173
misconfiguration error, 174
running agent, 174

INDEX

365


http://www.it-ebooks.info/

INDEX

Moving data (cont.)
with Sqoop
importing data to HDEFS, 161
importing data to Hive, 165
installation, 160
MySQL configuration, 159
rawdata table, 159-160
rawline column, 160
with Storm

Apache incubator project, 176
installation, 181
JZMQ, 179
Nimbus and slave processes, 177
running, 183
spouts, 177
stream, 176-177
topology, 177, 185
tuple, 176-177
ZeroMQ, 178
ZooKeeper server, 182

mv command, 51, 158

(0

Oozie workflow

actions, 138

configuration file
displaying contents, cat command, 141
entity/model HDFS directory, 145
error conditions, 143
fork control node, 143
Hive jobs, 143
join control, 143
kill control node, 144
manufacturuer.pig file, 144
model.pig file, 145
parameters, 140-141
rawdata2, 145
sql script, 144

control nodes, 137

creation, 139

Oozie installation, 134

running
help option, 146
job DAG with no state information, 149
job information window, 147-148
job log information window, 147-148
job number, 146
job statuses and meanings, 147
Oozie console, 146
Oozie job DAG information, 150
OOZIE_URL variable, 146

scheduling
coordinator job details window, 152
coordinator job status, 152

366

coordinator script path, 151
coordinator.xml file, 151
documentation level, 153

job coordination properties, 151
workflow script path, 151

XML code, 153

PQ

parseSkipFile method, 95
Pentaho Data Integration (PDI)

CDH5 configuration, 293
Design view, 295-296
ETL creation
HDES file, 296
mapper transformation
(see Mapper transformation, PDI)
reducer transformation
(see Reducer transformation, PDI)
Explorer pane, 295
Explorer view, 295
installation package, 291
installation structure, 292
Java installation, 293
Kettle, 291
plugin.properties, 292-293
potential errors, 307-309
Spoon client application, 294
YARN server, 294

put command, 157

R

Reducer transformation, PDI

Cluster tab, 305

execution, 306

job configuration, 303

job scheduling, 302

job setup, 302, 304

output, 301, 307

Sort Rows, 299-300

structure, 299

summed_val variable, 300-301

Relational database

systems (RDBMS), 7

S

Sqoop

importing data to HDFS, 161
importing data to Hive, 165
installation, 160

MySQL configuration, 159
rawdata table, 159-160
rawline column, 160

www.it-ebooks.info


http://www.it-ebooks.info/

Storing and configuring data
Hadoop
administration commands, 53
characteristics, 11
client task requests, 13
cluster-level job tracker handles, 12
environment management, 15
HDFS, 12
Map Reduce, 12
shell commands, 49
stack, 14
user commands, 51
V1 installation (see Hadoop V1 installation)
V2 installation (see Hadoop V2 installation)
YARN handles, 12
Storm stream, 176-177
Storm topology, 177
class name and topology name, 186
coding, 185
exclamation-topology, 186
kill command, 188
Nimbus and UlI, 189
running, 186, 188
Storm user interface, 186-187
structure, 187-188
target directory, 185
topology view details, 186-187
Storm tuple, 176-177
Storm user interface, 183-184, 186-187

T

tail command, 158
Talend Open Studio

cat and head command, 313

ETL creation
column filtering, 318-319
conditional flow, 314
data flow, 315
HDFS connection, 315
HDEFS delete, 315
incoming and outgoing

data sources, 317-318

output data, 321-322
rawdata.txt file, 316
Resource Manager interface, 320-321
Run tab, 320
Schema window, 316-317
sorting, 319
storage method, 319
three-column setup, 317
tPigload, 314
tPigMap_1, 314
work flow, 314

HDEFS and Pig modules, 312

installation, 310

INDEX

Is command, 313

potential errors, 322-323
Project Chooser window, 311
pwd command, 310

sandbox version, 310
software download, 310
unzip command, 311

user interface, 312-313

Talend report

amount column, 351, 356
Centos Linux, 339

client enterprise, 344
control buttons, 352
database connection, 347-349
data-quality rules, 349-351
gunzip command, 340

Hive installation, 347
JAVA_HOME variable, 341
library installation, 344-345
license option, 345

local connection, 342-343
Is command, 339-340
muliple-column report, 355
potential errors, 359
profiling perspective, 346
repository pane, 346-347
single-column analysis, 353-354
supplier column, 351, 357
unpacked software, 340
unzip command, 339

yum installation, 341

uVv

Uniform Resource Identifier (URI), 155
User-defined functions (UDFs)

cat command, 109, 270-271
CleanWS.java file, 106
creation, 105
date-conversion function, 270
DateConv.java, 271-272
DEFINE keyword, 108
directory structure, 271
exec method, 107

FILTER keyword, 108
functionality, 106-107

jar command, 107

jar library, 273
lint:deprecation option, 107
package name, 272
REGISTER keyword, 108
rpm installation, 270

sbt program, 270

Scala version, 271

tail command, 110

Text value, 272

367

www.it-ebooks.info


http://www.it-ebooks.info/

IN

DEX

W, X

workflow.txt file, 141

Y

Yet another resource

368

negotiator (YARN)
component package installation, 40
configuration process, 40
core-site.xml file, 41
Data Node machines, 45
file mapred-site.xml file, 42

file yarn-site.xml file, 42
hdfs-site.xml file, 41
logging and history data, 45
Is command, 41, 45
mapred-site.xml file, 44
recursive switch (-R), 45
yarn-site.xml file, 43-44
yum commands, 40

Y4

ZeroMQ, 178
ZooKeeper server, 182

www.it-ebooks.info


http://www.it-ebooks.info/

Big Data Made Easy

Michael Frampton

Apress-

www.it-ebooks.info


http://www.it-ebooks.info/

Big Data Made Easy: A Working Guide to the Complete Hadoop Toolset

Copyright © 2015 by Michael Frampton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0095-7
ISBN-13 (electronic): 978-1-4842-0094-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Jeff Olson

Developmental Editor: Linda Laflamme

Technical Reviewer: Andrzej Szymanski

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando

Copy Editor: Carole Berglie

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or

visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

www.it-ebooks.info


http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

This book is dedicated to my family—to my wife, my son, and my parents.

www.it-ebooks.info


http://www.it-ebooks.info/

Contents

About the AUROK ........cccccmiiiemmniesnsisss s a s s n s nnnnmnnnnnnn s Xv
About the Technical REVIEWET ........cuusesssmsssansssasssssssssssssasssssssssnsssassssassssnsssassssassssnsssassnsass xvii
ACKNOWIEdgMENTS ....ccuuiiiiemmmmissnnnnmsssssnnnmsssssssnmssssssnnmsssssnnnnsssssnnnssssssnnnsssssnnnnsssssnnnnnssssnnnnss Xix
1L L0 T Xxi
Chapter 1: The Problem with Data..........cccummmmmmmmmmmmmmmmmmsssssss s 1
A Definition of “Big Data” ........cccoeierereserc e sne s s sn s sn s sn e nn e sn e nn e nn e nnennnnnn 1
The Potentials and Difficulties of Big Data...........ccccucerermrrernnriiesncse s 2
Requirements for @ Big Data SYSIEM ........cvecceriecercr e s 3

How Hadoop TOOIS CaN HEIP ........cccerirreeirisescsesssseesesesss e s sss e sesssssss e s ssse e e sssssssssssssssssssssssssssssssssssssssssssssssns 4

Y o] 0 T 5
Overview of the Big Data SySIEM.........cccccerererc e sn e sn e 5
Big Data FIOW QN0 STOTAQE .......cceeereererereriereesereesereesessesesessssessesessesessesassessesessssssssssssessssessesessssssssnsssensssessenesssssaes 5
Benefits of Big Data SYSIEMS ......ccccvcrerrierrreresere st s e res e rae e sae e s e se s e sa e e ae e sae e saesa s e sa e e sae e saenenaenassesaesesassenans 7
What’s in THIS BOOK .........ccocriieriiiicins s s 8
(0] T L= 1 0 (-] PR 8

Data Collection: ChAapLer ... e e s a s bt e e e s bbb e e R e e ae b e p e e nennas 8

e (Lo L] o B 1 o (-] ST 8
SCEAUIING: CRAPTEE 5 ...ttt e AR e s R e e e s Re e nnnn s 9

D L ez (0T TeT (08 1 10 S 9
MONITOFING: CRAPLEE 7 ...t s e R R e e R e e R e e e e R e e R e e Re e nis 9
Cluster Management: ChapIEr 8........ ..o s 9

L LT R 1T 01 ] o PO 9

vii

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS

8 1T 1 o OO RO 9
RePOMS: CRAPIEE 17 ... e e e e R e b e A e R et R e e ns 9
SUMMAIY ...ttt r s e ae e e e e R e e s Re e s e e Re e e RenR e e eRnnE s e eRa e nRensnnennnnnnnes 10
Chapter 2: Storing and Configuring Data with Hadoop, YARN, and ZooKeeper..........cuuu.. 11
AN OVerview Of HAOO0O0P .....ccccierirereric e sse s sae s s sas s sae s sas s sa e e sa s sassassnssn s s 11
The Hadoop V1 ArCHITECIUIE .......ceeeeerecccrrrieecsesss e se e sn s sn s a s e s nasas e s sansssnnnes 12
The Differences in HAAOOP V2 ..o s s ss s s sss s sssssssssssssssssssssssssssssssssssssssnnes 13
THE HAAO0P SEACK......ccererrreerererreesesssseesessssssssesssss s e s sss s e e sssss e e sssss s e ssssssesessssssesessssssesssssssssssnsssssesensnsssassnsnns 14
Environment Man@gement ...........ccoeieerernnesesinsesesesessse s ss s ss e ss s ssssssssssssssssssssssssssssssssssssssssasenes 15
Hadoop V1 INStallation...........c.ccceerrinercrrcr et s 15
Hadoop 1.2.1 Single-Node INSTAllAtioN ...........cceeeerererierrierreresseres e sesesesesessessssessesessssassesassessssessssesssssssssasaens 17
L T T o (L 11T (-] 23
Running @ Map REAUCE JOD CRECK.........cccerererrererrereerereesersesssesessessssesssssssessssessssessesesssssssssssssssssessssessssesssnssssnsnaens 25
HAdOOP USEE INTEITACES ......ecveieereerieriere e a e e s s a e sa e e s a e s b s e s e e e e e e e e e e e e sa e e e sa e e e e e e e neennens 29
Hadoop V2 INStallation..........cccecrircrcncr st sn e nnenn 32
Z00KeePer INSTAlIALION ... e nn 33
Hadoop MRV2 @N0 YARN .......cccooierireriresesseseessesaesaesaessesssssesssssssssssssassssssssssssssssssssssssessesssssssssssessessssssssssssssensens 40
g T [0 To o 00T 1 4o SRS 49
Hadoop Shell COMMEANGS........cuuererrrreeseresseesesesssssssessssssssesss s e e sssssss s e sssasesessssssesssssssssssssssssessssssssesensssssesenes 49
Hadoop USEr COMMANMS ........covrererererreeseressssesesesssssssessssesssesssssssssssssssssssssssssssssssssssssssssssssssssssssenssssssssssssansesenes 51
Hadoop Administration COMMANGS ..........ccceererererrnenesernesese s se s s s sesss e nassnsnnes 53
R3]0 1111 N 56
Chapter 3: Collecting Data with Nutch and SoIr ..........cccusmmmnsmmmmssnmmsssssmsssesmssssssssssssnnes 57
The ENVIFONMENT .......coviiiiiiiri s 57
STOPPING ThE SEIVEIS ....cveeerteereererererert e ree s rse s e se s s s s ae s sae e sae s e sse s s e s e e e sae e s aesasaesaeae s e e e ea e e nae e e aerasaenaenesanrnnan 57
Changing the ENVironment SCHPIS ......cccvverrierrrcre s res s rse s sse e s e s e e sae e sae e saesassesas e sassessssesasnanaens 58
Y L 0 TR TE T =T T 59
Architecture 1: NUICh 1.X ..o s 59
NULCH INSTANALION.......cceei e —————————————————— 60
SOIF INSTAIIALON. ... ——————————————— 63
Running NUtCh With HAAOOP 1.8......ceeeeeeeee et 65

viii

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS

Architecture 2: NUICH 2.X.......cccvrrmiiisii e 70
Nutch and Solr CONfIGUIALION ........coeeeverere e s s e e saesesae e saesa s e sae e sae e naenananananns 4l
HBAaSE INSTAlAtION.........ccouirririiii i ———————————— 73
6T B 00 100 Lo R 78
RUNNING the NUECH CrAWL.......cccceeeeeeecereertrereseraesereesesaesesaesesaesas e ssssessesessssassesssessssessssssssassesassesassesassensssasaenanaens 79
POTENLIAI EITOS ...oesiiccss it bbb 80

A Brief COMPANISON ........coceeeeererreserse e ssesse e sse e sse e sssssessessessessssasssssassassresnesaesaessesnassssssssansnnes 82

SUMMEAIY ...ttt e s e ae e s e e s s Re e s s e e e Re e s e e Re e nRn e n e nnennnnnas 83

Chapter 4: Processing Data with Map Reduce .........cccovuunsmmmmmmsssssnmmssssssssssssssssssssssssnnsssss 85

An Overview of the Word-Count AIgOrithm ... s 85

Map REAUCE NALIVE ......ccvereereereeriereree s sas e e e s e s saesassaesaesaesassassassaesassaesaesaesaesnenanns 86
Java Word-Count EXAMPIE T......ccoceerereererereesereseseressessesersssessesassessssessssesassssssssssesassessssesssssssssssesassesssnssassnaes 86
Java Word-Count EXAMPIE 2........cceveriererrereerereseresesersssessesessssessessssessssessssesssssssssssessssesssssssssssssssssessssessenssassnaes 92
Comparing the EXAMPIES........cccvieeeriererrereerereseresesesessersesessesessessssessssessssssssssssssassessssessenssssssssessssessssssssssssesanaens 100

Map Reduce With Pig .......cccveririererririrsersss s sn s s sn s snssn s sn s snsnnn s 100
TS e LT T N oo OO RSO SRSRSRN 100
U011 o I T OO SRSRRSRRSRN 102
Pig User-Defined FUNCLIONS .........ccoiiiiincrecine e a e s s s e st sa et snesn e nnnneas 106

Map Reduce With HIVE ...ttt sn s s 111
INSTAIING HIVE ... ae e e e s ae e e e nnann s 111
Hive WOrd-Count EXAMPIE .........ceeeeeeereercresssesesessse s ses s se s e s e s ss e s ssss s s sssssssssssssssssssssssssssssssssaes 112

Map RedUCE With PEIl........coceeereeririee e res s see s sseseesaesn s s sn e ssessn e ssesnesssssessnssnssanesnens 114

BT 111 12 SRS 120

Chapter 5: Scheduling and WOrkflow ........cccccemnnnsmmnmnnssssnmmmsssssnmmssssssssssssssessssssnnnns 121

An Overview Of SChEAUIING .....ccoeeeeeeecece e sn e sn e n e sn s sr e n e n e 121
The Capacity SCREAUIET ... e e s 121
The Fair SCHEAUIET ....c.ceiiiiiiiiiie s 122

Scheduling in HAA0OP V..ot s sss s sns s s sssssnnens 122
V1 CaPACILY SCREAUIET ......c.cveeeecereeceirer et se e se e e snnn e e s 122
L T LT T 011 125

ix

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS

Scheduling in HAdOOP V2. s s e snssnssnssnssnssnssnssnssassassnsnnnns 129
L7 0 4T T4 T T o ] 130
V2 Fair SCREUUIET ...t 132
Using 00zie fOr WOrKFIOW ........coeeeeeieriececrc e s e e e ssessesssssessesnesnssnssnssnssnssnssssssssnssnssssssnnes 134
INSTAIING DQ0ZIE .....cccueeieirereir e s e s b e b e e e e A e e R e e R e e e Re R e Re A et eRe e eRe e e nenenanes 134
The Mechanics of the 00zie WOTKFIOW ... s 137
Creating an 00Zie WOIKFIOW.........ccceiiieriicnerire s se e sss s sa e sa s sae s se s st s s s sae st sne st nesannen 139
RUNnNing an 00Zzie WOTKFIOW..........ccuiiriericreccne st ss e s e se s a s s s s b e e b s a e snesn s e nnnnens 146
Scheduling an 00zie WOIKFIOW ........cocoerieinescccre e e n e a s p e s ne e nn s sn e 151
ST 1111 R ST 154
Chapter 6: Moving Data ........cccccvnsemnmmmmssnsnnmmssssnsmmssssssmsssssssssssssssssssssssssssssssnssssssssnnnssss 155
Moving File SyStem Data...........cccucerinreniiennsriessse s s sr s ssssnsnes 155
The Cat COMMEANG ........coceeeeeriireeereseese e e 156
The CopyFromLOCal COMMEANG..........ceoeeererreeriresreesesesssesesessssesesesssss s e ssss s e sssss s e sssesssesssssssssssssssnssssssssnsnns 156
The CopyTOLOCAl COMMEANG........cccourureerererreeseresssesesesssssesesss e e e ss s sesssss s e sssss s e sssssssessssssssssssssssnssssssssnsnes 156
THE CP COMMANG .......covieeeereeeeeesesreseeseses s e s e s s s s sse e s s se e e s s se e e s s se e e s nse e e e nsesn e e nsnnnnnnnes 157
The GEt COMMANG ......cceeeeeeece e e 157
The Put COMMANG ......cceiciiccceesece e e 157
THE MV COMMEANG.......cooiieeeeece e e e 158
The Tail COMMANG ......cccoeeiericreeireree e e 158
Moving Data With SQOOP .....ccocrrerirrrrrr s 159
CheCK the DAtaDASE.........ccurirririisssiiissss s 159
TS e 10T O 160
Use Sqoop 10 Import Data to HDFS ... sere s res e e sesesaesassesas e saesesassesssssssessssesasssssanaens 161
Use Sqoop 10 IMport DAta t0 HIVE.........ccoveceeerre st se e see e s e e saesa s e sas e saesesassessesassesassesasssasanaens 165
Moving Data With FIUME ...t 169
INSTAI FIUME ..o 170
A SIMPIE AGENL ... e e e E e e e e e Re R e Re R e e R e R Re R e Re R e Re R e e Re e e Rennnn 171
RUNNING thE AGENL ... e e e e e e s p et e e e e e R et e R et e Re e e Renenanas 174

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS

Moving Data With STOrM.........ccvvrvri e ————— 176
INSTAIl ZEIOMIQ ...t 178
INSEAI JZIMIQ <...eoceceeeeeeeeee e ses s s s s R R s s s s s s s 179
INSTAIL STOTM .o ————————— 181
Start N0 ChECK ZOOKEEPET ......veeevrererererererrersesersesersessssesassessssessesssssssssessssessssessssesssssssesssssssssessenessssesssssssssanaens 182
31T 0] 183
An Example 0f STOrm TOPOIOQY .....coeeereerereerererererssersesersesessesessersssessssessesessesssssssssessssesssssssessssessssessssesssnesssssaes 185

BT 1] 11 12 SRS 189

Chapter 7: Monitoring Data ..........ccccviinemmmnnmssnmmmmsssmmmmsssnmmssssnmssssssssssssnsassmmns 191

THE HUB BrOWSE ......c.cviicirisciriset s s s s s s s 191
LTS e LT T N 5 1T RO RRRSRRSN 191
STAMTING HUE.......ceee e s e e e e R e e R e e e e e A et e R e e R e e e Re e e Re e nanan 196
POLENTIAI EITOS ...t 197
RUNNING HUB ...ttt s e e e e e A A et R e e Re b e Re b et e R et e Re e e Renenanan 198

672 0 ] T 208
INSEAIlING GANGIIA.......ccceveeeeeererireererr e e e e e s e e s e R e s e e e e e ne s e e nnennns 209
01 0L L = (0 £ 212
The GaNGlia INTEITACE. .......cccceurereererreese e ense e nesp e e e e s pnnnnnn s 213

TS 215
T3 e T T N T 0L 216
POTENTIAI EITOS ..ottt 219
B = T 0T (=T - T 220

BT 1] 11 12 SRS 223

Chapter 8: Cluster Management...........ccccuunssmnnnmssssssnmmssssssnssssssssssssssssssssssssnsssssssnnnnsssss 225

The Ambari Cluster Man@ger ...........cccvcereerrmrsessessessesses s se e s e e e s s snssnssnssnssnsnnas 226
AMDArT INSTAIALON. ... ———————————— 226

The Cloudera CluSter MANAQGEN ..........ccuoeersmrenessesrnsssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssens 236
Installing Cloudera CIUSTEr MANAJET ..........ceeeeererrrercrirrnesesesesseesesssssssessssssssesssssssssssssssssssssssssssssssssssssssssnsaes 236
Running Cloudera ClUSIEr MANAGET .........ccovueeerererrresertrinesesesessee e ses e s se e ss s sesssss s s sssesssssssssssssssnssssaes 243

Xi

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS

FA o T2 T (Lo 20 (0] S 249
TSy e 1T T 3 (0o O 249
Running Bigtop SMOKE TESES ......ccvveviiiiiniis s 253

BT 1] 11 12 ST S RS 256

Chapter 9: Analytics with Hadoop ..........cccusmmnmmnmmissmimmsmsmms s s 257

Cloudera IMPala .........c.coeeeeereeecere e sr s s r e sn e sa e s resr e sn s en e r e snesresnennennenrnnnnnns 257
Installation Of IMPAIA..........coeiericee e e s a e sa e s e e e e e e e e sa e e e e e e e e e e e e e s 257
1] o L LT g (=T T S 260
USES OF IMPAIA.....ceieeicieccere e s e b e e e e AR e e R e e s Re e e Re R et eR et eRe e naeenanes 262

APACNE HIVE ... a e s e a e s r e a e s r e n e sn e nn e n e n e n e nn e n e nnennnnenan 268
DAtADASE CrEALION .......cocecciciirii e 268
External Table Cre@tion..........c.covvvrererereninisisisirssise e 268
HIVE UDFS ...t E e e e 270
210 T < 110 274
The SELECT STAtBMENL ... e 275
THE WHERE CIAUSE .....c.cueuineieeecieseeeesee e 275
THE SUDQUETY ...ttt e R e bR e e e e s s e e e e nansnnnnnas 276
21000 277
The INSERT STAtBMENL........cooccccee e 278
Organization 0f TADIE DAta..........cccceerrreieririreeerire et pe e nr e 279

= T 1 TS - 1 G 280
TSy 1L LT 0 ] 0 L 281
1S T= L0 S 0 1 GO 282
S 0 14 QR 287

BT 1] 11 12 ST S RS 290

Chapter 10: ETL with HAad0oop ........ccccsvssmimmsmmmssmmssmmsmsssmsssms s sssssssssssssssssssssssssssssnsnsnsns 291

Pentaho Data INtegrator ... s 291
INSTAIlING PENTANO.........coeeee e e e e a e R e e e ae e 291
Running the Data INTegrator ... r s s r e nesr e na e 294
L0 T L T N = 1 RSSO 296
POLENTIAI EITOFS ... 307

xii

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS

L= =T [0 0 o= TS (1 309
Installing Open Studio for Big DAta...........cccoerrereriereriereerereseseresesessessesessesessesassessssessesesssssssessssessssesssssssssanaens 310
Running Open Studio for Big DAta.........cccccverrereriereriereeseresessesesessssessesessesessssassessssessssssssssssessssessssesssssssssanaens 311
08 11 T {8 = O 314
POTENTIAI EITOS ..ottt 322

BT 1] 11 12 SRS 323

Chapter 11: Reporting with Hadoop .......ccccvseemmmmnnssmmmmnsssssnmmmsssssmmssssssssssssessssssnsns 325

3 ] 0GRS S 325
INSTAING HUNK....c.ce et e e e et e R e e R e e e b et e R et e ne e e Re e nanan 325
RUNNING HUNK ...ttt e a e s e et R e e R e e e b et e R et e Re e e Rennnanan 328
Creating Reports and DaShDOArds..........cccoruieererrencriree e e 331
POLENTIAI EITOS ...t 337

L =T 1[0 =T 0 SRRSO 339
L E T4 0T =1 T TP 339
RUNNING TAIBNG ...t e e e e s pe e e e nnann s 342
GENEIAtiING REPOIS......covieeeecrerirecserire e e et e s e e e e s e Re e e e e Re e e e s ne e e e nrnnnnes 349
01 0L L = (0 £ 358

E3 111 1P 2SR 359

IO X tiiiisssnnnnnnnnnnnnnssssssnnnnnnnnnnessssssssnnnnnnnnnsssssssssnnsnnnnnnsssssssssnnnnnnnsssssssssssnnnnnnnnssssssssnnnnnnnnnnss 361
xiii

www.it-ebooks.info


http://www.it-ebooks.info/

About the Author

Michael Frampton has been in the IT industry since 1990, working in a variety
of roles (tester, developer, support, QA) and many sectors (telecoms, banking,
energy, insurance). He has also worked for major corporations and banks as a
contractor and a permanent member of staff, including Agilent, BT, IBM, HP,
Reuters, and JPMorgan Chase. The owner of Semtech Solutions, an IT/Big Data
consultancy, Mike Frampton currently lives by the beach in Paraparaumu,
New Zealand, with his wife and son. Mike has a keen interest in new IT-based
technologies and the way that technologies integrate. Being married to a Thai
national, Mike divides his time between Paraparaumu or Wellington in

New Zealand and their house in Roi Et, Thailand.

XV

www.it-ebooks.info


http://www.it-ebooks.info/

About the Technical Reviewer

Andrzej Szymanski started his IT career in 1992, in the data mining, warehousing,
and customer profiling industry, the very origins of what is big data today. His main
focus has been data processing and analysis, as well as development, systems, and
database administration across all main platforms, such as IBM Mainframe, Unix,
and Windows, and all leading DBMSs, such as Sybase, Oracle, MS SQL, and MySQL.
Szymanski’s big data and DevOps adventure began in News International, in January
2011, where he was a key player in creating a fully scalable and distributable big data
ecosystem, with an aim of sharing it with subsidiaries of News Corporation. This

“* involved R&D, solution architecture, creating ETL workflows for big data, Continuous

Integration Zero Touch deployment mechanisms, and system administration and knowledge transfer to sister companies,

to name but few of the key areas. Szymanski was born in Poland, where he completed his primary and secondary

education. He studied economics in Moscow, but his key passion has always been computers. He is currently based

in Prague.

xvii

www.it-ebooks.info


http://www.it-ebooks.info/

Acknowledgments

I'would like to thank my wife and son for allowing me the time to write this book. Without your support, Teeruk,
developing this book would not have been possible.

I'would also like to thank all those who gladly answered my technical questions about the software covered in
this book. I extend my gratitude to the Apache and Lucene organizations, without whom open-source-based projects
like this one would not be possible. Also, specific thanks go to Deborah Wiltshire (Cloudera); Diya Soubra (ARM);
Mary Starr (Nagios); Michael Armbrust (Spark); Rebecca G. Shomair, Daniel Bechtel, and Michael Mrstik (Pentaho);
and Chris Taylor and Mark Balkenende (Talend).

Lastly, my thanks go to Andrzej Szymanski, who carried out a precise technical check, and to the editorial help
afforded by Rita Fernando, Jeff Olson, and Linda Laflamme.

Xix

www.it-ebooks.info



http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Problem with Data
	A Definition of “Big Data”
	The Potentials and Difficulties of Big Data
	Requirements for a Big Data System
	How Hadoop Tools Can Help
	My Approach

	Overview of the Big Data System
	Big Data Flow and Storage
	Benefits of Big Data Systems

	What’s in This Book
	Storage: Chapter 2
	Data Collection: Chapter 3
	Processing: Chapter 4
	Scheduling: Chapter 5
	Data Movement: Chapter 6
	Monitoring: Chapter 7
	Cluster Management: Chapter 8
	Analysis: Chapter 9
	ETL: Chapter 10
	Reports: Chapter 11

	Summary

	Chapter 2: Storing and Configuring Data with Hadoop, YARN, and ZooKeeper
	An Overview of Hadoop
	The Hadoop V1 Architecture
	The Differences in Hadoop V2
	The Hadoop Stack
	Environment Management

	Hadoop V1 Installation
	Hadoop 1.2.1 Single-Node Installation
	1. Set up Bash shell file for hadoop $HOME/.bashrc
	2. Set up conf/hadoop-env. sh
	3. Create Hadoop temporary directory
	4. Set up conf/core-site. xml
	5. Set up conf/mapred-site. xml
	6. Set up file conf/hdfs-site. xml
	7. Format the file system

	Setting up the Cluster
	Running a Map Reduce Job Check
	Hadoop User Interfaces

	Hadoop V2 Installation
	ZooKeeper Installation
	Manually Accessing the ZooKeeper Servers
	The ZooKeeper Client

	Hadoop MRv2 and YARN
	Running Another Map Reduce Job Test


	Hadoop Commands
	Hadoop Shell Commands
	Hadoop User Commands
	Hadoop Administration Commands

	Summary

	Chapter 3: Collecting Data with Nutch and Solr
	The Environment
	Stopping the Servers
	Changing the Environment Scripts
	Starting the Servers

	Architecture 1: Nutch 1.x
	Nutch Installation
	Solr Installation
	Running Nutch with Hadoop 1.8

	Architecture 2: Nutch 2.x
	Nutch and Solr Configuration
	HBase Installation
	Gora Configuration
	Running the Nutch Crawl
	Potential Errors

	A Brief Comparison
	Summary

	Chapter 4: Processing Data with Map Reduce
	An Overview of the Word-Count Algorithm
	Map Reduce Native
	Java Word-Count Example 1
	Describing the Example 1 Code
	Running the Example 1 Code

	Java Word-Count Example 2
	Describing the Example 2 Code
	Running the Example 2 Code

	Comparing the Examples

	Map Reduce with Pig
	Installing Pig
	Running Pig
	Pig User-Defined Functions

	Map Reduce with Hive
	Installing
Hive
	Hive Word-Count Example

	Map Reduce with Perl
	Summary

	Chapter 5: Scheduling and Workflow
	An Overview of Scheduling
	The Capacity Scheduler
	The Fair Scheduler

	Scheduling in Hadoop V1
	V1 Capacity Scheduler
	V1 Fair Scheduler

	Scheduling in Hadoop V2
	V2 Capacity Scheduler
	V2 Fair Scheduler

	Using Oozie for Workflow
	Installing Oozie
	The Mechanics of the Oozie Workflow
	Oozie Workflow Control Nodes
	Oozie Workflow Actions

	Creating an Oozie Workflow
	The Workflow Configuration File

	Running an Oozie Workflow
	Scheduling an Oozie Workflow

	Summary

	Chapter 6: Moving Data
	Moving File System Data
	The Cat Command
	The CopyFromLocal Command
	The CopyToLocal Command
	The Cp Command
	The Get Command
	The Put Command
	The Mv Command
	The Tail Command

	Moving Data with Sqoop
	Check the Database
	Install Sqoop
	Use Sqoop to Import Data to HDFS
	Use Sqoop to Import Data to Hive

	Moving Data with Flume
	Install Flume
	A Simple Agent
	Running the Agent

	Moving Data with Storm
	Install ZeroMQ
	Install JZMQ
	Install Storm
	Start and Check Zookeeper
	Run Storm
	An Example of Storm Topology

	Summary

	Chapter 7: Monitoring Data
	The Hue Browser
	Installing Hue
	Sqoop2 Server Setup for Hue
	HBase Cluster Setup for Hue

	Starting Hue
	Potential Errors
	Running Hue

	Ganglia
	Installing Ganglia
	Potential Errors
	The Ganglia Interface

	Nagios
	Installing Nagios
	Potential Errors
	The Nagios Interface

	Summary

	Chapter 8: Cluster Management
	The Ambari Cluster Manager
	Ambari Installation

	The Cloudera Cluster Manager
	Installing Cloudera Cluster Manager
	Running Cloudera Cluster Manager

	Apache Bigtop
	Installing Bigtop
	Running Bigtop Smoke Tests

	Summary

	Chapter 9: Analytics with Hadoop
	Cloudera Impala
	Installation of Impala
	Impala User Interfaces
	Uses of Impala
	Database Creation
	External Table Creation
	Table Creation
	The SELECT Statement
	The WHERE Clause
	The Subquery
	Table Joins
	The INSERT Statement


	Apache Hive
	Database Creation
	External Table Creation
	Hive UDFs
	Table Creation
	The SELECT Statement
	The WHERE Clause
	The Subquery
	Table Joins
	The INSERT Statement
	Organization of Table Data

	Apache Spark
	Installation of Spark
	Uses of Spark
	Spark SQL

	Summary

	Chapter 10: ETL with Hadoop
	Pentaho Data Integrator
	Installing Pentaho
	Running the Data Integrator
	Creating ETL
	Potential Errors

	Talend Open Studio
	Installing Open Studio for Big Data
	Running Open Studio for Big Data
	Creating the ETL
	Potential Errors

	Summary

	Chapter 11: Reporting with Hadoop
	Hunk
	Installing Hunk
	Running Hunk
	Creating Reports and Dashboards
	Potential Errors

	Talend Reports
	Installing Talend
	Running Talend
	Generating Reports
	Single-Column Reports
	Multi-Column Reports
	Reports Based on SQL Rules
	Reports Based on Regular Expressions

	Potential Errors

	Summary

	Index



